
University of Oslo
Department of Informatics

A Security
Architecture for
Monitoring a
Nuclear Test-Ban
Treaty

Henrik Grindal
Bakken

Cand. Scient. Thesis

31st July 2003





Abstract

For a long time, an effort to achieve a comprehensive nuclear test-ban treaty
banning all nuclear explosions world-wide has been made. The Comprehens-
ive Nuclear-Test-Ban Treaty (CTBT) is the result of this effort.

A monitoring regime, which is to assist the participating countries in veri-
fying compliance with the Treaty, is being set up by a preparatory commis-
sion. To protect the data from a global network of monitoring stations (the
IMS network), digital signatures are applied, and a public key infrastructure
(PKI) has been set up to accommodate key exchange.

In this thesis, we will describe the IMS network, the proposed security ar-
chitecture, its protocols and the PKI. We also make a threat analysis for the
system.

We have designed and implemented an application, imsparse, for one part
of the security scheme: receiving and executing commands at the monitoring
stations.

Finally, we have commented on the appropriateness of the proposed archi-
tecture, and how it meets the threats we defined.

Our conclusion is that most of the threats are dealt with by the implement-
ation of this security scheme, but the physical securing of the sensors may
cause problems.



ii



Preface

This thesis is submitted to the Department of Informatics at the University
of Oslo as part of my Candidatus scientiarum (Cand. scient.) degree.

Thanks

I would like to thank everyone who helped me finish this work. Many thanks
to everyone at NORSAR for letting me work there, and in particular to Ulf
and Jan for help. Thank you also to Gonzalo Perez and Edward Wokabi
from the CTBTO for answering my questions.

Most of all, I wish to thank my tutor on this thesis, Leif Nilsen from UniK,
without whom I could never have finished. And finally thanks to Marte for
being helpful and very patient.

iii



iv



Abbreviations

A number of abbreviations will be used in this thesis, not all of them well
known.

CTBT specific
CRF Central Recording Facility
CTBT Comprehensive Nuclear-Test-Ban Treaty
CTBTO Comprehensive Nuclear-Test-Ban Treaty Organisation
IDC International Data Centre
IMS International Monitoring System
NDC National Data Centre
PTBT Partial Test-Ban Treaty
PTS Provisional Techincal Secretariat
SO Station Operator
TS Technical Sectretariat

General
ASN.1 Abstract Syntax Notation Number One
AC Access Control
ACL Access Control List
CA Certification Authority
C&C Command and Control
CDP CRL Distribution Point
CP Certificate Policy
CRL Certificate Revocation List
CSP Critical Security Parameter
DN Distinguishing Name
DOS Denial of service
OS Operating System
PKC Public Key Cryptography
PKCS Public Key Cryptography Standards
PKI Public Key Infrastructure
RA Registration Authority
URI Uniform Resource Identifier

v



vi



Contents

1 Introduction 1

1.1 The Comprehensive Nuclear-Test-Ban Treaty . . . . . . . . . 1

1.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Organisation . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Verification Regime . . . . . . . . . . . . . . . . . . . . 3

1.2 Security Problem . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Proposed Security Solution . . . . . . . . . . . . . . . . . . . 5

1.4 Motives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Use of Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Organisation of the Thesis . . . . . . . . . . . . . . . . . . . . 6

2 Cryptography 9

2.1 Security Services . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Confidentiality . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Authentication . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Non-repudiation . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 Access Control . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cryptographic Protocols . . . . . . . . . . . . . . . . . . . . . 13

2.3 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Symmetric Encryption Algorithms . . . . . . . . . . . 14

2.3.2 Asymmetric Encryption Algorithms . . . . . . . . . . 15

2.3.3 Cryptographic Hash Functions . . . . . . . . . . . . . 17

2.3.4 Message Authentication Code . . . . . . . . . . . . . . 18

2.3.5 Digital Signature Algorithms . . . . . . . . . . . . . . 19

vii



2.4 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Brute-force Attack . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Protocol Failures . . . . . . . . . . . . . . . . . . . . . 25

2.4.3 Implementation Deficiencies . . . . . . . . . . . . . . . 26

2.5 Non-cryptographic Security Mechanisms . . . . . . . . . . . . 27

2.5.1 Logging and Auditing . . . . . . . . . . . . . . . . . . 27

2.5.2 Access Control Lists . . . . . . . . . . . . . . . . . . . 27

2.5.3 Certificate-based Access Control . . . . . . . . . . . . 28

2.6 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Public Key Infrastructure 31

3.1 What is a PKI? . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Entity Naming . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Distinguishing Name . . . . . . . . . . . . . . . . . . . 33

3.3 Components of a PKI . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Certificates . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Certification Authority . . . . . . . . . . . . . . . . . . 34

3.3.3 Certificate Revocation List . . . . . . . . . . . . . . . 36

3.3.4 Registration Authority . . . . . . . . . . . . . . . . . . 38

3.3.5 Directories . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.6 Time stamping . . . . . . . . . . . . . . . . . . . . . . 39

3.3.7 A PKI Overview . . . . . . . . . . . . . . . . . . . . . 40

3.4 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Problems Encountered in a PKI . . . . . . . . . . . . . . . . . 42

3.5.1 End-user Identification . . . . . . . . . . . . . . . . . . 42

3.5.2 CA Certificate Integrity . . . . . . . . . . . . . . . . . 42

3.5.3 Private Key Integrity . . . . . . . . . . . . . . . . . . . 43

4 International Monitoring System 45

4.1 Overview of Data Flow . . . . . . . . . . . . . . . . . . . . . . 45

4.2 The IMS Stations . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Components of an IMS Station . . . . . . . . . . . . . 49

4.2.2 Physical Security . . . . . . . . . . . . . . . . . . . . . 51

viii



4.2.3 Clock Synchronization . . . . . . . . . . . . . . . . . . 51

4.3 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Continuous Data Transfer . . . . . . . . . . . . . . . . 52

4.3.2 Commands and Data Requests . . . . . . . . . . . . . 56

4.4 The PKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Infrastructure and Specifications . . . . . . . . . . . . 61

4.4.2 Key Generation . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3 Obtaining Certificates and CRL . . . . . . . . . . . . . 62

5 Threat Analysis 65

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.1 Data Loss . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4.2 Data Manipulation . . . . . . . . . . . . . . . . . . . . 70

5.5 Trust of Station Operator . . . . . . . . . . . . . . . . . . . . 70

5.6 Motives and Resources . . . . . . . . . . . . . . . . . . . . . . 71

6 Implementation 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4.1 X.509 . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.4.2 Syntax of X.509 CRL . . . . . . . . . . . . . . . . . . 78

6.4.3 PKCS #7 . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4.4 S/MIME . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Security Considerations . . . . . . . . . . . . . . . . . . . . . 81

6.5.1 Trusted Computing Base . . . . . . . . . . . . . . . . 81

6.5.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5.3 PKI Components . . . . . . . . . . . . . . . . . . . . . 82

6.6 Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6.1 Access Control List . . . . . . . . . . . . . . . . . . . . 85

ix



6.6.2 Certificate-based Access Control . . . . . . . . . . . . 86

6.7 Integrity of Configuration File . . . . . . . . . . . . . . . . . . 87

6.8 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.8.1 Programming Language . . . . . . . . . . . . . . . . . 88

6.8.2 Third-party Software . . . . . . . . . . . . . . . . . . . 88

6.9 Program Design . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.9.1 Program Flow . . . . . . . . . . . . . . . . . . . . . . . 90

6.10 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.11 Experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 System Analysis 97

7.1 Security Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Geophysical Authentication . . . . . . . . . . . . . . . . . . . 98

7.3 Time of Signing . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 International Monitoring System Protocol . . . . . . . . . . . 99

7.4.1 Goals of IMS2.0 . . . . . . . . . . . . . . . . . . . . . . 99

7.4.2 Protocol Format . . . . . . . . . . . . . . . . . . . . . 99

7.4.3 Command Processing . . . . . . . . . . . . . . . . . . 100

7.4.4 Replay Attacks . . . . . . . . . . . . . . . . . . . . . . 101

7.4.5 Entity Forgery . . . . . . . . . . . . . . . . . . . . . . 101

7.4.6 Other Attacks . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Continuous Data Protocol (CD1.1) . . . . . . . . . . . . . . . 103

7.5.1 Goals of CD1.1 . . . . . . . . . . . . . . . . . . . . . . 103

7.5.2 Security Analysis of CD1.1 . . . . . . . . . . . . . . . 104

7.5.3 Checking Revocation Status . . . . . . . . . . . . . . . 105

7.6 Key Management . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.7 Physical Security . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.7.1 IMS Stations . . . . . . . . . . . . . . . . . . . . . . . 107

7.7.2 The GCI . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.8 PKI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.8.1 Appropriateness of the PKI . . . . . . . . . . . . . . . 108

7.8.2 CRL Variant . . . . . . . . . . . . . . . . . . . . . . . 110

7.8.3 Choice of Algorithms . . . . . . . . . . . . . . . . . . . 110

7.9 Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



8 Conclusion 117

xi



xii



List of Figures

2.1 Creation and verification of a digital signature. . . . . . . . . 20

3.1 Data and control flow in a typical PKI. . . . . . . . . . . . . . 40

4.1 Flow of data in the IMS network. . . . . . . . . . . . . . . . 46

4.2 Data-flow in an array station. . . . . . . . . . . . . . . . . . 48

4.3 Data-flow in a typical IMS station. . . . . . . . . . . . . . . . 49

4.4 The borehole of a seismic sensor. . . . . . . . . . . . . . . . . 49

xiii



xiv



List of Tables

4.1 Frame Header fields. . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Frame Trailer fields. . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Channel Subframe Header fields. . . . . . . . . . . . . . . . . 54

4.4 Channel Subframe fields. . . . . . . . . . . . . . . . . . . . . . 55

xv



xvi



Chapter 1

Introduction

1.1 The Comprehensive Nuclear-Test-Ban Treaty

1.1.1 History

In order to continue the long-ongoing effort in the field of nuclear disarma-
ment, the international community has set up a comprehensive treaty pre-
venting further testing of all nuclear weapons. The Partial Test-Ban Treaty
(PTBT) of 1963 prohibits surface, ocean and space testing and is already in
effect. In 1992, several countries including the US, Russia, and the United
Kingdom, have agreed to, and abode with, a moratorium to stop all nuclear
tests.

In 1996, the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was signed.
This treaty bans all nuclear tests.

Although the Treaty text[Com94] is finalized, the Treaty has not yet entered
into force. For the Treaty to do so, it is required that 44 states listed in
the Treaty’s Annex 2 ratify it. Currently, 41 of those states have signed the
Treaty, but only 31 have ratified it. In addition to the Annex 2 states, there
are 126 signatory states, and 71 ratifications.1

It is important to keep in mind that the PTBT is in effect, and has been
for a long time. The difference between PTBT and CTBT is essentially the
inclusion of underground tests, and thus the ban on all nuclear tests.

1The CTBTO web-site, http://www.ctbto.org, provides an up-to-date list of countries
which have signed and ratified the Treaty, both Annex 2 countries and other member
states.

1



1.1.2 Organisation

Before the Treaty enters into force, several preparations must be made. The
most important, and most demanding, is the implementation of a verific-
ation scheme. To establish the necessary infrastructure and technological
solutions, the Preparatory Commission for the Comprehensive Nuclear-Test-
Ban Treaty (PrepCom) has been formed. Paragraph 1 of the Annex to the
Treaty[Com94] specifying the mission for the Preparatory Commission:

Annex

1. There is hereby established the Preparatory Commission for the Com-
prehensive Nuclear-Test-Ban Treaty Organisation [...] for the purpose
of carrying out the necessary preparations for the effective implementa-
tion of the Comprehensive Nuclear-Test-Ban Treaty, and for preparing
for the first session of the Conference of the States Parties to that
Treaty.

PrepCom consists of two organs: the plenary body composed of all signatory
states, and the Provisional Technical Secretariat (PTS).

The two main targets for PrepCom, is to promote Treaty signature and rat-
ification, and to establish a global verification regime to monitor compliance
with the Treaty. The latter part is the objective of the PTS, and is the focus
of this thesis.

When the Treaty enters into force, the Comprehensive Nuclear-Test-Ban
Treaty Organisation (CTBTO) will be established (and the Preparatory
Commission will cease to exist). The seat will be at the same facility as
the Commission is located now, in Vienna, Republic of Austria. It will
consist of three organs: the Conference of the States Parties, the Executive
Council, and the Technical Secretariat (TS). The latter will replace the PTS.
We will use the name PTS throughout the thesis, even though their tasks
will be handled by the TS when it is established.

The Role of the Organisation It is important to note that the CTBTO’s
(future) role, is not to monitor compliance with the Treaty. As outlined in
Article II of the Treaty[Com94]:

1. The States Parties hereby establish the Comprehensive Nuclear-Test-
Ban Treaty Organisation (hereinafter referred to as "the Organisa-
tion") to achieve the object and purpose of this Treaty, to ensure the
implementation of its provisions, including those for international veri-
fication of compliance with it, and to provide a forum for consultation
and cooperation among States Parties.

2



The responsibility to act on evidence (or indications) of non-compliance lies
with the participating nations. The mission of the CTBTO is to implement
the necessary mechanisms.

1.1.3 Verification Regime

To monitor compliance with the Treaty, a verification regime is required.
The goal of this verification scheme is to be able to detect and locate all
nuclear explosions.

This goal, however, is impossible to truly reach. There will always be a
lower threshold (with respect to magnitude of the explosion) under which
the verification regime cannot reliably function. The problem of lowering—
and agreeing on—this threshold is outside of the scope of this thesis.

The establishment of this regime is the primary task for the Preparatory
Commission. According to the CTBTO web pages, the regime consists of
four elements[Pre]:

An International Monitoring System A network of stations and labor-
atories monitoring the earth for evidence of nuclear activities is being
deployed. It is called the International Monitoring System (IMS), and
is discussed in detail later in this section and in chapter 4.

Consultation and Clarification Process If a participating state suspects
non-compliance with the Treaty, it has the right to request a clarifica-
tion on any relevant matter. Directions for such clarification are a part
of the verification regime.

On-Site Inspections If clarifications made by the state subjected to suspi-
cion of non-compliance are not satisfactory to the requesting state, and
a suspected nuclear explosion is detected by a station of the monitor-
ing system, any participating state has the right to request an on-site
inspection.

Confidence-building Measures The confidence-building measures are two-
fold:

1. To contribute to the timely resolution of any compliance concerns
arising from possible misinterpretation of verification data relat-
ing to chemical explosions, such as, for example, large mining
explosions; and

2. To assist in the calibration of stations that are part of the IMS.

Of these elements, this thesis concentrates on the former. The IMS network
consists of 321 stations and 16 radionuclide laboratories[Com01b]. There are

3



four kinds of stations: seismic, hydroacoustic, infrasound, and radionuclide.
We will briefly describe the functionality of the latter three types in chapter
4, and give a more detailed description of the seismic stations.

The data is transferred from the stations to the International Data Centre
(IDC), which is located in the CTBTO headquarters in Vienna. This transfer
is either directly from the stations to the IDC or via a National Data Centre
(NDC). All state parties will have access to the data from all stations through
the IDC.

1.2 Security Problem

A problem with seismic data and underground tests is that the waves gen-
erated by an explosion do not travel as far as waves that travel in the at-
mosphere or in water. The effect is that to accurately detect and locate an
underground explosion, stations in relatively close proximity to the event
may be required.

This, in turn, means that proper detection in some cases may depend on
data from the testing country’s own stations. There is consensus that it
is impossible to have a monitoring regime that relies on the honesty of the
participants, so it is agreed that the sensor data must be authenticated upon
reception. It is also accepted that the authentication method used must be
adequate to prove to an arbiter that the data is authentic.

A trustworthy monitoring scheme for the CTBT intuitively depends on two
critical factors:

• Secure gathering of the IMS data, and

• authenticated transfer of that data to the monitor.

It is not the goal of this thesis to say anything about the politics surrounding
the Treaty and the nuclear disarmament struggle, but it is a fact that the
lack of satisfactory, secure technology for data transfer is one of the reasons
why underground test explosions were not included in the PTBT.

The surveillance techniques for detecting explosions under water, in the at-
mosphere, and in space are more than adequate, but in 1963, no acceptable
solution for underground tests existed. In [Sim91], Gustavus Simmons sums
up the difficulties faced in implementing a trustworthy monitoring regime.
Although secure emplacement of sensors in sealed-off boreholes was feasible,
the secure transfer of the data to other parties, was not. Substantial work
was carried out at Sandia National Laboratories in the US to find a way to
allow “mutually distrusting (and potentially deceitful) parties [...] to both
trust a data acquisition system [...]”.

4



The gathering of the data is mainly outside of the scope of this thesis, al-
though some aspects of it will be addressed.

In addition to the transfer of the data from the sensors to the IDC, there is
a need for communication the other way. Calibration and key management
commands may be permitted from both the PTS and the station operator
(SO). These commands will be able to greatly affect the operational status of
the stations. It is therefore necessary to have a secure framework for proper
authentication of the commands at the stations.

1.3 Proposed Security Solution

To guarantee the authenticity and integrity of the data from the stations,
PrepCom has proposed to apply digital signatures (see chapter 2 for details
on digital signatures) to them.

Several parties will be requesting data from the stations and verify their
signatures, as well as performing remote maintenance and configuration.
Therefore it has been decided that a Public Key Infrastructure (PKI) (see
chapter 3) is to be established to accommodate key retrieval and verification.

The digital signatures are not the only means of security in the IMS system,
though. When an earthquake, a volcanic eruption, or a similar physical event
takes place, the signals that are generated will show up on sensors all over
the world. When these events will happen is impossible to predict. This fact
actually works as an important security mechanism. It is called geophysical
authentication, and we will briefly come back to it in chapter 7.

1.4 Motives

To get an idea about why solid security measures must be deployed, we need
to look at what motives potential attackers will have. A good beginning is
to look at Article I of CTBT treaty text[Com94].

ARTICLE I BASIC OBLIGATIONS

1. Each State Party undertakes not to carry out any nuclear weapon test
explosion or any other nuclear explosion, and to prohibit and prevent
any such nuclear explosion at any place under its jurisdiction or control.

2. Each State Party undertakes, furthermore, to refrain from causing,
encouraging, or in any way participating in the carrying out of any
nuclear weapon test explosion or any other nuclear explosion.

5



The goal of the Treaty is to bring a stop to all nuclear test explosions. Our
perspective is the security scheme set up to allow authenticated transfer of
the sensor data from the stations to the IDC.

The main danger to this system is perceived to come from the participating
nations. They agree on a common goal to stop the development of nuclear
weapons, with a hope of a future without nuclear weapons altogether. They
do not, however, trust each other to all abide with the rules laid down to
achieve this goal, hence the need for a verification regime.

Although that verification regime is set up to prevent undetected nuclear
explosions exclusively, it does bring other dangers. Other potential attack-
situations arise with the possibilities tampering with the system provide.

A threat analysis for the verification regime is provided in chapter 5.

1.5 Scope of the Thesis

In this thesis, our contributions have four main focal points:

• A description of the IMS network, the IMS PKI, and the protocols
used;

• An identification of the threats to the system;

• The design and implementation of an application for receiving com-
mand and control messages at the IMS stations;

• A brief analysis of the security architecture and how it meets the
threats we have identified.

1.6 Use of Sources

Much of the system description in this thesis originate from documents that
are internal to the PrepCom and not generally accessible. We have tried to
quote from these sources in a way to provide the reader with the necessary
information.

1.7 Organisation of the Thesis

This thesis is organised into four parts.

The first part will cover basic cryptography in chapter 2 and PKI in chapter
3. In addition to covering the technical background material, we will look at

6



the historical aspects of the combination cryptography and nuclear test-ban
treaties.

The second part will, in chapter 4, describe the International Monitoring
System, including the security solution proposed by the PTS, before a threat
analysis is made in chapter 5.

The third part, chapter 6, describes our work on implementing one part of
the security architecture.

Finally, the fourth part is the analysis of the defense mechanisms proposed
by the PTS and comment on the quality on the scheme (chapter 7).

We will then present our conclusion of the thesis.

7



8



Chapter 2

Cryptography

Although the aim of this thesis is to describe and analyse a more complex
system and not the cryptographic algorithms used, an introduction to the
building blocks is required.

2.1 Security Services

Usually, when the use of cryptography is required in a system, it is not really
the cryptography itself that is in demand, but the information security ser-
vices it can provide. What is required is not encryption, but confidentiality ;
not a digital signature, but a way to ensure authenticity. Information se-
curity has many uses, and cryptography is a key building block in many of
them. We describe some important security services in this section.

2.1.1 Confidentiality

The oldest and most basic application of cryptography is that of confidenti-
ality (or secrecy). The need for two or more entities to communicate over a
channel which is vulnerable to tapping is often called upon.

In the IMS network, there is little need for confidentiality. As we shall see
later in section 2.6, one of the most demanding tasks has been to avoid the
use of secrecy, but still achieve authentication of the data.

2.1.2 Authentication

Although the insecure nature of computer networks (and in particular the
Internet) often commands a great need for confidentiality, the need for trust-
worthy identification and authentication is possibly even greater. Further,

9



cryptographic authentication channels are very often used in conjunction
with secrecy channels.

In [DH76], Diffie and Hellman explain the need for proper authentication:
“Authentication is at the heart of any system involving contracts and billing.
Without it, business cannot function. Current electronic authentication sys-
tems cannot meet the need for a purely digital, unforgeable, message depend-
ant signature. They provide protection from third party forgeries, but do not
protect against disputes between transmitter and receiver.”

We can separate authentication into two cases: Entity authentication and
message authentication.

Entity Authentication The objective of entity authentication or identi-
fication is to allow one entity to assure itself of the identity of another entity
or to let one entity identify itself to another. An important requirement
is that the material used to identify entity A can not later be re-used by
another entity to impersonate A. A consequence of this requirement is that
the entity requesting to be identified must take an active part in the iden-
tification process. An effect of this again, is that entity authentication is
real-time.

Based on Handbook of Applied Cryptography[MvOV97], we list the following
requirements for an entity authentication scheme:

• Ability to enable an entity A to be properly identified by another entity
B, while

• B must be unable to re-use the material from the identification of A
to successfully impersonate A to C, a third party; and

• C, having observed the identification process between A and B must,
even after observing a large number of identification processes, be un-
able to successfully impersonate A to any entity, D.

• The process must be feasible and efficient to perform, both for A and
B.

It is common that no otherwise meaningful information is conveyed between
A and B as part of an entity authentication process.

Message Authentication In [MvOV97], message authentication (or data
origin authentication) is referred to as a type of authentication identifying
the source of the specific data. [MvOV97] also defines data integrity as
the property that data has not been (in an unauthorized manner) altered
since the time of creation or modification by an authorized source. The

10



inseparability of the two properties is stressed, as a message with its origin
authenticated, but which is since then altered by an unauthorized entity, no
longer can be said to originate from the original source. Conversely, if the
source can not be determined, there is no foundation for integrity.

In this thesis, we will consider message authentication to be both the iden-
tification of the source of the message as well as its integrity.

To provide message authentication, we need a function working on an ar-
bitrary message and some information identifying the author. The function
must be efficient to compute, both producing the authentication and veri-
fying its authenticity. We require that the function allow verifiers to assure
themselves that the following hold:

• The message originates from the indicated sender;

• The message has not been altered after leaving the sender;

• Both the production and verification of the authentication data are
efficient.

With entity authentication, we stressed that it must be impossible for an
entity C to observe and copy the material used by A to identify itself to B
and later (successfully) re-use that material to identify itself as A. In the
case of message authentication, this does not apply. Due to the nature of
digital data, it will always be possible for C to obtain a copy of a message
from A including the authentication material, and re-use that to later cer-
tify that the same message originates from A. In this case, C would only
act as a temporary storage for A’s message. We can say that while entity
authentication is valid only for the instance it is directly applied to, message
authentication is not limited in time.1

What C must be unable to do in a good message authentication scheme, is
to use a message authenticated by A (or many such messages) to produce a
different message, which is accepted by B as authenticated by A.

In the IMS network, the primary authentication demands will be on message
authentication; both authentication of commands to stations and authentic-
ation of data from the stations.

2.1.3 Non-repudiation

A service tightly bound to (message) authentication is non-repudiation. With
message authentication, a recipient can be convinced of the integrity and

1The message authenticator can of course include a time when it ceases to be valid,
but in general, this is not the case.

