
Qinghua Liu

Bayesian Preference Learning with
the Mallows Model

Thesis submitted for the degree of Philosophiae Doctor

Department of Mathematics

Faculty of Mathematics and Natural Sciences

2021

© Qinghua Liu, 2021

Series of dissertations submitted to the

Faculty of Mathematics and Natural Sciences, University of Oslo

No. 2452

ISSN 1501-7710

All rights reserved. No part of this publication may be

reproduced or transmitted, in any form or by any means, without

permission.

Cover: Hanne Baadsgaard Utigard.

Print production: Reprosentralen, University of Oslo.

Acknowledgements

The past four years or so as a PhD student has been the most intellectually
challenging, life-changing and fulfilling experience in my life so far. Looking
back at this journey, from the day I took my first step into this “kingdom far far
away” (that is Norway) with less than abundance of knowledge in the field of
statistics, to where I am now - right upon the completion of this thesis, I am
feeling accomplished, and grateful for the many people that I have the pleasure
of working with and learning from.

First and foremost, I would like to express my deepest gratitude towards my
supervisors Ida Scheel and Arnoldo Frigessi. I have learned and benefited so
much from their rich knowledge and research experiences. This PhD would not
be possible without their guidance and advice. Their support for me goes well
beyond just academics, and I am immensely thankful that I have received so
much encouragement and kindness from them during the challenging times.

My sincere gratitude also goes to my co-authors: Valeria Vitelli, Andrew Henry
Reiner, Marta Crispino, Carlo Manino and Øystein Sørensen. I have truly
enjoyed our fruitful collaborations and we should be proud of what we have
achieved together! I would also like to thank Elja Arjas for all the interesting
discussions.

To my colleagues at the math department: I have had many fond memories that
we have shared within and beyond the university buildings. My special thanks
goes to Yinzhi Wang - I will not forget the fun we had during lunch times, our
spontaneous day trip and so much more! I would also like to thank the Data
Science @ UiO innovation cluster and BigInsight for generously supporting my
PhD journey.

Last but not least, I am forever grateful to my family: my parents, brother and
my loving husband, for always supporting my pursues, and sending me their love
unconditionally.

Qinghua Liu
Oslo, October 2021

i

List of Papers

Paper I

Qinghua Liu, Marta Crispino, Ida Scheel, Valeria Vitelli, and Arnoldo Frigessi
(2019). “Model-based Learning from Preference data”. Annual review of statistics
and its application. 6, s 329- 354. DOI: 10.1146/annurev-statistics-031017-
100213.

Paper II

Qinghua Liu, Andrew Henry Reiner, Arnoldo Frigessi and Ida Scheel (2019).
“Diverse personalized recommendations with uncertainty from implicit preference
data with the Bayesian Mallows Model”. Knowledge-Based Systems. 186, s 1-
12. DOI: 10.1016/j.knosys.2019.104960

Paper III

Qinghua Liu, Valeria Vitelli, Arnoldo Frigessi and Ida Scheel (2021). “Pseudo-
Mallows for Efficient Preference Learning”. Manuscript.

Paper IV

Øystein Sørensen, Marta Crispino, Qinghua Liu and Valeria Vitelli (2020).
“BayesMallows: an R Package for the Bayesian Mallows Model”. The R Journal.
12(1), s 324- 342 DOI: 10.32614/RJ-2020-026

iii

https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1146/annurev-statistics-031017-100213
https://doi.org/10.1016/j.knosys.2019.104960
https://doi.org/10.32614/RJ-2020-026

Contents

Acknowledgements i

List of Papers iii

Contents v

1 Introduction 1

2 A primer on recommender systems and preference data 3
2.1 Recommender systems . 3
2.2 Preference data . 4

3 Two important preference learning methods 7
3.1 Collaborative filtering (CF) 7
3.2 The Mallows Ranking method 10

4 Bayesian computation and approximation methods 15
4.1 Markov Chain Monte Carlo (MCMC) 15
4.2 Variational Inference (VI) 18

5 Summary of papers 23

6 Discussions 27

Bibliography 31

Papers 38

I Model-Based Learning from Preference Data 39

II Diverse Personalized Recommendations with Uncertainty
from Implicit Preference Data with the Bayesian Mallows
Model 67

III Pseudo-Mallows for Efficient Preference Learning 81

IV BayesMallows: an R Package for the Bayesian Mallows
Model 129

v

Chapter 1

Introduction

In our modern world where the choices of goods and services seem endless, every
day we are faced with this question: how do we pick out the best products for
ourselves? Luckily, with the help of recommender systems, we can be guided to
make better choices. Based on information about the customer’s past interactions
with the products, recommender systems learn the personal preferences of each
customer, and then produce a list of recommendation for each of them, ranked
according to the probabilities that the customer will favor them.

Naturally, the personalized recommendation problem is a ranking problem. First
of all, the ultimate goal of a recommender system is to produce a ranking;
second, many types of user-product interaction data exist in the form of ranking,
or can be easily adapted to rankings. Common commercial recommender
systems often adopt collaborative filtering (CF) [37] to produce personalized
recommendations. CF, which relies on the matrix factorization technique, has
gained great popularity due to its high recommendation accuracy. However, using
intuitive ranking models to learn individual preferences and make personalized
recommendation remains relative unexplored. In this thesis, we will embark
on a journey to explore many aspects of ranking models. We focus mainly on
the Bayesian Mallows model, and how it can be applied and improved in the
recommender system context.

The first theme of this thesis is preference learning models. Learning personal
preference is an important first step to achieve personalized recommendations.
Most models that we examine in this thesis are probabilistic models, such as
the Mallows ranking model [43], the Plackett-Luce (PL) model [41][52] and
the Bradley-Terry (BT) model [11]. We also examine CF although it is not
probabilistic, due to its importance in the field of personalized recommendations.
The Mallows ranking model uses a permutation of all n item for each of the
user, and defines its probabilistic density on the space of permutation of n items;
the PL model on the other hand, utilizes a continuous n-dimensional vector.
The BT model approaches the problem using paired comparisons, while CF
considers a reduced-dimension vector for each user and each item. These different
constructions certainly lead to different characteristics, and we will examine
these characteristics in detail.

The second focus of this work is learning from clicking data. Clicking data exists
in great abundance. Unlike ratings and other explicit user feedback, clicking
data is especially valuable as it arises naturally while a user interacts with the
products without the need of any solicitation. Consequently, it is relatively

1

1. Introduction

little affected by selection bias. We therefore focus on developing methods to
learn personalized preferences and make recommendations from clicking data.
Although many forms of preference data exist, such as full rankings, partial
rankings, ratings, paired-comparisons, they can all be easily adapted to be
clicking data-like, which has a binary form.

The last theme of this thesis is Bayesian methods and computation. The Bayesian
framework makes inference from a posterior distribution, which naturally
quantifies uncertainties in model parameters by means of probability. Such
probabilistic quantification is easy to interpret, and provides valuable information
to our analysis. Many Bayesian models, including our Bayesian Mallows Model,
are complex and difficult to make inference from, and Markov Chain Monte Carlo
(MCMC) is commonly used to obtain samples of the target posterior distribution.
On the flip side, MCMC methods often suffer from slow convergence and are hard
to scale to larger datasets. Many methods are developed to improve MCMC, and
variational inference is a recent framework that has proven to be powerful and
scalable. We will investigate both the MCMC option and variational inference
to make inference on our Bayesian model.

Overall, in this work, I aim at exploring the theme of personalized recommenda-
tion holistically - from modelling to algorithm implementation. My wish is that
the readers can be introduced to the world of recommender systems and learn a
new way of achieving personalized recommendations.

The rest of this thesis is organized as follows. Chapter 2 contains a brief
introduction to recommender systems and the different forms of preference
data. In Chapter 3 we study the basics of two important and relevant preference
learning methods: CF and the Bayesian Mallows Model, while Chapter 4 contains
the popular techniques to learn from Bayesian models. High level summaries of
the publications are provided in Chapter 5, and finally, Chapter 6 contains some
reflections and final thoughts.

2

Chapter 2

A primer on recommender
systems and preference data

2.1 Recommender systems

Recommender systems help users discover the items that are most relevant to
them. It is crucial for online services such as e-commerce websites and streaming
platforms where the product catalogue is huge, however, only a small subset
of the collection can be displayed to the user due to space constraint. User
engagement can be significantly enhanced when the content is personalized for
them such that they do not need to go through the overwhelming procedure of
searching for the relevant items.

The first major task for a recommender systems is to predict users’ preferences on
previously unseen items. Content-based recommender systems assumes that users
have similar preferences on similar items. Therefore, content-based recommender
systems try to construct item profiles utilizing information such as descriptions
and category information, and then establish user profiles based on the items
that the user has interacted with before. Items that best match the user profile
will therefore be recommended. More details about content-based recommender
systems can be found in [39, 50]. Content-based recommender systems are
especially useful when a new user or a new item is introduced to the system,
where there is no sufficient historical data about the item or the user available.

As a contrast, Collaborative filtering recommender systems make personalized
recommendations using user-item interaction data. The word “collaborative”
refers to the fact that recommendations are made for a user based on other user’s
preference data. Collaborative filtering methods can be user-based, which first
discover similar users (neighbor users), and make recommendation based on what
the neighbor-users has favored. Item-based collaborative filtering on the other
hand, is a transpose of user-based collaborative filtering, where a prediction on
an item is made based on similar items [56]. One of the most important types
of recommender systems is the latent factor-based recommender systems [37],
which will be introduced in more details in Chapter 3.

After the recommender system has learned each user’s preferences on the items,
a list of top-k items that best matches the user’s preferences is produced. The
recommendations’ success should be assessed in terms of both accuracy and
diversity [23, 27]. Achieving a good balance between recommendation accuracy
and diversity has proven to be challenging, and this issue will be addressed in

3

2. A primer on recommender systems and preference data

Paper II.

2.2 Preference data

In order to learn user preferences, especially through collaborative filtering
approaches, preference data is an important resource. Users’ preference data is
ubiquitous. Imagine a scenario where a user visits an online streaming service
platform. After browsing the movie catalogue, the user clicks on a movie, watches
it, and then gives it a big thumbs up. In this scenario, (at least) two types of
preference data has occurred. The user’s click on an item implicitly indicates that
she has a likelihood to favor the movie, and then the big thumbs up explicitly
expresses her fondness of the movie. From this example, based on the purpose of
the data, we can divide preference data into two categories: explicit and implicit.

Explicit data refers to the situation where the data is given in order for a user
to express her preferences of the items. Some examples of explicit feedback data
are ratings, pairwise comparisons and rankings. Rankings specifically, can also
be further categorized as full rankings - where a user has given her ranking of all
the items that are available, and partial rankings, where only a subset of items
are ranked.

Implicit data on the other hand, can exist in many different types of observable
and measurable parameters that arise when the user interacts with the system [33].
To some extent, they carry preference information, however, implicit feedback’s
original purpose is not to indicate the user’s preference. Some examples of
implicit data include clicking, browsing history and search history.

One of the biggest advantages of explicit data is the amount of information it
carries. A rating for example, not only clearly indicates a user’s attitude (positive
or negative) towards an item, it also expresses the extent of the preference.
Implicit feedback on the other hand, is much more ambiguous. A clicking action
can surely indicate a positive preference, however, it can happen by accident too.
Another big challenge of implicit data is the lack of direct negative feedback - a
non-click can be due to a dislike, or that the user simply did not discover the
item. There are strategies available to help discover negative implicit feedback
[51], however, the interpretation of implicit data remains a challenge.

Nevertheless, recent research and applications that utilize preference data have
gradually shifted away from focusing (solely) on explicit data. One of the obvious
reasons is the sheer volume and availability of implicit data, while explicit data
requires solicitation. Besides, explicit data also exhibits many types of biases.
First, different users have very different scales - some rate a 5/5 for almost
everything, while “stricter” users might rate 5/5 only to indicate exceptional
excellence. Using such information without normalization will inevitably lead
to inaccuracy. Another problematic issue about explicit data is that a rating
often indicates the “quality” of the item perceived by the user, which does not

4

Preference data

necessarily represent the user’s “enjoyment” of the item, or the item’s relevance
to the user. [32] contains an in depth comparison of explicit vs. implicit feedback.

Despite the differences however, many different forms of preference data can be
adapted to each other under some assumptions. For example, ratings can be
easily adapted to rankings and/or paired comparisons with the simple assumption
that a higher rated item is more preferred, and should therefore be ranked higher.
Clicking data can also be converted to paired comparisons and rankings that are
consistent with the clicking behaviour if we assume that the items clicked by the
user are the user’s favorite items. These assumptions are used in all the papers
in this thesis, where we learn from different forms of preference data with the
Mallows model, which originally is defined based on rankings.

5

Chapter 3

Two important preference learning
methods

3.1 Collaborative filtering (CF)

On a broad context, CF refers to the process of evaluating and selecting items
based on other people’s opinion [57]. However, due to the popularization of
the Netflix Prize [7], the use of the term CF is almost synonymous with matrix
factorization-based methods. In this thesis, we use the term CF to exclusively
refer to the matrix factorization-based methods.

In this section, we begin by introducing the CF method for explicit user feedback
[37], an award-winning method developed for rating prediction, which to some
extent, laid the foundation for recommender systems research and development.
As methods based on explicit ratings start to show limitations due to the difficulty
of soliciting feedback information and selection bias, many recommender systems
shift to methods that are based on implicit feedback, such as clicking data.
We focus on the CF for implicit feedback method developed by Hu, Koren,
and Volinsky [30], which has been, til this day, widely adopted in commercial
applications.

3.1.1 CF for explicit user feedback

Given there are N users and n items. User j’s rating of item i is denoted as xji.
xji is usually non-negative and continuous, for example, a 1-5 scale. xji is set
to 0 or NA if user j has not rated item i. Hence, the user-item rating matrix
can be represented by a sparse rating matrix XN×n. We denote the set of all
user-item (j, i) pairs that are available as a set κ, and the aim of this model is
to predict the ratings for all user-item pairs that are currently not available, i.e.,
the user-item pairs that are not in κ.

The matrix-factorization method proposed by Koren, Bell, and Volinsky[37]
assumes that each user j is associated with a f -dimensional real-valued latent
vector pj ∈ Rf , whereas each item i can also be represented with a f -dimensional
latent vector qi ∈ Rf . The dot product x̂ji = pTj qi represents a score assigned
to the user-item pair, and intuitively, x̂ji should approximate the rating xji if it
is available. If the latent vectors for all items and all users are learned, we can
populate the user-item pairs that are currently not available using x̂ji = qTi pj
∀(j, i) /∈ κ to estimate user j’s preference on item i. Thus, the main task of this
model is translated to obtaining the latent vectors pj and qi, for j = 1, ..., N

7

3. Two important preference learning methods

and i = 1, ..., n, and it can be achieved through an optimization process:

min
p,q

∑
(j,i)∈κ

(xji − pTj qi)2 + λ(||pj ||2 + qi||2) (3.1)

The first term in Equation (3.1) is the squared error between the approximated
rating x̂ji and the rating xji given by the user. The second term is an L2
penalization term to avoid the model from being over-fitted to the given data.
The most popular algorithms for solving this function are the Stochastic Gradient
Descent (SGD) algorithm [22] and the Alternating Least Square (ALS) algorithm.
ALS later becomes the de facto method due to its potential to be parallelized,
and its flexibility to handle implicit feedback, which will also be discuss in a
following section.

3.1.2 The alternating least squares (ALS) algorithm

ALS [1, 66] is an iterative optimization algorithm. While solving for one of the
unknowns, the algorithm keeps the other ones fixed. If we denote the N × f
user sub-matrix as P and the n× f item sub-matrix as Q, the algorithm can be
summarized as the following steps:

1. Initialize matrix Q. Zhou et al.[66] suggests setting the first row of each
item with the average rating of that item, and randomly initialize the rest
of the item matrix.

2. While keeping Q fixed, solve for P by minimizing the least square problem

3. While keeping P fixed, solve for Q by minimizing the least square problem

4. Repeat step 2 and 3 until a convergence criterion, such as an RMSE
threshold, is met

We denote the loss function (3.1) as L, and the minimization process at step 2
and 3 can be derived as follows:

At each iteration, the updated pj is obtained by:

∂L
∂pj

= −2
∑
i

(xji − pTj qi)qTi + 2λpTj

0 = −
∑
i

(xji − pTj qi)qTi + λpTj

0 = −(xj − pTj QT)Q+ λpTj

xjQ = pTj (QTQ+ λI)
pTj = xjQ(QTQ+ λI)−1

(3.2)

8

Collaborative filtering (CF)

Similarly, for qi:

∂L
∂qi

= −2
∑
j

(xji − pTj qi)pTj + 2λqTi

0 = −
∑
j

(xji − qTi pj)pTj + λqTi

0 = −(xi − qTi P T)P + λQT
i

xiP = qTi (P TP + λI)
qTi = xiP (P TP + λI)−1

(3.3)

However, it is noteworthy to mention that apart from solving for the sub -
matrices, namely, P and Q, there are other hyper-parameters involved in this
CF model, such as the dimension of the latent matrices f and the penalization
parameter λ. These parameters are usually chosen using k-fold cross validation.

3.1.3 CF for implicit feedback

Hu, Koren, and Volinsky[30] extended [37] to be applied to implicit user feedback,
such as clicking data.

We continue with our notations from Section 3.1.1, and denote user-item
interactions as xji. However, xji in this case is not a rating, but a kind of
utility score based on the implicit feedback. For example, xji can be the number
of times user j has clicked on item i. A set of binary interaction variable is then
introduced: if a user j has interacted with item i, we set their interaction bji = 1,
and 0 otherwise. In other words, we define

bji =
{

1, if xji > 0
0, otherwise

Similar to the CF method in the previous section, we assume that each user j can
be represented by a f -dimensional vector pj ∈ Rf , and each item a f -dimensional
vector qi ∈ Rf . Their dot product b̂ji = pTj qi should be an approximation of bji.

However, not all user-item interactions are equal. For example, if a user clicks
on one item multiple times, it can indicate a stronger preference compared to
an item that is clicked on only once. Another set of “confidence” variable cji is
hence introduced. One possible construction is:

cji = 1 + θxji, θ > 0

The objective function for the minimization is as follows:

9

3. Two important preference learning methods

min
p,q

∑
(j,i)

cji(bji − pTj qi)2 + λ(
∑
j

||pj ||2 +
∑
i

qi||2). (3.4)

pj and qi are once again obtained using ALS. More specifically, at each iteration,
we update

pj ← (QT cjQ+ λI)−1QT cjbj

qi ← (P T ciP + λI)−1P T cibi,
(3.5)

and the hyper-parameters λ, θ and f are tuned using cross validation.

The influence of MF and ALS is profound as it has inspired many newer
recommender methods. For example, context-aware recommender systems [35,
53, 54], which consider not only user-item interactions, but also a context such as
time or location, often utilizes tensor factorization techniques [18, 61], which is a
generalization of MF. Another recent trend in the development of recommender
systems is the incorporation of deep learning into CF [38, 64]. Deep learning
techniques can learn the latent representations of both the users and the items
from auxiliary information, enriching the information available for CF beyond
just user-item interactions.

3.2 The Mallows Ranking method

Many applications of preference learning, such as recommender systems and
search engines’ ultimate goal is to produce a ranked list of items. In fact,
many forms of preference data exist naturally in the form of ranking or can be
conveniently converted, it is therefore intuitive to model user preferences directly
as rankings. Ranking models often assume a set of utility scores for the items,
these scores can be continuous, such as the Plackett-Luce model, or discrete
values, such as the Mallows ranking model. We focus on the Mallows ranking
model in this thesis, but more details on various model-based preference learning
methods are discussed in Paper I.

3.2.1 Mallows ranking model for complete rankings

Given a set of n items A = {A1, ..., An}. A user expresses her preferences of these
n items by assigning a ranking to these n items, denoted as r = {r1, ..., rn} ∈ Pn.
ri = 1 indicates that item i is the user’s favorite item, rk = n indicates that
item k is the user’s least favorite, and Pn denotes the space of permutation of n
items.

The Mallows model [43] is a probabilistic distribution of rankings, defined directly
on Pn. Given a ranking r ∈ Pn, the Mallows distribution has the form

P (r|α,ρ) = Zn(α,ρ)−1 exp{−α
n
d(r,ρ)}, (3.6)

10

The Mallows Ranking method

where ρ ∈ Pn is the consensus parameter, α > 0 is the scale parameter,
d(r,ρ) is a distance between the ranking and the consensus, and Zn(α,ρ) =∑
ρ∈Pn

exp{−αnd(r,ρ)} is the normalizing constant.

To understand the model, we can analogize the Mallows distribution as a Gaussian
equivalent in the space of permutation [14]. The consensus parameter ρ is similar
to the mean where the permutations are centered on, while the scale parameter
α, or more precisely, 1

α acts in a similar way as the variance, which represents
the dispersion of the rankings from the consensus.

The choice of the distance function d() has an impact on the computation of the
normalizing constant. Usually, a right-invariant distance [20], meaning that the
distance is unaffected by the re-labelling of items, is preferred, since this makes
the normalizing constant independent of the consensus parameter ρ, and the
normalizing constant can hence be rewritten as Zn(α) =

∑
r∈Pn

exp{−αnd(r,1n)},

where 1n = {1, ..., n}. Some possible right-invariant distances include the Kendall
distance, the Hamming distance, the Cayley distance, the footrule distance (L1)
and the Spearman’s distance (L2) [44]. Fligner and Verducci[21] provides the
close form of Zn(α) for the Kendall’s distance, and many literature concerning the
Mallows method have employed the Kendall distance [34, 40, 45]. The footrule
and Spearman’s distances are important and natural right-invariant distance
choices, but the normalizing constant can only be computed analytically for up to
50 and 14 items, respectively. To enable the use of the footrule and Spearman’s
distance in the Mallows model for larger n’s, Vitelli et al.[62] introduced an
important sampling scheme, which can approximates Zn(α) with the footrule
or Spearman’s distance for up to a few hundred items within a reasonable time
frame. To compute for very large n, Mukherjee et al.[47] introduced an iterative
algorithm which gives an asymptotic estimation of Zn(α) for n→∞.

Given N users’ full rankings R1, ...,RN , assuming all users are conditionally
independent given the Mallows parameters α and ρ, the likelihood is:

P (R1, ...,RN |α,ρ) = Zn(α)−N exp{−α
n

N∑
j=1

d(Rj ,ρ)}, (3.7)

and the maximum likelihood estimator for ρ for a given α can be obtained by
computing

arg min
ρ∈Pn

N∑
j=1

d(Rj ,ρ). (3.8)

From Equation (3.8) it can be observed that this computation is not tractable
when n is large, as the minimization is over the space of permutation.

11

3. Two important preference learning methods

3.2.2 Bayesian Mallows model(BMM)

Vitelli et al.[62] introduced a Bayesian version of the Mallows model. A uniform
prior distribution is chosen for the consensus parameter ρ, i.e., π(ρ) = 1

n! , and
an exponential prior distribution for α: π(α|λ) = λe−λα. λ is a hyperparameter,
which typically has little influence on the inference of ρ in practice, and can be
fixed to a value close to 0. With the chosen prior distributions, the posterior
distribution can be written as follows:

P (ρ, α|R1, ...,RN) ∝ π(α)π(ρ)Zn(α)−N exp{−α
n

N∑
j=1

d(Rj ,ρ)}. (3.9)

We can thus make inference on this posterior distribution through a Markov
Chain Monte Carlo (MCMC). More details regarding MCMC will be covered in
Section 4.1.

3.2.3 Bayesian Mallows model’s extension to partial data

When full ranking data is not readily available, the BMM can be extended to
learn both the group consensus and individual rankings from partial data by
means of data augmentation.

