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1. Introduction

Around 15 years ago, I authored and co-authored a number of papers which related the computational power of frag-
ments of programming languages to complexity classes defined by imposing time and space constraints on Turing machines, 
e.g. [12,14,13]. These papers were clearly inspired by work in implicit computational complexity theory from the 1990s, e.g., 
Bellantoni & Cook [3], Leivant [15,16] and, particularly, Jones [5,6]. Back then I had hardly heard of reversible computing, 
and it never occurred to me that reversible computing and implicit computational complexity should mix very well.

Complexity classes like p, fp, np, logspace, exptime, and so on, are defined by imposing explicit resource bounds on a 
particular machine model, namely the Turing machine. E.g., fp is defined as the class of functions computable in polynomial 
time on a deterministic Turing machine. The definition puts constraints on the resources available to the Turing machines, 
but no constraints on the algorithms available to them. A Turing machine may compute a function in the class by any 
imaginable algorithm as long as it works in polynomial time. Implicit computational complexity theory studies classes of 
functions (problems, languages) that are defined without imposing explicit resource bounds on machine models, but rather 
by imposing linguistic constraints on the way algorithms can be formulated. When we explicitly restrict our language for 
formulating algorithms, that is, our programming language, then we may implicitly restrict the computational resources 
needed to execute algorithms. If we manage to find a restricted programming language that captures a complexity class, 
then we will have a so-called implicit characterization. A seminal example is Bellantoni & Cook’s [3] characterization of 
fp. They give a functional programming language (which they call a function algebra). This language consists of a few 
initial functions and two definition schemes (safe composition and safe primitive recursion) which allow us to define new 
functions. These schemes put rather severe syntactical restrictions on how we can define functions, but they do not refer 
to polynomially bounded Turing machines or any other kind of resource bounded computing machinery. It is not easy to 
write programs when we have to stick to these schemes, even experienced programmers might find it hard to multiply 
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two numbers but, be that as it may, this is a programming language that yields an implicit characterization of a complexity 
class. It turns out that a function can be computed by a program written in Bellantoni & Cook’s language if and only if it 
belongs to the complexity class fp.

There is an obvious link between implicit computational complexity and reversible computing. A programming language 
based on natural reversible operations will impose restrictions on the way algorithms can be formulated, and thus, also 
restrictions on the computational resources needed to execute algorithms. Hence, the following question knocks at the 
door: Will it be possible to find reversible programming languages that capture some of the standard complexity classes? 
The answer turns out to be YES. We will present a reversible language that captures, or if you like, gives an implicit 
characterization of, the (maybe not very well-known) complexity class etime. A few small modifications of this language 
yield a reversible language that captures the very well-known complexity class p. We will also discuss and analyze the 
computational power of higher-order versions of our reversible languages.

Our languages are based on a couple of naturally reversible operations. To increase, or decrease, a natural number by 1 
modulo a base b is such an operation: . . . 0, 1, 2, . . . , b − 2, b − 1, 0, 1, 2 . . .. The successor of b − 1 becomes 0, and then b − 1
becomes the predecessor of 0. Thus, “increase” and “decrease” are the reverse of each other. To move an element from the 
top of one stack to the top of another stack is another such operation as we can simply move the element back to the stack 
it came from.

This paper addresses students and researchers interested in programming languages, reversible computing and computer 
science in general, they will not necessarily be experts in computability or complexity theory. We will give priority to 
readability over technical accuracy, but still this is a fairly technical paper, and we will assume that the reader is faintly 
acquainted with Turing machines and basic complexity theory (standard textbooks are Arora & Barak [1], Jones [7] and 
Sipser [25]).

Implicit computational complexity theory is definitely a broader and richer research area than our short discussion above 
may indicate. More on the subject can be found in Dal Lago [4] and Pechoux [21]. The latter article gives a survey of the 
developments in the field over the past 30 years.

The first part of this paper is extended and improved version of [11]. The material in Section 6 has not been published 
elsewhere. The author wants to thank Romain Pechoux, Geir Overskeid and an anonymous referee for corrections and helpful 
advice.

A few remarks before we move on

This paper addresses a broader audience than a standard research paper, and the author has intentionally toned down 
discussions and considerations that will be inaccessible or boring to non-experts. Thus, this is partly a dissemination paper, 
but it is not only a dissemination paper: Our characterizations of etime and p are new, and they should have an interest in 
their own right. The characterizations are neat, simple and based on a handful of very natural operations. That alone should 
make them interesting. In addition they are based on inherently reversible operations. That does certainly not make them 
less interesting, and as far as the author knows, these characterizations are the first of its kind.

The significance of the reversible features of our characterizations is a subject for further research. Perhaps these features 
can help us gain a better understanding of the nature of etime and p? Maybe they can help us gain a better understanding 
of the relationship between the time complexity classes etime and p and the space complexity classes linspace, espace, 
logspace and pspace? They might even bring us closer to solving some of the notoriously hard open problems involving 
these complexity classes? Maybe, or maybe not, but these are matters that should be investigated further, and the theory 
and methodology of reversible computing might very well play an important role in that respect: Our characterizations of 
etime and p were designed from scratch. At the outset they were not inspired by, or in any way related to, the theory 
and methodology of reversible computing (e.g., we did not achieve these characterizations by using known techniques 
for transforming a non-reversible language into a reversible one). Perhaps insights already won by research in reversible 
computing can shed some light on the significance of our characterizations? Maybe the theoretical framework developed 
to study reversible computing can help us gain a better understanding of the different nature of time complexity classes, 
like etime and p, and space complexity classes, like linspace, espace, logspace and pspace? Maybe the theory of reversible 
computing and (implicit) computational complexity theory has much to offer each other, in both directions?

2. Reversible bottomless stack (RBS) programs

2.1. The programming language RBS

An infinite sequence of natural numbers s1, s2, s3, . . . is a bottomless stack if there exists k such that si = 0 for all i > k. 
We use 〈x1, . . . , xn, 0∗] to denote the bottomless stack s1, s2, s3, . . . where si = xi when i ≤ n, and si = 0 when i > n. We say 
that x1 is the top element of 〈x1, . . . , xn, 0∗]. Observe that 0 is the top element of the stack 〈0∗]. Furthermore, observe that 
〈0, 0∗] is the same stack as 〈0∗] (since 〈0, 0∗] and 〈0∗] denote the same sequence of natural numbers). We will refer to 〈0∗]
as the zero stack.

The syntax of the imperative programming language RBS is given in Fig. 1. Any element in the syntactic category
Command will be called a program, and we will use the word command and the word program interchangeably throughout 
the paper. We will now explain the semantics of RBS.
2
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THE SYNTAX OF RBS

X ∈ Variable ::= X1 | X2 | X3 | . . .
com ∈ Command ::= X+ | X− | (X to X) | com; com

| loop X { com}

Fig. 1. The syntax of the language RBS. The variable X in the loop command is not allowed to occur in the loop’s body.

An RBS program manipulates bottomless stacks, and each program variable holds such a stack. The input to a program is 
a single natural number m. When the execution of the program starts, the input m will be stored at the top of the stack held 
by X1, that is, we have X1 = 〈m, 0∗]. All other variables occurring in the program hold the zero stack when the execution 
starts. A program is executed in a base b which is determined by the input: we have b = max(m + 1, 2) if X1 = 〈m, 0∗] when 
the execution starts. The execution base b is kept fixed during the entire execution.

Let X and Y be program variables. We will now explain how the primitive commands work. The command (X toY) pops 
off the top element of the stack held by X and pushes it onto the stack held by Y, that is

{X= 〈x1, . . . , xn,0∗] ∧ Y= 〈y1, . . . , ym,0∗]} (XtoY) {X= 〈x2 . . . , xn,0∗] ∧ Y= 〈x1, y1, . . . , ym,0∗]} .

The command X+ increases the top element of the stack held by X by 1 (mod b), that is

{X= 〈x1, . . . , xn,0∗]} X+ {X= 〈x1 + 1 (mod b), x2 . . . , xn,0∗]} .

