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Abstract

Recent progressions in highly specific sequencing technologies generates high-
resolution genomic data. Comparative analysis of these data is a source of
further insight into genomic mechanisms, but the domain remains largely
unexplored. Prototypical programs require flexible and scalable solutions
as the requirements are expected to change. Array programming has good
abstractions for operations on large data sets and the resulting performance
is often excellent. No published efforts have, as far as we know, previously
been made to assess the suitability of array programming to non-numerical
problems.

We present two methods for comparative annotation analysis called pro-
jection and quantitative comparison. We have furthermore developed a range
of array programming algorithms for numerous annotation track operations.
All algorithms are implemented as part of a framework for comparative an-
notation analysis.

Both methods for comparative analysis have promising properties, but
further work on verification and analysis of the biological interpretation is
needed. Array programming have been proved applicable to a wide range of
problems. A serious limitation with array programming is that the model
of a problem domain must fit perfectly with the restricted set of available
operations.
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Chapter 1

Introduction

The advent of advanced sequencing technologies have changed the landscape
of bioinformatics where genomic data are now produced at a resolution and
of a quality that far exceeds prior methods. This rapid rate of change have
not yet been fully reflected in the available programs for analysis of genomic
data. We’ve formalized two methods for meaningful comparative annotation
analysis and in addition developed a sound methodology for operations on
annotations using array programming.

1.1 Motivation

1.1.1 Annotation Analysis

The DNA sequence alone is not very valuable with some interpretation. An
annotation track is a collection of empirical properties on a genome, such
as the locations of all known genes or the experimentally determined bind-
ing sites for a transcription factor. Much can be learned from analyzing
relationships between annotation tracks.

The Galaxy platform[9] is a web service that provides a large set of ba-
sic operations that the user composes to a complex query on one or more
annotation tracks.

The Hyperbrowser is an system for statistical annotation track analysis.
It has a very different approach to user interaction than other comparable
systems. A user selects or supplies input data and is presented with a series
of questions inferred from the input. A selected question initiates a large
series of computations with a resulting suitable statistical test that answers
the question at hand.

Comparative sequence analysis have historically been a valuable method
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for finding genes. Mutations occur randomly during evolution, but a muta-
tion within an important functional element is likely to harm an organism
and thereby decrease its chances of survival. Sequences conserved between
multiple species have been protected during evolution because of their im-
portance to the various species.

Genomic sequence analysis have been supplemented by annotation anal-
ysis within a single genome. Comparative annotation analysis is similarly a
logical expansion of comparative sequence analysis. Neither the Galaxy plat-
form, the Genomic Hyperbrowser nor any other known annotation analysis
system supports any form of comparative annotation analysis.

A recent article[22] compared the distribution of two types Transcription
Factor Binding Sites (TFBSs) within and around the conserved sequences of
five species. The paper did not delve on the methods used for comparisons,
it’s implication, usability or if alternatives existed. We see a clear need for
an exploration of the possibilities for comparative annotation analysis with
the goal of developing methods for meaningful comparisons and development
of generic functionality for this purpose.

1.1.2 Array Programming

Array programming is a technique that generalizes operations on scalars to
apply transparently to arrays. Array programming primitives concisely ex-
press broad ideas about data manipulation. It’s a popular choice in many
scientific environments, as solutions to many numerical problems are easily
expressible in a form that fits with the programming model. These generically
applicable operations have a very efficient implementation in the environ-
ments that provide them. Array programming applied to suitable problems
often have a succinct implementation that is easy to reason about even with-
out much prior programming experience. Interestingly enough, no articles
we are aware of discusses use of array programming outside the field purely
numerical applications.

Initial work on comparative annotation analysis is prototypical and fail-
ures are expected. We therefore need a programming environment that allows
for rapid development and fast turnovers. An annotation track is in essence a
multitude of locations on a genome with a natural numerical representation .
The abstract way that array programming express operations on large data
sets are therefore promising. We want to further explore the possibilities for
solving problems related to annotation analysis using array programming.
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1.2 Research Context
My supervisor, Geir Kjetil Sandve, is one of the core members of the Ge-
nomic Hyperbrowser project[21]. The Hyperbrowser is at present only able
to perform analyses within a single genome. The ability to perform inter-
genome comparisons would greatly benefit the project. The Hyperbrowser
is written in the Python programming language and uses the Numpy library
for array programming. Array programming operations are orders of magni-
tude faster than similar functionality implemented in Python. To extend the
usage of Numpy would reduce the overall run-time for analyses, which often
are performed on huge data sets.

1.3 Research Questions
• Biological:

– Is it possible to unambiguously compare annotation tracks be-
tween genomes?

– Can formal methods for meaningful comparison of annotation
tracks from different genomes be developed?

• Array Programming

– Is it possible to solve non-numeric problems, such as interval com-
parison problems, using array programming?

– For which operations on annotation tracks can we develop array
programming algorithms?
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Chapter 2

Background

2.1 Biology

2.1.1 Galaxy

Galaxy[9] is a web-plattform featuring many basic operations and a tight
integration to the UCSC Genome Browser[13]. Their target user is a life
science researcher without any or little programming experience. The authors
of Galaxy have put a lot of thought and major research efforts into making
analysis and results transparent and reproducible[10]. The system provides
a large set of basic operations that the user composes to solve a complex
problem. Data are provided through integration with the UCSC Genome
Browser or uploaded from the user.

Galaxy offers a Workflow Editor where the user may easily combine op-
erations through a graphical editor. The resulting complex operation may be
given a name for later reuse. Such workflows are to Galaxy what functions
are to programming. The ability to create, save and share such workflows is
a major feature of the Galaxy platform. Regrettably, at the time of writing,
it’s not possible to combine existing workflows in a new workflow. This is
a major limitation, but we expect this functionality to appear in a future
release.

The galaxy platform is described by the authors as[2]:

High-throughput data production has revolutionized molecular
biology. However, massive increases in data generation capacity
require analysis approaches that are more sophisticated, and of-
ten very computationally intensive. Galaxy is a software system
that provides this support through a framework that gives experi-
mentalists simple interfaces to powerful tools, while automatically
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managing the computational details.

The main purpose of the framework is to provide standardized graphical in-
terfaces to tools and let the user connect and compose them in meaningful
ways. Adding new tools is made very simple because of the complete sepa-
ration between the Galaxy platform and the tools it provides. A tool is an
independent program that must be installed on the server. The tools them-
selves may be written in any programming language and are embedded into
a galaxy system by adding a small XML file with configurations. All tools
reads input from the standard input and writes its results to the standard
output. This is very similar to one of the fundamental design principals of
the Unix operating system[19]:

Much of the power of the UNIX operating system comes from a
style of program design that makes programs easy to use and,
more important, easy to combine with other programs.

The Galaxy Platform is attractive to the end user because of its usability,
flexibility and the low barrier entry. Usage requires no local installation and
the interaction with tools is standardized and quite intuitive. The galaxy
platform is the environment that connects small standalone tools, data and
user history. It’s the intention that users create their own tools to solve
specific issues and ideally share those extension with the community. The
great freedom given in crafting autonomous tools have many benefits. It does
not restrict potential contributors by tying them to a specific programming
language. This freedom is, however, a double edged sword. Many of these
tools must have partly overlapping functionality and solve some of the same
sub-problems. Even so, the Galaxy platform provides no assistance in solving
the commonalities present in many tools.

2.1.2 BEDTools

BEDTools[20] are a collection of programs for annotation analysis. It has
the same design principle as Galaxy where complex problems are solved by
the composition of many smaller tools. The tools are composed using ordi-
nary operating system concepts such as pipes..[19]. BEDTools package offers
operations such as sorting, intersubsection, union and computing comple-
mentary regions. Different operations are easily combined as part of a script
together with other common unix-tools. The BEDTools package is a collec-
tion of small independent programs and therefore provides no means or help
in extending or supplementing the available operations. Missing operations
or functionality must be created from scratch as autonomous programs.
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Many of the prebundled tools in the Galaxy platform are in fact the
BEDTools package.1

2.1.3 BioPerl and BioPython

Language specific APIs such as BioPython[4] and BioPerl[23] are well known
and popular. They provide a common interface to format conversions, query-
ing of large biological databases, machine learning and many sequence align-
ment programs. It’s not possible to analyze or operate on annotations using
these packages.

2.1.4 The Genomic Hyperbrowser

The Genomic Hyperbrowser [21] is an inferential analytical system for life
science researchers. The Hyperbrowser has a rather unique approach to user
interaction. It’s declarative in the sense that the user states what he wants
to achieve and the system will figure out the gritty details of how to achieve
it. This in contrast to the Galaxy system where users have to compose a
chain of simple low-level operations to compute their end-result. Possible
questions are presented to the user as a consequence of the selected input
data. This design choice makes the Hyperbrowser a very user-friendly and
powerful tool for problems of the specific target domain.

2.1.5 Storing Biological Data

There is an abundance of different file formats used to store biological data in
bioinformatics. The BED2 file format has over time become quite ubiquitous.
The Browser Extensible Data (BED) format is a file format used by the UCSC
genome browser for defining genomic regions. One genomic region is encoded
per line. All of the genomic regions described by a single BED file are of the
same type. For example they denote the different experimentally determined
binding sites for a specific TFBS or they could describe regions affected by
a specific methylation.

1http://groups.google.com/group/bedtools-discuss/browse_thread/
thread/56f4be5fbad5b86/e6d0dab6370c4bbb?lnk=gst&q=galaxy

2http://genome.ucsc.edu/FAQ/FAQformat.html#format1
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chrom chromStart chromEnd
chr1 4 100
chr1 300 330
chr2 1 10
chr2 50 60

Table 2.1: BED file-format example

2.2 Computer Science

2.2.1 Computational Science and Python

Many scientific computing environments, such as Mathematica, Matlab and
Octave, have become very popular over the last decades. The terse syntax
and operations tailored for the domain simply makes scientists more effec-
tive in such environments[14]. A problem with such packages is that they
interoperate poorly with external systems and the functionality provided are
sometimes too simple.

Python is a general purpose programming language. It’s very popular
within the scientific computing and research domain.It has the capability to
operate with external software and libraries. What it lacks in domain specific
specialization can for most applications be mediated by molding the language
and environment to fit the domain. Other areas of widespread adoption are
web application programming and systems programming.

It’s relatively easy to learn the basics of the language and quickly start
producing non-trivial programs. A drawback with Python for solving scien-
tific problems is its execution speed.

2.2.2 Python interacts with Optimized Compiled Li-
braries

There exists a large number of well tested, specialized and optimized libraries
and functions written in other languages for scientific applications. It is
possible to create interfaces for these external modules to integrate them
into a Python environment. An external library is interchangeable from a
native library once a proper interface has been created.

Two very common tools used to generate such interfaces semi-automatically
are f2py[18] and Swig[1]. F2py is a tool that connects Fortran3 programs to

3An old programming language especially suited for numeric computation and scientific
computing. http://en.wikipedia.org/wiki/Fortran
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a Python environment. Swig has been developed to automate the task of
integrating compiled code with scripting language interpreters.

These tools allows Python to cheat the speed issues often associated with
scripting languages. There’s a certain overhead involved with calling a func-
tion from a compiled library. The shortest execution times are experienced
if most of the computation is performed by a compiled library using as few
calls into the library as possible. Many computational problems fits well with
this approach, which have made the combination of Python and the Numpy
library a popular choice for computationally intensive tasks.

2.2.3 Array Programming

Array programming4 languages generalize operations on scalars to apply
transparently to vectors, matrices, and higher dimensional arrays. This is
a high-level language construct for data manipulation instead of the data
modeling that object-oriented languages offers[16]. The fundamental idea
behind array programming is that operations are applied to an entire set of
values. This makes it a high-level programming model as it allows the pro-
grammer to think and operate on whole aggregates of data, without having
to resort to explicit loops of individual scalar operations. Array programming
is typically used to solve mathematical equations for scientific applications.
The examples in listing 2.1 and 2.2 serves to illustrates the difference.

Listing 2.1: Multiplying every element of a multi-dimensional array by a
scalar in an Algol-like language

Line 1 for (i = 0; i < n; i++)
- for (j = 0; j < n; j++)
- x[i][j] *= 3;

Listing 2.2: Multiplying every element of a multi-dimensional array by a
scalar in an Array Programming language

Line 1 x *= 3

2.2.4 Numpy - Array Programming in Python

Numpy provides a homogeneous, multidimensional array of a particular data
type[17]. The extension also provides universal functions that operate rapidly

4sometimes called vector programming or vector operations
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over the multidimensional array. A universal function in Numpy is a func-
tion that operates on arrays in an element-by-element fashion. There are at
least two compelling arguments for using Numpy for scientific computing in
Python. The first reason is the drastically improved execution speed when
used correctly on applicable problems. The second is that many common
domain specific operations are easily expressible using the library. Many
commonly used operations in the scientific domain requires complex algo-
rithms for efficient computations. Matrix multiplication[7] is an example
that’s already present in the Numpy Library. Numpy offers a significant gain
in execution speed together with concise implementation in ideal circum-
stances. Any problem that can be solved primarily as a series of operations
on whole datasets and matrices can perform comparable to an equivalent
implementation in the C programming language.

Basic Operations

Some examples of basic array operations in Numpy are given below:

• Pairwise addition of the elements of two arrays:

Line 1 In [8]: array([1,2,3]) + array([10,20,30])
- Out[8]: array([11, 22, 33])

• Scaling an array by a scalar:

Line 1 In [9]: array([1,2,3]) * 3
- Out[9]: array([3, 6, 9])

• Adding an offset to every element of an array:

Line 1 In [10]: array([1,2,3]) + 5
- Out[10]: array([6, 7, 8])

• Sorting an array5:

Line 1 In [11]: np.sort([2,3,1])
- Out[11]: array([1, 2, 3])

• Basic aggregation functions:
5The namespace np is used to avoid confusion between the sort function in the Numpy

library and the regular Python sort function
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Line 1 In [12]: np.sum([2,3,1])
- Out[12]: 6
-

- In [13]: np.max([2,3,1])
5 Out[13]: 3
-

- In [14]: np.min([2,3,1])
- Out[14]: 1

Array Indexing

Numpy arrays can be indexed in three ways, where the first two are identical
to how ordinary Python arrays may be indexed.

By Number Indexing by number returns the value at the position of the
number.

By Slice Indexing by slicing returns, explained very simply, a view of the
part specified by the slice. A slice is typically a combination of one of the
following:

• The first N items.

• The last N items.

• Every second item.

• The whole array except the first N items.

• The whole array except the last N items.

By Array The last and Numpy specific way of indexing arrays is by an-
other array. The indexing array must either be a boolean or an integer array.
Indexing with a boolean array will return those elements where the corre-
sponding boolean value is true. Integer indexing allows selection of arbitrary
items in the array based on their position. The main difference between
boolean and integer indexing is the fact that integer indexing may change
the original order. These concepts are best illustrated by a few examples.

