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Abstract
When we think and feel, the nerve cells (neurons) in the brain communicate
by means of electric messages. We can listen to these neural conversations by
recording resulting electric and magnetic signals on the outside of the head. The
electric signals can be measured with small electrodes placed on the scalp, a
method known as electroencephalography (EEG), while magnetic fields can be
recorded with magnetoencephalography (MEG). Even though EEG and MEG
are widely used techniques for studying cognition and disease in the human
brain, we know surprisingly little about the neural origin of these signals.

We can get an overview of the electrical activity in the neural symphony
by studying the current dipole moment capturing the melody of the network.
To illustrate: if you know which tune is played on stage, you will have a good
idea of what one can hear from the outside of the concert hall. Correspondingly,
the current dipole moment can be applied for modeling EEG and MEG signals
measured outside of the head. Furthermore, it is possible to simulate neural
activity with detailed neuron models reconstructed from experimental data.
However, the possibility to predict non-invasive brain recordings by calculating
the current dipole moment from detailed neural activity has not yet been taken
full advantage of.

This thesis presents a forward modeling framework for computing EEG
and MEG signals, with methods firmly grounded in the underlying biophysics.
Specifically, In Paper I, we present analytical formulas and available python
code for computing electric brain signals from a current dipole moment in a
simplified head consisting of four concentric spheres. In Paper II, we expand
the open-source python-package LFPy, allowing for current dipole calculations
from morphologically reconstructed neurons and neural populations. LFPy
2.0 includes methods for computing electric potentials on top of the brain
(electrocorticography), as well as EEG and MEG signals. In Paper III, we apply
methods from Paper I and II to compute the current dipole moment and the
resulting electric brain signals from biophysically detailed single cells and existing
neural simulations. We demonstrate how the presented modeling framework
opens the door for exploring the neural origin of electric and magnetic brain
signals.
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Chapter 1

Introduction

1.1 What is this thesis about?

If there were a window in the back of the head so that we could see through hair,
skin, scalp, and some membranes, we would stare in at the jelly-like, wrinkled,
walnut-shaped brain. The outermost, folded part of the brain is known as the
neocortex and is home to billions of nerve cells, named neurons [1]. The main
feature of neurons is that they are brilliant at communicating. When we think
and feel, the neurons are talking, exchanging information in highly complex
networks.

In order to hear what the other cells in the network are saying, a large part of
the neuron body consists of branch-like input structures named dendrites. The
dendrites harbor thousands of connections, called synapses, receiving messages
from other cells. When a synaptic input arrives, signals are forwarded from the
dendrites down to the headquarters, called the soma. The soma will then decide
whether to pass the information on to tens of thousands of other cells through
the output cable called the axon (see Figure 1.1). This information is encoded
by means of electric signals [2–4].

Soma

Axon
Contact
with other cells

Dendrites
(Contacted by
other neurons)

Fig 1.1. Illustration of neuron morphology. A neuron receives input from
other cells through the synapses on the dendrites, and electric signals are
forwarded to the soma. If the membrane potential in the soma reaches a
threshold value, an action potential will travel down the axon and submit an
electric signal to the other neurons in the network. The figure is adapted from
The Blausen Gallery, 2014 [5], and was published earlier in Næss, 2015 [6].

The reason why neurons have anything to do with electricity is that the brain
and all the nerve cells are soaked in a soup called cerebrospinal fluid. If we could
zoom in on the cerebrospinal fluid, we would see ions such as sodium, potassium,
and chloride. Ions are charged particles, and typically there is more positive
charge on the outside of the cell than on the inside. The membrane is effectively
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1. Introduction

a capacitor charged by ions, similar to the membrane setting up the voltage in a
battery. The voltage drop over the cell membrane is known as the membrane
potential and is quite constantly ∼ −70 mV when the neuron is resting. When
a neuron receives synaptic input from other cells, however, small ion channels
in the membrane are unlocked. Ions will move through the ion channels, and
alter the membrane potential, also giving rise to capacitive currents. Ionic and
capacitive currents are collectively called transmembrane currents. The neuron
is an electrically connected whole: a dendritic transmembrane current will lead
to axial currents inside the neuron and potentially affect the membrane potential
in the entire cell, including the soma. If the somatic membrane potential reaches
a certain threshold, an army of ion channels opens, and an action potential
is generated. The action potential is a sharp membrane deflection that will
travel all the way down the axon, activating the thousands of synapses on the
connected cells.

From physics, we know that currents set up electric and magnetic fields. This
means that neural activity in the brain generates electric and magnetic signals
that can be measured in the clinic. The magnetic signals can be detected with
magnetoencephalography (MEG), while electroencephalogram (EEG), electrodes
on top of the scalp, and electrocorticography (ECoG), electrodes on top of the
brain, can record the resulting electric potential (see Figure 1.2). It is even
possible to measure electric potentials by inserting electrodes into the brain.
These intracranial recordings are typically split into the low-frequency part of
the signal, known as local field potentials (LFP), and the high-frequency part,
multi-unit activity (MUA) [7–12]. While MUA is used to study spikes [13, 14]
(the extracellular signature of action potentials), the LFPs are thought to reflect
the slower synaptic currents [10, 15, 16]. This thesis focuses on EEG signals, but
we will also touch in on the other measurement modalities.

Cortex

Skull

Scalp

White matter

10 - 12 mm

2 - 3 mm

5 - 10 mm

MEG

ECoG

2 - 3 mm

LFP/MUA

EEG

Fig 1.2. Recording techniques for electric and magnetic brain signals.
Illustration of MUA/LFP, ECoG, EEG and MEG recordings, measuring electric
and magnetic signals generated by neural populations in neocortex. Figure
courtesy of Torbjørn V. Ness.
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Motivation

Since neurons speak the language of electricity, they can be modeled using
electric circuits [9, 17]. This means that we can use well-known laws of physics
to describe the neural conversations with mathematics! Implementing the right
equations (most often on a computer), we can simulate neural activity through
mathematical modeling.

Going from neural activity to measurable brain signals is an example of
forward modeling, predicting measurements from underlying neural activity, as
opposed to inverse modeling, where the goal is to approximate neural activity from
measurements. The standard forward modeling scheme for predicting potentials
in neural tissue involves (i) computing the transmembrane currents from a neural
simulation, and (ii) plugging these into an equation giving the resulting electric
potential. For predictions of potentials in the vicinity of the modeled neuron(s),
we assume that the tissue is infinitely large and that the electric conductivity of
tissue is independent of location and direction. However, when modeling EEG
signals, the distance from neuron to electrode is increased, and we need to take
into account that current flow is medium-dependent. For example, the current
flows more easily through the high-conductivity cerebrospinal fluid than through
the more resistant skull. In addition, the shapes of the different geometries of
the head will affect the potential on the scalp. The geometries and conductivities
of the different parts of the head can be incorporated into EEG modeling by
applying a head model. The input to such head models is typically not the
transmembrane currents readily available from neuron simulations, but rather
a position-weighted sum of the transmembrane currents, known as the current
dipole moment.

The focus of this thesis is to model the link between EEG and MEG signals
and the underlying neural activity, by computing the current dipole moment
from biophysically detailed neural simulations.

1.2 Motivation

Most of what we know about how the brain works comes from animal studies,
where recording electrodes are implanted in brain tissue. For obvious ethical
reasons, intracranial recordings on humans are restricted to special clinical cases,
including small brain tumors and drug-resistant epilepsy. Even though we can
learn a lot from animal studies, we will eventually need to study humans to
understand the human brain [16]. Since no surgery is required for EEG and
MEG recordings, these techniques are obvious candidates for studying human
brain activity.

Brain-generated electric signals are relatively easy to measure. Already in
1875, Richard Caton recorded electric signals from the top of animal brains [18].
The first human EEG was recorded about 50 years later by Hans Berger [19].
Since then, EEG has been used for diagnosing brain diseases such as epilepsy,
brain tumors, and dementia, and it has also been an important tool in psychology.
Despite the widespread use of EEG, it is clear that we know very little about the
origin of these electric signals. As Michael X. Cohen spells out in “Where does
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1. Introduction

EEG come from and what does it mean?”, we know “shockingly little about the
answer to this question” [20].

When analyzing EEG signals, it is common to either compare the recordings
to other brain activity measures or to look for correlations between signals
and presented stimulus. In the past decades, however, we have realized that
measurement physics must play a more prominent role in neuroscience [21].

In general, physics-type modeling of measurable brain signals is crucial for
bridging scales in neuroscience: from nanoscale molecular dynamics in single ion
channels to the meter-long axonal cables. To understand the biophysical origin
of measurements, we need to develop mathematical models of the biological
systems we measure from [12, 14]. In addition to revealing insights about the
origin of clinical recordings, modeling what we can measure can make it possible
to compare simulations with clinical data. This is important for obtaining a
better understanding of model limitations and improving the models.

Specifically, setting up a framework for modeling EEG and MEG signals
from biophysically detailed neural activity is important for understanding where
these signals come from [22], answering the first part of Cohen’s question [20].
Furthermore, one can test different hypotheses in a virtual laboratory by applying
the framework to various types of neural simulations, to shed light on part two
of the question: “What does it mean?”.

In short, modeling EEG and MEG signals from detailed neural simulations
is essential for understanding the human brain and helping improve methods for
diagnosing human brain diseases.

1.3 My contribution

The first person to model the source of EEG as a current dipole moment was
M. A. B. Brazier in 1949 [23, 24]. She computed scalp potentials with a model
known as the current dipole approximation. Both approximating the head as an
infinite homogeneous space and a homogeneous sphere, she looked into how the
shape and conductivity of the head model affected the EEG signal. Her work
is followed by many others representing different parts of the head by adding
more concentric, spherical shells with various conductivity to the head model [1,
25–33].

In the past decades, advanced imaging techniques have opened for replacing
the spherical head models with realistic head reconstructions. By plugging the
current dipole into a realistic head model, EEG signals can be computed with
numerical methods such as the boundary element method [34, 35] or the finite
element method [36].

Until recently, EEG forward models have mainly been applied for solving the
inverse problem, focusing on finding the dipole strength, location, and orientation
that can explain the recordings. Even though this work is very important for
finding, for example, where epileptic seizures originate in the brain, there is
still unexploited potential in EEG forward modeling. If we replace more or less
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My contribution

arbitrary dipoles with dipoles computed from detailed neuron simulations, we
can link EEG recordings with the neural activity generating these signals.

The starting point for today’s advanced simulations of neural activity was laid
by Professor William Thomson (also known as Lord Kelvin) when developing the
cable theory for the (transatlantic) telegraph cable in 1855 [9]. In the early 1900s,
neuroscientists started looking at neurons as pieces of electric cable (see summary
in [9]). Detailed passive membrane mechanisms, as described by Rall [37] and
others, and active mechanisms, as modeled by Hodgkin, Huxley and Katz [17, 38]
to name a few, were later incorporated in the simulations. Building on this, Rall
used a forward modeling scheme based on transmembrane currents to calculate
extracellular potentials from neuron models with simplified cell morphologies [39,
40]. In 1999, Holt and Koch computed spikes from reconstructed morphologies
of pyramidal neurons [8]. Later, the forward modeling scheme was applied not
only to look at spikes [41], but also LFP signals [13, 42]. At the same time, we
have seen rapid development in large network simulations of morphologically
detailed neuron models [43] and point neuron networks (approximating each
neuron as a single point) [12, 44, 45]. Thanks to initiatives such as the Project
MindScope at the Allen Institute for Brain Science, the Blue Brain Project, and
the EU Human Brain Project, we now have access to a vast amount of detailed
reconstructed neurons and network simulations [21]. These neuron models can
be downloaded and used in neuron simulations by applying easily accessible
neuron simulation tools such as NEURON [46] and GENESIS [47]. In other
words, the road lies open for detailed simulations of neural activity.

Other studies have looked into current dipole calculations from detailed
single-cell simulations [14, 22, 48] and from networks of neurons with simplified
morphologies [49]. In this thesis, however, we predict EEG and MEG signals by
computing the current dipole moment from neural simulations of both single
cells and neural populations, based on morphologically reconstructed neuron
models. The findings were published in three papers: Paper I and II outline an
EEG/MEG modeling framework, and Paper III demonstrates how the framework
can be applied for answering questions about the biophysical origin of EEG and
MEG signals. The work has already been applied for linking the mechanisms of
schizophrenia to EEG signals in the papers by Mäki-Marttunen et al., 2019 [50,
51]1 and summarized in our recent book chapter [52].

Research objectives

The overall goal of this work was to investigate the biophysical link between
electrical activity in the brain and measurable electric and magnetic brain signals.
Specifically, we aim to meet the following research objectives: Paper I) provide
an available version of the four-sphere head model; Paper II) upgrade the open-
source python-package LFPy, enabling ECoG, EEG and MEG calculations from
biophysically detailed neural network simulations; Paper III) investigate the
applicability of the current dipole approximation for ECoG and EEG calculations,

1I made contributions to these papers, but they are not included in my thesis.
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1. Introduction

and explore contributions from neural activity to EEG and MEG signals by
using the frameworks provided in Paper I and II.
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Chapter 2

Theoretical background

This chapter lays the physics foundation for the theory presented in Paper I-
III. Here, I explain the two-step modeling scheme for electric potentials in the
brain: (i) how to calculate transmembrane currents from multicompartmental
modeling, and (ii) how to model electric potentials with volume conductor theory.
I dedicate a section to the current dipole approximation, including the full
derivation and a note on what we lose by choosing this approximate alternative,
before introducing the concept of head models. Finally, I present basic magnetic
field theory. If you are not interested in the physics details, you can jump to
Chapter 3.

2.1 How to model transmembrane currents

The electric and magnetic signals playing the main parts in this thesis are
generated by electric currents resulting from neural activity in the brain. These
currents can be modeled with multicompartmental modeling, where we split the
neuron morphology into multiple compartments. Each compartment must be so
small that we can assume the electric potential to be the same within the whole
compartment. Because the cell membrane has both resistive and capacitive
properties, we represent each compartment by an electric RC-circuit. The circuit
is driven by the voltage difference between the actual membrane potential and
the resting potential (see Figure 2.1).

From Kirchhoff’s current law, we know that the total current entering and
leaving a compartment must be zero, as described by the cable equation [2, 4, 8,
9]:

gn,n+1(Vn+1 − Vn) − gn−1,n(Vn − Vn−1) = Cn
dVn
dt

+∑
j

Ijn. (2.1)

The axial conductance between compartment n and compartment n + 1 is
denoted by gn,n+1, while Vn is the membrane potential and Cn is the membrane
capacitance of compartment n. The cable equation says that the axial current
from neighboring compartments (left-hand side) must equal the total current
entering and escaping through the membrane, that is the transmembrane current
(right-hand side). The total transmembrane current In in compartment n includes
both the capacitive current (first term on right-hand side) and the sum of ionic
currents Ijn crossing the membrane through j types of ion channels [2, 15]:

In = Cn
dVn
dt

+∑
j

Ijn. (2.2)

7



2. Theoretical background

in trace llu la r

ex trace llu la r

Vn−1 Vn Vn +1

gn−1,n gn,n +1

Rn

En

Cn

In

nn-1 n+1

Fig 2.1. Illustration of multicompartmental modeling. A dendritic stick
is split up into compartments. The compartment size must be so small that we
can assume the whole compartment to have the same membrane potential.
Each compartment is represented by an electric RC-circuit, with membrane
potential Vn, membrane resistance Rn, membrane capacitance Cn and resting
potential En. The axial, intracellular conductance between compartments is
denoted gn,n+1. First published in Næss, 2015 [6].

The next equation shows how we can calculate the current dipole moment p as
a weighted sum of the transmembrane currents:

p =∑
n

Inrn, (2.3)

where rn is the position of transmembrane current In. Note that the current
dipole moment alternatively can be calculated from axial currents:

p =∑
n

Iandn, (2.4)

where each axial current Ian has traveled a distance dn. The current dipole
moment is key to EEG and MEG modeling, and we’ll get better acquainted with
this guy in Section 2.2.3.

2.2 Volume conductor theory

The reason for starting this theory chapter with currents, and not zooming all
the way into ions, is that EEG is a macroscopic measure: It is neither possible
to know the exact location of all charges in the brain, nor is it necessary, since
Debye shielding and electroneutrality of tissue make sure that single charge
contributions to measured electric potentials are negligible [1, 53]. This means
that we can safely use currents as our starting point for volume conductor theory.
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Volume conductor theory

Additionally, volume conductor theory relies on a second coarse-graining
assumption. Neural tissue is densely packed with neurons, and extracellular
space makes up only ∼ 20% of tissue [54]. Extracellular currents will typically
travel both extracellularly and intracellularly [55], and modeling the exact
current pathways would require knowledge of the tissue microstructure. On a
macroscopic scale of ∼ tens of micrometers, we can instead average over reference
volumes large enough to contain both extracellular space and several neurites
[56]. In other words, we assume that the current sees the tissue as a smooth
volume conductor with constant conductivity [1, 57].

Note that in the Papers 1-3, we used the terms "extracellular space" and
"extracellular conductivity", while "tissue outside of the modeled neurons" and
"tissue conductivity" would have been more precise.

In this section, I first derive the Poisson equation for volume conductors,
before giving the solution for the electric potential in an infinite, homogeneous
conductor.

2.2.1 From Maxwell to Poisson

In order to describe electromagnetic signals on the macroscopic scale, we start
out with the macroscopic version of Maxwell’s equations [56]:

∇ ⋅D = ρ, (2.5)

∇×E = −
∂B
∂t
, (2.6)

∇ ⋅B = 0, (2.7)

∇×H = i + ∂D
∂t

. (2.8)

Here, D (C/m2) is the displacement field set up by the unbound charge density
ρ (C/m3), E (V/m) is the electric field, B (T) is the magnetic field and H (A/m)
is the magnetizing field induced by the unbound current density i (A/m2).

The conductive medium in the brain is linear in both the magnetic and electric
sense [1]. This means that the magnetization of the medium is proportional to the
magnetic field, that is B = µH, and polarization of the medium is proportional
to the electric field: D = εE. Consequently, we can go on with the macroscopic
formulation of Maxwell’s equations for linear media [58]:

∇ ⋅E =
ρ

ε
, (2.9)

∇×E = −
∂B
∂t
, (2.10)

∇ ⋅B = 0, (2.11)

∇×B = µi + µε∂E
∂t
. (2.12)

9



2. Theoretical background

Equation 2.9 is known as Gauss law and says that a net free charge density
ρ will generate a diverging electric field. Further, Faraday’s law (Equation 2.10)
states that a rotation (curl) of the electric field will be induced by a temporal
change in the magnetic field B. In Gauss law for magnetism (2.11), equivalent
to (2.9), the divergence of the magnetic field is 0, since magnetic monopoles do
not exist. Finally, Ampère’s circuit law (2.12) describes how a current density
of free charges i and a temporal change in the electric field will both induce a
magnetic field.

Taking the divergence of both sides of Equation 2.12, we arrive at the following
expression, since ∇ ⋅ ∇ ×B is zero:

∇ ⋅ (i + ε∂E
∂t

) = 0. (2.13)

The second term on the left-hand side of Equation 2.13 is known as the displace-
ment current, and is due to capacitive effects in the medium. Consequently, we
see i + ε∂E

∂t
= itot as the total current of unbound and bound charges. Equation

2.13 is, therefore, equivalent to the current continuity equation, ensuring that
the net flux of total current in a single point is zero:

∇ ⋅ itot = 0. (2.14)

In volume conductor theory, it is common to split the total current (density)
into two parts: the primary current is and the resulting tissue current it [59],

itot = is + it. (2.15)

As explained in Nunez & Srinivasan, 2006 [1] and Gratiy et al., 2017 [60], volume
conductor theory is based on dividing the conductor into two subdomains: (i)
the intracellular space plus the membrane of the neurons that we model, and
(ii) the rest, which resembles the tissue in the infinite homogeneous case. The
primary current is here a trick used to avoid dealing with boundary conditions
on the surface of the cellular domain. In volume conductor theory, it is common
to express the negative divergence of the primary current density in terms of the
current source density C:

C = −∇ ⋅ is, (2.16)

where C is given in A/m3. The current source density represents the electric
current entering and escaping the tissue.

With all this in place, we obtain the continuity equation for volume conductor
theory, by inserting Equations 2.15 and 2.16 into Equation 2.14:

∇ ⋅ it = C. (2.17)

Next, we assume that the tissue current is solely dependent on the current sources.
This means that we do not consider volume currents due to bulk flow, since the
interstitial fluid is incompressible [60]. Further, we rely on the assumption that
concentration gradients are negligible in extracellular space, so that we do not
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Volume conductor theory

have to take diffusion currents into account [15, 61]. In the brain, it is also safe
to assume that magnetic fields won’t affect the tissue currents [1]. Moreover,
fluctuations in the electric fields in the brain are relatively slow, meaning that
the displacement current is also negligible (see Hämäläinen et al. 1993 [16]).
These arguments support the well-known observation that the tissue current can
be expressed by Ohms law:

it = σE. (2.18)
Due to the low frequencies in brain activity, we can safely assume that

∂B/∂t is negligible, and therefore apply the quasistatic version of Faraday’s law
(Equation 2.10):

∇×E = 0. (2.19)
ensuring a conservative electric field.

We see from combining Stokes’ theorem,

∬

Ω

∇×E ⋅ da = ∳

∂Ω

E ⋅ dl, (2.20)

with Equation 2.19, that the circle integral along a closed loop in the
(conservative) electric field E is zero,

∳

∂Ω

E ⋅ dl = 0,

and we can define the electric potential as

Φ(r) = −
r

∫

O

E ⋅ dl. (2.21)

Further, we can express the potential difference over a path from a to b in a
conservative field E as

Φ(b) −Φ(a) = −
b

∫
a

E ⋅ dl. (2.22)

From the fundamental theorem, we know that

Φ(b) −Φ(a) =
b

∫
a

∇Φ ⋅ dl. (2.23)

Comparing 2.22 with 2.23, we see that the electric field can be expressed as the
negative gradient of the electric potential:

E = −∇Φ, (2.24)

when ∂B
∂t

≈ 0. Finally, we can insert Ohm’s law (2.18) into the continuity
equation (2.17) and replace E with −∇Φ, to obtain the Poisson equation for
electric potentials:

∇ ⋅ σ∇Φ = −C. (2.25)
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2. Theoretical background

2.2.2 Electric potential in infinite homogeneous medium

In this section, we find a solution for the Poisson equation in an infinite,
homogeneous medium. This means that we assume the head to be a volume
conductor where the conductivity σ is a scalar independent of position.
Consequently, we can write the Poisson equation on the following form:

∇
2Φ = −

C

σ
. (2.26)

First, we want to find the electric potential Φ from a current source I1 at location
r1 with current source density C = i1δ(r − r1). We start by integrating both
sides of Equation 2.26 over a volume Ω containing the current source I1:

∭

Ω

∇
2ΦdΩ = −

1
σ
∭

Ω

i1δ(r − r1)dΩ.

The integral on the right-hand side gives us the current source I1. On the
left-hand side, we apply the divergence theorem, such that:

∯
S
∇Φ(r) ⋅ dS = −

I1
σ

(2.27)

We choose our integration surface S to be a sphere with center r1 and radius
R = ∣r−r1∣. Since the potential from a point source spatially only depends on the
distance R from the source, Φ(r) = Φ(R), we can write the potential gradient
as ∇Φ(r) = dΦ(r)/dR R̂. Here, R̂ is the unit vector orthogonal to the surface
increment dS = dS R̂, and our expression reduces to

dΦ
dR
∯

S

dS =
dΦ
dR

4πR2
= −

I1
σ
.

Next, we integrate dΦ = −I1/(4πσR2)dR from ∞ to R, and obtain the expression

Φ(R) =
Ik

4πσR
. (2.28)

Substituting R with ∣r − r1∣, we arrive at:

Φ(r) = I1
4πσ∣r − r1∣

. (2.29)

Since the medium is linear, electric potentials sum linearly and the electric
potential at location r fromN current sources Ik positioned at rk can be expressed
by the sum [14]:

Φ(r) =
N
∑
k=1

Ik
4πσ∣r − rk∣

. (2.30)

When modeling electric potentials in close vicinity of the neuron, Equation 2.30
is often a safe choice. When modeling EEG-signals, on the other hand, it can be
useful to base the computations on the current dipole approximation, instead.
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2.2.3 Current dipole approximation in homogeneous medium

This thesis revolves around the current dipole moment (Equation 2.3), and
how the current dipole moment can be utilized for electric potential predictions
through the current dipole approximation. I will therefore derive the current
dipole approximation, emphasizing which constraints underlie the approximation,
and what we lose by choosing the approximation over the exact solution given
in Equation 2.30.

2.2.3.1 Derivation of the current multipole expansion

In order to derive the current dipole approximation for infinitely large volume
conductors with constant conductivity, we must first derive the current multipole
expansion. The current multipole expansion is an infinite series that can be used
for approximating the electric potential from a set of currents, by calculating a
finite set of terms. If you’re not interested in the details of the derivation, you
can jump to Equation 2.35. In Figure 2.2, we illustrate a volume containing N
currents Ik at position rk. The center of the volume is rc = ∑Nk=1 rk

N
. We are

interested in the electric potential measured with a simulated point electrode
located a distance R = ∣R∣ = ∣rc − r∣ away from the current distribution.

Our goal is to derive an alternative to Equation. 2.30, by writing 1
∣r−rk ∣

= 1
Rk

as an infinite series. The term Rk denotes the distance between current Ik at rk
and the electrode position r. The first step is applying the cosine rule,

R2
k = R

2
+ r2

ck − 2Rrck cos θk. (2.31)

where rck = ∣rck ∣ is the magnitude of the distance vector between the volume
center rc and current location rk, and θk is the angle between rck and R (see
Figure 2.2). Next, we rearrange Equation 2.31 to obtain the following expression
for Rk:

R2
k = R

2[1 − rck
R

2 cos θk + (
rck
R

)
2
],

Ô⇒ Rk = R
√

1 − 2h cos θk + h2 ∀h =
rck
R
.

This gives us:
1

∣r − rk ∣
=

1
Rk

=
1

R
√

1 − 2h cos θk + h2
.

Here, we notice that 1
√

1−2h cos θk+h2 is the generating function for the Legendre
polynomials, meaning that

1
√

1 − 2h cos θk + h2
=

∞

∑
l=0
hlPl(cos θk) ∀ ∣h∣ = ∣

rck
R

∣ < 1. (2.32)

We can now express 1
∣r−rk ∣

as an infinite series:

1
∣r − rk ∣

=
1
R

∞

∑
l=0

(
rck
R

)
l
Pl(cos θk) ∀ R > rck. (2.33)
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θk

rck

rc

rk

Rk

R

r

origin

Fig 2.2. Electric potential from volume of current sinks and sources.
A volume of point current sinks and sources generates an electric potential
measured with the electrode in r, a distance R away from the center of the
volume located at rc. Current source k has the location rk, a distance rck away
from the volume center. The distance vector from volume center to electrode is
called R, and the angle between R and rck is denoted by θk.

Here, Pl are the Legendre polynomials, such that:

P0(cos θk) = 1,
P1(cos θk) = cos θk,

P2(cos θk) =
3
2

cos2 θk −
1
2
,

P3(cos θk) =
5
2

cos3 θk −
3
2

cos θk,

⋮

By inserting Equation 2.33 into Equation 2.30, we arrive at the current multipole
expansion:

Φ(R) =
1

4πσ
1
R

N

∑
k=1

Ik
∞

∑
l=0

(
rck
R

)
l
Pl(cos θk) ∀ R > rck. (2.34)
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Note that current multipole expansion 2.34 is equivalent to Equation 2.30 when
the measurement point is further away from the volume center than any of the
current sources. Writing out the first terms, we obtain:

Φ(R) =
1

4πσ

⎡
⎢
⎢
⎢
⎢
⎣

1
R

N

∑
k=1

Ik

+
1
R2

N

∑
k=1

Ikrck cos θk (2.35)

+
1
R3

N

∑
k=1

Ikr
2
ck (

3
2

cos2 θk −
1
2
)

+
1
R4

N

∑
k=1

Ikr
3
ck (

5
2

cos3 θk −
3
2

cos θk) + ...
⎤
⎥
⎥
⎥
⎥
⎦

∀R > rck.

The first four terms of the current multipole expansion are known as the
monopole Φmono, dipole Φdipole, quadrupole Φquadrupole and octupole Φoctupole

contributions, respectively [1]:

Φ = Φmonopole
+Φdipole

+Φquadrupole
+Φoctupole

+ ... (2.36)

2.2.3.2 Derivation of the current dipole approximation

The electric potential from a set of current sinks and sources can be approximated
by solely using the dipole contribution term of the multipole expansion. Note
that nothing is lost by omitting the monopole contribution, since the sink and
source currents for a whole number of neurons must sum to zero:

Φmonopole
=

1
4πσ

1
R
∑
k

Ik = 0.

We take a closer look at the dipole contribution term:

Φdipole
=

1
4πσ

1
R2 ∑

k

Ikrck cos θk.

From the scalar product identity, we see that rck cos θk = rck ⋅R̂, where R̂ = R/R,
such that:

Φdipole
=

1
4πσ

1
R2 ∑

k

Ikrck ⋅ R̂

=
1

4πσ
1
R2 ∑

k

Ik(rk − rc) ⋅ R̂

=
1

4πσ
1
R2 (∑

k

Ikrk ⋅ R̂ −∑
k

Ikrc ⋅ R̂) .
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2. Theoretical background

Since ∑k Ikrk = p and ∑k Ik = 0, we obtain the current dipole approximation:

Φ ≈ Φdipole
=

1
4πσ

p ⋅ R̂
R2 =

1
4πσ

p cos θ
R2 , (2.37)

where θ is the angle between p and R. Remember that the multipole expansion
is valid under the constraint R > rck. Applying the current dipole approximation,
however, we neglect the higher-order terms, and this calls for stricter constraints.
We see from Equation 2.35 that the higher-order contributions decay faster with
R, and it is commonly assumed that the current dipole approximation is good
when R >> rck. In the next section we want to get a better intuition about
when R is large enough, by looking at the quadrupole and octupole contributions
(Φquadrupole, Φoctupole) from a current sink-source pair.

2.2.3.3 What do we lose by using the current dipole approximation?

We find the quadrupole contribution from a current sink I1 at r1 and a current
source I2 at r2 from Equation 2.35:

Φquadrupole
=

1
4πσ

1
R3 [I1r

2
c1 (

3
2

cos2 θ1 −
1
2
) + I2r

2
c2 (

3
2

cos2 θ2 −
1
2
)] . (2.38)

Here, we conveniently place the center of the volume rc halfway between
the source I1 and the sink I2 = −I1, such that rc1 = rc2. This leads to
θ2 = π − θ1 Ô⇒ cos θ2 = − cos θ1 and cos2 θ2 = cos2 θ1. The quadrupole
contribution from a sink-source pair is therefore 0. Notice that Legendre
polynomials with l = 4,6,8, ... contain cos θk raised to the power of an even
number. Consequently, the multipole contribution term number 3, 5, 7, 9, etc is
always zero for a sink-source pair.

Now, we go on to the octupole contribution from the sink-source pair I1, I2
at r1, r2, applying the fourth term of Equation 2.35:

Φoctupole
=

1
4πσ

1
R4 [Ir3

c1 (
5
2

cos3 θ1 −
3
2

cos θ1) − Ir
3
c2 (

5
2

cos3 θ2 −
3
2

cos θ2)] .

We continue to choose rc to be the midpoint between r1 and r2, such that
rc2 = rc1 =

d
2 (where d is the distance between r1 and r2), and cos θ2 = − cos θ1:

Φoctupole
=

1
4πσ

[I
d

2

3
(

5
2

cos3 θ1 −
3
2

cos θ1) − I
d

2

3
(

5
2

cos3 θ1 −
3
2

cos θ1)]

=
1

4πσ
Id3

R4

(5 cos3 θ1 − 3 cos θ1 + 5 cos3 θ1 − 3 cos θ1)

16

=
1

4πσ
Id3

R4
5 cos3 θ1 − 3 cos θ1

8
.

Next, we rename θ1 = θ, so that θ is the angle between p and R. From
Equation 2.4 we know that p = Id and arrive at the following expression for the
octupole contribution from a sink-source pair:

Φoctupole
=

1
4πσ

p

R2
d2

R2
5 cos3 θ − 3 cos θ

8
.
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Finally, we compare the octupole contribution to the dipole contribution when
calculating the potential from a sink-source pair:

∣
Φoctupole

Φdipole ∣max = ∣
d2

R2
5 cos2 θ − 3

8
∣max =

3
8
d2

R2 .

For a sink-source pair, the octupole contribution is the largest non-zero term that
we neglect when applying the current dipole approximation, since the monopole
and quadrupole contributions are zero. (See Plonsey and Barr, 2007 [62], page
36 for a similar reflection.)

Nunez and Srinivasan [1] suggest that it is reasonable to apply the current
dipole approximation for distances R > 3d or R > 4d. The maximal octupole
contribution for a sink-source pair when measuring at a distance R = 3d is
Φoctu(R = 3d) = 1

24Φdipole, and Φoctu(R = 4d) = 3
128Φdipole at a distance R = 4d.

This means that neglecting the octupole contribution from a sink-source pair
we lose a portion of the electric potential, that amounts to somewhere between
∼ 0.8% and ∼ 4% of the dipole contribution from a sink-source pair.

Even though we also neglect higher order terms (the 32-pole, the 128-pole,
etc), keep in mind that these terms will decay even more rapidly with distance
from the source (1/R6, 1/R8, ...).

2.2.4 Head Models

EEG signals are affected by the shapes and conductivities of the different parts
of the head. In order to include this when modeling EEG signals, we need to
use an appropriate head model.

brain
CSF
skull
scalp

A B

Fig 2.3. Head model illustrations. A: The four-sphere model consisting of
four concentric shells: brain, CSF, skull and scalp, where the conductivity can
be set individually for each shell [1]. B: Illustration of the detailed New York
Head model, constructed from high-resolution, anatomical MRI-images from 152
heads [63].

A head model splits the head into subspaces, such that the conductivity can
be set specifically for each subspace. This means that σ in Equation 2.26 takes
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2. Theoretical background

different values, depending on which subspace we are in. Further, the solution
must obey the following boundary conditions: (i) current must be continuous on
the boundaries, (ii) the potential must be continuous on the boundaries, and
(iii) no current can escape the head.

For simple, symmetric head models, one can find an analytical solution for
the Poisson equation. The four-sphere head model is an example of such a model,
consisting of four concentric shells, representing brain, CSF, skull and scalp,
where the conductivity can be set individually for each shell [1, 27, 28, 33] (See
Figure 2.3 A). For more detailed head models based on MRI-data from human
heads (for example, the New York Head model [63] illustrated in 2.3 B), there is
no analytical solution, and this calls for numerical methods, such as the finite
element method (FEM).

2.2.5 Finite element method solution of the Poisson equation

Here follows a brief introduction to the finite element method, which should
be sufficient to understand the verification in Paper 1. For a more rigorous
explanation, see Logg et al., 2012 [64] or Langtangen and Logg, 2017 [65].

In order to apply the finite element method, we first need to do some calculus
to formulate our problem on the so-called variational form. We start out with
the Poisson equation (2.26):

∇
2Φ = −

C

σ
. (2.39)

Here, we denote the volume of the head model Ω with boundary ∂Ω. Now,
we multiply both sides of the Poisson equation with an arbitrary function v and
integrate over the domain Ω:

∫

Ω

∇
2Φ v dΩ = −∫

Ω

C

σ
v dΩ (2.40)

Rewriting ∇2Φ v = ∇⋅(∇Φ v)−∇Φ ⋅∇ v and applying the divergence theorem,
we end up with the expression

− ∫

Ω

∇Φ ⋅ ∇v dΩ + ∫

δΩ

(∇Φ v) ⋅ dS = −∫

Ω

C

σ
v dΩ. (2.41)

Since there is no current flow over the boundary, ∇Φ = 0 on ∂Ω, which means
that the boundary integral is zero, leaving us with with

∫

Ω

∇Φ ⋅ ∇v dΩ = ∫

Ω

C

σ
v dΩ. (2.42)

We can now write Equation 2.39 on the variational form:

a(Φ, v) = L(v), (2.43)

where
a(Φ, v) = ∫

Ω

∇Φ ⋅ ∇ v dΩ, (2.44)
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and
L(v) = ∫

Ω

C

σ
v dΩ. (2.45)

We want to find a solution Φ such that Equation 2.43 is valid for all v. (It can be
shown that Φ will then also be a solution of Equation 2.39, see for example Logg,
2012 [64].) The finite element method consists in defining a finite dimensional
function space Vh and restricting Φ and v to be contained in this function space
Φ, v ∈ Vh. The good thing about operating in a finite dimensional function space,
is that 2.43-2.45 is now a linear system of equations, that can be solved with
regular linear algebra on a computer.

In order to obtain a finite dimensional function space Vh for approximating
the solution, we divide the physical domain into subdomains, and define a set
of basis functions on each subdomain (also called finite elements1). The basis
functions must be continuous on each subdomain, and can for example be chosen
to be second order polynomials. For a 3D problem like ours, each subdomain is
typically chosen to be a tetrahedron. In other words, our head model would be
discretized into a 3D grid (mesh) of tetrahedrons. The equation system can now
be solved applying designated software such as FEniCS [66].

2.2.6 Magnetic fields in the brain

Currents in the brain do not only set up electric potentials, they also generate
magnetic fields. This section outlines how we can compute the magnetic field
from neural current sources, as described in Ilmoniemi and Sarvas, 2019 [67]
and Hämäläinen et al., 1993 [16]. With the help of some calculus and the
assumption that the current density goes to 0 at infinity, the Ampère-Laplace
law for computing magnetic fields can be derived from Faraday’s induction law
[58]:

B(r) = µ0

4π ∫
i(r′) × r − r′

∣r − r′∣3
dV ′. (2.46)

We want to take a look at the contributions from the primary current
and the volume current separately. For this purpose, it is convenient to
write Equation 2.46 on a different form. First, we make use of the following
identities [16, 67]:

(i) (r − r′)/∣r − r′∣3 = ∇′1/∣r − r′∣, and
(ii) i(r′) ×∇′

(1/∣r − r′∣) = (∇
′
× i(r′))/∣r − r′∣ −∇′

× (i(r′)/∣r − r′∣),

obtaining:

B(r) = µ0

4π ∫
∇′ × i(r′)
∣r − r′∣

dV ′
−
µ0

4π ∫
∇
′
×

i(r′)
∣r − r′∣

dV ′. (2.47)

1NB: Note that the term finite element can either mean subdomain or the type of basis
function applied or the subdomain-basis-function pair.
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Evaluating the integral in the second term above, we can apply Stokes’
theorem, such that:

(iii) − ∫ ∇
′
× (i(r′)/∣r − r′∣)dV = ∫ i(r′)/∣r − r′∣ × dS,

which equals zero if i(r′) goes to zero sufficiently fast, when r → ∞, and we
obtain:

B(r) = µ0

4π ∫
∇′ × i(r′)
∣r − r′∣

dV ′. (2.48)

Next, we express the total current density as the sum of the primary current
density and the resulting volume current density i = is − σ∇V , giving

B(r) = µ0

4π ∫
∇′ × is(r′)
∣r − r′∣

dV ′
−
µ0

4π ∫
∇′ × σ∇′V

∣r − r′∣
dV ′. (2.49)

Finally, we use the calculus steps described above in reverse order on the first
term, and the relation ∇′ ×σ∇′V = ∇′σ ×∇′V (since ∇′ ×∇′V = 0) in the second
term, such that

B(r) = B0 −
µ0

4π ∫
∇′σ ×∇′V

∣r − r′∣
dV ′, (2.50)

where
B0(r) =

µ0

4π ∫
is(r′) × (r − r′)

∣r − r′∣3
dV ′. (2.51)

In an infinite homogeneous conductor ∇′σ = 0, and there will be no
contribution from volume currents, meaning that the magnetic field is solely
due to primary currents B = B0. In a spherically symmetric head model, the
radial part of the magnetic field is independent of volume currents, and can be
computed with Equation 2.51 (see Nunez and Srinivasan, 2006 [1], Appendix C).