We denote the partial data given by user j by Dj . This partial data can include
partial rankings, pairwise comparisons or clicking data. First, we assume that
there is a set of rankings Sj = {R̃j} that is compatible with the partial data. For
example, if Dj is a top-k ranking, a compatible ranking R̃j is one that contains
all the top-k rankings, but with the missing rankings filled in with values larger
than k. If Dj is in the form of paired comparisons, a compatible R̃j is a ranking
that satisfies all direct and induced paired comparisons contained in Dj .

The target posterior distribution is hence

P (ρ, α|D1, ...,DN) =
∑
R̃1∈S1

...
∑

R̃N∈SN

P (ρ, α, R̃1, ..., R̃N |D1, ...,DN). (3.10)

3.2.4 Bayesian Mallows model’s extensions to multiple groups

Given large number of users, it can be expected that there exists multiple groups
of users, and within each group, the users’ rankings follow a Mallows distribution.
Assume there exists C clusters, each cluster c has its own consensus parameter
ρc and scale parameter αc. We denote the cluster assignment of each user as
zj ∈ {1, ..., C} and assume the clusters are mutually independent. With the
observed full ranking data {R1, ...,RN}, the likelihood function can be expressed
as

P (R1, ...,RN |α,ρ, z1, ..., zN) =
N∏
j=1

Zn(αzj)−1 exp{−αzj

n
d(Rj ,ρzj)}, (3.11)

12

The Mallows Ranking method

The prior distributions for {αc,ρc} for each cluster c is the same as described
in Section 3.2.2. The prior distribution for the cluster assignment variables
{z1, ..., zN} is chosen as follows:

P (z1, ..., zN |τ1, ..., τC) =
N∏
j=1

τzj

π(τ1, ..., τC) = Γ(ψC)Γ(ψ)−C
C∏
c=1

τψ−1
c ,

(3.12)

where τc indicates the probability for a user to belong to cluster c, intuitively,
C∑
c=1

τc = 1.

This construction to handle multiple clusters is also applicable to the partial
data case with the augmentation scheme embedded in the inference process.

There are also many extensions of the BMM. For example, Asfaw et al. [4]
considers the time-varying effect of preferences, which enables the BMM to
predict future rankings; Crispino et al.[17] extends the paired-comparison
construction of the BMM to enable it to handle the situation where users
provide conflicting information. Overall, the Bayesian Mallows method is flexible
to handle preference data that exists in many different forms by augmenting
them into compatible rankings, and it can subsequently perform rank aggregation
as well as individual preference learning with uncertainty. Conveniently, the
Bayesian Mallows method is publicly available through the “BayesMallows” R
package [59], and can be easily used.

13

Chapter 4

Bayesian computation and
approximation methods

4.1 Markov Chain Monte Carlo (MCMC)

Bayesian modelling, especially hierarchical models [15, 24], often results in
complex posterior distributions with intractable integrals. MCMC methods
have enabled making inference from Bayesian models of virtually unlimited
complexity [12]. The essence of MCMC is to construct a Markov process [31],
with the target posterior distribution p(θ|x) as its stationary distribution. As
the simulation is run sufficiently long, the samples drawn should approximate
the target stationary distribution [24].

4.1.1 Metropolis-Hasting algorithm

The Metropolis-Hasting(M-H) algorithm [26] is closely related to acceptance-
rejection sampling [13]. At each iteration t, the M-H algorithm allows a new
sample of the parameter θ∗ to be drawn from an arbitrary proposal distribution
that is convenient to sample from, and then the proposed sample θ∗ is either
accepted or rejected according to an acceptance probability. In more details, the
algorithm can be summarized in the following steps:

1. Initialize θ = θ0 s.t. p(θ0|x) > 0

2. For iteration t= 1, ..., T

(a) Draw a new sample θ∗ from the proposal distribution J(θ∗|θt−1)
(b) Compute the acceptance probability

r = P (θ∗|x)/J(θ∗|θt−1)
P (θt−1|x)/J(θt−1|θ∗) (4.1)

(c) Set θt = θ∗ with probability min(1, r), otherwise, keep θt = θt−1

Clearly, the choice of proposal distribution J(θ∗|θt−1) has an impact on
the M-H algorithm. First, if the proposal distribution is symmetric, i.e.,
J(θ∗|θt−1) = J(θt−1|θ∗), the acceptance probability in Equation (4.1) can be
reduced to

r = P (θ∗|x)
P (θt−1|x) , (4.2)

15

4. Bayesian computation and approximation methods

resulting in less computation at each iteration. In fact, when the proposal
distribution is symmetric, the algorithm is referred to as the Metropolis algorithm
[46].

Second, the behaviour of the proposal distribution can affect the efficiency of
the algorithm - if the “jumps” between the samples are too small, the samples
obtained at consecutive iterations will be highly correlated to each other, and it
can take a very long chain before sufficient number of effectively independent
samples can be obtained. On the flip side, if the jumps are too far apart, it
can potentially lead to too many samples being rejected, which in turn, also
leads to inefficiency. In practice, the acceptance rate, i.e., the percentage of
proposed samples that are accepted (not to be confused with the acceptance
probability) is also tracked to help tuning the proposal distribution. Gelman
et al.[24] suggest that when many parameters are updated, an optimal acceptance
rate is approximately 0.23.

4.1.2 A special case of M-H: Gibbs sampler

Gibbs sampler, or conditional sampling, is a special case of Metropolis-Hasting
algorithm where the acceptance probability is always 1. Suppose θ = {θ1, ..., θd}
is the parameter vector, for which we want to obtain samples of the posterior
distribution. At each iteration t, Gibbs sampler draws a sample of each parameter
θi, i = 1, ..., d conditioning on the current values of all other parameters. That is
to say, at each iteration t, for each parameter θi, a sample is drawn from the full
conditional distribution

p(θti |θt−1
−i ,x), (4.3)

where θt−1
−i represents the current values all other parameters in θ:

θt−1
−i = {θt1, ..., θti−1, θ

t−1
i+1 , ..., θ

t1
d }. (4.4)

Gibbs sampler requires that all the full conditional distributions in Equation (4.3)
are standard statistical distributions so that we can conveniently obtain samples
for the parameters of interest, and compute summary statistics such as posterior
mean, variance and maximum a posteriori (MAP) estimates based on the samples.
However, when one or more of these full conditional distributions are non -
standard, we need to resort to the Metropolis-Hastings algorithm as described
in Section 4.1.1. in order to obtain samples for these non-standard distributions.

The combination of Gibbs sampling and M-H algorithm has enabled inference on
complex hierarchical Bayesian statistical models. In Algorithm1, we showcase an
MCMC example to make inference from the Bayesian Mallows model for partial
data when multiple user groups are present, as described in Section 3.2. For
details of the “leap & shift” proposal distribution, we refer to [62].

16

Markov Chain Monte Carlo (MCMC)

Algorithm 1: Bayesian Mallows MCMC algorithm for Partial data
with C clusters
Input: n_iters, C, ψ, λ, σα, Zn(α), {S1, ...,SN}
Output: posterior samples of {ρ1, ...,ρC}, {α1, ..., αC}, {R̃1, ..., R̃N},

{τ1, ..., τC}, {z1, ..., zN}
Initialization: randomly generate {ρ0

1, ...,ρ
0
C},

{α0
1, ..., α

0
C},{τ0

1 , ..., τ
0
C}; initialize R̃j,0 ∈ Sj for

j = 1, ..., N
for t← 1 to n_iters do

Gibbs sampler update τ1, ..., τC ;

compute ntc =
N∑
j=1

1{zj,t−1=c} for c = 1, ..., C ;

sample {τ t1, ..., τ tC} ∼ D(ψ + nt1, ..., ψ + ntC);
for c← 1 to C do

M-H update ρc ;
sample ρ∗ ∼ L&S(ρt−1) ;
sample u ∼ U(0, 1) ;
compute

rρ = min
{

1, Pl&s(ρt−1|ρ∗)π(ρ∗)
Pl&s(ρ∗|ρt−1)π(ρt−1) exp

[
− αt−1

c

n

nt
c∑

j=1
{d(R̃j,t−1,ρ∗)− d(R̃j,t−1,ρt−1)}

]}
;

if u < rρ then
ρtc ← ρ∗

else
ρtc ← ρt−1

end
M-H update αc ;
compute

rα = min
{

1, Zn(αt−1)nt
cπ(α∗)α∗

Zn(α∗)nt
cπ(αt−1)αt−1

exp
[
− (α∗−αt−1)

n

nt
c∑

j=1
d(R̃j,t−1,ρt)

] }
;

if u < rα then
αtc ← α∗

else
αtc ← αt−1

end
Gibbs sampler update z1, ..., zN ;
for j ← N do

compute pcj = τt
c

Zn(αt
c) exp[−α

t
c

n d(R̃j,t−1,ρtm)] for c = 1, ..., C ;
sample zj,t ∼M(p1j , ..., pCj)

end
M-H update R̃1, ..., R̃N ;
for j ← 1 to N do

sample R̃j∗ ∈ Sj from L&S(R̃j,t−1) ;
sample u ∼ U(0, 1) ;
compute

rR̃ = min
{

exp
{
−

αt

zt
j

n

[
d(R̃j,∗,ρtzt

j
− R̃j,t−1,ρtzt

j
)
}}

;

if u < rR̃ then
R̃j,t ← R̃j,∗

else
R̃j,t ← R̃j,t−1

end
end

end
end

17

4. Bayesian computation and approximation methods

4.2 Variational Inference (VI)

MCMC methods, albeit flexible and powerful, are often limited by its slow speed
of convergence due to its random walk nature. Moreover, consecutive Markov
Chain samples are often highly correlated, large amounts of samples are therefore
needed before the target posterior distribution can be effectively approximated.
The inefficiency is sometimes exacerbated by the fact that MCMC chains can be
stuck in a subset of the state space while failing to explore other modes [55].

Many efforts have been put in to alleviate these limitations in order to achieve
faster and more efficient MCMCs. Hamiltonian Monte Carlo (HMC) utilizes an
auxiliary variable scheme to suppress the random walk behaviour, and Hoffman
and Gelman[28] introduced the “No-U-Turn”(NUTS) algorithm to automate
the selection of the step size and number of steps parameters required by HMC.
Another group of methods take a “divide-and-conquer” approach, which try to
partition a large scale dataset into several subsets, run MCMC on each partition
independently, and then combine the results to achieve better mixing [5, 49].
Last but not least, parallelism can help increase the computing speed of MCMC
[16, 48].

Variational inference on the other hand, approaches Bayesian inference not
through directly sampling from the target posterior distribution, but by positing
a family of distribution, i.e., variational distribution which is typically simpler
than the target posterior distribution. The member of the variational distribution
family that best approximates the target posterior distribution is then used as a
replacement of the posterior distribution from which inference is made.

4.2.1 Mean-field VI

Supposed x = {x1, ..., xn} is a set of observations and z = {z1, ..., zd} is a set of
latent parameters. The target posterior distribution can be expressed as

p(z|x) = p(z,x)
p(x) , (4.5)

where the denominator in Equation (4.5), sometimes referred to as evidence, can
be further expressed as

p(x) =
∫
p(z,x)dz (4.6)

Instead of approaching the posterior distribution Equation (4.5) directly, VI
posits a family of distributions Q, and the task is then translated to finding
the member q(z) ∈ Q that best approximate p(z|x), using measured by the
Kullback-Leibler (KL) divergence, i.e.,

q∗(z) = arg min
q(z)∈Q

KL(q(z)||p(z|x)), (4.7)

18

Variational Inference (VI)

where the KL-divergence between q(z) and p(z|x) is defined as

KL(q(z)||p(z|x)) =
∞∫
−∞

q(z)log q(z)
p(z|x)dz

= Eq[log
q(z)
p(z|x)]

= Eq[logq(z)]− Eq[logp(z|x)]
= Eq[logq(z)]− Eq[logp(z,x)] + logp(x).

(4.8)

Observing the last line in Equation (4.8), we can see that the last term involves
p(x), which is usually not computationally feasible. Therefore, instead of
optimizing the KL-divergence directly, an alternative function, namely the
Evidence Lower Bound (ELBO) is often used as the objective function, defined
as

LELBO = Eq[logp(z,x)]− Eq[logq(z)]
= −KL(q(z)||p(z|x)) + logp(x).

(4.9)

It can be observed from Equation (4.9) that minimizing the KL divergence is
equivalent to maximizing the ELBO, as logp(x) is a constant with respect to
q(z). So the objective function for the optimization problem is

q∗(z) = arg max
q(z)∈Q

Eq[logp(z,x)]− Eq[logq(z)]. (4.10)

The most popular choice to construct the variational distribution is the mean-
field variational family. Simply put, mean-field VI assumes that all variational
parameters are mutually independent, and each parameter is governed by its
own variational density. i.e.,

q(z) =
d∏
j=1

qj(zj). (4.11)

19

4. Bayesian computation and approximation methods

With this assumption, we can re-write Equation (4.9) as

LELBO = Eq[logp(z,x)]− Eq[logq(z)]

= Eq[logp(x)
d∏
j=1

p(zj |x)]− Eq[
d∏
j=1

logqj(zj)]

= Eq[logp(x)
d∏
j=1

p(zj |z−j ,x)]− Eq[
d∏
j=1

logqj(zj)]

= logp(x) +
d∑
j=1

Eq[logp(zj |z−j ,x)]−
d∑
j=1

Eqj
[logqj(zj)]

= logp(x) +
d∑
j=1

EqjEq−j [logp(zj |z−j ,x)]−
d∑
j=1

Eqj [logqj(zj)]

(4.12)

Technically, we can take the liberty to choose any parametric form for qj(zj),
however, there are many models that determines the optimal form of the
variational construction [9], and exponential family distributions are often
preferred due to their unique properties.

4.2.2 Coordinate Ascent Variational Inference (CAVI)

The concept of the CAVI algorithm was introduced in [8]. While we are not
directly utilizing CAVI in the remaining of this thesis, it is important to introduce
it so that we can have a realization of how variational inference is implemented.
The main idea of CAVI is to iteratively update for each component in the
mean-field density while holding the others fixed. The update rule for the j-th
component, i.e., qj(zj) can be derived as follows. We first write out the portion
of the loss function (4.12) that is attributed to the j-th component:

Lj = Eqj
Eq−j

[logp(zj |z−j ,x)]− Eqj
[logqj(zj)]

=
∞∫
−∞

qj(zj)Eq−j
[logp(zj |z−j ,x)]dzj −

∞∫
−∞

qj(zj)logqj(zj)dzj ;
(4.13)

Now, we take the derivative with respect to the j-th component:

∂Lj
∂qj

= Eq−j [logp(zj |z−j ,x)]dzj − logqj(zj)− 1; (4.14)

Setting the above derivative to be 0, we can obtain that the update rule for the
j-th component is as follows:

q∗j (zj) ∝ exp{Eq−j
[logp(zj |z−j ,x)]}. (4.15)

CAVI will update for each component iteratively until some criteria, for example,
a threshold of the ELBO are met. CAVI does not guarantee that the global

20

Variational Inference (VI)

optimum can be found as the function of ELBO is not always convex, however,
a local optimum can be guaranteed [9]. One major limitation of CAVI is that
it does not scale well due to the fact that all data points are considered when
updating for the variational parameter at each step. To counter this, Hoffman
et al.[29] introduced the Stochastic Variational Inference (SVI) algorithm, which
enables VI to be scaled up significantly.

Variational inference has recently drawn a lot of attention due to its incorporation
into deep neural networks [25], with prominent applications such as variational
auto-encoder [36]. However, its theoretical development has been limited.
Most applications of VI has been limited to using only conjugate exponential
family distributions, usually under the mean-field assumption. Variational
approximations for very complex distributions which go beyond the exponential
family, discrete distributions whose gradients are not conveniently derived, and
combinatorial problems where the mean-field assumption no longer applies, albeit
attemps by Bouchard-Côté and Jordan[10] and Wand et al.[63], remain relatively
uncharted territory. In Paper III, we explore the framework of VI to construct
an approximation to the Bayesian Mallows method, to alleviate the scaling and
“stickiness” limitation commonly associated with MCMC.

21

Chapter 5

Summary of papers

Paper I

Qinghua Liu, Marta Crispino, Ida Scheel, Valeria Vitelli, and Arnoldo
Frigessi (2019). Model-based Learning from Preference data, Annual
review of statistics and its application, 6, s 329-354.

In Paper I, we explore many different tasks in the theme of preference learning,
and provide a systematic overview of some of the most popular model-based
methods that cater to these tasks. We categorize preference data as full rankings,
partial rankings and pairwise comparisons, since other forms of preference data
typically inherits one of these three data types in nature. Given a group of
homogeneous users, we divide the main objectives of preference learning into two
groups: (a) to learn the shared group consensus, or in other words, to perform
rank aggregation; (b) to learn the individual user’s personal preferences. When
heterogeneous groups of users are present, we also need to (c) perform clustering
to allocate users into their respective groups. The Bayesian Mallows model
(BMM) is a versatile probabilistic method that is capable of performing rank
aggregation, learning individual rankings and performing clustering based on all
the fore-mentioned data types. We illustrate and compare the BMM with other
popular methods through the real-life “potato ranking” dataset.

Both the BMM and the Plackett-Luce Model(PL) are capable of performing rank
aggregation from both full and partial ranking data. Both methods characterize
users’ shared preferences on items as set of utility scores. While the BMM
represents the consensus as a ranking ρ ∈ Pn, the PL model uses a continuous
real-value vector {µ1, ..., µn} ∈ Rn. Through the “potato experiment”, we
discover that both methods’ estimates of the group consensus reflect the true
consensus among the users. However, while the choices of distance functions
in the BMM have some impact on the resulted posterior distributions, the
BMM’s distributions are typically more peaked compared to the PL due to its
discrete nature. When performing rank aggregations from paired comparisons,
the Bradley-Terry Model (BT) is a strong contender. Similar to the PL, it also
characterizes the preferences of items as a set of continuous real-valued utility
scores, the BT’s likelihood is constructed directly based on paired comparisons.
Compared to the BMM, its estimate of the consensus is less accurate when the
amount of paired comparisons is scarce, but the two methods’ estimates are very
similar as more information is available.

The models that are capable of learning individual preferences are BMM, the

23

5. Summary of papers

Hierarchical Bradley-Terry Model (HBT), and collaborative filtering (CF). The
HBT is an extension of the BT that allows for the utility scores to vary among
the users. Through our experiment, we discover that consistent with the BT,
the HBT is more susceptible to data sparsity compared to the BMM, and
its posterior distributions are less peaked compared to the BMM due to its
continuous nature. CF on the other hand, does not explicitly assume a shared
consensus across the users, therefore cannot perform rank aggregation. CF
performs matrix factorization directly on the sparse user-item utility matrix, and
use the dot product of the factor matrices to infer each individual’s preference. It
can accurately predict each user’s next top-k items, however, does not quantify
the uncertainty, and suffers from low explainability.

When heterogeneous groups of users exist, we need to assign users to clusters.
The clustering process can be a stand-alone pre-processing procedure, or be
embedded in the preference learning procedure. The PL assumes a mixture
model where each cluster has a weight. The BMM adds one more layer to its
hierarchy to assign each individual to a cluster probabilistically.

Through the experiments, the BMM has showcased its versatility in handling
various forms of preference data, and its strong ability to capture information
when the data is sparse. This has revealed its potential to be applied to scenarios
such as clicking data.

Paper II

Qinghua Liu, Andrew Henry Reiner, Arnoldo Frigessi and Ida
Scheel (2019). Diverse personalized recommendations with uncertaity
from implicit preference data with the Bayesian Mallows Model,
Knowledge-Based Systems, Vol. 186, 104960.

In Paper II, we adapt the Bayesian Mallows Method to learn personal preferences
from clicking data and make diverse and accurate personalized recommendations.

Collaborative filtering (CF) is one of the most commonly used personalized
recommendation algorithms due to its superior ability to achieve accurate
recommendations for users. However, it has also been shown that CF often
overlooks one other important aspect of successful recommendations - diversity.
While post-processing strategies can often be used in combination with CF to
increase its diversity performance, a laborious tuning process is often involved,
and the accuracy-diversity trade-off seems inevitable. Furthermore, there is no
interpretable uncertainty being estimated using CF.

We propose the Bayesian Mallows for Clicking Data (BMCD) to offer a new
method to make personalized recommendations, which holistically considers
accuracy, diversity and uncertainty estimation. We first assume that each user
has a latent full ranking on her mind, and all of the items that she has clicked

24

on are top-ranked, while all the unclicked items are bottom-ranked in this
latent ranking. We enforce this restriction regardless of each item’s popularity
among other users to ensure that the uniqueness of each user is captured. This
construction is later proven to be effective at achieving diverse recommendations.
We then assume there exists K clusters, within which we assume a Mallows
distribution. An MCMC scheme is used to obtain samples of each user’s full
latent ranking as well as cluster assignment. We make k recommendations
per user by calculating the posterior probability of each item to be among the
user’s next-top-k, and recommend the k items with the highest such posterior
probabilities. These posterior probabilities also serve as the uncertainty estimates
associated with the top-k recommendations.

We design a simulation study to compare the BMCD’s recommendation accuracy
and diversity performance with that of CF’s, and the results clearly indicate
that BMCD outperforms CF in both aspects. We also conduct a case study
based on a real-life clicking dataset to compare the BMCD’s accuracy-diversity
performances with CF, and two post-processing strategies. Our experiment
results show that while achieving a comparable recommendation accuracy as CF,
BMCD can achieve more superior diversity performance without the need of
tuning, nor at the cost of reducing accuracy. BCMD’s diversity performance is
especially exceptional in terms of coverage, i.e., the percentage of distinct items
in the item catalogue ever recommended to the users. Additionally, both the
simulation and the case study give strong evidence that the BMCD’s uncertainty
estimates are well calibrated and interpretable, and this enables us to identify
which recommendations are more reliable than others.

Paper III

Qinghua Liu, Valeria Vitelli, Arnoldo Frigessi and Ida Scheel (2021).
Pseudo-Mallows for Efficient Preference Learning

MCMC as an inference method for hierarchical Bayesian model is often limited
by low speed of convergence. The BMCD method as introduced in Paper II,
being a discrete model defined on the space of permutation, exacerbates this
effect. Variational inference on the other hand, is a new framework to approach
Bayesian inference, and in recent years, it has demonstrated its advantage of
achieving faster inference from Bayesian models. In this work, we construct an
approximation to the BMCD using variational inference, namely the Pseudo-
Mallows method and demonstrate that the Pseudo-Mallows method can achieve
good approximation to the BMCD with much fewer samples drawn, thus leading
to much shorter computing time.

We first introduce the construction of the Pseudo-Mallows distribution, which
exists in the form of a product of n factors, and each i-th factor depends on
all previous i− 1 factors. Therefore, the sequence of the factors matters, and
this sequence {i1, ..., in} is our variational parameter to be optimized. Through

25

5. Summary of papers

conjectures and an empirical study combined with some theoretical support,
we propose that the most optimal sequence of {i1, ..., in} is closely related to
the consensus parameter ρ0 of the data, and that the middle-ranked items
in ρ0 should be top-ranked in {i1, ..., in} while the top- and bottom-ranked
items in ρ0 should be bottom-ranked in {i1, ..., in}, in order to achieve the
best approximation to the BMCD. We name these optimal sequences the “V”-
rankings, and we also prove that the “V”-rankings can be inferred from the data.
We also provide a method to quickly obtain an estimate of the scale parameter α.
We then extend the Pseudo-Mallows model to handle partial data and clicking
data using data augmentation, in order to make personalized recommendation.

Through a systematic simulation study, we demonstrate that the Pseudo-Mallows
construction can achieve good approximation to the BMCD MCMC in much
less computing time since all samples drawn are independent, and much fewer
samples are needed. With a real-life clicking dataset, we also showcase that the
pseudo-Mallows can achieve accurate personalized recommendation in a timely
manner, and the uncertainty estimation associated with each recommendation is
well calibrated.