1. The first example illustrates indexing by boolean arrays:
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Line 1 In [12]: x = array([4,2,1])
- In [13]: bidx = array([True,False,True])
-

- In [14]: x[bidx]
5 Out[14]: array([4, 1])

2. The second example illustrates indexing by integer arrays:

Line 1 In [12]: x = array([4,2,1])
- In [15]: iidx = [0,2]
-

- In [16]: x[iidx]
5 Out[16]: array([4, 1])
-

- In [17]: x[[2,1,0]]
- Out[17]: array([1, 2, 4])

The argsort Function

It’s common to represent a table as multiple arrays of equal length. Each
array represents a column of the table and all the values at equal positions in
the arrays represents a row. The consistency of the table is broken if only one
of the column-arrays is reordered. The argsort function mends this problem
by computing the shuffling of elements that would have resulted in a sorted
array. A table is sorted by a column if all arrays of the table are reordered
by the shuffling that would have sorted the column. The shuffling is just an
ordinary integer array whose values identifies the order of positions in the
original array. The previous subsection(2.2.4) explained how it in Numpy is
possible to sort an array by another integer array.

Line 1 In [18]: x = array([3,1,2])
-

- In [19]: idx = x.argsort()
-

5 In [20]: idx
- Out[20]: array([1, 2, 0])
-

- In [21]: x[idx]
- Out[21]: array([1, 2, 3])

Recreating Original Order In some instances it is very useful to recreate
the original unsorted ordering of an array that has been sorted. The appli-
cation of the argsort function to an array returns the indices that sorts the
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array if the original array is index by the index array. We compute the re-
versible indices by argsorting the result of a call to argsort. If the reversible
indices are computed from a unsorted array that is subsequently sorted, then
it is possible to recreate the original array by indexing the sorted array by
the reversible index array. This is best illustrated by an example:

Line 1 In [18]: x = array([3,1,2])
-

- In [19]: idx = x.argsort()
-

5 In [22]: sorted_x = x[idx]
-

- In [23]: rev_idx = idx.argsort()
-

- In [26]: rev_idx
10 Out[26]: array([2, 0, 1])

-

- In [24]: sorted_x
- Out[24]: array([1, 2, 3])
-

15 In [25]: sorted_x[rev_idx]
- Out[25]: array([3, 1, 2])

2.2.5 Type Systems

Every value in a programming language has a type. Integers, strings and
class instances are all examples of values with a type. A type system at-
tempts to prove that no type errors can occur. What constitutes as errors
varies depending on the specific type system, but it generally tries to guar-
antee that the type of an operation and the type of the value being operated
on makes sense. A type system is said to be static when the type checking
is performed at compile time and dynamic when the type checking occurs at
run-time. Some of the advantages of static type checking are a restricted form
of program verification, slightly faster execution speed and documentation.
The major disadvantage of static type checkers is that they reject some pro-
grams that do not have type errors and are well-behaved at runtime, but this
can not be proven at compile time and the programs are therefore rejected.
Dynamic type systems are more flexible, but lacks the advantages gained by
compile time type checking. Variables in a statically typed language have a
type, whereas variables in a dynamically typed language do not.
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2.2.6 The relational model for database management

All relational database management systems are based on a model published
in a paper by E.F.Codd in 1969[5]. The term relation, as in relational model
and relational database, is used here in its accepted mathematical sense.
Given sets S1, S2, . . . , Sn (not necessarily distinct), R is a relation on these n
sets if it is a set of n- tuples each of which has its first element from S1, its
second element from S2, and so on[6]. More concisely, R is a subset of the
Cartesian product S1 × S2 × . . . × Sn. This translates in layman’s term to
a table with a subset of the possible combinations of the sets. Each column
in the table contains values from one set and is called a domain of R. Each
row of the table represents a combination of the set values. The table has
the following more formal properties[6]:

1. Each row represents an n-duple in R.

2. The ordering of rows is immaterial.

3. All rows are distinct.

4. The ordering of columns is significant–it corresponds to the ordering
S1, S2, . . . , Sn of the domains on which R is defined.

5. The significance of each column is partially conveyed by labeling it with
the name of the corresponding domain.

Every row is unique and consequently a single domain (or combination
of domains) of a table forms a primary key. A primary key is the smallest
combination of domains that uniquely identifies a row. It’s a common re-
quirement for elements of a relation to cross-reference other elements of the
same relation or elements of a different relation. A domain (or a combination
of domains) of a relation R is a foreign key if its not the primary key of R
but its elements are values of the primary key of some relation S.

Imagine a table of students and another table of schools. It would clearly
be useful reference the school a student attended and such a reference between
the two tables is a cross-reference. Notice that we for this example assume
that each student attend exactly one school. The school primary key may
then be a foreign key in the students table.

The process of organizing data to minimize redundancy is called normal-
ization. There are well defined rules to guide the design of a well-formed
database schema. There are many levels of normalization, but the early
level proposed by Codd in 1969[5] had, according to the paper, the following
advantages which also holds true for later more fine grained normalizations:
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1. It would be devoid of pointers (address-valued or displacement-valued).

2. It would avoid all dependence on hash addressing schemes.

3. It would contain no indices or ordering lists.

We’ve seen how the relational model supports one-to-many relationships
in our trivial example where each student belonged to a school. The relational
model does not, however, directly support many-to-many relationships.

A database model completely unable to express many-to-many relation-
ships would hardly been useful for real world applications. The relational
model overcomes this limitation by constructing a special table to express
many-to-many relationships, called a junction table. The junction table con-
tains domains to describe the foreign keys for both of the tables that it
connects and the primary key is the combination of those domains. Each
row in the junction table connects two entities from the two tables with a
many-to-many relationships.

Lets illustrate this by expanding the previous student example. If we
wanted to model the relationship between students and courses we would
expect a student to attend multiple courses and a course to be attended by
multiple students. This is an example of a many-to-many relationship. This
relation is impossible to describe be augmenting the existing tables. A table
consists of a fixed number of columns. Every student attends a variable
amount of courses and every course is attended by a variable amount of
students. We’re therefore unable to store the variable number of courses
every student attends in the student table and we’re also unable to store the
variable number of students attending each course in the course table.

2.2.7 MapReduce

Map and reduce are important functions in many programming languages
but originates from functional programming paradigm.

Common for all functional languages is that functions are first class ob-
jects. This means that functions are values as any other value of the language.
They may be bound to names, gives as arguments to functions or returned
from functions.

Complex functions are ideally composed of multiple simpler ones. Func-
tions should be as general as possible for better reusability.

Another important concept is the absence or restriction of mutable/de-
structive operations. It’s clearly easier to test and reason about a function if
it does not depend upon or change external state. This also creates a loose
coupling between the different components of a program or module.
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Figure 2.1: Illustration of the two functions map and reduce

Map applies a function to every element of a sequence and returns a new
sequence of results.

Reduce combines its arguments using a supplied combination function.

Google introducedMapReduce as a framework for distributed data processing[8].
Google’s framework is suitable for processing huge datasets on certain kinds
of distributable problems i.e. to problems that are divisible into multiple sub-
problems whose solutions are combined in the reduction step. This model is
desirable in the distributed domain because the implementor of an algorithm
writes only a reduce function and a map function. The framework handles all
other issues such as load balancing, hardware failures and job distribution.

2.2.8 Hash Table

A hash table is a data structure for arbitrary retrieval of data. The hash table
maps keys to their associated values by using a hash function to compute
a unique key for each value. Maps are very useful for many programming
problems and almost ubiquitous in many languages. Many algorithms have
been developed for efficient storage of key/value pairs and succeeding retrieval
based on a the key.

2.2.9 Software Bugs

All programs should ideally be bug free, but the complexity involved with
software development makes nontrivial programs completely devoid of bugs
nearly impossible to create. There are many sources of bugs, but many can
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be classified as unintended interactions between different parts of a software
system. This frequently occurs because software systems are complex in their
nature, so programmers are unable to mentally track every possible way in
which parts can interact and therefore make false assumptions, misunder-
stands or perform a logical error.

Serious bugs stops further execution of the program or in other ways
make their presence very clear. Serious bugs are always preferable because
they immediately call attention to the error and are often also easier to track
and hence resolve. Bugs that only have a subtle effect on a system or only
occurs in very unusual but legal input are often the hardest to locate and
track. The importance of a bug free system varies. It’s annoying when a
web browser crashes, but possibly fatal for other systems such as a railway
signaling control system.
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Chapter 3

Methods

3.1 Annotations
The genomic sequence of an organism provides a great resource for under-
standing and learning about living organisms such as ourselves. The DNA
sequence alone provides little or no information without understanding it in
a deeper context. Annotations helps bridge the gap from the sequence to the
biology of an organism. Annotations are the product of the layers of anal-
ysis and interpretation of raw DNA data necessary to extract its biological
significance and place it into the context of our understanding of biological
processes[24]. Annotations marks empirical properties of a genome — in
particular proteins and their products.An annotation track is illustrated in
figure 3.1 on the following page.

We’ll define the following terms when discussing annotations:

Track Element A single location on a genome with possible meta-information.
For example a specific gene or a specific transcription factor binding
site on the human genome.

Chromosome Annotation Track A collection of related track elements
on a genome, all located on the same chromosome. For example all
known genes located on the first human chromosome.

Annotation Track All related track elements on a genome. For example
all known human genes.
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Figure 3.1: Illustration of an annotation track.

3.1.1 Chromosomes Divides Annotations into Disjoint
Sets

The genome of an organism is the whole of its hereditary information encoded
in its DNA. A genome consists of chromosomes that are organized structures
of DNA. The DNA within a chromosome is viewed as a sequence with defined
start and end positions. Every nucleotide is therefore addressable as an
offset from the start position. An track element marks a location within a
chromosome. An annotation track is therefore naturally divided into disjoint
sets by the chromosome boundaries of the species, as illustrated in figure 3.1.

A simplified model of track elements are as intervals on a number line.
This has the implication that most operations on annotations can be simpli-
fied to operations on intervals.

3.2 Coupled Track Elements are the Basis for
Comparative Operations

A very important type of meta-information for some track elements are the
locations of similar or identical track elements in different genomes. This
knowledge glues the genomes together and establishes the basis for compar-
isons across genome boundaries. These track elements will become very im-
portant when discussing inter-genome comparisons and we’ll therefore need
to define some proper terminology:

Coupled Track Element A special type of track elements that are con-
nected to one or more track elements in different genomes.

21



Coupled Annotation Track A collection of coupled track elements on a
single genome that all are connected to coupled track elements from
the same coupled annotation tracks. Coupled track elements within a
coupled annotation track may overlap, which is different from regular
annotation tracks.

An example of a coupled annotation track could be the location of all
human genes with known mouse orthologs or the locations of regions in
the dog genome conserved between the mouse genome and the human
genome.

Connected Coupled Track Elements (CCTEs) A set of coupled track
elements from different genomes that are connected.

An example is the location of a human gene and its corresponding
orthologs location in the mouse genome.

Connected Coupled Annotation Tracks A regular coupled annotation
track describes a series of related coupled track elements on a single
genome. Connected coupled annotation tracks are the set of coupled
annotation tracks that are connected.

An example of this is a coupled annotation track describing human
genes with mouse orthologs that is connected with the coupled anno-
tation track describing mouse genes with human orthologs. The two of
them together form a connected coupled annotation track.

3.3 Modeling Intervals Suitably for Array Pro-
gramming

Section 3.1 explained how it was possible to view track elements on a chro-
mosome level as intervals on a number line. Any methodology concerning
intervals is therefore transferable to track element. This is useful since inter-
vals on a number line constitutes a simpler model of much of the problem
domain.

We’ll in the following discussion refer to a collection of related intervals
as an interval track. This is similar to how we in section 3.3 defined a
chromosome annotation track to be a collection of track elements of a similar
type within a chromosome. An interval track consists of zero or more non-
overlapping intervals on a number line. Intervals from different tracks may
overlap.
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Figure 3.2: Transitions Between States generated for two interval tracks, X
and Y. Closed represent the absence of intervals of that type.

3.3.1 Every Position has a State

Intervals from different tracks may overlap and it follows from this that any
position on the number line may be covered by zero or more intervals. Keep-
ing track of multiple overlapping intervals has proven difficult using array
programming. Instead we reason about the same problem from the point of
view of positions on the number line. Each position has a state, i.e. zero or
more intervals covers that position. We’re thus able to describe all the inter-
val tracks and their interaction through a chain of adjacent non-overlapping
states that precisely describes the active interval types for the span of each
state. The trivial case is a number line without intervals where every position
has the same state because none of them are covered by intervals. A line with
a single interval track has two states, positions are either inside or outside
an interval. A line with two interval tracks, as illustrated in figure 3.2, has
four states and so on.

Intervals as Transition Events

Every interval generates two transition events. The first transition occurs at
the start position of the interval and denotes a transition from the context
dependent current state to the state representing what was the current state
including the interval track that began at that point. The second transition
occurs at the end of the interval and denotes a transition from the context
dependent current state to what was the current state excluding the interval
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track that just ended. There are only as many transitions from each state as
there are sets of intervals. Every transition event has a position and belongs
to an interval track.

The State Sequence is Deductible from the Transition Events

All transition events from every interval track are merged in ascending order.
The start state of any system is always the empty state, that’s the state
representing uncovered positions. The following states are deductible from
the starting state and the merged transition events.

Multiple Transition Events at a Single Position

An interval is defined by a pair of start and end positions. It’s common in
bioinformatics to define intervals using an excluding end point. This means
that every position from the start position up to, but not including, the
end position are part of the interval. We’ll follow this practice and our
methodology must be sensitive to this.

We’ve previously discussed how to view intervals as a series of events
possible different interval tracks with a position. It’s possible that multiple
events occur at the same position. This happens when, for example, an
interval ends and another starts at the same position. The order of these
two events are not interchangeable. If the start event occurs before the end
event, then this would indicate an overlap between the two intervals which is
false. The end event must therefore occur before the start event at the same
position.

3.4 Operations on Intervals using Array Pro-
gramming

3.4.1 Set Operations

Set operations such as intersection, union and complement are well under-
stood concepts that also applies to intervals. The union of two intervals
are all areas covered by one or both of the intervals, the intersection is the
area covered by both and the complement is the area covered by none of the
intervals.

Example figure 3.3 on the next page depicts two interval tracks on a line.
A corresponding state sequence generated from the interval tracks is illus-
trated in figure 3.4. Extracting the union or the intersection is both visually
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Figure 3.3: An example where the two interval tracks X and Y mark two
locations each.

and computationally quite simple given a state sequence. The intersection
are those areas with an y-axis value of 3, indicating that both State X and
State Y are active. The union is the complement of those areas with an
y-axis value of 0, that is every position where at least one interval set was
active.

3.4.2 Counting Occurrences Within an Interval

It’s often very useful to be able to count how many intervals from a interval
track that falls inside every interval from another interval track. In the
discussion below we’ll call the interval track that we’re counting occurrences
within for the host interval track. The interval track that is being counted will
be called the target interval track. Intervals from the host interval track are
called host intervals and similarly intervals from the target interval track are
called target intervals. The rest of this discussion assumes the host intervals
to be as large or larger than the target intervals.