The primary current density from a current dipole p at position rp can be
expressed as:

ip = p(rp)δ(r − rp). (2.52)

Inserting Equation (2.52) into Equation (2.51), we obtain

Bp =
µ0

4π ∫
p(rp) × (r − rp)δ(r − rp)

∣r − rp∣3

=
µ0

4π
p(rp) × (r − rp)

∣r − rp∣3
. (2.53)

Having computed the current dipole moment from a neuron simulation, the
resulting MEG contribution can be approximated with Equation 2.53, assuming
an infinite homogeneous head model.
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Chapter 3

Summary of papers

Paper I

3.1 Corrected four-sphere head model for EEG signals

Paper I is a methods paper providing analytical formulas and available python
code for computing the electric potential in the four-sphere head model. The
reason for writing this paper, was that we found errors in the Nunez and
Srinivasan, 2006 [1] and the Srinivasan, 1998 [33] formulations of the four-sphere
model, when implementing their solutions. The paper presents the corrected
analytical formulas, including the full derivation. In addition to analytical
verifications, the model solution was validated with the finite element method.
The scripts for both the analytical and the numerical solution are available on
GitHub for forward modeling of electric potentials or benchmarking of finite
or boundary element predictions of EEG. This work also laid the foundation
for implementing the four-sphere head model into LFPy 2.0 (Paper II). See
Appendix A for comments on convergence and agreement with another model
solution.

Paper II

3.2 Multimodal modeling of neural network activity:
computing LFP, ECoG, EEG, and MEG signals with LFPy
2.0

In paper II, we present the second release of the open-source python package
LFPy [15]: LFPy is a tool for computing extracellular potentials from neural
activity, running on top of the NEURON simulation environment [46]. While
the first release was restricted to electric potentials from single-neuron activity
in media with constant conductivity, the second version opens for predictions
of multiple measurement modalities, including ECoG, EEG, and MEG, from
neural networks.

In order to facilitate EEG, and MEG calculations, we included methods for
reducing arbitrary neural activity into a single current dipole moment (either
from transmembrane or axial currents) in a framework here referred to as the
dipole framework. The dipole framework can be applied not only for single cells
but also neural populations, with network simulations now enabled in LFPy 2.0.
Next, we incorporated two methods from Ness et al., 2015 [68] allowing for (i)
electric potential calculations in anisotropic brain tissue, and (ii) calculating
potentials subject to step-wise changes in tissue conductivity, for example, those
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recorded by multielectrode arrays and ECoG. EEG calculations were enabled
with the implementation of the analytical four-sphere model from Paper I. By
developing methods for calculating many small current dipoles from a single
neuron simulation, we also facilitated ECoG calculations with the four-sphere
head model. These multiple current dipoles were also utilized for calculating
magnetic fields measured close to the neuron. Finally, we included a method for
approximating MEG signals.

Demonstration of the new LFPy features was done by simulating an example
network with 5500 neurons from the reconstructed somatosensory cortex column
by Markram et al., 2015 [69]. Multimodal measurement calculations were then
carried out, showing how the neural network simulation contributed to LFP,
ECoG, EEG, and MEG signals.

Errata: In this paper, it is incorrectly stated that the we applied a spherically
symmetric head model for the MEG calculations. Instead, all MEG calculations
assumed that the volume conductor was an infinite homogeneous space, and
were carried out with the Biot-Savart law for a current dipole moment. All
references to the four-sphere model or spherically symmetric model regarding
MEG calculations should have been replaced with references to an infinite
homogeneous model.

Paper III

3.3 Biophysically detailed forward modeling of the neural
origin of EEG and MEG signals

In Paper III, we applied methods implemented in Paper I and II, for investigating
the link between neural activity and electric brain signals. We illustrated
that EEG modeling consists of two cleanly separated steps: i) reducing neural
simulations to a single current dipole moment and ii) applying the current
dipole moment for calculating the resulting EEG signals. Even though we here
focused on EEG signals, the current dipole moments can easily be combined
with frameworks for MEG calculations (see Ilmoniemi and Sarvas, 2019 [67]).

Investigating the applicability of the current dipole approximation, we verified
that the dipole framework is a good candidate for calculating EEG signals, and
that the framework is less suitable for ECoG calculations. Importantly, we
demonstrated how a biophysically detailed neuron simulation can be reduced
to a single dipole, and that this is a powerful approach for studying single-cell
contributions to EEG signals. Next, we illustrated how the dipole framework
straightforwardly can be applied for large neural populations. This opened for a
single current dipole moment compactly representing EEG contributions from
a neural network. Finally, we showed how current dipole moments from single
cells or large-scale network activity can be combined with the complex New
York Head model to compute EEG signals with a very high level of biophysical
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detail [63]. Available python code for applying the New York Head model was
also implemented in LFPy.
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Chapter 4

Discussion

The long history and widespread use of electric and magnetic brain recordings
have been no guarantee for understanding exactly what kind of neural
conversations lead to these signals. The underlying physics of EEG and MEG
is, however, well understood and was reviewed, for example, in the important
works of Nunez and Srinivasan, 2006 [1] and Hämäläinen et al., 1993 [16]. How
neural conversations spit out transmembrane currents and how current dipole
moments give rise to EEG and MEG is well-established knowledge. Still, one
thing missing has been a framework for computing the current dipole moment
from arbitrary neuron simulations, allowing for calculations of EEG/MEG from
networks of morphologically reconstructed neuron models.

Calculations of current dipole moments from biophysically detailed neuron
models have been carried out before to study contributions to EEG/MEG from
single spiking cells [22], and to investigate how the current dipole moment is
affected by the location of synaptic input [15, 48]. In several studies, the current
dipole moments computed from a pre-defined network of minimally sufficient
neuron models (simplified neuron morphologies with few compartments) link
measured EEG and MEG to neural activity [22, 70–74]. This framework is
now available through an easily accessible software tool; the Human Neocortical
Neurosolver (HNN) [49]. While this tool may be an obvious choice for easy
comparison with clinical recordings, HNN is (for now) not compatible with EEG
or MEG calculations from simulations of morphologically detailed neuron models
reconstructed from experimental data. The dipole framework presented here
gives the opportunity to reduce biophysically detailed simulations of arbitrary
neural activity to a single current dipole moment.

I like to think that the current dipole moment gives an overview of the
electrical activity in the neural symphony, by capturing the melody of the
network. If you know which tune is played on stage, you will have a good idea
of what one can hear from the outside of the concert hall. Correspondingly,
in Paper III, we see that from only inspecting the current dipole moment, we
obtain a good intuition about the resulting electric and magnetic signals that
can be recorded outside of the head.

Next, I will illustrate the importance of the dipole framework by discussing
ongoing and future applications and giving some thoughts on the outlook of
EEG/MEG modeling.
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4. Discussion

4.1 Applications

In contrast to a broken bone or nearsightedness, it is difficult to know where
to begin if you want to measure a psychiatric disorder such as schizophrenia.
Several studies, including Çavuş et al., 2012 [75] and Light et al., 2013 [76],
have shown that EEG recordings can reveal differences between the way healthy
controls and schizophrenia patients process visual and auditory stimuli [77].
With genome-wide association studies identifying genetic variants linked to
schizophrenia [78], we have started to look into the underlying mechanisms
of these differences in EEG signals. In the papers by Maki-Märttunen et al.,
2019 [50, 51], we investigated how EEG signals depend on ion channel mechanisms
linked to schizophrenia-associated genetic loci, by applying the dipole framework
on biophysically detailed neuron models. Our group is part of ongoing efforts
aiming to predict EEG signals comparable to clinical data, contributing to the
young field of computational psychology [51].

In the future, we hope that EEG can be used not only for understanding and
diagnosing brain disorders, but also for studying the neural activity underpinning
more general brain functions such as learning, by, for example, following the lead
provided by Suzuki and Larkum, 2017 [79]. Their study revealed that dendritic
calcium spikes (that are associated with certain learning mechanisms) can be
detected with EEG. Since we showed in Paper III that we can model the putative
EEG contribution from calcium spikes, calcium spikes appears a good candidate
for comparing simulations with measurements.

Another example of how the dipole framework can be used is the work of
Martínez-Cañada et al., 2021 [80]. In this study, they apply the dipole framework
for generating benchmark EEG data from a network simulation, to investigate
whether EEG signals can be predicted with measures readily available from
point-neuron network simulations. This work is important because point-neuron
network simulations is a very common tool for studying neural populations (the
generators of EEG signals) [21].

The dipole framework described here is in the process of being implemented
as part of the open-access simulation tools developed by the EU Human Brain
Project, through the EBRAINs platform. As soon as this is in place, anyone,
anywhere, can compute the current dipole moment from large-scale biophysically
detailed neural simulations. They can further model EEG signals with the four-
sphere or New York Head model implementation in LFPy, or plug their dipole
moment into any head model of their choice. Such available modeling frameworks
will hopefully lead to more EEG and MEG modeling, based on different networks
resembling different cell types, brain areas, and firing patterns.

Building on future advances in network modeling, it would be exciting to
study cell-type-specific contributions to EEG and MEG. When exploring how
various neuron types in different brain areas contribute to the dipole moment,
we could look to experimentally mapped out connections of different neuron
populations and nest back what drives various EEG and MEG signatures.
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4.2 Outlook

What can we learn from EEG and MEG signals? The popularity of scalp
potentials, in particular, is not due to straightforward interpretation of the
recordings, but rather because the technology is very available: EEG equipment
is relatively cheap, the recordings are easy to perform, and above all, they are
non-invasive. The reason for the difficulties we have interpreting these signals
is twofold: i) EEG is very much a global measure, meaning that the signals
stem from neural activity in various large networks, and it is not an easy task
to tell contributions from different populations apart; ii) there is a long way
from the source to the electrode, meaning that information will be lost on
the way. These disadvantages are, however, inherent in the non-invasiveness
of EEG. Of course, it would be easier to study the brain if we could implant
numerous electrodes into brain tissue, but that is simply not an option. We have
to study the brain with the technology we have, not the technology we wish
to have, and computational modeling is key to make the most of the data at hand.

With an available EEG/MEG-modeling framework in place, one could hope
that computing EEG/MEG signals comparable to clinical data was now plug
and play. This is, unfortunately, not the case. The main obstacle in realistic
EEG modeling lies within simulating network activity imitating real neural
conversations spanning multiple brain areas. When modeling even a small
piece of cortex, the number of neurons is very high, there is a huge variability
within neural populations, and the number of potential model parameters is
daunting [21]. As Traub et al., 2015 [81] puts it: “[...] the only way to proceed
is through a state of denial that any of the difficulties need be fatal.”

Specifically, in this work, EEG/MEG calculations were computed from a
maximum number of 80000 neurons, giving a maximum current dipole moment
of about 0.1 nAm. In order to approximate EEG signals that are comparable to
clinical recordings, the current dipole moment must be in the 10−100 nAm range
for event-related potentials, and 100 − 1000 nAm for low-frequency EEG [22, 49,
72, 73]. This would require neuron simulations on the order of 100 million to a
billion neurons [82]. Apart from dipole magnitude, it is essential for comparison
with clinical recordings that the computations are not based on single dipoles,
but rather whole sheets of dipoles representing multiple brain areas [1, 82].

Nonetheless, these are exciting times for EEG modeling: The steady increase
in computational power, improved understanding of how neurons are connected,
and the growing amount of available biophysically detailed neuron models make
the future of network modeling look promising. Importantly, we are now at the
point where we can start predicting non-invasive measurements with computer
simulations [21]. As Cohen states in his paper titled "Where does EEG come
from and what does it mean?": "Now is the time to start answering the title
question" [20]. Simultaneously recording LFP and EEG in animal studies would
be an ideal starting point for comparing recordings with data simulated with the
dipole framework. Further, modeling multiple measurement modalities will be an
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important step on the way to constraining the potential underlying mechanisms.
Hopefully, the dipole framework can help us demystify the neural origin of
non-invasive brain signals in the future.
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The EEG signal is generated by electrical brain cell activity, often described in terms of

current dipoles. By applying EEG forward models we can compute the contribution from

such dipoles to the electrical potential recorded by EEG electrodes. Forward models

are key both for generating understanding and intuition about the neural origin of EEG

signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources

from recorded EEG signals. Different models of varying complexity and biological detail

are used in the field. One such analytical model is the four-sphere model which assumes

a four-layered spherical head where the layers represent brain tissue, cerebrospinal

fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical

expression for the electric potentials in the four-sphere model is cumbersome, and we

observed that the formulas presented in the literature contain errors. Here, we derive and

present the correct analytical formulas with a detailed derivation. A useful application of

the analytical four-sphere model is that it can serve as ground truth to test the accuracy

of numerical schemes such as the Finite Element Method (FEM). We performed FEM

simulations of the four-sphere headmodel and showed that they were consistent with the

corrected analytical formulas. For future reference we provide scripts for computing EEG

potentials with the four-sphere model, both by means of the correct analytical formulas

and numerical FEM simulations.

Keywords: four-sphere model, head model, EEG, dipole source, LFP, FEM

1. INTRODUCTION

Electroencephalography (EEG), that is, the recording of electrical potentials at the scalp, has
been of key importance for probing human brain activity for more than half a century (Nunez
and Srinivasan, 2006; Schomer and da Silva, 2012). The EEG signal is generated by current
dipoles set up by transmembrane currents in brain cells, and EEG forward models aim to
compute the contribution from such current dipoles to the electrical potential recorded by EEG
electrodes (Hämäläinen et al., 1993; Sanei and Chambers, 2007). Forward models are useful for
generating understanding and intuition about the neural origin of EEG signals. They are also key
for inverse modeling, i.e., the estimation of the underlying sources based on recorded EEG signals,
and for generation of benchmarking data against which candidate methods for EEG data analysis
methods and simulation schemes for EEG can be tested.
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While the link between the current sources and the resulting
potentials in principle is well described by volume-conductor
theory, the practical application of this theory is not easy because
the cortical tissue, the cerebrospinal fluid (CSF), the skull, and
the scalp, all have different electrical conductivities (Nunez and
Srinivasan, 2006).

Different forward modeling schemes approximate the
geometries and conductivities of the head with various levels
of biological detail. On one side we have the spherical head
models that can provide analytical formulas for the EEG
potentials generated by current dipoles. At the other side of
the spectrum we have numerically comprehensive forward
modeling schemes, including realistic geometries and electrical
conductivities, even electrically anisotropic tissue (Bangera et al.,
2010; Vorwerk et al., 2014). These different forward models
come with their different advantages and disadvantages in terms
of speed, accuracy and interpretability of results (De Munck
et al., 2012).

In this paper, we address the four-sphere head model where
the head is modeled as four concentric spherical layers. Here,
the four layers represent brain tissue, CSF, skull, and scalp.
The Poisson equation, which describes the electric fields of
the brain within volume-conductor theory, is solved for each
layer separately, and the mathematical solutions are matched at
the layer interfaces to obtain an analytical expression for the
EEG signal as set up by a current source in the brain tissue.
The relatively small number of parameters makes the four-
sphere model an obvious candidate for exploring and gaining
intuition about the nature of EEG signals. Since the solution
is analytical and requires little computation time compared to
complex numerical schemes, it can be used to quickly test
analysis methods and hypotheses. The most popular version of
the four-sphere model was presented in Srinivasan et al. (1998);
and later in the classic EEG reference book Electric Fields of
the Brain (Nunez and Srinivasan, 2006). This model has been
used to generate benchmarking data for testing of EEG signal
analysis methods, (e.g., Wong et al., 2008; Chu et al., 2012;
Peraza et al., 2012), and it is also useful for validation of more
general and numerically comprehensive numerical schemes such
as the Boundary Element Method (BEM) (Brebbia et al., 2012)
and the Finite Element Method (FEM) (Larson and Bengzon,
2013). The FEM approach is the most general and can, in
principle, take into account an arbitrarily complicated spatial
distribution of electrical conductivity representing the electrical
properties of the head (Bangera et al., 2010; Huang et al.,
2016). This is done by building a numerical mesh for the
head model with the electrical conductivity specified at each
mesh point. The mesh construction is a research problem by
itself and several mesh-generation tools are available, which
often provide slightly different results (Geuzaine, 2009; Kehlet,
2016). The analytical solution for the four-sphere model can
serve as a ground truth for testing of different numerical
schemes.

While conceptually clear, the mathematical expression of the
four-sphere forward model is quite involved and rederiving
the expression we discovered errors in the formulas both in
the original paper and in the book. Due to the importance

of the four-sphere model, we here derive and provide the
correct analytical formulas for future reference. We tested
our formulas by verifying that the solutions for neighboring
layers matched on the layer boundaries. Moreover, when
the conductivities for all the layers in the model were set
to the same value, the model reduced to the well-known
homogeneous single-sphere model as it should. We also verified
that the model solution reduces to the formula for the
extracellular potential from a current dipole in an infinite
homogeneous space, when the layer radii go to infinity and
the conductivities for all model layers are equal (not shown).
As an application, we performed FEM simulations of the four-
sphere model which were consistent with the corrected analytical
formulas.

2. METHODS

2.1. Four-Sphere Model
By assuming the quasi-static approximation of Maxwell’s
equations and using the well-established volume-conductor
theory, the electric potential 8 can be found by solving the
Poisson equation (Nunez and Srinivasan, 2006),

∇ · σ (r)∇8(r, t) = −C(r, t), (1)

where C(r, t) is the density of current sources. σ (r) is the
position-dependent conductivity of the medium, here assumed
to be isotropic so that σ (r) is a scalar. The four-sphere model
is a specific solution of this equation which assumes that the
conductive medium consists of four spherical layers representing
specific constituents of the head: brain tissue, CSF, skull, and
scalp (Figure 1A). In the computations below, these layers are
labeled by s = 1 to 4, respectively. The conductivity σs(r) is
assumed to be homogeneous, i.e., constant within each layer
and independent of frequency (Pettersen et al., 2012). In the
examples below we assume the same values of conductivities and
concentric shell radii as in Nunez and Srinivasan (2006), see
Table 1. The solution of Equation (1) is subject to the following
boundary conditions (where s = 1, 2, 3), assuring continuity of
both electrical potential and current across the layer boundaries,
and no current escaping the outer layer (Nunez and Srinivasan,
2006):

8s+1(rs) = 8s(rs) (2)

σs+1
∂8s+1

∂r
(rs) = σs

∂8s

∂r
(rs) (3)

∂84

∂r
(r4) = 0. (4)

2.2. Analytical Solution of the Four-Sphere
Head Model
The solution of Equation (1) takes different forms for tangential
and radial dipoles, and any dipole can be decomposed into a
linear combination of these two. The following derivations are
based on Appendix G and H in Nunez and Srinivasan (2006),
and are described in more detail in Appendix 1 in Supplementary
Materials.
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FIGURE 1 | Illustration of the four-sphere head model. (A) Cross-section of the four-sphere head model, with the different colors corresponding to the different head

layers: brain, CSF, skull, and scalp. The current dipole p is located in the brain layer, at a distance rz from the center of the sphere. In all the subsequent figures, the

dipole is placed in the x = 0 plane, at the z-axis (rz = 7.8 cm). (B) Mesh of the four-sphere model used in the FEM simulations illustrating the different electrical

conductivity values for each of the spheres.

TABLE 1 | Radii and electrical conductivities of the present four-sphere model.

Labels Name Radius (cm) σ (S/m)

1 Brain 7.9 σbrain = 0.33

2 CSF 8.0 5 σbrain

3 Skull 8.5 σbrain/K

4 Scalp 9.0 σbrain

σ is the conductivity in each of the specified regions. Three variants of the model were
considered with skull conductivity reduced by a factor K (20, 40, or 80) compared to the
conductivity of the brain.

2.2.1. Radial dipole

Nunez and Srinivasan (2006) give the following equations for
calculating extracellular potentials from a radial dipole in the four
sphere model. The potential in the inner sphere, the brain, is
given by 81(r, θ), while 8s(r, θ) gives the potential in CSF, skull,
and scalp, for s = 2, 3, 4, respectively,

81(r, θ) =
p

4πσ1r2z

∞
∑

n = 1

[

A1
n

(

r

r1

)n

+

( rz

r

)n+1
]

nPn(cos θ)

rz < r ≤ r1, (5)

8s(r, θ) =
p

4πσ1r2z

∞
∑

n = 1

[

As
n

(

r

rs

)n

+ Bsn

( rs

r

)n+1
]

nPn(cos θ)

rs−1 ≤ r ≤ rs. (6)

Here,8s is the extracellular potential measured at radius r in shell
number s, of external radius rs, from current dipole moment with
magnitude p at radial location rz . The conductivity of sphere s
is denoted by σs, A

s
n and Bsn are coefficients depending on the

shell radii and conductivities, and Pn(cos θ) is the n-th Legendre
Polynomial where θ is the angle between measurement and
dipole location vectors. From the boundary conditions listed in

Equations (2)–(4), we can compute As
n, for s = 1, 2, 3, 4 and Bsn,

for s = 2, 3, 4, using the notation σij ≡ σi/σj and rij ≡ ri/rj:

A1
n =

n+ 1

n
σ12 + Zn

σ12 − Zn
rn+1
z1 (7)

A2
n =

A1
n + rn+1

z1

rn12 + rn+1
21 Yn

(8)

B2n = YnA
2
n (9)

A3
n =

A2
n + B2n

rn23 + rn+1
32 Vn

(10)

B3n = VnA
3
n (11)

A4
n =

n+ 1

n

A3
n + B3n

n+ 1

n
rn34 + rn+1

43

(12)

B4n =
n

n+ 1
A4
n (13)

Vn =

n

n+ 1
σ34 −

rn34 − rn+1
43

n+ 1

n
rn34 + rn+1

43

σ34 +
rn34 − rn+1

43

n+ 1

n
rn34 + rn+1

43

(14)

Yn =

n

n+ 1
σ23 −

n

n+ 1
rn23 − Vnr

n+1
32

rn23 + Vnr
n+1
32

σ23 +

n

n+ 1
rn23 − Vnr

n+1
32

rn23 + Vnr
n+1
32

(15)

Zn =

rn12 −
n+ 1

n
Ynr

n+1
21

rn12 + Ynr
n+1
21

. (16)
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Equations (5) and (6) are in accordance with Equations (G.1.9–
10) in Appendix G of Nunez and Srinivasan (2006)
and Equation (A–1) in Srinivasan et al. (1998), Appendix A.
However, some of the above coefficients [Equations (7)–(16)] are
different from the ones given in Nunez and Srinivasan (2006)
and Srinivasan et al. (1998), see Appendix 1 in Supplementary
Materials for specifics.

2.2.2. Tangential dipole

The extracellular potential from a tangential dipole in a
concentric-shells model is given by Equation (H.2.1) in
Appendix H of Nunez and Srinivasan (2006), and takes the
following form:

81(r, θ ,ϕ) =
−p

4πσ1r2z
sinϕ

∞
∑

n = 1

[

A1
n

(

r

r1

)n

+

( rz

r

)n+1
]

P1n(cos θ)

rz < r ≤ r1 (17)

8s(r, θ ,ϕ) =
−p

4πσ1r2z
sinϕ

∞
∑

n = 1

[

As
n

(

r

rs

)n

+ Bsn

( rs

r

)n+1
]

P1n(cos θ)

rs−1 ≤ r ≤ rs, (18)

where ϕ is the azimuth angle and P1n is the associated Legendre
polynomial. When solving for the boundary conditions,
Equations (2)–(4), we find that the coefficients As

n and Bsn are the
same as for the radial dipole solution, see section 2.2.1.

In the results section we compare our analytical solution
and the FEM simulations with the two published formulas for
the potential in the four-sphere model given in Appendices G
and H in Nunez and Srinivasan (2006), and in Appendix A
in Srinivasan et al. (1998). For comparison we also present
the approximate solution provided in Appendix G.4 in Nunez
and Srinivasan (2006). Note that two corrections were done
to the model presented in Srinivasan et al. (1998) before
comparison. First of all, the multiplication factor p/σ1 was
inserted in Equation (A-1), necessary to give potentials in
units of volts. Secondly, a superscript in Equation (A-8)
was changed, such that the right-hand-side included A2

n

instead of A3
n, since this was obviously a typographical

error. For more details on the different descriptions of the
analytical four-sphere model, see Appendix 1 in Supplementary
Materials.

2.3. Finite Element Method
To find the numerical solution of the four-sphere model we
solved the Poisson equation (Equation (1)) using the FEM. The
first step was to construct a 3D numerical mesh representing
the four-sphere head model geometry. We used the open-source
program gmsh (Geuzaine, 2009), optimized using the netgen
algorithm (Schöberl, 1997). Figure 1B shows the resulting mesh
corresponding to the set of radii listed in Table 1. Note that
our 3D FEM model-geometry implementation consists of five
spheres: scalp, skull, CSF, and two spheres together representing
the brain tissue. However, the two innermost spheres (the
innermost having a radius of 6 cm) are set to have the same
conductivity, i.e., the value for brain tissue listed in Table 1.
Thus, the model is effectively still a four-sphere model. We

observed, however, that partitioning the four spheres into five
and partitioning the inner sphere to a coarser mesh size
reduced the overall mesh size and computational time while
retaining the accuracy. The resulting mesh comprised of nearly
12.2 million tetrahedrons (2.1 million odd nodes) and we
observed that at this resolution, the numerical results had
converged.

The dipole source was treated as two point current sources
(Dirac δ functions) and the conductivity was set at each mesh
point according to Table 1. The electrodes were modeled as
ideal point electrodes. Finally, the Poisson Equation (1) and
the Neumann boundary condition, Equation (4), were solved
numerically with FEM. All FEM simulations were done with
the open-source program FEniCS (Logg et al., 2012; Alnæs
et al., 2015), with Lagrange P2 finite elements. The linear systems
were solved by the PETSc Krylov Solver employed with the
Conjugate Gradient method, and the Incomplete LU factorization
preconditioner. In all the cases we tested, the solutions converged
in less than 350 iterations when the residual norms were of the
order 1e-07.

2.4. Software
We provide the Python code to obtain the potentials
from a current dipole placed in a four-sphere head model
using (i) the analytical formulation and (ii) the numerical
method (FEM). This is available under the GNU General
Public License version 3 here: https://github.com/Neuroinflab/
fourspheremodel. Additionally, the scripts to generate the figures
presented in this manuscript are also included. We tested this
code in Anaconda Scientific package on a Linux 64 machine.
For easy uptake of this resource and verification, we provide
the associated conda environment, with all the specific libraries
necessary to run this software, and a help file.

3. RESULTS

3.1. Comparison between Analytical and
FEM Results
EEG potentials were computed on the scalp surface with the
analytical four-sphere model 8(r4, θ ,φ) and compared with the
results from the FEM simulations for a current dipole p. To
mimic a current dipole set up by cortical neurons, a dipole
was placed in the brain layer (s = 1) of the four-sphere head
model, 1 mm below the brain-CSF boundary. We modeled the
current dipole to have dipole moment equal to 10−7 Am (two
point sources of magnitude 100 µA separated by d = 1 mm).
Three different dipole orientations were tested: a radial dipole
parallel to the z-axis, a tangential dipole parallel to the y-axis
and a dipole subtending 45 degrees to the z-axis in the x = 0
plane, cf. Figures 2A,E,I. We found that the analytical and FEM
models gave similar results for both radial and tangential dipoles:
the absolute value of the difference was more than two orders
of magnitude smaller than the computed EEG potential for all
dipole orientations (Figure 2). While we show results only for
one current dipole in three orthogonal orientations for a single
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FIGURE 2 | EEG potentials computed with four-sphere model and FEM simulation for radial, tangential, and 45-degree dipole. (A) A radial current dipole placed in the

brain in the head model as described in Table 1. The dipole (black arrow) is located at rz = [0, 0, 7.8 cm] (red dot) and has a magnitude 10−7 Am to give scalp

potentials some tens of microvolts in magnitude, typical for recorded EEG signals. (B) Resulting scalp potential calculated with the analytical four-sphere model. (C)

Scalp potential computed with FEM. (D) Absolute difference between results from analytical calculation and FEM, normalized by the global maximum of the magnitude

of the potential. The second row, panels (E–H) are equivalent to the top row, however for a tangential dipole parallel to the y-axis, in the x = 0 plane. The bottom row,

panels (I–L) are equivalent to the top row, however for a dipole that subtends 45 degrees to the z-axis in the x = 0 plane.

position, the scripts provided are generic and accept arbitrary
placement, orientation, and moment of the dipole.

A more detailed comparison of EEG potentials predicted by
the analytical model and the FEM model is shown in Figure 3.
Here the computed EEG signal from a radial current dipole is
shown for increasing polar angle θ between the current dipole
position vector rz and the measurement position vector r. The
sphere radii and conductivity values are consistent with Nunez
and Srinivasan (2006) (Table 1). The curve for the analytical
results (blue line) overlaps the FEM results (red dots). This
figure also demonstrates that previously published formulas give
incorrect predictions.

3.2. Limiting Case
As an additional control we tested the limiting case where the
conductivity was set to be the same for all four shells, i.e., σbrain =

σCSF = σskull = σscalp, and equal to that of the brain (Table 1).
In this case, the resulting scalp potentials should be the same as
those calculated from a homogeneous single-sphere head model
with radius equal to the scalp radius r4. For a dipole oriented
along the radial direction inside a single homogeneous sphere,
the surface potentials are given by Equation (6.7) in Nunez and
Srinivasan (2006):

8(r4, θ) =
p

4πσ1r
2
4

{

2(cos θ − f )

(1+ f 2 − 2f cos θ)
3
2

+
1

f

[

1

(1+ f 2 − 2f cos θ)
1
2

− 1

]}

, (19)

where f = rz/r4. Comparison between the simplified four-sphere
models and the homogeneous single-sphere model showed
perfect agreement for the present formulation, while the formulas
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FIGURE 3 | Analytical solution of four-sphere model matches FEM simulation. Scalp potentials from radial current dipole at position rz = 7.8 cm and magnitude

10−7 Am to give results in observable range, while still facilitating direct comparison with the original plots in Srinivasan et al. (1998); Nunez and Srinivasan (2006).

The resulting scalp potentials are shown for increasing polar angle θ between the current dipole and the measurement position vector. The different lines show

calculations with the various formulations of the four-sphere model discussed in this paper, as well as the FEM simulation. The green line shows potentials obtained

from Srinivasan et al. (1998), Appendix A, Equations (A1–11). The black line shows results from applying the formulation given in Nunez and Srinivasan (2006),

Appendix G, Equations (G.1.9–10) and (G.2.1–10). The approximate solution from Nunez and Srinivasan (2006), Appendix G.4, Equation (G.4.1–3) is given by the pink

crosses. The analytical formulation of the four-sphere model presented here is shown in blue, and the FEM simulation is given by the red dots. Panels A–C show

results for different values of the skull conductivity, i.e., σskull=σbrain/20, σbrain/40 and σbrain/80, respectively.

listed in Srinivasan et al. (1998) and Nunez and Srinivasan (2006)
gave inaccurate predictions (Figure 4).

4. DISCUSSION AND CONCLUSIONS

In this note we have revisited the analytical four-sphere
model for computing EEG potentials generated by current
dipoles in the brain. The main contributions of this paper
are the presentation of corrected and validated formulas, as
well as the scripts for using them, allowing users to readily
apply this important forward model in the field of EEG
analysis.

In addition to facilitating the use of the four-sphere model
in EEG signal analysis (see, e.g., Wong et al., 2008; Chu
et al., 2012; Peraza et al., 2012), the present formulas and
scripts will also be a resource for benchmarking comprehensive
numerical schemes for computing EEG signals based on
detailed head reconstructions using, for example, the FEM
(Larson and Bengzon, 2013), or the Boundary Element
Method (Brebbia et al., 2012). The FEM approach is not
restricted to specific head symmetry assumptions and can
take into account an arbitrarily complex spatial distribution
of electrical conductivity representing the electrical properties
of the head. This is done by constructing a complicated
numerical mesh for the head, a task that is often technically
challenging. While it is difficult to assure high precision of the
given implementation for more complicated and biologically
realistic head geometries, the present validated analytical
solution for the four-sphere model can serve as one possible
ground-truth benchmark. Any FEM or BEM implementation
to be trusted, for any analytical model, such as the four-
sphere model, should give results in agreement with analytical

FIGURE 4 | Analytical solution of the four-sphere model satisfies control test

for limiting case. Four-sphere model in the limiting case where the conductivity

of the skull, CSF, and scalp are equal to the conductivity of the brain,

compared to the equivalent model for a single homogeneous sphere,

Equation (19). We used a radial dipole of magnitude 10−7 Am positioned a

distance rz = 7.8 cm away from the center of the sphere, consistent with

Figures 2, 3.

predictions for different parameter values; here, for example,
for various sphere configurations as well as dipole positions
and directions. We also provide a set of FEM scripts which
model the four-sphere model consistent with the analytical
solution.
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Forward models with varying complexity are also used to
test the accuracy of inverse methods which estimate the dipole
source locations from the potentials and electrode positions. All
inverse methods are based on a priori assumptions about the
volume and conductivity of the brain. Their implementation
requires a forward model encoded either as a lead field matrix
or otherwise. The analytical solution of the four-sphere head
model provides a way to quickly, yet exhaustively, obtain
potentials for a wide range of dipole positions. This makes
it an attractive option for testing the accuracy of inverse
methods.
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APPENDIX: MATHEMATICAL DERIVATION OF FOUR-SPHERE MODEL

The four-sphere model equations for radial and tangential dipoles are given in Equations (5), (6), (17) and
(18). Here we describe how the seven unknown coefficients (Equation (7)–(16) can be determined by the
seven boundary conditions (Equations (2)–(4)). We show the calculations for radial dipoles only, however,
the derivation presented applies to both radial and tangential dipoles, due to similarity of the models.

We start by finding the derivative of Φs(r, θ) from Equation (6):

∂

∂r
Φs(r, θ) =

p

4πσ1r2z

∞∑

n=1

[
As
n

(n
r

)( r

rs

)n

−Bs
n

(
n+ 1

r

)(rs
r

)n+1
]
nPn(cos θ).

For the Neumann boundary condition on the scalp boundary, Equation (4), we make use of the relation
above, and get:

∂

∂r
Φ4(r4, θ) =

p

4πσ1r2z

∞∑

n=1

[
A4
n

(
n

r4

)(
r4
r4

)n

−B4
n

(
n+ 1

r4

)(
r4
r4

)n+1
]
nPn(cos θ) = 0.

⇒ A4
n

(
n

r4

)
−B4

n

(
n+ 1

r4

)
= 0 ∀ n

⇒ B4
n =

n

n+ 1
A4
n. (20)

Next, we apply the Dirichlet boundary condition on the skull boundary, i.e., Equation (2) for s = 3:

Φ4(r3) = Φ3(r3)

p

4πσ1r2z

∞∑

n=1

[
A4
n

(
r3
r4

)n

+B4
n

(
r4
r3

)n+1
]
nPn(cos θ) =

p

4πσ1r2z

∞∑

n=1

[
A3
n

(
r3
r3

)n

+B3
n

(
r3
r3

)n+1
]
nPn(cos θ)

A4
n

(
r3
r4

)n

+B4
n

(
r4
r3

)n+1

= A3
n +B3

n .

Inserting the expression for B4
n, Equation (20), using the notation rij ≡ ri/rj :

A4
n

(
rn34 +

n

n+ 1
rn+1
43

)
= A3

n +B3
n

⇒ A4
n =

n+ 1

n

A3
n +B3

n

n+ 1

n
rn34 + rn+1

43

. (21)

Note that the multiplication factor n+1
n is missing in Nunez and Srinivasan (2006), Appendix G,

Equation (G.2.9).
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Further, we look at the Neumann boundary condition on the skull boundary, i.e. Equation (3) for s = 3,
using the notation σij ≡ σi/σj :

σ4
∂Φ4

∂r
(r3) = σ3

∂Φ3

∂r
(r3)

σ4

(
A4
n
n

r3

(
r3
r4

)n

−B4
n
n+ 1

r3

(
r4
r3

)n+1
)

= σ3

(
A3
n
n

r3

(
r3
r3

)n

−B3
n
n+ 1

r3

(
r3
r3

)n+1
)

nA4
nr

n
34 − (n+ 1)B4

nr
n+1
43 = σ34

(
nA3

n − (n+ 1)B3
n

)
.

Inserting Equation (20),

nA4
n

(
rn34 − rn+1

43

)
= σ34

(
nA3

n − (n+ 1)B3
n

)
,

and applying Equation (21),

n
n+ 1

n

A3
n +B3

n

n+ 1

n
rn34 + rn+1

43

(
rn34 − rn+1

43

)
= σ34

(
nA3

n − (n+ 1)B3
n

)
.

From this we find that,

B3
n =

n

n+ 1
σ34 −

rn34 − rn+1
43

n+ 1

n
rn34 + rn+1

43

σ34 +
rn34 − rn+1

43
n+ 1

n
rn34 + rn+1

43

A3
n,

which we can write as:

B3
n = VnA

3
n where Vn =

n

n+ 1
σ34 −

rn34 − rn+1
43

n+ 1

n
rn34 + rn+1

43

σ34 +
rn34 − rn+1

43
n+ 1

n
rn34 + rn+1

43

. (22)

Here, the σ34-term in the numerator of Vn differs from Nunez and Srinivasan (2006) (Equation (G.2.1))
and Srinivasan et al. (1998) (Equation (A-2)) in the sense that the multiplication factor is inverted.

For the CSF Dirichlet boundary condition we can follow the same procedure as for the skull Dirichlet
boundary condition, and we get,

A3
n

(
r2
r3

)n

+B3
n

(
r3
r2

)n+1

= A2
n

(
r2
r2

)n

+B2
n

(
r2
r2

)n+1

⇒ A3
nr

n
23 +B3

nr
n+1
32 = A2

n +B2
n.

2
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Inserting the expression for B3
n from Equation (22):

A3
n

(
rn23 + Vnr

n+1
32

)
= A2

n +B2
n

⇒ A3
n =

A2
n +B2

n

rn23 + rn+1
32 Vn

. (23)

Here, we notice a typographical error in the expression for A3
n in Srinivasan et al. (1998), Equation (A-8):

there should be an A2
n-term in the numerator, not A3

n.

Next, we apply the Neumann CSF boundary condition. Starting out with,

σ3
∂Φ3

∂r
(r2) = σ2

∂Φ2

∂r
(r2),

and making use of the expressions for B3
n and A3

n, we find that,

B2
n = YnA

2
n where Yn =

n

n+ 1
σ23 −

n

n+ 1
rn23 − Vnrn+1

32

rn23 + Vnr
n+1
32

σ23 +

n

n+ 1
rn23 − Vnrn+1

32

rn23 + Vnr
n+1
32

. (24)

Note that there’s a subtle difference between the Yn presented here, and Nunez and Srinivasan (2006)
(Equation (G.2.2)) and Srinivasan et al. (1998) (Equation (A-3)): The second term of the numerator is a
fraction. Here, the rn23 factor should not be multiplied by the whole fraction, but rather only the n

n+1 -term
in the numerator.

