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A REFINEMENT OF THE MOTIVIC VOLUME, AND

SPECIALIZATION OF BIRATIONAL TYPES

JOHANNES NICAISE AND JOHN CHRISTIAN OTTEM

Abstract. We construct an upgrade of the motivic volume by keeping track
of dimensions in the Grothendieck ring of varieties. This produces a uniform
refinement of the motivic volume and its birational version introduced by
Kontsevich and Tschinkel to prove the specialization of birational types. We
also provide several explicit examples of obstructions to stable rationality
arising from this technique.

1. Introduction

In [NS19], Shinder and the first-named author used a refinement of Denef and
Loeser’s motivic nearby fiber to construct a motivic obstruction to the stable
rationality of very general fibers of a degenerating family of smooth and proper
complex varieties. This result implies in particular that stable rationality specializes
in smooth and proper families. A variant of this method was developed by
Kontsevich and Tschinkel in [KT19] to upgrade the results to rationality instead of
stable rationality.

The principal aim of the present article is to develop a unified framework for
the invariants in [NS19] and [KT19]. The approach in [NS19] relies on the motivic
volume, a motivic specialization morphism for Grothendieck rings of varieties which
constructs a limit object for the classes of the fibers of degenerating families. It
can be viewed as a version of the nearby cycles functor at the level of Grothendieck
rings. It is closely related to the motivic nearby fiber of Denef and Loeser [DL01],
but with the crucial difference that its construction does not require the inversion
of the class of the affine line in the Grothendieck ring. This is essential for the
applications to rationality problems. The existence of the motivic volume can be
deduced from the work of Hrushovski and Kazhdan [HK06], but in [NS19] a direct
proof was given based on the weak factorization theorem and logarithmic geometry.

It was proved by Larsen and Lunts [LL03] that the stable birational type of a
smooth and proper variety over a field of characteristic zero can be read off from its
class in the Grothendieck ring of varieties. However, it is an open problem whether
this class also determines the birational type, which is why the results in [NS19]
only give information about stable birational types. This issue was circumvented
in [KT19] by working directly in the free abelian group on birational types instead
of the Grothendieck ring of varieties, and constructing an analogous specialization
morphism there.

Here we introduce a refined version of the Grothendieck ring of varieties, graded
by dimension, which detects birational types for trivial reasons. A variant of this
graded ring already appeared in [HK06] in the form of the ring !K(RES[∗]). We
then show that the arguments in [NS19] can be carried over verbatim to construct
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the motivic volume at this refined level. The result is an invariant that specializes
simultaneously to the motivic volume from [NS19] and to its birational version in
[KT19]. All the results for stable birational types in [NS19] can then immediately
be upgraded to the level of birational types, yielding a unified treatment of the
specialization results in [NS19] and [KT19].

A second new feature is that we present the construction of the motivic volume
in a slightly more general setting (this generalization is explained in detail at the
beginning of the proof of Theorem 3.3.2). We also replace as much as possible the
language of logarithmic geometry by the more widely familiar language of toroidal
embeddings. This makes the motivic volume more accessible and user-friendly. The
proofs still rely heavily on those in [NS19] and there logarithmic geometry remains
by far the most efficient and transparent framework. Still, if the reader is willing
to accept the most technical aspects of the construction as black boxes, then they
can understand and use the motivic volume without any reference to logarithmic
geometry.

Denef and Loeser’s motivic nearby fiber and the motivic volume have found
many profound applications in singularity theory and motivic Donaldson–Thomas
theory; see for instance [GLM06, Lê15, NP19]. It would be interesting to investigate
what additional information can be extracted from our refined version, beyond the
applications to birational types discussed here.

The paper is organized in the following way. Section 2 is devoted to the
Grothendieck ring of varieties. We first recall the definition of the classical
Grothendieck ring of varieties, and we give an overview of its main properties,
with an emphasis on the theorems of Bittner (Theorem 2.1.6) and Larsen & Lunts
(Theorem 2.1.10) which are the most important structural results in characteristic
zero. We explain why the Grothendieck ring detects stable birational types in
characteristic zero and why it is unclear whether it also detects birational types.
This part is not needed for the remainder of the paper, but it places the results in
their proper context. We then move on to our refinement of the Grothendieck ring
of varieties graded by dimension, and we show that it detects birational types in
arbitrary characteristic (Proposition 2.3.1). We prove analogs of the the theorems
of Bittner (Theorem 2.4.2) and Larsen & Lunts (Theorem 2.5.2). The analog
of Bittner’s theorem is an essential ingredient in the construction of the motivic
volume; the analog of the theorem of Larsen & Lunts is not used in the sequel and
is only included to further clarify the structure of the refined Grothendieck ring.

In Section 3, we present the construction of the motivic volume at the level of
the refined Grothendieck ring, which is the key invariant for the applications to
rationality problems. We define the motivic volume in terms of strictly toroidal
models, making the construction as explicit as possible (Theorem 3.3.2). The proof
of its existence is essentially the same as for the unrefined version in [NS19]; we
explain the general strategy and highlight the new elements of the proof. The main
applications to rationality problems are developed in Section 4. We deduce the
specialization of birational types in smooth and proper families (Theorem 4.1.1; this
result was originally proved in [KT19]) and we explain how every strictly toroidal
model gives rise to an obstruction to the (stable) rationality of the geometric generic
fiber (Theorem 4.2.1). Some elementary examples of such obstructions are given in
Section 4.3; further applications can be found in [NS19] and [NO19].
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Finally, in Section 5, we construct the monodromy action on the refined motivic
volume (Theorem 5.2.1). This monodromy action is an important feature of the
motivic volume and Denef and Loeser’s motivic nearby fiber, as it captures the
monodromy action on the nearby cycles complex at the motivic level.

Terminology. Let F be a field, and let X and Y be reduced F -schemes of finite
type. Then X and Y are called birational if there exist a dense open subscheme
U of X and a dense open subscheme V of Y such that the F -schemes U and V
are isomorphic. This defines an equivalence relation on the set of isomorphism
classes of reduced F -schemes of finite type; the equivalence class of X is called its
birational type. We say that X is rational if it is birational to the projective space
Pd
F for some d ≥ 0; this implies in particular that X is integral.
We say that X and Y are stably birational if X×F Pm

F is birational to Y ×F Pn
F for

somem,n ≥ 0. This again defines an equivalence relation on the set of isomorphism
classes of reduced F -schemes of finite type; the equivalence class of X is called its
stable birational type. We say that X is stably rational if it is stably birational to
SpecF ; equivalently, if X ×F Pm

F is birational to Pn
F for some m,n ≥ 0.

It is obvious that birational schemes are also stably birational, so that rationality
implies stable rationality. The converse is not true: the first counterexample was
constructed in [BCTSSD85].

Acknowledgements. It is a pleasure to thank the organizers of the conference
Rationality of Algebraic Varieties on the beautiful Schiermonnikoog Island in April
2019 for putting together the event and inviting us to submit a contribution to the
proceedings. Our investigation of a common refinement of the Grothendieck ring of
varieties and the ring of birational types was motivated by questions from Gerard
van der Geer and Lenny Taelman, and the very first sketch of this paper was made
on the trip back from Schiermonnikoog. The first-named author would also like to
thank Evgeny Shinder for the rewarding collaboration that has led to the article
[NS19], which is the basis for the present paper. We are grateful to Olivier Benoist,
Jean-Louis Colliot-Thélène, Alexander Kuznetsov, Daniel Litt, Sam Payne, Alex
Perry and Stefan Schreieder for stimulating discussions during the preparation of
this paper and [NO19]. Finally, our thanks go out to the referee for carefully reading
the manuscript and making several valuable suggestions.

Johannes Nicaise is supported by EPSRC grant EP/S025839/1, grants
G079218N of the Fund for Scientific Research–Flanders, and long term structural
funding (Methusalem grant) of the Flemish Government. John Christian Ottem is
supported by the Research Council of Norway project no. 250104.

2. The Grothendieck ring of varieties graded by dimension

2.1. Reminders on the Grothendieck ring of varieties. In this section we
give a quick overview of the classical Grothendieck ring of varieties. We refer to
[CNS18] for further background on the Grothendieck ring and its role in the theory
of motivic integration.

Let F be a field. The Grothendieck group K(VarF ) of F -varieties is the abelian
group with the following presentation.

• Generators: isomorphism classes [X ] of F -schemes X of finite type;
• Relations: whenever X is an F -scheme of finite type, and Y is a closed
subscheme of X , then [X ] = [Y ] + [X \ Y ].
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These relations are often called scissor relations because they allow to cut a scheme
into a partition by subschemes. The group K(VarF ) has a unique ring structure
such that [X ] · [X ′] = [X ×F X ′] for all F -schemes X and X ′ of finite type. The
neutral element for the multiplication is 1 = [SpecF ], the class of the point. We
denote by L = [A1

F ] the class of the affine line in K(VarF ).

Example 2.1.1. Let n be a positive integer. Partitioning Pn
F into the hyperplane

at infinity and its complement, we find

[Pn
F ] = [Pn−1

F ] + [An
F ] = [Pn−1

F ] + Ln.

Now it follows by induction on n that

[Pn
F ] = 1 + L+ . . .+ Ln

in K(VarF ).

