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Abstract

Describing progression of a disease or the life history of an individual with multi-
state models has been a topic of interest for many years. A challenge with these
studies is that the data are often not continuously observed, i.e. the transition
times are not recorded precisely and therefore interval-censored. The aim of
this thesis is to introduce modeling of transition times as the threshold crossing
times for Gamma processes in multi-state models for interval-censored data. To
make this possible, we construct a suitable likelihood framework, where we set
up a general likelihood for the three-state progressive model, the illness-death
model, the four-state progressive model and a four-state illness-death model.
The likelihood framework we create is general, meaning the transition times can
be modeled by any parametric survival model. The fitting of our parametric
models and the large-sample properties of the maximum likelihood estimates
are also investigated using simulated data.

Another central theme in this thesis is the Markov property. Multi-state
models with interval-censored data often rely on the Markov property, and
we therefore investigate the Markov property in our model framework. By
calculating the transition probabilities, we prove that our model framework
does not necessarily rely on the Markov property. For example, when we
model the transition times as the threshold crossing times for Gamma processes,
the Markov property does not hold. However, if the transition times are
exponentially distributed, the Markov property is satisfied and we end up with
a homogeneous Markov model. For application purposes, we consider a dataset
on CAV (coronary allograft vasculopathy), a post-transplant complication. The
disease progression of CAV is described with a four-state illness-death model.
We model the transition times as the threshold crossing times for Gamma
processes, and calculate the maximum likelihood estimates. In the end, we
compare our results to homogeneous and inhomogeneous Markov models, both
with and without covariates. Our findings indicate that the models with Gamma
processes are preferred over both the homogeneous and inhomogeneous Markov
models. This holds both with and without covariates.
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CHAPTER 1

Introduction

Survival analysis is a field in statistics, where one studies lifetime and survival
time. Lifetime is the time for an event to occur for individuals in a population.
The definition of survival time is the time from an initial event to the event
of interest. The event of interest can for example be death or the onset of a
disease. Data where the event can only happen once are called survival data
(Aalen et al., p. 2). Survival data are used in a variety of contexts, for
example medicine, biology and engineering. An example is the time from a
patient gets cancer treatment until death.

There also exist data with multiple events of interest. If there is a possibility
of more than one final event of interest, we are in a situation with competing
risks (Putter et al., . If several events can happen after each other and an
event can happen multiple times, we are in a situation with multiple states. We
can then make use of multi-state models (Putter et al.,[2007). A multi-state
model is a model for a stochastic process, which at any point in time must
occupy one of a set of discrete states (Hougaard, . Unlike in standard
survival models, there are multiple paths in multi-state models, because the
individuals can transition between several states. The time of transition from
one state to another is called the transition time. Since there are multiple
paths, we do not necessarily know which transitions occurred (Commenges,
. By using a multi-state model, we can describe many different events, for
example progression of a disease or the life history of an individual. Multi-state
models therefore gives a great amount of flexibility for modeling different types
of longitudinal data (Hougaard, .

Progression of diseases, like cancer, has been a topic of interest for many
years. For example in Armitage and Doll , they study carcinogenesis,
which is the process where normal cells are transformed into cancer cells. They
test if cancer is always the end-result for different successive changes in the cells.
This is done by examining age specific mortality rates of 17 types of cancer.
In addition, they obtain a formula where they weight the strengths of these
carcinogenic factors at different periods in time. Frank argues that the
results in Armitage and Doll mark a divide in cancer research because
they created mathematical models with principles of cancer progression and
epidemiology before one knew the roles of different genes.

Since Armitage and Doll , there has been a great amount of literature
on modeling progression of diseases. Progression of cancer is still a frequently
studied topic, where recent literature is for example found in Putter et al.

(2006)), Meira-Machado et al. (2009) and Le-Rademacher et al. (2018). In Putter
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1. Introduction

et al. they analyze 2795 patients from a breast cancer trial by applying
a multi-state model. They show how the model can be used to predict the
development after surgery for a fictitious patient with a given set of prognostic
factors and treatment for different intermediate events. For inference in this
multi-state model, they use a stratified Cox regression model. In Meira-Machado
et al. , they review different modeling approaches for multi-state models.
They consider both parametric and nonparametric approaches, and apply the
resulting models on breast cancer data. In Le-Rademacher et al. they
study how multi-state models can give a deeper understanding of the effect of
treatment in cancer-clinical trials.

A frequently studied multi-state model, regardless of whether the disease
of interest is cancer, HIV, dementia or any other irreversible disease, is the
three-state illness-death model. A three-state illness-death model, which we
from now on refer to as the illness-death model, is illustrated in Figure[[.1] The
individual can transition from healthy to diseased, from healthy to dead or from
diseased to dead. A variant of this illness-death model is for instance discussed
in Fix and Neyman and Sverdrup . In Fix and Neyman ,
they present a stochastic model of recovery, relapse and death of cancer patients.
To capture those people lost after recovery, they use four states. They define
state 0 as being in cancer treatment, state 1 as being dead immediately after
cancer, state 2 as recovered, while state 3 is lost after recovery, which means
either death from other causes or difficulties tracing the patient. In recent
years, illness-death models are often studied with a nonparametric approach.
Examples of a nonparametric approach to an illness-death model are for example
found in de Ufia-Alvarez and Meira-Machado and Frydman .

State 0: Healthy State 1: Diseased

\ /

State 2: Dead

Y

Figure 1.1: Tllness-death model

The data we consider in this thesis are interval-censored data where each
individual is screened (observed) multiple times. This is often called panel data.
Panel data are when we observe the state of a process an arbitrarily set of times,
and one do not necessarily know the exact time of transition, meaning the data
can be interval-censored (Jackson, . Interval-censored data means that we
do not know the exact point an event happened, only that it happened between
two time points (Lindsey & Ryan, . The setting is therefore more complex
since the data are not continuously observed, i.e. the transition times are not
recorded precisely. In this thesis, when we refer to interval-censored data in a
multi-state setting, it is the same as panel data where the transition times are
not known exactly.

In this thesis, we consider a fully parametric approach when studying multi-
state models for interval-censored data. We model the transition times as
the threshold crossing times for Gamma processes. A Gamma process is a
continuous process in continuous time where the increments follow a Gamma
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distribution (Caroni, p. 76). Modeling the transition times as the
threshold crossing times for Gamma processes for multi-state models with
interval-censored data, has to the best of our knowledge never been done before.
The type of model we just described, will in the rest of this thesis be referred
to as the Gamma process model.

We construct a suitable likelihood framework for multi-state models with
interval-censored data for the Gamma process models. This likelihood framework
is general, meaning the transition times can be modeled using any parametric
survival times model. The likelihood framework is related to the idea behind
the general models in Hougaard (1999), but our framework is tailored to
interval-censored data. In addition, we also define the likelihood in a different
way, meaning that we construct our likelihood by dividing it into different
contributions, based on the time points for screening and in which states the
individual is observed. We call these groups of different likelihood contributions
types. The number of types required depends on the number of states and
possible transitions between the states. In an illness-death model, one individual
can for instance be observed in state 0 at all the screening time points, while
another individual can first be observed in state 0, then in state 1. These two
individuals are different types since they give different likelihood contributions.

The fitting of our parametric models and the properties of the maximum
likelihood estimates (MLE) are also investigated by using simulated data. This
means we check the large-sample properties of the MLEs by estimation. We
find that the large-sample properties in general are satisfied.

A property multi-state models often rely on, is the Markov property. In a
multi-state setting, the Markov property means that given the present state
and history of an individual, the transition to the next state and the time this
occurs, only depends on the present state (Putter et al., . One reason is
that when the transition to the next state also depend on when the individual
was in all of the previous states, the model becomes much more complicated
(Hougaard, p. 159). We therefore want to investigate the Markov property
in our model framework. By calculating the transition probabilities, we prove
that the Markov property is not in general fulfilled in our models. For example,
the Markov property is not fulfilled in the Gamma process model. However,
if the transition times are exponentially distributed, the Markov property is
fulfilled. Therefore, by changing the modeling of the transition times, we can
adapt to the data based on whether the Markov property is realistic or not.

We apply the likelihood framework we set up on a dataset on CAV (coronary
allograft vasculopathy), a complication after a heart transplantation. The
dataset CAV is found in the msm-package in R, see Jackson and Jackson
for further information. Since the msm-package is primarily based on
Markov models, the CAV-data has frequently been studied using Markov models.
We therefore compare the Gamma process models with the Markov models. We
use AIC for model selection, and the model with the lowest AIC is considered
to be the preferred model. For the CAV-data, we find that the Gamma process
models have a much lower AIC than the homogeneous and inhomogeneous
Markov models. This holds for the models with and without covariates. We
then discuss various explanation for why the Gamma process models appear to
be better than the Markov models for this dataset. In addition, for the models
without covariates, we also compare the total survival probability functions
from the Gamma process models and the Markov models to a Kaplan-Meier
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1. Introduction

estimate of the total survival probability.

This thesis is organized as follows. In Chapter[2] we present the preliminaries
and background of the thesis. We focus on the theoretical aspects, both
relating to interval-censored data, maximum likelihood theory and generalities
about first-hitting time regression models. In Chapter [3] we construct the
likelihood framework using likelihood contributions which we call types. Then
we investigate the model construction through simulations in Chapter [4 We
check that the estimated parameters are close to the true parameters and
that the maximum likelihood estimates are close to normally distributed. We
investigate the Markov property in our model framework in Chapter [5} Further,
in Chapter [0} we apply our likelihood construction on a dataset called CAV.
Finally, we summarize and discuss future work in Chapter [7]



CHAPTER 2

Preliminaries

2.1 Basic Concepts in Survival Analysis

In Chapter [} we introduced the terms survival time and lifetime. We defined
lifetime as the time for an event to occur for individuals in a population, while
survival time is defined as the time from an initial event to the event of interest
(Aalen et al., p. 2). An example of survival time is the time from cancer
diagnosis to death for a certain individual.

The survival function gives the probability that the event of interest has not
happened by time ¢ (Aalen et al., p. 5). We define the survival function
in Equation [2.1

St)=Pr(T>t)=1—-Pr(T <t)=1-F(t), (2.1)
where F'(t) is the cumulative distribution function. The density becomes

An important concept in survival analysis is censoring. Assume we have a
study about cervical cancer, where we follow women over time. There are three
possibilities for a woman at the end of the study; the woman can be healthy,
have cervical cancer or be dead. However, we do not know if one of the healthy
women will develop cervical cancer later on. These incomplete observations are
therefore censored, and we call them censored survival times (Aalen et al.,
p. 3).

In the example of censoring above, an individual may leave the study before
it ends or the study ends before the event has occurred. This is the most
common type of censoring, and is called right censoring. When we have right
censoring, either the event for individual ¢ is observed before the censored time
C; and we observe the lifetime T, or the true lifetime is to the right of C;. This
means we either know the true lifetime T; or the censoring time C; (Lawless,
p. 52).

In addition to right censoring, we also have left and interval censoring. Left
censoring is when an event has already happened before the starting point,
but you do not know exactly when it happened (Clark et al., . The true
lifetime 7; is then to the left of the censoring time C;. For example assume we
study at which age children learn partial integration. Then we might have left
censoring, since some of the children may already know partial integration at
the start of the study.



2. Preliminaries

Interval censoring happens if you do not exactly know at which time point
an event occurred, only that it happened between two time points. For an
individual i, we only observe data which consist of an interval (U;, V;]. The
true lifetime 7T; then lies somewhere in between these two timepoints, meaning
U, <T; <V; (Lawless, p. 64). An example is relapse of a disease. If you
take blood samples every third month and the last sample was normal and the
next sample shows relapse, then you do not know exactly at which point in
time the relapse happened. The only information you have is that it happened
sometime in these three months. Interval-censored data in survival analysis is for
example discussed in Lindsey and Ryan (1998). In that tutorial, they argue that
there is a lack of well-known statistical methodology for interval-censored data.
One therefore often assumes that the event happened at the beginning, midpoint
or end of each interval and then use standard methods for time-to-event data.
This approach may lead to invalid inferences. Especially, the standard errors
will be underestimated. In their paper, they therefore compare and illustrate
available methods, both parametric and nonparametric, where they account for
the data being interval-censored.

The hazard rate is another relevant concept in survival analysis. The hazard
rate «(t) is defined as

1
t)= lim —Prt<T <t+At|T >1).
olt) = Jim, pgPrit < T <+ AT > 1)
a(t)dt is interpreted as the probability that the individuals not having
experienced the event by time t, will experience the event in the small time
interval [t,t+dt) (Aalen et al.,[2008 p. 6). The connection between the survival
function and the hazard function is
S'(t)

“U="50

(Aalen et al., |2008] p. 6).

The cumulative hazard rate, A(t), is defined as

A(t) = /Ot a(s)ds.

The cumulative hazard rate is interpreted as an accumulation of the hazard
functions over time. In parametric models, it is also connected to the survival
function through

A(t) = ~log(5(1))
(Aalen et al., p. 6).

It is not straightforward to estimate the hazard rate, but the cumulative
hazard rate can be estimated nonparametrically by the Nelson-Aalen estimator
(Aalen et al., [2008, p. 6). The Nelson-Aalen estimator is given by

A 1
AB =2 Y(T;)

T;<t

In order to explain the intuition of the Nelson-Aalen estimator, we start by
splitting the interval [0,¢] into small intervals, for example [s, s + ds). Each
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2.2. Competing Risks

interval contains at most one observed event. The contribution to the cumulative
hazard for this interval is a(s)ds. «a(s)ds is interpreted as the conditional
probability that an event occurs in this interval, given that it has not happened
before time s. If no event is observed in this time interval, a(s)ds is estimated
to be zero. If an event is observed at time Tj € [s,s + ds), then a natural
estimator for a(s)ds will be one divided by the number of individuals still at
risk, which is 1/Y(s) = 1/Y (T}). By aggregating these contributions, we get
A(t), which is a sensible estimator for A(t) (Aalen et al., [2008, p. 72).

The Kaplan-Meier estimator is a nonparametric way of estimating the
survival function. We start by giving an intuitive introduction to the Kaplan-
Meier estimator. The first step is to divide the interval [0, ] into a number of
small time intervals 0 =ty < t; < --- < tg =t. Then using the multiplication
rule for conditional probabilities

K
S(t) = ] Sttaltr—1),
k=1

where S(v|u) for v > u means the conditional probability that an event will
occur later than time v, given that it has not happened yet at time u. An
important assumption is that there are no tied events, and the time intervals are
so small that they contain at most one event. If no event is observed in (tx_1, t],
we estimate S(tx|tx—1) by 1, but if an event is observed in Tj € (ty_1,tx], it is
natural to estimate S(ty|tx—1) by 1 —1/Y (tx—1) =1 —1/Y(T}). The Kaplan-
Meier estimator becomes

(Aalen et al., [2008, pp. 90 - 91).

2.2 Competing Risks

In this section, we give a brief introduction to a special case of multi-state
models, called competing risks. In a competing risks situation, there is more
than one possible endpoint, which means there is more than one possible cause
of failure. Figure shows a competing risks situation with three different
causes of failure. The causes of failure depend on the research question, and can
for example be different causes of death. A criticized assumption for competing
risks is that the risk of failure in the remaining causes are unchanged if one
cause of failure is removed. This is often true in industrial settings, but not in
medical settings (Putter et al., [2007).

Competing risks problems are often formulated by using latent failure times
for each type of failure. Let the failure times Y7, ...,Y,, correspond to each type
of failure J = 1,...,m. We observe the time point T" and type of failure J, where
T = min(Yy,...,Yy) and J = {j|Y; <Yy, k=1,...,m} (Prentice et al.,[1978).
This means that for the observed failure time 7" = Y}, the individual fails of
cause j. The focus is often on the joint distribution of the times to the J events.
The joint survival function is then S(t1,...,t;) = Pr(Yy > t1,...,T; > tj).
However, one issue is that without any further assumptions, the joint survival
function not identifiable from the observed data (Putter et al.,[2007). There
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Cause 1

Alive

Y

Cause 2

Cause 3

Figure 2.1: Competing risks model

exists a large amount of literature about competing risks, see for example Cox
1959)), Prentice et al. (1978)), Berman (1963)), Nelson (1970) and Putter et al.
2007)).

Competing risks can also be analyzed using stochastic thresholds and first-
hitting time regression models. Studying semi-competing risks using stochastic
thresholds is for example done in Sildnes and Lindqvist . Semi-competing
risks means that both a terminal event, for example death, and a non-terminal
event, for example disease recurrence, are considered. They present a model,
where time to event is a stochastic process. The time to the terminal event is
the first passage time to a fixed level ¢, while for the non-terminal event is a
stochastic threshold S. S is independent of the stochastic process. They let the
stochastic process be a Gamma process.

2.3 Multi-State Models

Different approaches to multi-state models have been reviewed and analyzed in
a variety of settings, for example in Andersen and Keiding , Hougaard
and Putter et al. (2007). A multi-state model is defined as a model for
a stochastic process, where an individual at any point in time occupy one of
a small set of discrete states (Hougaard, . The states in a multi-state
model are divided into initial, intermediate/transient and final/absorbing states.
The absorbing state is the endpoint, and the individual can not leave this state
when it has been reached. The states in the middle are called intermediate or
transient states (Putter et al., .

The complexity of a multi-state model depends on the number of states and
whether the process is progressive or not. Two common multi-state models are
presented in Figures 2:2) and 2.3] The model in Figure 2:2]is a k-progressive
model, while the model in Figure 2.3] is the illness-death model. A process
is progressive when each state, except the initial state, has only one possible
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v
v

State 1 State 2 State 3 > ... » State k

Figure 2.2: k-state progressive model

A,

State 0: Healthy State 1: Diseased

\ /

State 2: Dead

Figure 2.3: Illness-death model

transition into it. In a progressive model, the current state includes information
about which states have been visited and in which order. The time of transition
is not necessarily included (Hougaard, [1999). An illness-death model is not
progressive, since the individual also can transition directly from the initial
state to the absorbing state.

Following Hougaard p. 144) we consider a stochastic process X;,t €
[0,00), where X; = ¢ if the process is in state ¢ at time t. The process is right
continuous and piecewise constant, with limits from the left. When we say
history or past at time ¢, we mean the information in the development of the
process over the time [0,¢]. We then have the stochastic process X, where
0 < s <t. The transition probability is

Py(t) = Pr(X, = 0),

which is the probability of a process X being in state ¢ at time ¢. Note that
if the processes do not start in state 0, the expression should depend on the
initial state. The transition probability at time v is defined as

Py(v,t) = Pr(X; = €| Xy, u € [0,0]),

where we condition on the development until time point v. From Hougaard
(1999)), we have that the transition intensity (hazard) for transitioning from
state m to state ¢ can be expressed as

T Pr{Xt-i-At = €|Xt* = m}
Gme(t|Xu,u € 10,1)) = AI%I{}O Az . (2.2)

2.3.1 Markov, semi-Markov and extended Markov models

A common property in multi-state models is the Markov property. In a multi-
state setting, the Markov property means that given the present state and
history of an individual, the time of transition to the next state, only depends
on the present state (Putter et al., . More formally, the Markov property
can be written as

Poy(v,t) = Pr(Xy =X, =m) = Pr(X; =X, =m, X,,u € [0,v)),

for v <t (Hougaard, [2000} p. 144) .
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We define the transition intensities in the same way as in Equation [2.2] Let
us consider a four-state illness-death model where it is possible to transition
both ways. Figure illustrates the possible transitions.

State 0 State 1 State 2

\ﬁ/

State 3

Figure 2.4: Four-state illness-death model with transitions both ways

The possible transitions with corresponding transition intensities, are written
in a transition matrix called Q. The transition matrix corresponding to Figure

24 is

—(q12(t)+aq13(t)+q14(t)) q12(t) q13(t) q14(t)
Q(t) _ g21(t) —(g21(t)+q23(t)+q24(t)) q23(t) q24(t)
g31(t) g32(1) —(g31(t)+g32(t)+g34(t)) g34(t)

qa1(t) qa2(t) q43(t) —(qa1(t)+qa2(t)+qas(t))

After the transition matrix @ is defined, one is often interested in the
transition probabilities. The transition probabilities can be calculated directly,
which we do in Section For homogeneous Markov models, one can also
use the Kolmogorov backward equation (Jackson, . In a homogeneous
Markov model, the transition intensities are constant and do not depend on
time (Hougaard, p. 160). Following Hougaard p. 160), we consider
a continuous-time Markov process with a time-homogeneous K x K Q-matrix,
the transition probability P(t) for ¢ > 0 is the solution to the Kolmogorov
backward equation P’(t) = QP(t) subject to P(0) = Ik, where Ik is the
identity matrix. The solution becomes the matrix exponential

P(t)=¢e"% =

If the K x K matrix @ has K linearly independent eigenvectors, then we can
express this exponential using an eigenvalue decomposition of @ (Van Den

Hout, [2017, p. 199). We define
P(t)=ReNOR!,

where R consists of the eigenvectors to @ and IN is a matrix with the
eigenvalues on the diagonal. An example of complete calculations using
eigenvalue decomposition in a four-state illness-death model is found in Klotz
and Sharples . In addition, we also do similar calculations in Chapter

The Markov model for panel data, was described for the first time in
Kalbfleisch and Lawless and Kay . They derive the likelihood from
the transition probability matrix. The same procedure is used in Jackson
for the msm-package. The likelihood is then a product of the probabilities
of transitioning between the observed states, for all the individuals 7 and
observation times j. For interval-censored transition times, the likelihood

10



2.3. Multi-State Models

becomes

L£(Q) = HLi = HLi,j = pr(tij)x(ti,jﬂ)(ti,jﬂ —tij)s
7 1,7 1

0]

where each component L; ; is the entry of the transition matrix P(t) for the
X (tij)th row and X (¢; j41)th column evaluated at t = ¢; j 11 —t;;. The likelihood
L(Q) is maximized in terms of log(g.s) and one can use standard optimization
algorithms to do this. If time of death is known, we have X (¢; j41) = D, the
the likelihood contribution at this time, is summed over the unknown state m
at the instant before death

Lij= Z Px(tiy),m(tij+1 = Lij)qm,D-
m#D

Another type of Markov model is the time-inhomogeneous model. In a
time-inhomogeneous model, the transition intensities may depend on time. An
example is piecewise-constant intensities where one chooses change points for
the intensity function (Jackson, . For example, if the transition intensities
change after 5 years, then one constructs a model with the time period as
a factor. We then get two levels, (—o0, 5] and [5,00), where the first period
(—00,5] is the baseline (Jackson, [2011). We discuss the implementations of a
time-inhomogeneous Markov model in Chapter [6] where we also consider an
example of a time-inhomogeneous Markov model for the CAV data. Another
example of an analysis of a time-inhomogeneous Markov model is found in
Gil et al. where they study ALS in an illness-death model. They use
a time-inhomogeneous model where the transition intensities are piecewise
constant and they consider two periods where the intensities vary between these
two periods.

For some type of data, it is also useful to relax the Markov property. An
example is the extended Markov models. In the extended Markov models, the
hazard functions may depend on the time of the latest transition. A semi-
Markov model is a special case of an extended Markov model. In a semi-Markov
model, the hazard does not depend on the current time, but on the duration of
the current state (Hougaard, pp. 168-169). An example of a semi-Markov
multi-state model is for example found in Foucher et al. (2007)). In this paper,
they define a semi-Markov model where they allow for interval-censored data.
They define parametric hazard functions with a U- or N-shape, more specifically
the generalized Weibull hazard function, and the initial states are determined
according to covariates. The hazard function from state i to j is given by

1 dp o \Vii\ 10—V v, rdp .\ i1
a”(dh’,,):7<1_~_(L) J) J J(L) j ’

Gij Tij 0ij 045

where dp, » = th r41 — thr > 0 and tp . is the time of the rth transition for the
hth subject. In addition, v;; > 0 is the shape parameter, o;; > 0 is the scale
parameter and 6;; is the location parameter. Each modeling approach is specific
of each transition. They evaluate a multi-state model with several absorbing

states, and apply their model on a kidney transplant recipient follow-up.
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2. Preliminaries

2.3.1.1 Example: Three-State Progressive Model

v
v

State 0 State 1 State 2

Figure 2.5: Three-state progressive model

In this part, we give an example of a three-state progressive model for
interval-censored data for a homogeneous Markov model. ¢,¢(t) is the hazard
for the transition from state m to state ¢ at time ¢. The cumulative hazard for
leaving state 0 in the time interval (t1, 2] is

2
A1(t1,t2)=/ qo1 (u)du,

t1

and the same for leaving state 2

to
Az(tl,t2)=/ q12(u)du,
ty

We assume that state 3 is the absorbing state. Then qo2(t) = q10(t) = qa20(t) =
g21(t) = 0 and ¢o2(t) = 1. The corresponding Q-matrix is

—qo1 Qo1 0
Q=] 0 —q2 q
0 0 1

Since this model is quite small, we can find P(¢) in two different ways.
Either by using eigenvalue decomposition, as we explained in Section or
by finding the probabilities directly. It is easier to calculate the transition
probabilities directly than going through the eigenvalue decomposition for this
three-state progressive model. We follow Van Den Hout p. 35), which
finds the probabilities directly. These derivations constitute a special case of
the general likelihood construction which we present in Chapter [3] Assume an
exponential model, where the hazard is constant, which gives ¢,s(t) = ¢s. The
transition probabilities p,,¢(t1,t2) = Pr(X;, = | X, = m) are

poo(ti,t2) = Si(ta — t1) = exp(—Ai(t1,t2)) = exp(—qo1(t2 — t1))
to

po1(ti,t2) = S1(u — t1)qo1 (u) Sz (ta — u)du
ty

to
/ exp(—qo1(u — t1))qo1 exp(—qi2(te — u))du
ty

qo1 ( )
=T (ex t — tg)) — ex bt
q12 + qo1 p(qi2(tr —12)) p(qo1(t1 —t2))

po2(ti,t2) =1 — poo — Po1

-1 qo1 exp(—qlg(tz _ fl)) + qi12

- ———— exp(—qo1(te — t1
q12 + qo1 q12 + qo1 ( ( )

12



2.3. Multi-State Models

p1o(t1,t2) =0
pi1(ti, t2) = Sa(ta — t1) = exp(—Az(t1,t2)) = exp(—qi2(t2 — 1))
pia(t,t2) =1 —pri(ts, t2) = 1 — exp(—qu2(t2 — 1))
p20(t1,t2) =0
p21(t1,t2) =0
p2a(ti,t2) =1

We get that
—qo1t go1 —qi2t _ ,—qo1t _ qo01 —qi2t q12 —qo1t
¢ q12+4o1 <e € ) 1 qi12+4o1 ¢ + q12+4o1 ¢
P(t) = 0 e~ q12t 1 — e~ q12t
0 0 1

2.3.1.2 Examples: Markov Models for Estimation of Dementia

We present two examples of application and construction of Markov models for
an irreversible disease, in this case dementia. The data are interval-censored,
except time of death which is assumed to be known exactly. In Jack Jr. et
al. (2016)), they consider a multi-state Markov model while in Williams et al.
(2020), they consider a hidden multi-state Markov model. The dataset consist
of at least two biomarkers, amyloid and neurodegeneration. It is considered
known in the medical community that amyloid protein buildup in the brain and
significant neurodegeneration are associated with dementia (Williams et al.,
. In Figure and Figure AT means high amyloid protein buildup
and N1 means significant neurodegeneration. In both of these papers, they are
especially interested in the relationship between age and dementia.

ATNT

N T

AN~ ATN* Dementia

o~ 7

ATN~

Death

Figure 2.6: The multi-state model in Jack Jr. et al. (2016]). AT means high
amyloid protein buildup and N means significant neurodegeneration

Figure [2.6]illustrates the possible transitions in the Markov model in Jack Jr.
et al. (2016). The model consists of six states and an individual can always
transition directly to death. They allow the transition probabilities to vary
with age. To construct the overall likelihood, they use data from different
data sources. In the end, they maximize the likelihood and use the results to
calculate the estimated transition rates.
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A" Dem
(State 5)
A-NT
(State 3)
v \
AN~ ATNT ATDem
(State 1) (State 4) (State 6)
N /
ATN~
(State 2)
‘ Death
(State 7)

Figure 2.7: The multi-state model in Williams et al. (2020). AT means high
amyloid protein buildup, Nt means significant neurodegeneration and Dem
means dementia

In Williams et al. they build on the Markov model in Jack Jr. et al.
(2016)), where the possible transitions are illustrated in Figure They expand
the model to seven states, in order to pinpoint the Alzheimer transition, from
state 4 (ATNT) to state 6 (AT Dem). In addition, they consider a hidden
Markov model (HMM) instead of a Markov model. A hidden Markov model
is a double stochastic process. It consists of an underlying stochastic process,
which is not observable, but can be observed through another set of stochastic
processes (Rabiner & Juang, [1986). They use a HMM in Williams et al.
because the underlying state sequences for the patients are not observed in their
data. They therefore use the responses emitted from the underlying process to
give information about the underlying state.

The HMM in Williams et al. consists of seven states where the
individual can always transition directly to death from any of the states in
the model. They estimate the transition intensities for each of the 13 nonzero
transition rates illustrated in Figure by ¢ for I € {1,...,13}

log(q;) = Bél) + ﬁ%l) -age + ﬁél) -male + B:())l) -educ + Bil) - apoed,

where the covariates are age, sex, years of educations and presence of an APOE-
€4 allele. APOE-€4 allele is known to increase the risk of A+ (Williams et al.,
2020). They define the transition matrix as
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—(q1+q2+q3) q q2 0 0 0 q3
0 —(ga+g5) 0 qa 0 0 s
0 0 —(g6+q7+4qs) 96 q7 0 qs
Q = 0 0 0 —(g9+q10) 0 q9 q10
0 0 0 0 —(qu1t+q12) @1 @2
0 0 0 0 0 —qi3  q13
L 0 0 0 0 0 0 0 ]

In Williams et al. they find the transition probabilities using these
transition intensities. They use the transition probabilities and the emitted
responses to calculate the likelihood for the HMM. The four emitted responses in
this analysis are (i) log(PIB — 1), (ii) thickness, (iii) MMSE and (iv) dementia
diagnosis. PIB is the measure of the amyloid buildup (A) and thickness is the
measure of neurodegeneration (N). MMSE is a Mini-Mental State Exam, which
is a questionnaire-based test to see whether a person has cognitive impairment
or not. If a response is missing, it is integrated out of the likelihood (Williams
et al., . In order to estimate the parameters in the HMM, they propose
a hierarchical Bayesian approach where the model is fitted by Markov Chain
Monte Carlo (MCMC).

2.3.2 General Models

In this part, we introduce the general progressive models presented in Hougaard
and Hougaard . These models do not rely on the Markov property,
which makes them different from the already presented Markov models.

We start by observing a set of n processes over specified time periods. If
the absorbing state is not reached, the end of the observation is a censoring
time. However, if the absorbing state is reached, there is no information about
the process after this state is reached. We observe E events, where the times
of transitions are T1,...,Tr and the states the transitions lead into are called
X1,...,Xg (Hougaard, .

Following Hougaard p.159), we present the transition probabilities in
a general progressive model. In a general progressive model, all of the terms
depend on the whole history and the transition probabilities are therefore
more complicated. The hazard of the transition from state m to state £ is
defined as a,e(t|T1, ..., Tk). From this hazard function, we implicitly know the
process was in state m immediately before time point ¢. Since the transition
probabilities are only defined for progressive models, state m implicitly informs
which states have been visited up to time k. This means that state X is known
for j =0,1,...,k, where X;, = m. The transition probability to state m is then

Pm(t):/ot/tlt.../f [EIQX_;1X_7(“j|ﬂj—1)eXp(_/ ’ aX_Fl(U|12j_1)dv)}

u
tr—1 Uj—1

¢
exp ( - / Qg (v|ﬂk)dv) duy, . . .duyg,

k

where @; = (u1,...u;) is all the time points up to the jth.
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Next, we follow Hougaard (2000, p. 182), and present the likelihood function
for a general progressive model in the time period 0 to C' with E events. The
likelihood is

E
{H AX;1,X; (Tj ‘ijl) €xXp {*/
j=1

Tj71

an_l(v|Tj,1)dv}}exp {f/ sy (U\TE)},

T

where Tj = (Th,...,T};). Since the transitions between the states happen at
the observed time points T, ...,Tg, it is not interval-censored. It is possibly
right-censoring because the end of the study is at time point C' and the last
observation happens earlier. This likelihood for the general progressive models,
are to some extent related to the likelihood framework we construct in Chapter
Bl However, a difference is that the likelihood framework in Chapter [3]is tailored
to interval-censored data. The models are therefore used for different types of
data.

2.4 Nonparametric Methods for Interval-Censored Survival
Data and Panel Data

There exists a large amount of literature on nonparametric methods for multi-
state models. For example, in Aalen and Johansen they introduce
nonparametric estimation of the transition probabilities for right-censored
observations when there are multiple states. This estimator is called the Aalen-
Johansen estimator, and is frequently used for inhomogeneous Markov models.
In recent years there has been a big interest in the development of nonparametric
estimators for the transition probabilities for multi-state models where one do
not assume a Markov model. This is for example done in Meira-Machado et al.
and de Una-Alvarez and Meira-Machado . In these papers, they
mainly focus on estimators for the illness-death model, and argue that their
models outperform the Aalen-Johansen estimator when the Markov property is
violated.

In this part, we present the construction of the likelihood with a
nonparametric approach for interval-censored lifetime data. This is because the
likelihood for nonparametric approaches in multi-state models with multiple
observations, build on the likelihood and nonparametric approaches for lifetime
data. We follow Lawless p. 124) in the construction of the likelihood
using a nonparametric approach. Let the true lifetime be between two points,
which means U; < T; < V;. The likelihood function when the lifetimes for an
individual T} is identically distributed with cumulative distribution function
(c.d.f.) F(t), becomes

=l - Fw) (23)

This means that F(¢) only depends on the values through the observation times
(U;,V;) and the survival function S(t) = 1 — F(¢). This can be reformulated,
by letting 0 = tg < t; < -+ < ty—1 < t, = 0o to be the distinct values in the
set {0,00;U;,V; : i = 1,...,n}, where the exact observation ¢ is considered
as (t—,t} Let p; = F(t]) - F(tjfl) and Nijg = I{(tjfl,tj) Q (U“V;]} Then
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rewriting equation [2.3]
n k

o) = [T[ > msms] (24)
i=1 j=1
where £(p) is maximized subject to the constraints p; > 0 and > p; = 1 in
order to obtain £ Many algorithms are proposed to maximize and For
example, the survival distribution was first estimated using a nonparametric
method in Peto . He constructed an experimental survival curve by
using a suitably constrained Newton-Raphson search algorithm. The idea was
developed in Turnbull , where the same estimator was used, but a different
approach in the estimation. He also developed an algorithm, which he argues is
simpler than the one in Peto .

We now present some relevant publications about nonparametric approaches
for multi-state models with interval-censored data. An example is Frydman
. She considers nonparametric estimation of the cumulative transition
intensities in an illness-death model for a time-inhomogeneous Markov process
for interval-censored data. The exact time of death is assumed to be known
and right-censored. In Frydman , the transition intensity from state
1 to state 2 is denoted by Ai2(s), from state 1 to state 3 it is denoted by
A13(s) and from state 2 to state 3 is is denoted by Ass(s). If the data are right-
censored, it is easy to estimate A12(s), A13(s) and Ags(s) using the Nelson-Aalen
estimator. Since the transition 1 — 2 is interval-censored, she has to develop
a nonparametric maximum likelihood procedure for estimating Aq2(s), A13(s)
and Ass(s). The method primarily consists of two steps. In the first step,
she inspects the likelihood functions and find the sets on which the maximum
likelihood estimators of Aja(s), A13(s) and A23(s) can increase. This is done
indirectly for Aj2(s) and Aj3(s) by characterising the sets of increase of the
corresponding subdistribution functions. In the second step, she presents a
version of the EM algorithm.

Another example of nonparametric approaches to multi-state models with
interval-censored data is found in Leung and Elashoff . They consider a
three-state model, where they allow the distribution for the transition times
to depend on covariates and time in the previous state. In order to obtain
the maximum likelihood estimators, they use the EM-algorithm introduced
in Turnbull . They also consider the smoothed EM-algorithm proposed
in Silverman et al. . They apply their methodology on data from an
AIDS study and a cancer study, more specifically for patients with malignant
melanoma.

2.5 Likelihood Theory

In this section, we present some relevant likelihood theory in survival analysis
for different types of data and censoring. We start with a brief introduction
of the likelihood when we only have one observation per individual and no
censoring. Then we present two different approaches for obtaining the same
likelihood when the data are censored independently at random. In the end, we
consider interval censoring, where we focus on both the likelihood construction
for interval-censored lifetime data, and some central results from the likelihood
theory for multi-state models with interval-censored data.
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Let ¢ be the data observed in the study and 0 is the parameter vector. The

likelihood becomes
L(0) = Pr(t;0),

which is the probability density or mass function (Lawless, p. 545). If
we assume that the probability density function f(¢) has a specific parametric
form f(t;0) with lifetimes t1,...,t, for n independent individuals, then the
likelihood function becomes

n

£(0) =] s(t:;:0)

i=1
(Lawless, [2003} p. 546).

2.5.1 Independent Random Censoring

In this part, we give a brief introduction to the likelihood construction when
the data are censored independently at random. Independent random censoring
happens if the lifetime and censoring time for an individual are independent
continuous random variables (Lawless, p. 54). When we construct the
likelihood using likelihood contributions in Chapter [3] we divide the likelihood
into likelihood contributions. An individual is then a specific type, which is
based on the screening time points and in which states the individual is observed.
We therefore want to show that this way of constructing the likelihood is equal
to the more traditional way, when the likelihood is not divided into likelihood
contributions. In the more traditional way, censoring is used as an indicator
function in the final likelihood.

We follow Lawless pp. 54-55) in the construction of the first likelihood.
Let the lifetime 7" and censoring time C' for an individual be independent
continuous random variables. When the data are censored independently at
random, we assume an individual has a lifetime 7" and a censoring time C,
where T' and C are independent continuous random variables. Let S(t) be
the survival function when 7" is observed, and G(¢) when we have censoring.
The lifetimes are also mutually independent. In addition ¢; = min(7;, C;) and
0, =1if T; < C; and §; = 0 if T; > C;. The data for n individuals come as
pairs (t;,9;), where ¢ = 1,...,n. We also assume that f(t) and g(t) are the
probability density functions for T; and C; respectively and we assume they do
not contain any of the same parameters. We get

Pr(t; = [t,t+€),8; = 0) = Pr(C; = [t.t +€), T, > C;) = g(t)S(t)e,  (2.5)

Pr(t;=[t,t+€),6; =1) = Pr(T; = [t,t +€),T; < C;) = f(t)G(t)e. (2.6)
Combining these two expressions, we get
Pr(ti = [t,t +€),8:) = [f()G(t)e]* [g()S(t)e] '~

The distribution for (¢;,4d;), i = 1,...,n becomes

18



2.5. Likelihood Theory

Then
L=T]ft)st) ", (2.7)

since G(t) and g¢(t) do not contain any of the parameters in f(t). The likelihood
is therefore defined up to a multiplicative constant.

The same likelihood can be obtained by using a different approach in the
construction of the likelihood. With the same data and censoring pattern as
above, we have two types of individuals. In the first type, the lifetime T; for
individual 4 is observed, which means T; < C; and ¢; = 1. For the second type
of individuals, the lifetime is not observed, which means T; > C; and 6; = 0.
For the individuals where §; = 0, the likelihood contribution for one individual
comes from Equation [2.5] For all the individuals where §; = 1, the likelihood
contribution for one individual comes from Equation We get the likelihood
by dividing the product into two products

c= 1T ra) I1 s,

’i267;21 151:0

since G(t) and ¢(t) do not contain any of the parameters in f(¢). This likelihood
is equal to the likelihood in Equation[2.7} but written in a different way. We show
the second approach of constructing the likelihood, since this is the approach
we tak in Chapter [3}

2.5.2 Interval Censoring

For the rest of this section, we focus on the likelihood theory for parametric
models with interval-censored data. We start with presenting the likelihood for
interval-censored lifetime data. Following Lawless (2003, p. 64), we assume a

framework where each individual i = 1,...,n is observed a specified number of
times 0 = t;0 < t;1 < -+ < tim, < oo. If an individual fails at time ¢; ;_1, where
j=1,...,m;, we do not observe t; ;. However, if the individual did not fail

at time ¢; ;_1, we also observe ¢; ;. Therefore, the data consists of an interval
(U;, V4] for each individual. We know that the true lifetime for individual i, T;
is interval-censored, and therefore U; < T; < V;. If failure has not occurred by
time t;y,,, then V; = co and U; = t;,,, is right-censored. The likelihood for the
lifetime data then becomes

L=

i

[Fi(Vi) = F(U)] = T[I(1=Si(Vi) = (1= Si(U))] = [[18i(Us) = Sa(Va)],

n n n
=1 i=1 i=1

where F;(t) is the distribution function for T;. Lastly, Lawless states that the
inference for interval-censored data for parametric models with this likelihood
falls under standard large-sample likelihood theory, which we will present next.