The Dirichlet boundary condition on the brain boundary is:

Φ2(r = r1) = Φ1(r = r1)

A2
n

(
r1
r2

)n

+B2
n

(
r2
r1

)n+1

= A1
n

(
r1
r1

)n

+

(
rz
r1

)n+1

A2
nr

n
12 +B2

nr
n+1
21 = A1

n + rn+1
z1 .

Inserting the expression for B2
n from Equation (24):

A2
n

(
rn12 + Ynr

n+1
21

)
= A1

n + rn+1
z1

⇒ A2
n =

A1
n + rn+1

z1

rn12 + rn+1
21 Yn

. (25)

Finally, we solve the Neumann boundary condition on the brain boundary,

σ2
∂Φ2

∂r
(r1) = σ1

∂Φ1

∂r
(r1).
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Inserting the expressions for A2
n and B2

n from Equations (25) and (24), we find,

A1
n =

n+ 1

n
σ12 + Zn

σ12 − Zn
rn+1
z1 where Zn =

rn12 −
n+ 1

n
Ynr

n+1
21

rn12 + Ynr
n+1
21

. (26)

The A1
n-term in Srinivasan et al. (1998) (Equation (A-5)) is not consistent with Nunez and Srinivasan

(2006) (Equation (G.2.4)) equal to Equation (26): a multiplication factor p/σ1 is lacking, rn−1zl should
be rn−1z1 . Moreover, B1

n needs to be defined in order for the model description in Srinivasan et al. (1998),
Appendix A to give potentials in brain tissue.
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Recordings of extracellular electrical, and later also magnetic, brain signals have been

the dominant technique for measuring brain activity for decades. The interpretation

of such signals is however nontrivial, as the measured signals result from both

local and distant neuronal activity. In volume-conductor theory the extracellular

potentials can be calculated from a distance-weighted sum of contributions from

transmembrane currents of neurons. Given the same transmembrane currents,

the contributions to the magnetic field recorded both inside and outside the

brain can also be computed. This allows for the development of computational

tools implementing forward models grounded in the biophysics underlying electrical

and magnetic measurement modalities. LFPy (LFPy.readthedocs.io) incorporated a

well-established scheme for predicting extracellular potentials of individual neurons

with arbitrary levels of biological detail. It relies on NEURON (neuron.yale.edu) to

compute transmembrane currents of multicompartment neurons which is then used

in combination with an electrostatic forward model. Its functionality is now extended

to allow for modeling of networks of multicompartment neurons with concurrent

calculations of extracellular potentials and current dipole moments. The current dipole

moments are then, in combination with suitable volume-conductor head models,

used to compute non-invasive measures of neuronal activity, like scalp potentials

(electroencephalographic recordings; EEG) and magnetic fields outside the head

(magnetoencephalographic recordings; MEG). One such built-in head model is the

four-sphere head model incorporating the different electric conductivities of brain,

cerebrospinal fluid, skull and scalp. We demonstrate the new functionality of the software

by constructing a network of biophysically detailed multicompartment neuron models

from the Neocortical Microcircuit Collaboration (NMC) Portal (bbp.epfl.ch/nmc-portal)

with corresponding statistics of connections and synapses, and compute in vivo-like
extracellular potentials (local field potentials, LFP; electrocorticographical signals, ECoG)

and corresponding current dipole moments. From the current dipole moments we

estimate corresponding EEG and MEG signals using the four-sphere head model.

We also show strong scaling performance of LFPy with different numbers of
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message-passing interface (MPI) processes, and for different network sizes with different

density of connections. The open-source software LFPy is equally suitable for execution

on laptops and in parallel on high-performance computing (HPC) facilities and is publicly

available on GitHub.com.

Keywords: modeling, neuron, neuronal network, local field potential, LFP, ECoG, EEG, MEG

1. INTRODUCTION

Ever since the 1950s, electrical recordings with sharp electrodes
have been the most important method for studying in vivo
activity in neurons and neural networks (Li and Jasper, 1953). In
the last couple of decades, however, a host of new measurement
methods has been developed and refined. One key development
is the new generation of multicontact electrodes allowing for
high-density electrical recordings across cortical laminae and
areas, and the accompanying resurgence of interest in the
low-frequency part of the extracellular signal, the “local field
potential” (LFP) (Buzsáki, 2004; Buzsáki et al., 2012; Einevoll
et al., 2013). The LFP is a population measure reflecting
how dendrites integrate synaptic inputs, insight that cannot
be obtained from measurement of spikes from a handful of
neurons (Einevoll et al., 2013). Many new optical techniques for
probing cortical activity have also been developed. Of particular
interest is two-photon calcium imaging, which can measure
the action potentials of individual neurons deep into cortical
tissue (Helmchen and Denk, 2005), and voltage-sensitive dye
imaging (VSDI), whichmeasures the averagemembrane potential
across dendrites close to the cortical surface (Grinvald and
Hildesheim, 2004). These add to the more established systems-
level methods such as electroencephalography (EEG, Nunez and
Srinivasan, 2006), which measures electrical potentials at the
scalp, and magnetoencephalography (MEG, Hämäläinen et al.,
1993) which measures the magnetic field outside the head.

A standard way of analyzing such neurophysiological data has
been to look for correlations between measurements and how the
subject is stimulated or behaves. For example, most of what we
have learned about neural representation of visual information
in visual cortex has come from receptive-field studies where the
correlation betweenmeasured spikes and presented visual stimuli
is mapped out (Hubel and Wiesel, 1959). The same approach
has been used to map out the receptive fields for other sensory
modalities (sound, touch, etc.), objects and celebrities (Quiroga
et al., 2005), or the spatial location of the animal (O’Keefe and
Dostrovsky, 1971; Hafting et al., 2005).

This purely statistical approach has limitations, however. For
one, it only provides estimates for the neural representation
and gives no direct insight into the circuit mechanisms giving
rise to these representations. Secondly, the receptive field is
inherently a linear measure of activity (Dayan and Abbott, 2001)
and cannot in general capture non-linear network dynamics. The
receptive field in primary visual cortex depends, for example,
strongly on stimulation of the surrounding regions of visual
space, an inherently non-linear effect (Blakemore and Tobin,
1972). For other cortical measurements, such as the LFP or

VSDI, a statistical analysis is further complicated by the fact
that the signals reflect activity in neuron populations rather
than individual neurons (Petersen et al., 2003; Einevoll et al.,
2013). This makes commonly-used statistical signal measures
such as power spectra, correlation, coherence, and functional
connectivity difficult to interpret in terms of activity in neurons
and networks (Einevoll et al., 2013).

An alternative approach to a purely statistical analysis is,
following in the tradition of physics, to formulate candidate
hypotheses precisely in mathematics and then compute what
each hypothesis would predict for the different types of
measurements. Until now candidate cortical network models
have typically only predicted spiking activity, thus preventing a
proper comparison with measurements other than single-unit
and multiunit recordings. To take full advantage of all available
experiments, there is a need for biophysics-based forward-
modeling tools for predicting other measurement modalities
from candidate network models (Brette and Destexhe, 2012),
that is, develop software that faithfully models the various types
of measurements themselves. To facilitate the forward-modeling
of extracellular potentials, both LFPs and spikes [i.e., either
single-unit or multi-unit activity (MUA)], we developed LFPy
(LFPy.readthedocs.io, Lindén et al., 2014), a Python tool using
the NEURON simulator (Carnevale and Hines, 2006) and its
Python interface (Hines et al., 2009).

The first release of LFPy (Lindén et al., 2014) implemented
a well-established forward-modeling scheme where the
extracellular potential is computed in a two-step process (Holt
and Koch, 1999): First, the transmembrane currents of
multicompartment neuron models are computed using
NEURON. Second, the extracellular potential is computed as
a weighted sum over contributions from the transmembrane
currents from each compartment with weights prescribed by
volume-conductor theory for an infinite volume conductor. In
LFPy these functions are provided by a set of Python classes that
can be instantiated to represent the cell, synapses, stimulation
devices and extracellular electric measurement devices. By now
this forward-model method has been used in a number of studies,
for example to model extracellular spike waveforms (Holt and
Koch, 1999; Gold et al., 2006, 2007; Pettersen and Einevoll, 2008;
Pettersen et al., 2008; Franke et al., 2010; Schomburg et al., 2012;
Thorbergsson et al., 2012; Reimann et al., 2013; Hagen et al., 2015;
Ness et al., 2015; Cserpán et al., 2017; Miceli et al., 2017), LFP
signals (Pettersen et al., 2008; Lindén et al., 2010, 2011; Gratiy
et al., 2011; Makarova et al., 2011; Schomburg et al., 2012; Łęski
et al., 2013; Martín-Vázquez et al., 2013, 2015; Reimann et al.,
2013; Głąbska et al., 2014, 2016; Mazzoni et al., 2015; Sinha and
Narayanan, 2015; Taxidis et al., 2015; Tomsett et al., 2015; Hagen
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et al., 2016, 2017; Ness et al., 2016, 2018) and recently axonal LFP
contributions (McColgan et al., 2017). Some of these used LFPy
to predict extracellular potentials (Łęski et al., 2013; Lindén et al.,
2014; Hagen et al., 2015, 2016, 2017; Mazzoni et al., 2015; Ness
et al., 2015, 2016, 2018; Tomsett et al., 2015; Miceli et al., 2017;
Luo et al., 2018), while in Heiberg et al. (2016) LFPy was used
to construct a small-world LGN network without predictions of
extracellular potentials. Further, in Uhlirova et al. (2016) LFPy
was used to compute neuronal membrane potentials.

Here we present a substantially extended version of LFPy,
termed LFPy 2.0, including several new features, that is, support
for (i) simulations of networks of multicompartmental neuron
models, (ii) computation of LFP/MUAwith anisotropic electrical
conductivity, (iii) computation of LFP/MUA in the presence of
step-wise varying electrical conductivity (such as at the interface
between cortical gray matter and white matter), (iv) computation
of ECoG signals (i.e., electrical potentials recorded at the cortical
surface), (v) computation of EEG signals, and (vi) computation
of MEG signals, see illustration in Figure 1. To illustrate the
computation of these measures by LFPy 2.0 we show in Figure 2

the LFP, EEG, and MEG signals generated by a single synaptic
input onto a single simplified “pyramidal” neuron. As both
electric and magnetic signals sum linearly, the recorded signals
in real applications will stem from the sum of a large number of
such contributions.

Potential uses of LFPy 2.0 include (but are not limited
to): Comparison of candidate neuron and network models
with arbitrary levels of detail to experiments in order to
aid the interpretation of experimental data, validation of
data analysis methods by testing them on synthetic (model-
based) measurements with known underlying ground truth, and
comparison of model predictions from different types of models
with different levels of detail.

The manuscript is organized as follows: In section 2 we
first review the biophysical forward-modeling scheme used to
predict extracellular potentials in different volume-conductor
models. Thenwe describe calculations of current dipolemoments
and corresponding calculation of EEG and MEG signals. We
further describe the implementation of an example network
using available data and biophysically detailed cell models from
the Blue Brain Project’s Neocortical Microcircuit Collaboration
(NMC) Portal, and various technical details. In section 3
we investigate the outcome of our example parallel network
simulation and corresponding measurements, and assess parallel
performance of LFPy when running on HPC facilities. In section
4 we outline implications of this work and discuss possible future
applications and developments of the software. In the Appendix
we describe new LFPy classes and corresponding code examples
for set-up of networks.

2. METHODS

2.1. Multicompartment Modeling
2.1.1. Calculation of Transmembrane Currents
The origin of extracellular potentials is mainly transmembrane
currents (Buzsáki et al., 2012; Einevoll et al., 2013), even
though diffusion of ions in the extracellular space alone also

can give rise to such potentials (Halnes et al., 2016). In the
presently (and frequently) used forward modeling approach,
these transmembrane currents are obtained from spatially
discretized multicompartment neuron models (De Schutter and
Van Geit, 2009) which allow for high levels of biophysical and
morphological detail. Such models have historically been used
to model spatiotemporal variations in the membrane voltages
Vm(x, t), where x denotes the position along an unbranched piece
of dendritic cable. From this cable theory it also follows that
the transmembrane current density, that is, the transmembrane
current per unit length of membrane, for any smooth and
homogeneous cable section is given by (Koch, 1999):

im(x, t) =
1

ri
∂2Vm(x, t)

∂x2
, (1)

where ri represents the axial resistance per unit length along
the cable. Assuming a homogeneous current density per unit
length im along a single compartment with length 1s, the total
transmembrane current Im = im1s.

As in the first release of LFPy (Lindén et al., 2014), we rely
on the NEURON simulation environment (Carnevale and Hines,
2006) to compute transmembrane currents. As of NEURON v7.4,
a faster and direct method of accessing transmembrane currents
is provided through its CVode.use_fast_imem() method,
which we now utilize in an exclusive manner. NEURON’s
“extracellular” mechanism is thus no longer used to predict
extracellular potentials (cf. Lindén et al., 2014, section 5.6).
Note, however, that this mechanism itself is still used when
an external extracellular potential is imposed as a boundary
condition outside each compartment using the Cell.insert_
v_ext() class method.

2.1.2. Calculation of Axial Currents
To compute the magnetic fields stemming from electrical
activity in neurons, the axial currents within cells are
needed (Hämäläinen et al., 1993). The axial current for the
cable is given by (Koch, 1999):

Ia(x, t) = −
1

ri
∂Vm(x, t)

∂x
. (2)

Assuming homogeneous axial current density between the
midpoints of two neighboring compartments n and n + 1 along
the cable, one may obtain the axial current from Ohm’s law:

Ian,n+1(t) =
Vm
n+1(t)− Vm

n (t)

rin,n+11sn,n+1
=

Vm
n+1(t)− Vm

n (t)

Rin,n+1

. (3)

Here, Vm
n and Vm

n+1 are the compartment midpoint membrane
potentials, rin,n+1 the axial resistance per unit length between the
two compartments, 1sn,n+1 the distance between compartment
midpoints and Rin,n+1 the corresponding axial resistance.

Further, we outline how axial currents from complex
reconstructed neuron morphologies are calculated in
LFPy 2.0, and provide the technical implementation
details in Algorithm A1 in the Appendix. For a more
comprehensive explanation, see Næss (2015). The corresponding
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FIGURE 1 | Illustration of measurement signals computed by LFPy 2.0. The figure illustrates the EEG, ECoG, LFP/MUA (linear multielectrode) and MEG recordings of

electrical and magnetic signals stemming from populations of cortical neurons. Here three separate cortical populations are depicted. EEG electrodes are placed on

the scalp, ECoG electrodes on the cortical surface, while the LFP and MUA both are recorded by electrodes placed inside cortex. In MEG the tiny magnetic fields

stemming from brain activity is measured by SQUIDs placed outside the head. The MUA signal, that is, the high-frequency part of the recorded extracellular potential

inside cortex, measures spikes from neurons in the immediate vicinity of the electrode contact, typically less than 100 µm away (Buzsáki, 2004; Pettersen and

Einevoll, 2008; Pettersen et al., 2008). The “mesoscopic” LFP and ECoG signals will typically contain information from neurons within a few hundred micrometers or

millimeters from the recording contact (Einevoll et al., 2013), while the “macroscopic” EEG and MEG signals will have contributions from cortical populations even

further away (Hämäläinen et al., 1993; Nunez and Srinivasan, 2006).

implementation is in LFPy 2.0 provided by the class method
Cell.get_axial_currents_from_vmem().

In NEURON, a section is a continuous piece of cable split into
an arbitrary number of segments (compartments) indexed by n.
Morphologies with branch points must therefore be represented
by more than one section. We here denote the relative length
from start to end point of each section by χ ∈ [0, 1], see
Figure 3A. All segments within the morphology except the initial
segment of the root section (typically the somatic section) have a
parent segment indexed by f . Each segment in a section can have
an arbitrary number of child segments, thus a parent segment
is the segment which connects to the start point of a child
segment. We also distinguish between start-, mid- and end-point
coordinates of each segment (Figure 3A).

In Figures 3B,C we illustrate the simplest possible calculation
of axial current between the midpoints of two neighboring
segments f and n belonging to the same section. Their
corresponding membrane voltages are Vm

f
and Vm

n , separated

by a total (series) axial resistance Ri
fn
. From NEURON we can

easily obtain the axial resistance between the segment midpoint
and the segment’s parent node. The parent node is here the
midpoint of the parent segment, as the child and parent belong
to the same section. Therefore, NEURON gives us the total axial
resistance Ri

fn
directly, in this case. The axial current magnitude

between segment midpoints is then trivial to compute using

Ohm’s law (Equation 3), but as the currents flowing within
segments f and n may not lie on the same axis, we differentiate
between the current magnitudes Iam and Iam+1, their axial line
element vectors dm and dm+1, and the midpoints of each
rm and rm+1 (Figure 3C). The corresponding current indices
are denoted by m and m + 1 as detailed in Algorithm A1
(Appendix).

Figure 3D represents the case where the parent and child
segments f and n belong to different sections. The child segment
is here the bottom segment in a section, and it is connected to the
end point of f . As the parent node (the node the child segment
connects to on the parent segment) is here located between the
two segments, NEURON does in this case not give us the total
axial resistance directly. Instead, the total (series) axial resistance
Ri
fn

= Ri
f
+ Rin must first be computed to estimate the axial

current. Ri
f
is here the resistance between the parent midpoint

and the connecting node, and Rin the resistance between the
parent node and the segment midpoint.

NEURON allows child sections to be connected anywhere
along the parent section (χ ∈ [0, 1]). Illustrated in Figure 3E,
a child segment is connected to the point χ = 0.5 and the axial
resistance in the parent segment does not enter the calculation
of axial current magnitude. LFPy 2.0 still accounts for a virtual
axial current Iam from the parent mid point to the child start
point. These virtual currents ensure that the total current dipole
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A B C

D E F

FIGURE 2 | Illustrations of forward model, dipole approximation, EEG and MEG model. (A) Illustration of forward-modeling scheme for extracellular potentials from

multicompartment neuron models. The gray shape illustrates soma and dendrites of a 3D-reconstructed neuron morphology and the equivalent multicompartment

model. A single synaptic input current isyn(t) (red triangle, inset axes I) results in a deflection of the membrane voltage throughout the morphology, including at the

soma (Vsoma (t), inset axes II). LFPy allows for computing extracellular potentials φ in arbitrarily chosen extracellular locations r (inset axes III) from transmembrane

currents (Imn (rn, t)), as well as the components of the current dipole moment p (black arrow, inset axes IV). Compartments are indexed n, rn denote compartment

positions. The image plot shows the extracellular potential in the xz-plane at the time of the largest synapse current magnitude (t = 2.25 ms). (B) Illustration of the

extracellular electric potential calculated both from the current dipole moment and transmembrane currents for the situation in (A). Within a radius r < 500 µm from

the “center of areas” (see below) of the morphology the panel shows extracellular potentials φ(r) predicted using the line-source method, while outside this radius the

panel shows extracellular potentials φp(r) predicted from the current dipole moment (p, black arrow). Here, an assumption of an homogeneous (same everywhere)

and isotropic (same in all directions) extracellular conductivity was used. The ‘center of areas‘ was defined as
∑nseg

n=1 Anrn/
∑nseg

n=1 An where An denotes compartment

surface area. The time t = 2.25 ms as in (A). The inset axis shows the potential as function of time in the four corresponding locations (at |R| = 750 µm) surrounding

the morphology (colored circular markers). (C) Visualization of magnetic field component Bp · ŷ (y-component) computed from the current dipole moment, outside a

circle of radius r = 500 µm (as in B). Inside the circle, we computed the same magnetic field component from axial currents. The inset axis shows the y-component of

the magnetic field as function of time in the four corresponding locations (at |R| = 750 µm) surrounding the morphology (circular markers). (D) Illustration of upper half

of the four-sphere head model used for predictions of EEG scalp potentials from electric current dipole moments. Each spherical shell with outer radii r ∈ {r1, r2, r3, r4}
has piecewise homogeneous and isotropic conductivity σe ∈ {σ1, σ2, σ3, σ4}. The EEG/MEG sites numbered 1–9 mark the locations where electric potentials and

magnetic fields are computed, each offset by an arc length of r4π/16 in the xz-plane. The current dipole position was θ = ϕ = 0, r = 78 mm (in spherical coordinates).

(E) Electric potentials on the outer scalp-layer positions 1-9 in (D). (F) Tangential component of the magnetic field Bp · ϕ̂ in positions 1–9. (Note that at position 5, the

unit vector ϕ̂ is defined to be directed in the positive y-direction).

moments computed either from transmembrane currents or
from axial currents are identical (see section 2.3.1 for details).

At morphology branch points, several child segments may
protrude from a parent segment as illustrated in Figure 3F. As
the segment n and its sibling ñ both share the same parent
f , we estimate the potential Vm

× at the branch node using
Ohm’s law and Kirchhoff’s current law, accounting for the
axial resistivities (Ri

f
, Rin,R

i
ñ) and potentials (Vm

f
, Vm

n ,Vm
ñ ),

in order to compute the corresponding axial currents Iam

and Iam+1. The full procedure presently used for computing
axial currents in LFPy 2.0 for the cases illustrated in
Figures 3B–F is provided in full detail in Algorithm A1
(Appendix).

2.2. Forward Modeling of LFP and MUA
Signals
The relation between transmembrane currents and extracellular
potentials is calculated based on volume conduction theory
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A B C D E F

FIGURE 3 | Axial currents in multicompartment neuron models. (A) Schematic illustration of sections (colored rectangles), segments and equivalent electric circuit of a

simplified multicompartment neuron model. The relative length χ varies between 0 and 1 from start- to end-point of each section. (B) Axial current line element vectors

(dm,dm+1) and corresponding midpoints (rm, rm+1) of axial currents (Iam, Iam+1) between two connected segments. (C) Axial currents (Iam, Iam+1), membrane potentials

(Vmf ,Vmn ), and axial resistance (Rifn) in equivalent electric circuit for a parent segment f and child segment n in a single section. (D) Similar to panel B, but parent and

child segments belong to two different sections. The total series resistance is here Rif + Rin. (E) Illustration of the case where the child segment n is connected to a

point χ = 0.5 on the parent section. For children connected at χ ∈ 〈0, 1〉 the voltage difference (Vmn − Vmf ) is only across the child segment axial resistance Rin, but
the (virtual) current from the node connecting the child start point to the parent midpoint Iam is still accounted for. (F) Illustration of axial currents at branch point

between different sections of the morphology. The child segment n has one parent f and one sibling indexed by ñ, where Vm× denotes the virtual membrane potential

at the node connecting the parent end-point to the children start-points. Vmñ is the voltage in the midpoint of the sibling segment, while Riñ and Iam̃ denotes the axial

resistance and current between the sibling midpoint and the branch point.

(Nunez and Srinivasan, 2006; Einevoll et al., 2013). At
the relatively low frequencies relevant in neurophysiology
(below a few thousand hertz), this derivation is simplified by
omitting terms with time derivatives in Maxwell’s equations
(quasistatic approximation, Hämäläinen et al., 1993, p. 426).
Further, the extracellular medium is in all situations considered
below assumed to be ohmic, that is, linear and frequency-
independent (Pettersen et al., 2012; Einevoll et al., 2013; Miceli
et al., 2017).

2.2.1. Homogeneous and Isotropic Media
We first consider the simplest situation, where the medium is
homogeneous, that is, the same in all positions corresponding
to an infinite volume conductor, and isotropic, that is, the
same electrical conductivity in all directions. The medium is
then represented by a scalar extracellular conductivity σe. The
extracellular potential φ(r, t) at position r and time t is then given
by (Nunez and Srinivasan, 2006; Lindén et al., 2014)

φ(r, t) =
1

4πσe

I(t)

|r− r′|
, (4)

where I(t) represents a time-varying point current source at
position r′. For transmembrane currents Imjn (t) of individual

compartments n ∈ [1, n
seg
j ] of all cells j in a population of N cells,

the extracellular potential can be computed as the linear sum of
their contributions as

φ(r, t) =
1

4πσe

N
∑

j=1

n
seg
j

∑

n=1

Imjn (t)

|r− rjn|
, (5)

but only under the assumption that each transmembrane current
can be represented as a discrete point in space. This point-
source assumption can be used in LFPy by supplying the
keyword argument and value method="pointsource" to
the RecExtElectrode class (Lindén et al., 2014).

As a homogeneous current distribution along each cylindrical
compartment is assumed, we may employ the line-source
approximation for somatic and dendritic compartments (Holt
and Koch, 1999). The formula is obtained by integrating 4
along the center axis of each cylindrical compartment n, and by
summing over contributions from every n

seg
j compartment of

all N cells (Holt and Koch, 1999; Pettersen and Einevoll, 2008;
Lindén et al., 2014):

φ(r, t) =
1

4πσe

N
∑

j=1

n
seg
j

∑

n=1

Imjn (t)
∫

1

|r− rjn|
drjn

=
1

4πσe

N
∑

j=1

n
seg
j

∑

n=1

Imjn (t)

1sjn
ln

∣

∣

∣

∣

∣

∣

√

h2jn + r2⊥jn − hjn
√

l2jn + r2⊥jn − ljn

∣

∣

∣

∣

∣

∣

. (6)

Compartment length is denoted 1sjn, perpendicular
distance from the electrode point contact to the axis
of the line compartment is denoted r⊥jn, longitudinal
distance measured from the start of the compartment
is denoted hjn, and longitudinal distance from the other
end of the compartment is denoted ljn = 1sjn + hjn.
The corresponding keyword argument and value to class
RecExtElectrode is method="linesource" (Lindén
et al., 2014).

A final option in LFPy is however to approximate the
typically more rounded soma compartments as spherical current
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sources, thus the line-source formula (Equation 6) for dendrite
compartments is combined with the point-source equation
(Equation 4), obtaining (Lindén et al., 2014):

φ(r, t) =
1

4πσe

N
∑

j=1







Imj,soma(t)

|r− rj,soma|
+

n
seg
j

∑

n=2

∫ Imjn (t)

|r− rjn|
drjn







=
1

4πσe

N
∑

j=1







Imj,soma(t)

|r− rj,soma|
+

n
seg
j

∑

n=2

Imjn (t)

1sjn
ln

∣

∣

∣

∣

∣

∣

√

h2jn + r2⊥jn − hjn
√

l2jn + r2⊥jn − ljn

∣

∣

∣

∣

∣

∣






.

(7)

The corresponding keyword argument and value is method=
"soma_as_point".

If the distance between current sources and electrode contacts
is smaller than the radius of the segment, unphysical singularities
may occur in the computed extracellular potential. Singularities
are in LFPy automatically prevented by either setting r⊥jn or
|r − rjn| equal to the cylindrical compartment radius dependent
on the choice of line or point sources.

Electrode contacts of real recording devices have finite spatial
extents. A good approximation to the electric potential across
the uninsulated surface of metal electrode contact is obtained
by computing the spatially averaged electric potential (Robinson,
1968; Nelson et al., 2008; Nelson and Pouget, 2010; Ness et al.,
2015), in particular for current sources being located at distances
larger than approximately one electrode radius (Ness et al., 2015).
The disc-electrode approximation to the potential (Camuñas-
Mesa and Quiroga, 2013; Lindén et al., 2014; Ness et al., 2015)

φdisc(u, t) =
1

AS

∫∫

S
φ(u, t) d2r ≈

1

m

m
∑

h=1

φ(uh, t) , (8)

is incorporated in LFPy, with corresponding parameters for
contact radius rcontact, numberm of random points uh on the flat,
circular electrode contact surface when averaging (Lindén et al.,
2014). The surface normal vector for each electrode contact must
also be specified.

2.2.2. Discontinuous and Isotropic Media
Above we described the case for an infinite volume conductor,
that is, a constant extracellular conductivity σe, as implemented
in the initial LFPy release (Lindén et al., 2014). For cases where
σe vary with position, i.e., σe = σe(r), such as for cortical in
vivo recordings close to the cortical surface (Einevoll et al., 2007)
or in vitro recordings using microelectrode arrays (MEAs) (Ness
et al., 2015), this approximation does not generally hold. Instead
a generalized Poisson equation must be solved (Nicholson and
Freeman, 1975):

∇ ·
(

σe(r)∇φ(r, t)
)

= −C(r, t), (9)

where C(r, t) is the current-source density. This equation can
always be solved numerically by means of the Finite Element
Method (FEM) (McIntyre and Grill, 2001; Ness et al., 2015) or
other mesh-based methods (see for example Tveito et al., 2017).

In the special case where the conductivity σe is discontinuous
in a single direction, that is, a constant conductivity in the

xy-plane and a piecewise constant σe(z) in the z-direction,
the ‘Method-of-Images’ (MoI) can be used to make analytical
formulas for the extracellular potentials, analogous to 4–7
above (Nicholson and Llinas, 1971; Nunez and Srinivasan, 2006;
Ness et al., 2015). When applicable, these formulas substantially
simplify the modeling of the extracellular potentials compared to
FEMmodeling.

Electrical potentials across microelectrode arrays (MEAs): The
first MoI application is to model recordings in a MEA setting
where a slice of brain tissue is put on an insulating recording chip
(MEA-chip) and covered with saline (Hagen et al., 2015; Ness
et al., 2015). In this three-layer situation separate conductivity
values are assigned to the topmost saline layer conductivity σS
for z ∈ [h,∞], the middle tissue layer conductivity σT for
z ∈ [0, h) and the lowermost electrode σG for z ∈ [−∞, 0).
The parameter h denotes the thickness of the middle tissue
layer. The corresponding implementation is provided by the class
RecMEAElectrode, and has at present the limitations that all
current sources (segments) must be contained on the interval
z ∈ [0, h), and that the line-source approximation can only be
used when σG = 0 and when computing extracellular potentials
for z = 0. For other forward-model configurations (for example
for 0 ≤ z ≤ h and/or σG > 0) the point-source approximation
can be used. For a detailed derivation of the MoI with two planar
electrical boundaries, see Equation (4) in Ness et al. (2015). A
corresponding example is provided with LFPy 2.0 (example_
MEA.py) which illustrates the computation of extracellular
potentials as recorded by a MEA following synaptic activation of
a pyramidal cell model.

Electrical potentials close to cortical surface: The second MoI
application is to model in vivo recordings of electrical potentials
at or immediately below the cortical surface, that is, the interface
between cortical gray matter and dura. Here the extracellular
conductivity above the cortical surface σS can be higher or lower
than the conductivity in cortical gray matter σT depending on
how the measurements are done, for example whether saline or
oil is used to cover an inserted laminar electrode (Einevoll et al.,
2007). Such a conductivity jump will affect both the electrical
potential recorded at the cortical surface (ECoG recording) as
well as the potentials recorded in the top cortical layers (Pettersen
et al., 2006). This can be modeled with the same framework
as above, that is, by using the class RecMEAElectrode,
with the cortical surface at height h, while ignoring the lower
planar boundary by setting σG = σT. In this situation the
potential at or below the cortical surface at position (x, y, z) for
a current source, I(t), positioned at (x′, y′, z′) is given by (Nunez
and Srinivasan, 2006; Pettersen et al., 2006; Ness et al., 2015)
as:

φ(x, y, z, t) =
I(t)

4πσT

(

1
√

(x− x′)2 + (y− y′)2 + (z − z′)2
(10)

+
σT − σS

σT + σS

1
√

(x− x′)2 + (y− y′)2 + (z + z′ − 2h)2

)

.

This approach assumes a flat cortical surface. Note, however,
that in LFPy 2.0 the ECoG signal can also be modeled
by means of the four-sphere EEG head model as described
below in section 2.3.4. An example is provided with LFPy 2.0
(example_ECoG.py) which illustrates extracellular potentials
recorded in the cortex and at the cortical surface following
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activation of multiple synapses distributed across a pyramidal cell
model.

Electrical potentials in spherical conductor:
LFPy 2.0 also incorporates a spherical conductor model,

adapted from Deng (2008), where the conductivity is
constant within the sphere and constant outside (class
OneSphereVolumeConductor). Note that this model
is applicable for monopolar current sources, unlike the more
complex multi-sphere head models described below in section
2.3 which only apply to dipolar current sources. Although not
pursued here, one application of this volume-conductor model
could possibly be modeling of LFPs measured in spheroidal brain
nuclei.

2.2.3. Homogeneous and Anisotropic Media
For homogeneous media, that is, when the extracellular
conductivity is the same at all positions, we also added support
for anisotropic media (Nicholson and Freeman, 1975). In this
case the extracellular conductivity in 9 must be replaced by a rank
2 (3 × 3) tensor where the diagonal elements are σx, σy, and σz
and the off-diagonal elements are zero (Nicholson and Freeman,
1975). This could for example be used to mimic experimental
observations of such anisotropy in cortex (Goto et al., 2010),
that is, electric currents flow with less resistance along the
depth direction (z-direction) than in the lateral directions (x, y-
directions). In this case σz > σx = σy (Ness et al., 2015). The
corresponding implementation is based on the description and
implementation provided by Ness et al. (2015), and is in LFPy
presently supported by the class RecExtElectrode, but not
the class RecMEAElectrode.

2.3. Forward Modeling of EEG, ECoG, and
MEG Signals From Current Dipoles
The forward modeling of EEG and MEG signals from current
dipoles has a long history (Hämäläinen et al., 1993; Nunez
and Srinivasan, 2006). Here the EEG contacts and the MEG
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, (12)

magnetometers are located so far away from the neural sources
that only the current dipole moments contribute to the
measured signals, that is, the contributions from higher-order
current multipoles are negligible. From charge conservation, it
follows that current monopoles do not exist. To compute the
contribution to EEG and MEG signals from detailed neuron
models, we thus first need to compute single-neuron current
dipole moments as described in section 2.3.1. Next these must
be combined with appropriate volume-conductor models for the
head.

In LFPy 2.0 we include two “head” models for computing
EEG signals from current dipole moments: the (very simplified)
infinite homogenous volume-conductor model (section 2.3.2),
and the much more involved four-sphere head model where
the brain tissue, cerebrospinal fluid (CSF), skull and scalp
are represented with different values for the electrical
conductivity (Nunez and Srinivasan, 2006; Næss et al.,
2017), cf. section 2.3.3. For the MEG signals the forward
model is simpler as the magnetic permeability is the same
throughout the head as in free space (Hämäläinen et al.,
1993). In LFPy 2.0 we include simulation code for computing
neural contributions to MEG signals applicable for all head
models with spherically-symmetric electrical conductivities,
for example, the four-sphere head model, cf. section 2.3.5.
While these head models allow for direct calculation of
EEG and MEG signals from neurons, it should be noted
that the computed current dipole moments also can be
used for subsequent calculation of EEG and MEG signals
by means of boundary element (BEM) or finite element
models (FEM) with anatomically detailed head models (He
et al., 2002; Bangera et al., 2010; DeMunck et al., 2012),
(Huang et al., 2016).

2.3.1. Calculation of Current Dipole Moments
Current dipole moments from transmembrane currents: The
current dipole moment from a single neuron can be computed
from transmembrane currents as (Lindén et al., 2010):

p(t) =
nseg
∑

n=1

rnI
m
n (t) , (11)

where Imn is the transmembrane current at time t from
compartment n at position rn. For a population of N cells
with n

seg
j compartments each, the current dipole moment

at discrete time steps can be formulated as the matrix
product:

where pu(t) is the u-component (u ∈ {x, y, z}) of the current
dipole moment at time t (thus p(t) ≡ px(t)x̂ + py(t)ŷ +

pz(t)ẑ), Imjn (t) the transmembrane currents of segment n of

cell j at time t and r
(u)
jn the corresponding u-coordinates

of each segment’s midpoint. x̂, ŷ and ẑ denote the cartesian
unit vectors. For more compact notation we here show the
transpose (denoted by the raised T) of the matrix containing
transmembrane currents. Note that the same formula may be
used to also compute current dipole moments pj of individual
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cells j (or subsets thereof) by slicing the corresponding matrix
elements.

Current dipole moments from axial currents: Alternatively, the
current dipole moment can be computed from axial currents
between neighboring segments (see section 2.1.2). As an example,
we consider a two-compartmental dendritic stick model, where
segment one will act as a current sink, and segment two as a
current source. The transmembrane current entering segment
two Im2 will be the same as the axial current Ia between the two
segments, which is also equal to the current leaving compartment
one Im1 , such that Im1 = −Im2 = Ia. An axial line element
vector d represents the path traveled by the axial current,
which corresponds to the displacement r1 − r2 between the
compartment midpoints. From equation 11 it thus follows that
the current dipole moment is:

p =

2
∑

n=1

rnI
m
n = Iad. (13)

Multiplying each axial current with the respective current path
gives a set of current dipoles:

pm(t) = Iam(t)dm. (14)

Calculating sets of current dipole moments from neural
simulations can be useful, for example for ECoG predictions (see
section 2.3.4) or magnetic fields in proximity of the neuron (see
section 2.4).

2.3.2. EEG Signal for Homogeneous Volume

Conductor
From eletrostatic theory we have that the electric potential
outside a spatial distribution of current sinks and sources can
be described by a multipole expansion φ(r) = Cmonopole/R +

Cdipole/R
2 + Cquadrupole/R

3 + Coctupole/R
4 + ... , where R is the

relative distance from the multipole to measurement location
(and the coefficients C depends on the spherical angles). Due
to charge conservation, current monopoles do not exist (Nunez
and Srinivasan, 2006). For sufficiently large values of R where
Cdipole/R

2 ≫
∑∞

q=3 Cq−pole/R
q, the electric potential of a neuron

can be approximated solely from its current dipole moment, as
contributions from quadrupolar and higher-order terms become
negligible. The electric potential from a current dipole in an
ohmic, homogeneous and isotropic medium is given by (Nunez
and Srinivasan, 2006)

φp =
p · R

4πσeR3
, (15)

where p is the current dipole moment as defined above, σe
the conductivity of the extracellular medium, R = r − r′ the
displacement vector between dipole location r′ andmeasurement
location r, and R = |R|. Predictions of extracellular potentials
from current dipole moments in homogeneous media are
provided by the class InfiniteVolumeConductor.

2.3.3. EEG Signal in Four-Sphere Head Model
The computation of EEG signals assuming a homogeneous
volume conductor model is obviously a gross approximation as
it neglects the large variation in the extracellular conductivity
in the head. In order to compute more realistic EEG
signals from underlying neuronal sources, we implemented in
LFPy 2.0 the inhomogeneous four-sphere head model in class
FourSphereVolumeConductor. This model is composed
of four concentric shells representing brain tissue, cerebrospinal
fluid (CSF), skull and scalp, where the conductivity can be set
individually for each shell (Srinivasan et al., 1998; Nunez and
Srinivasan, 2006). Note that corrections to the original model
formulation was recently provided in Næss et al. (2017). LFPy 2.0
incorporates this corrected four-sphere head model.

2.3.4. ECoG Signal From Four-Sphere Head Model
The four-sphere head model is not restricted to EEG predictions,
but can also be applied for modeling electric potentials in
other layers of the inhomogeneous head model, such as ECoG
signals at the interface between the brain tissue and the CSF.
In contrast to EEG electrodes, however, the ECoG electrodes
are located only micrometers away from the apical dendrites.
The electrode’s proximity to the neuronal source makes the
four-sphere model a less obvious candidate model, as the model
is based on the current dipole approximation, giving good
predictions only when the measurement point is more than
some dipole lengths away from the source (Lindén et al., 2010).
However, in the FourSphereVolumeConductor class
method calc_potential_from_multi_dipoles(),
this problem can be avoided by taking advantage of the fact
that electric potentials sum linearly in ohmic media: Instead of
computing a single current dipole moment for the whole neuron,
we compute multiple current dipole moments, one for each axial
current, as described in section 2.3.1. Since these current dipoles
have small enough source separations for the current dipole
approximation to be applicable, we can compute the ECoG signal
contribution from each current dipole moment separately, using
the four-sphere model. The ECoG signal is finally predicted by
summing up each contribution. The corresponding LFPy 2.0
example file is /examples/example_ECoG_4sphere.py.