The command X− decreases the top element of the stack held by X by 1 (mod b), that is

{X= 〈x1, . . . , xn,0∗]} X− {X= 〈x1 − 1 (mod b), x2 . . . , xn,0∗]} .

Observe that we have

{X= 〈b − 1, x2 . . . , xn,0∗]} X+ {X= 〈0, x2 . . . , xn,0∗]}
and

{X= 〈0, x2 . . . , xn,0∗]} X− {X= 〈b − 1, x2 . . . , xn,0∗]}
when b is the execution base.

The semantics of the command C1;C2 is as expected. This is the standard composition of the commands C1 and C2, 
that is, first C1 is executed, then C2 is executed. The command loop X {C } executes the command C repeatedly k times 
in a row where k is the top element of the stack held by X. Note that the variable X is not allowed to occur in C and, 
moreover, the command loop X {C } will not modify the stack held by X.

A couple of examples might be helpful to the reader. Let C1 be the program loop X1 { X
+
2 }; (X2 toX1). We have

{X1 = 〈17,0∗] ∧ X2 = 〈0∗]} C1 {X1 = 〈17,17,0∗] ∧ X2 = 〈0∗]} .

Let C2 be the program loop X1 { X
+
2 };X+

2 ; (X2 toX1). We have

{X1 = 〈17,0∗] ∧ X2 = 〈0∗]} C2 {X1 = 〈0,17,0∗] ∧ X2 = 〈0∗]}
since the execution base is 18. This leads to an important observation:

Observation. All numbers stored on stacks during an execution of an RBS program will be strictly less than the execution base, and 
thus, less than or equal to max(m, 1) where m is the input.

2.2. The problems decidable by RBS programs

We will now define the class of problems that can be decided by an RBS program. To that end, we need to determine 
how an RBS program should accept, and how an RBS program should reject, its input. Any reasonable convention will do, 
and we will just pick a simple and convenient one.

Definition 2.1. An RBS program C accepts the natural number m if C executed with input m terminates with 0 at the top of 
the stack held by X1, otherwise, C rejects m.

A problem is nothing but a (not necessarily strict) subset of the natural numbers.1 An RBS program C decides the problem 
AC where

AC = { m | C accepts m } . �
1 It is pretty standard in computability and complexity theory to define a problem as a set of natural numbers. Problems are often referred to as decision 

problems.
3
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EXAMPLE

Program: Comments:
(* X1 = 〈m,0∗] *)

(X1 toX9); (* the top elements of X9 is m *)
X+

2 ; (* X1 = 〈0∗] and X2 = 〈1,0∗] *)
loop X9 { (* repeat m times *)
(X1 toX3);
(X2 toX1); (* swap the top elements of X1 and X2 *)
(X3 toX2) }

Fig. 2. The program accepts every even number and rejects every odd number.

Before we go on and give one of our main definitions, we will study a few examples: The set of all natural numbers N
is a problem. The program (X1 toX2) decides the problem N . No matter what the input might be, the program (X1 toX2)

will terminate with 0 at the top of the stack held by X1, and hence, the program accepts all inputs. The empty set ∅ is also 
a problem according to our definition as ∅ is a subset of the natural numbers. The program (X1 toX2);X

+
1 decides ∅ as 

the program always, that is, no matter what the input might be, terminates with 1 at the top of the stack held by X1, and 
hence, rejects all inputs. Let A be the set of even numbers. Fig. 2 shows an RBS program which decides the problem A. All 
right, enough examples, here comes the definition:

Definition 2.2. Let S denote class of problems decidable by an RBS program, that is, let

S = { AC | C is an RBS program } . �
Now, S is obviously a well-defined class of computable (decidable) problems. We have defined S by a reversible pro-

gramming language. We have not defined S by imposing resource bounds on Turing machines or any other machine models. 
What can we say about the computational complexity of the problems we find in S? May it be the case that S equals a 
complexity class?

2.3. RBS programs are reversible

Intuitively, it should be evident that RBS programs are reversible in a very strong sense. RBS is an inherently reversible
programming language in the terminology of Matos [17] (see also the remarks in Section 7). Each command C has an 
obvious inverse command (C)−1 which will undo the actions of C, and we can straightforwardly define the inversion 
operator (·)−1 inductively over the structure of a command. The details follow.

Definition 2.3. We define inverse command of C, written (C)−1, inductively over the structure of C:

• (X+
i )−1 = X−

i
• (X−

i )−1 = X+
i

• ((Xi toX j))
−1 = (X j toXi)

• (C1;C2)
−1 = (C2)

−1; (C1)
−1

• (loop Xi {C })−1 = loop Xi { (C)−1 }.

In order to improve the readability we may skip parenthesis and, e.g., write C−1 in place of (C)−1. �
Theorem 2.4. Let C be a program, and let every variable occurring in C be in the list X1, . . . , Xn. Furthermore, let m be any natural 
number. We have

{X1 = 〈m,0∗] ∧
n∧

i=2

Xi = 〈0∗]} C;C−1 {X1 = 〈m,0∗] ∧
n∧

i=2

Xi = 〈0∗]} .

It is a nice, and maybe even challenging, exercise to write up a decent proof Theorem 2.4, even if it should be pretty 
clear that the theorem holds. We offer a proof below.

2.4. The proof of Theorem 2.4

This subsection is dedicated to a detailed proof of Theorem 2.4 (readers not interested may jump ahead to Section 3). 
First, we need some terminology and notation: We will say that a (bottomless) stack is a b-stack if every number stored on 
the stack is strictly smaller than b. Furthermore, we will use V(C) to denote the set of program variables occurring in the 
command C, and for any positive integer m and any command C, we define the command Cm by C1 ≡ C and Cm+1 ≡ Cm;C. 
4
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Obviously, if a program C is executed in base b, all the variables in V(C) will hold b-stacks during the entire execution (see 
the observation at page 3).

Now, assume that C is an RBS command with V(C) ⊆ {X1, . . . , Xn}. Furthermore, assume that C is executed in base b
and that α1, . . . , αn, β1, . . . , βn are b-stacks. With these assumptions in mind, we make the following claim:

If {
n∧

�=1

X� = α�} C {
n∧

�=1

X� = β�} , then {
n∧

�=1

X� = β�} C−1 {
n∧

�=1

X� = α�} . (claim)

Theorem 2.4 follows straightforwardly from this claim. So all we need to do is to prove the claim.
We will of course carry out induction on the structure of the command C, and our proof will split into the three base 

cases (i) C ≡ X+
i , (ii) C ≡ X−

i and (iii) C ≡ (X j toXi) and the two inductive cases (iv) C ≡ C1;C2 and C ≡ loopXi {C0} (see 
Fig. 1).

Case (i). Assume

{
n∧

�=1

X� = α�} X+
i {

n∧
�=1

X� = β�} .

Then we also have {Xi = αi} X+
i {Xi = βi} where

αi = 〈m1,m2, . . . ,mk,0∗] and βi = 〈m1 + 1 (mod b),m2, . . . ,mk,0∗]
for some m1, . . . , mk < b. We have (m1 + 1 (mod b)) − 1 (mod b) = m1 when m1 < b. Thus we have {Xi = βi} X−

i {Xi = αi}. 
By Definition 2.3, we have {Xi = βi} (X+

i )−1 {Xi = αi}. Now, since neither X+
i nor (X+

i )−1 will modify any stack held by a 
variable X j where j 
= i, we also have

{
n∧

�=1

X� = β�} (X+
i )−1 {

n∧
�=1

X� = α�} .

This concludes the proof of case (i). The proofs of the cases (ii) and (iii) are very similar to the proof of case (i). We leave 
the details to the reader and proceed with the inductive cases.

Case (iv). Assume

{
n∧

�=1

X� = α�} C1;C2 {
n∧

�=1

X� = β�} .