Paper IV

Øystein Sørensen, Marta Crispino, Qinghua Liu and Valeria Vitelli
(2020). BayesMallows: an R Package for the Bayesian Mallows Model,
The R Journal, Vol.12(1), s 324- 342

In this work, we illustrate the methodological backgrounds and practical
computational strategies of our own brain child: the BayesMallows R package.
The BayesMallows R package is the most comprehensive R package that
implements the Bayesian Mallows model to perform rank aggregation, predictions
and clustering with uncertainty, while allowing for many choices of distance
functions. It also provides convenient tools for its users to assess convergence
and visualize the results.

We first recap the Bayesian Mallows Model’s set up, and then discuss the
difference between the BayesMallows and a few other R packages that also
implement the Mallows model. We then explore the usage of the various functions
in the BayesMallows package, and demonstrate how they can be applied to
various data formats such as complete ranking data and paired comparisons
through examples of code snippets. We focus not only on showing the readers
the general usage of the package, but also on how to properly choose appropriate
hyper parameters, and how to assess convergence using the visualisation tools to
ensure that the MCMC estimation is efficient and accurate.

26

Chapter 6

Discussions

In this thesis, we have explored many facets of personalized preferences learning
with the Mallows model. We have compared the Mallows model’s characteristics
with other popular preference ranking models (Paper I); extended and applied
the Bayesian Mallows Method to clicking data (Paper II), and explored the
variational approximation for faster inference (Paper III). Through this work, we
have holistically explored the theme of preference learning and recommendations
through a combination of methodological development, practical application and
implementation. Yet, there are a few area that remain to be investigated.

In this thesis, particularly in Paper II, we have addressed the issue of
recommendation diversity from a modelling perspective. Our BMCD method
naturally incorporates diversity into considerations. However, after learning users’
preferences on items, our recommendation strategy is the simple assumption that
the items with the highest utility scores, in our cases, the posterior probabilities
of being among the users’ top- k, are to be recommended. In fact, the post-
processing step of choosing the right items to recommend based on the utility
scores is an interesting problem on its own. In Paper II, two post-processing
methods, proposed by Ziegler et al.[67] and Adomavicius and Kwon[2] were
tested out in combination of CF to enhance CF’s diversity. Furthermore, there
are many other post-processing methods available to better select items for
recommendations, such as the graph-based method suggested by Antikacioglu
and Ravi[3], the explanation-based diversification method [65], and the re-ranking
method introduced by Steck[60]. However, we did not explore the possibility of
post-processing due to the following reasons. First, the focus of our work is on the
preference learning methodology, and by incorporating diversity into modelling,
our BMCD method has achieved a good balance between accuracy and diversity.
Second, users’ true behaviours online often differ from offline testing results.
Although post-processing can improve the offline diversity performance, this
effect may not be reflected online, and online testing is actually the ultimate
measurement of the quality of the recommendations. In reality, the sole process
of making recommendations based on the learned personal preference is more
intricate than just mathematical problems: which items should be recommended
to the user also depends highly on the business domain and the overall business
objective. Learning each user’s preference on all the items is necessary, but not
sufficient to determine “what should be recommended to whom”.

Throughout this thesis, clicking data has been formulated as binary data, with
the straightforward assumption that if a user has clicked on an item, it is marked
as a 1 and 0 otherwise. This assumption is simple and intuitive, however, has

27

6. Discussions

its limitation. First, it is sometimes unclear whether a non-click is due to the
fact that the user dislikes the item or the user simply has not discovered the
item. Assuming all clicked items are ranked higher than unclicked items is not a
perfect solution. CF alleviates this problem by introducing a confidence variable.
We did not investigate this issue further since this construction, although results
in some un-clicked items being ranked too low, the recommendation quality is
not serioiusly affected, since such items will appear on top among the unclicked
items, and we only consider unclicked items for recommendation. Second, given
the application’s context, clicking data contains much more information than just
binary information. For example, in an e-commerce setting, we can construct
the user-item matrix based on the number of times an item is purchased by a
user. On a streaming platform, we can encode the different kinds of user-item
interactions, for example, 0 for no interaction, 0.5 for starting a movie, 1 for
completing a movie. This way, we can learn from much more information. Our
assumption that all clicked items are ranked higher than all non-clicked items
still stands, but at the same time, we also gain information within the clicked
item group about the relative rankings among them. Therefore, when applying
the BMCD or the Pseudo-Mallows in a real life application, we can go beyond
the binary user-item matrix and introduce more information based on the nature
of the implicit data and the application’s use case.

Another theme that is not addressed in this thesis is the “cold-start” problem
[58] of recommender systems. The term ”cold-start” refers to the situation where
there is scarce or no data at all for certain users or items, and learning for these
users or items is extremely challenging. The cold-start problem frequently occurs
when new items and/or users are introduced to the system, and it is specifically
relevant for applications such as news websites. Content-based recommender
systems, which leverage user or item information such as age, gender, genre,
descriptions, etc are often used during the cold-start stage. Such information, or
covariates, can also be incorporated into our Mallows methods to alleviate the
cold-start problem. One simplest way of utilizing covariates is by introducing
them as a pre-processing step: we can use covariates to identify similar users or
items that already exist in the system, and then treat the new items or users
as an aggregation of their nearest neighbors in the user-item matrix. Neural
networks [6] can also be used to identify nearest neighbors from covariates.
Another option is to introduce covariates information directly into our model,
possibly by adding one extra layer of regression in the hierarchy.

Implementation-wise, both the BMCD and the Pseudo-Mallows have the
potential to speed up so that they can scale up to even bigger datasets. One
factor that contributes to slow computing speed of both algorithm is that both

algorithms contain the term
N∑
j=1

d(Rj ,ρ) - which requires summing over all data

points. For larger N , this term will obviously be computationally heavy. However,
drawing inspiration from stochastic algorithms, we can randomly draw a subset
of N ′, N ′ << N data points, and then scale up the sum by a factor of N/N ′.

28

Distributed computing framework such as MapReduce [19] can also help speed
up the computation of a large sum. Both algorithms’ scaling abilities are also
limited when n is large. However, for the Pseudo-Mallows specifically, it should
be relatively straightforward to reduce the number of items to be estimated.
For each user j, when estimating the full individual ranking R̃j , the Pseudo-
Mallows algorithm currently loops through all items. This procedure cannot be
parallelized since the sampling of each item is dependent on all previous items.
Inevitably, when n is large, the algorithm becomes cumbersome. However, when
the aim is to make top - k recommendation, the items that are bottom-ranked
are in fact not of interest. Conveniently, in the case of the Pseudo-Mallows, as
each item is estimated individually with a tractable normalizing constant, we
can skip the estimation process for a large number of items that show strong
evidence of not being top ranked by user j. This will give the Pseudo-Mallows
the potential to scale up to datasets with a very large number of items.

There are also a few points about the Pseudo-Mallows method introduced in
Paper III that remain to be completed. First, our Pseudo-Mallows method
handles the situation where only one homogeneous cluster exists, or where
users’ cluster assignments are available. When a mixture of clusters exists, it is
theoretically possible to use a clustering algorithm such as K-means clustering
[42] to pre-process the dataset, split the dataset into K single-cluster datasets
accordingly, and then run the Pseudo-Mallows algorithm independently for each
cluster. In practice however, K-means clustering rarely produces homogeneous
clusters where users’ rankings follow the Mallows distribution. Making accurate
recommendations with these cluster assignments turn out not problematic during
our experiments, however, the uncertainty estimation is not as well calibrated.
As with the BMCD, we can introduce a clustering layer into our hierarchy to
also estimate the cluster assignments probabilistically. However, as we have
discovered while experimenting with the BMCD, the clustering of users converges
very fast, and most users do not sway between clusters. Therefore, we did not
further incorporate clustering into our model, but instead, suggested running the
BayesMallows R package for a few hundred iterations to obtain the clustering
assignments for each user, and then use the Pseudo-Mallows to learn individual
preferences independently on each cluster.

One other possible extension to the Pseudo-Mallows is the estimation of α. In
Paper III, we introduced a strategy to obtain a fast estimation of the scale
parameter by simulating datasets with a grid of known α values. Overall, our
estimation strategy can obtain a reasonable estimate of α in a speedy manner.
Yet, unlike the consensus parameter ρ and the individual rankings R̃j , the scale
parameter α is a continuous variable, therefore, it should be possible to derive
its gradient, and optimize for α using stochastic gradient descent. We did not
explore this option due to the fact that α is generally not a parameter that we
draw further inference on; more importantly, the gradient of α is not a convex
function, therefore, gradient descent algorithms can only guarantee to find a
local optimum.

29

Bibliography

[1] Aberger, C. R. “Recommender: An analysis of collaborative filtering
techniques”. In: Stanford University. 2014.

[2] Adomavicius, G. and Kwon, Y. “Improving aggregate recommendation
diversity using ranking-based techniques”. In: IEEE Transactions on
Knowledge and Data Engineering vol. 24, no. 5 (2011), pp. 896–911.

[3] Antikacioglu, A. and Ravi, R. “Post processing recommender systems
for diversity”. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2017, pp. 707–716.

[4] Asfaw, D. et al. “Time-varying rankings with the Bayesian Mallows model”.
In: Stat vol. 6, no. 1 (2017), pp. 14–30.

[5] Bai, Y., Craiu, R. V., and Di Narzo, A. F. “Divide and conquer: a
mixture-based approach to regional adaptation for MCMC”. In: Journal
of Computational and Graphical Statistics vol. 20, no. 1 (2011), pp. 63–79.

[6] Barkan, O. and Koenigstein, N. “Item2vec: neural item embedding for
collaborative filtering”. In: 2016 IEEE 26th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE. 2016, pp. 1–6.

[7] Bennett, J., Lanning, S., et al. “The netflix prize”. In: Proceedings of KDD
cup and workshop. Vol. 2007. New York. 2007, p. 35.

[8] Bishop, C. M. Pattern recognition and machine learning. springer, 2006.
[9] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. “Variational inference: A

review for statisticians”. In: Journal of the American statistical Association
vol. 112, no. 518 (2017), pp. 859–877.

[10] Bouchard-Côté, A. and Jordan, M. I. “Variational inference over combi-
natorial spaces”. In: Advances in Neural Information Processing Systems.
2010, pp. 280–288.

[11] Bradley, R. A. and Terry, M. E. “Rank analysis of incomplete block designs:
I. The method of paired comparisons”. In: Biometrika vol. 39, no. 3/4
(1952), pp. 324–345.

[12] Carlin, B. P. and Chib, S. “Bayesian model choice via Markov chain Monte
Carlo methods”. In: Journal of the Royal Statistical Society: Series B
(Methodological) vol. 57, no. 3 (1995), pp. 473–484.

[13] Chib, S. and Greenberg, E. “Understanding the metropolis-hastings
algorithm”. In: The american statistician vol. 49, no. 4 (1995), pp. 327–335.

[14] Chierichetti, F. et al. “Mallows models for top-k lists”. In: Advances in
Neural Information Processing Systems. 2018, pp. 4382–4392.

31

Bibliography

[15] Congdon, P. Applied bayesian modelling. Vol. 595. John Wiley & Sons,
2014.

[16] Corander, J., Gyllenberg, M., and Koski, T. “Bayesian model learning
based on a parallel MCMC strategy”. In: Statistics and computing vol. 16,
no. 4 (2006), pp. 355–362.

[17] Crispino, M. et al. “A Bayesian Mallows approach to nontransitive pair
comparison data: How human are sounds?” In: The Annals of Applied
Statistics vol. 13, no. 1 (2019), pp. 492–519.

[18] De Lathauwer, L., De Moor, B., and Vandewalle, J. “A multilinear
singular value decomposition”. In: SIAM journal on Matrix Analysis and
Applications vol. 21, no. 4 (2000), pp. 1253–1278.

[19] Dean, J. and Ghemawat, S. “MapReduce: Simplified data processing on
large clusters”. In: (2004).

[20] Diaconis, P. “Group representations in probability and statistics”. In:
Lecture notes-monograph series vol. 11 (1988), pp. i–192.

[21] Fligner, M. A. and Verducci, J. S. “Distance based ranking models”. In:
Journal of the Royal Statistical Society: Series B (Methodological) vol. 48,
no. 3 (1986), pp. 359–369.

[22] Funk, S. Netflix update: Try this at home. 2006.
[23] Ge, M., Delgado-Battenfeld, C., and Jannach, D. “Beyond accuracy:

evaluating recommender systems by coverage and serendipity”. In:
Proceedings of the fourth ACM conference on Recommender systems. 2010,
pp. 257–260.

[24] Gelman, A. et al. Bayesian data analysis. CRC press, 2013.
[25] Goodfellow, I. et al. Deep learning. Vol. 1. MIT press Cambridge, 2016.
[26] Hastings, W. K. “Monte Carlo sampling methods using Markov chains and

their applications”. In: (1970).
[27] Herlocker, J. L. et al. “Evaluating collaborative filtering recommender

systems”. In: ACM Transactions on Information Systems (TOIS) vol. 22,
no. 1 (2004), pp. 5–53.

[28] Hoffman, M. D. and Gelman, A. “The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo.” In: J. Mach. Learn.
Res. vol. 15, no. 1 (2014), pp. 1593–1623.

[29] Hoffman, M. D. et al. “Stochastic variational inference”. In: The Journal
of Machine Learning Research vol. 14, no. 1 (2013), pp. 1303–1347.

[30] Hu, Y., Koren, Y., and Volinsky, C. “Collaborative filtering for implicit
feedback datasets”. In: 2008 Eighth IEEE International Conference on
Data Mining. Ieee. 2008, pp. 263–272.

[31] Ibe, O. Markov processes for stochastic modeling. Newnes, 2013.
[32] Jannach, D., Lerche, L., and Zanker, M. “Recommending based on implicit

feedback”. In: Social Information Access. Springer, 2018, pp. 510–569.

32

Bibliography

[33] Jawaheer, G., Szomszor, M., and Kostkova, P. “Comparison of implicit
and explicit feedback from an online music recommendation service”. In:
proceedings of the 1st international workshop on information heterogeneity
and fusion in recommender systems. 2010, pp. 47–51.

[34] Jiao, Y. and Vert, J.-P. “The Kendall and Mallows kernels for permuta-
tions”. In: International Conference on Machine Learning. 2015, pp. 1935–
1944.

[35] Karatzoglou, A. et al. “Multiverse recommendation: n-dimensional tensor
factorization for context-aware collaborative filtering”. In: Proceedings of
the fourth ACM conference on Recommender systems. 2010, pp. 79–86.

[36] Kingma, D. P. and Welling, M. “Auto-encoding variational bayes”. In:
arXiv preprint arXiv:1312.6114 (2013).

[37] Koren, Y., Bell, R., and Volinsky, C. “Matrix factorization techniques for
recommender systems”. In: Computer vol. 42, no. 8 (2009), pp. 30–37.

[38] Li, S., Kawale, J., and Fu, Y. “Deep collaborative filtering via marginalized
denoising auto-encoder”. In: Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management. 2015, pp. 811–
820.

[39] Lops, P., De Gemmis, M., and Semeraro, G. “Content-based recommender
systems: State of the art and trends”. In: Recommender systems handbook.
Springer, 2011, pp. 73–105.

[40] Lu, T. and Boutilier, C. “Learning Mallows models with pairwise
preferences”. In: ICML. 2011.

[41] Luce, R. D. Individual choice behavior: A theoretical analysis. Courier
Corporation, 2012.

[42] MacQueen, J. et al. “Some methods for classification and analysis of
multivariate observations”. In: Proceedings of the fifth Berkeley symposium
on mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA.
1967, pp. 281–297.

[43] Mallows, C. L. “Non-null ranking models. I”. In: Biometrika vol. 44, no. 1/2
(1957), pp. 114–130.

[44] Marden, J. I. Analyzing and modeling rank data. CRC Press, 1996.
[45] Meila, M. and Chen, H. “Dirichlet process mixtures of generalized mallows

models”. In: arXiv preprint arXiv:1203.3496 (2012).
[46] Metropolis, N. et al. “Equation of state calculations by fast computing

machines”. In: The journal of chemical physics vol. 21, no. 6 (1953),
pp. 1087–1092.

[47] Mukherjee, S. et al. “Estimation in exponential families on permutations”.
In: The Annals of Statistics vol. 44, no. 2 (2016), pp. 853–875.

[48] Neiswanger, W., Wang, C., and Xing, E. “Asymptotically exact, embar-
rassingly parallel MCMC”. In: arXiv preprint arXiv:1311.4780 (2013).

33

Bibliography

[49] Nemeth, C., Sherlock, C., et al. “Merging MCMC subposteriors through
Gaussian-process approximations”. In: Bayesian Analysis vol. 13, no. 2
(2018), pp. 507–530.

[50] Pazzani, M. J. and Billsus, D. “Content-based recommendation systems”.
In: The adaptive web. Springer, 2007, pp. 325–341.

[51] Peska, L. and Vojtas, P. “Negative implicit feedback in e-commerce
recommender systems”. In: Proceedings of the 3rd International Conference
on Web Intelligence, Mining and Semantics. 2013, pp. 1–4.

[52] Plackett, R. L. “The analysis of permutations”. In: Journal of the Royal
Statistical Society: Series C (Applied Statistics) vol. 24, no. 2 (1975),
pp. 193–202.

[53] Rendle, S. and Schmidt-Thieme, L. “Pairwise interaction tensor factoriza-
tion for personalized tag recommendation”. In: Proceedings of the third
ACM international conference on Web search and data mining. 2010, pp. 81–
90.

[54] Rendle, S. et al. “Learning optimal ranking with tensor factorization for tag
recommendation”. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2009, pp. 727–736.

[55] Robert, C. P. et al. “Accelerating MCMC algorithms”. In: Wiley
Interdisciplinary Reviews: Computational Statistics vol. 10, no. 5 (2018),
e1435.

[56] Sarwar, B. et al. “Item-based collaborative filtering recommendation
algorithms”. In: Proceedings of the 10th international conference on World
Wide Web. 2001, pp. 285–295.

[57] Schafer, J. B. et al. “Collaborative filtering recommender systems”. In:
The adaptive web. Springer, 2007, pp. 291–324.

[58] Schein, A. I. et al. “Methods and metrics for cold-start recommendations”.
In: Proceedings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval. 2002, pp. 253–260.

[59] Sorensen, O. et al. BayesMallows: Bayesian Preference Learning with the
Mallows Rank Model. R package version 0.4.0. 2019.

[60] Steck, H. “Calibrated recommendations”. In: Proceedings of the 12th ACM
conference on recommender systems. 2018, pp. 154–162.

[61] Tucker, L. R. “Some mathematical notes on three-mode factor analysis”.
In: Psychometrika vol. 31, no. 3 (1966), pp. 279–311.

[62] Vitelli, V. et al. “Probabilistic preference learning with the Mallows rank
model”. In: The Journal of Machine Learning Research vol. 18, no. 1
(2017), pp. 5796–5844.

[63] Wand, M. P. et al. “Mean field variational Bayes for elaborate distributions”.
In: Bayesian Analysis vol. 6, no. 4 (2011), pp. 847–900.

34

Bibliography

[64] Wang, H., Wang, N., and Yeung, D.-Y. “Collaborative deep learning
for recommender systems”. In: Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining. 2015,
pp. 1235–1244.

[65] Yu, C., Lakshmanan, L. V., and Amer-Yahia, S. “Recommendation
diversification using explanations”. In: 2009 IEEE 25th International
Conference on Data Engineering. IEEE. 2009, pp. 1299–1302.

[66] Zhou, Y. et al. “Large-scale parallel collaborative filtering for the
netflix prize”. In: International conference on algorithmic applications
in management. Springer. 2008, pp. 337–348.

[67] Ziegler, C.-N. et al. “Improving recommendation lists through topic
diversification”. In: Proceedings of the 14th international conference on
World Wide Web. 2005, pp. 22–32.

35

Papers

Paper II

Diverse Personalized
Recommendations with
Uncertainty from Implicit
Preference Data with the Bayesian
Mallows Model

Qinghua Liu, Andrew Henry Reiner, Arnoldo Frigessi, Ida
Scheel
DOI: https://doi.org/10.1016/j.knosys.2019.104960

II

67

https://doi.org/https://doi.org/10.1016/j.knosys.2019.104960

Knowledge-Based Systems 186 (2019) 104960

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Diverse personalized recommendationswith uncertainty from
implicit preference datawith the BayesianMallowsmodel�

Qinghua Liu a, Andrew Henry Reiner b, Arnoldo Frigessi b,c, Ida Scheel a,∗
a Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316 Oslo, Norway
b Oslo Center for Biostatistics and Epidemiology, Oslo University Hospital, Klaus Torgårds vei 3, 0372 Oslo, Norway
c Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway

a r t i c l e i n f o

Article history:

Received 11 February 2019

Received in revised form 8 August 2019

Accepted 15 August 2019

Available online 20 August 2019

Keywords:

Preference learning

Collaborative filtering

Clicking data

Probabilistic modeling

a b s t r a c t

Clicking data, which exists in abundance and contains objective user preference information, is

widely used to produce personalized recommendations in web-based applications. Current popular

recommendation algorithms, typically based on matrix factorizations, often focus on achieving high

accuracy. While achieving good clickthrough rates, diversity of the recommended items is often

overlooked. Moreover, most algorithms do not produce interpretable uncertainty quantifications of the

recommendations. In this work, we propose the Bayesian Mallows for Clicking Data (BMCD) method,

which simultaneously considers accuracy and diversity. BMCD augments clicking data into compatible

full ranking vectors by enforcing all the clicked items clicked by a user to be top-ranked regardless

of their rarity. User preferences are learned using a Mallows ranking model. Bayesian inference leads

to interpretable uncertainties of each individual recommendation, and we also propose a method to

make personalized recommendations based on such uncertainties. With a simulation study and a real

life data example, we demonstrate that compared to state-of-the-art matrix factorization, BMCD makes

personalized recommendations with similar accuracy, while achieving much higher level of diversity,

and producing interpretable and actionable uncertainty estimation.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Personalized recommendations are widely used to help users

and customers sort digital information for their purpose. From

online streaming services to e-commerce websites, recommender

systems can improve business efficiency, sort search results and

enhance user experience.

Accuracy, reliability and diversity are some of the most im-

portant objectives for effective recommender systems. To help

users find the items they prefer, recommendations should be

accurate. At the same time, a recommender system should assess

how reliable, or certain, the recommendations are, so that the

users will not be disturbed by many irrelevant recommendations.

To achieve this, uncertainty quantification of recommendations

is essential. Furthermore, recommendations should be diverse.

� No author associated with this paper has disclosed any potential or

pertinent conflicts which may be perceived to have impending conflict with

this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.

2019.104960.∗ Corresponding author.

E-mail addresses: qinghual@math.uio.no (Q. Liu), a.h.reiner@medisin.uio.no

(A.H. Reiner), arnoldo.frigessi@medisin.uio.no (A. Frigessi), idasch@math.uio.no

(I. Scheel).

From a user’s standpoint, a recommendation list is more interest-

ing if it consists of a variety of items of different categories and

genres; from a vendor’s point of view, it is more cost efficient for

rare and less popular items to have more exposure because the

licensing of such items is less costly [1]. The importance of diver-

sity is often overlooked by many recommender systems, and it

is challenging to achieve both high accuracy and diversity. There

is scarce information about the less popular items, therefore, it

is much more risky to consider such items for recommendations.

The trade-off between accuracy and diversity is referred to as the

‘‘accuracy–diversity dilemma’’ [2–4].

