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Abstract

Ice crystals, as an important component of clouds, have a strong influence on cloud radiative

properties and precipitation formation. Moreover, ice crystal habits are controlled by the

environment (temperature and humidity) in which they grow in and as such, are excellent

tracers of in-cloud conditions. Therefore, ice crystal habit classification is an excellent tool to

better understand the microphysical processes in clouds and thus, cloud radiative properties

and precipitation formation. Over the past 50 years, researchers have improved the ability of

algorithms to automatically and efficiently classify ice crystal habits. The most recent attempts

have utilized machine learning and more specifically, a Convolutional Neural Network (CNN),

due to its ability to catch the main features that describe ice crystal habits and recognize patterns

between images.

However, the CNNs trained on standard ice crystal habit images are difficult to apply in reality,

due to the complexity of ice crystals in nature, which are generally a combination of different

habits, rimed, or aggregates, and the difference between training dataset and real-world dataset.

Therefore, in this thesis, a CNN is trained using images of ideal and complex ice crystals recorded

by the HoloBalloon instrument during the NASCENT campaign in Fall 2019, in Ny-Ålesund,

Norway. The dataset includes 16,259 images that were hand-labeled into 9 ice crystal habit classes.

The best performing classification model ensemble (including 10 members), BestIce, achieved

an overall accuracy of 87.55% and a class-wise accuracy of 91.72%. The models performed best

when classifying plates and lollipops and frozen droplets and small ice with per-class accuracies

of around 99.5% and 98%, respectively. To validate BestIce in a real-world application, the model

is used to predict the ice crystals observed on a different day. When the prediction probability of

BestIce was 99% or higher, which made up approximately 40% of the entire dataset, the global

accuracy of the prediction was approximately 80%. However, when all of the ice crystals were

classified with BestIce, the global accuracy fell to 63.31%. Nevertheless, the ability of BestIce to

predict approximately 40% of the new dataset with such a high accuracy shows that the method

developed in this thesis can be used to effectively classify ice crystals in a real-world setting.
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CHAPTER 1

Introduction

1.1 Motivation and Objective

Clouds, composed of liquid (liquid droplets) and/or ice (ice crystals), cover almost 70% of the

Earth (Stubenrauch et al., 2013). Thus, they play an important role in the climate system via the

radiation budget (i.e. Ehrlich et al., 2008;Sun and Shine, 1994;Matus and L’Ecuyer, 2017) and

hydrological cycle (i.e. Field and Heymsfield, n.d.; Mülmenstädt et al., 2015).

Cloud radiative properties (i.e. Sun and Shine, 1994; Y. Zhang et al., 1999; Schlimme et al., 2005)

and precipitation formation (Field and Heymsfield, n.d., Mülmenstädt et al., 2015) strongly depend

on ice crystals due to their ability to grow at the expense of cloud droplets or short in-cloud

lifetime. The ice crystal habits, which are determined by the environment (temperature and

humidity) within which ice crystals grow (Bailey and Hallett, 2009), provide information about the

conditions that ice crystals formed and spent the majority of their lifetime in (1.1). Therefore, to

better understand the microphysical processes in clouds and further obtain a better understanding

on radiation characteristics and precipitation formation of clouds, ice crystal habit classification is

essential.

Convolutional Neural Network (CNN) is a class of neural networks within deep learning, which

is often used to analyze images due to their ability to catch the main features from an image

directly and recognize patterns. Previously, a CNN based on pre-trained models (eg:TL-ResNet18,

TL-ResNet34) has been used to classify 10 standard ice crystal habits with 96%accuracy (Xiao et al.,

2019). However, the CNNs trained on standard ice crystal habit images are hard to apply in reality

due to the effect of the distribution shift (the difference) between training (standard ice for training)

and test data(ice data from real world). In the real world, ice crystal habits are often much more

complex than the well-selected ones used in their training dataset. Moreover, subjectivity from

person is unavoidable as one ’answer’ has to be given for each single ice crystal, even for some

compound ice crystal (i.e. rimed-aggregate).

Therefore, the objective of this thesis is to develop an automatic classification model for ice crystal

habits (holographic images directly from the real world) by using CNNs.

1



1. Introduction

Figure 1.1: Ice crystal habit diagram with the change of humidity and temperatures (Libbrecht,
2016)

1.2 Thesis Outline

In Chapter 2, the role of clouds in the climate system via the radiation budget and precipitation

are discussed. In particular, the importance of ice crystals and ice crystal habits is emphasised.

Instruments for cloud particle detection are then introduced and compared. To better understand

the development of ice crystal habit classification rules and methods, the history of ice crystal habit

classification is presented.

In Chapter 3, CNNs are introduced. Then an overview of transfer learning and fine-tuning is

presented. Finally, the optimization methods for upgrading CNNs, preprocessing methods (image

augmentation), and the evaluation metrics used in this thesis are described.

In Chapter 4, the details regarding the dataset, data pre-processing, and deep learning model

implementation are presented.

In Chapter 5, the results from evaluation of different models trained by the original (imbalanced)

dataset are reported and then the impact of freezing the lower half of the model layers and

including a physical attribute are investigated. Afterwards, the impacts of training on a rebalanced

(remove 2/3 of the dominant class) and balanced (sample images from each of the classes with

2



1.2. Thesis Outline

equal probability) version of the original dataset with and without Test-Time Data Augmentation

(a technique that can boost a model’s performance) are evaluated. Finally, a new dataset is used

for the validation.

In Chapter 6, a summary and some ideas for future work are provided.

The facilities used in this thesis are presented in Appendix C.
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CHAPTER 2

Background

2.1 The role of clouds

Mixed phase clouds (MPCs), containing both ice crystals and liquid droplets, play an important

role for precipitation (Mülmenstädt et al., 2015). The fraction of ice is an important component of

precipitation as ice crystals can grow at the expense of the supercooled liquid droplets according

to the Wegener–Bergeron–Findeisen (WBF) process. Due to the coexistence of ice and water,

MPCs are very efficient at producing precipitation and are responsible for over 30 % and 50 % of

the precipitation that falls over the Ocean and land in the mid-latitudes, respectively (Field and

Heymsfield, n.d.; Mülmenstädt et al., 2015). Moreover, ice crystals grow much faster than water

droplets because the ice saturation line is lower than the water saturation line, which means in

the same environment, ice experiences higher supersaturation (e.g. Lamb and Verlinde, 2011).

Thus, ice crystals grow and fall as precipitation faster than cloud droplets, which have to undergo

collision-coalescence to reach sizes large enough to precipitate(e.g. Lamb and Verlinde, 2011).

Thus, MPCs plays a critical role in the global hydrological cycle.

Clouds reflect incoming shortwave solar radiation, which acts to cool the Earth. Simultaneously,

clouds can warm the Earth by absorbing and re-emitting longwave radiation from the surface. The

amount of reflected versus trapped radiation strongly depends on the cloud height and optical

thickness (Figure 2.1). Generally, high clouds have a net warming effect due to the dominance

of the longwave cloud radiative effect, while low clouds have a net cooling effect due to the

dominance of the shortwave cloud radiative effect. This is in part due to the fact that the albedo or

reflectivity, depends on cloud thickness. As high clouds are often optically thin, they act as weak

reflectors, while low clouds are generally optically thick so they act as strong reflectors. Secondly,

the longwave cloud radiative effect depends on the cloud top height. Since high clouds have high

cloud tops where the temperature is much lower than at the surface, they emit much less radiation

(Blevin and Brown, 1971), acting to warm the climate. Meanwhile, since low clouds have cloud top

temperatures closer to that of the surface, the radiated emission is not very different relative to the

surface. Thus, low clouds have a weak longwave cloud radiative effect (J. Slingo and A. Slingo,

1991). The cloud optical thickness is determined by the concentration, size and phase of cloud

5
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Figure 2.1: Radiation difference among different cloud phase (Vergara-Temprado et al., 2018)

particles. Correspondingly, there are two cloud types, warm clouds and cold clouds (which include

ice clouds and MPCs). Warm clouds are composed of cloud droplets, while ice clouds consist of ice

crystals and MPCs are composed of both cloud droplets and ice crystals. Moreover, for a MPC, the

lifetime and amount of ice and liquid depends on the development of precipitation, as mentioned

above, through the WBF process. Hence, knowing the microphysical properties including ice

crystal number concentration (ICNC), size, spatial distribution (e.g., solely ice crystals or uniform

mixture), and ice crystal habits (i.e. Sun and Shine, 1994; Y. Zhang et al., 1999; Schlimme et al.,

2005) is essential for predicting how clouds influence radiation.

2.2 The role of ice crystal habits

This section will first give an introduction to ice crystal habits and then discuss their importance.

Ice crystal habits, put simply, can be understood as the shapes of ice crystals (i.e., what they look

like). The primary habit denotes the distinct category for the ice crystal shape and is mainly

determined by temperature. Generally, the two primary habits are thought to be ”Plates” and

”Columns”, but ice crystals can also be further characterised by multiple secondary habits that are

mainly determined by supersaturation.

Thus, ice crystal habits provide insight into what happened during the ice crystals growth process.

Let us start with the primary ice crystal habits. The criteria for how we distinguish columns and

plates is according to the aspect ratio c/a where c and a are the basal and prism faces, respectively.

As we can see in Figure 2.2, we assume RB is the linear growth rate of basal faces and RP is the

linear growth rate of prism faces. When the basal face grows faster than the prism face, we get

a columnar ice crystal; when it is the opposite, we get a plate. To be more intuitive, we could

imagine the basal face as either short or tall and the prism face as either thick or thin. Thus, the
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Figure 2.2: The primary habits of ice crystal. Top: plate; bottom: column (Lamb and Verlinde, 2011)

growth ratio is described as below:

RB
RP

=
dc/dt
da/dt

=
dc
da

(2.1)

The growth ratio in turn depends on the temperature. As can be seen from Figure 2.3, at

temperatures warmer than -5 °, the prism face grows faster than the basal face; from -10 to -

5 °, the opposite is true; at temperatures below -10 °, the prism face grow faster than the basal face

again. However, these are just the most basic habits of ice crystals. In reality, ice crystal habits

can vary even more. For example, from -10 to -5 °, ice crystal habits can be hollow columns, solid

long needles, sheaths, and scrolls. Between 20 and 10 °, ice crystals can become thick plates of a

skeleton form, fern-like with sector-like branches, stellar, ordinary dendrites, and hexagonal plates

(K.-N. Liou and P. Yang, 2016). Moreover, some processes, for example riming and aggregation,

that happen as ice crystals fall through a cloud, can also influence the ice crystal habits. Thus,

classifying ice crystal habits is very important in order to better understand the microphysical

conditions and processes in clouds.

Radiative properties differ between ice crystals and liquid droplets (Ehrlich et al., 2008; Sun and

Shine, 1994). Ice crystal are generally larger and fewer than liquid droplets so that ice clouds

typically have a lower albedo (as shown in the Figure 2.1). Thus, warm clouds composed purely
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Figure 2.3: Deposition coefficient (proxy for growth rate) of the basal face (solid curve) and prism
face (dashed curve) as a function of temperature (Lamb and Verlinde, 2011)

of liquid droplets have higher optical thickness and thus have a cooling effect compared to cold

clouds (Lohmann, 2002). The radiative effects of ice crystals are a function of the crystal size

(Stephens et al., 1990; Fu and K. N. Liou, 1993) and habit. These relationships have important

implications for remote sensing estimates of precipitation rates and cloud radiative properties. In

terms of precipitation, the habit impacts the riming efficiency and the ice crystal fall speed, which

is important for estimating the mass of snow that reaches the ground. Thus, accurately identifying

these properties is essential for accurate estimates of precipitation and cloud-climate interactions.