Then there exist b-stacks γ1, . . . , γn such that

{
n∧

�=1

X� = α�} C1 {
n∧

�=1

X� = γ�} and {
n∧

�=1

X� = γ�} C2 {
n∧

�=1

X� = β�} .

We apply our induction hypothesis both to C1 and to C2 and conclude

{
n∧

�=1

X� = γ�} C−1
1 {

n∧
�=1

X� = α�} and {
n∧

�=1

X� = β�} C−1
2 {

n∧
�=1

X� = γ�} .

It follows that

{
n∧

�=1

X� = β�} C−1
2 ;C−1

1 {
n∧

�=1

X� = α�} .

Finally, as Definition 2.3 states that (C1;C2)
−1 = C−1

2 ;C−1
1 , we have

{
n∧

�=1

X� = β�} (C1;C2)
−1 {

n∧
�=1

X� = α�} .

This completes the proof of case (iv).

Case (v). Assume
5
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{
n∧

�=1

X� = α�} loop Xi {C0 } {
n∧

�=1

X� = β�} (*)

and let m be the top element of the stack αi .
If m = 0, we have

{
n∧

�=1

X� = α�} loop Xi {C0 } {
n∧

�=1

X� = α�} ,

as the command C0 will not be executed at all. Thus, we also have

{
n∧

�=1

X� = α�} loop Xi {C
−1
0 } {

n∧
�=1

X� = α�} ,

and by Definition 2.3, we have

{
n∧

�=1

X� = α�} ( loop Xi {C0 } )−1 {
n∧

�=1

X� = α�} .

This proves that the claim holds when m = 0. We are left to prove that the claim holds when m > 0, and in the remainder 
of this proof we will assume that m > 0.

First we prove

If {
n∧

�=1

X� = α�} Cm
0 {

n∧
�=1

X� = β�} , then {
n∧

�=1

X� = β�} (C−1
0 )m {

n∧
�=1

X� = α�} , (†)

by a secondary induction on m.
Let m = 1. Then we have Cm

0 ≡ C0, and an application of our main induction hypothesis to C0 yields (†). Let m > 1. Then 
we have

Cm
0 ≡ Cm−1

0 ;C0 and (C−1
0 )m ≡ C−1

0 ; (C−1
0 )m−1

and (†) holds by our induction hypothesis on m and case (iv) above. This concludes the proof of (†).
We are now ready to complete our proof the claim. By (*), we have

{
n∧

�=1

X� = α�} Cm
0 {

n∧
�=1

X� = β�} .

By (†), we have

{
n∧

�=1

X� = β�} (C−1
0 )m {

n∧
�=1

X� = α�} .

Since Xi /∈ V(C0), we have βi = αi , and thus, the top element of βi is the same as the top element of αi , namely m. It 
follows that

{
n∧

�=1

X� = β�} loop Xi {C
−1
0 } {

n∧
�=1

X� = α�} .

Finally, as Definition 2.3 states that loop Xi {C
−1
0 }= (loop Xi {C0 })−1, we have

{
n∧

�=1

X� = β�} ( loop Xi {C0 } )−1 {
n∧

�=1

X� = α�} .

This completes the proof of case (v).
6
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3. Simulation of Turing machines

3.1. A general strategy

Let us first see how we can simulate a Turing machine in a standard way in a standard high-level language. Thereafter 
we will discuss how we can simulate a Turing machine in our rudimentary reversible language. In the standard language we 
will of course be able to simulate any Turing machine, no matter how much time and space resources the machine requires. 
In the reversible language we will only be able to simulate those Turing machines that run in time O (2k|m|) (where k is a 
constant and |m| is the length of the input).

We assume some familiarity with Turing machines. The reader is expected to know that a Turing machine computes by 
writing symbols from a finite alphabet a1, . . . , aA on an infinite tape which is divided into cells; know that one of the cells 
is scanned by the machine’s head; know that there is a finite number of states q1, . . . , qQ ; and so on.

The input w will be available on the tape when a Turing machine M starts, and the actions taken by M will be governed 
by a finite transition table. Each entry of the table is a 5-tuple

ai,qk,a j, D,q� (*)

where ai, a j are alphabet symbols; qk, q� are states; and D is either “left” or “right”. Such a tuple is called a transition 
and tells M what to do when it scans the symbol a j in state qk: in that case M will write the symbol a j , move its head 
one position in the direction given by D , and then proceed in state q� . We restrict our attention to deterministic Turing 
machines, and for each alphabet symbol ai and each non-halting state qk , there will be one, and only one, transition that 
starts with ai, qk . So a Turing machine knows exactly what to do until it reaches one of its halting states, and then it simply 
halts (if it halts in a dedicated state qaccept, it accepts its input; if it halts in a dedicated state qreject, it rejects its input). 
This entails that we can simulate a Turing machine by a sequence of if-then statements embedded into a while-loop. We 
need one if-then statement for each transition:

〈initiate the tape with the input w〉
while 〈M is not in a halting state〉 do
if 〈a1 is scanned in state q1〉 then 〈do what should be done〉;
if 〈a2 is scanned in state q1〉 then 〈do what should be done 〉;
...

...

if 〈aA is scanned in state qQ 〉 then 〈do what should be done 〉
end-while .

Minimum one transition will be executed each time the loop’s body is executed, and the running time of M (on input 
w) will more or less be the number of times the body is executed. (Since we have used if-then statements without else-
branches, it might happen that more than one transition is executed when the loop’s body is executed once, but that will 
not cause any trouble.) In order to simulate the actions taken by the transitions, we need a representation of the computing 
machinery. We need to keep track of the current state, we need to keep track of the symbols on the tape, and we need 
to identify the scanned cell. The current state can simply be stored in a register STATE, but how should we deal with the 
tape? The tape is divided into an infinite sequence of cells

C1, C2, C2, . . . , Cs−1, Cs, Cs+1, . . .

where one of the cells Cs is scanned by the head. Well, for every given configuration of a Turing machine, only finitely many 
of these cells will contain anything else than the blank symbol. Let us say that Ci contains blank when i > B0. In order to 
simulate the machine it will obviously be sufficient to store the symbols in the cells C1, C2, . . . , C B where B = max(B0, s) +1. 
In addition we need to keep track of the scanned cell Cs . A convenient way to deal with the situation will be to use a stack 
STACKL , a register SCAN, another stack STACKR , and store the tape content in the following way:

Cs−1 Cs+1
...

...

C1 Cs C B

STACKL SCAN STACKR

Now we can mimic the movements of the head by pushing and popping alphabet symbols in the obvious way, and the 
transition (*) can be implemented by a program of the form

if SCAN=ai and STATE=qk then
{SCAN:=a ; . . . push and pop according to D . . . ;STATE:=q } .
j �

7
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THE SYNTAX OF LOOP−

X ∈ Variable ::= X1 | X2 | X3 | . . .
k ∈ Constant ::= 0 | 1 | 2 | 3 | . . .

com ∈ Command ::= X:=k | X:= X | pred(X) | com; com
| loop X { com}

Fig. 3. The syntax of the language LOOP− . The variable X in the loop command is not allowed to occur in the loop’s body.

3.2. Can RBS programs simulate Turing machines?

The input to an RBS program is a natural number, and we will thus discuss to what extent an RBS program can simulate 
a Turing machine that takes a single natural number as input.

We have seen that a program with only one while-loop can simulate a Turing machine (and we will for sure need at 
least one while-loop in order to simulate an arbitrary Turing machine). Now, while-loops are not available in RBS, and the 
best we can do in order to simulate a Turing machine is to use a fixed number of nested for-loops:

loopY1 {loopY2 { . . .loopYk { 〈sequence of if-then statements〉} . . .}} .

Since an RBS program cannot increase the numerical value of its input, except on the rare occasions when the input is 
0, the body of each of these loops can be executed maximum max(m, 1) times where m is the input to the RBS program 
(and to the Turing machine the program simulates). Thus it is pretty clear that we cannot simulate a Turing machine if its 
running time is not bounded by mk for some constant k. In the following we will see that any Turing machine that uses 
such an amount of computation time can be simulated by an RBS program.

