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1Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
2Mechanics Division, Department of Mathematics, University of Oslo, 0316 Oslo, Norway

(Dated: March 15, 2021)

Several modern technologies for energy storage and conversion are based on the screening of
electric charge on the surface of porous electrodes by ions in an adjacent electrolyte. This so-called
electric double layer (EDL) exhibits an intricate interplay with the electrolyte’s temperature that
was the focus of several recent studies. In one of them, Janssen et al. [Phys. Rev. Lett. 119, 166002
(2017)] experimentally determined the ratioQrev/Wel of reversible heat flowing into a supercapacitor
during an isothermal charging process and the electric work applied therein. To rationalize that
data, here, we determine Qrev/Wel within different models of the EDL using theoretical approaches
like density functional theory (DFT) as well as molecular dynamics simulations. Applying mainly
the restricted primitive model, we find quantitative support for a speculation of Janssen et al. that
steric ion interactions are key to the ratio Qrev/Wel. Here, we identified the entropic contribution of
certain DFT functionals, which grants direct access to the reversible heat. We further demonstrate
how Qrev/Wel changes when calculated in different thermodynamic ensembles and processes. We
show that the experiments of Janssen et al. are explained best by a charging process at fixed bulk
density, or in a “semi-canonical” system. Finally, we find that Qrev/Wel significantly depends on
parameters as pore and ion size, salt concentration, and valencies of the cat- and anions of the
electrolyte. Our findings can guide further heat production measurements and can be applied in
studies on, for instance, nervous conduction, where reversible heat is a key element.

I. INTRODUCTION

In a recent experiment [1], the reversible heat flowing
into and the electric work applied to a supercapacitor
during isothermal charging were measured. This experi-
ment is one of several recent studies, both experimental
[1–4] and theoretical [5–10], on the intricate interplay
between the electrolyte’s temperature and the properties
of the electric double layer (EDL). Until now, however,
no comparison has been made between the experimen-
tal findings of Ref. [1] and theoretical predictions from
sophisticated EDL models.

Helmholtz proposed the EDL to be a system where
two layers of opposite charges are facing and, thus,
screening each other [11]. Usually, systems are consid-
ered where mobile ions physically screen electric charge,
for instance, on a solid electrode’s surface [12], on col-
loidal particles [13, 14], in (biological) ion channels of the
plasma membrane [15, 16], and near macromolecules such
as DNA [17]. The resulting diffuse double layer for point-
like ions was first described by Gouy and Chapman
around 1910 within Poisson-Boltzmann theory [18–
20], a framework even nowadays still applied frequently
to study electrolyte systems. This simple picture of point
charges is refined in more sophisticated models that ac-
count for finite ionic volume, where the latter can be
important for the microscopic structure of EDLs in nar-
row geometries and crowded environments. For instance,
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the finite volume of ions can be crucial for the description
of colloidal interactions, capacitances, and understanding
certain aspects of screening [21–23].

In modern technologies, EDLs also form the basis
for the aforementioned supercapacitors, which can store
much more energy than conventional capacitors and can
deliver much higher power than batteries [24–26]. For
practical applications wherein these devices are charged
and discharged, it is important to know how the elec-
trolyte temperature can be kept low, because increased
temperatures are the cause of faster degradation of com-
ponents. Interestingly, these EDL systems can further be
employed to desalinate solutes [27] and to harvest energy,
because concentration [28] and temperature [8, 29, 30]
can change their capacitance. Accordingly, vast amounts
of studies on EDL systems exist and are still performed,
but the interplay between ions and the electrolyte’s tem-
perature is still rather unexplored, despite being promis-
ing for optimization and new concepts.

Measurements of the temperature of a supercapacitor
in operation showed that it heated during charging and
cooled during discharging [2], showing an overal trend
to warm up during cycling. Such a warm up is expected
as ionic currents in a resistive fluid dissipate Joule heat.
The cooling, however, can be understood from an analogy
to the adiabatic decompression of an ideal gas: During
discharging, ions leave the EDL and their entropy in-
creases. In an isolated supercapacitor this increase must
be balanced by an entropy decrease of the electrolyte, ac-
complished through a lowering of the electrolyte’s tem-
perature. The opposite happens during charging and
causes heating additional to Joule heat. Moving beyond
the above ideal-gas analogy, a thermodynamic identity
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Figure 1. Sketch (a) of the experimental setup of Ref. [1]. In
the experiments, two nanoporous carbon electrodes that carry
charges ±Q due to a potential difference ∆Ψ are in contact
with an aqueous sodium chloride solution and submerged in
a thermostatic bath with respect to which its temperature is
measured. Within our theoretical description, the pores of
one electrode are modeled (b) by two planar walls of area A
with equal surface charge density σ. The electrolyte between
the walls is modeled by mobile ionic charges.

was derived for the temperature rise upon adiabatic EDL
formation [29]. Predictions of this identity coincided with
numerical solutions of the electrokinetic equations for a
slow charging process [7]. In the latter nonequilibrium
framework, reversible and irreversible heating are both

captured by the heat production term ~I · ~E in the heat

equation [5, 7, 31], with ~I the ionic current density and
~E the local electric field. While the ionic current den-
sity aligns with the local electric field ~I ∝ ~E in bulk
electrolytes, leading to a strictly positive Joule-heating

term ∝ ~I2, conversely ~I · ~E < 0 is possible in the EDL
when the gradient in electrochemical potential anti-aligns

with ~E, leading to reversible local cooling [5, 7]. Similar
cooling has been observed near an ion-exchange mem-
brane [32, 33]. As Joule heating is mainly a bulk phe-
nomenon, while reversible heating happens only in the
nanometer-wide EDL, a capacitor with a large surface-
to-volume ratio is needed to notice appreciable reversible
temperature variations. Advanced “microcalorimetry”
measurements near flat electrodes, however, can detect
much smaller temperature variations [3].

With a setup as sketched in Fig. 1(a), the authors
of Ref. [1] studied the temperature of and charge on
nanoporous carbon electrodes subject to a suddenly ap-
plied potential change. From the differenceQtot−Qirr be-
tween the total and irreversible (Joule) heat, for which
they had independent measurements, they determined
the reversible heat Qrev, i.e., the temporal and spatial
integral of the above heat production for slow charging
(cf. Eq. (12)). Moreover, from the system’s capacitance
they determined the electric work Wel during isother-
mal charging. With Qrev and Wel at hand, the au-
thors of Ref. [1] claimed experimental access to the ra-
tio ∆Ωent/∆Ω (reproduced here in Fig. 4), with ∆Ω the
change of the total grand potential during charging and
∆Ωent its entropic part. Their identification Qrev/Wel =
−∆Ωent/∆Ω relied on the identity Qrev = −∆Ωent

(cf. Eq. (6)), proposed by Overbeek on thermodynamic
grounds [34], and on ∆Ω = Wel, which holds for isother-
mal charging. The linear scaling of both Qrev and Wel

with the surface area of the electrodes drops in their ra-
tio, making Qrev/Wel a quantity that can be conveniently
compared with theoretical model predictions. In fact,
∆Ωent and ∆Ω had been studied before within Poisson-
Boltzmann theory [34] and extensions thereof account-
ing for finite-size ions [35, 36]. In particular, Ref. [36]
found that the Carnahan Starling bulk chemical poten-
tial radically altered ∆Ωent/∆Ω at large voltages: while
Poisson-Boltzmann predicts ∆Ωent/∆Ω → 1, their
more sophisticated theory suggested ∆Ωent/∆Ω → 0 in-
stead. For this reason, the authors of Ref. [1] speculated
about the importance of ionic steric interactions to their
measurement of ∆Ωent/∆Ω ≈ 0.25 at ∆Ψ = 1 V.