Remark 2.1.2. The Grothendieck ring K(VarF ) is insensitive to non-reduced
structures: if X is an F -scheme of finite type and we denote by Xred its maximal
reduced closed subscheme, then the complement of Xred in X is empty, so that
[X ] = [Xred]. Thus we would have obtained the same Grothendieck ring by taking
as generators the isomorphism classes of reduced F -schemes of finite type (taking
the fibered product in this category to define the ring multiplication). In fact,
since every F -scheme of finite type can be partitioned into regular quasi-projective
F -schemes, we could even have taken the isomorphism classes of such schemes as
generators (but then some care is required in the definition of the product if F is
not perfect).

The structure of the ringK(VarF ) is still poorly understood. The main challenge
is to characterize geometrically when two F -schemes X and X ′ of finite type
define the same class in the Grothendieck ring of varieties. An obvious sufficient
condition is that X and X ′ be piecewise isomorphic, that is, can be partitioned into
subschemes that are pairwise isomorphic; then the scissor relations immediately
imply that [X ] = [X ′].

Example 2.1.3. Let C ⊂ A2
F be the affine plane cusp over F , defined by the

equation y2 − x3 = 0. Then C is piecewise isomorphic to the affine line A1
F ,

because C \ {(0, 0)} is isomorphic to A1
F \ {0}. It follows that [C] = L in K(VarF ).

However, this condition is not necessary: L. Borisov has recently given an
example of two C-schemes X and X ′ of finite type such that [X ] = [X ′] but X
and X ′ are not birational, and therefore certainly not piecewise isomorphic [Bo18].
This example is due to issues of cancellation: X and X ′ can be embedded into a
common C-scheme W of finite type such that W \X and W \X ′ can be partitioned
into pairwise isomorphic subschemes W1, . . . ,Wr and W ′

1, . . . ,W
′
r, respectively. It

follows that

[X ] = [W ]−
r∑

i=1

[Wi] = [W ]−
r∑

i=1

[W ′
i ] = [X ′],

even though X and X ′ are not piecewise isomorphic. The schemes X and X ′ in
Borisov’s example are smooth, but not proper. We do not know any such example
where X and X ′ are smooth and proper, and it is still an open question whether the
class in the Grothendieck ring detects the birational type of a smooth and proper
F -scheme Y . We will see in Corollary 2.1.11 that, when F has characteristic zero,
the class [Y ] determines the stable birational type of Y .
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The structure of K(VarF ) is particulary obscure when F has positive
characteristic. For instance, if F is an imperfect field and F ′ is a purely inseparable
finite extension of F , it is not known whether [SpecF ′] is different from [SpecF ].
The situation is better in characteristic zero, thanks to resolution of singularities
and the Weak Factorization Theorem. Let us recall two of the most powerful results
in this setting: the theorems of Bittner and Larsen & Lunts. We start with an easy
consequence of Hironaka’s resolution of singularities.

Lemma 2.1.4. Let F be a field of characteristic zero. Then the group K(VarF ) is
generated by the classes of smooth and proper F -schemes.

Proof. Let X be a reduced F -scheme of finite type. Since F has characteristic zero,
we know that X is birational to a smooth and proper F -scheme X ′; then there exist
strict closed subschemes Y and Y ′ of X and X ′, respectively, such that X \ Y is
isomorphic toX ′\Y ′. It follows from the scissor relations that [X ] = [X ′]−[Y ′]+[Y ],
and by induction on the dimension, we may assume that [Y ] and [Y ′] can be written
as Z-linear combinations of classes of smooth and proper F -schemes.

We can also give a slightly more involved argument that is often useful to find
a more explicit expression of [X ] in terms of classes of smooth and proper F -
schemes. We can partition X into separated smooth subschemes X1, . . . , Xr. Then
the scissor relations imply that [X ] = [X1]+ . . .+[Xr] in K(VarF ). Thus it suffices
to show that we can write [X ] as a linear combination of classes of smooth and
proper F -schemes when X is separated and smooth. By Hironaka’s embedded
resolution of singularities, we can find a smooth compactification X of X such that
the boundary X \X is a divisor with strict normal crossings. Let Ei, i ∈ I be the
prime components of this divisor. For every subset J of I, we set EJ = ∩j∈JEj

(in particular, E∅ = X). We endow the closed subsets EJ of X with their induced
reduced structures; then the schemes EJ are smooth and proper over F . Using the
scissor relations and an inclusion-exclusion argument, one easily checks that

(2.1.5) [X ] =
∑

J⊂I

(−1)|J|[EJ ]

in K(VarF ). �

Theorem 2.1.6 (Bittner 2004). Let F be a field of characteristic zero. We define
an abelian group KB(VarF ) by means of the following presentation.

• Generators: isomorphism classes [X ]B of connected smooth and proper F -
schemes X;

• Relations: [∅]B = 0, and, whenever X is a connected smooth and proper
F -scheme and Y is a connected smooth closed subscheme of X,

(2.1.7) [BlY X ]B − [E]B = [X ]B − [Y ]B

where BlY X denotes the blow-up of X along Y , and E is the exceptional
divisor.

For every smooth and proper F -scheme X, we set

[X ]B = [X1]
B + . . .+ [Xr]

B

where X1, . . . , Xr are the connected components of X. We endow KB(VarF ) with
the unique ring structure such that [X ]B · [X ′]B = [X ×F X ′]B for all smooth and
proper F -schemes X and X ′.
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Then there exists a unique group morphism

KB(VarF ) → K(VarF )

that maps [X ]B to [X ], for every smooth and proper F -scheme X. This morphism
is an isomorphism of rings.

Proof. This is the main part of Theorem 3.1 in [Bi04]. Let us briefly sketch the steps
of the proof. The uniqueness and existence of the morphism are straightforward: the
blow-up relations (2.1.7) are satisfied in K(VarF ) because BlY X \E is isomorphic
to X \ Y . It is also clear that this is a morphism of rings. The surjectivity of
the morphism follows from the fact that the group K(VarF ) is generated by the
classes of smooth and proper F -schemes, by Lemma 2.1.4. The principal difficulty
is showing that KB(VarF ) → K(VarF ) is injective. This is achieved by constructing
an inverse of this morphism.

Since we can partition every F -scheme of finite type into separated smooth F -
schemes X of finite type, the essential step is to define the inverse on such schemes
X (of course, one needs to check that the final construction is independent of the
choice of the partition). Let X be a strict normal crossings compactification of X
as in the proof of Lemma 2.1.4. Then a straightforward calculation shows that the
element

(2.1.8)
∑

J⊂I

(−1)|J|[EJ ]
B

in KB(VarF ) is invariant under blow-ups of smooth centers in the boundary of X
that have strict normal crossings with all the strata EJ . The Weak Factorization
Theorem [AKMW02] implies that any two strict normal crossings compactifications
of X can be connected by a chain of such blow-ups and blow-downs. It follows
that the element (2.1.8) only depends on X , and not on the chosen strict normal
crossings compactification X. Now it is not hard to show that there exists a unique
group morphism K(VarF ) → KB(VarF ) that maps [X ] to the element (2.1.8) for
every separated smooth F -scheme X of finite type. This morphism is inverse to
the morphism KB(VarF ) → K(VarF ). �

Remark 2.1.9. Bittner’s presentation remains valid we replace “proper” by
“projective”, by the same proof.

Theorem 2.1.10 (Larsen & Lunts 2003). Let F be a field of characteristic zero.
Let SBF be the set of stable birational equivalence classes {X}sb of integral1 F -
schemes X of finite type, and let Z[SBF ] be the free abelian group on the set SBF .
For every F -scheme Y of finite type, we set

{Y }sb = {Y1}sb + . . .+ {Yr}sb

in Z[SBF ], where Y1, . . . , Yr are the irreducible components of Y . In particular,
{∅}sb = 0. We endow Z[SBF ] with the unique ring structure such that

{Y }sb · {Y
′}sb = {Y ×F Y ′}sb

for all F -schemes Y and Y ′ of finite type.
Then there exists a unique group morphism

sb: K(VarF ) → Z[SBF ]

1We follow the convention that integral schemes are non-empty.
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that maps [X ] to {X}sb for every smooth and proper F -scheme X. The morphism
sb is a surjective ring morphism, and its kernel is the ideal in K(VarF ) generated
by L.

Proof. This is a combination of Theorem 2.3 and Proposition 2.7 in [LL03]. The
existence of sb is an immediate consequence of Theorem 2.1.62. Indeed, in the
setting of (2.1.7) (and excluding the trivial case Y = X), BlY X is birational to X ,

and E is birational to Y ×F P
dim(X)−dim(Y )−1
F . It is obvious that sb is unique, and

that it is a ring morphism.
The morphism sb maps L = [P1

F ] − [SpecF ] to 0, because SpecF is stably
birational to P1

F . Thus sb induces a ring morphism

sb: K(VarF )/LK(VarF ) → Z[SBF ].