Following Van Den Hout pp. 65 - 68), we present some central results
from the likelihood theory for multi-state models with interval-censored data.
This large-sample likelihood theory is therefore a generalization of the large-
sample likelihood theory for lifetime data. Consider a maximum likelihood
estimator 6,, which depends on the sample size n, and the vector 8, with the

true values. We have .
V6, — 60) 25 N,(0,%),
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where the arrow indicates convergence in distribution and X is a well-defined
variance-covariance matrix in this limit. X is estimated from data, which
happens when we calculate the inverse of the observed Fisher information
matrix. The delta-method for a function g differentiable at 8, becomes

Va(g(8,) — 9(80)) 2 N(0,0720),

where O is the gradient of g at 8y. The proof of this follows from a Taylor
series and is found in Casella and Berger p. 243).

Applying the delta method, we get that the covariance matrix for a function
g depending on the maximum likelihood estimates is

N T .
Vo= (55) So(5).
where ﬁ]g is the estimated covariance matrix for the maximum likelihood
estimate . We use the delta-method in Chapter |§| to calculate the pointwise
95% confidence intervals for the survival functions.
To find the estimated covariance matrix ﬁ]g we first need to introduce
the score function, the Fisher information matrix and the estimated Fisher

information matrix. The first-order derivative of the log-likelihood is called the
score function, U(0). The k-th entry of the score function U () is

0log(L
Sy, deley) S

=1 j=1

The expected information matrix, known as the Fisher information matrix, is
given by
I0)=E [U(O)U(O)T]

The asymptotic covariance matrix of 6 is Z(0)"!. The estimated Fisher
information matrix I is
9”log(L(6))

00007
which is often used as the estimated covariance matrix for the maximum
likelihood estimate 6. In summary, we have that

I=-

é ~q Np (00, f_l),

where 6 is the true parameter and I is the estimated Fisher information matrix.

For this standard likelihood theory to hold, we assume for the Fisher
information matrix I and the sample size n, that T /n converges to a positive
definite matrix (P. Hougaard, personal communication, July, 2021).

Lastly, we give a brief introduction to the likelihood theory for a
nonparametric approach. For interval-censored survival data, relevant theory
is for example presented in Huang and Wellner and Gentleman and
Geyer (1994). In Huang and Wellner they discuss both the theory for
nonparametric and semi-parametric models. For the nonparametric setting, they
describe the asymptotic properties of the nonparametric maximum likelihood
estimator. They also discuss the theory for the semi-parametric models, where
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they focus on proportional hazards, proportional odds and accelerated failure
time regression models. For example, the compute the Fisher information
and the regression parameter estimators by maximizing the semi-parametric
estimators.

Next we present a requirement for the standard likelihood theory to hold
for a nonparametric approach. Let us consider a lifetime situation, where
U; < T; <V;, and T; is the lifetime for individual 7. Assume we have a model
with piecewise constant transition intensities, where each interval has length 1.
In this case, we must ensure that the distribution of U; and V; covers all the
intervals. For example if all U; and V; are values lower than 20.5, then we can
only decide the intensities until 21. However, if all U; are lower than 5 and all
V; are higher than 10, then we can only decide the sum of the intensities of the
interval from 5 to 10 (P. Hougaard, personal communication, July, 2021).

2.6 Model Selection and Goodness-of-Fit

In this thesis, we use the Akaike Information Criterion (AIC) for model
selection. AIC was introduced in Akaike and Akaike (1974). Formally,
AIC = 2k — 2log(L), where k is the number of parameters and L is the
likelihood function evaluated at the MLE. The idea of AIC is to correct the
maximum likelihood estimate by adding a function of the number of model
parameters k (Vrieze, [2012).

AIC was derived as an estimate of expected relative Kullback-Leibler (K-L)
divergence. K-L measures the distance between the candidate model and the
true model. From Vrieze , the formula for the K-L divergence is

KL(g|lf) = /g(y) log ?EZ;dy,

where g(y) is the probability density function (p.d.f.) of the true model,
while f(y) is the p.d.f. of the candidate model. In order to calculate the
exact value of the K-L divergence, the true distribution g(y) must be known.
Often, the true distribution g(y) is unknown. For comparing models, this is
inconsequential because g(y) is the same for all of the candidate models. The
relative differences between the candidate models are the same whether g(y) is
known or not (Vrieze, |[2012). The K-L divergence from the true model to the
candidate model is implicitly estimated by AIC. Even though the true model is
unknown, we can still use the relative differences between the models to rank
the models. A smaller distance means the candidate model is closer to the
truth. We therefore have that the preferred model is the one with the lowest
AIC, since the this model gives the lowest expected K-L divergence (Vrieze,
pO12)

For AIC to be a consistent estimator for the K-L divergence, the true model
must be in the candidate set. The reason is that for & to be a correct penalty
for the log-likelihood function evaluated at the MLE, the true model must be
in the candidate set. If this is not fulfilled, then k is biased (Vrieze, [2012). In
this thesis, we assume the true model is in the candidate set.

We also want to evaluate the fit of our models and therefore consider
goodness-of-fit. According to Van Den Hout , it is difficult to find a
suitable measure of goodness-of-fit for multi-state models with censoring or
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when there is variation in observation times between and within individuals.
The main problem with interval-censored data is that the process is latent
between the observation times. We can therefore not compare estimated time
of transition and actual time of transition because the time of transition is not
observed exactly.

According to Titman and Sharples and Gentleman et al. it is
common to use the Kaplan-Meier estimates as an informal way of validating a
Markov model for data when the time to the absorbing state is known. However,
if the entry to the absorbing state is also interval-censored, one can not use
the Kaplan-Meier estimates. In this case, one can use an analogous method
which uses a nonparametric survival estimate for interval-censored data. In
summary, if all the subjects start in the same state at time zero, progress to the
absorbing state and the assumptions in the parametric model are correct, then
there should be close agreement between the empirical survival curve and the
survival curve from the fitted parametric model (Titman & Sharples, . A
common way is to plot a 95% confidence interval of the Kaplan-Meier estimate,
which we introduced in Section If the estimated survival curve goes outside
the confidence limits, then it can be considered as an informal evidence of lack
of fit (Titman & Sharples, . We use this informal way of assessing the fit
for the total survival probability from the first state to the absorbing state for
the analysis of the CAV-data without covariates in Chapter [6}

2.7 First-Hitting Time Models

Modeling lifetime as a first passage time of a threshold for a stochastic process
is often convenient in survival analysis. Such models are for example reviewed
in Aalen and Gjessing , where they particularly study the Wiener process
as the underlying stochastic process. In this section, we present two different
first-hitting time regression models, the Wiener process and the Gamma process.
A first-hitting time (FHT) model consists of two basic components. The first
component is a parent stochastic process {Z(t),t € T,z € Z}, where Z(0) = z.
The process Z(t) can either be an observable or an unobservable, latent process.
The second component is a boundary set or a threshold, B C Z. It can be fixed,
B, or it can depend on time, B(t). We assume that the process starts a time
zero outside the boundary set. The first passage time is defined as the time
elapsed from zero until the process enters B.

S(t) =inf{t: Z(t) € B},

where S(t) is the survival function. The event of reaching the boundary is not
guaranteed to happen, depending on the type of process and boundary (Caroni,
p. 58)

Let us consider the case where the final event be an observable outcome of an
underlying process. This can for example be a disease diagnosis or death. Then,
the underlying process can be modeled as a stochastic process Z(t), where t is
the time variable and Z(0) = zg > 0. Let r be the time of failure. This means
that the first time Z(¢) < 0 happens, is at time ¢ = r. The lifetime is defined as
the time it takes for the process to reach the threshold zero for the first time.
This is a natural choice for some stochastic processes, but for other stochastic
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2.7. First-Hitting Time Models

processes it may be more appropriate to assume a fixed starting point at zero
and a variable threshold above zero (Caroni, [2017, p. 61).

2.7.1 Wiener Process

An example of an underlying stochastic process is the Wiener process. Let Z(t)
be a random walk in continuous time and space, also called Brownian motion
with drift. Following Caroni (2017} p. 61), the Wiener process can be defined as

1. Z(t) has independent increments, which means that Z(t2) — Z(t;) and
Z(ty) — Z(t3) are independent for any pair of non-overlapping intervals
(tl, t2) and (tg, t4).

2. For any interval (¢1,t2),
Z(ta) = Z(tr) ~ N(u(ta — t1),0°(t2 — 1))
If we then assume p < 0, and from the Wiener process setup we have that the

lifetime 7" follow an inverse Gaussian distribution

g M}
(2mo2t3)1/2 P 20t ’

where one usually assumes ¢ =1 (Caroni, 2017, p. 60-61).

f(t|207/1/7 o

2.7.2 Gamma Process

Following Sildnes and Lindqvist (2018), we define the Gamma process as a
continuous time stochastic process Z(t) = {Z(t) : t > 0} with shape parameter
a(t) > 0 and scale parameter p > 0. Let

1. Z(0) = 0 with probability 1
2. {Z(t) : t > 0} has independent increments

3. Z(t) — Z(s) is gamma distributed with shape parameter a(t) — a(s) and
scale parameter p for every 0 < s < t.

In this part, we prove that we can set the scale parameter p to be 1 without
loss of generality. Let X ~ Gam(a,p) be a Gamma distributed variable.
We prove that pX is Gamma distributed with shape parameter a and scale
parameter 1 by using the moment-generating function (mgf).

a

Blexpltpa)) = [ (o expl-alp— tp)a® .

Using substitution, we have y = x(p — pt), so x = ﬁy, so dx = ﬁdy.
Then

fe%e) 1 a—1 1
E(exp(tpx)) = F(a)/ exp(*y)(p(l_t)y) p(l—t)dy

F/za ( )a/oooyalexp(—y)dy
lféa ( )ar(a
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which is the mgf for a Gamma distributed function with shape a and scale 1.
pX is therefore Gamma distributed with shape parameter a and scale parameter
1, which implies

/OC F'{E:) 2t exp(—dx)dx = /OpC FI(Z) 2"t exp(—x)da. (2.8)

This proves that the scale parameter p only appears together with the threshold
¢, and we can without loss of generality set p = 1. Since we set the scale
parameter to 1, we get one less parameter to estimate. This means that that
computational burden when we estimate all the parameters in a multi-state
setting is lower.

We now present the Gamma processes in a general survival analysis setting.
For a > 0 and ¢ > 0, let Zy(t) = {Zy(t) : t > 0} be a Gamma process, where
Zy(t) ~ Gam(at, p), with the same properties as stated above. Using the
information from Equation 2.8 we set p = 1. This means Zo(t) ~ Gam(at, 1).
In addition, we can consider any time dependent nondecreasing function M (t).
Using a general motor function M (¢) has previously been worked on in Claeskens
and Hjort pp. 88-90). The Gamma process with a general motor function
becomes

Z(t) = Zo(M(t)) ~ Gam(aM(t),1).

In this thesis, we use M (t) = t*. This is a common motor function and is also
considered in Sildnes and Lindqvist . We consider two different versions
of the motor function M (t), where either b is a parameter or we assume b = 1.
First, we let b = 1. The survival function is

So(t,a,c) = Pr(Ty >t) = Pr(Zy(t) < ¢)

= G(c,at, 1) = / g(z,at,l)dx
0

c 1 t—1
= —— " exp(—z)dzx.
/0 Tal) p(—z)

The density corresponding to Sy(t,a,c) is

9So(t)

fO(taa7C) = _7 = _/Cg($7ata 1){_a¢(at) —i—alogm}dm
0

)

¢
= ap(at)G(c,at, 1) — a/ log zg(x, at, 1)dx
0

where ¥ (z) = 81%5(“3). We use numerical approximations to compute this. The

hazard rate becomes

Sé(t) _ fO(tvaaC)
So(t)  Gle,at,1)

O[o(t, a, C) =

Now, let M(t) = t°, where b > 0. We have Z(t) = Zy(t*) ~ Gam(at’, 1).
Then the survival function is

|
S(t,a,c,b) = So(t’, a,c) = /0 T(at?) pt' 1 exp(—x)dz,
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2.7. First-Hitting Time Models

where at® decides how fast the Gamma process increases with time and c is
the threshold (Caroni, p. 76). This means that both at’ and ¢ together
decides how fast the survival function decreases. For example for the same a
and ¢, if 0 < b < 1, then the survival function is slowly decreasing with time. If
b > 1 the survival function decreases faster with time, because the individuals
fail earlier. The difference for the survival time function between b < 1 or b > 1
depends on a and ¢. The density corresponding to S(t) is

0S(t,a,c,b) 9G(c,at’ 1)

fta,0,0) = ———% T

We use numerical approximations to compute this. The hazard rate becomes

) ) ? b .
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Figure 2.8: Ilustrations of hazard functions for different values of b
The shape of the hazard function varies for different values of a, b and c.
Often, the hazard function is increasing if b is close to 1. The shape varies a

bit when b is higher than 1 or b is close to 0. In these situations, both a and ¢
contributes to the nature of the hazard function. Typically, if b > 1, the hazard
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function is increasing. It may decrease as well, but at some point it increases.
If b is close to (but larger than) 0, the opposite is true. The hazard function in
this situation is often decreasing, but it may increase sometimes as well.

Typical examples of the shape of the hazard functions are illustrated in
Figure 2.8 For all of the different hazard functions, ¢ = 0.1 and a = 0.1, but
we have different values of b. The shape of the hazard functions are quite equal
in Figure [2.8 . and (b). They are both increasing and concave. However, the
shape of the hazard functlon in Figure (c) is quite different. It is decreasing
and convex. We see in Chapter [6 that it may be an advantage of letting b be a
parameter and not fixing it at 1.

Finally, we want to make a remark about the flexibility of the Gamma
processes. For any given survival function S(t), and a given threshold ¢, a motor
function M (t) can be found, numerically, to make

S(t) = G(e,abM(t),1)

which is our Gamma process threshold crossing model with that motor function.
This makes it possible to construct many variants of the Gamma process models.

Traditionally, Gamma processes have been used in engineering, while Wiener
processes have been more popular in medical applications (Sildnes & Lindqvist,
2018). This can for example be seen in Qiu and Cui and van Noortwijk
(2009). In Qiu and Cui 7 they consider safety-critical systems, such
as aircrafts, submarines and space stations. Here, missions are performed
continuously, and in order for the systems to survive, a mission with problems
must be aborted. By using a two-stage gamma process, they find the optimal
mission abort policy. A mission can for example be aborted if the degeneration
level is above a threshold in the Gamma process. Moreover in van Noortwijk
the application of Gamma processes in maintenance is surveyed. Gamma
processes are much used in maintenance because they are well suited for modeling
temporal variability of deterioration. It has especially been successful when
determining optimal inspection and maintenance decisions. More specifically,
the expected deterioration, F(Z(t)) = aM(t)/b often follows a power function
int (van Noortwijk, . An example may be M (t) = t*, where b > 0, which
we also use later on in this thesis.

2.7.3 Example

Consider survival data (t1,01),..., (tn,d,) where t; is the possibly censored
lifetime and §; is an indicator for non-censoring. We define the survival function
as S(t;) = G(c,at;, 1) and the density is defined in the same way as as previously,

f(tz, a C) 85(a,c,t )
The log- hkehhood then becomes

ZlogS ti,a,c) + Zlogfo (tiya,c)

8;=0 Si=1
_Zlochatl +Zlog< 85tac)>’

and numerically this Wlll typically be computed as

Zlochat1+Zl ( Catvl)—G(C,a(t+e),1)>7

€
§;=1
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which can be computed and maximized.

—— (Gamma process
Brownian Motion
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Figure 2.9: Simulated Gamma process where a = 0.2 and ¢ = 5, and Brownian
Motion where =0 and o =1

Figure 2.9 shows a simulated Gamma process, where a = 0.2 and ¢ = 5, and
a simulated Brownian motion, where ;1 = 0 and o0 = 1. The Brownian motion
starts at 0 and we consider the time it takes for the process to reach ¢ = 3 for
the first time.

For the Gamma process, the individual crosses the threshold ¢ = 5 after
around 40 years. If ¢ is higher in Figure [2.9] the threshold is crossed later on.
For example if ¢ = 10, the individual crosses the threshold after around 60 years.
The a-parameter is included in deciding the shape of the Gamma process. If
a is very low, then the Gamma process is quite flat and it takes much longer
time for the individual to reach the threshold. If @ is higher, then the Gamma
process is very steep and the threshold is reached faster. When it comes to the
Brownian motion, it reaches the threshold 3 for the first time after around 20
years. Both the mean and the variance controls the shape of the process and
how long it takes for the process to reach the threshold.

A difference between a Gamma process and a Brownian motion is that
a Gamma process is always positive and increasing. This is also illustrated
in Figure [2.9] where the Brownian motion is for example decreasing after 10
years and also becomes negative. Gamma processes are therefore well-suited in
situations where we consider the cumulative risk to only increase. An example
is in multi-state models where one can only transition one way.
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CHAPTER 3

General Likelihood Construction

3.1 Motivation

In this chapter, we construct a general likelihood for four different multi-state
models with interval-censored data. These four multi-state models are the
three-state progressive model, the illness-death model, the four-state progressive
model and a four-state illness-death model, but the construction can be extended
to other multi-state models too. In order to capture a bigger variety of data, we
construct a likelihood for the case where the entrance into the absorbing state is
observed exactly, and for the case where the entrance into the observing state is
not observed exactly. Since we include the possibility of not exactly observing
the transition to the last state, we can also study data where the transition to
the absorbing state is interval-censored. This may for instance happen if the
absorbing state is not death, but something else, for example a disease.

To the best of our knowledge, we have not found anyone constructing a
likelihood in this way for these multi-state models for interval-censored data.
As we mentioned in Chapter [2] the likelihood construction is to some extent
related the ideas for the general progressive model in Hougaard p. 159).
The main differences are the our framework is tailored to interval-censored data
and we construct the likelihood by dividing it into likelihood contributions.
The formulation of the likelihood in Jackson , which is based on the
formulations in Kalbfleisch and Lawless and Kay , are to some
extent similar to this likelihood. For example, we find in Chapter [5| that if
the transition times are modeled by exponential distributions in the four-state
illness-death model, the likelihood construction we present in this chapter is
equal to the one in Jackson . However, there are at least two differences
between the likelihood construction we present and the likelihood construction
in Jackson . The first difference is that they use the transition probability
matrix when they construct the likelihood and the second difference is that
their likelihood relies on the Markov property.

We start the construction of the likelihood by determining the different types
of individuals one may observe. From these types of individuals, we create the
likelihood contributions. Which type an individual is, depends on which states
are visited and the observation times. If we are in a simple survival case with
independent random censoring, as discussed in Chapter 2] one way of writing
the likelihood is

29



3. General Likelihood Construction

L=]]re)s) = (3.1)

(Lawless, pp- 54-55). If we want to write this likelihood using likelihood
contributions, we divide the individuals into two types. Type 1 means death at
time t;, while type 2 means the individual is alive at time ¢;. Equation [3.1]is
then equal to

T e TII s (3.2)

typel,i:6;=1 type2,i:0;=0

These two likelihoods are equal, and one can choose the preferred approach
of constructing the likelihood. We choose the second way of constructing the
likelihood.

In order to construct a likelihood with different types in a multi-state model,
we consider all the different states and the possible transitions. If a person is
observed in state 0 at time ¢; and in state 1 at the rest of the screening times,
we have one likelihood type. However, if a person is observed in state 0 at all
the screening times, this is another likelihood type. The contributions to the
likelihood are different, and the individuals are therefore different types.

An advantage of dividing the likelihood into likelihood contributions is the
amount of information we get from constructing the likelihood. For example,
we get an overview of all the transitions each individual makes over time and
the share of individuals in each type. This information can be used to find the
most suitable survival time model for the transition times. A disadvantage of
dividing the likelihood into likelihood contributions is that each contribution
becomes more complex when the complexity of the multi-state models increases.
With additional states and possible transitions, we get additional types and
each likelihood contribution becomes more complex. In addition, there is always
a possibility of forgetting a type. This can to some extent be solved by checking
that all the individuals are included as one type in the likelihood in a real or
simulated dataset, we minimize the risk of forgetting a type.

Since a more complex multi-state model with many observation times means
more different types, we start by considering the three-state progressive model
with only one screening. In a three-state progressive model there are only three
states and two transition times. For comparison, our final multi-state model is
the four-state illness-death model, where there are four states and five transition
times. The reason for ending up with this four-state illness-death model, is
to be able to use our likelihood construction on the CAV-dataset discussed in
Jackson . Our analysis of this dataset is found in Chapter @

3.2 Assumptions

We start by assuming a multi-state setting with interval-censored data. The
screening times t¢;, are predetermined, and therefore not stochastic. The
transition times to the different states are assumed to be independent and
have parametric densiites. The entrance to the last state is either observed
exactly or not exactly.
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3.3. Three-State Progressive Model

Further, we assume a meaningful starting point. At this starting point,
all of the individuals are not necessarily screened, but are considered to be in
state 0. For example, if one study the development of dementia, a meaningful
starting point is 40 years. However, the first screening may be conducted five
years later, when the individual is 45 years old. Then if an individual at 45 is
diagnosed with dementia, we assume it happened between 40 and 45 years. If
everybody is screened at the starting point, then everybody starts in state 0.
In the analysis in Chapter [0 everybody starts in state 0.

For the rest of this chapter, we define @ as a vector of all the parameters.
To make notation easier, we only write € in the final likelihood. In addition,
when we write (/) under the product sign in the likelihood, we mean all the
individuals which are type 1. Further (I7) means all the individuals which are
type 2 and so on.

3.3 Three-State Progressive Model

In this section, we analyze the three-state progressive model. In a three-state
progressive model, the individuals from a population can transition from state 0
to state 1 to state 2. The individuals cannot transition directly from state 0 to
state 2 without going through state 1. We illustrate the three-state progressive
model in Figure 3.1}

A 4
A 4

State 0 State 1 State 2

Figure 3.1: Three-state progressive model

We define Ty and T} respectively as the transition times from state 0 to
state 1 and from state 1 to state 2. These transition times are assumed to
be independent, with parametric densities fo and fi, survival time functions
So = 1— Fy and S; = 1 — F; and hazard rate functions oy = fo/So and
a1 = f1/51. The total time from state 0 to state 2 is Ty + T1. However, we also
want knowledge about Ty and T separately, which is demanding since there is
interval censoring.

3.3.1 One Screening

Assume we only have one screening. In addition, we observe the exact time
of death for those individuals that die during the study period. With this
observation scheme, we have five types of patients.

1. Suppose an individual is screened at time t. This screening shows that
the individual is in state 0. The likelihood contribution is

PT(TQ > t) = S()(t)
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2. Suppose an individual is screened at time ¢. This screening shows that
the individual is in state 1. The likelihood contribution is

P(T0<tT0+T1 >t / f() PT(Tl >t—T()|T0—S)d

/fo )S1(t — s)ds

3. Suppose an individual dies at time ¢, with no intermittent screening. The
likelihood contribution is

PT(TO + T € [t,t—FE)) = P’I’(O <Ty<t,Top+1Ti € [t,t—l—e))
t
:/0 fo(s) f1(t — s)dse.

4. Suppose an individual dies at time ¢, and the individual was screened
once at time point u. At time point u, the individual was in state 0. The
likelihood contribution is

P’I’(To >u, Ty + 17 € [t,t+e))
:PT(U<T() <t,Tp+1T € [t,t+€))

t
= / fo(s)Pr(To+ Ty € [t,t +¢)|Tp = s)ds

= / Jo(s) f1(t = s)dse.

5. Suppose an individual dies at time ¢, and the individual was screened
once at time point u. At time point u, the individual was in state 1. The
likelihood contribution is

PT’(T() <’U,7T0+T1 e [t,t+€))
:P’I“(O<TO <u,To+1T; € [t,t+€))

u
:/ Fo(8)PH(Ty + Ty € [ty t + )[Tp = s)ds
0
= / fo(s) f1(t — s)dse.
0
The full likelihood for all the individuals p = 1, ..., m becomes

:HSO(tp,0|xp)H/opf0(5,9|xp)51(tp—S,G\xp)ds

H / fo(s,0|xp) fi(ty, — s,0]x,)ds

(I11)

H fO (s,0)zp) f1(tp — s,0|xp)ds

av)

11 / fo(s, 0l,) f1 (ty — 5. 0], ds
(V)
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The log-likelihood all the individuals p =1, ..., m becomes

0(8) = > og(So(ty. Olp))
(1)

tT’
+§y@/h@wmw%ﬂﬁmm>
(I1) 0

tp
+Zm%ﬁmmmmfwmm
)

(I17T

tP
+ S tog( [ fols.Ble )it — 5,84,

(Iv)

+§yg/MMﬂmmwﬂﬂmm»
V) 0

3.3.2 Multiple Screenings

We are still in a three-state progressive model, but the individuals are screened
multiple times. Therefore, we have more than five types of patients and the
likelihood is updated.

3.3.2.1 Exact Time of Entry into the Absorbing State is Known

The individuals are screened t1,ts,...,t, times.

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

P?"(To > tn) = So(tn).

2. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point, t,,. Then

P’I’(TO >t;, 1Ty < ti+1,T0 <tp, Ty +1T1 > ti+17T0 +T7 > tn)
= P’I"(ti <1y < ti+1,TO + 17 > tn)

tit1
= [ WP+ T > Ty = )

ti

— /ti“ fo(s)Pr(Ty > t, — s)ds

3

_ / T (8)S1 (b — 5)ds.

i

3. Suppose an individual is observed in state 0 from t; to t;. At t;4;1 the
individual is observed in state 1. We observe that the individual dies at
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exact time point ¢;, 1, where k > 1. Then

PT(TO >, Ty > tiv1, To+ 11 € [ti+k,ti+k¢ + 6))
= PT’(tl <1y < ig1, tigr < To+ 11 < itk + 6)

tita
= / f()(S)P?"(tiJrk <To+T) <ty + G‘TQ = s)ds
t;

tit1
= / Jo(s)Pr(tipr <s+T1 < tiyp +€)ds
t

i

tit1
= / Jo(8)Pr(tivr +e—s<Ty <tjyp+e€—s)ds
t

K

ber R —8) = Fy(tik —
:/ fo(s) 1(tivk +€—8) = Filtivk S>d$€
t

€

i

= / o fO(S)fl(ti—i-k — S)dSé

i

4. Suppose an individual is only observed in state 1 at all the screening time
points, where t,, is the last screening. Then

P?”(TO <t1,To <tn,To+Ty >t1,To + Ty > tn)
ZP’/‘(TO <t,To+T1y > tn)

t1
= fo(s)S1(ty, — s)ds

0

5. Suppose an individual is observed in state 1 from t; to ¢;. At the exact
time point ¢;41, the individual is observed in state 2. Then

P?‘(TO <t,To+T; € [ti+1,ti+1 + 6))
= Pr(Ty <ti,tiys <To+ Ty <tig1+e€)

ty
= / fQ(S)PT(tiJ,_]_ <To+T) < tiv1 + E‘To = S)dS
0
ty
= / f()(S)PT(tH_l —s<Ty < tit1 +€— S)dS
0

= /0 1 fo(S)f]_(ti+]_ — S)dSG.

6. Suppose an individual is observed in state 0 from t; to ¢;. At the exact
time point ¢;41, the individual is observed in state 2. Then

PT(TO >t Ty +T1 € [ti+1,ti+1 + 6))
= PT(Q <Tp < tit1,tip1 < To+ 1T < tiv1 + 6)

tit1
= / fo(s)f1 (ti+1 — S)dSE.

ti
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7. Suppose an individual is observed in state 2 at the exact time point ¢,
without any intermittent screening. Then

P?”(tl <To+T) <t;+ 6)
ty1
= fo(s)Pr(ty —s <Ti <t1+¢€—s)ds
0

= /0 1 fo(s) f1(t1 — s)dse.

Consequently, the full likelihood for dataset where the individual has been
screened as we described above for the individuals p = 1, ..., m, becomes

titvip
£(0) =[] So(tnp 0lzp) [ | / fo(s,8]2,)S1(tnp — 5,0]z,)ds
(1 tip

(=

tit1,p
H/" fo(s. 01,) f1 (Fis s p — 5, 02,)ds
ti P

(I11)

t1,p
H/ Fol5,82,)S1 (tn p — 5, 0]y)ds
0

(V)

tl,p
H/ fo(s, 01p) fo(tirp — 5,B],)ds

w70

tit1,p
[L/ fols,012,) f1 (tis1, — 5, 0l,)ds
tip

(V1)

H) /Otl‘p fo(s,0zp) f1(t1p — s,0|xp)ds.

(VIIT

3.3.2.2 Exact Time of Entry into the Absorbing State is not Known

Suppose we screened an individual ti,%s,...,t, times. The likelihood
contributions for patients of type 1, 2 and 4 are unchanged. If the exact
time of entry into the absorbing state is not known and the patient is type 3,
then the likelihood contribution is

P?“(TO >t Ty < ti+1,T0 +T7 > ti+k,1,T0 + 17 < tiJrk)
= PT’(ti <Ty < tz‘+17ti+k—1 <To+T) < ti—i—k)

tiy1
= / fo(s)PT(tiJrk,l <To+1T; < ti+k‘TO = s)ds

tq

tita
= / fo(S)Pr(ti+k71 <s+1T < tiJrk)ds
t

i

tit1
= / fo(8)Pr(tizk—1—s <Ti <tiyr —s)ds
t

7

:Amh@wwwﬁ@—ﬂmwﬂ—m@

i

= [ - Jo(8)(S1(tivr—1 —8) = S1(titr — s))ds.
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The difference is that fi(¢;1x — s) is replaced by (S1(tiyr—1 —$) — S1(tivr — 5)).
If the patient is type 6, and the exact exact time of entry into the absorbing
state is not known, then the likelihood contribution is

PT(TO >t 1o+ 11 < ti+1) = PT(tl <1y < ti+1,TO + 1T < ti+1)

_ /t T () (1= S (tier — 9))ds.

k3

Similar changes happens to all of the equations where the patient is observed
in the absorbing state. The full likelihood for the individuals p=1,...,m is

7.+lp
Hso s Ol2,) H/ (5,0]2,)S1 (tn p — 5, 0],)ds

(IT)

L+1p
11 / (5,0],) (S1 (ti k1. — 5.012,) — S (tisny — 5. 02,))ds

(I11)

t1,p
H / fo(s 9|33p Si(tnp — s, lep)

av)

11 / Jo(5. 012, (S1(tip — 5,012,) — S (tisrp — 5. Ola,))ds

V)

i+1,p
11 / (5812, (1 — Sy (tis 1 — 5, 6lp))ds
(V1)

t1,p
11 fo(s,8]z,)(1 — Sy (t1, — s,0|x,))ds.

(vin’o

3.4 lliness-Death Model

In the three-state progressive model, the individuals cannot transition directly
from the first state, state 0, to the absorbing state, state 2. However, in an
illness-death model, the individuals can transition directly from state 0 to state
2. Let two independent parametric survival times models competing with each
other start at the predetermined starting point. Which threshold is crossed
first, decides the transition for the patient.

State 0 | State 1
Healthy Sick

State 2
Dead

Figure 3.2: Tllness-death model

To and T; are defined in the same way as in the three-state progressive model.
With a meaningful start point, we define an additional transition time, Tys,
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3.4. lliness-Death Model

which is the transition time from state 0 to state 2. Ty, 77 and Tpo are
independent by assumption. The density for Tyo is fo2, with survival time
function Spa = 1 — Fpe and hazard function age = fo2/So2. In addition, if
Ty > Too, then the individual goes from state 0 to state 2. If T < Tyo, then
the individual goes from state 0 to state 1.

3.4.1 Exact Time of Entry into the Absorbing State is Known

Suppose the individuals are screened tq,ts, ..., t, times.

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

P’I’(TO > tn,TOQ > tn) = So(tn)SOQ(tn)

2. Suppose an individual is seen to be in state 0 from ¢ to ¢;. At ¢;41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point t¢,,. We also have that Tys > Tj. Then

PT(TO > ti7T0 < ti+1,T0 < tn,T() + T > ti+17T0 + T > tn,T()Q > TO)
= PT(Q <Ty < ti+1,T() + Ty > 1y, To2 > To)

tit1
= / fo(S)P?‘(Tg + Ty > tn|TO = S)P?"(TQQ > TolTo = s)ds
t

i

_ / VPR > £ — $)Sun(s)ds

i

_ /t T (5)S1 (b — 5)Soa(5)ds.

i

3. Suppose an individual is observed in state 0 from 1 to t;. At t; 41, the
individual is observed in state 1. At the exact time point t;, where
k > 1, the individual is observed in state 2. We also have that Tps > Tj.
Then

PT(TQ > t;, Ty > ti+1,T0 + 1T € [ti+k;ti+k + 6),T02 > T(])
= P’I’(ti <To < tigr,tiv <To+ T < tiyr +e€,Tp2 > To)

tit1
= / fo(8)Pr(tivr < To+ Ty < tiyg +€[To = s)Pr(Toz > To|Tp = s)ds

t;

tit1
= / fo(S)P?"(ti_;,_]g <s+T1 <tigr + G)Sog(s)ds
t

i

tit1
= / fo(s)Pr(tiyr +€—s <Th < tiyr + € —5)S02(s)ds
t

i

tit1 Fy(t. _ — F5(t: —
- / Jo(s) 1t £ € Sz 1t = o) So2(s)dse
t

i

tita
= / fo(s) f1(tiyr — 5)So2(s)dse.
t

i
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4. Suppose an individual is observed in state 1 at all the screening time

points, where t,, is the last screening. We also have that Tps > Ty. Then

P?‘(TO <t1,Toy <tn,To+Ty >t1,To+T1 > t,, Too > To)
= P’I" T() <t1,To+T1 > t,, The > T())

/ fo(s)S1(tn — 5)Soa(s)ds.

. Suppose an individual is observed in state 1 from ¢; to ¢;. At the exact

time point ¢;11, the individual is observed in state 2. We also have that
Too > Tp. Then

P’F(To <t,To+1Ty € [ti+17ti+1 + 6)7T02 > TO)

= PT(TO <ti,tip1 <To+Ty < tiy1+¢€To2 > To)
t1
= fO(S)Pr(ti+1 <To+T) <tig1+ 6|T() = S)P’I’(TOQ > T()|T0 = S)dS
0

t1
= / fo(8)Pr(tiy1 —s <Th < tiy1 +€—5)Soa(s)ds
0

t1
= Jo(s)fi(tiy1 — s)So2(s)dse.

0

. Suppose an individual is observed in state 0 from ¢; to ¢;. At the exact

time point ¢;,1, the individual is observed in state 2. We also have that
Too2 > Ty. Then

PT’(TD > ti7T0 +T1 e [ti+1,t1‘+1 —+ 6),T02 > To)
= P’I“(ti <Toy <tig1,tiv1 <To+T) <tiv1+€,Tha > To)

tit1
= /t fO(s)fl(ti+l — S)SOQ(S)dSG.

i

. Suppose an individual is observed in state 2 at the exact time point ¢;

without any intermittent screening. We also have that Ty > Ty. Then
P’I“(tl <To+T) <ty +e€Tph > To)

ty
= / fo(s)Pr(ty —s < Ty <ty +€— s)Pr(Toa > To|To = s)ds
0

_ /0 Fo(s) fr(t1 — 5)S0s(s)dse.

. Suppose an individual is observed in state 2 at the exact time point t;

without any intermittent screening. We also have that Ty < Tp. Then

PT(T()Q € [tl,tl + 6),T0 > TOQ) = P?"(tl <Tpha <t1+€ Ty > tl)
= foa(t1)Soz2(t1)e.

. Suppose an individual is observed in state 0 from ¢; to ¢;. At the exact

time point t;11, the individual is observed in state 2. We also have that
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Too < Tp. Then

Pr(Tog > t;,Toz € [tiy1,tiv1 +€),To > To2)
= Pr(tiy1 < Toz < tiz1+€,To > tir1)
= foa(tiy1)So(tiz1)e.

We then get the likelihood for the individuals p=1,...,m

1+|p

£(6) = Hso(tn,,,e\x,, )S02(tn.ps e\x,,)H/ (5,0)2)S1 (tnp — 5,0|7,)S0a(s, 8]x,)ds

(I1)

7,+1p
11 / Fol5,019) f1 (tip — 5, 0122,) Son (s, 6l,)ds
t

(11

t1,p
11 / fo(s,8]2,)S1(tnp — 5,82,)S0a(s, 8]2,)ds

(V)

/ fo(s,0lzp) fi(tiv1,p — 5,0]2p)S02(s, 0] 7,)ds
(v)

'L+1p
H/ 5 o‘lp)fl( Lit1,p — S 9|-L'p)502( ‘.Lp)dé
t

(v Ut

11 / Jols.01,) (11, — 5,002, Soa (5. 0], )ds

(VII)

H foz(t1,p, 01xp)So(t1,p, 0)2p)
(VIII)

1T foo(tivap: Blap) Soltist . Oly).
(1X)

3.4.2 Exact Time of Entry into the Absorbing State is not Known

The individuals are still screened tq,to,...,t, times. The likelihood contribu-
tions for type 1, 2 and 4 are unchanged. The differences between when the
exact time of entry into the absorbing state is known or not known are similar
to what we explained in Section The full likelihood for the individuals

p=1,...,mis
£(6) = Hso(tn,,,e\x,, )S02(tn.ps e\x,,)H/ (5,0)2)S1 (tnp — 5,0)|7,)S0a(s, 8],)ds
(I7)
tit1,p
H (8, 01p) (S1(tith—1,p — 5, 012p) — S1(tisthp — 8,0]2p))S02(s, O2,)ds
(rrny 't
t1,p
11 / fo(5,0)2,)S1 (tnp — 5,0|2,)S0a(s, 0]x,)ds
(1v)
11 / Jols,012,)(S1 (i — 5.0],) — it — 5, 012,))Soa(s. Ol ) ds
)

i+1,p
11 / (.0],)(1 — Si(tis1 — 5.0],)) S, Bl ) s
(1) tir
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tl’p
11 / fols, 0lp)(1 = Su(t1 — 5, 6],))Soa (5, 0], ds

vin”0
t1,p
H/ foa(s,0]x,)S0(s, 0)z,)ds
(virn”o
titi,p
11 / Foa(s, 0],) S0 (s, 0], )ds.
tip

(rx)-

3.5 Four-State Progressive Model

Suppose we have a four-state progressive model, where the individuals can
move from state 0 to state 1, from state 1 to state 2 and from state 2 to state 3.
The individuals can not move directly from state 0 to state 3 or from state 1
to state 3. The four-state progressive model with the possible transitions is
illustrated in Figure [3:3]

v

State 3

v

State 2

v

State 0 State 1

Figure 3.3: Four-state progressive model

Ty and T are defined in the same way as in the three-state progressive
model. In addition, we define T5 to be the transition time from state 2 to state
3. The transition times are still assumed to be independent. The transition time
T5 has density f2, survival function Ss = 1 — F5 and hazard rate as = f2/S55.

3.5.1 Exact Time of Entry into the Absorbing State is Known

The individuals are screened tq,ts,...,t, times.

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

P’I"(TO > tn) = So(tn).

2. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point ¢,,. Then

Pr(To > t;, Ty < tiy1,To <tn,To+ Ty > tip1, To+T1 > t,,)

tit1
= P)’I’(tZ < TO < ti+17T0 +T1 > tn) = / fQ(S)PT(TO +T1 > tn‘To = S)
t

i

= /ti+1 Jo(s)Pr(Ty > t, — s)ds
t

_ /ml Fo(5)S1 (b — 5)ds.

t;
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3.5. Four-State Progressive Model

3. Suppose an individual is observed in state 0 from 1 to ¢;. At t; 41, the
individual is observed in state 1. The individual is observed in state 1
until t;4—1, where k > 1. At t;1, the individual is observed in state 2.
The individual is still in state 2 at the last screening point ¢,,. Then

Pr(Ty > t;,To < tiy1,To+Th > tiy1,To + T1 < titk,
To+T1+ Ty > tiyg, To+Th +To > ty)
= PT‘(tl <Ty < tivt, bivk—1 < To+T) < tivp,To+T1+ 1o > tn)

tit1
= / fo( )PT’( k-1 < TO +T1 < ti+k|T0 = S)PT(TO —+ T1 +T2 > tn‘To = s)ds

tit1 titk—s
/ / fo(8) fr(w)Pr(Ty + Ty + T > t,|To = s,T1 = u)duds
¢

itk—1—S
it1 ptivk—s
[T P b =
1+k 1—S8
tit1 itk —S
/ / fo(8)f1(u)Sa(tn —u — s)duds.
ti titk—1—5

4. Suppose an individual is observed in state 0 from ¢; to t;. At t;11, the
individual is observed in state 1. The individual is observed in state 1
until ¢;x—1, where k > 1. The individual is observed in state 2 at ;.
The individual is observed in state 2 until ¢;x4;—1, where [ > 1. The
individual is observed in state 3 at the exact time point ¢, ;. Then

PT‘(TO >t Ty < ti+1,T0 + T > ti+17T() + 1T < titk,
To+ Ty +To € [tiykrts tivkrt +€))
= PT'(tZ' <TyH < tivt, bigh—1 < To+Th < tivktiver <To+T1 +To < titk+1 + E)

tit1
= / fo(S)PT(tiJFk,l <To+T < ti+k|T0 = S)
t;

PT’ z+k+l <To+T1 +T5 < titk+r + €|TO = s)ds

tit1 tith—s
/ / F1w)Pr(tizpsr <To+ T+ To < tiyprr + €|To = 5,71 = u)duds
ti tivk—1—5
tit1 tivk—s
/ / ( )PT( 1+k+l—3—U<T2<ti+k+l+€—8—u)duds
itk—1"8
:/ /t T e a2kt ez s mw) = Bolbien =5 2 w0) g g
ti titk—1—S5 €
g itk —S
= / / fr(u) fa(tiyrqr — s — u)dudse.
tith—1—S$

5. Suppose an individual is observed in state 0 from t; to ¢;. At the exact
time point ¢;41, the individual is observed in state 3. Then

Pr(To > ti,To +T1 + Tx € [tig1,tiv1 +¢€)
= PT’(ti <Ty < ti+1,Tg +Ty+ T € [tH—latH—l +6))
=Pr(t; <To < tiz1,t; <To+Th < tiz1,tiv1 <To+T1 +To < tir1+e€)

tita
= / fo(S)PT‘(ti <To+T) < ti+1|T0 = S)P7‘(ti+1 <To+Th+T5 <tip1+ €|TQ = s)ds
t

i
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3. General Likelihood Construction

tiv1 tit1—s
= / / fO(S)fl (U)P’I“(tH,l <To+T)+Tr < tiv1 + G‘To =s5,T1 = u)duds
Jt; JO
tit1 tiy1—s
= / / fo(s)fi(w)Pr(tiz1 —s —u < Ty < tiy1 +€— s —u)duds
t; 0

tita tiy1—s
= / / fo(s)f1(u) fo(tixr — u — s)dudse.
2 0

6. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 2. The individual is still in state 2 at the
last screening point ¢,,. Then

PT(TO >t To+ 1) < tipr,To+Th + 15 > tn)
= PT(ti <Ty < tiv1,t < To+ 1T < ti+1,TO + Ty 4+ Ty > tn)

tit1
= / fo(S)P’F(t <To+1T < ti+1|T0 = S)PT(TQ + 1T+ 15 > tn|T0 = S)

i+1 i+1—S
/ / () f1(w)Pr(To +Th + To > t,|Ty = s, Ty = u)duds
t;

/Hrl/erl ’ (s)f1(u)Sa(tn — s — u)duds.

7. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 2. The individual is observed in state 2
until t;45—1, where £ > 1. At the exact time point ¢;1, the individual is
observed in state 3. Then

P’I"(To >t To+T1 <tiv1,To+Tr+ 15 € [ itk Litk +6))
=Pr(t; <To < tiz1,t; <To+T1 <tiz1,tigzk <To+T1 +To < tiyr +e€)

i+1 i+1—S8
/ / Ji)Pr(tig —u—s <To < tipr +€—u— s)duds

= / o / o fo(S)fl(u)fg(ti+k —Uu— s)dudse.
ti 0

8. Suppose an individual is only observed in state 1 at all the screening time
points, where ¢,, is the last screening. Then

P?"(To <t1,To < tn,To+Ty >t1,To+ Ty > tn)
:PT’(T0<t1,TQ+T1 >tn)

ty
= fo(s)S1(t, — s)ds.

0

9. Suppose an individual is observed in state 1 from t; to ¢;. At t;4q, the
individual is observed in state 2. The individual is still in state 2 at the
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3.5. Four-State Progressive Model

last screening point ¢,,. Then
P’I“(TO <t,To+T11 > t;,To+ 11 < tip1,To+Th + 15 > tn)
= PT(TO <ttt <To+T <tiv1,To+Th + 15 > tn)

t1
= / fo(S)PT(ti <To+T) < ti+1|T0 = S)PT‘(T() + Ty + 15 > tn|T0 = S)dS

t,+1—9
/ / Jo(8) fr(w) Pr(Ty + Ty + T > t,|To = s, Ty = u)duds
ti

/tl /ftm s fi(u)Sa(t, — s — u)duds.

10. Suppose an individual is observed in state 1 from t; to ¢;. At t;41, the
individual is observed in state 2. The individual is observed in state 2
until ¢,45_1, where k£ > 1. At the exact time point t;4, the individual is
observed in state 3. Then

P’I‘(TO < tl,TO +T1 > ti,TO +T1 < ti+17TO +T1 +T2 S [ti+k7ti+k +€))
_PT(T()<t1 t; <To+ Ty < lit1, L‘+k<T0+T1+T2<ti+k+E)

/ fo P7(t <To+T <tl+1|T0 7S)P7"( ivk <To+T1 + T <t2+k+€‘T076)dé

tit1—S
/ / (W)Pr(tivr <To+T1 +To < tivi + €|To = s,T1 = u)duds
ti—

/ /t o (u) fo(tivr — 5 — u)dudse.

11. Suppose an individual is observed in state 1 from t; to ¢;. At the exact
time point ¢; 41, the individual is observed in state 3. Then

Pr(Ty <t),To+Ty > t;,To + T1 + T3 € [tiz1,tit1 +¢))
=Pr(To <ti,ti <To+T1 < tiz1,ti;1 <To+Th +To < tiy1+e)

i+1—8
/ / )PT( i1 < To+Ty+1T5 < tiy1 + 6|T0 =s,11 = u)duds
ti

/ /t o (u) f2(tiv1 — s — u)dudse.

12. Suppose an individual is only observed in state 2 at all the screening time
points, where t,, is the last screening. Then

P’I‘(To <t1,T0 <tn,T0—‘rT1 <t1,T0+T1 <tn,To—|—T1 + 15 >tn)
—P?‘ TO <t;,To+Ty <t1,To+Ty+ 15 > t, )

/ /tl ) () S (tn — 1 — 5)duds.

13. Suppose an individual is observed in state 2 from ¢; to t;. At ¢;11, the
individual is observed in state 3. Then

Pr(Ty <t1,To+ Ty < ti,tiv1 <To+Th +To < tiy1+e€)

t1
= fo(S)PT(TO + T < t1|T0 = S)Pr(ti+1 <To+Ti+1T5 < t7j+1 + €|T0 = S)dS
0

11 t1—s
/ / w) fa(tit1 — s — u)dudse.
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3. General Likelihood Construction

14. Suppose an individual is observed in state 3 at the exact time point 1,
without any intermittent screening. Then
P’I“(To +Ty+1T5 € [tl,tl + 6))
= Pr 0<T0 <t,0<To+T1 <t1,t1 <To+Ty+T5 <t1+6)

/ /t1 S (u) f2(t1 — s — u)dudse.

15. Suppose an individual is observed in state 0 from ¢; to ¢;. The individual
is observed in state 1 at ¢;41. The individual is observed in state 1 until
titk—1, where £ > 1. At the exact time point ¢;4, the individual is
observed in state 3. Then

Pr(ti < Ty < t¢+1,T() + T > ti+k,1,T0 +Ty+1T5 € [ti+kati+k + 6))

tit1
= / f (S)PT(tH_;C_l <To+T) < ti+k|TO = S)
t

i

Pr(tive <To+ Ty +To < tiyr + €|To = s)ds

t1+1 t1+k S
/ / fi(u) fo(tivr — s — u)dudse.
t;

tivk—1—8

The full likelihood for the individuals p = 1,...,m becomes

HSO tn.p, Olzp) H/ (s,0)p)S1(tnp — s,0|xp)ds
(1 (I1)

i+1,p itk,p—S
/ / (5. 81ay) 1 (1, 8] Sty — 1 — 5,0, )duds
(111 tith—1,p—5
i+1,p itk,p—S
/ / (s,0]xp) f1(u, Ozp) foltivryip — s — u, 0|z,)duds
(av) tith—1,p—5
i+1,p i+1, p—s
H/ / (s,0]xp) f1(u, Olxp) fo(tit1,p — 5 — u, O|xy)duds
V)
i+1,p 1+1p—s
/ / (5,0)xp) f1(u, 02p)S2(tn,y — 5 — u,0|x,)duds
(vi)’t
i+1,p i1, p—s
/ / (s,0)zp) f1(u, Olzp) fotitr,p — u — s, 0|zp)duds
(vir’t
t1,p
H fo(s,0)2,)S1(tn,p — 5,0|2p,)ds
(virn’o
ti,p i1, p*s
11/ / (5. 81ay) 1 (1, 8]) Sa by — 5 — u, O )dud
(IX) t
t1p i1, p—s
11/ / (5, 01) 1 (10 012, fotr1p — 5 — 0, Oy )uds
(X) b

ti,p i+1, p_s
H / / (s,017p) f1(u, Olxy) fotiv1p — 5 — u, Olzy)duds
tip—s

(X1)
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11 pfs
/ / (5, 81,) f1 (1, 012, St — 1 — 5,0y )duds

(XII)

/ / o fo(s, 0lxp) f1(u, 0lxy) f2(t1p — s — u, O]xy)duds

t1, p*s
(s,0)xp) f1(u, Olzp) fotit1,p — s — u, O]xy)duds
(XIII)

(XIV)

titi,p ith,p—S
/ / (5,0|zp) f1(u, Olzy) fo(tivr,p — 5 — u, O]xp)duds.
(XV) ti

+k—1,p—5

3.5.2 Exact Time of Entry into the Absorbing State is not Known

The individuals are still screened t1,ts,...,t, times. In this case, we assume
that we do not observe the exact time of death, but only in which interval the
transition happened. The likelihood contributions for type 1, 2 3, 6, 8, 9 and
12 are unchanged. The differences between when the exact time of entry into

the absorbing state is known or not known are similar to what we explained in
Section [3.3.2.2] The full likelihood for the individuals p=1,...,m is

tit1,p
) =1 So(tnpla) H/ (5,0]|2,)S1(t, — s,0|z,)ds

(1) an”’t

tivip Litk,p—S
/ / (s, 0lzp) f1(u, 0l2p)Sa2(tnp — u — s, 0|xp)duds
(111) bitk—1p=5
i+1,p ftitk,p—S$
/ / (5,0|zp) f1(u, 0]2,)(S2(tigrri-1,p — 5 — u,0))
(av) bith—1p=s
— So(tithtip — 5 — u,0|zp))duds
i+1,p it1, p*s
11 / / (5. 8]) 1 (1, 0]2,)(1 — Saltisrp — 5 — . Bla,))duds
V)

i+1,p it1,p—S
/ / (5. 81,) 1 (1, 8]) Sa by — s — u, Ol )duds

(vnrh
tit1,p tit1, [78
I/ / (5.002,) 1 (0,61, (S (b1, — 1 — 5.6]z,)
(viry’ti
— So(titr,p —u—s,0|x,))duds
H / Jo(s,0|z,)S1(tnp — s,0|xp)ds
(VIIT)
ti,p i+1, p_s
/ / (s,0|xp) f1(u, O|zp)Sa(tnp — s — u, 0lz,)duds
(1X) b

tip itl,p—S
/ / fo(s,0|zy) f1(u, 0]z,)(S2(tivk—1,p — 5 — u,0]7,)—
t;
52( itkp — S — u,0|z,))duds
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i1, p78
/ / (5, 81p) (1, 82y (1 — Saltisrp — 5 — 0, Oly))duds

(X1)

t1 pfs
/ / (s,0|zp) f1(u,0)zp)S2(tn,p — u—s,0|x,)duds

(XII)

/ /tlp_s (s, 0lzp) f1(u, Olxp)(S2(tip — s — u, Olxp)—

(XIII)
So(tit1,p — s —u,0|zy))duds

t1 pfs
/ / (s,0|zp) f1(u,0)zy)(1 — Sa(t1,p — s — u, 0]x,))duds

(XTV)

i+1,p it+k,p—S
11 / / (5,0l2p) f1(u,8]x,) (1 — Sa(tivkp — s — u, 0)z,))duds.

(XV z+k 1,p—S

3.6 Four-State lliness-Death Model

State 0

State 1

Y

State 2

A

State 3

Figure 3.4: Four-state illness-death model

In this section, we consider a four-state illness-death model. It differs from
the progressive four-state model, since an individual can move directly from
state 0 to state 3 or from state 1 to state 3. The four-state illness-death model
with the possible transitions is illustrated in Figure To, Ty and T, are
defined in the same was as for the four-state progressive model. However, we
now have two additional transition times, Tpz and T73. Tp3 is the transition time
directly from state 0 to state 3, while T3 is the transition time directly from
state 1 to state 3. Tpz and 173 have densities fo3 and f13, survival time functions
Sos = 1 — Fys and S13 = 1 — Fi3 and hazard rate functions ags = fos/Sos and
a13 = f13/513. We still assume independence between Ty, Ty, Ta, Tos, T13. We
also have that if T > T3, then the individual goes from state 0 to state 3.
If Ty < Tps, then the individual goes from state 0 to state 1. In addition, if
Ty > T3, the individual goes from state 1 to state 3. If 17 < T3, then the
individual goes from state 1 to state 2.

3.6.1 Exact Time of Entry into the Absorbing State is Known

The individuals are screened tq,1ts, ..., ¢, times.

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

Pr(Ty > tn, Toz > t,) = So(tn)Sos(tn).
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3.6. Four-State lliness-Death Model

2. Suppose an individual is observed in state 0 from 1 to ¢;. At t; 41, the
individual is observed in state 1. The individual is still observed in
state 1 at the last screening point ¢,,. We also have that Tps > Ty and
T13 + T1 > tn Then

PT(TO >t Ty < ti+17TO <tpn,To+ 17 > ti+1,TO + 11 > ty,
Toz > To, Tiz +To > ty,)
= P?"(ti <Ty <tig1,To+ Ty > t,,Tos > To,Ths + 1o > tn)

tit1
= / fo(S)PT(TO +T1 > tn|TO = S)P?“(Tog > T0|T0 = 8)
t;

PT‘(T13 + T > tn|T0 = S)dS

tit1
= / fo(s)Pr(Ty > t, — s)Pr(Tos > s)Pr(Ti3 > t, — s)ds
t

i

_ / T o(8)S1 (b — 5)So3(5)Sus(tn — 5)ds.

7

3. Suppose an individual is observed in state 0 from 1 to ¢;. At t; 41, the
individual is observed in state 1. The individual is observed in state 1
until t;4—1, where k > 1. At t;1, the individual is observed in state 2.
The individual is still in state 2 at the last screening point ¢,,. We also
have that Tpz > Ty and Ty3 > T7. Then

Pr(Ty > t;,To < tix1,To +T1 > tix1, To + 11 < tiyg,
To+T)+To>tivg, To+Th + T > tpn, Tos > To, Tis > T1)
=Pr(t; <To < tit1,tivk—1 <To+Th < tivk, To+T1 + T > ty,
Toz > Ty, T13 > T1)

tit1
= / fo(S)P?“(ti+k_1 < To + T1 < ti-‘,—leO = S)
t

i

P’I" T() + Ty +T5 > 1, |T0 = S)P’)"(Tog > To‘TO = S)PT(Tlg > Tl)d

tita itk—S
/ / ()PT(T0+T1+T2>t|T0—ST1—u)
t; titk—1—58
P’I" T03 > s P?"(Tlg > Tl‘Tl = u)duds
tit1 itk—S
/ / fi(w)Pr(Ty > t, —u — s)So3(s)S13(u)duds
t; titk—1—5

/ZH/IM S fi(u)Sa(tn — u — $)Sos(s)S13(u)duds.

i+k—1—S

4. Suppose an individual is observed in state 0 from ¢; to t;. At t;11, the
individual is observed in state 1. The individual is observed in state 1
until ¢;x—1, where k > 1. The individual is observed in state 2 at ;.
The individual is observed in state 2 until ¢;4x4;—1, where [ > 1. The
individual is observed in state 3 at the exact time point ¢;,51;. We also
have that Th3 > Ty and T3 > T7. Then
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Pr(Ty > t;, To < tiy1, To +T1 > tig1, To + T1 < tig,

To+ Ty +Ts € [tivkis tivkrr + €), Loz > To, Tz > T1)

=Pr(ti <To < tiv1,tivk—1 <To+T1 < tivkstivirs <To+T1+To < tigryr + €
Tos > Ty, Ths > Th)

tit1
= / fO(S)Pr(ti+k71 <To+T) < tz‘+k|T0 = S)
¢

23

P’I‘ z+k+l <To+T,+Th < Citkyl + €|T0 = S)PT‘(T()g, > To‘TO = S)P’I‘(T13 > Tl)d

tit1 itk—S
/ / jl(u)Pr(fH_kH <To+Ty+T5 < tigr+r+ E|T0 =s5,11 = u)
itk—1—8
S()g(s P’I‘ T13 > T1|T1 = u)duds
tit1 itk—S
/ / $) 1) Pr(tivrsr — s —u < Ty < tiypyr +€—85—u)
itk—1—8

S()g(S Slg duds

/ i+1 / itk—S fl(u)f2( Lidk+l — S — U)SOS(S)SB( )dudse.

+Ic13

. Suppose an individual is observed in state 0 from ¢; to ¢;. At the exact

time point ¢;11, the individual is observed in state 3. We also have that
Toz > Ty and Ty3 > 1.

P’I'(TU > tiaTO +T1 +T2 S [ti+1,ti+1 + E),TU;; > To,Tlg > Tl)
= PT’(ti < TU < t7‘,+1,T0 +T 4+ T € [ti+1,t7‘,+1 -+ 6),T03 > T07T13 > Tl)
=Pr(t; <Tp <tig1,t; <To+T1 <tipr,tics <To+T1+To < tip1 +€To3 > To, Tig > 1)

tit1
= / fo(S)PT‘(ti <To+T < ti+1‘T0 = S)PY‘(tH_l <To+T+T, < tig1 + Eng = é)
t
P’I'(ng > TOlTU = .S)PT(T13 > Tl)dé
tivr ptiyi—s
= / / Jo(s) fr(W)Pr(tizs < To +Th +To < tiy1 + €T = 5,1 = u)
i 0
Sos(8)Pr(Tis > Ty |Ty = u)duds

tivr  ptivi—s
= / / fo(8) fi(w)Pr(tizr —s —u <Tp < tiy1 +€— s —u)Sos3(s)Si3(u)duds
Jo

tit1 tit1—s
= / /0 Sfo(s)fr(u) fa(tivs —u — 8)Soz(s)S13(u)dudse.
Jt; .

. Suppose an individual is observed in state 0 from ¢; to t;. At t;41, the

individual is observed in state 2. The individual is still in state 2 at the
last screening point t,,. We also have that Tys > Ty and Ty3 > T7. Then

P’I’(TO > ti,To + 1T < ti+1,To + T+ 15 > tn,Tog > To,Tlg > Tl)
= PT(ti <Ty < tiv1,t < To+1T) < t¢+1,T() + Ty + 15 > tn,T()g > Ty, T3 > Tl)
tit1
= / fQ(S)PT(ti < T() + T < ti+1|T() = S)PT‘(T() + T+ 15 > tn|T(] = S)
ti

P’I‘(Tog > T0|T0 = S)PT(Tlg > Tl)ds

i+l plip1—s
/ / fl(u)P’f‘(To + T+ 15 > tn‘To =s5,11 = u)So3( )Slg(u)duds’
ty

/1+1/1+1 8 (8) f1(u)Sa(ty, — s —u)So3(s)S13(u)duds.



3.6. Four-State lliness-Death Model

7.

10.

Suppose an individual is observed in state 0 from ¢; to t;. At t;11, the
individual is observed in state 2. The individual is observed in state 2
until ¢;1 51, where k > 1. At the exact time point ¢; 1, the individual is
observed in state 3. We also have that Ty3 > Ty and T3 > T7. Then
Pr(Ty > t;,To +T1 < tig1,To+ Ty + T € [tigr, tivk +€). Toz > To, Tz > T1)

=Pr(t; <Tyo < tiz1,ti <To+ Ty < tiy1,tivk <To+T1 +To < tivk +¢€,Tog > Ty, Tz > T1)

tit1 tit1—s
= / / fo(s) fr(w)Pr(tipr —u—s <To < tiyr +€—u— 8)Sp3(s)S13(u)duds

/t / fo(b fl U')fZ(tH—k - U*b)SUS( )515( )dudéé

. Suppose an individual is only observed in state 1 at all the screening time

points, where ¢,, is the last screening. We also have that Tys > Ty and
T3+ Ty > t,. Then

P?“(To < tl,To < tn,TO—FTl > tl,T0+T1 > tn,Tog > TQ,T0+T13 > tn)
= Pr TO <t,To+Ty > t,,Tos > Ty, Tis+ Ty > t, )

/ fO Sl 8)503(5)513(tn — S)ds.

. Suppose an individual is observed in state 1 from ¢ to ¢;. At t;41, the

individual is observed in state 2. The individual is still in state 2 at the
last screening point ¢,,. We also have that Tps > Ty and Ty3 > T;1. Then

P’I’(To <t1,T0+T1 >ti,To+T1 <ti+1,T0+T1 +T2 >tn,T03 >T0,T13 >T1)
:PT(TQ < t1,t; <Ty+T; <ti+1,T0+T1 + 15 >tn,T03 >T0,T13 >T1)

t1
= f()(S).PT(tz <To+1T < ti+1|T0 = S)PT(TO + T+ 15 > tn‘TO = 8)
0

PT(T03 > T0|T0 = S)P?”(Tlg > Tl)ds

tl t1+1 S
/ / fiw)Pr(To+ Ty +To > tp|To = 5,71 = u)

503 S13 )duds
it1—S
/ / fi(w)Sa(t, — s — u)Sos(s)S13(u)duds.

Suppose an individual is observed in state 1 from ¢; to ;. At t;11, the
individual is observed in state 2. The individual is still observed in state
2 until ¢;1,—1, where k£ > 1. At the exact time point ¢;1, the individual
is observed in state 3. We also have that T3 > Ty and T3 > T7. Then

PT'(TO <t,To+T1 >t;, To +1T1 < t,;Jrl,To +Ty+ T € [t,‘,+k,t7j+]€ + €),T03 > Ty, Tis > Tl)
= PT‘(TO <ttt <To+Ty <tigr,tive <To+T1 +T5 < iy +€,Tos > Ty, Ths > T1)

ty
= / Jo(s)Pr(t; <To+T1 < tiy1|To = 8)Pr(tiv < To + Ty +To < tiyg +€[Tp = s)
PT 1—'03 > E)'ﬂ) = 9)P7(T1; > Tl)dS
t1 tiv1—s
/ / Jo(s) fr(u)Pr(tivk <To+ T+ To < tivi + €|To = 5,11 = u)
t;
S()g( )P?“(Tlg > Tl‘Tl = u)duds

/ /LH gf() (8) f1(u) fo(tizr — s — u)So3(s)S13(u)dudse.

ti—s
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11.

12.

13.

14.

15.

50

Suppose an individual is observed in state 1 from ¢; to ¢;. At the exact
time point t;11, the individual is observed in state 3. We also have that
Tos > Ty and Ty3 > T7. Then

PT'(TO < tl,TO +T1 > tivTO +T1 +T2 S [ti+17 i1 +€) T()3 > T(),Tlg > Tl)
—Pr TO <t t; <To+Th <tig1,ti1 < To+T) +T5 < tiv1 +¢€,Tos > To,Th3 > Tl)

i+1—8
/ / )PT’( l+1<T0+T1+T2<t,+1+€‘TO_STl_U)
P’P T03 > T0|T0 = S)PT(T13 > T1|T1 = u)duds

t1 tit1—s
/ / (u) fa(tizr — s — u)So3(s)S13(u)dudse.
ti—s

Suppose an individual is only observed in state 2 at all the screening time
points , where t,, is the last screening. We also have that Tps > Ty and
T3 > Ty. Then

Pr(Ty <t1,To < tn,To+T1 < t1,To + Ty < tn, To +T1 + To > tn, Toz > To, T13 > T1)
_PT TO <t,To+T) <t1,To+T1 +T> > t,, Tos > Tp, T13 >T1)

t1—s
/ / $) f1(u)Sa(tn, — u — s)So3(s)S13(w)duds.
Suppose an individual is observed in state 2 from ¢; to ¢;. At ¢;41, the

individual is observed in state 3. We also have that To3 > Ty and Ty3 > T7.
Then

Pr(Ty <t1,To+Th <ti,tig1 <To+T1 +To < tiy1 + € Toz > Ty, Tis > T1)

t1
= fo(S)PT(TO + T1 < t1|T0 = S)P?"(ti+1 < TO =+ T1 =+ T2 < ti+1 + E‘TO = S)

0
PT Tog > T0|T0 = S)PT(TB > Tl)d
11 t1—s
/ / )f2( i+1 — S — U)S()g( )Slg(u)dudse.

Suppose an individual is observed in state 3 at the exact time point 1,
without any intermittent screening. We also have that Tps > Ty and
Tz > Ty. Then

PT(T0+T1 + T € {tl,tl—FE) Tos > Ty, Tis > Tl)
—P’i‘ 0<T0<t1,0<TU+T1 <ttt <To+Th+To <ty +e, T03>T0,T15>T1)

/1/1 ' s)f1(w) fa(tn — s — u)Sps(s)S13(u)dudse.

Suppose an individual is observed in state 0 from ¢; to ¢;. At ¢;41, the
individual is observed in state 1. The individual is observed in state 1
until ¢;1,—1. At the exact time point ¢;, the individual is observed in
state 3. We also have that Tps > Ty and Ti3 > T7. Then

Pr(t; < Ty <tit1,To+ Ty > tigp—1,To+T1 + T2 € [tigr, tivr +€),Toz > To, Tyg > T1)
tit1
= / fg(S)P?”(tH,k,1 < To + T1 < ti+k|Tg = S)P?”(tprk; < T() + T1 + TQ < ti,+k: + G‘T() = S)
ti
PT’(T03 > Tg‘T() = S)PT’(T13 > T1)d8

tit1 tigr—s
/ / )fg( itk — S — ’U,)Sog )Slg(u)dudse
t
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3.6. Four-State lliness-Death Model

16.

17.

18.

19.

20.

21.

Suppose an individual is observed in state 0 from ¢; to ¢;. At the exact
time point ¢;41, the individual is observed in state 3. We also have that
Toz < Tp. Then

PT(ti+1 < Tp3 < tig1 + €, Ths < To) = Pr(ti+1 <Toz < tiv1 + €Ty > tit1
= fo3(tix1)So(tit1)e.

Suppose an individual is observed in state 3 at the exact time point 1,
without any intermittent screening. We also have that Tps < Ty. Then

PT(tl < Tos < tit1,Tos < To) = P’I"(tl <Tog < tir1,t1 < T()) = fog(tl)So(tl)G.

Suppose an individual is observed in state 0 from ¢; to ;. At t;11, the
individual is observed in state 1. The individual is observed in state 1
until ¢;4,—1. At the exact time point t;,, the individual is observed in
state 3. We also have that Tos > Ty and T3 < T7. Then

P’I"(ti <To < tiy1,tivr <To+ T3 < tiyr +€,Tog > To,To + 11 > ti+k)

tit1
= / fo(S)S@g(S)PT(ti+k —s<Tis <tiyr+e— S)PT(Tl > tigk — s)ds
t

i

tit1
= / fo(s)So3(s) fiz(tigr — 5)S1(titr — 5)dse.
t

i

Suppose an individual is observed in state 1 from t¢; to ¢;. At the exact
time point ¢;41, the individual is observed in state 3. We also have that
Toz > Ty and Ty3 < T;. Then

Pr(Ty < ti,tigy1 < To+Tis < tiyr +€,Tog > To, To + Th > tit1)

ty
= fo(S)S()g(S)PT(t7;+1 —s< Tz < tip1 +€— S)PT'(Tl > tiyp1 — S)dS
0

= /0 1 Jo(8)Sos(s) fiz(tit1 — s)S1(tit1 — s)dse.

Suppose an individual is observed in state 3 at the the exact time point
t1, without any intermittent screening. We also have that Tys > T and
Tig < Ty. Then

P’/‘(fl +e>Ti34+ Ty > t1,Tos > To, To +T1 > tl)

t1
= ) fo(5)So03(s) fi3(t1 — s)S1(t1 — s)dse.

Suppose an individual is observed in state 0 from ¢; to ¢;. At the exact
time point ¢;1, the individual is observed in state 3. We also have that
Tos > Ty and T3 < Ty. Then

PT’(ti <1y < ti+17T03 > Ty, Th + Ty > tit1,tip1 < To+ T3 < tig1 + 6)

tita
= / Jo(s)S03(s) fi3(tit1 — 8)S1(tig1 — s)dse.

ti
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3. General Likelihood Construction

The full likelihood for the individuals p=1,...,m is

= H SO(tn,pa 0‘1'17)503 (tn,pv O‘T’p)
(N

Li+1,p
H/ (5,0]2p) 81 (tnp — 5,0|2,)S03(s, 8]2,) S13(tn p — 5, 0)7,)ds
t

(1) tie

tita,p tith,p—$
/ (s,0)zp) f1(u,0|z,)S2(tnp — u — 5,0|x,)S03(s, 0]x,)S13(u, 0]x,)duds
(I11) t tith— 11}*9

+k— lps

tivip [flitkp—S
[ (5,01 ) a1, 01 ol — 5 = Ol S5, Bl S, Oy duds
vy Jte
tivip it1,p—S
H/ /0 fo(s,0lxy) f1(u, Olap) fa(tiz1p —u —s,0|x,)Sos(s, 0]xy)Si3(u, O|ay,)duds
(v) i
i+1,p i+1,p S
H / /0 Jo(s,0]xp) f1(u, 0)2,)S2(tnp — s — u, 0|2,)S03(s, 0|xp)S13(u, 0]xy)duds
b

Li+1,p i+1,p—S
/ / fo(s,0lxp) f1(u, Olzp) fo(tivr,p — u—s,0|2,)S03(s, 0|,)S13(u, O|z,)duds
(vir) e

H fo 5,0)2p,)S1(tn,p — 5, 0]xp)S03(s, O]xp)S13(tnp — 5, 0|2 )d.
(VIII)*®

tip [liy1,p—s
/ / Fo(s, 012,) f1 (1, 012,) Sa(tnp — 5 — 4, Bl2,) S (s, Bl St a1, Oy ) duds
0 tip—s
tip  [livip—s
H / / Fo(s, 01y) f1 (01 ot — 5 — 1, B,) o3 (5, Bley) Sus (w, O, )cudls
t;
tit1, ,,—5
/ (s,0|zp) f1(u, 0lxp) fa(tiv1p — s — u, 0|2,)S03(s, 0|x,)S13(u, 0]xy)duds
tip—s
tip tip—s
/ / (s,0)zp) f1(u,0lz,)S2(tnp — u— 5,0|2,)S03(s, 0|x,)S13(u, 0|x,)duds
(XII)
t1,p—s
/ fo(s,0lzp) f1(u,Olxy) f2(tivrp — s — u, 0|x,)S03(s, 0]x,)S13(u, 0|x,)duds
XIH)
t1,p t1,p—s
/ / fo(s,0lxy) f1(u, Olzp) f2(t1,p — s — u, 0,)S03(s, O|2,)S13(u, 0|x,)duds
(XTV)

tivip flitkp—S
/ / Jo(s, 0ly) f1(u, 0]xy) f2(tivrp — s — u, 0l2) S0 (s, 0|2p)S13(u, O)2y)duds
(xvy ti t

ithk—1,p—S

11 fosCtisiplzp)Soltivap, 0lz,)
(XV1)

H Jos(t1,plzp)So(t1,p, 0lzp)

(XVII)

tivip
/ Fol(s,012y) S (5.0l Fa(tisn — 5, 01,) 1 (Frenp — 5,0y )ds
(xvirntie

11 / Fols.012,)Sua(5. 012,) fra(tisrp — 5. 012,)S1 (tis1, — 5. O], )ds

(XIX)

tp
H / (5,0|z,)S03(s,0|xp) fi3(tip — 5,0]xp)S1(t1,p — 5,0|p)ds

(XX)

tiv1,p
/ fo(s,0|z,)S03(s,0|p) fr3(tiz1p — 5, 0]xp)S1 (tig1,p — 5,0v]x,)ds
(xx1) 7t



3.6. Four-State lliness-Death Model

3.6.2 Exact Time of Entry into the Absorbing State is not Known

The individuals are still screened t4,1ts,...,t, times. In this case, we assume
that we do not observe the exact time of death, but only in which interval the
transition happened. The likelihood contributions for type 1, 2 3, 6, 8, 9 and
12 are unchanged. The differences between when the exact time of entry into
the absorbing state is known or not known are similar to what we explained in
Section The full likelihood for the individuals p =1,...,m is

:HSo(tn,p,0|:1:p)503(tn‘p,0\:1;17)
tit1p
H (5,0|2p)S1(tnp — s,0|2p)Sos(s, 0|p)S13(tn,p — s, 02, )d:
(1n) 't

tivip  flivkp—S
/ fo(s,0lxp) f1(u, )z,)Sa(tn,p — u — s,0|z,)S03(s, 0|x,)S13(u, 0]xy)duds
t

(111) titk—1,p=8
tivi,p plitkp—S
/ [ ol Ol (Bl (Saltisnirsy 5 = w.Blzy) = Saltinsn -5~ u,6l,)
(1v) t titk—1,p—S$

So3(s, 0]x,)S13(u, 0|x,)duds

tiv1,p fliv1,p—S$
H / / Fo(5,00,) (1, 0l,) (1 — Saltissp — 5 — 10, 0]y))Soa (5. 0]2,) Su (u, Ol )duds
t;
tit1,p  plivi, p*s
/ / (s,0|zp) f1(u,0lxy)S2(tn,y — s — u, O)z,)S03(s, 0,)S13(u, O|z,)duds
vt

tivip  liv, ,,—s
/ / (5,0|xp) f1(u, Ozy) (S (tivh—1,p —u—5,0|T,) — Sotiyrp —u—s,0\xy))
(VII)
Sos(s,0|x,)S13(u, 0|xy)duds

t1,p
/ fo(s,0)2p)S1(tn,p — 5,0|x,)S03(s, 0]xp)S13(tnp — 5, 0)2p)ds
(VIII)

tip  plivip—s
/ / fo(s,0lxp) f1(u, 0)x,)S2(tn,p — s — u, 0|z,)Sos(s, 0|xy)S13(u, 8]xy)duds
(IX)" ti

tip  plivr, p*S
Il / / (5. 012, f1 (11, 012,) (Saltis 1. — 5 — 0, Bla) — Saltieny — 5 — ,6z,))
t. K]
Sog, (s,0|zp)S13(u, Oz, )duds
tip livip—s
/ / Jo(s, 0)zp) f1(u, 0lz,) (1 — So(tivr,p — s — u, 0|xp))Sos(s, Olz,)S13(u, Oz, )duds
(X1) S

t1,p ty, p—s
H / / (s,0|zp) f1(u,0lxy)S2(tn,y — u— s, 0|z,)S03(s, 0|,)S13(u, O|z,)duds

(X1I1)

/ / o fo(s, elwp)fl(u 0‘371))(32( ip—S— U 9“1'1)) Sa(tig1, p TS U, lep))

(XIIT)
Sos(s,0|x,)S13(u, 0|x))duds
t1,p t1,p—5
/ / fol(s, 0)zp) f1(u, Blz,) (1 — Sa(tr,, — s — u, O]xy))
(X1V)
503 b O\LP)SH(U,HhP)duda
titip  flivkp=s )
/ [l Bl i, 812)(1 = Saltian — 5~ . Blzy)
(XV) ti tivk—1

Sos(s,0x) Slg(u 0|x,)duds

H / fos(s,0|x,)So(s, O)zy,)ds

(XVI)
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/ fus (5, 012,) S0 (5, 6], )ds

(XVII)
i+1,p itk,p—S
/ / (5, 002,) Sos (s, 022y Frs (1, ],) 51 (u, O )duds
(XVIII) bitk—1,p=8
tit1, p*S
/ (s,0|zp)S03(s, 0)xp) f13(u, B|x,) 51 (u, O|x))duds
(XIX)

t1 P 1, p—S
/ / (s,0)zp)S03(s, 0|xp) fi3(u, Bla,)S1(u, O|z))duds
(XX)

ti+1,p tit1,p—S
/ / fo(s,0]x,)S03(s, 0|zp) f13(u, O|2,)S1 (u, B|x,)duds.
(xx1)”t

3.7 Gamma Process Models

In this section we present the survival and density formulas for Gamma process
models. Let Z(t) ~ Gam(at, 1), where the survival function for an individual is

S(t,a,c) = P(T >t)=P(Z(t) < ¢) = G(c,at, 1) (3.3)
and the density function

0S(t,a,c)

flt,a,c) =— 9

(3.4)

This is often computed numerically as
-F()(t + €, a, C) - -F()(tv a, C)

¢ 3.5
So(t,a,C) *So(t+€7a70) ( )

€

f(t7 a? C) ~

~

In the three-state progressive model, we consider two Gamma processes,
one for the transition from state 0 to state 1, Zy(t) ~ Gam(agt, 1), and one for
the transition from state 1 to state 2, Z1(t) ~ Gam(ait,1). In an illness-death
model we have three Gamma processes. The two Gamma processes for state 0
to state 1 and from state 1 to state 2 are formulated in the same way as when
we have a three-state progressive model. The third Gamma process is from
state 0 to state 2. It is defined as Zyy ~ Gam(apat, 1). Zy and Zyz competes
with each other. This means if Zys(t) crosses coo before Zy(t) crosses cg, then
the patient will jump straight to state 2 without going through state 1.

In the four-state progressive model model we also have three Gamma
processes. The two Gamma processes for the transition from state 0 to state 1
and for the transition from state 1 to state 2 are formulated in the same way
as when we have a three-state progressive model. The third Gamma process
is from state 2 to state 3. It is defined as Zy ~ Gam(ast,1). In a four-state
illness-death model we have five Gamma processes. The three Gamma processes
for the transition from state 0 to state 1, for the transition from state 1 to state
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3.7. Gamma Process Models

2 and for the transition from state 2 to state 3 are formulated in the same way
as for a four-state progressive model. In addition, we have a Gamma process for
the transition from state 0 to state 3 and one for the transition from state 1 to
state 3. The transition from state 0 to state 3 is defined as Zyz ~ Gam(apst, 1),
while from state 1 to state 3 is defined as Z13 ~ Gam(aist,1). Zy and Zys
competes with each other, which means if Zy3(¢) crosses co3 before Zy(t) crosses
co, then the patient will jump straight to state 3 without going through state 1
and state 2. If an individual reaches state 1, we also have two process which
starts at the same time and competes with each other, Z; and Zy3. If Zy3(¢t)
crosses ¢13 before Z;(t) crosses ¢1, then the individual will jump straight to
state 3 without going through state 2.
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CHAPTER 4

Simulations

4.1 Background and Motivation

In this chapter, we start by simulating the transition times from a known
parametric survival times model, in this case a Gamma process model. Next,
we simulate the time points and place the individuals into the correct likelihood
type. In the end, we use the log-likelihood to find the maximum likelihood
estimates by numerical optimization. The reason for simulating in this fashion
is to get a confirmation that we have the right construction of the likelihood
and confirm the large-sample properties of the maximum likelihood estimators.
We expect the large-sample properties to hold.

We start with presenting the recipe for simulating the transition times. For
each patient p = 1,...,m we generate the transition times 7} ,. In a three-
state progressive model, k£ = 0,1, for an illness-death model £ = 0, 1,02, for a
four-state progressive model k = 0, 1,2 and for a four-state illness-death model
k=0,1,2,03,13. We find T} , by solving the equation for x

* 1 apTk p—1 o _
/0 F(akam)x »~rexp(—x)dr =y,
where y is a random number between 0 and 1. Thus, we draw a random number
from a standard uniform distribution and solve for 7T}, ,. We use the different
values for T}, ,, and the screening time points to determine of which type the
individual is.

In Chapter 2] we discussed the likelihood theory and the large-sample
properties. The aim in this chapter is to check the large-sample properties.
We do this by checking two different properties. The first one is that for
each simulation, we check that the parameter estimates are close to the true
estimates. The second one is we use the simulations of each parameter to check
that the densities of the Zy,-values, defined in Equation are close to a
N(0, 1)-distribution. The estimated covariance matrix is the inverse Hessian
matrix. The relationship between the Hessian matrix, H , and the observed
Fisher information, Iis H=—1. The diagonal of the inverse Hessian matrix is
an approximation of the variance for the estimated parameters. The estimated
variance for parameter 6; in simulation w is called &;,,. Then the Z-score for
parameter 6; in simulation w becomes

(4.1)
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4. Simulations

where its density should be approximately standard normal. We calculate the
Z-score for all the different parameters for each simulation w =1,...,r.

