
University of Oslo
Department of Informatics

Simulation of Rigid
Body Dynamics

Ståle Waage Pedersen

22nd July 2003



Preface
This thesis documents my work on the Cand. Scient. degree in Com-
puter Science at the University of Oslo, faculty of mathematics and nat-
ural sciences, department of informatics, direction of Computational
Mathematics.

I would like to thank Trond Gaarder for good cooperation in the
early phase of this thesis and several helping hints along the way.

Further i would thank my supervisor Hans Petter Langtangen for
useful feedback on the writing of this thesis.

i



Abstract
In this thesis the problems of simulating rigid body dynamics are dis-
cussed and a library is provided that can be reused without dealing
with the more complicated problems of rigid body simulation as colli-
sion detection and contact handling.

ii



Contents

1 Introduction 1
1.1Rigid Body 1
1.2Rigid Body Simulation 1
1.3Simulator 2
1.4Dynamic Simulation 3
1.5Collision Detection 3
1.6Programming Languange 4
1.7Where to use Rigid Body Dynamics 4
1.8Thesis Organization 4

2 Rigid Body Dynamics Theory 6
2.1Kinematics 6
2.1.1Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2Center of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2Forces and Torques 9
2.2.1Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3Inertia tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 SimulatingRigid Body Dynamics 12
3.1Mass Properties 12
3.2Rigid Body Equations of Motion 12
3.3Quaternions 14

iii



CONTENTS

3.4Ordinary Differential Equation 15
3.4.1Initial Value Problem . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.2Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.3Runge-Kutta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Collision Detection 18
4.1Bounding Volume 19
4.2Cost Function 19
4.3Separating Axis 20
4.4Axis Aligned Bounding Box 21
4.4.1Building a AABB . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2AABB Intersection Test . . . . . . . . . . . . . . . . . . . . . 21
4.5Oriented Bounding Box 21
4.5.1Building an OBB . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5.2OBB Intersection Detection . . . . . . . . . . . . . . . . . . . 22
4.6OBBTree 24
4.7Sweep and Prune 24
4.8Hierarchical Collision Detection 25
4.9Collision Report 26

5 Collision Detection Implementation 27
5.1Implementation of OBBTree 28
5.2Collision Report Implementation 30
5.3Implementation of Sweep and Prune 31
5.4Performance 32
5.4.1Demo Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.2Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.3Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Rigid Body Library 36
6.1Implementation 37
6.1.1Rigid Body Library . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2Collision Detection Library . . . . . . . . . . . . . . . . . . . 40
6.1.3Rigid Body Manager . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.4Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2Example of Use 43
6.3Summary 44

iv



CONTENTS

7 Contact 45
7.1Colliding Contact 45
7.2Resting Contact 48
7.3Implementation of Colliding Contact 50

8 Java 53
8.1Overview 53
8.2Java Development Kit 53
8.3Java Virtual Machine 54
8.4Java Hotspot 54
8.5Java Performance 55
8.6Java3D 56
8.6.1Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.6.2Future of Java3D . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Conclusion 58
9.1Progression, Difficult Subjects 58
9.2Further Work 59

v



List of Figures

4.1 The separation axis for two OBBs . . . . . . . . . . . . . . 23
4.2 Graphical view of Sweep-and-prune . . . . . . . . . . . . 25

5.1 Diagram of the collision detection system. . . . . . . . . . 29

6.1 Diagram of Rigid body simulator . . . . . . . . . . . . . . 38
6.2 Diagram of JAOC . . . . . . . . . . . . . . . . . . . . . . . 38

vi



Chapter 1

Introduction

The difference between what we can model and visualize on a computer
versus what we can physically simulate has become quite large. There
are many good techniques for creating high-quality images for complex
models, but our ability to perform realistic physical simulation on these
models lags far behind our ability to visualize them.

In this thesis the problems of simulating rigid body dynamics are
discussed and a library is provided that can be reused without dealing
with the more complicated problems of rigid body simulation as colli-
sion detection and contact handling.

1.1 Rigid Body
So what is a rigid body? A rigid body is an object that does not deform
under movement or collision. You can imagine a solid steel ball which
is impossible to deform. There are no such thing as a perfectly rigid
object in the real world. All objects deform somewhat on impact and
when accelerating. But the deformation is often so small that we can
ignore it, and the result will still be satisfactory.

1.2 Rigid Body Simulation
In computer graphics and robotics applications, a major concern is
modeling systems and object motions over time. Since rigid body ob-
jects are impenetrable, it is important that the simulations correctly
handle the issues of collision and contact between object accurately.
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1.3 Simulator

Rigid body simulation with non-interpenetration constraints is im-
portant for the following reasons:

• Rigid body simulation can help us more easily understand and
visualize complicated mechanical systems and processes.

• A simulated physical environment can be used as a natural intu-
itive mean of interaction with many design and modeling tasks.
The ability to interactively move 3D objects could greatly simplify
many computer-aided design and layout systems.

• Rigid body simulation can be used to perform experiments and
test hypothesis in situations for which real-world experiments
would be difficult, costly, or impractical to perform.

• Realistic simulation is an extremely powerful method of creating
realistic computer animations.

1.3 Simulator
A simulator can be seen as an advanced calculator. We can tell the
simulator which objects it should simulate and give it their mass prop-
erties, positions ant their initial velocities. This information is called
the initial state or inital configuration of the simulator. The simulator
also needs to know about the general forces as gravity and air resist-
ance. When the simulator has all the initial information it needs, it
is the simulators task to calculate the final end state. This end state
could be after 5 seconds or it can go on as long as we want. The sim-
ulator usually does not calculate the end state in a single calculation,
it frequently calculates several in between states also called timesteps
before it reaches its end state.

A simulator is frequently used in animations and interactive applic-
ations. Here the simulator is not given an end state. It will continue
until it recieves a stop signal. The simulator only returns numbers as
position and orientation, the visualisation is created by another pro-
gram or task which recieves the numbers from the simulator.

Interactive applications or animations has something called a frame
rate. Frame rate is measured in frames per second (fps). If the goal is
to have a realtime simulator the average frame rate should be no less
than 30 fps.
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1.4 Dynamic Simulation

1.4 Dynamic Simulation
Dynamics can be defined most easily in terms of a closely related field,
kinematics. Kinematics is the study of movement over time. Kin-
ematics does not consern itself with what is causing movement or how
things get where they are in the first place, it just deals with the ac-
tual movement itself. Dynamics, on the other hand is the study of the
causes of motion. A dynamic system is the study of systems governed
by ordinary differential equations including the trajectory of the sys-
tem, stability, and periodicity. A dynamic simulator try to simulate
this.

Dynamic simulation is often divided in two categories called for-
ward kinematics and inverse kinematics. In a system where we have a
initial and an end state and we want to calculate backward from end to
start, is called inverse kinematics. It is commonly used when creating
animations, because it is easy to control items in the simulation and
alter the end or initial conditions to get the desired result.

With forward kinematics only a initial condition is known. When
the simulations start it is only possible to observe what happens. For-
ward kinematics is very suitable in interactive applications such as
flight, car and weather simulations, in robotics and CAD design.

1.5 Collision Detection
It is not possible to simulate rigid body dynamics without a decent col-
lison detection routine. Without a collision detection routine it is only
possible to simulate the movement of rigid body objects, not interaction
between them.

Although collision detection is considered a different subject, it is
heavily interleaved with rigid body dynamics simulation. According to
Brian Mirtich [Mir96] the most difficult aspect of rigid body simluation
is contact modeling. Two subproblems of contact modeling are detect-
ing contacts and computing contact forces. Much of the time spent
on this thesis were on creating a collision detection routine. A thour-
ough introduction to the problems of collision detection are covered in
Chapter 4, Collision Detection.

3



1.6 Programming Languange

1.6 Programming Languange
The primary languange in this thesis will be Java[Gos96], with the use
of Java3D[Mic97] when dealing with graphics. According to [Gal01]
over half of all U.S. developers use Java and this share was projected
to rise with an additional ten percent during 2002.

Though Java is the most popular programming languange in the
world, it has not been widely accepted by scientific programmers yet.
The common perception of Java as slow, is most likely the sole reason
for this. But with the development of Java the last years it is inter-
esting to see how Java now performs, with and without 3D hardware
support.

A technical introduction to Java is found in chapter 8, Java.

1.7 Where to use Rigid Body Dynamics
Rigid body dynamics has been used for many years in robotics and
other simulation fields. Several car manufactures use it when devel-
oping cars and car parts. It has also been used within virtual reality
research.
Lately there has been a lot of discussion around next generation games.
With the ever evolving development of hardware, there will be other
areas than graphics that is likely to dominate future games. One of
those areas will probably be physics. With the use of rigid body dy-
namics it is possible to make games and animations look even more
natural than before.

1.8 Thesis Organization
Chapter 1 This chapter.

Chapter 2 Covers the theory of rigid body dynamics.

Chapter 3 Introduction to the implementation of the theory that is
covered in chapter 2. Quaternions and its use is also covered.

Chapter 4 Describes collision detection theory and covers implement-
ation of a technique.

Chapter 5 Describes the implementation of the rigid body library.
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1.8 Thesis Organization

Chapter 6 Covers the theory of contact handling and an implementa-
tion.

Chapter 7 Covers ordinary differential equations.

Chapter 8 A short introduction to Java technology.

Chapter 9 Conclusion.
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Chapter 2

Rigid Body Dynamics Theory

This section is intended as an introduction to the theory of simulating
rigid body motion. The reader is assumed to have knowledge in linear
algebra, calculus and some understanding of classical mechanics.

The "rigid body" part of rigid body dynamics refers to constraints we
place upon the objects we are simulating. A rigid body’s shape does not
change during simulation. Or in other words, no element of matter in
a body is able to translate and rotate with respect to any other element
of matter in that body. The reason we use rigid bodies is actually just
that, they do not deform under simulation. This means that they have
some properties that make their motion easier to deal with. One is that
their center of mass is fixed. When a rigid body is rotating, every mass
element within it has angular momentum with respect to the center of
mass.

2.1 Kinematics
First let us define a body coordinate system, in which all our dynamic
variables can be specified. Because a rigid body can only undergo ro-
tation and translation, we define the shape of a rigid body in terms of
a fixed and unchanging space called body space. To locate the body in
world space we will use a vector x(t), which describes the translation of
the body. To describe the rotation of the body, we will use a 3x3 rotation
matrix R(t).
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2.1 Kinematics

2.1.1 Mass
In general, people think of mass as a measure of the amount of matter
in a body. We can also think of mass as a measure of a body’s resistance
to motion or a change of motion. The greater the body’s mass, the
harder it will be to set or change its motion. Temporarily we imagine
that the body is made up of a large number of small particles. The
particles are indexed from 1 to N. The mass of the i’th particle is mi, and
each particle has a (constant) location r0i in body space. The location of
the i’th particle in world space at time t, denoted ri(t).

