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I discuss the strong link between the transmission line (TL) equation and the TL circuit model
for the charging of an electrolyte-filled pore of finite length. In particular, I show how Robin and
Neumann boundary conditions to the TL equation, proposed by others on physical grounds, also
emerge in the TL circuit subject to a stepwise potential. The pore relaxes with a timescale 7, an
expression for which consistently follows from the TL circuit, TL equation, and from the pore’s
known impedance. An approximation to 7 explains the numerically determined relaxation time of
the stack-electrode model of Lian et al. [Phys. Rev. Lett. 124, 076001 (2020)].

In the early 1960s, de Levie wrote two seminal papers
on electric double layer formation in porous electrodes
[1L2]. Both papers start with the transmission line (TL)
circuit for an electrolyte-filled pore (Fig. , whose re-
sistance R and capacitance C are distributed over many
infinitesimally small resistors and capacitors. From this
circuit, de Levie argued that (z,t)—the electrostatic
potential difference between the pore’s surface and center
line at time ¢ and location z—follows the TL equation,

RCOwp = 120y, (1)

where, for dimensional reasons, I introduced a length
scale ¢, which is absent in Refs. [1} 2]. Both the TL circuit
and TL equation found countless applications, particu-
larly for the interpretation for electrochemical impedance
spectroscopy experiments [3H7]. With the ongoing inter-
est in electrolyte-filled nanopores in general [8H12] and
in nanoporous supercapacitors in particular [I3HI5], de
Levie’s work is as relevant today as it was six decades ago.
Yet, while Refs. [1, 2] considered Eq. (1)) on a semi-infinite
interval z = [0, 00), more relevant for the dc response of
supercapacitors is the TL equation on a finite interval,
which was studied by Biesheuvel and Bazant [13] and
more recently by Gupta, Zuk, and Stone [I1]. Here, I dis-
cuss the intimate relation between the TL circuit and the
TL equation on a finite interval, by considering a finite-
difference scheme of the latter. In particular, the Robin
and Neumann boundary conditions of Refs. [I1, [13], pro-
posed there on physical grounds, also emerge in the TL
circuit itself.

The TL circuit in Fig. [T]distributes R and C over n—1
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Figure 1. TL circuit with n capacitors of capacitance ¢, n — 1
resistors of resistance r, and one resistor of resistance Rp.

resistors of resistance r and n capacitors of capacitance
¢, so that R = r(n — 1) and C' = cn [16]. A bulk elec-
trolyte reservoir is represented in the circuit by a resistor
of resistance R,. Now, the current from the ith capacitor
reads I¢(t) = cW,(t) for i = 1,...,n, where ¥,(t) is the
time derivative of the voltage W;(t) across this capaci-
tor. Kirchoff’s junction rule gives I7(t) = I7 (t) — Ij, (1)
for i = 1,...,n — 1 and IS(t) = I} (¢t), with IT(¢) the
current through the ith resistor; Ohm’s law states that
IT(t)r = W,_1(t) — Wi(t) for ¢ = 2,...,n and that
IT(t)Ry = ¥ — Wy(t), with ¥ the potential of an ex-
ternal voltage source, suddenly applied at t = 0. Writing
W(t) = [Uq(t),..., ()], e = [1,0,...]T, £ = R/Ry,
and ¢ = r/Ry [hence, ( =&/(n —1)], I find

RC¥(t) = nEWe; +n(n — 1)M¥(t), (2a)
-1-¢ 1

with M € R™*"™ (cf. Ref. [I4]). For initially uncharged
capacitors [¥(0) = 0], Eq. is solved by

S = v o () 1 Do ter )

where D = diag(\1,...,A,) contains the eigenvalues \;
of M = UDU™!, which are all negative.

Consider now a cylindrical pore of length ¢ and radius
a with the same resistance R and capacitance C as the
TL circuit above, subject to the same instantaneous po-
tential W. The pore is closed at z = ¢ and in contact
with a bulk reservoir of resistance Ry at z = 0. I study
¥(z,t) in this pore through the TL equation subject
to Robin and Neumann boundary conditions,

¥(2,0) =0,
eaz¢(07t) = §[¢(07t) - \I/]v

20,4, (4a)
8.0(0,t) =0. (4b)

Reference [I3] proposed a similar Robin condition at
z = 0 on the basis of ¢(z) being linear in the reservoir
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(z < 0); Ref. [11] refined the same argument for a pore

with overlapping electric double layers, that is, when the

Debye length is comparable to the pore’s radius Ap ~ a.