2.3.5. MEG Signals in Spherically-Symmetric Head

Models
For spherically-symmetric head models the MEG signal can
be computed from the current dipole moments set up by
intracellular axial currents (Hämäläinen et al., 1993, p. 428). To
compute magnetic fields Bp from current dipole moments we
incorporated the special form of the magnetostatic Biot-Savart
law (where magnetic induction effects are neglected) (Nunez and
Srinivasan, 2006, Appendix C) given as:

Bp =
µ0

4π

p× R

R3
. (16)

As above, p is the dipole source, R = r − r′ the displacement
between dipole location r′ and measurement location r, and R =

|R|. For a detailed derivation of this expression see Hämäläinen
et al. (1993). The magnetic field B is related to the commonly
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used quantity H (often also termed magnetic field) through B =

µ0H + M = µH where M is the magnetization and µ the
magnetic permeability of the material. However, in biological
tissues the magnetization M is very small, and µ is very close to
themagnetic constant (i.e., themagnetic permeability of vacuum)
µ0 (Hämäläinen et al., 1993). Predictions of magnetic signals are
in LFPy 2.0 incorporated in the class MEG, which provides the
method calculate_H in order to compute the magnetic field
from a current dipole moment time series. Its output must be
multiplied by µ to obtain the magnetic field Bp.

Throughout this paper, we show for the four-sphere head
model magnetic field components decomposed into tangential
and radial components at different positions on spherical
surfaces. The tangential components were computed in the
direction of the angular unit vectors θ̂ = cos θ cosϕx̂ +

cos θ sinϕŷ − sin θ ẑ and ϕ̂ = − sinϕx̂ + cosϕŷ as B · θ̂ and
B · ϕ̂, respectively. The radial component was computed as Bp · r̂

where r̂ denotes the radial unit vector from the center of the
sphere in the direction of the contact. Furthermore, we also
show tangential and radial components of the surface magnetic
field where the underlying dipoles were rotated by an angle
θ = π/2 around the x-axis, denotedBRx(π/2)p·θ̂ ,BRx(π/2)p·ϕ̂ and
BRx(π/2)p · r̂, respectively. For this purpose we used the rotation
matrix

Rx

(π

2

)

=





1 0 0
0 0 −1
0 1 0



 (17)

multiplied with the current dipole moment p in cartesian
coordinates.

Note that experimental MEG equipment using gradiometers
measure changes in the magnetic field across space in units
of T/m (Hämäläinen et al., 1993). We here display the time-
varying magnitude of magnetic fields in units of T.

2.4. Magnetic Signals Close to Neurons
Most studies of magnetic fields generated by neural activity have
been based on MEG recordings where the neuronal sources
are so distant from the magnetic-field sensors that the far-field
dipole approximation in 16 can be applied. However, probes
are also being developed for measuring magnetic fields in direct
vicinity of the neurons (Barbieri et al., 2016; Caruso et al.,
2017). To compute the magnetic fields in the vicinity of neurons,
LFPy 2.0 also implements the relevant Biot-Savart law for this
situation (Blagoev et al., 2007):

B(r) =
µ0

4π

ma
∑

m=1

Iam
dm × (r− rm)

|r− rm|3
. (18)

This formula provides the magnetic field for ma axial currents
Iam where dm are axial line element vectors, and rm the midpoint
positions of each axial current. The use of this formula assumes
that contributions to the magnetic fields from extracellular
volume currents are negligible (Hämäläinen et al., 1993, p.
427). Predictions of magnetic signals from axial currents (or
equivalently sets of current dipoles) are in LFPy 2.0 facilitated by
the corresponding class method MEG.calculate_H_from_

iaxial(). We show (in Figure 2) the y-components of the
magnetic fields in vicinity of a model neuron computed as B · ŷ

and Bp · ŷ respectively.

2.5. Description of Biophysically Detailed
Network in Example Use Case
2.5.1. Neuron Models
Our example network model presented in section 3 comprised
about 5500 biophysically detailed multicompartment neurons
obtained from The Neocortical Microcircuit Collaboration
(NMC) Portal (https://bbp.epfl.ch/nmc-portal, Ramaswamy
et al., 2015). The NMC portal provides NEURON code for about
1,000 different single-cell models as well as connectivity data of
a reconstruction and simulation of a rat somatosensory cortex
column (Markram et al., 2015).

For simplicity of this demonstration, we here use only four
different single-cell models as shown in Figure 2A for the
different network populations. For layers 4 and 5 we chose
the most common excitatory cell type and most common
inhibitory interneuron cell type, in accordance with statistics
of the reconstructed microcircuit of Markram et al. (2015) as
provided on the NMC portal. The table in Figure 4A summarizes
population names (X– presynaptic; Y– postsynaptic) which here
coincide withmorphology type (m), electric type (e), cell model #,
compartment count per single-cell model (n

seg
j ), number of cells

NX in each population, occurrence FX ≡ NX/
∑

X NX , the
number of external synapses on each cell next, rate expectation
of external synapses νext and the mean zsoma

X and standard
deviation σ soma

z,X of the normal distributionN (zsoma
X , σ soma

z,X ) from
which somatic depths are drawn for each population. The cell
type can be derived from the “m” and “e” type in the table.
Using the nomenclature of Markram et al. (2015), L4 and
L5 are abbreviations for layer 4 and 5; PC – pyramidal cell;
LBC – large basket cell; TTPC1 – thick-tufted pyramidal cell
with a late bifurcating apical tuft; MC – Martinotti cell; cAD
– continuous adapting; dNAC – delayed non-accommodating;
bAC – burst accommodating. Thus, L4_PC_cAD corresponds
to a layer 4 pyramidal cell with a continuously adapting firing
pattern as a response to depolarizing step current and so forth.
As multiple variations of the same cell types are provided on
the NMC portal, the cell model # can be used to identify
the particular single-cell model and corresponding file sets
used in the network described here. These single-cell model
files can be downloaded one after another from the portal as
for example L5_TTPC1_cADpyr232_1.zip, or all together in a
single archive. For simplicity we ignore heterogeneity in e-types
for each m-type, thus the population counts NX correspond
to the count per m-type in the reconstructed microcircuit.
Note for the present network description that {X,Y , m} ∈

{L4_PC, L4_LBC, L5_TTPC1, L5_MC}.

2.5.2. Population Geometry
The centers of somatic compartments for all cells i ∈

X were distributed with even probability within a circular
radius of 210 µm corresponding to the radius of the
reconstructed somatosensory column in Markram et al. (2015).
The corresponding depths were drawn from the normal
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A B

E F G

C D

FIGURE 4 | Details of the example network. (A) Biophysically detailed neuron models of the network, with depth-values of boundaries of layers 1–6. The lower left

table summarizes population names (X – presynaptic; Y – postsynaptic) which here coincide with morphology type (m); electric type (e); cell model #; compartment

count per single-cell model (nsegj ); number of cells NX in each population; occurrence FX (defined as NX/
∑

X NX ); the number of external synapses on each cell next;

rate expectation of external synapses νext; the expected mean zsoma
X and standard deviation σ soma

z,X of the normal distribution N from which somatic depths are

drawn. (B) Pairwise connection probability CYX between cells in presynaptic populations X and postsynaptic populations Y . (C) Average number nsyn of synapses

created per connection between X and Y . (D) Layer specificity of connections LYXL (Hagen et al., 2016) from each presynaptic population X onto each postsynaptic

population Y . Gray values denote LYXL = 0. (E) Illustration of cylindrical geometry of populations including a laminar recording device for extracellular potentials (black

circular markers) and a single ECoG electrode above layer 1 (gray line). n = 15 neurons of each population are shown in their respective locations. (F) Laminar

distribution of somas for each network population (1z = 50 µm) in one instantiation of the circuit. (G) Laminar distribution of synapses across depth onto each

postsynaptic population Y from presynaptic populations X (1z = 50 µm).

distribution N (zsoma
X , σ soma

z,X ) using population-specific mean
and standard deviations given in Figure 4A. Neuron positions
resulting in any neuron compartments protruding above the
hypothetical cortical surface at z = 0 or below layer 6 at z =

−2082 µm were redrawn from the depth distribution. All cells
were rotated around their local vertical z-axis by a random angle
θ ∈ [0, 2π).

2.5.3. Synapse Models
For synapses made by cells in a presynaptic population X
onto a postsynaptic population Y we used synapse model
files provided with the single-cell model files from the
NMC portal. There are two base models with connection-
specific parameterization which were obtained from the portal.
Excitatory synapses are modeled as probabilistic AMPA and
NMDA receptors, while inhibitory synapses are modeled
as probabilistic GABAA receptors. Both synapse types were
modeled with presynaptic short-term plasticity. The synapse
parameterization procedure and validation is described in

detail in Markram et al. (2015), with code implementations
based on Fuhrmann et al. (2002). The synapse parameters
are summarized in Table 1, detailing the synapse model
names, average synaptic conductances gsyn and corresponding
standard deviations σ

syn
g , release probabilities Pu, relaxation

time constants from depression τDep, relaxation time constants
from facilitation τFac, ratios of NMDA vs. AMPA (excitatory
connections only), rise and decay time constants τ rU and τdU of
the two-exponential conductances of each current type U ∈

{AMPA,NMDA,GABAA}, and reversal potentials esyn. Random
conductances for each individual synapse were drawn from
the capped normal distribution N (gsyn, σ

syn
g )H(g − gmin). For

our network we set the minimum synaptic conductance to be
gmin = 0 nS.

2.5.4. Extrinsic Input
Synapses from external inputs to the neurons in our network
were modeled similarly to excitatory synapses of intrinsic
network connections. For inputs to a population Y in layer L
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TABLE 1 | Summary of intrinsic synapse parameters.

Postsynaptic population (Y )

Parameter L4_PC L4_LBC L5_TTPC1 L5_MC

p
re
sy
n
a
p
tic

p
o
p
u
la
tio

n
(X
)

L4_PC syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

NMDA ratio

τ rAMPA (ms)

τdAMPA (ms)

τ rNMDA (ms)

τdNMDA (ms)

esyn (mV)

ProbAMPANMDA

0.3

0.11

0.859

670

17

0.4

0.2

1.737

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.398

560

130

0.4

0.2

1.74

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.5

670

17

0.4

0.2

1.742

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.093

140

660

0.4

0.2

1.742

0.29

43

0

L4_LBC syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

τ r
GABAA

(ms)

τd
GABAA

(ms)

esyn (mV)

ProbGABAAB

0.89

1.3

0.213

730

21

0.2

7.604

-80

ProbGABAAB

0.33

0.15

0.254

700

21

0.2

8.373

-80

ProbGABAAB

0.98

1.3

0.226

750

21

0.2

7.364

-80

ProbGABAAB

0.33

0.16

0.253

710

21

0.2

8.349

-80

L5_TTPC1 syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

NMDA ratio

τ rAMPA (ms)

τdAMPA (ms)

τ rNMDA (ms)

τdNMDA (ms)

esyn (mV)

ProbAMPANMDA

0.29

0.11

0.5

670

17

0.4

0.2

1.743

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.369

550

140

0.4

0.2

1.743

0.29

43

0

ProbAMPANMDA

0.31

0.11

0.5

670

17

0.4

0.2

1.744

0.29

43

0

ProbAMPANMDA

0.3

0.11

0.092

150

690

0.4

0.2

1.741

0.29

43

0

L5_MC syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

τ r
GABAA

(ms)

τd
GABAA

(ms)

esyn (mV)

ProbGABAAB

0.66

0.15

0.3

1200

2.1

0.2

8.291

-80

ProbGABAAB

0.33

0.15

0.25

700

21

0.2

8.295

-80

ProbGABAAB

0.66

0.15

0.299

1200

2.2

0.2

8.271

-80

ProbGABAAB

0.33

0.15

0.252

710

21

0.2

8.339

-80

we chose to duplicate the synapse parameters of connections
made by the presynaptic excitatory population within the
same layer (as we were unable to assess what parameters
were used for extrinsic connections in Markram et al., 2015).
Our synapse parameters are given in Table 2. For each cell
in the network we created next synapses set randomly onto
dendritic and apical compartments with compartment specificity
of connections Sjn/

∑

n∈{dend,apic} Sjn, where Sjn denotes surface
area of compartment n of cell j. The random activation
times of each synapse were set using Poisson processes with
rate expectation νext for the duration of the simulation. The
values for next and νext are given in Figure 4A, and were
set by hand in order to maintain spiking activity in all
populations.

2.5.5. Connectivity Model
Random connections in our network were set using the Python-
implementation of the “connection-set algebra” of Djurfeldt
(2012) and Djurfeldt et al. (2014) (github.com/INCF/csa). Using
this formalism, we constructed boolean connectivity matrices

C
(r)
YX for postsynaptic cells j(r) ⊂ Y distributed across each

separate parallel MPI rank (denoted by the superset “(r)” for

rank number) and presynaptic cells i ∈ X. Each instance of C(r)
YX

had shape (NX × Nj(r)⊂Y ), with entries equal to True denoting

connections from cell i to j(r), as expressed mathematically by

C
(r)
YX(CYX)(i, j

(r)) =

{

True with probability CYX ,

False otherwise .
(19)
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TABLE 2 | Synapse parameters for extrinsic input.

Postsynaptic population (Y )

Parameter L4_PC L4_LBC L5_TTPC1 L5_MC

P
re
sy
n
a
p
tic

p
o
p
.
(X
) ext syn. model

gsyn (nS)

σ
syn
g (nS)

Pu
τDep (ms)

τFac (ms)

NMDA ratio

τ rAMPA (ms)

τdAMPA (ms)

τ rNMDA (ms)

τdNMDA (ms)

esyn (mV)

ProbAMPANMDA

0.3

0.11

0.859

670

17

0.4

0.2

8.291

0.29

43

0

ProbAMPANMDA

0.33

0.15

0.254

700

21

0.4

0.2

8.295

0.29

43

0

ProbAMPANMDA

0.31

0.11

0.5

670

17

0.4

0.2

8.271

0.29

43

0

ProbAMPANMDA

0.33

0.15

0.252

710

21

0.4

0.2

8.339

0.29

43

0

For X = Y and i = j(r), entries in C
(r)
YX were set to False

(no autapses). We used fixed connection probabilities CYX as
obtained from the NMC portal between our chosen m-types.

2.5.6. Multapses
As multiple synapses per connection appear to be a prominent
feature in cortical networks (see Markram et al., 2015; Reimann
et al., 2015 and references therein), we drew for every connection
between presynaptic cell i and postsynaptic cell j a random
number of synapses nsyn rounded to an integer from the capped
normal distribution N (nsyn, σ

syn
n )H(n). Conduction delays from

action-potential detection (threshold θAP = −10 mV) in cell i
for each corresponding synapse onto cell j were drawn from the
distributionN (δ

syn
, σ

syn
δ

)H(δ−δmin). For our network we set the
minimum delay δmin = 0.3 ms for all connections.

2.5.7. Layer-specificity of connections
In order to position each individual synapse of a connection on
a cell j ∈ Y , in a simplified manner that depended on the degree
of overlap between presynaptic axons and postsynaptic dendrites
(“Peter’s rule”), we calculated for each postsynaptic population
Y layer-specificities of connections LYXL in layer L for synapses
made by presynaptic populations X (Hagen et al., 2016), by first
computing the sums 1siXL =

∑

n∈axon 1sinXL, that is, the total
axon length of a presynaptic cell type per layer L and sums
1sjYL =

∑

n∈{soma,dend} 1sjnYL of total dendrite and soma length
for each postsynaptic cell type across each layer. Then we defined
the layer-specificity of connections as

LYXL =
√

1siXL1sjYL/
∑

L

√

1siXL1sjYL .

The sums
∑

L LYXL = 1 for all X and Y . Synapse
sites of connections onto cell j were then set randomly
with a compartment specificity of connections
Sjn

∑

L PrN (LYXL ,1L/2)(znj)/
∑

n Sjn, where Sjn is the surface
area of compartment n of the cell j centered at depth znj and
PrN (...) the probability density function of the distribution
N (LYXL, 1L/2). 1L denotes the thickness of layer L.

All connectivity parameter values (CYX , nsyn, σ
syn
n ,

δ
syn

, σ
syn
δ

,LYXL) are summarized in Table 3. Visual

representations of CYX , nsyn and LYXL are shown in
Figures 4B–D. Figure 4E shows 15 cells in each population
X with corresponding distribution of NX somas across depth
(1z = 50 µm) in Figure 4F. Panel G shows the resulting
distribution of synapses across depth for all combinations of Y
and X (1z = 50 µm).

2.5.8. Computation of Extracellular Potentials Inside

Cortical Column
For ourmulticompartment neuron network we chose to compute
the extracellular potential vertically through the center of the
column, with the most superficial contact at the top of layer 1
(z = 0) to a depth of z = −1500 µm within layer 6. The inter-
contact distance was 1z = 100 µm, and contacts were assumed
to be circular with radius rcontact = 5 µm and surface normal
vectors aligned with the horizontal y-axis. For the electrode
surface averaging we used m = 50 (cf. Equation 8 and Lindén
et al., 2014). For the calculation of extracellular potential inside
the cortical column we assumed a homogeneous, isotropic, linear
and ohmic extracellular conductivity σe = 0.3 S/m.

2.5.9. Computation of ECoG Signal From

Method-of-Images
The extracellular potential on top of cortex (ECoG) was
computed by means of the Method-of-Images (MOI, see section
2.2.2). In the example, the conductivity below the contact was
set as σG = σT = 0.3 S/m, corresponding to the gray-matter
value used above, while the conductivity on top of cortex was
to set to be fully insulating, that is, σT = 0 S/m. This could
correspond to the situation where a grid of ECoG contacts are
embedded in an insulating material (see for example, Castagnola
et al., 2014). We further considered a single circular ECoG disk
electrode with contact radius r = 250µmwith its surface normal
vector perpendicular to the brain surface. The disk electrode was
centered at the vertical population axis and positioned at the
upper boundary of layer 1. For the disk-electrode approximation
(cf. Equation 8) we set m = 500. (Note that the present
MoI implementation requires all transmembrane currents to be
represented as point sources confined within the boundaries of
the middle (cortical) layer.
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TABLE 3 | Summary of connectivity parameters.

Postsynaptic population (Y )

Parameter L4_PC L4_LBC L5_TTPC1 L5_MC

P
re
sy
n
a
p
tic

p
o
p
u
la
tio

n
(X
)

L4_PC CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.076

3.3

1.4

1.35

0.867

0.0

0.058

0.152

0.336

0.454

0.0

0.042

7.9

3.0

1.17

0.763

0.0

0.0

0.0

0.53

0.47

0.0

0.11

4.3

1.7

1.433

0.817

0.0

0.069

0.106

0.105

0.719

0.0

0.034

7.6

2.7

1.521

0.978

0.0

0.0

0.0

0.0

0.73

0.27

L4_LBC CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.063

16.0

6.2

1.006

0.367

0.0

0.0

0.1

0.672

0.228

0.0

0.062

14.0

6.0

1.076

0.395

0.0

0.0

0.0

0.818

0.182

0.0

0.056

17.0

7.2

1.064

0.399

0.0

0.0

0.109

0.328

0.563

0.0

0.027

10.0

3.5

1.677

0.494

0.0

0.0

0.0

0.0

1.0

0.0

L5_TTPC1 CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.011

2.5

0.89

2.374

0.811

0.0

0.02

0.129

0.244

0.608

0.0

0.0069

6.1

2.1

2.227

0.903

0.0

0.0

0.0

0.379

0.621

0.0

0.063

6.2

2.6

1.445

0.653

0.0

0.02

0.078

0.066

0.836

0.0

0.045

9.2

3.1

1.372

0.577

0.0

0.0

0.0

0.0

0.739

0.261

L5_MC CYX
nsyn
σn,syn
δsyn (ms)

σ
δ,syn (ms)

LYXL1
LYXL2
LYXL3
LYXL4
LYXL5
LYXL6

0.04

12.0

3.9

1.91

0.994

0.111

0.13

0.249

0.329

0.18

0.0

0.035

12.0

3.7

1.732

0.663

0.0

0.0

0.0

0.735

0.265

0.0

0.083

14.0

5.6

2.252

1.549

0.136

0.187

0.209

0.124

0.344

0.0

0.038

12.0

3.4

1.341

0.787

0.0

0.0

0.0

0.0

0.926

0.074

2.5.10. Computation of EEG and MEG Signals
The most direct approach for computing EEG and MEG signals
would be to (i) compute the per-neuron current dipole moment,
(ii) compute the contribution to the signals from each neuron,
and (iii) sum these signals to get the total EEG and MEG signals
from the entire network. To reduce the computational demands,
we instead compute the per-population current dipole moment
pX(t) using equation 12. The total current dipole moment is then
obtained by summing over all populations, that is, p =

∑

X pX .
From pX we computed the EEG (surface electric potentials

on the scalp layer) of the four-sphere head model as described
above, and similarly magnetic fields Bp. For the four-sphere head
model we assumed conductivities σs ∈ {0.3, 1.5, 0.015, 0.3} S/m

and radii rs ∈ {79, 80, 85, 90} mm for brain, cerebrospinal
fluid (CSF), skull and scalp, respectively (Nunez and Srinivasan,
2006; Næss et al., 2017). We positioned each population current
dipole pX below the brain-CSF boundary on the vertical z-
axis (thus x = y = 0) at z = r1 + zsoma

X , where zsoma
X

was the average soma depth within each population. Surface
potentials, that is, EEG potentials, and magnetic fields where
computed for polar angles θ ∈ [−π/4,π/4] with angular
resolution 1θ = π/16 as illustrated in Figure 2D (azimuth
angles ϕ = 0), resulting in a contact separation along the arc
of r4π/16 ≈ 18 mm. Different magnetoelectroencephalogram
(MEG) equipment may be sensitive to different components of
the magnetic field (Hämäläinen et al., 1993). We show different
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scalar components of the magnetic field computed on the surface
of the four-sphere head model as described above (in section
2.3.5).

2.5.11. Simulation Details
Simulations were run for a total duration of T = 1, 500 ms
with a simulation step size dt = 0.0625 ms (16 kHz
sampling frequency). The first 500 ms were discarded as startup
transient. All neurons were initialized at a membrane voltage
Vm
init = −77 mV and temperature Tcelsius = 34◦C (affecting

membrane-channel dynamics).

2.6. Technical Details
2.6.1. Code Availability
All source codes and development history of past and present
versions of LFPy are publicly available on GitHub (see
github.com/LFPy/LFPy), using “git” (git-scm.com) for code
provenance tracking. LFPy is released with an open-source
software licence (GPL), which alongside GitHub functionality for
listing issues, integration with automated testing, easy forking,
local development and merges of upstream changes, facilitates
continued, community-based LFPy development.

2.6.2. Requirements
LFPy 2.0 requires Python (continuously tested w. v2.7, v3.4-
3.6), an MPI (message-parsing interface) implementation such
as OpenMPI, NEURON v7.4 or newer compiled with MPI and
bindings for Python, Cython, and the Python packages mpi4py,
numpy, scipy, h5py, csa (github.com/INCF/csa) and NeuroTools
(neuralensemble.org/NeuroTools). In order to run all example
files also matplotlib and Jupyter (jupyter.org) have to be installed,
but prebuilt Python distributions such as Anaconda
(anaconda.com) should provide these common Python packages,
or easy means of installing LFPy dependencies (issuing, for
example, "conda install mpi4py" on the command line). Detailed
instructions for installing dependencies for common operating
systems (MacOS, Linux, Windows) are provided in the online
LFPy documentation (lfpy.readthedocs.io).

2.6.3. Installation
The latest stable LFPy release on the Python Package Index
(pypi.python.org) can be installed by issuing:

$ pip install LFPy --user

whichmay prompt the install of also other missing dependencies.
The command

$ pip install --upgrade --no-deps LFPy --user

may be used to upgrade an already existing installation of
LFPy (without upgrading other dependencies). In order to obtain
all LFPy source codes and corresponding example files, we
recommend users to checkout the LFPy source code on GitHub,
after installing the git version control software:

$ cd <path to repository folder>

$ git clone https://github.com/LFPy/LFPy.git

$ cd LFPy

$ pip install -r requirements --user

$ python setup.py develop --user

More detail is provided on lfpy.readthedocs.io.

2.6.4. Reproducibility
The simulated results and analysis presented here were
made possible using Python 2.7.11 with the Intel(R) MPI
Library v5.1.3, NEURON v7.5 (1472:078b74551227), Cython
v0.23.4, LFPy (github.com/LFPy/LFPy, SHA:0d1509), mpi4py
v2.0.0, numpy v1.10.4, scipy v0.17.0, h5py v2.6.0, parameters
(github.com/NeuralEnsemble/parameters, SHA:v0aaeb), csa
(github.com/INCF/csa, SHA:452a35) and matplotlib v2.1.0
running in parallel using 120-4800 cores on the JURECA cluster
in Jülich, Germany, composed of two 2.5 GHz Intel Xeon
E5-2680 v3 Haswell CPUs per node (2 x 12 cores), running the
CentOS 7 Linux operating system. Each node had at least 128
GB of 2133 MHz DDR4 memory. All software packages were
compiled using the GNU Compiler Collection (GCC) v4.9.3. All
source codes for this study are provided as LFPy example files on
GitHub.

3. RESULTS

3.1. Single-Neuron Activity and
Extracellular Measurements
The first version of LFPy (Lindén et al., 2014) assumed the
model neurons to be embedded in an infinite homogeneous
volume conductor and was most suited to compute extracellular
potentials (spikes, LFPs) inside the brain. One new feature of
LFPy 2.0 compared to the first version of LFPy is that electrical
potentials outside cortex (ECoG, EEG), as well as magnetic fields
both inside and outside cortex (MEG), can be computed. These
new measures are illustrated in Figure 2 for a single synaptically
activated “pyramidal” neuron (composed of soma and dendrite
sections only).

Figure 2A presents a basic LFPy simulation example where
a passive neuron model with simplified morphology receives
a single synaptic input current (inset I). We computed the
extracellular potential in the xz-plane (color image plot),
using the assumption of line sources for each dendritic
compartment, a spherical current source representing the soma,
and homogeneous conductivity (7). The postsynaptic response is
reflected as a somatic depolarization (inset II) and as a deflection
in the extracellular potential in the location r (blue dot, inset III).
The corresponding current dipole moment p(r, t) was computed
using equation 12 and is illustrated by the black arrow. The x-
and z-components (p · x̂, p · ẑ) of the current dipole moment
are illustrated in inset IV, and we note the much larger dipole
moment component in the vertical z-direction compared to the
lateral x-direction. We do not show the y-component of the
current dipole moment as all segments in this simplified neuronal
morphology are located in the xz-plane (hence p · ŷ = 0).

To illustrate the fact that a current dipole potential (Equation
15) gives a good approximation to the extracellular potential
φ far away from the neuron, we compare with results from
using the more comprehensive line-source method (Equation
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6) in Figure 2B: The line-source potential φ is shown inside the
dashed circle of radius r = 500 µm, while the dipole potential
φp is shown outside the circle. The inset shows the dipole
potential corresponding to the colored dots located at a distance
of 750 µm.

In Figure 2C we similarly compute the magnetic field for
radii r > 500 µm using the current dipole moment (Equation
16), and axial currents inside (Equation 18). The axial currents
were computed from per-compartment membrane potentials
as described in section 2.1.2. For both color image plot and the
inset, we show the dominating magnetic field component, that
is, the y-component. As for the electrical potential in Figure 2B,
we see that the predicted magnetic fields match well at the
r = 500 µm interface.

Figure 2D illustrates the layout of scalp-layer measurement
sites on the four-sphere head model described in section 2.3.3.
The numbered points along the outer scalp layer represents
measurement locations for EEG and MEG signals. The single
current dipole moment is positioned beneath the CSF-brain
boundary on the vertical z-axis (see caption for details).
Figure 2E shows the corresponding scalp surface potentials
which is dominated by the z-component of the current dipole
moment (p · ẑ, Figure 2A inset IV). Figure 2F shows the
corresponding dominant azimuthal tangential magnetic field
component (Bp · ϕ̂) computed from the current dipole moment
using equation 16. At the center location (location 5) only the x-
component (p · x̂) contributes to the signal, in the other locations
both the x- and y-components contribute.

3.2. Network Activity and Extracellular
Measurements
The second main new feature of LFPy 2.0 is the possibility to
simulate recurrently connected networks of neurons in parallel.
Our exemple network, shown in Figure 4, demonstrating this
new feature is based on a subset of cortical single-cell models,
synapsemodels and connectivity data fromMarkram et al. (2015)
obtained from The Neocortical Microcircuit Collaboration
(NMC) Portal (Ramaswamy et al., 2015). The implementation is
described in detail in section 2.5.

In addition to supporting simulations of neuronal networks
with simplified or biophysically detailed single-neuron models
in parallel, LFPy 2.0 allows for concurrent calculations of
extracellular measures of network activity. Specifically, the
extracellular potentials at specific positions can be computed at
each time step which avoids the memory-demanding process
of recording transmembrane currents in all compartments for
the duration of the simulation, either to disk or to memory.
In the present example, the current dipole moment was
calculated at every time step, and this amounted to a useful
dimensionality reduction, as only the x, y, z-axis components
of p per population X had to be stored. Assuming serial
execution, then for each neuron population X, the total memory
consumption is then reduced by a factor 3/(NXn

seg) where NX

is the population size and nseg the number of compartments
per neuron (see Figure 4A for values), compared to storing
currents. The per-population current dipole moments were
then used to predict EEG scalp surface potentials and MEG
signals in the corresponding locations. Note that per-population

current dipole moments can be stored, EEG and MEG
signal can be computed with other head models at a later
stage.

3.2.1. Network Spiking Activity
Figure 5 shows the various predicted measurements for
a one-second period of network activity. The spike raster
and corresponding spike-count histogram (Figures 5A,B)
demonstrate the network’s tendency to produce synchronous
irregular patterns of activity with the parameterization
summarized in section 2.5, Tables 1–3 and Figure 4. The per-
neuron spike occurrences in the excitatory populations L4_PC
and L5_TTPC1 were sparser than for the inhibitory populations
L4_LBC and L5_MC. As in the full circuit of Markram et al.
(2015), it is possible that an asynchronous network state
could have been obtained by modifying extracellular [Ca2+]o-
dependent release probabilities Pu for the different synapse
types in the model (Borst, 2010; Markram et al., 2015). A
modification of release probabilities can shift the effective
balance between excitatory and inhibitory synapse activations,
but also incorporation of a larger sample of heterogeneous
cell types in the model could have brought the network into
an asynchronous state, essentially by increasing the amount
of inhibitory feedback. In particular interneuron expression
in neocortex is known to be more heterogeneous and more
dense than demonstrated here (Markram et al., 2004, 2015).
However, as our main focus here is to present new simulation
technology now incorporated in LFPy, we did not pursue this line
of inquiry.

3.2.2. Local Field Potentials (LFPs)
The extracellular potentials as would be measured by a 16-
channel laminar probe positioned through the center axis of
the cylindrical column, are shown in Figure 5C. The computed
extracellular potentials are observed to be of the same order of
magnitude as experimentally measured spontaneous potentials
(≃0.1–1 mV, see Maier et al., 2010; Hagen et al., 2015; Reyes-
Puerta et al., 2016). We further observe that the synchronous
events seen in the spiking activity (Figure 5A) are reflected
as substantial fluctuations in the extracellular potential with
amplitudes close to 0.5 mV.

The signals in neighboring channels are further observed to be
fairly correlated with comparable amplitudes, irrespective of the
presence of somatic compartments at the depths of the contacts
(Figure 4F). At the superficial channels 1–6, deflections in the
electric potential following synchronous network activation are
predominantly negative, while a change in sign occur around
channel 7 (near the boundary between layer 3 and 4). The
strongest deflections of the extracellular potential are typically
observed at contacts within layer 5 (ch. 11–13), that is, at
depths corresponding to the dense branching of basal dendrites
and somas of the large layer 5 pyramidal neuron population.
These deflections reflect that the soma compartments and basal
dendrites are expected to act as dominant sources of the
transmembrane currents setting up the extracellular potential
(Lindén et al., 2010). Adding further to this, layers 4 and 5 also
had the highest overall densities of excitatory and inhibitory
synapses in the present model (Figure 4G). Some spike events

Frontiers in Neuroinformatics | www.frontiersin.org 16 December 2018 | Volume 12 | Article 92



Hagen et al. LFPy 2.0

A B C

E

H

I

F

D

G

FIGURE 5 | Intra- and extracellular measures of activity in example network. (A) Spike raster plot for each population. Each row of dots corresponds to the spike train

of one neuron, color coded by population. (B) Population spike rates computed by summing number of spike events in each population in temporal bins of width

1t = 5 ms. (C) Extracellular potentials as function of depth assuming an infinite volume conductor. (D) Extracellular potential on top of cortex (ECoG) assuming a

discontinuous jump in conductivity between brain (σ = 0.3 S/m) and a non-conducting cover medium (σ = 0 S/m) and electrode surface radius r = 250 µm. The

signal is compared to the channel 1 extracellular potential in (C) (gray line). (E) Component-wise contributions to the total current dipole moment p(t) summed over

population contributions. (F) Illustration of upper half of the four-sphere head model (with conductivities σs ∈ {0.3, 1.5, 0.015, 0.3} S/m and radii

rs ∈ {79, 80, 85, 90} mm for brain, csf, skull and scalp, respectively), dipole location in inner brain sphere and scalp measurement locations. The sites in the xz-plane
numbered 1–9 mark the locations where electric potentials and magnetic fields are computed, each offset by an arc length of r4π/16 ≈ 18 mm. (G) EEG scalp

potentials from multicompartment-neuron network activity with radially oriented populations. (H) Tangential and radial components of the head-surface magnetic field

(MEG) from multicompartment-neuron network activity with radially oriented population. (I) Tangential and radial components of the magnetic field (MEG) on the head

surface, with underlying dipole sources rotated by an angle θ = π/2 around the x-axis (thus with apical dendrites pointing into the plane). (Note that at position 5, the

unit vectors ϕ̂ and θ̂ are defined to be directed in the positive y- and x-directions, respectively).

(extracellular signatures of action potentials) are seen in ch. 15,
produced by one or several neurons located near the virtual
recording device.

Further investigation of the different contributors
(Figures 6A–D) to the extracellular potential (Figure 5C),
revealed that most of the signal variance across depth can be
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explained by transmembrane currents of the two excitatory
populations (Figure 6E). Even if the cell numbers in the two
pyramidal-cell population were similar, population L5_TTPC1
contributed more to the signal than population L4_PC at all
channels except at channels 8-9 (around which the L4_PC somas
are positioned).

3.2.3. ECoG Signal
Figure 5D compares the extracellular potential in the topmost
channel 1 (gray line), predicted under the assumptions of
dendritic line sources, somatic spherical sources and an infinite
homogeneous extracellular medium (cf. Equation 7), with our
ECoG prediction at the same depth (black line). The ECoG signal
was computed assuming a wide contact (rcontact = 250 µm)
aligned horizontally on top of a flat cortex (z = 0). Further,
for the ECoG signal the method-of-images (MoI; cf. Equation
11) was used to account for a conductivity discontinuity at
the cortical surface. Here, zero conductivity (mimicking, for
example, the situation with an insulating mat surrounding the
ECoG contact, Castagnola et al., 2014) was assumed above the
cortical surface, while the gray-matter value of σe = 0.3 S/m was
assumed below.

The amplitude of the ECoG trace was slightly increased
compared to the potential measured by the smaller electrode.
This amplitude increase can be attributed to the fact that a
reduction in conductivity above the boundary would decrease
the value of the denominator of equation 11, and hence increase
the signal amplitude below insulating cortical surfaces (Pettersen
et al., 2006). The expected increased signal amplitude from
this conductivity step is here counter-measured by the larger
diameter of the ECoG contact (rcontact = 250 µm vs. rcontact =
5 µm) resulting in an increased average distance from the
signal source to the contact point averaged over the contact’s
surface. Detailed investigation of each signal normalized to
the same standard deviation (not shown) revealed virtually
indistinguishable features across time and in their power spectra.

3.2.4. Current Dipole Moments
Figure 5E shows the three components of the total current
dipole moment p stemming from the network activity. The
most striking feature is the much larger z-component compared
to the lateral x- and y-components. This large difference in
component size, about two orders for magnitude, reflects (i) that
the vertically aligned pyramidal cell morphologies span across
several layers, and (ii) the near rotational symmetry of the model
populations around the z-axis. Unlike the z-component, the
lateral components largely cancel out. In the same way as for
the extracellular potential, the two pyramidal populations are also
the dominant sources of the total dipole moment (Figures 6F–J).
We also note that the z-component of the population current
dipole moment generally dominates the other components of
the population dipoles, with the exception of the L4_LBC
population. Here all components are tiny, reflecting the stellate
dendritic morphology and the evenly distributed synapses onto
the neurons in this population.

For our model network we note that the maximummagnitude
of the current dipole moment is about 0.1 nAm, which is

about two orders of magnitude smaller than previously estimated
typical “mesoscopic” dipole strengths (Hämäläinen et al., 1993,
p. 418).

3.2.5. EEG Signals
As a demonstration of predicting non-invasive electric
(“EEG”) signals outside of the brain with LFPy 2.0, we
utilized the four-sphere head model (as implemented in class
FourSphereVolumeConductor, see 2) and defined scalp-
layer measurement locations as illustrated in Figure 5F. We
assumed the modeled network to represent a piece of cortical
network positioned at the top of a cortical gyrus, so that the
population axes were in the radial direction of the spherical head
model. The current dipoles (computed above) were positioned
below the interface between the CSF and the brain, more
specifically the layer-4 and layer-5 population dipoles were
positioned at the depth of the center of layer 4 and layer 5,
respectively.

As observed in Figure 5G, the temporal form of the scalp
potentials corresponds directly to the temporal form of the
dominant z-component of the current dipole moment in
Figure 5E. For an infinite volume conductor it follows directly
from 15 that the recorded scalp potential will be proportional
to this dipole moment at recording positions directly (radially)
above the dipole location. Likewise, inspection of the formulas
for the four-sphere head model shows that this is also the case
for the scalp-potential contributions from both the radial (Næss
et al., 2017, Equations 5–6) and tangential (Næss et al., 2017,
Equations 17–18) dipole components (although with different
proportionality constants for the two components).

For the present example network comprising 5,594 neurons
of which 5,077 are pyramidal cells, we observe the magnitudes
of the fluctuating scalp potential directly on top of the dipole
sites to be on the order of 0.1 µV. This is about two orders of
magnitude smaller than the typical size of measured EEG signals
of∼10 µV (Nunez and Srinivasan, 2006, Figure 1.1).

The weakly conducting skull layer (compared to the highly
conductive brain, spinal fluid and scalp layers) results in a spatial
“low-pass filter effect” from volume conduction (Nunez and
Srinivasan, 2006, Ch. 6). This low-pass effect accounts for the
relatively weak attenuation of the EEG signal with lateral distance
from the center position (position 5 in Figure 5F) along the head
surface, as observed in Figure 5G. On the surface of a spherical
volume conductor with homogeneous conductivity inside the
sphere, but otherwise zero conductivity outside the sphere’s
surface (1-sphere head model), the potential from a current
dipole would decay in amplitude at a higher rate compared to
our 4-sphere head-model case with a spherical skull layer with
low conductivity. However, in an infinite homogeneous volume
conductor the decay in electric potential along the putative
sphere’s surface would decay with a lower rate than both the
1-sphere and 4-sphere head models, see Nunez and Srinivasan
(2006, Ch. 6) for a comparison.