In conclusion, ice crystal habit classification is needed for a better assessment of cloud

microphysical pathways, and for assessing the impact of habit on cloud radiative properties

and precipitation estimates from remote sensing.

2.3 Instruments for detection of cloud microphysical properties

A large amount of research has been conducted on the instruments used to measure ice crystals in

clouds. These techniques have been developed for different applications, including single-particle

detection, bulk liquid and ice water detection, shape measurements and cloud particle optical

properties. However, here the focus is on single-particle detection techniques. The instruments

used for single particle methods can be divided into two main measurement techniques, namely

light scattering and imaging sensors (‘Cloud Ice Properties: In Situ Measurement Challenges’ 2017).
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Some examples of light scattering probes include the Forward Scattering Spectrometer Probe (R.

Knollenberg, 1976), the Cloud Droplet Probe (Lance, 2012), the Cloud and Aerosol Spectrometer

(CAS Baumgardner et al., 2001), the Cloud and Aerosol Spectrometer (Baumgardner et al., 2001), the

Cloud and Aerosol Spectrometer with polarization (Glen and Brooks, 2013), the Backscatter Cloud

Probe (Beswick et al., 2014). Meanwhile, common imaging sensors include the Two-Dimensional

Stereo spectrometer (2D-S, R. P. Lawson, O’Connor et al., 2006) and Precipitation spectrometers

(R. G. Knollenberg, 1970), the High Volume Precipitation Spectrometer (HVPS, R. P. Lawson,

Stewart, Strapp et al., 1993), the Cloud and Precipitation Imaging Probes (CIP Baumgardner et al.,

2001), the Two-Dimensional Stereo spectrometer (R. P. Lawson, O’Connor et al., 2006), the High

Volume Precipitation Spectrometer (R. P. Lawson, Stewart and Angus, 1998), the Cloud Particle

Imager (Baumgardner et al., 2001), and holographic imagers such as the Holographic Detector for

Clouds (J. P. Fugal and Shaw, 2009), HOLographic Imager for Microscopic Objects II (HOLIMO II,

Henneberger et al., 2013). For this thesis we only consider holography.

Holography techniques have been widely used since 1975(i.e.Trolinger, 1975, Borrmann et al., 1993,

R. Lawson and Cormack, 1995) and have been conducted on several platforms including aircraft

(i.e. Beals et al., 2015, J. P. Fugal and Shaw, 2009, Spuler and J. Fugal, 2011), tethered-balloon

systems (Ramelli et al., 2020), cable cars (Beck et al., 2017), mountaintop research stations (i.e.

Borrmann et al., 1993; Henneberger et al., 2013) and in the laboratory ( Amsler et al., 2009).The

basic principles of holography are as follows:

In-line holography utilizes a collimated/straight light source with a known wavelength to

illuminate a sample volume of a given size. During the illumination, as shown in Figure (2.4),

the laser irradiates a coherent reference wave through the well-defined sample volume, which

contains an ensemble of cloud particles. When cloud particles meet the reference wave UR (see Fig

2.4), they scatter UR and produce scattered wavefronts US (see Fig 2.4) by interfering with UR. The

resulting interference pattern known as a hologram is recorded by the camera (see Fig 2.4) as a

2D picture. The ring pattern on the 2D image is the superposition of the reference wave UR and

the scattered wave US (see Fig 2.4) and the intensity of the ring pattern can be described by the

modulus squared of the superimposed waves as follows:

IH = |US + UR|2

= UR ∗UR + US ∗US + URU∗S + U∗RUS

(2.2)

where UR*UR is the mean intensity of the reference wave, which can be seen as the constant

background, US*USis the mean intensity of the scattered wave, which is usually ignored due to

its much smaller order of magnitude, UR ∗U∗S is the virtual image and U∗R ∗US is the real image.

These four terms describe the particles’ position and two-dimensional shape.

The hologram is then reconstructed in different planes by the software HOLOSuite (modified

version of J. P. Fugal and Shaw, 2009) where the original position of the particles responsible for
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Figure 2.4: Working process of digital in-line holography (Touloupas et al., 2020)

US can be identified. The working principles of HOLOsuite are mainly divided into 2 steps:

1. Reconstruction

2. Classification of particles into 3 classes – liquid droplets (circular particles), ice crystals (non-

circular particles) and artifacts (parts of the interference pattern, scratches on the windows,

noise, etc) by machine learning.

Among all the single-particle detection measurements as mentioned above, holographic techniques

have the following advantages and disadvantages compared to other techniques

Advantages:

1. Holography is able to measure over a wide range of particle sizes, typically ranging from 6

µm to 1 cm (‘Cloud Ice Properties: In Situ Measurement Challenges’ 2017). The minimum

particle detection size is decided by the diffraction limit of the optics (i.e., the resolution) and

by the fact that the particle must be larger than two pixels wide to be resolvable (J. P. Fugal

and Shaw, 2009). For the maximum detection size, it is partly dependent on the detector

size and the ability of the post-processing code to determine the correct focal plane of large

particles so that they are in focus (J. P. Fugal and Shaw, 2009).

2. It catches the information directly from the real image, so there is no need to convert the

intensity of scattered light measured at specific angles to particle sizes, unlike some other light

scattering probe (i.e. CAS). This also means that assumptions of particle shape, orientation,

refractive index and scattering direction can be avoided.

3. In contrast to other single particle techniques, such as, triggered particle imagers, CPI

(SPECinc, Colorado USA), holography offers a well-defined sample volume independent

of particle size and air speed (J. P. Fugal and Shaw, 2009). Thus, it effectively avoids the
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uncertainties in the calculation of the effective sample volume and subsequent cloud particle

concentrations.

4. Holography provides the particle position information in the sample volume and thus offers

a high-resolution spatial distribution of the particles on a millimeter scale (Beals et al., 2015).

Thereby, it allows us to investigate particle clustering, ice crystal shattering (J. P. Fugal and

Shaw, 2009) and the spatial scales of mixing between liquid and ice (e.g. inhomogeneous

cloud mixing) at the centimeter scale (Beals et al., 2015).

5. Holography largely reduces the error from shattering by selecting a sample volume about 1

or 2 cm away from the probe arms during the reconstruction.

Disadvantages:

1. Holography can produce a lot of artifact (noise) which largely increase the post-processing

cloud particle classification work. However, an automated classification model (between

droplets, artifacts and ice crystals) trained by machine leaning, is now included in the post-

processing software, HOLOsuite. This largely reduces the effort needed to determine cloud

microphysical properties (Touloupas et al., 2020).

2. Holography is extremely computationally expensive due to the extensive post-processing

required. Generally, graphics processing units (GPUs) can do 10–15 times the operations of

CPUs and thus can save large amount of computation time.Therefore, future work should

be done to transfer the HOLOsuite software to GPU processing (Henneberger et al., 2013).

Generally, GPUs can do 10–15 times the operations of CPUs and thus can save a large amount

of computation time (Schlegel, 2015). However, the problem of high computational cost is

alleviated by the development of both the software package (HOLOSuite J. P. Fugal and

Shaw, 2009) and computer technologies.

In conclusion, holography is an important technique for cloud microphysical studies and has a

large potential to be further developed.

2.4 Ice crystal classification history

In the past few decades, several studies have been carried out on the classification of ice crystals

and solid hydrometeor images measured by optical array probes (OAP). I personally separate the

history of ice crystal classificationinto into. three time periods:

1. Simple descriptors searching period

2. Advanced particle descriptors searching period
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3. Automatic classification period.

Hydrometeor classification techniques began with easily found (dimension-related) particle

features, such as size parameters. Cunningham (1978) utilized only the edge complexity of

particles and their equivalent circle ratio, to classify hydrometeor images measured by Particle

Measuring System probes. Since then, people started to use different methods to seek the most

representative features of particles for classification. Rahman et al. (1981) generated a set of

synthetic images for selecting geometrical parameters to classify binary two-dimensional images

of hydrometeors. They found ten time domain features/geometrical parameters (i.e. circular

deficiency, which is defined as the absolute value of the difference between the area of the target

image and the circle) for hydrometeors classification. Duroure et al. (1994) analysed particle habit

and size distribution of the population by using the geometrical measures S and P of individual

particles, where S is the square area of the image, P is particle image perimeter. Another more

simple approach is to classify ice crystals by comparing the particle maximum dimension and area

ratio (e.g.,McFarquhar and Heymsfield, 1996; Intrieri et al., 2002). In the first time period, these

techniques are relatively computationally-cheap and fast but they struggle to distinguish between

some composite ice crystal habits, such as, irregular, aggregates, or bullet rosettes.

As computational power increased, advanced/high-computation methods were introduced to

classify ice crystals for complex ice crystals classification. The first used a self-organized neural

network algorithm, also based on particle dimension and area ratio, which achieved a habit

identification accuracy of 69% for bullet rosettes and 87% for polycrystals (McFarquhar, Heymsfield

et al., 1999). Korolev and Sussman (2000) proposed a method that could distinguish four families

of snow particles by checking dimensionless ratios of simple geometrical parameters (Korolev and

Sussman, 2000). In 2006, Feind (2006) confirmed the high accuracy of neural network methods

through a comparison of different classification techniques. The main finding emphasized the

importance of the key particle features be utilized. This means that if less dominant/relevant

features are included, it may not help improve the classification accuracy and even make it worse.

The Ice-crystal Classification with Principal Component Analysis tool applies principal component

analysis into the classification (Lindqvist et al., 2012) and achieves an accuracy of over 80% . Praz et

al. (2017) applied logistic regression to classify the images from the Multi-Angle Snowflake Camera

(MASC). MASC is a ground-based snowflake imager that captures high-resolution (down to 35

microns per pixels) photographs of falling snowflakes from three different angles (Garrett et al.,

2012). Praz et al. (2017) also used a logistic regression algorithm for ice crystal habit classification

from an airborne 2D-S, a HVPS, and a CPI with over 90% accuracy. However, their technique still

required manual feature extraction (i.e. aspect ratio).

Deep CNN-based feature extraction was not proposed until 2019 whenXiao et al. (2019) trained

CNNs based on some pre-trained model (i.e.TL-ResNet18, TL-ResNet34) to automatically classify

12



2.4. Ice crystal classification history

10 standard ice crystal habits with 96%accuracy. This method largely increased ice crystal habit

classification accuracy and efficiency. However, if the CNNs is trained on ideal ice crystal habits

images, it is hard for the model to be applied on more complex ice crystal habits found in nature.

As ice crystals are influenced by the environment they grow in, it is very likely that large differences

in ice crystals will exist between different sampling days or even within the same sample period.