2.1.2 Center of mass
The center of mass is the point through which any force can act on the
body without resulting in a rotation of the body. The center of mass is
used to describe the position of the body in world space. The position
of the center of mass is calculated with a weighted sum of every mass
element, mi, in the body:

rcm =

∑
rimi∑
mi

=

∑
rimi

M

When the mass is continously distributed throughout its volume,
this sum becomes the integral:

rcm =

∫
rρ(r)dV∫
ρ(r)dV

=
rρ(r)dV

M

In this case, each mass element is calculated by multiplying a volume
element dV by a three-dimensional density function ρ(γ):

mi = ρ(r)dV

2.1.3 Velocity
We call x(t) and R(t) the position and orientation of the body at time
t. Now we need to define how the position and orientation change over
time.

If at time t0 a body’s position is x1, and at time t1 its position is x1,
then its average velocity between t1 and t2 is:

vave =
x1 − x0

t1 − t0
=

∆x

∆t
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2.1 Kinematics

If we let ∆t → 0, the limit is the instantaneous velocity of the
particle, which is the true velocity of the particle at any time, t, and
is equal to the derivate of its position with respect to time:

v = lim
∆t→0

∆x

∆t
=
dx

dt

Similarly, if its velocity changes from one instant to another, it is
said to be accelerating:

a = lim
∆t→0

∆v

∆t
=
dv

dt

2.1.4 Angular Velocity
In addition to translation, a rigid body can also undergo rotation. The
amount of rotation the body experiences per unit time is called its an-
gular velocity, given by:

lim
∆t→0

∆θ

∆t
= ω

Where ∆θ is a very small rotation (in radians) and ω is the angular
velocity about the center of mass.

Actually, finite rotations, no matter how small, cannot be considered
vectors because they are not commutative (but that is out of scope of
this thesis).

If a vector r is rotating at a constant angular velocity, then its time
derivative with respect to the fixed world frame is:

dr

dt
=
∂r

∂t
+ ω × r

If the length is not changing, then the derivative simplifies to:

dr

dt
= ω × r

Using this relationship, the time derivative of R is:

dR

dt
= ω∗R

where the antisymmetric matrix:

ω∗ =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0




takes the place of the cross product [BW97]
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2.2 Forces and Torques

2.2 Forces and Torques
The location of the particle the force acts on, defines the location at
which the force acts. We will let Fi(t) denote the total force from ex-
ternal forces acting on the ith particle at time t. Also, we define the
external torque τi(t) acting on the ith particle as

τi(t) = ((ri(t)− x(t))× Fi(t)

Torque differs from force in that torque on a particle depends on the
location ri(t) of the particle, relative to the center of mass x(t). We can
intuively think of the direction of τi(t) as being the axis the body would
spin about due to Fi(t), if the center of mass were held firmly in place.

2.2.1 Momentum
Newton’s first law of motion states that a body remains stationary or
maintains a constant velocity unless acted on by an external force. This
is also known as the law of conservation of linear momentum. The
linear momentum vector, p, of a body is calculated by multiplying its
velocity v, by its mass, m:

p = mv

The rate of change og momentum with respect to time is equal to
the sum of all to forces (the net force) on this body:

Fnet =
∑

Fi =
dp

dt
= m

dv

dt
= ma

- this is better known as Newton’s second law of motion.

2.2.2 Angular Momentum
When a body is moving relative to a point of reference and its motion
is not directly toward or away from that point, it is said to have an-
gular momentum with respect to that point. The angular momentum
vector L(t) of a rigid body is defined by L(t) = I(t)ω(t), where I(t) is a
3x3 matrix called the inertia tensor. The inertia tensor I(t) describes
how the mass in a body is distributed relative to the body’s center of
mass. The intertia tensor will be described in more detail shortly. The
relationship between L(t) and the total torque τ(t) is:

L̇(t) = τ(t)
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2.2 Forces and Torques

2.2.3 Inertia tensor
The inertia tensor I(t) is the scaling factor between angular momentum
L(t) and angular velocity ω(t). In the same way mass can be seen as
a measure of a body’s resistance to motion, moments of inertia is a
measure of a body’s resistance to rotational motion.

We know that the body’s total angular momentum (in world space)
about its center of mass is the sum of all the elements/parts of the body:

L(t) =
∑

r′i × pi =
∑

r′i × (mivi)

where r′i is the vector from x(t) to ri. Since the velocity of mi is given
by:

vi = ω × r′i
we can write:

L(t) =
∑

mir
′
i × (ω × r′i) = −

∑
mir

′
i × (r′i × ω) = −

∑
mir

∗
i r
∗
iω

where:

r∗i =




0 −r′iz r′iy
r′iz 0 −r′ix
−r′iy r′ix 0




Substituting and multiplying through gives:

L(t) =
∑



mi

(
r′2iy + r′2iz

)
−m′irixr′iy −mir

′
ixr
′
iz

−mir
′
ixr
′
iy mi (r

′2
ix + r′2iz) −mir

′
iyriz

−mir
′
ixriz −mir

′
iyriz mi

(
r′2ix + r′2iy

)


ω

=



∑
mi

(
r′2iy + r′2iz

) ∑−m′irixr′iy
∑−mir

′
ixr
′
iz∑−mir

′
ixr
′
iy

∑
mi (r

′2
ix + r′2iz)

∑−mir
′
iyriz∑−mir

′
ixriz

∑−mir
′
iyriz

∑
mi

(
r′2ix + r′2iy

)


ω

This symmetric matrix of sums is called the inertia tensor, I, where:

I(t) =



Ixx Iyx Izx
Ixy Iyy Izy
Ixz Iyz Izz




The diagonal elements are called the moments of inertia, and the off-
diagonal elements are called the products of inertia. Since r′i has been
specified with respect to world coordinates, the inertia tensor depends
on the body’s orientation and must be recalculated every time the body
rotates.
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2.2 Forces and Torques

However, by diagonalizing the inertia tensor we can avoid to re-
evaluate the integrals after every rotation. Diagonalization of a matrix
involves changing to a basis in which all the off-diagonal elements be-
come zero. This basis is unique and consists of the eigenvectors of the
matrix. The diagonal elements with respect to this basis are called the
eigenvalues of the matrix.

The normalized eigenvectors of the inertia tensor are called the
principal axes of the rigid body, and the eigenvalues are called the prin-
cipal moments of inertia. With respect to a body’s principal axes, the
inertia reduces to:

Ibody =



Ixx 0 0
0 Iyy 0
0 0 Izz




Where the moments of inertia are calculated with the use of body spaced
coordinates. For rigid bodies, these integrals need to be calculated only
once, and the inertia tensor in world space is given by:

I(t) = R(t)IbodyR(t)T

[BW97]
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Chapter 3

Simulating
Rigid Body Dynamics

3.1 Mass Properties
Rigid body systems requires several parameters describing the mass
distribution of rigid bodies: the total mass (a scalar), the location of
the center of mass (3 parameters), and the moments and products of
intertia about the center of mass (6 parameters).

A rigid body comprising N parts, B1, ...BN , each a uniform density
polyhedron. There are no restrictions on the convexity or genus of the
polyhedra, nor on the shape of the bounding faces. For each polyhedron
Bi, either its density pi or mass mi is specified, and the geometries of
all of the polyhedra are specified relative to a single reference frame

The mass and center of mass is relatively easy to implement. The
moments and products of inertia is more difficult to calculate. For
simple uniform geometries there are specific formulas.

3.2 Rigid Body Equations of Motion
The state of a rigid body is its position x(t), orientationR(t), momentum
P (t) and angular momentum L(t). The mass M of the body and the
body-space inertia tensor Ibody are constants, which we assume we know
when the simulation begins.

The inertia tensor I(t), angular velocity ω(t) and velocity v(t) are
computed by:

v(t) = P (t)
M
, I(t) = R(t)IbodyR(t)T , and ω(t) = I(t)L(t)

12



3.2 Rigid Body Equations of Motion

The derivatives for position, orientation, momentum and angular
momentum are:

d
dt

(x(t)) = v(t)
d
dt

(R(t)) = ω(t) ∗R(t)
d
dt

(P (t)) = F (t)
d
dt

(L(t)) = t(t)

Using this datatypes we can represent a rigid body as:

class RigidBody3D {

// The world coordinate pos i t i on of the body
private MyVector3f pos i t ion ; // x ( t )

// The l inear v e l o c i t y o f the body
private MyVector3f v e l o c i t y ; // v ( t )

// Mass of the body
private float mass ; // M

// The or i en ta t i on of the body
private MyQuat4f or ientat ion ; // R( t )

// The angular v e l o c i t y o f the body
private MyVector3f omega ; // w( t )

// The i n e r t i a tensor of the body in body coordinates
private MyMatrix3f iner t ia ; // I ( t )

// Linear moment
private MyVector3f P;

// Angular moment
private MyVector3f L;

}

Here we have used a quaternion to represent the rotation instead
of a matrix. A quaternion is better suited as a rotation representation
than a matrix. The reason for this and a introduction to quaternions is
provided in 3.3.

For each timestep we need solve the equations of motion using nu-
merical integration techniques. The equations of motion can be solved

13



3.3 Quaternions

by the use of ordinary differential equations (ODE). A introduction to
ODE can be found in section 3.4.

A simple Euler implementation of the equations of motion:

public void update ( float dt ) {
// v e l o c i t y = P / mass
v e l o c i t y . setScaleAdd ( getInverseMass ( ) , P ) ;

// pos i t i on += dt* v e l o c i t y + pos i t i on
posi t ion . scaleAdd ( dt , ve loc i ty , pos i t ion ) ;

// q ’ ( t ) = 0 . 5 * omega ( t ) * or i en ta t i on ( t ) * dt
// tmpQuat = q ’ ( t )
RBDQuat4f tmpQuat = new RBDQuat4f ( ) ;
tmpQuat . mul(omega , or ientat ion ) ;
tmpQuat . scale (0 .5 f * dt ) ;

// or i en ta t i on += q ’
or ientat ion . add ( tmpQuat ) ;

// must normalize or i en ta t i on to prevent d r i f t
or ientat ion . normalize ( ) ;

}

As described in the ODE section the Euler method is not suitable to
be used for a numerical solver since it not stable. A more efficient and
stable method would be midpoint Euler or the Runge-Kutta method.