11



source of a message. There are many situations where the recipient also
would like to be able to later prove (to an arbiter or another third party)
that the sender actually sent this message.

We say that a mechanism providing non-repudiation has the property that
the authorized originator of an authenticated message is unable to later deny
having authenticated the message.

A standard example on non-repudiation from the literature is a stock broker
acting on behalf of a client. If the client sends the broker an authenticated
order to purchase stocks in a company and the broker obeys, then in the event
of the company’s stock going down, chances are that the client will accuse the
broker of acting without his consent, thereby not being responsible for the
loss. If the authentication mechanism on the order provides non-repudiation,
the broker can use that to prove to a neutral arbiter that the client really
did place the order.

2.1.4 Access Control

Access control means controlling which entities (users, computer programs,
etc.) are allowed to access (read, write, execute) which applications, services,
or data. Very often, access control is the ultimate goal for computer security
applications.

Implementing access control always starts with entity or data origin au-
thentication. This can involve determining the identity of the requester or
verifying some credentials.

For each request for access, the access control system can give an answer of
yes or no. Every time the entity requests access to resources, the system
verifies and, if applicable, grants access.

Later in this chapter, we will describe two different approaches to implement
access control. One is based on issuing credentials to users which prove their
right to access. The other is using lists, located at the access-granting host,
where the identification of a requesting user is looked up.

Granularity

When discussing access control, an important issue is granularity. With
granularity, we mean at how detailed a level the access control is applied.

In every system utilizing access control, the “upper level” would likely be
simply access to the system as a whole. A second level can be controlling
which files, services, or applications the user are allowed to access. A third
level will be what the user is allowed to do with these files, services, and

12



applications (e.g. read, write, execute). This is a level of access control
normally found in an operating system.

It is not necessarily the lowest level imaginable, though. There can for ex-
ample be limitations on the operations allowed within a specific application,
or restrictions on allowing the user to alter these permissions for himself or
others.

2.2 Cryptographic Protocols

What characterizes a cryptographic protocol, as opposed to an algorithm, is
that it involves two or more parties, is distributed, and is designed to solve
a specified problem rather than to perform a single task.

A cryptographic protocol is a series of steps to be taken for each participant.
These steps should be precisely defined and should deterministically specify
what each participant should do at any given time of the protocol.

2.3 Cryptographic Primitives

There are several families of cryptographic primitives, each with its own area
of use. We will limit ourselves to the following:

• Symmetric encryption algorithms

• Asymmetric encryption algorithms

• Cryptographic hash algorithms

• Message authentication codes

• Digital signature algorithms

In each of these families, there exist a multitude of algorithms. For each
category, there are many algorithms we consider to be secure, but also a lot
of already broken ones. A factor which will always come up when discussing
the strength of an algorithm, is key length2. Although a long key-length will
never be a guarantee for quality, a too short key will render any otherwise
good algorithm unsafe due to simple “brute force” attacks.

2For hash algorithms, there are no keys, but the length of the hash is significant.

13



2.3.1 Symmetric Encryption Algorithms

A symmetric cryptoalgorithm, also known as a one-key or standard cryptoal-
gorithm, is an algorithm where the sender and receiver(s) share one secret
key, K. Actually, it is somewhat misleading to talk about one symmetric
algorithm, there are usually two; an encryption algorithm eK and a de-
cryption algorithm dK . We will refer to such a pair of algorithms as one
algorithm (this also goes for digital signature algorithms and public key
cryptoalgorithms).

The one property we demand from every symmetric algorithm is that it
satisfies dK(eK(x)) = x. If you encrypt something and decrypt the result
with the correspondig decryption algorithm, you should get the original value
back. In addition, it is obvious that finding K, given some ciphertext, or
pairs of corresponding plaintext/ciphertext, should be difficult. Finding the
plaintext from the ciphertext without access to K must of course also be
difficult.

Block Ciphers and Stream Ciphers

There are two fundamentally different types of symmetric cryptoalgorithms,
block ciphers and stream ciphers.

With a block cipher, each block (the size of the block varies with the al-
gorithm) of plaintext data is encrypted using the same key, K, to obtain
the ciphertext. A stream cipher encrypts each character (which is usually
a single binary digit) of the plaintext with a different key. The keys are
obtained successively from a generated keystream.

A distinction between the two types is that while encryption and decryption
of a ciphertext block using a block cipher depend only on the key and the
ciphertext3, encryption and decryption of a character using a stream cipher
also depend on the internal state of the algorithm.

[MvOV97] outlines the main use of stream ciphers with three advantages
over block ciphers: One is that they have a very low error propagation,
another that they allow each character (bit) to be individually processed on
reception as well as permitting limited or no buffering. The third advantage
is their speed; stream ciphers tend to operate faster than block ciphers. The
last point is a truth with modifications, though. With stream ciphers, very
efficient encryption and decryption is possible, but the setup of the keystream
may take some time. For example with rapid key change, this overhead can
be problematic.

3This only applies when the block cipher is used in Electronic Codebook Mode. It
should be noted that block ciphers can be used in other modes to mimic the operation of
stream ciphers. Details on this in the next section.

14



Block ciphers are still more widely used than stream ciphers. The primary
reason being their versatility. Another important advantage for block ciphers
is that they do not require an initialization when the key is changed.

Besides offering strong confidentiality, block ciphers are used in construction
of stream ciphers, pseudorandom number generators, MACs, hash functions,
and even digital signature schemes (see “Modes of Operation”, below).

There are several well-known and presumed strong symmetric algorithms in
use today. The Data Encryption Standard (DES)[Nat77], has been the most
widely deployed since its arrival in 1977. DES was an official US standard
until its replacement by the Advanced Encryption Standard (AES)[Nat01a].
Despite the fact that DES is still in use, it is not regarded as secure, due to
its short key-length (56 bit).

Modes of Operation

Originally developed for DES, the four modes of operation[Nat80] can be
applied to any block cipher: electronic codebook mode (ECB), cipherblock
chaining mode (CBC), cipher feedback mode (CFB), and output feedback
mode (OFB). The modes define four different ways to apply a block cipher
to achieve different capabilities.

ECB is the straight-forward block cipher encryption mode. The plaintext is
divided into n-bit blocks, where n depends on the algorithm. Each block is
encrypted, using the same key, into its corresponding ciphertext block. ECB
is simple, but has at least two major weaknesses. The first, and biggest, is
that an active attacker can rearrange the order of entire blocks, retransmit
blocks, or remove blocks. The second problem is that patterns in the plain-
text are not properly disguised. Two similar blocks of plaintext produce the
same ciphertext when the same key is used.

A remedy to both these deficiencies is the CBC mode. Each plaintext block
is bitwise added modulo 2 (XOR) to the previous ciphertext block prior to
encryption. With this simple method, both the reordering attacks and the
pattern disclosure are prevented. Additionally, a block cipher used in CBC
mode can be used to provide message authentication. See section 2.3.4 on
MACs.

The two last modes for block ciphers, CFB and OFB are very different. Their
objective is to allow a block cipher to resemble a stream cipher.

2.3.2 Asymmetric Encryption Algorithms

The symmetric cryptoalgorithms are strong and very efficient, but have a
major flaw: the need for a secret channel to establish the key. In 1976, Whit

15



Diffie and Martin Hellman published their famous paper, “New Directions
in Cryptography”[DH76], in which they proposed a fundamentally new idea
for a cryptographic algorithm: The public key cryptoalgorithm.

In a public key cryptography (PKC), there are two keys used: one for en-
cryption and one for decryption. The encryption key, Kp, is public and
(presumed) known by everyone, the decryption key, Ks, is secret and known
only by the owner. If Alice wants to send an encrypted message to Bob, she
can encrypt the message using Bob’s public key. Bob (and only Bob) can
then use his secret key to decrypt the message.

In standard one-key cryptography, a concatenation of complex functions are
normally used to mix the key and the plaintext to create the ciphertext. In
PKC, a special brand of mathematical functions are used: One-way trapdoor
functions.

A function suitable for an asymmetric encryption algorithm must meet the
following requirements:

• dKs(eKp(x)) = x for each Ks,Kp key-pair;

• Both dKs(y) (given knowledge of Ks) and eKp(x) must be efficient to
compute for all allowed values of x and y;

• It must be infeasible to find x from eKp(x) without knowledge of the
corresponding Ks;

• It must be infeasible to find Ks from Kp.

The most well-known public key cryptoalgorithms include RSA[RSA78], the
first one which was publicly known, and the El-Gamal family[ElG85].

RSA is based on the well-studied problem of integer factorization. El-Gamal
was originally based on discrete logarithm over a finite field, but the same
general idea has also been used for discrete logarithms over elliptic curves.

A major problem with this form of cryptography is that it is far slower
than regular symmetric cryptography. Even with todays fast computers,
encrypting and decrypting is too slow for large amounts of data. The general
solution is to use an asymmetric technique to establish a secret session key,
and subsequently use symmetric encryption for the rest of the traffic.

A way of agreeing on this session key, as suggested by Diffie and Hellman
in their article, is a key exchange protocol. The objective of a key exchange
protocol is not to encrypt anything, but to facilitate for the two communic-
ating parties to both obtain knowledge of a shared key, and to prevent any
attackers from getting that knowledge.

The Diffie-Hellman key exchange protocol is one such protocol, while another
way to solve the problem is to use a generic asymmetric encryption algorithm
to encrypt the session key. This approach is called a hybrid cryptosystem.

16



2.3.3 Cryptographic Hash Functions

A hash function, or message digest function, is a function that maps an
arbitrarily long message into one of a fixed size.

h : {0, 1}∗ → {0, 1}l

for some l.

Since a hash function has an infinite domain and a limited (although usually
rather large) range, it is obvious (follows immediately from the pigeonhole
principle) that a hash function will have collisions, ie

f(x) = f(y) where x 6= y.

For a regular hash function, it is only required that collisions occur relatively
rarely, and that a change in x with high probability will change f(x).

With cryptographic hash functions, this is not the case. Among other uses,
they are important in most digital signature schemes. Signatures are not
made on the data being “signed”, but actually on the hash of the data (details
on digital signatures in 2.3.5). It is then obvious that if it is feasible to find a
y 6= x such that f(y) = f(x), then it is feasible to break the signature scheme.
If Bob has signed x, the same signature is also valid on y. This leads to the
following requirements on all (strong) cryptographic hash functions:

For hash algorithm h, we require that

• it is computationally infeasible to find x and x′, x′ 6= x such that
h(x) = h(x′), and that

• it is computationally infeasible to find, given y = h(x), any x′ such
that h(x′) = y without knowledge of x.

A hash function which meets these requirements is called a one-way, strongly
collision-free hash function[Sti95].

Cryptographic hash functions have two primary uses: As a checksum, to
make sure there are no (accidental4) changes to a message or file. Secondly,
in digital signature schemes.

Several cryptographic hash functions have been standardised. MD5[Riv92]
and SHA-1[Nat95] are among the most used algorithms. MD5 creates a 128-
bit hash, while SHA-1, which is a US standard, has 160-bit hashes. There is
also a variant of SHA-1, called SHA-256, with longer hashes.

4Hash functions are also frequently used to “verify” the integrity of source code for
software downloaded over the Internet. The idea is that you should obtain the checksum
from another source than the code itself, and thereby make forgery a far more complicated
matter.

17



2.3.4 Message Authentication Code

In Handbook of Applied Cryptography[MvOV97], a message authentication
code (MAC), also called a keyed hash function, is defined as a function hk
depending on two input parameters: a secret key and a message. A good
MAC must meet the following three requirements:

1. It must be easy to compute;

2. It must take input of arbitrary length;

3. It must be difficult to forge.

The first property says that for any input message m and any key k, hk(m)
should be easy (and quick) to compute. The second requires that hk(m)
must be possible to compute on every possible m. Finally, we require that
without knowledge of k, it should be infeasible to compute hk(mj) regardless
of the number of mi, hk(mi) pairs observed (where mj 6= mi for all observed
mi).

MACs are, as the name implies, used to provide authentication of messages.
This is achieved by having two or more entities share a secret key. A message
authenticated by a MAC produced by that key, can be applied to convince
the involved entities that the message originates from someone or something
with access to the secret key, and that it has not subsequently been replaced
or altered.

The most common way to implement MACs is to use a regular single key
block cipher in CBC mode, and use the final block as a MAC.

An alternative approach for creating a MAC on a message is to use a crypto-
graphic hash function, and to create the digest of both the message and the
secret key k. A widely used example of this technique is HMAC[KBC97].

While MACs have many important fields of use, and are subject to much
research today, they have limitations:

• A MAC can only be verified by entities in possession of the private key
used to generate the MAC.

• Further, a MAC can never provide non-repudiation since all parties
able to verify its validity will at the same time be able to produce it.
In other words, if Alice composes a message, creates a MAC to provide
authenticity, and sends the message and MAC to Bob, she can later (to
a third party) deny having sent the message and claim Bob created it,
and that he made the MAC. There is nothing Bob can do to disavow
this claim, as he is able to create an undetectable forgery.

18



2.3.5 Digital Signature Algorithms

As we have seen, (symmetric key) MACs provide message authentication,
but they have limitations.

Another technique used to implement message authentication, is a digital
signature.

[MvOV97] describes a digital signature as

A digital signature of a message is a number dependent on some
secret known only to the signer, and, additionally, on the content
of the message being signed. Signatures must be verifiable; if a
dispute arises as to whether a party signed a document (caused
by either a lying signer trying to repudiate a signature it did
create, or a fraudulent claimant), an unbiased third party should
be able to resolve the matter equitably, without requiring access
to the signer’s secret information (private key).

The two major distinctions between a MAC and a digital signature are the
opportunity for everyone with access to the public key to verify a signature,
and the ability to provide non-repudiation.

A digital signature scheme is referred to as the combination of a signature
creation algorithm, a verification algorithm, and, if used, a cryptographic
hash function.

A digital signature scheme requires a key-pair : a signing key, which is known
to the signing party only, and a verification key, which is required to be
known by everyone who want to verify the signature.

[MvOV97] mentions two types of digital signature schemes: with message
recovery and with appendix. A digital signature scheme with message recov-
ery is a signature from which the entire (signed) message can be recovered.
In other words, the message is part of the signature. This is typically used
for shorter messages only, and we will not consider them further. Digital sig-
nature schemes with appendix, on the other hand, means that the message
must be input as a separate argument to the verification function.

Signature algorithms with appendix usually accept fixed-length input only.
A signature scheme able to sign fixed-length messages only in unacceptable,
though. The solution is to apply a cryptographic hash function to the data
before generating the signature. Instead of signing the document, we sign
the hash of the document. See figure 2.1 for an illustration of a typical digital
signature scheme.

Because of this problem, it is important that only signatures on a small
subset of the possible messages are accepted. A high level of redundancy
in the acceptable messages will reduce the risk that an existential forgery

19



Signer Verifier

Data

MD

sign()

Ks Kv

Untrusted
channel

ver()

MD

Sign.
ok

Sign.
failed

Authenticated

channel

Yes

No

Figure 2.1: Creation and verification of a digital signature. Here, Ks is
the signing key, Kv the verification key. The MD boxes are message digest
(hash) functions, sign() is a function taking a message digest and a signing
key and produces a digital signature. ver() is a function taking a message
digest, a digital signature, and a verification key and returns “Yes” or “No”
depending on whether the signature was accepted.

can be successful. When the hash of the message is signed, however, the
situation is different. The attacker will have a forged signature on a hash,
but he has no way of finding a message that corresponds to the signature.

Using a hash is not without problems. There are two important things
to consider with the hash function. Firstly, all parties (that is, the signer
and all potential verifiers) must know which hash function to use. Since the
signature is applied to the hash, verification using another hash function (and
therefore another hash), will fail. The consequence is that a digital signature
scheme must specify not only the algorithm for creating the signature itself,
but also the hash function. The second problem is that if an adversary
can find another message that has the same hash as the one a signature is
applied to (recall that every hash function will by definition have collisions),
the signature will be valid also on the second document. The result is that
a digital signature scheme is no stronger than its hash function.5

Security of a Digital Signature Scheme

When discussing the security of any security mechanism, it is important
to first describe what an adversary would want to obtain by breaking it.
Regarding digital signature schemes, the answer is simple; to create a forgery.

5At least theoretically, a signature scheme is no stronger than its hash function. In
practice, exploiting a hash collision is more difficult than exploiting a weakness in the
signature creation itself, but there is at least no question that the security of a digital
signature scheme depends on the hash function.

20



A much cited source for the different types of forgeries an attacker can create,
is an article[GMR88] by Goldwasser, Micali, and Rivest. In the article, they
list four different kinds of forgeries:

A Total Break The attacker is able to calculate the user’s private key.

Universal Forgery The attacker is able to find a way to produce undetect-
able forgeries on arbitrary messages.

Selective Forgery The enemy is able to produce a forged signature on a
message chosen prior to the attack by the enemy.

Existential Forgery The enemy is able to forge a signature on at least one
message. The contents of the message is uninfluenced by the attacker.

A total break or a universal forgery allows an attacker to sign any message,
and a signature scheme prone to such an attack is broken. It is, however,
normal to consider the security of a scheme in the context that an attacker is
allowed to have messages of his choosing signed (a chosen message attack).
In this scenario, it is important that also a selective forgery is difficult.

The technique used in most signature schemes to prevent successful selective
or existential forgeries is the hash function. A selective will typically allow an
attacker to obtain a forgery on the message he wants by having the private
key owner sign other messages, and exploit a mathematical or structural
property of the signature function.

When hash functions are used, the attacker will only be able to get a valid
signature on a hash, without knowing a message corresponding to the hash.
When the hash function is strong, the attack is unsuccessful.

Deterministic vs. Non-deterministic Algorithms

We distinguish between deterministic and non-deterministic digital signature
algorithms. We say that an algorithm is deterministic if for each key-pair
(ks, kv) and each message m there exists only one single signature s such
that verkv(m, s) is true. Conversely, if an algorithm is non-deterministic,
several such signatures s1 . . . exist.

Well-known Digital Signature Schemes

The two most common digital signature schemes used today are the Digital
Signature Scheme (DSS)[Nat94] and one built on the RSA algorithm[Kal98a].
The DSS uses the Digital Signature Algorithm (DSA), which is based on the
El-Gamal signature scheme[ElG85]. We refer to the standards for details on
the RSA scheme, and describe DSS in detail below.

21



An interesting aspect, and one in which the two algorithms differ, is that
while RSA (as the only digital signature algorithm to the author’s knowledge)
encrypts the message digest with the secret key, DSA produces a pair of
numbers. This pair, the public key of the signer, and the digest of the signed
data, can later be used to verify the signature. Verifying an RSA signature
constitutes simply decrypting the encrypted digest with the signer’s public
key and comparing the decrypt to a self-produced digest of the data.6

Another difference between the two schemes is that RSA is a deterministic
algorithm, while DSA is non-deterministic.

Digital Signature Standard

The Digital Signature Standard (DSS) was proposed by the U.S. National In-
stitute of Standards and Technology (NIST) in 1991. It uses the Digital Sig-
nature Algorithm (DSA) as its signature algorithm. DSA is a variant of the
El-Gamal scheme[ElG85]. In 1994, it was adopted as a Federal Information
Processing Standard (FIPS 186)[Nat94]. The DSS specifies SHA-1[Nat95] as
the hashing algorithm.

Key Generation A DSS key-pair consists of a private key a, and a public
key (p, q, α, y). They are created as follows:

1. Select a random 160-bit prime q.

2. Select a random prime p, 2511 < p < 21024 where q|(p − 1).

3. Select a generator α of the unique cyclic group of order q in Z∗p.

4. Select at random a, 1 ≤ a ≤ (q − 1).

5. Compute y = αa mod p.

Here, p, q, and α are what is referred to as system parameters. In a network
(for example a PKI, see chapter 3), it is possible to let all involved entities
use the same values for p, q, and α.

DSS allows a key length (the length of p) of 512 to 1024 bits, inclusive. The
key length must be a multiplicative of 64.

6It should be mentioned that in the literature, the creation of the signature is often
referred to as “encrypting” the digest with the private key, and the key-pair is referred to
as encryption and decryption keys. An example of this practice is RFC 2315[Kal98b], in
which PKCS #7 is defined. In the case of DSA (and, as mentioned, all other widely used
algorithms except RSA), this is logically wrong. No ciphertext is ever made, and there is
no encryption key, only a signing key and a verification key.

22



Signature Creation Assume that entity A wants to sign the message m,
using his private key a and public key (p, q, α, y). Let h be the SHA-1 hashing
algorithm.

1. Select a random number k, 0 < k < q.

2. Compute r = (αk mod p) mod q.

3. Compute s = k−1(h(m) + xr) mod q.

Now, (r, s) is A’s signature on m.

Signature Verification Assume that entity B has obtained A’s public
key (p, q, α, y). Again, let h be the SHA-1 hashing algorithm. Further, let
r′, s′,m′ be the versions of r, s,m received by B.

B’s steps to verify the validity of the signature is as follows:

1. Verify that 0 < r′ < q and that 0 < s′ < q. Reject the signature if
either condition fails.

2. Compute w = s−1 mod q.

3. Compute u1 = (h(m′) ∗ w) mod q.

4. Compute u2 = (wr′) mod q.

5. Compute v = ((αu1yu2) mod p) mod q. If v = r′, accept A’s signa-
ture on m, otherwise reject it.

The appendix to the DSS standard[Nat94] gives a proof showing that v = r′

when m = m′, s = s′, and r = r′ (i.e. when the message and signature from
A are unchanged).

Security of DSS The El-Gamal scheme, and hence also DSS, is based on
the problem of computing logarithms in Z∗p. A powerful algorithm called the
index calculus method [COS86] apply to this particular problem.

Performance of DSS The performance of DSS is a function of the per-
formance of the two components: SHA-1 and DSA.

The speed of a SHA-1 computation depends on the size of the input.

The parts of the DSA operation that are most significant with regard to
performance are the modular exponentiations. For signature creation, there
is one (αk mod p), and for verification two (gu1 mod p and yu2 mod p). These
require on average each 240 modular multiplications[MvOV97], or 240 for
creation and 480 for verification.

23



2.4 Cryptanalysis

When discussing the quality of a cryptographic algorithm, the resources
available to the attacker, we call him Oscar, is an important factor. With
resources, we mean both the time and calculating power available, how much
he knows about the cryptographic material he wants to break, and his ability
to monitor or alter the data involved.

When one analyses the strength of a cryptoalgorithm, its intended use is
obviously important, particularly the time frame for which security of the
encryption is required. For example, in an interactive login session over the
Internet, both confidentiality and authentication of the data is important.
Since passwords or other sensitive information may be passed over the in-
secure channel, it is required that the encryption is strong enough to resist
attacks for a long period of time. The authentication mechanisms, on the
other hand, is of no concern immediately after the session is over.

Generally, the algorithms in wide-spread use are thoroughly tested and are
(believed to be) able to withstand all attacks from the most powerful of
attackers for a long time.

Kerckhoffs’ Principle In 1883, Auguste Kerckhoffs published a paper
titled “La cryptographie militaire”[Ker83] in which he set forth several prin-
ciples he claimed should apply to every cryptosystem. The most famous of
these principles state that the system itself must not require secrecy, and
that it can be stolen by the enemy without causing trouble. Notice that he
does not say that the system should be public, only that the security of the
system should not rely on it being kept secret.

Active and Passive Attacks We always assume that the attacker has ac-
cess to read the (encrypted, signed, etc)̇ data he is trying to break. Whether
he is also able to alter that data on its way from Alice to Bob, is another
question. We say that if Oscar can perform an attack after only observation
of traffic, it is a passive attack. If he edits, replaces, removes, or inserts
data between Alice and Bob, he performs an active attack. Active attacks
require more effort, and often more resources, but an algorithm will not be
considered secure if it cannot withstand an active attack.

Available Data Attacks on cryptographic algorithms are often categorised
by the amount of data the attacker has access to. It is common to use the
following categories:

24



Known ciphertext The attacker’s knowledge is limited to observed cipher-
text. A cryptoalgorithm which does not withstand a known ciphertext
attack is considered broken.

Known plaintext The attacker has access to plaintext-ciphertext pairs.