Therefore, it is difficult for a model to perform well when it has to predict ice crystals that are

different than the ones that it was trained with. Regardless, with the exception of some very

complex and confusing ice crystals, the majority of ice crystals still fall within one of the classes

determined during the training. Additionally, a field-collected dataset can be very imbalanced, for

example, during one specific campaign, column shaped ice crystals could occupy over 50 % of the

total ice crystal number. Moreover, for any supervised learning technique, a ’label’ (i.e. column,

plate) for each ice particle must be provided and thus, it is hard to avoid subjectivity during the

hand-labeling process. Therefore, to avoid this subjective bias, Leinonen and Berne (2020) applied

an unsupervised learning method, generative adversarial network (GAN) and K-medoids method

for the classification of snowflakes obtained from MASCs. However, it is a completely unlabeled

clustering approach and therefore, has no guidance at all as to which features are scientifically

essential and which are not, so that it unavoidably retains some irrelevant and even meaningless

information. Thus, unsupervised learning still struggles to classify ice crystal habits as defined by

the atmospheric science community. Also, due to the relatively coarse resolution of the MASC,

some important shape features were missed. Therefore, in this thesis, I develop an automatic ice

crystal habit classification algorithm using a CNN as done by Xiao et al. (2019) but designed to

work on ice crystals images without any selection (directly collected from the real world). The

background on CNNs and the techniques surrounding them are described in the following chapter.
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CHAPTER 3

Method

3.1 Neural networks

Neural networks (NNs) are a popular approach in machine learning and have become a hot topic

in recent years. NNs are computational systems that can learn to perform tasks by considering

examples, without being programmed with any task-specific rules. This approach was inspired by

the human brain and how it passes information among neurons. Generally, NNs consist of three

basic components, an input layer, hidden layers and an output layer (as shown in Figure 3.1). They

are meant to mimic a biological system, wherein neurons interact by sending signals in the form of

mathematical functions between layers. All layers can contain an arbitrary number of neurons,

and each connection is represented by a weight variable.

Figure 3.1: Fully connected neural network architecture with two hidden layers
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Figure 3.2: Sigmoid activation function

3.1.1 Feed-forward neural networks

The feed-forward neural network (FFNN) is a type of sing-direction NN, which transports

information from an input layer to an output layer while never going back.

Generally, FFNNs pass information starting from the input layer. Each output f (Zi) in the next

layer is connected to the neurons (input Xi) in the previous layer with their corresponding weight

Wi. The input to the next layer is the obtained value of the activation function and the input of

the activation function is the sum of the set of weighted outputs from the previous layer with an

added bias term. The above process is described as the following equation:

y = f

(
n

∑
i=1

wixi + bi

)
= f (x) (3.1)

where f is the activation function, xi are the input values, wi are the weights

There are many options for an activation function, which depends on the tasks’ needs. For example,

to do a binary classification with predicted classes 0 and 1, the output should be a probability value

between 0 and 1. A Sigmoid function could be used to tackle this problem as shown in Figure (3.2)

and where the sigmoid function is expressed as the following equation:

f (x) =
1

1 + e−x (3.2)
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Figure 3.3: Typical CNN architecture for image recognition (Wikimedia, 2015)

Thus, the following layers pass the information in the same way. The output of neuron i in layer l

becomes :

yl = f l(yl−1) = f l ◦ f l−1(yl−2) = ... = f l ◦ f l−1 ◦ ... ◦ f l ◦ f 1(x) (3.3)

After the information is passed, a final result is produced by the model. In order to make the

prediction match the desired ground truth label, one has to select suitable parameters. One

initializes the weights usually randomly with some constraints as discussed for example in He

et al. (2015b) before one optimizes them. The optimization will be briefly discussed in the Section

3.4.1.

Based on the a basic NN framework as introduced above, several different types of NNs have been

developed for different tasks. In this thesis, only Convolutional Neural Network is introduced in

the following Section 3.2.

3.2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a class of NN that, as previously mentioned, is often

used to analyse images due to its ability to accurately differentiation between image features. CNNs

emerged from the study of the brain’s visual cortex, and have been used in image recognition since

the 1980s (Géron, 2019). CNNs are able to capture the low-level features (eg: texture, edges) from

input images with convolutional layers (as shown in Figure 3.3). Pooling layers reduce the size

of the data output from a previous layer and computations so that it is easier to process further.

Also, pooling layers extract the dominant features from the images. The dense or fully-connected

layers perform the final step in the CNN. If the images are very simple and formatted, a FFNN

may achieve almost the same performance/accuracy as a CNN. However, if the image is complex

and not that well-formatted, CNNs will perform better because they are translationally invariant.

Moreover, a FFNN would ’pass away’ (break down) for large ice crystals due to the large number

of neurons it requires to make good predictions (Ullah and Bhuiyan, 2018). Thus, a CNN is a better

tool for analyzing complex images than a FFNN.
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Figure 3.4: Calculation process of Convolutional layer to get feature map (convolution network basics
- Charlotte77 2019)

As described previously, a CNN is generally composed of three main parts, convolutional layers,

pooling layers and fully-connected layers. In the following sections, how these three components

work in detail is introduced.

3.2.1 Convolutional layer

The convolutional layer is the most important building block of a CNN. The main objective of

the convolutional layer is to extract low-level features(i.e., edges, color) from the input image,

by scanning through the entire image with a small filter. This means that the convolutional

layer computes the output by applying the kernel (filter) to an input array. Neurons in the first

convolutional layer are not connected to every single pixel in the input image, but only to pixels in

their receptive fields(Géron, 2019). Conv2D layers are used in our model, which means that the

input of the convolution operation is three dimensional. The "2D" in "Conv2D" actually means that

the filter moves through the image in two dimensions. For example, for each 4× 4 pixel region

of the image, the convolution operation computes the dot products between the values and the

weights that are defined in the filter. As can be seen in Figure 3.4, the original image is a black

and white image represented by the pixel values of 1 or 0, respectively. For this 4 × 4 image, two

convolution kernels of 2 × 2 are used. The convolution process starts by taking the dot product of

the filter with the 2×2 submatrix in the top left corner of the image. At this position, the step size

is set to 1, which means that the next submatrix of the image sent to the filter is shifted 1 column to

the right. When the right side of the image is reached, the process is repeated on the subsequent

row. Taking the first convolution kernel Filter1 as an example, the calculation of the feature map is

as follows:
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Figure 3.5: Convolution of a 5x5 input (blue) with 3x3 kernel (grey) with a stride of 2 and padding
of 1. The feature map output is in green (Ingargiola, 2019)

f m1(1, 1) = 1 ∗ 1 + 0 ∗ (−1) + 1 ∗ 1 + 1 ∗ (−1) = 1 (3.4)

f m1(1, 2) = 0 ∗ 1 + 1 ∗ (−1) + 1 ∗ 1 + 1 ∗ (−1) = −1 (3.5)

f m1(1, 3) = 1 ∗ 1 + 0 ∗ (−1) + 1 ∗ 1 + 0 ∗ (−1) = 2 (3.6)

The resulting feature map for the entire image for two filters can be seen in Figure 3.4. The process

of applying the convolutions can be seen as a sliding a filter over the image. To better capture the

features near the edges of the image, padding can be added around the image in the form of rows

and columns of zeros, so that the filter can be applied further out ’over’ the edges of the image.

This is especially useful for larger filters. This process is exemplified in Figure 3.5

Then the input equation of every convolutional layer can be written as:

V = conv2(w, x,′ valid′) + b (3.7)

where w is the filter matrix (weights), x is the input matrix, ’valid’ is the type of the convolutional

computation which is described below and b is the bias. The output is as follows:

Y = f (V) (3.8)

where f is the activation function. ReLu was used in this project and Relu is expressed as follows:

f (x) = max{x, 0} (3.9)

It gives an output of x if x is positive and gives 0 otherwise.

3.2.2 Pooling layer

The pooling layer is mainly used to reduce the required computational power of the CNN. It works

by reducing the spatial size of the convoluted feature by reducing the output from the convolutional
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Figure 3.6: Maximum Pooling of a 3x3 input with 2x2 pooling window. The shaded area are the first
output element and the input image elements used for the output computation: max(0, 1, 3, 4) = 4
(Ingargiola, 2019)

layers. Each neuron in a pooling layer is connected to the outputs of a limited number of neurons

in the previous layer. Note that a pooling neuron has no weights, it just aggregates the inputs

using max or average. Since the optimization complexity grows exponentially with the growth of

dimensions, it extracts the dominant features in an area of the output from the convolutional layers

(Géron, 2019). Max pooling is a form of down-sampling and also a noise reduction technique. Max

pooling works similarly to convolutional layers but it uses a kernel instead of a filter with a step

size larger than 1. Max pooling simply looks at all the values in a given submatrix and selects the

largest value as the output. Thus, only the maximum input value in each kernel makes it to the

next layer and the other inputs are dropped. Average pooling is another method of pooling that

instead, returns the average of all the values in the kernel as the output. Average pooling can be

seen simply as a noise reduction technique whereas max pooling also extracts dominant features

(Géron, 2019). Thus, max pooling can keep the position and rotation of the feature constant, which

is great for image processing. Additionally, it can reduce the number of model parameters and

reduce problems with over-fitting. In both cases, the pooling process is shown in the Figure 3.6.

Similarly to a convolutional layer, the pooling window starts from the upper-left of the input image

(input from previous convolutional layer) and walks through the entire image from left to right

and top to bottom, step by step. The output of each location is the the maximum (for max pooling)

or average (for average pooling) value of the input subsection (shaded area in the Figure 3.6).

3.2.3 Fully connected layer

Fully connected layers are the last layers in the neural network. The core idea of a fully connected

layer is that each neuron in the layer is connected to every neuron in the previous layer as shown

in Figure 3.7. The fully connected layers use the flattened output from the last pooling and

convolutional output as its input. The purpose of the fully connected dense layers is to perform

the classification based on the features extracted by the convolutional layers. A feature vector is a
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Figure 3.7: An example of Fully connected layer (Raju and Thirunavukkarasu, 2020)

vector of numerical features that describe some object/figures in pattern recognition in machine

learning. Here, one could understand the feature vector as the final value obtained from previous

convolutional and pooling layers. For a given feature vector x, to determine the probability for

each of these categories i (in this case it should be different kinds of ice crystals (eg: column,

plates)), P(y = i|x; θ), then the results of our hypothesis function would be a C dimensional vector

whose sum of the vector elements is 1, and represents estimated probability values of these C

types. So far, the basic structure of CNN has been introduced but there are various architectures

of CNNs available. In this thesis, only Residual Networks and Densely Connected Networks are

used, which are introduced in the following Subsection 3.2.4 and 3.2.5.

3.2.4 Residual Networks (ResNet)

For solving complex problem, neural networks are becoming deeper and deeper from a few layers

(e.g., AlexNet) to over hundreds of layers(e.g., ResNet-152, DenseNet-264). However, in reality, it

is generally difficult to achieve good performance from deep neural networks due to vanishing or

exploding gradients. Especially, small gradients can quickly go to zero due to the large number of

multiplications in the many layers of these deep neural networks. Thus, He et al., 2015a proposed

a deep residual learning framework which properly solved this problem. As shown in Figure (3.8),

the main difference between the right (residual block) and left (regular block) schematics is the

so-called skip connection. The inputs x can forward propagate directly from the beginning to the

next few subsequent layers and this skip connection prevents gradients from vanishing (going to

zero).

These residual blocks can be implemented into models as is done in the ResNet (ResNet-18) model

structure (see Figure (3.9))
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Figure 3.8: Comparison of structure of a regular block (left) and a residual block (right) (A. Zhang
et al., 2020)

Therefore, in this thesis, three ResNet models, ResNet-18, ResNet-101 and ResNet-152, are used.

The detailed information of each ResBlock is listed in the table A.1 in the appendix.