It turns out that an RBS program can simulate the transitions of a Turing machine M in essentially the same way 
as the high-level program sketched above, given that the input to M is sufficiently large. Stacks are directly available in
RBS, and thus an RBS program can easily represent the tape and mimic the movements of the head. On the other hand, 
assignment statements and if-then statements are not directly available. This makes things a bit tricky. Let us first see how
RBS programs to a certain extent can simulate programs written in the irreversible programming language LOOP− .

3.3. LOOP− programs

The programming language LOOP− was introduced in Kristiansen [9]. The type of programs that we normally, and 
perhaps somewhat colloquially, refer to as “loop programs” can be traced back to a classic paper by Meyer & Ritchie [19]. 
LOOP− is very similar to the programming language studied in Meyer & Ricthie’s paper, but there is one crucial difference: 
The classic loop language has an instruction for incrementing the value of a variable by 1. That instruction is not available 
in LOOP− . That is why it makes sense to dub the language LOOP− . It is more or less the classic loop language minus the 
increment instruction.

The syntax of LOOP− is given in Fig. 3. Any element in the syntactic category Command will be called a program. A 
LOOP− program manipulates natural numbers, and each program variable holds a single natural number. The command 
X:=k assigns the fixed number k to the variable X. The command X:=Y assigns the number held by the variable Y to the 
variable X. The command pred(X) decreases the value held by the variable X by 1 if the value is strictly greater than 0; 
and leaves the value held by X untouched if the value is 0. Furthermore, the command C1;C2 is the standard composition 
of the commands C1 and C2, and the command loop X {C } executes the command C repeatedly k times in a row where 
k in the number held by X. Note that the variable X is not allowed to occur in C and that the command loop X {C } does 
not modify the value held by X.

Let us see how an RBS program can simulate a LOOP− program. An RBS program can represent a LOOP− variable X
holding natural number m by a single dedicated variable X (we use the same variable name) holding the stack 〈m, 0∗]. 
During the entire simulation the dedicated variable will store a stack of the form 〈m, 0∗]. The command X:=k can then be 
simulated by the program

(XtoY); X+;X+; . . .X+︸ ︷︷ ︸
increase k times

where the auxiliary variable Y works as a trash bin. We can do with only one such trash bin, and we dedicate a particular
RBS variable TRASH to work as our trash bin. Thus, the command X:=k is simulated by the program

(XtoTRASH); X+;X+; . . .X+︸ ︷︷ ︸
increase k times

.

Now, observe that this will only work if the execution base is strictly greater than k, but that will good enough to us. The 
command X := Y can be simulated by the program

(XtoTRASH);loop Y {X+ } .
8
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Furthermore, the command pred(X) can be simulated by a program that uses auxiliary variables Y and Z (which represent 
natural numbers) and the simulations of the assignment statements given above:

Z:=0;Y:=X;loop Y {X:=Z;Z+ } .

To verify that this simulation indeed works, observe that

• after each execution of the loop’s body the value held by X is the predecessor of the value held by Z
• when the loop terminates, the value held by Z equals the value held by Y (which again equals the initial value of X).

This shows how RBS programs can simulate all the primitive LOOP− commands. It is easy to see that

• the RBS command C′
1;C

′
2 simulates the LOOP− command C1;C2 if C′

1 simulates C1 and C′
2 simulates C2

• the RBS command loop X {C′ } simulates the LOOP− command loop X {C } if C′ simulates C.

Hence, we arrive at the following conclusion which will be very important to us:

Conclusion. A LOOP− program can be simulated by an RBS program given that the input is sufficiently large. On small inputs simu-
lations might fail since the simulation of the assignment X:=k only works if the execution base is strictly greater than k.

The LOOP− language turns out to be more expressive than one might expect at a first glance, and all sorts of conditional 
statements and if-then constructions are available in the language. As an example, let us see how we can implement the 
construction

if X=Y then C1 else C2 .

We will need some auxiliary variables X′ , Y′ , Z, U which do not occur in any of the commands C1 and C2. First we execute 
the program

X′:=X;Y′:=Y;loop X {pred(Y′)};loop Y {pred(X′)} .

This program sets both X′ and Y′ to 0 if X and Y hold the same number. If X and Y hold different numbers, one of the two 
variables X′, Y′ will be set to a number strictly greater than 0. Then we execute the program

Z:=1;U:=1;
loop X′ {Z:=0};loop Y′ {Z:=0};
loop Z {C1;U:=0};loop U {C2 } .

The composition of these two programs executes the program C1 exactly once (and C2 will not be executed at all) if X and 
Y hold the same number. If X and Y hold different numbers, C2 will be executed exactly once (and C1 will not be executed 
at all). The reader should note that this implementation of if-then-else construction does not contain any assignments of 
the form X:=k where k > 1.

It is proved in Kristiansen [9] that LOOP− captures the complexity class linspace, that is, the set of problems decidable 
in space O (n) on a deterministic Turing machine (n is the length of the input). Hence, the considerations above indicate 
that linspace ⊆ S . However, we are on our way to proving a stronger result, namely that linspace ⊆ S = etime. The equality 
linspace

?= etime is one of the many notorious open problems of complexity theory. The general opinion is that the equality 
does not hold.

3.4. RBS programs that simulates time-bounded Turing machines

We have seen that RBS programs nearly2 can simulate LOOP− programs, and LOOP− programs can assign constants 
to variables and perform if-then-else constructions. This helps us to see how an RBS program PM nearly can simulate an 
2k0|m| time Turing machine M .

First, let us clarify what a 2k0|m| time Turing machine is. Our Turing machines take a single natural number m as input. 
The length of that input is denoted |m|, and |m| equals the number of symbols needed to represent m in binary notation. 
Regard k0 as a fixed number, e.g., 17 or 314. A 2k0|m| time Turing machine is, by definition, a Turing machine that executes 
no more than 2k0|m| transitions.

Observe that we have

2k0|m| = (2|m|)k0 ≤ (2m)k0 ≤ mk0+1

2 Why do we say “nearly”? We say “nearly” because the simulation of the assignment X:=k will fail when the execution base is less than or equal to k.
9
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when m ≥ 2. Now, let k = k0 + 1 and look away from the small inputs 0 and 1, that is, let m ≥ 2. Then a 2k0|m| time Turing 
machine M can be simulated by an RBS program PM of the form

〈initiate the tape with the input m〉;
Y1:= 〈the input m〉;Y2:= 〈the input m〉; . . .;Yk:= 〈the input m〉;
loopY1 {loopY2 { . . .loopYk {T1;T2; . . .;Tr } . . .}} .

Furthermore, the program PM represents

• M ’s alphabet a1, . . .aA by the numbers 1, . . . , A
• M ’s states q1, . . .qQ by the numbers 1, . . . , Q
• the current content of the tape by two stacks
• the current state by a variable STATE
• the scanned cell by a variable SCAN

and emulates a transition ai, qk, a j, D, q� with the command

Ts :≡ if SCAN= i and STATE=k then {SCAN:= j; . . . push and pop according to D . . . ;STATE:=�}

for s = 1, . . . , r.
This completes our description of the RBS program PM . The program performs (simulated) assignments of constants to 

(simulated) variables holding natural numbers. All these constants will be less than or equal to max(A, Q ). If PM is executed 
in a base that is strictly greater than max(A, Q ), then PM will for sure simulate the Turing machine M . If PM is executed 
in a base that is less than or equal to max(A, Q ), then PM will probably fail to simulate M (see our conclusion at page 9). 
So we have a problem, and in some sense we cannot deal with that problem. An RBS program will not be able to simulate 
(in any reasonable sense of the word) an arbitrary 2k0|m| time Turing machine M on small inputs, but fortunately, there will 
still be an RBS program that decides the same problem as M .