Chosen plaintext The attacker is able to have plaintext of his choosing
encrypted with the key used by Alice and Bob, and to obtain the
corresponding ciphertext. This class can be extended to allow the
attacker to choose plaintext depending on the result of the previous
encryptions. It is then called an adaptive chosen plaintext attack.

Chosen ciphertext In the context of public key cryptoalgorithms (dis-
cussed in section 2.3.2), arbitrary pairs of corresponding plaintext-
ciphertext pairs of the attacker’s choosing must be considered to be
available since the encryption key is public. A scenario resembling
chosen plaintext for public key algorithms is chosen ciphertext. The
attacker is allowed to have ciphertext of his choice decrypted by the
secret decryption key, and to obtain the corresponding plaintext.

In all cases, we assume the attacker has access to a substantial amount of
the specified data.

We will now look at a few specific types of attack. It is important to separate
between attacks where the deficiency is in the algorithm itself and attacks
where the implementation is at fault. Typically, a faulty implementation
is relatively easy to fix (and often affects only one of many implementa-
tions), while a problem with the algorithm itself means the algorithm must
be improved or discarded. We start with a special case.

2.4.1 Brute-force Attack

A brute-force attack is the simplest form of attack possible; the attacker
tries all possible keys. For symmetric key cryptoalgorithms, it is a goal that
brute-force should be the attacker’s best choice (or at least of the same order
of magnitude as the best). Currently, 128 bits key-length is seen as adequate
to resist brute-force attacks for all foreseeable future. As we have seen, DES
uses only 56 bit keys, leaving DES vulnerable to even attackers of a relatively
modest resource level.

2.4.2 Protocol Failures

As we saw in 2.2, it is often required to combine cryptographic primitives
through a well-defined series of steps to achieve the desired goal. However,
while cryptographic protocols can provide good solutions to hard problems,

25



they can also introduce security problems not present in the primitives upon
which they are based.

Examples of protocol failures include replay attacks and man-in-the-middle
attacks.

Replay Attack In a replay attack, Oscar intercepts and saves a valid,
signed message from an Alice to Bob. Oscar then, at a later time, resends
the message to Bob, who accepts it as valid, and believes it comes from Alice.
This is an attack which is impossible to guard against by digital signatures
alone; after all, Alice’s signature is still valid.

There are many situations where such an attack can be dangerous. We
will describe one in chapter 7. To prevent replay attacks, a protocol usually
includes either a sequence number, random nonce, time stamp, or some other
means for the receiver to detect that the received message is out of order.

Man-in-the-middle Attack A man-in-the-middle attack is an attack
where Oscar observes and possibly modifies communication between Alice
and Bob without either of them learning of his presence. A good example of
such an attack is in public key cryptography.

Assume Alice is going to send an encrypted message to Bob. She does not
currently have Bob’s public key KBE , so she tells him to send it to her. Bob
does as he is asked, but Oscar manages to intercept the key and change it
in transit, so Alice ends up with Oscar’s public key, KOE .

Alice then encrypts the data (or a session key; this does not change the
argument) with KOE, which she believes is Bob’s key. Oscar again intercepts
the traffic, decrypts the contents (he, obviously, has access to his own private
key, KOD). He then re-encrypts the message (possibly after modifying it)
with KBE . Bob receives this message, decrypts it with KBD, and has no
knowledge of Oscar’s interception.

2.4.3 Implementation Deficiencies

Many cryptographic protocols with sound design and using safe algorithms
have been compromised because of bugs in the implementation (or one of
many implementations). We separate between two different types of imple-
mentation deficiencies: side-channel attacks and bugs.

A side-channel attack is a problem where information is leaked from the
execution of the cryptographic process.

A typical side-channel attack is a timing attack. The idea in a timing at-
tack is that through timing cryptographic processes, it is possible to extract

26



secrets from the system performing them. Dan Boneh and David Brumley
recently presented a functional timing attack against web servers running
OpenSSL[BB03].

An example of a bug in an implementation is a bad random number gener-
ator. If the effective key-space is significantly smaller than the “real” key-
space, a brute-force attack may become feasible.

2.5 Non-cryptographic Security Mechanisms

So far, our focus has been entirely on the cryptography and its application
to information security. However, security is not limited to cryptography. In
this section, we will address some security mechanisms that are not crypto-
graphic in nature.

2.5.1 Logging and Auditing

Good logging and auditing procedures are important parts of most security
systems.

Logs record events or statistics in a system. These events can include user lo-
gins and logouts, access requests to services, material or applications, change
of permissions, changes in system operational status, etc.

Auditing is analysing the logs to detect abnormalities. Auditing is both
a tool (log analyser) and a policy. The goal of auditing is to extract the
important parts out of the logs. Logs are often sizable and manual pro-
cessing is impossible. With an auditing tool, one can define the events that
are considered normal and events that must be reported (auditable events).
Defining these events require a knowledge about the system; what the se-
curity goals are and how they may be violated. This in turn dictates what
information it is necessary to log.

It is important that critical logs are securely stored. Logs stored on a com-
promised host can no longer be trusted to be correct.

2.5.2 Access Control Lists

A common way to implement access control to applications or data is to
maintain access control lists (ACLs). ACLs are tables with a row per user
and a column for each privilege the user may or may not have access to.
Like all access control, ACL lookup depend on proper entity authentication
(of the user). ACL usage, however, also rely on message authentication (of
the ACL).

27



We will discuss several alternatives for using cryptographic techniques to
protect the integrity of the ACL in chapter 6.

When we use ACLs for access control, what happens is that the entity re-
questing access identifies itself to the host, the host looks the entity up in
its lists, and accepts the entity’s request if it is valid. This is analogous to
a guard having a list of all the people who are allowed entrance. The guard
asks people to identify themselves, if happy with the identification, he checks
his list and accepts entrance if the person is on the list.

2.5.3 Certificate-based Access Control

Certificate-based access control differs fundamentally from ACLs. Here, each
entity has a proof of identification (the certificate; we will address this in
detail in chapter 3). This “ID card” not only contains the entity’s identifica-
tion, but also its credentials. The analogy to this approach would be that the
guard does not have a list, but that every person allowed in is issued a mem-
bership card (or, rather, have stamps in their ID cards). The guard would
now accept for admission only those who could produce a valid membership
card.

One significant difference between these two methods, is that with an ACL,
the host always controls exactly who have access. With certificate-based AC,
there are two modifications to that scenario:

• The host does not necessarily decide who has access, and

• the host does not necessarily at all times know who has access.

An advantage with using certificates is that the need for maintaining the
ACL is relieved from the host.

One potentially both useful and difficult aspect with a certificate-based sys-
tem is the one of interoperability. It is inconvenient if a different certificate
must be issued to every user for each resource he needs access to.

In chapter 6, we will describe how certificate-based access control can be
implemented using the X.509 certificate standard. We will also discuss in-
teroperability.

2.6 History

The history of the ancient science of cryptography, is well documented[Kah67,
Sti95]. There is, however, one interesting aspect of its more recent history
which directly applies to this thesis and the CTBT.

28



Before the (public) discovery of asymmetric cryptography in 1976 by Diffie
and Hellman[DH76], Sandia National Laboratories had already worked for
decades trying to come up with an acceptable solution to the challenging
demands of a verification system for an underground test-ban treaty.

The problem is that the monitoring body (“the monitor”) might require data
from the nation being monitored (“the host”) to successfully detect a breach
of the treaty.

The first question is: How can the monitor trust the host-controlled sensors
to provide the authentic information? One solution was to install a con-
ventional encryption key at the station (installed and kept secret by the
monitor) and encrypt all data with it. With enough redundant information
(time stamps or serial numbers, as well as some well-known text at the begin-
ning or end of each data block, for example), the monitor would be satisfied
that the data was authentic.

This approach, however, is unacceptable for at least one immediate reason:
the host has no way of verifying that the data transmitted from the station
is limited to the data it is supposed to transmit.

This problem prompted research into a field were little was publicly known at
the time: message authentication without secrecy. According to [MvOV97],
the first mention of using DES to provide a MAC-like mechanism was in 1977
by Campbell. The term MAC did not surface until the end of the 1970s,
when it was tied to authentication of financial messages[Ame86]. In 1980,
FIPS 81 (DES Modes of Operation)[Nat80] standardised MACs based on
DES, using CBC mode or CFB mode.

This was in the early 1970s, and public key cryptography was not publicly
known.7 According to [Sim91], Simmons, Stewart, and Stokes found their
solution in 1974. They proposed to form an authenticator, much shorter
than the message, using a hash function, and encrypt it with a secret key.
The encrypted authenticator is then appended to the message. A technique
resemblant to MACs.

The encrypted authenticator was in many ways satisfactory. It was proposed
that the host could be handed the key used to create the authenticator once
the monitor had successfully verified the authenticator. The host could now
be satisfied that the station transmitted only the data it was supposed to
transmit, and the monitor could be satisfied with the integrity of the data.

7Although Diffie and Hellman for a long time were credited with first discovering pub-
lic key crypto, it was revealed in 1997 that the researchers Malcolm Williamson, Clif-
ford Cocks and James Ellis from Government Communications Headquarters (GCHQ) in
England had come up with the idea in the early 70s. The note written by James El-
lis, “The Possibility of Non-Secret Encryption” is now published at CESG’s web site:
http://www.cesg.gov.uk/site/publications/media/possnse.pdf. Digital signatures
were not anticipated by the English researchers. There is no question that Diffie and
Hellman’s results were independent of those from GCHQ.

29



But what if a station picked up a nuclear event, and promptly sent the
incriminating evidence to the monitor? The monitor, verifying the authen-
ticator, is certain that the data is authentic, and that a nuclear explosion
has taken place. But instead of a confession, the host would claim that the
data is a forgery; that the authenticator is not the one created by the sensor,
but by the monitor. There is nothing the monitor can do to prove that the
authenticator was created by the station, since it itself (the monitor) has the
exact same opportunity as the station to create the authenticator.

The demand for non-repudiation is evident. The monitor must be able to
prove to a third party that the message truly is authentic and originating
from the host-controlled station. An acceptable answer to this new question
did not surface until public key cryptography and digital signatures were
proposed by Diffie and Hellman in 1976. It quickly became obvious that
digital signatures were a perfect fit in treaty verification.

Already from the early days of PKC, its application to the CTBT was per-
ceived as one of its important applications[Dif88]. The requirements of the
treaty verification system was evidence that PKC provided a useful tool not
found elsewhere.

30



Chapter 3

Public Key Infrastructure

In this chapter we will give an introduction to Public Key Infrastructure
(PKI) in general. What is the purpose of a PKI, how does it work, what
problems can it solve, what are the pitfalls?

3.1 What is a PKI?

In chapter 2 we saw that the existence of efficient and strong algorithms
allow the generation of—for all practical purposes—secure digital signatures
as well as impenetrable encryption. We also saw that asymmetric encryp-
tion algorithms allow exchange of session keys without the need of a secret
channel.

There are still two issues left before a confidential and/or authenticated
communication network can be established:

• Distributing public keys.

• Verifying public key validity.

In a wide-spread environment, both these issues raise major problems. When
Alice makes her public key available to Bob and sends him a message signed1

with the corresponding private key, how does Bob know this really is Alice’s
key? It could well be Oscar, pretending to be Alice, who sends his key and
his signed material. Although the need for a confidential channel for key
exchange is no longer present, we still very much require an authenticated
channel. We must be able to tell that the source of the key really is Alice
and that it has not been tampered with in transit. Bob might additionally

1The same argument applies to encrypted messages. The key-transfer will just be the
other way around, Alice needs to get Bob’s public key.

31



want to be certain that Alice really is in possession of the corresponding
secret key. A third problem for Bob, is finding out if this “Alice” really is
the “Alice” he knows.

In other words, we need a method for allowing the entities of our community
to obtain the other entities’ keys in a trustworthy manner.

To meet this requirement, a system called Public Key Infrastructure (PKI)
has been conceived.2 The goal of a PKI is to establish a method for all
involved users to retrieve the public key of any other participant and to be
certain of its authenticity.

Exchanging public (or, for that matter, symmetric) keys between a few
people is easy, at least if the people in question live close to each other
or have some other means of communicating directly. This direct approach,
however, does not scale to bigger systems at all. In a PKI, the solution is to
establish a central authority which issues, signs, distributes, and, when ne-
cessary, revokes proofs of identification. This central authority becomes the
basis for all trusted communication in the system. It is therefore essential
that all the members of the system has access to an authenticated copy of
its verification key.

3.2 Entity Naming

When Diffie and Hellman introduced public key cryptography to the public
in 1976[DH76], they claimed that the new technique would put an end to
the key distribution problem once and for all. They proposed that a “phone
book” of public keys where to be made available to all. Its entries would
include name, address, and, instead of a phone number, the entity’s public
key.

While this is certainly a compelling idea, it has severe weaknesses. Identify-
ing people by their names work well on a small scale, but quickly runs into
problems. In [Ell00], Carl Ellison describes some of the problems with the
Diffie-Hellman approach. He concludes that, as human names on average
only offers about 20 bits of entropy, so names alone are far from adequate.

Ross Anderson also comments the Diffie-Hellman solution in [And01] (pp.
124-136). One of his remarks is that addresses tend to change, and that
they make a poor basis for a naming scheme. In a project attempting to
develop a register of entities and their public keys, Anderson and his research
group found that the main cause of changes to the directory was change of
addresses. Compromise or loss of keys did not command a single change in
the directory[ACL+99].

2One can say that any mechanism for managing and distributing public keys is a PKI.
In this thesis, we define a PKI to be an infrastructure as described in this chapter.

32



Finding a naming scheme that both allows for a unified global naming system
and is intuitive, has proven to be difficult. When Alice wants to send an
encrypted message to Bob, she must be able to look Bob up and find his
private key. In a small company’s private PKI, this is simple; there is just
one Bob. What, then, with a major national or international PKI? The
world is full of Bobs. How can Alice find the right one?

3.2.1 Distinguishing Name

One suggestion which aims to solve the naming problem is distinguishing
names (DNs). DNs originates from the X.500 directory service standards.

A DN is a globally unique name for an entity, consisting of a root and a
relative DN (RDN). The root again, is defined by its root, and its RDN. An
RDN is a pair: attribute and value.

The “tree” of DNs does not have one (global) single root. When you set
up a tree of DNs, you choose both the names of your attributes and what
is the top level. It is not uncommon to use “dc” (domain component) as
the attribute for all but the leaves of the tree (e.g. “dc=com, dc=company,
dc=marketing”). Another approach is to use “c” or “o” (country or organ-
isation), “ou” (organisational unit), etc. The RDN of end-users often has an
attribute name of “cn” for “common name”.

Attribute names are normally case-insensitive. For values, this depends on
the attribute. Due to the nature of the DN, the order of the pairs is signi-
ficant.

An example of a naming scheme using DNs is the one used in the IMS PKI.
For IMS stations, the root will be

O=CTBTO, ou=International Monitoring Regime, ou=IMS Stations,
L=<Site specific>, cn=<Subject specific>

3.3 Components of a PKI

3.3.1 Certificates

A certificate is a data structure designed to provide some means of binding an
entity’s identity to its public key. It will typically be a document including
(but not limited to) a unique (within the PKI) name (e.g. a DN) of the
owner, a name uniquely identifying the issuer, the public key of the owner
(with details about algorithm used etc), period of validity. The document is
then signed by a trusted authority.

33



There are several certificate formats. The standard used in the IMS PKI is
the X.509 format[Int97b], described in RFC 3280[HPFS02]. See section 6.4.1
for details on the X.509 certificate standard.

Version 3 of X.509 certificates open for various pre-defined or custom ex-
tensions to be added to a certificate (this is discussed in detail in 6.4.1),
including “Key Usage” and “Extended Key Usage”. These extensions are
designed to allow the issuer to state the intended use of this specific certific-
ate. Primarily, the usage extensions are present to provide information on
what the certificate should not be used for. One main constraint is telling
other end-users that this certificate is an end-user certificate, and should not
be accepted as the certificate of an issuer. Other useful constraints include
telling end-users that a certificate is issued for signing purposes only (i.e. not
for encryption) and a pointer to the relevant certificate policy (see section
3.4.1).

An extension may be marked critical or non-critical. A client using a critical
extension is required to understand and process that extension, or to discard
the certificate.

3.3.2 Certification Authority

The CA3 is the central piece of any PKI. Its primary task is to verify identities
and to issue, distribute, and revoke certificates.

Key Generation In some PKI solutions, the CA is responsible for gener-
ating end-users’ key-pairs. The common solution is that the users generate a
key-pair themselves and then issue a certificate request to the CA, but if for
example the users are very low on computational power or simply lack the
ability to generate keys, or the PKI policy states that private keys should be
backed up at the CA, the alternative can be useful.

In the case of keys being generated by the CA, there are two major problems:
The secret key must be safely conveyed to the owner, and we would have
a problem non-repudiation-wise. The secret key is now known by the CA.
This causes a problem, because although the CA is trusted by the users to
identify entities, it is not necessarily trusted to properly guard knowledge of
entities’ secret keys.

With regard to key generation and key backup, a distinction is often made
between keys intended for signing and keys intended for encryption. For a

3In [AL99], Adams and Lloyd point out that even though the term “Certificate Au-
thority” is wide-spread in the literature, it is not correct, at least not in connection with
X.509. In the RFC[HPFS02], the term “Certification Authority” is used exclusively, and,
as Adams and Lloyd argue, the CA is the authority on certification (issuing certificates),
not on the certificates themselves, which they refer to as a policy authority.

34



signing-only key, there is normally no need for a backup of the private key.
Should it be lost, we can still verify the old signatures, and a new one can be
issued for the future. Encryption (or, actually, decryption) keys are not as
simple. If the private key of an encryption key-pair is lost, every document
encrypted with the corresponding public key is lost (barring a break of the
algorithm). In many situations, this is an unacceptable risk, and care will
be taken to have a backup of all decryption keys for emergency use.

Identification and Certificate Issuing Before issuing a certificate to
an end-user, the CA, often via a Registration Authority (RA, see below for
details), has to somehow verify the identity of the requester. It is normally
also required that the CA gets a proof that the user is in possession of the
private key corresponding to the public key the users wants a certificate on.

Certificate Distribution When the CA has made and signed a certific-
ate, it is (again, often via the RA) conveyed back to the requester. Since
the certificate is signed and therefore (barring a break of the cryptographic
algorithms or protocols used) unforgeable, there is no need for a secret or
authenticated channel from the CA back to the end-user. Now, the user can
redistribute his certificate to anyone—it is for example common to include
the certificate with a digital signature—but it is also desirable that other
users can obtain the certificate without approaching the owner.

Distribution of issued certificates is the CA’s job. A common procedure is
publish all valid certificates the CA issues in a directory, and provide end-user
access. See section 3.3.5 below.

Certificate Revocation In the case of an end-user’s private key being
compromised or the user’s privileges stripped or changed, the CA must com-
municate to its users that the certificate of that user no longer is trustworthy.

The first step in that process is obviously to remove the certificate from any
directory it is listed in, but that is not enough. The certificate is (presumed)
known by everyone, and is still valid since it has the CA’s signature on it,
and is not expired. The CA’s next step will be to revoke the certificate by
posting it on a Certificate Revocation List (CRL). See 3.3.3 below for details
on CRLs.

CA Organisation It is possible to have not only one CA, but a hierarchy
of CAs. In a wide-spread PKI, having all the certificates issued by one CA
can become impractical as well as less secure. It can be impractical because
access to the CA’s private key (which is required to issue a certificate) should

35



be limited to as few people as possible. The work-load on those people can
become heavy.

The reason it can be less secure is mainly that compromise of the CA private
key will affect every certificate of the PKI. If only one sub-CA is comprom-
ised, most of the PKI could live on.

There are many models for PKI hierarchies. We will now briefly describe
two widely used models.

Single root pyramid In a single root pyramid, there is a root CA issuing
sub-CA certificates. When an end-user uses a certificate, that certi-
ficate will typically be issued by a sub-CA. The user will then (in an
unauthenticated manner) obtain the sub-CA’s certificate (note that
the user will also need to verify revocation status of all certificates
throughout the chain, see certificate revocation below). This CA certi-
ficate is issued by another sub-CA, or possibly the root CA. The user
will need to follow this chain all the way to the root. The root CA’s
authenticated certificate will need to be known by every end-user.

Cross-certification While a single root pyramid may be suitable for some
environments (for example a company’s own PKI or the PKI used in
the IMS network), it is unsuitable for others (like the Internet). An
extension is a cross-certification solution. With cross-certifications,
what was the root CA with a single root pyramid now become peer
CAs in a larger hierarchy. Let Alice be part of pyramid A with the
root, or peer, CA CAA (so she has CAA’s certificate installed), and Bob
is certified by CAB in pyramid B. Alice gets hold of Bob’s certificate,
and wants to verify it. She follows the chain of sub-CAs, and reaches
CAB . She does not, however, have this certificate installed. Still, since
CAA and CAB are cross-certified, Alice can consult CAB’s certificate,
signed by Alice’s own CA, stating that CAA trusts CAB as a peer CA.
She will therefore trust CAB.

3.3.3 Certificate Revocation List

All certificates should be fitted with an expiry date. The primary reason for
this is that what was considered a strong enough key length or good enough
algorithm one year might not be adequate in, say, ten years. There is of
course also the off chance that the private key is compromised without the
owner’s knowledge.

The is no guarantee that the key will stay safe for its entire projected lifetime,
though. Someone other than the owner may obtain knowledge of the private
key, the owner might be stripped of his or her privileges, the algorithm may
be broken, etc.

36



In such case, as mentioned briefly above, the CA needs to be able to revoke
the certificate. In a PKI, that means posting the certificate’s identification
(in X.509, its serial number) on a revocation list.

An absolutely fundamental requirement for the CRL approach to work is that
all entities check the most recent CRL every time they consult a certificate.4

There are several ways of implementing the CRL itself. The minimal details
the CA must be able to communicate are (for each certificate on the list):

• Unique (within the CA’s domain) identification of the certificate,

• date of revocation.

Additionally, every CRL implementation should allow the CA to optionally
specify reason for the revocation. An option for stating the end date of the
revocation is useful as well. With this possibility, the CA can temporarily
revoke certificate. There are several scenarios where this can apply. Ex-
amples are users temporarily quitting their job or changing their position or
if a suspected compromise of the private key is being investigated.

As is the case with certificates, RFC 3280[HPFS02] specifies a standard for
CRLs. There are defined two versions of the X.509 CRL, the change from
version 1 to version 2 being the inclusion of extensions. As with X.509
certificates, an extension can be marked critical or non-critical. A critical
extension must be understood and processed by a client for the client to
accept the CRL. Extensions on X.509 CRLs can either be on a per CRL
basis (Delta CRL indicator is an example) or on a per entry basis (reason
for revocation, for example).

When a certificate is put on the CRL, it normally stays there until its expiry
date (there is no use keeping expired certificates on the CRL, as they are
invalid anyway). In a large PKI system, the CRL could potentially become
rather sizeable, and keeping in mind that it is to be checked by every entity
in the system (almost) every time a certificate is consulted, the bandwidth
required can become a problem, both centrally and at the nodes, particularly
nodes with limited bandwidth or memory.

A possible remedy to this situation is to abandon the flat CRLs with all
revoked certificates in a long list—also called Complete CRLs—and use a
different approach. We will describe some alternatives here.

Delta CRLs The idea of the Delta CRL approach is to issue a complete
CRL on regular, relatively long intervals, and issue smaller (possibly empty)

4Every time is perhaps not required, but at least sufficiently often. How often is
considered sufficient varies from PKI to PKI, but a range from one hour to one day should
cover most.

37



CRLs on shorter intervals naming only their base CRL and any new certific-
ates revoked after the release of the base. Every delta CRL contains every
revoked certificate since the release of the base, so a client does not need to
check more than the most recent delta.

A delta also contains the serial number of the base CRL it refers to, so a new
end-user or a user returning from an off-line period, can easily first fetch the
most recent delta, then find out which base is required and get that one too.

Delta CRLs are implemented in X.509 as a CRL extension: Delta CRL
indicator. The extension must be marked critical (if it was not marked
critical, and ignored by client software, the software would read what is only
a (small) part of the entire CRL, but interpret it as the full CRL).

CRL Distribution Points CRL Distribution Points (CDP), also referred
to as Partition CRLs, allow the revocation lists of one CA domain to be
distributed as multiple CRLs. It also allows a client verifying a certificate to
more easily locate the relevant CRL.

