
Correlators of Polynomial Processes

Fred Espen Benth∗ Silvia Lavagnini†

July 22, 2021

Abstract
In the setting of one-dimensional polynomial jump-diffusion dynamics, we provide an explicit

formula for computing correlators, namely, cross-moments of the process at different time points
along its path. The formula appears as a linear combination of exponentials of the generator matrix,
extending the well-known moment formula for polynomial processes. The developed framework can,
for example, be applied in financial pricing, such as for path-dependent options and in a stochastic
volatility models context. In applications to options, having closed and compact formulations is
attractive for sensitivity analysis and risk management, since Greeks can be derived explicitly.

Keywords Polynomial jump-diffusion process; Correlators; Eliminating and duplicating matrices;
Generator matrix; Hankel matrix; Stochastic volatility; Path-dependent option; Greeks.

1 Introduction

A jump-diffusion process is called polynomial if its extended generator maps any polynomial function
to a polynomial function of equal or lower degree. As a consequence, expectations of any polynomial
in the future state of the process, conditioned on the information up to the current state, are given by
a polynomial in the current state. Conditional moments can thus be calculated in closed form without
any knowledge of the probability distribution nor of the characteristic function, up to the computation
of the exponential of the generator matrix. The class of polynomial processes includes exponential
Lévy processes and affine processes, with the Ornstein–Uhlenbeck processes as a canonical example.
Moreover, polynomial jump-diffusions have been studied both in a Markovian [9, 10] and non-Markovian
[18] contexts. We refer to [16] for a mathematical analysis on polynomial diffusions.

Because of their closed moment formula, polynomial processes have many applications in finance
and one of the first is addressed in [36]. In the literature, we find examples on interest rates [13, 15],
stochastic volatility models [1, 2, 16], option pricing [3, 18] and energy modelling [26, 33]. In [10] the
properties of jump-diffusion processes are exploited to improve the performance of computational and
statistical methods, such as the generalized method of moments, and for variance reduction techniques
in Monte Carlo methods. Further examples cover stochastic portfolio theory [11].

We consider a stochastic basis (⌦,F ,P) with a filtration {Ft}t�0 and we work in a one-dimensional
setting. Let Y be a polynomial jump-diffusion real-valued process Y and Hn(x) 2 Rn+1 a vector basis
of polynomials, n � 1. For any polynomial function p of degree n with vector of coefficients ~p 2 Rn+1

with respect to Hn(x), the moment formula gives

E [p(Y (T)) | Ft] = ~p
>
e
Gn(T�t)

Hn(Y (t)), 0  t  T,

with Gn 2 R(n+1)⇥(n+1) the corresponding generator matrix and > the transpose operator. In this
article, we extend the framework to m+ 1 polynomial functions and study conditional expectations of
the form

E [pm (Y (s0)) pm�1 (Y (s1)) · · · · · p0 (Y (sm)) | Ft] (1.1)

which we call (m+ 1)-point correlators. Here t < s0 < s1 < · · · < sm < T < 1 and pk are polynomial
functions of degree nk, k = 0, . . . ,m. We denote by n := max {n0, . . . , nm} the maximal degree.

∗
Department of Mathematics, University of Oslo, 0316 Blindern, Norway; fredb@math.uio.no.

†
Department of Mathematics, University of Oslo, 0316 Blindern, Norway; silval@math.uio.no.

1

For m = 0 equation (1.1) corresponds to computing moments of Y , which are given by the moment
formula. Hence the (m + 1)-point correlators can in principle be obtained for any m > 0 by iterating
the moment formula. For example, for m = 1 one applies the tower rule for Ft ✓ Fs0 to get

E [p1 (Y (s0)) p0 (Y (s1)) | Ft] = E [p1 (Y (s0)) q0 (Y (s0); s1 � s0) | Ft] (1.2)

where
q0 (Y (s0); s1 � s0) := E [p0 (Y (s1)) | Fs0] = ~p

>
0 e

Gn0 (s1�s0)Hn0(Y (s0))

is the polynomial obtained by applying the moment formula to p0(x). In particular, q0(x; s) has time
dependent coefficients q

s

0,k, s � 0, k = 0, . . . , n0. The product p̃1(x; s) := p1 (x) q0 (x; s) is then a
polynomial function of degree n0 + n1 with time dependent coefficients given by

p̃
s

1,j =
X

k+i=j

p1,i q
s

0,k for j = 0, . . . , n0 + n1 and s � 0.

Another application of the moment formula, this time to p̃1(x; s), produces an expression for (1.2) of
the form

E [p1 (Y (s0)) p0 (Y (s1)) | Ft] = ~̃p
s1�s0 >
1 e

Gn0+n1 (s0�t)
Hn0+n1(Y (t)).

This procedure can then be iterated for larger values of m. However, performing the calculations is
non-trivial because of the algebraic complexity of manipulating the expressions involved. With this
article we make headway on this issue by providing a fully explicit closed formula for correlators.

The key for proving the moment formula lies in the existence of the generator matrix Gn: for a fixed
n and a fixed basis vector of polynomials Hn(x), this is the linear representation of the action of the
extended generator on Hn(x). However, for m = 1 we must deal with the product of two basis vectors,
which is an object of the form Hn(x)Hn(x)> 2 R(n+1)⇥(n+1) and for which a generator matrix cannot
be constructed. We then consider the vectorization of Hn(x)Hn(x)>, namely we stack the columns
of Hn(x)Hn(x)> into a single column vector. The matrix Hn(x)Hn(x)> contains however redundant
terms and so does its vectorization. For Hn(x) := (1, x, x2

, . . . , x
n)>, which is the case we consider here,

redundant terms means repeated powers of x. This implies that the corresponding generator matrix
contains equal rows and/or zero columns, making it impossible to generalize the framework to m > 1.

We resolve this issue by introducing two linear operators, the first of which we call the L-eliminating
matrix. This eliminates from the vectorization of Hn(x)Hn(x)> the redundant powers of x and returns
a vector that coincides with H2n(x), for which there exists the generator matrix G2n. Using the inverse
operator, called the L-duplicating matrix, we then recover the full-dimensional vector, and, finally, via
inverse-vectorization we obtain the linear operator required, which allows to compute the correlator
formula for m = 1. We summarize these steps in the following graph:

Hn(x)Hn(x)> //

✏✏

vectorization // L-eliminating matrix // H2n(x)

✏✏

extended generator

✏✏

generator matrix

✏✏
G
�
Hn(x)Hn(x)>

�
inverse-vectorizationoo L-duplicating matrixoo G2nH2n(x)oo

These steps work also when increasing further the number of polynomials. For m + 1 > 1, we must
deal with m+1 > 1 basis vectors Hn(x). This leads to an object whose structure is more complex and
requires the appropriate eliminating and duplicating matrices, for which we prove a recursion formula
in the number of polynomials m � 1. With these, we compute the general correlator formula.

As we shall see, for Hn(x) = (1, x, x2
, . . . , x

n)>, the matrix Hn(x)Hn(x)> 2 R(n+1)⇥(n+1) is a so-
called Hankel matrix, for which the elements on the same skew-diagonals coincide. Hankel matrices
constitute an important family of matrices that play a fundamental role in diverse fields, from computer
science to engineering, mathematics and statistics [31]. They are indeed applied, for example, in theory
of moments [14, 30], time series analysis [19, 20], signal analysis [23, 24], and in theory of orthogonal
polynomials [32]. This means that (part of) our analysis can be applied in many different fields, going

2

beyond the polynomial jump-diffusion theory studied here. We also mention that a Hankel matrix is a
"row-reversed" Toeplitz matrix, so that some of the results proved in the current article can be adapted
to this other class of matrices for possibly further applications.

We point out that our correlator formula is not really an alternative to applying iteratively the
moment formula in the sense discussed above. Indeed, it strongly relies on it combined with the tower
rule for Ft ✓ Fs0 ✓ · · · ✓ Fsm . However, it provides a solution to the algebraic burden that arises when
applying the moment formula directly. The correlator formula is indeed fully explicit, while getting
an explicit expression is not straightforward when iterating the moment formula directly. Since having
closed formulas is an advantage for example in those applications that require to differentiate, such as
for computing Greeks, our approach is thus more convenient. Not surprisingly, numerical experiments
show that the correlator values obtained with our formula coincide with the values obtained by iterating
the moment formula. Moreover, the time costs for the two approaches is comparable up to around
m = 10 polynomials. We compare the results with a Monte Carlo approach, showing that this latter
one is outperformed from a time cost point of view, in addition to exhibiting low degrees of accuracy.
We stress that the correlator formula only involves linear combinations of the matrix exponential of
the generator matrix. Assuming these exponential matrices to be exact, we thus have a formula for
correlators which in practice is exact.

We finally provide two recursion formulas for the generator matrix and its matrix exponential.
Despite several approaches have been studied for calculating efficiently the matrix exponential of a
block triangular matrix [21, 27], up to our knowledge, no rigorous study in terms of the building blocks
has been developed yet concerning the generator matrix and its exponential. These results can then be
applied for analytical purposes as mentioned before. We point out that our framework is based on the
monomial basis, which appears convenient for obtaining formulas more easily and explicitly. However,
it can be extended to any other polynomial basis, provided the matrix for the change of basis. For
practical applications, orthogonal basis are indeed more convenient, but analytically more challenging.

The rest of the paper is organized as follows. In Section 1.1 we clarify the name correlators and
give some financial motivations for studying them. In Section 2 we introduce rigorously polynomial
processes and the generator matrix. In Section 3 we solve the two-point correlators problem, presenting
the main tools and framework which allows to solve the (m+1)-point correlators problem in Section 4.
In Section 5 we provide two recursions for the generator matrix and its matrix exponential, together with
the formula for the change of basis. Finally, in Section 6 we consider some applications and numerical
aspects and Section 7 concludes with some remarks. Appendix A contains some combinatorial properties
of the operators introduced in the paper and Appendix B the proofs of the main results.

1.1 Motivations
In [5, Section 9.3] the authors define the concept of correlator, a standard tool in turbulence theory.
For t < s0 < s1 < T < 1 and k0, k1 2 N, the correlator of order (k0, k1) between Y (s0) and Y (s1) is a
generalization of the autocorrelation defined by

Corrk0,k1(s0, s1; t) =
E
⇥
Y (s0)k0Y (s1)k1

��Ft

⇤

E [Y (s0)k0 | Ft]E [Y (s1)k1 | Ft]
.

In this article we extend this definition of correlator to any expectation like the one in equation (1.1).
We introduce now two possible applications: Asian option pricing and pricing in the context of

stochastic volatility models. We intend to motivate our analysis, leaving details aside for future work.

1.1.1 Path-dependent options

We consider path-dependent options, such as Asian options, for which the entire path of the price
process within the settlement period [t, T] is taken into account by the payoff function [25]. If Y is the
risk-neutral price dynamics of the underlying asset, r > 0 the risk-free interest rate and ' the payoff
function, the discounted price at time t for an Asian-style option settled against the discrete arithmetic

3

average of the spot price Y in the settlement period is given by

⇧(t) = e
�r(T�t)E

2

4'

0

@ 1

m+ 1

mX

j=0

Y (sj)

1

A

������
Ft

3

5 for t < s0 < s1 < · · · < sm = T and m � 0. (1.3)

This kind of options was traded a decade ago at Nord Pool, the Nordic commodity market for electricity
[34]. Other classes of derivatives of similar kind are calendar spread options and options on baskets of
assets evaluated at different times, as well as Asian options with continuous averaging.

For ' a real-valued continuous function on a bounded interval, we consider '̂ as the polynomial
approximation of ', e.g., by Hermite polynomials or Taylor expansions, depending on the nature of '
itself. Then the price for the Asian option in equation (1.3) is found by

⇧(t) ⇡ e
�r(T�t) E

2

4 '̂

0

@ 1

m+ 1

mX

j=0

Y (sj)

1

A

������
Ft

3

5 = e
�r(T�t)

X

k

↵kE
⇥
Y (s0)

k0Y (s1)
k1 · · ·Y (sm)km

��Ft

⇤

for certain coefficients {↵k}k and the multi-index k = (k1, · · · , km). This leads to study conditional
expectations of the form E

⇥
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

��Ft

⇤
, which is a particular instance of equation

(1.1) obtained with pj(x) = x
kj , j = 0, . . . ,m. In [28] the author derives explicit price formulas for call-

style discrete-average arithmetic Asian options by following this approach, namely by approximating
the payoff function with orthogonal polynomials and by the correlator formula developed in this article.

1.1.2 Stochastic volatility models

For 0  t  T we consider the process X defined by X(T) =
R
T

t
�(s)dB(s), with B a standard Brownian

motion and � a volatility process which we assume to be independent from B. If ' is the payoff function
and r > 0 the risk-free interest rate, we want to price a financial derivative like follows:

⇧(t) = e
�r(T�t) E [' (X(T))| Ft] .

A possible approach suggested in [8] is to consider the Fourier transform '̂ of '. Under appropriate
integrability conditions on ', we then write that '(x) =

R1
�1 '̂(z)e2⇡ixzdz, and the option price becomes

⇧(t) = e
�r(T�t) E

Z 1

�1
'̂(z)e2⇡iX(T)z

dz

����Ft

�
.

For � and B independent, by the tower rule, we now condition with respect to the filtration {F�

t
}t�0

generated by � up to time T . The process X(T) has then a Gaussian distribution with mean 0 and
variance

R
T

t
�
2(s)ds, hence

⇧(t) = e
�r(T�t) E

Z 1

�1
'̂(z)e�2⇡2

z
2 R T

t �
2(s)ds

dz

����Ft

�
= e

�r(T�t)

Z 1

�1
'̂(z)E

h
e
�
R T
t �

2(s)ds
���Ft

i
dz

for �  0. By considering the Taylor expansion for the exponential function, the expectation becomes

E
h
e
�
R T
t �

2(s)ds
���Ft

i
= E

2

4
1X

k=0

1

k!

�

Z
T

t

�
2(s)ds

!k
������
Ft

3

5 =
1X

k=0

�
k

k!
E

2

4
 Z

T

t

�
2(s)ds

!k
������
Ft

3

5 , (1.4)

that is, we need to find the moments of the integrated volatility,
R
T

t
�
2(s)ds. For Y (s) := �

2(s) modelled
by a polynomial process, we notice that the bivariate process

⇣
Y (T),

R
T

t
Y (s)ds

⌘
is also polynomial.

Hence the moments of
R
T

t
�
2(s)ds can be computed with the moment formula applied to this bivariate

polynomial process. As an alternative approach, using iteratively the fundamental theorem of calculus,

4

it can be proved that
 Z

T

t

�
2(s)ds

!k

=
1

k!