3.3 Quaternions
During simulation a rotational (3x3) matrix will suffer from numerical
drift. When this happens the rotational matrix will not only rotate the
body, but also scale and share it. To prevent this the rotational matrix
must frequently be reorthogonalized. This is an expensive operation
and should be avoided. A solution is to use unit quaternions, a type of
four element vector, normalized to unit length. A quaternion q ∈ H is
given by:

q = s+ vxi + vyj + vzk

Since quaternions have only four parameters, only one extra variable
being used to describe the three degrees of freedom; therefore, the de-
gree of redunancy is noticeably lower for quaternions than rotation
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3.4 Ordinary Differential Equation

matrices. This means that quaternions experience far less drift than
rotation matrices. If the quaternion loose its unit magnitude it can
be easily correctable by renormalizing the quaternion to unit length.
Because of this it is desirable to represent the rotation of a body by a
quaternion q(t). We still need the rotation matrix to calculate the in-
verse inertia tensor, but it will be computed from the quaternion. We
will write the quaternion has the pair:

[s, v]

Some quaternion definitions:
Conjugate:

q∗ = [s,−v] = s− vxi− vyj− vzk
Inverse:

q−1 =
q∗

q∗q

A rotation of θ radians about a unit axis u is represented by the unit
quaternion

[cos(θ/2), sin(θ/2)u]

Rotate a vector v with a quaternion q, we define the vector as a pure
quaternion p = [0, v]. The rotated is then:

[
0,v

′
]

= p
′

= qpq∗

To use a quaternion to represent rotation we need a formula for q̇(t).
It is a lengthy derivation, so the only the formula is given here:

q̇(t) =
1

2
ω(t)q(t)

where the multiplication ω(t)q(t) is shorthand for multiplication between
the quaternions [0, ω(t)] and q(t).

We know all we need to effectlive use quaternion as a representation
of rotation.

3.4 Ordinary Differential Equation

3.4.1 Initial Value Problem
Differential equations describe the relation between an unknown func-
tion and its derivatives. To solve a differential equation is to find a
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3.4 Ordinary Differential Equation

function that satisfies the relation, typically while satisfying some ad-
ditional conditions as well. Here we will be concerned primarily with
a paricular class of problems, called initial value problems. In a initial
value problem, the behavior of the system is described by an ordinary
differential equation (ODE).

Standard introductory differential equation courses focus on sym-
bolic solutions, in which the functional form for the unknown function
is to be guessed.

We will exclusively be concerned with numerical solutions, on which
we take discrete time steps starting with the initial value f(t0). To
take a step, we see the derivate function f to calculate an approximate
change in f , ∆f , over a time interval ∆t, then increment f by ∆f to
obtain the new value.

Numerical methods operate by performing one or more of these de-
rivative evaluations at each time step.

3.4.2 Euler Method
One of the oldest and simplest numerical methods is Euler’s method.
Euler’s method is derived from Taylor’s sentence. When we want to
find the value of f(t0 + h), we can do this in N steps. These steps are
all equal, which means we have:

h =
t1 − t0
N

where h is the stepsize parameter. We can find approximations of
f(ti) for all ti:

ti = a + ih

where i = 1, 2, 3, ..., N . To find the value of f(ti+1) we can use the Taylor
sentence:

f(ti+1) = f(ti) + (ti+1 − ti) f
′
(ti) +

(ti+1 − ti)2

2!
f
′′

(εi)

For some value ti < εi < ti+1. We can write this as:

f(ti+1) = f(ti) + hf
′
(ti) +

h2

2!
f
′′
(εi)

We get the Euler’s method by ignoring the last part. We use the
remaining part to calculate f(ti+1). From this we get:

wi+1 = wi + hf(t, wi)
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3.4 Ordinary Differential Equation

Here wi is an approximation to f(ti), wi+1 is the approximation we
want to find for f(ti+1).

Though simple, Euler’s method is not accurate nor stable. Shrink-
ing the stepsize will slow the rate of drift, but never eliminate it. Fi-
nally, Euler’s method is not even efficient. Most numerical solution
methods spend nearly all their time performing derivative evaluations,
so the computational cost per step is determined by the number of eval-
uations per step. Though Euler’s method only requires one evaluation
per step, the real efficiency - as well as on the cost per step. More
sophisticated methods, even some requiring as many as four or five
evaluations per step, can greatly outperform Euler’s method because
their higher cost step is more than offset by the larger stepsizes they
allow.

3.4.3 Runge-Kutta
A fourth order Runge-Kutta is another numerical method to solve a
differential equation. As Euler’s method we haveN steps, Runge-Kutta
is also derived from Taylor’s sentence, but with 2 variables instead of 1
as the Euler method. The differential equation of a fourth order Runge-
Kutta is:

k1 = hf(ti, wi)
k2 = hf(ti + h/2, wi + k1/2)
k3 = hf(ti + h/2, wi + k2/2)
k4 = hf(ti + h, wi + k3)

wi+1 = wi + (k1 + 2k2 + 2k3 + k4)/6

The difference between Euler and a fourth order Runge-Kutta has
a much smaller local truncation order error. Runge-Kutta has a local
truncation order error on O(h4), where Euler’s method as O(h). Since h
is small h � 1 the Runga-Kutta error is small and we can use a larger
stepsize than with the Euler method.
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Chapter 4

Collision Detection

Even though collision detection (CD) does not have anything to do with
rigid body dynamics it is a vital aspect of the simulation. According
to[Mir98], collision detection and resting contact simulation are the
two bottle-necks in rigid body dynamics simulation. Therefore it is
very important to use an as efficient and accurate CD routine as pos-
sible when simulating rigid body dynamics. Collision detection is part
of what is often referred to as collision handling, which can be divided
into three major parts: collision detection, collision determination and
collision response. The result of collision detection is a boolean say-
ing whether two or more objects collide, while collision determination
finds the actual intersection between objects; finally, collision response
determines what actions should be taken in response to the collision.

Most of the collision detection algorithms between polyhedrals is
specified by a boundary representation. More sophisticated algorithms
cache witnesses that are used to verify disjointness of penetration in
constant time.

Collision detection has a wide variety of uses:

• Robotics

• CAD design

• Medicine research

• Games, demos, animation movies

• Scientific simulation

There are four different classes of collision detection. Bounding
volume is described more thouroughly in the next chapters. Spatial
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4.1 Bounding Volume

subdivision include some techniques as BSP[FKN80] and octrees[ABJN85].
BSP trees is very popular within games since it is very fast can remove
triangles based on the position and direction of the viewer.

Feature based collision detection is also called closest feature track-
ing. The algorithms are tracking the two closest geometric sizes. These
algorithms are very effective and fast. Lin-Canny[Lin94] was the first
that created these algorithms. Later, Brian Mirtich created V-Clip[Mir98]
which is a further development of the work of Lin-Canny.

Simplex based collision detection try to compute the minimum dis-
tance between convex polyhedra. If the minimum distance is found,
and the acceleration and velocity is given the distance can be used to
estimate a lower bound on the time of impact. The most famous of
these algorithms is GJK[GJK88].

4.1 Bounding Volume
To provide a simple intersection test and make more efficient rejections
a bounding volume (BV) is frequently used. BV is a closed volume that
contains a set of objects/polygons, it is often built as a hierarchy of
bounding volumes. There are four bounding volumes that are com-
monly used; the sphere hierarchies[Hub96], the axis-aligned bounding
box (AABB)[van97], the dicrete oriented polytype (k-DOP)[KHM+98],
and the oriented bounding box (OBB)[GLM96].

The reason for several bounding volumes is that they have different
attributes. OBB and k-DOP have a tighter fit than sphere and AABB
bounding volumes, but they have a more costly detection/rejection test.

4.2 Cost Function
There is a function t, that give a description of the performance of a
collision detection algorithm. It was first used to evaluate the perform-
ance of CD algorithms by Gottschalk et al.[GLM96]

t = nvcv + npcp + nccu

• nv : number of BV/BV overlap tests

• cv : cost for a BV/BV overlap test

• np : number of primitive pairs tested for overlap

• cp : cost for determine wheter two primitives overlap
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4.3 Separating Axis

• nu : number of BVs updated due to the model’s motion

• cu : cost for updating a BV

Choice of Bounding Volume:

• It should fit the original model as tightly as possible (to lower nv
and np)

• Testing two volumes for overlap should be as fast as possible to
lower cv

Primitives like spheres and AABBs do very well with respect to the
second constraint, but they have a poor fit with some primitives like
long-thin oriented polygons. OBBs and k-DOP provide tight fits, but
checking for overlap between them is relatively expensive.

Hierarchial Decomposition

There is no hierarchial representation that gives the best performance
all the time. When two objects are far apart, hierarchial representation
based on spheres and AABBs work well. But, when two models are in
close proximity with multiple number of closest features, the number of
pair-wise bounding volume tests, nv increases, sometimes also leading
to an increase in the number pair-wise primtive contact tests, np. In
this case a OBBTree will provide a smaller nv and np. With an improved
algorithm to check for overlap provided by Gottschalk et al.[GLM96]
the cost is less than an order more costly than compared to sphere and
AABB trees.

4.3 Separating Axis
The separating axis theorem[Got96] is heavily used for fast rejection
tests for convex, disjoint polyhedra. Two polyhedra A and B, there
exists a separating axis where the projections of the polyhedra, which
form intervals on the axis, are also disjoint. If A and B are disjoint,
then they can be separated by an axis that is orthogonal to: a face of A,
a face of B, or an edge from each polyhedron.
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4.4 Axis Aligned Bounding Box

4.4 Axis Aligned Bounding Box
An axis aligned bounding box (AABB), is a box whose faces have nor-
mals that coincide with the standard basis axes. AABB is the simplest
bounding volume to create. Take the minimum and maximum extents
of the set of polygon vertices along each axis and the AABB is formed.

4.4.1 Building a AABB
Creating a AABB bounding volume is very simple. Take the minimum
and maximum extents of the set of polygon vertices along each axis and
the AABB is formed.

4.4.2 AABB Intersection Test
Since the AABB is aligned with the main axis directions there is suffi-
cient to decribe the volume with two points. A Simple test is decribed
below:
tab [ ] = [ x , y , z ] ;
for ( int i = 0 ; i < 3 ; i + + ) {

i f ( a_min [ i ] > b_max [ i ] | | b_min [ i ] > a_max[ i ] )
return (DISJOINT)

return (OVERLAP)

4.5 Oriented Bounding Box
An oriented bounding box (OBB) is a rectangular bounding box with an
arbitrary orientation in space. It is an AABB that is arbitrary rotated
to fit the volume as best as possible.

4.5.1 Building an OBB
Gottschalk et al.[GLM96] showed that a tight-fitting OBB enclosing an
object can be found by computing an orientation from the triangles of
the convex hull.

First we compute the convex hull of all the triangles in the object.
If the vertices of the i’th triangle are the points pi,qi, and ri, then area
of the i’th triangle in the convex hull is:

Ai =
1

2

∣∣(pi − qi
)
×
(
pi − ri

)∣∣
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4.5 Oriented Bounding Box

Let the surface area of the entire convex hull be denoted by:

AH =
∑

i

Ai

Let the centroid of the i’th convex hull triangle be denoted by:

ci =
pi + qi + ri

3

Let the centroid of the convex hull, which is a weighted average and
the triangle centroids (the weights are the areas of the triangles), be
denoted by:

cH =

∑
iA

ici∑
iA

i
=

∑
iA

ici

AH

Now we can compute a 3 × 3 covariance matrix, C, whose eigen-
vectors are the direction vectors:

Cjk =

n∑

i=1

Ai

12AH
(
9cijc

i
k + pijp

i
k + qijq

i
k + rijr

i
k

)
− cHj cHk

After computing C the eigenvectors are computed and normalized.
Then we project the points of the convex hull onto the eigenvectors to
find the minimum and maximum along each direction. We then use
this to calculate the center and half-length of the OBB.