We prove that this is an isomorphism by constructing an inverse. By Hironaka’s
resolution of singularities, every class in SBF has a representative X that is a
connected smooth proper F -scheme. For every m ≥ 0, we have

[X ×F Pm
F ]− [X ] = [X ](L+ L2 + . . .+ Lm)

in K(VarF ) by the scissor relations. Thus [X×F Pm
F ] and [X ] are congruent modulo

L. Moreover, the congruence class of [X ×F Pm
F ] modulo L is independent under

blow-ups of smooth closed subschemes of X×F Pm
F , because the exceptional divisor

of such a blow-up is a projective bundle over the center. Now it follows from
the Weak Factorization Theorem that the class of X in K(VarF )/LK(VarF ) only
depends on the stable birational equivalence class ofX . This yields a ring morphism

Z[SBF ] → K(VarF )/LK(VarF )

that is inverse to sb. �

Beware that sb([X ]) is usually different from {X}sb when X is not smooth and
proper. For instance, if X is a nodal cubic in P2

F , then it follows from the scissor
relations that [X ] = L in K(VarF ). Thus sb([X ]) = 0.

Corollary 2.1.11. Let F be a field of characteristic zero, and let X and X ′ be
smooth and proper F -schemes. Then X and X ′ are stably birational if and only if
[X ] ≡ [X ′] modulo L in K(VarF ).

In particular, [X ] ≡ c modulo L for some integer c if and only if every connected
component of X is stably rational; in that case, c is the number of connected
components of X.

Proof. By the scissor relations in the Grothendieck ring, we can write

[X ] = [X1] + · · ·+ [Xr]

where X1, . . . , Xr are the connected components of X . Now the result follows
immediately from Theorem 2.1.10. �

Corollary 2.1.11 shows that the Grothendieck ring of varieties detects the stable
birational type of smooth and proper schemes over fields of characteristic zero.
The analogous question in positive characteristic is open. We are not aware of any
example of a pair of smooth and proper schemes X, X ′ over a field F such that
[X ] = [X ′] in K(VarF ) and such that X and X ′ are not birational. Thus, to the

2Theorem 2.1.10 slightly predates Theorem 2.1.6, and in [LL03], the existence of sb was deduced
directly from the Weak Factorization Theorem.
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best of our knowledge, it remains an open question whether the Grothendieck ring
detects birational types of smooth and proper schemes (even in characteristic zero).
To overcome this problem, we will introduce in Section 2.2 a finer variant of the
Grothendieck ring of varieties, graded by dimension.

Remark 2.1.12. Corollary 2.1.11 is false without the assumption that X and X ′

are smooth and proper. Borisov has constructed an example of two complex Calabi-
Yau threefolds Z and Z ′ that are not birational and such that [Z×A6

C
] = [Z ′×A6

C
]

in K(VarC) (see [Bo18] and the subsequent refinement in [Ma16] and [CNS18]).
Thus Z ×C A6

C
and Z ′ ×C A6

C
are smooth complex varieties that are not stably

birational and that define the same class in the Grothendieck ring.

2.2. The graded Grothendieck ring. Let F be a field, and let d be a non-

negative integer. We define the Grothendieck group K(Var6d
F ) of F -varieties of

dimension at most d to be the abelian group with the following presentation.

• Generators: isomorphism classes [X ]d of F -schemes X of finite type and of
dimension at most d;

• Relations: whenever X is an F -scheme of finite type and of dimension at
most d, and Y is a closed subscheme of X , then

[X ]d = [Y ]d + [X \ Y ]d.

The Grothendieck group of varieties graded by dimension is the graded abelian
group

K(VardimF ) =
⊕

d≥0

K(Var6d
F ).

It has a unique structure of a graded ring such that

[X ]d · [X
′]e = [X ×F X ′]d+e

for all F -schemes X and X ′ of finite type and of dimensions at most d and e,
respectively. The identity element for the ring multiplication is the element 1 =
[SpecF ]0. With a slight abuse of notation, we will also use the symbol L to denote
the class [A1

F ]1 of the affine line in degree 1. We set τ = [SpecF ]1, the class of the

point in K(Var61
F ). The multiplicative action of τ on K(VardimF ) shifts the degree:

for every F -scheme X of finite type of dimension at most d, and for every integer
e ≥ 0, we have τe[X ]d = [X ]d+e.

The graded Grothendieck ring is related to the usual Grothendieck ringK(VarF )
in the following way.

Proposition 2.2.1. There exists a unique ring morphism

K(VardimF ) → K(VarF )

that maps [X ]d to [X ], for every non-negative integer d and every F -scheme X
of finite type and of dimension at most d. In particular, it maps L = [A1

F ]1 to
L = [A1

F ]. This morphism is surjective, and its kernel is the ideal generated by
τ − 1.

Proof. It is clear from the definitions of the Grothendieck rings that there is a
unique ring morphism mapping [X ]d to [X ]. It is also obvious that it is surjective,
and that its kernel contains τ − 1. Thus this morphism factors through a ring
morphism

K(VardimF )/(τ − 1) → K(VarF ).
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This is an isomorphism: its inverse maps [X ] to [X ]d for every F -scheme X of finite
type, where d is any integer such that d ≥ dim(X). �

2.3. Birational types. Let F be a field, and let d be a non-negative integer. We
denote by BirdF the set of birational equivalence classes of integral F -schemes X of
finite type of dimension d. The equivalence class of X will be denoted by {X}bir.
Let Z[BirdF ] be the free abelian group on the set BirdF . We set BirF = ∪d≥0Bir

d
F .

This is the set of birational equivalence classes of integral F -schemes of finite type.
We also introduce the graded abelian group

Z[BirF ] =
⊕

d≥0

Z[BirdF ].

It has a unique structure of a graded ring such that

{X}bir · {X
′}bir =

r∑

i=1

{Ci}bir

for all integral F -schemes X and X ′ of finite type, where C1, . . . , Cr are
the irreducible components of X ×F X ′ (endowed with their induced reduced
structures). For a field F of characteristic zero, this graded ring was introduced by
Kontsevich and Tschinkel in Section 2 of [KT19]; there it was called the Burnside
ring of F .

Proposition 2.3.1. There exists a unique morphism of graded rings

bir : K(VardimF ) → Z[BirF ]

such that bir([X ]d) = {X}bir when X is an integral F -scheme of finite type of
dimension d, and bir([X ]d) = 0 whenever X is an F -scheme of finite type of
dimension at most d − 1. This morphism is surjective, and its kernel is the ideal
generated by τ .

Proof. Let d be a non-negative integer, and let X be an F -scheme of finite type
and of dimension at most d. Let X1, . . . , Xr be the irreducible components of X of
dimension d, endowed with their induced reduced structures. We set

bir([X ]d) = {X1}bir + . . .+ {Xr}bir.

This definition respects the scissor relations in K(Var6d
F ), and therefore induces a

morphism of graded groups

bir : K(VardimF ) → Z[BirF ].

It follows immediately from the definitions of the ring multiplications on the source
and the target that bir is a morphism of graded rings. The uniqueness property in
the statement follows from the fact that, by the scissor relations, the element

[X ]d − [X1]d − . . .− [Xr]d

in K(Var6d
F ) can be written as a linear combination of classes [Y ]d where Y is an

F -scheme of finite type of dimension at most d− 1.
It is obvious that the morphism bir is surjective, and that its kernel contains the

ideal generated by τ . Thus it induces a ring morphism

K(VardimF )/(τ) → Z[BirF ].

This is an isomorphism: its inverse maps {X}bir to [X ]dim(X), for every integral
F -scheme X of finite type. �
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Corollary 2.3.2. If X and X ′ are reduced F -schemes of finite type of pure
dimension d, then X and X ′ are birational if and only if [X ]d ≡ [X ′]d modulo

τ in K(VardimF ).

Proof. If X1, . . . , Xr are the irreducible components of X , then

bir([X ]d) = {X1}bir + . . .+ {Xr}bir

in Z[BirF ], and the analogous property holds for X ′. Thus X and X ′ are birational
if and only if bir([X ]d) = bir([X ′]d). By Proposition 2.3.1, this is equivalent to the

property that [X ]d ≡ [X ′]d modulo τ in K(VardimF ). �

Corollary 2.3.2 tells us that the graded version of the Grothendieck ring detects
birational types; this is its main advantage over the classical Grothendieck ring of
varieties.

Example 2.3.3. Let Z and Z ′ be the complex Calabi-Yau threefolds from Borisov’s
example (see Remark 2.1.12). Then Z×CA

6
C
and Z ′×CA

6
C
define the same class in

K(VarC). However, since these varieties are not birational, it follows from Corollary

2.3.2 that their classes in K(Var69
C

) are distinct. Thus the difference of these two

classes lies in the kernel of the map K(VardimC ) → K(VarC) defined in Proposition
2.2.1.

Remark 2.3.4. A different manifestation of the isomorphism in Proposition 2.3.1
also appears in Proposition 2.2 of [KT21].

2.4. A refinement of Bittner’s presentation. We will now establish an
analog of Bittner’s presentation (Theorem 2.1.6) for the graded Grothendieck ring

K(VardimF ), where F is a field of characteristic zero.

For every non-negative integer d, we define an abelian group KB(Var6d
F ) by

means of the following presentation.

• Generators: isomorphism classes [X ]Bd of connected smooth and proper
F -schemes X of dimension at most d;

• Relations: [∅]Bd = 0, and, whenever X is a connected smooth and proper
F -scheme of dimension at most d, and Y is a connected smooth closed
subscheme of X , then

(2.4.1) [BlY X ]Bd − [E]Bd = [X ]Bd − [Y ]Bd

where BlY X denotes the blow-up of X along Y , and E is the exceptional
divisor.