Z
T

t

Z
sk

t

· · ·
Z

s2

t

Y (s1)Y (s2) · · ·Y (sk)ds1 · · · dsk, k � 1, (1.5)

where t < s1 < s2 < · · · < sk < T is a partition of [t, T]. Combining equations (1.4) and (1.5), we get

E
h
e
�
R T
t Y (s)ds

���Ft

i
=

1X

k=0

�
k

(k!)2

Z
T

t

Z
sk

t

· · ·
Z

s2

t

E [Y (s1)Y (s2) · · ·Y (sk)| Ft] ds1 · · · dsk, (1.6)

so that for every k � 1 we need to study expectations of the form of E [Y (s1)Y (s2) · · ·Y (sk)| Ft].
Interestingly, Y (T) =

R
T

t
�
2(s)ds appears also in the pricing of VIX-derivatives, that is, derivatives

on the realized variance and volatility. For derivatives paying (Y (T)), we can use the Fourier approach
above as long as is integrable with an integrable Fourier transform b , to end up again with a
conditional expectation as in equation (1.6). The volatility swap price, i.e., the swap price on the
realized volatility, is defined as the conditional expected value E[Y 1/2(T) | Ft] for t  T . Expanding
x 7!

p
x1x�0 in the Hermite functions, being a basis for the space L

2(R, �(x)dx) with � the standard
normal density function, we obtain a series representation of the swap price in terms of conditional
moments of Y (T). For more details on VIX-derivatives with numerical examples based on Fourier
methods, we refer to [7]. Here the Barndorff-Nielsen & Shephard stochastic volatility model is consider
for �2(t), which is a polynomial jump process as will be defined in the next section. Moreover, we refer
to [12] for an application of the moment formula to price VIX-derivatives in the setting of stochastic
volatility modelled with a polynomial process lifted to infinite dimension.

2 Polynomial processes

Following [18], we consider a jump-diffusion operator on R of the form

Gf(x) = b(x)f 0(x) +
1

2
�
2(x)f 00(x) +

Z

R
(f(x+ z)� f(x)� f

0(x)z) `(x, dz), (2.1)

for some measurable maps b : R ! R and � : R ! R, and a transition kernel ` : R⇥ R ! R such that
`(x, {0}) = 0 and

R
R |z|^ |z|2`(x, dz) < 1 for all x 2 R. We then let Y be the jump-diffusion stochastic

process having G as extended generator. This means that for every bounded function f : R ! R with
continuous second derivative and y 2 R, f(Y (t))� f(y)�

R
t

0 Gf(Y (s))ds is a (Ft,Py)-local martingale.
We now denote with Pol(R) the space of polynomials on R and with Poln(R) the subspace of

all polynomials of degree less than or equal to n on R. We say that G is well defined on Pol(R) ifR
R |z|n`(x, dz) < 1 for all x 2 R and n � 2, and Gf(x) = 0 for f(x) ⌘ 0 on R. We then give the

following definition of a polynomial jump-diffusion process.

Definition 2.1 (Polynomial jump-diffusion process). We call the operator G polynomial if it is well
defined on Pol(R) and it maps Poln(R) to itself for each n 2 N. In this case, we call Y a polynomial
jump-diffusion process.

Assuming G to be polynomial, from [18, Lemma D.4], the process

p(Y (t))� p(y)�
Z

t

0
Gp(Y (s))ds is a (Ft,Py) -martingale (2.2)

for all p 2 Poln(R), y 2 R and t � 0. This basically means that all increments of (2.2) have vanishing
expectation. Moreover, from [18, Lemma 1], the polynomial property of G can be characterized in terms
of its coefficients: it must hold that

b 2 Pol1(R), �
2 +

Z

R
z
2
`(·, dz) 2 Pol2(R) and

Z

R
z
m
`(·, dz) 2 Polm(R) for all m � 3.

To fulfil these conditions, we shall assume that for every m � 2 there exist b0, b1,�0,�1,�2, ⇠
m

0 , . . . , ⇠
m

m

5

real constants such that

b(x) = b0 + b1x, �
2(x) = �0 + �1x+ �2x

2 and
Z

R
z
m
`(x, dz) =

mX

i=0

⇠
m

i
x
i
. (2.3)

We consider an example.
Example 2.1. Let B a standard one-dimensional Brownian motion and Ñ(dt, dz) a compensated Poisson
random measure with compensator ⌫(dz)dt. We consider the jump-diffusion SDE given by

dY (t) = b(Y (t))dt+ �(Y (t))dB(t) +

Z

R
�(Y (t�), z)Ñ(dt, dz)

with drift, volatility and jump size functions of the form

b(x) := b0 + b1x, �
2(x) := �0 + �1x+ �2x

2
, �(x, z) := �0(z) + �1(z)x,

for b0, b1,�0,�1,�2 2 R, and �0, �1 : R ! R such that
R
R |�i(z)|m⌫(dz) < 1 for all m � 2 and i = 0, 1.

The SDE has a unique strong solution Y (t) for each initial condition Y (0) = y 2 R. Moreover, Y (t)
is a polynomial jump-diffusion with linear drift b 2 Pol1(R), quadratic diffusion �

2 2 Pol2(R), and
jump measure `(x, dz) given by

R
R f(z)`(x, dz) =

R
R f(�(x, z))⌫(dz). In particular, for m � 2, by the

binomial theorem we find that
Z

R
(�0(z) + �1(z)x)

m
⌫(dz) =

mX

i=0

✓
m

i

◆Z

R
�0(z)

m�i
�1(z)

i
⌫(dx) xi

,

so that in this case the constants ⇠m
i

introduced in equation (2.3) are ⇠m
i

=
�
m

i

� R
R �0(z)

m�i
�1(z)i⌫(dx),

for i = 0, . . . ,m.

2.1 The generator matrix
We consider the set {1, x, x2

, . . . , x
n} as basis for Poln(R), and we introduce the vector valued function

Hn : R �! Rn+1
, Hn(x) = (1, x, x2

, . . . , x
n)>.

We shall now report rigorously the moment formula for polynomial processes from [18, Theorem 2.5],
for which we include the proof that will be useful for the analysis in Section 3.

Theorem 2.1 (Moment formula). For n � 1 and Y polynomial process with extended generator G:

1. There exists a generator matrix Gn 2 R(n+1)⇥(n+1) such that

GHn(x) = GnHn(x).

2. For every p 2 Poln(R) with vector of coefficients ~p 2 Rn+1, the moment formula holds

E [p(Y (T)) | Ft] = ~p
>
e
Gn(T�t)

Hn(Y (t)), 0  t  T.

Proof. We take f(x) = x
k for 0  k  n. Since Y is a polynomial process, there exists ~qk 2 Rn+1 such

that Gxk = ~q
>
k
Hn(x), 0  k  n. With these vectors we can then construct a matrix Gn 2 R(n+1)⇥(n+1)

such that GHn(x) = GnHn(x). This proves claim 1. Next, by equation (2.2) and claim 1., we write

E [p(Y (T)) | Ft] = ~p
>E[Hn(Y (T)) | Ft] = ~p

>
Hn(Y (t)) +

Z
T

t

~p
>E[GHn(Y (s))| Ft]ds

= ~p
>
Hn(Y (t)) + ~p

>
Gn

Z
T

t

E[Hn(Y (s))| Ft]ds. (2.4)

We focus on Hn(Y (T)). For Z(s) := E[Hn(Y (s)) | Ft], equation (2.4) can be written in differential form
as dZ(s) = GnZ(s)ds, whose solution, by separation of variables, is Z(T) = e

Gn(T�t)
Z(t). From the

6

definition of Z, multiplying by the vector ~p>, we conclude the proof.

Theorem 2.1 tells us that E [p(Y (T)) | Ft] is a polynomial function in Y (t) for every p 2 Poln(R).
We point out that this holds for every choice of the vector basis of polynomials, despite in this paper we
focus on the vector basis of monomials. Moreover, we stress the fact that the moment formula strongly
relies on the existence of the generator matrix Gn and on the martingale property of the process in
equation (2.2). These two elements will be the key for all our framework.
Example 2.2. Let n = 2. Then H2(x) = (1, x, x2)> and GH2(x) = (G1,Gx,Gx2)>. In particular, from
equations (2.1) and (2.3), we get that G1 = 0, Gx = b0 + b1x and

Gx2 =
�
�0 + ⇠

2
0

�
+
�
�1 + 2b0 + ⇠

2
1

�
x+

�
�2 + 2b1 + ⇠

2
2

�
x
2
.

One finds that the generator matrix G2 2 R3⇥3 satisfying Theorem 2.1 is then

G2 =

0

@
0 0 0
b0 b1 0

�0 + ⇠
2
0 �1 + 2b0 + ⇠

2
1 �2 + 2b1 + ⇠

2
2

1

A .

3 Two-point correlators

Aiming at solving the (m + 1)-point correlators problem in equation (1.1), we start the analysis for
m = 1 because the tools and ideas developed to solve this case are crucial to understand the framework
that will be generalized to m+ 1 polynomials in Section 4. For m = 1, equation (1.1) reads like

Cp0,p1(s0, s1; t) := E [p1 (Y (s0)) p0 (Y (s1))| Ft] , 0  t < s0 < s1,

with p0 2 Poln0(R) and p1 2 Poln1(R). In particular, for n := max{n0, n1}, we can represent the two
polynomial functions p0 and p1 respectively by p0(x) = ~p

>
0 Hn(x) and p1(x) = ~p

>
1 Hn(x). By the tower

rule for Ft ✓ Fs0 and the moment formula in Theorem 2.1, Cp0,p1(s0, s1; t) can be rewritten by

Cp0,p1(s0, s1; t) = ~p
>
1 E

⇥
Hn(Y (s0))Hn(Y (s0))

>��Ft

⇤
e
G

>
n (s1�s0)~p0. (3.1)

This means that the conditional expectation of the product of two polynomial functions reduces to the
conditional expectation of the outer product of the basis function Hn(x) with itself, which is a matrix
of monomial functions of the form

Xn(x) := Hn(x)Hn(x)
> =

0

BBBBB@

1 x x
2

x
n

x x
2

x
3

x
n+1

x
2

x
3

x
4

x
n+2

x
n

x
n+1

x
n+2

x
2n

1

CCCCCA
. (3.2)

By equation (2.2) we notice that

E [Xn(Y (s0))| Ft] = Xn(Y (t)) +

Z
s0

t

E [GXn(Y (s))| Ft] ds. (3.3)

Thus, in the same spirit of the proof of Theorem 2.1, we seek a linear operator G
(1)
n such that

G
(1)
n

: R(n+1)⇥(n+1) �! R(n+1)⇥(n+1)
, GXn(x) = G

(1)
n

Xn(x), (3.4)

which is the equivalent linear operator in the two-polynomial setting to the generator matrix Gn.
However, G

(1)
n cannot be represented with a matrix. We notice that Gn maps a vector to a vector,

while G
(1)
n maps a matrix to a matrix. The idea is then to transform the matrix-matrix problem into a

vector-vector problem and to construct the linear operator G
(1)
n in terms of the generator matrix Gn.

We start by introducing the following operators for a general matrix A 2 Rn⇥m.

7

Definition 3.1 (Vectorization and inverse-vectorization). Given a matrix A 2 Rn⇥m whose j-th column
we denote by A:j , we define vec : Rn⇥m ! Rnm as the operator that associates to A the nm-column
vector

vec(A) =
�
A

>
:1 A

>
:2 A

>
:m

�>

which is called the vectorization of A. For v = vec(A), we then define vec
�1 : Rnm ! Rn⇥m as the

operator that associates to the vector v the n ⇥m matrix B = vec
�1(v) such that [B]i,j = vn(j�1)+i,

for i = 1, . . . , n and j = 1, . . . ,m. We say that B is the inverse-vectorization of v. Moreover, B and A

coincide.

We then address the problem of finding a linear operator G
(1)
n transforming Xn(x) into GXn(x), to

the problem of finding a matrix G̃
(1)
n 2 R(n+1)2⇥(n+1)2 such that

Gvec(Xn(x)) = G̃
(1)
n

vec(Xn(x)), (3.5)

where Gvec(Xn(x)) = vec(GXn(x)). The operator G
(1)
n satisfying equation (3.4) is then obtained by

composing the matrix G̃
(1)
n with the vec and vec

�1 operators, namely

G
(1)
n

= vec
�1 � G̃(1)

n
� vec. (3.6)

We consider an example.

Example 3.1. Let n = 1. We seek G̃
(1)
1 2 R4⇥4 such that

�
G1,Gx,Gx,Gx2

�>
= G̃

(1)
1

�
1, x, x, x2

�>. Two
suitable choices of G̃(1)

1 are

G̃
(1)
1 =

0

BB@

0 0 0 0
b0 b1 0 0
b0 b1 0 0

�0 + ⇠
2
0 �1 + 2b0 + ⇠

2
1 0 �2 + 2b1 + ⇠

2
2

1

CCA and

G̃
(1)
1 =

0

BB@

0 0 0 0
b0 b1/2 b1/2 0
b0 b1/2 b1/2 0

�0 + ⇠
2
0

�
�1 + 2b0 + ⇠

2
1

�
/2

�
�1 + 2b0 + ⇠

2
1

�
/2 �2 + 2b1 + ⇠

2
2

1

CCA .

We notice from Example 3.1 that the first G̃
(1)
1 has two identical rows and a null column, while the

second G̃
(1)
1 has both two identical rows and two identical columns. This is due to the double presence

of the term Gx in vec(GX1(x)), or, analogously, the double presence of the term x in vec(X1(x)).
Increasing the value of n, the number of redundant terms in vec(GXn(x)) and vec(Xn(x)) increases,
hence to find a recursion for the matrix G̃

(1)
n seems not an easy task. Moreover, we would like to write

the matrix G̃
(1)
n in terms of the generator matrix Gn. We shall solve this issue in the next section.

3.1 The L-vectorization
Looking at equation (3.2), we notice that a possible way, among others, to get from the matrix Xn(x)
all the elements without repetition (that is equivalent to get all the powers of x from 0 to 2n without
repetition) is to select the first column and the last row. For this, we introduce the following operator.

Definition 3.2 (L-vectorization). Given a matrix A 2 Rn⇥m with elements [A]i,j = ai,j , 1  i  n and
1  j  m, we define the L-vectorization of A as the operator vecL : Rn⇥m ! Rn+m�1 that associates
to A the (n+m�1)-column vector obtained by selecting the first column and the last row of A, namely

vecL(A) =
�
a1,1 a2,1 an,1 an,2 an,m

�>
.

Intuitively, the vecL operator is a linear operator selecting from the matrix A the elements that
together form the biggest "L" inscribed in A. In [29], the authors introduce the half-vectorization
operator, which, starting from a matrix A, returns the column vector obtained by stacking together
the columns of the lower-triangular matrix contained in A. Moreover, they provide two matrices, the

8

eliminating matrix and the duplicating matrix, that, respectively, transform the vectorization of A into
the half-vectorization, and vice-versa. We aim at the same kind of results for the L-vectorization. The
existence of such matrices tells us that there exist a linear transformation to remove the duplicates from
vec(Xn(x)) (what we call the L-eliminating matrix) and the corresponding inverse linear transformation
(the L-duplicating matrix).

From now on, we shall denote with ~ek,j the j-th canonical basis vector in Rk, with Ik the identity
matrix in Rk⇥k, and with ⌦ the Kronecker product, for which we recall the definition.

Definition 3.3 (Kronecker product). The Kronecker product of a matrix A 2 Rn⇥m with elements
[A]i,j = ai,j , 1  i  n and 1  j  m, and a matrix B 2 Rr⇥s, is the matrix A⌦B 2 Rnr⇥ms given by

A⌦B =

0

B@
a1,1B a1,mB

an,1B an,mB

1

CA.

We define now the L-eliminating matrix.

Theorem 3.1 (L-eliminating matrix). For every n,m � 1 and for every matrix A 2 Rn⇥m, there exists
an L-eliminating matrix En,m 2 R(n+m�1)⇥nm such that

En,mvec(A) = vecL(A) (3.7)

En,m =
nX

i=1

~en+m�1,i ⌦ ~e
>
m,1 ⌦ ~e

>
n,i

+
mX

i=2

~en+m�1,n+i�1 ⌦ ~e
>
m,i

⌦ ~e
>
n,n

. (3.8)

Corollary 3.2. For every n � 1, the L-eliminating matrix En+1 2 R(2n+1)⇥(n+1)2 transforming
vec(Xn(x)) into vecL(Xn(x)) is given by En+1 := En+1,n+1.