3.2.6. MEG Signals
The computed current dipole moments in Figure 5E was also
used to compute MEG signals. Figure 5H shows the computed
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FIGURE 6 | Per-population contributions to the extracellular potential and current dipole moment and corresponding signal variance. (A–D) Contributions to the

extracellular potential from populations X ∈ {L4_PC, L4_LBC, L5_TTPC1, L5_MC} in the network across depth. (E) Extracellular potential variance across depth for

contributions of each population, and for the sum over populations. (F–I) x, y, z-components of the per-population contribution to the summed current dipole moment.

(J) Per-component current dipole moment variance for each population and for summed signals.

magnetic fields for the same set-up providing the EEG signals in
Figure 5G, that is, radially oriented population current dipoles.
In this situation the only sizable magnetic field is directed in the
tangential direction around the vertical z-axis.With our spherical
coordinates this corresponds to the ϕ-direction where the unit
vector ϕ̂ points in counter-clockwise direction. Note also that the
magnetic field is almost zero straight above the dipole (position
5), as here the vectors p and R are near parallel so that the vector
product in equation 16 is very small. We also observe that the
magnetic field is symmetric around the center position (position
5), so that the field at position 6 is always similar to the field at
position 4, and so on.

For EEG signals, equivalent radial dipoles located at the
“crowns” of gyri are generally expected to give the largest signal
contributions (Nunez and Srinivasan, 2006). ForMEG signals, on
the other hand, equivalent current dipoles in brain sulci oriented
tangentially to the head surface is expected to provide the largest

signals (Hämäläinen et al., 1993). In Figure 5I we thus show the
magnetic field with the current dipole moments directed in a
tangential direction (that is, in the y-direction into the paper in
Figure 5F) rather than in the radial direction. In this situation the
largest magnetic field component is in the tangential direction θ̂

(around the y-axis) in position 5. The ϕ̂-component is as expected
negligible, while the radial component is antisymmetric around
position 5, but negligible in position 5 itself.

Typical magnetic fields measured in human MEG are on the
order of 50–500 fT (Hämäläinen et al., 1993), and in Figure 5I

we find that magnetic fields of similar magnitudes (∼100 fT) are
predicted when the current dipole moment from our network is
oriented in parallel to the cortical surface. Note, however, that
in our model set-up, the dipole is only 11 mm away from the
closest MEG sensor at position 5, while in human recordings the
minimum distance between tangential dipoles in brain sulci and
the MEG sensors may be several centimeters (Hämäläinen et al.,
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1993). As the magnetic field from a current dipole decays as the
square of the distance (see Equation 16), our model likely gives
an overestimate of the contribution to the MEG signal from our
model network when applied to a human setting.

In Figure 5H we also observe sizable magnetic fields (∼20–
40 fT) generated by radially-oriented current dipoles. However,
the generated fields are in the angular φ-direction where the
fields have opposite directions on each side of the central position
(position 5). Thus, in a setting with several such neighbouring
dipoles (generated by neighbouring populations) on cortical
gyri, there will be large cancellations effects. Despite the larger
distances from the MEG sensors, tangentially oriented dipoles
in sulci is therefore expected to dominate the measured MEG in
human settings (Hämäläinen et al., 1993).

Animations of EEG surface potentials (color coded) and
magnetic field (arrows) of the radially and tangentially oriented
current dipole moments are available as Supplementary Video 1

(radial_dipole.mp4) and Supplementary Video 2

(tangential_dipole.mp4), respectively. For the case with a
tangential dipole the characteristic “butterfly”-like pattern
often seen in MEG recordings is observed (see e.g., Figure 5 in
Hämäläinen et al., 1993).

3.3. LFPy Parallel Network Performance
In order to assess the performance figures of multicompartment-
neuron network implementations in LFPy on a high-
performance computing (HPC) facility, we performed a
series of simulations with two-population versions of the
network presented above. These modified networks consisted
only of the layer-5 m-types L5_TTPC1 and L5_MC.Wemodified
cell counts per population NX and connection probabilities CYX

depending on chosen network population sizes NX as noted in
the text below. All other simulation parameters were kept fixed
as given in Tables 1–3.

First, we compared set-up times, creation times of populations
and connections, and simulation times for instantiations of
similarly sized reference networks (N(1)

L5_TTPC1 = 2400,N(1)
L5_MC =

480) for different number of MPI processes NMPI (Figure 7A).
NMPI was set identical to the number of available physical cores
(no multi-threading). A seed value for the random number
generator for each network instantiation was varied to obtain
an N = 3 sample size for each tested value of NMPI. Both
with predictions of extracellular potentials and current dipole
moments (continuous lines) and without (dotted lines), the
biggest fraction of the total computational time was spent
during the main simulation part (red curves), that is, where the
simulation is advanced time step by time step. The additional
computational cost of computing extracellular potentials and
current dipole moments was less than half compared to just
simulating the spiking activity in the recurrently connected
network. The times spent creating all recurrent connections and
synapses (green curves) were between a factor 16 and 32 shorter
than the simulation time.

The creation of connections and simulation times scaled
strongly with NMPI. An optimal, or strong, log-log-linear scaling
curve can be represented as a function t(NMPI) ∝ N−1

MPI, in
particular for NMPI ≤ 480, as these NMPI-values result in an

even load balance across parallel processes with the presently
used round-robin distribution of cells across MPI processes (see
section A2 inAppendix for details). Each parallel process has the
same number of cells of each m-type, segments (n

seg
j ) and state

variables corresponding to different active ion-channel models.
Only variations in per-cell in-degrees (synapse counts) across
different processes and simulations occurred due to the random
network connectivity model, but even with different random
seeds in each trial the trial variability was small (error bars
denoting standard deviations are hardly seen).

The creation of populations (orange curves) however showed
worse scaling behaviour for NMPI > 480, in part due to uneven
load balance. Another possible reason for reduced performance
was the increased strain on the file system as all processes
simultaneously access the same single-neuron source files upon
instantiating individual NetworkCell objects. This might have
been avoided by creating local copies of the necessary files on
each compute node, but we did not pursue this here as the overall
time spent instantiating neuron populations was only a fraction
of the observed simulation times. The loading of parameters
and other needed data (blue curves) was, as expected, fairly
constant for different values of NMPI as we did not parallelize the
corresponding code.

As a second scaling-performance test, we ran series of
simulations with NMPI = 480 but varied the total network
size by a factor b ∈ {0.2, 0.25, 0.5, 1, 2, 4} while keeping the
expected number of connections KYX (and thus the number of
synapses) between pre- and post-synaptic populations X and Y
fixed (Figure 7B). The expected number of randomly created
(binomially distributed) connections KYX was calculated using
the relation (Potjans and Diesmann, 2014):

CYX = 1−

(

1−
1

NXNY

)KYX

, (20)

with reference network size (N(1)
L5_TTPC1 = 2400,N(1)

L5_MC = 480)
and connection probabilities CYX as given in Table 3. Similar to
the test presented in Figure 5A, most of the total computation
time was spent during the main simulation part (red curves),
followed by creation of connections (green curves) and loading
of different parameters (blue curves).

In contrast to the previous case, the creation of cells in
the network displayed strong scaling with network size (which
implies a relationship t(r) ∝ b). The supra-optimal scaling
seen for connections can be explained by the creation of similar
connection counts across different factors b. (Note that supra-
optimal scaling implies that t(r) ∝ bq with exponent q ∈

(0, 1), while sub-optimal scaling implies that q > 1.) For the
tested factors b = 0.25 and b = 0.5 we expected sub-optimal
scaling for creating populations and connections, as well as for
simulation duration. These b-values gave different cell counts
and thus inhomogeneous load-balances across MPI processes,
which was unavoidable with the presently used round-robin
parallelization scheme. A jump in performance was seen for b =

0.2 which resulted in only one multicompartment neuron and
corresponding calculations on each MPI process.
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FIGURE 7 | Parallel performance with networks in LFPy. (A) Initialization of parameters (par.), population create (pop.), connectivity build (conn.) and main simulation

time (sim.) as functions of number of physical CPU cores/MPI processes (NMPI). The reference network population sizes N(1)
X for X ∈ {L5_TTPC1, L5_MC} are given in

the panel title. The network was otherwise constructed with synapse, stimulus and connectivity parameters for each possible connection as given in Tables 1–3.

Times shown with continuous lines were obtained for simulations that included calculations of extracellular potentials and current dipole moments as in Figures 2–6

(w. E.P.), while times shown with dotted lines were obtained for simulations with no such signal predictions (w.o. E.P.). Each data value is shown as the mean and

standard deviation of times obtained from N = 3 network realizations instantiated with different random seeds. (B) Initialization of parameters, population create,

connectivity build and main simulation time as functions of network size relative to the reference network population sizes N(1)
X for X ∈ {L5_TTPC1, L5_MC} as given in

the panel title. The superset “(1)” denotes a relative network size b = 1. Simulations were run using a fixed MPI process count NMPI and connection probabilities C(r)
YX

were recomputed for different values of b, such that the expected total number of connections K(1)
YX was constant between each simulation (using 20). The set-up was

otherwise identical to the set-up in (A). (C) Same as (B), but with a fixed expected per-cell synapse in-degree k(r)YX ≡ rK(1)
YX/N(1)

Y across different relative network sizes.

As a third scaling-performance test we fixed the mean per-
cell synapse in-degree kYX (count of incoming connections per
cell) and reran network simulations for different network sizes
(Figure 7C). The total number of connections was thus set
to bK

(1)
YX and corresponding connection probabilities CYX were

recomputed accordingly using equation 20. As expected, this
modification mostly affected the time spent creating connections
(green curve), and resulted in a near-linear performance curve
for scaling factors b ≥ 1.

As a final performance assessment we repeated the experiment
described above with upscaled networks and increased MPI pool
sizes. In Figure 8A we set the reference network population sizes
N

(1)
L5_TTPC1 = 12, 000 and N

(1)
L5_MC = 2, 400 and varied NMPI

between 600 and 4,800. LFPy’s parallel performance was strong
also here, and Figure 8A consequently shows trends similar
to the findings for the smaller network. Here, the time spent
creating populations (orange curves) was reasonably invariant
for different NMPI values, and increased overall by some factor
2–4 compared to the previous case. The parameter loading times
were similar, while the time spent connecting the network was
increased by a factor∼ 4, but the simulation times increased only
by a factor . 2. The differences in connection and simulation
times seen here, can be explained by the fact that the typical
synapse in-degrees were not preserved. Instead, the synapse in-
degrees were increased for the larger network, as we used the
connection probability values defined in Table 3.

In Figures 8B,Cwe setNMPI = 2, 400, and varied the network
population sizes relative to the reference network population
sizes in Figure 8A by the factor b ∈ {0.2, 0.25, 0.5, 1, 2, 4}. Again,
the performance figures were in qualitative agreement with the
previous results for the smaller network and smaller MPI pool

sizes. The population creation times and simulation times with
and without signal predictions displayed strong scaling with
relative network size. The time spent loading parameters was
increased by a small amount (by a factor . 2), which likely
reflected the increased strain on the file and communication
system on the cluster, due to larger MPI pool sizes. The times
spent creating the populations were also here near ideally
dependent on NMPI in both Figures 8B,C. As the total number
of connections (and synapses) were conserved across network
population sizes in Figure 8B, the connection times varied
only by a factor two from the smallest to the largest network.
In Figure 8C, where the number of connections per neuron
was kept approximately constant, a doubling in network size
resulted in a doubling in connection times. The larger network
simulations required approximately twice the amount of time,
compared to the smaller network simulations in Figure 7. In
Figure 8C, simulations with LFP predictions consistently failed
for the largest network size (b = 4), most likely due to lack
of available memory to create arrays for storing current dipole
moments and extracellular potentials with the increased count of
instantiated connections.

4. DISCUSSION

In the present paper we have presented LFPy 2.0, a majorly
revised version of the LFPy Python package with several added
features compared to its initial release (Lindén et al., 2014).

4.1. New Features in LFPy 2.0
The first version of LFPy only allowed for the computation
of electrical measurements from activity in single neurons or,
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FIGURE 8 | Parallel performance with networks in LFPy II. (A) Similar to Figure 7A, but with network population sizes upscaled by a factor 5, and a corresponding

increase in parallel job sizes. (B,C) Similar to Figures 7B,C, but with network population sizes and parallel job sizes increased by a factor 5.

by trivial parallellization, populations of neurons only receiving
feedforward synaptic input. LFPy 2.0 allows for simulations of
recurrently connected neurons as well, for example the types of
neuronal networks in cortex. Further, the first version of LFPy
was tailored to compute extracellular potentials (spikes, LFPs)
inside the brain. Here it was assumed that all active neurons were
embedded in an infinite homogeneous (i.e., same extracellular
conductivity everywhere) and isotropic (i.e., same extracellular
conductivity in all directions) volume conductor (section 2.2.1).
LFPy 2.0 includes several new features and measures of neural
activity:

• Stepwise discontinuities in the extracellular conductivity,
such as at the cortical surface, can be included by
means of the Method-of-Images (section 2.2.2) to compute
potentials immediately below or on the cortical surface (i.e.,
electrocorticographic recordings; ECoG). This approach can
also be applied in the computation of potentials recorded by
microelectrode arrays (MEAs) (Ness et al., 2015).

• Cylindrical anisotropic conductivity (section 2.2.3) can
be included in the computation of spikes and LFPs,
reflecting for example that in cortex and hippocampus the
conductivity might be larger in the depth direction (along
the apical pyramidal-neuron dendrites) than in the lateral
directions (Goto et al., 2010).

• Current dipole moments from single neurons and populations
of neurons are computed (section 2.3.1) for later use in
calculation of signals of systems-level electrical and magnetic
recordings (EEG, ECoG, MEG), also for more detailed head
models than what is considered presently in LFPy 2.0 (as
described in next two items).

• Electrical potentials at the scalp (electroencephalographic
recordings; EEG) are computed from the current dipole
moments and spherical head models, in particular the four-
sphere head model (Nunez and Srinivasan, 2006; Næss et al.,
2017), cf. section 2.3.3. This four-sphere head also predicts
ECoG signals (section 2.3.4).

• Magnetic fields outside the head (magnetoencephalographic
recordings; MEG) can be computed from the current dipole
moments assuming a spherically symmetric head model
(section 2.3.5). Likewise, magnetic field inside the brain can be
computed directly from neuronal axial currents (section 2.4).

LFPy 2.0 also includes much more rigorous code testing
with more than 270 unit tests, automated build testing with
TravisCI (travis-ci.org/LFPy/LFPy) with different versions of
Python (2.7, 3.4-3.6), test coverage of code using coveralls
(coveralls.io/github/LFPy/LFPy), automated documentation
builds using Read the Docs (lfpy.readthedocs.io), and several
updated example files, as well as new examples demonstrating
different scientific cases using the new functionalities. The
software runs on a wide variety of operating systems, including
Linux, Mac OS and Windows.

4.2. Example Applications
To illustrate some of the new measurement modalities
incorporated in LFPy 2.0 we showed in Figure 2 the LFP
and EEG signature of a simple pyramidal-like neuron receiving
a single excitatory synaptic input on its apical dendrite. In
this example the extracellular medium was assumed to be
homogeneous, and a characteristic dipolar profile was observed
in the extracellular potential (Figure 2B). The accuracy of
the far-field electrical dipole approximation (Equation 15) for
distances of a few millimeters or more away from the neuronal
source, was also demonstrated. The corresponding magnetic
field set up by the neuron (Figure 2C) was quite distinct from the
electric potential pattern, but also here far-field magnetic dipole
approximation (Equation 16) was observed to be accurate some
distance away.

To illustrate the implementation of networks in LFPy 2.0
we show in section A2 (Appendix) a code example for a small
network using simplified ball-and-stick neurons connected by
conductance-based synapses. Our main example applications
were on a network of about 5,500 morphologically and
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biophysically detailed neuron models from the reconstructed
somatosensory cortex column of Markram et al. (2015),
connected using probabilistic synapse models with short-term
plasticity. For this example, Figure 5 provided results for a one-
second epoch of network activity where spikes (Figures 5A,B),
LFPs inside the cortical model column (Figure 5C), the ECoG
signal recorded at cortical surface ( Figure 5D), and the
net current dipole moment (Figure 5E) were depicted. The
computed current dipole moment was further used to compute
the corresponding EEG signal with the four-sphere head model
for the situation where the model network was placed on top
of a cortical gyrus where the apical dendrites of the pyramidal
neurons, and thus the current dipole moment, is pointing
in the radial direction (Figure 5G). The same current dipole
moment was also used to compute the MEG signal, assuming a
spherically-symmetric head volume-conductor model, both for
the case when the net current dipole is directed perpendicular
(Figure 5H) and parallel (Figure 5I) to the scalp. The latter
situation could correspond to the case where the model network
is positioned in a cortical sulcus.

While the example network was set up mainly to demonstrate
the new features in LFPy 2.0, some of the example results
are notable. As expected the two excitatory pyramidal cell
populations in the network provided almost all of the recorded
LFP signal (except in the deep layers where the layer-5 inhibitory
Martinotti-cell population also gave a sizable contribution),
cf. Figure 6E. Likewise, the two excitatory pyramidal cell
populations also gave the dominant contributions to the net
current dipole moment providing the EEG and MEG signals
(Figure 6J).

For the present example network comprising about 5000
pyramidal neurons, we observed the maximummagnitude of the
EEG signal to be about 0.1 µV (Figure 5G), that is, about two
orders of magnitude smaller than the typical size of measured
EEG signals of∼10µV (Nunez and Srinivasan, 2006, Figure 1.1).
Thus our example model network appears too small, that is,
it incorporates too few pyramidal neurons, to account for the
typical experimentally recorded EEG signal amplitudes.

The maximummagnetic field computed at the cortical surface
was seen in Figures 5H,I to be about 100 fT, that is, similar in
magnitude to typical magnetic fields measured by MEG sensors
in a human setting (∼50–500 fT, Hämäläinen et al., 1993).
However, our model predictions assumed the minimum distance
between the current dipoles and the magnetic-field recording
device to be only about a centimeter, likely much smaller than
the typical minimal distance between the dominant tangential
dipoles in cortical sulci and the human MEG sensors. Since the
magnetic field around a current dipole decays as the square of
the distance, our modeling likely substantially overestimates the
magnetic field that would produced by the computed current
dipoles in a human setting.

4.3. Use of LFPy
4.3.1. Comparison of Candidate Models With

Experiments
An obvious application of LFPy is, following the tradition of
physics, to (i) compute predictions of the various available

measures of neural activity from different candidate models
and (ii) identify which model, or which class of models, is in
best agreement with the experimental data. While not always
possible, the approach is preferably pursued on multimodal data
measured simultaneously (for example simultaneous recordings
of spikes, LFP and ECoG). The multi-objective comparison of
experimental data with candidate models is a subject on its own,
and will not be discussed here (but see, for example, Druckmann
et al., 2007).

4.3.2. Validation of Data Analysis Methods
Neuroscience relies on data analysis, and data analysis methods
should be validated (Denker et al., 2012). An important
application of LFPy could be to provide model-based ground-
truth benchmarking data for such validation. This approach has
already been used with biophysically detailed neuron models
to test methods for spike sorting (Einevoll et al., 2012; Hagen
et al., 2015; Lee et al., 2017), neuron classification (Buccino
et al., 2017), estimation of firing rates from multi-unit activity
(MUA) (Pettersen et al., 2008), current-source density (CSD)
analysis (Pettersen et al., 2008; Łęski et al., 2011; Ness et al.,
2015), independent component analysis (ICA) (Głąbska et al.,
2014) and laminar population analysis (LPA) (Głąbska et al.,
2016). Other analysis methods to consider are for example EEG
and MEG source localization methods, for example as provided
by open-source projects like MNE (martinos.org/mne, Gramfort
et al., 2013, 2014), BrainStorm (neuroimage.usc.edu/brainstorm,
Tadel et al., 2011), EEGLAB (sccn.ucsd.edu/eeglab, Delorme
and Makeig, 2004), Fieldtrip (fieldtriptoolbox.org, Oostenveld
et al., 2011), nutmeg (nutmeg.berkeley.edu/, Dalal et al., 2004)
and SPM (fil.ion.ucl.ac.uk/spm) where LFPy 2.0 can be used to
generate benchmarking data with known “ground truth.”

Likewise, LFPy could be used to aid in the interpretation
of various statistical measures of electrophysiological activity
such as spike-triggered LFP or mutual information (Einevoll
et al., 2013). The interpretation of these measures in terms of
the underlying neural network activity is a priori not trivial,
but intuition and understanding can be gained by LFPy model
investigations where simulation results can be compared with
neural activity directly. An example of this was given in Hagen
et al. (2016). There the spike-triggered LFP as measured in the
model simulation was compared with other ways of accounting
for spike-LFP relationships with a simpler physical explanation,
that is, the LFP signature following activation of a presynaptic
neural population.

It should be noted that the LFPy network model does not
necessarily have to be finely tuned to a particular experimental
system in order for it to be suitable for validation of data analysis
methods: Methods claimed to have fairly general applicability
should also be applicable to biologically plausible example
network models.

4.3.3. Testing of Simplified Modeling Schemes
LFPy now allows for the concurrent simulation of intracellular
(membrane potential) and extracellular signals (spikes, MUA,
LFP, EEG, MEG) for recurrent networks of biophysically
and morphologically detailed neuron models. Such network
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models are computationally demanding to run (Markram et al.,
2015), in particular when extracellular signals are computed
simultaneously (Reimann et al., 2013). A computationally less
demanding alternative is a hybrid LFP scheme where the network
dynamics, that is, spikes, are modeled with simple point-neuron
models such as the integrate-and fire model, and the stored
spikes are played back in a second computational step computing
the extracellular potentials using multicompartment neuron
models (Mazzoni et al., 2015; Hagen et al., 2016).

This scheme requires that salient features of spiking activity
of networks of detailed multicompartment neuron models
can be accurately captured by point-neuron network models.
This was for example demonstrated by Rössert et al. (2016)
who reproduced key network behaviour of a reconstructed
somatosensory column (Markram et al., 2015) by systematic
mapping of synaptic input to somatic responses in generalized
leaky integrate-and-fire neurons. Likewise, the accuracy of the
second step in the hybrid scheme where the extracellular
potential is computed, can be systematically tested by comparing
resulting predicted extracellular potential with the ground-
truth potentials provided by LFPy. The same approach can
also be applied to test other simplified schemes for computing
extracellular signals.

4.4. Possible Refinements of Measurement
Models in LFPy
4.4.1. Frequency-Dependence of Extracellular

Conductivity
The present forward-modeling schemes for electrical potentials
assume the extracellular conductivities σe to be independent
of frequency. If such a frequency dependence is found and
described, it can in principle be straightforwardly incorporated
by considering each frequency (Fourier) component of recorded
signal independently. This was, for example, pursued in
Miceli et al. (2017) where each frequency component of
the spikes and LFP signals were computed independently
(i.e., each frequency component had a specific value of σe
and a corresponding phase shift required by the Kramers-
Kronig relations to preserve causality) and eventually
summed to provide the full electric potential. However,
on balance the experimental evidence points to at most a
weak frequency dependence of σe with only minor putative
effects on the recorded spikes and LFPs (Miceli et al.,
2017). Therefore, the present approximation in LFPy 2.0
to assume a frequency-independent conductivity σe, seems
warranted.

4.4.2. Modeling of ECoG Signals
LFPy 2.0 provides two different methods for computing ECoG
signals, that is, signals at the cortical surface: the method-
of-images (MoI) section 2.2.2 and the four-sphere model
section 2.3.4 which both have their pros and cons. The
MoI method assumes a planar cortical interface and that
the media above this interface can be described electrically
by means of a single isotropic electrical conductivity. The
four-sphere model assumes a spherical cortical surface and
uses the far-field dipole approximation which requires the

dipolar sources to be sufficiently far away from the recording
contacts. With the present use of current dipole moments
representing entire neuron populations, this approximation
is challenged by the relatively short distance between in
particular the most superficial populations and the cortical
surface (Næss, 2015). A future project is to systematically
explore the accuracy of these two methods for ECoG modeling,
for example by comparing their predictions for different
situations.

The present forward modeling of electrical potentials are
based on stylized spatial (planar/spherical geometries, step-
wise varying conductivities) and directional (isotropy/cylindrical
anisotropy) variations. More complicated models for the
variation of the extracellular conductivity can be accounted
for by means of finite-element modeling (FEM, Logg et al.,
2012; Lempka and McIntyre, 2013; Ness et al., 2015; Næss
et al., 2017) for which the “lead field,” that is, the contribution
from transmembrane currents or dipole moments to electric
signals, always can be computed (Malmivuo and Plonsey,
1995). FEM could, for example, be used to explore in detail
how the recording device affects the recorded ECoG signal
when a grid of ECoG contacts are embedded in an insulating
material (see for example, Castagnola et al. (2014)), in analogy
to the study of multielectrode arrays (MEAs) in Ness et al.
(2015).

4.4.3. More Complicated Head Models
The current dipole moments computed by LFPy can also be
used to compute EEG and MEG signals based on geometrically
detailed head models measured by MRI (Bangera et al., 2010;
DeMunck et al., 2012; Vorwerk et al., 2014; Huang et al., 2016).
Note, however, that geometrically detailed head models do not
automatically transfer to electrically detailed head models, and
it is thus not always clear how much accuracy is gained by
using such models rather than the simpler head models currently
implemented in LFPy (see discussion in Nunez and Srinivasan,
2006, Ch. 6).

4.5. Possible Improvements of LFPy Code
While we here demonstrated a relatively strong scaling of parallel
network implementations in LFPy, the code itself could be
further optimized for improving overall simulation speeds and
reduced memory consumption allowing for larger networks for
any given MPI pool size.

One common way of improving efficiency of Python
applications is rewriting “slow” code to use Cython (C-extensions
for Python, cython.org, Smith, 2015). The current LFPy version
uses Cython to a limited extent, but remaining code bottlenecks
could be identified and addressed accordingly. One potential
problem with efficient porting of parts of LFPy’s Python code to
Cython is repeated calls to NEURON’s Python interface, which
from a performance point of view should be avoided.

One known bottleneck with parallel implementations of
multicompartment neuron networks is uneven load balance,
resulting from the fact that individual neurons with very uneven
numbers of compartments may be assigned to the different MPI
processes. Uneven load balance could potentially be addressed
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by incorporating the multi-split method described in Hines et al.
(2008), as it appears compatible with the presently used CVode.
use_fast_imem() method (available since NEURON v7.4).
LFPy could then be updated accordingly.

Even without the NEURON multi-split method, distribution
of cells among MPI processes using a round-robin scheme
could, however, be optimized to level out large differences
in compartment counts (and corresponding numbers of state
variables). Memory consumption could also be addressed by
choosing more efficient memory structures or generators, for
example, for connectivity management, and by avoiding in-
memory storage of output data wherever possible. File-based I/O
operations during ongoing simulations may, however, come at
the expense of increased simulation times.

In terms of improved support for simulator-independent
(agnostic) model description languages for neuronal models such
as NeuroML (Gleeson et al., 2010; Cannon et al., 2014) or
NESTML (Plotnikov et al., 2016), LFPy’s TemplateCell and
NetworkCell classes already now support loading of active
and passive single-neuron model files translated to NEURON’s
HOC and NMODL languages from NeuroML and NeuroML2
(now in development). A growing number of such single-neuron
models is becoming available through, for example the Open
Source Brain initiative (opensourcebrain.org), which can readily
be used in order to construct new network models. While
certainly doable, LFPy is at present not set up for automatic
loading of entire neuron networks specified in NeuroML. Also,
single-cell and network models specified using LFPy could,
in principle, be possible to translate into NeuroML as well,
which would allow for executing such models using for example
NetPyne (netpyne.org) or LEMS (Cannon et al., 2014).

4.6. Other Measurement Modalities in LFPy
The present version of LFPy only models recording of electric
and magnetic brain signals. Optical recording methods are
now frequently used in neurophysiology, however, and forward-
modeling of such signals would be a natural extension of the
present functionality. In voltage-sensitive dye imaging (VSDi),
the recorded signals reflects a weighted average of the membrane
potentials, and such averages can be readily computed since the
membrane voltages in all neuronal compartments are computed
during a network simulation simulation (Chemla and Chavane,
2010a,b). This must then be combined with proper forward-
modeling of the propagation of the light through the brain
tissue (Tian et al., 2011; Abdellah et al., 2015, 2017).

Calcium imaging has become a wide-spread method for
measuring neural dynamics (Grienberger and Konnerth, 2012).
With the use of neuron models that explicitly includes dynamic
modelling of the intracellular calcium concentrations (for
example, Hay et al., 2011; Almog and Korngreen, 2014) such
signals could be directly modeled as well.

4.7. Alternatives to LFPy
For the purpose of computing extracellular potentials under
the assumption of homogeneous extracellular conductivity
and networks of multicompartment neuron models, some
alternatives to LFPy 2.0 exist. Genesis (genesis-sim.org,

Bower and Beeman, 1998) incorporates the simple point-
source formalism (Equation 4), while the MATLAB
tool Vertex (vertexsimulator.org, Tomsett et al., 2015)
allows for computing extracellular potentials but not for
multicompartment neuron models with arbitrary levels of
detail. The MOOSE simulator (https://moose.ncbs.res.in,
Ray and Bhalla, 2008) do not appear to natively incorporate
electrostatic forward models. An extension to NEURON
named LFPsim (github.com/compneuro/LFPsim, Parasuram
et al., 2016) supports single neurons and networks but
relies on the NEURON GUI. This may allow for simple
evaluation of LFPs generated by small networks, but
hampers application to large-scale networks running in
parallel.

The Python and NEURON based tools NetPyne (netpyne.org)
and BioNet (github.com/AllenInstitute/bmtk, Gratiy et al.
(2018)), part of the Allen Brain Institute’s Brain Modeling
Toolkit, do, however, support biophysically detailed networks
of neurons running in parallel with predictions of extracellular
potentials, but presently without the wider range of electric and
magnetic forward models now provided in LFPy 2.0. Similar
to LFPy 2.0, high-level functionality to specify networks are
provided to simplify the generation of networks.

Finally, the recent ‘Human Neocortical Neurosolver’
(hnn.brown.edu) can compute LFP, MEG and EEG signals,
but has a focus on signals generated by specific generic
cortical network topologies, namely using neurons with
few compartments organized in two “cortical layers” 2/3
and 5. In contrast, LFPy 2.0 supports defining networks
with an arbitrary number of layers and biophysical
detail.

4.8. Outlook
While information in the brain might largely be represented
by spike trains, we believe that tools such as LFPy will be
instrumental in testing candidate network models aiming to
account for this information processing. In the foreseeable future,
experimental data against which candidate models can be tested
will be a limiting factor. It is thus key that such candidate
models can be tested not only against spike trains, but also other
measurement modalities.

This updated version of LFPy makes a major step toward
being a true multi-scale simulator of neural circuits, allowing
for flexible incorporation of highly detailed neuron models at
the micrometer scale, yet able to also predict recorded signals
such as EEG and MEG at the systems-level scale. The largest
network considered here had 57,600 neurons. With the present
code, not optimized for numerical efficiency, the simulation of
1.5 s of biological time on this network required about 1,600
CPU hours across 2,400 MPI processes. With optimized code,
we expect that much larger networks can soon be addressed
routinely as ever more powerful computers gradually become
available. The software is also publicly available on GitHub and
retains the open-source software license of its initial release, and
our hope is that continued development remains driven by needs
and contributions of individuals and groups of researchers.
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APPENDIX

A1. Algorithms

Algorithm 1 Axial current calculations in LFPy 2.0

1: children = dict. of child indices n of each parent section sec
2: connections = dict. of relative location χ ∈ [0, 1] where children connect onto parent section
3: Ri = list of axial resistances of child segments to corresponding parent nodes
4: Vm = list of membrane potentials at midpoints of each segment
5: Initialize length 2(nseg − 1) lists Ia, d and r indexed bym ∈ {0, 1, . . . , 2(nseg − 1)− 1}
6: set current and segment indicesm = n = 0
7: set root_sec = True

8: for sec in neuron morphology do
9: if sec has parent section then

10: set parent segment index f from children and connections
11: set init_seg = True and root_sec = False

12: if count(children[sec])>1 then

13: set branch = True

14: set χ =connections[sec]

15: for seg in sec do

16: if root_sec then

17: set n = 1 and f = 0
18: set init_seg = False and root_sec = False

19: continue

20: set Ri
fn
= Ri[n]

21: set Vm
f

= Vm[f ]
22: set Vm

n = Vm[n]
23: if not init_seg or 0 < χ < 1 then
24: compute Ia[m] = (Vm

f
− Vm

n )/Ri
fn

(see Figure 3B,C,E)
25: else

26: set Rin = Ri[n] (axial resistance from mid to start point of segment n)
27: set Ri

f
(axial resistance from end to mid point of parent segment f )

28: if not branch then

29: compute Ia[m] = (Vm
f
− Vm

n )/(Ri
f
+ Rin) (see Figure 3D)

30: else

31: compute branch point potential

Vm
× =

∑

h V
m
h

/Ri
h

∑

h 1/R
i
h

for h ∈ {f , n1, n2, . . . nchildren}

32: compute Ia[m] = (Vm
× − Vm

n )/Rin (see Figure 3F)

33: set Ia[m+ 1] = Ia[m]
34: compute d[m] by subtracting the midpoint of f from the start point of n
35: compute d[m+ 1] by subtracting the start point of n from the midpoint of n
36: compute r[m] by subtracting 0.5 · d[m] from the start point of n
37: compute r[m+ 1] by subtracting 0.5 · d[m+ 1] from the midpoint of n
38: set f = n, n = n+ 1 andm = m+ 2
39: set branch = False and init_seg = False

A2. New Classes and Network Use-Case Implementation
The first release of LFPy described in Lindén et al. (2014) included a set of Python class definitions for instantiating single-cell
models (Cell, TemplateCell) and corresponding instrumentation of the models with synapse point processes attached to the
cell (Synapse), patch-clamp electrodes (StimIntElectrode) and extracellular recording electrodes (RecExtElectrode).
Simulations with multiple simultaneous cell-object instances were at the time not supported. Class TemplateCell supported the
use of template specifications, a requirement for networks in NEURON, but was primarily written to support source codes of ‘network-
ready’ single-cell models such as the Hay et al. (2011) models of layer-5 pyramidal neurons available from, for example, ModelDB
(senselab.med.yale.edu/modeldb, McDougal et al. (2017)).
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The “one cell at a time” approachmay seem limited, in particular when considering ongoing network interactions, but knowing that
forward-modeling of extracellular potentials can be decoupled from the network simulation, users could always set up simulations of
each individual cell, play back synapse activation times as occurring in the connected network, and sum up the single-cell contributions
to the extracellular potential. Thus, the calculation of extracellular potentials can even be dealt with in an “embarrassingly” parallel
manner (Foster, 2007; Hagen et al., 2016). These simplifying steps are not possible if the extracellular potential itself affects the cellular
dynamics, that is, if mutual interactions between cellular compartments belonging to the same or different cells occur through the
extracellular potential, so-called ephaptic interactions (Anastassiou et al., 2011; Goldwyn and Rinzel, 2016; Tveito et al., 2017).

For the present LFPy 2.0 release, we added support for simulations of recurrently connected multicompartment models with
concurrent calculations of extracellular potentials and current dipole moments. As described above, the current dipole moment is
used for predictions of distal electric potentials (for example scalp surface potentials as in EEG measurements) and magnetic fields
(as in MEG measurements). For our example use case, we considered a recurrent network of four populations of multicompartment
neuron models. We added a new set of generic class definitions in LFPy to represent the network, its populations and neurons, as well
as classes representing different volume-conductor models and measurement modalities as summarized next.

Cells: Each individual neuron in an LFPy network exists as an instantiation of class NetworkCell. As this class definition uses
class inheritance from the old TemplateCell and in turn Cell classes, it retains all common methods and attributes from its
parent classes. The NetworkCell can therefore be instantiated in a similar manner as its parent class (plotted output not shown):

#!/usr/bin/env python

"""example_network_cell.py"""

# import modules:

from matplotlib.pyplot import subplot, plot

from LFPy import NetworkCell, StimIntElectrode

# class NetworkCell parameters:

cellParameters = dict(

morphology='BallAndStick.hoc',

templatefile='BallAndStickTemplate.hoc',

templatename='BallAndStickTemplate',

templateargs=None,

v_init=-65.

)

# create cell:

cell = NetworkCell(

tstart=0., tstop=100.,

**cellParameters

)

# create stimulus device:

iclamp = StimIntElectrode(

cell=cell,

idx=0,

pptype='IClamp',

amp=0.5,

dur=80.,

delay=10.,

record_current=True

)

# run simulation:

cell.simulate()

# plot cell response:

subplot(2, 1, 1)

plot(cell.tvec, iclamp.i)

subplot(2, 1, 2)

plot(cell.tvec, cell.somav)

The morphology and template files referred to above are defined in NEURON “hoc” language files. A “ball and stick” style morphology
file with active soma (Hodgkin & Huxley Na+, K+ and leak channels) and passive dendrite sections and corresponding template file
was written as:

/* -------------------------------

BallAndStick.hoc

------------------------------- */

// Create sections:

create soma[1]

create apic[1]
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// Add 3D information:

soma[0] {

pt3dadd(0, 0, -15, 30)

pt3dadd(0, 0, 15, 30)

}

apic[0] {

pt3dadd(0, 0, 15, 3)

pt3dadd(0, 0, 1015, 3)

}

// Connect section end points:

connect apic[0](0), soma[0](1)

// Set biophysical parameters:

forall {

Ra = 100.

cm = 1.

all.append()

}

soma { insert hh }

apic {

insert pas

g_pas = 0.0002

e_pas = -65.

}

/* ---------------------------- */

and

/* -------------------------------

BallAndStickTemplate.hoc

------------------------------- */

begintemplate BallAndStickTemplate

public init, soma, apic

public all

objref all

proc init() {

all = new SectionList()

}

create soma[1], apic[1]

endtemplate BallAndStickTemplate

/* ---------------------------- */

In contrast to class TemplateCell, class NetworkCell has built-in methods to detect somatic action potentials and set-ups of
synapses being activated by such threshold crossings in other cells.

Network populations: One step up in the hierarchy, class NetworkPopulation represents a size NX population of
NetworkCell instantiations of one particular cell type (X) in the network. The class can be used directly as (print output not
shown):

#!/usr/bin/env python

"""example_network_population.py"""

# import modules

from mpi4py.MPI import COMM_WORLD as COMM

from LFPy import NetworkPopulation, NetworkCell

# class NetworkCell parameters:

cellParameters = dict(

morphology='BallAndStick.hoc',

templatefile='BallAndStickTemplate.hoc',

templatename='BallAndStickTemplate',

templateargs=None,

delete_sections=False,

)

# class NetworkPopulation parameters:

populationParameters = dict(

Cell=NetworkCell,

cell_args=cellParameters,
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pop_args=dict(

radius=100.,

loc=0.,

scale=20.),

rotation_args=dict(x=0., y=0.),

)

# create population:

population = NetworkPopulation(

first_gid=0, name='E',

**populationParameters

)

# print out some info:

for cell in population.cells:

print('RANK {}; pop {}; gid {}; cell {}'.format(

COMM.Get_rank(), population.name,

cell.gid, cell))

Direct instantiation of class NetworkPopulation, however, is of limited use as it does not provide any means of simulation
control by itself, and has only one built-in method to draw and set random cell-body positions within a chosen radius
(pop_args[’radius’]) and depth from the normal distribution N (u, σu). In the code example above, pop_args[’loc’]
refers to expected mean depth u and pop_args[’scale’] to the corresponding standard deviation σu. A random cell rotation
around its own vertical z-axis is applied by default. The integer cell.gid value accessed above is a unique global identifier gid of
each cell in the network, and is assigned in running order from the number first_gid. For parallel execution using MPI, cells will
be distributed among threads according to the round-robin rule if the condition gid%NMPI == k is True, where % denotes a division
modulus operation, NMPI the MPI pool size and k ∈ [0, 1, ...,NMPI − 1] the corresponding rank number.