4.5.2 OBB Intersection Detection
To check intersection between two OBBs, A and B, a fast algorithm in-
troduced by Gottschalk [Got96] that uses the separation axis theorem,
and is about an order faster than previuos methods.

The test is done in the coordinate system formed by OBB A’s center
and axes. B is placed relative to A by rotation B and translation T.
The half-dimensions (radii) of A and B are ai, and bi, where i = 1, 2, 3.
The axes of A and B are the vectors Ai and Bi, for i = 1, 2, 3. These will
be referred as the 6 box axes.

According to the separating axis theorem, it is sufficient to find one
axis that separates A and B to be sure that they are disjoint. Fifteen
axes has to be tested: Three from the faces of A, three from the faces of
B, and 3 · 3 = 9 from combinations of edges from A and B.

As a consequence of the orthonormality of the matrix A = (A1,A2,A3),
the potential separating axes that should be orthogonal to the faces of
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4.5 Oriented Bounding Box

Figure 4.1: The separation axis for two OBBs. They are disjoint since
the projection of their radii on the axis determined by L are not overlap-
ping. (Illustration after Gottschalk et al. [GLM96])
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4.6 OBBTree

A are simply the axes A1,A2, and A3. The same holds for B. The re-
maining nine potential axes formed by one edge each from both A and
B, are then cij = ai × bj.

The centers of each box projects onto the midpoint of its interval.
By projecting the box radii onto the axis, and summing the length of
their images, we obtain the radius of the interval. If the axis is parallel
to the unit vector L, then the radius of box A’s interval is:

rA =
∑

i

∣∣aiAi · L
∣∣

rB =
∑

i

∣∣biBi · L
∣∣

The placement of the axis is immeterial, so we assume it passes
through the center of box A. The distance between the midpoints of the
intervals is |T · L|. So, the intervals are disjoint if:

|T · L| >
∑

i

∣∣aiAi · L
∣∣ +
∑

i

∣∣biBi · L
∣∣

The last step is due to the fact that the columns of the rotation
matrix are also the axes of the frame of B. After simplifying all the
terms, this axis test looks like:

|T3R22 −T2R32| > a2 |R32|+ a3 |R22|+ b1 |R13|+ b3 |R11|

4.6 OBBTree
OBBTrees was first presented at SIGGRAPH 96 by Gottschalk et al.
[GLM96] with a paper called "OBB-Tree: A Hierarchial Structure for
Rapid Interference Detection". This paper have strongly influenced fur-
ther research on CD algorithms. As the name OBB-Tree algorithm im-
plies, the bounding volume used is the oriented bounding box, the OBB.
OBBs converge much faster to the underlying geometry they are hold-
ing than AABBs (axis-aligned bounding box) and spheres. OBBTrees
have been widely used both in scientific simulations and in games.

4.7 Sweep and Prune
The sweep and prune technique was developed by M. Lin[Lin94] and
exploits that objects undergo small changes in their position and ori-
entation from frame to frame. Lin proved that the bounding box prob-
lem can be solved in O

(
n log2 n+ k

)
time (where k is the number of
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4.8 Hierarchical Collision Detection

s1          e1    s2            s3                 e2                e3

Figure 4.2: Graphical view of Sweep-and-prune for one axis. When s3 is
encountered s2 is already in the active list. There is an overlap between
body 2 and 3 in at least one axis.

pairwise overlaps), but it can be improved by exploiting coherence and
so be reduced to O (n+ k).

If two AABBs overlap, then all three one-dimensional intervals in
each axis direction must also overlap. Start and endpoints of the AABBs
in each axis is stored in three lists, these values are stored in increas-
ing order. This list is then swept from start to end. When a startpoint
is found it is stored in a active list. When its endpoint is found it is re-
moved from the active list. If another start or endpoint is encountered
when the startpoint is in the active list we have overlap. A graphical
example of how sweep and prune works is shown in figure 4.2.

This procedure would take O (n logn) to sort all the intervals, plus
O (n) to sweep the list, and O (k) to report overlapping intervals. But
since the lists are not expected to change very much from frame to
frame, a bubble sort or insertion sort can be used with great efficiency
after the first pass has taken place. It was shown in[SH76] that these
sorting algorithms sort nearly-sorted lists in an expected time of O (n).

4.8 Hierarchical Collision Detection
A hierarchy that is commonly used in the case of collision detection
algorithms is a data structure called a k-ary tree, where each node may
at most have k children. Most algorithms use k = 2, a binary tree. The
root node is a BV that encloses the whole object. Each internal node
enclose all of its children in its volume, and at each leaf, there are one
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4.9 Collision Report

or more primitives.
There are three ways of creating a hierarchy: a bottom − up, top −

down, and a incrementaltree − insertion.
The bottom-up method start with creating a BV for each primitive

and then merge two and two nodes that are close in proximity togethere
with a parent node until there are only one root node left.

The incremental tree-insertion method starts with an empty tree.
Then all other primitives and their BVs are added one at a time to this
tree.

The top-down approach is the method that is most frequently used.
It starts by finding a BV for all the primitives to the object which is the
root of the tree. Then a divide-and-conquer method is applied where
the BVs is split into two (or k) parts. There is then created a BV based
on the primitives in each part. This metod is followed until there are
only one primitive left in each part.

The big challenge is to find a satisfactory bounding volume and a
hierarchy construction method that create balanced and efficient trees.

4.9 Collision Report
To make the collision detection routine useful there must be a way to
get some confirmation that overlap is found. The most easy solution is
to just return a boolean that say if there are any overlaps or not. This
works for many situations, but since we want to use it in a rigid body
simulation this is not sufficient. To simulate contacts in a rigid body
simulation we minimum need the contact point and contact normal.
This is more thoroughly explained in chapter 7.

To find the contact point and contact normal has an enormous neg-
ative impact on performance, but there is no way around it. Further
discussion is found in the implementation section 5.2
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Chapter 5

Collision Detection
Implementation

When deciding which CD algorithm to use I wanted a better solution
than the first one Trond Gaarder and I wrote in Jan 2002. That was
an object specific algorithm which used simple geometry observations
to check for collisions. It worked well for spheres and simple surfaces,
but when adding cubes and thetrahedrons it took too much resources
and was not usable.

A new implementation of a collision detection routine had to aviod
the problems that were encountered in the previous attempt. A set of
requirements were set to avoid earlier problems.

Requirements

• Generic collision detection algorithm. To be flexible, the CD al-
gorithm can not be object specific. This means we should check
for collisions on a triangle level.

• Fast. Since there will be a lot of computations regarding the rigid
body simulation it is desirable that the CD algorithm use as little
CPU time as possible.

• Not too complex. Since the timeframe of the thesis is limited, and
the focus should mostly be on rigid body simulation it must be
possible to implement it within a timeframe of 6-9 months.

BSPTrees [FKN80] was considered since its widely used especially
in computer games. The problem with BSPTree is that it generates its
collision tree from the user position and camera direction. This works
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5.1 Implementation of OBBTree

very well in FPS (first person shooter) games, but not when doing sim-
ulations.

Other techniques that caches withnesses like V-Clip[Mir98], was
not chosen because these are generally more complicated than bound-
ary representation techniques.

The decision fell on OBBTrees. The OBBTree design is clean and
not too complex. The algorithm is widely accepted as one of the fastes
around. It has been criticised to use too much memory, but since we
would not generally simulate with models with more than +20K of tri-
angles this was not a big issue.

The OBB algorithm performs very well when deciding overlap between
objects that are close in proximity, but is quite costly to check for over-
lap on every object in the simulation. What we also want is an al-
gorithm that quickly can determine if two boundary repersentations
overlap.If they do, we can then further check for overlap with the OBB
algorithm.

The Sweep-and-Prune algorithm is perfect for this, and is used just
for this purpose in some CD packages. Sweep-and-Prune is easy to
understand, but difficult to implement. Even so, the sweep-and-prune
algorithm will speed up the collision detection dramatically so it should
therefore be implemented.

Figure 5.1 show the outline of the collision detection routine and
how it is integrated with the rigid body simulator. The collision routine
was upon creation called Java Axis-aligned Object-oriented Collision-
detection (JAOC).

5.1 Implementation of OBBTree
An OBBTree need tree nodes that can be used to rapidly check for over-
lap and either discard it if it is disjoint or call its children to finally
check triangle-triangle if it overlap. The node need to specify the rota-
tion and translation based on its parent and a size. If it is a leaf node it
also has a pointer to the triangle it is bounding. If it is not a leaf node
it has pointers to two child nodes. One in the positive and one in the
negative direction based on its center.

To generate the tree a triangle array is given to the root node, it
calculates the translation and rotation of the OBB box that contain all
the triangles. When there are more than one triangle in the triangle
array a recursive method that calculates the translation and rotation
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5.1 Implementation of OBBTree

Sweep−and−Prune

Exact Collision Detection

            OBBTree         Simulation

Overlapping pairs

Colliding pairs

Collision Response

Object Transformations

Figure 5.1: Diagram of the collision detection system.

of its children is called. The triangle array is divided in two new ar-
rays with respect of the OBB node’s center and the mean point to the
triangles. The new arrays are now used when calculating the childrens
attributes until the length of the array is 1. With this in mind we can
create a OBB node object like this:

class OBBox {

RBDMatrix3d rotat ion ;
RBDVector3d translat ion ;
RBDVector3d s ize ;

OBBox Pos ;
OBBox Neg ;

Triangle3d trp ;
}

The Pos, Neg and trp objects are all references.

The calculation of translation and rotation is not an easy task (view
the theory of generating a OBB tree). Several helper classes are needed,
we use a class to help us calculate the areal and covariance matrix of
a triangle. A class to accumulate all these values is also needed. A
Triangle class is used for collision detection and generation of the tree.
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5.2 Collision Report Implementation

To keep track of all the triangles and do collision detection we need
a class to hold it all in place, a OBBTree class. The OBBTree contain
all the geometric data of an object in 3d space. And has methods to
check for contact with other OBBTrees. It must store the triangle array
and manage the process of adding triangles to the tree. It also need to
store the rotation and translation values of the whole object. Simplified
outline of the OBBTree:
class OBBTree {

OBBox root ;
Triangle3d t r i s [ ] ;

RBDMatrix3d rotat ion ;
RBDVector3d translat ion ;

}

The implementation is more complicated since we need to keep track
of contact pairs, number of contacts, number of triangles, etc.