The rest of the chapter is organized as follows. We start by presenting
the simulations for one screening and multiple screenings in the three-state
progressive model in Section The results for the simulations of multiple
screenings for the illness-death model are presented in Section[£-3] In the case of
multiple screenings, we divide the section into when the time into the absorbing
state is and is not observed exactly. In Section 4] we consider multiple
screenings, where the transition into the absorbing state both is observed
exactly and not exactly. In Section we only consider when time of death
is known. This is because we find that the results for when the transition
to the absorbing state is or is not exactly known are very similar. To find
the maximum likelihood estimates and their hessian matrix, we use the optim
function in R. Lastly, in Section [f.6] we illustrate how much information is lost
from the fact that the transition times are not observed exactly.

4.2 Three-State Progressive Model

N |
N

— Z.0()
o Z 1)
N
0 |
—

Gamma processes

Time

Figure 4.1: Simulation of a Gamma process from state 0 to state 1 (Zy) and a
Gamma process from state 1 to state 2 (Zy).

In this section, we let ¢g = 5, ag = 0.2, ¢; = 3 and a; = 0.2. We illustrate
in Figure a simulation of a Gamma process from state 0 to state 1 (Zp)
and a simulation of a Gamma process from state 1 to state 2 (Z;) using these
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4.2. Three-State Progressive Model

parameter values. From the processes illustrated in this plot, the individual
moves from state 0 to state 1 after around 35 years and from state 1 to state 2
around 18 years after. The total time from state 0 to state 2 is around 53 years.

4.2.1 One Screening

We start by defining the simulating scheme when we only have one screening,
where we in addition may observe time of death.

1. Simulate Ty, and T}, as described in section

2. Draw the time points from screening t and u from a uniform distribution
t ~ U[0.5,120],

u ~ U[0.5,90].
Then

a) if t < Ty, and t < Tpp, + T4, then the patient is type 1 at time t.
b) if ¢t > Ty, and t < Ty, + T4 p, then the patient in type 2 at time ¢.

c) ift > Ty, +Thp and u > T, + T4, then the patient is type 3 at
time t = TO,p =+ Tl,p'

d) if t > Ty, +Thp, u<Tpypand u < Ty p + 11 p, then the patient is
type 4. We then have the time points w and ¢ =Ty, + T ).

e) ift > Ty +T1p, u> Ty, and u < Ty, + 11, then the patient is
type 5. We then have the time points v and ¢t = Tg j, + 11 5.

3. Use these data to optimize the log-likelihood function and find the
maximum likelihood estimates.

We consider 500 patients and we do the simulations 1000 times. In each
simulation, we estimate the maximum likelihood parameters.

Parameter | True Value Mean of
Estimates

co 5.000 5.089

ao 0.200 0.203

c1 3.000 3.192

ay 0.200 0.211

Table 4.1: True value and mean of the estimated parameters in a three-state
progressive model with one screening.

In Table [I.I] we present the true values of the parameters and the mean of
the estimates. The mean of the maximum likelihood estimates are close to their
true values.

The second large-sample property we check is the density of

Co,w — Co

Zco,’w =
K/C(],’LU

, where w=1...r,
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4. Simulations

Mean Variance
Zeo -0.0312 0.959
Za, -0.0314 0.979
Ze, -0.0529 1.060
Za, -0.0555 1.043

Table 4.2: Mean and variance of the Zp,-values in a three-state progressive
model with one screening.

where R, ., is the square root of the variance for cg. The variance is from the
diagonal of the inverse Hessian at simulation number w.

We present the mean and variance of the Zy,-values in Table All of the
Zp,-values have a mean close to 0 and a variance close to 1.

Density
Density

Density
Density

(c) Zey (d) Zay

Figure 4.2: Density of Z.,, Zq,, Z¢, and Z,, in a three-state progressive model
with one screening

Figure [£.2] shows the density plots for Z.,, Z,,, Z., and Z,,. In each
plot, we include a red dashed line which is the density of the standard normal
distribution. The densities for the Zp,-values seem to be quite close to the
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4.2. Three-State Progressive Model

standard normal distribution.

As expected, we have that the mean of the estimates are close to the true
values and the density of the Zy,-values are close to the standard normal
distribution. We have that for 500 patients, our conclusion is that the
large-sample theory provide fully adequate approximations to the relevant
distributions.

4.2.2 Multiple Screenings

In this part, we consider the situation where the individuals are screened
between 2 and 15 times. The simulations are done in the same way as in Section
with small modifications. The exact recipe for the simulations is found in
Appendix [B] We do the simulations 1000 times for 500 patients.

4.2.2.1 Exact Time of Transition to the Absorbing State is Known

When the exact time of transition to the absorbing state is known, we know
that the exact time of death is Ty + T7. Table 23] shows the mean of the

Parameter | True Value Mean of
Estimates
Co 5.000 5.043
ao 0.200 0.202
c1 3.000 3.084
aq 0.200 0.205

Table 4.3: True value and mean of the estimated parameters in a three-state
progressive model for multiple screenings when the exact time of transition to
the absorbing state is known.

estimated parameters and the true values when the exact time of transition to
the absorbing state is known. The mean of the estimates are close to the true
values.

Figure [L.3] shows the densities for Z.,, Z4,, 2., and Z,, when we have
observed the exact time of death in a three-state progressive model with multiple
screenings for each person. The dashed red line in each plot is the density for
the standard normal distribution. The densities for the Zy,-values are centered
around 0 and they seem to follow the shape of the standard normal distribution.
There are some small differences between the densities for the Zy,-values and
the standard normal distribution. Our conclusion is still that the large-sample
theory provide fully adequate approximations to the relevant distributions.
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¢, and Z,, for multiple screenings in a three-

state progressive model when the exact time of transition to the absorbing state

is known

4.2.2.2 Exact Time of Transition to the Absorbing State is hot Known

Parameter | True Value Mean of
Estimates
co 5.000 5.049
ao 0.200 0.202
c1 3.000 3.130
ai 0.200 0.207

Table 4.4: True value of parameters and mean of the estimated parameters in
a three-state progressive model for multiple screenings when the exact time of
transition to the absorbing state is not known
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Figure 4.4: Density of 2., Z4,, 2., and 2Z,, for multiple screenings in a three-
state progressive model when the exact time of transition to the absorbing state
is not known.

Table presents the true values and mean of the maximum likelihood
estimates in a three-state progressive model when the exact time of transition
to the absorbing state is not known. There are small differences between the
true values and the mean of the estimates. The differences between the true
values and mean of the estimates are a bit higher in Table [I.4] than when the
exact time of transition to the absorbing state is known, which we presented in
Table A3

Figure [£.4] shows the densities for Z.,, Z,,, Z., and Z,, when we have not
observed the exact time of transition to the absorbing state in a three-state
progressive model with multiple screenings for each person. In addition, the
dashed red lines are the density of the standard normal distribution. From
the plots, it seems like the densities are quite close to a standard normal
distribution. Our conclusion is that the large-sample theory provide fully
adequate approximations to the relevant distributions.
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4. Simulations

4.3 lliness-Death Model

In this section, we assume ¢y = 5, ag = 0.2, ¢y = 2, a; = 0.2, cgo = 4 and
aga = 0.15. We illustrate in Figure@ a simulation of three different Gamma
processes, one from state 0 to state 1 (Zy), one from state 1 to state 2 (Z1) and
one from state 0 to state 2 (Zp2) with these parameter values. In this plot, the
individual moves from state 0 to state 1 after around 38 years and from state
1 to state 2 around 10 years after the individual enters state 1. This means
that the total time from state 0 to state 2 is around 48 years. However, this
individual will go directly to state 2 without going through state 1, since Zpz(t)
crosses coa before Zy(t) crosses cyg. This takes around 25 years.
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Figure 4.5: Simulation of a Gamma process from state 0 to state 1 (Zp), a
Gamma process from state 1 to state 2 (Z;) and a Gamma process from state
0 to state 2 (Zo2)

We only consider multiple screenings, and the individuals are screened
between 2 and 15 times. The simulations are done in the same way as in Section
[£:2.1] with some modifications. The exact recipe for the simulations is found in
Appendix [B] We do the simulations 1000 times for 500 patients

4.3.1 Exact Time of Transition to the Absorbing State is Known

When the exact time of transition to the absorbing state is know, we know
that the exact time of death is Ty + T3 or Tpe. In Table [I.5] we present the
true values and mean of the maximum likelihood estimates in this illness-death
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4.3. lliness-Death Model

Parameter | True Value Mean of
Estimates

Co 5.000 5.049

ao 0.200 0.202

c1 2.000 2.119

ay 0.200 0.210

Co2 4.000 4.037

ao2 0.150 0.152

Table 4.5: True value and mean of the estimated parameters in an illness-death
model for multiple screenings when the exact time of transition to the absorbing
state is known.

model when the exact transition to the absorbing state is known. It seems like
the mean of the estimates for all of the parameters are close to the true values
of the parameters.

Figure [f.6] shows the densities for Z.,, Z4., Zc,s Zay, Zey, and Zq,. In
each plot we include a the dashed red line which is the density of the standard
normal distribution. The densities of the Zy,-values seem to correspond well
with the standard normal distribution. All of the densities are centered around
0 and the densities follow the standard normal distribution relatively closely.
Our conclusion is therefore that the large-sample theory provide fully adequate
approximations to the relevant distributions.
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Figure 4.6: Density of Z., Z4,, Zc,, Zay s Zegs and 24, for multiple screenings
in an illness-death model when the exact time of transition to the absorbing
state is known
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4.3. lliness-Death Model

4.3.2 Exact Time of Transition to the Absorbing State is not

Known

Parameter | True Value Mean of
Estimates

co 5.000 5.055

ao 0.200 0.202

c1 2.000 2.136

ay 0.200 0.211

Co2 4.000 4.043

ao2 0.150 0.152

Table 4.6: True value and mean of the estimated parameters in an illness-death
model for multiple screenings when the exact time of transition to the absorbing
state is not known

In Table[f:6] we report the true values and the maximum likelihood estimates
for the illness-death model when the exact transition to the absorbing state is
not known. The estimates are quite close to the true values. The mean of the
estimates in Table [4.6] are quite close to the results in Table when the exact
time of transition to the absorbing state is known.

Figure [£.7 shows the plots of the densities for Z.,, Z4,, Zc,, Za,, Ze, and
Zao,- In addition, we include a dashed red line in each plot, which is the density
of the standard normal distribution. The densities for the Zy,-values seem
to follow the dashed red lines quite closely, which means that the densities
correspond well with the standard normal distribution. Owur conclusion is
therefore that the large-sample theory provide fully adequate approximations
to the relevant distributions.
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Figure 4.7: Density of Z.,, Zay, Zeys Zays Zeoy a0d 24, for multiple screenings
in an illness-death model when the exact time of transition to the absorbing
state is not known
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4.4. Four-State Progressive Model

4.4 Four-State Progressive Model

In this section, we assume cg = 5, a9 = 0.2, ¢y = 3, a; = 0.2, ¢ = 4 and
as = 0.1. We illustrate in Figure [£.§ a simulation of three different Gamma
processes, one from state 0 to state 1 (Zy), one from state 1 to state 2 (Z;) and
one from state 2 to state 3 (Z3) with these parameter values. In this plot, the
individual moves from state 0 to state 1 after around 38 years, from state 1 to
state 2 around 10 years after and from state 2 to state 3 after 25 years. This
means that the total time from state 0 to state 3 is around 73 years.
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Figure 4.8: Simulation of a Gamma process from state 0 to state 1 (Zp), a
Gamma process from state 1 to state 2 (Z;) and a Gamma process from state
2 to state 3 (Z2)

We let the individuals be screened between 2 and 15 times. The simulations
are done in the same way as in Section {.2.1] with modifications. The exact
recipe for the simulations is found in Appendix [B] In this section, we consider
500 patients, and the simulations are done 100 times.

4.4.1 Exact Time of Transition to the Absorbing State is Known

When the exact time of transition to the absorbing state is known, we know that
the exact time of death is Ty + Ty + T». In Table [1.7] we present the true values
and mean of the maximum likelihood estimates. The mean of the estimates are
for most of the parameters close to the true values. The mean of the estimated
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Parameter | True Value Mean of
Estimates
co 5.000 5.139
ag 0.200 0.205
c1 3.000 3.091
ay 0.200 0.206
Ca 4.000 4.273
as 0.100 0.108

Table 4.7: True value and mean of the estimated parameters in a four-state
progressive model for multiple screening when the exact time of transition to
the absorbing state is known.

parameter co seems to be a bit further away from its true value than the other
parameters. However, it is still quite close to the true value.

We present plots of the densities for Z.,, Z4,, Z¢,, Za,, Ze, and Z,, in
Figure [£9] In each plot, we include a dashed red line, which is the density for
the standard normal distribution. The densities for Z., and Z,, seem to differ
a bit from the standard normal distribution around the mean. The reason may
be that there are fewer people transitioning from state 2 to state 3 compared to
the other states. In addition, the mean of Z., and Z,, seem to be a bit skewed
to the right, and therefore with a mean above 0, but not by much. In the
end, our conclusion is still that the large-sample theory provide fully adequate
approximations to the relevant distributions.
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Figure 4.9: Densities for Z.,, Z4,, Zc,, Za,, Zec, and Z,, for multiple screenings
in a four-state progressive model when the exact time of transition to the
absorbing state is known
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4.4.2 Exact Time of Transition to the Absorbing State is not

Known

Parameter | True Value Mean of
Estimates

co 5.000 5.140

ag 0.200 0.205

c1 3.000 3.095

ay 0.200 0.206

C 4.000 4.340

as 0.100 0.110

Table 4.8: True value and mean of the estimated parameters in a four-state
progressive model for multiple screenings when the exact time of transition to
the absorbing state is not known

We present the true values and mean of the maximum likelihood estimates
in Table [£.8] The mean of the estimated parameters are often close to the
true values. However, the mean of the estimated parameter cy seems to be
a bit further away from its true value. As we explained previously, this may
have something to do with fewer people transitioning from state 2 to state 3.
The mean of the estimated values are a bit further away from the true value
compared to when the exact transition to the absorbing state is known.

In Figure .10} we present plots of the densities for Z.,, Za,, Zc,, Za,, Ze,
and Z,,. In each plot, we include a red dashed line which is the density of the
standard normal distribution. The densities for 2., and Z,, seem to differ a bit
from the standard normal distribution around the mean. For these transitions,
the densities are a bit wider and lower than for the standard normal distribution.
This means the variances are a bit higher than 1, and this is confirmed by
calculating the variances. We get that the variance for Z., is 1.322 and the
variance for Z,, is 1.404. This may have something to do with fewer people
transitioning from state 2 to state 3 compared to the transitions between the
other states. Since we have few transitions, we may get that the spread of the
Zp,-values is too big. Even though there are some differences, they are not
very big and our conclusion is still that the large-sample theory provide fully
adequate approximations to the relevant distributions.
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Figure 4.10: Density of Z.,, Z4,, Z¢,, Za; s Ze, and Z,, for multiple screenings
when the exact time of transition to the absorbing state is not known
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4.5 Four-State lliness-Death Model

In this section, we assume c¢g = 5, ag = 0.2, ¢c; =3, a1 = 0.2, co =4, as = 0.1,
cos = 6, aps = 0.15, ¢13 = 4 and a3 = 0.15. We illustrate in Figure [I.17] five
different Gamma processes, one from state 0 to state 1 (Zy), one from state 1
to state 2 (Z7), one from state 2 to state 3 (Z2), one from state 0 to state 3
(Zp3) and one from state 1 to state 3 (Z13) with these parameter values. The
transition time from state 0 to state 1 is around 50 years, from state 1 to state
2 around 25 years, from state 2 to state 3 around 55 years, from state 0 to state
1 around 40 years and from state 1 to state 3 around 35 years.

— Z.0() Z_03()
— 1) — Z.13()

Gamma processes

Time

Figure 4.11: Simulation of a Gamma process from state 0 to state 1 (Zp), a
Gamma process from state 1 to state 2 (Z), a Gamma process from state 2
to state 3 (Z2), a Gamma process from state 0 to state 3 (Zp3) and a Gamma
process from state 1 to state 3 (Z13)

We let the individuals be screened between 2 and 15 times. The simulations
are done in the same way as in Section [£.2.1] with modifications, where the
exact recipe for the simulations is found in Appendix |B] and the code is found
in Appendix [D] We do the simulations 100 times with 500 patients.

4.5.1 Exact Time of Transition to the Absorbing State is Known

When the exact time of transition to the absorbing state is known, we know
that the exact time of death is either Ty + 17 + 15, To3 or Ty + T13.
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Parameter | True Value Mean of

Estimates
Co 5.000 5.175
ao 0.200 0.206
c1 3.000 3.140
ay 0.200 0.209
Co 4.000 4.147
as 0.100 0.103
Co3 6.000 6.195
ao3 0.150 0.155
c13 4.000 4.186
a3 0.150 0.159

Table 4.9: True value and mean of the estimated parameters in a four-state
illness-death model for multiple screenings when the exact time of transition to
the absorbing state is known

We present the results for the true value of the parameters and the mean
of the maximum likelihood estimates in Table f.9] Mostly, the mean of the
estimated parameters are close to their corresponding true value. However, they
are a bit further away compared to the models with fewer states and transitions,
for example the three-state progressive model. One reason is that there are
fewer people making the different transitions when we have more states and
possible transitions.

In Figure f.12] we present plots of the densities for Z.,, Z40, Z¢,, Za,s Zes,
Zays Zegss Zagsy Zeys ad Zg,,. In each plot there is also a red dashed line,
which is the density for the standard normal distribution. In Figure (a),
(b), (¢), (d), (e) and (f), the densities are relatively close to the true standard
normal distribution. (g) and (h) also seem to be ok, but a bit skewed to the
right. (i) and (j) seem to be very high around 0 and have a too low variance,
which is confirmed when we calculate the variances. The variance for Z. , is
0.625 and the variance for Z,,, is 0.679. This will probably be improved if we
include more individuals than 500. Even though some of the densities are a bit
skewed or give a too low or high variance, and therefore do not fit the standard
normal distribution perfectly, they are still quite close to the standard normal
distribution. Our conclusion is still that the large-sample theory provide fully
adequate approximations to the relevant distributions.
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Figure 4.12: Density of Z.,, Za,, Zc,, Zayr Zeas Zass Zeoss Lagss Lers and Zq .y
for multiple screenings in a four-state illness-death model when the exact time
of transition to the absorbing state is known
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4.6. How Much Information is Lost from not Observing the Transition Times
Exact?
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4.6 How Much Information is Lost from not Observing the
Transition Times Exact?

In this thesis, we focus on interval-censored data. However, one could consider a
situation where the transition times are observed exactly. This means we observe
Ty and T7 in a three-state progressive model. We construct the likelihood when
Ty and T} is observed exactly, by dividing it into likelihood contributions. Type
1 is when the individual is only observed in state 0. Type 2 is when the
individual is observed in state 0 and state 1. Type 3 is when the individual is
observed in state 0, state 1 and state 2. The likelihood then becomes

L(0) = H So(tn,p, 0]zp) H fo(To,p, 0|2p)S1(tnp — To,p, 0]xp)
(€3] (1)
H fo(To,p, Olzp) f1(T1 p, O|p).

(IT1)
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4. Simulations

A relevant question is how much information is lost when the data is observed
exactly compared to when it is interval-censored? In order to investigate this
question in a three-state progressive model, we look at the variances of the
estimated parameters, which is the diagonal of the inverse Hessian matrix.
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Figure 4.13: Variances for cg, ag, ¢; and a; in a three-state progressive model
when Ty and T3 are interval-censored or observed exactly

For each simulation, we present the variances for cg, ag, ¢; and ap in a three-
state progressive model in Figure[£.13] The blue dots is when only the transition
to the absorbing state is observed exactly, which means T} is interval-censored,
while the red dots is when both of the the transition times are observed exactly.

There is a clear difference between the red dots and the blue dots. For
example in Figure m (c), the variance when the transition times are not
observed exactly is in many cases almost twice as big as when the transition
times are observed exactly. We also note that the spread of the variances when
the transition times are observed exactly is smaller than when the transition
times are not observed exactly. In conclusion, we loose quite a lot of information
when the transition times are interval-censored compared to when they are
observed exactly. This is just as we expect.
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CHAPTER 5

The Markov Property

In Chapter [[]and Chapter [2| we thoroughly discussed the Markov property. As
we presented earlier, the Markov property means that given the present state
and history of an individual, the transition to the next state and the time this
occurs, only depends on the present state (Putter et al., .

In this chapter, we investigate whether the Markov property holds in our
models. We consider the Markov property in a four-state illness-death model
where the individuals start in state 0 at time 0. In the beginning, we do not
assume a specific form of the survival time model for the transition time. Then
we investigate whether the Markov property holds for Gamma process model
or when the transition times are exponentially distributed. Then in Chapter
[6-2] we study the relationship between the exponential distribution model and
a homogeneous Markov model.

5.1 The Markov Property in a Four-State lliness-Death
Model

Our aim in this section is to prove Lemma [5.1.1]

Lemma 5.1.1. In the proposed model framework for a four-state illness-death
model, when the transition times are exponentially distributed, the Markov
property is fulfilled. When the transition times are modeled as the threshold
crossing times for Gamma processes, the Markov property does not hold.

We investigate the Markov property in a four-state illness-death model when
the exact time of transition to the absorbing state is known and the individuals
start in state 0 at time 0. For each possible transition, we compute two different
transition probabilities. In the first version of the transition probability, we
condition on the information about the previous state. This means the transition
probability is of the form P,,¢(a,b) = Pr(X, = ¢| X, = m). In the second version
of the transition probability, we condition on the whole state history of the
individual. This means P(a,b) = Pr(X, = (| X, = m, X,,u € [0,0)). In
the end, we compare these transition probabilities. If they are equal in all
of the possible transitions, then the Markov property is fulfilled. Early on,
we detect that the Markov property is not necessarily fulfilled in our models.
We still calculate the rest of the transition probabilities because we use these
probabilities later on, for example in Section [5.1.1
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5. The Markov Property

Assume an individual is in state 0 at time point v, in state 1 at time

point ¢, state 2 at time point r and in state 3 at time point q. Pme means

the transition probability from state m to £, when we only condition on the
information in the previous state. For example, with the specified time points
above, P2 = Pr(X, = 3|X, = 2). PY, means that the transition probability
from state m to £ at certain time points associated with the visited states when
we condition on the whole state history of the individual. For example, with
the specified time points above, P% = Pr(X, = 3|X, =2,X; =1,X, = 0).

Transition from 0 to 1

These transition probabilities are always equal, since we only condition on the
individual being in state 0 at time point v.

Pr(X;,=1,X,=0)
Pr(X,=0)
~ Pr(v<Ty<t,To+ Ty > t,Toz > To, To + T3 > t)
N Pr(Ty > v, Tyz > v)
fv fo Sl t— S)Sog( )513(t — s)ds
So(v)Sos(v)

PN =Pr(X;=1X,=0) =

_ pG
= Pyi.

Transition from 0 to 2

These transition probabilities are always equal, since we only condition on the
individual being in state 0 at time point v.

Pr(X, = 2,X, = 0)
Pr(X,=0)
_ Priv<Ty<roo<To+Ty <r,Ty+ Ty + Ty >r,Toz > Ty, Tiz > T1)
o Pr(Ty > v,Ths > v)
- f: fOT_S Jo(s) f1(u)Sa(r — s — u)So3(8)S13(u)duds
B So(v)So3(v)

PM = Pr(X, =2|X, =0) =

_ pG
= Fy.

Transition from 1 to 2

We first consider the transition probability when we only condition on the
individual being in state 1 at time point ¢.

Pr(X, =2,X,=1)

PY =pPr(X, =2|X,=1) = PR = 1)

o P’/‘(O<T0 <tt<To+Ty <r,Toy+Ty+To>rTos > Ty, 113 >T1)
PT(0<T0 <t,To+Ty >t,Tos > To, Ty + T13 >t)

_ fot tT:SS fo(s)fi(u)Se(r —s — U)Sog(S)Slg(u)dudS.
fot fo(s)S1(t — 5)Sos(s)S13(t — s)ds
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5.1. The Markov Property in a Four-State lliness-Death Model

Then we consider the transition probability when we also condition on the
individual being in state 0 at time point v

Pr(X, =2X,=1,X,=0)
Pr(X, =1,X, =0)
. PT‘(U<T0 <ttt <To+Ty <r,To+Ty+ Ty >rThs > Ty, T3 >T1)
N Pr(v<T0<tT0+T1>tT03>TO,T0+T13>t)
f [0 fo(s) f1(u)Sa(r — s — u)Soa(s)S1a(u)duds
f fo S1 t—5)503( )S13(t—8)d8

P12 =Pr(X,=21X,=1,X,=0) =

PJM is not necessarily equal to PG. The difference lies in the integrals. In
the case where we only condition on the time in state 1, the numerator is
fg o fo(s) fr(w)Sa(r — s — u)Sos(s)S13(u)duds. When we also condition on
the time the individual was in state 0, the numerator is f [0 fo(s) fi(u)Sa(r—
s —u)Sop3(s)S13(u)duds. When we condition on the individual being in state
1 at time point ¢, the first integral has a lower limit of 0 and upper limit of ¢.
However, when we also use the information that the individual was in state 0
at time v, the integral has a lower limit of v and an upper limit of ¢. This also
happens in the denominator.

Transition from 2to 3

We start by looking at the transition probability when we only condition on
the individual being in state 2 at time point r.

Pr(X,=3X,=2)
Pr(X, =2)
PrO<Toy<r0<To+Ti<rqg<To+Ti+Ts <q+e€Tos >To, Tz > T1)
) <TO <r,0<To+T <n,To+ 11 +Ts > r Tos > To, 13 > 11)
fo for s fo (u) fa(q — s — u)So3(s)S13(u)duds
fo fl( )Sa(r — s — u)Sog(s)Slg(u)duds.

PY =Pr(X,=3|X,=2) =

Then we consider the transition probability when we also condition on the
individual being in state 1 at time point ¢ and state 0 at time point v.

PT‘(Xq =3,X,=2,X;,=1,X, = O)
Pr(X, =2, X, = 1, X, = 0)
- PT(’U <To<tit<To+Ti<r,qg<To+Ty+T><q+eTps > Ty 113 >T1)
a P’I“(U<T0<t t<Ty+ Ty <7’T0+T1—|—T2>7’,T03>T0,T13>T1)
f I170 fo(s) fi(u) f2(q — s — u)So3(s)S1s(u)duds
f f s fo )SQ(T*U*S)SO?,( )Slg(u)duds

PG =Pr(X,=31X,=2,X;,=1,X,=0) =

P} is not necessarily equal to P§. The difference lies in whether or not we
include the time points where the individual left state 0 and state 1.

Transition from 0 to 3

If an individual transitions from state 0 to state 3, then the person can go
directly from state 0 to state 3 or from state 0 to state 1 to state 3 or from
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5. The Markov Property

state 0 to state 1 to state 2 to state 3. Then

Py = Pr(X, =3|X, =0) = Pz o+ Pos1 + Poz2
_ Pr(g<Tos <q+¢To>q,Tos >v, Ty > v)
N Pr(To > v,Toz > v)
JrPr(v<T0 <q,q<To+Ti3<q+eTos >To, To+T1 > q)
Pr(Ty > v,Tps > v)
n Priv<To<q,q<To+Ti+To <q+eTos >To,T1z > T1)
P’I’(To > v, Tos >’U)

_ pM
= Py

We start by looking at the setting where we go directly from state 0 to state
3. The two transition probabilities are always equal, since we only condition on
the individual being in state 0 at time point v. So

Pr(q <Tos < q+¢€Ty>q,Tog > v, Ty > U)
PT(TO > v, Ths > ’U)
fo3()S0(q)Sos(v)So(v)

= So(U)Sog(’U) = f03(q)So(q)-

In the next step, we consider the case where the individual goes from state 0 to
state 1 and then directly to state 3. The two transition probabilities are also
equal here, since we only condition on the individual being in state 0 at time
point v. So

M _
Pogo =

PT(U <To<q,q<Ty+Tis < q+¢€Ths > Ty, Ty +T1 > q)
PT’(TO > v, Tps > ’U)
[ fo(s)S0s(s) fia(q — 5)S1(q — s)ds
So(v)So3(v) .
Lastly, we consider the case when the individual goes from state 0 to state 1

to state 2 and then to state 3. These transition probabilities are always equal,
since we only condition on the individual being in state 0 at time point v.

Mo _
Pygq =

PT(U <1y < q,q < To+ 1T+ 15 < q+e,T03 > To,T13 > Tl)
PT(TQ > ’U,T‘(]g > ’U)

_ qu Oqﬂ Jo(s) f1(u) f2(q — u — 5)So3(s)S13(u)duds

So(v)Sosz(v) .

M
Poso =

Transition from 1 to 3

We now consider when an individual transfers from state 1 to state 3. Either
the individual goes directly from state 1 to state 3 or the individual goes from
state 1 to state 2 to state 3. Then

M _ pM M
Pis = Pi5 o+ Pis 1,

and
G _ pG e
Py =Pr3o+ Prjq-

82



5.1. The Markov Property in a Four-State lliness-Death Model

We start by looking at the probability of going directly from state 1 to state 3.
The transition probability when we only condition on the individual being in
state 1 at time point ¢ becomes

P?“(Xq =3,X; = 1)
PT’(Xt = 1)
. Pr(O<T0<t,q<T0+T13 <q+e€Tos > Ty, To+ Ty >q)
- PT‘(O<T0<tT0+T1>t7T0+T13>t7T03>T0)
fo Jo(s)f13(q — 5)S03(s)S1(q — s)ds
Ji fo(s)S1(t — 5)S13(t — )Sos(s)ds

Then we consider the transition probability when we also condition on the
individual being in state 0 at time point v.

P130—P7"( g =3[Xe=1) =

Pr(X,=3X,=1,X,=0)
Pr(X;=1,X,=0)
. PT‘(U < Ty <t,q <To+Ti3 < q+6,T()3 > Ty, To + 11 > q)
n (O<To<tTQ+T1>t,To+T13>t,T03>T0)
f fo(s f13 q— 5)So3(s)S1(q — S)ds
f f() S t—S)Sld(t—S)S()g( )
In this step, we consider the case when the individual goes through state 2.

The transition probability when we only condition on the individual being in
state 1 at time point ¢t becomes

PG,=Pr(X,=3X;=1,X,=0) =

Pr(X, =3,X,=1)
PT(Xt == 1)
P’I’(O<T0 <tt<To+Ty<qq<To+Ty+T> <q+¢€Tos >To, T3 >T1)
B PT'(O<T0<t,To+T1>t,To+T13>t,T03>T0)
fo (8)f1(u) falq — s — u)So3(s)S13(u)duds
f() fo Sl t— S)Sld(t - S)S(),j( )dS

Pl =Pr(X,=3|X,=1) =

Then we consider the transition probability when we also condition on the
individual being in state 0 at time point v.

Pr(X,=3,X,=1,X,=1)
Pr(X,=1,X, = 0)
_ PT'(U<TO <t t<To+Tr<qq<To+Ty+Ts <q+¢€Tos >To, T3 >T1)
- P’I‘(?)<To<tT0+T1>t7T03>T0,T0+T13>t)
f 1.2 fo(9) fr(u) fag — s — u)So3(s) Shs (u)duds
L fo 51 (t = s)S13(t — 5)Sos(s)ds

PG, =Pr(X,=3|X,=1,X,=0)=

PJ is not necessarily equal to P, for the same reasons as we previously have
described.

Staying in state 0

We assume that a person stays in state 0 from time point 0 to v. The transition
probabilities are always equal, since we only condition on the individual being
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5. The Markov Property

in state 0 at time v — 1.

P’I”(T()>’U,T03 >0, Ty >v—1,Ths >’U—1)
Pr(Ty>v—1,Toz >v—1)

P = Pr(X,=0|X,_1=0) =

= 50(v)So3(v) = Pgp.

Staying in state 1

We assume that a person stays in state 0 from time point 0 to v and in state 1
in time points k£ and ¢. The transition probability when we only condition on
the individual being in state 1 at time point k£ becomes

Pr(X,=1,X), = 1)
Pr(Xs =1)
- PT‘(TO <k,To+T, >t,Tog > Ty, To + T3 > t)
- Pr (TO < k,To+Ty >t,Tos > Ty, To + T13 >k)
fO fo Sl t— S)Sog( )513(t — S)dS
fo fo(s5)S1(k — 5)S03(s)S13(k — s)ds

PN =Pr(X;=1|X,=1) =

Then the transition probability when we also condition on the individual being
in state 0 at time point v becomes

Pr(X;=1,Xy=1,X, = 9)
P?“(Xk =1X, = 9)
. P?‘(’U <Ty < k,Tos > Ty, To+ Ty >t, Ty + T13 > t)
- Pr (’U<To<k Tos >To, To+T1 > k T0+T13>]€)
f fo So3 Sl(t—S)Slg,(t—S)dS
S So(5)Sus(5)S1 (k — 5)Sa(k — s)ds

PS =Pr(X,=1|X;=1,X,=0) =

PM is not necessarily equal to PG. This comes from the same reason as we
previously have described.

Staying in state 2

We assume that a person stays in state 0 from time point 0 to v, in state 1 at
time points k£ and ¢ and in state 2 at the time points w and r. The transition
probability when we only condition on the individual being in state 2 at time
point w becomes

Pr(X, =2, X, = 2)
PT(Xw = 2)
o P?“(O <To<w,0<To+T <w,To+Ty+T5 >rTos > Ty, Tis >T1)
T Pr (0<TO <w,0<To+T, <w,Toy+Ty+ T >w,Tog > Ty, T13 >T1)
fo (8)f1(u)Sa(r — s — u)Sos(s)S13(u)duds
fo () f1(u)Sa(w — s — u)So3(s)S13(u)duds

PY = Pr(X, =2|X,=2) =
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5.1. The Markov Property in a Four-State lliness-Death Model

Then the transition probability when we also condition on the individual being
in state 0 at time point v and state 1 at time points k and ¢ becomes

PG =Pr(X, =2|X,=2,X,=0,X;,=1,X, =1)
Pr(X,=2,X,=2,X,=0X,=1,X,=1)
Pr(Xe=2,X,=0,Xp,=1,X;, = 1)
Priv<Ty<kt<To+T <wTo+T+To>rTos>To,T13 >T)
T Priv<Tp <k, t<T0+T1 <w,To+ T +T5 > w,Tos > To, Tiz > T1)
f f . fo (u)Sa(r — s — u)Sp3(s)S13(u)duds

R s ) Sa(w — s — 1) Sos(s)Sys(u)duds

P} is not necessarily equal to P§. This comes from the same reason as we
previously have described.

5.1.1 Example: Exponential Distribution

We want to investigate whether the Markov property is fulfilled in our general
model construction when having different distributional assumptions on the
transition times. In order to do so, we use the formulas derived in Section [5.1]
and check whether the transition probabilities, P,,¢, when we only condition on
the information about the previous state are equal to the transition probabilities
when we condition on the whole state history. In our first example, we consider
exponentially distributed transition times.

Transition from 1 to 2
PM = Pr(X, =2|X,=1)

agm exp(—asar) ‘[0 exp(s(—ag + az — aps)) ftr__f exp(u(—ai + as — a13))duds

ao exp(t(—ar — a13)) [ exp(s(—ap + a1 — ags + a13))ds

_ Gmai—em ;1‘ ey exp(—asr)(exp(r(az—ai—aiz))—exp(t(az—a;— (ng)))f exp(s(—ap—apz+ai+aiz))ds

ag exp(t(—a1— al.i))fo exp(s(—ao+ai—aoz+ais))ds

a
= exp(—agr + t(ar + a13))(— exp(r(az — a1 — a13)) + exp(t(az — a1 — ai3))).
az —ap — a3

PIGQ_PT( _Q‘Xt_le_O)

apay exp(—asr) fv exp(s(—ag + az — aps)) f;:: exp(u(—a + az — ai3))duds

ag exp(t(—ay — ay3)) fvt exp(s(—ap + a1 — ags + a13))ds

agaq
ag—al—alg

exp(—azr)(exp(r(az—ai—ayz))—exp(t(az—ai—ais))) f: exp(s(—ao—aoz+ai+aiz))ds

B
ag exp(t(—a1—aiz)) f" exp(s(—ao+ai—aoz+aiz))ds

a1
= ——exp(—agr + tla1 + a13))(—exp(r(as — a1 — ai3)) + exp(t(as — a1 — ai3))).
st a1 + ags p(—a2 (a1 13))( p(r(az 1 13)) p(t(az 1 13)))

These transition probabilities are equal.

Transition from 2to 3

PY = Pr(X, =3|X, =2)
_agarag exp(—azq) [, exp(s(ag —ao — ags)) [y exp(u(az — ar — ai3))duds
B apay exp(—asr) fOT exp(s(—ag + az — aps)) for_s exp(u(—ai + a2 — ai3))duds
= agexp(az(r — q)),
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PG =Pr(X,=3X,=2,X,=1,X,=0)

—agayaz exp(—azq) fvt exp(s(az — ag — aog3)) f::: exp(u(az — a1 — a13))duds

apay exp(—asr) f; exp(s(az — ag — ags)) [, exp(u(az — a1 — ay3))duds
= ag exp(az(r — q)).

These transition probabilities are equal.

Transition from 1o 3

apaiz exp(q(—a; — a13)) fg exp(s(a; — ag — ag3 + ai3))ds

P1N3[,0 - t
ag exp(t(—a; — ai3)) fo exp(s(a; — ag — aps + ai3))ds
= a1z exp((t — ¢)(a1 + a13)),
PG _ apayz exp(q(—ay — a3)) fvt exp(s(a; — ag — ags + a13))ds
13,0 =

agexp(t(—a; — ai3)) fvt exp(s(a; — ag — ag3 + a13))ds
= a1z exp((t — ¢)(ay + a13)).

These transition probabilities are equal.

B fot f;:s apaias exp(s(as — ap — ap3)) exp(u(az — a1 — a3)) exp(—azq)duds

Ply, =
' fot ag exp(s(a; + a1z — ag — ap3)) exp(—t(a; + ay3z))ds
— %]; exp(s(a1taiz—ao—aos))lexp(q(az—ai1—ai3))—exp(t(az—a1—ais))| exp(—azq)ds
th ap exp(s(a1+aiz—ao—ao3)) exp(—t(ai+aiz))ds
_ masfexp(g(az — a1 — a13)) — exp(t(az — a1 — ar3))] exp(—asq)
(a2 — a1 — ai3) exp(—t(ar + ai3))
a1a
= = ——[exp(q(az — a1 — a13)) — exp(t(az — a1 — a13))] exp(—azq) exp(t(ar + arz))-
az —ap — a3

PS, = fvt f::s agaraz exp(s(az — ap — aos)) exp(u(az — a1 — a13)) exp(—azq)duds

jvt apexp(s(ar + a1z — ap — aopz)) exp(—t(a1 + ai3))ds

_ ajazlexp(t(ai+aiz—ao—aos))—exp(v(aitaiz—ao—aos))]lexp(g(az—ai—aiz))—exp(t(az—ai—ais))] exp(—azq)
lexp(t(a1 + a13 — ap — aps)) — exp(v(as + arg — ag — ap3))] exp(—t(as + a13))

a1ag

e —— lexp(q(az — a1 — a13)) — exp(t(az — a1 — a13))] exp(—aaq) exp(t(ar + ai3)).

These transition probabilities are equal.

Staying in state 1

k
exp(—t(a; + ai3)) fo ag exp(s(ay + a1z — ap — ap3))

P =
exp(—k(a1 + a13)) fok agexp(s(ay + a1z — ag — ap3))
= exp((k — t)(a1 + a13)),
PG _ exp(—t(a1 + ai3)) ka ag exp(s(ar + a1z — ag — aps))
1=

exp(—k(ar + a13)) ka ap exp(s(a; + a1z — ag — aps))
=exp((k — t)(a1 + a13)).

These transition probabilities are equal.
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5.1. The Markov Property in a Four-State lliness-Death Model

Staying in state 2
v exp(—raz) Jo Jo" " agay exp(s(ag — ay — a3)) exp(u(az — ag — ags))
22 — m rm—s
exp(—mas) fo o @oarexp(s(ag —ay — aiz))exp(u(az — ap — ao3))

= exp((m —r)az),

k _
a exp(—raz) fv ftnjs *agar exp(s(az — ay — ay3)) exp(u(az — ag — ags))
2 =

k —
exp(—maz) [." [" " aoar exp(s(az — a1 — a13)) exp(u(az — ag — ao3))
— exp((m — r)az).
These transition probabilities are equal.
In conclusion, we find that when the transition times follow an exponential

distribution, the Markov property is satisfied. This follows from the calculations
of the transition probabilities.