Example 3.2. Let n = m = 2. Then equation (3.8) becomes

E2,2 =
2X

i=1

~e3,i ⌦ ~e
>
2,1 ⌦ ~e

>
2,i +

2X

i=2

~e3,2+i ⌦ ~e
>
2,i ⌦ ~e

>
2,2 =

0

@
1 0 0 0
0 1 0 0
0 0 0 1

1

A .

For A 2 R2⇥2 of the form A =

✓
a1 a3

a2 a4

◆
, we can verify that E2,2 satisfies the definition of an L-

eliminating matrix in equation (3.7), as indeed

E2,2vec(A) =

0

@
1 0 0 0
0 1 0 0
0 0 0 1

1

A

0

BB@

a1

a2

a3

a4

1

CCA =

0

@
a1

a2

a4

1

A = vecL(A).

Moreover, when applied to vec(X1(x)) = (1, x, x, x2)>, it eliminates the double value x.
Next, we want to define an inverse operator to En,m, namely a linear mapping transforming the

L-vectorization of a matrix A into its vectorization. However, this inverse operation is not well defined
in the space of matrices in Rn⇥m. Indeed, when applying En,m to vec(A), we go from a space of
dimension nm to a space of dimension n + m � 1 < nm. Then the inverse transformation in general
does not exist. It is necessary to find a suitable subspace of Rn⇥m of dimension of n +m � 1 so that
image space dimension and domain space dimension coincide. In [29], the authors face a similar issue
which they solve by restricting the domain to the space of symmetric matrices.

Looking at the matrix of functions Xn(x), we notice that each ascending skew-diagonal from left to
right is constant, which is a property of the Hankel matrices. These are usually defined in the square
case; we however consider an extended definition to rectangular matrices as, for example, in [17].

Definition 3.4 (Hankel matrix). We define An,m ⇢ Rn⇥m as the space of matrices whose elements on
the same skew-diagonal coincide. We distinguish two cases corresponding to whether n � m or m � n,

9

so that a matrix A 2 An,m takes one the following two forms:

A =

0

BBBBBBBBBBBB@

a1 a2 am

a2

am an

an an+m�1

1

CCCCCCCCCCCCA

or A =

0

BBBB@

a1 a2 an am

a2

an am an+m�1

1

CCCCA
,

for a1, . . . , an+m�1 2 R. We call A 2 An,m an Hankel matrix and write An := An,n.
We see that Xn(x) 2 An+1, and we can now define the inverse operator to En,m on An,m.

Theorem 3.3 (L-duplicating matrix). For every n,m � 1 and for every matrix A 2 An,m, there exists
an L-duplicating matrix Dn,m 2 Rnm⇥(n+m�1) such that

Dn,mvecL(A) = vec(A) (3.9)

Dn,m =
nX

i=1

mX

j=1

~e
>
n+m�1,i+j�1 ⌦ ~em,j ⌦ ~en,i. (3.10)

Corollary 3.4. For every n � 1, the L-duplicating matrix Dn+1 2 R(n+1)2⇥(2n+1) transforming
vecL(Xn(x)) into vec(Xn(x)) is given by Dn+1 := Dn+1,n+1.

Example 3.3. Let n = m = 2. Then equation (3.10) becomes

D2,2 =
2X

i=1

2X

j=1

~e
>
3,i+j�1 ⌦ ~e2,j ⌦ ~e2,i =

0

BB@

1 0 0
0 1 0
0 1 0
0 0 1

1

CCA .

For A 2 A2 of the form A =

✓
a1 a2

a2 a3

◆
, we can verify that

D2,2vecL(A) =

0

BB@

1 0 0
0 1 0
0 1 0
0 0 1

1

CCA

0

@
a1

a2

a3

1

A =

0

BB@

a1

a2

a2

a3

1

CCA = vec(A).

Moreover, when applied to vecL(X1(x)) = (1, x, x2)>, it duplicates the missing value x.
We conclude this section with an important property for the matrices En,m and Dn,m.

Proposition 3.5. For every n,m � 1, Dn,m is the right-inverse of En,m and, for every A 2 An,m, the
product Dn,mEn,m 2 Rnm⇥nm acts on vec(A) like an identity operator: Dn,mEn,mvec(A) = vec(A).

Example 3.4. Let n = m = 2. From Example 3.2 and 3.3 we get

D2,2E2,2 =

0

BB@

1 0 0
0 1 0
0 1 0
0 0 1

1

CCA

0

@
1 0 0 0
0 1 0 0
0 0 0 1

1

A =

0

BB@

1 0 0 0
0 1 0 0
0 1 0 0
0 0 0 1

1

CCA 6= I4.

However, for A 2 A2 with vec(A) = (a1, a2, a2, a3)>, we notice that D2,2E2,2vec(A) = vec(A), hence
the product D2,2E2,2 behaves like an identity operator, despite not coinciding with the identity matrix.

3.2 The generator for correlators

We focus now on the original problem: by equation (3.6) we seek a linear operator G̃
(1)
n transforming

vec(Xn(x)) into Gvec(Xn(x)). From equation (3.2), we notice that the elements of Xn(x) lying on the
left-bottom "L" coincide with the powers of x from 0 to 2n.

10

Lemma 3.6. For every n � 1, the L-vectorization of Xn(x) coincides with the vectors basis of mono-
mials of order 2n, namely vecL(Xn(x)) = H2n(x).

Hence, by transforming vec(Xn(x)) into vecL(Xn(x)), we address the problem of finding the gener-
ator matrix for vec(Xn(x)) to the problem of finding the generator matrix for H2n(x), which was solved
in Section 2.1. We can then prove the following result.

Proposition 3.7. For every t � 0 and n � 1, the matrix G̃
(1)
n satisfying equation (3.5) and its matrix

exponential are respectively given by

G̃
(1)
n

= Dn+1G2nEn+1 and e
G̃

(1)
n t = Dn+1e

G2ntEn+1,

where G2n is the generator matrix of order 2n.

We are now able to provide a solution to the two-point correlator problem.

Theorem 3.8 (Two-point correlator formula). The expression for the two-point correlator is given by

Cp0,p1(s0, s1; t) = ~p
>
1

n
vec

�1 �Dn+1e
G2n(s0�t)

En+1 � vec (Xn(Y (t)))
o
e
G

>
n (s1�s0)~p0,

with ~p0, ~p1 2 Rn+1 the vectors of coefficients for the polynomial functions p0 2 Poln0(R) and p1 2
Poln1(R), n = max{n0, n1} and t < s0 < s1.

4 Higher-order correlators

We prove in this section a correlator formula holding for every m � 1 by following similar steps to the
ones performed in Section 3 for m = 1. We recall that we seek an explicit expression for

Cp0,...,pm(s0, . . . , sm; t) := E [pm (Y (s0)) pm�1 (Y (s1)) · · · · · p0 (Y (sm)) | Ft] ,

with pk 2 Polnk(R), k = 0, . . . ,m, and t < s0 < s1 < · · · < sm. We start with the following operator.

Definition 4.1 (d-Kronecker product). We define the d-Kronecker product of a matrix A 2 Rn⇥m and
a matrix B 2 Rr⇥s, as the d-th Kronecker power of A multiplied in the Kronecker sense with B, for
d � 1, or equal to B, for d = 0, namely

(
A⌦d

B = A
⌦d ⌦B d � 1

A⌦0
B = B d = 0

.

Then for n � 1 and r � 0, we introduce the matrix of functions

X
(r)
n

(x) := Hn(x)
> ⌦r

Hn(x), (4.1)

for which we can make the following considerations:

• for r = 0: we get X
(0)
n (x) = Hn(x);

• for r = 1: we get

X
(1)
n

(x) = Hn(x)
> ⌦Hn(x) = Hn(x)Hn(x)

> = Xn(x) 2 An+1; (4.2)

• for r = 2: by the associativity property of the Kronecker product

X
(2)
n

(x) = Hn(x)
> ⌦X

(1)
n

(x) =
⇣
X

(1)
n (x) xX

(1)
n (x) x

2
X

(1)
n (x) · · · · · · x

n
X

(1)
n (x)

⌘

is composed by n+ 1 blocks of the form B
(k)
n,2 = x

k�1
X

(1)
n (x) 2 An+1, k = 1, . . . , (n+ 1);

11

• for r = 3: we write X
(3)
n (x) =

�
Hn(x)>

�⌦2 ⌦X
(1)
n (x), where

�
Hn(x)

>�⌦2
=
�
1 x x

n
x x

2
x
n+1 · · · x

n
x
n+1

x
2n
�
2 R(n+1)2

so that X
(3)
n (x) is composed by (n+ 1)2 blocks. For each block B

(k)
n,3 there exists a jk 2 {0, . . . , 2n}

such that B(k)
n,3 = x

jkX
(1)
n (x) and B

(k)
n,3 2 An+1, k = 1, . . . , (n+1)2. The difference from the previous

case is that, now, some of the blocks are repeated since in
�
Hn(x)>

�⌦2 some powers of x are repeated.

Generalizing, we can state the following result.

Proposition 4.1. For every n, r � 1, X(r)
n (x) is a rectangular block matrix in R(n+1)⇥(n+1)r , which is

composed by (n + 1)r�1 blocks B
(k)
n,r(x) 2 An+1, for which there exists an index jk 2 {0, . . . , (r � 1)n}

such that B(k)
n,r(x) = x

jkX
(1)
n (x), k = 1, . . . , (n+ 1)r�1.

One can also notice that X(r)
n (x) contains all the powers of x from 0 to (r+1)n. Thus, after removing

the redundant powers, we are left with Hn(r+1)(x). Moreover, from Proposition 4.1, X(r)
n (x) is a block

matrix whose blocks belong to An+1. However, the matrix itself does not belong to An+1,(n+1)r .
Example 4.1. Let n = r = 2. Then we get the following matrix

X
(2)
2 (x) =

0

@
1 x x

2
x x

2
x
3

x
2

x
3

x
4

x x
2

x
3

x
2

x
3

x
4

x
3

x
4

x
5

x
2

x
3

x
4

x
3

x
4

x
5

x
4

x
5

x
6

1

A

whose blocks belong to A3, but X
(2)
2 (x) /2 A3,9 hence it is not a Hankel matrix.

This means, in particular, that we cannot use the L-eliminating and L-duplicating matrices as defined
in Section 3. We need instead two new tailor-made operators, given in the following two propositions.

Proposition 4.2. For n,m � 1, there exists an m-th L-eliminating matrix E
(m)
n+1 2 R(n(m+1)+1)⇥(n+1)m+1

such that E(m)
n+1vec(X

(m)
n (x)) = Hn(m+1)(x). In particular, E(m)

n+1 is given by the recursion formula
(
E

(1)
n+1 = En+1 m = 1

E
(m)
n+1 = Enm+1,n+1

⇣
In+1 ⌦ E

(m�1)
n+1

⌘
m � 2

.

Proposition 4.3. For n,m � 1, there exists an m-th L-duplicating matrix D
(m)
n+1 2 R(n+1)m+1⇥(n(m+1)+1)

such that D(m)
n+1Hn(m+1)(x) = vec(X(m)

n (x)). In particular, D(m)
n+1 is given by the recursion formula

(
D

(1)
n+1 = Dn+1 m = 1

D
(m)
n+1 =

⇣
In+1 ⌦D

(m�1)
n+1

⌘
Dnm+1,n+1 m � 2

.

We can also prove the following property for the matrices E
(m)
n+1 and D

(m)
n+1.

Proposition 4.4. For every n,m � 1, the matrix D
(m)
n+1 is the right-inverse of E(m)

n+1, and the product
D

(m)
n+1E

(m)
n+1 acts on vec(X(m)

n (x)) like an identity operator: D
(m)
n+1E

(m)
n+1vec(X

(m)
n (x)) = vec(X(m)

n (x)).

Example 4.2. Let n = m = 2. By Proposition 4.2, we find that E
(1)
3 = E3 and

E
(2)
3 = E5,3

⇣
I3 ⌦ E

(1)
3

⌘
= E5,3

0

@
E

(1)
3 0 0

0 E
(1)
3 0

0 0 E
(1)
3

1

A .

To understand better, we rewrite vec(X(2)
2 (x)) in Example 4.1 as follows:

vec(X(2)
2 (x)) = vec

vec

0

@
1○ x x

2

x○ x
2

x
3

x
2

○ x
3

○ x
4

○

1

A vec

0

@
x○ x

2
x
3

x
2

○ x
3

x
4

x
3

○ x
4

○ x
5

○

1

A vec

0

@
x
2

○ x
3

x
4

x
3

○ x
4

x
5

x
4

○ x
5

○ x
6

○

1

A

!
,

12

so that, by applying I3 ⌦E
(1)
3 , we select from each of the three blocks of X(2)

2 (x) their L-vectorization
(remember that the L-eliminating matrix acts on the vectorization of a matrix and returns the L-
vectorization of the matrix itself), elements which are marked with a circle. We are left with

⇣
I3 ⌦ E

(1)
3

⌘
vec(X

(2)
2 (x)) = vec

0

BBBB@

1○ x x
2

x○ x
2

x
3

x
2

○ x
3

x
4

x
3

○ x
4

x
5

x
4

○ x
5

○ x
6

○

1

CCCCA
. (4.3)

We notice that the elements we need are on the left-bottom "L" (the ones marked with a circle).
Applying E5,3 gives H6(x). Moreover, the matrix on the right hand side of equation (4.3) belongs to
A5,3. Then the corresponding L-duplicating matrix is given by Proposition 4.3 and is

D
(2)
3 =

⇣
I3 ⌦D

(1)
3

⌘
D5,3 =

0

@
D

(1)
3 0 0

0 D
(1)
3 0

0 0 D
(1)
3

1

AD5,3.

In particular, D5,3 acting on H6(x) returns the matrix on the right hand side of equation (4.3) while
D

(1)
3 , acting singularly on each column because of the multiplication with I3 (namely, I3⌦D

(1)
3) returns

X
(2)
2 (x), showing that D

(2)
3 is the inverse operator of E(2)

3 .
We now derive the closed formula for (m+ 1)-point correlators.

Theorem 4.5 (Correlator formula). For every m � 1, let pk 2 Polnk(R) with vector of coefficients
~pk 2 Rn+1, k = 0, . . . ,m, n = max{n0, . . . , nm} and t < s0 < s1 < · · · < sm. There exist m + 1

matrices G̃
(r)
n 2 R(n+1)r+1⇥(n+1)r+1

, r = 0, . . . ,m, such that

Cp0,...,pm(s0, . . . , sm; t) =

~p
>
m

n
vec

�1 � eG̃
(m)
n (s0�t) � vec

⇣
X

(m)
n

(Y (t))
⌘o mY

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

where
Q

m

k=1 is the product obtained starting with the matrix corresponding to k = 1 and multiplying
on the right by the following matrices until the matrix corresponding to k = m. In particular, G̃(r)

n =

D
(r)
n+1Gn(r+1)E

(r)
n+1 and e

G̃
(r)
n t = D

(r)
n+1e

Gn(r+1)tE
(r)
n+1, with G̃

(0)
n = Gn.

5 Recursion formulas for the generator matrix

We focus in this section on the generator matrix Gn defined in Theorem 2.1. In particular, we provide
a recursion formula for it and one for its matrix exponential. These formulas are referred to the basis
vector of monomials, but they can also be generalized to a different polynomial basis vector. In this
case, one needs the matrix for the change of basis.