Lets first establish how we define ’inside an interval’. A single position
is clearly inside an interval if it’s within the boundaries of the interval. An
interval is also undoubtedly inside another interval if it’s completely covered
by the other interval. Depending on use case, it’s sometimes too strict to
require complete coverage. This is especially true when comparing intervals
of approximately the same size or when one of the interval track only has
estimated locations. The opposite extreme is to treat any overlap as sufficient
for acceptance. If the intervals compared are quite large, a single overlapping
position should hardly be enough.
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Figure 3.4: State representation of the interval tracks in figure 3.3 on the pre-
ceding page. The y-axis represent the state type (also depicted in figure 3.2
on page 23). The union are the areas covered by all states except State 0.
The intersection are those areas covered by State 3

A less strict requirement of ’inside’ is to only require a predefined ratio
of a target interval to overlap a host interval. The ratio required may vary
for different usages. There is always a trade-off between false positives and
false negatives when performing an analysis. A too weak requirement will
be more likely to increase the number of false positives, i.e. falsely detected
matches. A too strict requirement is more likely to exclude many occurrences
that really should have been detected, formally named false negatives. The
ideal refinement depends on use case.

It’s evident from the above discussion that different use cases require
different definitions of ’inside’. We’ll now discuss slightly different methods
for counting occurrences that fits with the array programming model. We’ll
continue to use the transition event model described in section 3.3 on page 22.
The model viewed each interval as two transition events, a start event and
an end event. Every event has a position on the number line and a belongs
to a specific interval track. Events from different interval tracks are merged
and ordered by their position on the number line.

The strictest definition of ’inside’, requiring a whole target interval to be
covered by a host interval, is computable by counting the number of complete
start and end event pairs from the target track between the host interval’s
start and end events.

The perhaps most intuitive way to implement support for a weaker ratio
requirement is to scale the target intervals before the actual computation.
An initial requirement was for the host intervals to be at least as large as the
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target intervals. All host intervals must therefore be at least twice as big as a
target interval scaled to half its original size. A host interval that completely
covers an target interval scaled to half its size actually covers at least three
quarters of the original target interval. Similarly a host interval that covers
the middle position of a target interval must at least cover half of the actual
target interval. A consequence of this is that this scaling method does not
allow for a weaker ratio than 50%. A slight variation of the scaling of target
intervals is to use the midpoint of target intervals as a measure for ’inside’.
If the midpoint of a target interval is inside a host interval, then it follows
that at least 50% of the target interval is covered by the host interval. This
is even true when the host interval is as small as half the size of the target
interval. It hardly makes sense to talk about ’inside’ if the target interval is
a lot larger (more than two times) than the host interval.

3.4.3 Connecting Closest Intervals From Different Tracks

This section discusses the problem of locating the closest neighbors between
two interval tracks. For every interval in one interval track, we want to
find the closest interval in another interval track. The interval tracks are
as before assumed to be internally ordered and non-overlapping. Lets first
reason about the simplest possible solution to the problem:

• An unfeasible naive solution with a runtime of O(N2) is to compute the
distance between each point and every interval and selecting the inter-
val with the shortest distance, for all points. This easily implemented
using both array and imperative programming.

• An optimized solution is to selectively iterate over an ordered input
set and only compare against a few relevant intervals. This is quite
simple using imperative programming, but the dependence on selective
iteration makes this approach impossible using array programming.

• Minor modifications to our model of the problem domain enables us to
solve the problem efficiently using array programming.

Before we start the actual discussion, note the following:

• If the interval x is closer to the interval y than any other interval, then
it follows that the distance from the midpoint of x to y is the shortest
distance between the midpoint of x and any other interval.

• The distance between the midpoint of x and the midpoint of y must
not be the shortest distance between the midpoint of x and any other
midpoint.
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• Any position between two intervals is closest to the interval with the
shortest distance between that position and the interval.

• The distances from a position to the intervals are equally long at the
midpoint position between the intervals.

Every position above the midpoint between two intervals is therefore
closer to the interval placed higher on the number line. Every position below
the midpoint position is consequently closer to the interval placed lower on
the number line. The midpoints between all adjacent target intervals gener-
ates a series of what we have coined as pivot positions. These pivot positions
are used to generate a new set of intervals, called pivot intervals. The first
pivot interval spans the region from the start of the number line to the first
pivot position. The second interval spans the region from the first pivot
position to the second pivot position. This continues until the last interval
that spans the region from the last pivot position and the rest of the number
line. These pivot intervals are non-overlapping and they completely cover
the number line.

Every target interval has a corresponding pivot interval of at least an
equal size. Pivot intervals are useful because every position within them are
closer to their corresponding target interval than any other target interval.

The generated pivot intervals combined with the ability to count intervals
within intervals of another track, as discussed in section 3.4.2 on page 25,
almost solves our initial goal of connecting the closest intervals. The methods
so far enables us to count the number of host intervals that are closest to
each target interval. The final result is deductible from this partial result.
The interval tracks are as we remember internally ordered. The first target
interval must therefore also be the leftmost target interval on the number
line. Furthermore, if the first pivot interval encompasses three host intervals,
then we know that those intervals are the three leftmost and therefore the
first three host intervals. This final conversion step is trivially computable
and concludes this method.

3.5 Inter-Genome Comparisons
Section 3.2 on page 21 described how coupled annotation tracks create con-
nections between genomes. We still need to discuss how to perform meaning-
ful comparisons utilizing these coupled annotation tracks. Our main contri-
butions are two methods for comparisons. The first approach is to transfer
track elements from a source genome, through a coupled annotation track,
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to a target genome. The second approach is to compute results local to each
coupled track element and compare the mapped results between genomes.

3.5.1 Projection of Track Elements

An interesting application of coupled annotation tracks is to treat them as
transition locations between the genomes. Imagine tubes connected to cor-
responding coupled track elements on different genomes. Regular track el-
ements can be funneled through those tubes from one genome to another.
Regular track elements completely covered by a coupled track element have
an unambiguous projection between the genomes. Coupled track elements
may overlap. A regular track element may therefore consequently be pro-
jected to multiple locations in another genome if the track element is covered
by multiple coupled track elements. Projecting only those track elements
within coupled track elements on the source genome, creates a new annota-
tion track on the target genome. It’s then interesting to compare the track
to related annotation tracks already present on the target genome.

3.5.2 Quantitative Comparisons

Coupled annotation tracks identify somehow related locations in different
genomes. We previously, in section 3.5.1, discussed how to project track
elements through these coupled annotation tracks. A serious issue with pro-
jection was that only positions within mapped annotations were transferable.
A different approach is to compare partial results between mapped coupled
track elements in different genomes. The partial results are computed rel-
ative to each coupled track element locally within each genome. The term
relative in this setting is important. This has the implication that the loca-
tion whose partial result was deducted from does not have to be the location
of the coupled track element. It might also be from a defined vicinity of the
coupled track element, the closest gene or for example the area between the
coupled track element and the closest gene. The only restriction is that the
coupled track elements must the points of reference, everything else is other-
wise possible. The partial results are typically computed by a combination of
the operations previously mentioned e.g. counting occurrences or computing
distances.

3.5.3 Accounting for Strand Direction

Corresponding coupled track elements in different genomes may be inverted
in relation to each other. It’s important to adjust for this when projecting
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points or computing distances, especially if the mapped annotations span
a large interval. The first position in a coupled track element should be
projected to the last position of the corresponding track element in the other
genome if the mapped annotations are inverted. The second to last position
should analogously be projected to the second position in the corresponding
track element.

3.5.4 Coupled Track Elements may Overlap

We previously discussed operations on interval tracks, in 3.4, where we re-
quired that intervals from the same track did not overlap. Coupled track
elements were introduced in 3.2 and one of the properties of coupled track
elements is that they may overlap. The discussion on quantitative compar-
isons between mapped coupled track elements in section 3.5.2 on the previous
page clearly showed the need for additional operations that allowed for over-
laps. This section provides methods to handle such questions using array
programming. Note all questions are sensible when overlapping track ele-
ments must be preserved. The intersection is for example non-sensible when
the original track elements must be contained.

Counting Overlaps

Slight modifications to the previous event model discussed in section 3.3 on
page 22 facilitates counting the number of intervals overlapping intervals from
a reference track. We’ll call the interval track we count from the reference
track to avoid confusion. Both interval tracks may overlap and they’re also
otherwise equal. We treat both interval tracks as multiple transition events
and, as before, and merge them into a common sequence.

The actual computation is easiest if it’s performed in two steps. We’ll
make a distinction between two types of overlaps:

1. A regular interval may start before the reference interval it overlaps
and end inside it or completely span it.

2. A regular interval may also start within a reference interval and end
before or after it.

It’s difficult, if at all possible, to perform both counts simultaneously using
array programming. It’s, however, quite simple to sum the results of two
partly independent computations.
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Our initial step is to count the number of open regular intervals at the
beginning of each reference interval. We’ll interpret the transition event se-
quence and the following generated state sequence slightly different to enable
this. We’ll let each state represent the number of open regular intervals. So a
series of non-overlapping adjacent states spans the number line and encodes
the number of open or active regular intervals for the duration of the state.
The first partial computation is completed by extracting the number of open
regular intervals for the states associated with each reference interval start
event.

The second step is quite trivial. It’s just a matter of counting the number
of regular start events between every reference start and end events.

The total number of regular intervals overlapping each reference interval
is computable by adding the two partial results discussed above. Some extra
complications arose because of the possibly internally overlapping interval
tracks, but a proper solution is still not too complex to be practically usable.

3.5.5 Mapping Coupled Annotation Tracks

Coupled track elements differ from ordinary track elements in that they con-
tain additional information about similar locations in other species. Coupled
track elements are introduced in section 3.2.

Both of the two proposed methodologies for inter-genome comparisons,
projection(3.5.1) and quantitative comparisons (3.5.2), are based on coupled
annotation tracks. We therefore need to discuss and develop proper methods
for array programming operations on coupled track elements. Corresponding
coupled track elements often cross chromosome boundaries. This section dis-
cusses methodology needed for connecting the chromosome level operations
together with inter-genome comparisons.

An intuitive attempt would be to construct and operate on the mapping
using a hash table, a data structure discussed in section 2.2.8. It’s entirely
possible to perform an implementation based on such a data structure. This
would, however, break our attempt at creating a complete methodology for
solving comparative problems using array programming. A map is specialized
for storage and arbitrary retrieval of data. Arbitrary lookup is not important
for our use of mappable track elements. We want to operate on all anno-
tations and the particular order is not important as long as it’s consistent.
Hash maps are therefore specialized for usages irrelevant to the problem at
hand.

Section 2.2.6 discussed the relational model that most databases are built
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upon. The original paper[5] claimed some advantages to the model. Espe-
cially one point is interesting in the context of mappable track elements;

The relational model avoids all dependence on hash addressing
schemes.

This statement does not imply that hash tables and relational databases are
equivalent, it simply states that the functionality provided by a relational
model does not depend on hashing. The relational model is created for
organizing and subsequently retrieving data.

Lets see how this relates to coupled track elements. Coupled track ele-
ments essentially encode two distinct types of information:

1. Locations on genomes.

2. Connections between locations.

A table in the relational model that describes locations must at least
contain columns for the following types of information to unambiguously
describe a location:

• A genome identifier

• A chromosome identifier

• The start position

• The end position

Every row in such a table describes a location on a genome. We’ll ad-
ditionally need to extend this model with information about mappings or
connections between locations. If every coupled track element mapped to
exactly one other track element, then this information could have been en-
coded by augmenting the table with an additional column describing map-
pings. Every coupled track, element, however, may map to arbitrary many
other track elements. It’s therefore not possible to augment the table so it
additionally describes mappings between coupled track elements. The cou-
pled track elements form a many-to-many relationship. The relational model
describes many-to-many relationships by creating an additional table that
describes mappings. Such a table is called a junction table.
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3.6 Other

3.6.1 Representing Sets Numerically

Every state represents a combination of zero or more interval sets. Each
state is in other words a subset of the superset representing all states. Every
subset must be given a unique representation to be computable using array
programming. For practicality and efficiency it’s important to find a succinct
and informative representation. The number of possible subsets of a set grows
exponentially with the size of the set[15]. The exponential growth of the set
size makes a binary number system representation especially suitable. Every
subset of a set of N elements can be represented by a n-digit binary number.
The value at every position in the binary number represents an element of
the set. If an element is present in a subset, then the value at its position is
1. Conversely the value is 0 if the element isn’t present in the subset.

It’s naturally also possible to represent subsets using numbers of base
10 instead of base 2. Every element of the set is uniquely identified by an
exponentiation of 2. A subset is uniquely identified as the sum of the integer
representations of its elements.

We’ll illustrate this by creating a unique integer representation of every
subset of the set Red,Green,Blue:

1. Identify each element of the set by a exponentiation of 2.

Color Exponentiation base 10 base 2
Red 20 1 001
Green 21 2 010
Blue 22 4 100

Table 3.1: caption-test

2. Every subset is then identified as the sum of its elements:
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Subset Exponentiation base 10 base 2
∅ 0 0 000
Red 20 1 001
Green 21 2 010
Green,Red 21 + 20 3 011
Blue 22 4 100
Blue,Red 22 + 20 5 101
Blue,Green 22 + 21 6 110
Blue,Green,Red 22 + 21 + 20 7 111

Table 3.2: caption-test
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Chapter 4

Design and Implementation

The implementation must not only adhere to the methods and algorithms
described, it must also fit with the target language Python in conjunction
with the Numpy library.

We’ve made major efforts to keep the complexity, concepts and usage as
simple as possible. We belive that any program and especially a framework
must be understandable and intuitive in order to be extendable and really
usable.

The higher abstraction levels of the system were implemented using an
object-oriented design. Low level operations are implemented using array
programming through the Numpy library. The implementation is presented
in a bottom up approach.

Intra-genome operations operate on one or more annotation tracks within
the same genome. The corresponding low-level implementations, which are
presented in 4.1, operates on chromosome annotation tracks. We’ll later, in
section 4.2, see how the framework combines the partial results produced by
the low-level operations. Chromosome annotation tracks are introduced in
section 3.1, but are in essence all track elements from an annotation track
that resides on a specific chromosome.

4.1 Operations on Chromosome Annotation Tracks
Low level operations are implemented with array programming using the
Numpy library. The operations solve problems such as computing overlap,
union, intersection, connecting the closest track elements from a correspond-
ing annotation tracks and more. The methodology needed to solve such
problems using array programming is presented in chapter 3.
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Figure 4.1: Track elements on a chromosome annotation track with a visual
representation compared to an actual representation.

4.1.1 Chromosome Tracks are Represented by Numpy
Arrays

Python has some overhead in both time and space when creating objects. The
abundance of biological data quickly ruled out the possibility of a completely
object oriented design.