Networks: The new network functionality is provided through class Network. An instantiation of the class sets attributes for the
default destination of file output, temporal duration t and resolution dt of the simulation, a chosen initial voltage Vm

init and global
temperature control Tcelsius (which affects channel dynamics). Furthermore, the class instance provides built-in methods to create

any number of NX-sized populations X. Different built-in class methods create random connectivity matrices C(r)
XY (per rank, see

Connectivity Model in section Section 2.5) between any presynaptic population X and postsynaptic population Y , and connect X and
Y using an integer number of synapses per connection nsyn drawn from the capped normal distributionN (nsyn, σ

syn
n )H(n) whereH(·)

denotes the Heaviside step function. Similarly, synaptic conductances gsyn are drawn from the distribution N (gsyn, σ
syn
g )H(g − gmin)

(where gmin denotes minimum synaptic conductance) with connection delays δsyn fromN (δ
syn

, σ
syn
δ

)H(δ− δmin) (where δmin denotes
the minimum delay in the network). The network class handles the synapse model in NEURON and corresponding parameters (time
constants, reversal potentials, putative synapse locations etc.), and finally provides a simulation control procedure. The simulation
control allows for concurrent calculation of network activity and prediction of extracellular potentials as well as the current dipole
moment.

In order to set up a complete network simulation we may choose to define NetworkCell and
NetworkPopulation parameters as above, and define parameter dictionaries for our instances of Network and extracellular
measurement device RecExtElectrode:

#!/usr/bin/env python

"""example_network.py"""

# import modules

import numpy as np

import scipy.stats as st

from mpi4py import MPI

from LFPy import NetworkCell, Network

import neuron

# relative path for simulation output:

OUTPUTPATH = 'example_network_output'

# class NetworkCell parameters:

cellParameters = dict(**cellParameters)

# class NetworkPopulation parameters:

populationParameters = dict(**populationParameters)

# class Network parameters:

networkParameters = dict(

dt=2**-4,

tstop=1200.,

v_init=-65.,

celsius=6.5,

OUTPUTPATH=OUTPUTPATH
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)

# class RecExtElectrode parameters:

electrodeParameters = dict(

x=np.zeros(13),

y=np.zeros(13),

z=np.linspace(1000., -200., 13),

N=np.array([[0., 1., 0.] for _ in range(13)]),

r=5.,

n=50,

sigma=0.3,

method="soma_as_point"

)

# method Network.simulate() parameters:

networkSimulationArguments = dict(

rec_current_dipole_moment=True,

rec_pop_contributions=True,

)

Furthermore, we define population names (X) and corresponding sizes (NX), as well as one overall connection probability (CYX):

# population names, sizez and connection probability:

population_names = ['E', 'I']

population_sizes = [80, 20]

connectionProbability = [[0.05, 0.05], [0.05, 0.05]]

Then, we may chose to define the synapse model and corresponding parameters (here using NEURON’s built-in two-exponential
model Exp2Syn) for synapse conductances (weight), delays and synapses per connection (multapses), as well as layer-specificities of
connections (LYXL, see Hagen et al., 2016 and below):

# synapse model. All corresponding parameters for weights,

# connection delays, multapses and layerwise positions are

# set up as shape (2, 2) nested lists for each possible

# connection on the form:

# [["E:E", "E:I"],

# ["I:E", "I:I"]].

synapseModel = neuron.h.Exp2Syn

# synapse parameters

synapseParameters = [[dict(tau1=0.2, tau2=1.8, e=0.),

dict(tau1=0.2, tau2=1.8, e=0.)],

[dict(tau1=0.1, tau2=9.0, e=-80.),

dict(tau1=0.1, tau2=9.0, e=-80.)]]

# synapse max. conductance (function, mean, st.dev., min.):

weightFunction = np.random.normal

weightArguments = [[dict(loc=0.002, scale=0.0002),

dict(loc=0.002, scale=0.0002)],

[dict(loc=0.01, scale=0.001),

dict(loc=0.01, scale=0.001)]]

minweight = 0.

# conduction delay (function, mean, st.dev., min.):

delayFunction = np.random.normal

delayArguments = [[dict(loc=1.5, scale=0.3),

dict(loc=1.5, scale=0.3)],

[dict(loc=1.5, scale=0.3),

dict(loc=1.5, scale=0.3)]]

mindelay = 0.3

multapseFunction = np.random.normal

multapseArguments = [[dict(loc=2., scale=.5), dict(loc=2., scale=.5)],

[dict(loc=5., scale=1.), dict(loc=5., scale=1.)]]

# method NetworkCell.get_rand_idx_area_and_distribution_norm

# parameters for layerwise synapse positions:

synapsePositionArguments = [[dict(section=['soma', 'apic'],

fun=[st.norm, st.norm],

funargs=[dict(loc=500., scale=100.),

dict(loc=500., scale=100.)],

funweights=[0.5, 1.]

) for _ in range(2)],

[dict(section=['soma', 'apic'],

Frontiers in Neuroinformatics | www.frontiersin.org 34 December 2018 | Volume 12 | Article 92



Hagen et al. LFPy 2.0

fun=[st.norm, st.norm],

funargs=[dict(loc=0., scale=100.),

dict(loc=0., scale=100.)],

funweights=[1., 0.5]

) for _ in range(2)]]

Note that we above relied on Python list-comprehension tricks for compactness. Having defined all parameters, one can then create
the network, populations, stimulus, connections, recording devices, run the simulation and collect simulation output:

if __name__ == '__main__':

####################################################################

# Main simulation

####################################################################

# create directory for output:

if not os.path.isdir(OUTPUTPATH):

if RANK == 0:

os.mkdir(OUTPUTPATH)

COMM.Barrier()

# instantiate Network:

network = Network(**networkParameters)

# create E and I populations:

for name, size in zip(population_names, population_sizes):

network.create_population(name=name, POP_SIZE=size,

**populationParameters)

# create excitatpry background synaptic activity for each cell

# with Poisson statistics

for cell in network.populations[name].cells:

idx = cell.get_rand_idx_area_norm(section='allsec', nidx=64)

for i in idx:

syn = Synapse(cell=cell, idx=i, syntype='Exp2Syn',

weight=0.002,

**dict(tau1=0.2, tau2=1.8, e=0.))

syn.set_spike_times_w_netstim(interval=200.)

# create connectivity matrices and connect populations:

for i, pre in enumerate(population_names):

for j, post in enumerate(population_names):

# boolean connectivity matrix between pre- and

# post-synaptic neurons in each population

# (postsynaptic on this RANK)

connectivity = network.get_connectivity_rand(

pre=pre, post=post,

connprob=connectionProbability[i][j]

)

# connect network:

(conncount, syncount) = network.connect(

pre=pre, post=post,

connectivity=connectivity,

syntype=synapseModel,

synparams=synapseParameters[i][j],

weightfun=np.random.normal,

weightargs=weightArguments[i][j],

minweight=minweight,

delayfun=delayFunction,

delayargs=delayArguments[i][j],

mindelay=mindelay,

multapsefun=multapseFunction,

multapseargs=multapseArguments[i][j],

syn_pos_args=synapsePositionArguments[i][j],

)

Frontiers in Neuroinformatics | www.frontiersin.org 35 December 2018 | Volume 12 | Article 92



Hagen et al. LFPy 2.0

# set up extracellular recording device:

electrode = RecExtElectrode(**electrodeParameters)

# run simulation:

SPIKES, OUTPUT, DIPOLEMOMENT = network.simulate(

electrode=electrode,

**networkSimulationArguments

)

The argument SPIKES returned by the final network.simulate method call is a dictionary with keys gids and times, where
the corresponding values are lists of global neuron ID’s (gID) and numpy arrays with spike times of each respective unit in the network.
The returned OUTPUT and DIPOLEMOMENT arguments are numpy arrays with structured datatypes (sometimes referred to as record
arrays). The array OUTPUT[’imem’] is the total extracellular potential from all transmembrane currents in units of mV, the entries
’E’ and ’I’ contributions from the excitatory and inhibitory neuron populations, respectively. DIPOLEMOMENT similarly contains
the current dipole moment from populations ’E’ and ’I’, but not the sum as the current dipole moment of different populations
may, in principle, be freely positioned in different locations within a volume conductor. The computed current dipole moments
by themselves have no well defined positions in space and must explicitly be assigned a position by the user, unlike the individual
compartment positions used when computing the extracellular potential.

The corresponding LFPy 2.0 example files discussed throughout this section are:

• /examples/example_network/example_network_cell.py,
• /examples/example_network/example_network_population.py

• /examples/example_network/example_network.py.
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a b s t r a c t 

Electroencephalography (EEG) and magnetoencephalography (MEG) are among the most important techniques for non-invasively studying cognition and disease 

in the human brain. These signals are known to originate from cortical neural activity, typically described in terms of current dipoles. While the link between 

cortical current dipoles and EEG/MEG signals is relatively well understood, surprisingly little is known about the link between different kinds of neural activity 

and the current dipoles themselves. Detailed biophysical modeling has played an important role in exploring the neural origin of intracranial electric signals, like 

extracellular spikes and local field potentials. However, this approach has not yet been taken full advantage of in the context of exploring the neural origin of the 

cortical current dipoles that are causing EEG/MEG signals. 

Here, we present a method for reducing arbitrary simulated neural activity to single current dipoles. We find that the method is applicable for calculating extracranial 

signals, but less suited for calculating intracranial electrocorticography (ECoG) signals. We demonstrate that this approach can serve as a powerful tool for investigating 

the neural origin of EEG/MEG signals. This is done through example studies of the single-neuron EEG contribution, the putative EEG contribution from calcium 

spikes, and from calculating EEG signals from large-scale neural network simulations. We also demonstrate how the simulated current dipoles can be used directly 

in combination with detailed head models, allowing for simulated EEG signals with an unprecedented level of biophysical details. 

In conclusion, this paper presents a framework for biophysically detailed modeling of EEG and MEG signals, which can be used to better our understanding of 

non-inasively measured neural activity in humans. 

1. Introduction 

Electroencephalography (EEG) is one of the most important non- 
invasive methods for studying human cognitive function and diagnos- 
ing brain diseases ( Cohen, 2017; Pesaran et al., 2018 ). Yet, we know 

surprisingly little about the neural origin of these electric scalp poten- 
tials ( Cohen, 2017 ): On the one hand, we have a relatively good under- 
standing of the biophysics of EEGs, in knowing that these signals origi- 
nate from cortical current dipoles, and having a well-defined framework 
for linking such cortical dipoles to electric scalp potentials ( Ness et al., 
2020; Nunez and Srinivasan, 2006 ). This has been taken advantage of for 
a long time in source localization, by inverse modeling of the underlying 
cortical current dipoles from EEG data. On the other hand, even though 
these cortical dipoles are assumed to mainly originate from large num- 
bers of synaptic input to cortical pyramidal cell populations ( Ilmoniemi 
and Sarvas, 2019; Lopes da Silva, 2013; Ness et al., 2020; Nunez and 
Srinivasan, 2006; Pesaran et al., 2018 ), the precise link between cor- 
tical dipoles and the underlying neural activity has remained unclear. 
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E-mail addresses: gaute.einevoll@nmbu.no (G.T. Einevoll), torbjorn.ness@nmbu.no (T.V. Ness). 

In other words, we know very little about exactly which types of neu- 
ral activity that cause even the most well-studied characteristics of the 
EEG signal, such as different types of oscillations (e.g., alpha, beta, and 
gamma waves) and stereotyped EEG shapes in response to sensory stim- 
uli (event-related potentials, ERPs) ( Cohen, 2017 ). Importantly, these 
different EEG characteristics are affected in predictable ways by vari- 
ous brain conditions, such as sleep and attention ( Klimesch et al., 1998; 
Palva and Palva, 2011; Siegel et al., 2012 ), and by brain disorders in- 
cluding epilepsy and schizophrenia ( Freestone et al., 2015; Light and 
Näätänen, 2013; Mäki-Marttunen et al., 2019a; Niedermeyer, 2003 ). 
This means that a better insight into how different types of brain ac- 
tivity is reflected in cortical current dipoles could help us not only in 
making better inverse models for source localization, but also in provid- 
ing a better understanding of the mechanisms of human cortical activity 
and possibly curing brain diseases ( Cohen, 2017; Mäki-Marttunen et al., 
2019a; Uhlirova et al., 2016 ). 

The reasons why we lack understanding of the neural origin of EEG 

signals are many, the main being (i) strong ethical constraints on inva- 
sive human brain measurements and (ii) the high number of neurons 
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that contribute to the signal. However, in recent years there have been 
major advances in several relevant branches of neuroscience, meaning 
that a better understanding of the EEG signal may now be within reach 
( Cohen, 2017; Uhlirova et al., 2016 ). 

To bypass challenge (i), we look to the rapid development in the 
technology and methods used to study neural activity in lab animals. 
The possibility to control and manipulate neural activity, while simul- 
taneously recording both intracranial signals like the local field poten- 
tial (LFP) ( Blomquist et al., 2009; Einevoll et al., 2007 ) and extracranial 
non-invasive signals like the EEG ( Bruyns-Haylett et al., 2017 ), can be 
expected to make important contributions to our understanding of non- 
invasive measurements of human brain activity ( Cohen, 2017; Lopes da 
Silva, 2013; Pesaran et al., 2018; Uhlirova et al., 2016 ). Furthermore, de- 
tailed biophysical modeling of neural activity has become an important 
tool for understanding intracranial LFP measurements ( Einevoll et al., 
2013a; Pesaran et al., 2018 ). Given that EEG is expected to reflect the 
same basic process as LFP, that is, large numbers of synaptic input to 
geometrically aligned pyramidal cells ( Buzsáki et al., 2012; Nunez and 
Srinivasan, 2006; Pesaran et al., 2018 ), it seems likely that detailed bio- 
physical modeling can also help shed light on the neural origin of EEG 

signals. 
As indicated in challenge (ii), EEG signals are expected to reflect 

the activity of much larger neural populations than the LFPs, mak- 
ing the simulations computationally demanding. Biophysically detailed 
large-scale simulations of neural networks have, however, been gaining 
substantial momentum in recent years, thanks to large ongoing neu- 
roscience initiatives like Project MindScope at the Allen Institute for 
Brain Science, the Blue Brain Project and the EU Human Brain Project 
( Einevoll et al., 2019 ). The possibility to calculate EEG signals from such 
existing and future large-scale biophysically detailed neural simulations 
could lead to valuable insights into the neural origin of the EEG. 

Another complicating aspect of EEG modeling, is that these predic- 
tions in general require a head model to account for the widely differ- 
ent electrical conductivities of the brain, cerebrospinal fluid (CSF), skull 
and scalp ( Ilmoniemi and Sarvas, 2019; Nunez and Srinivasan, 2006 ). 
While many such head models exist, they tend to take current dipoles 
as input ( Nunez and Srinivasan, 2006; Pesaran et al., 2018 ), instead of 
the transmembrane currents that are available from biophysical neural 
simulations and that form the basis for modeling LFPs ( Einevoll et al., 
2013b ). 

Here, we introduce an approach for reducing arbitrary biophysically 
detailed simulated neural activity to current dipoles, which represents 
an enormous reduction in term of model complexity when computing 
brain signals. We verify that the approach gives accurate results when 
calculating EEG signals, but less so for intracranial electrocorticography 
(ECoG) signals. Next, we look into how the approach can be applied 
for investigating the origin of EEG signals, with a particular focus on 
calcium spikes, before demonstrating how our methods can be applied 
for pre-existing large-scale network models. Finally, we show how cur- 
rent dipoles can be combined with detailed head models, which enables 
simulation of EEG signals with unprecedented biophysical detail. 

Note that the clear separation between calculation of current dipoles 
and the corresponding EEG is equally valid for magnetoencephalogra- 
phy (MEG) signals. While we here focus mostly on EEG, the presented 
approach for calculating current dipoles from neural activity is equally 
valid for MEG signals, through use of an appropriate forward model 
( Hagen et al., 2018; Ilmoniemi and Sarvas, 2019 ). 

2. Methods 

Neural activity generates electric currents in the brain, which in turn 
create electromagnetic fields. In this section, we explain how electric 
brain signals can be modeled in both simple and more complex volume 
conductors. 

2.1. Forward modeling of electric potentials 

We assume negligible capacitive effects in the head ( Miceli et al., 
2017; Pfurtscheller and Cooper, 1975; Ranta et al., 2017 ) and that elec- 
tric and magnetic signals effectively decouple. We can then apply the 
quasistatic approximation of Maxwell’s equations for calculating these 
signals ( Hämäläinen et al., 1993; Nunez and Srinivasan, 2006 ). In other 
words, for computing extracellular electric potentials, we envision the 
head as a 3D volume conductor, and combining Maxwell’s equations 
with the current conservation law, we obtain the Poisson equation for 
computing extracellular potentials ( Griffiths, 1999 ): 

𝛁 ⋅ 𝐉 = 𝛁 ⋅ ( 𝜎𝛁 𝜙) , (1) 

where J is the electric current density in extracellular space, 𝜎 is the 
extracellular conductivity and 𝜙 is the extracellular electric potential. 
The Poisson equation can be solved analytically for simple, symmetric 
head models, such as an infinitely big space and spherically symmetric 
models. For more complex head models, numerical methods such as the 
Finite Element Method (FEM) can be used ( Haufe et al., 2015; Logg 
et al., 2012; Seo et al., 2016; Vorwerk et al., 2014; 2019 ). 

2.1.1. Compartment-based approach 
Extracellular potentials generated by transmembrane currents can be 

calculated with a well-founded biophysical two-step forward-modeling 
scheme. The first step involves multicompartmental modeling and in- 
corporates the details of reconstructed neuron morphologies for cal- 
culating transmembrane currents ( Sterratt et al., 2011 ). In the sec- 
ond step, Eq. (1) is solved under the assumption that the extracellular 
medium is an infinitely large, linear, ohmic, isotropic, homogeneous and 
frequency-independent volume conductor. The transmembrane currents 
entering and escaping the extracellular medium can be seen as current 
sources and sinks, and give the extracellular potential 𝜙 at the electrode 
location r ( Ness et al., 2020 ), 

𝜙( 𝐫) = 

1 
4 𝜋𝜎

𝑁 ∑
𝑛 =1 

𝐼 𝑛 
|𝐫 − 𝐫 𝑛 | , (2) 

where r n is the location of transmembrane current I n , N is the number 
of transmembrane currents and 𝜎 is the extracellular conductivity. This 
scheme is here referred to as the compartment-based approach, and was 
applied using the Python package LFPy 2.0 running NEURON under the 
hood ( Carnevale and Hines, 2006; Hagen et al., 2018 ). 

2.1.2. Current dipole approximation 
Analogous to how electric charges can create charge multipoles, a 

combination of current sinks and sources can set up current multipoles 
( Nunez and Srinivasan, 2006 ). From electrodynamics, we know that ex- 
tracellular potentials from a volume of current sinks and sources can 
be precisely described by expressing Eq. (2) as a multipole expansion 
( Nunez and Srinivasan, 2006 ): 

𝜙( 𝑅 ) = 

𝐶 monopole 

𝑅 

+ 

𝐶 dipole 

𝑅 

2 + 

𝐶 quadrupole 

𝑅 

3 + ..., (3) 

when the distance R from the center of the volume to the measurement 
point is larger than the distance from the volume center to the most pe- 
ripheral source ( Jackson, 1998 ). In neural tissue, the current monopole 
contribution is zero due to current conservation, since the transmem- 
brane currents sum to zero at all times ( Koch, 1999; Pettersen et al., 
2012 ). Further, the quadrupole, octopole and higher order terms are 
negligible compared to the current dipole contribution when R is suf- 
ficiently large. In this case, the extracellular potential from a neuron 
model can be estimated with the second term of the current multipole 
expansion; an approximation known as the current dipole approxima- 
tion ( Nunez and Srinivasan, 2006; Pettersen et al., 2014; Pettersen and 
Einevoll, 2008 ): 

𝜙( 𝐫) = 

𝐶 dipole 

𝑅 

2 = 

1 
4 𝜋𝜎

|𝐩 | cos 𝜃
|𝐫 − 𝐫 p |2 

. (4) 
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Fig. 1. Illustration of relation between 

transmembrane currents, axial currents, 

sources and sinks. A : Schematic illustration 

of a cell model. This toy model only has 

three cellular compartments, but note that bio- 

physically detailed neuron models typically 

have ~ 600–1300 compartments. An exci- 

tatory synaptic input initiates a current flow 

across the membrane and into the neuron. This 

current consists of an ionic flow of positive 

ions (e.g., Na + ), in addition to capacitive cur- 

rents, and is by convention a negative trans- 

membrane current ( I t ), also referred to as a cur- 

rent sink. This changes the membrane poten- 

tial at the location of the synaptic input, ini- 

tiating axial currents ( I a ), that is, currents in- 

side the neuron. The very strong electromag- 

netic attraction of opposite and repulsion of 

equal electric charges effectively prevents any 

charge accumulation, ensuring current conser- 

vation. This implies that the same amount of current that goes into a cellular compartment, must also leave the same cellular compartment, enforcing a simple 

relationship between transmembrane currents and axial currents. Current conservation also ensures that the sum of all transmembrane currents at any given time 

must sum to zero, which implies that a negative transmembrane current caused by an excitatory synaptic input (current sink), must be exactly balanced by positive 

transmembrane currents elsewhere on the cell (current sources). B, C, D : The extracellular potential around the cell can be calculated either from the transmembrane 

currents ( B , Eq. (2) ), from the current dipole moments stemming from all the individual axial currents ( C , Eq. (4) ), or from the single summed current dipole moment 

( D , Eqs. (6) and (4) ). Note that the single-dipole approximation is only expected to be valid far away from the neuron, see main text for discussion of the validity of 

this. 

Table 1 

Radii and electrical conductivities used in the four-sphere model. The ra- 

dius of each spherical shell in the four-sphere model, with 𝜎 denoting the re- 

spective electrical conductivities. 

Radius (cm) 𝜎 (S/m) 

Brain 8.9 0.276 

CSF 9.0 1.65 

Skull 9.5 0.01 

Scalp 10.0 0.465 

Here, p is the current dipole moment in a medium with conductivity 
𝜎, 𝑅 = |𝐑 | = |𝐫 − 𝐫 p | is the distance between the current dipole moment 
at r p and the electrode location r , and 𝜃 denotes the angle between p and 
R . The current dipole moment p can be calculated from an axial current 
I inside a neuron and the distance vector d traveled by the axial cur- 
rent: 𝐩 = 𝐼𝐝 , analogous to a charge dipole moment. The current dipole 
approximation is applicable in the far-field limit, that is when R is much 
larger than the dipole length 𝑑 = |𝐝 | ( Nunez and Srinivasan, 2006 ). 

Multi-dipole approach From some multicompartmental neuron simu- 
lations ( Figs. 2–4 ), we computed multiple current dipole moments, i.e., 
one for each axial current flowing between neighboring compartments 
in the neuron: 

𝐩 𝑘 = 𝐼 axial 𝑘 𝐝 𝑘 . (5) 

Here, 𝐼 axial 𝑘 is an axial current traveling along distance vector 
d k , resulting in a current dipole moment p k . By inserting all the 
current dipole moments from a neuron simulation into the current 
dipole approximation ( Eq. (4) ), we get a good estimate of the ex- 
tracellular potential at any electrode location where the distance 
between the electrode and the nearest dipole is sufficiently large 
( Nunez and Srinivasan, 2006 ). See Fig. 1 for an illustration of the 
relation between these different approached for calculating extra- 
cellular potentials. Note that the length of each (multi-)dipole is 
equal to half the length of its corresponding neuronal compartment. 
The calculation of multi-dipoles from simulated neural activity was 
implemented in LFPy 2.0, and can be used through the function 
Cell.get_multi_current_dipole_moments ( Hagen et al., 
2018 ). 

Single-dipole approximation From each multicompartmental neuron 
simulation, we computed one single current dipole moment. This can 
either be done by summing up the multiple current dipole moments, 

𝐩 ( 𝑡 ) = 

𝑀 ∑
𝑘 =1 

𝐩 𝑘 ( 𝑡 ) = 

𝑀 ∑
𝑘 =1 

𝐼 axial 𝑘 ( 𝑡 ) 𝐝 𝑘 , (6) 

where M is the number of axial currents, or equivalently from a position- 
weighted sum of all the transmembrane currents ( Hagen et al., 2018; 
Lindén et al., 2010 ): 

𝐩 ( 𝑡 ) = 

𝑁 ∑
𝑘 =1 

𝐼 trans 𝑘 ( 𝑡 ) 𝐫 𝑘 , (7) 

where N is the number of compartments in the multicompartmental neu- 
ron model and r k is the position of transmembrane current 𝐼 trans 𝑘 ( 𝑡 ) . For 
calculating EEG signals a location for the current dipole must be cho- 
sen, and unless otherwise specified we positioned the dipole halfway 
between the position of the soma and the position of the synaptic in- 
put (for multiple synaptic inputs, we used the average position of the 
synaptic inputs). Note, however, that the large distance from the neu- 
ron to the EEG electrode ( ~ 10 mm) implies that the EEG signal is 
relatively insensitive to small changes in the dipole location within cor- 
tex. The calculation of current-dipole moments from simulated neu- 
ral activity was implemented in LFPy 2.0, and can be used through 
Cell.current_dipole_moment ( Hagen et al., 2018 ). 

2.2. Head models 

Electric potentials will be affected by the geometries and conductivi- 
ties of the various parts of the head ( Nunez and Srinivasan, 2006 ), which 
is especially important for electrode locations outside of the brain. This 
can be incorporated into our extracellular potential calculations by ap- 
plying simplified or complex head models. 

2.2.1. Four-sphere head model 
The four-sphere head model is a simple analytical model consisting 

of four concentric shells representing brain tissue, cerebrospinal fluid 
(CSF), skull and scalp, where the conductivity can be set individually 
for each shell ( Nunez and Srinivasan, 2006; Srinivasan et al., 1998 ). The 
model solution is given in Næss et al. (2017) and is found by solving the 
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Poisson equation subject to boundary conditions ensuring continuity of 
current and electric potentials over the boundaries, as well as no cur- 
rent escaping the outer shell. This model is based on the current dipole 
approximation. The parameters used in this paper ( Table 1 ) were taken 
from Huang et al. (2013) to be consistent with the parameters used in 
the construction of the more complex New York head model (see next 
section). 

2.2.2. New York Head model 
The New York Head model is a detailed head model based on high- 

resolution, anatomical MRI-data from 152 adult heads ( Huang and 
Parra, 2015 ). The model was constructed by taking advantage of the 
reciprocity theorem, stating that the position of the electrode and the 
dipolar source can be switched without affecting the measured potential 
( Rush and Driscoll, 1969 ). This means, that virtually injecting current at 
the locations of the EEG electrodes and using the finite element method 
( Logg et al., 2012 ) to compute the resulting potential anywhere in the 
brain, gives the link between current dipoles in the brain and the result- 
ing EEG signals ( Dmochowski et al., 2017; Huang et al., 2016; Malmivuo 
and Plonsey, 1995; Ziegler et al., 2014 ). This link was captured in a ma- 
trix known as the lead field L ( Nunez and Srinivasan, 2006 ): 

𝐋 = 

𝐄 

𝐼 
(8) 

Here, I is the injected current at the electrode locations and E is the 
resulting electric field in the brain. The lead field matrix gives us the 
precise link between a current dipole moment p in the brain and the 
resulting EEG signals 𝚽 ( Nunez and Srinivasan, 2006 ): 

𝚽 = 𝐋 ⋅ 𝐩 . (9) 

We applied the New York Head model by downloading the lead 
field L from https://parralab.org/nyhead/ . The units incorporated in 
the lead field matrix was not immediately obvious. However, from 

Dmochowski et al. (2017) and Huang et al. (2013) it appears that an 
injected current I of 1 mA gives an electric potential E in V/m, meaning 
that a current dipole moment p in the unit of mAm gives EEG signals in 
the unit of V. 

2.3. Simulation of neural activity 

All neuron simulations were performed using the python package 
LFPy 2.0, running NEURON under the hood ( Hagen et al., 2018 ). For 
investigations of single-cell contributions to extracellular potentials, we 
applied three different morphologically reconstructed cell models: The 
human layer-2/3 pyramidal cell from Eyal et al. (2018) , the layer-5 
pyramidal cell from rat cortex constructed by Hay et al. (2011) and 
a rat layer-5 chandelier cell; an interneuron model developed by 
Markram et al. (2015) . 

The pyramidal cell models were downloaded from 

http://www.senselab.med.yale.edu/modeldb/ , with accession num- 
bers 238347 (2013_03_06_cell03_789_H41_03) and 139653 (cell1) 
respectively, while we found the interneuron at the Neocortical 
Microcircuit Collaboration Portal ( http://www.bbp.epfl.ch/nmc- 
portal/microcircuit ) under layer-5, Chandelier Cell (ChC), continuous 
Non-accomodating (cNAC), (rp110201_L_idA_-_Scale_x1.000_y0.975_z1. 
000_-_Clone_3). 

For all simulations with passive ion channels only ( Figs. 2–
4 ), we used the following cell parameters: membrane resistance of 
30000 Ωcm 

2 , axial resistance of 150 Ωcm ( Mainen and Sejnowski, 1996 ) 
and a membrane capacitance of 1 μF/cm 

2 ( Gentet et al., 2000; Sterratt 
et al., 2011 ). When active mechanisms were included in the simulations 
( Fig. 5 ), all cell properties were incorporated as described in the specific 
cell’s documentation. 

Neural simulations shown in Figs. 2–5 received synaptic input mod- 
eled as conductance-based, two-exponential synapses ( Exp2Syn in 
NEURON). The rise time constant was set to 1 ms and the decay time 

Table 2 

Population names and sizes in large-scale neural network 

model The number of neurons in each population. E = excitatory, 

I = inhibitory, and TC = thalamocortical. 

Name Population size 

L2/3E 20,683 

L2/3I 5834 

L4E 21,915 

L4I 5479 

L5E 4850 

L5I 1065 

L6E 14,395 

L6I 2948 

TC 902 

constant was 3 ms, synaptic reversal potential was 0 mV and the synap- 
tic weight was set to 0.002 μS, unless otherwise specified. 

2.3.1. Large-scale network model 
For modeling of network activity ( Figs. 6 and 7 ), we used the so- 

called hybrid scheme proposed by Hagen et al. (2016) . Here, the neu- 
ral network activity is first simulated with point neurons in NEST 

( Linssen et al., 2018 ) and the resulting spiking activity of all neurons 
saved to file. Afterwards, the neurons are modeled with detailed multi- 
compartment morphologies and the spike times of the presynaptic neu- 
rons are used as activation times for synaptic input onto these neurons 
in a simulation where the extracellular potentials are calculated ( Hagen 
et al., 2016; Senk et al., 2018 ). The simulation was unmodified from 

the results presented by Hagen et al. (2016) with transient thalamocor- 
tical input (their Figs. 1 and 7), except that all single-cell current dipole 
moments were recorded, and the EEG signals calculated. Briefly, the net- 
work model consists of 8 neural populations across four cortical layers 
(L2/3, L4, L5 and L6), with one excitatory and one inhibitory popula- 
tion in each of the four layers. The number of neurons in each popu- 
lation is given in Table 2 , and the connectivity between the different 
populations is based on anatomical data ( Binzegger et al., 2004; Potjans 
and Diesmann, 2014 ), and given in Hagen et al. (2016) (their Table 5). 
For the first step, simulating the network activity, the cortical neurons 
were modeled as leaky integrate-and-fire neurons, connected with static 
current-based exponential synapses. External input was supplied both in 
the form of a constant current input with a population specific strength, 
and thalamocortical input, which in the present example correspond 
to simultaneous activation of all thalamocortical neurons ( t = 900 ms), 
which are projecting to neural populations in layer 4 and layer 6. In the 
second step for calculating LFP and EEG signals, all cell models were 
passive, with population specific morphologies. The excitatory popula- 
tions were pyramidal cells in L2/3, L5 and L6, and stellate cells in L4. All 
pyramidal cells were oriented with the apical dendrite along the depth 
axis of cortex ( z -axis), and randomly rotated around this axis. Other cell 
types (stellate cells and interneurons) were randomly rotated around 
all axes. To ensure some variability in the morphologies, the 8 cortical 
populations were further divided into a total of 16 subpopulations with 
different morphologies (although some of these subpopulations used the 
same morphology). 

For a full description of simulation details and parameters 
used for the large-scale network model, we refer to Hagen et al. 
(2016) . 

2.4. Code availability 

Simulation code to reproduce all figures in this paper is freely avail- 
able from https://github.com/solveignaess/EEG.git . For a more general 
and detailed documentation and examples of how to calculate current 
dipoles and EEG signals for biophysically detailed cell models, we refer 
the reader to the LFPy documentation ( https://lfpy.rtfd.io ). 
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Fig. 2. Extracellular potentials become 

dipolar in the far field limit. A : Passive layer- 

2/3 pyramidal cell from human ( Eyal et al., 

2016 ) with an excitatory, conductance-based, 

two-exponential synapse placed on apical 

dendrite (red dot), see Methods (2.3) for 

parameters. The resulting transmembrane 

currents for each compartment are shown as 

a blue arrow (input current) and red arrows 

(return currents). B : Green arrows represent 

the multiple current dipole moments between 

neighboring neural compartments. C : Gray 

arrow illustrates the total current dipole 

moment, that is, the vector sum of the dipoles 

in B. D-F : Extracellular potential in immediate 

proximity of the neuron, computed with the 

compartment-based approach, multi-dipole 

approach and single-dipole approximation, 

respectively. Note that the multi-dipole results 

differ slightly from the compartment-based 

approach when the distance from the mea- 

surement point to the nearest current dipole 

moment is short compared to the dipole length. 

G-I : Same as D-F, but at a larger spatial scale 

(zoomed out). See 1 mm scalebar in panel A, 

D and G. The colorbar is shared for panels D-I. 

3. Results 

We introduce an approach for modeling electroencephalography 
(EEG) and magnetoencephalography (MEG) signals from detailed bio- 
physical multicompartment cell models. The approach involves two 
steps: First, current dipole moments are extracted from activity in neu- 
rons or networks. Second, the extracted current dipoles are used as 
sources in established forward models. Here we only demonstrate the 
approach by computing EEG signals, but the current dipoles are equally 
applicable for computing MEG signals using the appropriate magnetic- 
field forward models ( Hagen et al., 2018; Hämäläinen et al., 1993; Il- 
moniemi and Sarvas, 2019 ). For illustration, we first consider EEG sig- 
nals stemming from single synaptic input onto single neurons in an in- 
finite homogeneous head model, before moving on to a simple, generic 
head model. Finally, we study EEGs from large-scale simulated network 
activity, also applying a detailed head model. 

3.1. At sufficiently large distances, extracellular potentials become dipolar 

When modeling electric potentials within the brain, we can apply 
the well-established compartment-based approach assuming a homoge- 
neous volume conductor ( Section 2.1.1 ) ( Einevoll et al., 2013a; Holt 
and Koch, 1999 ). However, this assumption is no longer valid when it 

comes to modeling EEG signals on the scalp, which calls for an inhomo- 
geneous head model ( Ilmoniemi and Sarvas, 2019 ). Such head models 
typically take current dipoles as input, as opposed to individual cur- 
rent sinks/sources, and must be based on the current dipole approxi- 
mation ( Nunez and Srinivasan, 2006 ). Here, we introduce an approach 
for computing current dipoles from arbitrary simulated neural activity, 
and compare current-based and dipole-based modeling of electric po- 
tentials generated by a single cell receiving excitatory synaptic input. 
Excitatory synaptic input initiates a negative current at the synapse lo- 
cation, since positive ions flow into the cell. Due to current conservation 
( Koch, 1999 ), this negative current is exactly balanced by spatially dis- 
tributed positive currents along the cellular membrane, as illustrated in 
Fig. 2 A for a single apical excitatory synaptic input to a passive human 
cortical layer-2/3 pyramidal cell model ( Eyal et al., 2016 ). See Methods 
2.3 for simulation details. In the standard procedure for modeling extra- 
cellular potentials, here referred to as the compartment-based approach , 
the transmembrane current in each cellular compartment corresponds to 
a point current source/sink. Another strategy is to consider the axial cur- 
rent of each cellular compartment as a small current dipole (see Eq. (6) ), 
which we refer to as the multi-dipole approach ( Fig. 2 B ). By vector sum- 
mation of all these dipoles into one single dipole at a specific position, 
we obtain the single-dipole approximation ( Fig. 2 C ). For the sake of com- 
paring these modeling approaches, we have assumed that the cell is po- 
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Fig. 3. Single-dipole approximation is jus- 

tified for EEG but not ECoG signals. A : Illus- 

tration of four-sphere head model, where the 

pink, blue, green and purple spherical shells 

represent the brain, CSF, skull and scalp respec- 

tively, see Table 1 . The pink inset shows the 

human layer-2/3 neuron ( Eyal et al., 2016 ) lo- 

cated in the brain, 88.0 mm above head cen- 

ter. 41 simulations lasting 100 ms with a single 

synaptic input after 20 ms to cell with passive 

ion channels only, were performed for vary- 

ing input locations, see colored dots. The z - 
component of the resulting current dipole mo- 

ments for two synaptic input locations (large 

colored dots) are shown in inset below as func- 

tions of time. The results presented in this fig- 

ure are computed at the simulation time points 

producing the largest current dipole moment 

for each synaptic input location. B : Magni- 

tude of extracellular potential | 𝜙| as function 

of distance from the top of the neuron, shown 

for two simulations with synaptic input loca- 

tions marked by large colored dots in upper in- 

set of A. In each simulation, we consider the 

time point with the largest current dipole mo- 

ment. Dashed lines show extracellular poten- 

tials computed with multi-dipole, and full lines 

show single-dipole calculations. C : Relative er- 

ror RE comparing the single-dipole model to 

the multi-dipole model, as function of distance 

from top of neuron to measurement point. D : 

Relative error RE showing how single-dipole 

model deviates from multi-dipole model EEG 

calculations, as function of distance from soma to synapse location. E : Magnitude of EEG signal, |EEG|, as function of distance from soma to synaptic input location. 

F : Relative error, RE, showing how EEG calculations performed with the single-dipole approximation deviates from multi-dipole approach as a function of amplitude 

of the EEG signal, |EEG|. 

Fig. 4. EEG signals and current dipole moment 

from three different cell types with various 

synaptic input. A : The morphologies of a human 

L2/3 pyramidal cell (blue; Eyal et al. (2016) ), a rat 

L5 pyramidal cell (red; Hay et al. (2011) ), and a rat 

L5 interneuron (orange; Markram et al. (2015) ). 