5.1 The generator matrix
We provide a recursion formula for the generator matrix.

Theorem 5.1 (Recursion formula for the generator matrix). For n � 2, the generator matrix Gn 2
R(n+1)⇥(n+1) satisfying Theorem 2.1 with respect to the vector basis of monomials Hn(x) is given by

Gn =

✓
Gn�1 ~0n
~a
>
n

cn

◆
with G1 =

✓
0 0
b0 b1

◆
.

Here ~0n is a n-dimensional vector of 0’s, ~an = (an
n
, a

n�1
n

, . . . , a
1
n
)> 2 Rn with

a
1
n
= nb0 +

1

2
n(n� 1)�1 +

nX

k=2

✓
n

k

◆
⇠
k

k�1, a
2
n
=

1

2
n(n� 1)�0 +

nX

k=2

✓
n

k

◆
⇠
k

k�2,

a
i

n
=

nX

k=i

✓
n

k

◆
⇠
k

k�i
for i = 3, . . . , n, and cn = nb1 +

1

2
n(n� 1)�2 +

nX

k=2

✓
n

k

◆
⇠
k

k
.

(5.1)

13

Remark 5.1. From Theorem 5.1, we notice that for n � 1 the generator matrix Gn is lower triangular.
Moreover, for n � 2 the main diagonal of Gn is of the form

diag (Gn) = (0, b1, c2, c3, . . . , cn)
>
, (5.2)

so that, in particular, the matrix Gn is not invertible.

Lemma 5.2. If `(x, dz) ⌘ 0 on R, then Gn is a (lower) tri–diagonal matrix.

We now provide a recursion formula for the matrix exponential of Gn.

Theorem 5.3 (Recursion formula for the exponential generator matrix). For a fixed n � 2, if the
following conditions are satisfied

(
cj 6= 0 for every 2  j  n

cj 6= ci for every 1  j < i  n
(5.3)

then the recursion formula holds:

e
Gnt =

✓
e
Gn�1t ~0n

~a
>
n
⇤�1
n

�
e
cntIn � e

Gn�1t
�

e
cnt

◆
with

e
G1t =

✓
1 0

b0
b1

�
e
b1t � 1

�
e
b1t

◆
if b1 6= 0 and e

G1t =

✓
1 0
b0t 1

◆
if b1 = 0.

Lemma 5.4. If `(x, dz) ⌘ 0 on R, then condition (5.3) is equivalent to b1 6= �k

2�2 for every 1  k 
2(n� 1). In particular, the coefficients b1 and �2 cannot be simultaneously equal to 0.

5.2 Change of basis
The vector basis of monomials Hn(x) is intuitive and allows to write down computations easily and
explicitly. However, when it comes to applications, one chooses in practice an orthogonal basis, such
as, for example, the Hermite polynomials or the Legendre polynomials. Combining the properties of
an orthogonal basis with the properties of polynomial processes leads to improvements, e.g., in option
pricing [3, 18, 35]. Motivated by this fact, we present a result which allows to obtain the generator
matrix and its matrix exponential with respect to any basis of polynomials.

For n � 1, we consider a set of polynomial functions {q0(x), q1(x), . . . , qn(x)} with values in R which
forms a basis for Poln(R). We then introduce the vector valued function

Qn : R �! Rn+1
, Qn(x) = (q0(x), q1(x), . . . , qn(x))

>
.

From classical linear algebra, there exists an invertible matrix Mn 2 R(n+1)⇥(n+1) such that

MnHn(x) = Qn(x) and M
�1
n

Qn(x) = Hn(x). (5.4)

We further indicate with Jn 2 R(n+1)⇥(n+1) the generator matrix in the sense of Theorem 2.1 with
respect to the basis vector Qn(x), namely such that

GQn(x) = JnQn(x). (5.5)

We can then prove the following result concerning Jn.

Proposition 5.5. For every n � 1 and t � 0, the generator matrix Jn and its matrix exponential are
given by the following matrix products

Jn = MnGnM
�1
n

and e
Jnt = Mne

GntM
�1
n

.

Example 5.1. Let Qn(x) be the vector basis given by Hermite polynomials. For n = 4 we get

Q4(x) = (1, x, x2 � 1, x3 � 3x, x4 � 6x2 + 3)

14

while M4 and M
�1
4 are respectively given by

M4 =

0

BB@

1 0 0 0 0
0 1 0 0 0
�1 0 1 0 0
0 �3 0 1 0
3 0 �6 0 1

1

CCA and M
�1
4 =

0

BB@

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 3 0 1 0
3 0 6 0 1

1

CCA .

We consider `(x, dz) ⌘ 0. By direct computation, one finds that

G4 =

0

BB@

0 0 0 0 0
b0 b1 0 0 0
�0 2b0 + �1 2b1 + �2 0 0
0 3�0 3(b0 + �1) 3(b1 + �2) 0
0 0 6�0 2(2b0 + 3�1) 2(2b1 + 3�2)

1

CCA and

J4 =

0

BB@

0 0 0 0 0
b0 b1 0 0 0

�0 + 2b1 + �2 2b0 + �1 2b1 + �2 0 0
3�1 3(2b1 + 3�2 + �0) 3(b0 + �1) 3(b1 + �2) 0
12�2 12�1 6(2b1 + �0 + 5�2) 2(2b0 + 3�1) 2(2b1 + 3�2)

1

CCA .

By matrix multiplication Proposition 5.5 can be verified.

6 Applications and numerical aspects

Having a closed and compact formula for correlators like in Theorem 4.5 is attractive in sensitivity
analysis and risk management. For example, in applications to options, the Greeks play an important
role in hedging. The Greeks for options are defined as the derivatives of the price functional with
respect to various parameters. In the context of path-dependent options introduced in Section 1.1.1,
we shall derive in this section the expression for two of the Greeks, namely the Delta and the Theta.
We shall then analyse our correlator formula from a numerical point of view, also in relation with the
iterated moment formula and with a Monte Carlo approach.

6.1 Computation of Greeks
Two of the most common Greeks are the Delta and the Theta. The first measures the change in the
option price with respect to a change in the underlying asset price. The second measures the sensitivity
of the option to time to exercise.

From Section 1.1.1, the price of an Asian option can be approximated by a linear combination
of conditional expectations of the form C

k0,...,km(s0, . . . , sm; t) := E
⇥
Y (s0)k0Y (s1)k1 · · ·Y (sm)km

��Ft

⇤
,

corresponding to correlators Cp0,...,pm(s0, . . . , sm; t) with pj(x) = x
kj , j = 0, . . . ,m. To calculate the

Delta of the Asian option, which is the partial derivative of the price functional ⇧(t) with respect to
the initial condition Y (t), we then need the derivative of Cp0,...,pm(s0, . . . , sm; t) with respect to Y (t).

Proposition 6.1. For every m � 1, in the same notation of Theorem 4.5, we have that

@Cp0,...,pm(s0, . . . , sm; t)

@Y (t)
=

~p
>
m

(
vec

�1 � eG̃
(m)
n (s0�t) � vec

@X

(m)
n (Y (t))

@Y (t)

!)
mY

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

where
@X

(m)
n (Y (t))

@Y (t)
=

✓
@Hn(Y (t))

@Y (t)

◆>
⌦X

(m�1)
n

(Y (t)) +Hn(Y (t))> ⌦ @X
(m�1)
n (Y (t))

@Y (t)

with @Hn(Y (t))
@Y (t) = @X

(0)
n (Y (t))
@Y (t) = (0, 1, . . . , n)

�
0, Hn�1(Y (t))>

�>.

Similarly, to compute the Theta of the Asian option, we need first to compute the derivative of
Cp0,...,pm(s0, . . . , sm; t) with respect to the m+ 1 time points involved, namely s0 < s1 < · · · < sm.

15

Proposition 6.2. For every m � 1, in the same notation of Theorem 4.5, we have that

⇥0 = ~p
>
m

n
vec

�1 � G̃(m)
n

e
G̃

(m)
n (s0�t) � vec

⇣
X

(m)
n

(Y (t))
⌘o mY

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

+

� ~p
>
m

n
vec

�1 � eG̃
(m)
n (s0�t) � vec

⇣
X

(m)
n

(Y (t))
⌘o

G̃
(m�1)>
n

mY

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

;

⇥j = ~p
>
m

n
vec

�1 � eG̃
(m)
n (s0�t) � vec

⇣
X

(m)
n

(Y (t))
⌘o

·

·

j�1Y

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

G̃

(m�j)>
n

e
G̃

(m�j)>
n (sj�sj�1)

�
In+1 ⌦m�j

~pm�j

·

·
mY

k=j+1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

+

�
jY

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

G̃

(m�j�1)>
n

e
G̃

(m�j�1)>
n (sj+1�sj)

�
In+1 ⌦m�j�1

~pm�j�1

·

·
mY

k=j+2

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

1

A for 1  j < m;

⇥m = ~p
>
m

n
vec

�1 � eG̃
(m)
n (s0�t) � vec

⇣
X

(m)
n

(Y (t))
⌘o

·

·
m�1Y

k=1

e
G̃

(m�k)>
n (sk�sk�1)

�
In+1 ⌦m�k

~pm�k

G̃

(0)>
n

e
G̃

(0)>
n (sm�sm�1)

�
In+1 ⌦0

~p0

,

where we have introduced the compact notation ⇥j :=
@Cp0,...,pm (s0,...,sm;t)

@sj
for 0  j  m.

Then, the Delta of the Asian option is obtained by Proposition 6.1:

@⇧(t)

@Y (t)
⇡ e

�r(T�t)
X

k

↵k
@C

k0,...,km(s0, . . . , sm; t)

@Y (t)

and, similarly, the Theta is obtained by Proposition 6.2:

@⇧(t)

@sj
⇡ e

�r(T�t)
X

k

↵k
@C

k0,...,km(s0, . . . , sm; t)

@sj
for 0  j  m,

for certain coefficients {↵k}k and k = (k1, · · · , km) a multi-index. A more detailed analysis for Greeks
of discrete average arithmetic Asian options can be found in [28], where the coefficients {↵k}k are
computed explicitly with respect to the basis of Hermite polynomials.

6.2 Numerical performances
We analyse numerically the correlator formula in Theorem 4.5 which gives explicitly the value for cor-
relators up to the computation of the exponential of the m+1 matrices G̃(r)

n , r = 0, . . . ,m. This means
that, assuming these matrix exponentials to be exact, the correlator formula provides the correlator
value. The same exact value can be also obtained by applying iteratively the moment formula, as we
discussed in Section 1. We then compare from a time cost point of view these two procedures. In par-
ticular, we consider both an implementation with dense matrices and an implementation with sparse
matrices. Finally, we consider a Monte Carlo approach which is compared with our correlator formula
both from a time cost and an accuracy point of views.

For the experiments, we consider an Ornstein–Uhlenbeck process Y defined by

dY (t) = (b0 + b1Y (t)) dt+
p
�0 dB(t) (6.1)

16

and with model specifications

b0 = +0.75
b1 = �5.00
�0 = +0.01
Y (t = 0) = +0.15

which corresponds to a polynomial diffusion process with �1 = �2 = 0 and `(x, dz) ⌘ 0 (see equation
(2.3)). Moreover, for n � 1, we consider a particular case of equation (1.1) of the form

C
n(s0, . . . , sm; t) := E [Y (s0)

n
Y (s1)

n · · · · · Y (sm)n | Ft]

corresponding to pk(x) = x
n = ~e

>
n+1,n+1Hn(x), k = 0, . . . ,m. We found terms of this form in Section

1.1.1 when motivating the study of correlators for pricing a financial derivative in a stochastic volatility
model context. The two cases indeed coincide for n = 1. We also mention that Ornstein–Uhlenbeck
processes are common models in finance. Among others, we find examples in modelling the electricity
spot price, a non-Gaussian example being treated in [6].

The Monte Carlo simulations are based on the conditional solution of equation (6.1) given by

Y (s) = Y (t) eb1(s�t) +
b0

b1

⇣
e
b1(s�t) � 1

⌘
+

p
�0

Z
s

t

e
b1(s�v)

dB(v), for s � t � 0.

We define �k := sk � sk�1, k = 0, . . . ,m, with s�1 := t, and rewrite it for s = sk and t = sk�1, namely

Y (sk) = Y (sk�1) e
b1�k +

b0

b1

�
e
b1�k � 1

�
+

p
�0

Z
sk

sk�1

e
b1(sk�v)

dB(v). (6.2)

For a fixed number of time points m + 1 � 1, the idea is then to sequentially simulate samples from
Y (sk) according to (6.2), using Y (sk�1) as starting point and the fact that, by the tower rule, it holds

C
n(s0, . . . , sm; t) = E

⇥
Y (s0)

nE
⇥
Y (s1)

nE
⇥
Y (s2)

n · · ·E
⇥
Y (sm)n| Fsm�1

⇤
· · ·

��Fs1

⇤��Fs0

⇤��Ft

⇤
.

When increasing the complexity of the problem, namely, increasing n and/or m, the Monte Carlo
approach needs more simulations to gain accuracy, requiring also more time for computations. However,
in order to compare different experiments, we fix the number of simulations to N = 104, each of which
is repeated 102 times so that to get multiple values. Among these values, we select the worst one in
terms of highest relative error with respect to the correlator formula, and we use it as representative of
the set. For the time cost assessment, the representative is obtained by averaging the time cost required
for the 102 simulations. Finally, we set a tolerance to 1 · 10�3 and claim that Monte Carlo fails if the
relative error is bigger than that, counting the number of failures over the 102 simulations.

In Table 1 we report the outcomes of the time-cost experiments. Here we compare the correlator
formula, both with dense (Dense) and sparse (Sparse) matrices, with the iterative application of the
moment formula, both with dense (Iter. dense) and sparse (Iter. sparse) matrices, and with the Monte
Carlo approach (MC average). We notice that the correlator formula with dense matrices is almost
comparable with the iteration with dense matrices, and the same holds with sparse matrices. However,
for higher complexities, the correlator formula tends to be a bit slower. Despite what one might expect,
using sparse matrices makes both the approaches slower. The main reason lies in the fact that the
matrix exponential of a sparse matrix is likely not to be sparse. Hence, using a sparse matrix for a
dense matrix slows down computations. However, we stress the fact that sparse matrices are crucial
when increasing further the complexity of the problem: for a given n and m, the generator matrix has
dimension (n(m+ 1) + 1)⇥ (n(m+ 1) + 1), so that it is not feasible to store it with a dense matrix.

We observe from Table 1 that the time cost for these four experiments increases when the complexity
of the problem increases, as one would expect due to the dimensions of the matrices involved. On the
other hand, for a fixed m, the time cost for the Monte Carlo approach (MC average) is almost invariant
reflecting the fact that the number of time points is fixed. However, to keep the approach as general as
possible, instead of computing the power xn directly we do the vector multiplication ~e>

n+1,n+1Hn(x) to
reflect the situation that we would get if considering general polynomial function instead of monomials.
This explains why, for a fixed m, when increasing the power n the time cost also increases slightly.