Track elements on a chromosome level are therefore represented by Numpy
arrays. Numpy arrays are comparable to more efficient languages in both
space and time usage, this is explained in detail in section 2.2.2 on page 10.
A chromosome annotation track is represented by two arrays of start and
end positions. The rows of the two arrays correspond. This relationship is
illustrated in figure 4.1.

4.1.2 Generating Number Line States

Section 3.3.1 described how track elements on a chromosome could be viewed
as a series of adjacent non-overlapping states. Section 3.3.1 explained how
track elements each generate two transition events between states. It was
also outlined how a state set could be derived from a series of transition
events. Annotation tracks are given a unique flag value, as discussed in
3.6.1. Every transition start event is given the flag value of its annotation
track. Correspondingly, every transition end event is given the negative of
the flag value of its annotation track. Every state represents a combination
annotation tracks and is unambiguously represented as the sum of flag values
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from the annotation tracks it represents. We’ll define a few terms to make
the following discussion easier.

• A state representing an absence of annotation tracks is called an empty
state.

• A state representing all annotation tracks is called a complete state.

• All other states are referred to as middle states.

We saw in section 3.4.1 how the state model made it easy to formulate
methodology for computing the union and intersection of annotation tracks
using array programming. We’ll first discuss the implementation of a function
that computes the state sequence from two chromosome annotation tracks.
We refer to the code listing in 4.1.

Listing 4.1: A function common to both union and intersection
Line 1 def statesAndTransitionPositions(x,y):

- positions = concatenateAnnotations(x,y)
- flags = getFlags(x,y)
- idx = positions.argsort()
5 flags = flags[idx]
- positions = positions[idx]
- states = flags.cumsum()
- return states,positions

The positions variable is an array of all transition event positions. The
flags variable is an array identifying the transition event type occurring
at that position. Both the flags and positions are reordered relative to
the positions array (line 4-6). The states sequence is derived from the
cumulative sum of the flags array (line 7). The series of states and the
starting position for each state are returned from the function.

4.1.3 The Union of Two Chromosome Annotation Tracks

We concluded in 3.4.1 that set operations would easily be implementable if
we were able to generate a series of states from the annotation tracks. Lets
see how to compute the union of two chromosome annotation tracks now
that we’re able to produce the state series. The union of two chromosome
annotation tracks are the areas covered by one or more track elements. In
other words, all areas except those covered by none.

Listing 4.2: Union function at a chromosome level
Line 1 def union(x,y):
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- states,positions = statesAndTransitionPositions(x,y)
- noneActive = states == 0
- firstStart = np.roll(noneActive,1)
5 return Annotations(positions[firstStart],positions[noneActive])

The second line computes the series of states and positions by utilizing the
function presented above in 4.1.2. The third line extracts the empty states.
The state following an empty state must by definition be a middle state,
see the figure of legal transitions in 3.2 on page 23. The forth line identifies
the middle states following an empty state. The returned positions are the
complement intervals of the empty states, which by definition is the union.

4.1.4 The Intersection of Two Chromosome Annotation
Tracks

The intersection is computed very similarly to the union. Instead of identify-
ing the empty states, we identify the complete states. The intersection is by
definition only the complete states. Every state is internally only represented
by its start position. It’s therefore necessary to identify the starting position
of the state following a complete state as this is also the end position of the
complete state.

Listing 4.3: Intersection function at a chromosome level
Line 1 def intersection(x,y):

- states,positions = statesAndTransitionPositions(x,y)
- bothActive = states == 3
- oneEnds = np.roll(bothActive,1)
5 return Annotations(positions[bothStart],positions[firstEnd])

4.1.5 Assuring that Chromosome Annotation Track El-
ements are Non-overlapping and Ordered

Union and intersection are important building blocks for many other low-
level operations. A very useful feature is the ability to remove overlaps and
order a chromosome annotation track. This is very easy implemented by
computing the union of a chromosome annotation track against itself.

Listing 4.4: Removing internal overlaps made easy by union.
Line 1 def removeOverlaps(x):

- return union(x,x)
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4.1.6 Indices if Sorted

We will soon need a function that computes the position every value of an
array would have had if the array was sorted. Section 2.2.4 discusses how the
Numpy argsort function returns the reordering that will sort the array. The
reordering is actually an array of indices that index the values of the array
in sorted order. This allows us to reorder multiple related arrays according
to the sorted order of a single array. If we in a second call to argsort use
the returned value of the first call to argsort as a parameter, we end up
with the positions an element would have had in a sorted array. Another
useful property of the second argsort call is that these indices will reorder
the array in sorted order back to the original unordered order. This is a
property that we’ll exploit when performing inter-genome comparisons. The
implementation of indicesIfSorted therefore is as follows:

Listing 4.5: A function that returns the the positions the elements of the
input arrays would have had if they where concatenated and sorted

Line 1 def indicesIfSorted(*args):
- x = np.concatenate(args)
- return x.argsort().argsort()

4.1.7 Counting Points Separated by Pivot Elements

Much of the methodology for comparisons between intervals using array pro-
gramming as discussed in chapter 3 simplified the problems to counting the
distribution of points separated by pivot elements. The term pivot elements
is coined in this thesis and explained in 4.1.11. This section discusses the
implementation of the function countItems which counts the distribution of
points separated by pivot elements. The application of the function will first
become apparent in the following sections.

Listing 4.6: A function that counts the number of points between each pivot
element.

Line 1 def countItems(pivots,items):
- allPositions = indicesIfSorted(pivots,items)
- pivotPositions = allPositions[:len(pivots)]
- start,end = [-1],[len(allPositions)]
5 pivotPositions = np.concatenate((start,pivotPositions,end))
- diffs = np.diff(pivotPositions)
- return diffs - 1
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The pivots positions divides the chromosome into distinct parts. An
absence of pivot positions represents a single part spanning the whole chro-
mosome. A single pivot position divides the chromosome into two distinct
parts. One part up to the pivot position and one part including the position
and the rest of the chromosome. Two pivot positions creates three parts, and
so on. . . The general pattern is therefore:

N pivot positions = N + 1 parts

The function accepts an array of pivot positions and an array of points.
The second line computes the position every element would have had if the
two input arrays were concatenated and sorted and stores the result in the
allPositions variable. The positions the pivot elements would have had are
listed first and the positions the items would have had are then subsequently
listed. For example if the first pivot element would have been at the third
position in a concatenated and ordered array, then this translates to that
at exactly 3 items are located left of the first (smallest) pivot element and
belongs to the first part1. If the next pivot element would have been at
position 5, then this means there are exactly one item between the first and
the second pivot elements. This is one less than the difference between the
two positions.

blah blah ferdig. husk aa bedre forklare det med start=-1 og end=len(x).

4.1.8 Counting the Number of Points Closest to each
Track Element

Section 4.1.11 discussed methodology for connecting intervals from different
chromosome annotations tracks using array programming. The midpoint be-
tween two adjacent track elements is, obviously, the only point where both
track elements are equally distant. We furthermore defined, for complete-
ness, that the exact midpoint was closer to the rightmost track element. The
midpoints between adjacent track elements therefore form pivot elements
grouping a chromosome into parts. Each part is the area closest to its corre-
sponding track element.

Listing 4.7: A function that counts the points closest to each region
Line 1 def countClosestPointsPerTrackElement(trackElements, points):

- pivots = getTrackElementsMidpoints(trackElements)
- return countClosest(pivots,points)

1assuming the array to be zero-indexed, as is the case with numpy.
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Listing 4.8: A function that computes the midpoints between track elements
Line 1 def getTrackElementsMidpoints(trackElements):

- leftSide = trackElements.end[:-1]
- rightSide = trackElements.start[1:]
- means = elementwiseMean(leftSide,rightSide)
5 return np.ceil(means)

4.1.9 Counting the Number of Points within each Track
Element

Counting the number of points within each track element is quite similar to
the problem of counting the closest points for each track element, as discussed
in 4.1.8. The only deviation is how we select the pivot positions and also we
process the results of the countItems(4.6) function.

If we simply used the start and end positions of the track elements as
pivot positions we would get a count of points within each track element.
This additionally give us a count of points between each track element which
is not interesting for this computation. The uninteresting counts are removed
from the final result.

Listing 4.9: Function that counts the number of points inside each region
Line 1 def countPointsPerTrackElement(trackElements,points):

- pivots = np.concatenate((trackElements.start,trackElements.end))
- pivots.sort()
- counts = countItems(pivots,points)
5 return counts[1::2]

4.1.10 Counting Intervals inside Regions

We’ve seen how to count if the number of points inside track elements in
4.1.9. A perhaps more interesting question to answer is how many track ele-
ments from one annotation track are within each track element from another
annotation track. To answer this question we first need to be precise about
what is meant by ’inside’. This was the topic of 3.4.2, where it was argued
that at least 50% overlap was required. This coincided with checking if the
midpoint of a track element was inside the other track element type given
that the track elements were approximately equally large or that reference
track element is larger than the counted track element.

So to count the number of regions inside another type of regions we first
compute the middlepoints for each region and then utilize the existing func-
tionality.
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Listing 4.10: Function that counts the number of intervals (smaller regions)
inside regions

Line 1 def countIntervalsPerRegion(regions,intervals):
- midPoints = elementwiseMean(intervals.start,intervals.end)
- return countPointsPerRegion(regions,midPoints)

4.1.11 Counting Closest Intervals for Each Region

The solution to this problem follows the same logic and simple step as the
previous section 4.1.10 on the previous page. We compute the middle point
for each interval and apply the previously defined function for points.

Line 1 def countRegionForClosestIntervals(regions,intervals):
- midPoints = elementwiseMean(intervals.start,intervals.end)
- return countRegionsForClosestPoints(regions,midPoints)

4.1.12 Computing the Distiance Between a Point and
its Closest Region

It’s often of high intrest to be able to compute the shortest distance between
the track elements of two annotation tracks. This problem might be further
decomposed as two distinct, but related, problems:

1. Which corresponding track element is closest

2. what’s the extact distance.

We’ve already discussed a solution to something similar to the first sub-
problem in 4.1.8 where we were able able to compute how many points each
track element is closest to. Since both the track elements and the points are
non-overlapping and in ascending order we’re able to deduct the following
facts:

• If the first track element is closest to N points where N > 0, then it
follows that this must be the first N points. Formally the interval [0,N)
of the points sequence.

• If then also the second region is closest to M points where M > 0, then
it follows this must be the points in the interval [N, N + M)

Knowing this we’re able to create a table of points and its closest track
element by repeating each track element as many times as it has closest
points.
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Our remaining problem is to compute the distance between the pairwise
aligned points and track elements. The shortest distance between a point
and a track element is the minimum of the distance from a point to the start
of the track element or the distance to the end of the track element. Except
of the points inside a track element, where the distance is 0.

Listing 4.11: A function that computes the the distance between a point and
its closest region

Line 1 def distanceFromPointToClosestRegion(src,dst):
- cnt = countRegionForClosestPoints(src, dst)
- src = src.toAll(lambda x: x.repeat(cnt))
- return distanceBetweenRegionAndPoint(src, dst)

Listing 4.12: A function that computes the distance between regions and
points elementwise

Line 1 def distanceBetweenRegionAndPoint(regions,points):
- distanceFromStart = np.abs(regions.start - points)
- distanceFromEnd = np.abs(regions.end - points - 1)
- inside = np.logical_and(regions.start <= points, regions.end > points)
5 ans = np.minimum(distanceFromStart,distanceFromEnd)
- ans[inside] = 0
- return ans

4.1.13 Filter Points Inside Track Elements

We’ve previously, in 4.1.9, discussed how to count the number of points inside
each track element. A twist to this question is to compute what points are
inside track elements. Section 4.1.7 discussed how to count the distribution
of points separated by pivot elements. We’ll utilize this functionality to
count the number of points inside and between track elements and use that
information to deduct exactly which points that are within track elements.

Listing 4.13: A function that computes a mask of what points are within any
of the supplied track elements

Line 1 def pointsInsideRegionMask(regions,points):
- pivots = np.sort(np.concatenate((regions.start,regions.end)))
- counts = _pointsPerPivotInterval(pivots,points)
- mask = np.zeros(len(counts),dtype=’bool’)
5 mask[1::2] = True
- return mask.repeat(counts)

The input data must as usual appear in ascending order and the track ele-
ments must not overlap. The second line generates pivot elements from the
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start and end positions of the track elements and succeeding line counts the
number of points within each pivot interval2. Every odd pivot interval (the
first, third and so on) tells us how many points there are up to the first
track element, between the following track elements and after the last track
element. Every even pivot interval tells (the second, fourth and so on) tells
us how many points there are inside each track element. The total number
of points inside every pivot interval equals the total number of input points.
The fourth and fifth line initializes a boolean mask corresponding with the
pivot intervals. The mask has the boolean value true for every other posi-
tion, which reflects a pivot interval for the area inside a track element. The
every element of the mask is repeated as many times as there are points
inside that pivot interval. This is best illustrated by an example. If there
are three points inside the first pivot interval then the first mask value of
false is repeated three times. If the next pivot interval contains two points,
then the second mask value, which is true, is repeated two times and so on.
This example reflects a situation where the first three points occurs before
the first track element and the next two are inside the fist track element.
Only the last two of the first five points are inside track elements and this is
reflected by the mask.

4.2 Scaling Chromosome Level Operations Genome-
wide

The choice of implementation language, libraries and tools are reflected in
the design of the program. This implies that a good design is relative to both
the the domain and the tools at hand. The design is thefore not a general
principle or methodology.

Software design is therefore the middle tier between method and imple-
mentation. The design should consist of as general parts as possible but is
ultimately bound by the available tools and details of the domain.

4.2.1 Encapsulating Annotation Tracks

Annotation tracks describe empirical properties of genomes and are discussed
in 3.1. Annotation tracks consists of multiple track elements. Track ele-
ments describe locations within a chromosome. Section 3.1.1 discussed how
the chromosome boundaries may be used to group track elements by chro-
mosome type. See figure 4.2 on the next page for an illustration of this

2Pivot intervals are explained in detail in 4.1.11 on page 42
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Figure 4.2: Track elements of an annotation track are grouped by the chro-
mosome boundaries.

relationship. This hierarchy also provides a good model to represent annota-
tion tracks using an object-orientated model. We’ll refer to the hierarchical
object-oriented representation of an annotation track as a Hierarchical Track
Representation (HTR) in this text.

4.2.2 Organizing Operations on Annotations

There’s a huge amount of interesting operations to perform on one or more
annotation tracks. It’s important to organize and structure the operations
properly for the framework to be practically usable. We have classified all
operations as one of three distinct types based on the input and output of
the operations:

Transformation An operation on a single annotation track that produces
a new modified annotation track. An example is something as simple
as scaling all track elements by a factor.

Aggregation An operation on a single annotation track that produces a
single, typically numeric, result. An example is computing the total
number of positions covered by an annotation track.