This is implemented in X.509 as a certificate extension. The value of the
extension is a list of items. Each item must have either a DN of the CRL
issuer (only if the certificate issuer and the CRL issuer are different entities)
or a description of where to obtain the CRL.

If the value field is not an (alternative) issuer, it should be a Uniform
Resource Identifier (URI)—e.g. an LDAP address or an HTTP address—
specifying where to retrieve the CRL from or a DN relative to the issuer (we
will not address the technical details here, please refer to section 4.2.1.14
of RFC 3280 [HPFS02] for the formal definitions). It is possible to provide
several location specifications (URIs or other methods); in that case, they
should all refer to the same CRL.

As mentioned above, CDP is an extension on the certificate. It is recommen-
ded not to be marked critical, and can serve simply as an indicator for the
entity verifying the certificate on where to find the CRL. It can be combined
with any supported CRL format, for example Delta CRL.

3.3.4 Registration Authority

The RA is the “extended arm” of the CA. In a small PKI, the RA can be
incorporated in the CA, but on a larger scale, it is common to try to limit
the extent of the CA wherever possible. The common tasks for an RA is to
perform the identity verification of users and distribute the key material to
and from end-users.

Typically, the end-user requesting a certificate will arrange to interact with
the RA in a way for the latter to satisfactorily verify the former’s identity.

38



The RA will then make certain that the user has access to the corresponding
private key before forwarding the request to the CA.

3.3.5 Directories

When a certificate is issued to an end-user, Alice, she normally receives a
copy of the certificate. If she wants to send a signed message to Bob, she can
easily transmit the certificate along with the message (this is the standard
behavior in for example S/MIME[DHR+98]). Even if she does not include
the certificate, it is normally rather easy for Bob to find, because he would
know Alice’s distinguishing name (as well as the issuer’s DN). Every CA
must have some means of distributing its issued certificates to end-users,
and every distribution method must at the very least support lookup based
on a complete DN.

When the roles are reversed, however, it is not equivalently simple. Consider
the scenario where Alice wants to send an encrypted message to Bob. She
knows that Bob has a certificate issued by a CA known to her, but she is not
certain of Bob’s DN with that CA. In an effective PKI solution, the CA must
provide a repository for certificates and CRLs facilitating simple lookups as
well as more complex searches. The X.509 standard is not (anymore) tied
up to a specific directory access standard, but LDAP[YHK95] is a widely
used protocol. LDAP does not specify the structure of the directory itself,
and it is of little interest to end-users. It is possible to allow the underlying
directory be accessed both through (e.g.) LDAP and other protocols.

3.3.6 Time stamping

Not every PKI will include a time stamping authority (TSA), but can be
very useful. The idea of a (secure) time stamping service, is to provide
a service that all entities in the PKI trusts to associate the correct time
with a document. To have a document time stamped, a user can send a
cryptographic digest of a signed message (i.e. of the message including the
signature) to the TSA, which in turn creates a document containing the
digest and the current time. The document is then signed by the TSA and
returned to the user.

The advantage of supplying the TSA with a digest only, and not the entire
document, is of course that potentially confidential material does not have
to be exposed, only a “fingerprint” of it, but it is adequate for reliable time
stamping.

Of course, such a time stamp can not prove when the message was signed
by the user, and certainly not the time the user, if applicable, transmitted
the (signed) message to the recipient(s), but what it can prove, is that the

39



message was signed by the user no later than the time stamp from the TSA.
The user can use that property to for example prove that the signature was
made before the certificate expired or was revoked.

3.3.7 A PKI Overview

We will now describe a typical PKI certificate creation and usage process.
Figure 3.1 shows a scenario where Alice first obtains a certificate from the
CA, and Bob later acquires that certificate. We here assume that both Alice
and Bob are in possession of an authenticated copy of the CA’s certificate.

CA

RA

Bob

Alice

C
R
L

C
er
ti
fic
at
es

Repository

1. Cert. req

2. ID and key
possession confirm-
ation

3.
C
er
t.

re
q.

4. C
erti

fica
te

4. Certifica
te

5a. Cert. from user

5b. Cert. lookup
and reply

CRL issue CRL
retriev

al

Figure 3.1: Data and control flow in a typical PKI.

In step 1, Alice has generated a key-pair (for digital signatures or encryption)
and contacts the RA with a certificate request. At this point, Alice would
of course verify the identity of the RA by checking its certificate, issued by
the CA.

The RA proceeds in step 2 by confirming Alice’s identification and that she
possesses the private part of the key-pair. When satisfied, the RA (step 3)
forwards the certificate request to the CA.

If the CA accepts the request, a certificate for Alice is created and signed,
and then (step 4) published. It would be common for the CA to both send
a copy of the certificate back to Alice (possibly via the RA), and to publish
it in its certificate directory.

Finally, in step 5, Bob obtains Alice’s certificate. In the case where Bob
wants to send Alice an encrypted message, he is likely to look her up in

40



the directory, if he has received a digitally signed message, the certificate
was probably included. It is also important that every time Bob uses the
certificate (he only needs to retrieve it once if he saves it), he fetches the
last CRL from the directory, and verifies that Alice’s certificate has not been
revoked.

3.4 Trust

In a system with a need for trustworthy identification of its members (people
or devices), it is implicit that anyone who wants to verify another entity’s
identity, needs to trust some part of the system. One of the primary tasks
for such a system is to allow the users of the system to transfer the trust
around to where they need it.

Trust, however, is not an on-off issue. Recall from section 3.3.6, that a TSA
would be trusted by all entities to provide reliable time stamps. The users
may not, however, trust the TSA to not disclose the information it stamps,
so they only provide it with digests. This is a good example of an entity
trusted to perform one task, but not another.

In a PKI system, it is implicit that users must trust all their CAs. If a user,
Bob, does not trust his CA to do this job, it has no value for him.

An important point to make here, is that while Bob trusts his CA(s), he
does not trust all the users for which the CA has issued a certificate. If Alice
has been provided with a certificate by a CA trusted by Bob (and he is in
possession of the CA’s public key and is certain of its integrity), Bob accepts
that the identity of Alice is correct, not that Alice will behave the way Bob
expects (or hopes). The CA does not vouch for its users’ “character”, it just
ties their identity to their public key.

3.4.1 Policies

In a PKI, we need to be able to formalize trust. One important tool in that
regard, is a Certificate Policy (CP). CPs are developed by the CA or by a
dedicated policy authority.

CPs are often used as the legal framework around certificates. An end-user
which is issued a certificate must agree to abide by the accompanying CP.
A CP will describe the responsibilities of both the CA (and other managing
entities in the PKI) and the subject of the certificate.

Examples of what a CP can specify are

• Rules for storage of private keys;

41



• Areas of use of the certificate;

• Financial and legal liabilities in connection with abuse of certificates.

RFC 2527[CF99] defines CPs in the X.509 framework.

3.5 Problems Encountered in a PKI

3.5.1 End-user Identification

One of the primary needs a PKI usually fills, is the problem of securely
distributing keys when a face-to-face meeting is out of the question. Every
user trusts the CA never to issue certificates incorrectly identifying an entity
as something it is not. This trust is absolutely necessary for the PKI to
function properly.

There have been incidents where important actors in the global CA market
have admitted to wrongly issuing certificates. A well-known example is the
VeriSign-Microsoft issue from March 2001[Mic01]. Two code-signing certific-
ates were issued with a common name of “Microsoft Corp.” to someone not
affiliated with Microsoft. The Windows operating system can check signa-
tures on Active-X components, Word macros, etc, before running them, and
will prompt the user if the signer’s certificate is not recognized. In this case,
the warning would display a DN specifying “Microsoft Corp.” as the common
name, which is likely to trick many (even advanced) users into running the
signed code.

This incident illustrates the importance of properly verifying identities before
issuing a certificate. If a CA issues a certificate erroneously, we are in an even
worse situation than without a PKI; a state of false security. Another point
made by this incident, is the difficulty of making a positive identification.

3.5.2 CA Certificate Integrity

A big problem in PKI solutions in general is the question of how to distribute
the CA’s certificate to the end-users.

One solution which is widely in use today, is to distribute the client software
with the CA certificates installed. Web browsers are good examples on this
approach. They usually come with a slew of CA certificates installed. Of
course, this solution requires that the web browser itself is an authenticated
copy.

The problem of CA certificate integrity is not solved, though. Getting the
certificates reliably to the clients is only half the job, ensuring that they
remain intact is the other part.

42



An adversary who could insert or alter a client’s CA certificates has effect-
ively killed all security in the PKI (from that client’s point of view). If the
client supports more than one CA (most do), he could for example add a
new, false CA certificate (for which he possesses the private key). Such an
attack would almost certainly go unnoticed.

3.5.3 Private Key Integrity

The CA issues certificates tying users’ public keys to their identities. It is
also common for the CA/RA to obtain proof from the user that it possesses
the corresponding private key. An important next question is then: is this
private key known only to that user?.

The answer to this question depends on the PKI. Some PKIs may have a
certificate policy that make requirements on how the private key should be
stored (e.g. on a smartcard). Assume that the smartcard is trusted not to
reveal any information about the private key. If the RA observed the user
sign the certificate request using the smartcard, then the users of the PKI
can trust that the person controlling the smartcard is the only one with
ability to sign/decrypt with this key.

Of course, there is still the possibility that the user’s computer is comprom-
ised. Even though an attacker may not have free access to the private key, it
is possible that he can access the signing/decrypting function of the smart-
card.

In a PKI without a strict demand to its users on how to store the private
key, there is no way for a relying party to determine the trust he should put
in the authenticity of another user’s signatures (or decryption key).

43



44



Chapter 4

International Monitoring
System

This chapter will describe the IMS and the security architecture proposed
by the PTS, including the protocols used.

As we stated there, the security goals are to ensure

• secure gathering of data, and

• authenticated transmission of that data to the IDC.

The IMS addresses these two problems. Over 300 stations are deployed
world-wide, acquiring data sufficient to detect all nuclear explosions of sig-
nificant magnitude.1 To protect the data from alteration before or during
transfer, digital signatures are applied. To provide authenticated exchange
of verification keys, a PKI is established.

Our focus is on the transfer of the data from the stations to the IDC and
the mechanism for remotely issuing commands to stations.

4.1 Overview of Data Flow

The Global Communications Infrastructure (GCI)[Com01a] is a global com-
munications network. It is based on Very Small Aperture Terminal (VSAT)
technology. It comprises three geosynchronous satellites, through which IMS
stations and NDCs can communicate with the IDC.

1This statement is of course difficult to prove, and certainly beyond the scope of this
thesis. It is assumed that the IMS when finished will be able to detect all nuclear explosions
powerful enough to be used in development of nuclear weapons. In this thesis, we will
accept that assumption.

45



Most IMS stations are connected directly to the GCI network. This is called
a basic topology station. Some NDCs use a different setup called independent
subnetwork, where the NDC is connected to the GCI, and the stations are
connected to the NDC via a local, private network.

CRF-1

NDC-1

CRF-2

NDC-2

IDC

DC-1
DC-2

Data products and
raw data

Sensor

NDC-X National Data Centre.

CRF-X Central Recording Facility.

DC-X Data consumer.

Figure 4.1: Flow of data in the IMS network.

The data is received at the IDC, and data products2 as well as the original
raw data is made available to authorized data consumers (which include all
signatory states).

See figure 4.1 for an illustration. In this figure, the data from NDC-1’s
stations are connected to an independent subnetwork, and the (signed) data
is transferred to the IDC via the NDC. NDC-2, on the other hand, has a
basic topology station, which is connected directly to the IDC. From the
IDC, all NDCs and other data consumers have access to data products as
well as the raw data from all stations.

Command and control messages to the stations will originate from either the
IDC (not necessarily the IDC, but at least the PTS, which is at the same
location) or the local NDC.

2The data products the IDC provide are automatically processed blocks of the raw
sensor data.

46



4.2 The IMS Stations

The IMS stations are operated by local station operators (SOs), but both
operation, maintenance, and manufacturing are paid for by the PrepCom.
The SO is usually one or more persons at the NDC.

Recall from chapter 1 that there are four different types of stations within
the IMS: seismic, hydroacoustic, infrasound, and radionuclide in addition to
the radionuclide laboratories. Based on [Com01b], we give a brief description
of the latter three, before concentrating on the seismic stations for the rest
of the thesis.

Hydroacoustic Stations

Despite the size of the earth’s oceans, only 11 hydroacoustic stations monitor
the seas due to the enormously effective propagation of acoustic energy in
water. 6 of them are hydrophone stations, where an underwater sensor picks
up signals and transmits them to a shore-based station.

These stations are costly to install and maintain, so they are supported by
5 T-phase seismic stations situated on islands and use seismic techniques
to detect when acoustic waves hit the island and are converted to seismic
waves.

Infrasound Stations

There are 60 infrasound stations in the IMS network, each consisting of an
array of 4 to 8 sensors. They are used to detect very low-frequency sound-
waves in the atmosphere. These sound-waves can be a result of many things,
some man-made (rocket launch, nuclear explosion), some natural (volcano,
meteorite).

Radionuclide Stations

The 80 radionuclide stations collect air samples. Samples suspected of ori-
ginating from a nuclear explosion are sent to a radionuclide laboratory for
full analysis. The radionuclide stations and laboratories are the only stations
to provide unambiguous evidence of a nuclear explosion.

Seismic Stations

There are 170 seismic stations in the network, more than half of the 321
stations. These stations are extensively used to detect, measure, and locate

47



earthquakes. The seismic stations monitor (sound)waves generated by ex-
plosions, earthquakes, or other physical or man-made phenomena that travel
through the earth. These stations are the most important tool for detecting
and locating underground explosions.

A

B

C

CRFIDC

Sensor, digitizer, and authenticator in borehole.

X Subarray controlling station.

CRF Central Recording Facility.

Figure 4.2: Data-flow in an array station.

Three-component and Array Stations From a technical viewpoint,
there are two kinds of seismic stations: three-component stations and arrays.

A three-component station has three sensors at a single site detecting the
three components of a seismic wave, up-down, east-west, and north-south.

An array station, on the other hand, has a number of sensors, spread out over
an area with a diameter ranging from 1 to 60 kilometres. An array station
may further have sub-arrays where a smaller number of sensors (typically
less than 10), located over a relatively small area, are connected to one
controlling computer, which in turn communicates with the heart of the
array. See figure 4.2 for a description of a typical array station. An array
station has a minimum of 12 sensors, and the largest station has over 60.

Primary and Auxiliary Stations Of the 170 seismic stations, 50 are so-
called primary stations. These stations send data continuously in real-time
to the IDC. This data is received and (automatically) analysed at the IDC.

Auxiliary stations do not automatically send data to the IDC. If data from
primary stations—or some other source—indicate an event (which may or
may not be a nuclear event), data from the same time-frame (adjusting for
time of travel for the signals to the other station’s sensory field) can be
requested.

48



4.2.1 Components of an IMS Station

Physical
event Sensor Digitizer

Authen-
ticator

CRF

Analogue
signals

Digital
signals

Inside
sealed
borehole

Inside
sealed
borehole

Outside
of bore-
hole

Figure 4.3: Data-flow in a typical IMS station.

Figure 4.3 shows the main components of a seismic station.

Sensor

The sensor itself has only one ability: a seismic sensor produces analogue
signals that represent the movement of the ground.

Digitizer and Authenticator

A digitizer’s job is to convert the analogue signals from the sensor into
appropriately formatted digital signals. These signals are signed by an au-
thenticator. It may be an integrated part of the digitizer, or a standalone
device.

Vault door

S

D

A

Sealed vault

GPS

Tamper switch

Figure 4.4: The borehole of a seismic sensor.

49



These two devices are put in the borehole with the sensor. This borehole is
required to be closed and sealed so the data from the sensor can be tagged
if the door is opened. See figure 4.4 for an illustration of a typical borehole.
Here, S is the sensor, D the digitizer, and A the authenticator.

The vault door of the borehole is connected to a tamper switch, which will
signal the authenticator3 if the door is open. Additionally, both the authen-
ticator and the digitizer are connected to a GPS device positioned outside
of the borehole to synchronize clocks.

We refer to each sensor/digitizer/authenticator triple as a channel.

Signing Many older installations have digitizers which are not fitted with
an authenticator, and hence cannot apply digital signatures to the data they
produce. This is a problem which presents us with a significant security
risk, which we will come back to later. In all digitizers deployed after 1st of
January 2000, however, the authenticator (or, rather, the ability to digitally
sign the data) is mandatory.

Central Recording Facility

The Central Recording Facility (CRF) is the heart of the station. All
data transmitted from the sensors (authenticators) to other destinations go
through it. The data is compiled into a single block for all the channels on
the station.

All command and control messages to the station are received by the CRF.
All signature verification and access control is performed here.

There are mainly two reasons for this. At the time of writing of this document
(July, 2003), most digitizers in use are unable to verify signatures themselves.
This may change in the future, but there is still another obstacle: The
different brands of digitizers do not share a common command language.
Hence, the process of sending a signed command from the IDC to a station
would be much more complicated.

To prevent data loss in the event of a communications breakdown, the CRF
is required to maintain at least 7 days of data history available for the IDC.

3The signal may be passed to either of the digitizer or authenticator. The party that
creates the data packages will need the information. The choice is of no consequence to
us.

50



4.2.2 Physical Security

Borehole components

There are two levels of physical security regarding the digitizers and au-
thenticators. The first is the borehole security, and the second is tamper
protection on the authenticator.

Borehole security was briefly mentioned earlier, and basically means that
it should be impossible to open the vault door without having the sensor
data tagged appropriately. No documentation has been found on how the
borehole is protected if the digitizer is unable to produce data at the time
(e.g. if it is without power).

The digitizer itself will likely not be protected against tampering, but all
authenticators must be. The authenticators are required to meet FIPS 140-
2[Nat01b] level 3 specifications.

The CRF

The CRF is required to be in a locked and tamper-protected environment.
Access to the CRF shall be limited to the SO. There is a strict requirement
on logging of the activities at the CRF, including the following:

• All logins and logouts (successful and unsuccessful);

• All superuser activity;

• All changes of (user) permissions;

• All access to critical data.

Logging should be done to a loghost (i.e. another machine), and preferably
to a read-only media (like paper). There is no demand that logs should be
forwarded to the PTS unless a special event dictates so.

It is assumed that the SO controls the CRF. The security measures are
primarily to prevent and detect any unauthorized access.

4.2.3 Clock Synchronization

With seismic data, it is very important to have accurate clocks. In the
case of an event, geophysicists would want to use data from many stations
in different locations and at different times to calculate the source of the
event. The sensors (actually the device, which may be the digitizer or the
authenticator, which time-stamps the data) need very accurate clocks (a

51



drift of a maximum of a few milliseconds is acceptable) and are continuously
synchronized using GPS.

The CRF is also required to synchronize its clock. For logging purposes, and
also for determining if a command is recent enough to process, it is important
that the CRF has a correct clock. The accepted drift will be much larger
than for the sensors, though.

4.3 Protocols

In this section, we will describe the protocols designed for station commu-
nication. There are two protocols, one for continuous data transfer (CD1.1)
and one for command and control of stations as well as data requests to
auxiliary stations (IMS2.0/IMS1.0).

It is not required that all stations must be able to receive both protocols.
Primary stations (primary seismic, hydroacoustic, and infrasound) must ac-
cept the CD1.1 protocol, while auxiliary seismic stations and radionuclide
stations must accept the IMS protocol. For this reason, the possibility is
provided to use CD1.1 for command and control to primary stations. This is
handled by embedding IMS2.0 commands in CD1.1 frames. Conversely, the
IMS protocol when used for data transfer will use the same low-level data
structures as CD1.1.

Our focus will be on data transfer for the first protocol and commands for
the second.

4.3.1 Continuous Data Transfer

For transferring data from the primary seismic stations, the CD1.1 protocol
will be used. CD1.1 is an extension of the old CD1 protocol, also known as
the alpha protocol. Currently, both are used in the IMS network, with CD1
dominating. Converting stations to use CD1.1 is an ongoing project.

We will only describe version 1.1 of the protocol.

CD1.1 is a connection oriented protocol. The connections are opened by the
data provider (the sender), which contacts the receiver with a connection
request. For data transfer from station to IDC, the IMS stations (the CRF)
will be the provider, and the IDC the receiver. In command and control, the
roles will be reversed.

All CD1.1 transmissions are frames. Each frame consists of three parts: a
header, a payload, and a trailer.

Table 4.1 shows the header fields. A frame is uniquely identified by the
three-tuple frame creator, frame destination, and sequence number. Data

52



FIELD FORMAT DESCRIPTION

frame type integer Frame type
trailer offset integer The offset at which the trailer

starts
frame creator 8 byte ASCII Name of source of the frame
frame destination 8 byte ASCII Name of intended receiver
sequence number integer Sequence number of Frame
series integer Series number of Frame

Table 4.1: Frame Header fields.

Frames (see below) do not normally have a specified destination (they may
be forwarded to more than one destination), and are generally marked with
0 as their destination. This means that for each station (frame creator), no
sequence numbers can be reused for data frames. The sequence numbers are
64 bit integers.

FIELD FORMAT DESCRIPTION

authentication key identifier integer The assigned identifier of the
signer’s certificate

authentication size integer Length of the authentication
value field

authentication value N data bytes The signature
common verification long CRC for error detection

Table 4.2: Frame Trailer fields.

The trailer fields are listed in table 4.2. The first field is the serial number
of the certificate issued by the CA on the public key required to verify the
signature. If this field is non-zero, authentication is assumed to be used.

The signature is applied to the entire header and payload.

The payload will vary from frame type to frame type. The CD1.1 standard
defines 10 different frame types. We will not go into detail with most of these
types, but we will describe the most important ones: Connection Request,
Connection Response, Acknack, and Data.

Connection Request A connection is established when the data provider
sends a Connection Request Frame to a receiver on a well-known port. This
receiver will typically be a connection manager, and not the actual receiver

53



of the sensor data. The version of the protocol and the name of the sender
are included in the frame.

Connection Response If the connection manager receiving a Connection
Request Frame is able to handle the request, it will decide on a host and a
port for the transmission. The host may well be the same as the manager,
but in practise it is likely to be another date receiver. The Connection
Response Frame includes an acknowledgment of the version specified by the
sender, the name of the host which will receive the data, the IP address of
the same host, and the designated TCP port to use.

Data The most important frame type is the Data type. The bulk of the
transfer will normally be frames of this type.

FIELD FORMAT DESCRIPTION

number of channels integer Number of channels in this Data
Frame

frame time length integer Time this frame encompasses, in
milliseconds

nominal time 20 byte ASCII Nominal start time of this Data
Frame (UTC)

channel string N byte ASCII A string listing all the Channel
Subframes to follow

Table 4.3: Channel Subframe Header fields.

A Data Frame consists of, in addition to the normal frame header and trailer,
a Channel Subframe (CSF) Header and one or more CSFs. Table 4.3 and
table 4.4 show the most important fields in a Data Frame.

Notice that each CSF includes a signature. This is the signature applied
by the authenticator in the borehole. All authenticators must provide data
in the CSF format. This signature is applied to all CSF fields except the
subframe length, the offset of the authenticator, the certificate id, the au-
thenticator size, and of course the authenticator itself.

Legacy stations employing digitizers which are unable to produce signatures,
are for the interim allowed to apply them at the CRF. As the CRF will sign
the entire Data Frame as well, the Subframe signatures are redundant. They
are still required, though, because many entities will want to request data
from the IDC, and will receive only the CSFs, not the entire Data Frames.

54



FIELD FORMAT DESCRIPTION

channel length integer Size in bytes
channel description data bytes 24 bytes setting flags and iden-

tifiers for the channel. Among
the options to be set here, are
whether or not authentication is
used, type of sensor, and name of
site (station) and channel

time stamp 20 byte ASCII Start time of first sample in this
channel

subframe time length integer Time spanned in this data, in
milliseconds

channel status data data bytes Flags describing the status of the
channel. This includes secur-
ity warnings (authentication seal
broken, vault door open, equip-
ment moved), data status (chan-
nel dead, channel being calib-
rated), power status (main power
failure, battery unstable)

data size integer Size of data sample
data N data bytes The channel data
authentication key integer Serial number of signing certific-

ate
signature data bytes DSA signature

Table 4.4: Channel Subframe fields.