In this study we determine Qrev/Wel within the re-
stricted primitive model (RPM), where ions are described
as charged hard spheres and the solvent is represented by
an homogeneous background. The RPM is easy to sim-
ulate and is well described in classical density functional
theory (DFT) [22, 37], a version of the famous quantum
DFT adopted to classical systems [38–40]. In our study,
we apply several theoretical approaches of different so-
phistication: the (modified) Poisson-Boltzmann the-
ory of Refs. [34, 35], without and with a Stern layer,
a density functional theory with a very accurate de-
scription of the hard-sphere interaction [22], and molec-
ular dynamics (MD) simulations [41]. For our DFT ap-
proaches we verify Overbeek’s identity Qrev = −∆Ωent.
Moreover, we discuss the importance of the choice of the
thermodynamic process and the corresponding ensem-
ble, which we demonstrate using the analytical Gouy-
Chapman solution to the Poisson-Boltzmann equa-
tions. Finally, anticipating future experiments with other
electrode–electrolyte combinations than used in Ref. [1],
we study different pore sizes, ionic radii, valencies, and
bulk ion concentrations.

II. THEORY

II.1. Thermodynamics

Thermodynamics allows us to draw general conclusions
for our model system without using microscopic details.
We consider the setup sketched in Fig. 1(a), where two
porous electrodes are immersed in an electrolyte held at
temperature T . The pores of each electrode have a cer-
tain fixed geometry during charging processes. Our sys-
tem contains an electrolyte with N+ positive ions, N−
negative ions, and Ns neutral solvent particles. Conju-
gated to these particle numbers are the intensive chemical
potentials µi with i ∈ {+,−, s} that reflect the connec-
tion of the pore volume to an (infinitely) large reservoir
that the electrodes are immersed in.

Upon connecting the electrodes to a battery that sup-
plies a potential difference ∆Ψ, the electrodes acquire
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electric surface charges Q and −Q. The first law of ther-
modynamics for this system relates the change of internal
energy U , heat Q transfered to the system, and thermo-
dynamic work W done to the system, and reads

dU = δQ+ δW . (1)

The electric work performed during charging is given by

Wel =

Q∫
0

∆Ψ dQ′ . (2)

Using Legendre transforms, we obtain the free energy
F (T,Q,Ni) = U(S,Q,Ni)− TS and the grand potential
Ω(T,Q, µi) = F (T,Q,Ni)−

∑
i µiNi, where the entropy

S enters.
According to Eq. (1), a process in, say, a grand canon-

ical system wherein the surface charge on the positive
electrode changes fromQ1 toQ2 must cause a (reversible)
heat flow into the capacitor that reads

Qrev = T∆S . (3a)

Here, the entropy difference ∆S is given by

∆S = −
(
∂Ω

∂T

)
µi,Q2

+

(
∂Ω

∂T

)
µi,Q1

. (3b)

Using Eq. (3a) and the Maxwell relation (∂S/∂Q)T =
−(∂∆Ψ/∂T )Q, the heat during the isothermal charging
process follows as (see also Eq. (S7) of Ref. [1])

QI
rev = T

∫ Q2

Q1

(
∂S

∂Q′

)
T,µi

dQ′ (4a)

= −T
∫ Q2

Q1

(
∂∆Ψ

∂T

)
Q′,µi

dQ′ . (4b)

In Eq. (4a), we introduce a superscript I for the reversible
heat to distinguish it from the later result in Eq. (12)
which uses microscopic information and is valid only in
a canonical system. Note that Eqs. (3b), (4a), and (4b)
also hold in a canonical ensemble if the grand potential
Ω is replaced by the free energy F and the derivatives
are taken at constant Ni instead of µi.

For a general process where all the natural variables of
a thermodynamic potential except for the surface charge
are kept constant, the electric work corresponds to the
change in the thermodynamic potential. For instance,
in a grand canonical system, the above charging process,
where the chemical potentials are kept constant, results
in the electric work

Wel = ∆Ω . (5)

Likewise, the reversible heat can be expressed as the
entropic contribution −TS to the thermodynamic poten-
tial. Here, we already mention that both F and Ω con-
tain this term −TS. Thus, knowing expressions of the

thermodynamic potentials and being able to identify the
contribution −TS would allow to directly read off the
change of entropy and, hence, the reversible heat. Later
we will see that this becomes handy in the framework
of DFT. From hereon, for convenience, we will use the
uncharged electrodes as the reference state and, hence,
the change in the grand potential ∆Ω and its entropic
contribution ∆Ωent vanishes for ∆Ψ = 0. Regarding a
grand canonical system, for example, this means that
the reversible heat during charging satisfies

Qrev = −∆Ωent . (6)

Again, Eqs. (5) and (6) also hold for a canonical system
if Ω is replaced by F .

II.2. Microscopic model setup

To determine thermodynamic potentials and related
state functions for the setup sketched in Fig. 1, we have
to model the microscopic details of the capacitor system.
To capture the essential physics of EDLs in nanopores,
we model the pores of each electrode by two parallel pla-
nar walls of surface area A and separation (pore size) L,
as sketched in Fig. 1(b); note that for our MD simula-
tions we used oppositely charged walls as explained in
Section II.4 and Appendix A. Both walls combined carry
the total charge ±Q of the respective electrodes, leading
to a surface charge density eσ = Q/(2A) with the proton
charge e.

To benefit from symmetries, we consider each pore wall
stretching infinitely in the (x, y) plane of a Cartesian co-
ordinate system such that edge effects are suppressed.
The pore walls are positioned at z = 0 and z = L. In
this setting, the EDLs at the left and right wall generally
overlap. However, if L is sufficiently large, both EDLs
can be considered independent, a situation we call free of
overlap. In this case, a variation of L does not affect the
EDL. If the state is free of overlap and ions are symmet-
ric, the study of only one EDL at one wall is sufficient,
because the EDLs at all other walls of both electrodes
will follow from symmetries.

In this work, we mainly focus on one electrode (two
walls) and define the pore volume AL of one of the elec-
trodes to contain N+ positive ions, N− negative ions and
Ns neutral solvent particles. The ions of the electrolyte
have valencies zi that define the number of positive unit
charges e per ion. Unless stated otherwise we consider
z± = ±1. In cases where we do not explicitly account for
the volume of solvent particles we set Ns = 0. While we
generally assume solvent particles to have zs = 0, if ex-
plicitly present at all, the dielectric nature of the solvent
is always accounted for in a dielectric background via a
relative permittivity εr.