Combinations Operations on multiple annotation tracks producing a new
annotation track as a result. Examples are computing the intersection
of two annotation tracks or counting the number of points within each
track elements of an annotation track.

The previous section (4.2.1) sketched an intuitive hierarchical represen-
tation of an annotation track called a HTR. Comparisons between track
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elements are based on location. It’s not possible or meaningful to compare
locations between different chromosomes and it follows that operations on
chromosome tracks may be performed isolated. This is why we’ve so thor-
oughly discussed and explored the possibilities of chromosome level opera-
tions and methodology in section 3.4 and section 4.1. A chromosome level
operations may therefore be applied to all chromosome annotation tracks of
a HTR and the partial results are subsequently combined. An operation on
multiple annotation tracks, such as an intersection, may similarly operate
on tuples of corresponding chromosome annotation tracks and combine the
partial results at the end.

4.2.3 Representing an Annotation Track

We want to succinctly represent annotation tracks and find a natural way
to apply operations to a track representation. Python supports higher order
functions and has a dynamic type system. Google’s MapReduce frame and its
underlying ideas were introduced in 2.2.7. Both map and reduce are concep-
tually easy to understand, but are still remarkably powerful concepts. The
natural hierarchical grouping of track elements into chromosome annotation
tracks (3.1.1) mandates an implementation that distributes a chromosome
track level operation and collects and combines the results. This makes oper-
ations on annotation tracks very suitable for the map and reduce operations.
Only two functions are needed to implement a genome wide operation:

1. One function that computes on a chromosome level.

2. One function to reduce (combine) the partial results.

The instances of the Track class in listing 4.14 encapsulates annotation
tracks and supports operations such as transformations and aggregations.
The mapReduce method of the Track class has one required parameter; the
function to be mapped across all chromosome annotation tracks. A combi-
nation function is optional, if none is supplied then the result is returned
as a new instance of the Track class. A second optional argument is the
onValues flag which is by default false. The combine function is by default
supplied a hash table with chromosome names as keys and the chromosome
level results as values because it’s usually important to know which chromo-
some each chromosome track belongs to. This relationship is not important
for aggregation functions and only the values are supplied to the combine
function when the onValues flag is true.

Listing 4.14: The overall layout of the class representing annotation tracks.
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Line 1 class Track(object):
-

- def __init__(self, chrTracks):
- self.d = chrTracks
5

- def mapReduce(self,f,r=None,onValues=False):
- d = dict()
- for key in self:
- d[key] = f(self[key])

10 if not r:
- return Track(d,name=self.name)
- if onValues:
- return r(d.values())
- else:

15 return r(d)
-

- def __iter__(self):
- return Bed.orderedIterKeys(self.d)
-

20

- def __getitem__(self,key):
- return self.d[key]

Consider how easily the total number of base pairs is computed using
mapReduce in figure 4.15. The number of base pairs is implemented com-
pletely ad-hoc in this example.

Listing 4.15: Computing the total coverage using only the mapReduce func-
tion

Line 1 u = Track.fromPath(’<path>’)
- u = TrackOp.removeOverlaps(u)
- u.mapReduce(lambda x: (x.end - x.start).sum(), sum, onValues=True)

MapReduce on Multiple Annotation Tracks

The mapReduce method of the Track class presented in the previous section
only performs operations on a single annotation track. This is useful, but
we need to extend this to perform operations on multiple annotation tracks.
For this purpose a bit more general mapReduce function has been created.
It accepts:

• A map function for chromosome level operations.

• A combination function.
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• Two or more Units to operate on.

The mapReduce function that operates on multiple annotation tracks is
shown in listing 4.16. The function is almost identical to the mapReduce
method in the Track class except that it applies the mapped function to
corresponding tuples of chromosome annotation tracks. An example of how
the mapReduce function is used is given in 4.17.

Listing 4.16: A general mapReduce function that operations on multiple
annotation tracks.

Line 1 def mapReduce(f,r,*ds):
- d = {}
- for key in commonKeys(ds):
- values = [x[key] for x in ds]
5 d[key] = f(*values)
- return r(d)

Listing 4.17: The use of mapReduce exemplified by the genome wide ap-
plication of the chromosome level intersection function from 4.1.4 on two
annotation tracks.

Line 1 def intersection(first, second):
- return fac.mapReduce(lib.intersection, Track, first, second)

4.3 Organizing Coupled Annotation Tracks

4.3.1 Coupled Annotation Tracks

As described in section 3.2, coupled annotations describe connections be-
tween genomes. A coupled track element maps to one or more track elements
in other species. A coupled annotation track describes connected track ele-
ments on a single species. A mapping between two species is represented by
the system as two distinct but related coupled annotation tracks. A mapping
between three species is represented by three coupled annotation tracks. Such
related coupled annotation tracks are said to be connected. This section will
explain how connections between coupled annotation tracks are preserved
by the system an how this representation may be utilized for quantitative
comparisons or projection between the species.

The Relation Model and Junction Tables

A data structure for coupled track elements and their connections suitable
for array programming and interoperable with the existing functionality is re-
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quired. Section 3.5.5 discussed different alternatives and concluded that the
relational model’s representation of many-to-many relationships has promis-
ing qualities that are applicable for array programming. A junction table is
used to describe many-to-many relations in the relational model. The concept
of a junction table is directly transferable to connecting coupled annotation
tracks using only integer arrays and thus applicable for array programming.

The Tabular Track Representation

Coupled track elements are stored on disk in a format we’ve called a Tabular
Track Representation (TTR). A TTR is a flat and serial chain of coupled
track elements, in contrast to the hierarchical representation used by HTR.
Coupled track elements in a table are not ordered by chromosome type.
Instead they have the promising property that connected coupled track el-
ements are at corresponding positions in their respective tables. The corre-
sponding aligned rows of tables makes them ideal for quantitative compar-
isons and projection, two important methods for inter-genome comparisons
discussed in 3.5.2 and 3.5.1. The table representation is very useful for inter-
genome operations and also provides a compact storage of coupled annotation
tracks and their connections.

Listing 4.18: The core functionality provided by a table track
Line 1 class TableTrack(object):

-

- def __init__(self, chrom, chromStart, chromEnd, strand=None):
- # store args ...
5

- def sortBy(self, x, inplace=False):
-

- @property
- def sortedIdx(self):

10 return np.lexsort((self.start, self.chrom))
-

- @classmethod
- def fromDict(cls, d):
- # ....

15 return TableTrack(chrom, start, end, strand)
-

- @classmethod
- def fromPath(cls, fpath):
- return cls(chrom,start, end,strand)

20

- def toDict(self):
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- # ...
- return dict(zip(chrom, values))

A Reversible Hierarchical Representation

The HTR have track elements grouped by chromosome type and this ordering
have shown itself very useful for intra-genome operations. Both HTRs and
TTRs are just different representations of the same data, except that the
TTR expresses a position based mapping to related TTRs. There’s implicitly
a gap in the methodology since intra-genome(3.4) operations depends upon
the HTR and inter-genome comparisons(3.5) depends upon the TTR.

We’ll introduce a new representation called Reversible Hierarchical Track
Representation (RHTR) to mend this problem. A RHTR is produced from
a TTR and is identical to a regular HTR in every aspect. The RHTR is in
addition able to reproduce the TTR. This is as we shall see very useful. A re-
sult may be computed relative to coupled track elements using intra-genome
operation and compared between genomes by transforming the RHTR re-
sults to a TTR representation. This conversion must be unambiguous since
inter-genome comparisons using TTRs are position based.

This process is quite simple. The track elements within a TTR appears
in no specific order, but the position of each track element within the TTR is
crucial. The track elements are ordered ascendingly by chromosome type and
location. The intermediate table is divided at the chromosome boundaries to
multiple chromosome annotation tracks. The only difference between a HTR
and a RHTR is that the latter remembers the reverse ordering between the
TTR and the intermediate table, called the reversible index. This is exactly
what makes the RHTR reversible. All chromosome annotation tracks are
combined and then the reversible index is applied to restore the original
TTR. This is illustrated in figure 4.3 on the next page.

Listing 4.19: The core functionality provided by a reversible track
Line 1 class RevTrack(Track):

-

- def __init__(self,chrTracks,revIdx):
- super(RevTrack,self).__init__(chrTracks)
5 self.revIdx = revIdx
-

- def mapReduce(self,f,r=None,onValues=False):
- tmp = super(RevTrack,self).mapReduce(f,r,onValues)
- return RevTrack(tmp,self.revIdx)

10

- @classmethod
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Figure 4.3: An annotation track may be represented by an annotation track
table or an annotation track unit. Conversions between the formats are
unambiguous..

- def fromTableTrack(cls,regions):
- sortedIdx = regions.sortedIdx
- regions = regions.sortBy(sortedIdx)

15 chrTracks = regions.toDict()
- revIdx = sortedIdx.argsort(kind=’mergesort’)
- return cls(chrTracks,revIdx)
-

- def toTableTrack(self):
20 ga = a.TableTrack.fromDict(self)

- return ga.sortBy(self.revIdx)

4.4 Operations on Coupled Annotation Tracks
Operations on track elements from coupled annotation tracks have some re-
strictions that are irrelevant for normal annotation tracks. Coupled track
elements may, unlike regular track elements, overlap. Section 4.3 discussed
how a coupled annotation track have multiple representations. A RHTR was
almost identical to a normal HTR which is used for normal intra-genome
operations, but with the additional ability to convert itself to a TTR which
is the preferred representation for inter-genome comparisons. The result of
an operation on a RHTR may be converted to a TTR and used for a inter-
genome quantitative comparison if the following is true:

1. The computed results must be relative to each coupled track elements.
This means that there must be as many partial results as coupled track
elements.
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2. The operation must produce correct and consistent results even if some
coupled track elements overlap.

Most of the previously defined operations in 4.1 break one or both of
the requirements above. To see why these requirements are important, it’s
important to remember the purpose of operations on coupled annotation
tracks. The goal is to compute results relative to each coupled track element
for later inter-genome comparisons. Set operations such as union or inter-
section are therefore not sensible since they produce a new annotation track
with no direct transformation to the original reference track. They break
the second requirement in other words. Other operations such as connecting
closest features are more problematic. The current algorithm, presented in
4.1.11, do not allow for overlapping track elements within a single annotation
track. The procedure would still be problematic even with an algorithm that
supported this. What if two coupled track elements occupied the exact same
location which was also closest to a track element from the other annotation
track ? If both were seen as closest to the track element, then the final to-
tal sum of closest track elements would be greater than the actual amount.
This is inconsistent and would break other operations that depend on this
operation.

4.4.1 Count Overlapping Track Elements

A very useful operation that condones with the above requirements is an
overlap count. Given two annotations track, we’re interested in how many
track elements from the second annotation track that overlaps with each track
element from the first annotation track. The number of overlapping track
elements is unaffected by internal overlaps. We’ll look at the implementation
of such an algorithm that must support overlapping track elements.

Section 3.5.4 discussed the abstract methodology and concluded that the
computation should be performed in two steps. The first step computes the
number of active regular track elements when a reference track element starts.
The second step counted the number of regular track elements that started
within each reference track element. The actual implementation is available
in listing 4.20. The first six lines are initialization code. They extract the
positions of all transition start and end events for both chromosome annota-
tion tracks. Line 9-12 count the number of regular track elements active at
the start of each reference track element. Line 13-15 computes the number
of regular track elements that begins within each reference track element.

Listing 4.20: Find number of overlaps when internal annotation tracks may
overlap
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Line 1 def hasOverlap(x, y):
- positionArrays = (x.end,y.end,x.start,y.start)
- splitIdx = np.cumsum(map(len,positionArrays[:-1]))
- totallength = sum(map(len,positionArrays))
5 orderedIdx = lib._indicesIfSorted(*positionArrays)
- ixe,iye,ixs,iys = np.array_split(orderedIdx,splitIdx)
-

- flags = np.zeros(totallength,dtype=’int64’)
- flags[iys] = 1

10 flags[iye] = -1
- openAtStart = flags.cumsum()[ixs]
- flags[iye] = 0
- startEndIntervals = lib.intertwine(ixs,ixe)
- openInside = np.add.reduceat(flags,startEndIntervals)[::2]

15 ans = openAtStart + openInside
- assert len(ans) == len(x)
- return ans
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Chapter 5

Use Cases

5.1 Five-Vertebrate Article
A recent paper[22], published in Science, identifies the genome-wide bind-
ing of two transcription factors in the livers of five vertebrates: human,
mouse, dog, short tailed opossum and chicken. The two transcription factors
were CCAAT/enhancer-binding protein alpha(CEBPA) and hepatocyte nu-
clear factor 4 alpha(HNF4A). They were selected because they are strongly
conserved and the DNA binding domains of each factor’s orthologs are nearly
identical. Each transcription factor bound between 16,000 to 30,000 locations
in each mammalian genome. For both factors, less than a quarter of bound
regions were within 3 kb of known transcription start sites (TSSs). Bind-
ing events appeared to be shared between 10% to 22% of the time between
mammals from any two of the three placental lineages1. This result reveals
a rapid rate of evolution in transcriptional regulation among closely related
vertebrates. Nevertheless, the number of CEBPA and HNF4A TF binding
events shared between any two of the five study species is far greater than
could have occurred by chance.

This section will recreate two analyses presented in the paper. Both analy-
sis investigate relations in the distribution of the experimentally determined
transcription binding sites published with the article. The authors of the pa-
per have used a 12-way multispecies alignment from ensemble[11] to identify
conserved regions among the investigated species.

We have not been able to acquire the same multispecies alignment, instead
we have used a 43-way multispecies alignment from UCSC. The methods and

1human,mouse,dog
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Figure 5.1: Figure from paper[22]. Conservation and divergence of TF bind-
ing. The pairwise distribution and numbers of binding events are shown as
a pie chart distributed into the following segments: intergenic (red), intronic
(yellow), exonic (blue), and promoter (TSS T3 kb) (green) regions. The left-
most column contains the distributions of the bulk genomes. The rightmost
pie chart represents all binding events in each species, with the total number
of alignable peaks above the total peaks (in parentheses).

procedures used in the original analyses are only generally explained, so we
had to decide for ourselves how to resolve much of the ambiguity.

Our recreation of the analyses should ideally be performed using the exact
same data sources and procedure as the original. The purpose of recreating
the analysis is, however, not to verify the results from the paper. The pur-
pose is to demonstrate how the framework is adaptable to solve relevant and
specific problems related to annotation analysis.