5.1.2 Example: Gamma Process Models

In our second example, we consider the Gamma process model. Since it is
difficult to calculate the exact formulas for the transition probabilities, we
calculate the transition probabilities numerically. We find that the transition
probabilities P%g, when we condition on the previous state, in general are not
equal to P%,, when we condition on the whole state history. The Markov
property is therefore not fulfilled. Assume for the transition time from state
0 to state 1 that Pr(Ty > t) = G(co,apt, 1), with similar formula for the
other transitions. Let cg = 0.208, a9 = 0.0486, c; = 0.00315, a1 = 0.0380, c5 =
1.108, ag = 0.323, cp3 = 0.398, aps = 0.0616, c13 = 1.939, a3 = 0.452. The time

points are v =2, ¢t =5, r = 8 and ¢ = 10.

P PG,
m=1,0=2 0.312 0.323
m=20=3 0.162 0.152

Table 5.1: Transition probabilities when the transition probabilities we condition
on the previous state or the whole state history for alternative 1 of the Gamma
process model

In Table[5.I] we present two examples of the transition probabilities from
the formulas in Section From Table we see that P is not equal to
PS%,. However, the differences between P2] and P&, are quite small.

P P
m=1,0=2| 0.00493 0.00626
m=20=3 0.187 0.157

Table 5.2: Transition probabilities when the transition probabilities we condition
on the previous state or the whole state history for alternative 2 of the Gamma
process model

Let us consider a second alternative with another Gamma process, where
PT‘(T() > t) = G(Co,aotbo, 1) and Co = ].,bo = 1,&0 = ].,Cl = 0.1,b1 = 0.1,@1 =
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0.1,02 = 0.8,b2 = 0.5,(12 = 1,003 = ].,bog = 0.7,(103 = 0.1,613 = 1,(713 =
0.5,a;3 = 1. The time points are v = 2, t = 5, r = 8 and ¢ = 10. In Table
we present the transition probabilities with this Gamma process. The
differences between PM, and PS, are bigger for these transition probabilities.
P} is clearly lower than PG, and P2 is clearly higher than Pg.

Depending on the parameters in the Gamma process models, the transition
probabilities can be close or not close to satisfying the Markov property. This
makes the Gamma process models flexible. Depending on the data and research
question, it is possible to find suitable parameters where the hazard function is
and is not constant.

5.2 The Relationship Between the Exponentially Distributed
Transition Times and a Homogeneous Markov Model

Lemma 5.2.1. In the proposed model framework, the four-state illness-death

model where the transition times are exponentially distributed, is equal to the
homogeneous Markov model in Jackson (2011).

The aim of this section is to prove Lemma [5.2.1] Firstly, we show how
the likelihood calculations are done in Jackson (2011). They calculate their
transition probabilities using eigenvalue decomposition. Then, we show that our
likelihood construction using exponentially distributed transition times is equal
to the likelihood in Jackson . This is for data where all the individuals
start in state 0 at time 0.

In order to construct a Markov model, the transition intensities must be
defined. The transition intensities for moving from one state to another in
a multi-state model is equal to the hazard functions (Meira-Machado et al.,
. From Chapter [2| we have that the intensity of moving from state m to
state £ is

ET PT{Xt-i-At = £|Xt* = m}
qmé(t‘Xiuu € [O’t)) - AI%I{AIO At I

which then corresponds to the hazard function for the same transition.
We are considering the homogeneous process where P(u,t + u) = P(t),
where
P(t) = Exp(tQ),
The matrix exponential Exp() is difficult to calculate directly. We can use
eigenvalue decomposition. Then

Exp(tQ) = ReNR™!,

where R consists of the eigenvectors and IN is a matrix with the eigenvalues on
the diagonal. We then need to find the eigenvalues for

—(qo + qo3)t qot 0 qost
1Q = 0 —(@+ @)t @it qst
0 0 =gt qat |’
0 0 0 0

Since this matrix is an upper triangular matrix, we have that the eigenvalues
are on the diagonal. The eigenvalues then becomes —(qo + qos3)t, —(q1 + ¢13)t,
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—qot and 0. We then get

e~ (q0+qos)t 0 0 0

N 0 e—(a1taqus)t 0 0
c - 0 0 e~wt 0]’

0 0 0 1

We must also find the eigenvectors. We start with the eigenvector for
A1 = —(qo + qo3)t:

0 qot 0 qost
0 —(q1+ q13)t + qot + qost it q13t
tQ — \1,) =
(tQ =M lLy) 0 0 —q2t + qol + qosl qat
0 0 0 (o + qos3)t
T 0
We must solve the equation (tQ — A\Iy) Z = 8 . Solving this equation,
w 0

gives for example the eigenvector

1
0
Rl - O )
0
For the eigenvalue Ao = —(q1 + q13)t.
—(qo + qo3)t + it + qu3t  qot 0 o3t
0 0 qit q13t
tQ—M\oIy) =
(tQ—A21y4) 0 0  —qt+aqt+qst qat
0 0 0 qit + qust

Solving in the same way, we end up with the eigenvector

1
90+4903—q1—qi3
RQ - (6] 5
0
For the eigenvalue A3 = —got
—(qo + qo3)t + qat qot 0 qost
0 —(q1 + q3)t + gt qit q13t
tQ — \31,) =
( Q 3 4) 0 0 0+ qist  qot
0 0 0 qot

And solving in the same way, we end up with the eigenvector

q0
q0+4903—q2

Rs = g1tqi3—qe | >
q1

0
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And for the eigenvalue Ay = 0, an eigenvector may be

1
1
R4 == 1 b
1
We then get
]. 1 QU‘HZJ%@ 1 6*(qo+qn3)t 0
0 otdos=a1=aqs 1' 1 0 —(q14q13)t
P(t) = Exp(tQ) = 0 q[l)J q1t+913—q2 1 0 ‘ 0
0 0 01 0 0
o -1
1 1 f10+(1qt13—(12 1
0 tas—ai—as 1
0 (IOU 111+qqlls*q2 1
0 0 0 1
Coo  Co1 Co2  Co3
_ 0 ci1 ci2 ci3
0 0 C22 (23 ’
0 0 0 1
where
Coo = e—(¢10-|-1103)757
cor = 9o e~ (@tas)t _ e—(flo-i-qoa)t)7
qo + qo3 — q1 — Q13
_ qoq1 —(qo+qo3)t
Co2 = € s
(90 — g2 + q03)(q0 — @1 + qo3 — q13)
+ 9091 e~ (ataz)t
(g1 — @2 + @13)(—qo + @1 — qos + q13)
+ qoq1 e_q2t7
(¢1 — @2 + ¢13)(qo + qo3 — q2)
Cos — q1(q03 — q2) — (90 — g2 + q03)(go3 — Q13)e_(q0+q03)t
(90 — g2 + q03)(q0 — q1 + qo3 — @13
B QO(Qz - Q13) o—(a1+ara)t
(@1 — a2+ @13)(—qo + @1 — qo3 + ¢13)
. qoq1 o2t 11,
(g0 + q03 — @2)(q1 — @2 + q13)
el = 9 +4d03 o e~ (atas)t — e*(QlJrfIls)t,
G0 qo + qo3
Cla = T _e—(m-‘rfhs)t + e—qzt)’
Q1+ q13 — q2
c13 = 42 — ¢13 6*(Q1+Q13)t _ ! e + ]_’
@1+ qi13 — q2 G+ @13 — q2
——— Q1 atqas—a et
Q1+ q13 — q2 a1
Cg3 = 1t q3— Q2 o a2t q1 Fl=—e @y,
Q1 @1+ q13 — Q2

90

e a2t

= o o o
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We also want to find the P(¢) matrix when the transition times are
exponentially distributed in our model. Then

Poo Po1 Po2 Pos

0 pu pi2 pi3

P(t)¢ =
®) 0 0 p22 p23
0 0 0 1

By using the results from Section [5.1] where the time points are 0 and ¢, we get
Poo = Pog (0,) = So(t)Sos(t) = e~ %fem 03t = g7Hlaotaos),

t _ _ —3) —ana —aqa(t—
) PJVI(O t) fO ape aose aq(t s)e aoss o a13(t—s)
01 = =
oL eVelds
ago

_ e—t(a0+(103) _ e—t(a1+a13))
b
a1 + a3 —ap — aps

Py (0,1) Jy J37" agay es(a2—a0—aos) gulaz—ai—ais) g—aat gy s
Po2 = 2 (U, 1) =

e0¢0
— @oa1 e—t(a0+ao3)
(ag — ap — ap3) (a1 + a1z — ap — ap3)
oa1 eft(a1+a13)
(—a2 + a1 + ai3)(a1 + a1z — ag — ao3)
apay

((12 — a1 — 1113)((12 —ag — 003)

—(th

€

In Section [5.1] we assumed to know the exact time of death. This is not the
case in the P(t)-matrix. However, we can use the fact that

Po3 = 1 — poo — po1 — Po2
ai(apz — az) — (ap — az + apz)(aoz — ai3) o~ (ao+aos)t
(ap — az + ap3)(ap — a1 + agz — ai13)

_ ao(a2 — alg) e—(a1+a13)
(a1 —ag + a13)(—ap + a1 — ap3 + a13)
dod1 et 41,

a (ap + ap3 — az)(ar — as + a13)

We have from Section [5.1] and [B.1.1]
pi1 = PN (0,1) = e H@rts),

a
p12 = P (0,1) = L

_ a1 (e
a1 + a1z — az

e—a2t _e—t(a2—a1—a13) + 1
ay +aiz — az ( )

—ast _ e—(al +a13)t).

piz=1-p1 —prg=1— e Hatas) _ 4 e~ a2t _ g~ (artais)ty

a1+ aiz — az
_ a2 — a3 ef(a1+a13)t _ a1 e % 1]
ay + ayz — ag a1 + a1z — az
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From Section [5.1] and B.1.1]
P22 = P2]\24 (Oat) = e_a2t7

pas =1—pop=1—e"""

In addition, we have that P(t)¢ = P(t) if ¢qo = ao, ¢1 = a1, ¢2 = ag,
qo3 = ap3 and q13 = ai3.

The next step is to calculate the hazard functions. In the Markov model,
this means o)™ = ¢, oMM = q;, oM = g9, MM = go3 and oMM = qy3.
For the exponentially distributed transition times, the hazard functions are
¢ — Jo) _ aoexp(=aot) _

0™ So(1) exp(—aot)

We calculate the likelihood for the Markov model in the same way as
presented in Chapter 2] In the CAV-dataset that we analyze in depth in
Chapter [} all the patients start in state 0. Then we only include the likelihood
types from Chapter [B] more specifically Section [3.6] where the individuals start
in state 0. These are types 1, 2, 3, 4, 5, 6, 7, 15, 16, 18 and 21.

An individual observed in state 0 and then in state 3 is either type 5, 16
or 21. If the individual is type 5, then the individual transfers through state
1 and state 2 before it is observed in state 3. However, if the individual is
type 16, the individual transfers directly from state 0 to state 3. Finally, if
the individual transfers through state 1, before transferring directly to state 3,
then the individual is type 21. Therefore, we consider a sum of the likelihood
contributions for these types as the final likelihood contribution for those
individuals observed in state 0, then in state 3.

When an individual is observed in state 0, then state 1 and finally state 3,
the individual is either type 15 or 18. If the individual is type 15, then the
individual transfers through state 2 before state 3 is observed. However, if the
individual is type 18, then the individual transfers directly from state 1 to state
3. Therefore we consider the sum of the likelihood contributions of type 15 and
18.

We start by assuming an individual is only observed in state 0, and is
therefore type 1. The likelihood contribution is

ap, af = a1, o5 = az, afs = apz and afs; = as.

Lesp, (1) = So(tn)S03(tn) = exp(—tn(ao + ao3)).
In the homogeneous Markov model
L1y = cooltn — 0) = exp(—tn(go + qo3))-

If an individual is observed in state 0 until time point ¢;, before the individual
is observed in state 1 from ¢;41, where the individual stays, the individual is
type 2. The likelihood contribution is

tiv1
Lexp (1) = /t fo(8)S1(tn — 5)S03(s)S13(tn — s)ds

i

tit1
= / ap exp(s(ar + a1z — ap — ap3)) exp(—tn (a1 + a13))ds
t;
ago
= € 7t e t _ o
21 + G153 — Go — g3 Xp( n(al + a13))[ Xp( l+1(a1 “+ a3 ag aOB))

—exp(t;(a; + a13 — ag — ap3))].
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In the homogeneous Markov model

L1y = coolti — 0)cor (tiyr — ti)ern (tn — tiy1)

q0
exp(—(q1 + q13)(Liv1 — L
QO+q03—Q1—Q13[ (= it i)

—exp(—(qo + qo3) (ti+1 — t3))] exp(—(tn — tit1) (@1 + @13))
q0
T — exp(—tn(q1 + q13))[exp(tit1(q1 + q13 — g0 — qo3))

—exp(ti(q1 + 13 — 90 — qo3))]-

= exp(—ti(qo + qo3))

If an individual is observed in state 0 until time point ¢;, in state 1 from
ti+1 to ti4x—1, and then in state 2 at t;;x, where the individuals stays, then
the individual is type 3. The likelihood contribution is

i1 itk —S
Loptirr) = / / F1(0) et — 5 — )Sos()Sus(u)duds

itk—1—S
i+1 i+k—S
/ / apay exp(s(az — ag — aps))
itk—1—8
exp(u(az — a1 — a13)) exp(—ast, )duds
apaq
- exp(—ast
(a2 — a1 — a13)(a1 + a1z — ag — aos) ( )
lexp(tit1(ar + a1z — ap — ap3))
—exp(ti(a1 + a1z — ag — ao3))][exp(titx (a2 — a1 — ai3))
— exp(ti+k_1(a2 —ap — alg))}.

In the homogeneous Markov model

Larayrrry = coolti)cor(tivr — ti)ern(tiyn—1 — tiv1)cro(tive — tiyr—1)
coo(tn — tivk)
_ qoq1
B (2 — 1 — q13)(q1 + q13 — g0 — qo3)
lexp(tiv1(q1 + q13 — qo — qo3))
—exp(ti(qr + q13 — g0 — qo3))][exp(tivr (g2 — q1 — q13))
—exp(tiyr-1(q2 — 1 — q13))].

eXP(_q2tn)

Assume an individual is observed in state 0 until time point ¢;, in state
1 from t; 41 to t;45—1, in state 2 from ¢;4 1 to t;4r4+1—1, before the individual
dies at the exact time point ¢;x4;. This individual is type 4. The likelihood
contribution is

tita itk—S
Lexp, (1v) / / f1(w) fa(tivksi — s — u)Soz(s)S13(u)duds
ti itk—1—S
i+l itk—S
/ / apayag exp(s(as — ag — aps))
itk—1—S
exp(u(az — a1 — a13)) exp(—ast;yp41)duds
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B apa,as
- (a2 —a1— ai3)(a1 + a1z — ap — aos
lexp(tiy1(ar + a1z — ap — ap3))

—exp(ti(a1 + a13 — ap — ao3))][exp(tiyx (a2 — ar — ai3))

—exp(titr-1(az —ar — ai3))].

] exp(—aztiyry1)

In the homogeneous Markov model

Larar,rvy = coolti)cor (tiv1r — ti)ern (tipr—1 — tiv1)ero(tive — tiyr—1)
coa(tivhtr — tivk)q2
_ 404192 exp(—gatisrsi)
(@2 — 1 — q13)(q1 + @13 — g0 — qo3)
lexp(tiv1(q1 + q13 — qo — qo3))
—exp(ti(q1 + q13 — g0 — qo3))][exp(tivr (g2 — 1 — q13))

—exp(tivr—1(2 — @1 — q13))]-

Assume an individual is observed in state 0 until time point ¢;, then in state
2 from t;41, where the individual stays. Then the individual is type 6. The
likelihood contribution becomes

i1 i+1—S$
exp (VI) / / )SQ( — 8 — u)Sog(s)Slg(u)duds
i1 tiy1—s
/ / apay exp(s(as — ag — ap3))

exp(u(ag — ay — a13)) exp(—ast, )duds

apa
S exp(—asaty)
a2 —ap — a3
az — a1 —aig
exp tiv1(ag — ap — aps
[(al + a3 — ag — ag3)(az — ap — ags) (tisa )
1

- exp(tizi(as —ay —a exp(t;(a aiz —apg — a
PR —— xp(tit1(az — a1 — aiz)) exp(ti(ar + a1 — ap — aos))

L exp(ti(ar — ao — am))]
42 — Go — 003 exp(t;(az — ao — aos))

In the homogeneous Markov model

Lia,vy = coolti)coz(tivr — ti)coa(tn — tiy1)
qoq1

qo — g2 + q03)(q0 — @1 + qo3 — 13
qoq1

+
(1 — g2+ @13)(q0 — @1 + qo3 — 13
exp(ti(q1 + q13 — g0 — qo3)
qoq1
+
(g0 — g2+ qo3)(—@2 + 13 + @1

= exp(—qatn) ( ] exp(tit1(qo + qo3 — q2))

) exp(tiv1(qz — ¢1 — q13))

] exp(ti(q2 — qo — q03)) |,

and the equations for the homogeneous Markov model and the likelihood
contribution for the exponentially distributed transition times for type 6 are
equal.

Assume an individual is observed in state 0 until time point ¢;, then in state
2 from t;41 to t;1x—1, before the individual dies at ¢; . Then the individual is
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type 7. The likelihood contribution is
tit1 tit1—s
Lexp,(viD) = / / (u) f2(tivr — s — u)So3(s)S13(u)duds
t;

i+1  ptigi—s
/ / apajaz exp(s(az — ag — ap3))
t;

exp(u(as — a1 — a13)) exp(—agt;yr)duds
apay
= —————— exp(—astijk)
az — a1 —a13
[ az — a1 —ais
(a1 + a13 — ag — ap3)(az — ap — ag3
1

— exp(tiri(as —ay —a exp(ti(ay + a13 —ap — a
P ——— p(tiv1(az — a1 —ai3)) exp(ti(a1 + a3 — ap — ao3))

) exp(tit1(ag — ao — ao3))

—— ti(ae —ag — a :|
a5 — a0 —ag; OP(ti(a2 — a0 — apy))

In the homogeneous Markov model

L, vin = coolti)coa(tivr — ti)coa(tivr — tiv1)qe
qoq142

= exp(—@atitk [
( i) (90 — 92 + qo3)(q0 — q1 + qo3 — q13)
404192

+
(g1 — g2 +q13)(q0 — q1 + qo3 — Q13
exp(ti(q1 + q13 — 90 — qo3)
4049192
+
(90 — @2 + qo3)(—q2 + q13 + q1)

exp(tiy1(qo + qo3 — q2))

) exp(tiv1(q2 — q1 — q13))

exp(ti(g2 — qo — qo3)) |-

Assume an individual is observed in state 0 until ¢;, before the individual
dies at time ¢;4;. The individual can either be type 5, 16 or 21. We start by
considering the likelihood contribution for type 5

Lexp,(v) = / o /0 o fo(s) fi(w) fa(tiv:s — s — u)Sosz(s)S13(u)duds

apaiaz
= ————— exp(—aatit1)
a2 — a1 — a3
[ G — a1 — a3
(a1 + a13 — ag — aosz)(az — ap — ao3
1

BT —— exp(tiy1(az — a1 — ay3)) exp(ti(ar + a13 — ag — aos))

) exp(tit1(az — ap — aps))

—expl(¥; —ap — ]
42 — a9 — o3 Xp(l(az ag GOB))

Then from type 16
Lexp,(xvi) = foz(tiz1)So(tit1) = aosz exp(—tiy1(ao + aos)),

Then from type 21

tit1
Lexp,(xX1) = / fo(5)S03(s) fi3(tiyr — 5)S1(tiy1 — 5)ds
ti

ap13
= . n 415 — o — aos exp(—tzqu(alg + al)) {exp(tprl(al + a1z — agp — aog))

— exp(ti(al + aiz — ap — aog)) .
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Then, the total likelihood contribution becomes

tit1 tit1—s
Lexp,0—3 = H (/t /0 fo(s)fi(w) fa(tix1r — u — 8)So3(s)S13(u)duds

:0—3

+ fo3(tiv1)So(tit1)

+ /t - fo(8)S03(s) f13(tiv1 — 8)S1(tiv1 — S))

i
apa1az
= II (W exp(—aztir1)
03 \2 T 91T 013
[ A —ap — a3
(a1 4 a3 — ap — ags)(az — ag — aos
1

a1 + aiz — ag — ao3

] exp(tiy1(as — ag — ap3))

exp(tit1(az — a1 — a13)) exp(t;(ar + a13 — ap — ap3))

L — an — }
a2 — o — o3 GXP( z(az ag a03))

+ ap3 exp(—tit1(ao + ao3))
apa13
a1 + a3 — ap — ao3

exp(—tit1(a13 + ar)) [eXp(ti,H(m +a13 — ag — ap3))

— exp(ti(al “+ a3 —ag — aog))}> .
The total likelihood contribution for a homogeneous Markov model becomes

L, o—3 = H <COO(ti+1)q03 + coo(ti)cor (tivr — i) s

:0—3

+ coo(ti)coz(tiv1 — ti)q2>

— H <q03 exp(—ti+1(qos + qo))

103
q0913
qo + qo3 — q1 — q13

[eXP(_(tH—l —ti)(a1 + q13)) — exp(—(ti+1 — ti) (g0 + (103))}

q04192
(g0 — a2 + qo3)(q0 — @1 + o3 — @13

exp(—ti(qo3 + qo))

+ exp(—ti(qos + qo)) { ) exp(—(qo + qo3)(tit1 — ti))

qo04q192

- (Q1 —q2 + Q13)(—‘I0 +q1 — qos + Q13) exp(—(ql + (113(t¢+1 - tl)))
" (90 — @2+ qz(;()Isz —q2 + q13) exp(=a>(ti1 — tl”])
= H <m exp(—qati+1)
03
[(ql + a3 fq;o:qqlos_) ((2237 B0 = dog) P (@2 ~ o~ 3))
1

- exp(ti+1(¢2 — @1 — q13)) exp(ti(q1 + ¢13 — g0 — qo3
1+ q13 — Qo — qo3 (tia ) (t:( )

—exp(li(g2 — o — Qo3 ]
q2 — 4o — qo3 ( l( ))
+ qoz exp(—tit+1(qo + qos))
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qo413
@1+ q13 — qo — Qo3

exp(—tir1(q13 +q1)) [eXp(ti+1(QI + q13 — g0 — qo3))

—exp(ti(qr + q13 — qo — %3))} )

Assume an individual is observed in state 0 until ¢;, then the individual is
observed in state 1 from ¢;,1 to t;4,_1, before the individual dies at time ¢, .
Then the individual can either bet type 15 or 18. Then for type 15

tita1 titk—s
Loxp,(xv) = / / Jr(w) fo(tivr — s —u)So3(s)Si3(u)duds

itk—1—S
apa1ag

N (az — a1 —aiz)(ar + a1z — ag — ags

) exp(—aztitk)

[exp(ti+k(a2 —a; — a13)) — exp(tipp—1(az — a; — 1113))]
{eXp(ti+l(a1 + a13 — ap — ap3)) — exp((a1 + a1z — ap — a03)ti)]

For type 18

tit1
Lexp,(XVIII) = / Jo(5)S03(5) f13(tiyr — 5)S1(tiyrx — s)ds
t

i
apa13
= exp(titk(a1 + ais)
a1+ aiz —ap — ap3

|:eXp(t¢+1(0J13 +a; — ag — aog)) — exp(ti(alg +a; — ag — aog)) .

The total likelihood contribution becomes

tiv1 bit+ ke
Ecxp,li}g = </ / ( )fg(tprk — S — u)Sog(s)Slg(u)duds
:0—1—3 titk—1—5

tig1
+ / fo(8)So0s3(8) fi3(tisr — 8)S1(tign — 5)d5>

Li

- H dod142 exp(—astitk)
(a2 — a1 — a13)(a1 + a13 — ap — ap3) "

:0—1—3

[GXp(tiJrk(az —ay —a13)) — exp(tipp—1(az —ay — alS))]

{exp(tiJrl(al + a3 — ap — ao3)) — exp((ar + a1z — ap — (los)tz')}
apais

exp(t;rr(ar +a
ay + a3 — ap — ap3 Dltiriklor +a13))

{exp(ti+1(a13 +ay —ag — aog)) — exp(ti(alg +ay —ag — aog))i| ) .
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5. The Markov Property

The total likelihood contribution for a homogeneous Markov model becomes

Lymi—ss = H (COU(ti)CUI(tiJrl —ti)en (tigr — tiv1) @13

:0—1—3

+coo(ti)eor (tivr — ti)ern (tivk—1 — tiv1)cra(tivn — titr—1)g2

40913
= 11 (+ = exp(—ti(qo + G03)) eXD(— (tirk — tit1)(@1 + @13))
0513 \ 90 T 403 — 41 — q13

[EXP(—(tiH —t3)(q1 + q13)) — exp(—(qo + qo3) (tit1 — fz))]
9049192
+
(qo + qo3 — @1 — q13)(q1 + Q13 — G2)

exp(—(tiyn—1 — tix1)(q1 + q13)) [eXP(—(tiH —ti)(q1 + q13)) — exp(—(tit1 — ti)(q0 + q03))]

exp(—ti(qo + qo3))

[exp(*@(tuk —tivk—1)) — exp(—(tizrx — tizr—1)(q1 + q13))})

< 409142
sootos \ (@2 — a1 — qus) (@1 + @13 — g0 — qos

) exp(—qatitk)

[exp(ti+k(42 —q1—q13)) —exp(tivr—1(g2 — @1 — ¢I13))]

[EXP(ti+1(Q1 +q13 — qo — qo3)) — exp((q1 + q13 — qo — (Ios)ti)]
qoq13

———————exp(tivu(q1 + a3
g1+ q13 — qo — qo3 (Fie( )

[CXp(tHl(lIw +q1—qo — qo3)) — exp(ti(qis +q1 — qo — %3))]) .

The likelihoods are equal, and we have therefore shown that our likelihood

construction is equal to a homogeneous Markov model in Jackson (2011)) in the
special case where the transition times are exponentially distributed and all the
individuals start at the same time in state 0.
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CHAPTER 6

Application: CAV

6.1 Description of the Data

In this chapter, we analyze a dataset called CAV. The data come from a study
of the progression of coronary allograft vasculopathy (CAV), a post-transplant
complication where there is a deterioration of the arterial walls (Jackson, [2011)).
Previously, the dataset has been used in different publications on multi-state
models, for example in Van Den Hout and Williams et al. . The
data are obtained from a package in R called msm, where the manuals are
found in Jackson and Jackson .

The dataset consists of 2816 state observations from 614 individuals. The
youngest person to get a transplant is around 6 years old and the oldest person
to get a transplant is around 64 years old. In this analysis the starting point
is the time of transplantation, which means that all the individuals in the
study start at time point 0 in state 0. The individuals then get a transplant at
different ages.

In the dataset, there are 4 states:

o State 0: No CAV

o State 1: Mild/moderate CAV
o State 2: Severe CAV

o State 3: Death

The possible transitions are illustrated in Figure [6.1} In this chapter, we
therefore consider the four-state illness-death model when analyzing the CAV-
data. An analysis of the illness-death model for a modified version of the
CAV-data is found in Appendix [C]

Some diseases are an irreversible process, which means it is not possible to
recover from the diseased state. Progression of coronary allograft vasculopathy is
also considered as an irreversible process (Jackson, . This means that the
subjects which transfer the opposite way are considered as errors. Therefore, we
exclude these subjects from the dataset and we get a total of 2398 observations
for 556 individuals. Table [6.1] shows the transitions between the states for the
individuals. This means, the number of times an observation in state m was
followed by an observation in state ¢ (Jackson, . For example, we have
138 deaths from state 0, 36 deaths from state 1 and 50 deaths from state 2.
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State 0 . State 1 State 2
No CAV Mild CAV Severe CAV
State 3
Death

Figure 6.1: Four-state illness-death model for the CAV-data

State 0 State 1 State 2 State 3
State 0 1233 136 30 138
State 1 0 91 42 36
State 2 0 0 86 50

Table 6.1: Observations of the transitions in each state for the individuals in
the CAV-dataset.

The CAV-data consist of yearly examinations up to almost 20 years. Some
patiens skipped one or more scheduled examinations. The transitions between
the states where the patient is alive are interval-censored. However, if the patient
died during the follow-up period, then the time of death is exactly known (Van
Den Hout, p. 5). The patient number, age of the transplant, years since
transplant, age of the heart transplant donor, reason for transplantation, sex,
cumulative number of rejection states and state at different time points are
included in the data. The covariates which are assumed to affect the rate of
the progression of CAV is the age of the heart transplant donor (variable dage)
and the reason for transplantation (pdiag) (Jackson, [2011]).

6.2 Intention

The goal in this chapter is to illustrate how our likelihood construction can
be applied on a real dataset. We are especially interested in the shapes of the
survival and hazard functions, and how they change for the different models.
We analyze the CAV-data using the Gamma process models, which means that
the transition times are modeled as the threshold crossing times for Gamma
processes. In addition, we consider when the transition times are exponentially
distributed. The results of using the exponential distribution in our likelihood
construction is, as we know from Chapter [5] equivalent to the homogeneous
Markov model. In Section [6.5] we compare the Gamma process models with the
Markov models studied in Jackson . We compare the models both with
and without covariates by using the AIC-values. In addition, for the models
without covariates, we also compare the different survival curves for the total
survival probability with the empirical Kaplan-Meier survival curve.

When we construct a Gamma process model, we consider one of two different
Gamma processes. When modeling the transition times in the first alternative,
we have Pr(T > t) = G(c,at,1) = G(exp(7),exp(v)t, 1), while in the second
alternative we have Pr(T > t) = G(c,at’,1) = G(exp(7),exp(v)t’,1). We
consider the exponentials, since this ensures that ¢ > 0 and a > 0. The hazard
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functions in Gamma process model alternative 1 can be very different than for
Gamma process model alternative 2. How big the differences are, depend on
the data.

The analysis is done both with and without covariates. We consider two
covariates, where the first one is whether the patient was initially diagnosed with
ihd or not and the second one is the age of the donor, which we standardize. By
calculating and testing whether the parameters for the covariates are significantly
different from 0, we are able to find the significant parameters for the covariates.
For example, a parameter for a covariate can be significant in the transition
from state 1 to state 2, but not in the transition from state 2 to state 3.

We make plots for the different survival functions with pointwise 95%
confidence intervals. When we create the confidence intervals, we do a
transformation to make sure the lower confidence interval never falls below 0.
We start with

S8 = _og(S). (6.1)

The variance is calculated using the delta-method from Equation[6.1] The lower
confidence band is
exp(—S'°% — 1.960g10¢ ), ,

and the upper confidence band
exp(—5"8 4 1.960 giox ).

If —S'°8 + 1.960 g1z > 0 then the upper band will be higher than 1. We often
have high variance if there are few individuals making this transition.

6.3 Analysis of the CAV-Data Using Different Parametric
Survival Time Models

In this section, we analyze the four-state illness-death model using different
parametric survival time models both with and without covariates. More
specifically, we consider Gamma process models and when the transition times
are exponentially distributed.

As we discussed in Chapter [5| if an individual is only observed in state
0 and state 3, then the individual can transfer directly from state 0 to state
3, the individual can transfer from state 0 to state 1 and then to state 3 or
the individual can transfer from state 0 to state 1 to state 2 to state 3. If an
individual is observed in states 0, 1 and 3, the individual can either transfer
directly from state 0 to state 1 to state 3 or transfer from state 0 to state 1
to state 2 and then to state 3. The different likelihood types are type 1, 2, 3,
4, 6, 7, combination of 5, 16 and 21, and a combination of 15 and 18. The
log-likelihood becomes

! = Z IOg (S()(fr“ gl-'lm)) + 10g<sl)3<tn¢ O‘Im)>
(1)

+Zlog(/

)

+1

(s, 0)2:m)S1(tn — 8, 0)T)S03(s, 0xm)S13(tn — s 0|1m)d9)

tit1 titk—S
+ Z log / / (s,0]zm) f1(u, B|xy,)S2(ty, —u —s,0]x:m,)S03(s, 0|x,n)513(u,9\xm)duds)
t;

(II11) +k—1—S
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ity —s

+ Z log / fo(s, 8lxm) f1(u, 0|xm) fo(tivksr — 5 — u, 0]xn)Sos(s, 02m)S13(u, G\Im)dudS)

vy tigk—1—5

tit1—s
+Zlog / / Jo(s,0lz,) f1(w, 02:m)Sa(t, — s — u, 024,)S03(s, O]2m)S13(u, O|2,,) duds)
(V)

+ Z log / / f¢, S|zm) f1(u|zm) fo(tick — 8 — ulzm)Sos(s \Bm)S“(u\bLm)duds)

(V1)

tit1 tit1—s
+ Z log / / T ) f1(u|@m) f2(tivcr — s — ulzp,)Sos(s|zm)S1s(ulzy,)duds

(VII)

tit1
+ fos(tivi|zm)So(tiv|em) + / Jo(s]xm)Sos(s|wm) fia(tivs — 82m)S1(tiy1 — 9|1m)d9>
Jt;

titk—s
+ Z log / / Fo(slzm) fi1(ulzm) fo(tivk — s — u|l@m)Sos(s|Tm)S1s(ulzy, )duds

(VIIT) titk-1—8

tit1
+/ Jo(slzm)Sos(szm) fiz(tivk — slzm)Si(tivr — 8\-77m)d5)~
t

6.3.1 Without Covariates

We start this analysis by considering models without covariates.
6.3.1.1 Gamma Process Model, Alternative 1
The survival function from state 0 to 1 is of the form

So(t, 70,v0) = G(exp(7p), texp(vp), 1).

Sy(t, m1,v1), S2(t, 72, va), Sos(t, 703, vo3) and S13(t, 713, v13) have the same form.
The code for this analysis is found in Appendix

Parameter Estimate (exp(estimate)) Standard error
% ~0.369 (0.691) 0.317
Do -2.088 (0.124) 0.246
# -1.917 (0.147) 2.005
i -1.768 (0.171) 0.922
7 -3.488 (0.0306) 4.349
) -2.480 (0.0837) 1.169
703 -5.112 (0.00602) 10.478
03 ~4.601 (0.0100) 2.251
13 1.507 (4.513) 0.588
D13 -0.0116 (0.988) 0.576

Table 6.2: Estimates and standard errors in a Gamma process model without
covariates, alternative 1

We present the maximum likelihood estimates and the corresponding
standard errors in Table In the parenthesis, we report the exponential of
the estimated parameters. We find that the estimated parameters are mostly
below zero, except 713. exp(F13) is above 4, which is much higher than the other
parameters. That exp(713) is high means that the threshold for reaching state
3 from state 1 is high. However, since exp(#13) is also relatively high, there
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is a steep decrease in the survival function compared to if exp(P13) was much
smaller, for example 0.1.

0
0

survival probability
survival probability

0
0

[0] 5 10 15 20
years after transplantation years after mild CAV
(a) State 0 to state 1 (b) State 1 to state 2

1.0
1.0

0.8

0.6

survival probability
survival probability

0.0
0.0

0 5 10 15 20

years after severe CAV years after transplantation

(c) State 2 to state 3 (d) State 0 to state 3

1.0

0.8

survival probability
0.6

0.0

years after mild CAV

(e) State 1 to state 3

Figure 6.2: Survival functions with pointwise 95% confidence intervals in a
Gamma process model without covariates, alternative 1

Figure [6.2) shows the plots of the survival functions Sy, S1, S2, Spz and Si3
with pointwise 95% confidence intervals. Survival for Sy means not entering state
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1, survival for S; means not entering state 2, survival for So, Sp3 and S5 means
not entering the absorbing state 3. A 10-year survival probability is around 0.4
for Sy, 0.05 for S, So and Sy3 and 0.6 for Spz. The confidence intervals mostly
follow the estimated survival function for each of the transitions. The exception
is the upper confidence bands for Sy3. Here, 1.960g1: > S'°¢, which means
that exp(—S5'°8 4 1.960g1.s) > 1. Since the variance is high, probably because
of few individuals making this transition, the upper confidence band becomes
very high. We know that few people are transitioning, because from Table
we have that only 36 people transition from state 1 to state 3. In addition, we
do not know how many of these 36 people have transitioned directly without
going through state 2. This may be the reason for the high variance for the
estimated parameters of this transition.

We show the plots for the resulting hazard functions in Figure[6.3] All of the
hazard functions are increasing, where the increase mostly seem to wear off with
time. The hazard function for 0 — 3 is low and almost linear. In addition, this
hazard does not seem to change much with time. Of the possible transitions,
the hazard function for 0 — 3 is the closest one to a constant hazard.
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6.3.1.2 Gamma Process Model, Alternative 2

In this part, we consider alternative 2 of the Gamma process model. For
alternative 2, the survival functions are of the form

So(t, T0, V0, bo) = G(eXp(To), eXp(l/())tbO, 1)7

and similar for Sl (t, T1, V1, bl), Sz(t, T2, V2, bg), Sog(t, T03, V03, bog) and
S13(t, 713, V13, b13).

We present the maximum likelihood estimates and their standard errors in
Table [6.3] In the parenthesis of the maximum likelihood estimates, we report
the exponential of the maximum likelihood estimates. The estimated 7, and
v, parameters, where k = {0,1,2,03, 13}, are negative, and their exponential
are therefore between 0 and 1. These maximum likelihood estimates are also
different from the estimated parameters in alternative 1. In addition, we test
the hypothesis Hy : b=1. We can only reject this null hypothesis at a 1%-level
for bys. The other p-values are much higher, and we can therefore not reject
the null hypothesis for any of the other b-values.

Figure[6.4] shows the plots of the survival functions Sy, Si, Sa, Sos and Si3
with pointwise 95% confidence intervals. Survival for Sy means not entering
state 1, survival for S; means not entering state 2, survival for S, Sp3 and
S13 means not entering the absorbing state 3. A 10-year survival probability is
around 0.4 for Sy, 0.05 for Sy, Si3 and Sy and 0.7 for Sps.

The confidence bands in Figure (a), (c) and (d) seem to follow the shape
of their corresponding survival function closely. In Figure (b) and (e) the
upper confidence bands start to increase after some time. After 10 years, the
upper confidence band in Figure (b) increases slightly. However, the increase
in the upper confidence band in Figure (e) is bigger and happens earlier. A
possible explanation is, as presented in Section [6.2] and for alternative 1, that if
the variance for the survival curve exceeds the value of the survival probability,
we are in a situation where —S'°% 4+ 1.960 gioe > 0. Then exp(—S5'°8 + 1.960 105
becomes high and the pointwise upper confidence interval for the survival curve
may exceed 1.

In Figure [6.5] we show the plots of the hazard functions for the four-state
illness-death Gamma process model alternative 2. The plotted hazard functions
in Figure (a) and (b) are increasing and concave. For the plotted hazard
function in Figure ¢) there is a steep decrease in the beginning, before
there is a steady increase. Also in Figure (d), we see from the plot that
the hazard function has a steep decrease in the beginning, before the hazard
function slowly decreases toward 0. The hazard in Figure (e) is increasing
and convex. These hazard functions are quite different compared to alternative
1. This is because of the b-parameters, which makes it possible for the hazard
function to have a different shape.

The interpretation of the hazard function for the transition 2 — 3 is that
the instantaneous risk of moving from state 2 to state 3 in a small time interval
is very high in the beginning. Then the hazard function drops, before it
slowly starts to increase again. This means if you have severe CAV, then the
instantaneous risk of dying in a small time interval is high when you first get
the diagnose, but then it drops to be smaller. After this drop, the instantaneous
risk of dying in a small time interval slowly increases. The hazard function for
state 0 to state 3 has a big drop around 0, and then it slowly goes toward 0.
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This means that the instantaneous risk of dying in a very small time interval
after a transplant is big in the beginning, but after a couple of years, it is
almost 0. The hazard function in Figure (e) is almost zero in the beginning,
before it increases relatively slow until 5 years after mild CAV. Then the hazard
function increases quite fast until 10 years. After 10 years, the survival function
and the density is almost 0.