We have seen that it suffices to assign the constants 0 and 1 to variables in order to implement the if-then-else con-
struction in LOOP− . This entails that the if-then-else construction will work on small inputs as the execution base always 
will be strictly greater than 1. Hence, if the problem A is decided by a 2k0|m| time Turing machine M , there will also be an
RBS program that decides A. Such a program will be of the form

X:= 〈the input m〉;
if X=0 then 〈give correct output for m = 0 〉
else { pred(X);
if X=0 then 〈give correct output for m = 1 〉
else { pred(X);
if X=0 then 〈give correct output for m = 2 〉
...

else {〈 the input is big enough, that is, bigger than max(A, Q ) . . .
. . . use PM to simulate M . . .
. . . accept if M accepts, reject if M rejects 〉} . . .}} .

4. Implicit characterizations of ETIME and P

4.1. A characterization of etime

Definition 4.1. Let |m| denote the number of digits required to write the natural number m in binary notation. For any 
natural number k, let etimek be the class of problems decidable in time O (2k|m|) on a deterministic Turing machine. Let 
etime = ⋃

i∈N etimei .

Theorem 4.2. S = etime.

Proof. First we prove the inclusion S ⊆ etime. Assume A ∈ S (we will argue that A ∈ etime). Then there is an RBS program 
C that decides A. Assume that C is executed with input m. By the observation at page 3, all the numbers stored on stacks 
during the execution will be less than or equal to max(m, 1), and thus, no loop will iterate its body more than max(m, 1)

times in a row. Thus, it is easy to see that there exists a polynomial p0 such that p0(m) is an upper bound for the number 
of primitive instruction executed by C. A Turing machine can simulate the execution of C at the expense of a polynomial-
time overhead. Thus there exists a polynomial p, such that A can be decided by a Turing machine working in time p(m). 
Let k0 be a sufficiently large number. Then we have

p(m) < (m + 2)k0 ≤ (2|m| + 2)k0 < (2|m|)(k0+1) = 2(k0+1)|m| .
10
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Thus, there exists k such that A can be decided by a Turing machine working in time 2k|m| . Thus, we have A ∈ etime. This 
proves the inclusion S ⊆ etime.

We turn to proof of the inclusion etime ⊆ S . Assume A ∈ etime (we will argue that A ∈ S). Then there is a O (2k|m|)
time Turing machine M that decides A. Now, M will run in time 2k0|m| when k0 is sufficiently large. In the previous section 
we saw that there will be an RBS program that decides the same problem as M . Hence, A ∈ S . This proves the inclusion 
etime ⊆ S . �
4.2. A characterization of p

Would it not be nice if we could find a reversible language that captures a complexity class that is a bit more attractive 
than etime? Now, p is for a number of reasons, which the reader might be aware of, one of most popular and important 
complexity classes. Luckily, it turns out that a few modifications of RBS yield a characterization of p.

First we modify the way RBS programs receive input. The input will now be a string over some alphabet. Any alphabet 
that contains at least two symbols will do and, for convenience, we will stick to the alphabet {a, b}. Every program has a 
dedicated read-only variable inp which holds the input string when the execution of the program starts, and the execution 
base will be set to the length of the string stored in inp, that is, to the number of symbols in the input. Otherwise, nearly 
everything is kept as before: Every variable will still hold a bottomless stack of natural numbers. All commands available in 
the original version of RBS will be available in the new version. A program will still accept its input by terminating with 0
at the top of the stack held by X1, otherwise, the program rejects its input. Moreover, all variables, including X1, the variable 
that was used to import the input, hold the zero stack when the execution of a program starts.

Next we extend RBS by two commands with the syntax

case inp[X]=a: { com} and case inp[X]=b: { com}

where X is a variable and com is a command which does not contain X . These commands make it possible for a program 
to access its input. The input is a string α0α1, . . . , αb−1 where b is the execution base and αi ∈ {a, b}. Assume that X j holds 
a stack where top element is k. The command

case inp[X j]=a: { C }

executes the command C if αk = a, otherwise, the command does nothing. The command

case inp[X j]=b: { C }

executes the command C if αk = b, otherwise, the command does nothing. We still have a reversible language. We can 
straightforwardly define the inverse commands of our two new commands. The variable X j is not allowed to occur in C and 
will consequently not be modified by C. Thus, we may extend Definition 2.3 by

• ( case inp[X j]=a: {C } )−1 = case inp[X j]=a: { (C)−1 }
• ( case inp[X j]=b: {C } )−1 = case inp[X j]=b: { (C)−1 }

and Theorem 2.4 will still hold.
To avoid confusion we will use RBS′ to denote our new version of RBS. We require that the input to an RBS′ program 

is of length at least 2 (so we exclude the empty string and the one-symbol strings a and b). This is of course a bit artificial, 
but it seems to be the most convenient way to deal with a few annoying problems of technical nature. Accordingly, we also 
require that every string in a language (see the definition below) is of length at least 2. At this stage, we should make an 
observation which is analogous to the one we made at page 3:

Observation. All numbers stored on stacks during an execution of an RBS′ program will be strictly less than the execution base, and 
thus, less than or equal to |w| − 1 where |w| is the number of symbols in the input w.

Definition 4.3. A language L is a set of strings over the alphabet {a, b}, moreover, every string in L is of length at least 2.
An RBS′ program C decides the language LC where

LC = { w | C accepts w } .

Let S ′ denote the class of languages decidable by an RBS′ program, that is

S ′ = { LC | C is an RBS′ program } .

Let |w| denote the length of the string w . A Turing machine M is a polynomial time Turing machine if there exists a 
polynomial p such that p(|w|) is an upper bound for the number of steps M will execute on input w . A language L is a 
polynomial time language if there exists a polynomial time Turing machine that decides L. The complexity class p is the class 
of all polynomial time languages. �
11
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EXAMPLE

Program: Comments:
(* all stacks hold the zero stack *)

X−
2 (* the top element of X2 is b − 1 *)
loop X2 { (* repeat b − 1 times *)
case inp[X3]=b: (* X3 is a pointer into the input *)
{ (X1 toX9); (* X1 holds the zero stack *)
X+

1 (* top element of X1 is 1 *)
};

X+
3 (*move pointer to the right *)
}; (* end of loop *)
case inp[X3]=a: (* top element of X3 is b − 1 *)
{ (X1 toX9);X+

1 }

Fig. 4. The program accepts any string that starts with a nonempty sequence of a’s and ends with a single b (the input to a program should at least contain 
two symbols). The program rejects any string that is not of this form. The program accepts by terminating with X1 = 〈0∗] and rejects by terminating with 
X1 = 〈1, 0∗].

Fig. 4 shows an RBS′ program which decides the language given by the regular expression a∗ab.

Theorem 4.4. S ′ = p.

Proof. Assume L ∈ S ′ (we will prove L ∈ p). Then we have an RBS′ program C that decides L. There exists a polynomial 
p such that the number of primitive instructions executed by C on input w is bounded by p(|w|). It is easy to see that 
such a p exists: By the observation above, all numbers stored on stacks during an execution of C will be strictly less than 
or equal to |w| − 1, and thus, a loop body in C will be executed maximum |w| − 1 times. A Turing machine can simulate 
the execution of C on input w at the expense of a polynomial-time overhead. Thus, there exists a polynomial time Turing 
machine that decides L. Thus, L is a polynomial time language, and we have L ∈ p. This proves the inclusion S ′ ⊆ p.