3.2.5 Densely Connected Networks (DenseNets)

Another method for solving the gradient vanishing problem, is DenseNets (Huang et al., 2018),

which is a more advanced way than ResNets that includes more information of higher orders. Thus,

the connection becomes a chain and the latter layer has connections with all the preceding layers.

An example of a DenseNet connection is shown in Figure:(3.10) As shown in Figure (3.10), each

layer of the Dense block concatenate incoming features from all previous layers and contribute to

the output feature-maps of its own, to all subsequent layers. This can be expressed as follows:

x→ [x, f1(x), f2 ([x, f1(x)]) , f3 ([x, f1(x), f2 ([x, f1(x)])]) , . . .] (3.10)

By creating such short paths from early layers to later layers, Dense connection strengthens the

feature transmission and reuse and thus, alleviates the vanishing-gradient problem.

In this thesis, three DenseNet models, DenseNet-121, DenseNet-169 and DenseNet-201 are used.

The detailed information of each DenseBlock is listed in table A.2 in the Appendix A.
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3.2. Convolutional Neural Network

Figure 3.9: The ResNet-18 structure (A. Zhang et al., 2020)
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Figure 3.10: Dense connections in DenseNet models (\textcite )zhang2020dive

Figure 3.11: Difference between traditional machine learning (left) and transfer learning (right)
(Pan and Q. Yang, 2010)

3.3 Transfer learning

When we look back on our learning process as a child, we don’t learn everything from scratch. We

can always utilise what we already know to help us gain new knowledge. For example, if we know

that an apple is a fruit, it will help us identify a pear as a fruit. As another example, it is much easier

to learn how to drive a motorbike if you already know how to ride a bicycle. Similarly, if we already

understand basic statistics and math, then it is easier for us to learn machine learning. These real

world scenarios are the core idea of transfer learning. Basically, transfer learning leverages the

knowledge gained from another related task or domain and applies it to a similar problem of

interest (Pan and Q. Yang, 2010). The main difference between the learning processes of traditional

and transfer learning techniques is that in traditional machine learning the method is to learn each

task separately from scratch, while transfer learning utilises the knowledge obtained from previous

training for other tasks. An example of this difference is shown in Figure (3.11). Thus, the weights

from pre-existing trained models can be used. For example, the DenseNet-121 or ResNet-152 can

be used to help the training of a model for our own task, as they are both trained on the ImageNet

24



3.4. Fine-tuning

Figure 3.12: An example of a NN with Backpropagation

dataset, which contains around 1.3 million images and 1000 objects spanning over 1000 classes. By

using a model already trained on so much data, the generalization error is avoided compared to

when training a new model from scratch. Additionally, in situations with a limited dataset where

training a model from scratch can be difficult, the use of transfer learning can assist in achieving

good model performance.

3.4 Fine-tuning

In the previous section, it was concluded that the weights and structures from existing deep

learning neural networks (eg. DenseNet-121, ResNet-18) can be used to develop new models for

different tasks. That process is an example of Fine-tuning as Fine-tuning is one of the techniques

in transfer learning. Wherein the knowledge gained from models trained on a source dataset

(ImageNet dataset) is transferred to the target dataset (Ice crystal images) so that only after minor

adjustments, the model obtains good performance. The two main advantages of fine-tuning are

that only a small amount of a target dataset is required for training and that it is computationally

cheaper than training from scratch.

3.4.1 Backpropagation

Backpropagation is an algorithm to efficiently compute the gradients (by exploiting chain rule on a

directed acyclic graph), which then are used in an optimizer to adjust the weights. This is achieved

by going backwards from the prediction to the first layer in the network as shown in the Figure

3.12.

Backpropagation computes the gradient of the loss function with respect to the inputs to each layer
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and with respect to the parameters of each layer. The gradient of the loss function with respect to

the inputs to each layer is used to backpropagate further. The gradient with respect to parameters

can be used to reduce the loss on training data, because it is a sufficiently small step in parameters

space in direction of the negative gradient, which means if you go towards this direction, the loss

can be smaller in this specific parameter space and thus decrease the loss on training data. The

algorithms used to minimize the value of the loss function are described in following Section 3.5.

3.5 Optimization

The goal of optimization is to minimize the loss function for deep learning and the following

equation presents the optimization of a loss function J(θ):

θj := θj − α
∂

∂θj
J(θ) (3.11)

The value of θ is assigned, such that J(θ) proceeds in the direction of the negative gradient, which is

for a sufficiently small step, the direction of the steepest decrease, and keeps iterating, to ultimately

obtain the local minimum value. Where A is the learning rate, which determines how large a

single ’step’ we can take in the downward direction of the maximum decline of the cost function.

This is a special case of optimization and it may be the simplest way to execute Stochastic Gradient

Descent (SGD, will be introduced in the following Subsection 3.5.1). In this thesis, two optimization

methods for training, SGD and Adam, are tested.

3.5.1 Stochastic Gradient Descent (SGD)

In reality, for training a deep learning network large amounts of data are needed. Therefore, when

using traditional gradient descent, the training becomes computational expensive and it becomes

hard for the network to converge. Thus, SGD is often used to avoid this scenario. The core idea of

SGD is ’randomness’. During the training process, it randomly chooses a small number of points

for each iteration rather than looping through all of the points in the entire dataset. Therefore, it

greatly reduces the number of computations during deep learning training.

3.5.2 Adam

Gradient descent algorithms with momentum are inspired from physics. Let us imagine rolling

a ball in a frictionless bowl. Instead of stopping at the bottom of the bowl, the accumulated

momentum keeps the ball rolling back and forth. If the decay rate (the rate that learning rate

changes/decays over time with) is set to 0, then it is exactly the same as the original gradient

descent. In contrast, if the decay rate is set to 1, then as in the analogy of the frictionless bowl, the

ball will continue rocking back and forth, which is not desirable. Therefore, one usually chooses a

decay rate around 0.8-0.9, this is like a surface with a bit of friction, so that the ball eventually slows
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down and stops. An adaptive gradient algorithm (Adagrad), does not track the sum of gradients

like momentum, but tracks the sum of gradients squared, and uses this method to adjust gradients

in different directions. However, the main issue of Adagrad is that it is very slow. This is because

the sum of squares of gradients only increases but never decreases. Kingma and Ba (2017) solves

this problem by adding a decay rate using the Root Mean Square Propagation (RMSProp) method.

Therefore, Adam is an optimization algorithm that combines RMSprop (Tieleman and Hinton,

2012) and the SGD method with momentum, as was first proposed by Kingma and Ba (2017). In

machine learning optimization, some features are very sparse and thus the average gradient of

sparse features is usually small, so these features are trained at a much slower rate. One way to

solve this problem is to set a different learning rate for each feature, but this can quickly become

messy. The core idea of Adam is that for one feature, the more you’ve updated, the less you’ll

update in the future. Thus, it gives other features (such as sparse features) a chance to catch up.

The extent to which this feature is updated depends on how far it has been moved in a given

dimension, and this extent is measured by the sum of gradient squares. Adam is an adaptive

learning rate method rather than SGD, which uses a single learning rate throughout the entire

training process. Thus, the weight decay is adapted for different parameters.

3.6 Image augmentation

As previously discussed, by using transfer learning and fine-tuning, the amount of data required

to train a model is greatly reduced. However, in some cases, there still is not enough data to just

fine tune deep learning models. Additionally, even if there is enough data, the dataset can be too

imbalanced for good model performance to be achieved. For example, one dominant class can

account for over 50% of the entire dataset. In this situation, it is hard to get a high-performance

model.

Thus, image augmentation is an efficient way for addressing these problems. Image augmentation

creates a similar but disjointed dataset relative to the original training dataset by randomly

changing the original dataset. The changing datatset is under the constraint that after the

augmentation, the image should maintain the same ground truth label. By doing so, image

augmentation increases the size of the training data set while maintaining the features of the

original training dataset. This is typically conducted by performing the following augmentations

to images in the original dataset:

1. Image Flipped: horizontally(Figure:3.13)

2. Image Flipped: vertically (Figure:3.14)

3. Rotation (Figure:3.15)
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Figure 3.13: Example of ice crystal image flipped horizontally. Original image (left) and horizontally
flipped image (right)

Figure 3.14: Example of ice crystal image flipped vertically. Original image (left) and vertically
flipped image (right)
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Figure 3.15: Example of ice crystal image rotation for 90, 180 and 270 degrees rotation

4. Cropping: an image can be cropped such that the interesting components of the object are

emphasised or such that the target (eg: in our case, ice crystal) is shown in different positions.

5. Changing Colors: the image color can be adjusted from four aspects: brightness, contrast,

saturation, and hue.

The augmentation method used depends on the task. For example, in our case, we don’t care about

the color of ice crystals and our original ice crystal images are black-white. Thus, changing color is

not a useful method in our case. Thus, rotating or flipping is more beneficial.

3.7 Evaluation metrics

3.7.1 Confusion matrix

A confusion matrix is an error table that shows the performance of a classification model (or

"classifier") for at least two classes from a given dataset, which compares the predicted classes by

the model to the true classes. Below, is an example of a confusion matrix for a given classification

model that is trained to predict whether a value (class) is positive (P) or negative (N): (3.16):

True positive rate: (TPR) = TP
TP+FN (worst value = 0; best value = 1 )

True negative rate: (TNR) = TN
TN+FP (worst value = 0; best value = 1 )

Positive predictive value: (PPV) = TP
TP+FP (worst value = 0; best value = 1 )

Negative predictive value: (NPV) = TN
TN+FN (worst value = 0; best value = 1 )
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Figure 3.16: Confusion matrix for binary classification.

where TP or true positive, represents the instances when the model predicts that the class is positive

and indeed, the actual class is positive. Similarly, TN or true negative, represents the instances

when the model correctly predicts that the class is negative. In contrast the FP or false positive,

represents the instances when the model predicts that the class is positive but the actual class is

negative. Similarly, the FN or false negative, represents the instances when the model incorrectly

classifies a class as negative when the actual class is positive.

3.7.2 Overall accuracy

The overall accuracy gives an overview of how a classification model performs. It is usually

expressed as a percent, from 0% accuracy, where the model was completely wrong, to 100%

accuracy, where the model predicted all of the targets correctly. The equations can be expressed as

follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.12)

The overall accuracy gives quick and intuitive feedback on how a model performs over the entire

dataset. However, if a dataset is imbalanced, meaning that the classes are not equally represented

in the dataset, the overall accuracy can be misleading as it may just indicate that the model is

predicting the dominant classes correctly but not the rarer classes. Especially if the rarer classes

are significantly underrepresented in the dataset and their correct classification is statistically

insignificant.
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3.7.3 Overall false discovery rate

The overall false discovery rate (FDR) is the opposite of the overall accuracy. It is expressed as a

ratio of the number of the objects that the model predicted wrong to the total number of objects

that the model predicted(include both model predicted wrong and right). Thus, it can be expressed

as follows:

FDR = 1− TP + TN
TP + TN + FP + FN

(3.13)

3.7.4 Per-class accuracy

For better understanding how deep learning classification model performs in each single class, a

per-class accuracy metric to evaluate the model is required. Per-class accuracy accounts for the

accuracy of the model for a given class and the number of instances the class occurs. For a binary

classification, the equations are as follows:

AccuracyPositive =
TP

TP + FP
(3.14)

AccuracyNegative =
TN

TN + FN
(3.15)

3.7.5 Per-class false discovery rate

The per-class FDR is the opposite of the per-class accuracy, which follows the same fashion as

overall accuracy and overall FDR. Thus, the per-class FDR represents the false rate (ratio of false

prediction to whole class dataset) of each class. For a binary classification, the equations are as

follows:

FDRPositive = 1− TP
TP + FP

(3.16)

FDRNegative = 1− TN
TN + FN

(3.17)

3.7.6 Balanced accuracy

Balanced accuracy is a metric to evaluate the performance of a classification model, especially

for imbalanced dataset. This often happens in ice crystal habit datasets as ice crystals retain the

information of the environment in which they grew in and all subsequent processes that they

undergo until their point of measurement. Due to these processes, ice crystal habit datasets

are frequently dominated by a single habit or are irregular shaped and thus the dataset is often

unbalanced.
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Balanced accuracy is based on two more commonly used metrics: sensitivity (true positive rate)

and specificity (true negative rate). The formulas for true positive rate and true negative rate have

already been mentioned above. Balanced accuracy is simply the arithmetic mean of these two as

follows:

BalancedAccuracy =
TPR + TNR

2
(3.18)

Balanced accuracy represents the performance of a classification model when a dataset is

imbalanced. However, in reality, the importance of each class needs to be considered, such

that the evaluation is unbiased.