The remaining panels display data connected to 

each cell type, see cell-specific colors. B : Each dot 

represents an excitatory synaptic input at a spe- 

cific time ( x -axis) at a specific height of the neu- 

ron ( z -axis, corresponding to panel A) for a specific 

cell type (color). The bigger dots with black bor- 

ders mark inhibitory synaptic input. The four input 

bulks represent 1) 100 apical excitatory synaptic 

inputs, 2) 100 basal excitatory synaptic inputs, 3) 

400 homogeneously spread-out excitatory synap- 

tic inputs and 4) 400 homogeneously spread-out 

excitatory synaptic inputs and 50 inhibitory basal 

synaptic inputs. The synaptic weights sum to 0.01 

μS for all sets of excitatory / inhibitory synapses 

in each wave (see Section 2.3 for details). For the 

interneuron, which doesn’t have typical ”apical ”

or ”basal ” zones, the synapses were spread out all 

over the morphology for all input types. C : The x -, 
y - and z -components of the current dipole moment 

p for the three different cell types. D : EEG signals, 

𝜙 from the three cell types computed with the four- 

sphere model. 
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Fig. 5. Current dipole moment expose den- 

dritic calcium spikes. A : Layer-5 cortical 

pyramidal cell model from rat ( Hay et al., 

2011 ), receiving either a single excitatory 

synaptic input to the soma evoking a single 

somatic action potential (blue dot, results in 

B1-4 ), or in addition an excitatory synaptic 

input to the apical dendrite, evoking a den- 

dritic calcium spike and two additional somatic 

spikes (orange dot, results in C1-4 ). B1, C1 : 

Membrane potential at the two positions in- 

dicated in A. B2, C2 : Extracellular potential 

30 μm away from the soma (red diamond in 

A ), assuming for illustration an infinite homo- 

geneous extracellular medium. B3, C3 : Single- 

cell current dipole moment. B4, C4 : Sum of 

1000 instances of the single-cell current dipole 

moment (from B3, C3 ), that has been randomly 

shifted in time with a normally distributed shift 

with a standard deviation of 10 ms. D: Con- 

tour lines of extracellular potential around neu- 

ron at a snapshot in time during the somatic 

spike in B1 ( t = 32.2 ms; time marked by dashed 

line). E: Contour lines of extracellular potential 

around neuron at a snapshot in time during the 

calcium spike in C1 ( t = 36.0 ms; time marked 

by dashed line). The synaptic weight was 0.07 

and 0.15 μS for the somatic and apical input 

location, respectively. 

sitioned in an infinite homogeneous electric medium. Very close to the 
neuron, the extracellular potential will strongly depend on the exact dis- 
tribution of transmembrane currents across the cellular morphology and 
will, therefore, typically not take a purely dipolar shape ( Fig. 2 D,E ver- 
sus F ). However, since the dipole contribution will dominate when we 
are further away from the current sources (see Eq. (3) ), the extracellular 
potential becomes more and more dipolar with increasing distance from 

the cell ( Lindén et al., 2010 ). This implies that for the purpose of calcu- 
lating extracellular potentials far away from the cell, the single-dipole 
approximation might be well justified ( Fig. 2 G-I ). Note that there can 
be small differences between the results from the compartment-based 
and the multi-dipole approaches for electrode locations in the immedi- 
ate vicinity of the current sources, due to the approximations inherent 
in using the current dipole model ( Fig. 2 D versus Fig. 2 E). 

3.2. Single-dipole approximation is justified for EEG, but not ECoG signals 

In order to test the applicability of the single-dipole approximation 
for calculating ECoG and EEG signals, we applied the four-sphere head 
model ( Hagen et al., 2018; 2019; Næss et al., 2017 ). Since the four- 
sphere head model takes current dipoles as input, the multi-dipole ap- 
proach was used as benchmark: an assumption that should be well jus- 
tified for the cell-to-electrode distances considered, see Section 3.1 . 

For different locations of a single excitatory synaptic input to a hu- 
man cortical layer-2/3 pyramidal cell model ( Eyal et al., 2016 ) ( Fig. 3 A ), 
we calculated the electric potential at point-electrode positions span- 
ning from 100 μm above the top of the cell, to the surface of the head, 
using both the multi-dipole approach and the single-dipole approxima- 
tion ( Fig. 3 B ). In the simulations shown, we used conductance-based 
synapses and included only passive membrane conductances, but we 
confirmed that using current-based synapses or a fully active cell model 
gave very similar results. 

The electric potential decreased steeply with distance when crossing 
the different layers of the head model, most strongly across the low- 
conducting skull ( Fig. 3 B ). For all synaptic input locations, we observed 
that the electric potential calculated with the single-dipole approxima- 
tion markedly deviated from the multi-dipole approach directly above 
the neuron, but the difference strongly decreased with distance from the 
neuron ( Fig. 3 B , full versus dashed lines for two selected synapse loca- 
tions). We quantified the model dissimilarities by looking at the relative 
error at the timepoint of the maximum current dipole moment, and for a 
chosen distal synaptic input the relative error was 38.9% and 0.839% at 
the position of the ECoG and EEG electrodes respectively ( Fig. 3 C , green 
line). For a specific proximal synaptic input we observed a relative error 
of 86.1% at the ECoG position, and 13.2% at the EEG position ( Fig. 3 C , 
purple line). Inserting a single strong synaptic current (synaptic weight 
0.05 μS) into the soma of the same layer-2/3 pyramidal cell with ac- 
tive mechanisms ( Eyal et al., 2018 ), resulting in a somatic spike, gave 
relative errors of 34.2% and 0.813% for the computed ECoG and EEG 

signals, respectively (results not shown). We found that calculating EEG 

signals with the single-dipole approximation gave relative errors peak- 
ing for synaptic locations ~ 60 and 400 μm above the soma, with a 
sharp drop in the relative error for synaptic inputs further away from the 
soma than ~ 400 μm ( Fig. 3 D ). Here, synaptic inputs slightly distal to 
400 μm away from soma resulted in the majority of the return currents 
escaping the cell below the synaptic input (closer to the soma). This gave 
a distinctly dipole-like source/sink distribution, and thereby low rela- 
tive errors ( ~ 0.4%). Synaptic inputs slightly proximal to 400 μm away 
from soma instead resulted in almost balanced return currents above 
and below the synaptic input. This gave a multipole-like source/sink 
distribution, and thereby larger relative errors ( ~ 7%). Note, however, 
that the synaptic input locations that resulted in higher relative errors, 
also gave relatively weak EEG signals ( Fig. 3 E ). This demonstrates that 
the relative error of the single-dipole approximation is negatively cor- 
related with the amplitude of the scalp potential ( Fig. 3 F ). This is as ex- 
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pected, given that the strongest EEG signals are expected to be caused 
by dipole-like source/sink distributions ( section 2.1.2 ). In summary, the 
single-dipole approximation can result in substantial errors at the posi- 
tion of the ECoG electrodes, but gives small errors at the position of the 
EEG electrodes for synaptic locations leading to strong EEG signals. 

3.3. Single-dipole approximation simplifies estimate of EEG contribution 

In the previous section, we showed that the single-dipole approxi- 
mation was applicable for calculation of EEG signals, and in this section 
we demonstrate that the single-dipole approximation can substantially 
simplify the analysis of the biophysical origin of EEG signals. 

Pyramidal cells have a preferred orientation along the depth axis of 
cortex (here the z -axis), and the direction of the current dipole moment p 

can be expected to align with this axis since radial symmetry will tend 
to make the orthogonal components ( p x , p y ) cancel at the population 
level ( Hagen et al., 2018 ). In contrast, interneurons show much less of 
a preferred orientation, and are therefore expected to give a negligible 
contribution to the EEG signal, except indirectly through synaptic inputs 
onto pyramidal cells ( Hagen et al., 2016 ). We illustrated this by applying 
the single-dipole approximation to three different cell types ( Fig. 4 A ), 
each receiving a large number of synaptic inputs with target regions on 
the cells set up to vary over time ( Fig. 4 B ). 

For the previously used human layer-2/3 cell ( Fig. 4 A , blue; 
Eyal et al. (2016) ) receiving a volley of 100 excitatory synaptic in- 
puts that were restricted to the uppermost 200 μm of the cell ( t = 50 ms; 
Fig. 4 B , blue dots), we observed a negative deviation of p z ( Fig. 4 C , blue 
line). For 100 basal synaptic inputs ( t = 100 ms; Fig. 4 B , blue line), the 
polarity of p z was instead positive, but of slightly lower amplitude than 
for apical input, as can be expected because the large area of the so- 
matic region will cause strong return currents in the immediate vicinity 
of the synaptic inputs, and therefore an overall weaker current-dipole 
moment. 

A uniform distribution of 400 synaptic inputs across the cell mem- 
brane with area-weighted probability ( t = 150 ms; Fig. 4 B , blue line), 
only gave rise to small ripples in p z , due to the substantial cancella- 
tion of current dipoles of opposite polarity. It is sometimes assumed 
that excitatory input is relatively uniformly distributed onto pyramidal 
cells, while inhibitory input is more directed to the perisomatic region 
( Mazzoni et al., 2015; Skaar et al., 2020; Tele ń czuk et al., 2020; 2020 ). 
As expected, we found that this combination of uniformly distributed 
excitatory synaptic input and perisomatic inhibitory input gave rise to 
a clear negative response in p z ( t = 200 ms; Fig. 4 B , blue line), which 
could be part of the explanation why inhibitory synaptic input in some 
cases has been found to dominate the LFP ( Hagen et al., 2016; Tele ń czuk 
et al., 2017 ). 

For a rat cortical layer-5 pyramidal cell model ( Fig. 4 A , red; 
Hay et al. (2011) ), the resulting current dipole moment was very sim- 
ilar in shape to the previously described current dipole moment from 

the human layer-2/3 cell model. The amplitude was however some- 
what larger, which was expected because the longer apical dendrite 
will tend to give larger current dipole moments ( Fig. 4 C , red line). 
Lastly, we used a rat cortical layer-5 interneuron model ( Fig. 4 A , or- 
ange; Markram et al. (2015) ), but since the dendrites of interneu- 
rons are not structured into the same distinctive zones as pyrami- 
dal cells, the synaptic input caused very small net current dipole 
moments. 

We calculated the EEG signals with the four-sphere head model, us- 
ing both the multi-dipole ( Fig. 4 D , dotted lines) and the single-dipole 
( Fig. 4 D , solid lines) approach. To compare the approaches, we com- 
puted the relative error as a function of time, that is, the absolute differ- 
ence between the results from the two approaches, normalized by the 
maximum EEG magnitude computed with the multi-dipole approach. 
The single-dipole approach gave a maximum error of 2.14%, 3.27% and 
0.313% for the human layer-2/3 cell, the rat layer-5 cell and the rat in- 
terneuron, respectively. Importantly, the EEG signal is essentially fully 

described by the z -component of the current dipole moment p z , that is, a 
single time-dependent variable. This reduction in signal description rep- 
resents a massive simplification in the understanding of the biophysical 
origin of the EEG signal, compared to considering the transmembrane 
currents and position of each cellular compartment. 

3.4. Current dipole moment expose dendritic calcium spikes 

Suzuki and Larkum (2017) recently demonstrated that dendritic cal- 
cium spikes can be recorded experimentally at the cortical surface, and 
that the signal amplitudes can be similar to contributions from synaptic 
inputs. This demonstrates that active conductances may play an impor- 
tant role in shaping ECoG and EEG signals. Furthermore, it suggests that 
information about calcium dynamics might be present in such signals, 
and that this information could potentially be taken advantage of when 
studying learning mechanisms associated with dendritic calcium spikes 
( Suzuki and Larkum, 2017 ). 

The previously introduced rat layer-5 cortical pyramidal cell model 
from Hay et al. (2011) can exhibit dendritic calcium spikes. When 
this cell model received a single excitatory synaptic input to the soma 
( Fig. 5 A , blue dot), strong enough to elicit a somatic action potential 
( Fig. 5 B1 , blue), a small depolarization was also visible in the apical 
dendrite ( Fig. 5 B1 , orange). Even so, this did not initiate any dendritic 
calcium spike. However, when combining the same somatic synaptic 
input with an additional excitatory synaptic input to the apical den- 
drite, 400 μm away from the soma ( Fig. 5 A , orange dot), we observed 
a dendritic calcium spike. This calcium spike did, in turn, induce two 
additional somatic spikes ( Fig. 5 C1 ). For both synaptic input strategies 
described above, the extracellular potential simulated 30 μm away from 

the soma took the shape of stereotypical extracellular action potentials: 
that is, a sharp negative peak followed by a broader and weaker posi- 
tive peak ( Fig. 5 B2, C2 ). Further, we observed that the slow dendritic 
calcium spike was not reflected in the extracellular potential close to 
the soma ( Fig. 5 C2 ). We found that for the case with only a somatic 
spike and no calcium spike, the single-cell current dipole moment re- 
sembled the inverse of the extracellular potential ( Fig. 5 B3 ), while for 
the case with both somatic and dendritic spiking, a pronounced slow 

component was also present in the single-cell current dipole moment 
( Fig. 5 C3 ). Somatic action potentials are typically not expected to con- 
tribute significantly to EEG signals (but see Tele ń czuk et al. (2015) ), 
because the very short duration of spikes with both a positive and a neg- 
ative phase implies that extreme synchrony is needed for spikes to sum 

constructively, and spikes that are only partially overlapping tend to 
sum destructively. The same cannot be expected to hold for the calcium 

spikes, which are not only longer-lasting but also predominately cause 
a negative response in the current current dipole moment. To mimic a 
neural network scenario with multiple cells spiking at slightly different 
times, we calculated the sum of 1000 instances of the single-cell current 
dipole moment that was jittered (shifted) in time (normally distributed, 
standard deviation = 10 ms). We found that the case with the dendritic 
calcium spike now had a 6.6-fold larger maximum amplitude than the 
case with only the somatic spike ( Fig. 5 B4 versus C4 , max| p | = 30.8 
μAμm and 204.2 μAμm respectively). This demonstrates that dendritic 
calcium spikes are much more capable of summing constructively for a 
population of cells, and substantiates the role of dendritic calcium spikes 
in affecting ECoG/EEG/MEG recordings. 

The amplitude of the slow component of the current dipole mo- 
ment from the calcium spike was about 0.5 μAμm ( Fig. 5 C3 ), and later 
( Sec. 3.5 ) we will present results from a simulated neural network where 
the average event-related current dipole moment of layer 5 pyramidal 
cells were found to be about 0.1 μAμm ( Fig. 6 D , bottom right). This 
indicates that our results are compatible with the claim by Suzuki and 
Larkum (2017) that signal amplitudes from calcium spikes could be sim- 
ilar in amplitude to contributions from synaptic input. 

We can make a very rough estimate of the number of simultaneous 
calcium spikes required to cause a measurable EEG response: A cur- 
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Fig. 6. Large-scale neural simulations can 

be used to probe biophysical origin of EEG 

signals. A : Stimulus-evoked spiking activity 

from thalamic input (time 𝑡 = 900 ms, denoted 

by thin vertical line) in the cortical microcircuit 

model from Potjans and Diesmann (2014) . Dots 

indicate spike times of individual neurons, and 

populations are represented in different col- 

ors (I = inhibitory, E = excitatory). B : Multicom- 

partment model neurons used to produce the 

measurable signals, with colors corresponding 

to panel A , showing one example morphology 

per population. Layer boundaries are marked 

at depths relative to cortical surface, z = 0. A 

laminar recording electrode with 16 contacts 

separated by 100 μm (black dots) is positioned 

in the center of the population. C : LFPs calcu- 

lated at depths corresponding to black dots in 

B. D : For the two L5 populations (L5I and L5E), 

the three components of the current dipole mo- 

ment is shown for all individual cells (gray), to- 

gether with the population average (black). E : 

Illustration of the four-sphere head model, with 

the red column corresponding the the outline 

of the population in panel B. F : The EEG signal 

from each population found by summing the 

single-cell EEG contribution of all individual 

cells within each population (different colors, 

same color scheme as in A , B ), together with the 

total summed EEG signal (black). The simpli- 

fied EEG signal was found by first summing the z -component of the current dipole moments for all pyramidal cells, that is L2/3E, L5E and L6E, and calculating the 

EEG from these population dipoles (red dashed). 

rent dipole moment of 1 μAμm gives an EEG amplitude on the order of 
10 −3 𝜇V (see for example Fig. 4 C and D , note different scales). Assum- 
ing that an EEG contribution must exceed ~ 10 μV to be detectable 
( Hagen et al., 2018; Nunez and Srinivasan, 2006 ) implies a minimum 

needed current dipole moment of ~ 10 4 μAμm. A number of perfectly 
synchronous calcium spikes would each contribute with ~ 0.5 μAμm 

( Fig. 5 C3 ), suggesting that about 20,000 synchronous calcium spikes 
would be needed to cause a measurable EEG response. Further, consid- 
ering that the signal amplitude decreases by about 100-fold from corti- 
cal surface to scalp ( Fig. 3 B ) and assuming a similar detection threshold, 
indicates that a few hundred simultaneous calcium spikes would be de- 
tectable by ECoG electrodes. 

It might initially seem surprising that the dendritic calcium spike is 
so strongly reflected in the single-cell current dipole moment, given that 
the transmembrane currents associated with the somatic action poten- 
tial are much larger than those associated with the dendritic calcium 

spike: the maximum amplitude of the transmembrane currents of the 
somatic compartment was 45.1 nA, compared to just 0.30 nA for the 
compartment in the apical dendrite ( Fig. 5 A , blue and orange dots). 
However, the current dipole moment is given as the product between 
the amplitude of the current and the separation between the source and 
sink ( 𝐩 = 𝐼𝐝 ; Eq. (6) ). While the currents associated with the somatic ac- 
tion potential will for the most part be contained within the somatic re- 
gion, giving very small sink/source separations, the currents associated 
with the dendritic calcium spike will be distributed over a much larger 
part of the cell membrane. This effect can be illustrated by comparing 
the spatial profile of the extracellular potentials around the neuron at a 
snapshot in time during a somatic spike or during a calcium spike ( Fig. 5 
D versus E ). 

3.5. EEG from large-scale neural network simulations 

So far, we have only considered EEG contributions from single cells, 
but real EEG signals are expected to reflect the activity of hundreds 

of thousands to millions of cells ( Cohen, 2017; Nunez and Srinivasan, 
2006 ). Biophysically detailed modeling of large populations is still in its 
infancy ( Einevoll et al., 2019 ) and at present typically include “only ”
a few tens of thousands of biophysically detailed cells ( Billeh et al., 
2020; Markram et al., 2015 ). Networks of point neurons, on the other 
hand, are regularly used to simulate hundreds of thousands ( Billeh et al., 
2020 ) or even millions of cells ( Schmidt et al., 2018; Senk et al., 2018 ), 
but LFP, ECoG, EEG or MEG signals can not be computed directly from 

point neurons ( Einevoll et al., 2013a; Ness et al., 2020 ). To investigate 
EEG signals generated by neuronal networks, we therefore used a hy- 
brid scheme ( Hagen et al., 2016; Senk et al., 2018; Skaar et al., 2020 ), 
where the network activity is first simulated in a highly computationally 
efficient manner with point neurons in NEST ( Linssen et al., 2018 ) and 
the resulting spiking activity of each neuron saved to file. Afterwards, 
each cell is modeled with biophysically detailed multicompartment mor- 
phologies and the stored spikes of all the presynaptic neurons are used as 
activation times for synaptic input onto these neurons in a simulation 
where the extracellular potentials are calculated ( Hagen et al., 2016; 
Senk et al., 2018 ). 

We used the large-scale point-neuron cortical microcircuit model 
from Potjans and Diesmann (2014) and Hagen et al. (2016) . This model 
has ~ 80,000 neurons divided into 8 different cortical populations, that 
is, one excitatory and one inhibitory population in each of the four lay- 
ers L2/3 - L6 (see Section 2.3.1 ). This model can exhibit a diverse set 
of spiking dynamics including different oscillations and asynchroneous 
irregular network states ( Brunel, 2000; Hagen et al., 2016 ). We here 
chose to focus on the scenario with transient thalamocortical input for 
mimicking event-related potentials (ERPs). However, focusing on dif- 
ferent neural oscillations (brain waves) or spontaneous activity would 
have served equally well for our purposes. The only difference from the 
original simulation by Hagen et al. (2016) was the added calculation of 
current dipole moments and EEG signals. We simulated transient thala- 
mic synaptic input to layers 4 and 6 ( Fig. 6 A ), and after the spikes had 
been mapped onto the multicompartment cell models ( Fig. 6 B ), we cal- 



S. Næss, G. Halnes, E. Hagen et al. NeuroImage 225 (2021) 117467 

Fig. 7. EEG signals from cortical column 

network with simple or complex head mod- 

els . EEG signals from the population dipole 

from the cortical microcircuit model (same as 

in Fig. 6 ), can be used both with the complex 

New York Head model ( A ), or the simple four- 

sphere head model ( B ). The dipole was located 

either in the parietal lobe ( C-G ) or in the oc- 

cipital lobe ( H-L ). C : The dipole location and 

orientation in the parietal lobe is illustrated 

with black arrow on the cortical surface of the 

New York Head model. D, E : EEG signals ( 𝜙) 

on scalp surface electrodes computed with the 

New York Head model ( D ) or the four-sphere 

head model ( E ), seen from above. The data is 

from the time point of the strongest current 

dipole moment | p |. Dipole location is marked 

by orange star, with coordinates in the New 

York Head model (55, -49, 57) mm. F : EEG 

trace computed with the New York Head model 

(gray) or the four-sphere head model (black) 

on the scalp surface electrode with the short- 

est distance to the dipole location. The dis- 

tances were 16.76 mm (New York Head) and 

16.78 mm (four-sphere). G : Absolute value of EEG signals from panel D,E as a function of distance from dipole to measurement electrode. H-L : Same as for C-G , but 

with the dipole located in the occipital lobe. Note that panel I, J are rotated to show the back of the head. The dipole coordinates in the New York Head model were 

(-24.3, -105.4, -1.2) mm, and the distance to the closest electrode in panel K was 14.64 mm (New York Head) and 17.51 mm (four-sphere). 

culated the LFP ( Fig. 6 C ) similarly to Hagen et al. (2016) (their Fig. 1 ), 
in addition to the current dipole moments of each cell. 

For all cell populations, we found that the current dipole moments 
from individual cells could show large transient responses to thalamic 
input ( Fig. 6 D ; gray lines show current dipole moment from individ- 
ual cells in two example populations: L5 inhibitory (L5I) and L5 exita- 
tory (L5E)), but for all inhibitory populations, as well as for the exci- 
tatory stellate cells in L4, the thalamic response was not visible in the 
average current dipole moment ( Fig. 6 D ; black lines, L5I). The same 
was true for the current dipole moment components perpendicular to 
the depth axis for excitatory populations ( Fig. 6 D ; L5E, p x , p y , black 
lines), but not for the component along the depth axis which had a 
substantial average response to the thalamic input ( Fig. 6 D ; L5E, p z , 
black line). These observations imply, as previously noted, that only the 
z -component of the current dipole moment from excitatory pyramidal 
cell populations can be expected to contribute significantly to the EEG 

signal. 
Our findings invite a simplified approach to calculate the EEG signal: 

The original approach involves calculating all the ~ 80,000 single-cell 
EEG contributions and summing them, taking into account the position 
of the individual cells, similarly to what is done for the LFP signal. A 

much simpler alternative would be to compute a single summed p z - 
component from all neurons in each pyramidal cell population (L2/3E, 
L5E and L6E), and place it in the center of the given pyramidal cell pop- 
ulation (with a population-specific depth). We can then calculate the 
resulting simplified EEG signal from these population dipoles. This ap- 
proximation can be expected to be accurate when the population radius 
is small compared to the distance from the population center to the EEG 

electrode. Note that the distance from the top of cortex to the top of the 
head is typically ~ 10 mm, while the diameter of the present simulated 
population is only ~ 1 mm ( Fig. 6 ; population outline in B is drawn in 
red in E ). 

To test this simplified approach, we combined the current dipole 
moments with the four-sphere head model ( Fig. 6 E ). We calculated the 
EEG signal by the simplified approach, that is, from one time-dependent 
array, p z , for each pyramidal cell population, located in the center of 
the given population. We then compared this simplified approach with 
the original approach, that is, the sum of EEG contributions from all 

~ 80,000 cells at their respective positions. The simplified approach 
gave a maximum relative error of 1.1% (maximum absolute difference 
normalized by maximum value of EEG from original approach) ( Fig. 6 F 
black versus red dashed line). This implies that the EEG signal from the 
simulated cortical activity can be nearly fully represented by a single 
time-dependent variable for each pyramidal cell population. Further, 
summing these population dipoles into one single dipole, and locating 
it in the center of the population column at 1 mm depth, instead gave a 
maximum relative error of 6.6%. This highlights that the exact position 
of different pyramidal cell populations are relatively unimportant for 
shaping the EEG signal. 

We also compared the relative amplitude of the EEG signal from each 
population, and found that for the present example, the excitatory pop- 
ulation of L2/3 was the dominant source of the EEG signal ( Fig. 6 F ). 
Note, however, that we expect this observation to be somewhat model- 
dependent, and that strong general claims about the contribution of dif- 
ferent pyramidal cell populations to the EEG signal cannot be made from 

this example study alone. 

3.6. Dipole approximation in complex head models 

Even though the four-sphere head model is convenient for generic 
EEG studies, many applications such as accurate EEG source analysis, 
may require more detailed head models ( Dale et al., 1999; Vorwerk 
et al., 2014 ). The construction of such complex head models is de- 
pendent on expensive equipment, that is magnetic resonance imaging 
(MRI), to map the electrical conductivity of the entire head at resolu- 
tions of ~ 0.5–1.0 mm 

3 ( Huang and Parra, 2015; Huang et al., 2016 ). 
Afterwards, numerical techniques such as the Finite Element Method 
(FEM) ( Logg et al., 2012 ) can be used to calculate the signal at the EEG 

electrodes for arbitrary arrangements of current dipoles in the brain, 
but at a high computational cost. The number of computing hours is, 
however, reduced by applying the reciprocity principle of Helmholtz. 
The reciprocity principle states, in short, that switching the location of 
a current source and a recording electrode will not affect the measured 
potential ( Dmochowski et al., 2017; Huang et al., 2016; Malmivuo and 
Plonsey, 1995; Ziegler et al., 2014 ). This implies that it suffices to use 
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FEM to calculate the lead field in the brain from virtual current dipoles 
placed at each of the EEG electrodes. From the lead field matrix, we can 
infer the potential at the EEG electrodes, given an arbitrary arrangement 
of current dipoles in the brain. Luckily, several such pre-solved com- 
plex head models are freely available, and one example is the New York 
Head (NYH) ( Fig. 7 A ), which we have applied here ( Huang et al. (2016) ; 
https://parralab.org/nyhead/ ). 

To illustrate the use of pre-solved complex head-models, we inserted 
the current dipole moment obtained from the cortical column model in 
Section 3.5 into the New York Head model ( Fig. 7 A ), at two manually 
chosen positions: one in the parietal lobe ( Fig. 7 C and D ), and one in the 
occipital lobe ( Fig. 7 H and I ). In both cases, the current dipole moment 
was oriented along the normal vector of the brain surface, and the EEG 

signal was calculated. For comparison with a simplified head model, 
we inserted the same current dipole moment into the four-sphere head 
model ( Fig. 7 B ) at locations comparable to the dipole positions chosen 
in the occipital and parietal lobe in the NYH model: the locations in the 
four-sphere model were chosen close to the brain surface, such that the 
distance from dipole position to the closest electrode ( Fig. 7 E and J ) and 
the brain surface normal vectors were similar to the respective positions 
in the NYH model. 

The two head models generated EEG signals of the same temporal 
shape, which is expected, given that neither of the models included any 
temporal filtering ( Miceli et al., 2017; Pfurtscheller and Cooper, 1975; 
Ranta et al., 2017 ). The computed EEG signals from the two head models 
also gave comparable results in both spatial shape and amplitude ( Fig. 7 
D versus E; I versus J ). The relative difference between the EEG signals 
calculated with the four-sphere model and the NYH model at the time 
of maximum signal amplitude was 201% and 25.2% for the positions in 
the parietal and occipital lobe respectively ( Fig. 7 F and K ). Note that 
while the four-sphere head model gave very similar EEG amplitudes for 
the two different dipole locations (as expected from symmetry), the EEG 

amplitudes from the complex head model was much more variable, even 
for similar distances to the closest electrode ( Fig. 7 F and K ). 

The higher variability of the complex head model was also apparent 
in the decay of the maximum EEG amplitude with distance, which was 
perfectly smooth, exponential-like ( Nunez and Srinivasan, 2006 ), and 
very similar for the two locations in the four-sphere model, but very 
variable for the complex head model, although with the same general 
shape ( Fig. 7 G and L ). 

Note that despite the complexity, the NYH model is substantially 
faster than the four-sphere model. In order to simulate the EEGs from a 
dipole moment vector containing 1200 timesteps, the NYH model exe- 
cution times were ~ 0.3 s, while the four-sphere model needed ~ 0.9 s. 

4. Discussion 

4.1. Summary 

In this paper, we have introduced an approach for reducing arbitrary 
simulated neural activity from biophysically detailed neuron models to 
single current dipoles ( Fig. 2 ). We verified that the approach was ap- 
plicable for calculating EEG, but generally not for ECoG signals ( Figs. 3 
and 4 ), and gave examples of how reducing neural activity to a sin- 
gle dipole can be a powerful tool for investigating and understanding 
single-cell EEG contributions ( Figs. 4 and 5 ). Furthermore, we demon- 
strated that the presented approach could easily be integrated with ex- 
isting large-scale simulations of neural activity. Moreover, we showed 
how single dipoles are useful for constructing compact representations 
of the EEG contributions from entire neural populations, with methods 
still firmly grounded in the underlying biophysics ( Fig. 6 ). Finally, we 
demonstrated how the simulated current dipoles, from single cells or 
large neural populations, can be directly inserted into complex head 
models for calculating more realistic EEG signals ( Fig. 7 ). 

4.2. Application of current dipoles for computing EEG, MEG and ECoG 

signals 

We have highlighted that the calculation of current dipoles from neu- 
ral activity is cleanly separated from the calculation of the ensuing EEG 

signals. Since MEG sensors like EEG electrodes are positioned far away 
from the neural sources, the same is true for MEG signals. The calculated 
current dipoles can therefore also be used in combination with simpli- 
fied or detailed frameworks for calculation of MEG signals, for example 
by following methods outlined in Hagen et al. (2018) and Ilmoniemi and 
Sarvas (2019) . 

ECoG electrodes are in general positioned closer to the neural 
sources. For our example simulations of the ECoG signal generated by 
individual neurons, we found that use of the single-dipole approxima- 
tion gave substantial errors ( Fig. 3 ). Thus for computation of ECoG sig- 
nals, the standard compartment-based formalism or the multi-dipole ap- 
proach ( Fig. 2 ) requiring much more computational resources, may be 
required. Here an alternative to using full head models is to use the 
method of images, taking into account the discontinuity of electrical 
conductivity at the cortical surface ( Hagen et al., 2018; Pettersen et al., 
2006 ). A further complication of ECoG signals is that since the electrodes 
are both relatively large and close to the neural current sources, the 
ECoG electrodes themselves might be expected to substantially impact 
the measured signals ( Ness et al., 2015; Rogers et al., 2020; Vermaas 
et al., 2020 ). 

Note that while we here used LFPy 2.0 ( Hagen et al., 2018; 2019 ), a 
python interface to NEURON ( Carnevale and Hines, 2006 ), calculation 
of current dipole moments can easily be implemented into any frame- 
work where the transmembrane currents are available, through the sim- 
ple formula given in eq. (7) . 

4.3. Generalization to non-compartmental models 

EEG and MEG recordings reflect neural activity at the systems-level 
( Einevoll et al., 2019; Pesaran et al., 2018 ). Here, we have focused 
on calculating current dipoles from detailed multi-compartment neu- 
ron models, but neural modeling at the systems-level is often based on 
higher levels of abstraction, like point neurons ( Linssen et al., 2018 ) or 
firing rate populations ( Sanz-Leon et al., 2013 ). Calculation of electric 
or magnetic signals from such higher-level neural simulations must in 
general rely on some kind of approximation trick, since neurons require 
a spatial structure to be capable of producing electromagnetic signals 
( Einevoll et al., 2013a ). One such trick that we took advantage of here 
is the hybrid scheme ( Hagen et al., 2016 ). This two-step scheme involves 
neural network activity first being simulated by point neurons, before 
the resulting spike trains are replayed onto multi-compartment neuron 
models for calculating LFP and EEG signals ( Section 3.5; Fig. 6 ). 

Further, the hybrid scheme can be generalized to also allow for cal- 
culation of EEG/MEG signals from firing-rate models by using the so- 
called kernel method, which has previously been successfully applied to 
the LFP ( Hagen et al., 2016; Skaar et al., 2020; Tele ń czuk et al., 2020 ). 
In practice, this can be done in two steps: First, simultaneously activat- 
ing all outgoing synapses from a specific (presynaptic) simulated pop- 
ulation, and recording the total current dipole moment of the response 
(the kernel) ( Hagen et al., 2016 ). Second, computing the EEG/MEG con- 
tribution stemming from this (presynaptic) population by convolving 
the kernel with the population firing rate, and applying an appropri- 
ate forward model. Here, the firing rate would be obtained separately 
in point neuron network models or firing-rate models. In this way, the 
basic biophysics of EEG and MEG signals from synaptic activation of 
multi-compartment neuron models is included, avoiding, however, com- 
putationally heavy multicompartmental modeling of spiking dynamics. 
The calculated current-dipole kernels should be applicable for different 
kinds of input to the original network model, but would in general have 
to be recomputed for changes to cell or synaptic parameters. 
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4.4. Connection to other work 

Calculation of current dipole moments from morphologically com- 
plex cell models has been pursued before, for example to study the 
EEG and MEG contribution of spiking single cells ( Murakami and 
Okada, 2006 ), or to study how the synaptic input location affects the cur- 
rent dipole ( Ahlfors and Wreh II, 2015; Lindén et al., 2010 ). Important 
work on EEG interpretation in terms of the underlying neural activity 
has also previously been done through use of ”minimally sufficient ” bio- 
physical models, see for example Murakami et al. (2003, 2002) , Jones 
et al. (2009, 2007) , Sliva et al. (2018) and Neymotin et al. (2020) . 
Here, ”minimally sufficient ” means that the cell models only had mini- 
mally needed multi-compartment spatial structure (point neurons can- 
not produce current dipole moments), only considered a few cell types, 
and employed simple synaptic connection rules. In particular, the Hu- 
man Neocortical Neurosolver (HNN) ( Neymotin et al., 2020 ) enables 
researchers to link measured EEG or MEG recordings to neural activity 
through a pre-defined canonical neocortical column template network. 
HNN comes with an interactive GUI, designed for users with little or no 
experience in computational modeling, and might therefore be an ap- 
propriate choice for researchers seeking to gain a better understanding 
of their EEG/MEG data. However, while the use of such minimally suffi- 
cient models allows for quick and direct comparison between simulated 
and recorded EEG signals, it is not (presently) compatible with simu- 
lating EEG or MEGs from biophysically detailed single cell- or network 
models, constructed from detailed experimental data ( Arkhipov et al., 
2018; Billeh et al., 2020; Egger et al., 2014; Gratiy et al., 2018; Hagen 
et al., 2016; Markram et al., 2015; Reimann et al., 2013 ). 

A more high-level approach for simulating MEG/EEG signals from 

the underlying neural activity has been pursued through neural field 
or neural mass models ( Bojak et al., 2010; Coombes, 2006; David and 
Friston, 2003; Deco et al., 2008; Jirsa et al., 2002; Ritter et al., 2013 ), 
which aim to model the evolution of coarse-grained variables such as 
the mean membrane potential or the firing rate of neuron populations. 
Such coarse-graining drastically reduces the number of parameters and 
the computational burden of the simulation, and can be used to study the 
interplay among entire brain regions, and indeed run whole-brain simu- 
lations. The Virtual Brain (TVB) is an excellent example of a software for 
whole-brain network simulations ( Ritter et al., 2013; Sanz-Leon et al., 
2015; 2013 ), where detailed and potentially personalized head mod- 
els can be combined with tractography-based methods identifying the 
connectivity between brain regions ( Sanz-Leon et al., 2013 ). To calcu- 
late measurement modalities like MEG and/or EEG signals from neural 
field or neural mass models, it is typically assumed that the population 
current dipole moments are roughly proportional to, for example, the 
average excitatory membrane potential ( Bojak et al., 2010; Ritter et al., 
2013 ). Further, EEGs can be calculated from the resulting current dipole 
moments in combination with head models as presented in this paper, 
or through other softwares or techniques ( Gramfort et al., 2014 ). This 
suggests an intriguing future development, where one could apply the 
above-mentioned kernel method based on biophysically detailed neu- 
ron models to substantially increase the accuracy of LFP, EEG and MEG 

predictions from high-level large-scale simulations of neural activity. 

4.5. Outlook 

EEG and, later, MEG signals have been an important part of neu- 
roscience for a long time, but still very little is known about the neu- 
ral origin of the signals ( Cohen, 2017 ). A better understanding of these 
signals could lead to important discoveries about how the brain works 
( Ilmoniemi and Sarvas, 2019; Lopes da Silva, 2013; Pesaran et al., 
2018; Uhlirova et al., 2016 ), and provide new insights into mental dis- 
orders ( Mäki-Marttunen et al., 2019a; Sahin et al., 2019 ). This work 
lays some of the foundation for obtaining a better understanding of 
EEG/MEG recordings, by allowing easy calculation of the signals from 

arbitrary neural activity. The presented formalism is well suited for 

modeling EEG/MEG contributions from various potential neural ori- 
gins, including different cell types, different ion channels and differ- 
ent synaptic pathways. For example, to study the effect of calcium 

spikes ( Suzuki and Larkum, 2017 ), I h currents ( Kalmbach et al., 2018; 
Ness et al., 2016; 2018 ), or gene expression on EEG signals ( Mäki- 
Marttunen et al., 2019b ), one only needs to know how the z -component 
of the resulting population current dipole is affected. This decoupling of 
the current dipole moment and head model allows for easier investiga- 
tion and improved understanding of the origin of the EEG/MEG signal. 

This study has only considered how one can calculate EEG/MEG 

signals from the underlying neural activity (so-called forward model- 
ing). EEG/MEG measurements are, however, often used for source local- 
ization (so-called inverse modeling), aiming to identify the underlying 
cortical current dipoles ( Gramfort et al., 2014; Ilmoniemi and Sarvas, 
2019; Nunez and Srinivasan, 2006 ). However, such reconstructed cur- 
rent dipoles are generic in the sense that they are typically not intended 
to represent specific neural populations. By allowing for calculation of 
current dipoles from cortical populations, the work presented here takes 
a step towards consolidating the, so far, mostly separate scientific dis- 
ciplines of neural modeling and EEG/MEG data analysis (but see also 
Neymotin et al. (2020) ). 

The main challenge in inverse modeling, is that the problem 

is mathematically ill-posed, because the number of possible current 
sinks/sources is much larger than the number of recording electrodes. 
This implies that unique solutions can in general not be found, without 
making additional assumptions on cortical current dipole distributions 
( Pettersen et al., 2012 ). In practice, this means that the performance 
of inverse methods will depend on design choices that need testing. The 
presented approach can be used to create simulated EEG/MEG data with 
known underlying current dipoles, which can be used for benchmark- 
ing inverse methods for source localization, similar to what has previ- 
ously been done for current source density estimations ( Pettersen et al., 
2006 ). Further, Pettersen et al. (2006) demonstrated that an improved 
inverse method for LFP analysis, the so-called iCSD method, could be 
made by building the forward model into the inverse model. Going one 
step further, we can envision incorporating the presented approach into 
an EEG inverse model, aiming to identify synaptic input regions to dif- 
ferent pyramidal cell populations instead of cortical current dipoles. 