55



Acknack A frame type called Acknack is provided to allow the receiver
to let the provider inform the provider of the received (Data) frames. An
Acknack Frame contains the first and last sequence number for the period
acknowledged with this frame, and a number of gaps. There may be arbit-
rarily many gaps, each represented by the first and last sequence number
that are missing. The frames mentioned in the gaps must be resent by the
provider.

A frame is said to have been acknowledged if its sequence number is between
the first and last number of an Acknack Frame and not part of a gap in that
frame. The provider is required to save all data not yet acknowledged.

Security

In the CD1.1 standard, all frames have a trailer, which contains key (actually
certificate) identifier and a signature. The key identifier is allowed to be set to
0, meaning that no authentication is available. The same applies to the CSF
authenticator id field. The reason for this is that the protocol may be used
outside of the IMS for many purposes. Additionally, data may be requested
from non-IMS stations in certain situations, and they are not required to
sign anything. All IMS stations are required to digitally sign every frame
and subframe.

4.3.2 Commands and Data Requests

The International Monitoring System protocol (IMS) has two primary areas
of use: data requests and command and control (C&C) of IMS stations.
There are currently two versions of this protocol in use. Version 1.0 is used
for data transfer from most stations, while version 2.0 is used for command
and control of stations and radionuclide data requests. The data request
part of the protocol is also used to obtain state-of-health information for the
stations.

Our concern in this thesis is primarily the C&C part, so we will refer to the
protocol as IMS2.0.

Command Flow

An IMS2.0 command is defined by both a command request and one or
more command responses. For all commands, at least one of these command
responses will act as an acknowledgment (some commands have additional
responses where the results of the command are communicated). An acknow-
ledgment is required to be returned to the transmitter within one working
day.

56



Format

The structure of an IMS2.0 command or response is described in [WGB]. We
give an overview of the parts relevant to the security of the protocol here.

A command is wrapped between a line containing BEGIN and one containing
STOP. Each line contains a parameter, some mandatory and some optional.
A physical line is limited to 1024 (ASCII) characters, but a logical line may
be longer, as a backslash as the last character of a (physical) line may be
used to continue on the next physical line. Some commands may also have
a data block at the end (currently, this data block may only contain Privacy
Enhanced Message (PEM) [Lin93] encoded structures).

A parameter might accept arguments, separated by whitespace. The para-
meters are divided into four groups:

• Base parameters;

• Control lines;

• Environment lines;

• Request/response.

The groups must succeed each other in that order, but except for the base
parameters, the order within the groups is unspecified.

We will go through the most important parameters and those relevant to the
security architecture of IMS2.0 here.

• Base parameters:

– BEGIN This line opens every command. It takes an optional para-
meter, namely the IMS version number. If not present, it default
to version 1.0.

– MSG_TYPE This parameter is required, and takes one argument.
For version 2.0, the argument must be one of COMMAND_REQUEST
and COMMAND_RESPONSE.

– MESSAGE_ID A message id is required for all commands, and is
required to be globally unique.

– REFERENCE_ID If the message is a response to a prior request,
the message id of the request is required to be included in this
parameter.

• Control lines:

57



– The primary objective of the control lines is to inform the recipient
of the command where the response should be sent. An email or
an ftp address may be specified here.

• Environment lines:

– TIME_STAMP Every command must include a time stamp. The
time is required to be in UTC on the format “YYYY/MM/DD
HH:MM:SS”.

– STA_LIST All command requests are required to have the name
of the station it is issued to listed in this parameter. These two
latter lines are the request environment lines that are mandatory
for all commands.

– CHAN_LIST This parameter can be used to specify the chosen chan-
nel on stations with more than one channel.

– Each command may specify more command-specific environment
lines.

• Request/response:

– The request/response line is the line specifying which request or
response this particular command is. The C&C command types
are listed below.

Command Types

The C&C commands are divided into a core commands group and station-
specific commands. The latter are not specified as they vary with the hard-
ware at the station.

The core commands for station control are divided into two groups: opera-
tional change and PKI management. For seismic stations4, there is only one
operational change command, and three for PKI management.

• CALIBRATE_START Used to calibrate the digitizers. A calibration of a
seismic station means that a well known analogue signal is passed to
the digitizer so the proper functionality of the digitizer can be verified.

• GENERATE_KEYPAIR Used to instruct an authenticator or the CRF to
generate a new key-pair.

• START_KEYPAIR Used to instruct an authenticator or the CRF to switch
to using a new key-pair.

4For hydroacoustic and infrasound stations, the same commands apply, for radionuclide
stations, there are several other commands for operational change. The key management
commands are similar for all stations.

58



• UPDATE_CRL Used to instruct the station (CRF) to update its CRL.
The new CRL is included in the request.

The execution of commands operational change and those for keypair man-
agement involve interaction with the digitizer and/or authenticator.

Operational Change With a CALIBRATE_START command, it is possible
to remotely tell the digitizer to adjust its interpretation of the analogue
signals from the sensor.

A CALIBRATE_START command defines the following environment fields (in
addition to the mandatory fields described above):

SENSOR yes|no
TYPE random|sine
CALIB_PARAM seconds [volts] | hertz seconds [volts]

And the request line

CALIBRATE_START

The sensor, type, and parameter lines constitute the values to which the
digitizer is to be calibrated. If the station has more than one channel, the
channel the calibration is intended for must be specified. It should be noted
that a calibration command with the wrong values can result in the data
from this channel being completely useless.

The station should reply with a CALIBRATE_CONFIRM to confirm that the
command is received and acknowledge the time the calibration will start on
(which may be a different time from the one requested). This response is
required within one working day.

After the calibration is performed, a CALIBRATE_RESULT should be sent with
the results of the calibration.

Key Management When a sensor and a digitizer/authenticator are ini-
tialized, they are lowered into their borehole, and transmission of data is
begun. There are at least two good reasons why one does not want to take
either out unless absolutely necessary. First, the sensors continuously collect
data, and in case of a seismic event, it is important to have all the data. The
second reason is that many of them are difficult to access, both because of
being located in remote areas, and because the borehole itself may be deep
and/or sealed.

Additionally, sending personnel from the PTS around the world to supervise
key changes will require substantial resources. The solution is remote key
management.

59



GENERATE_KEYPAIR is used to tell a station (the command can specify which
channel to re-key if the station has more than one) to generate new key-
pairs and create certificate requests. GENERATE_KEYPAIR can be followed by
a PEM structure specifying the DSA (system) parameters to use for the new
key-pair.

After key generation, a response must be sent with the new public key. The
response, KEYPAIR_GENERATED contains the following fields:

CHAN_LIST channel_name
KEYPAIR_GENERATED
SIGNATURE signature
{a PKCS #10 self-signed certificate request}

The channel name is included if the station has more than one channel.
signature is the new (public) key signed using the old key (the signature
should be in hex format). This field may be omitted if the entire message is
signed with the old key (this is intended for updates of the CRF keys only).
The certificate request in PEM format output by the authenticator is then
included (authenticators unable to output certificate requests may use the
public key (dname, y, g, p, q) in hex format instead).

When the certificate request is accepted by the CA and the corresponding
certificate issued, it is returned to the station in a START_KEYPAIR command.
The command will acknowledge that it begins using the new key-pair with a
KEYPAIR_STARTED response. These two commands are very straight-forward,
and we do not give any more details here.

Security

As we have mentioned earlier, the CALIBRATE_START command has the ability
to render the station (channel) unusable. Thus, a mechanism for preventing
unauthorized commands from being accepted and executed at the stations
is required.

IMS2.0 commands are anticipated to be sent to the stations using standard
Internet email over the private GCI network. Some SOs will accept (C&C)
commands directly from the IDC, while other will require them to relay
through the NDC. Although many SOs are unlikely to accept calibration
commands from any other source than themselves, the security of the pro-
tocol must be considered in the light that the commands are automatically
executed at the station.

PrepCom has chosen an Internet standard, S/MIME[DHR+98], to provide
message authentication of the commands. Before execution, several authen-
tication steps must be taken at the station.

The security of the IMS2.0 protocol rests on the following:

60



• The security of the S/MIME protocol, and

• that the receiver checks revocation status of the certificates, verifies
the signature, and verifies that the signer is authorized to submit the
command.

In chapter 6, our implementation of a receiver and parser for the IMS2.0
C&C commands is described.

4.4 The PKI

4.4.1 Infrastructure and Specifications

The IMS PKI has its focus on authenticity and not confidentiality. There will
only be a limited use of encryption; the main goal is to provide authenticity to
and integrity of sensor data and station commands using a digital signature
scheme.

The PKI is divided into two security domains, one for encryption and one
for digital signatures. Both have their own Certificate Authority, the RSA
CA No1 and the DSA CA No1 respectively.

In the specific cases where encryption will be used, RSA is the asymmetric
algorithm of choice. We will not go into details concerning the confidentiality
part of the PKI. For digital signing, DSA algorithm will be used with SHA-1
for hashing.

CA keys will be of 1024-bit length, and shall have a lifetime of no more
than 10 years. End-user certificates will have the same key length, but a
lifetime of between 2 and 5 years. CRL Distribution Points (CDP) will be
used to accommodate easy retrieval of the relevant CRL. No documentation
specifying if CDP will also be used to split the CRL in several parts.

We can divide the end-users into the following groups:

IMS stations The stations need keys for signing data and signing command
responses.

PTS Personnel Parts of the staff at the PTS will be authorized to submit
commands to IMS stations.

Station Operators The SOs submit commands to their own stations.

Data consumers Data consumers will need certificates to sign data re-
quests. This includes staff from the IDC.

61



4.4.2 Key Generation

All station keys are required to be generated and stored in hardware devices
conforming to at least FIPS 140-2[Nat01b] level 3. CA and RA keys are
required to meet level 4 of the same standard. Other end-users are required
to protect their keys from abuse using software vaults and good passwords.

CA and RA The keys for the CAs and RAs are to be created (in the
aforementioned hardware devices) during an official “key creation ceremony”
at the PTS. The number of people present at this ceremony is not specified
in documents available (to the author) at the time of writing, but it seems
safe to assume that it will be adequate to instill trust in the integrity of the
keys.

IMS Stations Each authenticator (both those for each channel (borehole)
and those for the CRF) is to be assigned a human device manager (HDM).
This manager (there may be more than one) will typically be affiliated with
the SO. The key generation process is to be supervised by a representative
from the PTS.

This representative (and possibly the HDM; the documentation does not
specify this) signs the certificate request output by the authenticator and
forwards it to the PTS where a panel of 5 RA operators will decide on
whether or not to accept it. The decision must be unanimous. If accepted,
the request is passed to the CA, which issues the certificate. After being
issued, the certificate will be available to anyone through the means described
in section 4.4.3.

Command Sending Entities The current documentation is not clear on
how keys are to be generated and certificates issued to command issuing
entities (including data requesters). It is suggested that certificates may be
issued when the requester visits Vienna. Many people involved with the IMS
will visit Vienna from time to time, and a face-to-face registration is possible.

4.4.3 Obtaining Certificates and CRL

Once a certificate is issued by the CA, it is available to anyone through
several channels. The primary means of distribution is a repository with
LDAP lookup. The IDC maintain an LDAP service hosted within the PTS
where the certificates of all end-users and the CRL(s) are stored. This LDAP
tree will be replicated outside of the internal network and other entities will
use this replication.

62



Some IMS stations will be able to use LDAP. For them a copy of the CRL
and the certificates will be kept on a local file system and will be made
available by normal file transferring protocols.

63



64



Chapter 5

Threat Analysis

5.1 Introduction

This chapter presents a threat analysis for the IMS. We begin by identifying
the assets in the system. The next step is to list the threats to those assets.
We also briefly comment on the impact of some of these threats. Finally, we
will give some motives different entities may have for attacking the system.

This is not a risk assessment; we will not discuss the likelihood of any of
these situations happening.

5.2 Assets

The IMS system has one simple goal:

That the network of IMS sensors at all times record the data that corresponds
to the actual physical conditions the stations are set up to monitor, and that
this data is in an authenticated manner communicated to the members of the
Treaty.

We say that we have one overall asset, which is the IMS data. We further
define the following as the physical assets which provide the IMS data:

1. The boreholes (sensors, digitizers, authenticators);

2. The stations (CRF, communication links from CRF to boreholes);

3. The GCI;

4. The IDC (CA, data receiving hosts, data archive).

65



5.3 Threats

For each of the assets listed in the previous section, we list the major threats
to that asset.

We classify the threats as either one that, if realized, results in data lost or
being discarded, or one that results in potentially undetected data manipula-
tion. If an attempted data manipulation is detected, the data will naturally
be discarded and thus lost (i.e. if the manipulation was detected, not if the
attack was prevented).

At the end of chapter 7, we will discuss each of these threats and how they
are coped with by the proposed security architecture.

Borehole

1. Physical event

A physical event in or around the borehole may damage equipment or data.
The sensors are sensitive instruments, and even a relatively minor disturb-
ance (like a truck with a running engine close by) may make the data useless.
A lightning strike, flood, or an event caused by a human (e.g. an explosion)
can cause harm to the equipment.

Any such event may result in damaged data or loss of data.

2. Hardware, software, or firmware malfunction

The components of the sensor, digitizer, or authenticator may malfunction
and produce other results than the expected. The cause of this can be an
unintentional fault in the equipment, or a result of unauthorized tampering.
Faulty equipment will probably result in loss of data, unintelligible data, or
not authenticated data.

If the digitizer or authenticator has been tampered with, however, undetected
forgeries may happen. One problem could be that the digitizer presents the
authenticator with the wrong (but perhaps carefully chosen by an adversary)
data, another that the authenticator generates private keys known to an
attacker.

Such tampering may be performed either by a manufacturer, a replacement
of the device during storage or transport, or by an attacker with physical
access to the borehole.

3. Private key leak

If the private key from the authenticator is somehow leaked to any entity,
that entity will have the possibility to sign data which will be accepted as
authentic by the signature verifier.

66



Such a leak can occur because the authenticator, by design or accident, leaks
the information, because it is known (by some) to choose private keys from
a limited key-space, or because it is opened while out of operation and the
key is revealed.

4. Access to signing function

If any entity other than the digitizer is able to access the signing function of
the authenticator while the station is operating, that entity may substitute
the real, signed data with a forgery, and have it signed. The forged data
may then be accepted as authentic.

Station

5. Communications or CRF breakdown

In the event of a communication breakdown between the sensors and the
CRF or a full or partial stop in services at the CRF, data may be lost,
unless communication is restored before the digitizer/authenticator runs out
of temporary storage space (the amount of data they can store will vary).
Such a breakdown can be a result of natural phenomena (lightning, storm,
etc.), hardware error, software error, a deliberate human attack, or human
error.

6. Unauthorized command to borehole

An unauthorized calibration command sent to one or more stations can cause
loss of data and even physical damage to equipment.

An unauthorized key management command can be used to damage data.
If an adversary can trick the authenticator into changing its signing key, its
signatures will no longer verify, and the data must be discarded.

A command may originate from the CRF or by a device tapped into the
communications link with the borehole.

7. Manipulation of data

Data from the boreholes may be manipulated before transmission to the
IDC. A third party or the SO may modify the data between the borehole
and the CRF, or at the CRF.

A successful data manipulation can result in false data being accepted as
authentic.

GCI

8. Unauthorized command to station

67



An adversary with access to the GCI can send (unauthorized) commands
to all stations. The adversary may have access due to being a lawful parti-
cipant in the GCI (an NDC or IDC staff or an authorized data requester),
or following a break-in at a node of the GCI.

The command sent may be a modification of an existing command (with or
without stopping the original), a resending of an old command, a re-transfer
of a command to another station than its original destination, or a command
created by the attacker.

The effects are identical to those in Threat 6, except that the attack may
be extended to more than one sensor. It is important to note that such an
attack initiated from the GCI will have to go through the CRF. It is also
different from Threat 6 in that we here talk about IMS2.0 commands, while
in Threat 6 a digitizer-specific (unsigned) command.

9. Manipulation of data

Sensor data (either CD1.1 Data frames or IMS1.0/2.0 data request responses)
may be manipulated by an adversary with the ability to alter the traffic on
the GCI. An attacker with the ability to send data on the GCI, but not
alter existing data, may transmit data to the IDC in an attempt to have it
accepted as authentic from a sensor.

Like Threat 7, a successful attack may result in false data being accepted as
authentic.

10. Communications breakdown

If an attacker can render parts of or the entire GCI unable to transport data,
this could result in a data loss.

PTS/IDC

11. Certificate issued on false or exposed private key

If a certificate is issued to an entity by the CA, but the corresponding private
key is known by any other entity than the signing hardware (either because
the key is leaked or because it is another key than the one used by the signing
device), the data from that channel/CRF can not be trusted.

If a certificate is wrongly issued to an authenticator, it may directly result
in forged data being accepted as authentic.

12. Certificate issued with wrong authorizations

If a certificate is issued with a misleading (wrong) DN or with access rights
the end-user was not supposed to have, that user may be enabled to bypass
access control at the CRF. This may in turn lead to loss of data and possibly
damage to equipment through malicious calibration commands.

68



If the certificate has a DN normally representing an authenticator, but issued
to another entity, this threat may lead to forged data being accepted as
authentic from that authenticator.

13. Certificate removed from or not posted to CRL

If a certificate where the private key is compromised, or the certificate for
some other reason is revoked, is removed from the CRL, damage may be
done. Similar if a certificate which should have been revoked never is, or is
revoked too late.

The possible impact of this threat depends on the nature of the certificate
and the reason for the revocation in the first place. If it is a certificate for
an authenticator, data forgeries made by an entity with access to the private
part of the (revoked) key-pair may be accepted as authentic.

A certificate issued to an entity with permission to execute operational
change commands at many stations (a PTS staff member) may be used
to conduct a distributed remote attack using IMS2.0.

14. Incomplete signature verification

If the hosts receiving data do not properly verify signatures, that is in itself
not a source of damage. The data will be archived along with their signa-
tures, and they may be verified later. We have not found any demands that
signatures must be verified by separate entities. It is assumed that the data
will be analysed by other parties in addition to the IDC, but it is unclear
how likely it is that these parties will take the time to verify the subframe
signatures.

A faulty verification system may still lead to forged data that would other-
wise have been detected pass as authenticated (in combination with another
attack).

This threat can be caused by a compromise (an attack), a software bug,
or an unfaithful employee. The hosts are exposed to the GCI, and can be
attacked from there. The same goes for the two following threats.

15. Faulty data receivers

If the data-receiving hosts fail to properly handle or store the continuous
data, there may be data loss.

16. Data receiver(s) breakdown

If the data receiving hosts break down completely (or at least enough to not
receive data), data could potentially be lost. This could be due to a software
fault, a hardware problem, a human error, or an attack.

17. Manipulation of data archive

If any entity can make changes to the archived sensor data, inquiries about
the data in the future may suffer.

69



5.4 Impact

We will not consider the impact of each of the above threats individually,
but make some more general comments.

5.4.1 Data Loss

Some data loss is unavoidable in the long run. Some stations will be hit
by lightning or have hardware failures that cause loss of data. It will be an
important goal to minimize loss, but complete coverage at all times is not a
requirement. If data is lost (simultaneously) from many stations, however,
the ability to detect and locate an explosion may be drastically reduced.

Thus, if a threat may cause data loss from many stations (either because
it affects many stations or because it is remote and possible to exploit in
a distributed fashion) it is more severe than one which will affect a single
channel or station only.

5.4.2 Data Manipulation

The fear of undetected data manipulation is the prime reason for the entire
security architecture. The ambition must be to make certain that all delib-
erate and accidental manipulation of sensor data is detected and the data
rejected.

We consider every possibility of an undetected manipulation to be a grave
breach of security. It is still necessary to point out that there are at least
two factors that mitigate the impact of such an manipulation:

• Geophysical security (see 7.2), makes detection of inconsistent data
possible, even though other defense mechanisms (like digital signa-
tures) fail;

• The number and distribution of IMS stations may make forgery of
data from one station inadequate if the signals travel far enough to
be detected by another stations as well. Even though data from other
stations may not be detailed enough to pinpoint the location of the
explosion, they will identify the forgery.

5.5 Trust of Station Operator

An important, and to an extent unanswered, problem in the IMS security
architecture is the trust placed in the SO.

70



For this discussion we will use the definition of trust from the X.509 ITU-T
recommendation[Int97b] which is also used by [AL99]:

Entity A trusts entity B when A assumes that B will behave exactly as A
expects.

From the history of the nuclear test-ban treaties (see section 2.6), we see
that there has been a strong demand for preventing the host country from
being able to undetectedly modify the data (or later deny being the source
of it). The question is the separation of the SO and the host country.

It has been made clear from the PTS that the SO is trusted to faithfully
operate his station(s). With “operate”, we mean doing his best to make sure
the station is operative and sending data.

In this thesis, however, we assume that the SO is not trusted with the
integrity of the data. The verifiers (the Treaty members) must be convinced
that the data received and accepted as authentic has not been subject to
manipulation by the SO.

5.6 Motives and Resources

The reason for the existence of the Treaty is a ban of all nuclear test ex-
plosions. The main motive for attacking this system is thus to perform an
undetected nuclear test explosion.

This is not the only potential gain an entity could have in attacking the
system, though.

Discredit Nation If an entity wants to discredit a nation in the interna-
tional community, it could use the IMS to do one of two things:

• forge data to indicate that the nation has performed a nuclear explo-
sion, or

• destroy or modify the data from that nation’s sensors.

The latter could arise suspicion that the country in question has (deliber-
ately) tampered with its own data.

Topple the Treaty If a nation or an organisation is against the Treaty, it
is conceivable that they may attempt to display its shortcomings to others
by breaking security.

71



Destabilization Terrorist organisations or similar groups could use an
indication of non-compliance with the Treaty to create destabilization in the
international community.

Recognition For computer criminals, breaking into high-profile systems
may lead to good reputation and recognition. Breaking the security of a
nuclear test-ban treaty can become a target.

Resources The participating nations form the main group of potential
attackers against this system. Nations with an important motive (e.g. per-
forming an undetected nuclear test) must be considered to have the highest
resources possible available. The threats to the system must be seen in that
perspective.

72



Chapter 6

Implementation

6.1 Introduction

The IMS network requires software solutions to implement the designed se-
curity scheme. One is the verification scheme for commands sent to stations.

As a part of this thesis, an implementation of a system for receiving, veri-
fying, and executing commands on IMS stations has been developed. This
implementation was developed for the NORSAR NDC. The application is
called imsparse. The focus in writing the application has been to implement
access control and message authentication.

6.2 Scenario

For PKI component management (keys and CRL) and operational change,
the IMS stations will use the IMS2.0 protocol.1 This command structure has
two distinct uses:

• Data requests and subscriptions, and

• command and control (C&C).

For data transfer, an application called AutoDRM is used throughout the
IMS network. Our implementation is solely for C&C of the stations.

Commands will be received by signed S/MIME[DHR+98] messages. They
will be received at the Central Recording Facility (CRF) of the station. Be-
fore executing a command, the CRF must verify the signature. A command

1As we described in chapter 4, primary stations are not required to be able to receive
IMS2.0 command, and instead receive their C&C messages as CD1.1 requests. imsparse
does not currently handle that scenario, but it should be simple to write an input function
that can read the embedded IMS2.0 commands from the CD1.1 receiver.

73



must never be executed unless the signer is an authorized issuer of the com-
mand in question.

6.3 Requirements

Upon receiving a signed email, the application must do the following:

• Obtain the signer’s public key certificate;

• Verify the validity of the certificate (verifying that the certificate is not
expired, that the CA’s signature on it is correct, and that it has not
been revoked);

• Perform access control by verifying that the signer of the command is
authorized to issue it at this station.

• Verify the signature on the email;

• Verify that the command is properly formatted and recent;

• Verify that the values in the command are reasonable;

• Execute the command;

• Send the required response to the return address;

• Provide a full log of the received command and the actions taken.

An infrastructure is required to carry out these steps. To verify the validity
of the certificate (and subsequently the signature), we need the CA’s certi-
ficate installed. We also need a recent, valid CRL to check the certificate in
question against. Thirdly, access control is required. Depending on how we
wish to solve the access control problem, we may need to protect an ACL as
well.

6.4 Data Structures

Before describing the implementation, we describe the protocols and data
formats involved:

X.509 PKI certificates are represented by X.509 data structures. The stand-
ard is described in RFC 2459[HPFS02].

X.509 CRL CRLs are of the X.509 CRL format, described in the same
RFC as the certificates.