The experiments of our interest dealt with porous car-
bon electrodes and aqueous sodium chloride [1]. While
we usually use states free of overlap by setting L to large
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values, choosing L = 1.6 nm would result in the same ra-
tio of pore volume to electrode surface area as in the
experiments. To account for the steric effects of the
ions, we adopt a restricted primitive model (RPM) and
describe the sodium and chloride ions as charged hard
spheres. As diameter we choose d = d± = 0.68 nm,
a value determined in scattering measurements and ap-
proximating their effective size in water [22, 42]. We also
study the solvent primitive model (SPM), an extension of
the RPM where solvent particles are added as uncharged
hard spheres of ds = 0.3 nm such that the total volume
fraction is 46.8% (corresponding to pure water in our
model).

Apart from our MD simulations, where particles are
considered explicitly, our other theoretical treatments
handle particle densities ρi(~r) of a particle species i ∈
{+,−, s}, i.e., the number of particles at a position ~r
averaged over all states in an ensemble. Due to the in-
finite extension of the pore walls, the number densities
ρi(~r) depend only on z. We further denote the respective
bulk densities by ρ̄i. They have to satisfy the condition
0 =

∑
i ziρ̄i to ensure electroneutrality in the bulk.

We construct the local unit charge density as

q(z) = σ[δ(z) + δ(z − L)] +
∑

i∈{+,−}

ziρi(z) , (7)

using Dirac δ-distributions δ(z). The Poisson equa-
tion now relates q(z) to the electrostatic potential ψ(z)
through

ε0εr∂
2
zψ(z) = −eq(z) , (8)

with ε0 the dielectric permittivity of the vacuum. We
will frequently use the dimensionless potential φ(z) =
eψ(z)/kBT , with kB the Boltzmann constant. Using
capital letters, we denote the electrode potential by Ψ =
ψ(z = 0) and Φ = φ(z = 0). As sketched in Fig. 1(b), we
set ψ(0) = ψ(L).

To come to a closed set of equations, Eqs. (7) and (8)
need to be supplemented with an expression for ρ±(z) in
terms of ψ(z). Accordingly, in the following we present
different theoretical approaches, formulated within the
framework of classical density functional theory (DFT).

II.3. EDL modeling within classical density
functional theory

The central quantity in DFT is the grand potential
Ω[{ρi}], a functional of the particle densities ρi in the
system. While the grand potential functional also de-
pends on T and µi, for readability we omit these depen-
dencies in our notation. As common, we split up the
grand potential functional into

Ω[{ρi}] = Fid[{ρi}] + Fexc[{ρi}]

+A
∑
i

∫
ρi (z) [Vext (z)− µi] dz , (9)

with the intrinsic free energy functional Fid[{ρi}] of an
ideal gas [40], an excess free energy functional Fexc[{ρi}]
that adds contributions due to pair potentials, and a con-
tribution from an external potential Vext (~r ) and chemi-
cal potentials (the latter enter in the Legendre trans-
form between F and Ω). Importantly, the grand potential
functional is minimal for the correct (physical) equilib-
rium particle densities of the system and its value then
equals the value of the actual (thermodynamic) grand
potential [43]. This property allows to determine equi-
librium density profiles by minimizing a given functional.

While the ideal free energy functional is known exactly,
exact excess free energy functionals are only known in a
few cases. Nevertheless, many approximations have been
tested for specific problems. In this work, we employ
three well-established approximations to Fexc; one to de-
scribe point-charge particles and two to describe particles
that additionally occupy volume in space. For the point
charges, we use a mean-field Coulomb functional (cf.
[22]) that reads

FC =
eA

2

∫
q(z)ψ(z)dz . (10)

We refer to this simplest choice by PB, because the
Euler-Lagrange equations of this functional together
with Fid yield the well-known Poisson-Boltzmann
equation [20]. For the next approach, we extend the
above mean-field Coulomb functional by an excess
lattice-gas functional Flg that treats the occupied volume
of the particles effectively via a maximum local number
of allowed particles [44]. The respective free energy func-
tional apart from FC reads

Fid + Flg = kBTA

∫ ( ∑
i∈{+,−}

ρi(z) ln
(

ρi(z)
ρvac(z)

)

− ρM ln
(

ρM
ρvac(z)

))
dz , (11)

where the density of lattice vacancies is ρvac(z) = ρM −
ρ+(z) − ρ−(z) with ρM defining the highest local con-
centration or, in other words, the number density of ac-
cessible lattice sites. The latter is determined from as-
suming random close packing of hard spheres, resulting
in ρMd

3π/6 = 0.634 [45]. We refer to this approach by
mPB, because the functional in Eq. (11) together with
FC yields the modified Poisson-Boltzmann equation
[35, 44] with βµ± = ln(ρ̄±/(ρM− 2ρ̄±)). Finally, we con-
struct a functional for the RPM and SPM by extending
the excess free energy functional Fexc by the non-local
“White Bear mark II” functional for hard spheres [46]
(as in previous work, we additionally apply a correction
by Tarazona [47]). This latter functional allows to de-
scribe hard-sphere interactions between particles and be-
tween particles and the walls by employing fundamental
measure theory [48]. We refer to this approach by FMT.
For explicit expressions and for details on the calcula-
tion of the functionals (via Picard iterations and solv-
ing the Poisson equation) we refer to previous work [22].
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Adding a Stern layer for PB and mPB is discussed in
Appendix B. Note that electrostatic interactions beyond
mean-field are still neglected in our Coulomb functional.

To determine the reversible heat, we go back to the
previous result in Eq. (4b) now. In a canonical system
the reversible heat produced while charging our model
system from surface charge density 0 to σ can also be
expressed as (see Appendix C)

QII
rev = A

σ∫
0

L∫
0

ψ(z)
d

dσ′

(∑
i

ziρi(z)

)
dz dσ′ . (12)

We introduce the superscript II to distinguish between
our previous result in Eq. (4b) and this result in Eq. (12),
where microscopic details enter explicitly through the
density profiles of the system. Thus, this method is suit-
able to determine the reversible heat from DFT data, if
calculations are performed for a canonical system.

II.4. MD simulations

As an additional approach, we study our system of
interest through molecular dynamics (MD) simulations.
For this purpose, we use the ESPResSo software package
[49] with the velocity Verlet algorithm for the propaga-
tion of the particles in our system. Hence, no real hard-
sphere interaction can be used. Instead, we mimick the
hard-core interactions by an extremely repulsive Weeks-
Chandler-Andersen (WCA) potential [50], essentially
a cut and shifted Lennard-Jones potential, that reads

VWCA(r)

4ε
=

{(
dLJ

r

)12 − (dLJ

r

)6
+ 1

4 for r ≤ 21/6dLJ ,

0 otherwise .

(13)

In Appendix A we explain our choice of the parameters ε
and dLJ and verify that this choice yields neutral-sphere
density profiles consistent with DFT (FMT) calculations.
For the electrostatic interactions, ESPResSo provides the
P3M method, a sophisticated Ewald method, as well as
an electric layer correction (ELC) method to effectively
remove the periodicity in one direction. We use both
methods in a three-dimensional simulation box with pe-
riodic boundary conditions such that periodicity in the x
and y directions account for the translational invariance
of the system in those directions and the periodicity in
z-direction is suppressed (see Fig. 1(b)).