5.1.1 Conservation and divergence of TF Binding

The results from one of the more interesting analysis presented by the paper
is redistributed for reference in figure 5.1. Two identical studies have been
made for each of the two transcription factors. The leftmost part of figure 5.1
shows results for the CEBPA TFBSs and the rightmost part shows results
for the HNF4A TFBSs. The analysis starts by dividing the genome into four
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different segments;

1. intergenic regions

2. exonic regions

3. intronic regions

4. promotor regions

The pie charts in the leftmost column of the table in figure 5.1 depicts the
total distribution of segments for every studied genome. The distribution is
quite similar in all species and we notice for example that most nucleotides
are in intergenic regions. The second column identifies the reference species
for each row. The first row has the human genome as reference, the second
row has the mouse genome as reference and so on. The rightmost pie chart
depicts the distribution of all TFBSs in the reference genome. The interme-
diate pie charts shows, after our best understanding and interpretation, the
number and distribution of TFBSs within genomic regions conserved against
the species identified at the top of each column. We will recreate the analysis
for the CEBPA TFBS with the human genome as reference. This corresponds
to the first row of the CEBPA (the leftmost) table.

Data Collection

To reconstruct this analysis we’ll need a segmentation of the different genomes
and the TFBSs published by the authors. It’s not documented from where
or how the authors divided the genome into different segments. We used
the Hyperbrowser to extract what we think is a similar segmentation of the
genome, except that we have not defined any promoter regions. The loca-
tions of the TFBSs, however, are an important and published finding from
the study2.

Procedure

Every pie chart is computed from a reference genome and the distribution
of TFBSs within genomic regions conserved against a target genome is com-
puted. The analysis can be divided, in our interpretation of the problem,
into the following simple operations. For every reference genome and regions
conserved against a target genome pair :

• Filter TFBSs within conserved regions.

• Count the segment type for every selected TFBS.
2http://www.ebi.ac.uk/~benoit/cebpa_science2010/
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Initial Processing

The multispecies alignment used to locate conserved regions is stored on
disk as a coupled annotation track. Track elements in a coupled annotation
track may, as discussed in section 3.2, overlap. We are in this analysis not
interested in the mapping information coupled annotation tracks contains.
All the information we need is to know whether or not a given position is
conserved against a specific species. It therefore simplifies further processing
to transform the coupled annotation track to a normal annotation track
without overlaps. We discussed in section 4.1.5 how to remove overlaps from
an annotation track and we see the functionality applied in listing 5.1.

Listing 5.1: Removing overlaps and transforming a coupled annotation track
to a regular annotation track.

Line 1 cons = conserved[species].mapReduce(lib.removeOverlaps)

There’s a certain ambiguity involved with deciding if a TFBS is inside another
track element as the TFBS may span multiple other track elements. This
question is valid when deciding if a TFBS is inside a conserved region, but
even more valid when deciding what segment a TFBS covers. The resulting
distribution would be hard to interpret if a TFBS can be counted as inside
multiple segments, but similar problems will arise if decide not to count the
ambiguously located TFBS at all. We’ve decided to simplify the analysis by
considering a TFBS to be inside another track element if the midpoint of
the TFBS is inside. Listing 5.2 shows the preliminary step of extracting the
midpoints from the TFBS track elements.

Listing 5.2: .
Line 1 TFBSPoints = TrackOp.asMidPoints(data[’tfbs’])

Filter TFBSs within conserved regions

Subsequently, we want to select the subset of those TFBSs that lie within
conserved regions. Section 4.1.13 discussed on a chromosome track level
how to determine what points are within track elements and introduced the
pointsInsideRegionMask function. The function accepts a chromosome
annotation track and a list of points and returns a boolean array whose val-
ues are true when the corresponding point is inside any of the track elements
from the chromosome annotation track. Listing 5.3 uses mapReduce to ap-
ply the pointsInsideRegionMask function genome-wide and then uses the
returned mask to select and return only those points within track elements.
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Listing 5.3: Select subset of points that lie within the boundaries a track
element of the regions annotation track.

Line 1 def extractPointsWithinRegions(regions,points):
- maskTrack = fac.mapReduce(lib.pointsInsideRegionMask,
- Track.Track,regions,points)
- return fac.mapReduce(lambda points,mask: points[mask],
5 Track.Track,points,maskTrack)

Count distribution of TFBSs

The three segment types combined covers the whole genome without over-
laps. Each segment covers multiple locations and is represented by it’s own
annotation track. We discussed how to count the number of points within
each track element of an annotation track in 4.1.9. Finally, we count the to-
tal number of TFBSs per segment by summing the counts per track element.
The code is shown in 5.4.

Listing 5.4: Counts the total number of TFBSs inside each segment type.
Line 1 for regionName in regions:

- perRegion = TrackOp.countPointsPerRegion(regions[regionName], tfbs)
- count = TrackOp.sumValues(perRegion)
- displayResults(regionName, count)

Results

The results obtained from the described analysis are listed in table 5.1. Our
results are significantly higher than the comparable results published by the
paper (figure 5.1). This is partly because we have used the published data
source they call ’total peaks’ in the caption of figure 5.1 and they have used a
processed data set they call ’total alignable peaks’ which is 2/3 the size. We
have done extensive testing and debugging of every aspect of this analysis
without discovering any deviations or bugs. We have also compared the re-
sults from our operations with the results of external tools where overlapping
functionality exists in either the Hyperbrowser or the BEDTools package.
Much of the difference in the computed results might be a consequence of
the different multiple alignment used as a basis of the analysis. The figure
is only briefly explained in the article and we therefore question if we might
slightly have misinterpreted the exact analysis. Nevertheless, this attempt
at recreating the analysis show how the framework is well-suited for solving
real world problems.
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Species Intronic Regions Intergenic Regions Exonic Regions
Total 7098 8519 594
Ggal 279 249 197
Cfam 5445 6099 522
Mmus 4432 4839 531
Mdom 1473 1514 393

Table 5.1: Computed distribution of the CEBPA TFBS in the human genome
for regions conserved against the species in the first column.

Figure 5.2: Figure S16A from paper[22]. The regions where a binding event
was absent in a lineage-specific manner were collected for human, mouse and
dog for both CEBPA and HNF4A. Binding events lost in one mammal that
were shared in the other two mammals were identified, and the regions 10
kb either side of the peak center were inspected for nearby peaks.

5.1.2 Classifying and Counting Turnovers

An interesting analysis presented in the article explored the evolutionary
divergence of transcription factor binding sites. Regions conserved between
human, mouse and dog were identified. The analysis identify and inspect
those conserved regions where one binding event was missing in one lineage,
but present in the two complementary lineages. It is considered a loss if
no supplementary TFBS is found in the vicinity of the conserved region for
the species lacking a TFBS. If a supplementary TFBS is found, then it’s
considered to be a turnover. If a supplementary TFBS is also found in the
vicinity of the corresponding regions in any of the two other species then
the turnover is considered a shared turnover. If no additional supplementary
TFBS is found, then the turnover is considered to be an unsheared turnover.
These terms are illustrated in figure 5.2.
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Figure 5.3: Figure from 4B paper[22]. Turnovers occurred near lineage-
specific lost binding events approximately half the time; shared turnovers
represent cases where a cluster of binding events likely occurred in a common
ancestor.
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The article[22] made the following conclusions based on the results in
figure 5.3 on the previous page:

Approximately half of lineage-specific losses of TF binding showed
evidence of nearby compensatory binding events. A quarter of
species-specific losses had a nearby gained binding event that is
unique to the same lineage (unshared turnover), and an addi-
tional quarter of the losses had a nearby binding event that is
shared in one or more other species (shared turnover). The latter
case suggests the existence of a cluster of binding events in the
common ancestor.

It’s reasonable to assume that TFBSs present in conserved regions in all
three lineages originates from the common ancestor and has been preserved
since speciation. It’s also reasonable to assume that no TFBS was present
in the common ancestor for conserved regions completely devoid of TFBSs.
The fact that two of the conserved regions have an experimentally determined
binding site makes it plausible to assume that the binding site was present in
a common ancestor of the species and later lost in one lineage. The authors
assumed any additional tfbs in the vicinity3 of the conserved region as a
compensatory tfbs. Binding sites are cis-acting. This means they regulate
the expression of nearby genes. It’s therefore sensible to assume that two
adjacent binding sites for the same transcription factor have overlapping
functionality. A compensatory tfbs in the vicinity makes the binding site
more redundant, so the loss of one of the binding sites would not necessary
have an significant impact on expression as the remaining would still be
functional. The article assumes that when only one TFBS is missing, then
the TFBS was present in a common ancestor and subsequently lost along
one lineage.

Recreating the Analysis

The data used to recreate this analysis is a multiple sequence alignment and
the TFBSs published with the article. This analysis is complex, but may be
divided into the following concrete steps:

• Compute the location conserved between the three species from pair-
wise coupled annotation tracks.

• Count within each genome the number of TFBSs that are inside each
coupled track element.

3within 10kb in either direction from the conserved region
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• Compare the counts between the triplets of connect coupled track ele-
ments and only further process those triplets where exactly one coupled
track element lacks a TFBS.

• Search after a compensatory TFBSs in the vicinity of the coupled track
elements missing a TFBS.

– A coupled track element that neither cover any TFBSs directly
nor has one in the vicinity is considered as a loss. See figure 5.2
for an illustration of this concept.

– A coupled track element that did not cover any TFBSs directly,
but where a compensatory TFBS was found in the vicinity are
considered as turnovers. There are two types of turnovers:

∗ It is considered a shared turnover if a compensatory TFBS is
found in the vicinity of any of the two complementary coupled
track elements.
∗ It is considered an unshared turnover if no compensatory

TFBS is found in the vicinity of any of the two complementary
coupled track elements.

Extracting a 3-way Coupled Annotation Tracks

Connected coupled annotation tracks describe mappings between genomes.
They are usually in pairs, but this analysis required us to merge two pairs of
connected coupled annotation tracks to create a triplet of connected annota-
tion tracks. The procedure for doing so is much like the projection method,
but we’ll not go into details here.

Count TFBS for each coupled annotation track

The initial computational step is to count the number of TFBSs inside
each coupled track element for all coupled annotation tracks. The func-
tion countTFBSsPerRevTrack in listing 5.5 performs this operation by call-
ing the function countPerTrackElement in listing 5.6 for every Connected
Coupled Track Element (CCTE). A little care must be taken since cou-
pled track elements may overlap. We discussed the function hasOverlap
in section 4.4.1. The function is able to count overlapping elements on a
chromosome level, even if coupled track elements overlap. The function
overlapWithOther used in listing 5.6 is just a convenience library func-
tion that scales hasOverlap genome-wide. The third line is interesting as
it converts the reversible track to a table track. Reversible tracks and table
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tracks are just different representations of a coupled annotation track. This
is thoroughly explained in section 4.3, but the important thing to remember
is that reversible tracks are suitable for intra-genome comparisons and table
tracks are suitable for inter-genome comparisons. We convert the counts per
coupled annotation track to a table track representation since we later want
to compare the counts for CCTEs.

Listing 5.5: Count TFBSs per coupled track element for all connected coupled
annotation tracks.

Line 1 def countTFBSsPerRevTrack(revTracks, TFBSs):
- ans = {}
- for key in revTracks:
- ans[key] = countPerTrackElement(revTracks[key], TFBSs[key])
5 return ans

Listing 5.6: Count the number of TFBSs within each coupled track element.
Line 1 def countPerTrackElement(revTrack,TFBSs):

- res = rOp.overlapWithOther(revTrack,TFBSs)
- tableTrack = res.toArray()
- return tableTrack

Find CCTEs Where Two Out of Three Have a TFBS

We counted the number of TFBSs overlapping each coupled track element
in the previous section. We are able to compare the counts between CCTEs
since we converted the counts to a table track format. The function count-
RegionsWithValues in listing 5.7 accepts a tuple of table tracks. The second
line combines the table tracks into a multi-dimensional array and the integer
values are converted to boolean values. This is because we are only interested
if the coupled track element contains at least one TFBS. The last step sums
the every row of the boolean array. The result is a count of how many of the
CCTEs that overlap at least one TFBS.

Listing 5.7: Count the number of CCTEs overlapping a TFBS
Line 1 def countRegionsWithValues(countsPerTrack):

- boolMatrix = np.vstack(countsPerTrack).bool(’bool’)
- return boolMatrix.sum(axis=0)

We use the functionality implemented in 5.7 to extract the indices of those
CCTEs where exactly two out of the three coupled track elements overlapped
with a TFBS in the function findWhereScoreIs in listing 5.8.
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Listing 5.8: Create filter for aligned rows with as many true tuples as re-
quested

Line 1 def findWhereScoreIs(countsPerGenomeDict,score=2):
- alignedCounts = countRegionsWithValues(countsPerGenomeDict.values())
- return np.flatnonzero(alignedCounts == score)

Initial Counts

The functionality explained so far in this section all have a specific and
understandable task. Listing 5.9 starts gluing these functions together. The
locations where exactly two of the three CCTEs contain a TFBS are extracted
in line(3-4). Line(5-8) counts the number of TFBSs within and in the vicinity
of every coupled track element. Line(9-11) filter those CCTEs counts where
exactly two out of three have a TFBS. At the end of listing 5.9 we are left
with two types of TFBS counts for all the CCTEs. The first is the count of
TFBSs within every CCTE and the second is the count of TFBSs within and
in the vicinity of every CCTE.

Listing 5.9: Counting the number of tfbs before and after expansion of the
coupled annotation tracks

Line 1 tfbs = readTFBS()
- rTracks = readReversibleTracks()
- initialCount = countTFBSPerRevTrack(rTracks,tfbs)
- idxof2outof3 = findWhereScoreIs(initialCount,2)
5 expandedRTracks = {}
- for species in rTracks:
- expandedRTracks[species] = expandBothDirections(rTracks[species],5000)
- expandCount = countTFBSsPerTracElement(expandedRTracks,tfbs)
- for key in initialCount:

10 initialCount[key] = initialCount[key][idxof2outof3]
- expandCount[key] = expandCount[key][idxof2outof3]

Computing the Final Counts

The previous section computed all the data needed to compute the final
results and we will see how to do that here in listing 5.10. The results are
computed as the sum of partial results relative to each species. We therefore
start looping over the species in line 4.

The variables before and after contains the TFBS count within that
species coupled track element and in the vicinity of that species coupled
track elements. Line 9 find those instances where no TFBS was found within
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a coupled track element, but at least one supplementary was found in the
vicinity. These instances are turnovers, but we need to count what kind of
turnover it is. Line(11-15) checks if any of the complementary species have
a supplementary TFBS in the vicinity of corresponding the CCTEs. Those
instances where a supplementary TFBS is found are ’shared turnovers’ and
consequently it’s an ’unshared turnover’ if none are found. The number of
’loss’ is computed in line 14 as the number of coupled track elements where
no TFBS is located in the vicinity or in within the element.