Personalized recommendations are based on the users’ pref-

erence data, which can be explicit feedbacks such as ratings, and

implicit feedbacks such as click stream data. Clicking data is easy

to collect, exists in great abundance, and often better reflects user

preferences compared to ratings. However, the interpretation of

clicking data can be challenging, as there is no direct negative

feedback from users [5], and the data naturally exhibits high

sparsity [6].

The state-of-the-art approach using implicit feedback for per-

sonalized recommendation is the Collaborative Filtering for Im-

plicit Data method developed by Hu et al. [5]. This method is

based on matrix factorization (MF). It is effective and scalable,

https://doi.org/10.1016/j.knosys.2019.104960

0950-7051/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

69

2 Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960

and is commonly adopted by commercial applications [7]. How-
ever, there are some drawbacks. First of all, it does not provide
interpretable uncertainty quantifications: when an item is recom-
mended to a user, the method does not quantify the reliability of
the recommendation. More importantly, the collaborative filter-
ing framework does not consider diversity, and it has a tendency
to favor the most popular items. While achieving high accuracy,
these recommendations can sometimes be monotonous and lack
diversity. Post-processing methods have been proposed to im-
prove the diversity performance of collaborative filtering [8,9].
These methods usually contain a tuning parameter that balances
the accuracy–diversity tradeoff. However, it is often impossible
to achieve higher diversity without sacrificing the accuracy per-
formance, and a poor choice of the tuning parameter can heavily
impair the accuracy performance.

The method we introduce in this paper takes a more holistic
approach. Instead of considering accuracy and diversity as sepa-
rate objectives, our method embeds diversity considerations into
the model for learning user preferences. In addition it provides
interpretable uncertainty quantifications. Our method is called
the Bayesian Mallows for Clicking Data (BMCD) method, and is
constructed by further developing the approach introduced by
Vitelli et al. [10]. We assume that users prefer clicked items
to unclicked items, and individual clicking data is subsequently
augmented to ranking vectors by enforcing all the clicked items
to be top-ranked. This construction ensures that the uniqueness
of each user, demonstrated especially by the rare items that are
clicked, can be preserved and subsequently learned by the model.
Our method inherently consider diversity in the model, achieving
a good accuracy–diversity balance without the use of tuning pa-
rameters. Through a simulation study and an offline testing with
a real life dataset provided by the Norwegian Broadcasting Cor-
poration (NRK), we illustrate BMCD’s effective accuracy–diversity
performance, comparing to the state-of-the art Collaborative Fil-
tering for Implicit Data method, and two popular post-processing
diversity enhancements methods.

The main contribution of our work is a new method for mak-
ing personalized recommendation based on implicit data, which
inherently balances accuracy and diversity without the need of a
tuning parameter. Contrasting with the current accuracy-driven
methods such as Collaborative Filtering [5], our method holis-
tically considers both accuracy and diversity. Compared to the
diversity-driven post-processing methods [8,9], our method does
not involve tuning parameters to achieve the accuracy–diversity
balance, and does not sacrifice accuracy for diversity. Moreover,
the Bayesian nature of our method ensures that each recom-
mendation made is associated with a calibrated and interpretable
uncertainty estimation.

The paper is organized as follows: We start by discussing
related work in Section 2. In Section 3 we summarize the Bayesian
Mallows Method, and then we introduce BMCD, and show how
we can make personalized recommendations based on posterior
probabilities. In Section 4, we introduce the evaluation metrics:
accuracy and four diversity metrics. In Section 5.1 we explain
the simulation study and demonstrate how BMCD makes rec-
ommendations with uncertainty quantification. In Section 5.2 we
present a detailed comparison of BMCD’s accuracy and diversity
compared to Collaborative Filtering for Implicit Data for the sim-
ulation study. In Sections 5.3.2 and 5.3.4 we apply both methods
to the NRK dataset, and compare their accuracy and diversity
performances. It is followed by Section 5.4, which is dedicated to
the comparison between BMCD and two post-processing methods
in combination with Collaborative Filtering, based on the NRK
dataset. We compare these methods’ performances in terms of
the accuracy–diversity balance. Last, a summary and further work
are included in Section 6.

2. Related work

Collaborative filtering [11] is a framework utilizing user–item
interaction data to make personalized recommendations through
borrowing strength across the pool of users and items.

User-based collaborative filtering is an early method. For a
particular user, the basic idea is first to discover other users who
have similar preferences, often measured by cosine similarities or
Pearson’s correlation coefficient. After such neighbors are iden-
tified, recommendations are made based on an aggregation of
the neighbors’ preferences. User-based collaborative filtering is
intuitive and easy to implement, however, it is often limited by
the sparsity of the data as well as scalability. Instead, Sarwar
et al. [12] proposed an item-based collaborative filtering algo-
rithm. For a given user, her preference of an unknown item is
predicted based on the users’ past preferences of the k most
similar items.

Matrix Factorization (MF)-based collaborative filtering meth-
ods are among the most successful [13]. The MF method proposed
by Koren et al. [14] is developed for a user–item rating matrix.
The data matrix X has dimensions N × n, where N is the number
of users and n is the number of items. Each entry xij is the rating
given by a user j to an item i, or is empty. Assume that each
user j has rated ≤ n items. MF obtains two reduced-dimension
matrices UN×L and V n×L, with L < n, so that their product will be
a full matrix X̂ that approximates the original rating matrix X. X̂
predicts, for each user, the ratings of the items that the user has
not rated. Hu et al. [5] extended the method to implicit data. In
this paper, BMCD is compared with the method in [5] since this
is the widely adopted, state-of-the-art method. For more details
on collaborative filtering, see [15].

Hu et al. [5] introduced the Collaborative Filtering for Implicit
Data method (CF), which extends the classic matrix factorization
method. It can be applied to datasets based on implicit user
feedbacks, such as clicking data. We now denote the implicit
user–item matrix as X. The content of xij depends on the use
case, for example, it can represent the number of times user
i has clicked on item j. First, a binary matrix W is introduced
by binarizing X such that wij is set to 1 if xij > 0, and 0
otherwise, i.e., wij is set to 1 if user j has clicked item i, and 0
otherwise. Second, a set of ‘‘confidence’’ variables cij is introduced.
The rationale behind this variable is that different interactions
indicate different levels of certainty that an item is preferred by
the user. One choice for cij is: cij = 1 + βxij, β ≥ 0. Finally, the
factor matrices are obtained through minimizing the penalized
loss function minU,V

∑
j,i cij(wij− uT

j vi)+ θ (∑j ‖uj‖2+∑
i ‖vi‖2),

where both uj and vi are L-dimensional column vectors. The
last term in the loss function is a regularization term and is
added to reduce overfitting. The parameters β , θ , and the reduced
dimension of the factor matrices L are determined by cross-
validation, while the minimization process is often achieved using
algorithms such as alternating least square (ALS) [14]. In the later
sections, the term ‘‘CF’’ refers exclusively to the method proposed
by Hu et al. [5], and we use its implementation in Apache Spark
[16]. BMCD will later be compared with this CF method, in terms
of recommendation performances.

To address the accuracy–diversity dilemma, Zhou et al. [2]
proposed a graph-based method inspired by the heat diffusion
process. One accuracy-driven model and one diversity-driven
model are combined with linear weighted average to balance
accuracy and diversity. Karakaya and Tevfik [17] introduced a
modification of Koren et al. [14]’s MF model for explicit feedback
by penalizing popular items to improve diversity. However, the
method has not been extended to implicit datasets.

Post-processing of recommendations can help enhance diver-
sity. Antikacioglu et al. [18] proposed a bipartite graph-based

70

Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960 3

post-processing method. After a recommendation model is fit-
ted, a score for each user–item pair is obtained, and then these
scores serve as weights for the user–item edges. The recom-
mendation process is modeled as a maximum-weight bipartite
graph matching problem, and diversity is achieved by imposing
diversity-related constraints to the optimization, which can be
solved using algorithms for minimum cost flow problems. This
method could post-process both BMCD and the Collaborative
Filtering for Implicit Data Method, but we do not pursue this any
further.

The most popular post-processing methods are proposed by
Adomavicius et al. [9] and Ziegler et al. [8]. Both methods are
used in combination with a model for recommendation, such as
CF, which predicts a score for each user–item pair. To make k
recommendations for each user, instead of using the traditional
recommendation method, which simply recommends the k items
with the highest such scores for each user, these methods impose
special rules based on the predicted user–item scores. Adomavi-
cius et al.’s [9] approach introduces a threshold: for each user,
if there exists l ≥ k items whose scores have surpassed the
threshold, the k least popular items among them are recom-
mended to the user. If there exists 0 < l < k items whose
scores surpassed the threshold, all the l items are recommended
first, and the rest of the k − l items are recommended using
the traditional method. In the case where no item has surpassed
the threshold, the traditional recommendation method is used
to recommend the top k items to the user. The threshold is the
tuning parameter that balances accuracy and diversity — a high
threshold makes the recommendations more accuracy driven,
while a low threshold results in more diverse but likely less ac-
curate recommendations. Ziegler et al. [8] introduced an iterative
approach instead. First, for each user, the top -1 item is added to
the recommendation list using the traditional method. For each
item that is not in the recommendation list, a similarity score
is calculated between the item and the current recommendation
list, and these items are ranked based on the similarity scores —
from the least similar to the most similar. We denote this ranking
as ranksim. At the same time, another ranking is produced based
on the ranking of the scores in descending order, denoted as
rankscores. The two rankings are combined in a linear weighted
average, i.e. rankcombined = α ranksim + (1 − α)rankscore, 0 ≤
α ≤ 1, and the item with the lowest combined ranking (top-
ranked) is added to the recommendation list. This procedure is
repeated until k recommendations are reached. Clearly, α is the
tuning parameter, for which a high value closer to 1 makes the
algorithm more diversity-driven. We will use these two post-
processing methods in combination with CF, and compare their
accuracy–diversity performances with BMCD in Section 5.4.

3. Bayesian Mallows for Clicking Data (BMCD)

Consider a dataset of N users and n itemsA = {A1, A2, . . . , An}.
Suppose first that each user j indicates her preferences with a
ranking of all n items, R j = {R1j, R2j, . . . , Rnj}, where Rij is the rank
assigned to item i by user j, i = 1, . . . , n, j = 1, . . . ,N . The Mal-
lows model is a probabilistic model on the space of permutations
of n items Pn. In the simplest case, assuming that all users share
a common latent consensus ρ ∈ Pn, it has the form of P(R j =
r|α, ρ) = 1

Zn(α,ρ)
exp{ − α

n
d(r, ρ)}, where α is a scale parameter,

and d(r, ρ) is a distance between r and ρ. Possible choices of
distance functions include the footrule distance, the Spearman
distance, and the Kendall distance. In this paper, we choose the
footrule distance, defined as d(r, ρ) = ∑n

i=1 |ri − ρi|, because of
its effectiveness [19]. Other distances can also be used. Lastly,
Zn(α, ρ) = ∑

r∈Pn
exp{− α

n
d(r, ρ)} is the normalizing function.

As the footrule distance is a right-invariant distance function, the

partition function Zn is independent of ρ, and only depends on α,

hence we denote it as Zn(α). For n < 50, Zn(α) has been computed

[10], but is otherwise not analytically computable. When n ≥ 50,

the asymptotic approach introduced by Mukherjee et al. [20] and

the importance sampling scheme introduced in [10] are available.

Realistically however, it is uncommon that all users are ho-

mogeneous. Assume that the N users are grouped in C clusters,

and within each cluster, users share a common latent consensus.

For each of the homogeneous clusters, we assume a Mallows

distribution with parameters αc , ρc , c = 1, . . . , C . The random

variable denoted by zj ∈ {1, . . . , C} assigns user j to cluster zj.

Assuming that users’ preferences are conditionally independent

given the Mallows parameters and their cluster assignments zj,

the likelihood function is hence

P(R1, . . . ,RN |{αc, ρc}c=1,...,C , z1, . . . , zN)

=
N∏

j=1

[Zn(αzj)]−1exp{−αzj

n
d(R j, ρzj

)}. (1)

Vitelli et al. [10] introduce a Bayesian version of this model.

The Mallows parameters {αc, ρc}c=1,...,C are assumed a priori

mutually independent. An exponential prior with hyperparam-

eter λ is chosen for αc, c = 1, . . . , C , i.e., π (α1, .., αc |λ) =
λCexp{−λ∑C

c=1 αc}. For ρc, c = 1, . . . , C , the noninformative

uniform prior π (ρ1, . . . , ρC) = n!−C is chosen. The prior for the

cluster assignments zj, j = 1, . . . ,N is p(z1, . . . , zN |τ1, . . . , τC) =∏N
j=1 τzj , where the probabilities τ1, . . . , τC follow a Dirichlet

prior π (τ1, . . . , τC) = Γ (ψC)Γ (ψ−C)
∏C

c=1 τ
ψ−1
c , ψ > 0. Hy-

perparameters ψ and λ are assumed to be fixed, see [10] for

guidelines.

The posterior distribution of {{αc, ρc}c=1,...,C , z1, . . . , zN } is

therefore

P({αc, ρc}c=1,...,C , z1, . . . , zN |R1, . . . ,RN)

∝ π (α1, . . . , αC |λ)π (ρ1, . . . , ρC)p(z1, . . . , zN |τ1, . . . , τC)
· π (τ1, . . . , τC)P(R1, . . . ,RN |{αc, ρc}, z1, . . . , zN). (2)

We will now extend the Bayesian Mallows model to clicking data.

For clicking data, the full ranking of the n items is not available

and needs to be inferred from the clicking data. We denote the

latent, full individual ranking vector for user j as R̃ j. Suppose that

each user j has clicked on a subset of the items Aj ⊆ A, with the

number of clicks |Aj| = cj. It is common to assume that a clicked

item is preferred by the user to any other un-clicked item [21].

This assumption also ensures that the uniqueness of each user is

enforced, as all clicked items are forced to be more preferred to

non-clicked items, regardless of the items’ popularities. For each

user j, the set of rankings compatible with this assumption is

Sj(Aj) = {R̃ j ∈ Pn s.t. R̃ij < R̃kj if Ai ∈ Aj and Ak ∈ Ac
j , ∀i, k, i
=

k}.
Given the clicking data, the goal is hence, to sample from the

posterior distribution

P({αc, ρc}c=1,...,C , z1, . . . , zN |A1, . . . ,AN)

=
∑

R̃1∈S1(A1)

...
∑

R̃N∈SN (AN)

P({αc, ρc}c=1,...,C , z1, . . . , zN ,

R̃1, ..R̃N |A1, . . . ,AN) (3)

To make inference, we follow a Markov Chain Monte Carlo

(MCMC) scheme similar to the one in [10]. Each iteration of the

algorithm consists of three major steps:

(i) Update the parameters {αc, ρc} within each cluster c =
1, .., C , given the current values of the individual rankings

R̃ j, and the cluster assignments zj, j = 1, . . . ,N

71

4 Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960

(ii) Re-assign users to clusters based on the current values of
the parameters

{αc, ρc}c=1,...,C and the individual ranking vectors R̃ j, j =
1, . . . ,N

(iii) Update R̃ j for each user j given the current values of
z1, . . . , zN and {αc, ρc}c=1,...,C

As in [10], we use a Metropolis–Hasting algorithm for step (i),
and a Gibbs sampler for step (ii). For step (iii), we sample from

P(R̃1, . . . , R̃N |{αc, ρc}c=1,...,C , z1, . . . , zN ,A1, . . . ,AN). Given the
cluster assignments and the Mallows parameters, the individual
rankings are conditionally independent. Therefore, for each user j,

we can independently sample from the posterior P(R̃ j|αzj , ρzj
, zj,

Aj) using a Metropolis–Hasting algorithm, where a new R̃ ′j for
each user must be proposed. One convenient way is to choose
two items i, k such that {i, k} ∈ Aj or {i, k} ∈ Ac

j , and then swap
the rankings of the two items for each user j. This proposal is
symmetric, and each proposed latent full individual ranking vec-

tors R̃
′
j is accepted with probability min {1, exp[− αzj

n
(d(R̃

′
j, ρzj)−

d(R̃ j, ρzj))]}. Another way of proposing a new R̃
′
j is to treat each R̃ j

as two parts: the clicked part and the un-clicked part. The ‘‘leap-
and-shift’’ algorithm in [10] can then be used separately for the
two parts.

To make personal recommendations, the variables of interest

are the latent augmented full ranking R̃ j for each user. For a given
user j that has clicked on cj items, the objective of making k ≥ 1
recommendations is equivalent to inferring which items are to
be ranked as the user’s cj + 1th, . . . , cj + kth items. We therefore
calculate for each user j and each item i the posterior probability
to be ranked between cj + 1, . . . , cj + k, which we refer to as the
‘‘next top - k’’ items. That is, we estimate for each user j and each
item i

Pij = P(cj + 1 ≤ R̃ij ≤ cj + k|A1, . . . ,AN)

= P(R̃ij ≤ cj + k|A1, . . . ,AN). (4)

Once estimated, these posterior probabilities are later ranked
for each user j in descending order, and the k items with the
highest such probabilities are recommended to the user. The
estimated top-k probabilities are referred to as the top posterior
probabilities (TPP), and the set of k recommended items for user
j is denoted as Recj,k. Section 6 in the supplement contains a
structured description of our algorithms.

4. Recommendation evaluation—accuracy and diversity

In this section, we introduce the assessment metrics that will
be used in order to assess the accuracy and diversity perfor-
mances of the recommendation methods.

To assess recommendation accuracy, the next k ≥ 1 rec-
ommendations are made for each user. In simulations, the rec-
ommendations are later compared with the truth. In offline ex-
periments, based on a train-test split of the dataset, accuracy is
measured as the percentage of the recommended items that are
clicked in the test set. For online experiments, the truth is ob-
tained by experimentation. The drawback of offline experiments
compared to online experiments is that the recommendations
are not actually given to the users, and hence the truth defined
by the test set is not a response to the recommendations. This
might be problematic for the recommendation of less popular
items, since the users might not even be aware of these items, and
hence could not have clicked them in the test set. Offline training-
test experimentation is often the only and best alternative for
assessing accuracy.

Despite being an important measure of performance, accuracy
is not the only factor that defines successful recommendations

[22,23]. User experience can be greatly enhanced when recom-
mendations are diverse, and hence has the potential to be novel
and surprising. To assess the diversity of recommendations, we
adopt the following four metrics: coverage [24], correct coverage,
intra-list similarity [8,25] and novelty [2].

4.1. Coverage

Ge et al. [24] introduced the metric ‘‘coverage’’, defined as

coverage = # distinct items recommended to users

distinct items eligible for recommendation
,

the percentage of the distinct items ever recommended to the
users. A recommender system with a high coverage has exploited
its pool of items more efficiently, and their users, collectively, are
exposed to a wider spectrum of items.

This coverage metric has one major limitation. For a highly
inaccurate recommender system, in the extreme case, when rec-
ommendations are made randomly, the coverage can be very high
while the recommendation accuracy is extremely low. Therefore,
we also introduce the ‘‘correct coverage’’ metric, defined as:

correct coverage

= # distinct items recommended and clicked by at least one user

distinct items eligible for recommendation

4.2. Intra-list similarity

Ziegler et al. [8] introduced the ‘‘Intra-list similarity’’ metric to
assess diversity on an individual level. The rationale behind this
metric is that, on an individual level, each user tends to prefer
recommendations from various categories. A recommendation
list that contains items from only one or a few specific categories
(for example, a list of only Harry Potter movies), are far less
exciting compared to a good mixture of very different items
(even for Harry Potter fans). Similarity between two items a, b is
measured by binary cosine similarity [25] based on the training
data, defined as

CosSim(a, b)

= # users clicked both a and b√
users that clicked a×√# users that clicked b

,

and the intra-list similarity metric is hence defined as

Intra-list similarity = 1

N

N∑

j=1

∑

a,b∈Recj,k,b<a

CosSim(a, b).

It is desirable for a recommender to have a low intra-list similar-
ity.

4.3. Novelty

The novelty measure, introduced by Zhou et al. [2], assesses
the recommender’s ability to recommend items less explored by
the users. It is defined as

novelty = 1

N

N∑

j=1

∑

i∈Recj,k

|log2popi|
k

,

in which popi refers to the popularity of item i, in this case, the
fraction of all clicks attributed to item i in the training data. A
recommender that recommends rare and less popular items, and
hence makes novel recommendations, will have a high novelty
score. It is desirable to make novel recommendations because a
recommendation list consisting of only the most popular items
lacks personalization. In addition, the less popular items are chal-
lenging to be recommended due to lack of data [23], and are often
valuable to the business [1].

72

Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960 5

5. Experiment and results

In this section, we conducted a detailed comparison between
the recommendation performances by BMCD and the Apache
Spark [16] implementation of CF through a simulation study, as
well as an offline case study with a dataset provided by the
Norwegian Broadcasting Corporation (NRK). Each method will
be assessed in terms of recommendation accuracy as well as
diversity. Using the NRK dataset, we also compare the accuracy–
diversity performances between BMCD and the post-processed
versions of CF in Section 5.4.

5.1. Simulation study design

In this simulation study, we consider a group of N = 3000
users and n = 50 items. The users are partitioned in C = 3
equally sized and distinct clusters. The users in each cluster are
given full ranking vectors R j sampled from the Mallows model
using the sampler in [10]. For each cluster c , the parameters
are chosen to be (α = 3, ρc), with ρ1 = {1, 2, .., 50}, ρ2 ={50, 49, . . . , 1}, and ρ3 = {39, 36, 11, 1, 13, 12, 8, 48, 20, 49, 29,
32, 22, 28, 19, 5, 42, 18, 15, 7, 6, 27, 24, 16, 46, 4, 21, 26, 34, 44,
25, 43, 41, 38, 35, 37, 45, 2, 14, 50, 40, 47, 9, 23, 30, 31, 3, 10,
33}. The 3 consensuses are chosen since they will produce 3
distinct clusters that separate well. Hence, a dense N×n ranking
dataset is obtained, which will later serve as the ground truth
for checking recommendation accuracy, and from which we will
build the incomplete clicking dataset.

To simulate clicking data, the full ranking dataset is converted
to a binary dataset in the following way. For each user j =
1, . . . ,N , we draw the number of clicks cj from a truncated
Poisson distribution with parameter λ = 5, truncated to a
minimum of 1. Thereafter, the top ranked cj items are considered
‘‘clicked’’, while the rest of the items considered ‘‘unclicked’’. In
other words, for each user j, we obtain Aj = {Ai : Rij ≤ cj}.

We generate independently 20 such datasets, and use both CF
and BMCD to recommend k = 5 and k = 10 items for each
user, i.e., to predict for each user j which items are ranked among
cj + 1, . . . , cj + k. The parameters for CF are determined through
10-fold cross validation. Although the ground truth dataset is
generated from a Mallows model, which can impose some bias
towards BMCD in terms of accuracy checking, the dataset is
converted to a binary clicking dataset for model fitting. The bina-
rization adds great sparsity to the dataset, and converts ranking
vectors into binary vectors, which the Mallows model is not
defined for. BMCD’s advantages in inference are considerably
reduced due to the binarization.

To use BMCD, the number of clusters C needs to be determined
first. We run Algorithm 1 and 2 in the supplementary material
with random initialization and varying numbers of clusters C =
2, 3, . . . , 8. For each value of C , we estimate the posterior mean
of the sum of within cluster footrule distances (MWCD), defined
as

MWCD = E[
C∑

c=1

N∑

j=1

d(R̃ j, ρzj
)|A1, . . . ,AN],

by the natural Monte Carlo mean. For each of the 20 simulated
datasets, the number of clusters C with the smallest MWCD is
chosen. It turns out that C = 3 is chosen for all runs, except
for run numbers 5, 8, and 20, for which C = 4. Fig. 1 in
the supplementary material Section 1 shows the boxplots of the
posterior sum of within cluster distances for 3 selected runs (1,
5, 10).