Theorem 2.4.2. Let F be a field of characteristic zero. For every non-negative
integer d, there exists a unique group morphism

KB(Var6d
F ) → K(Var6d

F )

that maps [X ]Bd to [X ]d, for every connected smooth and proper F -scheme X of
dimension at most d. This morphism is an isomorphism.

Proof. One can simply copy the proof of Theorem 3.1 in [Bi04]: all the schemes
involved in the argument have dimension at most d (see Theorem 2.1.6 for a sketch
of the proof). �
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2.5. A refinement of the theorem of Larsen & Lunts. We can also prove
a refinement of the theorem of Larsen and Lunts (Theorem 2.1.10) in the graded
setting. This refinement will not be used in the remainder of the paper, because
we already know from Corollary 2.3.2 that the graded Grothendieck ring detects
birational types.

Let F be a field, and let d be a non-negative integer. Let X and X ′ be
irreducible F -schemes of finite type such that dim(X) ≤ d and dim(X ′) ≤ d.

We say that X and X ′ are d-stably birational if X ×F P
d−dim(X)−1
F is birational to

X ′ ×F P
d−dim(X′)−1
F . Here and below, we use the convention that P−1

F = SpecF .
See Remark 2.5.4 for a comment on the appearance of the term −1 in the
dimensions of the projective spaces. Note that, if d = dim(X) = dim(X ′) or
d − 1 = dim(X) = dim(X ′), then X and X ′ are d-stably birational if and only if
they are birational.

We denote by SB6d
F the set of d-stable birational equivalence classes of integral

F -schemes X of finite type of dimension at most d. The equivalence class of X will

be denoted by {X}sb,d. Let Z[SB6d
F ] be the free abelian group on the set SB6d

F .
For every F -scheme Y of finite type of dimension at most d, we set

{Y }sb,d = {Y1}sb,d + . . .+ {Yr}sb,d

in Z[SB6d
F ], where Y1, . . . , Yr are the irreducible components of Y (with their

induced reduced structures). In particular, {∅}sb,d = 0. We consider the graded
abelian group

Z[SBdim
F ] =

⊕

d≥0

Z[SB6d
F ].

and endow it with the unique structure of a graded ring such that

{Y }sb,d · {Y
′}sb,e = {Y ×F Y ′}sb,d+e

whenever d and e are non-negative integers, and Y and Y ′ are F -schemes of finite
type of dimensions at most d and e, respectively.

Lemma 2.5.1. For all integers d and n such that d ≥ n ≥ 0 and (d, n) 6= (1, 1),

we have [Pn
F ]d ≡ τd modulo [A1

F ]2 in K(VardimF ).

Proof. If n = 0 then the assertion is trivial; thus we may assume that n ≥ 1 and
d ≥ 2. The scissor relations imply that

[Pn
F ]d = [Spec k]d + [A1

F ]d + . . .+ [An
F ]d.

Thus we can write

[Pn
F ]d − τd = [A1

F ]2(τ
d−2 + . . .+ [An−1

F ]d−2)

in K(VardimF ). �

Theorem 2.5.2. Let F be a field of characteristic zero. Then there exists a unique
morphism of graded rings

sbdim : K(VardimF ) → Z[SBdim
F ]

such that sbdim([X ]d) = {X}sb,d for every non-negative integer d and every smooth
and proper F -scheme X of dimension at most d.

The morphism sbdim is surjective, and its kernel is the ideal generated by τL =
[A1

F ]2.
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Proof. The existence and uniqueness of the morphism sbdim follow immediately
from Theorem 2.4.2; note that, in the blow-up relations (2.4.1) (and excluding
the trivial case Y = X), the exceptional divisor E is birational to Y ×F

Pdim(X)−dim(Y )−1, so that E and Y are dim(X)-stably birational. The kernel of
sbdim contains [A1

F ]2 = [P1
F ]2 − τ2, because P1

F and SpecF are 2-stably birational.
Thus sbdim induces a morphism of graded rings

sbdim : K(VardimF )/([A1
F ]2) → Z[SBdim

F ].

We will show that this is an isomorphism by constructing its inverse.
For every smooth and proper F -scheme Y and every integer d ≥ dim(Y ),

the residue class of [Y ]d in K(VardimF )/([A1
F ]2) is invariant under any blow-up

of a smooth strict closed subscheme Z in Y . Indeed, we may assume that the
codimension of Z in Y is at least 2; if we denote by E the exceptional divisor in
the blow-up BlZY of Y at Z, then the scissor relations imply that

[BlZY ]d − [Y ]d = [E]d − [Z]d

= [Z]dim(Z)([P
dim(Y )−dim(Z)−1
F ]d−dim(Z) − τd−dim(Z))

in K(VardimF ), and this element is divisible by [A1
F ]2 by Lemma 2.5.1. Therefore,

by the Weak Factorization Theorem [AKMW02], the residue class of [Y ]d in

K(VardimF )/([A1
F ]2) only depends on the birational equivalence class of Y .

Now let X be a non-empty connected smooth and proper F -scheme, and let d be

an integer such that d ≥ dim(X). Then the residue class of [X ×F P
d−dim(X)−1
F ]d

in K(VardimF )/([A1
F ]2) only depends on the birational equivalence class of X ×F

P
d−dim(X)−1
F ; in other words, it only depends on the d-stable birational equivalence

class of X . But we also have [X×F P
d−dim(X)−1
F ]d = [X ]d in K(VardimF )/([A1

F ]2) by
Lemma 2.5.1. Thus we obtain a morphism of graded abelian groups

Z[SBdim
F ] → K(VardimF )/([A1

F ]2) : {X}sb,d 7→ [X ]d

that is inverse to sbdim. �

Corollary 2.5.3. Let F be a field of characteristic zero.

(1) Let X and X ′ be connected smooth and proper F -schemes. Let d be an
integer such that d ≥ dim(X) and d ≥ dim(X ′). Then X and X ′ are

d-stably birational if and only if [X ]d ≡ [X ′]d modulo [A1
F ]2 in K(VardimF ).

(2) Let X be a smooth and proper F -scheme. Then [X ] ≡ c modulo [A1
F ]2

for some integer c if and only if, for every connected component C of X,

the scheme C ×F P
d−dim(C)−1
F is rational; in that case, c is the number of

connected components of X.

Proof. This follows immediately from Theorem 2.5.2. �

Remark 2.5.4. One can also formulate a weaker version of Theorem 2.5.2,
replacing the exponents d − dim(X) − 1 and d − dim(X ′) − 1 in the definition
of d-stable birational equivalence by d − dim(X) and d − dim(X ′). With that
definition, the morphism sbdim constructed in Theorem 2.5.2 has kernel generated
by L = [A1

F ]1, rather than [A1
F ]2.
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3. Dimensional refinement of the motivic volume

3.1. The motivic volume. Let k be a field of characteristic zero, and set

K =
⋃

n>0

k((t1/n)), R =
⋃

n>0

k[[t1/n]].

The field K is a henselian valued field with valuation ring R with respect to the
t-adic valuation

ordt : K
× → Q.

If k is algebraically closed then K is an algebraic closure of the Laurent series field
k((t)), but we do not make this assumption.

In [NS19], Shinder and the first-named author constructed a ring morphism

Vol : K(VarK) → K(Vark),

called the motivic volume. It maps [A1
K ] to [A1

k] and has the property that for every
smooth and proper R-scheme X , one has Vol([XK ]) = [Xk]. This ring morphism
can be viewed as a refinement of the motivic nearby fiber of Denef and Loeser
[DL01], where the refinement consists of the fact that we do not need to invert
[A1

k] in the target; this is crucial for applications to rationality problems. If k is
algebraically closed, then the existence of the morphism Vol follows immediately
from the work of Hrushovski and Kazhdan [HK06].

The fact that Vol([A1
K ]) = [A1

k] implies that the morphism Vol factors through
a ring morphism K(VarK)/L → K(Vark)/L which, by Theorem 2.1.10, we can
identify with a ring morphism

Volsb : Z[SBK ] → Z[SBk].

If X is a connected smooth and proper R-scheme, then Volsb maps the stable
birational equivalence class of XK to that of Xk. Since Vol([SpecK]) = [Spec k],
the morphism Volsb maps the class of stably rational K-varieties to the class of
stably rational k-varieties. It then follows easily that stable rationality of geometric
fibers specializes in smooth and proper families, which was one of the main results
of [NS19].

The main purpose of the present article is to upgrade the motivic volume to a
morphism of graded rings

Vol : K(VardimK ) → K(Vardimk )

that maps [SpecK]1 to [Spec k]1 and fits into a a commutative diagram

K(VardimK )
Vol

−−−−→ K(Vardimk )
y

y

K(VarK) −−−−→
Vol

K(Vark)

where the vertical morphims are the forgetful maps from Proposition 2.2.1. The
refined volume induces a morphism of graded rings

K(VardimK )/([SpecK]1) → K(Vardimk )/([Spec k]1)

which, by Proposition 2.3.1, can be identified with a morphism of graded rings

Volbir : Z[BirK ] → Z[Birk].

This is precisely the birational specialization morphism from [KT19].
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The construction of the motivic volume in [NS19] was phrased in the language
of logarithmic geometry. For readers familiar with that language it will be an easy
exercise to check that all the arguments in [NS19] still apply to the dimensional
refinement of the Grothendieck ring. Therefore, we decided not to reproduce the
proofs here, but to explain the main properties in a more explicit way, avoiding as
much as possible the language of logarithmic schemes. We hope that this will make
the theory more user-friendly. It also makes our formula for the motivic volume
a bit more general, because our class of strictly toroidal models (defined below) is
slightly more general than the log smooth models that were considered in [NS19],
since one does not need to assume that the log structure is defined globally on the
model. This will be explained in more detail in the proof of Theorem 3.3.2.