5.2 Collision Report Implementation
As mentioned we need the ability to find the contact point and the con-
tact normal. Most current implementations only return a boolean in-
dicating if two objects overlap. There are some implementations that
find the triangles that overlap, but no overlap point. There are two
reasons for this, it is difficult to implement and it has a huge perform-
ance impact.

One of the requirements of JAOC is that it should not only be used
in rigid body dynamics, but also in other settings.

With this in mind the OBB collision detection routine was imple-
mented with two methods that do almost do the same thing, one that
return a boolean that indicates if contact is detected and one that find
which triangles that overlap. The other method have a class called
JAOCContact as a parameter. The contact point and contact normal is
stored in this class. JAOCContact is shown here:
public class JAOCContact {

private int bodyA ; // body containing ver t ex point
private int bodyB ; // body containing face
private RBDVector3d contact ; // contact point in world coord
private RBDVector3d normal ; // contact normal
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5.3 Implementation of Sweep and Prune

private RBDVector3d edgeA ; // direc t i on of A
private RBDVector3d edgeB ; // direc t i on of B
private boolean vf ; // true i f ve r t ex/face contact

}

A contact has a reference to the bodies and a contact point. This point
is given in world coordinates. A contact normal is also calculated, if
the contact is a vertex/face contact, the contact normal is the normal
of the face. If it is a edge/edge contact, the normal is given as the
cross product of the two contact edges. If we have a vertex/face contact,
the body that has the contact face is referenced by body B, the vertex
point by body A. This make it easier to calculate an apply the impulse
on the two bodies. The JAOCContact class stores the values we need
to calculate the contact forces between the bodies. In chapter 6 the
problem of calculating and appling the forces to the bodies is discussed.

5.3 Implementation of Sweep and Prune
The sweep and prune routine has references to all the objects in the
simulation. When a object is loaded, the triangles are added to a AABB
object which again has a reference to a OBBTree.

The AABB generates the tree upon initialization and is added to a
AABB manager. The AABB manager has a list of all the AABB ob-
jects and a three dimensional list where the end and start points of the
AABB in each direction are stored. Before the simulation starts the list
is sorted. During simulation the three dimensional list is sweept and
prunes as described earlier. When an overlap in all three dimensions is
found the AABB collision pair more accurately check for overlap with
the OBB routine.

If an overlap is found, it is reported to a list of overlapping pairs
with object identifiers of the AABB’s and the collision point. The list of
overlapping pairs are later used by the physics routine to calculate the
collision forces and reactions.

public class JAOCManager {

// pointers to the three linked l i s t s , one for each axis
private EndPoint sweepList [ ] ;

// AABBObjects pointers to a dynamic array of pointers .
private JAOCObject AABBObjects [ ] ;
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// overlappingPairs contain a l l the pair o f
// AABBObjects that overlap . This l i s t i s used
// by the OBB c o l l i s i o n de t e c t i on routine .
public JAOCAABBCollisionReport overlappingPairs ;

// a l l contacts reported by the OBB routine
public JAOCContactManager contacts ;

}

The variable sweepList is a three linked list that contain the start
and end point of the AABB’s in each axis. It is this list that is sweept for
each timestep to check for overlap. All overlaps are added to JAOCAAB-
BCollisionReport object. The overlapping objects are kept in the list
until the routine report them not to be overlapping. It is caching the
overlaps from previous timestep, so already reported overlaps are not
reported, only new and previously overlapping pair that do not longer
overlap.

For each timestep the list of overlapping pairs is more accurately
checked for overlap by the OBB routine. All overlapping pairs that
are found by the OBB routine are added to the JAOCContactManager
object that goes through the list and calculate the new constraints.
Chapter 7 Contact, describes how contacts are handled in rigid body
dynamics.

5.4 Performance
JAOC was written to be used in rigid body dynamics, but it can be used
in anything from robotics, CAD design and games. The only require-
ments are that the objects must be specified by triangles and triangle
points do not change position with respect to another during the simu-
lation.

JAOC have different collision detection options buildt into it. It has
two different methods of finding contacts. It can find the exact contact
point and contact normal, or find the overlapping triangles without any
specified contact point.

JAOC can also be set to only find the first overlap between two
objects. This function can be used with the exact collision detection
method or the overlapping triangle method. These options have a big
impact on performance. The fastest is when JAOC is set to only find
the first contact and the overlapping triangles. The slowest is when we
want to find all contacts, their contact point and their contact normal.
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It is difficult to measure the performance of collision detection routines
and implementations since the routines are written with different designs
and purposes.

Some different designs and purposes are listed here:

• Handle complex topology

• Highly accurate collision detection

• Handle many objects

• Handle deformation of objects during simulation

All these different designs make it difficult to compare different col-
lision detection routines. The best way to test performance is to test it
in a setting which would be representative for what the routine were
built for.

5.4.1 Demo Test
The demo test was run on a Pentium 4, 2.4Ghz with 768mb RAM, run-
ning Debian Linux. All tests used the latest version of Java SDK,
1.4.2. The demo program test two torus objects which move through
eachother. Each torus has 5000 triangles. All different options regard-
ing contact report and number of contacts were tested.

• Finding all overlapping triangles: Average 8-10 overlaps found
for each millisecond.

• Finding all overlapping triangles and the exact contact point and
normal: Average 7-9 overlaps found for each millisecond.

• Finding the first overlapping triangle: Average time is 1-3 milli-
seconds.

• Finding the first overlapping triangle and the exact contact point
and normal: Average time is 1-3 milliseconds.

When large objects are totally overlapping or close to a complete
overlap there are very many reported contacts and the routine has to
check almost every leaf node for overlap. This reduces JAOC’s per-
formance since checking all leaf nodes for overlap is costly. Since there
are no interpenetration during rigid body simulation this is not a big
problem. When large objects are in close proximity without contact or
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when in contact, the JAOC performes very well. However there is a
flipside, the demo test use 174MB of memory. This is more than ex-
pected, but it must be noted that the test was using double precision
numbers. When using single precision numbers the memory footprint
would be much smaller.

However the OBB routine is known to use a lot of memory. Each
node stores the translation, rotation and size of the bounding volume.
The node also have pointers to two child nodes and each leaf node has
a pointer to a triangle. When we have N triangles there are 2 × N − 1
nodes in the OBBTree. This is the main reason of the high memory
usage, but there are some solutions to this problem.

5.4.2 Optimization
During the implementation of JAOC several new ideas of improve-
ments have emerged, the best and probably most memory efficient idea
is described here:

Each leaf node in the OBBTree object is a OBB node which has a
reference to a triangle. During the recursive collision queries, when
checking two leaf nodes for overlap, the pair of bounding volumes is
checked for overlap. Then, only if the OBB overlap, the triangles are
checked for exact intersection. The idea is to simply skip the the first
bounding volume test, and directly perform the triangle overlap test
instead. A triangle-triangle overlap test is almost as fast as a OBB-
OBB overlap test. Skipping the OBB-OBB test for leaf nodes should be
efficient because:

• If the triangles overlap, we would have to perform the triangle
overlap test anyway. In this case the OBB-OBB test prior to the
triangle-triangle test can be skipped.

• If the triangle do not overlap the the test is roughly as fast as
the OBB-OBB overlap test. There is also the possibility that the
OBB-OBB test report overlap but the triangle-triangle overlap
test would show that there are no overlap.

Does this mean that OBB nodes are not needed in leaf nodes any-
more? No, because we still may have to collide a leaf node against a
internal one. This mean that we need a triangle-OBB overlap test. As-
suming we have this routine, we can remove the leaf nodes altogether
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by storing the triangles in the parent nodes, replacing previous point-
ers to the leaf nodes we just discarded.

This reduces memory consumption considerably, instead of having
2×N−1 nodes, we now have N−1 nodes. Moreover, replacing the OBB-
OBB test with a more accurate triangle-OBB test actually leads to less
tests since the OBB-OBB can report overlap wheras the triangle-OBB
test does not.

The required triangle-box test has been derived by Tomas Akenine-
Möller[AM01], and turns out to be roughly as fast as the standard
OBB-OBB test.

With these improvements on the existing implementation it would
use much less memory and be somewhat faster.

Another less drastic memory improvement would be to use qua-
ternions instead of a 3x3 matrix to represent rotation of the OBB node.
Using quaternions results in substancial memory savings, but need 13
more operations for each OBB overlap test. This is the usual trade of
between memory and CPU time.

5.4.3 Conclusion
JAOC performes very well with large and small objects, objects that
are in close proximity and objects that are far away. It has different
methods of reporting contacts which makes it usable by many differ-
ent applications. The problem is that the memory usage is high. But
with the implementation of the ideas above the memory usage would
be drastically reduced.
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Chapter 6

Rigid Body Library

The development of the rigid body library has undergone serveral phases
and changes. The requirements were set very early, and have not
changed much during the development.

Requirements

• Use a modular architecture

• The architecture should be flexible and easily reusable. The basic
components should be easily usable for different rendering en-
gines.

• It should be suitable for interactive animations. This means speed
is important, but not of the cost of extendibility and the modular
architecture (see 1,2). This means accuracy may be sacrificed in
exchange for more speed (if neccessary).

• The dynamics system should not be purely impulse-driven, but
support forces on the bodies.

• The numerical solvers used to solve the differential equations
must prevent numerical drift.

• Implementation of collision detection and handling.

• Model friction.

• User manual for the library

• Examples of possible applications/demos/games using the library
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6.1 Implementation
One of the goals of this library was that is should be easily reusable
and extendable. The libraries have been written in an object oriented
way. It could have been written without objects, but a modular and
easily extensible library was one of the goals of this project. The library
has been separated into three parts; Math, collision detection and rigid
body simulation.

Math Library

The math library extends the existent vecmath library from SUN which
is a part of Java3D[Mic97]. The vecmath library was chosen so our
application could easily use Java3D as a visualization platform. The
vecmath library is provided so that users who do not want to use the
library against Java3D could easily do so. The math library is small
with the classes RBDVector3*, RBDMatrix3* and RBDQuat4*. There
are double and single precision version of the classes. Utility methods
for finding eigenvectors and eigenvalues from a matrix[PFTV92] and
quaternion to matrix calculation are provided to name a few.

Rigid Body Library

The rigid body library is responsible for the physics and the proper-
ties for all objects in the simulation. It has an integrated ODE solver
which updates position and orientation for each timestep. The ODE
solver could be implemented as a module of its own, but with the ODE
integrated the API could still be clean and it is more efficient. A dia-
gram of the rigid body library can be seen in figure 6.1.

Collision Detection Library

The collision detection library is JAOC. JAOC is responsible for detect-
ing and reporting contacts. An outline of the library can be found in
figure 6.2.

The contact manager works as a connection between JAOC and the
rigid body module. The issue is where do we apply the contact forces
on the objects? It can be implemented in both JAOC and the rigid
body module without much problem. The contact manager is used by
both but it is an integrated part in the JAOC routine. The current
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solution is to let the contact manager manage all the physics involving
the impulse calculations.