For that case, ¥(z,t) should not reach ¥ at late times,

and the TL circuit must be adopted accordingly [11].
The solution to Egs. and reads [17]

vzt _ 4sin fj cos [B; (1 — z/0)] B2t
v _1_]-22; 2]ﬁj—|—si]n25j exp _% 7
(5a)

where 3; with j = 1,2,... are the solutions of the tran-

scendental equation

ﬁj tan ﬂj = f (5b)

For comparison, I also mention the solution to Eq.
on a semi-infinite slab z € [0,00) subject to the same

Robin condition at z = 0 [18],
é Ric' + é‘\/t
0?2 4t RC

P(z,1)
+erfcy/%§i—tc. (6)

v

Note that R, entered the TL equation through the
Robin condition Eq. [@b)). For & = R/R, — oo, this
Robin condition simplifies to de Levie’s Dirichlet condi-
tion [I]. In this limit, Eq. simplifies to cos B; = 0—
solved by f; = (j —1/2)m—and (2, t) simplifies accord-
ingly. Meanwhile, only the last term of Eq. @ remains
for £ — oo and ¢(z,t) reduces to Eq. 9 of Ref. [I].

Figure [2] shows ¥; [Eq. (3), lines] and ¢(z = (i —
1/2)¢/n,t) [Eq. (§), crosses] for R, = R, n = 400, and
i=(1,3,5,15,40,100, 200, 400). As ¥, describes the po-
tential drop between the pore’s surface and centerline
along the pore from z = (i — 1)¢/n to z = il/n, I evalu-
ate 1 at the center of this interval. Figure [2| shows that
predictions from Egs. and agree well, except for
i =1and t/RC < 1075. For comparison, Fig. [2] also
shows 1 (z = £/(2n),t) from Eq. (6) (pluses). Predic-
tions from Egs. (5]) and (6)) coincide up to ¢t ~ RC, when
the potential perturbations reach z = ¢ and, hence, the
Neumann condition in Eq. becomes important.

To better understand why Eqs. and agree so
well, I turn to a finite-difference description of Eqgs. (1)
and . Following Ref. [19], I discretise z, but not ¢. Par-
titioning [0, ¢] into m — 1 intervals of width h = ¢/(m —1)
yields a uniform grid of m grid points, at zx = kh with
k € {0,...,m — 1}. On these grid points, the continu-
ous electrostatic potential is approximately ¥y = 1(zg).
A central difference approximation now gives 924 (z) ~
(Yk—1—29k+vx+1)/h% To implement the Robin bound-
ary condition at z = 0, I introduce a ghost grid point
at z = —h and corresponding ¢_;. Now, approxi-
mating the z derivative through a backward difference

t
= —exp {fz + ngC] erfc

100 4
Eq. (3)
X Eq. (5)
+ Eq. (6)
10—1 4
=
~
= 10724
=
) 1=1
1073 4 X
*
*
b3
1074

t/RC

Figure 2. TL-circuit potential drops W;(t) [Eq. (), lines]
and TL-equation solutions ¢(z/¢ = (i — 1/2)/n,t) [Eq. (5),
crosses] and ¥(z = £/(2n),t) [Eq. (6), pluses], all divided by
U, for i = (1,3,5,15,40,100,200,400), n = 400, and & =
R/Ry = 1. The sum in Eq. is truncated after max(j) =
1000. The dotted line indicates the late-time relaxation time
T = RC/B%.

0,4 (0) ~ (vo — 1¥_1)/h, the Robin boundary condition
yields ¢_1 = 1pg + (¥ —1pg)/(m — 1). Similar reasoning
and a forward difference yields for the Neumann condi-
tion that v, = ¥,,—1 [[9]. After grouping the above
expressions and writing () = [¢1(t),..., Ym_1(t)]T,
Egs. and are approximated by