The MCMC is run for 1 million iterations, with the first 500000
iterations discarded as burn-in. Similar to the set up in [10],

parameters {α1, . . . αC } are only proposed for update every 10
iterations. The trace plots of αc for run 1, c = 1, 2, 3, after the
burn-in period is included in the supplementary material Section
3. Convergence was checked by using multiple starting points
of the MCMC chains. Recommendations of the Bayesian Mallows
method are made based on TPP. The recommendation procedure
is described in Section 3 in the supplementary material.

5.2. Simulation results and discussion

5.2.1. Recommendation accuracy
After recommendations are made, we refer to the ground truth

full ranking vectors R j to check whether the recommended items
are truly among each user’s next-k items.

Table 1 shows the recommendation accuracy using CF and

BMCD to predict each user’s next k = 5 and k = 10 items. It can

be observed that BMCD makes slightly more accurate recommen-

dations compared to CF in predicting both the next 5 and next 10

items. The accuracy advantage over CF is more significant in the

next 10 case. In addition, BMCD’s accuracy performance is less

varied than that of CF’s. BMCD’s high accuracy demonstrates that

the Bayesian Mallows model is a good fit for the recommendation

problem, and that the recommendation process, which is based

on posterior probability estimations, can accurately reflect users’

true preferences.

We have also discovered that the number of clusters C chosen

has little effect on the overall recommendation accuracy, as long

as the number of clusters chosen is not too small. As shown

in Fig. 1, the overall recommendation accuracy stabilizes after

C ≥ 3. It is apparent that if the number of clusters C is too

small, users that do not share a consensus, i.e., users of very

different tastes, are grouped together. Hence, the estimated ρ

will not be able to represent all the cluster members’ tastes,

which will negatively affect the estimation accuracy. On the other

hand, when a too larger C value is chosen, some of the clusters

break down into smaller clusters. As long as the cluster size

is not too small, the estimated consensus parameter still fairly

represents a consensus of the cluster members’ tastes. Hence,

we can effectively learn each individual’s preferences, borrowing

strength from other users within the cluster. In our simulation,

given that C ≥ 3, the accuracy performance is quite stable as long

as each cluster has roughly more than 60 members, as shown in

the supplementary material.

5.2.2. Recommendation uncertainty quantification

BMCD also estimates the uncertainty associated with each

recommendation through the TPP. Such uncertainties can help

assess the reliability of the recommendations by predicting the

actual ‘‘hit rates’’ of the recommended items. For each user j and

each recommended item i, we can use the binary indicator t to

indicate whether the recommended item i is truly among user j’s

next top-k: tij = 1 if Rij ≤ cj + k, and 0 otherwise.

At the same time, we can bin the TPPs by putting them into

M intervals of equal width. In this case, we choose 0.01 as the

bin size. For all TPPs that belong to interval m, the associated

indicators t are averaged to t̄m, indicating the average ‘‘hit rate’’ of

the recommended items associated with the corresponding level

of certainty.

In Fig. 2 we plot t̄m against the binned TPPs for the next

k = 5 and k = 10 cases. Run number 10 is shown here, but

other runs demonstrate similar trends. The blue dotted x = y

line indicates perfect calibration. The red dotted line in the figure

represents the percentage of correct recommendations made by

CF for this run. From the next-5 case, we can clearly observe

excellent calibration, especially when the TPPs are in the range

73

6 Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960

Table 1
Comparison of accuracies of BMCD and CF, summary of 20 runs.

Method Min 25% Median 75% Max Mean Std dev

CF Next-5 25.02% 26.59% 27.34% 27.66% 28.65% 27.16% 0.89%

BMCD Next-5 26.69% 27.54% 27.98% 28.26% 29.20% 27.92% 0.69%

CF Next-10 40.54% 41.96% 42.70% 43.64% 44.47% 42.79% 1.05%

BMCD Next-10 43.21% 44.33% 44.64% 45.04% 46.01% 44.67% 0.72%

Fig. 1. BMCD’s recommendation accuracy vs number of clusters chosen.

Fig. 2. Percentage of correct recommendations vs. binned TPPs of one selected run. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

between 0.25 and 0.35, where the majority of the recommenda-

tions lie within. The uncertainty is not as well calibrated when the

TPPs are higher than 0.35 and below 0.25, since there are very few

recommendations made with these TPPs. We observe a similar

trend in the next-10 case, also in Fig. 2, with overall higher TPPs,

and higher accuracy.

The TPP calculations make it possible for BMCD to identify

which recommendations are more reliable than others, because

the posterior probabilities are precise and interpretable, and

hence can be further exploited. CF on the other hand, pro-

duces scores useful for ranking the items but are not easily

interpretable. One usage of BMCD’s TPPs is introducing a nearly

calibrated cut off in order to achieve a higher overall recom-

mendation accuracy. That is to say, we can decide to only make

recommendations whose posterior probabilities of being in the

next top k has surpassed a threshold and can be expected to be

at least the threshold value as hit rate. This will inevitably reduce

the number of recommendations made to the users, however,

overall accuracy can be expected to be higher.

Tables 2 and 3 show how the recommendation accuracies

improve when cut off TPPs are used, for the next-5 and next-

10 case, respectively. For the next-5 case, it can be observed

from Table 2 that all of the recommendations made with BMCD

have TPPs above 0.1. Setting a TPP cut off of 0.25 can increase

the overall recommendation accuracy by 1.7% points compared

to not having a cut off, while retaining more than 70% of the

recommendations. Likewise, all TPPs for the next-10 case are

above 0.2, but fewer than 100 recommendations have a TPP of

0.6 or higher. When the cut off TPP is set at 0.45, the number of

74

Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960 7

Fig. 3. Item popularity of selected runs. The 20 most clicked items are considered as popular.

Table 2
Cut off TPPs and the corresponding recommendation accuracies for predicting

next 5 items, summary of 20 runs. CF average accuracy: 27.2%.

Cut off Number of recommendations Recommendation accuracy

0.10 15000 ± 0 28.0 ± 0.3%

0.15 14997 ± 3.1 28.0 ± 0.3%

0.20 14136 ± 148.9 28.6 ± 0.3%

0.25 11196 ± 395.1 29.7 ± 0.3%

0.30 5425 ± 592.6 31.0 ± 0.4%

0.35 577 ± 211.1 32.4 ± 1.5%

0.40 145 ± 9.3 32.5 ± 8.4%

Table 3
Cut off TPPs and the corresponding recommendation accuracies for predicting

next 10 items, summary of 20 runs. CF average: 42.8%.

Cut off Number of recommendations Recommendation accuracy

0.20 30000 ± 0.0 44.6 ± 0.3%

0.25 29997 ± 1.7 44.6 ± 0.3%

0.30 29254 ± 144.8 45.0 ± 0.3%

0.35 26308 ± 460.5 46.4 ± 0.3%

0.40 21215 ± 694.9 48.0 ± 0.3%

0.45 14468 ± 762.1 50.0 ± 0.3%

0.50 7104 ± 800.0 51.0 ± 0.4%

0.55 1467 ± 438.4 52.0 ± 1.2%

0.60 59 ± 44.0 61.0 ± 8.2%

recommendations are reduced to roughly 50%, while increasing

the overall recommendation accuracy by 5.4% points to 50%.

To summarize, BMCD makes recommendations with similar or

slightly higher recommendation accuracies compared to CF in this

simulation study. Moreover, the posterior probabilities associated

with the recommendations are well calibrated and can be further

exploited to assess the reliability of the recommendations. Overall

recommendation accuracy can be improved by setting a cut off

posterior probability.

5.2.3. Diversity

In this section, we assess both CF and BMCD’s abilities to

fully exploit the item collection, by making novel and diverse

recommendations for each user. We will use the four metrics

described in Section 4.

Table 4 summarizes the diversity performances of BMCD and

CF. It is desirable to have high values of the coverage, correct cov-

erage and novelty metrics, and a low value of intra-list similarity.

We see that recommendations made with BMCD are more diverse

and novel compared to CF. BMCD outperforms CF especially on

Fig. 4. Comparisons of number of rare item recommendations and number of

users with at least 1 recommendations, summary of 20 runs.

the coverage metric, suggesting that BMCD has stronger ability

to discover the less popular items.

If we rank all n items according to the number of clicks re-

ceived by each item (popularity) in the training data in ascending

order, and plot the corresponding number of clicks, as shown

in Fig. 3, it can be observed that the majority of the clicks are

received by a small fraction of items. If we define the 20 most

clicked items as ‘‘popular’’, and the rest of the 30 items as less

popular, or ‘‘rare’’, we can take a closer look at how often BMCD

and CF recommend these ‘‘rare’’ items, and how many users have

received at least one such rare recommendation.

From Fig. 4, it can be seen that BMCD recommends many

more rare items, and out of N = 3000 users, more than 1000

users have received at least one rare recommendation for all runs,

outperforming CF in its ability to explore rare items.

Unsurprisingly, BMCD outperforms CF in its diversity perfor-

mance since the model construction inherently considers diver-

sity by enforcing all clicked items to be top-ranked regardless of

how rare these items are. CF on the other hand, is an accuracy-

driven method that does not consider diversity as part of its

objectives. Instead, the rare items clicked by the users might be

sacrificed in the optimization process.

75

8 Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960

Table 4
Comparison of diversity performances of BMCD and CF.

Metric Min 25% Median 75% Max Mean

Coverage
CF:0.540 CF: 0.575 CF:0.720 CF: 0.720 CF:0.760 CF:0.672

BMCD: 0.680 BMCD: 0.720 BMCD: 0.740 BMCD: 0.740 BMCD: 0.780 BMCD: 0.731

Corr covg
CF:0.520 CF: 0.560 CF:0.660 CF: 0.680 CF:0.700 CF:0.629

BMCD: 0.620 BMCD: 0.640 BMCD: 0.680 BMCD: 0.700 BMCD: 0.720 BMCD: 0.676

Intra-list similarity
CF:1.92 CF: 2.05 CF:2.11 CF: 2.16 CF:2.23 CF:2.10

BMCD: 1.70 BMCD: 1.78 BMCD:1.91 BMCD:2.06 BMCD: 2.11 BMCD: 1.91

Novelty
CF:5.05 CF: 5.11 CF:5.18 CF: 5.20 CF:5.23 CF:5.16

BMCD: 5.14 BMCD: 5.15 BMCD: 5.29 BMCD: 5.43 BMCD: 5.44 BMCD: 5.29

Table 5
Description of the two NRK training datasets.

Dataset # of items (n) # of users (N) Min clicks Median clicks Max clicks Sparsity

1 200 7872 3 8 93 5.26%

2 200 2143 3 9 83 5.98%

5.3. Case study: A clicking dataset from the Norwegian Broadcasting
Corporation (NRK)

In this section, we study a dataset containing anonymous
users’ clicks on movies, TV-series and news programs that are
available on the NRK TV website as well as the apps for mobile
phones, tablets and other streaming devices such as AppleTV. The
data was collected when no personalized recommendation was
implemented. We consider only the 200 most popular items. Here
for simplification, a whole season of TV series, or a daily news
program (which consists of more than one episode), is considered
as one single item. Each user–item click is only recorded once,
that is, multiple clicks on one item by one user are treated as one
click.

We created two relatively sparse training datasets for model
fitting, each with 3 or more clicks per user, as seen in Table 5.
They were created by finding the users with 13 (dataset 1) and
23 (dataset 2) or more clicks per user, then randomly removing
k = 10 (dataset 1) and k = 20 clicks per user. These k clicks were
hence not part of the training data, but reserved for evaluating the
ability of the fitted models to make accurate recommendations.
After fitting a model, k recommendations were made by the
model, and then these recommendations were compared to the
k clicks not part of the training data. The fraction of overlap
between the recommendations and the actual k clicks gives the
recommendation accuracy. We will also assess both methods’
diversity with the metrics introduced in Section 4.

5.3.1. MCMC set up and initialization
First, the number of clusters C needs to be determined. Alter-

native to the approach shown in Section 5.1, we used K-means
clustering on the NRK binary datasets {A1, . . . ,AN}with different
values of C , and plot the within cluster sum of square against the
value of C , see Fig. 5 in the supplement. Combining the elbow
method and a preference towards a slightly larger number of
clusters, which we showed was important in Section 5.1, C = 17
is chosen for dataset 1 and C = 12 for dataset 2.

While there are many ways of initializing the MCMC, we use
the following procedures in order to achieve faster convergence.

To initialize the augmented individual ranking vectors R̃
0

j , we
first suppose that all users belong to the same cluster, and es-
timate very roughly a consensus for all users ρ0 based on item
popularity. We obtain ρ0 by ranking the n items according to
the number of clicks each of them has received, and randomize
the ties if there are any. Next, we initialize the augmented in-

dividual ranking vectors R̃
0

j based on ρ0. First, R̃
0

j needs to be
compatible with the restriction that the clicked items are top-

ranked, i.e., R̃0
ij ≤ cj∀Ai ∈ Aj, and R̃0

ij > cj∀Ai ∈ Ac
j . Second,

Table 6
Comparison of next-k recommendation accuracies for the NRK datasets.

Method Dataset 1 (next 10) Dataset 2 (next 20)

BMCD 26.4% 35.0%

CF 29.9% 34.9%

while satisfying this restriction, we want to inherit the pairwise
comparisons represented in the group consensus ρ0. That is to
say, for each user j,

∀p, q ∈ Aj and ∀a, b ∈ Ac
j

R̃0
pj < R̃0

qj ≤ cj, if ρ0
p < ρ0

q

cj < R̃0
aj < R̃0

bj, if ρ0
a < ρ0

b .

For example, if we have a 5-item set {A, B, C, D, E}, ρ0 =
{1, 2, 3, 4, 5}, and user j has clicked on item A, C, and E, the ini-

tialization of the augmented vector R̃
0

j is therefore, {1, 4, 2, 5, 3}.
This initialization speeds up the MCMC convergence significantly.

The cluster assignment zj for j = 1, . . . ,N , is initialized
randomly. Within each cluster c , ρ0

c is initialized in a similar
manner as ρ0, however, the item popularity is calculated only
based on the clicks by the users that belong to cluster c. The
parameters {α0

c }c=1,...,C are initialized as a01 = · · · = a0C = 3, other
values can also be chosen.

We run the MCMC for 5 million iterations and 7 million
iterations, for dataset 1 and dataset 2, respectively. It takes longer
for dataset 2 to reach convergence, presumably since there are
more users that swing between different clusters. Only the last
1 million iterations are used for subsequent analyses. The MCMC
is thinned at every 100 iterations while {α1, . . . αC } is proposed
every 10 iterations. The trace plots of {α1, . . . αC } after the burn-in
period are shown in Fig. 4 in the supplement.

5.3.2. Recommendation accuracy
Table 6 shows the overall recommendation accuracy for pre-

dicting the next-k items for both datasets using BMCD and CF
respectively. It can be observed that CF in this case outperforms
BMCD in terms of accuracy for dataset 1, while for dataset 2, the
two methods’ accuracies are almost identical. The NRK dataset
is collected when no personalized recommendation is rolled out.
In this situation, all users’ clicks are quite concentrated on the
popular items. As will be discussed in more detail in Section 5.3.4,
BMCD’s tendency to recommend a more diverse set of items and
the inclusion of less popular items, compared to CF, presumably
contributes to the slightly inferior recommendation accuracy for
dataset 1.

76

Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960 9

Fig. 5. Recommendation accuracies vs. binned TPPs for BMCD.

Table 7
Comparisons of coverage and correct coverage.

Dataset Coverage Corr coverage

Dataset 1
CF:0.61 (122/200) CF: 0.545 (109/200)

BMCD: 0.865(173/200) BMCD: 0.720(144/200)

Dataset 2
CF: 0.38 (76/200) CF: 0.280 (56/200)

BMCD: 0.82 (164/200) BMCD: 0.685(137/200)

5.3.3. Uncertainty quantification of BMCD recommendations

Similar to Fig. 2, Fig. 5 shows the recommendation accuracy

plotted against the binned TPPs. A clearly increasing trend can

be observed. BMCD in this case, tends to underestimate the cer-

tainty of each recommendation made, or in other words, the TPPs

estimated are slightly lower than the actual hit rates of the rec-

ommendations as the blue line is slightly above the dotted line.

This can be explained by a slight misfit of the Mallows model. We

can exploit the uncertainty to identify reliable recommendations

as well as introducing cut off TPPs to improve overall accuracy of

BMCD.

We see from Fig. 6 that, as the cut off TPP increases, the

number of recommendations strictly decreases while the overall

recommendation accuracy improves. For dataset 1, when the

cut off posterior probability is 0.23 or above, BMCD’s overall

recommendation accuracy exceeds 30%, making it identical to CF,

while retaining 60% of the recommendations.

5.3.4. Diversity

The coverage metric is especially important for NRK. As a na-

tional broadcaster, NRK has a large collection of valuable histor-

ical contents and non-mainstream programs that may be rarely

discovered by its users; however, these programs have high qual-

ity and should be promoted.

Table 7 summarizes the comparisons of coverage and correct

coverage of BMCD and CF. Both methods cover a broader range

of items for dataset 1, as the dataset contains more users, leading

to more diverse preferences. Dataset 2 is a more difficult scenario

where the users’ preferences are more homogeneous, and it is

therefore more challenging to make diverse recommendations.

It is clear that BMCD outperforms CF in terms of coverage, and

the advantage is especially significant for dataset 2. This suggests

that, consistent with the simulation, CF tends to recommend

more popular items while BMCD has a stronger ability to explore

the rare items. In addition, BMCD does not sacrifice much accu-

racy for diversity, as it also outperforms CF in the correct coverage

metric.

Table 8
Comparison of rare items recommendations and number of users with at least

1 rare recommendation.

Dataset # rare recs # users w. ≥1 rare recs

Dataset 1
CF:4388 (5.6%) CF:929 (11.8%)

BMCD: 10071 (12.8%) BMCD: 3454 (43.9%)

Dataset 2
CF: 171 (4.0%) CF: 58 (2.7%)

BMCD:8770 (20.5%) BMCD: 1667 (77.8%)

Table 9
Comparison of intra-list similarity and novelty.

Dataset Intra-list similarity Novelty

Dataset 1
CF:11.78 CF:5.97

BMCD: 10.75 BMCD: 6.18

Dataset 2
CF:42.69 CF: 6.31

BMCD:39.10 BMCD: 6.60

Fig. 7 shows the recommendation frequency of the items being

recommended. On the x-axis, the items are ranked according to

their popularity in ascending order. For both datasets, CF’s recom-

mendations are much more concentrated on the more popular

items. BMCD in comparison, recommends much fewer popular

items compared to CF.

To give a clearer definition of ‘‘popular’’ items, Fig. 8 shows the

number of clicks received by each item in the training dataset,

with the x-axis arranged from the least clicked item to the most

clicked item. In both datasets, most of the clicks are attributed to

roughly the 40 most popular items, which we define as ‘‘popular’’

items, while the rest we defined as ‘‘rare’’ items. Based on this

definition, the number of ‘‘rare’’ items recommended by BMCD

and CF, and the number of users receiving at at least one ‘‘rare’’

recommendations are shown in Table 8. It clearly shows that

BMCD makes significantly more recommendations that are less

popular compared to CF. In particular, for dataset 1, more than

12.8% of all recommendations made with BMCD involves rare

items and more than 40% of all users receive at least 1 rare rec-

ommendation. For CF, only 5.6% of all recommendations are rare,

while 11.8% of the users receive 1 or more rare recommendations.

The contrast between CF and BMCD is even more obvious for

dataset 2, where only 4% of all recommendations made with CF

involves rare items, compared to BMCD’s 20.5%. Given that CF’s

and BMCD’s recommendation accuracies are similar in this case,

and that BMCD makes more rare recommendations, it follows

that BMCD also has a higher recommendation accuracy when

recommending popular items compared to CF.

77

10 Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960

Fig. 6. Overall recommendation accuracies and fraction of recommendations performed vs. cut off posterior probabilities, blue line: fraction of recommendations,

black line: overall recommendation accuracies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)

Fig. 7. Histogram of correct recommendations. X-axis: item labels, arranged according to ascending item popularity (measured by the number of clicks received in

the training set). Y-axis: recommendation frequency.

Fig. 8. Item popularity in the training set. X-axis: item labels, arranged according to ascending item popularity (measured by the number of clicks received in the

training set). Y-axis: item popularity.

A comparison of intra-list similarity and novelty is shown in
Table 9. Consistent with the simulation, BMCD recommends to
each user a list of more diverse items, obtaining a lower intra-list
similarity score compared to CF. At the same time, BMCD has a
stronger ability to recommend more rare and novel items to the
users.

5.4. Accuracy–diversity performances of BMCD and post-processing
methods for CF

CF is not intrinsically a diversity-driven method. However, CF’s
diversity performance can be enhanced through post-processing.
It is of interest to see if BMCD’s accuracy–diversity performance

78

Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960 11

is effective compared to CF in combination with such post-
processing methods. In this section, we choose two popular
post-processing methods to combine with CF, one proposed by
Adomavicius et al. [11] and one proposed by Ziegler et al. [8],
and compare their accuracy–diversity performances with that of
BMCD’s. We refer to the two methods as CF+A and CF+Z respec-
tively. We continue with the NRK datasets. Coverage is chosen
as the diversity metric in this section, as it is a good indicator of
both aggregated diversity of the recommender system, and level
of personalization [9].

In Fig. 9, we plot the accuracy–diversity curve for the CF+A
(blue) and CF+Z (black) methods, resulting from using a grid of
tuning parameters. We can observe a clear trade-off between
accuracy and diversity for both post-processing methods. BMCD’s
accuracy–diversity performance is represented in red and is a
single point in the plots. For dataset 1, BMCD clearly outperforms
CF+A: while fixing the accuracy level to that of BMCD, illustrated
by the vertical red dotted line, BMCD achieves a higher diversity
level, and vice versa. BMCD’s accuracy–diversity performance
is similar to the ‘‘elbow’’ of CF+Z’s accuracy–diversity curve, at
which point diversity is improved significantly without compro-
mising much accuracy. However, beyond this point, poor choices
of the tuning parameter can jeopardize CF+Z’s accuracy with-
out making much diversity improvement. BMCD achieves this
accuracy–diversity balance without a tuning parameter, while
maintaining a slight margin, as shown in the figure that the red
point is positioned slightly above the black line. For dataset 2,
the users are more similar to each other and therefore, it is a
more challenging scenario to achieve diversity. We can clearly
observe from Fig. 9(b) that BMCD outperforms both CF+A and
CF+Z methods in the combined accuracy–diversity performance.

6. Further discussions and future works

In this paper, we have introduced and applied BMCD to make
personalized recommendations based on clicking data. We have
also compared the recommendation performances of BMCD with
the popular Collaborative Filtering, in terms of accuracy and
diversity.

Through a simulation study and an offline testing of a dataset,
we have observed that BMCD and CF make recommendations
with similar level of accuracy. BMCD, in addition, produces inter-
pretable uncertainty estimation for each recommendation made.
We showed that the uncertainty can be further exploited to
improve the overall accuracy.

We have also assessed the recommendation diversity of both
methods through measures of coverage, correct coverage, intra-
list similarity and novelty. We have found that compared to CF,
BMCD has a stronger ability to recommend diverse and rare items
to the users, and considers more items for recommendations.
We have also discovered that BMCD can achieve a similar or
higher level of diversity compared to the post-processing meth-
ods, when a reasonable level of accuracy is required. BMCD how-
ever, does not require tuning, nor does it compromise its accuracy
performance for higher diversity.