To model the effects of the charged walls, we first en-
sured that the EDLs were free of overlap such that we
could run simulations with surface charges of opposite
sign on both plates (see also discussion in Section II.2).
Then we applied an additional constant electric field Ez
along the z-direction to all particles, which equals the
field induced solely by the surface charges. The corre-
sponding electrostatic potential difference between both

walls for a given electric field strength Ez is then obtained
by

∆Ψ =
mz

ε0εrA
− EzL , (14)

where mz = e
∫
z(z+ρ+(z) + z−ρ−(z)) dz is the electric

dipole moment of the collective distribution of the ions
along the z-direction.

II.5. Qrev depends sensitively on the boundary
conditions of the charging process

Next, we show that Qrev/Wel differs dramatically be-
tween charging processes at either fixed µ±, ρ̄±, or N±.
For illustrative purposes, we use the Gouy-Chapman
solution to the Poisson-Boltzmann equations in this
section: This solution allows for (semi) analytical ex-
pressions for Qrev/Wel under the three above thermo-
dynamic conditions. Charging processes at constant µ±
and N± are most easily treated in the well-known grand
canonical and canonical ensembles, respectively. We re-
fer to the charging at fixed bulk densities ρ̄± as semi-
canonical, as Qrev generated under this thermodynamic
condition turns out to be close to the heat generated in
large canonical systems.

II.5.1. Recap of the Gouy-Chapman solution

Gouy and Chapman solved the Poisson-
Boltzmann equations for a setup of one planar
charged hard wall next to an infinite reservoir of 1 : 1
electrolyte for which ρ̄+ = ρ̄−. The solution reads
[18, 19]

φ(z) = 4 arctanh

[
exp

(
− z

λD

)
tanh

(
Φ

4

)]
, (15a)

ρ±(z) = ρ̄± exp [∓φ(z)] , (15b)

where λD is the Debye length with λ−2D = 4πλB
∑
i ziρ̄i

and λB = e2/(4πε0εrkBT ) is the Bjerrum length. Note
that Eq. (15) can be easily reformulated for a general
|zi| : |zi| electrolyte and so can the results that we derive
below with Eq. (15).

From Eq. (15a) follows the surface charge density with
Gauss’s law as

σ = σ̄ sinh

(
Φ

2

)
, (16)

where σ̄ = 4λDρ̄+. Moreover, inserting Eq. (15) into
Eq. (9) we find (cf. Eqs. (24) and (25) of Ref. [34])

ΩGC = ∆ΩGC
el + ∆ΩGC

ent − pV, (17a)
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with the bulk pressure p = kBT
∑
i ρ̄i of an ideal gas and

∆ΩGC
el

AkBT
= σ̄

[
cosh

(
Φ

2

)
− 1

]
, (17b)

∆ΩGC
ent

AkBT
= σ̄

[
3− 3 cosh

(
Φ

2

)
+ Φ sinh

(
Φ

2

)]
. (17c)

Here, ΩGC was partitioned into an entropic contribution
∆ΩGC

ent and an energetic contribution ∆ΩGC
el [34]. The en-

ergetic contribution stems from the mean-field Coulomb
functional FC , while the contribution ∆ΩGC

ent −pV equals
Fid −

∑
i µiNi. However, as pointed out by Overbeek,

FC only yields purely energetic terms if a constant, in
particular temperature-independent, dielectric constant
is used (see also Appendix D).

We will demonstrate in the next subsection that ∆ΩGC
ent

as defined in Eq. (17c) does not fulfill the correspondence
given in Eq. (6) (cf. Eq. (18)). However, as it turns out,
∆ΩGC

ent is closely related to the entropic contribution to
the free energy in canonical systems (cf. Section II.5.4).

II.5.2. Gouy-Chapman at fixed µ± (grand canonical)

Inserting ΩGC from Eq. (17) into Eqs. (3a) and (3b)
to obtain Qrev, we find

QGC
rev

AkBT σ̄
=

(
9

2
− µ+

kBT

)[
cosh

(
Φ

2

)
− 1

]
− Φ sinh

(
Φ

2

)
.

(18)

In Appendix D we show that inserting Φ(σ) (as follows
from inverting Eq. (16)) into Eq. (4a) yields the same
expression for QGC

rev .

Figure 2(a) shows the ratio QGC
rev /Wel > 0 of re-

versible heat and electric work for grand canonical charg-
ing. Here, we used the atomic mass 23 u correspond-
ing to sodium to determine QGC

rev and we used Eqs. (5)
and (17a) to determine Wel from ∆ΩGC. We observe
QGC

rev /Wel > 0 up to ∆Ψ ≈ 0.9 V, suggesting that heat
flows into the system during charging, contradicting the
experimental findings of Ref. [1]. This positive ratio
is caused by the net ion adsorption in both electrodes
∆N = 4Aσ̄ [cosh (Φ/2)− 1] ≥ 0 within the system dur-
ing charging when more counterions are attracted than
coions are expelled; see also Eq. (19) and Appendix E.
Yet, an entropy contribution from increasing particle
numbers is unlikely to have occured in the experiments of
Ref. [1]: The system of porous electrodes and electrolyte
reservoir used there, though certainly large, was closed
and, hence, canonical. We conclude that the reversible
heatQGC

rev , with its uncommon explicit dependence on the
ionic chemical potentials (hence on Planck’s constant
and ionic mass alike), is not relevant for the experimen-
tal setup of Ref. [1].

II.5.3. Gouy-Chapman at fixed N± (canonical)

Going from a grand canonical to a canonical descrip-
tion, the total numbers of particles per species N tot

±
are kept fixed during charging rather than the chemi-
cal potentials µ±. Hence, tracing the system states in
a two-dimensional (N tot

± , µ±) diagram during charging,
grand canonical systems move along lines of constant µi
whereas canonical systems move along lines of constant
N tot
± . As our model of the supercapacitor consists out

of two charged hard walls for each electrode, the total
numbers of both cations N tot

+ and anions N tot
− read

N tot
± =

A L∫
0

ρ±(z) dz


at pos.

electrode

+

A L∫
0

ρ±(z) dz


at neg.

electrode

.

(19)

We consider systems whose EDLs are free of overlap:
the smallest L = 10 nm used in this subsection is still
much larger than λD ≈ 0.31 nm. Then, we determined
Wel during canonical charging with the Gouy-Chapman
solution as follows. For a given Φ, we inserted ρ±(z)
from Eq. (15) into Eq. (19) and varied ρ̄± until the pre-
scribed N tot

± was attained. Clearly, the bulk densities
ρ̄± decrease while Φ increases at fixed N tot

± [51]. For
each combination of Φ and ρ̄±, we find σ with Eq. (16),
after which Wel follows from Eq. (2) straightforwardly
(see also Appendix E). Next, to determine the heat Qrev

produced during canonical charging, we are confronted
with the problem that DFT is formulated in the grand
canonical ensemble. However, since our system is as-
sumed to be infinite along the in-plane directions, the
equivalence between the thermodynamic potentials (here
Ω and F ) holds true. We may thus perform a Legen-
dre transform to obtain the free energy of our system
as F = Ω +

∑
i µiNi, where we use ΩGC (Eq. (17)) in

place of Ω. Numerically calculating the derivative of the
free energy with respect to temperature then yields the
reversible heat.