3.7.7 Class-wise accuracy

Base on the balanced accuracy, class-wise accuracy takes the frequency of each class into

consideration as follows (Grandini et al., 2020):

Balanced Accuracy weighted =
∑K

k=1
TPk

Total row k ·wk

K ·W (3.19)

where wk is the weight of class k. This metric takes care of both tracking the performance of each

class and considers the importance of each class. One should notice that balanced accuracy is a

special case of class-wise accuracy for equal weights and 2 classes. Thus, for imbalanced datasets,

the class-wise accuracy is more representative for understanding the model performance for all

classes in the dataset.
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CHAPTER 4

Implementation

In this chapter, the data, its pre-processing and the implementation details of the CNN are

introduced.

4.1 Data

The two data used in this thesis for training the ice crystal habit classification model and validating

the trained model, are both from the Fall 2019 portion of the NASCENT campaign, which took place

in Ny-Ålesund, Norway. The ice crystal images were recorded by the balloon-borne holographic

imaging platform HoloBalloon Ramelli et al., 2020. HoloBallon measures cloud particles between 6

µm and 2 mm. The cloud particle images were automatically classified into artifacts, cloud droplets

and ice crystals as mentioned before in Section 2.3 and only ice crystals were used here.

As described in section 2.3, the ice crystal images are reconstructed from the holograms using the

HOLOsuite software (J. P. Fugal and Shaw, 2009). After reconstruction, the ice crystals are stored

as 2D complex images where each pixel is represented by a complex number. Although during

reconstruction, the amplitude and phase information of a particle is obtained, here we only use the

amplitude images to train the CNN (Examples of amplitude and phase images are as shown in the

Figure 4.2). The values representing each pixel of the amplitude image ranges from 0 to 255.

The original dataset (the one for training) included 16,259 ice crystal images, which were hand-

labeled into 9 classes, according to the needs for this campaign. The classes are: ’Column’, ’Plate’,

’Lollipop’, ’Aggregate’, ’Irregular’, ’Frozen droplets’, ’Small ice’, ’Rimed’ and ’Column plate’. The

details of the dataset are shown in Table 4.1. Also, some example images for each class are shown

in Figure 4.3

The dataset for validation, NEWTEST, which was also collected during the fall portion of the

NASCENT campaign. The new ice crystal images were also recorded by HoloBalloon and

subsequently hand-labeled into the same 9 classes as with the training dataset. The number

of ice crystals in each class is listed in the Table 4.2.
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Figure 4.1: Position of HoloBalloon during the NASCENT campaign. Figure taken from The
Ny-Ålesund Aerosol Cloud Experiment (NASCENT) 2019-2020 n.d.

Figure 4.2: Example of the amplitude (left) and phase (right) information from a reconstructed ice
crystal using HOLOsuite
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Figure 4.3: Example images of ice crystals separated into the nine habit classes.

Table 4.1: Information about the original dataset

Category Number of images Description

Column 9087.0 Columnar ice crystal

Plate 239.0 Plate-like ice crystal

Lollipop 201.0 Look like a frozen droplets with a
column in the middle

Aggregate 1934.0 Composed of two or more ice crystals
stuck together

Irregular 684.0 A single ice crystal with a
complex shape that is irregular

Frozen droplets 688.0 Cloud or drizzle droplets that have frozen

Small ice 416.0 Ice crystals that are usually smaller than 75 µm
and indistinguishable

Rimed 1548.0 Ice crystals which contain a
rimed boundary

Column plate 1462.0
Ice crystal that contains
both columnar and plate-like features,
often resemble an ’H’
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Table 4.2: NEWTEST dataset: ice crystal numbers in each class

Category Number of images

Column 83

Plate 100

Lollipop 2

Aggregate 154

Irregular 418

Frozen droplets 66

Small ice 113

Rimed 391

Column plate 25

4.2 Framework, Structure and Implementation

In this section, the data pre-processing, structure of the deep neural networks and the

implementation of the neural network for ice crystal habit classification are introduced.

4.2.1 Data Preprocessing

As we introduced in section 2.4, the dataset for training the deep-neural network consists of

in-focus 2-D holographic images from HoloBalloon. The size of the ice crystal images ranged from

17 to 807 pixels, corresponding to ice crystals with maximum dimensions between 51 µm and

2.4 mm. The original images extracted from the HOLOsuite software are all in-focus and tightly

cropped, there are no boundary areas (black boundary) on the four sides of the images (as shown

in the image on the left side of Figure 3.5). Therefore, to ensure that the entire ice crystal image

is surrounded by some black pixels, the ice crystal images are padded by 10 black pixels on all

sides of the image as shown in Figure 3.5. This ensures that the edge features are captured equally

around the ice crystal.

People learn to classify ice crystal habits from general shapes, textures, symmetry etc. As for Neural

networks, it is not so obvious as they catch features from the numbers representing each pixel. As

such, the neural network sees an array of pixel values ranging from 0 to 255 that correspond to a

given color. However, if the variation in pixel values spans too many numbers, it can cause issues

for the CNN during training. Thus, the pixel values are standardised to between -1 (black) and

1 (white). Additionally, to reduce the size of the input image and ultimately save computational

time during training of the CNN, all of the ice crystal images are resized to 128 × 128 pixels, such

that key features of the ice crystal shape are retained without losing too much information.

As discussed in section 3.6, image augmentation is a useful tool for augmenting limited and/or

imbalanced datasets. Thus, we randomly flip (horizontally and vertically) and rotate (180 degree)
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Figure 4.4: Adding 10 pixels boundary on each side of the images. Original image (left), image
added boundary (right).

the images for the training dataset for all the tests in this thesis.

4.2.2 Train/Test/Validation Set Splitting

In this thesis, we divided our original ice crystal dataset, which included 16,259 ice crystal images,

into a training set, a validation set, and a test set with a ratio of 7:2:1, respectively, as shown in the

Figure 4.5. This division is repeated 10 times, such that the test sets are disjointed for each of the

10 splits. For each single model, the test set is 1/10 of the overall dataset and is disjointed from

the validation and training sets. Therefore, for each training, we can get a model ensemble with

10 members (10 slightly different models). The performance of this model ensemble is evaluated

by going through all 10 members on their corresponding test sets. In the following Chapter 5, all

the changes to the dataset such as rebalancing or balancing (described in the Section 5.2 and 5.3),

are only done on the training and validation sets of the dataset. The test set always remains the

same such that any changes on the dataset does not influence the model performance comparison

between training with the original dataset and changed (rebalanced or balanced) dataset.

4.2.3 Experiments

As shown in Figure(4.6), we use the pre-trained model (DenseNet121) as an example to describe

the training process. At the bottom is the input data, a 128 × 128 ice crystal image. Then the

pre-trained DenseNet121 model conducts feature extraction over 4 dense blocks on the input image.

37



4. Implementation

Figure 4.5: Train, validation and test dataset split. During rebalanced and balanced training, the
training and validation sets are resampled to achieve class balancing. However, the test set is
always used unmodified in order to report comparable scores.

This DenseNet121 model includes 121 layers in all and the last layer is the classifier. The classifier

then predicts the input image into one of the following nine classes: ’Column’, ’Plate’, ’Lollipop’,

’Aggregate’, Irregular’, Frozen Droplets’ , ’Small Ice’, ’Rimed’, and ’Column plate’. In this example

(see Figure(4.6), the input is a ’plate’ and the CNN correctly classifies the image as ’plate’, as can be

seen by the plate category encompassed in the red rectangle. The model is trained with batch sizes

of 32 and 64 images for the validation set and training set respectively. Batch size is the number of

images in each small group.

The results of the experiments are presented in Chapter 5.
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Column_plate		 Rimed		 Small	ice		
Frozen		
droplets		 Irregular		 Aggregate	 Lolipop		 Plate	 Column	

Figure 4.6: Densenet121 Architecture
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CHAPTER 5

Results and Discussion

In this Chapter, the results from the training and evaluation of six different pre-trained models

(DenseNet-121, DenseNet-169, DenseNet-201, Resnet-18, Resnet-101, and Resnet-152) with fixed

learning rates and optimisers using the original dataset are discussed in Subsection 5.1.1 and

5.1.2. Additionally, the impact of freezing the lower half of the model layers during the training

of the two best performing models and training with a very small learning rate (0.00001) are also

investigated in Subsection 5.1.3. The influence of including a physical attribute in the training,

such as the aspect ratio, is discussed in Subsection 5.1.4. Afterwards, the impact of training the

two best models on a rebalanced and balanced version of the original dataset with and without

Test-Time Data Augmentation are described in Section 5.2 and 5.3 respectively. Finally, the best

performing model is applied on another new dataset, NEWTEST, which is disjoint with training,

test and validation sets, to investigate the application value of this model.

5.1 Original (Unbalanced) Dataset

The original dataset is the data with training, validation and test set unchanged, directly from

Subsection 4.2.2. In this section, the performance of 6 pre-trained models(eg:DenseNet121)

with different optimizers (eg: SGD) and learning rates for ice crystal classification are tested.

Additionally, the impact of fine-tuning when the lower half of the layers of the neural network are

frozen, is evaluated. Moreover, the importance of adding physical information (e.g., aspect ratio)

to assist the neural network training is investigated.

5.1.1 Pre-trained model tests

Different pre-trained model structures and their weights trained on the ImageNet dataset are used

as base models, as described in Section 3.3. The structure of the pre-trained model is used as the

base structure of the model to be trained on the ice crystal dataset; The parameters of the pre-

trained model are transferred to the model to be trained as the initial parameters. Then the model

is trained on my tasks (ice crystal classification) and dataset (ice crystal images) and evaluated. The

model is retrained to adapt the weights for the ice crystal images using a fixed learning rate of 0.005
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Table 5.1: Pre-trained model tests

Optimizer Learning_rate Model Overall Class-wise

ResNet-101 0.8317 0.7049

ResNet-152 0.8281 0.6937

ResNet-18 0.8316 0.6942

DenseNet-169 0.8308 0.7009

DenseNet-201 0.8293 0.7050
SGD 0.005

DenseNet-121 0.8310 0.7073

Table 5.2: Optimiser method tests

Model Learning_rate Optimiser Overall Class-wise

SGD 0.8320 0.7074
0.005 Adam 0.7852 0.5806

SGD 0.8157 0.6589Densenet121
0.0001 Adam 0.8329 0.7014

and the SGD optimizer. The pre-trained models evaluated were DenseNet-121, DenseNet-169,

DenseNet-201, Resnet-18, Resnet-101, and Resnet-152. Their structures are as described in the table

(A.2) and table (A.1) respectively. As introduced in Section 4.2.2, for each pre-trained model choice,

a set of 10 models is obtained. Thus, the final results of overall accuracy and class-wise accuracy

for this set of models is the average over 10 models on its corresponding test sets.