Visualization

Java3D is used to visualize the objects, but it is not part of the ri-
gid body library nor JAOC. The library is independent of visualization
techniques and can easily be used by Java3D and GL4Java[Goe01].

6.1.1 Rigid Body Library
Each body is an object entity in world space and know of nothing other
than itself. Ideally it should not need to contain any geometric data,
just data that is needed to calculate the physical constraints. With
the use of JAOC as the collision detection library the geometry can be
stored in the JAOCObjects and not in the rigid body representation.
The basis of a rigid body:

public class RigidBody3D {

// The world coordinate pos i t i on of the body
private MyVector3f pos i t ion ;

// The l inear v e l o c i t y o f the body
protected MyVector3f v e l o c i t y ;

// Inverse Mass of the body
private float invMass ;

// The or i en ta t i on of the body
private MyQuat4f or ientat ion ;

// The angular v e l o c i t y o f the body
private MyVector3f omega ;

// The inverse i n e r t i a tensor of the body in body coordinates
private MyMatrix3f inert iaInv ;

// Ve loc i t y in body coordinates , used when calculat ing drag e t c
private MyVector3f bodyVelocity ;

// Linear moment
private MyVector3f P;
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// Angular moment
private MyVector3f L;

// Res t i tu t i on of body ,
// say how much energy i s _ l o s t _ during c o l l i s i o n
private float RESTITUTION;

}

The values of the rigid body object has been explained earlier in this
thesis, so it is not covered here. The inertia tensor is not calculated
by the object and must be calculated before object creation. A static
utility class is provided to easily calculate the inertia tensor for most
common geometric objects. The rigid body object stores the inverse
inertia tensor instead of the tensor itself. All calculations involving the
intertia tensor use the inverse. Therefore there is no reason to store
the actual inertia tensor.

Other initial conditions for each rigid body is specified by assign-
ing values to mass, position, orientation, linear moment and angular
moment.

Mass is also a value we use the inverse instead of the value itself.
This is mainly because it gives us the possibility to create bodies with
infinite mass, eg. bodies that are stationary in the simulation.

6.1.2 Collision Detection Library
Here we will assume that JAOC detects all contacts between bodies
and reports it in a decent way. All contacts are stored in a list in the
JAOCContactManager class. A contact is stored in the JAOCContact
class. JAOCContact:

class JAOCContact {

private int bodyA ; // body containing ver t ex point
private int bodyB ; // body containing face
private RBDVector3d contact ; // in world coordinates ;
private RBDVector3d normal ; // contact normal
private RBDVector3d edgeA ; // direc t i on of A
private RBDVector3d edgeB ; // direc t i on of B
private boolean vf ; // true i f ve r t ex/face contact

}

The JAOCContactManager store all JAOCContacts:
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public class JAOCContactManager {

private JAOCContact contacts [ ] ;
private int numContacts ;

public JAOCContactManager ( ) {
}
public void addContact ( JAOCContact newContact ) {
}

public JAOCContact getContact ( int i ) {
}

}

The rigid body objects are stored in two different arrays. JAOCMan-
ager store the geometric values and RigidBodyManager store all the
physic values. Now where should all the contacts be processed?

The JAOCContact object contain contact point and contact normal,
but only the ids of the contact pair. It also need the rigid body objects.
The contact processing could be implemented in the simulator, JAOC or
even in a separate module. It was decided that the contact processing
routine should be a part of the RigidBodyManager. For each timestep
the simulator will give the RigidBodyManager the list of contacts to
process from JAOCManager.

6.1.3 Rigid Body Manager
The rigid body manager controls all the bodies. It updates the timestep
and calculate new velocities and positions with the use of an ODE. It
is also responsible for the contact computation. A simple outline of the
RigidBodyManager:

public class RigidBodyManager {

private RigidBody3D bodies [ ] ;

public RigidBodyManager ( ) {
}

public void addBody ( RigidBody3D body ) {
}

public void processContacts ( JAOCContactManager contacts ) {
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}
}

To processContacts the JAOCContactManger object is given by the Sim-
ulator.

6.1.4 Simulator
The simulator is the main object in the simulation. It works as a con-
nector between the collision manager and the rigid body manager. For
each timestep it prune the contact manager for all contacts and send it
to the rigid body manager that calculate the contact data.

All objects that is simulated has to be added to the simulator. The
simulator pass the objects to the RigidBodyManager and JAOCMan-
ager.

public class Simulator {

public RigidBodyManager rigidBody ;

public JAOCManager jaoc ;

public Simulator ( boolean f i rs tContact , boolean exactOverlap ) {
}

public void newObject ( ) {
}
// add physics data to the current o b j e c t
public void addRigidBody ( RigidBody3D body ) {
}
// add a tr iang l e to the current o b j e c t
public void addTri ( RBDVector3d v1 , RBDVector3d v2 , RBDVector3d v3 ,

int t r i I d ) {
}

public void update ( ) {
}

}

The booleans given to the constructor is further given to the JAOC-
Manager constructor and set what kind of collision detection that will
be used.

The update function updates the timestep and calls the RigidBody-
Manager which updates all the state variable of the rigid bodies. Then
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the new positions and orientations is given to the JAOCManager and
it checks for overlap. If any overlaps is found the JAOCContactMan-
ager object is given to the RigidBodyManager which processes all the
contacts.

6.2 Example of Use
This is a small example of how the library could be used to perform a
rigid body simulation.
import org . r ig idbodyl ibrary . math . * ;
import org . r ig idbodyl ibrary . jaoc . * ;
import org . r ig idbodyl ibrary . rbd . * ;

public class SimulatorTest {

public static void main( String [ ] args ) {

// crea t e the simulator o b j e c t
Simulator sim = new Simulator ( false , true ) ;

//use a rig id body u t i l o b j e c t to c r ea t e a box and
//add i t to the simulator .
BodyCreatorUtil bodyUtil = new BodyCreatorUtil ( ) ;
// crea t e a box with width = height = length = 1 and mass 1 0 .
// I t s pos i t i on in world coordinate system i s 2 , 0 , 0 .
int id1 = bodyUtil . newBox ( 1 , 1 , 1 , 1 0 ,

new RBDVector3d ( 2 , 0 , 0 ) , sim ) ;
int id2 = bodyUtil . newBox ( 1 , 1 , 1 , 1 0 ,

new RBDVector3d ( 0 , 0 , 0 ) , sim ) ;
// give one of the bodies a l i t t e power
sim . getBody ( id2 ) . addForces (

new RBDVector3f ( 2 . 0 f , 0 . 0 f , 0 . 0 f ) , 1 . 0 f ) ;
// then give the body a l i t t l e spin
RBDVector3f o = new RBDVector3f(−1.0 f , −2.0 f , 0 . 0 f ) ;
o . scale ( ( float )Math . sin ( 0 . 5 ) ) ;
o . normalize ( ) ;
sim . getBody ( id2 ) . setOrientation (

new RBDQuat4f( o . x , o . y , o . z , ( float )Math . cos ( 0 . 5 ) ) ) ;

// do the simulation
while ( true ) {

sim . update ( ) ;
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}

}
}

With utility classes as BodyCreatorUtil it is very easy to add bodies to
the simulation. However it is not difficult to create a custom object.
Only pass the triangles to the simulation manually with the addTri
method.

The example above do not handle graphics, but that does not mean
it is difficult to implement it. In the loop that call the update function,
the position and orientation of the objects can be retrieved and used by
the graphics objects. The objects can be created by the triangles added
to the JAOCManager.

6.3 Summary
With a generic collision detection routine and proper contact handling
implemented it is much easier to simulate rigid body dynamics. Since
all bodies are objects entities it is very easy to add them to the simula-
tion.
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Chapter 7

Contact

In chapter 2 we introduced the equation of motion for a rigid body.
When bodies are in contact we need to prevent them from inter-penetrate.

Lets consider a situation where a cube is falling onto a fixed floor.
Since we are dealing with rigid bodies that are non-flexible, we dont
want any inter-penetration at all. This means that at the instant the
cube comes in contact with the floor, we must change the velocity of the
cube.

Since we treat the bodies as totally rigid, the velocity has to be hal-
ted instantaneously to avoid inter-penetration.

This means we have two types of contact to deal with. When two
bodies are in contact at some point p, and they have a velocity towards
eachother, this is called colliding contact. Colliding contact requires an
instantaneously change in velocity. When two bodies are in contact at
some point p, but the velocity between them are zero we say that the
bodies are in resting contact.

In this chapter we will only look at what we do when we have found
and reported a possible collision. A more indepth look at collison de-
tection algorithms and some implementations are found in chapter 4,
Collision Detection.

7.1 Colliding Contact
Contacts between polyhedra is either vertex/face contacts or edge/edge
contacts. A vertex/face contact is when a vertex on one polyhedra is in
contact with a face on another polyhedra. An edge/edge contact is when
two edges contact; it is assumed that the two edges are not collinear.
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For now, we will assume that the contact is frictionless and that the
line of action of the impulse is normal to the surface of both objects.
When we have a vertex/face contact, we use the normal to the face as
the contact normal. When we have a edge/edge contact, we use the unit
vector for each edge and compute the cross product between them, and
use this vector as the contact normal.

Lets say we have got a contact point p, from the collision detection
algorithm. The contact point is given in world space. We have two
bodies A and B.

pa(t) is the point on body A that satisfies pa(t) = p. Similary, we
have the point pb(t) for body B. Even though pa(t) and pb(t) are similar
they do not have the same velocity. The velocity to pa(t) is given by:

ṗa(t) = va(t) + ωa(t)× (pa(t)− xa(t))

where va(t) is the linear and ωa(t) angular velocity for body A. xa(t) is
the position of center of mass in world coordinates. Similar for B:

ṗb(t) = vb(t) + ωb(t)× (pb(t)− xb(t))

Now we need to calculate the relative velocity between body A and
B. To get the relative velocity we use the contact normal:

vrel = n(t) · (ṗa(t)− ṗb(t))

vrel is a scalar and describes the velocity between the two objects. If
vrel is positive this means that the relative velocity at the contact point
is in the positive n(t) direction and the bodies are moving apart. If the
relative velocit is zero the bodies are neither colliding nor separating,
they are resting. If the relative velocity is less than zero the bodies are
colliding. If the relative velocity is less than zero we need to stop the
bodies from penetrating.