Figure 2 shows ratios −Qrev/Wel of reversible heat and
electric work for canonical systems of different lengths L.
Here, the expected sign, corresponding to heat flowing
out of the system during charging, is obtained. We also
note that, though all systems considered are free of EDL
overlap, −Qrev/Wel depends markedly on L. This is be-
cause, the smaller the system, the faster ρ̄± decreases
during canonical charging. The connected reservoir in
the experiment of Ref. [1] being large in comparison to
the volume filled by EDLs and desalination of the bulk
being negligible during charging brings up the question as
to how the ratio −Qrev/Wel behaves in the limit of large
systems where L/λD → ∞. Based on the arguments of
the previous subsection, we do not expect −Qrev/Wel to
be the same in grand canonical and canonical processes
in this limit.
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Figure 2. Ratio −QGC
rev/Wel of negative reversible heat and

electric work during isothermal charging as a function of ap-
plied potential ∆Ψ calculated with the Gouy-Chapman so-
lution (a) in a grand canonical setting at fixed µ± and (b) in a
canonical setting at fixed N± for several porewidths L. Panel
(b) also shows the ratio ∆ΩGC

ent/∆ΩGC in a semi-canonical
setting as follows from Eq. (17), which corresponds to a fixed
ρ̄±.

II.5.4. Gouy-Chapman at fixed ρ̄± (semi-canonical)

Reference [1] found an expression for the Qrev using
Eq. (12), which holds for canonical systems only, insert-
ing, however, Gouy-Chapman density profiles pertain-
ing to a grand canonical system. Interestingly, their
expression for QII

rev also follows from combination of
Eqs. (6) and (17c). Now, an identical expression for
QI

rev can be obtained from Eqs. (3) and (4) if the partial
derivatives therein are carried out not at fixed µi (imper-
ative in grand canonical settings), but for constant ρ̄±,
that is, a ρ̄± independent of T , σ, and hence Φ.

Importantly, at fixed ρ̄±, the chemical potentials µi
vary with T and that the particle numbers N± vary with
Φ. Hence, fixed-ρ̄± charging is neither grand canonical
nor canonical, and we call it “semi-canonical” instead.
Meanwhile, as the ionic density profiles for given ρ̄± are
the same in grand canonical and semi-canonical systems,
they have the same Φ(σ)-relation and, through Eq. (2),
the same Wel as well.

In Fig. 2 we plot the ratio of reversible heat and elec-
tric work obtained from the Gouy-Chapman solution
via Eq. (17). As discussed above, the ratio ∆ΩGC

ent /∆ΩGC

in this semi-canonical system indeed represents the limit-
ing ratio in the canonical system for increasing amounts
of connected bulk and, thus, increasing L. It is astonish-
ing that calculations carried out for this semi-canonical
process at fixed ρ̄± do not only reflect the conditions of
the experiment much better but also simplify calculations
(e.g. Eqs. (D3) and (D4)).

0.0 0.1 0.2 0.3 0.4 0.5 0.6

∆Ψ [V]

0

1

2

3

4

5

[ k B
T
/
n

m
2
]

−Qrev/A

−QII
rev/A

∆Fhs/A

∆
(Fid −

∑
i µiNi

)
/A

Figure 3. Negative reversible heat −Qrev per area A obtained
via Eq. (3a) (dots) and Eq. (12) (solid line) from FMT RPM
during an isothermal charging process. In addition, we show
the change of the contributions Fhs (upper orange area) and
Fid −

∑
i µiNi (lower blue area) to the grand potential.

II.5.5. Conclusion

As demonstrated using the Gouy-Chapman solution,
the ratio Qrev/Wel depends strongly on the used thermo-
dynamic conditions. Next to conventional grand canon-
ical and canonical charging processes, we introduced a
third process, namely a semi-canonical charging process
at constant ρ̄±. This process mimics a charging process
in a system connected to an infinite bulk, such that the
system in combination with the bulk is canonical. Even
though the density profiles for different σ or Φ but con-
stant T are the same as in a grand canonical system, the
reversible heat produced during semi-canonical charging
resembles the heat generated in a canonical system in-
stead. Importantly, this semi-canonical process reflects
the conditions of the experiment as described in Ref. [1]
best and, accordingly, it is used in the following.

III. RESULTS

We consider a parameter set corresponding to the ex-
periment of Ref. [1]: T = 300 K, ρ̄± = 1 M, d = 0.68 nm,
and εr = 80 (in all approaches, including SPM) resulting
in a Bjerrum length of around λB = 0.696 nm. Note
that d only enters in Fhs and Flg. Moreover, we now
set L = 10 nm and discuss narrower pores later in Sec-
tion III.3.

III.1. Check of Qrev = −∆Ωent (Eq. (6))

In Fig. 3, we show results from FMT RPM for the
reversible heat QI

rev and QII
rev. Both calculations via

Eq. (3a) (dots) and Eq. (12) (solid line) clearly yield
the same result numerically. We further check numer-
ically whether the free-energy contribution of the hard-
sphere interaction within FMT adds to the entropic con-
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tribution to the grand potential. For this purpose, we
calculate the contributions Fhs and Fid with the den-
sity profiles from FMT; we calculate the particle num-
bers via Eq. (19). The two resulting terms ∆Fhs and
∆(Fid −

∑
i µiNi), shown with colored areas in Fig. 3,

add up to precisely ∆Ωent = −Qrev (Eq. (6)). Thus, as
expected, the contribution of the hard-sphere excess term
goes completely into the entropic part. We performed the
same checks in the mPB model. Again grouping the vol-
ume exclusion term (Flg) into the ∆Ωent term, we verified
∆Ωent = −Qrev also for mPB.

In conclusion, in two new cases we have numerically
verified that ∆Ωent = −Qrev only holds if the excess
functional accounting for steric interactions is grouped
into the entropic contribution ∆Ωent of the grand poten-
tial. From hereon, we prefer to speak about Qrev/Wel

instead of ∆Ωent/∆Ω, although the latter has been used
in previous work [1, 36]. This is because both Qrev and
Wel are unambiguously defined in Eqs. (2), (3a), and (12)
and can be measured experimentally.

III.2. Qrev/Wel within theoretical approaches

In Fig. 4, we show the ratio −Qrev/Wel obtained from
the different methods introduced before as well as the
experimental data of Ref. [1]. Explicitly, we compare the
ratios obtained via PB without (red dotted line, same
data as in Fig. 2(b)) and with Stern layer (thick blue
dotted line), mPB without (purple dash-dotted line) and
with Stern layer (thick pink dash-dotted line), FMT
RPM (cyan solid line), FMT SPM (teal dashed line),
and MD simulations (orange crosses).