Assume L ∈ p (we will prove L ∈ S ′). Then we have polynomial time Turing machine M that decides L. Let p(|w|) be 
a polynomial upper bound on the number of steps M will execute on input w . When k is sufficiently big and |w| > 2, an 
RBS′ program of the form

Y1:= |w| − 1;Y2:= |w| − 1; . . .;Yk:= |w| − 1;
loopY1 {loopY2 { . . .loopYk { 〈. . . a list of transitions . . . 〉 } . . .}}

will iterate 〈. . . a list of transitions . . . 〉 more than p(|w|) times in a row. Now we can proceed as in Subsection 3.4 and 
construct an RBS′ program that decides the same language as M . Thus we have L ∈ S ′ . This proves the inclusion p ⊆ S ′ . �
5. A brief interlude

Our proofs of the two equalities S = etime and S ′ = p follow a kind of standard recipe which is used over and over 
again in implicit computational complexity theory. Let us consider the proof of S ′ = p. We prove the equality by proving 
that S ′ is included in p and that p is included in S ′ . In order to prove the inclusion S ′ ⊆ p we argue that

(I) The number of primitive instructions carried out by an RBS′ program is bounded by p(|w|) where |w| is the length of 
the input and p is a polynomial.

(II) A Turing machine can simulate an RBS′ program at the expense of a polynomial-time overhead.

In order to prove the inclusion p ⊆ S ′ we argue that

(III) For any polynomial p there exists an RBS′ program that is able to iterate an arbitrary command C more than p(|w|)
times where |w| is the length of the input.

(IV) RBS′ is expressive enough to represent Turing machine configurations and emulate a transition from one configuration 
to another.

These are the four main insights which our proof of S ′ = p is based on. The two former ones yield the inclusion S ′ ⊆ p, and 
the two latter ones yield the inclusion p ⊆ S ′ . Our proof of S = etime is based on four similar insights: Now, (I) becomes

the number of primitive instructions carried out by an RBS program is bounded by 2k|m| where |m| is the length of the 
input and k is a constant

and (III) becomes
12
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THE SYNTAX OF 2RBS

X ∈ Variable ::= X1 | X2 | X3 | . . .
com ∈ Command ::= X+ | X− | (X to X) | com; com

| loop X { com} | 2loop X { com}

Fig. 5. The syntax of the language 2RBS. The variable X in the loop-command is not allowed to occur in the loop’s body. The same goes for variable X in 
the 2loop-command.

for any fixed k there exists an RBS program that is able to iterate an arbitrary command C more than 2k|m| where |m| is 
the length of the input

whereas (II) and (IV) more or less remain as above.
Proofs of implicit characterizations of complexity classes tend to follow the recipe indicated above. Maybe it would be 

too categorical to say that all such proofs stick to the pattern of the recipe, but it should not be controversial to say that 
insights corresponding to (I), (II), (III) and (IV) to a certain extent will be present in any such proof. We will for sure stick 
to the pattern in the next section where we give an implicit characterization of the class of Kalmar elementary problems.

6. Reversible bottomless stack programs of higher orders

6.1. Some considerations

What’s next? Well, it seems like it will be hard to find a natural and interesting reversible language that is weaker than 
RBS or RBS′ . It might be possible, but the author’s hunch is that research along that line might easily turn into a waste of 
time. It seems more fruitful to look for extensions of RBS and RBS′ . For convenience, let us pay attention to RBS, and just 
forget RBS′ . Can we extend RBS with natural reversible commands which make the language more powerful?

There are plenty of examples of restricted programming languages that become more powerful when they are extended 
to higher orders, see e.g. Jones [6], Kristiansen [10] or Kop & Simonsen [8]. Higher-order programs of such languages can 
decide problems no first-order program of the language can decide. It seems like a reasonable research project to extend
RBS with higher types, and then study classes of decision problems captured by higher-order fragments of RBS. We will 
give this project a modest try.

At the outset it is absolutely not clear what a higher-order RBS program should look like. Our first-order objects are 
indeed not stacks, they are natural numbers. Stacks are second-order objects. Thus, stack of stacks will be third-order 
objects. What will the forth-order objects be? stacks of “stacks of stacks” or, perhaps, “stacks of stacks” of “stacks of stacks”? 
And what kind of invertible commands and program constructions do we need to deal with higher-order stacks? The overall 
picture is confusing, but we will at least be able to present a decent second-order version of RBS.

6.2. The programming language 2RBS

The programming language 2RBS is RBS extended with a command of the form

2loop X {C} . (*)

This command is a loop construction where the number of times the loop’s body is executed is determined by several of 
the numbers stored by the stack X and not only the top element of the stack.

The loop command of RBS, which also will be available in 2RBS, is a first-order loop as the number of times the loop’s 
body is executed is determined by a first-order object (a natural number). The number of times the body of (*) is executed is 
determined by a collection of first-order objects (a stack). Collections of first-order objects might be viewed as second-order 
objects. Accordingly, we will say that 2RBS is second-order programming languages and that (*) is a second-order command
or a second-order loop. Commands that do not contain second-order loops will be referred to as first-order commands.

We will now explain the semantics of the second-order loop. Let C be a command, and let 〈x1, x2, x3, . . .] be a bottomless 
stack. Furthermore, let

it( 〈x1, x2, x3, . . .] , C ) =
{

it( 〈x2, x3, . . .] , C )x1 if x1 > 0

C otherwise.

The command (*) is executed by executing the command it(α, C) where α is the stack held by X.
A small example might be helpful. We have

it( 〈3,2,7,0,0∗] , C ) = it( 〈2,7,0,0∗] , C )3 = (it( 〈7,0,0∗] , C )2)3

= (it( 〈7,0,0∗] , C )6 = ((it( 〈0,0∗] , C )7)6

= ((it( 〈0,0∗] , C )42 = C42
13
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Thus, when X holds the stack 〈3, 2, 7, 0, 0∗], the command (*) will execute the command C42, that is, C iterated 42 times in 
a row.

This semantics should be considered as natural: Observe that our second-order loop is nothing but a sequence of nested 
first-order loops. Let us for a while permit constants in our programs, and let x1, . . . , xn be natural numbers strictly greater 
than 0. Then, executing the second-order loop

2loop 〈x1, x2 . . . , xn,0, . . .] {C}
amounts to executing the sequence of nested first-order loops

loop x1 {loop x2 { . . .loop xn {C} . . . }} .

This explains the semantics of the second-order loop. The remaining 2RBS commands are all RBS commands and work 
the way we are used to (see Fig. 5). Indeed, the programming language 2RBS is RBS with second-order loops, nothing 
more, nothing less: a 2RBS program imports its input, sets the execution base and accepts, or rejects, the input in the same 
way as an RBS program does. The stack held by X will not be modified by a command of the form 2loop X {C }, indeed, 
X is not even allowed to occur in C, and Theorem 2.4 will still hold when we extend the definition of our inversion operator 
(Definition 2.3) by the clause

(2loop Xi {C})−1 = 2loop Xi { (C)−1 } .

Thus, 2RBS is a reversible language. It is equally as reversible as RBS.

6.3. The power of 2RBS

So now we have a second-order version of RBS. It might happen that it is possible find more attractive versions. Maybe 
we could, or should, have done things differently, but we have at least cooked up a version that makes sense. What will a 
third-order version look like? Well, third-order programs should be able to work with stacks of stacks, and thus variables 
might hold objects of the form〈

〈x1
1, x1

2, x1
3, . . .] , 〈x2

1, x2
2, x2

3, . . .] , 〈x3
1, x3

2, x3
3, . . .] , 〈x4

1, x4
2, x4

3, . . .] , . . .
]

where each xi
j is a natural number. A third-order loop

3loop X {C}

might then be executed as sequence of nested second-order loops

2loop 〈x1
1, x1

2, x1
3, . . .] {2loop 〈x2

1, x2
2, x2

3, . . .] { . . .{C} . . . }}

. . . something along these lines should work . . . In such a language we will of course also need operators that can build and 
modify stacks of stacks.

We will not discuss or speculate any further on what third or fourth order versions RBS might look like. It is beyond the 
scope of the current paper to study such languages. We will go on and study the modest higher-order version we already 
have defined, namely 2RBS. This is a version with just a slight touch of higher-orderness. Still it turns out that 2RBS is 
very powerful compared to RBS when it comes to decision problems. It seems like the class of all 2RBS programs captures 
the class of primitive recursive problems. A small fragment of 2RBS (the programs of rank of 1) captures the class of all 
elementary problems which—from a complexity-theoretic point of view—is a huge class of problems.