The most obvious thing to do is to apply a force to both objects,
but a force will not stop the bodies from penetrating because a force
can not instantaneously change the velocity. Instead of using force we
introduce a new quantity J , called an impulse [MC95]. An impulse
is a vector quantity, like a force, but it has its units of momentum.
An impulse can be seen as a huge force integrated over a short period
of time. We think of the time as infinitly small and the force almost
infinitly large. As the force change the momentum over time, a impulse
change the momentum instantaneously.
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The collision model we will use is called "Newton’s Law of Restitu-
tion for Instantaneous Collisions with No Friction." The impulse can
be denoted as:

F∆t = J

Where F → inf and ∆t→ 0.
When two bodies collide, an impulse is applied between them to

change their velocity. For frictionless bodies, the direction of the im-
pulse will be in the normal direction, n(t). We can write the impulse J
as:

J = jn(t)

Where j is an scalar that gives the magnitude of the impulse. We
will adopt the convension that the impulse J acts positively on body A,
+jn(t), while body B is subject to: −jn(t). Here the collision normal is
the normal computed from the face of body B if it was an edge-vertex
contact or with the cross product if it was an edge-edge collision.

Newton’s Law of Restitution introduces yet another quantity, the
coefficient of restitution, denoted by e or ε. ε must satisfy 0 ≤ ε ≤ 1.
The coefficient of restitution tells us how much of the incoming energy
is lost during the collision. If ε = 1, no kinetic energy is lost. If ε = 0
all kinetic energy is lost and the two bodies will be at resting contact
at the contact point.

v+
rel = −εv−rel

where v+
rel is the relative velocity after the impulse has been applied,

and v−rel is before the impulse has been applied.
We further denote v− and ω− as the velocities before the impulse

has been applied and v+ and ω+ are the velocities after the impulse
has been applied. We can now write the velocity after impulse for body
A as:

ṗ+
a (t) = v+

a (t) + ω+
a (t)× r

Where r = p− x(t).
We can split up the two velocities to:

v+
a (t) = v−a +

jn(t)

Ma

where Ma is the mass of body A.

ω+
a = ω−a (t) + I−1

a (t) (ra × jn(t))

and I−1
a is the inerta tensor of body A.
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After solving for j we get:

j =
− (1 + ε) v−rel

1
Ma

+ 1
Mb

+ n (t) · (I−1
a (t) (ra × n (t)))× ra + n (t) ·

(
I−1
b (t) (rb × n (t))

)
× rb

When we have calculated j we plug it in the equation and we have
a collision response with the correct spin based on their incoming velo-
cities and mass.

7.2 Resting Contact
Solving resting contact is hard because the only known methods of
dealing with resting contact demands some sophisticated numerical
software, known as quadratic solver.

Let us now say that we have n contact points, and all points are
in resting contact. In other words the relative velocity vrel, is zero or
smaller than a numerical threshold. As with colliding contact, we have
a contact force that acts normal to the contact surface. With colliding
contact we had an impulse jn(t) where j was an unknown scalar. For
resting contact, there is some force fini(t) at each contact point where
fi is an unknown scalar and ni(t) is the contact normal at the i’th con-
tact point. What we want is to determine the value of all the fi’s. To
determine the value they must all be calculated at the same time, since
the force at the ith contact point may influence one or both of the bodies
of the j contact point.

When calculating fi we have three conditions. The contact forces
must prevent inter-penetration, that is, the contact forces must be
strong enough to prevent the two bodies from being pushed "towards"
eachother. Second, we do not want the force to act like a "glue" and
hold the bodies together. Third, we want the force at a contact point to
become zero if the bodies begin to separate.

The first condition, prevent inter-penetration. For each contact point
we use a expression di(t) which describes the distance between two bod-
ies at contact point i. If di(t) is negative we have inter-penetration and
if it is positive the bodies have broken apart. When the bodies are in
contact we have di(t) = 0 (within numerical tolerances) for each contact
point.

At a contact point i between two bodies A and B, we can construct a
function for di(t):

di(t) = ni(t)× (pa(t)− pb(t))
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The same function can be used with edge/edge contacts since ni(t) points
outwars from B towards A. At a contact point we have di(t) = 0, what
we need it to keep di(t) from decreasing at time t. This means we have
ḋi(t) > 0.

ḋi(t) = ni(t)× (pa(t)− pb(t)) + ni(t)× (ṗa(t)− ṗb(t))

ḋi(t) describes the separation velocity at time t. This is exactly what we
called vrel earlier. For resting contact we know that ḋi(t) is zero, because
the bodies are neither moving towards or away from eachother at the
contactpoint. What we want to take a closer look at is d̈i(t). When we
differentiate the equation above we get:

d̈i(t) = n̈i(t)× (pa(t)− pb(t)) + 2ṅi(t)× (ṗa(t)− ṗb(t)) +ni(t)× (p̈a(t)− p̈b(t))

Since pa(t) = pb(t), we can write d̈i(t) as:

d̈i(t) = ni(t)× (p̈a(t)− p̈b(t)) + 2ṅi(t)× (ṗa(t)− ṗb(t))

The value of d̈i(t) describes how the two bodies are accelerating to-
wards each other at the contact point. If d̈i(t) is positive the bodies are
moving apart, if d̈i(t) = 0 the contact remains. A negative d̈i(t) must be
avoided. We have now the constraint

d̈i(t) ≥ 0

for each contact point.
The second constraint is simply that fi must be positive. This since

a force fini(t) acts on body A, and ni(t) is the outwards pointing normal
of B.

The third say that fi must be zero if contact is breaking. We can
express this as

fid̈i(t) = 0

To find all the fi which satisfy the three conditions, we can express
each d̈i(t) as a function of the unknown fi. We can write each d̈i(t) as

d̈i(t) = ai1f1 + ai2f2 + · · ·+ ainfn + bi

We can write this with matrix syntax



d̈1(t)
...

d̈n(t)


 = A




f1
...
fn


+




b1
...
bn



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where A is the n× n matrix of the aij coefficients.

n∑

i=1

fnii(t)d̈ni(t) = 0

can now be written as
fTa = 0

We can now write the linear relation as:

a = Af + b

We can now write the three constraints as:

Af + b ≥ 0

f ≥ 0

fT (Af + b) = 0

(7.1)

This is a LCP (Linear Complemtary Problem)[Bar94]. Since we ig-
nore friction the matrix A is a PSD matrix. This means that there is a
solution to the LCP. The problem is that LCP is NP hard. This means
that the more contacts we have the solvingtime will increase exeption-
ally.

7.3 Implementation of Colliding Contact
When we have colliding contact, we are given several values from the
collision detection routine. We have a reference to the two colliding ob-
jects and the contact point and contact normal. First we need do check
if the the relative velocity vrel between the bodies is zero or smaller
than a numerical threshold. The body object have a method that cal-
culate the velocity of a point in the body. A method to check for contact
can then easily be written as:

public int calcRelat iveVel ( ) {
re la t iveVe loc i t y . sub ( bodyA . getPointVeloc i ty ( c o l l i s i o n P o i n t ) ,

bodyB . getPointVeloc i ty ( c o l l i s i o n P o i n t ) ) ;
int vrel = col l is ionNormal . dot ( re la t iveVe loc i t y ) ;
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i f ( vre l > THRESHOLD) // moving away
return NO_COLLISION;

else i f ( vre l > − THRESHOLD) // res t ing contact
return COLLISION; // t r e a t i t as a c o l l i s i o n

else
return COLLISION;

}

When a collision is confirmed by the relative velocity we need to
find the impulse, J = jn(t). We already have the contact normal, but
we need to calculate j. j is defined to be:

j =
− (1 + ε) v−rel

1
Ma

+ 1
Mb

+ n (t) · (I−1
a (t) (ra × n (t)))× ra + n (t) ·

(
I−1
b (t) (rb × n (t))

)
× rb

Calculation of j is, though lengthy, quite easy and will not be shown
here, but rather a the method used to apply the impulses on the bodies
as:

public void applyImpulseNoFriction ( ) {
MyVector3d J = new MyVector3d ( getCollisionNormal ( i ) ) ;

double j = getImpulse ( ) ; // getImpulse ( ) ca l cu la t e s j
J . scale ( j ) ; // J = n * j ;

bodyA . applyImpulse ( J ) ; // p o s i t i v e impulse on body A
J . negate ( ) ;
bodyB . applyImpulse ( J ) ; // negative impulse on body B

}

Since the collision normal is calculated from body B, the positive
impulse acts on body A, and the negative acts on body B. Then we
apply the impulse on the body:

public void applyImpulse ( MyVector3d impulse ) {
// Apply the impulse to the body
P. add ( impulse ) ; // P += impulse
MyVector3d tmpVec = new MyVector3d ( ) ;
tmpVec . cross ( co l l i s i onPo int , impulse ) ; // L += co l lPo in t X impulse
L. add ( tmpVec ) ;

// recompute the auxi l iary variables
v e l o c i t y . scale ( getInverseMass ( ) , P ) ; // v = P / mass
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omega . mul ( getWorldInertiaInverse ( ) , L ) ; // omega = Iinv * L
}

When the impulse is added the collision response routine is finished
and the control is given to the simulator.
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Chapter 8

Java

In this section we will briefly look at the programming language Java,
and give an overview of the concepts involved.

8.1 Overview
Java is a relatively new programming languange. It was first released
in 95 by SUN Microsystems and is still developed further. Traditional
Java applications are applications that are written in Java and then
compiled into byte code form - called Java byte code. This byte code
can be executed by a Java virtual machine (JVM) on any platform that
Java supports. This means that the byte code is completely platform in-
dependent, and the JVM protects the underlying machine from illegal
instructions and memory access. Java is an imperative object oriented
programming languange. Its syntax is very similar to C++. The details
of Java can be found in the Java languange report [GJS00].

8.2 Java Development Kit
The Java development kit (JDK) is the name of the official Sun toolkit
to produce Java applications. It consists primarily of a compiler, java
interpreter, core API, and the full documentation of the Java core API
(javadoc). The latest version of JDK is version 1.4.1 which was released
in the end of 2002. The official JVM follow the same version numbers.
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8.3 Java Virtual Machine
With each version the speed of Java applications has improved signi-
ficantly. Originally JVMs were simply byte code interpreters that ex-
ecuted one command after another. With JDK 1.1, Just-in-Time (JIT)
compilation was introduced to the virtual machines. These compiled
each class to machine code before the first time it was executed. This
should have caused Java programs to become as fast as any statically
compiled program.

Unfortunately, this was not the case, since traditional compiler tech-
nology relies heavily on inlining to gain their high performance. This
was not easy in Java because each class in byte code form is completely
independent of other classes. This flexibility is enhanced even more by
the possibility of dynamically loaded classes. Since each class in JDK
1.1 and JDK 1.2 was compiled to machine code one at the time the
consequence was that it was impossible to inline method across class
boundaries or even within classes themselves if those methods were
not private.

Several approaches have been used to solve this problem.

• Assume that all classes immediately presented are static and com-
pile the classes as they were written in any other statically com-
piled languange. This is the approach used by the Java static
compilers.

• Allow the compiled machine code to be recompiled at run-time if
the involved set of classes changes. This is the approach used by
Hotspot virtual machines (JDK 1.3 and later).

8.4 Java Hotspot
One of the major innovations on Java is the devolpment of Hotspot
technology (JDK 1.3 and later), a kind of adaptive optimizer technology.
[Gos01]

The idea behind this technology is that the application is analyzed
at run-time and optimizations are performed based on these results.