First, we notice that PB, the only description where all
steric interactions among the particles are neglected, de-
viates from all other curves in the way that Qrev → −Wel

at large potentials. At small applied potentials, we have
Qrev = −Wel/2. This is all in perfect agreement with
earlier descriptions by Overbeek [34]. Second, as spec-
ulated in Ref. [1], mPB theory describes the experimental
data much better than PB theory. PB and mPB coin-
cide at small applied potentials, which is understood from
their equal leading-order expansion in ∆Ψ, the Debye-
Hückel equation [35]. Conversely, for ∆Ψ much be-
yond the thermal voltage, −Qrev/Wel radically changes:
PB predicts the ratio to rise to 1 for large potentials,
while mPB predicts this ratio to decrease with increas-
ing potential instead. A similar qualitative change upon
accounting for steric repulsions was found in Ref. [36].
Similar conclusions for PB and mPB also hold when we
add a Stern layer, as explained in Appendix B. Account-
ing for a Stern layer, however, dramatically alters the
ratio −Qrev/Wel at low applied potentials. Interestingly,
the value of −Qrev/Wel around 0.24 agrees well with the
more sophisticated FMT approaches that we discuss now.

We see that the predictions of FMT both for RPM
and SPM are almost equal and agree with all experimen-
tal data within two standard deviations. The similarity

of the RPM and SPM results, however, does not mean
that solvent properties do not affect −Qrev/Wel. For ex-
ample, the SPM does not account for dipolar interac-
tions within water, which might influence −Qrev/Wel. At
large potentials, RPM and SPM predictions for the ra-
tio −Qrev/Wel are similar to those from mPB, but RPM
and SPM predict this ratio to be roughly constant, while
mPB predicts this ratio to still decrease with increasing
potential. Interestingly, PB with Stern layer predic-
tions are also similar to those from FMT, even for large
potentials. At small potentials, RPM and SPM deviate
significantly fromQrev = −Wel/2, as predicted by the ap-
proaches without Stern layer (PB and mPB). In both
RPM and SPM particles cannot get closer to the wall
than half a particle diameter, introducing a Stern-like
layer, whereas in PB and mPB particles can get arbitrar-
ily close to the wall.

Further, we performed MD simulations for ρ̄± = 1 M

with 600 particles per species in a box of (10 nm)
3
. The

MD simulations give access to the (equilibrium) internal
energy U and the electric work Wel done to the system
(see Eq. (2)), from which the heat flowing into the sys-
tem follows as Q = ∆U −Wel . In Fig. 4, we see that
MD (orange crosses) predicts slightly larger values for
−Qrev/Wel than FMT, and mostly describes the experi-
ment worse. We performed a convergence analysis for the
parameter L by regarding this ratio for different system
lengths. We found that the statistical error for potential
differences ∆Ψ ≥ 0.2 V is smaller than the used marker
size and hence negligible compared to the experimental
uncertainty.

The deviation between MD and FMT predictions can
have different reasons: most probably, the approximate
mean-field functional used for the electrostatic interac-
tions in the FMT approach simply does not capture cru-
cial contributions. For instance, it is known that inaccu-
rate approaches like the FMT approach predicts qualita-
tively wrong adsorption to weakly charged walls in the
RPM [52]. Another, similar reason, could be the treat-
ment of image charges in both MD and FMT. While im-
age charges are not captured in our MD, it is not yet un-
derstood whether they are captured in the ensemble av-
eraged DFT approach. Nevertheless, from the agreement
between FMT and PB with Stern layer we conclude that
the complex structure of the ion density profiles near the
surface of the charged hard wall, as predicted only by
the FMT approaches and MD, is less important than the
steric interaction between the charged wall and the ions
represented by the Stern layer.

III.3. Influence of pore size, ionic diameter, bulk
density, and valencies on Qrev/Wel

Using the FMT RPM approach, we discuss how differ-
ent parameters affect −Qrev/Wel.



9

0.0 0.2 0.4 0.6 0.8 1.0

∆Ψ [V]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

−Q
re

v
/
W

e
l

PB

PB+Stern

mPB

mPB+Stern

FMT RPM

FMT SPM

MD RPM

Ref. [1]

Figure 4. Ratio −Qrev/Wel of negative reversible heat and electric work during isothermal charging as a function of applied
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Figure 5. Ratio −Qrev/Wel for FMT RPM as in Fig. 4, but
for different system lengths L.

III.3.1. Pore size L

Figure 5 shows −Qrev/Wel for several L and all
other parameters as in Fig. 4, for which, in particular,
λD ≈ 0.31 nm. For interacting EDLs obtained for small
pore sizes around L ∼ λD, one can see a rapid increase of
−Qrev/Wel with decreasing L. This finding is relevant to
many supercapacitor experiments, where pores in elec-
trodes are nanometer sized and, hence, strong EDL over-
lap can be expected. For systems larger than L = 4 nm
no further effects from L on −Qrev/Wel can be seen be-
cause the EDLs decay almost completely within half a
system length. As stated earlier, to get the same ratio of

pore volume to surface area as in the experiment, a pore
size of L = 1.6 nm must be used. For such a pore size the
agreement between the experiment and the FMT RPM
curve would be much worse. However, the effective di-
ameter of the ions used here includes some contributions
due to hydration shells. These hydration shells might
be partly shed when ions get adsorbed at the electrode
causing some effective increase of pore size due to shrink-
ing effective ion sizes. This issue cannot be completely
resolved here with the excess functional Fexc that we use
and needs further investigation.

III.3.2. Ionic diameter d

Figure 6 shows −Qrev/Wel for several d and all other
parameters as in Fig. 4. We also show the analytical
Gouy-Chapman solution to the Poisson-Boltzmann
equations for point charges that follows from Eq. (17).
We see that, with d→ 0, the RPM results move progres-
sively towards the PB predictions. Notably, however,
even for (unphysically) small d, the RPM qualitatively
differs from PB as it does not approach 1 but rather
decreases at large ∆Ψ. We interpret these results as fol-
lows: The change in entropy upon charging is associated
with the increasing order in the system when ions sep-
arate. As PB predicts larger −Qrev/Wel than RPM in
Fig. 4, the change in entropy upon charging is strongest
for point charges. Steric interactions of the hard spheres
in the RPM model counteract this trend to order and
thus decrease the ratio −Qrev/Wel.
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III.3.3. Bulk density ρ̄±

Figure 7 shows −Qrev/Wel for several ρ̄± and all other
parameters as in Fig. 4. Clearly, −Qrev/Wel decreases
with increasing ρ̄±. We have verified that |Qrev| de-
creases with increasing ρ̄± as well, as was found in ex-
periments [53]. Note that in the RPM a phase tran-
sition would be expected at a packing fraction roughly
above 0.45 that corresponds to a bulk concentration of
ρ̄± = 5.4666 nm−3 = 9.1 M [54], which is far from
our system at 1 M. Further, the reduced temperature
T ∗ = d/λB = 0.977 in our system is much larger than
the temperatures where gas-liquid phase separation oc-
cur [54].
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Figure 8. Ratio −Qrev/Wel for FMT RPM as in Fig. 4, but
for different valencies |z+| : |z−|.