RC(t) = (m — 1)6We; + (m — 1)2Map(t), (7)

with M € R™*™ as in Eq. . Setting m = n, Egs.
and are very similar: the prefactors on their right-
hand sides contain differences that are of subleading or-
der in n. Indeed, replotting Fig. [2| for smaller n, I ob-
served that differences between Eqs. (3) and (5]) became
larger, while for n > 500, both methods were practically
indistinguishable (not shown). Note, first, that the differ-
ences between Eqgs. and are unrelated to the trun-
cation of Eq. at finite j: my numerical observation
that this sum was converged is reinforced by the overlap
of Egs. and @ at early times. Second, note that
differences between Egs. and @ of subleading order
in n could not be circumvented altogether, for instance,
by changing the TL circuit or the above finite-difference
scheme: the order of M in Eq. is equal to the num-
ber of capacitors in the circuit, which also sets the factor
n in n(n — 1)M. Conversely, in Eq. , the order of M
is given by the number of grid points, while the prefactor
of M is set by the number of intervals, which is always
one smaller. Lastly, differences between Egs. and @
being of subleading order in m means that those equa-
tions are equal in the limit n — oco. Thus, different from
the physical arguments of Refs. [I1], [13], both the Robin
and the Neumann boundary condition in Eq. also



emerge naturally in the TL circuit and Eq. , which
governs its relaxation.

Important for applications of porous electrodes, Fig. 2]
suggests that ¢(z,t) relaxes with a single late-time re-
laxation time, denoted 7, throughout the pore. This ob-
servation stands in contrast to de Levie’s solution to the
TL equation on a semi-infinite interval—the last term of
Eq. @—Which relaxes with a position-dependent relax-
ation time (z/¢)?RC/4 [1]. From Eq. () it follows that
T = RC/B?, with $; the smallest solution to Eq. .
For example, £ = 1 yields 7/RC = 1.35, shown with a
dotted line in Fig.[2] Conversely, by the above-mentioned
simplification of Eq. , ¢ — oo yields 7/RC = 4/n?
8, 12].

The same relaxation behavior follows from the TL cir-
cuit: as all eigenvalues \; of M are negative, it follows
from Eq. that W(t) relaxes at late times with the
timescale

RC

B RO (®)

with A; = max{\1,..., A\, } the least negative eigenvalue
of M. For matrices of M’s form, the different \; satisfy

l@<§+1>U@4(§+1)
(1-9¢) [Un_l (2’ + 1) —Up_s </\2Z + 1)} . (9)

where U,, are nth degree Chebyshev polynomials of the
second kind [20]. With U, (cos ) = sin((n + 1) 9)/sind,
inserting \; = 2 [cos(?;) — 1] into Eq. (9) yields,

sin((n + 1) 9;) — sin (nd;) = sin (nv;) — sin((n — 1) 9;) .

1-¢
(10)
Using sin(a £+ 8) = sin(«) cos(8) =+ sin(8) cos(a) and di-
viding both sides of Eq. by sin(nd;) sin ¢; yields

9 _

c ¢ tan (n;) = T cosd, (11)
The smallest solution ¥_ to Eq. 7 required to find
Ay = 2[cos(¥_) — 1], lies in the interval 9_ € [0, 7/(2n)].
Thus, for n > 1, one has ¥_ < 1 and thus A\, = —9% +
O(¥*). Now, for n > 1 and provided that &/n < 1,
Eq. reduces to

nd_tan(nd_) =&+ 0 (n7h) . (12)

sin 191’

Hence, for n > 1, the late-time relaxation times of the
TL circuit and the TL equation are governed by the same
transcendental equation [Egs. and (12)].

A Padé approximation of order [1/2] of the tan(nd_)
term in Eq. yields the approximate solution [22]
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Figure 3. Late-time relaxation time 7 [Eq. (8)] for n = 100,
with Ay determined numerically from M (pluses) and Eq. (11)
(crosses). Also shown are the approximate solutions Eq. (14)
(dotted line) and Eq. (dash-dotted line).

From Eq. now follows the late-time response of the
TL circuit as

Tz%Rc+mc. (14)

This expression is inaccurate for small Rp: in the limit
& — 00, the TL circuit expression Eq. simplifies to
cos (n¥_) = 0. As anticipated, its solution ¥_ = w/(2n)
yields 7 = 4RC/7?, suggesting that the factor 1/3 in
Eq. should be replaced by 4/72 ~ 0.41,

4
r~ RO+ RyC. (15)

Figure[3|shows 7 [Eq. (8)] with A, determined from M
directly (red pluses) and from Eq. (11)) (black crosses) as
well as the approximations Eq. (14) (dotted line) and
Eq. (dash-dotted line). Since crosses and pluses
overlap, Eq. successfully captures Ay. As expected,
Eq. accurately approximates 7 for Ry/R > 1 but not
for Ry/R 5 1. Conversely, Eq. is in excellent agree-
ment with Eq. (§)) at both R,/R < 1 and R;/R > 1 but
slightly less so around Ry/R ~ 1.