There are several reasons that explain BMCD’s excellent di-
versity performance. First, BMCD, by construction, follows the
restriction that all items clicked by a user, need to be among the
user’s top-ranked items, regardless of how unusual the clicked
items are. This restriction enforces every user’s uniqueness, and
helps capture and preserve each individual user’s ‘‘peculiar’’ be-
havior. CF on the other hand, often sacrifices the ‘‘unusual’’ items
in the matrix factorization process, since the unusual items con-
tribute less to the cost function.

Second, BMCD is sensitive to the clicks in the sparse part of
the dataset. BMCD contains the consensus parameter ρ, and for

the highly sparse part of the dataset, when an item receives a few

clicks, these clicks will impact the distribution of the consensus

parameter ρ, and even more so, certain summary statistics such

as the Maximum A Posteriori. The consensus, in turn, has an im-

pact on the distribution and summary statistics of the individual

users’ latent full ranking vectors R̃ j. However, it can also be a

double-edge sword: when the sparse information turns out to

be inaccurate or unrepresentative, it can decrease the method’s

recommendation accuracy.

It is therefore not surprising to observe that recommendations

using BMCD are often more diverse, involving more rare items,

even when user behaviors are rather homogeneous. BMCD’s

strong ability to capture the peculiarity of the users and its

tendency to recommend less popular items partly explains why

it was marginally outperformed in terms of accuracy by CF in the

offline testing scenario, where the ground truth is limited by what

the users have already seen and clicked. Rare items are often not

yet discovered by the users, and it is almost impossible to verify

the success of such recommendations in an offline testing. We are

currently planning online testing of BMCD.

One of the biggest drawbacks of BMCD, which is based on

MCMC, is scaling. BMCD does not scale well due to the huge

amount of parameters to be estimated. The computing time re-

quired is dependent on the number of users N , the number

of clusters C , as well as the number of iterations required to

reach convergence. It takes 53 h to compute for 1 million iter-

ations for the NRK dataset 1, and 14 h for dataset 2 using one

core of the Intel Xeon e-8890 processor, running at 2.5 GHz.

The iterative nature of MCMC also makes efficient paralleliza-

tion more challenging since the computational overhead is very

heavy. The Spark implementation of CF on the other hand, is

very efficient. However, it can also be computationally costly if

a thorough cross-validation is to be performed. For BMCD, in

practice, it often happens that the cluster assignments for each

user, z1, . . . , zN converge quite quickly. In the situation that most

users do not switch cluster memberships often, after the cluster

assignments have converged, we can split the dataset into C

different segments, and compute BMCD algorithm without the

clustering steps independently and in parallel. The reduction in

the number of users, and the number of parameters needed to

be estimated, can reduce computing time to at least 1/C of its

original required computing time if the C clusters are similar in

size. Another way to speed up the computation is by choosing

smart starting points for the MCMC such that convergence can

be reached in fewer iterations. We suggest, for example, that

instead of randomly initializing the cluster assignment for each

user, z1, . . . , zN can be initialized based on a K-means clustering.

We are currently working on variational Monte Carlo versions of

our algorithm, which we expect to reduce computational time

very significantly.

Recently, Mao et al. [26] proposed a new approach to mul-

tiobjective recommendations using hypergraph rankings, aiming

at recommending items that optimize a combination of objec-

tive functions, for example, price and quality. Such multiobjec-

tive methods could be expanded to a combination of accuracy

and diversity. Exploiting social network relations between users,

as done in [27], might also be an interesting avenue for fur-

ther research, for example by giving neighboring users diverse

recommendations.

In conclusion, BMCD can be considered as a valid alternative

to traditional state-of-the-art collaborative filtering and its post-

process enhancements when diversity in the recommendation is

an important objective.

79

12 Q. Liu, A.H. Reiner, A. Frigessi et al. / Knowledge-Based Systems 186 (2019) 104960

Fig. 9. Comparison of accuracy–diversity performances of BMCD and post-processing methods combined with CF.

Acknowledgments

We give special thanks to Linn Cecilie Solbergersen and the
Norwegian Broadcasting Corporation for generously providing us
research data and kind collaborations. We also thank Øystein
Sørensen, Elja Arjas and Valeria Vitelli for fruitful discussions.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.knosys.2019.104960.

References

[1] D.G. Goldstein, D.C. Goldstein, Profiting from the long tail, Harv. Bus. Rev.

84 (6) (2006) 24–28.

[2] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J.R. Wakeling, Y.-C. Zhang, Solving

the apparent diversity-accuracy dilemma of recommender systems, Proc.

Natl. Acad. Sci. 107 (10) (2010) 4511–4515.

[3] J.-G. Liu, K. Shi, Q. Guo, Solving the accuracy–diversity dilemma via

directed random walks, Phys. Rev. E 85 (1) (2012) 016118.

[4] L. Hou, K. Liu, J. Liu, R. Zhang, Solving the stability–accuracy–diversity

dilemma of recommender systems, Physica A 468 (2017) 415–424.

[5] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feed-

back datasets, in: Data Mining, 2008. ICDM’08. Eighth IEEE International

Conference on, IEEE, 2008, pp. 263–272.

[6] Z. Huang, H. Chen, D. Zeng, Applying associative retrieval techniques to

alleviate the sparsity problem in collaborative filtering, ACM Trans. Inf.

Syst. 22 (1) (2004) 116–142.

[7] C.A. Gomez-Uribe, N. Hunt, The netflix recommender system: Algorithms,

business value, and innovation, ACM Trans. Manag. Inf. Syst. 6 (4) (2016)

13.

[8] C.-N. Ziegler, S.M. McNee, J.A. Konstan, G. Lausen, Improving recommen-

dation lists through topic diversification, in: Proceedings of the 14th

International Conference on World Wide Web, ACM, 2005, pp. 22–32.

[9] G. Adomavicius, Y. Kwon, Improving aggregate recommendation diversity

using ranking-based techniques, IEEE Trans. Knowl. Data Eng. 24 (5) (2012)

896–911.

[10] V. Vitelli, Ø. Sørensen, M. Crispino, A. Frigessi, E. Arjas, Probabilistic

preference learning with the Mallows rank model, J. Mach. Learn. Res.

18 (158) (2018) 1–49.

[11] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions, IEEE

Trans. Knowl. Data Eng. (6) (2005) 734–749.

[12] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering

recommendation algorithms, in: Proceedings of the 10th International

Conference on World Wide Web, ACM, 2001, pp. 285–295.

[13] Y. Koren, Factorization meets the neighborhood: a multifaceted collabora-

tive filtering model, in: Proceedings of the 14th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ACM, 2008, pp.

426–434.

[14] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for

recommender systems, Computer (8) (2009) 30–37.

[15] Y. Koren, R. Bell, Advances in collaborative filtering, in: Recommender

Systems Handbook, Springer, 2015, pp. 77–118.

[16] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,

D. Tsai, M. Amde, S. Owen, et al., Mllib: Machine learning in apache spark,

J. Mach. Learn. Res. 17 (1) (2016) 1235–1241.

[17] M.Ö. Karakaya, T. Aytekin, Effective methods for increasing aggregate

diversity in recommender systems, Knowl. Inf. Syst. 56 (2) (2018) 355–372.

[18] A. Antikacioglu, R. Ravi, Post processing recommender systems for diver-

sity, in: Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2017, pp. 707–716.

[19] Q. Liu, M. Crispino, I. Scheel, V. Vitelli, A. Frigessi, Model-based learning

from preference data, Annu. Rev. Stat. Appl. (6) (2019).

[20] S. Mukherjee, et al., Estimation in exponential families on permutations,

Ann. Statist. 44 (2) (2016) 853–875.

[21] T. Joachims, Optimizing search engines using clickthrough data, in:

Proceedings of the Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2002, pp. 133–142.

[22] S.M. McNee, J. Riedl, J.A. Konstan, Being accurate is not enough: how

accuracy metrics have hurt recommender systems, in: CHI’06 Extended

Abstracts on Human Factors in Computing Systems, ACM, 2006, pp.

1097–1101.

[23] G. Adomavicius, Y. Kwon, Overcoming accuracy–diversity tradeoff in rec-

ommender systems: A variance-based approach, in: Proceedings of WITS,

Vol. 8, Citeseer, 2008.

[24] M. Ge, C. Delgado-Battenfeld, D. Jannach, Beyond accuracy: evaluating

recommender systems by coverage and serendipity, in: Proceedings of

the Fourth ACM Conference on Recommender Systems, ACM, 2010, pp.

257–260.

[25] Y.C. Zhang, D.Ó. Séaghdha, D. Quercia, T. Jambor, Auralist: introducing

serendipity into music recommendation, in: Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining, ACM, 2012, pp.

13–22.

[26] M. Mao, J. Lu, J. Han, G. Zhang, Multiobjective e-commerce recom-

mendations based on hypergraph ranking, Inform. Sci. 471 (2019)

269–287.

[27] M. Mao, J. Lu, G. Zhang, J. Zhang, Multirelational social recommendations

via multigraph ranking, IEEE Trans. Cybern. 47 (12) (2016) 4049–4061.

80

Paper IV

BayesMallows: an R Package for
the Bayesian Mallows Model

Øystein Sørensen, Marta Crispino, Qinghua Liu, Valeria
Vitelli
DOI: https://doi.org/10.32614/RJ-2020-026

IV

129

https://doi.org/https://doi.org/10.32614/RJ-2020-026

CONTRIBUTED RESEARCH ARTICLE 1

BayesMallows: An R Package for the
Bayesian Mallows Model
by Øystein Sørensen, Marta Crispino, Qinghua Liu, and Valeria Vitelli

Abstract BayesMallows is an R package for analyzing preference data in the form of rankings with
the Mallows rank model, and its finite mixture extension, in a Bayesian framework. The model is
grounded on the idea that the probability density of an observed ranking decreases exponentially with
the distance to the location parameter. It is the first Bayesian implementation that allows wide choices
of distances, and it works well with a large amount of items to be ranked. BayesMallows handles
non-standard data: partial rankings and pairwise comparisons, even in cases including non-transitive
preference patterns. The Bayesian paradigm allows coherent quantification of posterior uncertainties
of estimates of any quantity of interest. These posteriors are fully available to the user, and the package
comes with convienient tools for summarizing and visualizing the posterior distributions.

Introduction

Preference data are usually collected when individuals are asked to rank a set of items according to a
certain preference criterion. The booming of internet-related activities and applications in recent years
has led to a rapid increase of the amount of data that have ranks as their natural scale, however often
in the form of partial or indirect rankings (pairwise preferences, ratings, clicks). The amount of readily
available software handling preference data has consequently increased consistently in the last decade
or so, but not many packages are flexible enough to handle all types of data mentioned above. The
typical tasks when analyzing preference data are rank aggregation, classification or clustering, and
prediction, where the latter task refers to the estimation of the individual rankings of the assessors
when completely or partially missing. These tasks can be addressed either via model-based inference
or via heuristic machine learning algorithms, with or without uncertainty quantification. However,
very few methods allow handling diverse data types, combining several inferential tasks with proper
propagation of the uncertainties, while also providing individualized predictions. Our proposal
goes exactly in this direction, thus making the scopes of BayesMallows broad when it comes to data
handling and individual-level inference.

The R package BayesMallows is the first software conceived to answer the needs mentioned
above in a unified framework: it implements full Bayesian inference for ranking data, and performs
all of the tasks above in the framework of the Bayesian Mallows model (BMM) (Mallows, 1957; Vitelli
et al., 2018). More specifically, BayesMallows allows for data in the forms of complete rankings,
partial rankings, as well as pairwise comparisons, including the case where some comparisons are
inconsistent. In these situations, it provides all Bayesian inferential tools for rank modeling with
the BMM: it performs rank aggregation (estimation of a consensus ranking of the items), it can
cluster together the assessors providing similar preferences (estimating both cluster specific model
parameters, and individual cluster assignments, with uncertainty), it performs data augmentation for
estimating the latent assessor-specific full ranking of the items in all missing data situations (partial
rankings, pairwise preferences). The latter in particular, i.e., the possibility of predicting individual
preferences for unranked items, enables the model to be used as a probabilistic recommender system.
BayesMallows also enlarges the pool of distances that can be used in the Mallows model, and it
supports the rank distances most used in the literature: Spearman’s footrule (henceforth footrule),
Spearman’s rank correlation (henceforth Spearman), Cayley, Hamming, Kendall, and Ulam distances
(we refer to Diaconis, 1988; Marden, 1995, for details on these). Finally, BayesMallows implements the
Iterative Proportional Fitting Procedure (IPFP) algorithm for computing the partition function for the
Mallows model (MM) (Mukherjee, 2016) and the importance sampling algorithm described in Vitelli
et al. (2018). In addition to being used in the MM, these functions may be of interest in their own right.

Comparing with other available inferential software, we notice that not many packages allow for
such flexibility, very few in combination with full Bayesian inference, and none when using the MM as
outlined in Section 4 below. Often machine learning approaches focus on either rank aggregation (i.e.,
consensus estimation), or individual rank prediction, while BayesMallows handles both. Since the
BMM is fully Bayesian, all posterior quantities of interest are automatically available from BayesMal-
lows for the first time for the MM. In addition, the package also has tools for visualizing posterior
distributions, and hence, posterior quantities as well as their associated uncertainties. Uncertainty
quantification is often critical in real applications: for recommender systems, the model should not
spam the users with very uncertain recommendations; when performing subtype identification for
cancer patients, a very uncertain cluster assignment might have serious consequences for the clinical
practice, for example in treatment choice. The package also works well with a fairly large number of

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

131

CONTRIBUTED RESEARCH ARTICLE 2

items, thanks to computational approximations and efficient programming. In conclusion, BayesMal-
lows provides the first fully probabilistic inferential tool for the MM with many different distances. It
is flexible in the types of data it handles, and computationally efficient. We therefore think that this
package will gain popularity, and prove its usefulness in many practical situations, many of which we
probably cannot foresee now.

The paper is organized as follows. The BMM for ranking data is briefly reviewed in Section 2,
as well as its model extensions to different data types and to mixtures. Section 3 includes details on
the implementation of the inferential procedure. For a thorough discussion of both the model and its
implementation we refer interested readers to Vitelli et al. (2018). An overview of existing R packages
implementing the Mallows model (MM) is given in Section 4. The use of the BayesMallows package
is presented, in the form of three case studies, in Sections 5, 6, and 7. Section 8 concludes the paper,
also discussing model extensions that will come with new releases of the package.

Background: the Bayesian Mallows model for rankings

In this section we give the background for understanding the functions in the BayesMallows package.
More details can be found in Vitelli et al. (2018) and Liu et al. (2019). The section is organized as
follows: we first clarify the notations that we will use throughout the paper (Section 2.1). We then
briefly describe the BMM for complete ranking data (Section 2.2), also focusing on the relevance of the
choice of distance (Section 2.3). The last two sections focus on model extensions: partial and pairwise
data (Section 2.4), non-transitive pairwise comparisons (Section 2.5), and mixtures (Section 2.6).

Notation

Let us denote with A = {A1, ..., An} the finite set of labeled items to be ranked, and with Pn the space
of n-dimensional permutations. A complete ranking of n items is then a mapping R : A → Pn that
attributes a rank Ri ∈ {1, ..., n} to each item, according to some criterion. We here denote a generic
complete ranking by R = (R1, ..., Rn), where Ri is the rank assigned to item Ai. Given a pair of
items {Ai, Ak}, we denote a pairwise preference between them as (Ai ≺ Ak), meaning that item Ai is
preferred to item Ak. Note the intimate relation that exists between a ranking and pairwise preferences.
Given a full ranking R ∈ Pn, it is immediate to evince all the possible n (n− 1) /2 pairwise preferences
between the items taken in pairs, since the item in the pair having the lower rank is the preferred one:

(At1 ≺ At2) ⇐⇒ Rt1 < Rt2 , t1, t2 = 1, ..., n, t1 6= t2.

Conversely, obtaining a full ranking from a set of pairwise preferences is not straightforward. Pairwise
preference data are typically incomplete, meaning that not all pairwise preferences necessary to
determine each individual ranking are present. They can contain non-transitive patterns, that is, one
or more pairwise preferences contradict what is implied by other pairwise preferences. In this package
we can handle partial and possibly non-transitive pairwise preferences.

The BMM for Complete Rankings

The MM for ranking data (Mallows, 1957) specifies the probability density for a ranking r ∈ Pn as
follows

P (r|α, ρ) =
1

Zn (α)
exp

[
− α

n
d (r, ρ)

]
1Pn (r) (1)

where ρ ∈ Pn is the location parameter representing the consensus ranking, α ≥ 0 is the scale
parameter (precision), Zn (α) is the normalizing function (or partition function), d (·, ·) is a right-
invariant distance among rankings (Diaconis, 1988), and 1Pn (r) is an indicator function for the set Pn
which equals one when r ∈ Pn and zero otherwise.

In the complete data case, N assessors have provided complete rankings of the n items in A
according to some criterion, yielding the permutation Rj =

(
R1j, . . . , Rnj

)
for assessor j, j = 1, . . . , N.

The likelihood of the N observed rankings R1, . . . , RN , assumed conditionally independent given α
and ρ, is

P (R1, . . . , RN |α, ρ) =
1

Zn (α)
N exp

− α

n

N

∑
j=1

d
(

Rj, ρ
)

N

∏
j=1

1Pn

(
Rj

)
. (2)

According to the BMM introduced in Vitelli et al. (2018), prior distributions have to be elicited on

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

132

CONTRIBUTED RESEARCH ARTICLE 3

every parameter of interest. A truncated exponential prior distribution was specified for α

π (α|λ) =
λ exp (−λα) 1[0,αmax] (α)

1− exp (−λαmax)
, (3)

where λ is a rate parameter, small enough to ensure good prior dispersion, and αmax is a cutoff, large
enough to cover reasonable α values. A uniform prior π (ρ) on Pn was assumed for ρ. It follows that
the posterior distribution for α and ρ is

P (α, ρ|R1, . . . , RN) ∝
1Pn (ρ)

Zn (α)
N exp

− α

n

N

∑
j=1

d
(

Rj, ρ
)
− λα

 1[0,αmax] (α) . (4)

Inference on the model parameters is based on a Metropolis-Hastings (M-H) Markov Chain Monte
Carlo (MCMC) algorithm, described in Vitelli et al. (2018). Some details relevant for a correct use of
this package are also given in Section 3.1.

Distance measures and partition function

The partition function Zn (α) in (1), (2) and (4) does not depend on the latent consensus ranking ρ
when the distance d (·, ·) is right-invariant, meaning that it is unaffected by a relabelling of the items
(Diaconis, 1988). Right-invariant distances play an important role in the MM, and BayesMallows
only handles right-invariant distances. The choice of distance affects the model fit to the data and
the results of the analysis, and is crucial also because of its role in the partition function computation.
Some right-invariant distances allow for analytical computation of the partition function, and for this
reason they have become quite popular. In particular, the MM with Kendall (Meilǎ and Chen, 2010; Lu
and Boutilier, 2014), Hamming (Irurozki et al., 2014) and Cayley (Irurozki et al., 2016b) distances have
a closed form of Zn (α) due to Fligner and Verducci (1986). There are however important and natural
right-invariant distances for which the computation of the partition function is NP-hard, in particular
the footrule (l1) and the Spearman (l2) distances. For precise definitions of all distances involved in the
MM we refer to Marden (1995). BayesMallows handles the footrule, Spearman, Cayley, Hamming,
Kendall, and Ulam distances.

Partial rankings and transitive pairwise comparisons

When complete rankings of all items are not readily available, the BMM can still be used by applying
data augmentation techniques. Partial rankings can occur because ranks are missing at random,
because the assessors have only ranked their top-k items, or because they have been presented with
a subset of items. In more complex situations, data do not include ranks at all, but the assessors
have only compared pairs of items and given a preference between the two. The Bayesian data
augmentation scheme can still be used to handle such pairwise comparison data, thus providing a
solution that is fully integrated into the Bayesian inferential framework. The following paragraphs
provide a summary of Sections 4.1 and 4.2 of Vitelli et al. (2018), which we refer to for details.

Let us start by considering the case of top-k rankings. Suppose that each assessor j has chosen a
set of preferred items Aj ⊆ A, which were given ranks from 1 to nj = |Aj|. Now Rij ∈ {1, . . . , nj}
if Ai ∈ Aj, while for Ai ∈ Ac

j , Rij is unknown, except for the constraint Rij > nj, j = 1, . . . , N. The

augmented data vectors R̃1, . . . , R̃N are introduced in the model to include the missing ranks, which
are estimated as latent parameters. Let Sj = {R̃j ∈ Pn : R̃ij = Rij if Ai ∈ Aj}, j = 1, . . . , N be the set
of possible augmented random vectors, including the ranks of the observed top-nj items together with
the unobserved ranks, which are assigned a uniform prior on the permutations of {nj + 1, . . . , n}. The
goal is to sample from the posterior distribution

P (α, ρ|R1, . . . , RN) = ∑
R̃1∈S1

· · · ∑
R̃N∈SN

P
(
α, ρ, R̃1, . . . , R̃N |R1, . . . , RN

)
. (5)

The augmentation scheme amounts to alternating between sampling α and ρ given the current values
of the augmented ranks using the posterior given in (4), and sampling the augmented ranks given
the current values of α and ρ. For the latter task, once α, ρ and the observed ranks R1, . . . , RN are
fixed, one can see that R̃1, . . . , R̃N are conditionally independent, and that each R̃j only depends
on the corresponding Rj. As a consequence, the update of new augmented vectors is performed
independently, for each j = 1, . . . , N.

The above procedure can also handle more general situations where missing rankings are not
necessarily the bottom ones, and where each assessor is asked to provide the mutual ranking of some

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

133

CONTRIBUTED RESEARCH ARTICLE 4

possibly random subset Aj ⊆ A consisting of nj ≤ n items. Note that the only difference from the
previous formulation is that each latent rank vector R̃j takes values in the set

Sj =
{

R̃j ∈ Pn :
(

Ri1 j < Ri2 j

)
∧
(

Ai1 , Ai2 ∈ Aj

)
⇒ R̃i1 j < R̃i2 j

}
.

Also in this case the prior for R̃j is assumed uniform on Sj.

In the case of pairwise comparison data, let us call Bj the set of all pairwise preferences stated by
assessor j, and let Aj be the set of items appearing at least once in Bj. Note that the items in Aj are
not necessarily fixed to a given rank but may only be given some partial ordering. For the time being,
we assume that the observed pairwise orderings in Bj are transitive, i.e., mutually compatible, and

define by tc
(
Bj

)
the transitive closure of Bj, which contains all pairwise orderings of the elements in

Aj induced by Bj. The model formulation remains the same as in the case of partial rankings, with
the prior for the augmented data vectors R̃1, . . . , R̃N being uniform on the set Sj of rankings that are
compatible with the observed data.

Non-transitive pairwise comparisons

It can happen in real applications that individual pairwise comparison data are non-transitive, that
is, they may contain a pattern of the form x ≺ y , y ≺ z but z ≺ x. This is typically the case of data
collected from internet user activities, when the pool of items is very large: non-transitive patterns
can arise for instance due to assessors’ inattentiveness, uncertainty in their preferences, and actual
confusion, even when one specific criterion for ranking is used. Another frequent situation is when
the number of items is not very large, but the items are perceived as very similar by the assessors. This
setting is discussed in Crispino et al. (2019), where the model for transitive pairwise comparisons of
Section 2.4 is generalized to handle situations where non-transitivities in the data occur. Note that
the kind of non-transitivity that is considered in Crispino et al. (2019) considers only the individual
level preferences. A different type of non-transitivity, which we do not consider here, arises when
aggregating preferences across assessors, as under Condorcet (Marquis of Condorcet, 1785) or Borda
(de Borda, 1781) voting rules.