As shown in table (5.1), the overall accuracy for all of the models is around 83%, while their

class-wise accuracy is around 70%. The difference between the overall accuracy and the class-

wise accuracy means that the performance of the models on different ice crystal classes varies

significantly. Using the results from this, I selected the relatively best pre-trained model, DenseNet-

121, which has an overall accuracy of 0.831 and a class-wise accuracy 0.7073 to be used in the

subsequent tests.

5.1.2 Optimizer method tests

In an attempt to improve the performance of the DenseNet-121 model, I tried training the model

with two fixed learning rates and two different optimizers, SGD and Adam. The learning rates

were chosen to cover a relatively large span ranging from 0.005 to 0.0001. For the SGD optimizer

tests, we set the momentum parameters with a decay of 0.9, to obtain a reasonable weight for the

last convolutional layer (Sutskever et al., 2013). Meanwhile for the Adam optimzer tests, no decay

was included.

The learning rate and SGD tests yield better performance than the initial pre-trained model test

(see Section 5.1.1). In particular, for the large learning rate (fast adjustment speed) of 0.005, SGD
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has a better performance than Adam, while for the small learning rate (slow adjustment speed),

Adam performs better than SGD (see table (5.2),).

1. DenseNet-121, SGD, learning rate 0.005

2. DenseNet-121, Adam, learning rate 0.0001

Hereafter I use DenseNetFastSGD to describe the combination of the model DensNet-121 trained

with a learning rate of 0.005 and the SGD optimizer and DenseNetSlowAdam to describe the

model DenseNet-121 trained with a learning rate of 0.0001 and the Adam optimizer.

DenseNetSlowAdam has a higher overall accuracy than DenseNetSlowAdam while DenseNetFast-

SGD has a higher class-wise accuracy than DenseNetSlowAdam. They both have their strengths.

Thus, for the following tests, DenseNetSlowAdam and DenseNetFastSGD are used.

5.1.3 Freezing layers tests

As mentioned in section 3.4, fine-tuning can help save computation time and is ’friendly’ to small

datasets. Thus, I use DenseNetSlowAdam and DenseNetFastSGD from the optimizer tests and

then freeze the lower half of the layers to train the model. From the Figure (5.1) we can see that the

lower half of the layers are close to the input data. Thus, these layers are responsible for learning

the very basic and rough features of the input images. Therefore, even though the pre-trained

model is trained on the ImageNet dataset, it will not be very different from the model trained on

the ice crystal dataset as both datasets are composed of images. However, as the upper half of

the layers are close to the output, they are responsible for learning the more detailed and unique

information of the ice crystal images. Therefore, if one focus on the training of these layers, it

may reduce the computation time required for training and obtain better model performance. As

these layers include the more detailed information about the ice crystals, I include two additional

test groups with a very small learning rate of 0.00001, for both SGD and Adam. As shown in

table (5.3), the two groups with a very small learning rate (0.00001) didn’t perform well, with

both lower than 80% overall accuracy and 56% and 37% class-wise accuracy when using SGD

and Adam, respectively. For the two optimal groups, they obtain relatively similar overall and

class-wise accuracy as when training all of the layers. These results confirmed our hypothesis that

the upper half of the layers contain more detailed and distinct information about the ice crystals

and the lower half of the layers only include rough information about the images, which does not

significantly influence the model performance.

5.1.4 Additional information tests

As shown in previous research, deep learning can achieve better performance when physical

knowledge is included. For example, Zhuo and Tan (2021) used tropical cyclones intensity and
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Figure 5.1: Densenet121 Fine-tuning by freezing half previous layers

Table 5.3: Freezing layers tests

Model Learning_rate Optimiser Overall Class-wise

0.005 SGD 0.8274 0.6843

0.0001 Adam 0.8279 0.6911

SGD 0.7313 0.3677Densenet121
0.00001 Adam 0.7956 0.5599
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5.1. Original (Unbalanced) Dataset

Table 5.4: Additional information tests

Model Learning_rate Optimiser Additional Info Overall Class-wise

Densenet121 0.005 SGD Aspect Ratio 0.8307 0.7046

Densenet121 0.0001 Adam Aspect Ratio 0.8327 0.7039

wind radii to help improve the performance of a deep learning neural network. Thus, in this

section, I introduce an additional parameter containing the physical attribute, aspect ratio into the

model training. The aspect ratio of an ice crystal is the ratio of the basal and prism faces of ice

crystal. As columns, lollipops and column plate ice crystals usually have an aspect ratio larger

than 1 while plates and frozen droplets are usually close to 1, this additional information could

potentially help with the classification. For rimed, irregular and aggregate ice crystals, their shapes

and thus aspect ratios are more random so the aspect ratio information is not expected to improve

the model performance for these classes.

When I include the aspect ratio information in the DenseNetSlowAdam and DenseNetFastSGD

both overall accuracy and class-wise accuracy have a slight decrease (not more than 1%) (see table

5.4). This indicates that the addition of the aspect ratio did not improve the model performance.

Although this is in contrast to our expectations, this could be due to the fact that the aspect ratio

information is an inherent part of the images the model is trained on. Therefore, it could be

that the model is already learning the aspect ratio as an important feature during classification.

Another possibility is that the aspect ratios between the classes where the aspect ratio information

is expected to help are not significantly different.

5.1.5 Summary and Discussion

According to the above tests on pre-trained models, optimizers with different learning rates,

freezing of the lower half layers of the model and adding physical information, I found that:

1. The differences between the different pre-trained models (e.g., DenseNet-121) are very small

and the best model was DenseNet-121.

2. For the optimizer tests with different learning rates, SGD performed best with a learning

rate of 0.005 (larger learning rate) while Adam performed best with a learning rate of 0.0001

(smaller learning rate).

3. Freezing the lower half layers of the model slightly degraded the model performance as

expected since the majority of the unique crystal features are captured in the upper layers

of the model. Thus, even though the parameters and weights of the lower half layers of the

model are kept, one can still get a similar model performance as when one adjusts all of the

parameters and weights in the model.
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5. Results and Discussion

Figure 5.2: Confusion matrix for DenseNet121 with SGD optimzer and 0.005 learning rate. Bottom
Black Row: 1> White: The number of actual ice crystals in this class (The final box shows the
overall number of ice crystals); 2> Green: Per-class accuracy (The final box shows the overall
accuracy); 3> Red: Per-class FDR (The final box shows the FDR); Leftmost Black Column: 1> White:
The number of ice crystals predicted in this class (The final box shows the overall number of ice
crystals); 2> Green: Prediction Per-class accuracy (The final box shows the overall accuracy); 3>
Red: Prediction Per-class FDR (The final box shows the FDR). The Boxes in the Middle: The y-axis
represents predicted results while the x-axis represents actual results. For example, the second box
in the first row means that 49 ice crystals are predicted as column but the actual labels of these
49 ice crystals are plate. The percentage in this box represents the ratio of these ice crystals in the
overall 16259 ice crystals.

4. Incorporating physical information such as the aspect ratio didn’t improve the model

performance.

To determine the reasons why I obtained the above results, I use a confusion matrix to evaluate one

of DenseNetSlowAdam and DenseNetFastSGD. For this evaluation I selected DenseNetFastSGD,
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5.2. Rebalanced Dataset

which is the DenseNet-121 model trained with the SGD optimizer and a learning rate of 0.005. The

overall accuracy of DenseNetFastSGD was 83.20 % and class-wise accuracy 70.74%. As shown

in Figure (5.2), the column class has 9087 ice crystals in all, which accounts for 56% of the entire

dataset. Only the "column" class is predicted with a near perfect per-class accuracy of 94.73 %.

This result suggests that the column class is well predicted due to its frequent occurrence in the

dataset and the dataset is very imbalanced. Moreover, for the classes with limited frequency such

as "plate" and "lollipop", which contain 239 and 201 images, respectively, the per-class accuracy

dropped to 59.83% and 66.67%. Thus, the unbalanced nature of the dataset strongly influenced the

learning of the neural network. On the other hand, if we analyze the model performance from the

false rate side, it can be noticed that the "aggregrate" and "irregular" classes are miss-predicted into

every class and every other class can be mis-predicted as "aggregrate" and "irregular" classes. In

particular, the model struggles to discriminate between the "aggregate", "irregular" and "rimed"

classes. To further investigate why this occurs, some example images of these classes are presented

in Figure (5.3). Even by eye, classifying the example crystals in to the correct classes can be

subjective and extremely challenging. This is due to the fact that the "irregular" class is made

up of single ice crystals with complex shapes stemming from different cloud processes such as

fragmentation and sublimation. Thus, the "irregular" class is by definition composed of randomly

shaped ice crystals. The same can be said for the "aggregate" and "rimed" class. As the "rimed"

class consists of any underlying habit, including both the "aggregate" and "irregular" class, that is

coated by cloud droplets (small bumps at the edges of the particle, see Fig. 5.3), the ’Rimed’ class

can also be very difficult to classify. Similarly, the ’Aggregate’ class, which is composed of images

where at least two ice crystals are stuck together, can have very random and irregular shapes.

For ’Frozen droplets’, the model performs relatively well with a per-class accuracy of 84.74%.

In conclusion, rare classes, like ’Plate’, ’Lollipop’ and ’small ice’, show much worse performance

than the class ’Column’. And this is an objective problem (lack of samples) which can be solved.

However, for more subjective issues, like confusing classes ’irregular’ and ’aggregate’, people

even cannot give a consistent answer for all cases, let alone the NN model. Therefore, for further

improving the performance of the deep learning neural network, I need to tackle the most serious

and objective problem in the datatset, which is the large imbalance of the data.

5.2 Rebalanced Dataset

To solve the imbalance problem in the dataset, I remove 2/3 of the dominant "column" class

from the training and validation set, while the number of images for the rest of the classes

remain unchanged. The test set is kept unmodified and is the same as in the previous Section 5.1,

which means the results from the rebalanced dataset and the original (unbalanced) dataset can be

compared.
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Figure 5.3: Examples of aggregate (top), irregular (middle) and rimed (bottom) ice crystals
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5.2. Rebalanced Dataset

Table 5.5: Rebanlanced Dataset

Model Learning_rate Optimiser Augmentation Overall Class-wise

No 0.8785 0.8714
0.005 SGD Yes 0.8922 0.8617

No 0.8905 0.8780Densenet121
0.0001 Adam Yes 0.9014 0.8683

5.2.1 Non-Augmentation test

To test the impact of rebalancing the dataset, the two model groups (DenseNetSlowAdam

and DenseNetFastSGD) from the previous tests are trained. As shown in the table (5.5), for

DenseNetFastSGD the class-wise accuracy is significantly improved from 70.74% to 87.14%.

Similarly, the class-wise accuracy of DenseNetSlowAdam is improved from 70.14% to 87.80%.