There are two further differences in presentation compared to Appendix A of
[NS19]: we directly work over K, rather than k((t)), which means that we ignore
the monodromy action of the profinite group scheme µ̂ of roots of unity over k (we
will come back to this monodromy action in Section 5). Second, while the formulas
in [NS19] were stated in terms of open strata in the special fibers of log smooth
models, we will also express our formulas in terms of closed strata. This is more
convenient for applications to rationality questions, and for a comparison with the
invariant defined in [KT19]. Passing between open and closed strata can always be
done by means of basic inclusion-exclusion arguments (see Lemma 3.3.1).

Finally, let us also point out a typo in [NS19]: in the formulas in Theorem A.3.9
and Propostion A.4.1, the factor (L − 1)rv(σ) should be (L − 1)rv(σ)−1, like in the
expression for VolK(X) in the middle of page 407.

3.2. Strictly toroidal models. We say that a monoid M is toric if it is sharp3,
finitely generated, integral, saturated and torsion free. Toric monoids are precisely
those monoids that are isomorphic to the monoid of lattice points in a strictly
convex rational polyhedral cone σ in Rd, for some positive integer d. There is an
intrinsic definition of the faces of M and their dimensions; if M = σ ∩ Zd then
the faces of M are the submonoids of the form τ ∩ Zd with τ a face of σ, and
the dimension of τ ∩ Zd equals the dimension of τ . For any ring A, we denote by
A[M ] the monoid A-algebra associated with M . Its elements are the finite A-linear
combinations of monomials χm with m in M .

Let X be a flat separated R-scheme of finite type, and let x be a point of the
special fiber Xk. We say that X is strictly toroidal at x if there exist a toric monoid
M , an open neighbourhood U of x in X , and a smooth morphism of R-schemes

(3.2.1) U → SpecR[M ]/(χm − tq)

where q is a positive rational number, and m is an element of M such that
k[M ]/(χm) is reduced. This implies in particular that X is normal at x and
Xk is reduced at x. We say that X is strictly toroidal if it is so at every point x
of Xk.

Example 3.2.2. A flat separated R-scheme X of finite type is called strictly semi-
stable if, Zariski-locally, it admits a smooth morphism to a scheme of the form

(3.2.3) SpecR[z1, . . . , zn]/(z1 · . . . · zn − tq)

3A monoid M is called sharp if the only invertible element of M is the identity.
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for some n ≥ 1 and some positive rational number q. Then X is also strictly
toroidal (take M = Nn and set m = (1, . . . , 1)). Every smooth and proper K-
scheme X has a strictly semi-stable proper R-model: we can descend X to k((t1/d))
for some d > 0; by Hironaka’s resolution of singularities, we can then find a proper
regular k[[t1/d]]-model Y whose special fiber is a divisor with strict normal crossings
(not necessarily reduced). An elementary local calculation now shows that the
normalization of Y ×k[[t1/d]] R is strictly semi-stable proper R-model of X .

Example 3.2.4. The class of strictly toroidalR-models is more flexible than that of
strictly semi-stable models. This is useful in applications to rationality problems,
as one is allowed to bypass an explicit resolution of singularities over k[[t]]. For
instance, one can skip the construction in Lemma 2.2 of Shinder’s paper [Sh19];
other applications are given in Section 4.3 and in [NO19].

Let f0 ∈ k[z0, . . . , zn] be a general homogeneous polynomial of positive degree
d0. Let f1, . . . , fr ∈ k[z0, . . . , zn] be general homogeneous polynomials of positive
degrees d1, . . . , dr, respectively, such that d1 + . . .+ dr = d0. Then

X = ProjR[z0, . . . , zn]/(tf0 − f1 · . . . · fr)

is strictly toroidal, but not strictly semi-stable if r ≥ 2 and n ≥ 3: locally around
the singular points of Xk where f0 vanishes, there is no smooth morphism to a
scheme of the form (3.2.3).

To see that X is strictly toroidal, let x be a point on Xk, and let I be the set of
indices i ∈ {0, . . . , r} such that fi(x) = 0. After a permuation of the coordinates zj,
we may assume that z0(x) 6= 0. Since the polynomials fi are general, the regular

functions fi/z
di

i with i ∈ I form a part of a regular system of local parameters in
OPn

R,x. Therefore, there exists an open neighbourhood of x in X that admits a
smooth morphism to the R-scheme

Y = SpecR[yi | i ∈ I]/(tw −
∏

i∈I\{0}

yi)

where w = y0 if 0 ∈ I and w = 1 otherwise. In the latter case, Y , and therefore
X , are strictly semi-stable and, thus, also strictly toroidal. In the former case, Y

is isomorphic to the R-scheme

SpecR[M ]/(t− χm)

where M is the quotient of the monoid NI×N by the congruence relation generated
by

(e0, 1) ∼ (
∑

i∈I\{0}

ei, 0),

where (ei)i∈I is the standard basis of NI , andm is the residue class of (0, 1) ∈ NI×N.

If X is a strictly toroidal R-scheme, then a stratum E of Xk is a connected
component of the intersection of a non-empty set of irreducible components of Xk.
We denote by codim(E) the codimension of E in Xk, and by S(X ) the set of strata
in Xk. The interior Eo of a stratum E is the complement in E of the union of
strictly smaller strata. This interior Eo is a connected smooth separated k-scheme
of finite type, but E may have singularities along the boundary E \Eo. All of these
singularities are strictly toroidal, in the sense that E admits Zariski-locally an étale
morphism to a toric k-variety.
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We also attach to E an element in K(Vardimk ) given by the formula

P (E) =
∑

E′⊃E

[G
codim(E′)
m,k ]codim(E)

where the sum is taken over all the strata E′ in Xk that contain E. If E is
contained in precisely codim(E) + 1 irreducible components of Xk, then P (E) =

[P
codim(E)
k ]codim(E) because the sum in the definition corresponds to the partition of

P
codim(E)
k into torus orbits. This happens for instance when the toroidal structure

of X at the generic point of E is simplicial. In general, one can write P (E) as the
class of a proper toric k-variety of dimension codim(E), which can be computed
explicitly from the toroidal structure (that is, the monoid M) at the generic point
of E. The only thing that matters for our applications is that the image of P (E)
in Z[Birk] with respect to the morphism in Proposition 2.3.1 is always equal to

{P
codim(E)
k }bir; this follows immediately from the definition of P (E).

3.3. Construction of the motivic volume.

Lemma 3.3.1. If X is a strictly toroidal R-scheme, then for every e ≥ dim(Xk),
∑

E∈S(X )

(−1)codim(E)[Eo ×k G
codim(E)
m,k ]e =

∑

E∈S(X )

(−1)codim(E)[E]e−codim(E)P (E).

Proof. Every stratum E in Xk is the disjoint union of its open substrata (E′)o, so
that

[E]e−codim(E) =
∑

E′⊂E

[(E′)o]e−codim(E)

inK(Vardimk ). Thus we can write the right hand side of the equality in the statement
as ∑

E∈S(X )

∑

E′⊂E

(−1)codim(E)[(E′)o]e−codim(E)P (E)

=
∑

E′∈S(X )

(
[(E′)o]e−codim(E′)

∑

E⊃E′

(−1)codim(E)P (E)τdim(E)−dim(E′)

)
.

By the definition of the element P (E), we have for every E′ in S(X ) that
∑

E⊃E′

(−1)codim(E)P (E)τdim(E)−dim(E′)

=
∑

E⊃E′

(
(−1)codim(E)

∑

E′′⊃E

[G
codim(E′′)
m,k ]e−dim(E′)

)

=
∑

E′′⊃E′

(
[G

codim(E′′)
m,k ]e−dim(E′)

∑

E′⊂E⊂E′′

(−1)codim(E)

)
.

We fix a stratum E′′ in Xk that contains E′. Since X is strictly toroidal, there
exists an inclusion preserving bijective correspondence between the strata E in Xk

such that E′ ⊂ E ⊂ E′′, and the strict faces of a strictly convex rational polyhedral
cone σ; the dimension of the face is equal to the dimension of the corresponding
stratum minus dim(E′). It follows that

∑

E′⊂E⊂E′′

(−1)codim(E)
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is equal to (−1)codim(E′) times the compactly supported Euler characteristic of σ,
which is 1 if E′ = E′′ (then σ has dimension 0) and 0 otherwise. Therefore,

∑

E′′⊃E′

(
[G

codim(E′′)
m,k ]e−dim(E′)

∑

E′⊂E⊂E′′

(−1)codim(E)

)

= (−1)codim(E′)[G
codim(E′)
m,k ]e−dim(E′)

and this implies the desired equality. �

The dimensional refinement of the motivic volume is characterized by the
following theorem.