17

Time-cost performances

m n Dense Sparse Iter. dense Iter. sparse MC average

0 1 3.372e�04 5.254e�03(⇡ 16x) 3.051e�04(⇡ 1x) 4.904e�03(⇡ 15x) 1.212e�01(⇡ 359x)
0 2 3.451e�04 6.700e�03(⇡ 19x) 3.384e�04(⇡ 1x) 6.199e�03(⇡ 18x) 1.233e�01(⇡ 357x)
0 3 3.612e�04 7.879e�03(⇡ 22x) 3.340e�04(⇡ 1x) 7.459e�03(⇡ 21x) 1.281e�01(⇡ 355x)
0 4 3.819e�04 9.242e�03(⇡ 24x) 3.747e�04(⇡ 1x) 8.932e�03(⇡ 23x) 1.317e�01(⇡ 345x)
0 5 4.053e�04 1.072e�02(⇡ 26x) 3.919e�04(⇡ 1x) 1.028e�02(⇡ 25x) 1.360e�01(⇡ 336x)
0 10 4.916e�04 1.676e�02(⇡ 34x) 4.883e�04(⇡ 1x) 1.651e�02(⇡ 34x) 1.570e�01(⇡ 319x)

1 1 6.383e�04 1.424e�02(⇡ 22x) 6.296e�04(⇡ 1x) 1.246e�02(⇡ 20x) 2.186e�01(⇡ 342x)
1 2 7.363e�04 1.952e�02(⇡ 27x) 7.058e�04(⇡ 1x) 1.824e�02(⇡ 25x) 2.277e�01(⇡ 309x)
1 3 7.926e�04 2.449e�02(⇡ 31x) 8.393e�04(⇡ 1x) 2.451e�02(⇡ 31x) 2.371e�01(⇡ 299x)
1 4 8.737e�04 2.993e�02(⇡ 34x) 8.893e�04(⇡ 1x) 3.064e�02(⇡ 35x) 2.489e�01(⇡ 285x)
1 5 9.278e�04 3.428e�02(⇡ 37x) 9.001e�04(⇡ 1x) 3.759e�02(⇡ 41x) 2.572e�01(⇡ 277x)
1 10 1.354e�03 6.013e�02(⇡ 44x) 1.975e�03(⇡ 1x) 7.980e�02(⇡ 59x) 3.002e�01(⇡ 222x)

2 1 1.064e�03 2.549e�02(⇡ 24x) 9.527e�04(⇡ 1x) 2.105e�02(⇡ 20x) 3.213e�01(⇡ 302x)
2 2 1.226e�03 3.622e�02(⇡ 30x) 1.116e�03(⇡ 1x) 3.424e�02(⇡ 28x) 3.319e�01(⇡ 271x)
2 3 1.385e�03 4.746e�02(⇡ 34x) 1.122e�03(⇡ 1x) 4.756e�02(⇡ 34x) 3.488e�01(⇡ 252x)
2 4 1.588e�03 5.943e�02(⇡ 37x) 1.377e�03(⇡ 1x) 6.340e�02(⇡ 40x) 3.658e�01(⇡ 230x)
2 5 1.787e�03 7.125e�02(⇡ 40x) 1.493e�03(⇡ 1x) 7.975e�02(⇡ 45x) 3.727e�01(⇡ 209x)
2 10 7.786e�03 1.283e�01(⇡ 16x) 3.979e�03(⇡ 1x) 1.870e�01(⇡ 24x) 4.380e�01(⇡ 56x)

3 1 1.611e�03 3.930e�02(⇡ 24x) 1.238e�03(⇡ 1x) 3.261e�02(⇡ 20x) 4.216e�01(⇡ 262x)

4 1 2.101e�03 5.545e�02(⇡ 26x) 1.474e�03(⇡ 1x) 4.468e�02(⇡ 21x) 5.259e�01(⇡ 250x)

5 1 2.910e�03 7.554e�02(⇡ 26x) 1.887e�03(⇡ 1x) 6.005e�02(⇡ 21x) 6.175e�01(⇡ 212x)

10 1 6.423e�02 2.302e�01(⇡ 4x) 4.005e�03(⇡ 0x) 1.634e�01(⇡ 3x) 1.112e+00(⇡ 17x)

Table 1: Time-cost performances for the correlator formula with dense (Dense) and sparse (Sparse)
matrices, for the iterative application of the moment formula with dense (Iter. dense) and sparse
(Iter. sparse) matrices, and for the the Monte Carlo approach (MC average). In parenthesis, how
many times the different approaches are slower than the correlator formula with dense matrices.

In Table 2 we report the outcomes from the accuracy tests between the correlator formula and the
Monte Carlo approach. We mention indeed that the four experiments previously discussed lead to the
exact same values, as one would expect since they are basically four different representations for the
same exact computation. Comparing the values from the correlator formula (Formula value) with the
worst over the 102 outcomes of the Monte Carlo simulations (MC worst value), we notice that, when
increasing the complexity, the second method becomes worse and worse in terms of relative error (in
parenthesis). Of course, by increasing the number N of simulations, one can aim at better results, but
this would also mean higher time costs. In the last column (MC fails) we also notice that the number
of failures in terms of the tolerance defined above increases up to almost all the calls of the method.
Remark 6.1. As observed above, the correlator C

n(s0, . . . , sm; t) coincides for n = 1 with the terms
encountered in Section 1.1.1 in the setting of a stochastic volatility model. We then chose the parameters
for the model in equation (6.1) so that to make it relevant in view of that application. However, the
choice of a Gaussian Ornstein–Uhlenbeck process is for simplicity and illustration, and not intended as
a precise stochastic volatility model. We also point out that in equation (1.6) one has in practise to
truncate the summation to a certain k̄ 2 N to get an approximated option price. From Table 2, we
notice that for n = 1 the correlator values are very small in this configuration. This means that k̄ can
be chosen small, possibly not bigger than 5. For small values of k (that means, small values of m), the
iterated integral of the correlator formula (see the terms in equation (1.6)) can be computed by hand,
avoiding additional error due to some multidimensional integration technique necessary otherwise.

18

Accuracy performances

m n Formula value MC worst value MC fails

0 1 1.500e�01 1.490e�01 (0.66%) 66/100
0 2 2.350e�02 2.378e�02 (1.18%) 77/100
0 3 3.825e�03 3.751e�03 (1.93%) 91/100
0 4 6.442e�04 6.567e�04 (1.94%) 93/100
0 5 1.119e�04 1.092e�04 (2.43%) 92/100
0 10 2.618e�08 2.828e�08 (8.02%) 98/100

1 1 2.258e�02 2.278e�02 (0.88%) 79/100
1 2 5.594e�04 5.505e�04 (1.60%) 94/100
1 3 1.503e�05 1.460e�05 (2.82%) 91/100
1 4 4.338e�07 4.164e�07 (4.00%) 95/100
1 5 1.337e�08 1.268e�08 (5.09%) 97/100
1 10 8.366e�16 6.916e�16 (17.3%) 99/100

2 1 3.436e�03 3.467e�03 (0.92%) 81/100
2 2 1.383e�05 1.346e�05 (2.62%) 92/100
2 3 6.372e�08 6.662e�08 (4.55%) 95/100
2 4 3.310e�10 3.529e�10 (6.60%) 98/100
2 5 1.914e�12 1.742e�12 (9.00%) 99/100
2 10 4.638e�23 8.030e�23 (73.2%) 100/100

3 1 5.291e�04 5.352e�04 (1.15%) 86/100

4 1 8.245e�05 8.097e�05 (1.80%) 87/100

5 1 1.300e�05 1.326e�05 (2.02%) 88/100

10 1 1.477e�09 1.413e�09 (4.36%) 91/100

Table 2: Accuracy performances for the correlator formula (Formula value) compared with a Monte
Carlo approach (MC worst value). In parenthesis, the relative error with respect to the correlator
formula. In the last column (MC fails), the ratio of values with relative error exceeding the tolerance.

7 Conclusions

We have derived an explicit formula for computing correlators of one-dimensional polynomial processes
consisting of linear combinations of exponentials of the generator matrix associated with the polynomial
process. Our analysis is based on a recursive use of the moment formula for conditional expectations
of polynomial processes along with the introduction of two new linear operators, respectively, the L-
eliminating and the L-duplicating matrices. The closed-form expression of the correlators of polynomial
processes is attractive in studies of options and risk management. The connection to Hankel matrices
open our studies of correlators of polynomial processes to other areas as well.

We want to stress that a closed formula allows to make analysis with respect to the variables and
parameters involved. The correlator formula in Theorem 4.5 depends on the polynomial jump-diffusion
coefficients, b, � and ⇠, as introduced in equation (2.3). But it also depends on the time points
t < s0 < s1 < · · · < sm < T < +1. This fact may be exploited for option price analysis as we
demonstrated. Indeed, the correlator formula allows for explicit computation of derivatives, and lend
themselves to the calculation of option Greeks.

We finally highlight that the formulas obtained in this paper are restricted to one-dimensional
models. When increasing the dimension of the problem, calculations get more challenging and further
considerations are required. Indeed, for any d � 2, the monomial basis for Rd is more complex than
the one used here, and, when multiplying two or more basis vectors, the object obtained requires more
analysis and potentially different eliminating and duplicating matrices.

19

Acknowledgements Christa Cuchiero is thanked for interesting discussions. The authors are also
grateful for the careful reading and the suggestions of three anonymous referees, which have led to a
significant improvement on the presentation of the paper.

A Some combinatorial properties

We report in this section some combinatorial properties concerning the L-eliminating and the L-
duplicating matrices and the matrix of functions X

(r)
n (x). However, these are not necessary to un-

derstand the main part of the article.

A.1 The L-eliminating and L-duplicating matrices
The total number of elements of En,m is equal to nm(n+m�1). When multiplying En,m with a matrix
A 2 Rn⇥m, we select the elements of A which are in the first column and last row, that account for
exactly n+m�1 terms. That means that En,m must have exactly n+m�1 elements equal to 1 and the
rest must be zeros. Moreover, for A 2 An,m, the matrix Dn,m duplicates each element ak in vecL(A)
as many times as the number of elements in the k-th skew-diagonal of A, k = 1, . . . , n+m� 1. Then
in the k-th column of Dn,m there are as many 1’s as the number of elements in the k-th skew-diagonal
of A, while the remaining elements are all zeros. We shall be more precise in the following lemmas.

Lemma A.1. For En,m 2 R(n+m�1)⇥nm, the number of non-zero elements is n+m� 1.

Lemma A.2. If n 6= m, then the number of 1’s in the k-th column of Dn,m is
8
><

>:

k for 1  k  min(n,m)� 1

min(n,m) for min(n,m)  k  max(n,m)� 1

n+m� k for max(n,m)  k  n+m� 1

. (A.1)

If n = m, then the following formula holds instead:
(
k for 1  k  n� 1

2n� k for n  k  2n� 1
. (A.2)

In particular, if n = m then the number of 1’s in the k-th column corresponds to the coefficient of the

(k � 1)-th power of x in the power expansion
⇣P

n�1
↵=0 x

↵

⌘2
.

Proof. Let n 6= m and A 2 An,m. In the k-th column of Dn,m there are as many 1’s as the number
of elements in the k-th skew-diagonal of A. Denoting with ak the value of the elements on the k-th
skew-diagonal of A, k = 1, . . . , n + m � 1, equation (A.1) gives the cardinality of each ak. Then the
sum of the elements in equation (A.1) should give the total number of elements in A, that is nm:

min(n,m)�1X

k=1

k +

max(n,m)�1X

k=min(n,m)

min(n,m) +
n+m�1X

k=max(n,m)

(m+ n� k)

=
min(n,m) (min(n,m)� 1)

2
+ min(n,m) (max(n,m)�min(n,m)) +

min(n,m) (min(n,m) + 1)

2
= max(n,m)min(n,m) = nm,

where for the third sum we used the change of variables k0 = m+n�k so that
P

n+m�1
k=max(n,m)(m+n�k) =

Pn+m�max(m,n)
k0=1 k

0, and the fact that m + n �max(n,m) = min(n,m). The case n = m is similar, so
that the first part of the lemma is proved.

We need now to prove that the numbers in equation (A.2) correspond to the coefficients in the power

expansion
⇣P

n�1
↵=0 x

↵

⌘2
. We proceed by induction on the matrix dimension n � 2 (n = 1 is trivial).

20

• n = 2: a matrix A 2 A2,2 is of the form A =

✓
a1 a2

a2 a3

◆
and the cardinality of ak, k = 1, 2, 3, is

1�2�1, which corresponds to the coefficients of the polynomial
⇣P1

↵=0 x
↵

⌘2
= (1+x)2 = 1+2x+x

2.

• n ! n + 1: we denote with An a general matrix in An, and with An+1 a general matrix in An+1.
Then An and An+1 can be represented as

An =

0

BBB@

a1 a2 an

a2 a3 an+1

an an+1 a2n�1

1

CCCA
and An+1 =

0

BBBBBB@

a1 a2 an an+1

a2 a3 an+1

a2n�1

an an+1 a2n�1 a2n

an+1 a2n�1 a2n a2n+1

1

CCCCCCA
.

In particular, An contains the entries ak from k = 1 to k = 2n � 1, whose cardinality, by induction
hypothesis, corresponds to the coefficients of the polynomial

⇣P
n�1
↵=0 x

↵

⌘2
. Moreover, the entries ak

from k = n+ 1 to k = 2n� 1 appear two extra times in An+1: once in the last row and once in the
last column. Finally, in An+1 we have two additional entries, a2n and a2n+1, that are not in An, and
whose cardinality is, respectively, 2 and 1. To summarize, the cardinality of the entry ak in An+1,
k = 1, . . . , 2n+ 1, corresponds to the (k � 1)-th power of x in the following polynomial:

n�1X

↵=0

x
↵

!2

+2
�
x
n + · · ·+ x

2n�2
�
+2x2n�1+x

2n =

n�1X

↵=0

x
↵

!2

+2xn

n�1X

↵=0

x
↵

!
+x

2n =

nX

↵=0

x
↵

!2

,

which concludes the proof.

Example A.1. Let n = m = 3. After some technical calculations, we get

E3,3 =

0

BB@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1

1

CCA and D3,3 =

0

BBBBBBBB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

1

CCCCCCCCA

.

The number of non-zero elements in E3,3 is n+m� 1 = 5 a stated in Lemma A.1, and the number of
non-zero elements in each column of D3,3 is 1 � 2 � 3 � 2 � 1, like the coefficients in the polynomial
expansion

2X

↵=0

x
↵

!2

=
�
1 + x+ x

2
�2

= 1 + 2x+ 3x2 + 2x3 + x
4
,

according to Lemma A.2.

A.2 The matrix of functions
From Proposition 4.1, X(r)

n (x) is a rectangular block matrix composed by (n+ 1)r�1 blocks B
(k)
n,r(x) 2

An+1, which can be expressed by B
(k)
n,r(x) = x

jkX
(1)
n (x) for a certain jk 2 {0, . . . , (r � 1)n}. We shall

now give the cardinality of each block and an explicit formula for jk. We denote by mod and % the
operators which, respectively, return the remainder and the quotient of the division between two natural
numbers, namely for a, b, c, d 2 N, c = a mod b and d = a%b means that a = bd+ c.

Lemma A.3. For every n, r � 1, each block of the form x
j
X

(1)
n (x), for j = 0, . . . , (r� 1)n, is repeated

with cardinality �
(j)
n,r := #{k : jk = j}, that is equal to the coefficient of the j-th power of x in the

polynomial expansion (
P

n

↵=0 x
↵)

r�1
.

21

Proof. We proceed by induction on r � 1.

• r = 1: X
(1)
n (x) = x

0
X

(1)
n (x) is composed by only one block, and the polynomial (

P
n

↵=0 x
↵)

0
= 1 has

the only coefficient 1, that is the cardinality of the unique block.