Listing 5.10: Computing the number of loss shared and unshared turnovers
Line 1 loss = 0

- shared = 0
- unshared = 0
- for key in initialCount:
5 others = set(initialCount.keys()) - set([key])
- before = initialCount[key]
- after = expandCount[key]
-

- local_turnovers = np.flatnonzero(np.logical_and(before == 0,after > 0))
10 is_shared = np.zeros(len(local_turnovers),dtype=’bool’)

- for other in others:
- otherBefore = initialCount[other][local_turnovers]
- otherAfter = expandCount[other][local_turnovers]
- is_shared_with_other = otherBefore < otherAfter

15 is_shared = np.logical_or(is_shared,is_shared_with_other)
- loss += len(np.flatnonzero(after == 0))
- shared += len(np.flatnonzero(is_shared))
- unshared += len(np.flatnonzero(is_shared == False))
- print ’loss:’,loss

20 print ’shared turnovers’,shared
- print ’unshared turnovers’,unshared

Results

This analysis contained many steps, but bear in mind that what was calcu-
lated is actually quite complex. The computed results are available in table
5.2 and should be compared with the results published with the article in
figure 5.3. We notice that the published result counts are more than twice as
high as ours. Our result also have proportionally fewer unshared turnovers.

We have done extensive debugging and testing and we fail to find any
errors in our implementations. We have based the analysis on a different
multiple alignment, as discussed in section 5.1, than what the authors of the
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study used. Many details of the procedure are not properly documented, so
the methods used may also slightly differ. The results are not too far off and
the purpose of recreating this analysis was to prove the framework capable
of such an advanced analysis.

TFBS Type Loss Shared Turnover Unshared Turnover
CEBPA 655 180 94
HNF4A 796 346 81

Table 5.2: The number of loss, shared turnover and unshared turnover. This
result is a recreation of the analysis presented in figure 5.3.
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Chapter 6

Discussion

6.1 Inter-Genome Comparisons
One of the original goals of this thesis was to explore the possibilities for inter-
genome comparisons and if possible develop proper methodology for usage
and discuss the implications. Two methods for inter-genome comparisons
were proposed in 3.5. Initially, we started experimenting with different pos-
sibilities for measuring distances across genome boundaries. We later became
aware of the then recently published article[22], whose findings are attempt-
edly recreated in 5.1, which performed comparisons between genomes. The
authors used what we call ’quantitative comparisons’ for the analysis that
counted turnover TFBSs, which is discussed in depth in 5.1.2. The idea of
the other method, projecting track elements between genomes, is as far as we
know novel. Formalizing both methods and exploring the possibilities and
limitations inherent is an important step towards more useful analyses in the
future.

6.1.1 Distance

The distance between two positions on a single chromosome is defined as the
number of base pairs between them. The distance between two positions on
different chromosomes on the same genome is on the other hand undefined
because of the chromosome boundaries. It’s not well understood if it’s sensi-
ble to define a measure of distance between positions on different genomes. If
so, it’s possible to compute the shortest path between any two positions us-
ing a coupled annotation tracks as transition locations between the genomes.
The distance between two positions on different genomes is calculated as the
shortest total path from the source position to a coupled track element in
the source genome and from the corresponding coupled track element in the
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target genome to the target position in the target genome. Another consid-
eration is deciding what should constitute as a legal shortest path. Should it
be allowed to utilize multiple transitions between the genomes if that leads
to a shorter total path? Having a measure of distance could for example
allow us to connect closest track elements on different genomes, compare the
distance between orthologous features and a plethora of other usages.

6.1.2 Projection

Projection is a method for transferring annotation tracks between genomes.
Connected coupled annotation tracks defines legal transition locations be-
tween the genomes. Section 3.5.1 used tubes as a metaphor to describe
the function of connected coupled track elements in relation to projection.
Connected coupled annotation tracks describes a series of these imaginary
tubes. A regular annotation track is funneled between genomes through
coupled track elements. A projection transfers an annotation track between
genomes. The resulting projected annotation track may be compared against
normal annotation tracks on the target genome using the normal operations
on annotation tracks discussed in depth in 3.4.

What is Projected?

Track elements within coupled track elements have an unambiguous projec-
tion to the target genome. Section 3.5.4 discussed how coupled track elements
could overlap. This makes sense biologically as genomic regions may be du-
plicated and translocated during evolution. Track elements within multiple
coupled track elements are therefore projected through all the coupled track
elements. We also need to decide how to handle secluded track elements. A
secluded track element is in this context a track element which is not covered
by any coupled track elements. Imagine a track element equally distant from
its two closest coupled track elements. As the coupled track elements are
used as transition points between the genomes the isolated track element has
to either:

• Be projected through both of the coupled track elements. This will
create two copies at different location in the target genome seemingly
randomly.

• Be projected through one of the coupled track elements. As the coupled
track elements are equally distant, one has to be chosen at random or
by some other measure.
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• Be left out of the projection due to it’s location.

Implications of not Projecting Secluded Elements

The conservative choice is to consider secluded the track element as unpro-
jectable. To only transfer track elements with an unambiguous projections
saves us from making predictions we’re perhaps not capable of. To leave
out secluded track elements from a projection has some consequences. We
remember that coupled track elements are on average a lot closer to genes
than what an equally sized random sample of track elements would have been.
The unambiguously projectable track elements are therefore not a random
subset of the original annotation track. The perhaps most evident usage of
a projected annotation track is to compare it against a similar annotation
track from of target genome. We have to be very careful when concluding
on the results of such a comparisons. This is because we’re comparing a
non-random subset against a complete annotation track. A possible counter
measure is to filter the secluded track elements from the annotation track
from the target genome. The remaining subsets are consequently compared.
This is sensible since both subsets are non-random samples selected by an
equal method. We still have to be careful when drawing conclusions on such
a comparison since we’re not comparing the original annotation tracks, but
non-random subsets from them.

Implications of Projecting Secluded Elements

The inherent problem with the non-random sampling gives a compelling in-
centive to estimate the projection of isolated track elements. Even a bad
prediction of the projection of secluded track elements could result in a pro-
jected annotation track with better properties than the alternative. Funda-
mental edge cases still have to be resolved. Projecting isolated track elements
through all roughly equally distant coupled track elements would skew the
distribution of the projected annotation track since secluded track elements
would often be doubled. This property favors a random selection of only one
coupled track element when a secluded track element have multiple equally
good alternatives. The actual ramifications of both approaches should be
properly tested before an final decision is made. Irrespective of the method
for choosing the coupled track element, the projected location in the target
genome has to be estimated as it’s not unambiguous. A straight forward
solution is to compute and use the offset from the secluded track element to
the coupled track element. This is probably a good enough estimate as it
distributes projected secluded track elements comparably to the distribution
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in the original annotation track. Situations where the offset would project a
track element outside of the chromosome boundaries of the target chromo-
some are unlikely and could be solved by moving the projected track element
to the boundary of the chromosome instead. The target and host chromo-
somes could differ greatly in size and it could be possible that relative offset
gives better results. Strict or relative offsets are also considerations that must
be experimentally tested before we’re able to make an educated choice.

In Conclusion

Projection of annotation tracks has many promising properties, but many as-
pects and details must be properly analyzed before conclusions on the results
of a projection can be made. The method for only transfer unambiguously
projectable track element is more developed as it’s done without guesswork.
The properties of the projected annotation track are not yet well understood
and may be unfeasible as it’s a non-random subset of the original annotation
track. The method for an estimated projection of a complete annotation
track has unresolved issues but the resulting projected annotation track may
have more promising properties. The current framework has only imple-
mented support for unambiguous projection. It is trivially to extend the
implementation to support predicted projections of secluded track elements
when the methodology has been further developed.

6.1.3 Quantitative Comparisons

A quantitative comparison uses coupled annotation tracks to connect genomes.
This is similar to the projection method discussed above in section 6.1.2. The
methods differ in how the coupled annotation tracks are used to perform
comparisons between genomes. The projection method views coupled track
elements as legal transition locations whereas the quantitative comparison
method views coupled track elements as locations for comparisons. Partial
results are computed relative to each coupled track element and compared
between connected coupled track elements. A very important point and a
considerable advantage to the method is that the relative results may be com-
puted from a much wider area than the size of the coupled track element.
This fact was a very important part of the analysis in section 5.1.2 where it
was searched after TFBSs in the vicinity of coupled track elements.
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Origin

As previously stated, the idea of what we’ve called quantitative comparisons
originates from an analysis in a recent paper[22] that is recreated in section
5.1.2. The authors explains enough of the procedure for the reader to in-
terpret the presented results, but they to not discuss the subject further.
We belive that the procedure is useful for many applications and we have
therefore made efforts to formalize the procedure as a general method.

No Loss in Resolution

The first step in a quantitative comparison is to compute a quantitative par-
tial result relative to every coupled track element. Computation of these
relative results are performed using normal annotation analysis operations.
Every normal operation is allowed on all desirable annotation tracks of the
genome. This means that it is possible to perform meaningful and unam-
biguous comparisons using results based on secluded track elements.

Coupled Track Elements Appear in Clusters

Coupled annotation tracks are typically based on a multiple sequence align-
ment. Functional elements, such as genes, are more preserved during evolu-
tion and coupled track elements consequently appear in clusters surrounding
these preserved areas of the genome. The surrounding environments of cou-
pled track elements will therefore often overlap and passively contribute to
the partial results of multiple coupled track elements. Large portions of the
genome will furthermore never participate in any quantitative comparisons
because no coupled track elements are nearby. Quantitative comparisons
are used to measure the relative environmental difference between connected
coupled track elements and the clustering of coupled track elements does not
change this initial goal. The non-random distribution of coupled track ele-
ments might, however, affect the conclusions we may draw from the results.

Disadvantages Evenly Distributed Between Genomes

The quantitative comparison method has some clear disadvantages. The best
advantage of the method is that these disadvantages are evenly distributed
between the genomes that are compared. The previous section discussed how
coupled track elements appear in clusters and this fact is equally true for all
genomes.
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What to Compare?

The quantitative partial results computed relative to coupled track element
are subsequently compared between connected coupled track elements. The
partial results must be something uniformly meaningful to compare between
genomes. To compare, for example, a count of occurrences of a specific TFBS
is not particularly meaningful because the total amount of binding sites may
vary greatly between genomes. It might make more sense to compare pro-
portion ratios, but that also has interpretation issues. A large genome with a
proportionally large occurrence of a feature does not have more occurrences
per base pair than a smaller genome. It would in this case be wrong to
compute partial result computed from a fixed size environment relative to
coupled track elements as a ratio. Making the the size of the environment
a proportion of the genome size would negate this effect. This is not always
desirable because many elements, for example cis-acting, does not affect ar-
eas proportional to the size of the genome. The analysis in 5.1.2 negated
some of this effect by only considering if a feature was present or not.

6.2 Array Programming
Array programming is recognized by its ability to express computations at
a high-level of abstraction, allowing one to manipulate and query whole sets
of data at once. This makes the programming model very suitable for cer-
tain kinds of problems and the resulting algorithms are consequently often
very clear and concise. Any algorithm that is expressible as a series of op-
erations on whole sets of data is suitable for array programming. Solutions
to numerical problems often require very little effort to be solved by array
programming.

There are few papers on array programming in general and we found none
that discussed usage unrelated to numerical applications. We were curious
and optimistic about using array programming to solve problems related to
annotation analysis. We wanted to know, if possible, what the limitations
of array programming were? What general properties identified problems
solvable by array programming? Even a complete, but documented, failure
would have been an interesting finding.

6.2.1 Guidelines for Interval Problems

A large part of chapter 3 was devoted to explaining a wide range of methods
for solving different problems related to intervals, such as for example com-
puting the intersection between two sets of interval and connecting closest
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intervals from different sets. We’ve tried to distill some general guidelines
for solving interval problems using array programming. Some concepts are
perhaps applicable to other problem domains.

Combine Arrays for Complex Comparisons

Operations on multiple interval tracks are always based on comparisons be-
tween intervals from different tracks. Comparison between two arrays is
only possible as a pair-wise operation with array programming. Pair-wise
comparisons alone is not enough for complex comparisons. The apparently
contradictory step of combining the arrays allows for more complex compar-
isons. The combined array must subsequently be sorted, but steps must be
taken not to loose information about which array each value of the combined
array originated from

Identifying the Origin of Values in Combined Arrays

At least two methods exists for keeping track of the origin of each value.
They have partly overlapping functionality, but there are instances where
one is more suitable than the other.

1. Compute the position each element of an original array would have in
the combined and sorted array.

2. Create an additional array of flags that identifies the originating array
for every element in the combined but not yet sorted array. Sort both
the combined and the flag array by the order of the combined array.

Think Differently About the Original Data

It often critical to think and reason differently about a problem to find a
solution with array programming. This is often difficult and the issue is
thoroughly discussed in the next section (6.2.2). Thinking about interval
start and end positions as transition events between states allowed us in
section 3.4.1 to compute the intersection and union of interval tracks quite
easily by generating and operating on the state sequence. We were priorly
unable to develop an algorithm that simply compared the start and end
positions.

Understand the Possibilities of the Array Programming Model

Array programming is recognized by general scalar operations applied to typ-
ically large sets of input data. Most available operations performs a uniform
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operation to a whole data set, such as computing an aggregate sum or a pair-
wise addition of two arrays. The definition of array programming is, however,
quite broad and allows for operations that operations that have a surprising
level of granularity. The reduceat function from the Numpy library applies
to an universal function. The function accepts an array to operate on and
the indices to reduce between as input. It reduces the universal function
on the input array between each pair of the supplied indices. There’s a few
points worth noting about such a function. The function follows the array
programming model as it is just an operation on two arrays. The result of
the function could easily have been computed by a series of partial reductions
in a loop. Such complex functions exists because the array operations are
often highly optimized. The reduceat function in Numpy is orders of mag-
nitude faster than the perhaps more readable alternative of applying multiple
reductions in a loop.

Redundant Work is Occasionally Acceptable

The notable computer scientist Donald Knuth has made the following state-
ment on optimization:

We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil.

Most programmers accept this fact, but we still too often have a hard time
producing sub-optimal results in situations where it’s completely acceptable.
This is perhaps even more true for array programming, as the operations are
highly optimized. A pure array programming solution with clear redundancy
is almost without exception fast enough. The restricted set of allowed oper-
ations makes it difficult to create solutions with exponential growth in time
or space.

Split Problems

Some problems are not directly solvable using array programming. Dividing
a problem into multiple sub-problems that are solved isolated is sometimes
the only option. This point overlaps with the previous point, but we’ve found
it so useful that we’d like to make it explicit. We applied this guideline in
section 3.5.4 where we discussed how to count overlapping intervals.

6.2.2 Encapsulation and Reuse

Even with experience on developing methods for solving interval problems
using array programming and following the guidelines deduced in 6.2.1 using

74



array programming it’s still remarkably difficult to develop methods for new
problems. This often holds true even when the new problem is only slightly
different from an previously solved problem.

It was therefore natural to attempted to reduce the complexity involved
in solving new problems by creating reusable abstractions. Subsequent prob-
lems could then be solved by assembling existing encapsulated functionality.
Completely modularized and generic code is the holy grail of general pro-
gramming. The fact that the domain, interval problems, is highly specific
makes such an attempt more achievable. This failed completely, but the
process made us realize an important concept of array programming. An
algorithm for array programming must consist of a series of array operations
due to the high-level of abstraction enforced by all operations. This conse-
quently gives little leverage for molding code to fit the model of a problem. A
model that conformes with the restrictions of array programming must there-
fore be deviced specially for every problem. The high-level of abstraction for
the array programming operations and the requirement of a perfectly com-
pliant model explains why algorithms for array programming are known to
be very concise and succinct. To encapsulate complex operations will never
be of much help since the real difficulty resides in creating a problem of the
model suitable for array programming.