Theorem 3.3.2. There exists a unique ring morphism

Vol: K(VardimK ) → K(Vardimk )

such that for every strictly toroidal proper R-scheme X with smooth generic fiber
X = XK , and for every integer e ≥ dim(X), we have

Vol([X ]e) =
∑

E∈S(X )

(−1)codim(E)[Eo ×k G
codim(E)
m,k ]e(3.3.3)

=
∑

E∈S(X )

(−1)codim(E)[E]e−codim(E)P (E).(3.3.4)

Proof. The main difference with the set-up in Appendix A of [NS19] is that we do
not have a globally defined log structure on X such that the structural morphism
to SpecR with its standard log structure is smooth. In the language of toroidal
embeddings [KKMS73], the problem can be described in the following way. Let
U be an open subscheme of X as in (3.2.1) and let R0 be a finite extension of
k[[t]] in R such that the morphism (3.2.1) is obtained from a smooth morphism of
R0-schemes

U0 → SpecR0[M ]/(tq − χm)

by extension of scalars to R. The pullback of the toric boundary on SpecR0[M ]
is a divisor D on U0 such that U0 \D → U0 is a toroidal embedding without self-
intersection over the discrete valuation ring R0 in the sense of [KKMS73]. But the
divisors D do not necessarily glue to a divisor on the whole of X .

To resolve this issue, we first define a local variant of the motivic volume. Let Y

be a separated flat R-scheme of finite type of pure relative dimension d, with smooth
generic fiber YK . By resolution of singularities and the semi-stable reduction
theorem, we can find a positive integer n, a model Y0 for Y over R0 = k[[t1/n]]
and a proper morphism of R0-schemes h : Z → Y0 such that h is an isomorphism
on the generic fibers, Z is regular, and Zk is a reduced divisor with strict normal
crossings. Then we define the motivic volume of Y as

Vol(Y ) =
∑

E∈S(Z )

(−1)codim(E)[Eo ×k G
codim(E)
m,k ]d ∈ K(Vardimk ).

It can be deduced from the weak factorization theorem in [AT19] and some
elementary calculations that this definition only depends on Z , and not on the
choices of n, Y0 and Z : the arguments in Appendix A of [NS19] immediately carry
over to our setting (see in particular Propositions A.3.5 and A.3.8). It is clear from
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the definition that Vol(Y ) is local on Y : for every finite open cover {Uα |α ∈ A}
of Y , we have

Vol(Y ) =
∑

∅6=B⊂A

(−1)|B|−1Vol(∩β∈BUβ)

in K(Vardimk ).
The next step is to prove that, when X is a strictly toroidal R-scheme of pure

relative dimension d with smooth generic fiber, we still have

Vol(X ) =
∑

E∈S(X )

(−1)codim(E)[Eo ×k G
codim(E)
m,k ]d

in K(Vardimk ). Since both sides of the expression are local on X , we may assume
that there exists an étale morphism X → SpecR[M ]/(tq − χm) as in (3.2.1),
which descends to an étale morphism X0 → SpecR0[M ]/(tq−χm) over some finite
extension R0 of k[[t]] in R. Denote by D the pullback to X0 of the toric boundary
of SpecR0[M ]. Then the open embedding X0 \D → X0 is a toroidal embedding
without self-intersections in the sense of [KKMS73], and one can use a suitable
subdivision of the associated cone complex to construct, over some finite extension
of R0, a proper morphism Z → X0 that is an isomorphism on the generic fibers
and such that Z is regular and Zk is a reduced divisor with strict normal crossings.
A toric calculation shows that the expression

∑

E∈S(X )

(−1)codim(E)[Eo ×G
codim(E)
m,k ]d

remains invariant under this modification. This calculation is carried out in Section
A.2 of [NS19] in the language of logarithmic schemes.

Now let X be a connected smooth and proper K-scheme of dimension d, and let
X be a strictly toroidal proper R-model of X . Since any pair of proper R-models of
X can be dominated by a common toroidal proper R-model, the above arguments
imply that Vol(X ) only depends on X . Thus for every integer e ≥ d, we may
define

Vol([X ]e) = Vol(X )τe−d =
∑

E∈S(X )

(−1)codim(E)[Eo ×k G
codim(E)
m,k ]e.

The equality of the expressions (3.3.3) and (3.3.4) follows from Lemma 3.3.1.
The final step of the proof is to show that Vol([X ]e) is multiplicative in [X ]e

and satisfies the blow-up relations in Bittner’s presentation 2.4.2. Multiplicativity
follows easily from the fact that the product of two strictly toroidal R-schemes is
again strictly toroidal (see [NS19, A.3.7]). Let Y be a connected smooth strict
closed subscheme of X , and let BlY X → X be the blow-up of X along Y , with
exceptional divisor E. We can find a proper strictly toroidal R-model X of X
such that the schematic closure Y of Y in X has transversal intersections with the
special fiber Xk. Then Y is a strictly toroidal proper R-model of Y . Moreover,
the blow-up BlY X of X along Y is a strictly toroidal proper R-model of BlY X ,
and the schematic closure of E in BlY X is a strictly toroidal proper R-model of
E. Now a direct calculation shows that

Vol([X ]e)−Vol([Y ]e) = Vol([BlY X ]e)−Vol([E]e)

in K(Vardimk ), for all integers e ≥ d. �
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Corollary 3.3.5. There exist unique ring morphisms

Volbir : Z[BirK ] → Z[Birk], Volsb : Z[SBK ] → Z[SBk]

such that for every strictly toroidal proper R-scheme X with smooth generic fiber
X = XK , we have

Volbir({X}bir) =
∑

E∈S(X )

(−1)codim(E){E ×k P
codim(E)
k }bir,(3.3.6)

Volsb({X}sb) =
∑

E∈S(X )

(−1)codim(E){E}sb.(3.3.7)

In particular, if X is smooth and proper over R, then Volbir({X}bir) = {Xk}bir
and Volsb({X}sb) = {Xk}sb.

Proof. Since SpecR is a strictly toroidal proper R-model of SpecK, the motivic
volume Vol maps [SpecK]d to [Spec k]d for every d ≥ 0. It follows from Proposition
2.3.1 that Vol factors through a ring morphism Volbir; it satisfies the formula in the

statement because bir(P (E)) = {P
codim(E)
k }bir for every stratum E in Xk. Since

Pn
R is a strictly toroidal proper R-model of Pn

K for every n ≥ 0, the morphism Volbir
maps {Pn

K}bir to {Pn
k}bir. Because Volbir is also multiplicative, it factors through a

morphism Volsb as in the statement of the corollary. �

4. Applications to rationality problems

4.1. Specialization of birational types. A first application of Corollary 3.3.5
is that it settles the long-standing question of specialization of (stable) birational
equivalence. The case of stable birational equivalence was first proved in [NS19];
the stronger result for birational equivalence follows from the results in [KT19].
This application only uses the special case of formulas (3.3.6) and (3.3.7) where X

is smooth over R.

Theorem 4.1.1. Let S be a Noetherian scheme of characteristic zero, and let
X → S and Y → S be smooth and proper S-schemes. For every point s of
S, we fix a geometric point s supported at s. We define subsets Sbir(X ,Y ) and
Ssb(X ,Y ) of S in the following way:

Sbir(X ,Y ) = {s ∈ S |X ×S s ∼bir Y ×S s},

Ssb(X ,Y ) = {s ∈ S |X ×S s ∼sb Y ×S s},

where ∼bir and ∼sb denote birational equivalence and stable birational equivalence,
respectively. Then Sbir(X ,Y ) and Ssb(X ,Y ) are countable unions of closed
subsets of S.

Proof. It follows from a standard Hilbert scheme argument that Sbir(X ,Y ) and
Ssb(X ,Y ) are countable unions of locally closed subsets of S; see for instance
Proposition 2.3 in [dFF13], which is stated in a more restrictive setting but whose
proof also confirms our more general statement. Therefore, it is sufficient to prove
that Sbir(X ,Y ) and Ssb(X ,Y ) are closed under specialization. Now one easily
reduces to the case where S = Spec k[[t]] and k is algebraically closed; see the proof
of Theorem 4.1.4 in [NS19]. Then X ×S SpecR and Y ×S SpecR are smooth and
proper R-schemes, and Corollary 3.3.5 implies that Xk is birational (resp. stably
birational) to Yk if XK is birational (resp. stably birational) to YK . �
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Corollary 4.1.2. Let S be a Noetherian scheme of characteristic zero, and let
X → S be a smooth and proper S-scheme. For every point s of S, we fix a
geometric point s supported at s. We define subsets Srat(X ) and Ssrat(X ) of S in
the following way:

Srat(X ) = {s ∈ S |X ×S s is rational},

Ssrat(X ) = {s ∈ S |X ×S s is stably rational}.

Then Srat(X ) and Ssrat(X ) are countable unions of closed subsets of S.

Proof. This follows immediately from Theorem 4.1.1, because

Srat(X ) =
⋃

n≥0

Sbir(X ,Pn
S)

and Ssrat(X ) = Ssb(X , S). If S is connected, we simply have Srat(X ) =
Sbir(X ,Pn

S) with n the dimension of the fibers of X → S. �

Countable unions cannot be avoided in the statements of Theorem 4.1.1 and
Corollary 4.1.2: in [HPT18a], Hassett, Pirutka and Tschinkel have constructed a
smooth and proper family X → S over a complex variety S such that Srat is dense
in S but Ssrat 6= S.

4.2. Obstruction to stable rationality. By contraposition, we can also use
Corollary 3.3.5 as an obstruction to rationality or stable rationality of XK .