Parameter Estimate Standard p-value
(exp(estimate) for 7 error (Ho : b, =1)
and 7y)

%o -0.887 (0.412) 1.407

bo 1.144 0.244 0.555

70 -2.684 (0.0683) 1.360

#1 -2.140 ( 0.118) 5.588

by 0.998 0.305 0.995

0 -1.839 (0.159) 2.619

%4 -2.486 (0.0832) 5.060

by 0.930 0.312 0.822

D -2.017 (0.133) 2.280

03 -0.0992 (0.906) 0.586

bos 0.514 0.0845 8.847 x 1079

D03 -1.464 (0.231) 0.687

13 -0.303 (0.739) 1.847

bis 1.683 1.175 0.561

g -2.601 (0.0742) 2.921

Table 6.3: Estimates, standard errors and p-values testing the null the null
hypothesis Hy : by = 1 in a Gamma process model without covariates, alternative

2
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Gamma process model without covariates, alternative 2
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6.3.1.3 Exponential Distribution

Another possibility is to consider the transition times to follow an exponential
distribution.

So(t,ao) = Pr(Ty 2 t) = 1 — (1 — exp(—aot)) = exp(—aot)

and 95 (. an)
Jolt,ap) = =202

and corresponding survival and density functions Si(¢, a1), f1(t,a1), Sa(t, az),
fa(t,az), So3(t,ao3), fo3(t,ao3), S13(t,aiz) and fi3(t, as3).

We present the maximum likelihood estimates and the standard errors in
Table As discussed in Chapter [5], the hazards are equal to the a-parameter,
which means the hazards are constant.

In Figure [6.6] we show the plots of the survival functions Sy, S1, Sa, So3
and Sp3 with pointwise 95% confidence intervals. The survival functions can be
interpreted in the same way as for the Gamma process models. The 10-year
survival probability for Sy is around 0.5, for S; and Sy it is around 0.05, 0.7 for
So3z and around 0.5 for S13. The confidence intervals are mostly narrow. The
exception is Sy3, where the confidence bands are wide. As we discussed for the
Gamma process models alternative 1 and 2, we have few transitions from state
1 to state 3 and therefore a higher variance.

= ag exp(—aot)

Parameter Estimate Standard error
ao 0.0812 0.00637
aq 0.330 0.0415
as 0.289 0.0358
Qo3 0.0445 0.00486
a3 0.0635 0.0295

Table 6.4: Estimates and standard errors in a exponential distribution model
without covariates
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Figure 6.6: Survival functions with pointwise 95% confidence intervals in a
exponential distribution model without covariates

6.3.2 With Covariates

According to Jackson (2011)), the age of the heart transplant donor and the
primary diagnosis/reason for transplantation affect the progression of CAV.
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In Jackson , they create a binary variable ¢hd representing ischaemic
heart disease. Other covariates which may be included are sex and cumulative
number of rejection episodes. We include the variable ihd, as factor with levels
0 and 1, and age of the heart transplant donor as covariates. The age of the
heart transplant donor is standardized, so

dage — ftdage _ dage — 30.622

d . =
8% O dage 12.280

6.3.2.1 Gamma Process Model, Alternative 1

We include the covariates in the threshold exp(7) for the Gamma process model
alternative 1 without covariates. The survival function from state 0 to state 1
becomes

So(t,0) = G(exp (Bo,0 + Br,0thd + B2 0dagey, ), t exp(p), 1),

and the same form for Si(t,0), S2(t,0), Sos(t,0) and Si3(t,0), where 0 is a
vector of all the parameters.

We present the estimated maximum likelihood parameters, their standard
errors and the p-values from testing Hp : 8 = 0 in Table At a 1%-level,
only 31,0 and 32,0 are significant.

Figure [6.7] shows the plots for the survival functions Sy, S1, S2, Sos and Si3
with pointwise 95% confidence intervals for the case where dages; = —0.132,
which is the median of the standardized donor age, and ihd = 0 or thd= 1,
where ihd = 1 means that the patient was initially diagnosed with ihd. Survival
for Sy means not entering state 1, survival for S; means not entering state
2, survival for Ss, Sp3 and S13 means not entering the absorbing state 3. A
10-year survival probability when ¢hd= 0 is around 0.5 for Sy, 0.05 for Sy, 0.05
for So, 0.7 for Sp3 and 0.3 for Si3. A 10-year survival probability when ihd = 1
is around 0.3 for Sy, 0.05 for Sy, 0.1 for S5, 0.6 for Sy3 and 0.05 for Sy3. For
the same donor age, having ihd as the reason for transplantation decreases all
the survival probabilities except So. Note the upper confidence band for the
transition 1 — 3 is above 1, which is probably because of the same reasons
discussed in Section where exp(—5'°8 + 1.960 1) > 1.

We show the plots for the hazard functions in Figure [6.8] The shape of
the hazard functions in Figure [6.8] are increasing. When ihd = 0, the hazard
functions are mostly lower than when ihd = 1. The exception is the hazard
function for the transition 2 — 3 illustrated in Figure (¢). This means that
the instantaneous risk in a very small time interval of transitioning from state
2 to 3 is a bit higher when ihd = 0 than when ihd = 1. In all the other hazard
functions, the opposite applies. Note that the hazard function for the transition
0 — 3 is relatively constant.
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Parameter Estimate Standard p-value
error (Ho:8=0)
Bo,o 0.160 0.243
B0 -0.422 0.135 0.00177
B0 -0.252 0.0731 0.000566
Do -1.767 0.214
Boa -1.322 1.414
Bia -0.238 0.443 0.593
B2 0.340 0.284 0.231
D -1.525 0.771
Bo,2 -3.144 2.710
B2 1.331 1.053 0.206
B2 0.221 0.376 0.556
Dy -2.084 0.760
Bo,03 -3.063 7.763
Bi,03 -0.896 2.174 0.680
B2 03 -1.352 3.297 0.682
D03 -4.162 9.743
Bo,s 1.412 0.910
B3 -0.664 0.534 0.214
Ba13 0.466 0.296 0.115
D1a -0.536 0.805

Table 6.5: Estimates, standard errors and p-values testing the null hypothesis
Hy : 8 =0 in a Gamma process model with covariates, alternative 1
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Figure 6.9: Survival functions for different values of dages; and ihd in a Gamma
process model with covariates, alternative 1

We show the plots of the survival functions for dages; = —1 or dageg = 1
and ihd = 0 or ihd =1 in Figure[6.9] This means that the age of the donor is
around around 18 when dages; = —1 or 43 years when dages; = 1. In Figure[6.9]
(a) and (d), the survival probability is lowest if the donor is older and the person
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was initially diagnosed with ihd. In Figure (e), the survival probability from
state 1 to state 3 is highest if the individual has a donor which is a bit older.
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Figure 6.10: Total survival probability for different values of dages; and ihd in
a Gamma process model with covariates, alternative 1.

Figure [6.10] shows the total survival probability function. How we derive
the formula for the total survival probability is found in Section [6.5] The
total survival probability is lowest when the donor is older and the person was
initially diagnosed with ihd. If the donor is older and the person did not initially
have ihd or if the donor is younger but the person was initially diagnosed with
thd, have around the same survival probability. As expected, the total survival
probability is higher when the individual was not initially diagnosed with ihd
and the donor is younger.

6.3.2.2 Gamma Process Model, Alternative 2

It is also possible to do an analysis with covariates using the same motor function
as in Gamma process model alternative 2 without covariates. The computational
burden then increases, since we end up with optimizing 25 parameters. Because
of the computational burden, we consider a simplified model. Specifically, we
only include covariates in the first transition and we only include the motor
function ¢ for the transition from state 0 to state 3. For the other transitions,
we use the Gamma processes from the Gamma process model alternative 1
without covariates. We choose to include covariates in the transition 0 — 1
because it was only for this transition that the covariates appeared to have a
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significant effect in the Gamma process model alternative 1. Also, we include
bos in the transition 0 — 3 because it was the only b-parameter significantly
different from 1 in the Gamma process model alternative 2 without covariates.

For the transition 0 — 1, we include the covariates in the threshold in the
following way

So (t, 0) = G(exp (60’0 + ﬁl’oihd + Bg,odagest), t eXp(Vo), 1).

S1(t, 0), S2(t,0), and Si3(t, @) have the same form as in the Gamma process
model alternative 1 without covariates and Sp3(t, @) has the same form as in
the Gamma process model alternative 2 without covariates.

We present the estimated maximum likelihood parameters, their standard
errors and the p-values for testing the hypothesis Hy : 8 = 0 in Table [6.6] Both
of the parameters for the covariates are significant at a 1%-level.

Parameter Estimate Standard p-value
error (Ho: 8 =0)
Bo,0 0.245 0.217
Bl,o -0.394 0.120 0.00103
32,0 -0.271 0.0669 0.0000510
) -1.638 0.194
71 -1.264 1.263
21 -1.418 0.713
Ty -3.489 4.203
2 -2.454 1.129
To3 -0.319 0.909
bos 0.486 0.0860
o3 -1.727 1.000
T13 -0.582 2.741
13 -1.762 1.973

Table 6.6: Estimates, standard errors and p-values testing the null hypothesis
Hy : 8 =0 in a Gamma process model with covariates, alternative 2
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Figure 6.11: Hazard functions in a Gamma process model with covariates,
alternative 2. The covariate values for the transition 0 — 1 are dages; = —0.132

and thd = 0 or thd =1

Figure [6.11] shows the hazard functions. All of the hazard functions are
increasing, except the hazard function for the transition 0 — 3. For this
transition, the hazard function increases in the beginning, before it reaches a
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maximum point. Then the hazard starts to decrease again. This means the
instantaneous risk of transitioning from state 0 to state 3 increases from 0 to 5
years, but then the instantaneous risk start to decrease.
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Figure 6.12: Total survival probability for different values of dages; and ihd in
a Gamma process model with covariates, alternative 2

The interpretations of the survival functions do not change much from
previous models, but we include a plot of the total survival probability for
different values of the covariates. Figure[6.12]shows this plot of the total survival
probability function for the combinations dages; = —1 or dages; = 1 and thd
=0 or thd = 1. How we derive the formula for the total survival probability is
found in Section [6.5} The total survival probability is lowest when the donor is
older and the person was initially diagnosed with ihd. The survival probability
when the individual was initially diagnosed with ihd and the donor is younger is
almost equal to the survival probability when the donor is older and the person
did not initially have ihd. As we expected, the highest survival probability
is when the individual was not initially diagnosed with ¢hd and the donor is
young.

6.4 Analysis of the CAV-Data Using the Markov Models in
Jackson

In this section, we do some of the same analysis as in Jackson (2011)), with
small modifications. We start with the homogeneous Markov model, before
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we continue with the inhomogeneous model. In the end, we consider the
inhomogeneous Markov model with covariates.

6.4.1 Homogeneous Markov Model

Previously, the CAV-dataset has been analyzed with a Markov model in Jackson
. We therefore construct a Markov model based on the Markov model
Jackson in order to compare with the Gamma process models. First, we
define the initial transition matrix for the analysis of the CAV-data. In Jackson
they define an initial transition matrix and a misclassification matrix for
the observations going the wrong way. In our analysis, we have removed the
observations going the wrong way, but we still use the same initial transition
matrix, in this case called Q.

0 01 0 0.04
0 0 03 005

Q=10 0 o0 03
0 0 0 0

This means we initially assume the instantaneous risk of moving from state 0
to state 1 in a very small time interval to be 0.1. This initial transition matrix
is used as the start matrix for the optimization of the log-likelihood.

Well Mild Severe Death

Well -0.126 0.0812 0 0.0445
Mild 0 -0.393 0.330 0.0635
Severe 0 0 -0.289 0.289

Table 6.7: Estimated transition intensities in a time-homogeneous Markov
model

Table [6.7] presents the transition matrix after the analysis is done. For
instance, the estimated instantaneous risk of moving from state 0, Well, to
state 1, Mild, is 0.081.

Figure shows the plot of the total survival probability function from
state 0 to state 3 in a time-homogeneous Markov model. The empirical line
is the Kaplan-Meier estimate and gives an estimate of the "observed" survival
probability (Jackson, . We discussed the use of a Kaplan-Meier estimate
as a measure of fit in Chapter 2] The fitted Markov model is quite close to the
empirical model until 10 years after transplantation. However, after 10 years,
the survival probability in the Markov model and the empirical probability
differs.
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Figure 6.13: Total survival probability from Kaplan-Meier estimates and from
a time-homogeneous Markov model

6.4.2 Time-Inhomogeneous Markov Model

A possible time-inhomogeneous model is a model where the transition matrix Q
is piecewise-constant. An example is if a covariate varies continuously through
time, but is only observed at the same times as the state of the Markov process.
This means that the piecewise-constant covariate can change at other times
than (¢;1,...,%tn,). The solution is to take the sum of the likelihood over the
unknown observed state when the covariates change in time (Jackson, .
A way of creating a time-inhomogeneous model, is to change the intensities
at the same time for all of the individuals. In this analysis, we construct
an inhomogeneous model to the CAV-data by letting the intensities change
5 years after transplantation. In the msm-package, a binary covariate called
"timeperiod" is created as a factor. The levels are then the baseline (—oo, 5] and
the second time period is [5,00) (Jackson, . The probability of getting
CAV or dying changes as time goes by, which makes this change realistic.
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Figure 6.14: Total survival probability from Kaplan-Meier estimates and from
a time-inhomogeneous Markov model

Figure shows the total survival probability function from state 0 to
state 3 in a time-inhomogeneous Markov model. The fitted model is quite close
to the empirical model until around 13 years after transplantation. However,
after 13 years, the fitted and empirical probability differs, but is closer to the
empirical results than the time-homogeneous model.

6.4.3 With Covariates

We include the same covariates as for the Gamma process models. These are

the primary diagnosis and the standardized age of the donor. We replace g,,¢

with ¢nme(ihd, dages;) and according to Jackson it is on the form
Qmé(ihdv dagest) = ‘L(qu exp(ﬂo,mz ihd + ﬁl,medagest)-

We present the transition intensities with hazard ratios for each covariate
in the homogeneous Markov model in Table [6.8] while we present the results
for the inhomogeneous Markov model in Table[6.9} The baselines are when the
covariates are set to their means. ihd is included as a factor, where the factor
levels are 0 and 1. When we present the plots of the survival functions, ¢hd = 0
means the patient was not initially diagnosed with ihd.

123



6. Application: CAV

Baseline dages: thd
Well — Well -0.120
Well — Mild 0.0808 1.238 1.651
Well — Death 0.0388 1.570 1.263
Mild — Mild -0.391
Mild — Severe 0.336 0.818 1.212
Mild — Death 0.0558 0.339 2.988
Severe — Severe -0.308
Severe — Death 0.308 0.909 0.647

Table 6.8: Estimated transition intensities in a time-homogeneous Markov
model with covariates

Baseline dages: thd Timeperiod
[5,0)
Well — Well -0.120
Well — Mild 0.0854 1.306 1.638 2.442
Well — Death 0.0348 1.586 1.294 0.768
Mild — Mild -0.393
Mild — Severe 0.336 0.803 1.101 0.772
Mild — Death 0.0574 0.449 3.071 2.753
Severe — Severe -0.259
Severe — Death 0.259 0.936 0.608 1.435

Table 6.9: Estimated transition intensities in a time-inhomogeneous Markov
model with covariates
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Figure 6.15: Survival functions for different values of ¢hd and dages; in a
time-homogeneous Markov model with covariates
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Figure 6.16: Survival functions for different values of ihd and dages; in a
time-inhomogeneous Markov model with covariates

Figures and show the total survival probability for different values
of dagest and ihd for a homogeneous and inhomogeneous Markov model. The
10-year survival probability from state 0 in both of the Markov models is highest
when dages; = —1 and ihd = 0. This means that the 10-year survival probability
from state 0 is highest when the donor is younger and the individual was not
initially diagnosed with ihd.

6.5 Comparison of the Gamma Process Models to the
Markov models

In this section, we compare the Gamma process models to the homogeneous
and inhomogeneous Markov models. We compare them both with and without
covariates. In general, we find that the Gamma process models have a lower
AIC than the Markov models.
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6.5.1 Without Covariates

As discussed in Chapter [5] the transition intensities can be compared to the
hazard functions. We summarize the transition intensities for the Markov
model/exponential distribution model and the hazard functions for the Gamma
process models in Table [6.10] Note that the hazard functions for the two

alternatives of the Gamma process models are not independent of time.

GP alternative 1 | GP alternative 2 | MM/Exp.
(min, max) (min, max)

Well — Mild (0.0471, 0.189) (0.0250, 0.228) 0.0812
Well — Death (0.0456, 0.0485) (0.0219, 0.428) 0.0445
Mild — Severe (0.253, 0.562) (0.269, 0.542) 0.330
Mild — Death (0.00202, 1.497) (0.00128, 2.667) 0.0635
Severe — Death (0.246, 0.358) (0.269, 0.356) 0.289

Table 6.10: Hazard for the models from Gamma process model alternative 1,
Gamma process model alternative 2 and the time-homogeneous Markov models
without covariates

In Table the Markov model and the exponential distribution have
equal hazard values, in line with our results in Chapter For the Gamma
process models, the hazard function are in some cases high and above 1. This
is for example seen in Mild — Death. When the hazard function is above
1, the instantaneous risk of dying is very high, and it is very unlikely that an
individual survives in that time period. Other than the state 1 — 3 transition,
the Gamma process models and the Markov model seems to correspond well
with each other.

In the next part, we compare the total survival probability. Therefore, we
calculate the total survival probability in our proposed model. We start in state
0 and want to investigate the probability of not being dead before time t. There
are three possibilities

1. Stay in state 0
2. Move from state 0 to state 1 and stay there
3. Move from state 0 to state 1 to state 2 and stay there
The probability of staying in state 0 is
Pr(Ty > t,Tos > t) = So(t)Sos(t).

The probability of moving from state 0 to state 1 between 0 and t, and
staying there is

P’I"(TO + 1 > t) = P’I’(O <Ty<t,To+Ty >t, Ty + Tiz > t, Tz > TO)
t
= / fo(8)S1(t — 5)So3(s)S13(t — s)ds.
0
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The probability of moving from state 0 to state 1 to state 2 between 0 and
t, and staying there is

PT(T0+T1 + Ty > t) = PT(U <Th<t,0<To+T) <t,To+T1+To >t,Tos > Tp, T3 > T1)
t t—s
= / / f()(S)fl (U)SQ(t — S — U)S(]s(S)SIJ(U)d’UIdS
JOo JO

Therefore, the total survival is

Pr(total survival) = Pr(Staying in state 0) + Pr(Staying in state 1) + Pr(Staying in state 2)

= So(t)S()g(t) + A fo(S)Sl (t - S)Sog(s)slg(t — s)ds

+/0 /07sf0(8)f1(u)5’2(t7sfu)SOS(S)Sm(u)duds.
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Figure 6.17: Total survival probability function without covariates from Kaplan-
Meier estimates, Gamma process models alternative 1 and 2 and a homogeneous
or inhomogeneous Markov model

Figure (a) shows the total survival probability for the Gamma process
models, alternative 1 and alternative 2, the homogeneous Markov model and
the empirical Kaplan-Meier estimate. As we discussed in Chapter [2] the Kaplan-
Meier estimate can be used as an informal way of estimating goodness-of-fit. If
the survival probability curves are outside of the 95% confidence interval, then
the model does not fit the data.
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Both of the Gamma process model alternatives seem to follow the empirical
survival probability closer than the homogeneous Markov model. The Gamma
process model alternative 2 is closer to the empirical survival probability in the
beginning. Then after around 10 years, the Gamma process model alternative
1 is closer to the empirical survival probability. Both of the Gamma process
models are almost always inside the 95% confidence interval bands. They are
barely outside after around 15 years. However, the Markov model is quite close
to the the lower 95% confidence band in the beginning and upper confidence
band in the enda.

Figure (b) shows the total survival probability for the Gamma process
models alternative 1 and alternative 2, the inhomogeneous Markov model and
the empirical Kaplan-Meier estimate. The Gamma process model alternative 1
and the inhomogeneous Markov model are very close to each other, so close it is
hard to separate the two lines in the plot. The inhomogeneous Markov model is
therefore closer to the empirical Kaplan-Meier estimate than the homogeneous
Markov model.

Model —2log (L) k AIC
MM, homogeneous/Exp. 2877.069 5 2887.07
MM, inhomogeneous 2853.011 10 2873.01
GP alternative 1 2849.462 10 2869.46
GP alternative 2 2812.062 15 2842.06

Table 6.11: AIC in a four-state illness death models, without covariates

We compare the models by calculating the AIC for the different models.
Table [6.11] presents the AIC in the different models. The preferred model, which
is the model with the lowest AIC, is the Gamma process model alternative 2.

There are at least two possible reasons to why the Gamma process models
are preferred over the Markov models for the CAV data. One reason may be
the Markov property. For example, the probability of transitioning from state 1
to state 2 may depend on when the individual entered state and left state 0.
If the Markov property is clearly violated, we would also have detected a big
change in the AIC between the inhomogeneous Markov model and the Gamma
process models.

The second possibility is that it has something to do with the flexibility of
the Gamma process models. The Gamma process model alternative 2 gives
a much lower AIC than alternative 1. This indicates that including t* and
not just ¢ gives a decrease in AIC. One reason is that the hazard functions in
Gamma process model alternative 2 are more flexible, and therefore captures
the true hazard functions better than the other model. For example, in Section
the hazard functions changed quite a bit compared to in Section
This explanation is therefore likely, because of this difference in AIC between
Gamma process model alternative 1 and 2.
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6.5.2 With Covariates

Model —2log (L) k AIC
MM, homogeneous 2821.21 15 2851.21
MM, inhomogeneous 2792.116 20 2832.116
GP alternative 1 2783.778 20 2823.778
GP alternative 2 2779.496 13 2805.496

Table 6.12: AIC in a model, with covariates

In this part, we compare the different models with covariates. Table
shows the AIC-values when we include covariates for the Gamma process
models, the homogeneous Markov model and the inhomogeneous Markov model.
Also in this case, the Gamma process models have a lower AIC than both
the homogeneous and inhomogeneous Markov model. The Gamma process
model alternative 2 also has a lower AIC than alternative 1 and is therefore the
preferred model when covariates are included. In this model, we only include
covariates in the first transition and we only include the motor function t* for
the transition from state 0 to state 3.

Next, we want to compare how different values of the covariates affect
the total survival probability for the different models. We therefore compare
the total survival probability for the inhomogeneous Markov model and the
Gamma process model alternative 1 with covariates, to the Gamma process
model alternative 2 without covariates. We choose the inhomogeneous Markov
model, because it is the Markov model with the lowest AIC. The reason we
choose Gamma process model alternative 1 is that we want to compare the
Markov model to a Gamma process model where covariates are included in all
the transitions.

Figure [6.18] shows the the total survival probability functions for the
inhomogeneous Markov model with covariates, the Gamma process model
alternative 1 with covariates and the Gamma process model alternative 2
without covariates. The plots are of the total survival probability from state
0, for different values of the covariates. We include these plots in order to
show whether certain values of the covariates raise or decrease the survival
probabilities. Since the total survival probability for the Gamma process models
and the inhomogeneous Markov model without covariates were quite equal, we
compare the effect of the covariates to only Gamma process model alternative 2
without covariates. By including only one of these models without covariates, it
is easier to see the effect in the plot of including covariates. For the rest of this
section, Gamma process model without covariates means Gamma process model
alternative 2 without covariates and Gamma process model with covariates,
means Gamma process model alternative 1 with covariates.

In Figure (a), we show a plot of the total survival probability function
when dages; = 1 and ihd = 1. When dages; = 1, the age of the donor is around
43 years. That thd = 1 means the initial diagnosis of the patient was ihd. Firstly,
it seems like the Gamma process model with covariates and the inhomogeneous
Markov model with covariates are close to each other. They are both a bit
below the Gamma process model without covariates. The effect of having two
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Figure 6.18: Total survival probability functions for the Gamma process model
alternative 2 without covariates, thr inhomogeneous Markov model and the
Gamma process model alternative 1 with covariates, for different values of ihd
and dageg,

risk factors, lower the survival probability for both the inhomogeneous Markov
model and the Gamma process model with covariates compared to no covariates.

The inhomogeneous Markov model and the Gamma process model with
covariates are also close to each other in Figure (b). In the beginning, the
inhomogeneous Markov model and the Gamma process model with covariates
are a bit above the model without covariates. After around 7 years, the
inhomogeneous Markov model and the Gamma process model with covariates
drop a bit below the model without covariates. Compared to Figure (a),
we have that when dage,; changes from 1 to —1, meaning the donor age changes
from 43 years to 18 years, the survival probability in both the Markov model
and the Gamma process model with covariates increases a bit and are therefore
close to the Gamma process model without covariates.

In Figure (c), all of the models are very close to each other. For these
covariate values, the survival probability for the inhomogeneous Markov model
and Gamma process model with covariates are almost equal to the Gamma
process model without covariates.
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6. Application: CAV

Lastly, in Figure (d) both the inhomogeneous Markov model and the
Gamma process model with covariates are higher than the survival probability
function for the Gamma process model without covariates. The survival
probability for the inhomogeneous Markov model and the Gamma process
model with covariates are also close to each other for these covariate values.

In conclusion, it seems like the covariates have similar effects in the
inhomogeneous Markov model and in the Gamma process model, at least
when considering the total survival probability. If you are in one of the two risk
groups, meaning either dageg; is high or thd= 1, the total survival probability
for the models with covariates are quite equal to the model without covariates.
If you are in both or neither of the risk groups, then the survival probability is
a bit lower or higher respectively. In conclusion, when dages; = —1 and thd = 0
there is a small positive effect on the survival probability compared to when no
covariates are included. When dages; = 1 and ihd = 1 there is a small negative
effect on the survival probability compared to when no covariates are included.
If either dagegss = 1 or thd = 1, the survival probability is almost equal to when
no covariates are included.
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CHAPTER 7

Conclusions and Future Work

In this thesis, we have introduced modeling of transition times as the threshold
crossing times for Gamma processes in multi-state models for interval-censored
data. We have constructed a general likelihood framework, investigated the
MLESs through simulated data and investigated the Markov property. In addition,
we have applied our model framework on a real dataset.

We started this thesis with presenting the theoretical background in Chapter
[l Then in Chapter[3] we created a general likelihood framework for a three-state
progressive model, an illness-death model, a four-state progressive model and a
four-state illness-death model. In addition, the different multi-state models are
divided into when the transition to the absorbing state is observed exactly and
when it is not observed exactly.

In Chapter [4] we simulated data from the Gamma process and computed
the estimated maximum likelihood parameters. We checked the large-sample
properties of the MLEs and found that these properties are satisfied.

Further, in Chapter [§] we discussed the Markov property in our likelihood
construction. Since we wanted to investigate whether the Markov property
is fulfilled in our model, we calculated the transition probabilities. In our
calculations, we found that if the transition times are assumed to follow an
exponential distribution, we have a homogeneous Markov model. However, the
Markov property is not fulfilled when the transition times are modeled as the
threshold crossing times for Gamma processes.

Finally, in Chapter [6] we applied our model framework on a dataset called
CAV, where CAV is a post-transplant complication. The four-state illness-death
model with two Gamma process model alternatives, a homogeneous and an
inhomogeneous Markov model were considered. In addition, we considered
models both with and without covariates. The included covariates are ihd as
factor, which means whether the patient initially was diagnosed with ¢hd or not,
and dages:, which is the standardized donor age. We found that if the patient
was originally not diagnosed with ¢hd and the age of the donor was low, then
the survival probability was in general higher. In addition, we found that one
of the Gamma process model alternatives gave the lowest AIC, both with and
without covariates. For the models without covariates, we also checked if these
estimated total survival probability curves followed the empirical Kaplan-Meier
survival curve. We found that both of the Gamma processes model alternatives
followed the empirical Kaplan-Meier survival curves closely.

There are several way of extending our framework. A possible and doable
first step is to consider for example first-hitting time models based on an
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7. Conclusions and Future Work

underlying Wiener process instead of Gamma process. As we presented in
Section 2.7.1] in a Wiener process the lifetime 7" follows an inverse Gaussian
process if p < 0. If we in addition assume o = 1, the parameters of interest are
the threshold ¢ and the mean p. By switching the processes in the code, this is
both easy and doable. It would then be possible to compare these two different
first-hitting time models.

Another possible extension is to include dependencies between the different
transitions. This means that in an illness-death model, one can assume that T,
Ty and Tjs are not independent. In this case, one must include dependency in
the log-likelihood and estimate this dependency in some way. However, some of
these dependencies may also be captured with covariates.

By using Williams et al. as an inspiration, there is for example
possible to include more states and different possible transitions between the
states. We have extended the model to a multi-state model where the possible
transitions and states are illustrated in Figure This is the multi-state
model discussed in Williams et al. . With 7 states and the possible
transitions as in Figure [7.I] there would be at least 86 different likelihood
types. In addition we would have 13 transition times and for a Gamma process
model, there would be at least 26 parameters to be found through optimization.
This shows it is possible to build on the likelihood construction in this thesis
and use it in a framework with more complex data. If both the data and the
multi-state model can be more complex, then it is possible to use this framework
in various settings. Having 86 different types may be a problem when it comes
to computation time. Especially when we have to extend to formulas for the
likelihood contributions with triple integrals. A possibility is then to program
these likelihood contributions into a faster program than R, for example C and
C++. This is also a limitation of our likelihood framework, that it may be
quite complex when we include more states and transitions.

NN

State 0 State 3 ——> State b

State 1 N

State 6

State 4

Figure 7.1: A seven-state illness-death model

As we stated above, with the states and possible transitions in Williams
et al. there are at least 86 different types. When the model becomes more
complex, the probability of making an error and forgetting a type gets higher.
A possible expansion is then to make an algorithm which automatically finds
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the likelihood contributions for each individual. The idea is that the algorithm
can find which type the individual is and then likelihood contribution from this
individual, for different multi-state models.

Inspired by the hidden Markov model in Williams et al. (2020), it would
also be possible to make a hidden version of our model, based on the likelihood
contributions in Chapter [3] Let us consider a three-state progressive model, as
in Figure [T.2]. We start by only having one screening at time point ¢. In order

v
v

State 0 State 1 State 2

Figure 7.2: Three-state progressive model

to make the model hidden, we do not observe in which state an individual is.
However, we observe a different response called y, which for example is normally
distributed. We assume the transition to the absorbing state is also unknown.
The distribution may for example be

~ N(pp,1) State 0
y=4~N(u,l) Statel
~ N(p2,1) State 2

When we construct the hidden model, we follow the approach and the formulas
in Williams et al. with some modifications. The likelihood contribution
from the ith subject at time ¢, where X; ; is the state at time ¢ for individual ¢
becomes

2

Liy= Z f (Wit Xit)
X,1=0
2

= 3" P(Xio) (il Xie)

X;,t=0

t
= So(t)N (ys,¢|10,1) +/0 fo(s)S1(t — s)dsN (yi |1, 1)

+ / fols)(1 = S1(t — 8))dsN (g o, 1),
0

where N (y;¢|p, 1) is the normal density with mean p and variance 1.
Suppose we now have two screenings, t; and t5. The likelihood contribution
from the ith subject becomes

2

2
Linny= D, PXie)fWin| X)) D P(Xitn|Xi))f(Yiia] Xiro)
Xi,t;=0 Xi,t5=0
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to
= 50(t1)N(yi,t1|M071)[50(752)N(yi,t2|uo,1) +/ fo(s)S1(tas)dsN (yit, |1, 1)
ty

t

[ () = Sit2 ~ 9)dsN (i a. 1)

t1

tl tl
+ fo(s)S1(t1 — s)dsN (yi.z, |11, 1) { fo(s)S1(t2 — s)dsN (yi.t, |1, 1)
0 0

+ [ o101 =) = $1(ta = )ds Ny 2. )

t1
+ [ fo(s)(1 = Si(ts — 8))dsN (yi e, [p2, 1).
0
If we have three screenings, t,ts and t3, the formula for the likelihood
contribution is

2
Lity tyts = Z P(Xi0,) [ (Wit | Xie,)
Xi,,=0
2

Z P(Xi,t2|Xi,t1)f(yi,t2|Xi,t2) (71)
X, 15 =0

2
> P(Xin| Xt Xit) f Wit Xisy)-
X5 =0

In a hidden Markov model, we have from Williams et al. (2020) that the
likelihood contribution would be

2
Litvints= Y PXin)fWin|Xin,)
Xi4, =0
2
> P(XinlXie)f Wit Xit,) (7.2)
Xi15=0
2

Z P(Xi7t3|Xi7t2)f(yi7t3‘Xi,t:s)'
X;13=0

Equation [7:1] is not in general equal to Equation [7.2] since in Equation [7:1] we
condition on the whole state history. Our approach to the hidden model, would
then be different and more complex than in a hidden Markov model. It will
probably be an interesting and perhaps useful expansion of the models in this
thesis.

An additional extension to the multi-state Gamma process models is to
include a Bayesian approach. This is especially useful in situations with a
priori knowledge about the disease of interest. Let us go back to the three-state
progressive model. We assume a simple prior for all of the parameters and a
random walk proposal. A possible MCMC-algorithm becomes

1. Define a starting point 8° = (cJ, a3, ¢?,a?)
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2. Fort=2,...,n
a) Sample a proposal 0* = (¢, ag, ¢i,a}) from a proposal distribution
J (0701 =0 + s,

where for example s ~ N(0,0.1), which means we sample 4 random
numbers from this distribution.

b) Calculate
Pr(cs, ag, ¢1, ai|t)

r= .
Prich " af e ol )

c¢) Simulate a number u ~ U[0,1]. If u < r
0" = (Ct07a67ciaa§) =0"= (cs,aé,c’{,af),
else:
0" = (Céﬂaéﬂctlaatl) =0 = (Cg_laato_17ci_1vat1_l)'

This MCMC proposal should be possible to do and expand to four-state cases
as well. One can then include informative or uninformative priors on the
parameters.

In relation to the Bayesian approach, it is probably also possible to include
Bayesian nonparametrics in some way. For example, it may be possible to
consider prior processes on each of the different transitions. Then one would
probably need some assumptions about having enough people in all of the
different transitions, the time interval must be long enough and so on. There
probably exist a well-defined version of maximum-likelihood procedure. This
may be quite complicated, but we think it is doable.

Lastly, it is also possible to have a greater focus on model selection and
goodness-of-fit for multi-state models with interval-censored data. A possible
extension is to create a powerful goodness-of-fit framework for these interval-
censored data in this model framework. Then it would be possible to give a
more accurate evaluation of the goodness-of-fit for this model. When it comes
to model selection, it would also be interesting to compare the Gamma process
models and the Markov model by using FIC from Claeskens and Hjort .
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APPENDIX A

Likelihood when the Exact Time of
Entry into the Absorbing State is
not Known

A.1 Three-State Progressive Model

Suppose the individuals are screened ti,to,...,t, times. The different
contributions to the likelihood are

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

P’I"(TO > tn) = So(t”)

2. Suppose an individual is observed in state 0 from 1 to ¢;. At t; 41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point, ¢,,. Then

PT(TO > ti,Tg < ti+17To < tn,To + T > ti+17T0 + 17 > tn)

tit1
= PT(ti <Ty < ti+1,T0 + 17 > tn) = / fO(S)P’r’(To + T > tn|To = s)ds
t

i

tit1 tit1
= / fo(S)P’I“(Tl > tn — S)dS = / fO(S)Sl(tn — s)ds
t t

i i

3. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 1. The individual is observed in state 2 at
tit+x, where k > 1. Then

PT‘(TO >t Ty < ti+1,T0 + 17 > ti+k_1,T0 + 17 < ti—&-k)
= Pr(ti <Th <tig1,tigh—1 <To+T1 < ti+k)

- / T fo(9)(Filtik — ) — Faltipxos — 5))ds

i

- / oS (tinmt — ) — St — )ds.

i
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4. Suppose an individual is only observed in state 1 at all the screening time
points, where t,, is the last screening. Then

PT(TO <t1, Ty <tp,To+Ty>t1,To+ 11 > tn)
ty
= P’r‘(To <t,To + 17 > tn) = / fo(S)Sl(tn - S)dS
0

5. Suppose an individual is observed in state 1 from t; to ¢;. At t;4q, the
individual is observed in state 2. Then

PT(TQ < tl,To + 17 > ti,TO + T < ti+1)
= P’I’(Tg <t,t; <To+T) < ti—i—l)

ty
= fo(s)Pr(t; < To+ T < tit1|To = s)ds
0

ty
- / Jo(s)(Sa(t: — 5) — Su(tiss — ))ds.

0

6. Suppose an individual is seen to be in state 0 for the time points ¢; to ¢;
and it is observed in state 2 at time point ¢;,;;. Then
Pr(To > t;,To+Th < tix1)
= P?“(tl <Ty < ti+1,TO + T < ti—i—l)
tiv1
= / fo(S)(l - Sl(ti+1 - S))dS.
ti

7. Suppose an individual is observed in state 2 at the first screening point,

t1, without any intermittent screening.Then

ty
PT’(T() + 17 < tl) = fQ(S)Fl(tl — S)dS
0

- /O " fo(s)(1 = Su(t1 — s))ds.

The full likelihood for the individuals p = 1,...,m becomes

1+1p
L= HSO tnp, 01 H/ (5,0|2,)81(tn, — s,0|x,)ds

(1) (11)
t1+1 2
1T / (5. 012) (1 (tii1. — 5,012,) = S1 (tigiy — 5. 0]2,))ds
(I11)
H/ fo(s,0]x,)S1(tnp — s,0|xp)ds
(IV)

H / " Fo(5,002,)(Su(tip — 5,00,) — S1(tis1, — 5,0,))ds
0

H/HIP (5,0|2,)(1 = S1(tiy1,p — 5,0|xp))ds

(V1)

t1,p
H / Jo(5,0]x,)(1 — S1(t1,p — 5,0|zp))ds.

(VIT)
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A.2. lliness-Death Model

A.2 lliness-Death Model

Suppose the individuals are screened ti,ts,...,t, times. The different
contributions to the likelihood are

1. Suppose an individual is seen to be in state 0 at all the different screening
time points, where ¢,, is the last screening. Then

PT(TO > tnaTOZ > tn) = SO(tn)SOZ(tn)
with no further information about T7j.

2. Suppose an individual is seen to be in state 0 from t; to ¢;. At t;41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point t¢,,. We also have that Ty > Ty. Then

Pr(To > t;,To < tix1,To < tn,To +T1 > tig1,To + 11 > tn, To2 > Tp)
= P’I“(ti <Ty < ti+1;T0 + 17 > tn)

tiv1
= / fo(S)PT(TO —+ Tl > tn|TO = S)PT’(TOQ > T0|T0 = S)dS
t

iti+1
= / f()(S)Sl(tn - S)S(]Q(s)ds

3. Suppose an individual is seen to be in state 0 from t; to ¢;. At ¢;11, the
individual is observed in state 1. The individual is observed in state 2 at
titx, where k > 1. We also have that Ty > Ty. Then
PT’(TO >t;,TH < ti+1,T() + T > ti+k,1,T0 + 1T < ti+k,T02 > T())

= Pr(ti <Ty < tig1, tigh—1 < To+ T < ti+k,T02 > To)

ti+1
= / fo(S)PT(tiJrk,l <To+1T) < t7;+k|T0 = S)PT‘(TOQ > To‘TU = s)ds
t

Li

:l”ﬁmmﬂmM—@—ﬂmMﬂ—w%mMs

= /t it1 Jo(s)(S1(tivk—1 — 8) — S1(tirr — 5))So2(s)ds

4. Suppose an individual is only observed in state 1 at all the screening time
points, where t,, is the last screening. We also have that Tps > Tj. Then

PT(T() < tl,To < tn,TO—FTl > tl,To—FTl > tn,Tog > To)
—PT TO <t,To+ Ty > t,,Tos > To)

/ fo Sl S)Sog(s)ds

5. Suppose an individual is observed in state 1 from 1 to t;. At t; 41, the
individual is observed in state 2. We also have that Tyo > Tp. Then

PT(TO < tl,T() + T > ti,TO + 1T < ti+17T02 > T())
= Pr(Ty <ti,t; <To+T1 < tiy1,To2 > Tp)

= [ o) (St — ) — Su(tig1 — 5))Son(s)ds

0
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6. Suppose an individual is observed in state 1 from t; to ¢;. At t;4q, the

individual is observed in state 2. We also have that Tyo > Ty. Then

P’I“(TQ >, To + T < tiy1,To2 > To)
= P?“(tl <Ty <tig1,To+T1 <tig1,To2 > To)

_ /t " h(8)(1 = S (i1 — $))Soa(s)ds.

i

Suppose an individual is observed in state 2 at the first screening point ¢1,
without any intermittent screening. We also have that Ty > Tpy. Then

ty
PT(TO + Ty < ty1,To2 > To) = fo(S)Fl(tl — S)SOQ(S)dS
0

= /o 1 fo(s)(1 = S1(t1 — 8))So2(s)ds.