While there are many examples of detailed biophysical modeling of 
neural activity improving interpretation of measured intracranial extra- 
cellular potentials in lab animals ( Blomquist et al., 2009; Chatzikalym- 
niou and Skinner, 2018; Einevoll et al., 2007; Luo et al., 2018; McColgan 
et al., 2017; Tele ń czuk et al., 2020 ), much less has been done for hu- 
man EEG/MEG signals. This is natural given that studies of healthy hu- 
man brains necessarily are limited to non-invasive technologies ( Cohen, 
2017; Lopes da Silva, 2013; Uhlirova et al., 2016 ). However, given all 
the valuable insights that could be gained from an increased under- 
standing of non-invasive measurements of neural activity in humans, an 
important challenge in modern neuroscience is to build on the mecha- 
nistic insights from animal studies and use them for understanding non- 
invasive signals in humans ( Cohen, 2017; Einevoll et al., 2019; Lopes da 
Silva, 2013; Mäki-Marttunen et al., 2019a; Uhlirova et al., 2016 ). The 
approach for calculating EEG/MEG signals in this paper should there- 
fore ideally be used in combination with animal studies simultaneously 
measuring multisite laminar LFP (and MUA) signals within cortex, as 
well as EEG/MEG signals (see for example Bruyns-Haylett et al., 2017; 
Cohen, 2017 ). 

Today, we have a reasonably good understanding of how single neu- 
rons operate, that is, how they respond to synaptic input, and how 

multitudes of synaptic inputs combine to produce action potentials 
( Einevoll et al., 2019 ). Similarly, we can, to a high degree, explain 
the measurement physics of EEG/MEG, that is, how neural currents af- 
fect electromagnetic brain signals recorded outside of the head ( Cohen, 
2017; Ilmoniemi and Sarvas, 2019; Nunez and Srinivasan, 2006 ). The 
challenge of understanding EEG/MEG signals is therefore closely related 
to the greatest challenge in modern neuroscience: understanding neural 
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networks. Making sense of such complicated dynamical systems typi- 
cally requires computational modeling ( Einevoll et al., 2019 ), but the 
complexity of neurons, and the complexity and size of the neural net- 
works involved in even the simplest of cognitive tasks, makes this a 
daunting challenge. The steady increase in available computing power, 
in combination with the ever-increasing knowledge on synaptic connec- 
tivity patterns is, however, making this approach more and more attrac- 
tive ( Arkhipov et al., 2018; Billeh et al., 2020; Egger et al., 2014; Gratiy 
et al., 2018; Hagen et al., 2016; Markram et al., 2015; Reimann et al., 
2013; 2019 ): Today, there are several ongoing research projects pursu- 
ing such modeling efforts, for example at the Allen Institute for Brain 
Science and in the Human Brain Project ( Einevoll et al., 2019 ). While 
biophysically detailed, large-scale neural simulations are still in their in- 
fancy, we expect these simulations to become an increasingly important 
research tool in neuroscience ( Einevoll et al., 2019 ). The presently de- 
scribed method enables EEG/MEG simulations combining detailed neu- 
ral simulations with realistic head models. We believe that this approach 
will help shedding light on the neural origin of EEG/MEG signals, and 
help us take full advantage of these important brain signals in the future. 

Credit authorship contribution statement 

Solveig Næss: Conceptualization, Software, Data curation, Formal 
analysis, Methodology, Visualization, Investigation, Validation, Writing 
- original draft, Writing - review & editing. Geir Halnes: Conceptualiza- 
tion, Methodology, Supervision, Writing - review & editing. Espen Ha- 

gen: Conceptualization, Software, Methodology, Supervision, Writing 
- review & editing. Donald J. Hagler Jr.: Conceptualization, Method- 
ology, Software, Supervision, Writing - review & editing. Anders M. 

Dale: Conceptualization, Methodology, Supervision, Writing - review 

& editing. Gaute T. Einevoll: Conceptualization, Methodology, Fund- 
ing acquisition, Project administration, Supervision, Resources, Writ- 
ing - review & editing. Torbjørn V. Ness: Conceptualization, Data cu- 
ration, Formal analysis, Methodology, Project administration, Supervi- 
sion, Software, Visualization, Validation, Writing - original draft, Writ- 
ing - review & editing. 

Acknowledgements 

This work received funding from the European Union Horizon 
2020 Research and Innovation Programme under Grant Agreement No. 
785907 and No. 945539 [Human Brain Project (HBP) SGA2 and SGA3], 
the Norwegian Ministry of Education and Research through the SUURPh 
Programme and the Norwegian Research Council (NFR) through COBRA 

(No. 250128 ), NOTUR (No. NN4661K) and DigiBrain (No: 248828). 

References 

Ahlfors, S.P., Wreh II, C., 2015. Modeling the effect of dendritic input location 
on MEG and EEG source dipoles. Med. Biol. Eng. Comput. 53 (9), 879–887. 
doi: 10.1007/s11517-015-1296-5 . 

Arkhipov, A., Gouwens, N.W., Billeh, Y.N., Gratiy, S., Iyer, R., Wei, Z., Xu, Z., Abbasi- 
Asl, R., Berg, J., Buice, M., Cain, N., da Costa, N., de Vries, S., Denman, D., Durand, S., 
Feng, D., Jarsky, T., Lecoq, J., Lee, B., Li, L., Mihalas, S., Ocker, G.K., Olsen, S.R., 
Reid, R.C., Soler-Llavina, G., Sorensen, S.A., Wang, Q., Waters, J., Scanziani, M., 
Koch, C., 2018. Visual physiology of the layer 4 cortical circuit in silico. PLoS Comput. 
Biol. 14 (11), e1006535. doi: 10.1371/journal.pcbi.1006535 . 

Billeh, Y.N., Cai, B., Gratiy, S.L., Dai, K., Iyer, R., Gouwens, N.W., Abbasi-Asl, R., Jia, X., 
Siegle, J.H., Olsen, S.R., Koch, C., Mihalas, S., Arkhipov, A., 2020. Systematic integra- 
tion of structural and functional data into multi-scale models of mouse primary visual 
cortex. Neuron 106, 1–16. doi: 10.2139/ssrn.3416643 . 

Binzegger, T., Douglas, R.J., Martin, K.A.C., 2004. A quantitative map of the circuit 
of cat primary visual cortex.. J. Neurosci. 24 (39), 8441–8453. doi: 10.1523/JNEU- 
ROSCI.1400-04.2004 . 

Blomquist, P., Devor, A., Indahl, U.G., Ulbert, I., Einevoll, G.T., Dale, A.M., 2009. Es- 
timation of thalamocortical and intracortical network models from joint thalamic 
single-electrode and cortical laminar-electrode recordings in the rat barrel system. 
PLoS Comput. Biol. 5 (3). doi: 10.1371/journal.pcbi.1000328 . 

Bojak, I., Oostendorp, T.F., Reid, A.T., Kötter, R., 2010. Connecting mean field mod- 
els of neural activity to EEG and fMRI data. Brain Topogr. 23 (2), 139–149. 
doi: 10.1007/s10548-010-0140-3 . 

Brunel, N. , 2000. Dynamics of sparsely connected networls of excitatory and inhibitory 
neurons. J. Comput. Neurosci. 8, 183–208 . 

Bruyns-Haylett, M., Luo, J., Kennerley, A.J., Harris, S., Boorman, L., Milne, E., 
Vautrelle, N., Hayashi, Y., Whalley, B.J., Jones, M., Berwick, J., Riera, J., Zheng, Y., 
2017. The neurogenesis of P1 and N1: a concurrent EEG/LFP study. NeuroImage 146, 
575–588. doi: 10.1017/CBO9781107415324.004 . 

Buzsáki, G., Anastassiou, C.A., Koch, C., 2012. The origin of extracellular fields 
and currents–EEG, ECoG, LFP and spikes.. Nat. Rev. Neurosci. 13 (6), 407–420. 
doi: 10.1038/nrn3241 . 

Carnevale, N.T. , Hines, M.L. , 2006. The NEURON Book. Cambridge University Press, Cam- 
bridge . 

Chatzikalymniou, A.P., Skinner, F.K., 2018. Deciphering the contribution of oriens- 
lacunosum/ moleculare (OLM) cells to intrinsic 𝜃 rhythms using biophysical local 
field potential (LFP) models. eNeuro 5 (4). doi: 10.1523/ENEURO.0146-18.2018 . 

Cohen, M.X., 2017. Where does EEG come from and what does it mean? Trends Neurosci. 
40 (4), 208–218. doi: 10.1016/j.tins.2017.02.004 . 

Coombes, S., 2006. Neural fields. Scholarpedia 1 (6), 1373. doi: 10.4249/scholarpe- 
dia.1373 . Revision #138631 

Dale, A.M. , Fischl, B. , Sereno, M.I. , 1999. Cortical surface-based analysis segmentation, I 
reconstruction, surface. NeuroImage 9, 179–194 . 

David, O., Friston, K.J., 2003. A neural mass model for MEG/EEG: coupling and neuronal 
dynamics. NeuroImage 20 (3), 1743–1755. doi: 10.1016/j.neuroimage.2003.07.015 . 

Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., Friston, K., 2008. The dynamic brain: 
from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4 (8). 
doi: 10.1371/journal.pcbi.1000092 . 

Dmochowski, J.P., Koessler, L., Norcia, A.M., Bikson, M., Parra, L.C., 2017. Optimal use 
of eeg recordings to target active brain areas with transcranial electrical stimulation. 
NeuroImage 157 (May), 69–80. doi: 10.1016/j.neuroimage.2017.05.059 . 

Egger, R., Dercksen, V.J., Udvary, D., Hege, H.-C., Oberlaender, M., 2014. Generation of 
dense statistical connectomes from sparse morphological data. Front. Neuroanat. 8 
(November), 1–18. doi: 10.3389/fnana.2014.00129 . 

Einevoll, G.T., Destexhe, A., Diesmann, M., Grün, S., Jirsa, V., de Kamps, M., Migliore, M., 
Ness, T.V., Plesser, H.E., Schürmann, F., 2019. The scientific case for brain simula- 
tions. Neuron 102, 735–744. doi: 10.1016/j.neuron.2019.03.027 . 

Einevoll, G.T. , Kayser, C. , Logothetis, N.K. , Panzeri, S. , 2013. Modelling and analysis of 
local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 
14 . 

Einevoll, G.T. , Lindén, H. , Tetzlaff, T. , Ł ȩ ski, S. , Pettersen, K.H. , (Ed), R.Q.Q. , (Ed), S.P. , 
2013. Principles of Neural Coding, Local Field Potentials Biophysical Origin and Anal- 
ysis. CRC Press, Florida . 

Einevoll, G.T., Pettersen, K.H., Devor, A., Ulbert, I., Halgren, E., Dale, A.M., 2007. Lam- 
inar population analysis: estimating firing rates and evoked synaptic activity from 

multielectrode recordings in rat barrel cortex.. J. Neurophysiol. 97 (3), 2174–2190. 
doi: 10.1152/jn.00845.2006 . 

Eyal, G. , Verhoog, M.B. , Testa-Silva, G. , Deitcher, Y. , Benavides-Piccione, R. , DeFelipe, J. , 
De Kock, C.P. , Mansvelder, H.D. , Segev, I. , 2018. Human cortical pyramidal neurons: 
from spines to spikes via models. Front. Cell. Neurosci. 12, 181 . 

Eyal, G. , Verhoog, M.B. , Testa-Silva, G. , Deitcher, Y. , Lodder, J.C. , Benavides-Piccione, R. , 
Morales, J. , DeFelipe, J. , de Kock, C.P. , Mansvelder, H.D. , Segev, I. , 2016. Unique 
membrane properties and enhanced signal processing in human neocortical neurons. 
e-Life . 

Freestone, D.R., Karoly, P.J., Peterson, A.D., Kuhlmann, L., Lai, A., Goodarzy, F., 
Cook, M.J., 2015. Seizure prediction: science fiction or soon to become reality? Curr. 
Neurol. Neurosci. Rep. 15 (11). doi: 10.1007/s11910-015-0596-3 . 

Gentet, L.J. , Stuart, G.J. , Clements, J.D. , 2000. Direct measurement of specific membrane 
capacitance in neurons. Biophys. J. 79 (1), 314–320 . 

Gramfort, A., Luessi, M., Larson, E., Engemann, D.A., Strohmeier, D., Brodbeck, C., Parkko- 
nen, L., Hämäläinen, M.S., 2014. MNE software for processing MEG and EEG data. 
NeuroImage 86, 446–460. doi: 10.1016/j.neuroimage.2013.10.027 . 

Gratiy, S.L., Billeh, Y.N., Dai, K., Mitelut, C., Feng, D., Gouwens, N.W., Cain, N., Koch, C., 
Anastassiou, C.A., Arkhipov, A., 2018. BioNet: a Python interface to NEURON 
for modeling large-scale networks. PLoS One 13 (8), e0201630. doi: 10.1371/jour- 
nal.pone.0201630 . 

Griffiths, D.J. , 1999. Introduction to Electromagnetism 10, P429 . 
Hagen, E., Dahmen, D., Stavrinou, M.L., Lindén, H., Tetzlaff, T., Van Albada, S.J., Grün, S., 

Diesmann, M., Einevoll, G.T., 2016. Hybrid scheme for modeling local field potentials 
from point-neuron networks. Cereb. Cortex 26 (12), 4461–4496. doi: 10.1093/cer- 
cor/bhw237 . 

Hagen, E., Næss, S., Ness, T.V., Einevoll, G.T., 2018. Multimodal modeling of neural net- 
work activity: computing LFP, ECoG, EEG and MEG signals with LFPy 2.0. Front. 
Neuroinform. 12 (92). doi: 10.3389/fninf.2018.00092 . 

Hagen, E., Næss, S., Ness, T.V., Einevoll, G.T., 2019. LFPy - multimodal 
modeling of extracellular neuronal recordings in Python. In: Encyclope- 
dia of Computational Neuroscience. Springer, New York, NY, p. 620286. 
doi: 10.1007/978-1-4614-7320-6_100681-1 . 

Hämäläinen, M. , Haari, R. , Ilmoniemi, R.J. , Knuutila, J. , Lounasmaa, O.V. , 1993. Magne- 
toencephalography – theory, instrumentation, and application to noninvasive studies 
of the working human brain. Rev. Modern Phys. 65 . 

Haufe, S. , Huang, Y. , Parra, L.C. , 2015. A highly detailed FEM volume conductor model 
based on the ICBM152 average head template for EEG source imaging and TCS tar- 
geting. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 5744–5747 . 

Hay, E. , Hill, S. , Schürmann, F. , Markram, H. , Segev, I. , 2011. Models of neocortical layer 
5b pyramidal cells capturing a wide range of dendritic and perisomatic active prop- 
erties. PLoS Comput. Biol. 7 (7) . 

Holt, G.R. , Koch, C. , 1999. Electrical interactions via the extracellular potential near cell 
bodies. J. Comput. Neurosci. 6 . 



S. Næss, G. Halnes, E. Hagen et al. NeuroImage 225 (2021) 117467 

Huang, Y. , Dmochowski, J.P. , Su, Y. , Datta, A. , Rorden, C. , Parra, L.C. , 2013. Automated 
MRI segmentation for individualized modeling of current flow in the human head. J. 
Neural Eng. 10 (6), 066004 . 

Huang, Y., Parra, L.C., 2015. Fully automated whole-head segmentation with im- 
proved smoothness and continuity, with theory reviewed. PLoS One 10 (5), 1–34. 
doi: 10.1371/journal.pone.0125477 . 

Huang, Y., Parra, L.C., Haufe, S., 2016. The New York Head–A precise standardized volume 
conductor model for EEG source localization and tES targeting. NeuroImage 140, 150–
162. doi: 10.1016/j.neuroimage.2015.12.019 . 

Ilmoniemi, R.J. , Sarvas, J. , 2019. Brain Signals: Physics and Mathematics of MEG and 
EEG. MIT Press . 

Jackson, J.D. , 1998. Classical Electrodynamics, third ed. Wiley . 
Jirsa, V.K., Jantzen, K.J., Fuchs, A., Kelso, J.A., 2002. Spatiotemporal forward solution of 

the EEG and MEG using network modeling. IEEE Trans. Med. Imaging 21 (5), 493–
504. doi: 10.1109/TMI.2002.1009385 . 

Jones, S.R., Pritchett, D.L., Sikora, M.a., Stufflebeam, S.M., Hämäläinen, M., Moore, C.I., 
2009. Quantitative analysis and biophysically realistic neural modeling of the MEG 
mu rhythm: rhythmogenesis and modulation of sensory-evoked responses.. J. Neuro- 
physiol. 102 (6), 3554–3572. doi: 10.1152/jn.00535.2009 . 

Jones, S.R., Pritchett, D.L., Stufflebeam, S.M., Hämäläinen, M., Moore, C.I., 2007. Neu- 
ral correlates of tactile detection: a combined magnetoencephalography and bio- 
physically based computational modeling study. J. Neurosci. 27 (40), 10751–10764. 
doi: 10.1523/JNEUROSCI.0482-07.2007 . 

Kalmbach, B.E., Buchin, A., Long, B., Close, J., Nandi, A., Miller, J.A., Bakken, T.E., 
Hodge, R.D., Chong, P., de Frates, R., Dai, K., Maltzer, Z., Nicovich, P.R., Keene, C.D., 
Silbergeld, D.L., Gwinn, R.P., Cobbs, C., Ko, A.L., Ojemann, J.G., Koch, C., Anastas- 
siou, C.A., Lein, E.S., Ting, J.T., 2018. h-Channels contribute to divergent intrinsic 
membrane properties of supragranular pyramidal neurons in human versus mouse 
cerebral cortex. Neuron 100 (5), 1194–1208.e5. doi: 10.1016/j.neuron.2018.10.012 . 

Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., Schwaiger, J., 1998. Induced 
alpha band power changes in the human EEG and attention. Neurosci. Lett. 244 (2), 
73–76. doi: 10.1016/S0304-3940(98)00122-0 . 

Koch, C. , 1999. Biophysics of Computation. Oxford Univ Press, Oxford . 
Light, G.A., Näätänen, R., 2013. Mismatch negativity is a breakthrough biomarker 

for understanding and treating psychotic disorders. PNAS 110 (38), 15175–15176. 
doi: 10.1073/pnas.1313287110 . 

Lindén, H. , Pettersen, K.H. , Einevoll, G.T. , 2010. Intrinsic Dendritic Filtering Gives Low–
pass Power Spectra of Local Field Potentials. J. Comput. Neurosci. 29, 423–444 . 

Linssen, C., Lepperød, M. E., Mitchell, J., Pronold, J., Eppler, J. M., Keup, C., Peyser, A., 
Kunkel, S., Weidel, P., Nodem, Y., Terhorst, D., Deepu, R., Deger, M., Hahne, J., Sinha, 
A., Antonietti, A., Schmidt, M., Paz, L., Garrido, J., Ippen, T., Riquelme, L., Serenko, 
A., Kühn, T., Kitayama, I., Møk, H., Spreizer, S., Jordan, J., Krishnan, J., Senden, 
M., Hagen, E., Shusharin, A., Vennemo, S. B., Rodarie, D., Morrison, A., Graber, S., 
Schuecker, J., Diaz, S., Zajzon, B., Plesser, H. E., 2018. Nest 2.16.0. 10.5281/zen- 
odo.1400175 

Logg, A., Mardal, K.-a., Wells, G.N., 2012. Automated solution of differential equations 
by the finite element method. Vol. 84 of Lecture Notes in Computational Science and 
Engineering. Springer, Berlin, Heidelberg doi: 10.1007/978-3-642-23099-8 . 

Lopes da Silva, F., 2013. EEG and MEG: relevance to neuroscience. Neuron 80 (5), 1112–
1128. doi: 10.1016/j.neuron.2013.10.017 . 

Luo, J. , Macias, S. , Ness, T.V. , Einevoll, G.T. , Zhang, K. , Moss, C.F. , 2018. Neural timing 
of stimulus events with microsecond precision. PLoS Biol. 16 (10), 1–22 . 

Mainen, Z.F. , Sejnowski, T.J. , 1996. Influence of dendritic structure on firing pattern in 
model neocortical neurons. Nature 382 . 

Mäki-Marttunen, T., Kaufmann, T., Elvsåshagen, T., Devor, A., Djurovic, S., Westlye, L.T., 
Linne, M.-l., Rietschel, M., Schubert, D., Borgwardt, S., Efrim-budisteanu, M., Bet- 
tella, F., Halnes, G., Hagen, E., 2019. Biophysical psychiatry–how computational neu- 
roscience can help to understand the complex mechanisms of mental disorders. Front. 
Psychiatry 10 (534), 1–14. doi: 10.3389/fpsyt.2019.00534 . 

Mäki-Marttunen, T. , Krull, F. , Bettella, F. , Hagen, E. , Næss, S. , Ness, T.V. , Moberget, T. , 
Elvsåshagen, T. , Metzner, C. , Devor, A. , et al. , 2019. Alterations in schizophrenia-as- 
sociated genes can lead to increased power in delta oscillations. Cereb. Cortex 29 (2), 
875–891 . 

Malmivuo, J. , Plonsey, R. , 1995. Bioelectromagnetism - Principles and Applications of 
Bioelectric and Biomagnetic Fields. Oxford University Press . 

Markram, H., Muller, E., Ramaswamy, S., Reimann, M.W., Abdellah, M., Sanchez, C.A., 
Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., Kahou, G.A.A., Berger, T.K., 
Bilgili, A., Buncic, N., Chalimourda, A., Chindemi, G., Courcol, J.-D., Delalon- 
dre, F., Delattre, V., Druckmann, S., Dumusc, R., Dynes, J., Eilemann, S., Gal, E., 
Gevaert, M.E., Ghobril, J.-P., Gidon, A., Graham, J.W., Gupta, A., Haenel, V., Hay, E., 
Heinis, T., Hernando, J.B., Hines, M., Kanari, L., Keller, D., Kenyon, J., Khazen, G., 
Kim, Y., King, J.G., Kisvarday, Z., Kumbhar, P., Lasserre, S., Le Bé, J.-V., Ma- 
galhães, B.R., Merchán-Pérez, A., Meystre, J., Morrice, B.R., Muller, J., Muñoz- 
Céspedes, A., Muralidhar, S., Muthurasa, K., Nachbaur, D., Newton, T.H., Nolte, M., 
Ovcharenko, A., Palacios, J., Pastor, L., Perin, R., Ranjan, R., Riachi, I., Rodríguez, J.- 
R., Riquelme, J.L., Rössert, C., Sfyrakis, K., Shi, Y., Shillcock, J.C., Silberberg, G., 
Silva, R., Tauheed, F., Telefont, M., Toledo-Rodriguez, M., Tränkler, T., Van Geit, W., 
Díaz, J.V., Walker, R., Wang, Y., Zaninetta, S.M., DeFelipe, J., Hill, S.L., Segev, I., 
Schürmann, F., 2015. Reconstruction and simulation of neocortical microcircuitry. 
Cell 163 (2), 456–492. doi: 10.1016/j.cell.2015.09.029 . 

Mazzoni, A., Lindèn, H., Cuntz, H., Lansner, A., Panzeri, S., Einevoll, G.T., 2015. Com- 
puting the Local Field Potential (LFP) from integrate-and-fire network models. PLOS 
Comput. Biol. 11 (12), e1004584. doi: 10.1371/journal.pcbi.1004584 . 

McColgan, T., Liu, J., Kuokkanen, P.T., Carr, C.E., Wagner, H., Kempter, R., 2017. 
Dipolar extracellular potentials generated by axonal projections. eLife 6, e26106. 
doi: 10.7554/eLife.26106 . 

Miceli, S. , Ness, T.V. , Einevoll, G.T. , Schubert, D. , 2017. Impedance Spectrum in Cortical 
Tissue: Implications for Propagation of LFP Signals on the Microscopic Level. eNeuro 
4 (1), 1–15 . 

Murakami, S., Hirose, A., Okada, Y.C., 2003. Contribution of ionic currents to mag- 
netoencephalography (MEG) and electroencephalography (EEG) signals generated 
by guinea-pig CA3 slices.. Jo. Physiol. 553 (Pt 3), 975–985. doi: 10.1113/jphys- 
iol.2003.051144 . 

Murakami, S., Okada, Y., 2006. Contributions of principal neocortical neurons to magne- 
toencephalography and electroencephalography signals.. J. Physiol. 575 (Pt 3), 925–
936. doi: 10.1113/jphysiol.2006.105379 . 

Murakami, S., Zhang, T., Hirose, a., Okada, Y.C., 2002. Physiological origins of evoked 
magnetic fields and extracellular field potentials produced by guinea-pig CA3 hip- 
pocampal slices. J. Physiol. 544 (1), 237–251. doi: 10.1113/jphysiol.2002.027094 . 

Ness, T.V., Chintaluri, C., Potworowski, J., Ł ȩ ski, S., G ł a ̧ bska, H., Wójcik, D.K., 
Einevoll, G.T., 2015. Modelling and analysis of electrical potentials recorded 
in microelectrode arrays (MEAs). Neuroinformatics 13 (4), 403–426. 
doi: 10.1007/s12021-015-9265-6 . 

Ness, T. V., Halnes, G., Næss, S., Pettersen, K. H., Einevoll, G. T., 2020. Computing extra- 
cellular electric potentials from neuronal simulations. arXiv 2006.16630. 

Ness, T.V., Remme, M.W.H., Einevoll, G.T., 2016. Active subthreshold dendritic 
conductances shape the local field potential. J. Physiol. 594 (13), 3809–3825. 
doi: 10.1113/JP272022 . 

Ness, T.V., Remme, M.W.H., Einevoll, G.T., 2018. h-type membrane current shapes the 
local field potential from populations of pyramidal neurons. J. Neurosci. 38 (26), 
6011–6024. doi: 10.1523/JNEUROSCI.3278-17.2018 . 

Neymotin, S.A. , Daniels, D.S. , Caldwell, B. , McDougal, R.A. , Carnevale, N.T. , Jas, M. , 
Moore, C.I. , Hines, M.L. , Hämäläinen, M. , Jones, S.R. , 2020. Human Neocortical Neu- 
rosolver (HNN), a new software tool for interpreting the cellular and network origin 
of human MEG/EEG data. eLife 9, e51214 . 

Niedermeyer, E., 2003. The clinical relevance of EEG interpretation. Clin. Electroen- 
cephalogr. 34 (3), 93–98. doi: 10.1177/155005940303400303 . 

Nunez, P.L. , Srinivasan, R. , 2006. Electric Fields of the Brain, second ed. Oxford University 
Press, New York . 

Næss, S. , Chintaluri, C. , Ness, T.V. , M.Dale, A. , Einevoll, G.T. , Wójcik, D. , 2017. Four–
sphere head model for EEG signals revisited. Front. Hum. Neurosci. . 

Palva, S., Palva, J.M., 2011. Functional roles of alpha-band phase synchronization in lo- 
cal and large-scale cortical networks. Front. Psychol. 2 (SEP), 1–15. doi: 10.3389/fp- 
syg.2011.00204 . 

Pesaran, B., Vinck, M., Einevoll, G.T., Sirota, A., Fries, P., Siegel, M., Truccolo, W., 
Schroeder, C.E., Srinivasan, R., 2018. Investigating large-scale brain dynamics using 
field potential recordings: analysis and interpretation. Nat. Neurosci. 21, 903–919. 
doi: 10.1038/s41593-018-0171-8 . 

Pettersen, K. , Lindén, H. , Tetzlaff, T. , Einevoll, G.T. , 2014. Power laws from linear neu- 
ronal cable theory: Power spectral densities of the soma potential, soma membrane 
current and single-neuron contribution to the EEG. PLoS Comput. Biol. 10 . 

Pettersen, K.H., Devor, A., Ulbert, I., Dale, A.M., Einevoll, G.T., 2006. Current-source den- 
sity estimation based on inversion of electrostatic forward solution: effects of finite 
extent of neuronal activity and conductivity discontinuities.. J. Neurosci. Methods 
154 (1–2), 116–133. doi: 10.1016/j.jneumeth.2005.12.005 . 

Pettersen, K.H. , Einevoll, G.T. , 2008. Amplitude variability and extracellular low-pass fil- 
tering of neuronal spikes. Biophys. J. 94 . 

Pettersen, K.H. , Lindén, H. , Dale, A.M. , Einevoll, G.T. , 2012. Extracellular spikes and CSD. 
Handb. Neural Act. Meas. . 

Pfurtscheller, G., Cooper, R., 1975. Frequency dependence of the transmission of the 
EEG from cortex to scalp. Electroencephalogr. Clin.Neurophysiol. 38 (1), 93–96. 
doi: 10.1016/0013-4694(75)90215-1 . 

Potjans, T.C., Diesmann, M., 2014. The cell-type specific cortical microcircuit: relating 
structure and activity in a full-scale spiking network model.. Cereb. Cortex 24 (3), 
785–806. doi: 10.1093/cercor/bhs358 . 

Ranta, R., Le Cam, S., Tyvaert, L., Louis-Dorr, V., 2017. Assessing human brain impedance 
using simultaneous surface and intracerebral recordings. Neuroscience 343, 411–422. 
doi: 10.1016/j.neuroscience.2016.12.013 . 

Reimann, M.W., Anastassiou, C.A., Perin, R., Hill, S.L., Markram, H., Koch, C., 
2013. A biophysically detailed model of neocortical local field potentials pre- 
dicts the critical role of active membrane currents. Neuron 79 (2), 375–390. 
doi: 10.1016/j.neuron.2013.05.023 . 

Reimann, M.W. , Gevaert, M. , Shi, Y. , Lu, H. , Markram, H. , Muller, E. , 2019. A null model 
of the mouse whole-neocortex micro-connectome. Nat. Commun. 10 (3903), 1–38 . 

Ritter, P., Schirner, M., Mcintosh, A.R., Jirsa, V.K., 2013. The virtual brain integrates 
computational modeling and multimodal neuroimaging. Brain Connect. 3 (2), 121–
145. doi: 10.1089/brain.2012.0120 . 

Rogers, N., Thunemann, M., Devor, A., Gilja, V., 2020. Impact of brain surface bound- 
ary conditions on electrophysiology and implications for electrocorticography. Front. 
Neurosci. 14 (763). doi: 10.3389/fnins.2020.00763 . 

Rush, S. , Driscoll, D.A. , 1969. EEG electrode sensitivity - an application of reciprocity. 
IEEE Trans. Biomed. Eng. BME-16 (1), 15–22 . 

Sahin, M., Jones, S.R., Sweeney, J.A., Berry-Kravis, E., Connors, B.W., Ewen, J.B., Hart- 
man, A.L., Levin, A.R., Potter, W.Z., Mamounas, L.A., 2019. Discovering translational 
biomarkers in neurodevelopmental disorders. Nat. Rev. Drug Discov. 18, 235–236. 
doi: 10.1038/d41573-018-00010-7 . 

Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K., 2015. Mathematical framework for 
large-scale brain network modeling in The Virtual Brain. NeuroImage 111, 385–430. 
doi: 10.1016/j.neuroimage.2015.01.002 . 

Sanz-Leon, P., Knock, S.A., Woodman, M.M., Domide, L., Mersmann, J., Mcintosh, A.R., 
Jirsa, V., 2013. The Virtual Brain: a simulator of primate brain network dynamics. 
Front. Neuroinform. 7 (10). doi: 10.3389/fninf.2013.00010 . 



S. Næss, G. Halnes, E. Hagen et al. NeuroImage 225 (2021) 117467 

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Diesmann, M., van Albada, S.J., 2018. 
A multi-scale layer-resolved spiking network model of resting-state dynamics in 
macaque visual cortical areas. PLoS Comput. Biol. 14, 1–38. doi: 10.1371/jour- 
nal.pcbi.1006359 . 

Senk, J., Hagen, E., van Albada, S. J., Diesmann, M., 2018. Reconciliation of weak pairwise 
spike-train correlations and highly coherent local field potentials across space. arXiv, 
1–44. http://arxiv.org/abs/1805.10235 

Seo, H., Kim, D., Jun, S.C., 2016. Effect of anatomically realistic full-head model on acti- 
vation of cortical neurons in subdural cortical stimulation-a computational study. Sci. 
Rep. 6 (May), 1–12. doi: 10.1038/srep27353 . 

Siegel, M., Donner, T.H., Engel, A.K., 2012. Spectral fingerprints of large-scale neuronal 
interactions. Nat. Rev. Neurosci. 13 (2), 121–134. doi: 10.1038/nrn3137 . 

Skaar, J.-E.W., Stasik, A.J., Hagen, E., Ness, T.V., Einevoll, G.T., 2020. Estimation of neural 
network model parameters from local field potentials (LFPs). PLoS Comput. Biol. 16 
(3), e1007725. doi: 10.1101/564765 . 

Sliva, D.D., Black, C.J., Bowary, P., Agrawal, U., Santoyo, J.F., Philip, N.S., Green- 
berg, B.D., Moore, C.I., Jones, S.R., 2018. A prospective study of the impact of tran- 
scranial alternating current stimulation on EEG correlates of somatosensory percep- 
tion. Front. Psychol. 9 (NOV), 1–17. doi: 10.3389/fpsyg.2018.02117 . 

Srinivasan, R. , Nunez, P.L. , Silberstein, R.B. , 1998. Spatial filtering and neocortical dy- 
namics: estimates of EEG coherence. IEEE Trans. Biomed. Eng. . 

Sterratt, D. , Graham, B. , Gillies, A. , Willshaw, D. , 2011. Principles of Computational Mod- 
eling in Neuroscience. Cambridge University Press, Cambridge . 

Suzuki, M., Larkum, M.E., 2017. Dendritic calcium spikes are clearly detectable at the 
cortical surface. Nat. Commun. 8 (276), 1–10. doi: 10.1038/s41467-017-00282-4 . 

Tele ń czuk, B., Baker, S.N., Kempter, R., Curio, G., 2015. Correlates of a sin- 
gle cortical action potential in the epidural EEG. NeuroImage 109, 357–367. 
doi: 10.1016/j.neuroimage.2014.12.057 . 

Tele ń czuk, B., Quyen, M.L.V., Cash, S.S., Hatsopoulos, N.G., Destexhe, A., Neuro- 
sciences, D., National, C., Recherche, D., 2017. Local field potentials primarily reflect 
inhibitory neuron activity in human and monkey cortex. Sci. Rep. 7 (40211), 1–16. 
doi: 10.1101/052282 . 

Tele ń czuk, B. , Telenczuk, M. , Destexhe, A. , 2020. A kernel-based method to calculate local 
field potentials from networks of spiking neurons. J. Neurosci Methods 344, 108871 . 

Tele ń czuk, M. , Tele ń czuk, B. , Destexhe, A. , 2020. Modelling unitary fields and the sin- 
gle-neuron contribution to local field potentials in the hippocampus. J Physiol 598, 
3957–3972 . 

Uhlirova, H., Kilic, K., Tian, P., Sakadz, S., Saisan, P.A., Gagnon, L., Thunemann, M., 
Nizar, K., Yasseen, M.A., Jr, D.J.H., Vandenberghe, M., Djurovic, S., Andreassen, O.A., 
Silva, G.A., Masliah, E., Kleinfeld, D., Vinogradov, S., Buxton, R.B., Einevoll, G.T., 
Boas, D.A., Dale, A.M., Devor, A., Devor, A., 2016. The roadmap for estimation of 
cell-type- specific neuronal activity from non-invasive measurements. Proc. R. Soc. 
Lond. Ser.B Biol. Sci. 371 (August). doi: 10.1098/rstb.2015.0356 . 

Vermaas, M., Piastra, M.C., Oostendorp, T., Ramsey, N., Tiesinga, P.H.E., 2020. When 
to include ECoG electrode properties in volume conduction models. J. Neural Eng. 
doi: 10.1088/1741-2552/abb11d . 

Vorwerk, J., Cho, J.H., Rampp, S., Hamer, H., Knösche, T.R., Wolters, C.H., 2014. A guide- 
line for head volume conductor modeling in EEG and MEG. NeuroImage 100, 590–
607. doi: 10.1016/j.neuroimage.2014.06.040 . 

Vorwerk, J., Hanrath, A., Wolters, C.H., Grasedyck, L., 2019. The multipole approach for 
EEG forward modeling using the finite element method. NeuroImage 201 (February), 
116039. doi: 10.1016/j.neuroimage.2019.116039 . 

Ziegler, E., Chellappa, S.L., Gaggioni, G., Ly, J.Q., Vandewalle, G., André, E., 
Geuzaine, C., Phillips, C., 2014. A finite-element reciprocity solution for EEG for- 
ward modeling with realistic individual head models. NeuroImage 103, 542–551. 
doi: 10.1016/j.neuroimage.2014.08.056 . 





Appendices





Appendix A

Comments on the four-sphere
model

A.1 Agreement with Cuffin, 1979

In Paper I, we compare the corrected analytical solution with the formulations
by Srinivasan, 1998 [33] and Nunez and Srinivasan, 2006 [1]. Another solution
of the four-sphere model, that only gives the electric potential on the scalp, is
provided by Cuffin, 1979 [28]. We found that our solution agrees with the Cuffin,
1979-solution (see Figure A.1).

0 10 20 30 40 50 60 70 80 90
Polar angle (degrees)

0

20

40

60

80

100

EE
G 

(
V)

Four-sphere calculation of EEG signals from radial dipole

Næss2017

Cuffin1978

Fig A.1. Comparison of EEG calculations with four-sphere model
solution by Cuffin and Cohen 1979. Radial dipole of size 10−7 Am at 7.8
cm above sphere center. Model parameters as in Paper 1.
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A. Comments on the four-sphere model

A.2 Note on convergence

It is known that the four-sphere model can converge slowly for specific locations of
the current dipole and the measurement electrode. By looking at the summation
terms in Equation (5), (6), (17) and (18) in Paper III, we see that the following
terms must all converge:

A1
n (

r

r1
)
n

n, (A.1)

(
rz
r
)
n+1

n, (A.2)

for the electrode location in the brain, s = 1, and

Asn (
r

rs
)
n

n, (A.3)

Bsn (
rs
r
)
n+1

n, (A.4)

for s = 2,3,4. The convergence rate µ can be found as follows:

µ = lim
n→∞

xn+1 −L

xn −L
,

where L = limn→∞ xn. For the terms listed above, we found two expressions: µ1
for (A.1) and (A.3) and µ2 for (A.2) and (A.4):

µ1 =
r rz
r2
s

,

µ2 =
rz

r
,

where s = 1,2,3,4.
The four-sphere head model solution will converge slowly when µ1 or µ2 is

close to 1. Looking at µ2, we see that we will experience slow convergence if
the measurement point r is close to the dipole location rz. This should not
really be a problem, since the current dipole approximation is not meant for
computing electric potentials very close to the dipole. From µ1, we see that
the convergence is slow if the product rrz ∼ r2

s . This confirms our experience
with very slow convergence when the dipole is placed close to the brain surface,
and the measurement location is close to the brain surface, that is either in
brain tissue, or in the CSF layer. If the diameters of the different media are
relatively similar, for example if the brain, CSF, skull and scalp diameters are
unreasonably large, this can also lead to large µ1 and slow convergence. To
avoid slow convergence for the four-sphere model implementation in LFPy, we
recommend to keep a 1 µm buffer between the current dipole moment and the
brain surface, and between the electrode and any layer surface.

For approximations of multi-sphere models avoiding the slow convergence,
see DeMunck, 1993 [30], Zhang, 1995 [31] and Sun, 1997 [32].
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