Theorem 4.2.1. Let X be a strictly toroidal proper R-scheme. If
∑

E∈S(X )

(−1)codim(E){E × P
codim(E)
k }bir 6= {Spec k}bir

in Z[Birk], then XK is not rational. Similarly, if
∑

E∈S(X )

(−1)codim(E){E}sb 6= {Spec k}sb

in Z[SBk], then XK is not stably rational. Here the sums are taken over the strata
E in Xk.

Proof. This follows immediately from Corollary 3.3.5. �

These obstructions are not always easy to use in practice, because one needs to
control the cancellations in the alternating sums, and thus understand the (stable)
birational equivalences between the individual strata. Let us look at an interesting
special case where cancellations do not occur.

Corollary 4.2.2. Let X be a strictly toroidal proper R-scheme. Suppose that
every connected component of every stratum E of even (resp. odd) codimension in
Xk is stably rational, and that at least one connected component of some stratum of
odd (resp. even) codimension in Xk is not stably rational. Then XK is not stably
rational.

Proof. The assumption implies that all the terms appearing with a positive
(resp. negative) sign in the sum

∑

E∈S(X )

(−1)codim(E){E}bir



A REFINEMENT OF THE MOTIVIC VOLUME 21

are integer multiples {Spec k}sb, while at least one term with opposite sign is not
a multiple of {Spec k}sb. Thus the whole sum is different from {Spec k}sb. �

In order to apply Theorem 4.2.1 and Corollary 4.2.2 to find new classes of
non-stably rational varieties, one always needs non-trivial input, namely, a strictly
toroidal degeneration such that at least one stratum in the special fiber is not stably
rational and such that one can control the potential cancellations in the alternating
sum of stable birational types. A convenient method to produce interesting strictly
toroidal degenerations is provided by tropical geometry; this method is used in
[NO19] to obtain various new stable irrationality results. The upshot of this
technique is that one can deduce stable irrationality of a very general member
of a family of varieties from the stable irrationality of special varieties in lower
dimensions and/or degrees.

4.3. Examples. We will discuss a few applications of the obstruction to stable
rationality in Theorem 4.2.1. Examples 4.3.1, 4.3.2, 4.3.3 and 4.3.4 have already
been obtained by different methods in the literature; here our aim is merely to
illustrate the general technique. To the best of our knowledge, Examples 4.3.5 and
4.3.6 are new. More elaborate applications can be found in [NO19], where, among
other results, we prove the stable irrationality of very general quartic fivefolds and
various new classes of complete intersections (including very general (2, 3) complete
intersections in P6).

Throughout this section, we denote by k an algebraically closed field of
characteristic zero.

Example 4.3.1. Our first example is taken from Theorem 4.3.1 in [NS19]. We
will deduce from Theorem 4.2.1 that a very general quartic double solid over k is
not stably rational; this is a special case of a result by Voisin [Vo15]. By Corollary
4.1.2, it suffices to construct one non-stably rational smooth quartic double solid
over some algebraically closed field of characteristic zero; our base field will be the
field K of Puiseux series over k = C.

As input we use Artin and Mumford’s famous example of a stably irrational
quartic double solid Y0 over C with only isolated ordinary double points as
singularities [AM]. Let F0 ∈ C[z0, . . . , z3] be a homogeneous degree 4 polynomial
that defines the ramification divisor D0 of the double cover Y0 → P3

C
. Let F be a

general homogeneous degree 4 polynomial in C[z0, . . . , z3]. Let D be the divisor in
P3
C[t] defined by F0 − tF = 0 and let Y → P3

C[t] be the double cover ramified along

D . Then Y is a regular proper C[t]-scheme with special fiber Y0; its generic fiber is
a smooth quartic double solid. Let Y ′ → Y be the blow-up at the singular points
of Y + 0 and let X be the normalization of Y ′ ×C[t] R. By Example 3.2.2, the
R-scheme X is strictly semi-stable. Its special fiber has a unique stably irrational
stratum, namely, the strict transform of Y0. Thus, it follows from Theorem 4.2.1
that the smooth quartic double solid XK is stably irrational.

Example 4.3.2. The next application concerns stable non-rationality of very
general quartic hypersurfaces of dimensions 4 and 5. In the fourfold case, this
was first proved by Totaro as a special case of the general bound he established in
[To16]; this bound was further improved (and extended to positive characteristic)
by Schreieder in [Sch19]. The fivefold case was first proved in [NO19], as as an
application of the tropical techniques we develop in that paper. Here we will treat
both cases in a uniform way, without invoking tropical methods.
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Let n ∈ {4, 5} and let F ∈ k[z0, . . . , zn+1] be a homogeneous polynomial of
degree 4, which we choose to be very general subject to the condition that F is
invariant under the transposition of the variables zn and zn+1. Set

X = ProjR[z0, . . . , zn+1, y]/(yt− znzn+1, y
2 − F )

where the variable y has weight 2. The generic fiber XK is a smooth quartic
hypersurface in Pn+1

K (we can make the substitution y = znzn+1/t because t is
invertible in K).

The R-scheme X is strictly toroidal: away from the locus Z defined by y = t =
zn = zn+1 = 0, the scheme

X
′ = Projk[[t]][z0, . . . , zn+1, y]/(yt− znzn+1, y

2 − F )

is regular and its special fiber is a reduced divisor with strict normal crossings, so
that X = X ′ ×k[t] R is strictly semi-stable away from Z. On the other hand, for
every i in {0, . . . , n− 1}, the projection morphism

D+(zi) → SpecR

[
zn
zi

,
zn+1

zi
,
y

z2i

]
/

(
y

z2i
t−

zn
zi

zn+1

zi

)

is smooth along Z ∩D+(zi), so that X is also strictly toroidal along Z.
The special fiber Xk has three strata. The two irreducible components E1 and

E2, given by zn = 0 and zn+1 = 0, are isomorphic because of the symmetry of F .
When n = 4, their intersection is a very general quartic double solid, and thus not
stably rational by Example 4.3.1. When n = 5, we conclude similarly using the
result that very general quartic double fourfolds over k are also not stably rational,
by [HPT19].

Thus, in each case, we have

{E1}sb + {E2}sb − {E1 ∩E2}sb = 2{E1}sb − {E1 ∩ E2}sb 6= {Spec k}sb

in Z[SBk], and it follows from Theorem 4.2.1 that XK is not stably rational. Now
Corollary 4.1.2 implies that a very general quartic fourfold or fivefold is not stably
rational.

Example 4.3.3. Next, we prove that very general sextic fivefolds and sixfolds
are not stably rational. These cases also fall in the range of results in [To16] and
[Sch19]. Our starting points are the stable irrationality of very general complete
intersections of three quadrics in P6

k [HT19, §4.4] and in P7
k [HPT18b].

Let (Q1, Q2, Q3) be a very general triple of quadratic forms in k[z0, . . . , zn],
where n is either 6 or 7. Let F be a general sextic form in k[z0, . . . , zn]. Then the
R-scheme

X = ProjR[z0, . . . , zn]/(tF −Q1Q2Q3)

is strictly toroidal, by Example 3.2.4. Since smooth quadrics and smooth
intersections of two quadrics in Pn

k are rational, the only non-stably rational stratum
in Xk is the triple intersection defined by Q1 = Q2 = Q3 = 0. Theorem 4.2.1 now
implies that XK is not stably rational, so that a very general sextic fivefold and
sixfold are not stably rational by Corollary 4.1.2.

Example 4.3.4. In this example, we will prove that for every d ≥ 2, a very general
hypersurface in P2

k×kP
2
k of bidegree (2, d) is not stably rational. This was the main

result in [BvB18].
As input we use the property that very general hypersurfaces of bidegree (2, 2)

in P2
k×k P

2
k are not stably rational by [HT19, §8.2]. This settles the d = 2 case. We
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prove the general case by induction on d. Assume that d > 2 and that the result
holds for hypersurfaces of bidegree (2, d − 1). Let F,G ∈ k[z0, z1, z2, w0, w1, w2]
be very general bihomogeneous polynomials of bidegree (2, d) and (2, d − 1),
respectively. Consider the closed subscheme X of P2

R×RP2
R defined by tF−w2G =

0. Then X is strictly toroidal, by the same argument as in Example 3.2.4. The
special fiber Xk has three strata: the linear space in P2

k×kP
2
k defined by w2 = 0; the

very general bidegree (2, d− 1) hypersurface defined by G = 0, which is not stably
rational by the induction hypothesis; and their intersection given by w2 = G = 0,
which is a smooth bidegree (2, d−1) hypersurface in P2

k×k P
1
k. The latter is a conic

bundle over P1
k, which is rational by Tsen’s theorem. Now Theorem 4.2.1 implies

that XK is not stably rational, so that a very general bidegree (2, d) hypersurface
in P2

k ×k P
2
k is not stably rational by Corollary 4.1.2.

As a further illustration, we will discuss two applications that have not yet
appeared in the literature.