74



S/MIME and PKCS #7 Secure Multipurpose Internet Mail Extensions
[DHR+98] are used to provide an authentication mechanism to stand-
ard Internet email[Pes01]. S/MIME is an adaption of the Public-Key
Cryptography Standards (PKCS) #7[Kal98b].

Abstract Syntax Notation 1 (ASN.1)[Int98], is used to describe these formats.

6.4.1 X.509

X.509 is an offspring of the X.500 directory service[Int97a]. It originates
from ITU[Int97b], and is also adopted as an Internet Standard in RFC
2459[HPFS02].

Syntax of X.509

The RFC defines an X.509 certificate in ASN.1 syntax as described below:

Certificate ::= SEQUENCE {
tbsCertificate TBSCertificate,
signatureAlgorithm AlgorithmIdentifier,
signatureValue BIT STRING

}

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Version DEFAULT v1,
serialNumber CertificateSerialNumber,
signature AlgorithmIdentifier,
issuer Name,
validity Validity,
subject Name,
subjectPublicKeyInfo SubjectPublicKeyInfo,
issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version shall be v2 or v3
subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version shall be v2 or v3
extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version shall be v3
}

SubjectPublicKeyInfo ::= SEQUENCE {
algorithm AlgorithmIdentifier,
subjectPublicKey BIT STRING

}

75



Extensions ::= SEQUENCE (1..MAX) OF Extension

Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING

}

We have left out some of the ASN.1 types, but they should be self-explanatory.
See the RFC for a detailed description.

A few notes on the fields:

• Version. v1, v2, and v3 are currently defined. v3 should be used when
one or more extensions are needed, otherwise v1 or v2 are required.
The difference between v1 and v2 is the inclusion of the subjectUni-
queIdentifier and issuerUniqueIdentifier in v2.

• Serial number. The serial number must be unique within the CA’s
domain, and shall never be re-used in the lifetime of the CA. The
serial number is the unique identifier of the certificate.

• Signature. The algorithm identifier of the algorithm used by the CA
while signing this certificate. This field must match the identifier sup-
plied outside of the data block.

• Issuer. The DN of the CA issuing the certificate. This field can not be
empty.

• Validity. Two dates, one describing the first date and one the last date
this certificate is valid. Both must be present.

• Subject. The DN of the owner of the certificate. This field may be
empty, but only if the Subject Alternative Name extension is included
(and marked critical and non-empty).

• Subject public key info. The public key of the subject, namely the
identifier of the algorithm as well as any parameters (e.g. p, q, and g
with DSA), and the key itself (y in DSA).

• Unique identifier of issuer. This field is optional and only defined in
X.509 v2 and v3; it is a bit string identifying the issuer.

• Unique identifier of subject. Analogous to the previous field, but identi-
fying the owner of the certificate.

76



• Extensions. This field is only defined in v3. If it is present, it contains
a sequence (at least one) of certificate extensions on the following form:

– Extension ID. A unique identifier of the extension. If, in a PKI,
there is a need for custom extensions, an ID must be defined.

– Critical. True or false. If an extension is marked critical, every
implementation is required to understand and process it, and to
reject the certificate otherwise. Non-critical extensions may be
ignored.

– Extension value. The value as an octet string.

The data block is signed and the signature and the algorithm identifier is
included in the certificate.

Extensions

Although many end-user certificates do not need any extensions, some do.
All CA certificates do, in order to allow a client to distinguish between
an end-user and a CA certificate. It is possible to add custom extensions.
Several extensions are defined by the RFC, we describe four of them here:

Basic Constraints If the Basic Constraints extension is present, it must
be marked critical. The extension allows two values to be set: CA
constraint and Path Length Constraint. Both are optional, the former
has a default value of false, the absence of the latter says there is
no limit to the length of the tree spanning from this CA. If the CA
constraint is set to true, that means this certificate is a CA certificate
and is allowed to issue end-user certificates. The Path Length says how
many intermediate CAs are allowed below this CA, a value of 0 means
the CA is allowed to issue end-user certificates only.2

2The lack of verification of this extension is the source of a very serious bugs in Mi-
crosoft’s Internet Explorer versions 5.0, 5.5, and 6.0 (the deficiency was actually in Mi-
crosoft’s CryptoAPI, so several other applications were affected as well; the browsers and
the application that verifies signatures on security updates etc were the most serious) all
failed to properly verify the value of the Basic Constraints extension (IE6 did actually
deny verification if the Basic Constraints field was present and set to false, but this does
not help much as it is uncommon to include the field in end-user certificates). The effect
of this vulnerability is that anyone with a (end-user) certificate issued by a CA accepted
by IE (and which has a Path Length of minimum 1) was able to act as an intermediate CA
and issue his own end-user certificates. These will in turn be accepted by IE as authen-
tic. It is easy to see how this failure can result in rendering secure browsing by affected
browsers completely insecure. This incident is a good demonstration of how dependent a
PKI system is on good implementations. See [Ben02] and [Mic02] for more information
on this bug.

77



Key Usage The Key Usage extension allows the CA to issue certificates
intended only for specific purposes, for example digital signatures only,
or encipherment only.

Subject Alternative Name This extension allows the issuer to specify an
alternative name for the subject. As mentioned above, the subject field
of a certificate may be empty, in that case this extension must be set
(to a non-empty value) and marked critical. This extension allows
names for the subject ranging from DNS names to IP addresses or
email addresses.

CRL Distribution Points CDP is, as mentioned in chapter 3, implemen-
ted as an extension on the certificates. The extension is a list of loca-
tions where the CRL is (supposed to be) available. All locations should
point to the same CRL.

6.4.2 Syntax of X.509 CRL

The ASN.1 syntax of an X.509 CRL is as follows:

CertificateList ::= SEQUENCE {
tbsCertList TBSCertList,
signatureAlgorithm AlgorithmIdentifier,
signature BIT STRING }

TBSCertList ::= SEQUENCE {
version Version OPTIONAL,

-- if present, MUST be v2
signature AlgorithmIdentifier,
issuer Name,
thisUpdate Time,
nextUpdate Time OPTIONAL,
revokedCertificates SEQUENCE OF SEQUENCE {

userCertificate CertificateSerialNumber,
revocationDate Time,
crlEntryExtensions Extensions OPTIONAL

} OPTIONAL,
crlExtensions [0] Extensions OPTIONAL }

The fields are mostly self-explanatory. The extensions are similar to certific-
ate extensions. Notice that an extension may be both on a specific (revoked)
certificate or on the entire CRL. The nextUpdate field tells the users when

78



the CRL no longer is valid. Delta CRLs are implemented as a CRL extension
indicating the CRL number of the base CRL. The base CRL must include
an extension stating its CRL number.

6.4.3 PKCS #7

PKCS #7 version 1.5 is described in RFC 2315[Kal98b]. It is a standard for
handling data that may have cryptographic functionality attached to it. The
standard also permits enveloping of data so that data can be first signed and
then encrypted, signed by several parties, doubly encrypted, or otherwise
wrapped.

The RFC defines six content types divided into two content type classes;
base and enhanced. The base class is intended for raw data, and contains
only one of the content types: data. The enhanced class contains the other
five: signed data, signed and enveloped data, enveloped data, digested data,
and encrypted data.

In our applications, the use of PKCS #7 is limited to a regular data content
within a signed data type. We will explain all the types, but our focus is on
the signed data type.

Data. Data of this type is just an octet string.

Signed data. This type consists of an item of any type and zero or more “en-
crypted message digests”. Each encrypted digest 3 is a digital signature
for one signer. For each signer, a SignerInfo is collected, including the
encrypted message digest, the digest algorithm identifier, and the ID
of the signer’s certificate (DN of issuer plus unique (within the issuer’s
domain) serial number of certificate) plus some optional attributes.

Enveloped data. With the enveloped data content type, data of other types
can be encrypted for any number of recipients. An enveloped data item
consists of a content-encrypting key, encrypted with the recipients’
public keys, and the contents, encrypted with the content-encrypting
key.

Signed and enveloped data. This type is, as the name indicates, a combin-
ation of the two previous types.

3The RFC describes the process of creating the signature as “message digest and asso-
ciated information are encrypted with the signer’s private key”. We have called, and will
continue to call, this key the “signing key” and the creation of the signature as “signing the
digest”, as it may be fundamentally different from encrypting, see section 2.3.5 for details.
Throughout the description of PKCS #7, we will for simplicity use the same terminology
as the RFC does.

79



Digested data. This type is intended for use with data to add integrity to
the content. It is simply the content, the identifier of the chosen digest
algorithm, and the digest, produced by applying the content to the
digest algorithm.

Encrypted data. Similar to enveloped data, this type is designed for en-
cryption. The difference is that keys are not managed.

The ASN.1 syntax for a Signed Data PKCS #7 structure is as follows:

SignedData ::= SEQUENCE {
version Version,
digestAlgorithms DigestAlgorithmIdentifiers,
contentInfo ContentInfo,
certificates [0] IMPLICIT

ExtendedCertificatesAndCertificates OPTIONAL,
crls [1] IMPLICIT

CertificateRevocationLists OPTIONAL,
signerInfos SignerInfos

}

DigestAlgorithmIdentifiers ::= SET OF DigestAlgorithmIdentifier

SignerInfos ::= SET OF SignerInfo

SignerInfo ::= SEQUENCE {
version Version,
issuerAndSerialNumber IssuerAndSerialNumber,
digestAlgorithm DigestAlgorithmIdentifier,
authenticatedAttributes

[0] IMPLICIT Attributes OPTIONAL,
digestEncryptionAlgorithm

DigestEncryptionAlgorithmIdentifier,
encryptedDigest EncryptedDigest,
unauthenticatedAttributes

[1] IMPLICIT Attributes OPTIONAL
}

EncryptedDigest ::= OCTET STRING

6.4.4 S/MIME

S/MIME is an attempt to answer the requirement for secure email. Standard
Internet email, as defined by RFC 2822[Pes01], is limited in what it accepts.

80



Lines may not exceed 1000 characters, and only 7 bit ASCII is allowed.
To allow sending binary data, like a digital signature, over standard email,
MIME, Multipurpose Internet Mail Extension[FB96], was developed, and
has been a working standard for many years.

S/MIME is basically PKCS #7 and MIME combined. MIME-types for
signed, encrypted, etc. messages are defined (e.g. multipart/signed).

A multipart/signed S/MIME message includes one MIME-part that is the
signed part, and one for the signature (optionally including certificates).

An important aspect with S/MIME is that the mail headers (To, From,
Subject, etc.) are not signed.

6.5 Security Considerations

imsparse will run at the CRF, which is defined as a restricted environment.
Access to the CRF should be limited to the SO(s).

6.5.1 Trusted Computing Base

The trusted computing base (TCB) is the parts of a computer system that
provides a secure environment.

The following external environment is defined as the TCB for imsparse:

• All security-critical functions relevant to signature verification from the
cryptographic library used by imsparse.

• The CA certificate.

• The parts of the C library used in security-critical functions in imsparse
and the cryptographic library.

We must assume that the imsparse binary is not modified in an unauthorized
way. We also assume that the private keys used to sign the ACL (if used)
and the configuration file are accessible only to trusted users.

6.5.2 Logging

It is important that the command handler provides logs for the SO and/or
the PTS about the events it observes. imsparse’s primary logging tool is
the UNIX syslog utility. Additionally, it will log to local files.

imsparse is not an application that will run constantly, only when called
upon to handle an incoming command (email). imsparse will thus only log

81



an event that triggers it. On every occasion when imsparse is called to read
an incoming message, it will write to the log.

Additionally, certain events are considered auditable events, and will be
logged. In all cases, we log the current time as well. Every incoming email
that is fed to imsparse should be securely stored in another location as well.
This can easily be accomplished by forwarding the email to several locations.

• An unsigned email will be logged as such and the execution terminated.

• In the case of a bad signature, the incident will be logged.

• A good signature, but a failure in the access control verification will
cause the attempted command and the DN of the signer to be logged.

• A command from an authorized sender which is rejected because of a
too old time stamp or a reused message id will be logged with time
stamp and message id.

• An otherwise accepted command which is rejected because the values
in it (this applies to operational change commands only) are outside of
the limits required by the SO is logged (the entire command written
to file).

• Any executed command will be logged in full. The results of the exe-
cution will be logged by the specific command parser.

6.5.3 PKI Components

Two PKI components are needed on the CRF: the CA’s certificate and the
CRL. We can retrieve the CRL from LDAP. It may also be transferred to
the station using the UPDATE_CRL command.

If, due to an attack or an accident, the station is unable to retrieve the latest
CRL and the CRL it has is too old, it is imperative that no action is taken
on the command, except possibly storing it for processing when a valid CRL
is obtained.

The CA certificate is part of our TCB. Having access to an authenticated
copy of the CA’s certificate is a prerequisite for performing a trustworthy
signature verification.

6.6 Access Control

A major focus of this implementation is on access control (AC) ; how to
restrict execution of different commands to authorized entities only, is a
challenging task.

82



In chapter 2, we gave two specific examples on AC mechanisms: access con-
trol lists (ACLs) and certificate-based access control. We have implemented
support for ACLs and we outline how certificate-based AC will be imple-
mented.

In designing a system for AC in our scenario, decisions must be taken on the
following questions:

• How detailed to make our access control.

• Which (text) format to use in the certificate extensions and in the
ACL.

• If using ACL, how to insure that the ACL is authentic?

• By whom the AC is managed.

Granularity Our scenario is that we have named entities (named by the
distinguishing name on their certificate) requesting permission to run a com-
mand on our station.

A station may have several sites (sub-arrays), and each site several channels
(sensors). We must therefore make a decision on the level of granularity.

There are three distinctions to be made:

• Whether access is granted for a subset of the commands or always all
or none,

• whether it is granted for one or more channel or always for all or none,
and

• whether the parameters accompanying the command are significant for
whether or not access is granted.

The first problem is easy to answer: we must separate between commands.
It is explicitly stated that the PTS is the only authorized source of key
management commands. The SO, however, will normally be authorized to
submit operational change commands to its own stations.

The second problem is not equally obvious. It is given that access can be
granted to only a subset of the stations, but the question is whether it is
useful to allow an entity to issue commands to only parts of a station. Our
decision has been to always grant access to all channels or not at all for a
given command. We assume that an entity will not be granted privileges at
only a part of the station.

83



The third question is often a difficult one. We could picture that an entity
was allowed to perform some operational change on a station, but not all.
There are, however, no commands in the IMS2.0 specifications that open
for this. The decision is therefore to always either fully allow or disallow an
entity to run a specific command.

Format The format chosen to define the access control is important. If
ACLs are used, it is relatively simple to update them to reflect the addition
of a new station, a new command, or a change in privileges, but with a
certificate-based solution, such a change will imply that a new certificate
must be issued to everyone affected.

There has been no decision from the PrepCom on how to implement access
control, and hence there is no previously defined format for ACLs/certificate
extensions.

In the STA_LIST (and channel/site list) parameter in IMS2.0, the station
code may be given as a string where using ’*’ as a wildcard is allowed. The
string noa would represent only the station noa, while no* would cover all
stations starting with no.

This format may be used for access control as well, but it is not much help.
There is, to the author’s knowledge, no defined group names for the stations.
An SO will often operate several stations, and have the same privileges on
all of them. The naming scheme does not allow the wildcard to be used to
represent all of the SO’s stations (and no other stations).

We have decided to use the following simple format to represent access level:

station,station,...:command,command,...

Here, station may include wildcards, and command may be a specific com-
mand (CALIBRATE_START, UPDATE_CRL) or a command group. We define the
following command groups:

• OPCHANGE: CALIBRATE_START

• KEYMANAGE: GENERATE_KEYPAIR, START_KEYPAIR, UPDATE_CRL.

Additionally, a group for data requests can be defined.

An ACL would then have lines beginning with a DN followed by a delimiter
and the access control string. Each entity may be affected by several lines.
When using certificate extensions, the extension value would be a number of
lines each containing one of these access definitions.

An SO controlling stations sta, stb, and stc will typically have

84



sta,stb,stc:OPCHANGE

A PTS staff member authorized to perform key management on all stations
will have

*:KEYMANAGE

Authenticity When using ACLs, as stated in chapter 2, the (message)
authentication of the ACL is vitally important. We will discuss methods for
protecting our ACL against unauthorized changes later.

Certificate-based solutions do not require additional authentication, since
the certificates are already signed by the CA.

Management To have AC, it must bemanaged. An entity must be trusted
with the task of deciding who has access to what. There can not be more
trust in the AC than in the managing entity, so choosing this entity is an
important task.

The contract between the local SO and the IDC will describe what entities
are allowed to perform which actions. It is likely that the AC management
can be placed with the PTS, in cooperation with the SO. Alternatively,
since the SO is trusted to faithfully run the station, the responsibility of AC
management may be decentralized.

6.6.1 Access Control List

Our focus is on how to protect the ACL from unauthorized manipulation,
and to allow the applications and users needing to consult the ACL to verify
its integrity. As opposed to file access control, which is inherent in the OS,
our ACL will be implemented on top of it.

Alternatives to said implementation could be a file in the directory hierarchy,
an entry in a directory service or a database. Our focus will be that the
ACL, regardless of the choice of low-level implementation, can be subject
to unauthorized change. Technical personnel in the PTS have stated that
the ACL (and certain configuration files) must be “protected against any
unauthorized external manipulation”.

Plain data One obvious possibility is to keep the ACL as plain data.
The advantage is that administration is very simple, but there is a massive
drawback: there is no security apart from that offered by the OS (e.g. by
making the file read-only).

85



Hash Verification An alternative supplement to the plain data ACL, is to
add a checksum verification. If we are able to either protect the configuration
file or to compile the checksum of the ACL directly into the binary (we
assume the ACL is changed relatively rarely), a simple comparison of the
hashes—produced by a strong, cryptographic hash function—will provide
integrity.

A hash provided at compile-time only is inflexible. However, since the con-
figuration file must be equally well protected, it makes sense to include the
ACL’s checksum there.

Signature Verification Another alternative is to have the ACL signed by
a responsible entity (the PTS or the SO) and let the command interpreter
verify the signature on the ACL before accepting it. This adds good security.
The advantage of demanding signed ACLs, is that access control manage-
ment can be placed where it is desired. It may be desirable to let the SO
alter the configuration file, but not the ACL. In that case, ACL signing is
the best choice.

If the SO is trusted to maintain the ACL, signing the ACL is functionally
identical to using hash verification.

imsparse has implemented verifying ACL authenticity both by using signa-
tures and hash (in config file or compiled in the source).

6.6.2 Certificate-based Access Control

The obvious way to implement a certificate-based access control system in
the IMS system, is to use certificate extensions.

As we have seen, it is possible with X509 certificates version 3 to add ex-
tensions to the certificates. If this technique is used, we will not need to
maintain ACLs; it will be adequate to check on signature verification that
the signing certificate is issued with the required privileges.

It is an attractive approach, but requires central management. We will now
have the certificate to a greater extent signify the role of the owner, which
is a nice side-effect.

Interoperability If certificate extensions are to be used, there is another
well-known problem which must be discussed: Interoperability. Recall from
section 6.4.1 that an extension on an X.509 certificate can be marked either
critical or non-critical. If the extensions used to enable authority verifica-
tion on the IMS stations are marked critical, the consequence is that these
certificates are incompatible with other applications.

86



The certificates issued to command issuers in the IMS PKI are meant to
be used for that purpose only. Using a critical extension can be a way of
stating that these certificates are for IMS commands only. If the certificates
are intended for any actions other than submitting commands to stations,
the extension should be marked non-critical.

6.7 Integrity of Configuration File

As mentioned earlier, it is required that the config file as well as the access
control mechanism should be protected from tampering.

In imsparse’s case, the configuration file includes several parameters im-
portant to security:

AC The path to and method of access control is defined here. If the config
file was not protected, though, this could easily have been moved to
the source (i.e. using signed ACLs and have the DN of the authorized
signed in the source).

CA certificate The location of the CA certificate may be in the config file.

Limits The limits for which values are acceptable for different operational
change parameters are set here.

Command handling The application to run or file to write to after suc-
cessfully parsing a command is in the config file.

The alternatives from the discussion on integrity of the ACL apply to the
configuration file as well. The applicability of the methods differ, though.
While the ACL can be expected to be very static, and cause little problem
if compiled into the binary, configuration files may change relatively often.
There is no real difference between compiling in the hash of the configuration
file and compiling in the entire configuration file.

A better alternative is to include the DN of a trusted entity in the source.
This entity should be the local operator or the IDC/PTS. The utility can
then be instructed to accept only configuration files when also presented with
a (valid) digital signature, signed by the entity specified at compile-time. In
this case, the certificate of the CA which issued the certificate to the config
file signer (which may be a different CA than the one used for verifying
command issuers’ certificates) must also be specified in the source.

This latter approach appears to be the most attractive, providing good flex-
ibility and low management costs. It is also the default way to protect the
config file in imsparse.

87



6.8 Tools

imsparse is a relatively simple application, and currently requires only a
single third-party software (in addition to the standard C library), namely
a cryptographic library.

The demands on portability are not clearly stated, and our decision has been
to at least make certain the application runs under Solaris and Linux.

6.8.1 Programming Language

Scripting languages like Perl or Python could have been a good choice due
mainly to their simplicity in string manipulation. They are not pre-installed
on many older platforms, though. C++ would have offered object orient-
ation, and also a more robust interface to strings and string manipulation,
but again availability was a concern.

C was an obvious alternative. It is always there, the author was already
familiar with the language, and it is “standard”. The need for object orient-
ation was not considered to be that great, and the problems of parsing the
command structure not anticipated to be overwhelming.

It had been indicated from several sources that limiting the number of
patches and packages required to be installed at the host would be an im-
portant goal. This was a good argument for C, which was also our decision.

6.8.2 Third-party Software

A library for cryptographic functionality is required, and the host running
imsparse would also benefit from being able to obtain data from LDAP, but
this is not yet implemented.

There are several cryptographic libraries available. We considered the fol-
lowing:

libgcrypt A GNU library, based on the code from GPG, the GNU Privacy
Guard[Koc].

cryptlib A cryptographic library available for many platforms maintained
by Peter Gutmann[Gut].

OpenSSL A widely used library implementing both standard cryptographic
functionality, and the SSL/TLS protocol. Developed by a team of
volunteers, and available on many platforms[The].

The most important criteria for us, were

88



• availability on relevant platforms,

• support for relevant cryptoalgorithms, and

• documentation.

When choosing a library for cryptographic operations, efficiency is often an
important factor. For this task, however, it is not. This is because we
do not anticipate very many commands, and certainly not enough to make
verification of an S/MIME signature a bottleneck.

As we require only DSA signature verification and creation (we need to sign
the replies), X.509 certificates (v3) and CRLs (v2), and S/MIME (PKCS
#7) support, our demands for algorithm and protocol support did not rule
any library out.

libgcrypt libgcrypt is a GNU tools. As most GNU tools, it is possible
to compile on most UNIX systems. It is not available as prepackaged bin-
aries for Solaris, though. It comes with some documentation, but not very
extensive.

cryptlib cryptlib is well documented, and also with a high availability.
Its license states that it may be freely distributed with open source projects,
but another, more restrictive, license applies for commercial applications.
imsparse is not intended to be a commercial application, so this is not
a problem. cryptlib is highly portable, and is available for all relevant
platforms, but does not come prepackaged for Solaris.

A 270-page comprehensive user’s manual is supplied.

OpenSSL OpenSSL is a free cryptographic library implementing Secure
Sockets Layer (SSL) version 2 and 3 and Transport Layer Security (TLS)
version 1 as well as providing access to most widely deployed cryptographic
algorithms.

OpenSSL’s low-level functions are not intended for developer use, and not
well documented, but the high-level functions—which we will primarily be
using—are adequately documented. Additionally, the book “Network Se-
curity with OpenSSL”[VMC02] from O’Reilly provides many examples and
guidelines.

OpenSSL is available as packages for Solaris and Linux. It is also available
for Windows. The library is used in many wide-spread applications.

A problem with OpenSSL is that prior to version 0.9.7 (which was released
on New Year’s Eve of 2002), it had no automatic CRL checking. Starting
with version 0.9.7, OpenSSL can be told to check the revocation status of
all certificates before verifying a signature.

89



Decision We decided to go with OpenSSL. The main reason was the au-
thor’s familiarity with the library; another that it is available as a ready
package for Solaris (which is likely to be the most used platform). cryptlib
was a good alternative.