Intuitively, a program is of rank 1 if no second-order loop in the program occurs inside another loop. The formal defini-
tion follows.

Definition 6.1. Let C be a 2RBS command. The natural number R(C) is given by

• if C is a first-order command, let R(C) = 0
• if R(C1) > 0 or R(C2) > 0, let R(C1;C2) = max(R(C1), R(C2))

• if R(C) > 0, let R 
(
loop {C}

) = R(C) + 1
• let R 

(
2loop {C}

) = R(C) + 1 for any command C.

This completes the definition of R(n). A command C is of rank n if R(C) ≤ n. We will use Sn to denote the class of problems 
decidable by a 2RBS program of rank n. �
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The notion of being elementary3 is important in computability and complexity theory. A function might be elementary, 
and so might a relation or a problem. The reader should be aware that our definition below of the elementary problems is 
not a standard one. For convenience we give a definition based on Turing machines. Our definition is of course equivalent 
to the standard one, but it might look pretty different form definitions you might find elsewhere, e.g. in Odifreddi [20] (see 
also Theorem VIII.7.6 at page 272 in [20]).

Definition 6.2. Let 2y
0 = y and 2y

x+1 = 22y
x .

A problem is elementary if it can be decided by a 2n
k time Turing machine for some constant k.

We will use E∗ to denote the class of elementary problems. �
It is a standard convention to use n to denote the length of the input and measure the running time of a Turing machine 

as a function of n. We stick to that convention. So in the definition above n is the length of the input whereas k is a fixed 
number which does not depend on n.

Theorem 6.3. E∗ = S1 .

We will give a detailed proof of Theorem 6.3. In Section 6.4, we prove that any elementary problem can be decided by 
a rank-1 2RBS program. In Section 6.5, we prove that any problem decided by a rank-1 2RBS program is elementary. The 
theorem follows.

6.4. The proof of the inclusion E∗ ⊆ S1

Lemma 6.4. For any natural number k there exist a rank-1 2RBS program TowerOfTwok and a program variable4 Yk such that

{X1 = 〈m,0∗]} TowerOfTwok {Yk = 〈x1, . . . , xn,0∗]} ,

where n = 2m
k and xi = 2 (for all i ≤ n).

Proof. We prove the lemma by induction on k. Throughout this proof we use ZERO to denote a dedicated program variable 
holding the zero stack.

Assume k = 0. Let TowerOfTwo0 be the program

loop X1 { (ZEROtoY0);Y
+
0 ;Y

+
0 } (*)

The variable Y0 holds the zero stack when the execution of (*) starts. The one and only loop in (*) will be executed m times 
since m is the top element of the stack held by X1. Each time the loop is executed an additional copy of 2 is created at the 
top of the stack held Y0. Thus the m top elements of the stack will all equal 2 when the program terminates, and element 
number m + 1 will be a 0. We have m = 2m

0 = 2m
k . Thus we have

{X1 = 〈m,0∗]} TowerOfTwo0 {Y0 = 〈x1, . . . , xn,0∗]}
where n = 2m

k and xi = 2 (for all i ≤ n). Moreover, it is easy to see that TowerOfTwo0 is of rank 1. The program is even of 
rank 0. This proves that the lemma holds when k = 0.

We turn to the induction step. Our induction hypothesis yields a rank-1 program TowerOfTwok−1 and a variable Yk−1

with the properties given in the lemma. Let Yk be a fresh variable, and let TowerOfTwok be the program

TowerOfTwok−1;2loop Yk−1 { (ZEROtoYk);Y
+
k ;Y

+
k } (**)

Assume that X1 = 〈m, 0∗] when the execution of (**) starts. Our induction hypothesis assures that we have Yk−1 =
〈x1, . . . xn, 0∗], with n = 2m

k−1 and xi = 2 (for all i ≤ n), when the execution of the final loop of (**) starts. Moreover, as Yk
is fresh, Yk holds the zero stack when the execution of the final loop of (**) starts. The final loops body will obvious be 
iterated 2n times, and we have 2n = 22m

k−1 = 2m
k . Each iteration creates a new 2 at top of the stack held by Yk . When (**)

terminates, we have Yk = 〈x1, . . . , xn, 0∗] where n = 2m
k and xi = 2 (for all i ≤ n). It is easy to see that TowerOfTwok will 

be of rank 1. This concludes the induction step. �
3 Also known as Kalmar elementary and as Kalmar-Csillag elementary.
4 The variables in our programming language are named X1, X2, X3, . . . (see Fig. 5). All these variables are different, e.g., X4 is not the same variable as 

X9. We will be a bit sloppy and use the same typewriter font to denote metavariables, that is, variables that range over the variables X1, X2, X3, . . .. If Y4

and Y9 are metavariables, then it might very well happen that Y4 and Y9 are the same variable, e.g., they might both be the variable X17.
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We are now ready to prove the inclusion E∗ ⊆ S1. Let A be an arbitrary problem in E∗ . By Definition 6.2, there exist 
a natural number k and a Turing machine M that decides if m is in A in less than 2|m|

k steps. We will see that a 2RBS
program of rank 1 also can decide if m is in A. Thus we have A ∈ S1, and our theorem holds.

So what does this rank-1 program look like? Well, it looks quite like the program we discussed in Section 3.4. It is based 
on the same ideas. Recall the command T1;T2; . . .;Tr explained in Subsection 3.4. Each Ts (for i = 1, . . . , r) is a command

if SCAN= i and STATE=k then {SCAN:= j; . . . push and pop . . . ;STATE:=�} ,

which takes care of one of M ’s transitions ai, qk, a j, D, q� . A program that iterates the command T1;T2; . . .;Tr sufficiently 
many times, that is, at least 2|m|

k times, can be easily turned into a program that decides if m is in A. Now, a rank-1 program 
can indeed iterate the command sufficiently many times. By Lemma 6.4, we have a rank-1 program TowerOfTwok and a 
variable Y such that

{X1 = 〈m,0∗]} TowerOfTwok {Y= 〈x1, . . . , xn,0∗]}
where n = 2m

k and xi = 2 (for all i ≤ n). We have 2m
k ≥ 2|m|

k . Hence, the program

TowerOfTwok;2loop Y {T1;T2; . . .;Tr } (*)

does the job. It is easy to see that (*) is a program of rank 1 (the subprogram T1;T2; . . .;Tr is of rank 0 as it is a 
first-order program).

6.5. The proof of the inclusion S1 ⊆ E∗

Definition 6.5. We define the height of the (bottomless) stack 〈x1, x2, . . .], written | | 〈x1, x2, . . .] | |, by

|| 〈x1, x2, x3, . . .] || =
{

1 + || 〈x2, x3, . . .] || if x1 > 0

0 otherwise.

A stack α is stored by the program C on input m if some variable occurring in C holds α during the execution of C on 
input m. A stack bound for a program C is a function S : N → N such that any stack α stored by C on input m satisfies 
| |α| | ≤ S(m).

A running-time bound of the program C is a function T : N → N such that T (b) is an upper bound for the number of 
primitive commands (commands of the form X+

i , X−
i and (Xi toX j)) carried out when C is executed in base b (recall that 

b = max(m + 1, 2) where m is the input to C). �
Let us study a small example before we proceed with our proofs. Assume α = 〈2, 5, 2, 0, 17, 0∗]. Then we have | |α| | = 3. 

Furthermore, assume that Y holds the stack α. Then the loop 2loop Y { . . . } will execute its body 20 times because 20 is 
the number we get when we multiply the 3 first element of α.

Lemma 6.6. If T is running-time bound T for the program C, then T is also a stack bound for C.