III.3.4. Valencies zi

Figure 8 shows −Qrev/Wel for several binary multiva-
lent electrolytes. In order to get an electrically neutral
bulk, the bulk densities ρ̄± must be changed accordingly.
We choose bulk densities such that ρ̄+ + ρ̄− = 2 M to get
the same total bulk particle density as before. All other
parameters are as in Fig. 4. We see that −Qrev/Wel

decreases with the amount of total charge defined as
e
∑
i |zi|ρ̄i. Next to integer charges, we also studied one

case of fractional charges, relevant for effective charges
of larger molecules as they occur, for instance, in the
description of ionic liquids [55].

Note that, due to the simple form of the Coulomb in-
teraction, a multiplicative factor for the valencies can be
theoretically mapped onto different εr or T . For example,
the data with valencies zi = 0.5 corresponds to one with
zi = 1 at a four times higher temperature. Note that
also the surface charges, and hence the electric potential,
would have to be rescaled.

IV. DISCUSSION AND CONCLUSIONS

In this study, we calculated the ratio −Qrev/Wel be-
tween the negative of the reversible heat emerging during
isothermal charging processes and applied electric work
for the RPM, SPM, and PB-type models of electrolytes.
Our findings agree with the experimental results from
Ref. [1] and demonstrate the importance of ionic steric
interactions with the charged wall to explain the experi-
ments theoretically.

First, we found that the ratio of reversible heat and
electric work depends sensitively on the thermodynamic
conditions. A semi-canonical process explains the experi-
ments from Ref. [1] best. This process describes charging
in a system connected to a very large bulk reservoir such
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that the reservoir has constant bulk density during par-
ticle exchange, as in a grand canonical system. Simulta-
neously, the bulk density does not change with tempera-
ture such that the chemical potential does change, as in
a canonical system. We demonstrated and discussed this
finding for different ensembles and processes; for simplic-
ity we used the Gouy-Chapman solution to PB theory.

For the calculation of the reversible heat and elec-
tric work in the RPM, we used different theoretical ap-
proaches, namely classical DFT and MD simulations.
To describe the ionic volume in DFT, we used a mod-
ified PB approach as well as a sophisticated approach
using FMT. Furthermore, we performed calculations for
point-like ions within Poisson-Boltzmann theory with
and without a Stern layer to emphasize the impor-
tance of steric wall-ion interactions for a description of
the experiments. While mPB and FMT predictions for
Qrev/Wel are similar for large ∆Ψ, they deviate signif-
icantly around ∆Ψ = 0 V. Such differences would in
principle be experimentally testable though the data of
Ref. [1] for ∆Ψ < 0.2 V have large uncertainty. Con-
versely, addition of a Stern layer to PB and mPB yields
predictions in excellent agreement with FMT even at low
potentials. We point out that deviations between MD
and FMT most probably arise from the inaccurate treat-
ment of the electrostatic interactions in our used func-
tional, but other sources like the different treatment of
image charges are possible as well. Meanwhile, discrepan-
cies between our theoretical calculations and the experi-
mental data could have different causes: In our model we
neglected adsorption and faradaic reactions and, further,
the geometry in our model is an oversimplification of real
porous electrodes. Moreover, the treatment of the solvent
as a constant dielectric background means that we cannot
describe the shedding of an ion’s hydration shell when it
enters an ultranarrow pore. Notwithstanding these reser-
vations, our results point towards the important role of
the finite size of particles to heat production experiments
of capacitive systems.

For this reason, we have further tested the importance
of volume effects of the electrolyte solvent that is not
contained in the RPM: We performed additional FMT
calculations in the SPM, where steric interactions of sol-
vent particles are treated explicitly; solvent particles are
described as neutral hard spheres, while we retained the
dielectric background of the RPM. We could not find sig-
nificant deviations between our calculations for RPM and
SPM.

Anticipating more experimental data and having at
hand a predictive theoretical approach, we further stud-
ied how the ratio Qrev/Wel changes with pore size L, ion
size d, salt concentration ρ̄±, and ionic valencies z±. We
found that the ratio depends sensitively on all these pa-
rameters. Experimental heat production measurements
should be able to pick these trends up.

In the future, experiments for the ratio Qrev/Wel could
become a valuable tool to test aspects of EDL theories.
However, the large experimental uncertainty of the avail-

able data at small applied potentials [1] hinders this at
the moment. We thus hope that our study inspires more
experimental work on this topic. Furthermore, our find-
ings are of interest for applications, where EDLs change
cyclically or where they are exploited in combination with
temperature changes, for instance in heat-conversion pro-
cesses.

Finally, DFT has the advantage to provide thermody-
namic potentials innately. While DFT is limited to equi-
librated systems, dynamical DFT allows to study non-
equilibrium processes, for instance, fast (dis)charging of
supercapacitors where Joule heating comes into play as
well [56–58]. Such a framework could be of interest for
several applications. For instance, recently the heat pro-
duced in nervous conduction has been found to contain
a large fraction of reversible heat, while irreversible con-
tributions are small, if existing at all [9]. Now, our work
could guide studies, where the theoretical description of
nervous conduction goes beyond ideal solutions and ho-
mogeneous bulk concentrations, as typically applied, and,
thus, could shed new light on this fundamental neuro-
science process.
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Appendix A: Simulation details

For the MD simulations, we had to set the WCA pa-
rameters entering Eq. (13). For the strength of the repul-
sion we used ε = 100kBT , as in previous work [37]. Note
that in literature many different methods to obtain an ef-
fective radius can be found [50, 59]. We set dLJ such that
density profiles from DFT and MD agree well for a sys-
tem of neutral hard spheres, which happens when 21/6dLJ
is about 1.4% larger than the hard-sphere diameter. To
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obtain this value, we demand that the first Mayer f -
bond contribution for a hard-sphere system equals the
one for the WCA potential [40].

As the counterion density near the walls shoot up with
the applied potential, one needs to check if the simulation
box is sufficiently large to capture the spatial correlations
along the lateral directions. Accordingly, we calculated
the radial distribution function projected on the lateral
plane for particles close to the wall. We checked that
the projected radial distribution function decays to zero
within half a lateral box length. Further, we checked
that the length of the system along the normal direction
is long enough such that, as for DFT, the different EDLs
do not interact nor desalinate the bulk. We found that
a box of (10 nm)

3
with 600 particles per species meets

the desired conditions. The particle numbers in the sim-
ulations are chosen such that we find the bulk densities
from DFT calculations in the center of the simulation
box. This allows us to use oppositely instead of equally
charged walls in our simulations. Hence, an homogeneous
electric field can be used to mimic the effects of surface
charges.

Appendix B: Adding a Stern layer to the PB and
mPB approach

The finite size of ions affects both the ion-ion inter-
action as well as the ion-wall interaction. A simple way
to account for finite ion size (in the ion-wall interaction)
is through a Stern layer, which is a charge-free region
reaching from the electrode surface into the electrolyte
over the ionic radius d/2. From Eq. (8) and Gauss’s law
∂zφ = −4πλBσ follows the potential difference over the
Stern layer as ΦStern = 2πλBσd. Note that the same
potential drop ΦStern applies to PB and mPB theory.