When imsparse was started, OpenSSL 0.9.7 had not yet been released. A
mechanism for checking revocation status was therefore developed. When
the functionality emerged in 0.9.7, we decided to drop the support for 0.9.6
instead of maintaining the revocation code ourselves.

6.9 Program Design

There are several different models of digitizers and authenticators used in the
IMS. These devices do not share a common command language, so writing
a portable application that can communicate with every different model is
time-consuming. Our decision has been to design imsparse to output the
contents of the command it received in a configurable manner, and the to
optionally run another program.

The command response will be generated and sent by this second application,
as the results will not be available until it has been run.

6.9.1 Program Flow

imsparse is a C program comprising some 5000 lines of code. We will now
describe it step by step, using pseudo-code and English.

main() {
signer = verify_file_signature("/etc/imsparse.conf",

"/etc/imsparse.conf.sign",
cadir);

if (! authorized_config_signer(signer)) {
exit();

}
contents = read_signed_input(stdin);
signers = verify_smime_signature(contents, cadir);
if (!handle(contents, signers))
exit(1);

else
exit(0);

}

main() first verifies and reads the configuration file before reading the input.
The signed contents and the DNs of all signers (it is uncertain if the IMS2.0

90



protocol will allow more than one signer, but we do; in that case it is enough
that one of them is authorized to execute the command).

The cadir variable must at first be compiled into the source. It is an
OpenSSL-style directory where both the CA certificate and the CRL is loc-
ated.

The OpenSSL functions for reading and verifying PKCS #7 signed material
are used.

int
handle(contents, signers) {
struct command comm;
for (line in contents) {
parse_line(comm, line);

}
if (!syntax_ok(comm)) {
/* Syntactically wrong */
return 0;

}

if (! match_station_code(comm->station, conf->station_code)) {
/* Wrong target for command */
return 0;

}
if (! access_control(signers, comm)) {
/* Signer(s) not authorized to submit command */
return 0;

}
if (! verify_recent(comm)) {
/* Command too old */
return 0;

}
if (mid_used(comm->mid)) {
/* Message-ID already used */
return 0;

}

switch (comm->type) {
CALIBRATE_START:
return handle_calibrate_start(comm);

UPDATE_CRL:
return handle_update_crl(comm);

/* etc... */
default:

91



/* Command unknown */
return 0;

}
}

The handle() function parses all the lines of the command (actually, all the
signed data). When finished, it verifies that the command is syntactically
correct before insuring that:

• The command is intended for this station;

• The signer(s) are authorized to execute the command (at this station);

• The command is not a replay (it is not older than 24 hours, and the
message id is not in our logs of previous ids).

int
access_control(signers, comm) {
char **aclines;
switch (config->ac_method) {
ACL_FLAT_FILE:
ac_acl_flat_file(config->acl_file, signers, aclines);
break;

/* Future work: */
ACL_CERTIFICATE_EXT:
ac_cert_ext(config->ac_extension, signers, aclines);
break;
/* etc... */
}

if (match_ac(aclines, config->station, comm->type))
return 1;

return 0;
}

The idea with the access control function is to use either method, ACL
(either from file, database, or some other backend) or certificate extension,
to obtain all the access control statements concerning the signer(s) of the
command. These lines are then finally investigated to see if they match the
station and command type. The format of the access control statement lines
are as described in 6.6.

int

92



handle_calibrate_start(comm) {
/* Extract values from comm structure and verify

that they are reasonable. The values which are
considered reasonable are in the configuration.

*/

if (! values_ok(comm))
return 0;

/* Write a line representing the command values to
this variable. The format can be configured.

*/

char *calstline = write_calibrate_start_line(
config->calibrate_start_format,
comm);

char *run = config->calibrate_start_run;
char *file = config->calibrate_start_file;

if (file)
write_file(file, calstline);

if (run)
ret = run_cmd(run, calstline))

/* If the values were okay and the run_cmd was
/NOT/ unsuccessful (it may not have been run,
and that would be okay, we return 1.

*/
if (ret != 0)
return 0;

else
return 1;

}

The handle-functions for the different commands primarily consist of check-
ing that the values are sane (most important for operational change) and
writing a representation of the command to a customizable line. At this
point, all access control and authentication have been carried out, and there
is the matter of actually executing the function.

93



6.10 Future Work

imsparse is a functional application, but with more time, some additional
features would have been added.

• Support for all IMS 2.0 commands.

• Support for fetching the new CRL when it is outdated.

• Support for fetching missing certificates.

• Capabilities for sending acknowledgement response.

• Support for certificate-based access control.

All IMS2.0 Commands So far, our implementation accepts CALIBRATE
_START commands only. As this application is mainly written to demon-
strate one part of the security architecture at the stations, supporting all
the commands was not a priority. Adding support for the key management
commands would not show any new thoughts or solutions.

Fetching CRLs and Certificates imsparse has no LDAP capabilities, nor
can it make ftp or http connections.

If an S/MIME command does not contain all the required certificates, imsparse
will not be able to verify the signature. The PTS has indicated that that
could be solved by requiring the signer’s certificate to always be included
with the S/MIME message.

CRLs, however, are a much more important issue. We must have an up-to-
date CRL when verifying a signature.

If UPDATE_CRL commands are sent regularly(i.e. every time a new CRL is
posted), there may not be a use for CRL retrieval. This is not likely to
happen for some time, though.

The simplest approach is to use an external program. imsparse has the
framework for supporting running an external application to get the newest
CRL, but the support is not finalized.

Sending Acknowledgment Response Currently, imsparse is not cap-
able of responding to the command. Creating support for the initial acknow-
ledgement should does not demand a structural change. It does, however,
demand support for using the cryptographic hardware token the CRF uses
for signatures.

94



Support for Certificate-based Access Control Currently, our imple-
mentation only accepts an ACL for access control mechanisms. As indicated,
we intend to use the same format for the extensions as we use for the ACL.
The reason this has not been done, is that time was limited and setting up
a CA and issuing certificates for testing was required.

Adding this support will need a minor change in the program design to allow
the access control code to get the contents of the certificates as well as the
DNs.

An important aspect which must be kept in mind when implementing sup-
port for certificate-based access control is that it is possible to include ar-
bitrarily many certificates in the PKCS #7 structure. The access control
software must consider access rights from the certificates corresponding to
the keys used to sign the command only.

6.11 Experiences

This application grew from initially not being included in the thesis at all to
become an important part of it.

With the CALIBRATE_START command, almost every part of the parsing is
critical to security, because a misinterpretation of a command parameter
can cause problems. For the other commands, a more explicit division of the
application in security-critical parts and non-critical parts would have been
useful.

The use of C as the programming language has worked well. The biggest
problem has been the low-level parsing of the commands, where C’s string
handling made the functions messy. The memory debuggers valgrind and
purify have been used to assist the memory management. Further, string
functions less prone to buffer overruns (e.g. snprintf instead of sprintf)
have been used in an attempt to avoid exploitable bugs.

OpenSSL has worked well. The library is complicated to use for low-level
cryptographic and/or mathematic (i.e. the bignum-part of the library) oper-
ations, but the higher-level functions we have used are straight-forward and
well documented.

Due to the lack of testing environments, imsparse has only been compiled
and run on Solaris (5.7 and 8) and Linux (different distributions).

95



96



Chapter 7

System Analysis

This chapter discusses the quality and appropriateness of the security ar-
chitecture proposed by the PrepCom. We first comment on two aspects we
have more or less ignored in our analysis: other verification mechanisms and
legacy systems.

The next, and important, step is to analyse the security of the two commu-
nication protocols used in the system, IMS2.0 and CD1.1. We then discuss
the problems of physical security on the stations, and in particular its ap-
plication to key management.

The two last sections discuss the quality of the PKI solution and finally how
the system copes with the threats we defined in chapter 5.

7.1 Security Goals

There are two separate security goals in the IMS network. The first goal
is to prevent sabotage of the system. The second is to prevent undetected
manipulation of the data.

An aspect which separates them is the role of the SO. In reaching the first
goal, the SO is an important ally; in reaching the second he is a potential
threat. The receiver of the data must be able to be confident that the
received data is the exact same data the digitizer received from the sensor
(message authentication). The source of the data (the station, represented
by the SO) must later be unable to claim that the data must be a forgery
(non-repudiation).

Proposed Security Architecture

Two primary communication protocols have been defined by the PTS:

97



• CD1.1 - for continuous sensor data traffic, and

• IMS2.0 - for commands to stations and explicitly requested data.

With both these protocols, digital signatures are to be applied. To facilitate
the verification of the digital signatures, a PKI is set up. For communication
between the stations and the IDC, a private closed network, the GCI, has
been set up.

7.2 Geophysical Authentication

An aspect that is not in the primary scope of this thesis is that of geophysical
authentication. According to [Com01b], the IMS network detects up to 50000
earthquakes every year. There is no way to accurately predict the time,
magnitude, or place of all these earthquakes.

If data from one or more sensors are successfully forged (i.e. the forged data
is accepted by the receiver as authentic) and an earthquake occurs that
the sensors in question should have detected, the forgery will with high
probability be discovered. Analysis of the data from the entire IMS will
show the inconsistency.

Geophysical authentication is an important part of the security of the veri-
fication regime, but it is not relevant to the security of the signature-based
security scheme. We analyse the security of that scheme independently of
other authentication mechanisms.

7.3 Time of Signing

In section 4.2, we saw that the (analogue) data gathered by the sensors
are sent through a digitizer before being signed. Newer digitizers have an
authenticator producing digital signatures, but there are still older models
in action which are unable to sign data. Many of them might stay operative
for some years.1 In this case, the CSFs are signed by the same key as the
Data Frames at the CRF.

There are two big problems with this approach:

• The SO, who we do not trust with the data, has full access to the data
before it is signed;

• A compromise of the CRF could result in undetected data forgery.
1There does not appear to be a clear indication as to when all older (non-signing)

digitizers are required to be replaced.

98



Our conclusion with regard to these legacy systems is that the data from
them can be no more trusted than the SO. Fortunately, they will not be part
of the IMS forever.

7.4 International Monitoring System Protocol

The IMS2.0 protocol is used for two objectives: remote management of sta-
tions and requested data traffic from auxiliary stations.

Our focus regarding this protocol has been its role in station management.
For data transfer, the basic elements of the continuous data transfer protocol
(CD1.1) will be used.

Key management will be achieved through the use of IMS2.0, but we will
discuss this separately in section 7.6.

7.4.1 Goals of IMS2.0

The IMS2.0 protocol is a part of the first security goal outlined earlier. If
an attacker could successfully issue a malicious calibration command to a
digitizer, it would be immediately detected because the data from the channel
would be destroyed.

The security goal of this protocol is therefore

To allow authorized, and only authorized, entities to remotely calibrate and
manage PKI components at the IMS stations, while insuring that these com-
mands not have been subject to unauthorized manipulation.

7.4.2 Protocol Format

Command Type The command type of an IMS2.0 command is specified
with a line in the message body. Unlike most other lines, such a line does
not have a keyword, but only the command type alone on the line, e.g.:
CALIBRATE_START or GENERATE_KEYPAIR. This approach does nothing to sim-
plify command parsing. In practice, it means an implementation must check
each line not recognizes immediately as something else, and see if it is a
command type specifier. The reason this approach was chosen seems to be
to be compatible with the previous (and widely used) version of the protocol,
used for data transfer.

Remember that many command lines will be meaningful in a specific com-
mand only (for example will a CALIB_PARAM line be an error if present in
an UPDATE_CRL command). Since the command type may be specified any-
where within the command, an implementation will have to test each line

99



not immediately recognized as another keyword to see if it is a command
type identifier.

One simple solution to this problem would be to introduce a new keyword,
e.g. CMD_TYPE, which specify the command type (for example CMD_TYPE
CALIBRATE_START).

Data Part Another complicating part of the command structure are data
parts. A GENERATE_KEYPAIR command, for example, may include the DSA
(system) parameters the authenticator should use in generating the keys.
These parameters are sent in PEM format. Similarly, the UPDATE_CRL com-
mand includes the CRL, in PEM format.

An approach which would have simplified parsing of these commands would
have been to begin-end keywords for them. That would also provide support
for several such data fields. An example could be

START_KEYPAIR
DATA_BEGIN X.509_CERTIFICATE
-----BEGIN CERTIFICATE-----
X.509 certificate in PEM format
-----END CERTIFICATE-----
DATA_END X.509_CERTIFICATE
STOP

as opposed to today’s

START_KEYPAIR
-----BEGIN CERTIFICATE-----
X.509 certificate in PEM format
-----END CERTIFICATE-----
STOP

For PEM structures only, there would not be much difference with this ad-
aption, because a PEM structure is simple to detect. The current solution
is not very flexible, though.

7.4.3 Command Processing

Commands should be processed automatically on reception at the CRF. It is
likely that many SOs will refuse to accept operational change commands from
any external source without manual verification. This can be handled by not
performing calibration until manually accepted by the SO or by assigning
only the SO as an authorized source of operational change commands.

100



7.4.4 Replay Attacks

Recall from section 2.4.2 that in a replay attack an attacker can resend a
previously signed message to the same recipient who might verify it as valid
again.

This is an attack the protocol must defend against. There are two command
parameters that can prevent such an attack: the time stamp and the message
id.

Time Stamp The time stamp field—mandatory for all command requests
and responses—is in UTC time and a station will check this field to determine
whether the request is “recent and that it is reasonable to process”.

The problem with this field as a security means is that for many stations, the
commands may need to pass through the SO on its way from the IDC to the
station, and it might stay there for a while before someone relays it to the
station. The consequence is that a station must accept a time stamp that
is not completely recent. The standard does not specify how old messages
that should be accepted, but the acknowledgment should be sent within one
working day. To simplify the decision, a limit of 24 hours can be used.

Message Id To prevent a replay attack within the time frame not covered
by the time stamp (i.e. 24 hours in our case), the message id must be used.
The message ids are required to be globally unique. The receiver must main-
tain a list of message ids seen during the past 24 hours, and reject a message
with a repeated id.

The use of the ids is not currently described in the protocol documents, and
should be clarified.

As a conclusion, the protocol does have the necessary tools to prevent replay
attacks, but their use is currently not very well described.

7.4.5 Entity Forgery

Verification of the command issuer is handled by the signature scheme. The
recipient (station) is not, though. An adversary must not be able to intercept
a command from the PTS to one station and subsequently transmit it to
another station and have it accepted as valid.

Such an attack is prevented by including a unique identification of the re-
cipient in the signed part of the message.

Recall that in S/MIME[DHR+98], only the body of the mail is signed, not
the mail headers.

101



In earlier drafts of the IMS2.0 standard, the identification of the receiving
station(s) was specified as a required parameter to most commands. For
example:

CMD_TYPE CALIBRATE_START <station list>2

There are two unfortunate sides to this solution. One is that the standard did
not mark the station list parameter as mandatory for all possible commands
(should the language be extended). The second, and more important, is that
this relegates an important decision to later in the parsing. The command
parser can not start looking for the To-field to decide if the address is correct.

It can be seen as a trivialization of an important matter.

This deficiency was discovered, and commented on, during the thesis work.
It was also commented on by other sources. Our comments did not reach the
PTS in time for the comment deadline on the draft, but similar comments
from other sources did, and the next draft included a keyword STA_LIST
which all commands require.

Now, any IMS2.0 parser should look up the STA_LIST option and verify the
validity of the value at an early point in the processing. This amendment
makes it simple for a parser to prevent entity forgery.

7.4.6 Other Attacks

In many ways, the IMS2.0 command structure is a simple protocol. Although
parsing it may be complicated, its design makes it resistant to cryptanalytic
attacks like insertion, deletion, and reordering attacks. Each command is
signed as a block, and only one command is sent in each message (S/MIME
will only accept one signed part). An IMS2.0 parser must be certain to
accept as input only the signed data from an S/MIME message.

Conclusively, due to the—from a cryptographic point of view—simplicity of
the IMS2.0 protocol, it is highly resistant to cryptanalysis.

Its security relies on the security of the S/MIME protocol. If it is possible
to trick the S/MIME verification command to output more than the actual
signed text (or to forge a signature completely), then the IMS2.0 protocol
would be vulnerable. The strength of the S/MIME protocol is outside of the
scope of this thesis.

2Note that the CMD_TYPE syntax was used then, and is dropped now. This does not
affect the argument.

102



7.5 Continuous Data Protocol (CD1.1)

The continuous data from the primary stations is (will be, when stations are
upgraded) sent to the IDC and other participants using the CD1.1 protocol,
as explained in 4.3.1.

7.5.1 Goals of CD1.1

It should be noted that the CD1.1 protocol is a protocol not only for digitally
signed data transfer. It is a protocol for data transfer, with the optional
possibility of applying digital signatures. Our interest is in the security of
the protocol when signatures are applied.

This protocol is a part of the solution of the second security goal from 7.1.
The primary threat is that an attacker (and in this case, that includes the
SO) is able to manipulate the CD1.1 traffic at any point between the borehole
and its destination, and have the changes accepted as authenticated.

We formulate the goal—from a security concern—of the CD1.1 protocol:

To prevent any attacker from alter, add to, or delete any of the data output
by the authenticator, and have the result accepted as authentic by the receiver.

Given that we consider the SO to be untrusted in this situation, and the
fact that the CRF is operated by the SO, we will only trust the signatures
created in the sealed borehole, i.e. those within the CSFs.

In other words, the security mechanisms in other elements of the CD1.1
protocol than the CSFs can function as a supplement, but it must be possible
to insure authenticity of the data from the information in the signed CSFs
alone.

With this in mind, we formulate the following requirements for the CSFs,
and then argue why they are sufficient:

Each CSF must contain adequate information for the receiver to

• identify the source of the data (the channel),

• identify the exact time this data collection began, and

• determine the length, in time, the data spans.

The requirement that the receiver must be able to tell who the transmitter
(the channel) of the data is, is obvious. As stated in section 2.1.2, without
entity authentication of the source, no message authentication is possible.

103



Although the data stream from the station (i.e. the Data Frames) is identified
by serial numbers, this is not possible3 at the channel-level.

The nature of the data provides a different opportunity, though. Since each
channel at a given time produces only a single signal, the pair channel iden-
tifier/exact time uniquely identifies a sample of data.

7.5.2 Security Analysis of CD1.1

Recall that the CSF signatures are applied to every field of the subframes
except the total length, the “subframe body” length (the authenticator off-
set), the certificate id, and the authenticator (signature) itself. See table 4.4
for the fields of a CSF.

Source Identification

The channel description field of the CSF contains the 5-byte site name and
3-byte channel name. These two fields uniquely identify the channel, pre-
venting source forgery.

Subframe Information

Each CSF include its start time in UTC and the time spanned by the sub-
frame in milliseconds. The start time is on the format YYYY/MM/DD
HH:MM:SS.MMMM, so the time granularity is in milliseconds. These two
values combine with the channel name to allow the recipient to uniquely
identify the data.

However, having the required information present does not help much if it
is not used. To avoid packet loss in a CD1.1 transmission, the serial number
from the Frame Header (the header of the Data Frames) will normally be
used (the Acknack frames use this value). This 64 bit integer is designed to
allow a connection to stay up for decades without having to reuse the serial
number. This mechanism is good from a technical point of view, where the
fear mainly is lost packages due to network or sensor/digitizer problems. To
prevent deliberate removal/substitution of entire subframes, it is important
that the receiving application also verifies that the information within the
subframes is correct (and, of course, the subframe signatures).

3Some digitizers provide a serial number on the CSFs as well, which could be used for
this purpose, but this feature is seemingly intended for future use only, as documentation
currently states it will not be used or checked.

104



Other Attacks

When the basis is that only the CSF signatures are trusted, the CD1.1
protocol has the same property as the IMS2.0 protocol: simplicity. Each
subframe contains enough authenticated information to allow the receiver
to verify that all the expected data, and nothing but the expected data, is
received, and that no data has been modified posterior to signature applica-
tion. Because of this property, CD1.1 is resistant to any attack not modifying
the CSFs.

7.5.3 Checking Revocation Status

It is obvious that the receiver of the data must consult the CRL before
accepting a station’s key, but how often should the list be consulted?

The key which was considered uncompromised at the time of connection
might not stay that way forever. It is imperative that a procedure for the
CD1.1-receiver to update its CRL and check it regularly is decided upon.

7.6 Key Management

It has been decided that it should be possible for the PTS to order a station
to change its key-pair. The reason is that a private key will have a certain
life-cycle, and therefore needs replacing once in a while. If there has been a
private key compromise, the station needs to be reinitialized. Note that our
only concern here is the authenticator keys, not the signing key on the CRF.
As we argued in section 7.5 above, the CRF’s signature is not required for
the receiver to detect manipulations of the data flow.

Key update will be carried out using the command and control protocol,
IMS2.0. The key management commands will be sent from the PTS exclus-
ively. The two commands are GENERATE_KEYPAIR and START_KEYPAIR.

Private Key Confirmation A GENERATE_KEYPAIR command is respon-
ded to by KEYPAIR_GENERATED. It is required to contain a self-signed PKCS
#10 certificate request. Since the request is signed with the newly created
private key, it enables the CA to verify that the requester is in possession of
the private key. For legacy digitizers/authenticators, it is possible to provide
the public key in hexadecimal instead of a PKCS #10 request. In that case
there will be no private key confirmation.

105



Identification of Private Key A bigger problem than private key con-
firmation, is proving the integrity of the private key. It is obvious that when
the PTS requests a key change at a station, they want to be certain that the
new key is as trustworthy as the old key.

The IMS2.0 protocol requires that the new public key is signed using the old
key. This makes sense, since we now use the old key, which is trusted, to
prove that the new key is authentic. The question is: how to verify that the
signed public key is the authentic key from the authenticator?

The KEYPAIR_GENERATED response includes the new public key signed by the
old private key. There is no additional information like date or response
message id included in the part signed with the old key. If the SO at any
time in the past has had access to having data of his choosing signed by the
authenticator, he could have signed the public key of a key-pair to which
he is in possession of the private key. This key could then be used in the
KEYPAIR_GENERATED response.

To complete this attack, the SO must replace the authenticator’s signature
for all traffic from the affected channel using the key he knows, as this key
will not be the one the authenticator uses. This property in practice means
that the SO is the only one who can carry out this attack, as he with high
probability would discover any other attempted such attack.

A problem with the attack, is that it is easily discovered by an on-site inspec-
tion (the inspector would notice that the data from the borehole is signed
with the wrong (old) key).

Conclusion The problem of trustworthy key updates is directly related
to that of physical security (of the authenticator). To insure that the new
key-pair, on which the CA issues the new certificate, is the key-pair the
authenticator uses, it is required that the SO at no time has had unsupervised
access to the signing function of the authenticator.

There are currently two ways to achieve that: One, the authenticator is built
so that when out of normal operation, access to the signing function must
either be detected (when restored to operation) or difficult to obtain. Al-
ternatively, every time the authenticator has been exposed (i.e. the borehole
has been opened), it must be reinitialized.

A third alternative would be to alter the key management protocol. Today,
the public key which is signed (using the old private key) is signed with no
additional information. If the protocol had demanded that the signature
was to be applied to the new public key and a time stamp, exploiting the
problem would have been difficult. The SO would then have to be able to
predict the time of the next key update at the time he had access to the
signing function.

106



7.7 Physical Security

7.7.1 IMS Stations

In 1991, Gustavus Simmons wrote[Sim91]: “It is not difficult to physically
secure the seismic sensor package in subsurface emplacements [...] since the
seismic sensors themselves would detect any attempt to gain physical access
to them long before they were in jeopardy. Hence only the data stream
sent through an open communications channel would be subject to possible
manipulations.”.

This result is based on the fact that it is impossible to approach anything
in the borehole without the sensor data reflecting it; this is the nature of a
seismic sensor. An assumption made here is that the station is working. A
different problem is the quality of the physical security when it is not. If
a problem requires a sensor to be shut down for maintenance, the SO will
have access to the equipment. It is important that any tampering with the
equipment will either be detected or not reduce security.

Authenticator It is evident that the signatures can be no more trusted
than the equipment that makes them.

For the authenticators, we list the following important requirements:

• It must be difficult to extract the private key from the authenticator;

• It must be difficult to install unauthorized upgrades to the firmware or
other security-critical components;

• It must be difficult to access the signing function.