The first times some piece of code is run, it is run interpreted, and
when the system has gathered enough information about the run-time
behavior of the application it aggressively compiles the sections of code
that are run the most; the hotspots.
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The idea is that it is better to use much time compiling the code that
is run frequently rather than performing inferior compilation to it all
as is usually done by JIT compilers.

This strategy introduces an initial overhead to the application as
it start up (the so- called warm up period) while it analyzes run-time
behavior and runs the optimizing compiler.

The optimizations that can be performed on the code can be much
more aggressive than the optimizations performed with traditional static
compilers, such as C++ compilers, because the compilation can be un-
done and redone at any time. This means that if the general run-time
behavior changes then the machine code can, and probably will also
change.

In general, the Hotspot virtual machine first attempts to in-line as
much code as possible. Then the full range of traditional optimization
techniques is applied to inlined code. Special optimizations for Java
are:

• Array bounds check elimination.

• Elimination of checked type casts.

• Non-final methods (virtual methods) can be turned non-virtual if
they are not derived or never used polymorphically.

8.5 Java Performance
From being just a simple byte code interpreter to the use of hotspot
technology, Java performance has increased dramatically. The first ver-
sion of Java (JDK 1.0), was approximately 20-40 times slower that C++.
JDK 1.3 had a factor 0.7 - 4 slower that C++, and JDK 1.4 is from 0.5-3
slower than C++. This is based on tests[Mar02] where both the C++
and the Java code were tweaked as much as possible. Further, if the
program uses 3D hardware, as most games today do, most of the ex-
ecution time is spent on 3D hardware, which means the performance
difference between Java and C++ becomes even less.
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8.6 Java3D

8.6.1 Background
Java3D, a relatively new 3D API, tries to learn from the existing 3D
graphics interfaces. It sits somewhere in the middel of the low level
APIs like OpenGL and high level like VRML [VRM97].
Java3D provides a structured scene graph approach to representing
objects in 3D space. On top of this, it provides a system for building
custom behaviours that act according to a variety of simulus within
the API. Java3D also provides a lot of glue capabilities, such as generic
input device support and 3D sound.
Java3D exists as part of the Java Media APIs [JMA]. The various APIs
in this framework provide the capabilities for integrating with other
multimedia and Internet technologies.
In order to provide a decent level of performace, Java3D uses a lot of
native code provided by the operation system libraries. On a Solaris
or Linux based machine, this means making use of OpenGL rendering.
MS Windows users may either use OpenGL or Direct3D. Native vode
use is restricted to only the final rendering steps while most of the core
features are written in Java.

8.6.2 Future of Java3D
SUN finalized version 1.3 of Java3D in the summer of 2002. Version
1.3.1 was released 14 may 2003 which where bugfixes and performance
enhancement.

According to Doug Twilleager a Java3D SUN developer, parallel
with Java3D 1.3.1, Java3D 1.4 will be developed. Some of the new
features that are currently being considered are:

• Programmable Shading (Vertex/Pixel Shaders)

• Stencil buffer support

• Limited Extensibility

• Render to texture

The JSR for Java3D 1.4 will be filed by Siggraph (July 21). Ac-
cording to Doug Twilleager they will work to provide as a compatibile
shader languange with OpenGL2 and DirectX9 as they can.
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With version 1.4 Java3D will take a leap forward when dealing
with the new graphics hardware possibilities that are only usable with
OpenGl and DirectX at the moment.

The OpenGL2 specs also include native Java bindings.
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Chapter 9

Conclusion

We have presented techniques for constructing a rigid body simulation
system. We have described an implementation of a system that can
be used for interactive, real-time simulation. We presented different
methods of collision detection and an implementation of a flexible and
powerful collision detection routine. The flexibilty of the collision de-
tection routine make it usable in many different fields. A library is
provided that make it easy to create applications for simulating rigid
body dynamics.

9.1 Progression, Difficult Subjects
When the first attempts at creating a object specific collision detection
routine failed because of poor performance. It was decided that a more
sophisticated collision detection routine was needed.
The implementation of JAOC was planned to take no more than 6-7
months. During development it became clear that the routine was more
complex than expected and there were several technical problems that
took much time to implement and debug. Some of the challenges were:

• Computation of the OBBTree.

• Calculate the rotation and translation of the OBB nodes

• Overlap check between OBB objects

• Finding exact collision point and normal

The OBB routine was implemented first, and by then we knew that
it would be impossible to finish JAOC within the timeframe we had
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planned. The OBB routine worked and would be sufficient for our
needs, but we felt that it was a half-done product and it would be more
usable with the sweep-and-prune routine implemented. It was decided
to finish JAOC as initially planned.

When JAOC was completed we had a collision detection routine that
was fast, flexible and it could be usable in much more that rigid body
dynamics. It also has an integrated collision handling routine which
make it very easy to perform contact computation on the objects.

As a result of the time spent on JAOC there were less time spent
on the physics part than planned. Resting contact and contact with
friction are the two main subjects that were put aside.

9.2 Further Work
There are several directions in which this work could be built upon:

• Implementation of resting contact and contact modeling with fric-
tion.
The theory of resting contact is provided in section 7.2 the main
task would be to create a LCP solver. The implementation with
the existing library would not be complicated.

• Implementation of contact with friction.
David Baraff has written a paper[Bar94] where he introduces a
method for solving the problem.

• Further development of the collision detection routine.
Some methods of improving JAOC where provided in section 5.4.2.
The exact collision detection routine should be rewritten. The al-
gorithm for finding exact overlap is slow and it find many duplic-
ate contact points.

59



Bibliography

[ABJN85] D. Ayalla, P. Brunet, R. Juan, and I. Navazo. Object Repres-
entation by means of Nonminimal Division Quadtrees and
Octrees. ACM Transactions of Graphics, 4:41–59, 1985.

[AM01] Tomas Akenine-Möller. Fast 3D Triangle-Box Overlap
Testing. Journal of Graphics Tools: JGT, 6(1):29–33, 2001.

[Bar94] David Baraff. Fast contact force computation for nonpenet-
rating rigid bodies. Computer Graphics, 28(Annual Confer-
ence Series):23–34, 1994.

[BW97] David Baraff and Andrew Witkin. An Introduction to Phys-
ically Based Modeling: Rigid Body Simulation I - Uncon-
strained Rigid Body Dynamics. Computer Graphics, 1997.

[FKN80] H. Fuchs, Z.M. Kedem, and B.F. Naylor. On Visible Surface
Generation by A Priori Tree Structures. Computer Graph-
ics (Proceedings of SIGGRAPH 80), pages 124–133, 1980.

[Gal01] P. Galli. Study - Java to overtake C/C++ in 2002. 2001.

[GJK88] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A Fast
Procedure for Computing the Distance between Complex
Objects in Three-Dimensional Space. IEEE Journal of Ro-
botics and Automation, pages 193–203, 1988.

[GJS00] J. Gosling, B. Joy, and G. Steele. The Java Languange Spe-
cification. Addison-Wesley, second edition, 2000.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A
Hierarchical Structure for Rapid Interference Detection.
Computer Graphics, 30(Annual Conference Series):171–
180, 1996.

[Goe01] Sven Goethel. OpenGL for Java, GL4Java., 2001.

60



BIBLIOGRAPHY

[Gos96] J. Gosling. The Java Languange - an overview. 1996.

[Gos01] J. Gosling. The Hotspot Technology. 2001.

[Got96] S. Gottschalk. Separating axis theorem. Technical Report
TR96-024, Dept. of Computer Science, UNC Chapel Hill,
1996.

[Hub96] Phillip M. Hubbard. Approximating Polyhedra with
Spheres for Time-critical Collision Detection. ACM Trans-
actions of Graphics, 15, 1996.

[JMA] Java Media API.

[KHM+98] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral,
and K. Zikan. Efficient Collision Detection using Bound-
ing Volume Hierarchies of k-DOPs. IEEE Transactions on
Visualization and Computer Graphics, 4:21–36, 1998.

[Lin94] Ming Chieh Lin. Efficient Collision Detection for Anima-
tion and Robotics. Technical Report ERL-94-13, 1994.

[Mar02] Jacob Marner. Evaluating Java for Game Deveolpment.
2002.

[MC95] Brian Mirtich and John F. Canny. Impulse-Based Simu-
lation of Rigid Bodies. In Symposium on Interactive 3D
Graphics, pages 181–188, 217, 1995.

[Mic97] SUN Microsystems. Java 3D API Collateral, Technical
White Paper, 1997.

[Mir96] Brian Mirtich. Fast and Accurate Computation of Poly-
hedral Mass Properties. Journal of Graphics Tools: JGT,
1(2):31–50, 1996.

[Mir98] B. Mirtich. Rigid Body Contact: Collision Detection to
Force Computation, 1998.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipies in C: The Art of Scientific Com-
puting. Cambridge University Press, 1992.

[SH76] M. Shamos and D. Hoey. Geometric Intersection Problems.
Proceedings of the 17th Annual Conference on Foundations
of Computer Science, pages 208–215, 1976.

61



BIBLIOGRAPHY

[van97] Gino van den Bergen. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of
Graphics Tools: JGT, 2(4):1–14, 1997.

[VRM97] VRML Spesification, 1997.

62


	Introduction
	Rigid Body
	Rigid Body Simulation
	Simulator
	Dynamic Simulation
	Collision Detection
	Programming Languange
	Where to use Rigid Body Dynamics
	Thesis Organization

	Rigid Body Dynamics Theory
	Kinematics
	Mass
	Center of mass
	Velocity
	Angular Velocity

	Forces and Torques
	Momentum
	Angular Momentum
	Inertia tensor


	Simulating Rigid Body Dynamics
	Mass Properties
	Rigid Body Equations of Motion
	Quaternions
	Ordinary Differential Equation
	Initial Value Problem
	Euler Method
	Runge-Kutta


	Collision Detection
	Bounding Volume
	Cost Function
	Separating Axis
	Axis Aligned Bounding Box
	Building a AABB
	AABB Intersection Test

	Oriented Bounding Box
	Building an OBB
	OBB Intersection Detection

	OBBTree
	Sweep and Prune
	Hierarchical Collision Detection
	Collision Report

	Collision Detection Implementation
	Implementation of OBBTree
	Collision Report Implementation
	Implementation of Sweep and Prune
	Performance
	Demo Test
	Optimization
	Conclusion


	Rigid Body Library
	Implementation
	Rigid Body Library
	Collision Detection Library
	Rigid Body Manager
	Simulator

	Example of Use
	Summary

	Contact
	Colliding Contact
	Resting Contact
	Implementation of Colliding Contact

	Java
	Overview
	Java Development Kit
	Java Virtual Machine 
	Java Hotspot
	Java Performance
	Java3D
	Background
	Future of Java3D


	Conclusion
	Progression, Difficult Subjects
	Further Work