By artificially balancing the dataset, I achieve an average increase of 17% improvement in the

class-wise accuracy. This is consistent with the discussion in section 5.1.5, which proposes that

training with a balanced dataset improves class-wise accuracy. Somewhat unexpected is the

improvement in the overall accuracy of the models. It might be that the improvement to the

few-sample classes (i.e. lollipop) is much larger than the loss in the large-sample classes (i.e.

column) and thus, the overall accuracy is improved. Also, the reduction in the proportion of the

large-sample classes may force the model to only learn the dominant features of these classes,

which may avoid the overfitting of these large-sample classes. Thus, the composite effect ends up

showing an improvement in overall accuracy.

5.2.2 Augmentation test

As introduced in section 3.6, image augmentation is a useful tool for improving model performance,

increasing the dataset size and reducing generalization errors during the training process. However,

it can also be used after the final training of a model to test the robustness of the model and give

it more chances to correctly classify an image. Thus, to test the model I have the model predict

the class of an image on multiple versions of that image (eg: flipped, rotated or cropped)(eg:

Ayhan and Berens, 2018, Szegedy et al., 2014). The image is then predicted into a particular

class by averaging all of the predictions on the augmented images. This is called Test-Time Data

Augmentation (TTA). Generally, by doing this, I get a higher overall accuracy. In contrast to

train-time data augmentation, the model is not changed, rather, the TTA is a technique giving the

trained model a better chance to classify a given image correctly.

Thus, in this section, I use the TTA technique for presenting the performance of the models trained

on the rebalanced dataset. I created 16 augmented copies of each image in the test set by rotating

every 45 degree and then vertically flipping and horizontally flipping the 8 images from the
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rotation so that I obtain 16 augmented copies of each image. After that, the model predicts the

class for each of the 16 images, and then the ensemble of the predictions for the 16 augmented

images is averaged and the averaged results are then used to classify the initial image.

As shown in the table(5.5), compared to the results without TTA, for DenseNetFastSGD, the overall

accuracy improved from 87.85% to 89.22 % while class-wise accuracy decreased from 87.14% to

86.17%. Similarly for DenseNetSlowAdam, the overall accuracy improved from 89.05% to 90.14

%and the class-wise accuracy decreased from 87.80% to 86.83 %.

Thus, by performing the TTA the overall model performance slightly improves at the cost of the

class-wise accuracy.

5.2.3 Summary and Discussion

By synthesis balancing (rebalancing) the dataset, the model performance was greatly improved.

Also, through TTA, the overall accuracy of the model improved by around 1% on both models

trained (DenseNetFastSGD and DenseNetSlowAdam). Thus, for understanding how well the

above models perform on each single class, I choose the test with the best overall accuracy,

DenseNetSlowAdam with TTA, and use the confusion matrix to evaluate the performance of this

model (see Figure (5.4). Compared to the best performing model trained on the original dataset

(DenseNetSlowAdam), the class-wise accuracy improved by 17% from 70.74% to 87.80%. The

"column" class has the same excellent performance and in fact even has a slight increase in per-class

accuracy. Moreover, for the "plate" and "lollipop" classes, which have very limited data, their

performance largely improved from 59.83% and 66,67% to 88.28% and 89.05%, respectively. This

is clear proof that training on an unbalanced dataset is one of main obstacles in achieving good

model performance (Guo et al., 2008). Additionally, it can be seen that there are still two classes,

"column plate" and "irregular", with per-class accuracy below 80%. For the "irregular" class, the

model often mispredicted it into almost every other class. As previously mentioned, this makes

sense as by definition, the "irregular" class can be any shape and therefore a single irregular ice

crystal can be similar to any of the other ice crystal classes. Meanwhile the "column plate" class is

often mispredicted into the ’Column’ and ’Irregular’ classes. The reason for this misprediction

into the ’Irregular’ class is as explained above, while for the misprediction into the "column" class,

this can be explained by looking at some examples of the ’Column’ and ’Column plate’ classes

(see Figure(5.5). As can be seen in Figure 5.5, in several instances columns and column plates

are very alike, with their only discerning feature being the extension of two arms on the end of a

column, such that a column plate looks a bit like an ’H’. Although it seems that through synthetic

rebalancing, a good model can be obtained, a rebalanced dataset is after all a synthesis dataset.

In reality, the proportion of each class cannot always be the same as was artificially created here.

Therefore, the results from training with a truly balanced dataset are discussed in the following

section.
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5.3. Completely balanced dataset

Figure 5.4: Confusion matrix for DenseNet121 with Adam optimzer and 0.0001 learning rate, and
using rebalanced dataset. The same way as previous Figure 5.2

5.3 Completely balanced dataset

To avoid arbitrarily changing the original dataset while producing a balanced dataset, one can use

other methods to balance the dataset. One approach is to sample images from each of the classes

in the training and validation set with equal probability during the training (Lemaıtre et al., 2017).

Note that the test set of the completely balanced dataset is still the same as the previous rebalanced

and original (unbalanced) datasets.

5.3.1 Non-Augmentation test

As shown in table (5.6), the class-wise accuracy of DenseNetFastSGD trained with the balanced

dataset is 90.82%. This is a significant improvement when comparing the results trained from the
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Figure 5.5: Examples of column plate (top) and column (bottom) ice crystals

Table 5.6: Completely balanced dataset

Model Learning_rate Optimiser Augmentation Overall Class-wise

No 0.8605 0.9082
0.005 SGD Yes 0.8583 0.8954

No 0.8755 0.9172Densenet121
0.0001 Adam Yes 0.8780 0.9080

rebalanced dataset (87.14%). Likewise, DenseNetSlowAdam trained with the balanced dataset

(BestIce) also has an improved class-wise accuracy from 87.80% to 91.72%. By selecting images

from each class with the same probability during training, the model class-wise accuracy improved

on average by around 3%.

5.3.2 Augmentation test

As with the rebalanced dataset tests, I also use the TTA technique for the balanced dataset testing.

I created 16 augmented copies of each image in the test set in the same way as before.
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As shown in table (5.6), compared to the results without TTA, for DenseNetFastSGD, both the

overall accuracy and class-wise accuracy decrease by less than 1%, while for DenseNetSlowAdam,

the overall accuracy increases by 0.15% and the class-wise accuracy has a 0.92% decrease. Thus

using the TTA during the prediction of ice crystal habits does not improve the model performance

and can be omitted to save time.

5.3.3 Summary and Discussion

By selecting samples with equal probability from each class, I largely improved the performance of

the models without changing the dataset. Also, the TTA technique did not significantly improve

the model performance when the model was trained on a balanced dataset. To evaluate the models

performance on a class-wise basis I select the model with best overall performance (BestIce) and

use the confusion matrix to evaluate its performance (see Figure (5.6). Using BestIce improves the

overall accuracy from 83.29% to 87.55% and the class-wise accuracy by 21% from 70.74% to 91.72%

relative to DenseNetFastSGD trained on the original dataset. With BestIce the "plate" and "lollipop"

(group 1), "frozen droplets" and "small ice"(group 2) classes all have near perfect performance with

around 99.5% and 98% per-class accuracy, respectively. The "irregular" and "rimed" classes also

have a per-class accuracy of over 90%. However, the "aggregate" class has the worst performance

with a per-class accuracy of 73.73%. This is mainly due to the model misclassifying aggregates

into the "column plate" and "column" classes. More generally, the model also often misclassifies

columns into the "column plate" class and vice versa leading to a per-class accuracy of around 87%

for these classes. According to the previous discussion in section 5.1.4, I know that these three

classes can be quite similar and are often difficult to classify by eye.

5.4 Validation

To prove the application value of the newly-developed models in the previous sections, in this

section, the best performing model set (including 10 members), BestIce, is applied on a new dataset,

NEWTEST as introdected in Section 4.1.

As shown in Table 4.2, this dataset is very small and imbalanced. The number of ice crystals in

some of the rare classes (i.e. Lollipop) is even as low as 2, which can cause a high bias during the

evaluation with respect to the class-wise accuracy. For example, if one ’Lollipop’ is mispredicted, it

would result in the lollipop per-class accuracy being 50 % and thus, largely influence the class-wise

accuracy of the entire dataset. Therefore, in this section, class-wise accuracy is not used as a model

performance metric.

Note that the way of getting prediction results is first of all, to use these 10 members in BestIce

to classify the ice crystal images in NEWTEST dataset one by one and then average the results

obtained from these 10 members. The averaged results is the final results to be evaluated.
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Figure 5.6: Confusion matrix for DenseNet121 with AdamW optimizer and 10-4 learning rate,
sampling each class with equal probability. The same way as previous Figure 5.2

The global accuracy of BestIce, which is the average performance of 10 members of BestIce

predicted on the NEWTEST dataset, is 63.31%, which is much lower than the results obtained

from the previous Section 5.3. To determine the reasons why I obtained the above results, I first

look at some examples of ice crystal examples in each class and compare those samples to the

original dataset. As shown in Figure 5.7, 5.8 and 5.9, the NEWTEST dataset looks very different

from the original. For the ’column’ class, the new columns are much shorter, more rectangular

and in some cases even square-like. In contrast, the columns in the original dataset were long and

thin. Similarly the ’Frozen droplets’ and ’lollipop’ classes are not as standard as in the original

dataset. For example, the frozen droplets are not as round as in the original dataset and some are

even rimed. Additionally, the ice crystals in the ’Column Plate’ class do not look like an ’H’ as they

did in the original dataset, which means that the column plates are frequently mispredicted. As
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Figure 5.7: Comparison among class column, frozen droplets and aggregate of the ice crystals from
the hand-labeled NEWTEST dataset and original dataset.

with the original dataset, the model struggles to correctly differentiate between the ’Aggregate’,

’Irregular’, and ’Rimed’ classes due to their often similar features. For example, as can be seen in

Figure 5.7, the first ice crystal in the ’Aggregate’ class could be labeled as ’Rimed’ or ’Aggregate’.

In fact, this is a rimed-aggregate and therefore this kind of ice crystal is called a compound ice

crystal, which can be any one of these two habit depending on the research purpose. For example,

for investigation of the aggregation process, it can be labeled as ’Aggregate’; if the focus is rather

on the riming process, the labeling could be the opposite (’Rimed’).

However, for those confusing ice crystals, BestIce may give a result that for example 45 % is an

’Aggregate’ and 35 % is a ’Rimed’ rather than a very ’confident’ answer that 90% is an ’Aggregate’

or 95 % is a ’Rimed’. Thus, a proper predicted probability may be the direction of tackling this

confusing ice crystal issue. Generally, a normal predicted probability (how confident the CNN

model is that it should be some specific class) is ranging from 0-100%. To determine the threshold
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Figure 5.8: Comparison among class small ice, rimed and irregular of the ice crystals from the
hand-labeled NEWTEST dataset and original dataset.
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Figure 5.9: Comparison among class lollipop, column plate and plate of the ice crystals from the
hand-labeled NEWTEST dataset and original dataset.
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where the predicted probability is accurate enough to be trusted to correctly classify an ice crystal

into the correct class, the global accuracy and cumulative number of ice crystals as a function of

probability must be known. As shown in Figure 5.10 the global accuracy and the number of ice

crystals both increase with increasing model confidence. This increase is particular pronounced at

a prediction probability of around 99%. In fact approximately 40% of the ice crystals are predicted

with a 99% probability that they belong to a particular class. The global accuracy also increases by

more than 17.5% to over 80% at the 99% probability threshold. Therefore, without fine-tuning or

further training, the model should only be used when it is 99% confident that an ice crystal belongs

to a certain class in future work.