• r ! r + 1: we assume the statement holds for r. We need to prove that for each j = 0, . . . , rn, the
cardinality of the block of the form x

j
X

(1)
n (x) corresponds to the coefficient of the j-th power of x in

the polynomial expansion (
P

n

↵=0 x
↵)

r. Since the Kronecker product is associative, we write

X
(r+1)
n

(x) = Hn(x)
> ⌦X

(r)
n

(x) =
⇣
X

(r)
n (x) xX

(r)
n (x) x

2
X

(r)
n (x) · · · · · · x

n
X

(r)
n (x)

⌘
. (A.3)

We know by induction hypothesis that each block of X(r)
n (x) of the form x

j
X

(1)
n (x), j 2 {0, . . . , (r�

1)n}, has cardinality according to the j-th coefficient of the polynomial expansion (
P

n

↵=0 x
↵)

r�1. It
is clear that such cardinality shifts to the upper power when we multiply X

(r)
n (x) by x, and it shifts

by two positions when we multiply X
(r)
n (x) by x

2, and so on (for example, if the block x
j
X

(1)
n (x) has

cardinality �
(j)
n,r in X

(r)
n (x), then �

(j)
n,r is the cardinality of xj+1

X
(1)
n (x) in xX

(r)
n (x), of xj+2

X
(1)
n (x)

in x
2
X

(r)
n (x), and so on). To summarize, we say that in X

(r+1)
n (x) the cardinality for the block of

the form x
j
X

(1)
n (x) corresponds to the coefficient of the j-th power in the following polynomial:

nX

↵=0

x
↵

!r�1

+ x

nX

↵=0

x
↵

!r�1

+ · · ·+ x
n

nX

↵=0

x
↵

!r�1

=

nX

↵=0

x
↵

!r

,

which concludes the proof.

Lemma A.4. For every n, r � 1, the blocks B
(k)
n,r(x) composing the matrix of functions X

(r)
n (x) are of

the form B
(k)
n,r(x) = x

�
(k)
n,rX

(1)
n (x), for �(k)n,r 2 {0, . . . , (r � 1)n} given by the formula

�
(k)
n,r

=
r�1X

j=0

�
(k � 1) mod (n+ 1)r�j

%(n+ 1)r�1�j for k = 1, . . . (n+ 1)r�1

.

Proof. By associativity property of the Kronecker product, X(r)
n (x) =

�
Hn(x)>

�⌦(r�1)⌦X
(1)
n (x), where

�
Hn(x)>

�⌦(r�1) is a row vector in R(n+1)r�1

with elements the monomials x
�
(k)
n,r whose exponents we

want to study, k = 1, . . . (n + 1)r�1. We focus on
�
Hn(x)>

�⌦r for simplicity: we need then to prove
that the k-th element of

�
Hn(x)>

�⌦r is a monomial with exponent given by

P
(k)
n,r

=
rX

j=0

�
(k � 1) mod (n+ 1)r�j+1

%(n+ 1)r�j for k = 1, . . . (n+ 1)r. (A.4)

The result will follow noticing that �(k)n,r = P
(k)
n,r�1. We proceed by induction on r � 1.

• r = 1: for Hn(x) we easily notice that the exponent of the k-th term equals k� 1, k = 1, . . . , (n+1).
We now look at equation (A.4):

P
(k)
n,1 =

1X

j=0

�
(k � 1) mod (n+ 1)2�j

%(n+ 1)1�j

=
�
(k � 1) mod (n+ 1)2

%(n+ 1) + {(k � 1) mod (n+ 1)}%(n+ 1)0

where the first term is 0 and the second one is k � 1, since 0  k � 1  n.

• r ! r + 1: we now assume formula (A.4) holds for r. By associativity property,
�
Hn(x)>

�⌦(r+1)
=

22

Hn(x)> ⌦
�
Hn(x)>

�⌦r, so that
�
Hn(x)>

�⌦(r+1) is the block vector

�
Hn(x)

>�⌦(r+1)
=
⇣�

Hn(x)>
�⌦r

x
�
Hn(x)>

�⌦r

x
2
�
Hn(x)>

�⌦r · · · · · · x
n
�
Hn(x)>

�⌦r
⌘
.

For each element in
�
Hn(x)>

�⌦(r+1), the exponent is P
(k)
n,r + ↵ with ↵ 2 {0, . . . , n}. However,

we notice that
�
Hn(x)>

�⌦r has index k = 1, . . . , (n + 1)r, while
�
Hn(x)>

�⌦(r+1) has index k̂ =

1, . . . , (n+1)r+1. Then in formula (A.4) we must substitute (k�1) = (k̂�1) mod (n+1)r. Moreover,
↵ = (k̂�1)%(n+1)r. Putting all these considerations together, we write that (we omit the superscript
ˆon the index k):

P
(k)
n,r+1 = (k � 1)%(n+ 1)r +

rX

j=0

�
(k � 1) mod (n+ 1)r mod (n+ 1)r�j+1

%(n+ 1)r�j

. (A.5)

In particular, it is easy to see that

(k � 1) mod (n+ 1)r mod (n+ 1)r�j+1 =

(
(k � 1) mod (n+ 1)r�j+1

j � 1

(k � 1) mod (n+ 1)r j = 0
,

so that equation (A.5) becomes

P
(k)
n,r+1 = (k � 1)%(n+ 1)r + (k � 1) mod (n+ 1)r%(n+ 1)r+

+
rX

j=1

�
(k � 1) mod (n+ 1)r�j+1

%(n+ 1)r�j

. (A.6)

Moreover, since 1  k  (n+ 1)r+1, we also notice that

(k � 1)%(n+ 1)r = (k � 1) mod (n+ 1)r+1%(n+ 1)r and
(k � 1) mod (n+ 1)r%(n+ 1)r(= 0) = (k � 1) mod (n+ 1)r+2%(n+ 1)r+1

,

and equation (A.6) can be rewritten as

P
(k)
n,r+1 =

rX

j=�1

�
(k � 1) mod (n+ 1)r�j+1

%(n+ 1)r�j

=
r+1X

j=0

�
(k � 1) mod (n+ 1)r�j+2

%(n+ 1)r�j+1

,

which concludes the proof.

B Proofs

We report in this section the proofs of the main results of the paper together with some additional
results that are needed for the proofs.

Proposition B.1. For the matrices A,B 2 Rn⇥m with elements, respectively, [A]i,j = ai,j and [B]i,j =
bi,j, 1  i  n and 1  j  m, and ~x, ~y vectors of any order, we have the following properties:

A =
nX

i=1

mX

j=1

ai,j~en,i~e
>
m,j

(B.1a)

(vec(A))>vec(B) = tr(A>
B) (B.1b)

23

~x⌦ ~y = vec(~y ~x>) (B.1c)

~x⌦ ~y
> = ~x ~y

> = ~y
> ⌦ ~x (B.1d)

where tr denotes the trace operator. Moreover, for every A 2 Rp⇥q, B 2 Rr⇥s, C 2 Rq⇥k and D 2 Rs⇥l,
the mixed-product property holds:

(A⌦B) (C ⌦D) = (AC)⌦ (BD) . (B.2)

Proof. We refer to [29, Section 2] and [22, Lemma 4.2.10].

Proof of Theorem 3.1

Proof. We will prove the existence of the matrix En,m by proving its explicit definition. We first give
a characterization of vecL(A) in terms of the unitary vectors. By equation (B.1a), one easily sees that

vecL(A) =
nX

i=1

ai,1~en+m�1,i +
mX

i=2

an,i~en+m�1,n+i�1. (B.3)

In particular, ai,1 = ~e
>
n,i

A~em,1 = tr(~em,1~e
>
n,i

A) and an,i = ~e
>
n,n

A~em,i = tr(~em,i~e
>
n,n

A). Moreover, by
property (B.1b) we write that

tr(~em,1~e
>
n,i

A) = tr((~en,i~e
>
m,1)

>
A) = vec(~en,i~e

>
m,1)

>
vec(A),

tr(~em,i~e
>
n,n

A) = tr((~en,n~e
>
m,i

)>A) = vec(~en,n~e
>
m,i

)>vec(A).

By combining these results with equations (B.1c), (B.1d) and (B.3), we get that

vecL(A) =

nX

i=1

~en+m�1,ivec(~en,i~e
>
m,1)

> +
mX

i=2

~en+m�1,n+i�1vec(~en,n~e
>
m,i

)>
!
vec(A)

=

nX

i=1

~en+m�1,i ⌦ ~e
>
m,1 ⌦ ~e

>
n,i

+
mX

i=2

~en+m�1,n+i�1 ⌦ ~e
>
m,i

⌦ ~e
>
n,n

!
vec(A).

Then the L-eliminating matrix En,m satisfying the implicit definition in equation (3.7) is the one in
equation (3.8). This concludes the proof.

Proof of Theorem 3.3

Proof. We construct the matrix Dn,m explicitly. Since A 2 An,m, the elements of A along the skew-
diagonals coincide and A has exactly n + m � 1 skew-diagonals, leading to at most n + m � 1 dif-
ferent values. In the notation of Definition 3.4, let ak, k = 1, . . . , (n + m � 1), such that vecL(A) =
(a1, a2, . . . , an+m�1)> 2 Rn+m�1. For 1  i  n and 1  j  m, it holds that

[A]i,j = ai+j�1 = [vecL(A)]i+j�1 = vecL(A)>~en+m�1,i+j�1 = ~e
>
n+m�1,i+j�1vecL(A). (B.4)

We notice that ~em,j ⌦ ~en,i is the unitary vector in Rnm with 1 in position n(j � 1) + i and 0 elsewhere.
We use this fact together with equation (B.4) to express the vectorization of A as follows:

vec(A) =
nX

i=1

mX

j=1

ai+j�1~em,j ⌦ ~en,i =

0

@
nX

i=1

mX

j=1

(~em,j ⌦ ~en,i)~e
>
n+m�1,i+j�1

1

A vecL(A).

By equation (B.1d), we define Dn,m as in equation (3.10), which proves the theorem.

24

Proof of Proposition 3.5

Proof. For the second part of the statement, the proof is straightforward from the definitions of En,m

and Dn,m, namely combining equations (3.7) and (3.9). We resume the situation as follows:

vec(A)
En,m����! vecL(A)

Dn,m����! vec(A)

so that Dn,mEn,m 2 Rnm⇥nm acts like an identity operator on vec(A) for each A 2 An,m.
We prove now the first part of the statement. By equations (3.8) and (3.10), we write that

En,mDn,m =
nX

i=1

mX

j=1

nX

k=1

�
~en+m�1,k ⌦ ~e

>
m,1 ⌦ ~e

>
n,k

� �
~e
>
n+m�1,i+j�1 ⌦ ~em,j ⌦ ~en,i

�
+

+
nX

i=1

mX

j=1

mX

k=2

�
~en+m�1,n+k�1 ⌦ ~e

>
m,k

⌦ ~e
>
n,n

� �
~e
>
n+m�1,i+j�1 ⌦ ~em,j ⌦ ~en,i

�
. (B.5)

We denote with Ii 2 R(n+m�1)⇥(n+m�1) the matrix with 1 in position (i, i) and 0 elsewhere, and with
Ii,j 2 R(n+m�1)⇥(n+m�1) the matrix with 1 in position (k, k) for i  k  j. We focus on the first sum
in equation (B.5). We notice that:

• ~e
>
m,1⌦~e>n,k = ~e

>
nm,k

and Ak := ~en+m�1,k⌦~e>m,1⌦~e>n,k 2 R(n+m�1)⇥nm is the matrix with 1 in position
(k, k) and 0 elsewhere;

• ~em,j ⌦~en,i = ~enm,n(j�1)+i and Bi,j := ~e
>
n+m�1,i+j�1 ⌦~em,j ⌦~en,i 2 Rnm⇥(n+m�1) is the matrix with

1 in position (n(j � 1) + i, i+ j � 1) and 0 elsewhere.

Then AkBi,j = Ii. Similarly, looking at the second sum in equation (B.5), we notice that ~e>
m,k

⌦
~e
>
n,n

= ~e
>
nm,kn

and Ãk := ~en+m�1,n+k�1 ⌦ ~e
>
m,k

⌦ ~e
>
n,n

2 R(n+m�1)⇥nm is the matrix with 1 in position
(n + k � 1, kn) and 0 elsewhere. Then ÃkBi,j = In+k�1. Combining these results into equation (B.5)
we get

En,mDn,m =
nX

i=1

mX

j=1

nX

k=1

AkBi,j +
nX

i=1

mX

j=1

mX

k=2

ÃkBi,j

=
nX

k=1

Ik +
mX

k=2

In+k�1 = I1,n + In+1,n+m�1 = In+m�1,

that concludes the proof.

Proof of Proposition 3.7

Proof. By combining GH2n(x) = G2nH2n(x) with Lemma 3.6 we get vecL(GXn(x)) = G2nvecL(Xn(x)),
which, by definition of En+1 and multiplying both sides by Dn+1 from the left, becomes

Dn+1En+1vec(GXn(x)) = Dn+1G2nEn+1vec(Xn(x)).

In particular, Dn+1En+1vec(GXn(x)) = vec(GXn(x)) by Proposition 3.5, so that G̃(1)
n = Dn+1G2nEn+1.

We consider now the definition of exponential function as infinite sum of powers and write that

e
G̃

(1)
n t = e

Dn+1G2nEn+1t =
1X

k=0

t
k

k!
(Dn+1G2nEn+1)

k
.

The result follows from Proposition 3.5 since (Dn+1G2nEn+1)
k = Dn+1 (G2n)

k
En+1, k � 0.

25

Proof of Theorem 3.8

Proof. Starting from equation (3.3) and applying the operator vec on both sides, we get

E [vec (Xn(Y (s0))) | Ft] = vec (Xn(Y (t))) +

Z
s0

t

E [Gvec (Xn(Y (s))) | Ft] ds,

which, by equation (3.5) and Proposition 3.7, becomes

E [vec (Xn(Y (s0))) | Ft] = vec (Xn(Y (t))) +Dn+1G2nEn+1

Z
s0

t

E [vec (Xn(Y (s))) | Ft] ds.

For Z(s) := E[vec (Xn(Y (s))) | Ft], the proof then proceeds in a similar way to the proof of Theorem
2.1 and the statement is proved by combining the result with equation (3.1).

Proof of Proposition 4.1

Proof. By definition of d-Kronecker product, since Hn(x) 2 Rn+1, one can verify that X
(r)
n (x) 2

R(n+1)⇥(n+1)r . We then proceed by induction on r � 1.

• r = 1: we get that X
(1)
n (x) = Hn(x)> ⌦Hn(x) = x

0
X

(1)
n (x) 2 An+1.

• r ! r + 1: assuming the statement holds for r, from equation (A.3), we see that we need to
multiply the row vector Hn(x)> = (1, x, . . . , xn) in the Kronecker sense with the matrix X

(r)
n (x) =

Hn(x)> ⌦r
Hn(x), which we know satisfies the statement of the proposition. That means that each

of the (n + 1)r�1 blocks B
(k)
n,r(x) = x

jkX
(1)
n (x), for jk 2 {0, . . . , (r � 1)n}, must be multiplied with

each of the elements of the vector Hn(x), namely with each power x
↵, ↵ = 0, . . . , n. We can then

say that there are (n + 1)r blocks B
(k)
n,r+1(x) 2 An+1 and that for each block there exists an index

�k 2 {0, . . . , rn} such that B
(k)
n,r+1(x) = x

�kX
(1)
n (x). This concludes the proof.

Lemma B.2. It holds that vec(X(m)
n (x)) = Hn(x)⌦

m+1

. Moreover, after removing all the duplicates
from vec(X(m)

n (x)), we are left with Hn(m+1)(x).