In Eqs. (17b) and (17c), we expressed ΩGC
el as a func-

tion of the potential Φ. Using, instead of Eq. (16), that

Φ = 2 arcsinh
(σ
σ̄

)
+ 2πλBσd , (B1)

we can express ΩGC
el as a function of σ as

ΩGC+Stern
el (σ) = ΩGC

el (σ) +
e2σ2Ad

4ε0εr
. (B2)

As ΩGC
ent (σ) is unaffected by the Stern layer we obtain

the ratio −Qrev/Wel as a function of σ as

−Qrev

Wel
(σ) =

ΩGC
ent (σ)

ΩGC
ent (σ) + ΩGC+Stern

el (σ)
. (B3)

Using this result together with Eq. (B1) to obtain the
potential Φ, we obtain the thick dotted blue line shown
in Fig. 4.

Appendix C: Reversible heat from integrated heat
production

For a thermodynamical (dis)charging process, the dif-
ference in heat δQ can be calculated from the difference
in internal energy dU and the work δW done during the
process as

δQ = dU − δW. (C1)

If the only non-zero contribution to the internal energy
comes from the electrostatic interaction, we have

dU = d

ε0εrA
2

L∫
0

(E(z))2dz

 (C2)

= ε0εrA

L∫
0

(dE(z)E(z)) dz (C3)

= eA

L∫
0

(dq(z) ψ(z)) dz . (C4)

In the last step, an integration by parts is performed.
Further, one should keep in mind that the charge dis-
tribution q(z) contains contributions from both the ions∑
i ziρi(z) and the surface charges on the electrodes σ.
For a process of duration T , the change in internal

energy follows as

∆U =

T∫
0

dU

dt
dt (C5)

= eA

T∫
0

L∫
0

dq(z)

dt
ψ(z)dz dt (C6)

= −A
T∫
0

L∫
0

I(z)E(z)dz dt, (C7)

where the continuity equation is used and another inte-
gration by parts is performed.

Similarly, the electric work during (dis)charging can be
written as

∆Wel =

T∫
0

dQ

dt
∆Ψdt . (C8)

Subtracting Eq. (C8) from Eq. (C7) (or respectively
Eq. (C6)), one is left with the ionic currents. However,
one should keep in mind that this difference yields the
corresponding heat only if there are no other work terms.
In a grand canonical charging process, for example, one
would also get a work term due to a particle flux into/out
of the system

∆Wch =
∑
i

µi∆Ni . (C9)
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If one wants to calculate the reversible heat, an infinitely
slow (dis)charging process must be regarded where the
system is in equilibrium at every time. Variable substitu-
tions in Eqs. (C6) and (C8), replacing the time integrals
by integrals over surface charge density, yield

QII
rev = A

σ∫
0

L∫
0

ψ(z)
d

dσ′

(∑
i

ziρi(z)

)
dz dσ′ . (C10)

Note that we introduced the index II solely for confor-
mity with the main text. This equation is very useful to
calculate the reversible heat from DFT data.

Appendix D: Derivation of QI
rev

For the Gouy-Chapman solution, the heat flow near
a single charged wall follows from Eqs. (4a) and (16) and
the definition of σ̄ as

QI,GC
rev

AkBT
= −2

σ∫
0

[
∂T sinh−1 (σ′/σ̄)

∂T

]
α,σ′

dσ′ (D1)

= −2

σ∫
0

[
sinh−1

(
σ′

σ̄

)
− σ′√

σ′2 + σ̄2

(
∂ ln σ̄

∂ lnT

)
α

]
dσ′ (D2)

= −σ̄
{

Φ sinh

(
Φ

2

)
+ 2

(
1− cosh

(
Φ

2

))[
1 +

1

2

∂ ln[εr(T )T ]

∂ lnT
+

1

2

(
∂ ln ρ̄+
∂ lnT

)
α

]}
. (D3)

Here, α stands for the variable(s) kept fixed during the
partial T -derivative. If we consider the ensemble of
fixed ionic concentration (α = ρ̄+ = ρ̄−), the last term
Eq. (D3) drops out. If in addition ∂(εr(T )T )/∂T = 0,
which is accurate for water (cf. p. 69 in Ref. [34]),
Eq. (D3) yields

QI,GC
rev

AkBT
= −σ̄

[
2− 2 cosh

(
Φ

2

)
+ Φ sinh

(
Φ

2

)]
(D4)

= −
(
∆ΩGC

ent + ∆ΩGC
el

)
, (D5)

the same as Eq. (S11) in Ref. [1] (up to a typo in their
Ω subscript). This, however, would mean that at every
point of charging the amount of electric work put into
the system would flow out of the system in the form of
reversible heat. Thus, the internal energy of the system
would remain constant during charging, which would be
surprising. This may be resolved by including some ex-
plicit model for the solvent responsible for the T depen-
dence of εr(T ). The explicit model would yield further
entropic contributions and may also resolve the problem
that for T -dependent εr(T ) one gets QI

rev 6= QII
rev, as

was found in Ref. [1]. If ∂(εr(T ))/∂T = 0 is considered
instead, we find

QI,GC
rev

AkBT
= −σ̄

[
3− 3 cosh

(
Φ

2

)
+ Φ sinh

(
Φ

2

)]
(D6)

= −∆ΩGC
ent . (D7)

In the grand canonical ensemble (α = µ+ = µ−), we
make use of µ± = kBT ln

(
Λ3
±ρ̄±

)
to find(

∂ ln ρ̄±
∂ lnT

)
µ±

=
3

2
− µ±
kBT

. (D8)

For the case that ∂[εr(T )]/∂T = 0, one now finds

QI,GC
rev

AkBT
= −σ̄

{
Φ sinh

(
Φ

2

)
+

(
1− cosh

(
Φ

2

))[
9

2
− µ+

kBT

]}
,

(D9)

which is Eq. (18) of the main text.

Appendix E: Adsorption in the canonical
Gouy-Chapman solution

In a canonical charging process, the total number of
ions must be conserved. To derive the corresponding
equation for ρ̄±, a system free of overlap is assumed. For
simplicity, every electrode is assumed to be one charged
hard wall in order to get rid of an additional factor of 2
that cancel anyway for the ratio −Qrev/Wel.

Following Ref. [51] (Eqs. 7-10), we see that the total
number of ions per species in our system can be written
as

N±
A

=
∆N

A
+ ρ̄±L , (E1)

where ∆N is

∆N

A
= σ̄

[
cosh

(
Φ

2

)
− 1

]
. (E2)

This equation can be solved for ρ̄± where one should keep
in mind that σ̄ is ρ̄± dependent.

In combination with Eq. (16) we have thus two equa-
tions to numerically search for combinations of σ, Φ, and
ρ̄± that solve these equations. From ρ̄± one can simply
calculate µi and thus we can calculate Wel and F then.
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