Therefore, to evaluate the model performance when the predicted probability of BestIce was over

99%, the confusion matrix is shown in Figure 5.11. The overall accuracy improved from 63.31%

to 80.62% and the number of samples decreased from 1352 to 609. As discussed previously, the

’Column’ and ’Column Plate’ classes are very different from the original dataset and thus, the

predicted results are unexpectedly bad as 68.18% and 0% respectively. Also, there are no lollipop

crystals predicted with a probability of over 99%, which also improved our hypothesis that lollipop

images are confusing and not standard as the lollipop images in NEWTEST dataset have rimed

boundaries and are incomplete (as can be seen in the second lollipop top in Figure 5.9). Consistent

with the training dataset and the lower prediction probabilities, the model struggles to differentiate

between ’Aggregate’, ’Irregular’ and ’Rimed’. Meanwhile, the more unique classes like ’frozen

droplets’, ’small ice’ and ’Plate’ all show good performance with 88.57%, 98.84% and 90% per-class

accuracy, respectively.
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Figure 5.10: Global accuracy of the model (Top) and the cumulative number of ice crystals (Bottom)
as a function of the predicted probability of an ice crystal belonging to a particular class
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Figure 5.11: Confusion matrix for ice crystals predicted with BestIce when the prediction probability
was over 99 % on NEWTEST dataset.The same way as previous Figure 5.2
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CHAPTER 6

Conclusion and Outlook

6.1 Conclusion and Discussion

In this thesis, I developed automatic classification models for ice crystal habits by using

convolutional neural networks and transfer learning. The best model, BestIce, achieved an overall

accuracy of 87.55% and a class-wise accuracy of 91.72%. The model performed best on the ’Plate’

and ’Lollipop’, and, ’Frozen droplets’ and ’Small ice’ classes with per-class accuracies of around

99.5% and 98%, respectively. This automatic classification model is applied to classify and analyse

another ice crystal data, NEWTEST, also collected during the Fall 2019 portion of the NASCENT

campaign. By setting a 99% predicted probability, BestIce achieved over 80% overall accuracy and

thus proved that the model can ’liberate’ us from the tedious hand-labeling process.

Six different pre-trained models (DenseNet-121, DenseNet-169, DenseNet-201, Resnet-18, Resnet-

101, and Resnet-152) with fixed learning rates and optimisers were trained on the original dataset.

The results showed that DenseNet-121 had a slightly better performance. Thus, the DenseNet-121

model was used to perform two different optimizer (SGD and Adam) with different learning rate

tests. The best combinations of optimzers and learning rates were the SGD optimzer with a learning

rate of 0.005 (DenseNetFastSGD) and Adam with a learning rate of 0.0001 (DenseNetSlowAdam).

Due to their superior performance, DenseNetFastSGD and DenseNetSlowAdam were trained with

the lower half of the model layers frozen. For both models, freezing the lower half of the layers

did not improve model performance. This is likely due to the unbalanced nature of the dataset.

Furthermore the information acquired by the model in the lower layers is primarily bulk in nature

and therefore, small changes to these layers during training has been shown to have minimal

impacts on the overall model performance (Goutam et al., 2020).

The best performing models from the previous tests, DenseNetFastSGD and DenseNetSlowAdam

were subsequently trained on a rebalanced and a balanced version of the original dataset.

The rebalanced dataset was constructed by removing 2/3 of the dominant "column" class, while

the rest of the classes remained unchanged. When training the models on the rebalanced dataset,

the class-wise accuracy improved by 17% from 70.74% to 87.80% relative to the best model trained
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on the original dataset. Additionally, through TTA, the overall accuracy of DenseNetSlowAdam

increased by around 1% while for DenseNetFastSGD, the change was negligible. Thus, in this case,

TTA is not very helpful, but that might be different in different situations as TTA has been shown

to improve model performance in other fields (i.e. images of tissue and cell cultures Moshkov

et al., 2020).

The balanced dataset was created by sampling images from each class of the original dataset with

equal probability during the training. By doing so, the overall accuracy and class-wise accuracy

of DenseNetSlowAdam increased from 83.29% to 87.55% and 70.74% to 91.72%, respectively.

Additionally, training on the balanced dataset achieved excellent performance in some single

classes with a per-class accuracy of approximately 99.5% for ’Plates’ and ’Lollipops’ and 98% for

’Frozen droplets’ and ’Small ice’ crystals.

Finally, the best performing model, BestIce, was applied on a new dateset, NEWTEST, as the

validation/real-world application. Even though the new dataset was very different from the

original dataset used for model training, setting the prediction probability threshold at 99% really

improved the global accuracy of the model to approximately 80%. In particular, for some unique

classes and classes where the ice crystals were similar to the ones in the original dataset, such as

’Frozen droplets’, ’Small ice’ and ’Plate’, the model per-class accuracy was 88.57%, 98.84% and 90%,

respectively. Thus, the application value of BestIce has been proved and confirmed.

In this thesis, classification models for ice crystal habits were developed and tested. The best model

achieved an overall accuracy of 87.55% and a class-wise accuracy of 91.72%. However, it should be

noted that the hyperparameter choices other than the epoch, such as learning rate and different

architectures and different balancing schemes were conducted on the test set. This is not fully

correct, as it can lead to overfitting of the test set. The correct way to do this would be for every

train/val/test split to evaluate all hyperparameter choices on the validation set, and evaluate only

the one final model on the test set.

6.2 Outlook

There are several directions that can be explored in future work to improve the performance of

BestIce when it comes to tackling issues with compound ice crystals (composed of two or more

classes) and unseen ice crystal habits (habits that are not included in the nine classes used during

training).

1. As presented in both Section 5.6 and 5.4, the confusing issue among classes ’Aggregate’,

’Irregular’, ’Rimed’ has always existed. Therefore, one could consider to merge these three

classes into a single class.
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Figure 6.1: Example of a compound ice crystal holographic image.

2. As discussed in Section 5.4, one main obstacle of getting a perfect overall accuracy is the large

difference between the original and NEWTEST dataset. Thus, in the future, one can improve

BestIce on known classes (i.e. column, lollipop) by building a bigger training dataset.

3. Setting the prediction probability threshold at 99% might be the best threshold overall, while

for each single class, the best threshold may be different. For example, some unique classes,

such as ’Lollipop’, may not need such a high threshold. Thus, the optimal threshold for each

single class can be further explored.

4. As discussed in Section 5.4, it is very likely that some compound ice (as shown in the Figure

6.1) crystals exist in a dataset, especially in situations conducive to light riming. To get an

objective answer/label, one can develop a multi-label classification model for confusing

compound ice by using Classification Transformers (Lanchantin et al., 2020).

5. Future campaign data will almost certainly include some unseen ice crystal habits. Due to

different meteorological conditions with different microphysical processes, ice crystal habits

can vary from just a few to several hundreds(Kikuchi et al., 2013). Despite this, the model

can be quickly adapted through a simple fine-tuning procedure and then be used to classify

ice crystals in the new dataset. However, the efficiency and feasibility of this idea needs to be

further investigated.
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APPENDIX A

Figures and Tables

Table A.1: ResNet model architecture, Taken from He et al., 2015a

Layer Name Output Size 18-layer 101-layer 152-layer

cov1 112 × 112 7 × 7, 64, stride 2

3 × 3 max pool, stride 2

conv2 x 56 × 56
[

3× 3, 64
3× 3, 64

]
× 2

 1× 1, 64
3× 3, 64

1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 x 28 × 28
[

3× 3, 128
3× 3, 128

]
× 2

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

 1× 1, 128
3× 3, 128
1× 1, 512

× 8

conv4 x 14 × 14
[

3× 3, 256
3× 3, 256

]
× 2

 1× 1, 256
3× 3, 256

1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

conv5 x 7 × 7
[

3× 3, 512
3× 3, 512

]
× 2

 1× 1, 512
3× 3, 512

1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

1 × 1 average pool, 1000-d fc, softmax

FLOPs 1.8× 109 3.8× 109 11.3× 109
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A. Figures and Tables

Table A.2: DensetNet models architectures, Taken from Huang et al., 2018

Layer Name Output Size DenseNet-121 DenseNet-169 DenseNet-201

Convolution 112 × 112 7 × 7, 64, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block (1) 56 × 56
[

1× 1conv
3× 3conv

]
× 6

[
1× 1conv
3× 3conv

]
× 6

[
1× 1conv
3× 3conv

]
× 6

56 × 56 1 × 1 conv
Transition Layer (1) 28 × 28 2 × 2 average pool, stride 2

Dense Block (2) 28 × 28
[

1× 1conv
3× 3conv

]
× 12

[
1× 1conv
3× 3conv

]
× 12

[
1× 1conv
3× 3conv

]
× 12

28 × 28 1 × 1 conv
Transition Layer (2) 14 × 14 2 × 2 average pool, stride 2

Dense Block (3) 14 × 14
[

1× 1conv
3× 3conv

]
× 24

[
1× 1conv
3× 3conv

]
× 32

[
1× 1conv
3× 3conv

]
× 48

14 × 14 1 × 1 conv
Transition Layer (3) 7 × 7 2 × 2 average pool, stride 2

Dense Block (4) 7 × 7
[

1× 1conv
3× 3conv

]
× 16

[
1× 1conv
3× 3conv

]
× 32

[
1× 1conv
3× 3conv

]
× 32

1 × 1 7 × 7 global average pool
Classification Layer 1000D fully-connected, softmax
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APPENDIX B

Acronyms

Adagrad Adaptive Gradient Algorithm

CAS Cloud and Aerosol Spectrometer

CIP Precipitation Imaging Probes

CNN Convolutional Neural Network

CPI Cloud Particle Imager

DenseNets Densely Connected Networks

ECR Equivalent Circle Ratio

FDR Overall False Discovery Rate

FFNNs Feed-forward Neural Network

GAN Generative Adversarial Network

GPUs Graphics Processing Units

HVPS High Volume Precipitation Spectrometer

ICNC Ice Crystal Number Concentration

IC-PCA Ice-crystal Classification with Principal Component Analysis

MASC Multi-Angle Snowflake Camera

MPCs Mixed Phase Clouds

NN Neural Networks

OAP Optical Array Probes

PCA Principal Component Analysis

PMS Particle Measuring System
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B. Acronyms

ResNet Residual Networks

RMSProp Root Mean Square Propagation

SGD Stochastic GradientDescent

2D-S Two-Dimensional Stereo spectrometer

TTA Test-Time Data Augmentation

WBF Wegener–Bergeron–Findeisen
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APPENDIX C

Facilities preparation

The instructions to access the code used in this thesis and the hardware the code was run on are

described in the following sections.

C.1 Code available

The code for all of the analysis and training in this thesis is available on GitHub at

https://github.com/zhanghuiying2319/Master/Thesis/cnn.

The commands to download the code are summarized as follows:

Listing C.1: Linux command for how to install the environment

git clone https :// github .com/ zhanghuiying2319 / Master .git

pip install -r requirements .txt

C.2 Hardware

The experiments in this thesis have been conducted on Ml-nodes at University of Oslo (UiO). The

table (Table C.1) below describes the hardware of the resources used.

Table C.1: Hardware of ML-nodes

Name Status CPUs/
RAM(GiB) GPU OS and software

ml1.hpc.uio.no
ml2.hpc.uio.no
ml3.hpc.uio.no

Production 28 cores
(Intel Xeon)/128

4 X
RTX2080Ti

RHEL 8.3
with
module system
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