Proof. The height of the input stack is 1 and any program has to execute at least one primitive command. If the program 
executes exactly one command, it cannot make a stack of height 2. Furthermore, when a program increases the height of a 
stack by 1, it has to execute at least one primitive instruction. This proves the lemma. �
Lemma 6.7. Let C be a program of rank 1, and let b be the execution base of C. Then, there exists k such that 2b

k is a running-time bound 
for C.

Proof. A second-order loop cannot occur inside another loop in a command of rank 1, see Definition 6.1. Thus, C will be of 
the form

C0;2loop Y1 {B1 };C1;2loop Y2 {B2 };C2; . . .

. . .;2loop Yn−1 {Bn−1 };Cn−1;2loop Yn {Bn };Cn (*)

where n ≥ 0 and C0, C1, . . . , Cn, B1, . . .Bn are first-order programs. Maybe some of the commands C0, C1, . . . , Cn are absent, 
but we can without loss of generality assume that they all are there.

At this stage it is convenient to introduce the notation exp(x, y, n) defined by

exp(x, y,0) = y and exp(x, y,n + 1) = xexp(x,y,n)

and make the following claim:
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(Claim) There exists k such that exp(b, bk, n) is a running-time bound for the program (*).

Note that (*) is executed in base b and that n and k are constants which do not depend on b. The claim states that the 
function T : N → N , where T (b) = exp(b, bk, n), is a running-time bound for (*). We prove the claim by induction on n. 
Note we can make the number bk arbitrary large by picking a large k since the execution base b always is strictly greater 
than 1.

Let n = 0. Then (*) is a first-order program. Any loop in the program will be executed maximum b − 1 times. Thus it is 
easy to see that bk will be a running-time bound for (*) when k is a sufficiently large constant. We have exp(b, bk, 0) = bk

and thus the claim holds when n = 0.
Let n > 0. Our induction hypothesis yields � such that exp(b, b�, n − 1) is a running-time bound for the command

C0;2loop Y1 {B1 };C1;2loop Y2 {B2 };C2; . . . . . .;2loop Yn−1 {Bn−1 };Cn−1 (**)

By Lemma 6.6, exp(b, b�, n − 1) is also a stack bound for (**). Hence we have | |α| | ≤ exp(b, b�, n − 1) where α denotes 
the stack held by Yn when the execution of (**) terminates. All elements stored on α will be strictly less than b. Hence, the 
loop 2loop Yn {Bn } will iterate its body Bn less than bexp(b,b�,n−1) times. Now, Bn and Cn are first-order commands, and 
thus we have �1, �2 such that b�1 and b�3 , respectively, are upper bounds for the number of primitive instructions carried 
out by Bn and Cn . Hence the number of primitive instructions carried out by the command 2loop Yn {Bn };Cn will be 
bounded by

(bexp(b,b�,n−1) × b�1 ) + b�2 .

The number of primitive commands carried out by the program (*) will be bounded by

exp(b,b�,n − 1) + ( bexp(b,b�,n−1) × b�1 ) + b�2

and thus the claim holds as we have

exp(b,b�,n − 1) + ( bexp(b,b�,n−1) × b�1 ) + b�2 ≤ bexp(b,bk,n−1) = exp(b,bk,n)

when we pick a sufficiently large k, e.g., let k = 2� + �1 + �2. This completes the proof of our claim.
The lemma follows straightforwardly from the claim. Just observe that for any n0, k0 there exists k such that 

exp(b, bk0 , n0) ≤ 2b
k . �

We are now ready to prove the inclusion S1 ⊆ E∗ . Assume A ∈ S1 (we will argue that A ∈ E∗). Thus, a rank-1 program 
C can decide if m is in A. By Lemma 6.7, we have a constant � such that 2max(m+1,2)

� is a running-time bound for C (recall 
that C with input m will be executed in base max(m + 1, 2)). Turing machines can of course simulate 2RBS programs. A 
Turing machine simulating C on input m will not execute more than 2max(m+1,2)

� primitive 2RBS instructions. Thus, it is 
not very hard to see that there will be a polynomial p(x) such that a Turing machine working in time p(2max(m+1,2)

� ) can 
decide if m is in A (this polynomial is due to the overhead the Turing machine introduces when simulating the primitives 
of 2RBS). For some sufficiently large constant k, we have p(2max(m+1,2)

� ) < 2n
k where n is the length of m, that is, n = |m|. 

Thus, a 2n
k time Turing machine can decide A. By Definition 6.2, we have A ∈ E∗ .

6.6. A conjecture

Recall that S1 denotes the set of problems decidable by a 2RBS program of rank 1, S2 denotes the set of problems 
decidable by a 2RBS program of rank 2, and so on.

The author will not be surprised if it turns out that E i+2∗ = Si , for all i ≥ 1, where E i+2∗ is the set of problems that belong 
to the Grzegorczyk class E i+2 (a definition of the Grzegorczyk classes can be found in Odifreddi [20] or Rose [24]). This is 
in some sense a natural and rather obvious conjecture, but still it will require a good deal of non-trivial technical work to 
write up a decent proof.

It is well known that E3∗ = E∗ . Thus, Theorem 6.3 is a special case of our more general conjecture. Moreover, a problem 
is primitive recursive if and only if it belongs to one of the Grzegorczyk classes E3∗ , E4∗ , E5∗ , . . .. Thus, if our conjecture holds,
2RBS will capture the class of primitive recursive problems.

7. Some remarks and references

We have argued that there is a link between implicit computational complexity theory and the theory of reversible 
computation, and we have showed that both etime and p can be captured by inherently reversible programming languages. 
In general, implicit characterizations are meant to shed light on the nature of complexity classes and the many notori-
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ously hard open problems involving such classes. Implicit characterizations by reversible formalisms might yield some new 
insights in this respect. It is beyond the scope of this paper to discuss or interpret the theorems proved above any fur-
ther, but one might start to wonder how different aspects of reversibility relate to time complexity, space complexity and 
nondeterminism. One might also ask if our characterizations are a hundred percent implicit. Why should they not be so? 
Well, the execution base is there, and the execution base is given explicitly, isn’t it? So to what extent are we dealing with 
purely implicit characterizations here? These questions may call for a long and involved, and perhaps inconclusive, discus-
sion amongst feinschmeckers. Right now, just let us say that it is beyond the scope of the paper to take that discussion any 
further. Just let us all implicitly agree that our characterizations are implicit enough to be explicitly characterized as implicit 
characterizations.

Reversible computation models have been studied for many different purposes and in widely different areas of computer 
science. Historically, much work has been devoted to what might be characterized as reversible simulations of irreversible 
computations. Throughout the literature, the use of words and phrases, like “reverse”, “inverse”, “reversibility” and “reversible 
computation”, varies significantly. The later years there has been some work of foundation nature which aims at clarifying 
notions and establishing a more standard terminology, e.g., Axelsen & Glück [2] and Yokoama et al. [26]. Such a terminology 
is certainly needed. Anyway, it should be clear that we in this paper have used the word “reversible” in a very strict sense 
and, moreover, that our programming languages are reversible in a very strong sense: Every primitive command has an 
inverse primitive command, every subcommand of a command has an inverse command, the command C contains exactly 
the same variables as its inverse (C)−1, and so on. Indeed, every command C has a natural and obvious inverse (C)−1, 
moreover, ((C)−1)−1 is syntactically equal to C. Following Matos [17], we may call such languages inherently reversible
languages.

The author is not aware of any work in reversible computing that is closely related to the work presented above, but 
the work of Matos [17] is at least faintly related. Matos introduces the inherently reversible programming language SRL 
and makes some informal observations regarding the close relationship between primitive recursive functions and functions 
implementable in SRL. This relationship is investigated further in recent work Paolini et al. [23] and Matos et al. [18], and a 
formal characterization the tight relationship between primitive recursion and SRL programs is given in [18]. The work on 
reversible computing published in Paolini et al. [22] is also faintly related to the work presented above, but this is work of 
a recursion-theoretic nature which has a different flavor than ours. Still, it is possible that studies along the lines of [22]
might lead to interesting characterizations of complexity classes.
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