PrepCom documents demand that the authenticator must comply with level
3 of the requirements put forth in FIPS 140-2[Nat01b]. Level 3 security re-
quires that the device shall have a high probability of detecting and report-
ing physical access to, use of, or modifications of critical security parameters
(CSPs).

Information from PTS personnel does however indicate that the signing func-
tion will be available to anyone with physical access to the authenticator.
There are no demands that the authenticator maintains a counter of the
signatures it has made to date. If there was, this could be used to prove to
the PTS that the signing function was not accessed while the authenticator
was out of operation.

107



Digitizer In cases where the digitizer and the authenticator are two sep-
arate objects, the digitizer itself is not a cryptographic module, but it is a
security-critical module. It should be difficult to replace or make modifica-
tions to the digitizer.

No documents have been found that describe policies on this subject.

The CRF Access restriction to the CRF is important. The host will be
accessible from the GCI (in the case of a independent subnetwork, only from
the NDC), and should be considered at risk. Procedures for keeping remotely
accessible software up to date and for choosing secure passwords must be in
place. Physical access to the CRF must be limited to the SO.

7.7.2 The GCI

The GCI is a closed private network, making access for unauthorized third
parties more difficult. The network has many nodes, though, and access to
it is no more protected than the weakest of those nodes.

We have no detailed information about the security of the GCI network, but
we will consider the security architecture in the perspective that all traffic
on the GCI is subject to malicious alteration.

7.8 PKI

In this section, we will discuss the suitability of the PKI proposed by the
PTS. We will first address the question of whether a PKI, as described in
chapter 3, is a good solution in this scenario. We then continue looking at
some decisions taken on how to build the PKI.

7.8.1 Appropriateness of the PKI

An important question when analysing the appropriateness of a security
solution, is whether the specific solution was chosen because it fit the problem
at hand, or whether the problem was altered to fit the solution.

Our first question should therefore be: “What do we want to achieve?”. The
answer:

• Authentication and non-repudiation of data from stations, and

• authentication of commands to stations.

108



This is achieved through the use of digital signatures. Recall from 2.6 that di-
gital signatures are well suited for this particular task. When we accept Gust-
avus Simmons’ argument that keeping the private key safe in the borehole
is simple, digital signatures give us what we need; authentication without
secrecy and non-repudiation.

Entity Naming As we wrote in chapter 3, choosing an appropriate naming
scheme for the entities in a PKI is often difficult. The entities in the IMS
PKI consist of two groups:

• IMS stations, and

• command issuers (including data requesters).

There are two types of signing bodies at the stations: the digitizers and the
CRF. Both these groups are already subject to well-defined naming schemes,
which easily translate into DNs.

The command issuers are slightly more difficult, but they are limited in
number. They are also provided certificates for their roles in the IMS, not
as private persons. It should be easy to relate the name to their affiliated
department (NDC, PTS, IDC, etc.).

CA Key Distribution Authenticated transfer of the CA certificate to
every end-user is a big obstacle in most PKI solutions.

In the IMS PKI, signatures will primarily be verified by three different
groups:

• Stations;

• Command issuers;

• Data receivers.

The command issuers and the stations will for the purpose of CA certificate
distribution be the same group. Commands may originate from the PTS
and the local SO (data requests may come from other sources, but these will
naturally be data receivers). We can assume that the PTS personnel can get
the authenticated CA certificate easily. When an SO has an authenticated
copy of the CA certificate, the stations he controls will also have one.

Distributing the CA certificate to SOs should not be difficult as most NDCs
regularly meet PTS personnel face to face. The same argument applies to
the data requesters. Most entities will get all their data from the IDC.

109



In short, the relatively small size of the user-base, the well-defined naming
scheme, and the level of contact between the CA (PTS) and the end-users
are all good arguments for using a PKI as described in chapter 3 to distribute
the public keys of the IMS network.

7.8.2 CRL Variant

In section 3.3.3, we described two alternatives for implementing a PKI’s
CRL. We will now make some remarks on their suitability for the IMS PKI.

The entities in the PKI which will need to consult the CRL often are the
IMS stations and the data receivers. The IMS stations need to verify the
validity of the certificates of the entities to which they send data, and vice
versa.

Although there are many stations certificates, it is perceived that there will
be relatively few revocations. It will happen, though, as sensors and digitizers
are destroyed from time to time (in particular by lightning). In the case of
a digitizer (and with it, the private key) being destroyed, the corresponding
certificate must be revoked.

The two CRL extensions discussed in 3.3.3 are CRL Distribution Points
(CDP) and Delta CRLs. CDP will be used in the IMS PKI.

CDP is advantageous in the IMS PKI for two reasons. The first is that it
simplifies the location of the relevant CRL for a user of a certificate, the
second that it allows splitting the CRL in two. Due to the anticipated low
traffic on the CRL, this may not be necessary. However, as IMS stations
rarely or never will need to verify each others’ certificate, and command
issuers and data receivers normally will need only the CRL containing station
certificates, splitting the two could be useful.

Delta CRLs are most useful in a PKI with a large CRL, but where revocations
are relatively rare (in particular one where certificates have a long life-time,
so they stay on the CRL for a long time). This CRL will probably not grow
very big, so Delta CRLs do not seem necessary.

7.8.3 Choice of Algorithms

The IMS PKI does have support for both certificates for digital signatures
and for encryption, but, again, we will only consider the digital signatures
part.

The PrepCom has chosen the Digital Signature Standard (DSS) to produce
digital signatures, and SHA-1 for hashes. Keys shall be 1024 bits long.

110



Security

An important question when discussing the security of a digital signature
algorithm is for how long the data integrity must be protected.

For the IMS data, we will assume this period is relatively short. It is unlikely
that 20 year old data will need to be verified for integrity.

The maximum field of 1024 bits specified in the DSS makes it an algorithm
which is not perceived to be secure against attackers with a high resource
level for a very long time. In [LV01], Lenstra and Verheul argue that DSS
with a field size of 1024 bit is useful for commercial applications only until
2002. There has been no reports of a calculation of a 1024 bit discrete
logarithm, though, and DSS is widely used. The same article suggest that
a replacement for DSS where longer keys (and hashes) are allowed is in the
making.

Performance

The question of performance is a question of whether or not the operational
goals can be met with the available hardware. For C&C, we can assume that
time required for signature creation and verification are negligible because
of the (anticipated) low number of commands.

For the continuous data, a significant number of signatures must be created
and verified.

There are three involved parties:

• The authenticators;

• The CRF;

• The data gathering facilities at the IDC.

The Authenticator The authenticators are the lowest on computational
power, but are limited to signing, and then only the data from one channel.
Each channel will produce approximately 1600 bytes of data, plus less than
100 bytes overhead for the CSFs. There will normally be one CSF each 10
seconds. This limited number of small packets should not be a computational
problem for the authenticators.

The CRF The CRF will both create and verify signatures. The verifica-
tions are (in addition to the C&C requests and the connection establishment
frames, which we can ignore) the Acknack frames from the data receiver.
These will likely be relatively rare (the interval is up to the receiver, but

111



there will at least an order of magnitude less than the Data frames), so they
will not be significant in the total time required.

The CRF will sign one Data frame each tenth second (plus resends due to
packet loss, if required). These frames vary in size (from CRF to CRF)
depending on the number of channels they comprise. With one CSF at
around 1700 bytes per channel and a maximum of about 60 channels plus
the Data frame overhead (less than 100 bytes), the CRF will sign a message
of up to approximately 100kB every ten seconds.

With only one signing every ten seconds, performance should not be a prob-
lem at the CRF.

The IDC The data receiving hosts at the IDC will both create and verify
signatures. Creation is limited to connection establishment and Acknack
frames. Both these actions are too rare to be significant.

Private communication with PTS personnel indicate that approximately 130
CSFs will be received every second at the IDC. These will be encapsulated in
one Data frame from each of the stations continuously sending data. These
stations are the 50 primary seismic stations, the 11 hydroacoustic, and the
60 infrasound stations; a total of 121 stations, or approximately 12 Data
frames per second.

The operations to be executed at the IDC each second are therefore:

• 130 SHA-1 hashes of 1.6kB blocks;

• 12 SHA-1 hashes of blocks ranging from 5kB (3 channels; three-component
stations) to 100kB (60 channels), with an average of about 16kB (10
channels);

• 142 DSA verifications.

All the verifications are planned performed in software.

Timings made on a Sun Ultra10 workstation show that one DSA verification
using OpenSSL takes about 30 milliseconds. This included 300 microseconds—
or 1% of the total time—for computing the SHA-1 hash of a 1.6kB block.

A run of the openssl speed application for timing (for example) SHA-1
shows us that the number of bytes processed per second increases if the
blocks given to SHA-1 increases. As the total size of the data is almost the
same for the 130 1.6kB blocks as the 12 6-64kB blocks, we can conclude
that hashing the latter will take less time than the former. Summing up,
the hashing of all the data should take less than one tenth of a second
(260 ∗ 300µs = 0.078s).

112



If we assume 30ms per signature, verification totals over 4 (0.03∗142 = 4.260)
seconds; 98% percent of the total time. This means that for verification
alone, computing power corresponding to a little over 4 Sun Ultra10 work-
stations is the minimum.

The hardware specifications planned for the signature verification hosts (there
will probably be more than one) are not known to us, but these numbers
show that even though there are many signatures, the hardware requirements
are significant, but not overwhelming.

These values do not take into account that verification may be optimized
when the system parameters of the DSA public key are common to all en-
tities. With common parameters, one of the modular exponentiations in
the verification algorithm (αu1) may be optimized by some precomputation.
Table 20.3 in [Sch96] indicates an improvement of 37.5% when using a com-
mon public component. Such an optimization has an upper bound of (less
than) 50% speed-up, since only one of two exponentiations is affected.

7.9 Threats

We will now go through the threats summarized in chapter 5 and comment
on to which extent they are met by the proposed security architecture. Many
of those threats are of such nature that mechanisms protecting against them
are outside of the main scope of this thesis. In those cases, we will comment
briefly on the nature of the possible defense mechanisms.

We list the threats from chapter 5 here for convenience:

1. Physical event near station.

2. Hardware, software, or firmware malfunction.

3. Private key leak.

4. Access to signing function.

5. Communications or CRF breakdown.

6. Unauthorized command to borehole (from the CRF).

7. Manipulation of data (at the CRF).

8. Unauthorized command to station (from the GCI).

9. Manipulation of data (in the GCI).

10. Communications breakdown (GCI).

113



11. Certificate issued on false or exposed private key.

12. Certificate issued with wrong DN or authorization.

13. Certificate removed from or not posted to CRL.

14. Incomplete signature verification.

15. Faulty data receivers.

16. Data receiver breakdown.

17. Manipulation of data archive.

Threat 1 A physical event is impossible to properly defend against. Firstly,
there may be natural events (e.g. lightning strike or flood) over which we
have no control, and secondly, constantly guarding the sensor’s vicinity is
economically completely infeasible.

The chances of damages to very many stations simultaneously is perceived
to be small enough to accept.

Threat 2 is different. Although there may be accidental malfunctions
(e.g. buggy firmware, faulty hardware), a greater risk is deliberate tam-
pering. First of all, it is important to have procedures for monitoring pro-
duction, transport, and storage of both the digitizer and the authenticator.
Secondly—and more relevant to this thesis—there is a need for procedures
on what happens if the borehole has been opened. This scenario is dis-
cussed in 7.7 and 7.6, and our conclusion is that the for a channel to remain
trustworthy after being off, it should be reinitialized.

Threat 3 is a threat that is met primarily by the demands that the authen-
ticator conforms to FIPS 140-2 level 3, and by having supervision procedures
to make sure that is the case. This includes evaluation of the firmware of
the authenticator (e.g. random number generator).

Threat 4 should be impossible to carry out as long as the authenticator
is in the sealed borehole. It is obvious that the communication channel
provided by the authenticator to handle commands and requests cannot
allow arbitrary data to be signed since that would also allow forged CSFs to
be signed.

114



Threat 5 is a threat that must be handled by insuring that proper re-
dundancy and disaster recover procedures work. To avoid data loss, it is
also important that the authenticator can store as much data as possible
while waiting for the communication to come back up.

Threat 6 is another threat that cannot be prevented by the PKI or the
command protocol, but by securing the CRF and the communication links.

Threat 7 and 9 are perhaps the two most severe threats, with the latter
being the gravest. In our analysis of CD1.1 earlier in this chapter, we argued
that the receiver, when verifying all available information, will be able to
detect any change in the data from the authenticators. The receiver will be
able to do this regardless of where the change happened, as long as it was
after the signature was applied.

If we assume that the correct data is signed in the CD1.1 CSFs, and that
the proper verification procedure is followed, we claim that undetected ma-
nipulation of data in transit between the authenticator and the verifier is as
difficult as forging the signature.

Threat 8 is a threat dealt with by the IMS2.0 protocol. We have shown
that the protocol is resistant to attacks like replay attacks or entity for-
gery. The digital signature on the command provides protection against a
malicious modification of an authorized command in transit. Our imple-
mentation from chapter 6 shows access control mechanisms for insuring that
only commands from authorized command issuers are accepted.

Threat 10 is met by the demand that stations must keep a backlog of 7
days of data. A breakdown, whether as a result of an attack or an accident,
will be quickly discovered, and steps will be taken to make sure alternative
transfer of the data to the IDC is commenced.

Threats 11-13 are not primarily prevented by technical solutions, but by
procedural ones.

Initial certificate issuing for stations are handled by a trusted individual
from the PTS staff observing the key generation process. Certificates to
data requesters and command issuers will likely be completed with visits
to Vienna. A certificate request must be accepted by a 5-man panel before
being processed by the CA. Logs must be kept of all CA activity, and auditing
carried out continuously.

A more severe problem is key updates. When a certificate is about to expire,
a new one must be issued. This procedure is discussed in 7.6. The current

115



procedures do not address the problem on how to insure the authenticity of
the new keys if the authenticator has been exposed to the SO.

We have not found a description of the procedures for certificate revocation.
It is important that any report of a key compromise or any other reason for
revocation is quickly addressed. Again, logging and auditing must make sure
that no mistaken or unauthorized changes are made to the CRL.

Threats 14-16 are met primarily by software and redundancy. In 7.5.2,
we listed what a CD1.1 receiver must do to prevent an attack that was made
after the data left the authenticator. As this software appears to be the only
part of the system that is required to verify the signatures, they are critical
to security.

A breakdown in these services will be far less severe. Stations will not delete
data until it is acknowledged to have been received by the IDC. This is
a similar situation to Threat 10. If the receiving hosts acknowledge the
reception of data, but lose or modify it later, there is a greater risk of data
loss.

The potential impact of an undiscovered (but exploited) malfunction in the
data receivers implies that these hosts must be subject to strict access con-
trol, logging, and auditing.

Threat 17 is also on the outside of the main scope of this thesis. Once
the data is received, and verified to be correct, it is archived for future use.

It is important that write access to the archive is limited to inserting new
data only, and that redundancy is good enough to survive a disaster (fire,
flood, tape and disk corruption).

The DSS signatures made today will not be considered trustworthy forever.
In some scenarios, it is possible to demand the data to be re-signed when
keys expire, but this is infeasible for the sensor data. It is obviously not
possible to return the data to the authenticators for a new signature.

It is possible to introduce signatures made by IDC staff. These signatures
can be added to the old ones (not necessarily one for each CSF, it is probably
more practical to sign data for e.g. a full day in one block), and they can be
replaced before their keys expire.

116



Chapter 8

Conclusion

We have described the security solution presented by the PTS to tackle
the problems encountered in the implementation of a global, comprehensive
nuclear test-ban treaty. We have also provided an implementation of parts
of that solution.

Using our implementation, we have described two different solutions to handle
access control of commands.

Our investigation of the quality of the protocols suggested for command and
control and data transfer have not shown any security concerns. We consider
the IMS2.0 protocol to be unnecessarily complex and difficult to parse.

We listed a series of threats to the system in chapter 5. We closed the analysis
by giving our opinion on to which extent the proposed security architecture
answers to these threats.

A challenging task is to decide on procedures regarding sensors which have
been inoperative. It is our conclusion that if a sensor has been out of oper-
ation, restored to operation, and then at any time later been through a key
update, it can no longer be fully trusted. Other than the key update prob-
lem, it is our opinion that the security architecture meets the most severe
threats against the verification regime.

117



118



Bibliography

[ACL+99] Ross J. Anderson, Bruno Crispo, Jong-Hyeon Lee, Charalampos
Manifavas, Vaclav Matyas Jr., and Fabien A P Petitcolas. The
Global Internet Trust Register. MIT Press, 1999.

[AL99] Carlisle Adams and Steve Lloyd. Understanding Public-Key Infra-
structure: Concepts, Standards, and Deployment Considerations.
Technology Series. New Riders Publishing, 1999.

[Ame86] American National Standardization Institute. ANSI X9.9: Finan-
cial institution message authentication. Technical report, Amer-
ican National Standardization Institute, 1986.

[And01] Ross J. Anderson. Security Engineering. John Wiley & Sons, Inc.,
2001.

[BB03] David Brumley and Dan Boneh. Remote timing attacks
are practical. http://crypto.stanford.edu/~dabo/abstracts/
ssl-timing.html, 2003. To be published in the 12th USENIX
Security Symposium.

[Ben02] Mike Benham. IE SSL vulnerability.
http://lists.insecure.org/lists/bugtraq/2002/Aug/0111.html,
August 2002.

[CF99] S. Chokhani and W. Ford. Internet X.509 Public Key Infra-
structure Certificate Policy and Certification Practices Framework
(RFC 2527). Technical report, Internet Engineering Task Force,
Mar 1999.

[Com94] Comprehensive Nuclear-Test-Ban Treaty. CTBT treaty text.
URL:http://www.ctbto.org/treaty/treatytext.tt.html, 1994.

[Com01a] Comprehensive Nuclear-Test-Ban Treaty. The global communic-
ations infrastructure and the international data centre. http://
www.ctbto.org/reference/outreach/booklet4.pdf, Aug 2001.

119



[Com01b] Comprehensive Nuclear-Test-Ban Treaty. The global verification
regime and the international monitoring system. http://www.
ctbto.org/reference/outreach/booklet3.pdf, Aug 2001.

[COS86] Don Coppersmith, Andrew M. Odlyzko, and Richard Schroeppel.
Discrete logarithms in GF(p). Algorithmica, 1(1):1–15, 1986.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in crypto-
graphy. IEEE Transactions on Information Theory, IT-22(6):644–
654, 1976.

[DHR+98] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka.
S/MIME version 2 message specification. (RFC 2311). Technical
report, Internet Engineering Task Force, March 1998.

[Dif88] Whitfield Diffie. The first ten years of public-key cryptography.
Proceedings of the IEEE, 76(5):560–577, May 1988.

[ElG85] T. ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithm. IEEE Transactions on Information
Theory, IT-31:469–472, 1985.

[Ell00] Carl M. Ellison. Naming and certificates. In Proceedings of the
tenth conference on Computers, Freedom and Privacy, pages 213–
217. ACM Press, 2000.

[FB96] N. Freed and N. Borenstein. Multipurpose internet mail exten-
sions (MIME) part one: Format of internet message bodies. (RFC
2045). Technical report, Internet Engineering Task Force, Novem-
ber 1996.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ron L. Rivest. A digital
signature scheme secure against adaptive chosen-message attacks.
SIAM Journal on Computing, 17(2):281–308, 1988.

[Gut] Peter Gutmann. cryptlib Encryption Toolkit. http://www.cs.
auckland.ac.nz/~pgut001/cryptlib/.

[HPFS02] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. (RFC 3280). Technical report, Internet Engineer-
ing Task Force, April 2002.

[Int97a] International Telecommunications Union - Telecommunications
standards section. ITU-T recommendation X.500. "information
technology–open systems interconnection–the directory: Over-
view of concepts, models, and services.". Technical report, Inter-
national Telecommunications Union - Telecommunications stand-
ards section, June 1997.

120



[Int97b] International Telecommunications Union - Telecommunications
standards section. ITU-T recommendation X.509. "information
technology–open systems interconnection–the directory: Authen-
tication framework.". Technical report, International Telecom-
munications Union - Telecommunications standards section, June
1997.

[Int98] International Telecommunications Union - Telecommunications
standards section. X.208 - ASN.1. Technical report, International
Telecommunications Union - Telecommunications standards sec-
tion, 1998.

[Kah67] David Kahn. The Codebreakers - The Story of Secret Writing.
Scribner, 1967.

[Kal98a] B. Kaliski. PKCS #1: RSA Encryption Version 1.5 (RFC 2313).
Technical report, Internet Engineering Task Force, March 1998.

[Kal98b] B. Kaliski. PKCS #7: Cryptographic message syntax version 1.5.
(RFC 2315). Technical report, Internet Engineering Task Force,
March 1998.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing
for Message Authentication (RFC 2104). Technical report, Inter-
net Engineering Task Force, February 1997.

[Ker83] Auguste Kerckhoffs. La cryptographie militaire. Journal des Sci-
ences Militaires, IX:5–38, January 1883.

[Koc] Werner Koch. Libgcrypt. http://www.gnu.org/directory/
security/libgcrypt.html.

[Lin93] J. Linn. Privacy Enhancement for Internet Electronic Mail:
Part I: Message Encryption and Authentication Procedures (RFC
1421). Technical report, Internet Engineering Task Force, Febru-
ary 1993.

[LV01] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic
key sizes. Journal of Cryptology: the journal of the International
Association for Cryptologic Research, 14(4):255–293, 2001.

[Mic01] Microsoft Corp. Microsoft security bulletin MS01-017.
http://www.microsoft.com/technet/security/bulletin/
MS01-017.asp, March 2001.

[Mic02] Microsoft Corp. Microsoft secur-
ity bulletin MS02-50, September 2002.
http://www.microsoft.com/technet/security/bulletin/MS02-
050.asp.

121



[MvOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[Nat77] National Bureau of Standards. Data encryption standard (DES).
Technical Report FIPS 46, National Institute of Standards and
Technology, 1977.

[Nat80] National Bureau of Standards. DES modes of operation. Technical
Report FIPS 81, National Institute of Standards and Technology,
Dec 1980.

[Nat94] National Institute of Standards and Technology. Digital signature
standard (DSS). Technical Report FIPS 186, National Institute
of Standards and Technology, May 1994.

[Nat95] National Institute of Standards and Technology. Secure hash
standard. Technical Report FIPS 180-1, National Institute of
Standards and Technology, April 1995.

[Nat01a] National Institute of Standards and Technology. Advanced en-
cryption standard (AES). Technical Report FIPS 197, National
Institute of Standards and Technology, Nov 2001.

[Nat01b] National Institute of Standards and Technology. Security require-
ments for cryptographic modules. Technical Report FIPS 140-2,
National Institute of Standards and Technology, Nov 2001.

[Pes01] P. Pesnick. Internet message format. (RFC 2822). Technical re-
port, Internet Engineering Task Force, March 2001.

[Pre] Preparatory Commission for the Comprehensive Nuclear-Test-
Ban Treaty Organisation. CTBTO - Preperatory Commission
for the Comprehensive Nuclear-Test-Ban Treaty Organisation.
http://www.ctbto.org/.

[Riv92] R. Rivest. The MD5 message-digest algorithm. Technical report,
Internet Engineering Task Force, April 1992.

[RSA78] R.A. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. In Communic-
ations of the ACM, volume 21, pages 120–126, 1978.

[Sch96] Bruce Schneier. Applied Cryptography - Protocols, Algorithms,
and Source Code in C. John Wiley & Sons, Inc., 2nd edition,
1996.

[Sim91] Gustavus J Simmons. How to insure that data acquired to verify
treaty compliance are trustworthy. In Gustavus J Simmons, ed-
itor, Contemporary Cryptology, pages 615–630. IEEE Press, 1991.

122



[Sti95] Douglas R. Stinson. Cryptography - Theory and Practice. CRC
Press, 1995.

[The] The OpenSSL Project. OpenSSL: The Open Source toolkit for
SSL/TLS. http://www.openssl.org/.

[VMC02] John Viega, Matt Messier, and Pravir Chandra. Network Se-
curity with OpenSSL. Cryptography for Secure Communcations.
O’Reilly and Associates Inc., June 2002.

[WGB] WGB. The structure of commands to ims stations. Non-Paper.

[YHK95] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access
Protocol (RFC 1777). Technical report, Internet Engineering Task
Force, March 1995.

123