Example 4.3.5. The first new result is that a very general intersection of a bidegree
(1, 2) hypersurface and a bidegree (2, 2) hypersurface in P2

k ×k P4
k is not stably

rational. Such a variety is fibered in quartic del Pezzo surfaces via the projection
to P2

k; not much appears to be known about stable rationality of del Pezzo fibrations
over Pn

k for n ≥ 2.
The argument is similar to that in Example 4.3.4. Let

F,G,H ∈ k[z0, z1, z2, w0, . . . , w4]

be very general bihomogeneous polynomials of bidegree (1, 2), (1, 2) and (2, 2),
respectively. Then the closed subscheme of P2

R ×R P4
R defined by F = tH − z2G =

0 is strictly toroidal, by a similar calculation as in Example 4.3.2. The generic
fiber XK is a smooth complete intersection of a bidegree (1, 2) hypersurface and
a bidegree (2, 2) hypersurface in P2

K ×K P4
K . The special fiber Xk contains three

strata: the two irreducible components E1 and E2, given by {F = G = 0} and
{F = z2 = 0}, respectively, and their intersection E1 ∩E2. The component E1 is a
very general complete intersection of two bidegree (1, 2) hypersurfaces in P2

k ×k P
4
k;

this is birational to P4
k via the projection to the second factor. The component

E2 is a smooth bidegree (1, 2) hypersurface in P1
k ×k P4

k, and, therefore, a quadric
bundle over P1

k (which is rational by Tsen’s theorem).
The intersection E1 ∩ E2 is a very general intersection of two bidegree (1, 2)

hypersurfaces in P1
k ×k P

4
k. Such an intersection is not stably rational by Theorem

2 in [HT19] (it is a very general quartic del Pezzo fibration over P1
k with height

invariant h = 20). Now Corollary 4.2.2 implies that XK is not stably rational.

Example 4.3.6. Using a similar construction, we can prove that a very general
intersection of a bidegree (1, 1) hypersurface and a bidegree (2, 2) hypersurface in
P3
k ×k P3

k is not stably rational. This fourfold is a conic bundle over P3
k via the

second projection.
Let

F,G ∈ k[z0, . . . , z3, w0, . . . , w3]

be very general bihomogeneous polynomials of bidegree (2, 2) and (1, 1) respectively.
As before, the closed subscheme of P3

R ×R P3
R defined by F = tG − z3w3 = 0 is

strictly toroidal. The generic fiber XK is a smooth complete intersection of a
bidegree (1, 1) hypersurface and a bidegree (2, 2) hypersurface in P3

K ×K P3
K . The
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special fiber Xk has two irreducible components E1 and E2, given by {F = z3 = 0}
and {F = w3 = 0}. The strata E1 and E2 are isomorphic to very general bidegree
(2, 2) hypersurfaces in P2

k×k P
3
k and P3

k×k P
2
k, respectively; therefore, they are both

non-stably rational by [HPT18a]. Now the result follows from Theorem 4.2.1.

5. The monodromy action

If X is a scheme of finite type over k((t)), rather than K, then the motivic
volume of X ×k((t)) K defined in [NS19] carries additional structure: an action of
the profinite group scheme µ̂ of roots of unity over k. This structure captures the
monodromy action on the cohomology of X and plays an important role in the
theory of motivic Igusa zeta functions [DL01]. In this final section we will briefly
explain how this structure can also be defined for our dimensional refinement of the
motivic volume.

5.1. The equivariant Grothendieck ring. The equivariant version of the
classical Grothendieck ring of varieties was defined by Denef and Loeser; we will
follow the construction in Section 2.3 of [NS19], which is the most appropriate for
our purposes.

Let F be a field of characteristic zero, and let G be a profinite group scheme
over F . We say that a quotient group scheme H of G is admissible if the kernel
of G(F a) → H(F a) is an open subgroup of the profinite group G(F a), where F a

denotes an algebraic closure of F . In particular, H is a finite group scheme over F .

Let d be a non-negative integer. The Grothendieck group KG(Var6d
F ) of F -

varieties of dimension at most d with G-action is the abelian group with the
following presentation:

• Generators: isomorphism classes [X ]d of F -schemes X of finite type and of
dimension at most d endowed with a good G-action. Here “good” means
that the action factors through an admissible quotient of G and that we can
cover X by G-stable affine open subschemes (the latter condition is always
satisfied when X is quasi-projective). Isomorphism classes are taken with
respect to G-equivariant isomorphisms.

• Relations: we consider two types of relations.
(1) Scissor relations: if X is a F -scheme of finite type of dimension at

most d with a good G-action and Y is a G-stable closed subscheme of
X , then

[X ]d = [Y ]d + [X \ Y ]d.

(2) Trivialization of linear actions: let X be a F -scheme of finite type
with a good G-action, and let V be a F -vector scheme of dimension m
with a good linear action of G. Assume that dim(X) +m ≤ d. Then

[X ×F V ]d = [X ×F Am
F ]d

where the G-action on X ×F V is the diagonal action and the action
on Am

F is trivial.

We set
KG(VarF ) =

⊕

d≥0

KG(Var6d
F ).

This graded abelian group has a unique graded ring structure such that

[X ]d · [X
′]e = [X ×F X ′]d+e
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for all F -schemes X , X ′ of finite type of dimensions at most d and e, respectively,
and with good G-action. The G-action on X×F X ′ is the diagonal action. We write
L for the class [A1

F ]1 (where A
1
F carries the trivialG-action) in the ringKG(VardimF ).

If F ′ is a field extension of F , then we have an obvious base change morphism

KG(VardimF ) → KG(VardimF ′ ) : [X ] 7→ [X ×F F ′].

If G′ → G is a continuous morphism of profinite group schemes, then we can also
consider the restriction morphism

ResGG′ : KG(VardimF ) → KG′

(VardimF ).

Both of these morphisms are ring homomorphisms.

5.2. The monodromy action on the motivic volume. Let X be a smooth
and proper k((t))-scheme, and let X be a proper flat k[[t]]-scheme endowed with
an isomorphism of k((t))-schemes X ×k[[t]] k((t)) → X . Assume that X is regular
and that the special fiber Xk is a strict normal crossings divisor (not necessarily
reduced). Then we call X an snc-model of X . We write

Xk =
∑

i∈I

NiEi

where {Ei | i ∈ I} is the set of irreducible components of Xk, and the coefficients
Ni are their multiplicities.

For every non-empty subset J of I, we set

EJ =
⋂

j∈J

Ej , Eo
J = EJ \




⋃

i∈I\J

Ei



 .

The scheme EJ is a smooth and proper k-scheme of pure codimension |J | − 1 in
Xk, and Eo

J is a dense open subscheme of EJ . The subschemes Eo
J form a partition

of Xk. Let n be the least common multiple of the multiplicities Ni, and let Y be
the normalization of X ×k[[t]] k[[t

1/n]]. An easy local calculation shows that Y is

strictly toroidal. The k-group scheme µn of n-th roots of unity acts on Spec k[[t1/n]]
via the morphism

k[[t1/n]] → k[ζ]/(ζn − 1)⊗k k[[t
1/n]]

that maps a formal power series φ(t1/n) to φ(ζ−1t1/n). This induces an action of
µn on X ×k[[t]] k[[t

1/n]], and also on its normalization Y because Y ×k µn is normal
since µn is étale over k. For every non-empty subset J of I, the µn-action on Y

restricts to a µn-action on ẼJ = Y ×X EJ and Ẽo
J = Y ×X Eo

J . By composition

with the projection µ̂ → µn we obtain actions of µ̂ on ẼJ and Ẽo
J , and it follows

immediately from the construction that these actions are good. A more explicit

description of the schemes ẼJ with their µ̂-actions can be found in Section 2.3 of
[Ni13]; see also Section 4.1 in [BN16].

Theorem 5.2.1. There exists a unique ring morphism

Vol: K(Vardimk((t))) → Kµ̂(Vardimk )
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such that, for every smooth and proper K-scheme X, every snc-model X of X with
Xk =

∑
i∈I NiEi, and every integer e ≥ dim(X), we have

Vol([X ]e) =
∑

∅6=J⊂I

(−1)|J|−1[Ẽo
J ×k G

|J|−1
m,k ]e(5.2.2)

=
∑

∅6=J⊂I

(−1)|J|−1[ẼJ ×k P
|J|−1
k ]e(5.2.3)

where µ̂ acts trivially on the schemes G
|J|−1
m,k and P

|J|−1
k . It fits into a commutative

diagram

K(Vardimk((t)))
Vol

−−−−→ Kµ̂(Vardimk )
y

yResµ̂
{1}

K(VardimK ) −−−−→
Vol

K(Vardimk )

where the left vertical arrow is the base change morphism and the right vertical
arrow forgets the µ̂-action.

Moreover, for every integer m > 0, we also have a commutative diagram

K(Vardimk((t)))
Vol

−−−−→ Kµ̂(Vardimk )
y

yResµ̂
µ̂(m)

K(Vardimk((t1/m))) −−−−→
Vol

Kµ̂(m)(Vardimk )

where the left vertical arrow is the base change morphism and the right vertical
arrow restricts the µ̂-action to µ̂(m) = ker(µ̂ → µm).

Proof. One can simply copy the proof of Theorem A.3.9 in [NS19]; all the arguments
remain valid in the dimensional refinement of the Grothendieck ring. The equality
of (3.3.3) and (3.3.4) follows from the same calculation as in the proof of Lemma
3.3.1. The arguments in Section A.3 of [NS19] prove the existence and uniqueness
of the morphism Vol in the statement, and its compatibility with base change
to extensions k((t1/m)). The compatibility with the morphism Vol on K(VardimK )
follows directly from the fact that Y ×k[[t1/n]]R is a strictly toroidal proper R-model
of X ×k((t)) K. �
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