Suppose an individual is observed in state 2 at the first screening point ¢1,
without any intermittent screening. We also have that Ty < Tp. Then

ty
PT’(TOQ < tl,TQQ < To) = fOQ(S)So(S)dS
0

Suppose an individual is observed in state 0 from ¢; to ¢;. At ¢;41, the
individual is observed in state 2. We also have that Tos < Ty. Then

tit1
P’I’(ti < T()Q < ti+17ﬂ)2 < T()) = / foQ(S)So(S)dS

ti

The full likelihood for a dataset with these type of screenings for the
individuals p = 1, ..., m then becomes

L£(6)
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titvip
= H So(tn,p, 01xp) So2(tnp, Olzp) H / Jo(s,0]zp)S1(tnp — 5, 0|2p)S02(s, 0]p)ds
(1) / tior

(1)

Liti,p
11 / fo(s,0]zp)(S1(titr—1,p — 5, 0lp) = Si(tivkp — 5,0]7p))Soa(s, Olap)ds
111y’ tie

t1,p
H/O Fols,02,)S1 (tny — 5, 0]i) S0 (s, O ds
(IVv)

ti,p
H/O fo(s,0]ap)(S1(tip — 5,0]2p) — Si(tigrp — 5,0]2))S02(s, 0]y )ds
V)

rtit1,p
IT [ Ao Bla,)(1 = it = 5.81,)) s Bl s
(vI)©hr

t1.p
H ) Jo(s,01zp)(1 = Si(t1,p — 5,0]xp))So2(s, O] xp)ds
(VII)

H /O/LP foz(s,0l2p)S0(s, 0]zp)ds

(VIIT)

tit1,p
H / fo2(s, 0]xp)So(s, O|z,)ds.
tip

(IX)



A.3. Four-State Progressive Model

A.3 Four-State Progressive Model

Suppose we have screened an individual t1,%s,...,t, times. The likelihood
contributions are

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

P’I"(T() > tn) = So(tn)

2. Suppose an individual is observed in state 0 from 1 to ¢;. At t; 41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point ¢,,. Then

PT’(TQ >t To < tiv1,To <tn,To+T1 > tip1,To+ 11 > tn)
= Pr(ti <Ty < tiy1,To+ Ty > tn)

tiv1
_ / Fo(8)Pr(To +Th > to|To = s)ds
t

i

tit1
— [ )it s)ds.

i

3. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 1. The individual is observed in state 1
until ¢;4_1, where k > 1. At t;,, the individual is observed in state 2.
The individual is still in state 2 at the last screening point t,,. Then

Pr(To > t;, Ty < tiy1,To +Th > tip1, To + 11 < tiys,
T0+T1+T2>ti+k,T0+T1+T2>t)
*Prt < Ty < tig1,tivn— 1<T0+T1<tl+k,To+T1+T2>t )

tit1 itk—S
/ / fi(w)Pr(Ty > t, —u — s)duds
t;

+k15

it+1 i+k—S
/ / f1(w)Sse(t, —u — s)duds.
itk—1—"S

4. Suppose an individual is observed in state 0 from ¢ to ¢;. At t;41, the
individual is observed in state 1. The individual is observed in state 1
until ¢;4_1, where k > 1. The individual is observed in state 2 at t; .
The individual is observed in state 2 until ¢;1 5471, where [ > 1. At
titk+1, the individual is observed in state 3. Then

Pr(Ty > t;, Ty < tig1, Do+ 11 > tig1, To + Ty < tiys,
To+Ty+To > tigy, To+ T+ To < tigptr)
= Pr(t; <To < tiz1,tivr—1 <To+T1 <tizr, tizryio1 <To+ T +To < tivryr)
tit1 titk—s
/ / fo(s) fi(w)Pr(tisksi—1 —s —u < T < tixpqr — s — u)duds
g’

itk—1—8

titk—s
/ / f1(w)(Se(tivkri—1 — s —u) — So(tigrsr — s — u))duds.
t;

+k13
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5. Suppose an individual is observed in state 0 from t; to ¢;. At t;4q, the
individual is observed in state 3.

PT(TO >t To+ T+ 15 < ti+1) = P’I‘(ti <Ty < t7;+17T0 + T+ 15 < t1;+1)
=Pr(t; <Ty <tiy1,ti <To+T1 < tig1,To+T1 +T> < tit1)

tiy1
= / f()( )P7 (t <Ty+T) < ti+1|To = S)PT(TO + T +15 < ti+1|To = 6)d6

tit1 i+1—S
/ / (u)Fo(tiv1 —u — s)duds
t
tit1 tit1—s
/ / ()(1 = S(tis1 — s — u)duds.
t;

6. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 2. The individual is still in state 2 at the
last screening point ¢,,. Then
PT’(TO >t To+ T <tip1,To+T1 +To > tn)

= P’I“(ti <Ty <tigr1,t; <To+T) <tig1,To+T1+T5 > tn)

tita1
:/ f ( )PT(t <To+1T < ti+1|T0 = S)P’I‘(TQ + T, + 15 > tn|T0 = S)

/z+1/1+1 | (s)f1(u)Sa(tn — s — u)duds.

7. Suppose an individual is observed in state 0 from t; to ¢;. At t;41, the
individual is observed in state 2. The individual is observed in state 2
until ¢; 1,1, where k > 1. At t;,, the individual is observed in state 3.
Then

PT(T() > t;, Ty + T <ti+1,To+T1 + T > bitk— 1,To+ T + 15 <ti+k)
—P’I“t < 1Ty < tit1,1; <To+Ty < tit1,bitk—1 <To+Ti+1Ts <t1+k)

/t h / o fr(u)(Sa(tivk—1 —u—s) — So(tizr —u — s))duds.

8. Suppose an individual is only observed in state 1 at all the screening time
points., where t,, is the last screening. Then
P’/’(TO <t,To <tn,To+Ty >t1,To+ 11 > tn)

= P’I“(To <t,To+ Ty > tn)
t1

= fo(8)S1(t, — s)ds.

0
9. Suppose an individual is observed in state 1 from t; to ¢;. At t;4q, the
individual is observed in state 2. The individual is still in state 2 at the
last screening point ¢,,. Then
PT(TO < tl,T() + T > ti,T() + T < ti+1,TO + T + 15 > tn)
= PT(T() <t t; <Th+1T1 < t,‘.;,.l,T() + Ty 4+ 15 > tn)

t1
= f()(S)P’f‘(ti <To+T) < ti+1|T0 = S)PT’(T() + T+ 15 > tn|T() = s)ds
0

/t1 / o sfo(s ) f1(w)Sa(t, — s — u)duds.
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10.

11.

12.

13.

14.

15.

Suppose an individual is observed in state 1 from ¢; to ;. At t;11, the
individual is observed in state 2. The individual is observed in state 2
until ¢;45—1, where k > 1. At t;1, the individual is observed in state 3.
Then

Pr(Ty <t,,To+Ty > t;, To+ Ty < tig1,To+ T+ T2 > tigr—1,To +T1 +To < tizr)
=Pr(Ty <ty,t; <To+T1 < tipr, i1 <To+T1 +To < tiyg)

t1 tit1—s

/ / f1 TI)PT( bitk—1 < To+T1+ T, < fz+k|TO =s5,T1 = u)dude
t1 tit1—s

/ / (u)(Sa2(tivr—1 —s —u) — So(titr — s — u))duds.

Suppose an individual is observed in state 1 from ¢; to ¢;. At ¢;41, the
individual is observed in state 3. Then

P’I"(T() < t17T0+T1 > ti7T0 + T+ Ty < ti+1)
—PT To <ttty <To+T) <tig1,t; <To+T11+ T <t2+1)

11 tigt1—s
/ / fo(s) fr(u)(1 = Sa(tiys — s — u))duds.
t;

Suppose an individual is only observed in state 2 at all the screening time
points, where t,, is the last screening. Then

Pr(To <t1,To <tn,To+T1 <t1,To +T1 < tn,To+T1 + 1o > ty)
—P?‘ TO <t;,To+Ty <t1,To+Ty+T5 > t, )

/ /tl ) ()Sa(t — 1 — s)duds.

Suppose an individual is observed in state 2 from ¢; to ¢;. At ¢;41, the
individual is observed in state 3. Then

P?" T() < tl,TO + T <ti,t; <To+Tr+T5 < tl+1)
/ / () (St — 5 — 1) — S (tir — 5 — u))duds.

Suppose an individual is observed in state 3 at the first screening point
t1, without any intermittent screening. Then

Pr(To+Ty +Ts < tq)
t1—s
/ / (W)(1— Sa(t1 — s — u))duds.

Suppose an individual is observed in state 0 from 1 to ¢;. The individual
is observed in state 2 at ¢;1. The individual is observed in state 2 until
tivk—1, where k > 1. At t; 1, the individual is observed in state 3. Then

PT‘(ti <Ty < tit1, To+ 1T, > Cith—1, To+T+Ts < ti+k)

tit1
= / fo(S)P’I“(ti+k_1 <To+T < tH_k‘Tg = S)PT’(TO + T+ T < ti+k|T0 = s)ds
ti

/t U RO RO~ Salties s~ wduas.

titrk—1—5
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Known

The full likelihood for the individuals p = 1,...,m then becomes

tit lp
HSO toplTp) H/ (s,0)2p)S1(ty, — s,0|2,)ds
ts,

(I1)
tivip ptitkp—s
11 / / (5, 002)) f1 (1, B]) S (b — 11 — 5, O, )duds
(11r)’t titk—1,p—
tivi,p titk,p—s
/ (5.00,) 1 (0,61 ) (St — 5 — 0,0l
(vt bitrot1,p=5
= Sa(tithtip — § — u, 0|zp))duds
tivip plita, p*s
11 / / (5, 8]) 1 (1, 01,)(1 = Saltisrp — 5 — u, Bl,))duds
(v) ot
tit1,p tita, p_s
/ / (s,0]xp) f1(u, 0|z)) S (tnp — s — u, O)z,)duds
<VI> b
i+1,p i+1, p*s
1T / / (5, 812, f1 (1, 8], ) (a1 — u — 5, 6]z,)
(vin’t
— So(tivk,p —u—s,0|x,))duds
t1,p
H / fo(s,0|xp)S1(tn,y — s,0|,)ds
(VIII)
t1,p tit1, pfs
/ / (s,0]xp) fi(u, 0|zy) S (tn,p — s — u, O)z,)duds
(IX) pTS

t1,p tit1,p—S
/ / Fo(s.01,) fa (1 01p) (ot p — 5 — 1, Bp)—
(X) ti

So(titkp — s —u,0|xp))duds

t1,p tiv1, pfs
/" (5, 0109) f1 (1, 012,) (1 — Sa(tis1,p — 5 — u, Bl duds
(XT) tip=s
t1,p t1 pfs
/ / (s,0]xp) f1(u, 0|zy) S (tn, —u — s, 0|z,)duds
(XII)
t1,p ty, p—s
I [ sos6la) i 0.01,) (5ot = s = Bl
(XIIT)
So(tit1p — s — u,0|z,))duds
t1 11, p—s
/ / (5, 0l,) f1 (1, 82,) (1 — St — 5 — u, O],))duds
(XIV)
i+1,p it+k,p S
11 / / fols, 81p) f1 (1, 01,)(1 = S (tiskp — 5 — u, Bly))duds.
(XV) ti, titk—1,p—S
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A.4 Four-State lliness-Death Model

Suppose we have screened an individual tq,ts,...,t, times. The likelihood
contributions are

1. Suppose an individual is only observed in state 0 at all the screening time
points, where t,, is the last screening. Then

PT(TO > tnaTOS > tn) = SO(tn)SOS(tn)

2. Suppose an individual is observed in state 0 from 1 to t;. At t; 41, the
individual is observed in state 1. The individual is still in state 1 at the
last screening point t,,. We have that Tys > Ty and T3 + Ty > t,,. Then

P?‘(To > ti,To < ti+1,T0 < tn,T() + T > ti+1,T0 + 17 > tn,
Toz > To, T3+ 1o > tn)
= PT’(ti <Th < ti+1,To + 11 > ty,Tog > To, Ths + T > tn)

tiy1
= / fo(s)Pr(Ty > t, — s)Pr(Tos > s)Pr(Tis > t, — s)ds
t

i

_ / " 0(5)Sh (tn — 5)So3(5)Sua(tn — 5)ds.

i

3. Suppose an individual is observed in state 0 from t; to t;. At t;41 the
individual is observed in state 1. The individual is observed in state 1
until ¢;45—1, where k > 1. At t;1, the individual is observed in state 2.
The individual is still in state 2 at the last screening point ¢,,. We also
have that Tys > Ty and T3 > 1. Then

Pr(Ty > t;, To < tix1,To+T1 > tiy1, To + T1 < tig,
To+Ty+To > tigr, To +T1 + 1o > ty, Toz > To, Tiz > T1)
=Pr(t; <To < tiy1,tivp—1 <To+T1 < tivk, To+T1 + 1o > ty,
Toz > To, Tiz > T1)

i+1 i+k—S
/ / ()PT(T0+T1+TQ>t|T0—ST1—u)
i+k—1—S
Pr(Tos > s)Pr(Tis > Th|T1 = u)duds

/ i1 / itk—8 ( )PT(TQ >t, —u— S)SOB(S)Slg(u)duds

+k15

/ - / o f1(w)S2(tn — u — $)So3(s)S13(u)duds.

+k1‘?

4. Suppose an individual is observed in state 0 from ¢; to ;. At t;11, the
individual is observed in state 1. The individual is observed in state 1
until ¢;4_1, where k > 1. The individual is observed in state 2 at ;.
The individual is observed in state 2 until ¢, 51,1, where [ > 1. At
titk+1, the individual is observed in state 3. We also have that Tys > Ty

149



A. Likelihood when the Exact Time of Entry into the Absorbing State is not
Known

150

and T3 > T;. Then

Pr(Ty > t;,To < tit1,To+T1 > tig1,To+Th < tivk,

To+ Ty + T > tivk, To+ 11 + To < tivk+i, Tos > To, Tz > T1)

= Pr(t; <To < tig1,tign—1 < To+T1 < tiyk, tiviyi—1 < To+T1 +To < tigrti,
Tos > To,T15 > T1)

i+1 itk—S
/ / ( )PT‘( itktri—1 < To+T1+Ts <tl+k+l|T0—S Ty —u)

+k15

PT T03 > s PT’(Tlg > T1|T1 = u)duds

/t / ) A (Faltigns — 5 — ) — Faltisnsior — s — )

itk—1—S
Sof; S)Slg duds
it1 itk—S
/ / £ (W) (Saltisnsior — 5 — 1) — Saltickas — 5 — )
titk—1—5

Sog(S)Slg( )duds

Suppose an individual is observed in state 0 from ¢; to ¢;. At ¢;41, the
individual is observed in state 3. We also have that To3 > Ty and Ty3 > T7.
Then

P?"(Tg >t To+ 1T+ 15 < ti+1,T03 > To,Tlg > Tl)
=Pr(t; <To < tit1,To+Th + T2 < tiz1,Toz > Tp, Thz > T1)

/ i+l / i41—5 fi(uw)Pr(Ty < tiy1 — s — u)Sos(s)S13(u)duds
tit1 tiy1—s
B / /0 Jo(s) fr(w) Fa(tipr —u — 5)503(3)513(U)duds
t;

= /t i+l /0 it1—S fO(S)fl (u)(l — S2(ti+1 —5— U))Sl3(s)513(u)dud3.

. Suppose an individual is observed in state 0 from ¢; to ¢;. At ¢;41, the

individual is observed in state 2. The individual is still in state 2 at the
last screening point ¢,,. We also have that Ty > Ty and 713 > T7. Then

PT'(T() >t 1o+ 11 <tipr,To+ T+ 1% > t,,Tos > 1o, 113 > Tl)
= P’f’ t; < T() < tl+1,t <T0+T1 < tl+1,T0+T1 + Ty > tn,T05 >T07T15 >T1)

i+l i+1—8
/ / )PT(T0+T1+T2>t |T0—ST1—U)
S(); PT‘ T13 > T1|T1 = u)duds

/‘L+1/w+1 s (u)Sa(tn — s — u)So3(s)S13(u)duds.

. Suppose an individual is observed in state 0 from ¢; to t;. At t;41, the

individual is observed in state 2. The individual is observed in state 2
until ¢; 4,1, where k > 1. At t;,, the individual is observed in state 3.
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We also have that Tys > Ty and T3 > T1. Then

PT(TO >t To+ 11 < tipr1,To+ 11 +To > tivk—1,To + 711 + 15 < titvk,

Toz > To, Tiz > T1)
= P’I“(ti <Ty < ti+1,ti <To+T) < ti+17ti+k71 <To+T)+T5 < tiJrk,

Tos > Ty, Tiz > T1)
/t - / T () ) (Fatien —u— ) — Faltiseor —u—))

So3(s)S13(u)duds

- /t B /Otm é Fo(s) f1(w)(Sa(tignr — u— 8) — Saltirn —u — 8))

Sos(s)S13(uw)duds.

8. Suppose an individual is only observed in state 1 at all the screening time
points, where t,, is the last screening. We also have that Tys > Ty and

Tis + Ty > t,. Then

Pr(To <t1,To < tp,To+T1 > t1,To + T > tn, Toz > To, To + Tz > t,)
= P’I“ To <t,To+ Ty > t,,Tog > Ty, To + Ti3 > Tl)

/ fO Sl 8)503(8)513(tn - S)ds.

9. Suppose an individual is observed in state 1 from t; to t;. At t;4q, the
individual is observed in state 2. The individual is still in state 2 at the
last screening point t¢,,. We also have that Ty3 > Ty and Ty3 > T7. Then

PT(TO <t,To+T11 > t;, To+ 11 < tiy1,To+ 11+ 1% > t,,
Toz > Ty, Trz > T1)
= P’I“(TO <t1,t; < To+ 1T < ti+1,To + Ty + 15 > tn,

Toz > To, Tiz > T1)
i+1—8
/ / fi(w)Pr(To+ Ty + T > t,|To = s, Ty = u)
ti—
Sog 513 )duds
t1 tiy1—s
/ / f1(u)Sa(t, — s — u)So3(s)S13(u)duds.

i—S

10. Suppose an individual is observed in state 1 from #; to t;. At t;11, the
individual is observed in state 2. The individual is observed in state 2
until t;4x_1, where k > 1. At t;1, the individual is observed in state 3.
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11.

12.

13.

14.
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We also have that Tys > Ty and Ty3 > T7. Then
PT’(TO <t,To+ Ty > t;, To +T1 < ti+1,TO + T+ Ts > titk—1,
To+T1 + Tz < tiyw, Tos > To, Tz > T1)
=Pr(Ty <ti,t; <To+T1 < tigr.tivh—1 <To+T1 +To < iy,
Toz > Ty, Tiz > Th)
t1 i+1—S
/ / s)fl(u)Pr(tH_k 1< T() + T1 + T2 < t1+k|T0 =S, Tl = u)
t

503 Slj(u)duds

/ 1 /t iy1—s fo(s) fr(u)(Sa(tizr—1 — s —u) — Sa(tiyr — s — u))Sos(s)S13(u)duds.

Suppose an individual is observed in state 1 from ¢; to ¢;. At t;1q the
individual is observed in state 3. We also have that Tyz > Ty and Ti3 > T}.
Then

P’T’(T()<t1,T()+T1>ti,TU+T1 +T2<t1'+1,T()3>T0,T13>T1)
= Pr TO <ty <To+Th < tiyi,t; <To+Th +To < tiv1,Tos > To, T3 >T1)
t1 it1—S
/ / )Pr(t <T0+T1+T2<t7+1|T0—S Tl—u)
t;

PT’ T()3 > T()|T0 = S)PT‘(TH > Tl)duds

/ /t‘“ T o) () (L — Satisr — 5 — 1)) Sus (5)Sus (u)duds.

Suppose an individual is only observed in state 2 at all the screening time
points, where t¢,, is the last screening. We also have that Ty > T and
T3 > T;. Then

P’I‘(TO <t,To < tn,,To+ T <f1,T0+T1 < tn, To+ T, +Ts >tn7To3 >T0,T13 >T1)
= Pr(Ty < t1,To+ Ty < t1,To + T + To > tn, Toz > To, T1z > T1)

/t1 /f1 5 ) Sa(tn — u — 5)So3(s)S13(u)duds.

Suppose an individual is observed in state 2 from ¢; to t;. At ¢;41, the
individual is observed in state 3. We also have that To3 > Ty and Ty3 > T5.
Then

PT(TO < t1,T0 +T11 < t1,t; < To+T, +1Ts < ti+1,T03 > T(),Tlg > Tl)
oty
= / fo(S)PT(T() + T < tl‘T() = S)PT(tz‘ <To+T+1T, < ti+1‘T0 = S)

P?" T05 > T()‘TO =S P?‘(T13 > Tl)d
t1 t1—s
/ / )(Sg(t — S — U) SQ(ti+1 — S — U))S03(8)S13(u)dud8.

Suppose an individual is observed in state 3 at the first screening point
t1, without any intermittent screening. We also have that Tys > T and
T3 > Ty. Then

PT(T0+T1 + 15 < tl,T(]g >T0,T13 > Tl)
= Pr 0<T() <t, 0<Ty+T) <t1,0<To+T, +15 < ty,Ths > Tp, T3 >T1)

// N (u)(1 — Sa(t; — s — u))So3(s)S13(u)duds.
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15. Suppose an individual is observed in state 0 from ¢; to ¢;. The individual
is observed in state 2 at ¢;;1. The individual is observed in state 2 until
tivk—1, where k > 1. At t;1, the individual is observed in state 3. We
also have that Tys > T and Ty3 > T;. Then

Pr(t; <To < tig1,To+T1 > tigg—1,To + T + T < tigg, Toz > To, Tz > T1)
tit1
= / fo(S)PT‘(ti+k,1 <To+T < ti+k|T0 = S)PT(TQ +T1+ T, < ti+k|T0 = S)
t;
Pr Tof; > T0|T0 = S)PT(Tl'; > Tl)d

/f h /; o (u)(1 = Sa(tisk — s — u))Sos(5)S13(s)duds.

+k16

16. Suppose an individual is observed in state 0 from t; to t;. At ¢;11, the
individual is observed in state 3. We also have that Tys < Tp. Then

tiv1
P’I“(ti <Ty3 < ti+1,T03 < To) = / fog(S)S@(S)dS
t

i

17. Suppose an individual is observed in state 3 at time point ¢, without any
intermittent screening. We also have that Tps < Tp. Then

ty
Pr(ty > Tos, Tos < Tp) =/ fo3(s)So(s)ds
0

18. Suppose an individual is observed in state 0 from t; to t;. At t;11, the
individual is observed in state 1. The individual is observed in state 1
until t;4x_1, where k > 1. At t;1, the individual is observed in state 3.
We also have that Tog > Ty and Ti3 < T7. Then

Pr(ti <1y < it1, tigr—1 < To+ T3 < ti+k,T03 > Ty, T3 < Tl)
= P’I"(ti <Ty < tiv1, bivk—1 — To < T3 < tH_k,Tog > Ty, T < Tl)

tit1
= / fo( )503( )PT( itk—1 — S < T3 < itk — S)PT‘(T13 < Tl)ds

/j”l/’*’“ 6 (8)S03(8) f13(u)S1(u)duds.

tivk—1—S8

19. Suppose an individual is observed in state 1 from #; to t;. At t;11, the
individual is observed in state 3. We also have that Toz > Ty and T3 < T7.
Then

PT‘(TO < tl,t' < T() -+ T13 < t7;+1,T03 > To,Tlg < Tl)
= P’/‘(O <Th <ti,t; =Ty <Tiz < tig1 — Ty, Tos > Ty, Ths > Tl)

= fo(S)Sog(S)PT(ti —s<Tiz < tig1 — S)PT(Tlg > Tl)ds
0

/ /tt7+1_€ (8)S03(8) f13(u)S1(u)duds.

153



A. Likelihood when the Exact Time of Entry into the Absorbing State is not
Known

20. Suppose an individual is observed in state 3 at the first screening point ¢;
with no intermittent screening. We also have that Tys > Ty and T3 < T7.
Then

Pr(ty > T3 +To, T13 < T1, Toz > To)
= P’I“ 0<Ty<t],0<Ty+Ti3 <ty,Ths <Ty,Ths > TQ)

/ / o (8)S03(s) fr3(u)S1(u)duds.

21. Suppose an individual is seen in state 0 from ¢; to t;. At ¢;11, the individual
is observed in state 3. We also have that Ty > Ty and Ti3 < Ty. Then

P?“(ti <Ty < tH_l,Tog > T07T13 < Tl,To + T3 < ti—i—l)

- / 7 fol5)S0s(8) Pr(Tys < tigs — To|Ty = 5)Pr(Tig < T1)ds
/ - / o (8)So03(8) f13(u)S1(u)duds.

The full likelihood for the individuals p = 1,...,m then becomes
:Hsﬂ(tn,ps0‘-Tp)503(tn=p70‘mp)
(n

tit1,p
H/ fol(s,0)zp)S1(tnp — s, 0]xp)S03(s, 0|2p)S13(tnp — 5, 0)zp)ds
unt

tit1,p flivkp—S
/ / fo(s,0lxy) f1(u, B|zp,)Sa(tn,p — u— s,0|x,)S03(s, 0|2,)S13(u, 0|x))duds
t t

(I11) i+k—1,p—S

tit1,p  pligkp—$
II / / (5,0ap) f1(u, 8lz,) (So(tihs1-1p — 5 — u,0lzp) — So(tigrrt — s —u,0]zy))
av) tith—1,p—3

Sos(s, 0|xp)Si3(u, 0|xy)duds

tivip ftivip—S$
/ / fo(s,8lxp) f1(u, O)z,) (1 — Sa(tiz1p — s — u,0|xy))Sos(s, B|x,)S13(u, 0|xy)duds
t
tit1p  flivip—s
/ / Fol5.00,) 1 (1, 012, S (bnp — 5 — . O2,)Ss (5. 8]t,) Su (1, Ol )duds
vt

tit1,p [lit1,p—$
/ / Jol 019) f1 (1, 012) (Sa (ti 15 — 1 — 5, 6],) — Saltisp — 1 — 5,012,))

(VII)
Sos (s, 0|xp)Si3(u, 8|z, )duds

tp
/ So(s,0)|2p)S1(tnp — s,0|2p)S0s(s, 0|2p)S13(tn,y — s, 0|zp)ds
VI

tita, p*S
/ / (s,0|zp) f1(u,8lxy)S2(tn,y — s — u, O)z,)S03(s, 0,)S13(u, O|z,)duds
(IX) tip—s
tiv1,p—S

/ / (5,012p) 1 (1, 01p) (Saltis k1. — 5 — 1, 8]) — Sltirip — 5 — 10, 0z,)
(X)
Sos(s, 0|xp)Sis(u, 0|xy)duds
Iyl

X
tip  plivip—s
/ fo(s,0lxp) f1(u, Olz,)(L — Sa(tit1p — 5 — u,0,))So3(s, 0|,)S13(u, B|x,)duds
(XD s
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t1,p t1 pfs
/ / (s,0|xp) f1(u, 0|z,)S2(tnp — u— s,0|x,)S0s(s, 0]xp)S13(u, O|z,)duds
(XII

t1,p t1, p—s
/ / (8,0]zp) f1(u, O2y) (S2(tip — 8 — u, 0]zy) — Sa(tit1,p — 5 — u, 0]zp))
(XIII)

Sos (s, 0|zp)S13(u, 0|z,)duds

t1,p t1,p—s
I [ [ o0l i 0le,)(1 = St = 5= .6z,)

(XIV)
Sos (s, 0|xp)Si3(u, 0|z,)duds

titi,p itk,p—S
/ / fols, 81y) 1 (1, 012,)(1 = Sa(ti sk — 5 — 0, 8],)
(XV) tithk—1
Sos (s, 0|xp)Si3(u, O|z,)duds

11 / T oo, B1,) S0 (s, Bl )ds

(XVI)

11 / fos(s,8|2,)S0(s,8|x,)ds

(XVII)

tit1,p [live,p—s
/ / (s,0|zp)Sos(s, 0|xp) fi3(u, 0],)S1 (1, O|z,)duds
t;

(XVIII) k-1, fb

tip tit1,p—S
/ / (s,0|z,)S03(s, 0|xp) f13(u, O]z,)S1 (u, O|z,)duds
t

p S

(XIX)

t1p t1,p—s
11 / / (5,0]2,)S03(5, 0]zp) f13(u, O|2,) Sy (u, 8]z, )duds

(XX)

ti+1,p i+1,p—S
/ / fo(s,0|zp)S03(s, 0)z,) f13(u, 0|x))S1(u, O|z,)duds.
(xxn "t
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APPENDIX B

Recipe for Simulations for Multiple
Screenings

B.1 Three-State Progressive Model

We consider the following simulation scheme in a three-state progressive model
for multiple screenings

1. Simulate Tp, and T}, as described in Section@

2. Draw the time points for the screenings from a uniform distribution
t; ~ U[0.5,30], to ~ Ult1,40], t5 ~ Ult1,50],,

ty ~ Ult1,60], t5 ~ Ulty,70], tg ~ Ult1,80],,
t7 ~ U[t1,90], ts ~ U[t1,100], ty ~ Ulty,110],,
ti0 ~ Ult1,120], t11 ~ Ult1,130], t12 ~ Ulty, 140],
t1g ~ Ulty,150], t14 ~ U[t1,160], t15 ~ Ult, 170],
Then ¢ will consist of the data which has increasing order. This means if
t) <o < tg <ty >ts, then t = [t1,ts,t3,t4]. For n screenings
a) if Ty, > t,,, then the patient is type 1.

b) if any t < Ty, any t > Tp , and in addition if ¢, < Ty, + T4 p, then
the patient is type 2.

c) if any t > Ty, + Tip, any t < T, and if the maximum value of
t < Ty,p+1Th p is larger or equal to the minimum value where ¢ > Tj ,,
then the patient is type 3.

d) if t1 > T and ¢, < Ty + 11 p, then the patient is type 4.

e) if any t > T07p + Tl,p7 t1 > TO,p and if any t < T(),p + Tl,pa then the
patient is type 5.

f) if any t > Tp, + 11, and if any ¢t < T, and it is not type 3, then
the patient is type 6.

g) if t1 > Ty, + 11 ,p, then the patient is type 7.

3. Use these data to optimize the log-likelihood function and find the
maximum likelihood estimates.

157



B. Recipe for Simulations for Multiple Screenings

If we observe the exact time of death, we have that the time of death is exactly
To,p + T4 p. However, if we do not observe the exact time of death, the time of
death is the first ¢ > Ty, + 11 p.

B.2 lliness-Death Model

We consider the following simulation scheme in an illness-death model for
multiple screenings

1. Simulate Ty, T1,, and Tpz,, as described in Section ]

2. Draw the time points for the screenings from a uniform distribution
t1 ~ U[0.5,20], to ~ Ulty1,30], t3 ~ Ulty,40],

ty ~ Ult1,50], t5 ~ Ulty,60], tg ~ Ulty, 70],
t7 ~ U[t1,80], tg ~ Ult1,90], tg ~ Ulty, 100],
ti0 ~ Ult1,110], t11 ~ Ulty,120], t12 ~ Ulty, 130],
tig ~ Ult1,140], t14 ~ Ulty, 150], t15 ~ Ult1, 160],
Then t will consist of the data which has increasing order. This means if
t; <ty <tg <ty>ts, then t = [t1,t2,13,t4]. When we have n screenings
a) if Ty, > t, and Tpep, > ty,, then the patient is type 1.

b) if Toap > Top, any t < Tpp, any t > Tp, and in addition if
tn, < Top + 11, then the patient is type 2.

c) if Togp > Top, any t > Ty, + 11, and any t < Tp,, the patient
may be of type 3. However, we must also have that the maximum
value where t < Tg j, + T, is larger than the minimum value where
t > Ty, for the patient to be type 3.

d) if Ty p > T p, t1 > To,p and t, < Ty, + T4 p, then the patient is
type 4.

e) if Toop, > Top, t1 > Top, any t > Ty ,+ T4 p and if any t < T, +11 ,
then the patient is type 5.

f) if Too,p > Top, any t < T p, any t > Ty, + 11, the patient may
be of type 6. However, we must also have that if ¢, , < Tp p, then
tsy1,p > To,p + 11, for the patient to be type 6.

g) if t1 > Ty p + 11 and Toa,p > T p, then the patient is type 7.

h) if Toe,, < To,p and t1 > Tpz,, then the patient is type 8.

i) if Too,p < To,p, any To2,p > t and any t > T p, then the patient is
type 9.

3. Use these data to optimize the log-likelihood function and find the
maximum likelihood estimates.

If we observe the exact time of death, the time of death is T, + 11, or To2,p
depending on the type the individual is. However, if we do not observe the
exact time of death, the time of death is the first ¢ > Ty, + 11, or t > Tio ,
depending on the type the individual is.
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B.3. Four-State Progressive Model

B.3 Four-State Progressive Model

We consider the following simulation scheme in a four-state progressive model
for multiple screenings

1. Simulate Ty, T1,, and T, as described in Section [4.1]

2. Draw the time points for the screenings from a uniform distribution

ty ~ U[055 50]7 lo ~ U[tla 60]7 i3 ~ U[tla 70]7

ty ~ Ult1,80], t5 ~ Ult1,90], te ~ U[ty,100],
t7 ~ U[t1,110], ts ~ Ult1,120], ty ~ U[ty, 130],
tio ~ Ulty, 140], t11 ~ Ult1,150], t12 ~ Ult1, 160),
t13 ~ Ulty, 157], tia ~ Ult1,180], t15 ~ Ult1, 190),

Then ¢ will consist of the data which has increasing order. This means if
t] <o <tz <ty >ts, then t = [t1,ts,t3,t4] When we have n screenings

a)
b)

c)

d)

if Ty, > ty,, then the patient is type 1.

if any t < Ty, and any t > Ty, and in addition if ¢, < Tpp, + 11 p,
then the patient is type 2.

ifany t < Ty, and any t > Ty, + 11 and Ty, + 11 p + 1o p > th,
then the patient is type 3.

if any t < Tpp, any t > Ty, + 11 and any £ > T, + 11 p + 1o p,
the patient may be type 4. However, we must also have that the
minimum value where t > T}, + 71, is smaller than the minimum
value where t > Ty , + 11, + 15, for the patient to be type 4.

if any t < Tp, and any £ > Ty, + 11 p + T 5, then the patient may
be type 5. However, we must also have that for the ¢t < T} ,, for
example ts, < Tpp, then t511, > Ty, + 11, + 1o p, for the patient
to be type 5.

ifany t < Tpp, any t > Ty, + 11 and ¢, < Ty p + 11 p + T2 p, then
the patient may be type 6. However, we must also have for any ¢, if
tsp < Top, then top1, > Ty + 11 p, for the patient to be type 6.

ifany t < Ty, any t > Ty, + 11, and any t > Ty, + 11 + 1o p,
then the patient may be of type 7. However, we must also have for
any 14, if for example t, ), < Ty, then to4 1, > Ty, + 711, for the the
patient to be type 7.

if ty > Ty p, t1 <Top +T1,p and t,, < T+ T1p, then the patient is
of type 8.

if t1 > To,p, t1 < To,p + TLP’ any t > To,p + Tl,p and t, <
To,p + 11 p + T3, then the patient is type 9.

if 7 > TO,pa t1 < T07p + Tl,p7 any t > TO,p + Tl,p and any
t > Ty p+ 11, + 1o p, then the patient may be of type 10. However,
we must also have that the minimum value where t > Ty, + T ), is
smaller than the minimum value where ¢ > Ty, + 71, + T3, for the
patient to be type 10.
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B. Recipe for Simulations for Multiple Screenings

k) if t1 > TO,p, t < T07p + Tl,p and any t > TO,p + TLP + Tgyp, then
the patient may be type 11. However, we must also have that if
tsp <Top+T1p then topq, > Top + 11 + 1o p, for the patient to
be type 11.

D) if t1 > Top +Thp and Top + Th p + Top > ty,, then the patient is
type 12.

m) ift; > T(),p-i-TLp, t < T()’p +T1’p+T2’p and any t > T()}p"‘TLp‘i‘TQ’p,
then the patient is type 13.

n) if t1 > Ty, + T1 p + T,p, then the patient is type 14.

o) if any t < Ty, any t > Ty, and any t > Ty, + 11y + Top,
then the patient may be type 15. However we must also have
that for the t > Ty,, tsp > Top, then t,, < Ty, + 11, and
tsy1,p > Top + 11 +Top, for the patient to be type 15.

3. Use these data to optimize the log-likelihood function and find the
maximum likelihood estimates.

B.4 Four-State lliness-death Model

We consider the following simulation scheme in a four-state illness-death model
for multiple screenings

1. Simulate To,p, T1,p, T2,p, T03,p and T3, as described in Section [d.1]
2. Draw the time points for the screenings from a uniform distribution
t; ~ U[0.5,50], to ~ Ult1,60], t3 ~ Ulty, 70],

ty ~ U[th 80]7 ts ~ U[th 90]7 tg ~ U[tlv 100]7
t7 ~ U[t1,110], tg ~ Ult1,120], to ~ Ult1,130],
t10 ~ Ult1,140], t11 ~ Ulty, 150], t12 ~ Ulty, 160],
t13 ~ U[th 170], t14 ~ U[tl, ].80], t15 ~ U[tl, ].90]7
Then t will consist of the data which has increasing order. This means if
t] < tg <tz <ty >ts, then t = [t1,to,t3,t4] When we have n screenings

a) if Ty, > t, and Tps, > ty,, then the patient is type 1.

b) if any t < Ty, and any t > Tj,, in addition if Ty, + T1, > ty,
To3,p > To,p and T3, + T, > t, then the patient is type 2.

c) if Tosp > Top, Tizp > T1p, any t < Tpp, any t > Ty, + 11, and
To,p +T1p + T p > ty, then the patient is type 3.

d) if T037p > 7})71,7 Tlg,p > Tl,pa any t < T(),p and any t > TO,;D + Tl,pa
then the patient may be type 4. However, we must also have that the
minimum value where t > Tj , + 717 , is smaller than the minimum
value where t > Ty , + T4, + T3, for the patient to be type 4.

e) if T037p > TOJ), Tlg,p > Tl,p7 any t < T07p and any t > TO,p + Tl,p +
T5 5, the patient may be type 5. However, we must also have that for
any 1, if t; , < Ty, then to1, > Top + Thp + T3y, for the patient
to be type 5.
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B.4. Four-State lliness-death Model

f

if Tog’p > T07p, T137p > Tl,pa any t < TO,p, any t > T()7p + TLP and
Top+T1,p+ T > ty, then the patient may be type 6. However, we
must also have that for any ¢, if t; , < Ty, then t51 p, > 1o + 11 p,
for the patient to be type 6.

if Tog’p > To’p, Tlg,p > TLP’ any t < TO,p7 any t > TO,p+T1,p and any
t > Ty p+ T, + 1o p, then the patient may be type 7. However, we
must also have that for any ¢, if t5 , < 1o, then t511 p > Top + 71 p,
for the patient to be type 7.

if T037p > T07p, T137p + TO,p > tn, t1 > To,p, t1 < T07p + Tl,p and
tn < To,p + 11 p, then the patient is type 8.

if T037p > TO,pa T137p > TLI)? t1 > TOJ,, t1 < TO,p =+ Tl,p; any
t > Ty, +Tip and t, < Toyp + T1p + T, then the patient i
type 9.

if Togyp > TO,pv Tlg’p > Tl,p) t1 > TO,pa 1 < TO,p + Tl,pa any
t > Ty, + 11, and any t > Ty, + T, + 1o, then the patient
may be type 10. However, we must also have that the minimum
value where t > T , + T, is smaller than the minimum value where
t > Ty p + Thp + T3, for the patient to be type 10.

if T()g,p > TO,pa T13,p > Tl,p, t; > TO,pa t] < TOJ) + TLP and any
t > Ty p+Th,+ 15, then the patient may be type 11. However, we
must also have that if ¢, ,, < Ty p,+T1 p,thentoyi p > Top+T1p+T2p
for the patient to be type 11.

if T037p > T01P7 Tlg,p > lep, t1 > T07p+T17p and T07p+T1,p+T2,p > tn,
then the patient is type 12.

if Tog,p > TO,p7 T137p > Tl,p7 t1 > TO,p + Tl,p, t < TO,p + Tl,p + Tgyp
and any t > Tp p, + 11 + 13 p, then the patient is type 13.

if Tog’p > TO,pa T137p > Tl,p» t1 > TO,p + Tl,p + TQ,pv then the patient
is type 14.

if Tog_’p > TO,pv Tlg’p > Tl,p7 any t < To’p, any t > Toyp + Tl,p + 1124;7
then the patient may be type 15. However, we must also have
that for any 4, if t;, > Tpp, then t;, < Top, + 11, and teiq,, >
To,p + 11, + 15, for the patient to be type 15.

if Toz,p < To,p, any t < Tps,, and any t > Tps p, then the patient is
of type 16.

if Ty, < Tp,p and t1 > Tp3 p, then the patient is type 17.

if Togyp > TO,p; Tlg,p < Tl,p7 any t < TO,p, any t > T()’p, any
t > Ty, + 113, then the patient may be of type 18. However,
we must also have that the maximum value where £ < 1j ,, is smaller
than the maximum value where £ < Tg , + 113, for the patient to
be type 18.

if T037p > T(),p, T137p < Tl,pa t; > TO,p and any t > To,p + Tlg’p, then
the patient is type 19.

if T037p > TO,p> TlS,p < Tl,p and Tlg’p + TO,p < Tl,p; then the patient
is type 20.
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B. Recipe for Simulations for Multiple Screenings

u) if Togp > Top, Thzp < Thp, any t < Tpp, any t > Tp ), and any
t > Ty, + T3, then the patient may be type 21. However, we
must also have that the maximum value where ¢t < Tj ,, for example
tsp < Top, then ts1q, > Tpp + T3, for the patient to be type 21.