There is yet another route to the timescale 7 with
which a finite-length pore relaxes in response to a step-
wise potential: through its known impedance Z(iw) =
VR/(iwC)cothvViwRC [3]. Here, i = y/—1 and w is
the angular frequency of a sinusoidal potential applied
to the pore. At low frequencies Z(s ~ 0) ~ Zi(s) =
R/3 + 1/(Cs), where the complex frequency s appears
instead of iw [, B]. The same Z;(s) applies to a se-
ries connection of a resistor of resistance R/3 and a
capacitor of capacitance C. To account for the bulk
with which the pore is in contact, I add a resistor of
resistance Ry in series with these two elements. Sub-
jecting this circuit to a step potential V(t) = V,0(¢),



with ©(t) the Heaviside function, drives a current I(t) =
LYV (s)/[Zi(s) + Ry]} o exp|—t/7], with £~ the in-
verse Laplace transform, V (s) = L{V(t)} = Vo /s, and 7
precisely as in Eq. . Yet, inverse Laplace transforma-
tions of approximate expressions yield wrong relaxation
times if the original function has different poles than its
approximation [23]. Such is the case for 1/Z(s). The
exact current I(t) = L7{V(s)/[Z(s) + Ry]} relaxes at
late times with 7 = —1/s*, with s* the first solution to
VR/(sC)cothvsRC + Ry = 0 on the negative s axis.
Substituting sRC = —/3’]2, we recover Eq. ; hence,
I(t) relaxes precisely as ¥(z,t) in Eq. (Ba).

While several papers included a bulk resistance in the
TL circuit [2} 111 [13], the influence of Ry, on the relaxation
of the TL circuit is not generally recognized, Ref. [24]
being a notable exception. The often-used TL timescale
Apf?/(Da) [8, @, 1), 13], with D the ionic diffusivity,
does not account for R,C, nor for RC’s prefactors in
Eqgs. and . Hence, depending on the geometry
of interest, particularly on the distance of the pore to a
counter electrode, a pore’s relaxation time can deviate
significantly from Ap¢?/(Da). Still, in electrodes with
ultranarrow pores—much beyond the validity of the TL
equation—attenuation of the in-pore diffusivity probably
yields R > R, making pore entrance the rate-limiting
step of electrode charging [15].

As a corollary, I show how Eq. sheds light on
the recently proposed stack-electrode model for super-
capacitor charging [14]. In this model, a porous elec-
trode of thickness H was represented by a stack of n
flat, metallic yet permeable sheets of area A, with a
constant spacing h, so that 7 = hA\%/(eDA) and ¢ =
2¢eA/Ap. Two such electrodes were in contact with a
bulk of length 2L; hence, R,/R = L/H. Equation
now yields 7 = (2 4+ 2H/3L)nApL/D, which, for large
n, is in reasonable agreement with the fitted timescale
Tn =[(24+0.75H/L)n—1—0.91H/LIAp L/ D of Ref. [14].
While both 7, and 7 from Eq. are based on ap-
proximations, differences between them must also stem
from the different nth sheet in the stack-electrode model,
which had half the capacitance of the other sheets. As 7,
captured the short timescale of the biexponential current
decay in the experiments of Ref. [25], T as calculated here
accurately describes the same timescale as well [26]. The
stack-electrode model also captured the second, larger
timescale of the transient current measured in Ref. [25]
and ascribed it to the 0.1V applied there—large, com-
pared to the thermal voltage of 24 mV. Such potentials
fall outside the region of validity of the TL equation [I3].

Concluding, T have exposed the intimate relation be-
tween the TL circuit model for a pore in contact with
an electrolyte reservoir and the TL equation subject to
Robin and Neumann boundary conditions. The pore re-
laxes with a Rj/R-dependent relaxation time that ex-
plains one of the two dominant relaxation timescales of
Refs. [14] 25].
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