6.3 On Reproducibility of Analyses
Many present papers in bioinformatics cover a long work chain. Data is pro-
duced using advanced sequencing technology. Analyses are made on the data
and much effort is put on placing the results in a biological context. A recent
article[12] sheds light on the problem of reusability. A research group was
only able to reproduce the findings from half of a selection of articles from
the highly acclaimed Nature Genetics journal. The authors of the galaxy
tool discussed in 2.1.1 offers a system that makes sharing analyses and data
easier[10]. Researcher may alternatively publish all of the source code that
their analyses were created with along with the data. This rarely happens
since some steps are often not automated and a full precise textual explana-
tion would perhaps have been too time consuming to create. It’s also very
possible that many researches feel uncomfortable releasing their in-house and
perhaps quite chaotic code publicly. Using a published framework that per-
forms most of the work will make code sharing and thus reproducibility easier.
The framework should ideally handle most of the work and the case specific
code orchestrates the application of the different framework components on
the input data. This is similar to the graphical workflow editor that Galaxy
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proposes, but the users additionally have the full flexibility of a programming
language at disposal. Both workflows and frameworks lets the researcher pre-
cisely describe an algorithm omitting all the unnecessary details. A shared
code base also diminishes the chances of bugs within specific operations. It’s
clearly a lot simpler to publish a small script utilizing a public framework
than bundling everything together. This also enhances the readability for
the curious reader, since all unimportant details are abstracted away.

6.4 Encapsulation and Typing
The implementation described in this paper allows for complex operations
and comparisons between annotation tracks within a single genome and be-
tween genomes. The system uses integer arrays to represent track elements,
mappings between genomes and both partial and final results. An object-
oriented design is used to encapsulate and provide proper abstractions for
essential concepts in the system. Object-orientation has properties that
helps building systems consisting of decoupled independent modules which
decrease the overall complexity of the system.

Even when careful considerations have been made to reduce the inter-
dependence between modules, the system still fails to provide a good data
abstraction. Using the framework to perform annotation analyses is as a
consequence more complex than initially perceived. A characteristic flaw of
the system that we were unable to initially predict is how hard it is to detect
and restrict unsafe operations. We’ve identified the omnipresent usage of
integer arrays that encodes various structures and relationships as the root
cause of these problems. We’ll explore the topic extensively in this section.

Section 2.2.5 introduced the concept of type systems and explained the
difference between statically and dynamically typed languages. All values
have a type, this is common for both dynamic and static type systems.
This fact is often overlooked as it has been omnipresent since the advent
of high-level programming languages more than fifty years ago. Low-level
programming languages provides little or no abstractions from the comput-
ers instruction set architecture. A higher burden is put upon the program-
mer due to the simplicity of the low-level languages. The memory is for
example accessed directly and the programmer must at each access decide
how to interpret the contents of memory. It’s easy to for example store a
floating point number at a memory address and subsequently retrieve and
interpret the contents as an integer. Floating point and integer values are
represented differently by a computer and the value read will therefore be
completely different. It’s even simpler to make similar mistakes for more
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complex data structures. Especially within a larger program where the value
may be stored and subsequently retrieved at different locations. Such prob-
lems are non-existent in high-level language as all values have an associated
enforced type. The lack of a type system is one of the central concepts that
differentiate high and low level languages and make in low-level languages
much more error prone. All modern programming languages automatically
performs one of the following actions when for example a floating point value
is added to a integer value:

1. The programming language detects the type error and aborts either
the compilation(static typing) or the execution(dynamic typing).

2. The programming language performs an implicit conversion of the float-
ing point value to an integer value and performs the addition.

The latter is option is used by Python and Java, while the first option is
typically used for more strictly typed languages such as ML and Haskell.

When we use integers arrays to encode structure we loose the type safety
provided by the language. This has serious implications for modularization
and how well abstractions encapsulate implementation details. All operations
manipulates or queries one or more integer arrays at some level. Operations
could try to check if input conforms to the the operations requirements on
input. It may do so by checking for situations that never could occur for legal
input. This is very difficult to enforce in practice for at least three reasons:

1. Some illegal input may conform to the same restrictions as legal input.
Such instances will never be detected no matter how thorough the
checks on input are.

2. Tests on input have to describe everything the input cannot be, whereas
types describe only what the input must be. The latter is clearly sim-
pler.

3. Thorough testing is often computationally expensive. This will result
in a significant degradation of the execution speed. Many operations
are used as both standalone operations or as part of another more
complex operation. Tests will consequently be repeated throughout the
call chain for complex operations on previously checked and confirmed
input.

The most prominent problem with the difficulty of asserting correct input
for operations is that this directly affects the users of the framework. Usage
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of the framework usually consists of writing a small script that applies a
series of operations on a set of input data. It’s very conceivable that a user
misunderstands or forgets some restrictions of an operation. The user will get
no warning or indication of the mistake other than an incorrect result. It’s
often difficult to know what results to expect prior to an analysis and it may
very well be that an erroneous result does not deviate sufficiently from what
the correct result is or what the expected actual result was. Many operations
on annotation tracks require non-overlapping input and it’s easy to imagine a
user forgetting this requirement or falsely assume that the supplied function
input is non-overlapping. The result may be completely different or just
slightly different in small fraction of the result. These problems cannot be
abstracted and hidden from the user by a better architecture design as it’s a
fundamental flaw of the system originating from the use of arrays to encode
more complex structures such as annotation tracks. It’s as we’ve seen easy
to introduce these bugs. They’re hard to detect and debug. This makes it
consequently harder to trust the results of analyses without a time consuming
and thorough examination of every line of code.

6.5 Evaluation of Numpy as a Programming
API

Numpy is an array programming library for Python and has been used to
implement the methodology developed in chapter 3. The implementation is
described in chapter 4, this section will discuss the applicability of Numpy as
an array programming API. Although Numpy strictly speaking is a library
for array programming in Python, but it’s perhaps more fair to think of
Numpy as an environment for scientific applications. Numpy is a part of the
Scipy package with the goal of offering scientist an easy to use environment
for numerical computations and visualization of results.

6.5.1 Best Effort Approach

The Numpy library is most often used interactively or in quite short scripts
for numerical computations. It’s target audience are computer literate re-
searchers in often other fields than computer science. Numpy is therefore
very forgiving and most functions in the library tries to interpret input very
liberally. This works especially well for it’s intended usage and enables re-
searcher to spend more time solving actual problems instead of arguing with
the programming environment. Bugs that occur in the typical very short
scripts are often quickly discovered and corrected.
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One generally accepted guideline for API development[3] is to fail fast.
Fail Fast means aborting further computation as soon as an error is detected.
This avoids error propagation and therefore makes debugging easier. There’s
a clear tradeoff between failing fast and the usability focus in Numpy since
erroneous input may falsely be interpreted as legal input by the library.

This ’best effort’ approach proved itself as a source of bugs that were espe-
cially difficult to detect. Numerous bugs went undetected even after rigorous
testing and first emerged during an analysis on large biological datasets. De-
tecting and tracing these errors were often difficult due to the size of the input
data and the fact that it’s often difficult to estimate the expected output of
operations.

6.5.2 Missing Features

The hardest criticism against Numpy given above in 6.5.1 can largely be
explained by the fact that Numpy is intended as an interactive environment
more than a stable programming API. Still, not all deficiencies of the library
may be explained by the mentioned tradeoff between user friendliness and
consistency. An illustrating example of this which caused an incredible hard
to find bug is an optional keyword argument for the different sorting functions
in the library. The default sorting algorithm used by Numpy is the unstable
quicksort algorithm. Unstable is this context refers to a property of the
algorithm. A stable algorithm maintain the relative order of equal values.
The stability of a sorting algorithm is not relevant for the majority of usages,
but it’s essential where needed. The keyword argument is the name of the
preferred algorithm. No error is signaled if the algorithm name is misspelled
or unknown. Even worse, Numpy defaults to the unstable quicksort algorithm
if the supplied keyword is unknown. The bug mentioned was caused by
misspelling ’mergesort’ as ’mergsort’.

6.6 Trusting the Results
Any system should ideally be bug free, but this is in practice exceedingly
difficult as was explained in 2.2.9. It is very important for an analysis tool
to produce correct results. It’s often difficult to know what results to expect
from an analysis on annotations and the plenitude of data which is typically
processed makes it even more difficult to verify results by hand. A erro-
neous analysis produces with luck results that are so far off what had been
expected that the results induce further investigations. If incorrect results
are assumed to be valid, then researchers will waste time trying to under-
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stand the implications of the results and attempt to place the results into
a biological context. This is directly harmful as it could result in incorrect
assumptions that would misdirect further studies and research efforts.

Steps Taken to Assess Correctness

Many steps have been made in an attempt to assure correctness. An ex-
tensive test suite exists in addition to the source code of the program. All
operations are extensively tested with normal input, edge cases and erro-
neous input. Much time have been spent on verifying and extending the test
suite. Major efforts have in addition been put to bring forth a logical, con-
cise and structured architecture. Those operations whose functionality over-
laps with counterparts of either the Hyperbrowser(2.1.4) or the BEDTools
package(2.1.2) have been verified by comparing the results from operations
on real biological data.

Why it’s Still Hard

Many of the operations on track elements have no comparable counterpart
in any known program or tool. It’s especially important to have extensive
tests for those operations. It is, however, very hard to foresee all possible
scenarios up front. Manual inspection and verification of a small fraction of
a real biological data set is tedious, but sometimes useful. Experience have
shown that bugs that slip past initial testing first emerge on large data sets.
This is because the situation that triggers the bug are almost always extreme
edge cases which only occur a small fraction of the time in real data.

6.7 Architecture and Organization
The hierarchical division of the genome by chromosomes makes it very nat-
ural to represent an annotation track as a collection of multiple chromosome
level annotation tracks as discussed in 4.2.1. Another consequence of the
division of a genome by the chromosome boundaries is that position based
comparisons between track elements on different chromosomes are undefined.
This fact simplifies the implementation of operations since they only need
to compare or operate on track elements from the same chromosome. A
chromosome level operation may therefore be applied to all the chromosome
annotation tracks of an annotation track and the combined result must also
be the correct result for the genome-wide operation.

The alternative is to implement operations that are applied to all the
track elements of an annotation track at once and the individual operations
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must be aware of the chromosome boundaries and what constitutes as legal
comparisons between track elements. This extra bookkeeping must be done
for all operations, is error prone and completely unnecessary. We argue
that the hierarchical division and the isolated application of operations on
chromosome annotation tracks would be an integral part of any good design
of the problem domain.
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Chapter 7

Conclusion

7.1 Summary
The rapid advances in sequencing technology in recent years have generated
new genomic data that provide the possibility to gain further insight into
biological mechanisms if properly analyzed. There already exist solutions
for annotation analysis within a genome, such as the Genomic Hyperbrowser
and the Galaxy platform. We have explored possibilities for comparative
annotation analysis. We propose two distinct methods for comparing an-
notation tracks between genomes. Both methods depends on a mapping
between genomes, called a coupled annotation track.

Projection transfers an annotation track between genomes. Track elements
within coupled track elements are unambiguously projectable while se-
cluded track elements are not. It is not yet fully understood if it is
better to estimate the projected locations of secluded track elements or
only project unambiguously transferable track elements. A projected
annotation track has the advantage of no loss in resolution for fur-
ther analysis. It has, once projected, all the properties of a regular
annotation track. All the operations developed for normal annotation
analysis are consequently available when comparing a projected anno-
tation track against other annotation tracks on the host genome. The
usefulness of the method depends on the precision of the projection.

Quantitative Comparison is based on partial results computed locally
within each genome relative to coupled track elements and subsequently
compared between connected coupled track elements. A partial result
is computed from the enclosing environment of a coupled track element,
which may be as large as desirable for a specific analysis. The envi-
ronment may therefore unambiguously incorporate the secluded track
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elements that were troublesome for the projection method. Partial re-
sults are computed using normal annotation track analysis operations.
No ambiguity exists when computing and comparing the partial results.

A prototype framework for comparative annotation analysis have been
created to test and verify the usability and practicality of ideas. The frame-
work and all of the operations it offers have been implemented using array
programming. The array programming model have many promising prop-
erties for systems that operates on large quantities of data. We found it
especially interesting to evaluate the applicability of array programming to
problems that were not strictly numerical as we found no documented prior
attempts to do so.

Array programming algorithms for a range of useful operations on an-
notation tracks were developed as part of this thesis. We were positively
surprised by the variety in problems we were able to solve using array pro-
gramming. We were furthermore able to devise some useful guidelines that
eased the process of developing additional algorithms to new problems. We
did, however, find a major limitation with array programming. Every algo-
rithm has a model of a problem space and a series of operations that solves
a problem according to the model. The amount of possible operations in
array programming are restricted. The only possibility for solving a problem
is therefore to adjust the model of the problem space until it can be solved
by the restricted set array programming operations. A consequence of this is
that similar problems often require very different models to be solvable using
array programming. The process of modeling a problem suitable for array
programming is very hard and usually requires steps that initially seems il-
logical. This is a trade-off because the resulting algorithm, once the model
is properly explained and understood, is succinct and easy to reason over.

The array programming model operates on arrays of simple data types
such as integers, floating point numbers, booleans or fixed length strings.
Applications other than purely numerical use complex structures that must
be expressed in terms of arrays of these basic types. This implies that most
functions in a system accepts and returns arrays with a context dependent
interpretation. All type information and security is lost as a consequence of
this. The burden is put on the programmer to always remember the context
to interpret the arrays in and what kind of restrictions different operations
have on input. It is easy without any form of type system to introduce subtle
bugs that are hard to detect and locate.
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7.2 Contributions
• Two formal methods for inter-genome comparisons have been proposed.

• An evaluation of the applicability of array programming for solving
non-numeric problems with annotation analysis as a use case.

• Algorithms suitable for array programming has been created for both
of the inter-genome comparisons methods.

• A collection of algorithms suitable for array programming that solves a
range of operations related annotation analysis have been created and
documented.

• A fully functional framework for annotation analysis supporting the
discussed methods for comparable annotation analysis has been created
implementing all of the array programming algorithms.

7.3 Future Work
We feel that we were able to properly evaluate many aspects of the array
programming model in general and the usefulness of array programming for
annotation analysis as a special case. We only scratched the surface of the
possibilities for inter-genomic comparisons of annotation tracks and extensive
work remains in this area.

• How can we best estimate the projected locations of secluded track
elements?

• What conclusions may be drawn from both comparison methods in a
biological context?

• What interesting analyses can be developed using one of the two com-
parison methods.

• Are there other possibilities for inter-genomic comparisons?

• How is it possible to make the framework accessible for the regular
biologist?
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