Proof. The result follows from a direct verification.

Lemma B.3. There exist an L-eliminating matrix Enm+1,n+1 and an L-duplicating matrix Dnm+1,n+1

such that

Enm+1,n+1 (Hn(x)⌦Hnm(x)) = Hn(m+1)(x) and Dnm+1,n+1Hn(m+1)(x) = Hn(x)⌦Hnm(x). (B.6)

Proof. From a direct verification, it can be seen that

vec(Hn(x)
> ⌦Hnm(x)) = Hn(x)⌦Hnm(x) and vecL(Hn(x)

> ⌦Hnm(x)) = Hn(m+1)(x). (B.7)

Then, from Theorem 3.1, there exists an L-eliminating matrix Enm+1,n+1 transforming the vectorization
of Hn(x)> ⌦ Hnm(x) into its L-vectorization. By equation (B.7), this is equivalent to saying that
Enm+1,n+1 maps Hn(x)⌦Hnm(x) to Hn(m+1)(x), which is what claimed in equation (B.6). Similarly,
by Theorem 3.3 there exists an L-duplicating matrix Dnm+1,n+1 satisfying equation (B.6).

Proof of Proposition 4.2

Proof. We proceed by induction on m � 1.

• m = 1: see Corollary 3.2 and equation (4.2).

26

• m � 1 ! m: we assume the statement holds for m � 1, namely there exists a matrix E
(m�1)
n+1 that

applied to vec(X(m�1)
n (x)) removes all the duplicates. By Lemma B.2, this means that

E
(m�1)
n+1 Hn(x)

⌦m = Hnm(x).

We now multiply both sides in the Kronecker sense by Hn(x), and successively apply on the left the
matrix Enm+1,n+1, obtaining that

Enm+1,n+1

h
Hn(x)⌦

⇣
E

(m�1)
n+1 Hn(x)

⌦m

⌘i
= Enm+1,n+1 [Hn(x)⌦Hnm(x)] .

From the identity Hn(x) = In+1Hn(x), and applying the mixed-product property of the Kronecker
product (equation (B.2)) on the left hand side, and equation (B.6) on the right hand side, we get

Enm+1,n+1

h⇣
In+1 ⌦ E

(m�1)
n+1

⌘ �
Hn(x)⌦Hn(x)

⌦m
�i

= Hn(m+1)(x).

Since Hn(x) ⌦ Hn(x)⌦m = Hn(x)⌦(m+1) = vec(X(m)
n (x)) by Lemma B.2, the matrix E

(m)
n+1 =

Enm+1,n+1

⇣
In+1 ⌦ E

(m�1)
n+1

⌘
is exactly the one removing all the duplicates from vec(X(m)

n (x)).

Proof of Proposition 4.3

Proof. We proceed by induction on m � 1.

• m = 1: see Corollary 3.4 and equation (4.2).

• m � 1 ! m: we assume the statement holds for m � 1. Then, starting from equation (B.6) and
multiplying both sides with In+1 ⌦D

(m�1)
n+1 we get

⇣
In+1 ⌦D

(m�1)
n+1

⌘ �
Dnm+1,n+1Hn(m+1)(x)

�
=
⇣
In+1 ⌦D

(m�1)
n+1

⌘
(Hn(x)⌦Hnm(x)) . (B.8)

By the mixed-product property of the Kronecker product (equation (B.2)), the right hand side is
⇣
In+1 ⌦D

(m�1)
n+1

⌘
(Hn(x)⌦Hnm(x)) = (In+1Hn(x))⌦

⇣
D

(m�1)
n+1 Hnm(x)

⌘

= Hn(x)⌦
⇣
D

(m�1)
n+1 Hnm(x)

⌘
.

From the induction hypothesis, D(m�1)
n+1 satisfies D

(m�1)
n+1 Hnm(x) = vec(X(m�1)

n (x)), and, by Lemma
B.2, we also have vec(X(m�1)

n (x)) = Hn(x)⌦m. Then equation (B.8) becomes
⇣
In+1 ⌦D

(m�1)
n+1

⌘
Dnm+1,n+1Hn(m+1)(x) = Hn(x)⌦Hn(x)

⌦m = Hn(x)
⌦(m+1)

,

and the matrix D
(m)
n+1 =

⇣
In+1 ⌦D

(m�1)
n+1

⌘
Dnm+1,n+1 is exactly the one required.

Proposition B.4. For every n,m � 1, ~vn 2 Rn+1 and M
(m�1)
n 2 R(n+1)m⇥(n+1)m , the identity holds:

Hn(x)~v
>
n

n
vec

�1 �M (m�1)
n

� vec
⇣
X

(m�1)
n

(x)
⌘o

=
n
X

(m)
n

(x)
o
M

(m�1)>
n

�
In+1 ⌦m�1

~vn

. (B.9)

Proof. We proceed by induction on the order m � 1.

• m = 1: starting from the left hand side of identity (B.9), we get

Hn(x)~v
>
n

n
vec

�1 �M (0)
n

� vec
⇣
X

(0)
n

(x)
⌘o

= Hn(x)~v
>
n
M

(0)
n

Hn(x) = Hn(x)Hn(x)
>
M

(0)>
n

~vn

27

=
n
X

(1)
n

(x)
o
M

(0)>
n

�
In+1 ⌦0

~vn

.

Remember indeed that the vec�1 operator transforms a vector into an object with the same dimension
as the argument of the operator vec previously applied. But in this case the argument of vec is a
vector already, hence both vec and vec

�1 coincide in practise with the identity operator. Moreover,
~v
>
n
M

(0)
n Hn(x) 2 R and it equals its transpose. This proves the base case.

• m ! m+ 1: we assume identity (B.9) holds for m and consider

Hn(x)~v
>
n

n
vec

�1 �M (m)
n

� vec
⇣
X

(m)
n

(x)
⌘o

.

In particular, M (m)
n 2 R(n+1)m+1⇥(n+1)m+1

can be seen as made up of (n+ 1)2 matrices of the form
M

(m�1)
i,j

2 R(n+1)m⇥(n+1)m , 1  i, j  n+ 1, so that M
(m)
n looks like

M
(m)
n

=

0

BB@

M
(m�1)
1,1 M

(m�1)
1,n+1

M
(m�1)
n+1,1 M

(m�1)
n+1,n+1

1

CCA.

The idea is then to break up the matrix M
(m)
n into sub-matrices, for which we know the statement

holds by induction hypothesis. In what follows, starting from X
(m)
n (x), we will apply in the following

order: the vec operator, the matrix M
(m)
n , the vec

�1 operator and finally the matrix Hn(x)~v>n . At
this point we will be able to apply the induction hypothesis, and prove the statement.
By Lemma B.2 and associativity property of the Kronecker product, we get

vec

⇣
X

(m)
n

(x)
⌘
= Hn(x)⌦Hn(x)

⌦m =

0

BBB@

Hn(x)⌦m

xHn(x)⌦m

x
n
Hn(x)⌦m

1

CCCA
,

where x
k
Hn(x)⌦m 2 R(n+1)m , k = 0, . . . , n, thus

M
(m)
n

vec

⇣
X

(m)
n

(x)
⌘
=

0

BB@

M
(m�1)
1,1 Hn(x)⌦m +M

(m�1)
1,2 xHn(x)⌦m + · · ·+M

(m�1)
1,n+1 x

n
Hn(x)⌦m

M
(m�1)
n+1,1 Hn(x)⌦m +M

(m�1)
n+1,2 xHn(x)⌦m + · · ·+M

(m�1)
n+1,n+1x

n
Hn(x)⌦m

1

CCA.

Applying the vec
�1 operator to the last matrix obtained, by linearity we get

⇣
vec

�1
⇣
M

(m�1)
1,1 Hn(x)

⌦m

⌘
+ · · ·+ x

n
vec

�1
⇣
M

(m�1)
1,n+1 Hn(x)

⌦m

⌘
,

· · · · · · ,

vec
�1

⇣
M

(m�1)
n+1,1 Hn(x)

⌦m

⌘
+ · · ·+ x

n
vec

�1
⇣
M

(m�1)
n+1,n+1Hn(x)

⌦m

⌘⌘
,

where vec�1
⇣
M

(m�1)
i,j

Hn(x)⌦m

⌘
2 R(n+1)⇥(n+1)m�1

, 1  i, j  n+1. Multiplying the above equation
by Hn(x)~v>n , we obtain that

Hn(x)~v
>
n

n
vec

�1 �M (m)
n

� vec
⇣
X

(m)
n

(x)
⌘o

=
⇣
Hn(x)~v

>
n
vec

�1
⇣
M

(m�1)
1,1 Hn(x)

⌦m

⌘
+ · · ·+ x

n
Hn(x)~v

>
n
vec

�1
⇣
M

(m�1)
1,n+1 Hn(x)

⌦m

⌘
,

· · · · · · ,

Hn(x)~v
>
n
vec

�1
⇣
M

(m�1)
n+1,1 Hn(x)

⌦m

⌘
+ · · ·+ x

n
Hn(x)~v

>
n
vec

�1
⇣
M

(m�1)
n+1,n+1Hn(x)

⌦m

⌘⌘
.

Since Hn(x)⌦m = vec

⇣
X

(m�1)
n (x)

⌘
, we apply the induction hypothesis to each term

Hn(x)~v
>
n
vec

�1
⇣
M

(m�1)
i,j

Hn(x)
⌦m

⌘
=
n
X

(m)
n

(x)
o
M

(m�1)>
i,j

�
In+1 ⌦m�1

~vn

28

for 1  i, j  n+ 1, so that

Hn(x)~v
>
n

n
vec

�1 �M (m)
n

� vec
⇣
X

(m)
n

(x)
⌘o

=
⇣n

X
(m)
n

(x)
o
M

(m�1)>
1,1

�
In+1 ⌦m�1

~vn

+ · · ·+ x

n

n
X

(m)
n

(x)
o
M

(m�1)>
1,n+1

�
In+1 ⌦m�1

~vn

,

· · · · · · ,
n
X

(m)
n

(x)
o
M

(m�1)>
n+1,1

�
In+1 ⌦m�1

~vn

+ · · ·+ x

n

n
X

(m)
n

(x)
o
M

(m�1)>
n+1,n+1

�
In+1 ⌦m�1

~vn

 ⌘

which can also be seen as the following matrix product:

⇣n
X

(m)
n (x)

o
, , x

n
n
X

(m)
n (x)

o⌘
0

BB@

M
(m�1)>
1,1

�
In+1 ⌦m�1

~vn

M
(m�1)>
n+1,1

�
In+1 ⌦m�1

~vn

M
(m�1)>
1,n+1

�
In+1 ⌦m�1

~vn

M
(m�1)>
n+1,n+1

�
In+1 ⌦m�1

~vn

1

CCA.

In particular, the following identity also holds
⇣n

X
(m)
n

(x)
o
, · · · , xn

n
X

(m)
n

(x)
o⌘

= Hn(x)
> ⌦

n
X

(m)
n

(x)
o
= X

(m+1)
n

(x),

so that we can conclude with the expression
0

BB@

M
(m�1)>
1,1

�
In+1 ⌦m�1

~vn

M

(m�1)>
n+1,1

�
In+1 ⌦m�1

~vn

M
(m�1)>
1,n+1

�
In+1 ⌦m�1

~vn

M

(m�1)>
n+1,n+1

�
In+1 ⌦m�1

~vn

1

CCA =

0

BB@

M
(m�1)>
1,1 M

(m�1)>
n+1,1

M
(m�1)>
1,n+1 M

(m�1)>
n+1,n+1

1

CCA

0

B@

�
In+1 ⌦m�1

~vn

0

0
�
In+1 ⌦m�1

~vn

1

CA

where the first matrix on the right hand side coincides with M
(m)>
n , while the second is In+1 ⌦�

In+1 ⌦m�1
~vn

= In+1 ⌦m

~vn. This means we proved

Hn(x)~v
>
n

n
vec

�1 �M (m)
n

� vec
⇣
X

(m)
n

(x)
⌘o

=
n
X

(m+1)
n

(x)
o
M

(m)>
n

{In+1 ⌦m
~vn} ,

and therefore reached the claim.

Proof of Theorem 4.5

Proof. Following the same idea as in the proof of Theorem 3.8, we start by proving that

E
h
X

(r)
n

(Y (s))
���Ft

i
= vec

�1 � eG̃
(r)
n (s�t) � vec

⇣
X

(r)
n

(Y (t))
⌘

(B.10)

for G̃
(r)
n = D

(r)
n+1Gn(r+1)E

(r)
n+1. By equation (2.2) we write

E
h
X

(r)
n

(Y (s))
���Ft

i
= X

(r)
n

(Y (t)) +

Z
s

t

E
h
G
⇣
X

(r)
n

(Y (u))
⌘���Ft

i
du,

and applying the vec operator on both sides we get

E
h
vec

⇣
X

(r)
n

(Y (s))
⌘���Ft

i
= vec

⇣
X

(r)
n

(Y (t))
⌘
+

Z
s

t

E
h
Gvec

⇣
X

(r)
n

(Y (u))
⌘���Ft

i
du. (B.11)

29

By Proposition 4.2, there exists an r-th L-eliminating matrix E
(r)
n+1 such that

E
(r)
n+1vec

⇣
X

(r)
n

(x)
⌘
= Hn(r+1)(x). (B.12)

From Theorem 2.1, there also exists a generator matrix Gn(r+1) such that

GHn(r+1)(x) = Gn(r+1)Hn(r+1)(x), (B.13)

and by Proposition 4.3, an r-th L-duplicating matrix D
(r)
n+1 such that

D
(r)
n+1Hn(r+1)(x) = vec

⇣
X

(r)
n

(x)
⌘
. (B.14)

Combining equations (B.12), (B.13), (B.14) with equation (B.11) we get

E
h
vec

⇣
X

(r)
n

(Y (s))
⌘���Ft

i
= vec

⇣
X

(r)
n

(Y (t))
⌘
+D

(r)
n+1Gn(r+1)E

(r)
n+1

Z
s

t

E
h
vec

⇣
X

(r)
n

(Y (u))
⌘���Ft

i
du,

and, proceeding the proof as in Theorem 3.8, we obtain that for every n � 1 and r � 0, the matrix
G̃

(r)
n = D

(r)
n+1Gn(r+1)E

(r)
n+1 2 R(n+1)r+1⇥(n+1)r+1

is such that the expectation formula (B.10) holds.
We now proceed by induction on the number of polynomials m � 1 to prove the correlator formula.

• m = 1: the formula coincides with the one given in Theorem 3.8.

• m ! m+1: we suppose the correlator formula holds for m and consider m+1 polynomial functions.
By the tower rule and the induction hypothesis, we write that

Cp0,...,pm+1(s0, . . . , sm+1; t) = E [pm+1 (Y (s0))Cp0,...,pm(s1, . . . , sm+1; s0)| Ft]

= E
h
~p
>
m+1Hn(Y (s0))~p

>
m

n
vec

�1 � eG̃
(m)
n (s1�s0) � vec

⇣
X

(m)
n

(Y (s0))
⌘o

·

·
mY

k=1

e
G̃

(m�k)>
n (sk+1�sk)

�
In+1 ⌦m�k

~pm�k

�����Ft

#
.

From Proposition B.4, we also have the following crucial equality:

Hn(Y (s0))~p
>
m

n
vec

�1 � eG̃
(m)
n (s1�s0) � vec

⇣
X

(m)
n

(Y (s0))
⌘o

=
n
X

(m+1)
n

(Y (s0))
o
e
G̃

(m)>
n (s1�s0) {In+1 ⌦m

~pm} .