The key ingredient of this generalization consists of adding one layer of latent variables to the
model hierarchy, accounting for the fact that assessors can make mistakes. The main assumption
is that the assessor makes pairwise comparisons based on her latent full rankings R̃. A mistake is
defined as an inconsistency between one of the assessor’s pairwise comparisons and R̃. Suppose each
assessor j = 1, . . . , N has assessed Mj pairwise comparisons, collected in the set Bj, and assume the
existence of latent ranking vectors R̃j, j = 1, . . . , N. Differently from Section 2.4, since Bj is allowed
to contain non-transitive pairwise preferences, the transitive closure of Bj is not defined, and the
posterior density (5) cannot be evaluated. In this case, the posterior takes the form,

P (α, ρ|B1, ...,BN) = ∑
R̃1∈Pn

· · · ∑
R̃N∈Pn

P
(
α, ρ, R̃1, ..., R̃N |B1, ...,BN

)
=

= ∑
R̃1∈Pn

· · · ∑
R̃N∈Pn

P(α, ρ|R̃1, ..., R̃N)P
(

R̃1, ..., R̃N |B1, ...,BN
) (6)

where the term P
(

R̃1, ..., R̃N |B1, ...,BN
)

models the presence of mistakes in the data, while in the case
of transitive pair comparisons it was implicitly assumed equal to 1 if each augmented ranking R̃j was
compatible with the partial information contained in Bj, and 0 otherwise.

Two models for (6) are considered in Crispino et al. (2019): the Bernoulli model, which accounts
for random mistakes, and the Logistic model, which lets the probability of making a mistake depend
on the similarity of the items being compared. The Bernoulli model states that:

P
(

R̃1, ..., R̃N |θ,B1, ...,BN
)

∝ θM (1− θ)∑j Mj−M , θ ∈ [0, 0.5) (7)

where M counts the number of times the observed preferences contradict what is implied by the
ranking R̃j, Mj is the number of pairwise comparisons reported by assessor j, and the parameter θ is
the probability of making a mistake in a single pairwise preference. θ is a priori assigned a truncated
Beta distribution on the interval [0, 0.5) with given hyper-parameters κ1 and κ2, conjugate to the
Bernoulli model (7). The Logistic model is a generalization of (7) where, instead of assigning a constant
value θ to the probability of making a mistake, it depends on the distance between the ranks of the
two items under comparison. In Crispino et al. (2019) the Logistic model gave results very similar
to the Bernoulli model, and currently only the Bernoulli model is available in BayesMallows. The
sampling scheme is similar to the one used for the case of transitive pairwise preferences, apart from
an additional step for updating θ, and the augmentation scheme for R̃j, which is slightly different. We

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

134

CONTRIBUTED RESEARCH ARTICLE 5

refer to Crispino et al. (2019) for details.

Clustering

The assumption, implicit in the discussion so far, that there exists a unique consensus ranking shared
by all assessors is unrealistic in most real applications: the BMM thus handles the case where the
rankings provided by all assessors can be modeled as a finite mixture of MMs. In the following brief
discussion we assume that the data consist of complete rankings, but BayesMallows can fit a mixture
based on any kinds of preference data described so far. See Section 4.3 of Vitelli et al. (2018) for details.

Let z1, . . . , zN ∈ {1, . . . , C} assign each assessor to one of C clusters, and let the rankings within
each cluster c ∈ {1, . . . , C} be described by an MM with parameters αc and ρc. The likelihood of the
observed rankings R1, . . . , RN is given by

P
(

R1, . . . , RN

∣∣∣ {ρc, αc}c=1,...,C ,
{

zj

}
j=1,...,N

)
=

N

∏
j=1

1Pn

(
Rj

)

Zn

(
αzj

) exp
[
−

αzj

n
d
(

Rj, ρzj

)]
,

where conditional independence is assumed across the clusters. We also assume independent truncated
exponential priors for the scale parameters and independent uniform priors for the consensus rankings.
The cluster labels z1, . . . , zN are a priori assumed conditionally independent given the clusters mixing
parameters τ1, ..., τC, and are assigned a uniform multinomial. Finally τ1, . . . , τC (with τc ≥ 0, c =

1, . . . , C and ∑C
c=1 τc = 1) are assigned the standard symmetric Dirichlet prior of parameter Ψ, thus

implying a conjugate scheme. The posterior density is then given by

P
(
{ρc, αc, τc}C

c=1 ,
{

zj

}N

j=1

∣∣∣R1, . . . , RN

)
∝

[
C

∏
c=1

e−λαc τΨ−1
c

]

N

∏
j=1

τzj e
−

αzj
n d
(

Rj ,ρzj

)

Zn

(
αzj

)

 . (8)

Computational considerations

In this section we briefly give some additional details regarding the implementation of the models
described in Section 2. The BMM implementation is thoroughly described in Vitelli et al. (2018).

Details on the MCMC procedures

In order to obtain samples from the posterior density of equation (4), BayesMallows implements
an MCMC scheme iterating between (i) updating ρ and (ii) updating α (Algorithm 1 of Vitelli et al.,
2018). The leap-and-shift proposal distribution, which is basically a random local perturbation of
width L of a given ranking, is used for updating ρ in step (i). The L parameter of the leap-and-shift
proposal controls how far the proposed ranking is from the current one, and it is therefore linked to
the acceptance rate. The recommendation given in Vitelli et al. (2018) is to set it to L = n/5, which
is also the default value in BayesMallows, but the user is allowed to choose a different value. For
updating α in step (ii), a log-normal density is used as proposal, and its variance σ2

α can be tuned to
obtain a desired acceptance rate.

As mentioned in Section 2.4, the MCMC procedure for sampling from the posterior densities
corresponding to the partial data cases (Algorithm 3 of Vitelli et al., 2018) has an additional M-H step

to account for the update of the augmented data rankings
{

R̃j

}N

j=1
. In the case of partial rankings,

for updating the augmented data R̃j, j = 1, ..., N we use a uniform proposal on the set of rankings
compatible with the partial data, Sj. In the case of pairwise preferences, due to the increased sparsity
in the data, we instead implemented a modified parameter-free leap-and-shift proposal distribution,
which proposes a new augmented ranking by locally permuting the ranks in R̃j within the constraints
given by Bj (Vitelli et al., 2018, Section 4.2). The generalization to non-transitive pairwise comparisons,
outlined in Section 4 of Crispino et al. (2019), requires further considerations. First, in the M-H step
for updating the augmented data rankings, the modified parameter-free leap-and-shift proposal has
to be replaced by a Swap proposal, whose tuning parameter L? is the maximum allowed distance
between the ranks of the swapped items. Second, the Bernoulli model for mistakes makes it necessary
to add a a Gibbs step for the update of θ. The MCMC algorithm for sampling from the mixture model
posterior (8) (Algorithm 2 of Vitelli et al., 2018) alternates between updating {ρc, αc}C

c=1 in an M-H

step, and
{

τc, zj

}C,N

c=1,j=1
in a Gibbs sampling step, in addition to the necessary M-H steps for data

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

135

CONTRIBUTED RESEARCH ARTICLE 6

50 items 200 items 400 items

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

1250

1500

1750

2000

400

500

600

700

800

25

50

75

100

125

150

α

lo
g(

Z
) Exact

IPFP

IS

Figure 1: Estimates of the log partition function for the BMM with footrule distance computed using
exact calculation (only in the case of 50 items), asymptotic estimation with the IPFP algorithm, and
Monte Carlo simulation with the IS algorithm. Exact and IS estimates are perfectly overlapping in the
case of 50 items. The bias of the IPFP estimates decreases when the number of items increases.

augmentation or estimation of error models, as outlined above.

Partition Function

When the distance in the BMM is footrule or Spearman, the partition function Zn (·) does not have a
closed form. In these situations BayesMallows allows for three different choices, which the user may
employ depending on the value of n: (a) exact calculation, (b) Importance Sampling (IS), and (c) the
asymptotic approximation due to Mukherjee (2016).

The package contains integer sequences for exact calculation of the partition function with footrule
distance for up to n = 50 items, and with the Spearman distance for up to n = 14 items (see Vitelli
et al., 2018, Section 2.1). These sequences are downloaded from the On-Line Encyclopedia of Integer
Sequences (Sloane, 2017).

The IS procedure can be used to compute an off-line approximation Ẑn (α) of Zn (α) for the specific
value of n which is needed in the application at hand. The IS estimate Ẑn (α) is computed on a grid of
α values provided by the user, and then a smooth estimate obtained via a polynomial fit is returned to
the user, who can also select the degree of the polynomial function. Finally, the user should set the
number K of IS iterations, and we refer to Vitelli et al. (2018) for guidelines on how to select a large
enough value for K. The procedure might be time-consuming, depending on K, n, and on how the
grid for α is specified. In our experience, values of n larger than approximately 100 might require K to
be as large as 108 in order for the IS to provide a good estimate, and hence a long computing time.

The IPFP algorithm (Mukherjee, 2016, Theorem 1.8) yields a numeric evaluation of Zlim (·), the
asymptotic approximation to Zn(·). In this case the user needs to specify two parameters: the number
of iterations m to use in the IPFP, and the number of grid points K of the grid approximating the
continuous domain where the limit is computed. Values of m and K have been suggested by Mukherjee
(2016), and we refer to the Supplementary Material of Vitelli et al. (2018) for more details.

A simulation experiment was conducted comparing the methods for estimating log (Z (α)) with
footrule distance for α = 0.1, 0.2, . . . , 20. Let log (Z (α))K denote the IS estimate obtained with K
iterations, and define the absolute relative difference between two IS estimates obtained with K2 and
K1 iterations as

ρ(K2, K1) = maxα

{∣∣log(Z(α))K2 − log(Z(α))K1
∣∣

∣∣log(Z(α))K1
∣∣

}
.

The IS algorithm was run with 105, 106, and 107 iterations, and we obtained ρ
(
106, 105) < 0.3% and

ρ
(
107, 106) < 0.15%, suggesting that using K = 107 yields low Monte Carlo variation over this range

of α. The IPFP algorithm was used to estimate log (Zlim (α)), with K = 103 and m = 103. The results
are summarized in Figure 1, in which also exact computation is included in the case of 50 items. With
50 items, the IS estimate perfectly overlaps the exact estimate, while the asymptotic estimate has a bias
that increases with increasing α. As expected, the bias of the asymptotic estimate decreases when the
number of items increases, as this brings it closer to the asymptotic limit.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

136

CONTRIBUTED RESEARCH ARTICLE 7

Sampling from the Bayesian Mallows Model

To obtain random samples from the MM with Cayley, Hamming, Kendall, or Ulam distance and fixed
α and ρ, we suggest using the PerMallows (Irurozki et al., 2016a) package, which is optimized for this
task. We instead provide a procedure for sampling from the MM with footrule and Spearman. The
procedure to generate a random sample of size N from the MM is straightforward, and described in
Appendix C of Vitelli et al. (2018). Basically we run a Metropolis-Hastings algorithm with fixed ρ and
α and accept/reject the sample based on its acceptance probability. We then take N rankings with a
large enough interval between each of them to achieve independence.

Packages implementing the Mallows model

This section gives an overview of existing packages for fitting the MM.

• PerMallows is the package that comes closest in functionality to BayesMallows. It contains
functions for learning and sampling from the frequentist versions of the MM and generalized
Mallows model (GMM) (Fligner and Verducci, 1986). Compared to BayesMallows, it lacks
support for footrule or Spearman distance, it is not Bayesian, and does not compute uncertainty
ranges for the estimated parameters. In addition PerMallows handles only complete rankings,
and does not provide functionality for computation of mixture models. According to Irurozki
et al. (2016a, Table 1), computing the maximum likelihood estimates (MLE) of α and ρ using
the function lmm is possible when n < 80 for Kendall, n < 250 for Cayley, n < 90 for Hamming
and n < 100 for Ulam. Our experiments suggest that these estimates are conservative, and that
even larger numbers of items are fit rapidly. Hence, PerMallows seems to be a good choice
for modeling with complete data without clusters, when the supported distance measures
are appropriate and uncertainty estimates are not sought. PerMallows also has very efficient
functions for sampling from the MM with Cayley, Hamming, Kendall, and Ulam distances.

• pmr (Lee and Yu, 2013) provides summary statistics, visualization, and model fitting tools for
complete ranking data in the MM, as well as other models. The function dbm returns the MLE
of α together with its variance. The MLE of ρ, however, is not returned, but printed to the
console, and no uncertainty estimates are given. Internally, dbm generates a matrix of size n!× n
containing all possible permutations of the n items. As a result, it quickly runs into memory
issues. In our tests, pmr was not able to handle a ranking dataset with n = 10 items.

• rankdist (Qian, 2018) implements distance-based probability models for ranking data as de-
scribed in Alvo and Yu (2014), returning MLEs for α and ρ, but no uncertainty estimates. The
package handles a large number of distances and supports mixture models, but in our experi-
ments a warning was issued when using mixtures with all distances except Kendall. rankdist
also implements the GMM (Fligner and Verducci, 1986). However, for Cayley, footrule, Ham-
ming, and Spearman distances, it generates an n!× n matrix internally, causing our R session
to crash with n ≥ 10 items, hence limiting its applicability. For Kendall, on the other hand,
rankdist appears to work fine both with a large number of items, and with mixtures.

BayesMallows provides many new functionalities not implemented in these packages, as will be
illustrated in the use cases of the following three sections.

Analysis of complete rankings with BayesMallows

We illustrate the case of complete rankings with the potato datasets described in Liu et al. (2019,
Section 4). In short, a bag of 20 potatoes was bought, and 12 assessors were asked to rank the potatoes
by weight, first by visual inspection, and next by holding the potatoes in hand. These datasets are
available in BayesMallows as matrices with names potato_weighing and potato_visual, respectively.
The true ranking of the potatoes’ weights is available in the vector potato_true_ranking. In general,
compute_mallows expects ranking datasets to have one row for each assessor and one column for each
item. Each row has to be a proper permutation, possibly with missing values. We are interested in the
posterior distribution of both the level of agreement between assessors, as described by α, and in the
latent ranking of the potatoes, as described by ρ. We refer to the attached replication script for random
number seeds for exact reproducibility.

First, we do a test run to check convergence of the MCMC algorithm, and then get trace plots with
assess_convergence.

bmm_test <- compute_mallows(potato_visual)
assess_convergence(bmm_test)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

137

CONTRIBUTED RESEARCH ARTICLE 8

0

5

10

0 500 1000 1500 2000
Iteration

α

(a) Trace of α.

5

10

15

20

0 500 1000 1500 2000
Iteration

ρ

P1

P2

P3

P4

P5

(b) Trace of ρ.

Figure 2: Trace plots of α and ρ for the MCMC algorithm with the potato_visual dataset. The plots
indicating good mixing for both parameters after about 500 iterations.

0.0

0.2

0.4

9 11 13
α

P
os

te
rio

r
de

ns
ity

Figure 3: Posterior distribution of α with the potato_visual dataset. The posterior mass is symmetri-
cally centered between 9 and 13, with a mean around 11.

By default, assess_convergence returns a trace plot for α, shown in Figure 2a. The algorithm seems
to be mixing well after around 500 iterations. Next, we study the convergence of ρ. To avoid overly
complex plots, we pick potatoes 1− 5 by specifying this in the items argument.

assess_convergence(bmm_test, parameter = "rho", items = 1:5)

The corresponding plot is shown in Figure 2b, illustrating that the MCMC algorithm seems to have
converged after around 1,000 iterations.

From the trace plots, we decide to discard the first 1,000 MCMC samples as burn-in. We rerun the
algorithm to get 500,000 samples after burn-in. The object bmm_visual has S3 class "BayesMallows", so
we plot the posterior distribution of α with plot.BayesMallows.

bmm_visual <- compute_mallows(potato_visual, nmc = 501000)
bmm_visual$burnin <- 1000 # Set burn-in to 1000
plot(bmm_visual) # Use S3 method for plotting

The plot is shown in Figure 3. We can also get posterior credible intervals for α using
compute_posterior_intervals, which returns both highest posterior density intervals (HPDI) and
central intervals in a tibble (Müller and Wickham, 2018). BayesMallows uses tibbles rather than
data.frames, but both are accepted as function inputs. We refer to tibbles as dataframes henceforth.

compute_posterior_intervals(bmm_visual, decimals = 1L)

A tibble: 1 x 6
parameter mean median conf_level hpdi central_interval
<ch <dbl> <dbl> <ch <ch <chr>

1 alpha 10.9 10.9 95 % [9.4,12.3] [9.5,12.3]

Next, we can go on to study the posterior distribution of ρ.

plot(bmm_visual, parameter = "rho", items = 1:20)

If the items argument is not provided, and the number of items exceeds five, five items are picked at
random for plotting. To show all potatoes, we explicitly set items = 1:20. The corresponding plots
are shown in Figure 4.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

138

CONTRIBUTED RESEARCH ARTICLE 9

P16 P17 P18 P19 P20

P11 P12 P13 P14 P15

P6 P7 P8 P9 P10

P1 P2 P3 P4 P5

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

rank

P
os

te
rio

r
pr

ob
ab

ili
ty

Figure 4: Posterior distribution of latent ranks ρ with the potato_visual dataset. Most potatoes have
highly peaked posterior distributions, indicating low uncertainty about their ranking.

Jumping over the scale parameter

Updating α in every step of the MCMC algorithm may not be necessary, as the number of posterior
samples typically is more than large enough to obtain good estimates of its posterior distribution. With
the alpha_jump argument, we can tell the MCMC algorithm to update α only every alpha_jump-th
iteration. To update α every 10th update of ρ, we do

bmm <- compute_mallows(potato_visual, nmc = 501000, alpha_jump = 10)

On a MacBook Pro 2.2 GHz Intel Core i7 running R version 3.5.1, the above call ran in 2.0 seconds
on average over 1,000 replications using microbenchmark (Mersmann, 2018), while it took 4.2 sec-
onds using the default value alpha_jump = 1, i.e., updating α less frequently more than halved the
computing time.

Other distance metrics

By default, compute_mallows uses the footrule distance, but the user can also choose to use Cayley,
Kendall, Hamming, Spearman, or Ulam distance. Running the same analysis of the potato data with
Spearman distance is done with the command

bmm <- compute_mallows(potato_visual, metric = "spearman", nmc = 501000)

For the particular case of Spearman distance, BayesMallows only has integer sequences for computing
the exact partition function with 14 or fewer items. In this case a precomputed importance sampling
estimate is part of the package, and used instead.

Analysis of preference data with BayesMallows

Unless the argument error_model to compute_mallows is set, pairwise preference data are assumed to
be consistent within each assessor. These data should be provided in a dataframe with the following
three columns, with one row per pairwise comparison.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

139

CONTRIBUTED RESEARCH ARTICLE 10

• assessor is an identifier for the assessor; either a numeric vector containing the assessor index,
or a character vector containing the unique name of the assessor.

• bottom_item is a numeric vector containing the index of the item that was disfavored in each
pairwise comparison.

• top_item is a numeric vector containing the index of the item that was preferred in each pairwise
comparison.

A dataframe with this structure can be given in the preferences argument to compute_mallows.
compute_mallows will generate the full set of implied rankings for each assessor using the function
generate_transitive_closure, as well as an initial ranking matrix consistent with the pairwise
preferences, using the function generate_initial_ranking.

We illustrate with the beach preference data containing stated pairwise preferences between
random subsets of 15 images of beaches, by 60 assessors (Vitelli et al., 2018, Section 6.2). This dataset is
provided in the dataframe beach_preferences.

Transitive closure and initial ranking

We start by generating the transitive closure implied by the pairwise preferences.

beach_tc <- generate_transitive_closure(beach_preferences)

The dataframe beach_tc contains all the pairwise preferences in beach_preferences, with all the
implied pairwise preferences in addition. The latter are preferences that were not specifically stated
by the assessor, but instead are implied by the stated preferences. As a consequence, the dataframe
beach_tc has 2921 rows, while beach_preferences has 1442 rows. Initial rankings, i.e., a set of full
rankings for each assessor that are consistent with the implied pairwise preferences are then generated,
and we set the column names of the initial ranking matrix to "Beach 1", "Beach 2", ..., "Beach 15" in
order have these names appear as labels in plots and output.

beach_init_rank <- generate_initial_ranking(beach_tc)
colnames(beach_init_rank) <- paste("Beach", 1:ncol(beach_init_rank))

If we had not generated the transitive closure and the initial ranking, compute_mallows would do this
for us, but when calling compute_mallows repeatedly, it may save time to have these precomputed and
saved for future re-use. In order to save time in the case of big datasets, the functions for generating
transitive closures and initial rankings from transitive closures can all be run in parallel, as shown in
the examples to the compute_mallows function. The key to the parallelization is that each assessor’s
preferences can be handled independently of the others, and this can speed up the process considerably
with large dataset.

As an example, let us look at all preferences stated by assessor 1 involving beach 2. We use filter
from dplyr (Wickham et al., 2018) to obtain the right set of rows.

library("dplyr")
All preferences stated by assessor 1 involving item 2
filter(beach_preferences, assessor == 1, bottom_item == 2 | top_item == 2)

A tibble: 1 x 3
assessor bottom_item top_item

<dbl> <dbl> <dbl>
1 1 2 15

Assessor 1 has performed only one direct comparison involving beach 2, in which the assessor stated
that beach 15 is preferred to beach 2. The implied orderings, on the other hand, contain two preferences
involving beach 2:

All implied orderings for assessor 1 involving item 2
filter(beach_tc, assessor == 1, bottom_item == 2 | top_item == 2)

assessor bottom_item top_item
1 1 2 6
2 1 2 15

In addition to the statement that beach 15 is preferred to beach 2, all the other orderings stated by
assessor 1 imply that this assessor prefers beach 6 to beach 2.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

140

CONTRIBUTED RESEARCH ARTICLE 11

Assessor 1

0 500 1000 1500 2000

4

8

12

Iteration

R
til

de
Beach 2

Beach 6

Beach 15

(a) Beaches 2, 6, and 15 for assessor 1. The or-
dering of the traces is always consistent with the
constraints set by assessor 1’s preferences.

Assessor 2

0 500 1000 1500 2000

2.5

5.0

7.5

10.0

12.5

Iteration

R
til

de Beach 1

Beach 15

(b) Beaches 1 and 15 for assessor 2. No orderings
between beaches 1 and 15 are implied by assessor
1’s preferences, and the traces are hence free to
cross.

Figure 5: Trace plots of augmented ranks R̃

Convergence diagnostics

As with the potato data, we can do a test run to assess the convergence of the MCMC algorithm.
However, this time we provide the initial rankings beach_init_rank to the rankings argument and the
transitive closure beach_tc to the preferences argument of compute_mallows. We also set save_aug
= TRUE to save the augmented rankings in each MCMC step, hence letting us assess the convergence
of the augmented rankings.

bmm_test <- compute_mallows(rankings = beach_init_rank,
preferences = beach_tc, save_aug = TRUE)

Running assess_convergence for α and ρ shows good convergence after 1000 iterations (not
shown). To check the convergence of the data augmentation scheme, we need to set parameter =
"Rtilde", and also specify which items and assessors to plot. Let us start by considering items 2, 6,
and 15 for assessor 1, which we studied above.

assess_convergence(bmm_test, parameter = "Rtilde",
items = c(2, 6, 15), assessors = 1)

The resulting plot is shown in Figure 5a. It illustrates how the augmented rankings vary, while also
obeying their implied ordering.

By further investigation of beach_tc, we would find that no orderings are implied between beach
1 and beach 15 for assessor 2. With the following command, we create trace plots to confirm this:

assess_convergence(bmm_test, parameter = "Rtilde",
items = c(1, 15), assessors = 2)

The resulting plot is shown in Figure 5b. As expected, the traces of the augmented rankings for beach
1 and 15 for assessor 2 do cross each other, since no ordering is implied between them. Ideally, we
should look at trace plots for augmented ranks for more assessors to be sure that the algorithm is close
to convergence. We can plot assessors 1-8 by setting assessors = 1:8. We also quite arbitrarily pick
items 13-15, but the same procedure can be repeated for other items.

assess_convergence(bmm_test, parameter = "Rtilde",
items = 13:15, assessors = 1:8)

The resulting plot is shown in Figure 6, indicating good mixing.