3. Use these data to optimize the log-likelihood function and find the
maximum likelihood estimates.
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APPENDIX C

Analysis of the CAV-Data in the
lliness-Death Model

In Chapter [6] we presented the analysis for a four-state illness-death model
using the CAV data. In this appendix, we consider the illness-death model
illustrated in Figure

State 0 | State 1
No CAV CAV

State 2
Death

Figure C.1: Illness-death model

Firstly, if we observe an individual only in state 0 and state 2, the individual
can either transfer directly from state 0 to state 2 or go through state 1 on the
way to state 2. We are then considering type 1, 2, 3 and the combination 6 or
9. The log-likelihood becomes

0 =108 (So(tn.p, 61,) So3 (tn.p, 01y )
)

titip
+ Zlog (/t fo(s,0|xp)S1(tnp — s, 0|xp)502(s|xp)ds)

(1)
titvi,p
+ ) log (/ Jo(s,8lzp) fi(tivkp — 579|5€p)502(879|33p)d8)
(II1) tip
tit1,p
# 3 t0g ([ Aol Bl altiny — 5. Blay)Soa(s. Ol s
(av) bip

+ f02(ti+1,p> 9|$p)50(ti+1,p7 0|$p))'

C.1 Gamma Process Model, Alternative 1

We consider a Gamma process model without covariates. Let the survival
function from state 0 to state 1 be Sy(t) = Gam(co, aot, 1), and likewise for S
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C. Analysis of the CAV-Data in the lliness-Death Model

and Sps.
Parameter Estimate Standard

error

Co 0.730 0.223

o 0.131 0.0315

¢1 1.229 0.443

ay 0.337 0.0849

Co2 0.0183 0.0514

Go2 0.0127 0.00985

Table C.1: Estimates and standard errors in an illness-death Gamma process
model without covariates, alternative 1

The maximum likelihood estimates of the parameters and their standard
errors are presented in Table They are calculated in the same way as
in Chapter [6] The standard error is the square root of the diagonal of the
inverse Hessian matrix. The estimated threshold, ¢y, is quite close to 0, while
Co is a bit below 1 and ¢; is a bit above 1. at is the shape parameter, and
ag, a1 and ago are very close to 0. The thresholds and the shape parameters
decides how fast an individual transfers to the next state. For example, after 10
years, the probability of not transitioning from healthy to CAV is 0.380. The
probability of not transitioning from CAV to death 10 year after the individual
was diagnosed with CAV is 0.0820. Finally, the probability of not transitioning
from healthy to death after 10 years i 0.638.
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C.1. Gamma Process Model, Alternative 1
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Figure C.2: Survival functions in an illness-death Gamma process model without
covariates, alternative 1

Figure shows the survival functions Sy, S7 and Sps with a 95% pointwise
confidence interval. Survival for S; means not entering state 1, survival for
S1 and Spe means not entering the absorbing state 2. The probability of not
entering state 1 from state 0 is decreasing and around 0.1 after 20 years. The
probability of not entering state 2 from state 0 is very slowly decreasing, and
after 20 years, it is around 0.4. However, if the individual get the diagnosis CAV,
then the probability of surviving 10 years is almost 0. The confidence intervals
follows the shape of the survival functions quite closely. Both in Figure (a)
and (c), the confidence intervals becomes wider as time goes. This follows from
fewer people transitioning after 15 years, compared to after 5 years.

165
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Figure C.3: Hazard functions in an illness-death Gamma process model without
covariates, alternative 1

Figure [C.3] shows the hazard functions. All of the hazard functions are
increasing, meaning the instantaneous risk of transitioning becomes larger with
time.

C.2 Gamma Process Model, Alternative 2

We also consider Gamma process model alternative 2, where the survival
function is Sy = Gam(co, agt®, 1), with similar shape for S; and Spp. Table
presents the maximum likelihood estimates. For the transition from state 0
to state 1, we have slightly different parameters compared to alternative 1. bo
is larger than 1, while both Gy and ¢y are smaller in alternative 1 compared to
alternative 2. l;l is a bit smaller than 1. ¢; and a; are also smaller in alternative
2 compared to alternative 1. However, for the transition from state 0 to state 2,
we have that both ¢y and age are larger compared to alternative 1. In addition
we have that 1302 smaller than 1. It also makes it possible for the hazard function
to have a different shape. In Table [C:2] we also calculate the p-value for the
null hypothesis Hy : b = 1. We find that we can reject the null hypothesis at a
1%-level for bgs. However, we can not reject the null hypothesis for by and b;.
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C.2. Gamma Process Model, Alternative 2

Parameter Estimate Standard p-value

error (Hy:b=1)

o 0.262 0.478

bo 1.251 0.243 0.301

ao 0.0454 0.0663

& 0.491 0.692

by 0.976 0.240 0.973

a 0.214 0.259

éo2 0.556 0.723

bos 0.477 0.0801 6.846 x 1011

aos 0.134 0.171

Table C.2: Estimates, standard errors and Wald-test for the b-parameters in a
illness-death Gamma process model without covariates, alternative 2

Figure [C4] shows the survival functions Sy, Si and Sy with a pointwise
95% confidence interval. Survival for Sy means not entering state 1, survival
for S; and Sy means not entering the absorbing sate 2. A 10-year survival
probability is around 0.3 for Sy and around 0.8 for Spo, while it is around 0.1
for S7. This means that if you get CAV, the probability of surviving 10 years
after you get CAV is around 0.1. If you do not get CAV, the probability of
surviving 10 years without going through state 1 is 0.8. The survival probability
is decreasing faster from state 0 to state 1, quite equal from state 1 to state 2,
but slower for state 0 to state 2.

We present the plots of the hazard functions in Figure The hazard
functions are increasing and concave for the transitions 0 — 1 and 1 — 2. The
hazard function for the transition 0 — 2 decreases fast in the beginning, but
then it is quite constant and decreasing toward 0. The shape of the hazard
function for Figure (c) says that the instantaneous risk of dying in a small
time interval is much higher in the beginning, before it becomes very low. In
alternative 1, the hazard function for the transition from 0 — 2, was increasing
and concave in the complete time period. Since boo in alternative 2 is much
smaller than 1, we are able to capture this effect. In addition, we have from
Table that we can reject the null hypothesis of b being equal to 1 even at a
1%-level. From a medical point of view, the hazard function for the transition
0 — 2 also makes sense. Since the body has undergone a massive change if you
get a transplant, the probability of dying is very high in the beginning. Then
the probability of dying decreases, even though you can get complications later
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Figure C.4: Survival functions in an illness-death Gamma process model without
covariates, alternative 2
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C.2. Gamma Process Model, Alternative 2
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Figure C.5: Hazard functions in an illness-death Gamma process model without
covariates, alternative 2
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APPENDIX D

Code

The statistical programming language used in this thesis is R (R Core Team,
. In this appendix, we include two examples of the code. In the first
example, we show how we have written the code for the simulations in the four-
state illness-death model from Chapter [ In the second example, we provide
the code for the CAV-analysis using the Gamma process model alternative 1
without covariates. We only provide these two examples, because including
all of the scrips become too comprehensive. The rest of the code is available
upon request. It should be possible to reproduce the results for the rest of
the simulations and the CAV-data from these examples and the explanations
provided in Chapter ] Chapter [l and Appendix

D.1 Simulations in a Four-State lliness-Death Model

In this part, we present the code from Section [I.5] We start with defining
the true values for the parameters. In the next step, we calculate Ty, T, Tb,
Tos and T3 in the same way as we explained in Section Then we divide
the individuals and place them in the correct likelihood type with the relevant
timepoints. We also define the survival functions and their corresponding
densities. Further, we use the timepoints when we create the functions for the
different likelihood types. In the end, we define the function for the complete
log-likelihood, which we optimize. From the maximum likelihood estimates,
we also calculate the inverse of the Hessian-matrix. Note that we define the
negative log-likelihood, since optim minimizes the function.

library(Rlab)
library(numDeriv)
nn = 100

theta_hat_par = matrix(NA, nrow = nn, ncol = 10)
theta_hat_solve_hessian = matrix(NA, nrow = nn, ncol = 10)

for (mn in 1:nn)
{
set.seed(mn)
print(mn)
eps 0.01
c.0
.2

ol

SO wou
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a2=20.1

c 03 =6

a. 03 =0.15

c.13 =4

a 13 =0.15

n = 500

T .0 = rep(NA, n)
T 1 = rep(NA, n)
T2 = rep(NA, n)
T 03 = rep(NA, n)
T 13 = rep(NA, n)
t il = c()

t_i2 matrix( ,
t_i3 matrix( ,
t_i4 = matrix( ,
t_i5 matrix( ,
t_i6 matrix( ,
t_i7 matrix( ,
t_i8 matrix( ,
t_i9 = matrix( ,
t_110 = matrix( ,
t_ill = matrix( ,
t_i12 = matrix( ,
t_.113 = matrix( ,
t 114 = c()

t_115 = matrix(,
t.i16 = c()

t.1i17 = c()

t.118 = matrix(,
t_119 = matrix(, nrow
t.120 = c()

t_i21 = matrix(, nrow

for (i in 1:n)

{

nrow =
nrow =
nrow =
nrow =
nrow =
nrow =
nrow =
nrow =
nrow
nrow
nrow
nrow

nrow

nrow =

0, ncol = 3)
0, ncol = 5)
0, ncol = 5)
0, ncol = 2)
0, ncol = 3)
0, ncol = 3)
0, ncol = 2)
0, ncol = 4)
= 0, ncol = 4)
=0, ncol = 3)
= 0, ncol = 2)
=0, ncol = 2)
0, ncol = 4)
0, ncol = 3)
0, ncol = 2)
0, ncol = 2)

## Solve equation for T_0, T_1,
unifl = runif(1, min = 0, max
S0 = function(T)

{

pgamma(c_0, a_0xT,

}

T_0[i] = uniroot (SO,

unif2 = runif(1l, min
S1 = function(T)

{

pgamma(c_1, a_1xT,

}

T_1[i] = uniroot(S1,

unif3 = runif(1l, min
S2 = function(T)

{

pgamma(c_2, a_2xT,

}

T_2[i] = uniroot(S2,

unif4 = runif(1l, min
S03 = function(T)

{

1) - unif
interval
= 0, max
1) - unif
interval
= 0, max
1) - unif
interval
= 0, max

1

2

3

T_2, T_03, T_13
1)

c(l.e-14, 1e04), tol

1)

c(l.e-14, 1le04), tol

1)

c(l.e-14, 1le04), tol

1)

pgamma(c_03, a_03*T, 1) - unif4
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}
T

{
}
T 13[i] =
## Simulating
tl = runif(1,
t2 = runif(1,
t3 = runif(1,
t4 = runif(1,
t5 = runif(1,
t6 = runif(1,
t7 = runif(1,
t8 = runif(1,
t9 = runif(1,
t10 = runif(1,
t1l = runif(1,
t12 = runif(1,
t13 = runif(1,
t14 = runif(1,
t15 = runif(1,
t
if(all(t[1:14]
{

t=t
}
{

t = t[1:14]
}
{

t = t[1:13]
}
{

t = t[1:12]
}
{

t = t[1:11]
} else if(all(t[1:9]
{

t = t[1:10]
} else if
{

t = t[1:9]
} else if
{

t = t[1:8]
} else if
{

t = t[1:7]
} else if
{

t = t[1:6]
} else if
{

t = t[1:5]
} else if
{

= El:4]

03[i] =

uniroot(S03, interval = c(l.e-14, 1e04), tol = 1le-9)$root
unif5 = runif(1l, min = 0, max = 1)
S13 = function(T)

pgamma(c_13, a_ 13T, 1) - unif5

uniroot(S13, interval = c(1l.e-14, 1e04), tol = le-9)$%root

time points
0.5, 50)
tl, 60)
tl, 70)
tl, 80)
tl, 90)
tl, 100)
tl, 110)
tl, 120)
tl, 120)
tl, 140)
tl, 150)
tl, 160)
t1, 170)
tl, 180)
tl, 190)

= c(tl, t2, t3, t4, t5, t6, t7, t8, t9, tle, t1ll, tl12, t13, tl4, tl15)

- t[2:15]1<0))

else if(all(t[1:13] - t[2:14]<0))

else if(all(t[1:12] - t[2:13]<0))

else if(all(t[1:11] - t[2:12]<0))

else if(all(t[1:10] - t[2:11]<0))

t[2:10]<0))

(all(t[1:8] - t[2:9]<0))

(all(t[1:7] - t[2:8]<0))

(all(t[1:6] - t[2:7]<0))

(all(t[1:5] - t[2:6]<0))

(all(t[1:4] - t[2:5]<0))

(all(t[1:3] - t[2:4]1<0))
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} else if (all(t[1:2] - t[2:3]<0))

{
t = t[1:3]
} else if (all(t[1:1] - t[2:2]<0))
{
t = t[1:2]
H

## Splitting the individuals into types
t_n = length(t)
if(t[t.n] < T_O[i] & t[t.n] < T_03[i]){
t il = c(t_il, t[t_n])
} else if(any(t < T_0[i]) & any(t > T_0[i]) & T_O[i] + T_1[i] > t[t.n] &
T 03[1i] > T O[i] & T_13[i] + T_0[i] > t[t.n]){
check_12 = max(which(t < T_0[i]))
check 22 = min(which(t > T_0[i]))
t.i2 = rbind(t_i2, c(t[check_12], t[check_22], t[t_n]))
} else if(t[1l] > T_O[i] & t[t_n] < T_O[i] + T_1[i] &
T 03[i] > T O[i] & T 13[i] + T 0[i] > t[t n]){
t_i8 = rbind(t_i8, c(t[1], t[t_n]))
} else if(any(t > T 0[i] + T 1[i] + T _2[i]) & T_03[i] > T O[i] & T 13[i] >
T 1[iD){
if(any(t < T_0[i])){
if (max(which(t < T_0[i] + T_1[i])) >= min(which(t > T_0[i])) &
min(which(t > T_0[i] + T_1[i])) <= max(which(t < T_0[i] + T_1[i] +

T 2[i]))){
check_14 = max(which(t < T_0[i]))
check_24 = min(which(t > T_0[i]))
check_34 = max(which(t < T_0O[i] + T_1[1i]))

check_44 = min(which(t > T_0[i] + T_1[i]))
t_i4 = rbind(t_i4, c(t[check_14], t[check_24], t[check_34],
tlcheck 44], T_0[i] + T_1[i] + T_2[i]))
} else if(max(which(t < T_0[i])) + 1 == min(which(t > T_OQ[i]+T_1[i]+
T 2[i]))){
check_15 = max(which(t < T_0[i]))
t.i5 = rbind(t_i5, c(t[check_15], T_0[i] + T_1[i] + T_2[i]))
} else if(max(which(t < T_0[i] + T_1[i])) >= min(which(t > T_0[i])) &
max (which(t < T_0[i] + T_1[i])) + 1 == min(which(t > T_0[i]+

T_1[i]+
T 2[i]))){
check_115 = max(which(t < T_0[i]))
check_215 = min(which(t > T_0[i]))
check_315 = max(which(t < T_0O[i] + T_1[i]))

t_115 = rbind(t_1i15, c(t[check_115], t[check_215], t[check_315],
T_O[i] + T_1[i] + T_2[i]))
} else if(max(which(t < T_0[i])) + 1 == min(which(t > T_O[i]+T_1[i]))

min(which(t > T_O[1]+T_1[1i])) <= max(which(t > T_0[1i] +
T 1[i] + T_2[1i]))

check_17 max(which(t < T_0[i]))
check_27 = min(which(t > T_0O[i] + T_1[1i]))
t_i7 = rbind(t_i7, c(t[check_17], t[check_27], T_0[i] + T_1[i] + T_
2[i1))
}
} else if(T_0[i] < t[1] & any(t < T_O[i] + T_1[i])){
if(max(which(t < T_O[i] + T_1[i] + T_2[i])) >= min(which(t > T_0[i] +
T 1[i]))){
check_110 = max(which(t < T_O[i] + T_1[1i]))
check_210 = min(which(t > T_Q[i] + T_1[i]))
t_110 = rbind(t_110, c(t[1], t[check_110], t[check_210],T_0[i] + T_
1[i] + T 2[i]))
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D.1. Simulations in a Four-State lllness-Death Model

else if(max(which(t < T_0[i] + T_1[i])) + 1 == min(which(t > T_O[i]+T_
1[i]+
T_2[i]1))){
check 111 = max(which(t < T_0[i] + T_1[1]))
t.i11 = rbind(t_il11, c(t[1], t[check 111], T_O[i] + T_1[i] + T_2[i])

}
} else if(t[1l] > T_O[i] + T_1[i] & t[1] < T O[i] + T_1[i] + T_2[i]){
if(max(which(t < T_0[i] + T_1[i] + T_2[i])) <= min(which(t > T_Q[i]+T_
11147 2[1]1))){
t 113 = rbind(t_i13, c(t[1], T_O[i] + T_1[i] + T_2[i]))
}
} else if(t[1] > T_O[i] + T_1[i] + T_2[i]){
t 114 = c(t_il4, T O[i] + T 1[i] + T 2[i])
}
} else if(any(t < T_0[i]) & T 03[i] > T O[i] & T_13[i] > T _1[i]){
if(max(which(t < T_0[i] + T_1[i]1)) >= min(which(t > T_0[i])) &
min(which(t > T_0[i] + T_1[i])) <= max(which(t < T_O[i] + T_1[i] + T_

2[1i1))){
check 13 = max(which(t < T_0[i]))
check_23 = min(which(t > T_0[i]))
check_33 = max(which(t < T_0[i] + T_1[i]))
check_43 = min(which(t > T_0[i] + T_1[i]))

t_ i3 = rbind(t_i3, c(t[check _13], t[check 23], t[check 33], t[check_
43], t[t-n]))
} else if(max(which(t < T_0[i])) + 1 == min(which(t > T_0[i]+T_1[i]))){
check 16 = max(which(t < T_0[i]))
check_26 = min(which(t > T_0[i] + T_1[i]))
t_i6 = rbind(t_i6, c(t[check_16], t[check_26], t[t_n]))
}
} else if(t[1l] > T_O[i] & any(t < T_O[i] + T_1[i]) & any(t > T_O[i] + T_1[
i]) &
T 03[1] > T 0[i] & T 13[i] > T 1[i]){
check_19 = max(which(t < T_0[i] + T_1[i]))
check 29 = min(which(t > T_0[i] + T_1[i]))
t.i9 = rbind(t_i9, c(t[1], tl[check_19], t[check_29], t[t_n]))
} else if(t[1] > T_O[i] + T 1[i] & T_03[i] > T_0[i] & T _13[i] > T 1[i]){
t_i12 = rbind(t_i12, c(t[1], t[t_n]))
} else if(T_03[i] < T_0[i] & any(t > T_03[i]) & any(t < T_03[i])){
t 116 = c(t_i16, T_03[i])

}
else if(T_03[i] < T_O[i] & t[1] > T_03[i]){
t 117 = c(t 117, T 03[i])
}
else if(T_03[i] > T_O[i] & T_13[i] < T_1[i] & any(t < T_0[i]) &
any(t > T_0[i]) & any(t > T_O[i] + T 13[i])){
if(max(which(t < T_0[i])) < max(which(t < T_0[i] + T_13[i]))){
check_118 = max(which(t < T_0[i]))
check_218 = min(which(t > T_0[i]))
t_i18 = rbind(t_i18, c(t[check 118], t[check 218], T_0[i] + T_13[i]))
} else if(max(which(t < T_0[i])+1) == min(which(t > T_0[i] + T_13[i]))){
check_121 = max(which(t < T_0[i]))
t_i21 = rbind(t_i21, c(t[check 121], T_0[i] + T_13[i]))
}
}
else if(T_03[1i] > T O[i] & T 13[i] < T_1[i] & t[1] > T O[i] &
t[1] < T 0[i] + T 13[i] & any(t > T 0[i] + T 13[i])){
t.i19 = rbind(t_i19, c(t[1], T_O[i] + T_13[i]))
}
else if(T_03[i] > T_O[i] & T 13[i] + T_0[i] < t[1] & T 13[i] < T_1[i]){
t.i20 = c(t 120, T O[i] + T 13[i])
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}
## Initial survival functions
= function(a, t){pgamma(a[l], shape = t*xa[2], rate = 1)}
= function(a, t){pgamma(al[3], shape = t*xa[4], rate = 1)}
= function(a, t){pgamma(a[5], shape = t*xa[6], rate = 1)}

S 0
S'1
S 2
S_03 = function(a, t){pgamma(al[7], shape = txa[8], rate = 1)}
S_13 = function(a, t){pgamma(a[9], shape = t*a[1l0], rate = 1)}

## Initial density functions - derivative of -survival function
= function(a, t){(S_0(a, t) - S 0(a, t + eps))/(eps)}
function(a, t){(S_1(a, t) - S_1(a, t + eps))/(eps)}
function(a, t){(S_2(a, t) - S.2(a, t + eps))/(eps)}
function(a, t){(S_03(a, t) - S 03(a, t + eps))/(eps)}
function(a, t){(S_13(a, t) - S_13(a, t + eps))/(eps)}

_0
_1
_2
_0
_1

3
3

## Other functions

f0_S1 S03_S13 = function(a, w, t){f_0(a, t)*S_03(a, t)*S_1(a, w - t)*S_13(a,
w - t)}

f0_f1l S2 S03 S13 = function(a, w, t, u){f 0(a, t)*f_1(a, u)*S_2(a, w - u - t
)*S_03(a, t)*S_13(a, u)}

f0_f1 f2.5S03_S13 = function(a, w, t, u){f_0(a, t)*f_1(a, u)*xf_2(a, w - t - u
)*S_03(a, t)*S_13(a, u)}

f0_S1 S03_f13 = function(a, w, t){f_0(a, t)*S_03(a, t)*S_1(a, w - t)xf_13(a,
w - t)}

## Type 1
type_1 = function(a){-sum(sapply(t_il, function(t) (log(S_0(a, t)) + log(S_
03(a, t)))))}

## Type 2

type_2 = function(a){-sum(mapply(function(tl, t2, t3)(log(as.numeric(
integrate(f0_S1 S03 S13, lower = tl, upper = t2, w = t3, a = a)[l]))), t_
i2[,11, t i2[,2], t i2[,31))}

## Type 3
type_3 = function(a){-sum(mapply(function(tl, t2, t3, t4, t5){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
~S2.5S03 513,
lower
= t3-z, upper = t4-z, w =15, t = z, a = a)$value})},
lower = t1, upper = t2)[11))}, t_i3[,1], t_ i3
[,2], t i3[,3]1, t i3[,4],
t_i3[,51))}

## Type 4
type_4 = function(a){ifelse(nrow(t_i4) > 0, -sum(mapply(function(tl, t2, t3,
t4, t5){
log(as.numeric(integrate(function(t){
sapply(t, function(z){integrate(f0_f1l f2_S03_S13,
lower = t3-z, upper = t4-z, w = t5, t =
z, a = a)$value})},
lower = t1, upper = t2)[1]1))}, t i4[,1]1, t_i4[,2], t_i4[,3], t i4[,4], t
_i4[,5]1)), 0)}

## Type 5
type_ 5 = function(a){ifelse(nrow(t_i5)>0,-sum(mapply(function(tl, t2){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
_f2.503 513,
lower
=0, upper = t2 - z, w =12, t = z, a = a)$value})},
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lower = t1, upper = t2)[1]))
}, t.i5[,11, t_i5[,21)), 0)}

## Type 6
type_6 = function(a){-sum(mapply(function(tl, t2, t3){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(fO_f1
~S2 503 513,
lower = 0, upper = t2 - z, w=1t3, t =2z, a=a)$
value})},
lower = t1, upper = t2)[1]))
}, t.i6[,1], t_i6[,2], t i6[,3]1))}

## Type 7
type_7 = function(a){ifelse(nrow(t_i7) > 0, -sum(mapply(function(tl, t2, t3)
{
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
_f2.5S03 513,
lower = 0, upper = t2 - z, w=1t3, t =z, a = a)
$value})},
lower = t1, upper
}y, t.i7[,11, t i7[,2]1, t i7[,31)),0)}

t2)[11))

## Type 8
type_8 = function(a){-sum(mapply(function(tl, t2){
log(as.numeric(integrate(f0_S1_S03_S13,
lower = 0, upper = t1, w = t2, a = a)[1]))
}, t-i8[,1], t i8[,21))}

## Type 9
type_9 = function(a){-sum(mapply(function(tl, t2, t3, t4){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
~S2 503513,
lower = t2-z, upper = t3-z, w=t4, t =z, a =a)$
value})},
lower = 0, upper = t1)[1]))
}, t.i9[,1]1, t i9[,2], t i9[,3], t i9[,41))}

## Type 10
type_10 = function(a){-sum(mapply(function(tl, t2, t3, t4){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
_f2.503 513,
lower = t2-z, upper = t3-z, w=t4, t =z, a =a)$
value})},
lower = 0, upper = t1)[1]))
}, t.ile[,1], t i1ef[,2], t i1@[,3], t ile[,4]1))}

## Type 11
type_11 = function(a){ifelse(nrow(t_ill) > 0, -sum(mapply(function(tl, t2,
t3)4
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
_f2.503_S13,
lower = t2-z, upper = t3-z, w=1t3, t =z, a =a)$
value})},
lower = 0, upper = tl1)[1]))
¥}, t.iii[, 1], t.i1i[,2], t.i1i[,31)), 0)}

## Type 12
type_12 = function(a){-sum(mapply(function(tl, t2){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
52 503513,
lower = 0, upper = t1 - z, w=12, t =2z, a =a)$
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value})},
lower = 0, upper = t1)[1]))
Y, til2f, 1], ti12[, 2]))}

## Type 13
type_13 = function(a){-sum(mapply(function(tl, t2){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(fo_f1
_f2.5S03.513,
lower = 0, upper = tl-z, w=1t2, t =2z, a =a)$
value})},
lower = 0, upper = t1)[1]))
¥y, t.i13[, 11, t i13[, 21))}

## Type 14
type_14 = function(a){ifelse(length(t_i14) > 0,
-sum(sapply(t_il4, function(tl) (log(as.numeric
(integrate(function(t){
sapply(t, function(z){integrate(f0_f1l f2 S03_

S13,
lower = 0, upper = tl-z, w=tl, t =2z, a=a2a)$
value})},
lower = 0, upper = t1)[1]))))), 0)}
## Type 15
type_15 = function(a){ifelse(nrow(t_il15) > @, -sum(mapply(function(tl, t2,
t3, t4){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1
_f2.503_S13,
lower = t3 - z, upper = t4-z, w =14, t =2z, a=a
)$value})},

lower = t1, upper = t2)[1]))
}, t-i15[, 11, t_i15[, 2], t_i15[, 3], t_i15[, 41)), 0)}

## Type 16
type_16 = function(a){-sum(sapply(t_i16, function(t) (log(S_0(a, t)) + log(f
~03(a, t)))))}

## Type 17
type_17 = function(a){-sum(sapply(t_il7, function(t) (log(S_0(a, t)) + log(f
~03(a, t)))))}

## Type 18

type_18 = function(a){-sum(mapply(function(tl, t2, t3)(log(as.numeric(
integrate(f0_S1 _S03 f13, lower = tl1, upper = t2, w = t3, a = a)[l]))), t_
i18[,1], t i18[,2], t i18[,3]1))}

## Type 19

type_19 = function(a){-sum(mapply(function(tl, t2)(log(as.numeric(
integrate(f0_S1_S03_f13, lower = 0, upper = tl, w = t2, a = a)[l]))), t_
i19[,1], t i19[,2]))}

## Type 20
type_20 = function(a){ifelse(length(t_i20) > 0,
-sum(sapply(t_i20, function(tl) (log(as.numeric
(integrate(f06_S1 S03 f13,
lower = 0, upper = t1, w = t1l, a = a)$value))))),
0)}

## Type 21

type_21 = function(a){-sum(mapply(function(tl, t2)(log(as.numeric(
integrate(f0_S1 _S03 f13, lower = t1, upper = t2, w = t2, a = a)[l]))), t_
i21[,1], t i21[,2]))}
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## Sum of all
sum_all = function(a){
type_1(a) + type_2(a) + type_3(a) + type_4(a) +
type 5(a) + type 6(a) + type 7(a) + type 8(a) +
type 9(a) + type 10(a) + type 1ll(a) + type 12(a) +
type 13(a) + type 14(a) + type 15(a) + type 16(a) +
type_17(a) + type 18(a) + type_19(a) + type 20(a) + type 21(a)
}
## Constraint above 0 for all parameters
theta_hat_new = optim(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), sum_all, method = "L-
BFGS-B",
lower = c(eps, eps, eps, eps, eps, eps, eps, eps, eps,
eps), hessian = TRUE)
theta_hat_hessian_solved = solve(theta_hat_new$hessian)

D.2 Application of CAV for Gamma Process Alternative 1

without Covariates

In this example, we have present the code we have written for the analysis in
Section[6.3.1.1} We start by loading the CAV-data and excluding the individuals
which transitions the wrong way. Then we divide the individuals into the correct
types and store the relevant timepoints. Again, we create functions for the
likelihood contributions for the different types and collect them to a final function
which is the complete log-likelihood. Then we use optim for optimization.

library(data.table)
library("msm")
library(Rlab)
require(plyr)
library(numDeriv)

eps
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cav = cav[!is.na(cav$pdiag),]
cav

##

1: no CAV, 2: mild/moderate CAV, 3: severe CAV,

## 4: recorded at the date of death

cav = as.data.table(cav)

cav_check = list()
cav_check2 = list()
for (i in 2:nrow(cav))

{
if (cav[i, state] < cav[i-1,state] && cav[i,PTNUM] == cav[i-1, PTNUM])
{
cav_check2 = rbind(cav[i-1,], cav_check2)
cav_check = rbind(cav[i,], cav_check)
}
}
cav_check
cav_check2

## Remove observations from people going wrong way

cav = cav[!'cav_check, on=.(PTNUM)]

## The parameters can not be 0 in a Gamma distribution
cav$years = ifelse(cav$years == 0, 0.0000001, cav$years)
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## Time points

5 t.1i1 = c()

s t.i2 = matrix( , nrow = 0, ncol = 3)
t_i3 = matrix( , nrow = 0, ncol = 5)

; t_i4 = matrix( , nrow = 0, ncol = 5)
t_i6 = matrix( , nrow = 0, ncol = 3)
t_i7 = matrix( , nrow = 0, ncol = 3)
t_116 = matrix(, nrow = 0, ncol = 2)
t_i18 = matrix(, nrow = 0, ncol = 4)

78
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n = length(unique(cav[, PTNUM]))
unique_PTNUM = unique(cav[,PTNUM])

## Placing the individuals into different types
for (i in 1:nn){

cav_PTNUM = cav[PTNUM == unique_PTNUM[i], 1
if(all(cav_PTNUM$state == 1)){
t il = c(t_il, cav_PTNUM$years[nrow(cav_PTNUM)])
} else if(any(cav_PTNUM$state == 1) & any(cav_PTNUM$state == 2) & l!any(cav_
PTNUM$state == 3) &
lany(cav_PTNUM$state == 4)){
check_12 = max(which(cav_PTNUM$state == 1))
check_22 = min(which(cav_PTNUM$state == 2))
t i2 = rbind(t_i2, c(cav_PTNUM$years[check 12], cav_PTNUM$years[check 22],
cav_PTNUM$years[nrow(cav_PTNUM) 1))
} else if(any(cav_PTNUM$state == 1) & any(cav_PTNUM$state == 2) & any(cav_
PTNUM$state == 3) & 'any(cav_PTNUM$state == 4)){
check_13 = max(which(cav_PTNUM$state == 1))
check_23 = min(which(cav_PTNUM$state == 2))
check_33 max (which(cav_PTNUM$state == 2))
check_43 = min(which(cav_PTNUM$state == 3))
t i3 = rbind(t_i3, c(cav_PTNUM$years[check 13], cav_PTNUM$years[check 23],
cav_PTNUM$years[check 33], cav_PTNUM$years[check 43],
cav_PTNUM$years[nrow(cav_PTNUM)]))
} else if (any(cav_PTNUM$state == 1) & any(cav_PTNUM$state == 2) & any(cav_
PTNUM$state == 3) & any(cav_PTNUM$state == 4)){
check_14 = max(which(cav_PTNUM$state == 1))
check_24 = min(which(cav_PTNUM$state == 2))
check_34 = max(which(cav_PTNUM$state == 2))
check_44 = min(which(cav_PTNUM$state == 3))
check_54 = which(cav_PTNUM$state == 4)
t i4 = rbind(t_i4, c(cav_PTNUM$years[check 14], cav_PTNUM$years[check 24],
cav_PTNUM$years[check 34], cav_PTNUM$years[check 44],
cav_PTNUM$years[check 54]))
} else if(any(cav_PTNUM$state == 1) & any(cav_PTNUM$state == 3) & !any(cav_
PTNUM$state == 2) & 'any(cav_PTNUM$state == 4)){
check_16 = max(which(cav_PTNUM$state == 1))
check_26 = min(which(cav_PTNUM$state == 3))
t_i6 = rbind(t_i6, c(cav_PTNUM$years[check 16], cav_PTNUM$years[check 26],
cav_PTNUM$years[nrow(cav_PTNUM) 1))
} else if(any(cav_PTNUM$state == 1) & any(cav_PTNUM$state == 3) & l!any(cav_
PTNUM$state == 2) & any(cav_PTNUM$state == 4)){
check_17 = max(which(cav_PTNUM$state == 1))
check_27 = min(which(cav_PTNUM$state == 3))
check_37 = which(cav_PTNUM$state == 4)
t i7 = rbind(t_i7, c(cav_PTNUM$years[check 17], cav_PTNUM$years[check 27],
cav_PTNUMs$years[check 371))
} else if(any(cav_PTNUM$state == 1) & !any(cav_PTNUM$state == 2) & 'any(cav_
PTNUM$state == 3) &
any(cav_PTNUM$state == 4)){
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D.2. Application of CAV for Gamma Process Alternative 1 without Covariates

check_ 116 = max(which(cav_PTNUM$state == 1))
check 216 = which(cav_PTNUM$state == 4)
t 116 = rbind(t_i16, c(cav_PTNUM$years[check 116], cav_PTNUM$years[check_
216]1))
} else if(any(cav_PTNUM$state == 1) & any(cav_PTNUM$state == 2) & !any(cav_
PTNUM$state == 3) &
any(cav_PTNUM$state == 4)){
check_118 = max(which(cav_PTNUM$state == 1))
check_218 = min(which(cav_PTNUM$state == 2))
check_318 = max(which(cav_PTNUM$state == 2))
check 418 = which(cav_PTNUM$state == 4)
t. 118 = rbind(t_i18, c(cav_PTNUM$years[check 118], cav_PTNUM$years[check_
218], cav_PTNUM$years[check 318], cav_ PTNUM$years[check 418]))
}

}

print(length(t_il) + nrow(t_i2) + nrow(t_i3) + nrow(t_i4) + nrow(t_i6) + nrow(
t_i7) + nrow(t_i16) + nrow(t_il8))
nn

## Initial survival functions

= function(a, t){pgamma(exp(a[l]), shape = txexp(a[2]), rate = 1)}
function(a, t){pgamma(exp(a[3]), shape = txexp(a[4]), rate 1)}
function(a, t){pgamma(exp(al[5]), shape = txexp(a[6]), rate = 1)}
function(a, t){pgamma(exp(a[7]), shape = txexp(a[8]), rate = 1)}
function(a, t){pgamma(exp(al[9]), shape = txexp(a[l1l0]), rate = 1)}

S_0
S_1
S 2
S_03
S_13

## Initial density functions - derivative of -survival function
f 0 = function(a, t){(S_0(a, t) - S 0(a, t + eps))/(eps)}

f 1 = function(a, t){(S_1(a, t) - S_1(a, t + eps))/(eps)}

f_2 = function(a, t){(S_2(a, t) - S_2(a, t + eps))/(eps)}

f 03 = function(a, t){(S_03(a, t) - S 03(a, t + eps))/(eps)}
f_13 = function(a, t){(S_13(a, t) - S_13(a, t + eps))/(eps)}

## Other functions
f0_.S1.5S03_S13 = function(a, w, t){f_0(a, t)*S_03(a, t)*S_1(a, w - t)*S_13(a, w
- 1)}

7 f0_f1.S2.S03_S13 = function(a, w, t, u){f_0(a, t)*f_1(a, u)*S_2(a, w - t - u)*

S_03(a, t)*S_13(a, u)}

;. fO_f1.f2.S03_.513 = function(a, w, t, u){f_0(a, t)*xf_1(a, u)*f_2(a, w - t - u)x*

S 03(a, t)*S_13(a, u)}
f0_51.503_f13 = function(a, w, t){f_0(a, t)*5_03(a, t)*S_1(a, w - t)*xf_13(a, w
= )b

## Type 1
type_1 = function(a){-sum(sapply(t_il, function(t) (log(S_0(a, t)) + log(S_03(
a, t)))))}

## Type 2
type_2 = function(a){-sum(mapply(function(tl, t2, t3)(log(as.numeric(
integrate(f0_S1 S03 S13, lower = tl, upper = t2, w = t3, a = a)$value))), t_
i2[,1], t-i2[,2], t-i2[,31))}

8 ## Type 3

type_3 = function(a){-sum(mapply(function(tl, t2, t3, t4, t5){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(fO_f1_
S2 .S03 513,
lower =
t3-z, upper = t4-z, w = t5, t = z, a = a)$value})},
lower = t1, upper = t2)[1]))}, t i3[,1]1, t_i3[,2],
t i3[,3], t i3[,41],
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t-i3[,51))}

## Type 4
type_4 = function(a){-sum(mapply(function(tl, t2, t3, t4, t5){
log(as.numeric(integrate(function(t){
sapply(t, function(z){integrate(f0o_f1l_ f2 S03_S13,
lower = t3-z, upper = t4-z, w=t5, t = z,
a = a)$value})},
lower = t1, upper = t2)[11))}, t_i4[,1]1, t_i4f[,2], t_i4[,3], t_i4[,4], t_
i4[,51))}

## Type 6
type_6 = function(a){-sum(mapply(function(tl, t2, t3){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0_f1l_
S2 S03_S13,
lower =
z, a = a)$value})},

0, upper = t2 - z, w = 13, t =
= t1, upper = t2)[11))}, t_i6[,1], t i6[,2],

lower
t i6([,3]1))}

## Type 7
type_7 = function(a){-sum(mapply(function(tl, t2, t3){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(fO_fl_
f2.S03 S13,
lower =
z, a = a)$value})},

0, upper = t2 - z, w =13, t =
= t1, upper = t2)[11))}, t i7[,1], t i7[,2],

lower
ti7[,31))}

## Combination of type 5, 16 and 21
type_16 = function(a){-sum(mapply(function(tl, t2){
log(as.numeric(integrate(function(t){sapply(t, function(z){integrate(f0O_fl_
2503513,
lower =
z, a = a)$value})},

0, upper = t2 - z, w =12, t =
= t1, upper = t2)[1]) + S_0(a, t2)*f_03(a,t2)

lower
+ as.numeric(
integrate(f0_S1.S03_f13, lower = tl, upper = t2,
w = t2, a =a)[l]l))}, t i16[,1], t il16[,2]))}

## Combination of type 15 and 18
type_18 = function(a){-sum(mapply(function(tl, t2, t3, t4)(log(as.numeric(
integrate(f0_S1 S03_f13, lower = tl, upper = t2, w = t4, a = a)[1l]) +
as.numeric(integrate(function(t){sapply(t, function(z){integrate(fo_f1l f2_
S03.S13,
lower =
t3-z, upper = t4 - z, w=t4, t = z, a = a)$value})},
lower = t1, upper = t2)[1]))), t i18[,1], t i18[,2],
t.118[,3], t i18[,4]1))}

## Sum of all
sum_all = function(a){
type_1(a) + type 2(a) + type 3(a) + type 4(a) +
type_6(a) + type 7(a) + type_16(a) + type 18(a)
}
theta_hat_new = optim(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), sum_all, method = "L-
BFGS-B", hessian = FALSE)
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