Combining the previous results and equation (B.10), we can write that

Cp0,...,pm+1(s0, . . . , sm+1; t)

= E
h
~p
>
m+1

n
X

(m+1)
n

(Y (s0))
o
e
G̃

(m)>
n (s1�s0) {In+1 ⌦m

~pm} ·

·
mY

k=1

e
G̃

(m�k)>
n (sk+1�sk)

�
In+1 ⌦m�k

~pm�k

�����Ft

#

= ~p
>
m+1E

h
X

(m+1)
n

(Y (s0))
���Ft

i mY

k=0

e
G̃

(m�k)>
n (sk+1�sk)

�
In+1 ⌦m�k

~pm�k

= ~p
>
m+1

n
vec

�1 � eG̃
(m+1)
n (s0�t) � vec

⇣
X

(m+1)
n

(Y (t))
⌘o mY

k=0

e
G̃

(m�k)>
n (sk+1�sk)

�
In+1 ⌦m�k

~pm�k

.

Rearranging the index in the product of the last equation, we get the formula for m+ 1 polynomial
functions and conclude the proof.

30

Proof of Theorem 5.1

Proof. We proceed by induction on the dimension n � 2.

• n = 2: see Example 2.2.

• n � 1 ! n: we assume the recursion formula holds for n � 1. We then need to compute Gxn. By
equations (2.1) and (2.3), we write that

Gxn = n(b0 + b1x)x
n�1 +

1

2
n(n� 1)(�0 + �1x+ �2x

2)xn�2 +

Z

R

�
(x+ z)n � x

n � nx
n�1

z
�
`(x, dz).

In particular, by binomial expansion
Z

R

�
(x+ z)n � x

n � nx
n�1

z
�
`(x, dz) =

nX

k=2

✓
n

k

◆
x
n�k

Z

R
z
k
`(x, dz)

=
nX

k=2

kX

i=0

✓
n

k

◆
⇠
k

i
x
n�k+i =

nX

i=0

0

@
nX

k=max(2,i)

✓
n

k

◆
⇠
k

k�i

1

Ax
n�i

,

so that

Gxn =

✓
nb1 +

1

2
n(n� 1)�2

◆
x
n +

✓
nb0 +

1

2
n(n� 1)�1

◆
x
n�1 +

nX

i=0

0

@
nX

k=max(2,i)

✓
n

k

◆
⇠
k

k�i

1

Ax
n�i

,

which must be rearranged to collect the coefficients of xk, k = 0, . . . , n, to be inserted in the last row
of Gn. This leads to (an

n
, a

n�1
n

, . . . , a
1
n
, cn)> as defined in the theorem and concludes the proof.

Proof of Theorem 5.3

Proof. We first prove the base case n = 1. We consider the definition of matrix exponential as infinite

sum of powers. If b1 6= 0 then for every k � 1, Gk

1 =

✓
0 0

b0b
k�1
1 b

k

1

◆
; if b1 = 0 then for every k � 2,

G
k

1 =

✓
0 0
0 0

◆
. With G

0
1 = I2, for b1 6= 0 we get:

e
G1t =

1X

k=0

(G1t)
k

k!
= I2 +

1X

k=1

t
k

k!

✓
0 0

b0b
k�1
1 b

k

1

◆

=

1 0

b0
P1

k=1
t
k
b
k�1
1
k! 1 +

P1
k=1

t
k
b
k
1

k!

!
=

✓
1 0

b0
b1

�
e
b1t � 1

�
e
b1t

◆
,

and similarly for b1 = 0, so that the base case is proved.
We now set n > 1. For ⇤n := cnIn � Gn�1, it is easy to verify that for every k � 1 the powers of

Gn are given by

G
k

n
=

✓
G

k

n�1
~0n

~a
>
n
⇤�1
n

�
c
k

n
In �G

k

n�1

�
c
k

n

◆
,

provided that ⇤n is invertible. More precisely, as a consequence of the recursion formula for Gn, the
power G

k

n
involves ⇤�1

n
, but it also involves G

k

n�1, that means it involves ⇤�1
n�1, and so on. Thus the

matrices ⇤�1
r

are all involved in G
k

n
for every 2  r  n. In particular, we need all these to be invertible.

For a fixed r, the determinant of ⇤r must then be different from zero for every 2  r  n. In particular,
since Gr�1 is a (lower) triangular matrix, ⇤r is a (lower) triangular matrix with determinant given by

31

the product of the elements on the main diagonal. By Theorem 5.1 and equation (5.2) we then get:

det (crIr �Gr�1) = cr

r�1Y

j=1

(cr � cj) 6= 0 (B.15)

where c1 = b1. Condition (B.15) is equivalent to ask that cr 6= 0 and cr 6= cj for every 1  j  r � 1.
One easily notice that asking these conditions to hold for every 2  r  n means to ask that all the
coefficients {cj}nj=2 are not null, and that {cj}nj=1 are all different among each others. This coincides
with condition (5.3).

Then, with G
0
n
= In+1, we get:

e
Gnt =

1X

k=0

(Gnt)
k

k!
= In+1 +

1X

k=1

t
k

k!

✓
G

k

n�1
~0n

~a
>
n
⇤�1
n

�
c
k

n
In �G

k

n�1

�
c
k

n

◆

=

In +

P1
k=1

(Gn�1t)
k

k! 0

~a
>
n
⇤�1
n

P1
k=1

t
k

k!

�
c
k

n
In �G

k

n�1

�
1 +

P1
k=1

t
k
c
k
n

k!

!

=

e
Gn�1t ~0n

~a
>
n
⇤�1
n

⇣
In

P1
k=1

(cnt)
k

k! �
P1

k=1
(Gn�1t)

k

k!

⌘
e
cnt

!
=

✓
e
Gn�1t ~0n

~a
>
n
⇤�1
n

�
e
cntIn � e

Gn�1t
�

e
cnt

◆

which proves the matrix exponential formula and concludes the proof.

Proof of Lemma 5.4

Proof. We consider the definition of cj in equation (5.1): if `(x, dz) ⌘ 0, then for every j = 2, . . . , n,
cj = jb1 +

1
2j(j � 1)�2, so that the first condition in (5.3) equals b1 6= � (j�1)

2 �2, equivalent also to

b1 6= �k

2
�2, for every 1  k  n� 1. (B.16)

In the second condition in (5.3), we require cj 6= ci, 1  j < i  n, that is

jb1 +
1

2
j(j � 1)�2 6= ib1 +

1

2
i(i� 1)�2, for every 1  j < i  n,

which, after some simplifications, can be rewritten as b1 6= � (j+i�1)
2 �2 for every 1  j < i  n. In

particular, since 3  j + i  2n� 1, this is also equivalent to

b1 6= �k

2
�2, for every 2  k  2(n� 1).

Adding this to the condition previously found in (B.16), we conclude the proof.

Proof of Proposition 5.5

Proof. By equations (5.4) and (5.5) and linearity of the extended generator G, we write the equalities

JnMnHn(x) = JnQn(x) = GQn(x) = G (MnHn(x)) = MnGHn(x) = MnGnHn(x).

By comparing the first and the last terms we get JnMn = MnGn, which, rearranged, gives the first
equality of the proposition. As a direct consequence, from the definition of exponential function as
infinite sum of powers and by the identity M

�1
n

Mn = In, we get also the second equality.

Proof of Proposition 6.1

Proof. From Theorem 4.5, we easily notice that the only dependence of Cp0,...,pm(s0, . . . , sm; t) on
the initial condition Y (t) is inside the matrix of function X

(m)
n (Y (t)), which is defined by equation

(4.1) as the m-th Kronecker product X
(m)
n (x) = Hn(x)> ⌦m

Hn(x). By associativity property of the

32

Kronecker product, we write that X
(m)
n (x) = Hn(x)> ⌦ X

(m�1)
n (x). By the product rule applied to

Hn(Y (t))> ⌦X
(m�1)
n (Y (t)), we obtain the recursive formula for @X

(m)
n (Y (t))
@Y (t) as in the statement, where

@Hn(Y (t))

@Y (t)
=
@X

(0)
n (Y (t))

@Y (t)
=
�
0, 1, 2Y (t), . . . , nY (t)n�1

�

can be seen as the vector product of (0, 1, . . . , n) with
�
0, Hn�1(Y (t))>

�>. This concludes the proof.

Proof of Proposition 6.2

Proof. From the correlator formula in Theorem 4.5, we distinguish three different cases, namely j = 0,
1  j < m, and j = m, which we shall analyse separately.

For j = 0, the time point s0 appears in Cp0,...,pm(s0, . . . , sm; t) two times: once inside the curl
parenthesis in the matrix exponential e

G̃
(m)
n (s0�t), and once in the product

Q
m

k=1 for k = 1 in the
matrix exponential eG̃

(m�1)>
n (s1�s0). By the product rule, one gets ⇥0.

For 1  j < m, the time point sj also appears in Cp0,...,pm(s0, . . . , sm; t) two times, both in the
product

Q
m

k=1, first for k = j in the matrix exponential eG̃
(m�j)>
n (sj�sj�1), and then for k = j+1 in the

matrix exponential eG̃
(m�j�1)>
n (sj+1�sj). By the product rule, one gets ⇥j .

For j = m, the time point sm appears in Cp0,...,pm(s0, . . . , sm; t) only one time, that is in the productQ
m

k=1 for k = m in the matrix exponential eG̃
(0)>
n (sm�sm�1). By differentiation, one gets ⇥m.

This concludes the proof.

References

[1] Ackerer, Damien and Damir Filipovic (2020). Linear Credit Risk Models. Finance and Stochastics
24(1), 169-214.

[2] Ackerer, Damien, Damir Filipovic and Sergio Pulido (2018). The Jacobi stochastic volatility model.
Finance and Stochastics 22(3), 667–700.

[3] Ackerer, Damien and Damir Filipovic (2020). Option Pricing with Orthogonal Polynomial Expan-
sions. Mathematical Finance 30(1), 47-84.

[4] Applebaum, David (2009). Lévy Processes and Stochastic Calculus. Second edition. Cambridge
University Press.

[5] Barndorff-Nielsen, Ole E., Fred E. Benth and Almut E.D. Veraart (2018). Ambit Stochastics.
Springer International Publishing.

[6] Benth, Fred E., Jan Kallsen, and Thilo Meyer-Brandis (2007). A non-Gaussian Ornstein–Uhlenbeck
process for electricity spot price modeling and derivatives pricing. Applied Mathematical Finance
14(2), 153-169.

[7] Benth, Fred E., Martin Groth and Rodwell Kufakunesu (2007). Valuing volatility and variance
swaps for a non-Gaussian Ornstein-Uhlenbeck stochastic volatility model. Applied Mathematical
Finance 14(4), 347-363.

[8] Carr, Peter and Dilip B. Madan (1999). Option valuation using the fast Fourier transform. The
Journal of Computational Finance 2(4), 61-73.

[9] Cuchiero, Christa (2011). Affine and polynomial processes. PhD Thesis, ETH Zurich.

[10] Cuchiero, Christa, Martin Keller-Ressel and Josef Teichmann (2012). Polynomial processes and
their applications to mathematical finance. Finance and Stochastics 16(4), 711-740.

[11] Cuchiero, Christa (2018). Polynomial processes in stochastic portfolio theory. Stochastic processes
and their applications 129(5), 1829-1872.

33

[12] Cuchiero, Christa and Sara Svaluto-Ferro (2021). Infinite-dimensional polynomial processes. Fi-
nance and Stochastics 25(2), 383-426.

[13] Delbaen, Freddy and Hiroshi Shirakawa (2002). An interest rate model with upper and lower
bounds. Asia-Pacific Financial Markets 9(3-4), 191-209.

[14] Fasino, Dario (1995). Spectral properties of Hankel matrices and numerical solutions of finite
moment problems. Journal of Computational and Applied Mathematics 65(1-3), 145-155.

[15] Filipović, Damir, Martin Larsson and Anders B. Trolle (2016). Linear-rational term structure
models. The Journal of Finance 72(2), 655-704.

[16] Filipović, Damir and Martin Larsson (2016). Polynomial diffusions and applications in finance.
Finance and Stochastics 20(4), 931–972.

[17] Fiedler, Miroslav (1985). Polynomials and Hankel matrices. Linear Algebra and its Applications
66, 235-248.

[18] Filipović, Damir and Martin Larsson (2020). Polynomial jump-diffusion models. Stochastic Systems
10(1), 71-97.

[19] Golyandina, Nina, Vladimir Nekrutkin and Anatoly A. Zhigljavsky (2001). Analysis of Time Series
Structure: SSA and Related Techniques. CRC press.

[20] Hassani, Hossein and Dimitrios Thomakos (2010). A review on singular spectrum analysis for
economic and financial time series. Statistics and its Interface 3(3), 377-397.

[21] Higham, Nicholas J. (2005). The scaling and squaring method for the matrix exponential revisited.
SIAM Journal on Matrix Analysis and Applications 26(4), 1179-1193.

[22] Horn, Roger A. and Charles R. Johnson (1991). Topics in Matrix Analysis. Cambridge University
Press.

[23] Jain, Pooja and Ram B. Pachori (2014). Event-based method for instantaneous fundamental fre-
quency estimation from voiced speech based on eigenvalue decomposition of the Hankel matrix.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 22(10), 1467-1482.

[24] Jain, Pooja and Ram B. Pachori (2015). An iterative approach for decomposition of multi-
component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. Journal
of the Franklin Institute 352(10), 4017-4044.

[25] Kemna, Angelien G.Z. and Ton A.C.F. Vorst (1990). A pricing method for options based on average
asset values. Journal of Banking & Finance 14(1), 113-129.

[26] Kleisinger-Yu, Xi, Vlatka Komaric, Martin Larsson and Markus Regez (2020). A multifactor poly-
nomial framework for long-term electricity forwards with delivery period. SIAM Journal on Fi-
nancial Mathematics 11(3), 928-957.

[27] Kressner, Daniel, Robert Luce and Francesco Statti (2017). Incremental computation of block
triangular matrix exponentials with application to option pricing. Electronic Transactions on Nu-
merical Analysis 47, 57-72.

[28] Lavagnini, Silvia (2021). Pricing Asian Options with Correlators. arXiv preprint arXiv:2104.11684.

[29] Magnus, Jan R. and Heinz Neudecker (1980). The eliminating matrix: some lemmas and applica-
tions. SIAM. Journal of Algebraic Discrete Methods 1(4), 422–449.

[30] Munkhammar, Joakim, Lars Mattsson and Jesper Rydén (2017). Polynomial probability distribu-
tion estimation using the method of moments. PLOS ONE 12(4), e0174573.

[31] Peller, Vladimir (2012). Hankel Operators and their Applications. Springer Science & Business
Media.

34

[32] Townsend, Alex, Marcus Webb and Sheehan Olver (2018). Fast polynomial transforms based on
Toeplitz and Hankel matrices. Mathematics of Computation 87(312), 1913-1934.

[33] Ware, Tony (2019). Polynomial processes for power prices. Applied Mathematical Finance 26(5),
453-474.

[34] Weron, Rafal (2007). Modeling and Forecasting Electricity Loads and Prices: A Statistical Ap-
proach. Vol. 403. John Wiley & Sons.

[35] Willems, Sander (2019). Asian option pricing with orthogonal polynomials. Quantitative Finance
19(4), 605-618.

[36] Zhou, Hao (2003). Itô conditional moment generator and the estimation of short-rate processes.
Journal of Financial Econometrics 1(2), 250-271.

35