Posterior distributions

Based on the convergence diagnostics, and being fairly conservative, we discard the first 2,000 MCMC
iterations as burn-in, and take 100,000 additional samples.

bmm_beaches <- compute_mallows(rankings = beach_init_rank, preferences = beach_tc,
nmc = 102000, save_aug = TRUE)

bmm_beaches$burnin <- 2000

The posterior distributions of α and ρ can be studied as shown in the previous sections. Posterior
intervals for the latent rankings of each beach are obtained with compute_posterior_intervals:

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

141

CONTRIBUTED RESEARCH ARTICLE 12

Assessor 7 Assessor 8

Assessor 4 Assessor 5 Assessor 6

Assessor 1 Assessor 2 Assessor 3

0 500 1000 1500 2000 0 500 1000 1500 2000

0 500 1000 1500 2000

4

8

12

4

8

12

4

8

12

Iteration

R
til

de

Beach 13

Beach 14

Beach 15

Figure 6: Trace plots of augmented ranks R̃ for beaches 13-15 and assessors 1-8, indicating that the
MCMC algorithm obtains good mixing after a low number of iterations.

compute_posterior_intervals(bmm_beaches, parameter = "rho")

A tibble: 15 x 7
item parameter mean median conf_level hpdi central_interval
<fct> <chr> <dbl> <dbl> <chr> <chr> <chr>

1 Beach 1 rho 7 7 95 % [7] [6,7]
2 Beach 2 rho 15 15 95 % [15] [15]
3 Beach 3 rho 3 3 95 % [3,4] [3,4]
4 Beach 4 rho 12 12 95 % [11,13] [11,14]
5 Beach 5 rho 9 9 95 % [8,10] [8,10]
6 Beach 6 rho 2 2 95 % [1,2] [1,2]
7 Beach 7 rho 9 8 95 % [8,10] [8,10]
8 Beach 8 rho 12 11 95 % [11,13] [11,14]
9 Beach 9 rho 1 1 95 % [1,2] [1,2]
10 Beach 10 rho 6 6 95 % [5,6] [5,7]
11 Beach 11 rho 4 4 95 % [3,4] [3,5]
12 Beach 12 rho 13 13 95 % [12,14] [12,14]
13 Beach 13 rho 10 10 95 % [8,10] [8,10]
14 Beach 14 rho 13 14 95 % [12,14] [11,14]
15 Beach 15 rho 5 5 95 % [5,6] [4,6]

We can also rank the beaches according to their cumulative probability (CP) consensus (Vitelli et al.,
2018, Section 5.1) and their maximum posterior (MAP) rankings. This is done with the function
compute_consensus, and the following call returns the CP consensus:

compute_consensus(bmm_beaches, type = "CP")

A tibble: 15 x 3
ranking item cumprob

<dbl> <chr> <dbl>
1 1 Beach 9 0.896
2 2 Beach 6 1
3 3 Beach 3 0.738

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

142

CONTRIBUTED RESEARCH ARTICLE 13

Beach 2

Beach 14

Beach 12

Beach 4

Beach 8

Beach 13

Beach 5

Beach 7

Beach 1

Beach 10

Beach 15

Beach 11

Beach 3

Beach 6

Beach 9

ρ

Ite
m

0 20 40 60
Assessor

0.00

0.25

0.50

0.75

1.00

Figure 7: Probability of being ranked top-3 for each beach in the beach preference example (left) and
the probability that each assessor ranks the given beach among top-3 (right). Beaches 6 and 9 are most
popular overall, but the assessor differ considerably in their preference for these beaches, as can be
seen by the varying pattern of light and dark blue.

4 4 Beach 11 0.966
5 5 Beach 15 0.953
6 6 Beach 10 0.971
7 7 Beach 1 1
8 8 Beach 7 0.528
9 9 Beach 5 0.887
10 10 Beach 13 1.00
11 11 Beach 8 0.508
12 12 Beach 4 0.717
13 13 Beach 12 0.643
14 14 Beach 14 0.988
15 15 Beach 2 1

The column cumprob shows the probability of having the given rank or lower. Looking at the second
row, for example, this means that beach 6 has probability 1 of having latent ranking 2 or lower. Next,
beach 3 has probability 0.738 of having latent rank 3 or lower. This is an example of how the Bayesian
framework can be used to not only rank items, but also to give posterior assessments of the uncertainty
of the rankings. The MAP consensus is obtained similarly, by setting type = "MAP".

Keeping in mind that the ranking of beaches is based on sparse pairwise preferences, we can also
ask: for beach i, what is the probability of being ranked top-k by assessor j, and what is the probability
of having latent rank among the top-k. The function plot_top_k plots these probabilities. By default,
it sets k = 3, so a heatplot of the probability of being ranked top-3 is obtained with the call:

plot_top_k(bmm_beaches)

The plot is shown in Figure 7. The left part of the plot shows the beaches ranked according to their CP
consensus, and the probability P(ρi) ≤ 3 for each beach i. The right part of the plot shows, for each
beach as indicated on the left axis, the probability that assessor j ranks the beach among top-3. For
example, we see that assessor 1 has a very low probability of ranking beach 9 among her top-3, while
assessor 3 has a very high probability of doing this. The function predict_top_k returns a dataframe
with all the underlying probabilities. For example, in order to find all the beaches that are among the
top-3 of assessors 1-5 with more than 90 % probability, we would do:

predict_top_k(bmm_beaches) %>%
filter(prob > 0.9, assessor %in% 1:5)

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

143

CONTRIBUTED RESEARCH ARTICLE 14

A tibble: 6 x 3
Groups: assessor [4]
assessor item prob

<dbl> <chr> <dbl>
1 1 Beach 11 0.955
2 1 Beach 6 0.997
3 3 Beach 6 0.997
4 3 Beach 9 1
5 4 Beach 9 1.00
6 5 Beach 6 0.979

Note that assessor 2 does not appear in this table, i.e., there are no beaches for which we are at least 90
% certain that the beach is among assessor 2’s top-3.

Clustering with BayesMallows

BayesMallows comes with a set of sushi preference data, in which 5,000 assessors each have ranked a
set of 10 types of sushi (Kamishima, 2003). It is interesting to see if we can find subsets of assessors
with similar preferences. The sushi dataset was analyzed with the BMM by Vitelli et al. (2018), but the
results in that paper differ somewhat from those obtained here, due to a bug in the function that was
used to sample cluster probabilities from the Dirichlet distribution.

Computing mixtures of Mallows distributions

The function compute_mallows_mixtures computes multiple Mallows models with different numbers
of mixture components. It returns a list of models of class BayesMallowsMixtures, in which each list
element contains a model with a given number of mixture components. Its arguments are n_clusters,
which specifies the number of mixture components to compute, an optional parameter cl which can
be set to the return value of the makeCluster function in the parallel package, and an ellipsis (...) for
passing on arguments to compute_mallows.

Hypothesizing that we may not need more than 10 clusters to find a useful partitioning of the
assessors, we start by doing test runs with 1, 4, 7, and 10 mixture components in order to assess
convergence. We set the number of Monte Carlo samples to 5,000, and since this is a test run, we do
not save cluster assignments nor within-cluster distances from each MCMC iteration and hence set
save_clus = FALSE and include_wcd = FALSE. We also run the computations in parallel on four cores,
one for each mixture component.

library("parallel")
cl <- makeCluster(4)
bmm <- compute_mallows_mixtures(n_clusters = c(1, 4, 7, 10),

rankings = sushi_rankings, nmc = 5000,
save_clus = FALSE, include_wcd = FALSE, cl = cl)

stopCluster(cl)

Convergence diagnostics

The function assess_convergence automatically creates a grid plot when given an object of class
BayesMallowsMixtures, so we can check the convergence of α with the command

assess_convergence(bmm)

The resulting plot is given in Figure 8a, showing that all the chains seem to be close to convergence
quite quickly. We can also make sure that the posterior distributions of the cluster probabilities τc,
(c = 1, . . . , C) have converged properly, by setting parameter = "cluster_probs".

assess_convergence(bmm, parameter = "cluster_probs")

The trace plots for each number of mixture components are shown in Figure 8b. Note that with
only one cluster, the cluster probability is fixed at the value 1, while for other number of mixture
components, the chains seem to be mixing well.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

144

CONTRIBUTED RESEARCH ARTICLE 15

7 clusters 10 clusters

1 cluster 4 clusters

0 10002000300040005000 0 10002000300040005000

1.0

1.5

2.0

2.5

3.0

3.5

1

2

3

4

5

1.0

1.2

1.4

1.6

1.8

1

2

3

4

Iteration

α

(a) Trace of α.

7 clusters 10 clusters

1 cluster 4 clusters

0 10002000300040005000 0 10002000300040005000

0.2

0.4

0.6

0.0

0.1

0.2

0.3

0.950

0.975

1.000

1.025

1.050

0.0

0.2

0.4

0.6

Iteration

τ c

(b) Trace of τc.

Figure 8: Trace plot of α and τc for the sushi dataset with 1, 4, 7, and 10 mixture components,
respectively. Both trace plots indicate good mixing after a few thousand iterations.

90000

100000

110000

120000

1 2 3 4 5 6 7 8 9 10
Number of clusters

W
ith

in
−

cl
us

te
r

su
m

 o
f d

is
ta

nc
es

Figure 9: Elbow plot for the sushi mixture models. While it is not entirely clear where the elbow
occurs, we choose the mixture distribution with five clusters.

Deciding on the number of mixtures

Given the convergence assessment of the previous section, we are fairly confident that a burn-in of
5,000 is sufficient. We run 95,000 additional iterations, and try from 1 to 10 mixture components. Our
goal is now to determine the number of mixture components to use, and in order to create an elbow
plot, we set include_wcd = TRUE to compute the within-cluster distances in each step of the MCMC
algorithm. Since the posterior distributions of ρc (c = 1, . . . , C) are highly peaked, we save some
memory by only saving every 10th value of ρ by setting rho_thinning = 10.

cl <- makeCluster(4)
bmm <- compute_mallows_mixtures(n_clusters = 1:10, rankings = sushi_rankings,

nmc = 100000, rho_thinning = 10, save_clus = FALSE,
include_wcd = TRUE, cl = cl)

stopCluster(cl)
plot_elbow(bmm, burnin = 5000) # Create elbow plot

The resulting elbow plot is a notched boxplot (Mcgill et al., 1978; Wickham, 2016) shown in Figure 9, for
which the barely visible upper and lower whiskers represent approximate 95 % confidence intervals.
Although not clear-cut, we see that the within-cluster sum of distances levels off at around 5 clusters,
and hence we choose to use 5 clusters in our model.

Posterior distributions

Having chosen 5 mixture components, we go on to fit a final model, still running 95,000 iterations
after burnin. This time we call compute_mallows and set n_clusters = 5. We also set save_clus =

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

145

CONTRIBUTED RESEARCH ARTICLE 16

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Assessors (1 − 5000)

0.00

0.25

0.50

0.75

Figure 10: Posterior probabilities of assignment to each cluster for each of the 5000 assessors in the
sushi dataset. The scale to the right shows the color coding of probabilities. The blocks of light colors
along the anti-diagonal show the clusters to which the assessors were assigned. Darker colors within
these blocks indicate assessors whose cluster assignment is uncertain.

TRUE and clus_thin = 10 to save the cluster assignments of each assessor in every 10th iteration, and
rho_thinning = 10 to save the estimated latent rank every 10th iteration.

bmm <- compute_mallows(rankings = sushi_rankings, n_clusters = 5, save_clus = TRUE,
clus_thin = 10, nmc = 100000, rho_thinning = 10)

bmm$burnin <- 5000

We can plot the posterior distributions of α and ρ in each cluster using plot.BayesMallows as shown
preivously for the potato data. We can also show the posterior distributions of the cluster probabilities,
using:

plot(bmm, parameter = "cluster_probs")

Using the argument parameter = "cluster_assignment", we can visualize the posterior probability
for each assessor of belonging to each cluster:

plot(bmm, parameter = "cluster_assignment")

The resulting plot is shown in Figure 10. The underlying numbers can be obtained using the function
assign_cluster.

We can find clusterwise consensus rankings using compute_consensus. The following call finds
the CP consensuses, and then uses select from dplyr and spread from tidyr (Wickham and Henry,
2018) to create one column for each cluster. The result is shown in Table 1.

library("tidyr")
compute_consensus(bmm) %>%

select(-cumprob) %>%
spread(key = cluster, value = item)

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1 shrimp fatty tuna fatty tuna fatty tuna fatty tuna
2 sea eel sea urchin sea eel tuna sea urchin
3 egg salmon roe tuna shrimp shrimp
4 squid sea eel shrimp tuna roll tuna
5 salmon roe tuna tuna roll squid salmon roe
6 fatty tuna shrimp squid salmon roe squid
7 tuna tuna roll egg egg tuna roll
8 tuna roll squid cucumber roll cucumber roll sea eel
9 cucumber roll egg salmon roe sea eel egg

10 sea urchin cucumber roll sea urchin sea urchin cucumber roll

Table 1: CP consensus for each of the clusters found for sushi data.

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

146

CONTRIBUTED RESEARCH ARTICLE 17

Note that for estimating cluster specific parameters, label switching is a potential problem that
needs to be handled. BayesMallows ignores label switching issues inside the MCMC, because it has
been shown that this approach is better for ensuring full convergence of the chain (Jasra et al., 2005;
Celeux et al., 2000). MCMC iterations can be re-ordered after convergence is achieved, for example
by using the implementation of Stephens’ algorithm (Stephens, 2000) provided by the R package
label.switching (Papastamoulis, 2016). A full example of how to assess label switching after running
compute_mallows is provided by running the following command:

help("label_switching")

For the sushi data analyzed in this section, no label switching is detected by Stephen’s algorithm.

Discussion

In this paper we discussed the methodological background and computational strategies for the
BayesMallows package, implementing the inferential framework for the analysis of preference data
based on the Bayesian Mallows model, as introduced in Vitelli et al. (2018). The package aims at
providing a general probabilistic tool, capable of performing various inferential tasks (estimation,
classification, prediction) with a proper uncertainty quantification. Moreover, the package widens the
applicability of the Mallows model, by providing reliable algorithms for approximating the associated
partition function, which has been the bottleneck for a successful use of this general and flexible model
so far. Finally, it handles a variety of preference data types (partial rankings, pairwise preferences),
and it could possibly handle many others which can lie in the above mentioned categories (noisy
continuous measurements, clicking data, ratings).

One of the most important features of the BayesMallows package is that, despite implementing a
Bayesian model, and thus relying on MCMC algorithms, its efficient implementation makes it possible
to manage large datasets. The package can easily handle up to hundreds of items, and thousands of
assessors; an example is the Movielens data analyzed in Section 6.4 of (Vitelli et al., 2018). By using
the log-sum-exp trick, the implementation of the importance sampler is able to handle at least ten
thousand items without numerical overflow. We believe that all these features make the package a
unique resource for fitting the Mallows model to large data, with the benefits of a fully probabilistic
interpretation.

Nonetheless, we also recognize that the BayesMallows package can open the way for further
generalizations. The Bayesian Mallows model for time-varying rankings that has been introduced
in Asfaw et al. (2017) will be considered for a future release. Some further extensions which we
might consider to implement in the BayesMallows in the future include: fitting an infinite mixture of
Mallows models for automatically performing model selection; allowing for a non-uniform prior for ρ;
performing automatic item selection; estimating the assessors’ quality as rankers; and finally including
covariates, both on the assessors and on the items. In addition, since the data augmentation steps in
the MCMC algorithm are independent across assessors, potential speedup in the case of missing data
or pairwise preferences can be obtained by updating the augmented data in parallel, and this is likely
to be part of a future package update.

Acknowledgments

The authors would like to thank Arnoldo Frigessi and Elja Arjas for fruitful discussions.

Bibliography

M. Alvo and P. L. Yu. Statistical Methods for Ranking Data. Frontiers in Probability and the Statistical
Sciences. Springer, New York, NY, USA, 2014. URL https://doi.org/10.1007/978-1-4939-1471-5.
[p7]

D. Asfaw, V. Vitelli, Ø. Sørensen, E. Arjas, and A. Frigessi. Time-varying rankings with the Bayesian
Mallows model. Stat, 6(1):14–30, 2017. URL https://doi.org/10.1002/sta4.132. [p17]

G. Celeux, M. Hurn, and C. Robert. Computational and inferential difficulties with mixture posterior
distribution. Journal of the American Statistical Association, 95(451):957–970, 2000. URL https:
//doi.org/10.2307/2669477. [p17]

M. Crispino, E. Arjas, V. Vitelli, N. Barrett, and A. Frigessi. A Bayesian Mallows approach to nontran-
sitive pair comparison data: How human are sounds? The Annals of Applied Statistics, 13(1):492–519,
Mar. 2019. URL https://doi.org/10.1214/18-aoas1203. [p4, 5]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

147

CONTRIBUTED RESEARCH ARTICLE 18

J. C. de Borda. Mémoire sur les élections au scrutin, histoire de l’académie royale des sciences. Paris,
France, 1781. [p4]

P. Diaconis. Group Representations in Probability and Statistics, volume 11 of Lecture Notes - Monograph
Series. Institute of Mathematical Statistics, Hayward, CA, USA, 1988. [p1, 2, 3]

M. A. Fligner and J. S. Verducci. Distance based ranking models. Journal of the Royal Statistical
Society: Series B (Methodological), 48(3):359–369, July 1986. URL https://doi.org/10.1111/j.2517-
6161.1986.tb01420.x. [p3, 7]

E. Irurozki, B. Calvo, and A. Lozano. Sampling and learning the Mallows and weighted Mallows
models under the Hamming distance. Technical Report, 2014. URL https://addi.ehu.es/handle/
10810/11240. [p3]

E. Irurozki, B. Calvo, and J. A. Lozano. PerMallows: An R Package for Mallows and Generalized
Mallows Models. Journal of Statistical Software, 71(12), 2016a. URL https://doi.org/10.18637/jss.
v071.i12. [p7]

E. Irurozki, B. Calvo, and J. A. Lozano. Sampling and learning Mallows and generalized Mallows
models under the Cayley distance. Methodology and Computing in Applied Probability, 20(1):1–35, June
2016b. URL https://doi.org/10.1007/s11009-016-9506-7. [p3]

A. Jasra, C. C. Holmes, and D. A. Stephens. Markov chain Monte Carlo methods and the label
switching problem in Bayesian mixture modeling. Statistical Science, 20(1):50–67, Feb. 2005. URL
https://doi.org/10.1214/088342305000000016. [p17]

T. Kamishima. Nantonac collaborative filtering: Recommendation based on order responses. In
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’03, pages 583–588, New York, NY, USA, 2003. ACM. ISBN 1-58113-737-0. URL
https://doi.org/10.1145/956750.956823. [p14]

P. H. Lee and P. L. Yu. An R package for analyzing and modeling ranking data. BMC Medical
Research Methodology, 13(1):65, May 2013. ISSN 1471-2288. doi: 10.1186/1471-2288-13-65. URL
https://doi.org/10.1186/1471-2288-13-65. [p7]

Q. Liu, M. Crispino, I. Scheel, V. Vitelli, and A. Frigessi. Model-based learning from preference data.
Annual Review of Statistics and Its Application, 6(1):329–354, 2019. URL https://doi.org/10.1146/
annurev-statistics-031017-100213. [p2, 7]

T. Lu and C. Boutilier. Effective sampling and learning for Mallows models with pairwise-preference
data. Journal of Machine Learning Research, 15:3783–3829, 2014. [p3]

C. L. Mallows. Non-null ranking models. i. Biometrika, 44(1-2):114–130, 1957. URL https://doi.org/
10.1093/biomet/44.1-2.114. [p1, 2]

J. I. Marden. Analyzing and Modeling Rank Data, volume 64 of Monographs on Statistics and Applied
Probability. Chapman & Hall, Cambridge, MA, USA, 1995. [p1, 3]

M. J. A. N. d. C. Marquis of Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix. Paris: De l’imprimerie royale, 1785. [p4]

R. Mcgill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The American Statistician, 32(1):12–16,
1978. URL https://doi.org/10.1080/00031305.1978.10479236. [p15]

M. Meilǎ and H. Chen. Dirichlet process mixtures of generalized Mallows models. In Proceedings of
the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI-10), pages
358–367, Corvallis, OR, USA, 2010. AUAI Press. [p3]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2018. URL https://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-6. [p9]

S. Mukherjee. Estimation in exponential families on permutations. The Annals of Statistics, 44(2):
853–875, 2016. URL https://doi.org/doi:10.1214/15-AOS1389. [p1, 6]

K. Müller and H. Wickham. tibble: Simple Data Frames, 2018. URL https://CRAN.R-project.org/
package=tibble. R package version 1.4.2. [p8]

P. Papastamoulis. label.switching: An R package for dealing with the label switching problem in
MCMC outputs. Journal of Statistical Software, 69, 2016. URL https://doi.org/10.18637/jss.v069.
c01. [p17]

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

148

CONTRIBUTED RESEARCH ARTICLE 19

Z. Qian. rankdist: Distance Based Ranking Models, 2018. URL https://CRAN.R-project.org/package=
rankdist. R package version 1.1-3. [p7]

N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, 2017. URL http://oeis.org. [p6]

M. Stephens. Dealing with label switching in mixture models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 62(4):795–809, Nov. 2000. URL https://doi.org/10.1111/1467-
9868.00265. [p17]

V. Vitelli, Ø. Sørensen, M. Crispino, A. Frigessi, and E. Arjas. Probabilistic preference learning with
the Mallows rank model. Journal of Machine Learning Research, 18(1):5796–5844, Jan. 2018. [p1, 2, 3, 5,
6, 7, 10, 12, 14, 17]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN
978-3-319-24277-4. URL http://ggplot2.org. [p15]

H. Wickham and L. Henry. tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions, 2018. URL
https://CRAN.R-project.org/package=tidyr. R package version 0.8.1. [p16]

H. Wickham, R. François, L. Henry, and K. Müller. dplyr: A Grammar of Data Manipulation, 2018. URL
https://CRAN.R-project.org/package=dplyr. R package version 0.7.7. [p10]

Øystein Sørensen
Center for Lifespan Changes in Brain and Cognition
Department of Psychology
University of Oslo
ORCID: 0000-0003-0724-3542
oystein.sorensen@psykologi.uio.no

Marta Crispino
Univ. Grenoble Alpes, Inria, CNRS, LJK
38000 Grenoble, France
crispino.marta8@gmail.com

Qinghua Liu
Department of Mathematics
University of Oslo
qinghual@math.uio.no

Valeria Vitelli
Oslo Centre for Biostatistics and Epidemiology
Department of Biostatistics
University of Oslo
OORCID: 0000-0002-6746-0453
valeria.vitelli@medisin.uio.no

The R Journal Vol. XX/YY, AAAA 20ZZ ISSN 2073-4859

149

	Acknowledgements
	List of Papers
	Contents
	Introduction
	A primer on recommender systems and preference data
	Recommender systems
	Preference data

	Two important preference learning methods
	Collaborative filtering (CF)
	The Mallows Ranking method

	Bayesian computation and approximation methods
	Markov Chain Monte Carlo (MCMC)
	Variational Inference (VI)

	Summary of papers
	Discussions
	Bibliography
	Papers
	Model-Based Learning from Preference Data
	Diverse Personalized Recommendations with Uncertainty from Implicit Preference Data with the Bayesian Mallows Model
	Pseudo-Mallows for Efficient Preference Learning
	BayesMallows: an R Package for the Bayesian Mallows Model

