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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the University of Oslo, under the supervision of professor
Knut Mørken, associate professor Marcos D. Caballero, associate professor Elise
Lockwood and lecturer Christine Lindstrøm. This work was supported by the
Norwegian Agency for International Cooperation and Quality Enhancement
in Higher Education (DIKU) through the Centres for Excellence in Education
(SFU) program (grant no. SFU-2016/10004).

The thesis is a collection of three papers, presented in chronological order of
writing. The common theme to them is the integration of computing (computer
programming) into mathematics and science education. These exploratory case
studies focus on students’ understanding and the design of teaching experiments.
The papers are accompanied by an extended abstract ("kappe") that relates
them to each other and provides background information and motivation for the
work. All the papers are written together with my supervisors. Additionally,
Tor Ole B. Odden is a co-author of the first paper.
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Chapter 1

Introduction

Let us begin with a brief comment on vocabulary: throughout this thesis, when
I use the word computing, I will follow (Lockwood and Mørken, 2021) and take
it to mean machine-based computing: "the practice of developing and precisely
articulating algorithms that may be run on a machine" (p. 2).

To be even more precise, in this specific context this means that the
students use computer programming (Python) to solve problems that are both
mathematical and computational in nature: in solving these problems, one must
consider both what is modelled by the computer and the specifics of how one
implements the model.

1.1 Why?

Why study computing in mathematics and science education? The main reasons,
in my view, are pragmatism, vision and caution.

Pragmatically, computing unlocks classes of problems that cannot be solved
without computers and expands the scope of what students can do. Many
problems that are difficult or time-consuming to solve analytically become
tractable for students when computers and programming are available. With
computing, the work students do gets closer to the real-world work of modelling
and estimation that is done in mathematics and science every day. This is not
to devalue analytical work, but simply to acknowledge its limits.

Taking the visionary view, computing is both hands-on and flexible. Allowing
students to see and visualise the values that symbols represent and tailor
their solutions to their knowledge and preferences may well result in a better
understanding of the concepts. When students differentiate numerically,
estimating the slope of curves in tiny steps, one could claim that they get
closer to what differentiation is compared to analytical differentiation. Indeed,
some of our students have asked their teachers whether the differentiation they
do on the computer is in any way related to the rules-based algebra magic that is
analytical differentiation. Finally, my own data strongly suggests that interesting
things happen when we integrate computing in a mathematical or scientific
context.

Though it is not the main focus of this thesis, there is also some reason for
caution: If students learn that computational tools produce the correct answers
as if by magic , and one simply has to take these answers on faith (Watters and
Watters, 2006), we will not realise the aforementioned potential for understanding.
That may have a lot to do with how we teach students computing, and how it
integrates with other subjects. Also, we need to be careful that the barrier to
entry does not become too high. If students struggle with the fundamentals of
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1. Introduction

programming, using computing to get at complex understandings is probably
going to be too much to ask for. Some of my data suggests that these issues may
be related: when students do not know how to use what they have learned, they
may me tempted to use the computer as a "black box" that spits out correct
answers (Gravemeijer et al., 2017).

Currently, there is not an abundance of particular examples of how computing
might be meaningfully integrated in mathematics and science education
(Lockwood and Mørken, 2021). The education research community’s need
for such examples and the relatively long history of such integration at the
University of Oslo, Norway, combine to form a compelling reason to study this
and to do it here. In a sense, it seems long overdue to only now study what
has been implemented in teaching for the last two decades, but I do not believe
that science-based education dictates that one always has to test how something
works in a controlled setting and then implement it, in that order. Even so,
when collecting data, we did so with new teaching experiments that we designed
based on classroom observations and teaching experience.

One question remains, however: why focus on computing in mathematics,
of all the sciences? Mathematics is arguably the most fundamental science, in
the sense that most if not all branches of science, technology, engineering and
mathematics (STEM) make use of its tools to some degree. Therefore, difficulties
in student understanding of mathematics have a tendency to make the teaching
and learning of other subjects more difficult (Reddy and Panacharoensawad,
2017). If the availability of computational methods is changing the way we teach
and learn mathematics, these changes will tend to spill over into other STEM
subjects that rely on its tools. Thus, while I do not focus on computing in
mathematics exclusively, I do regard it as a key part of computing in science.

1.2 So What?

We can imagine, then, that we have decided to study how computing impacts
mathematics and science education, and that we have obtained some results.
What is it good for?

My first goal is for my work to benefit students. Engaging students and
having them do meaningful, authentic work while learning is important for
them to understand the material and learn more than simple facts and skills
(Wiggins and McTighe, 2005). Our quest, which is to identify the potential that
computational mathematics and science represents, may therefore benefit the
learning of STEM students in substantial ways if this potential is realised.

My second goal is for my work to benefit teachers. Many educators want to
integrate computing into their teaching, but fear that students will use these tools
as substitutes for learning mathematics and science. In particular, if students
treat calculators and computers as "black boxes", there is the danger that the
students will not be able to use these tools sensibly and flexibly, and certainly
not modify them or build better ones. It is my belief that one need not sacrifice
science and mathematics on the altar of computing, and I would like for this
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Positioning This Work in the Field

work to be a contribution to educators who are wondering how to incorporate
computing in their classes in a research-based manner.

My final goal is for my work to benefit researchers. While education
research communities have provided substantial insight into how humans learn
mathematics and computer science over the years, comparatively little work has
been done on the intersection points of these disciplines.

Traditionally, mathematics and informatics have been organised as separate
departments, and basic programming has been taught in dedicated classes
separate from mathematics classes. With such an approach, students have barely
been exposed to programming outside these dedicated classes, and the use of
computing in science has been poorly motivated, leaving students with little
experience on how to code in a scientific context (Stormo, 2009).

As this is changing, however, there will be both opportunities and higher
demand for research on cross-disciplinary learning that incorporates mathematics
and computing in a STEM context. This mirrors how computational methods are
becoming part of the scientific disciplines to an increasing degree (Weintrop et al.,
2016) and there are now opportunities for students to do authentic scientific work
that involves computing. I would like my work to be of help to the researchers
that set out along this path, by providing examples of what is possible in the
computational classroom and how to bring it about.

In a word, the aim of this project is to support our understanding, whether
we think of ourselves as students, teachers, researchers, or any combination of
the three.

1.3 Positioning This Work in the Field

The field of Research in Undergraduate Mathematics Education (RUME) can
be organised into several current research foci. One way to do this – by no
means the only or ultimate way – was suggested by (Lockwood and Mørken,
2021), in the context of extending current work in RUME to include computing.
Lockwood and Mørken identified four research foci which were particularly suited
to include research that straddle the mathematics-computing boundary:

• Research on Student Thinking and Learning

• Research on Issues of Equity

• Research on Teaching

• Interdisciplinary Research

As Figure 1.1 suggests (and Figures 1.2 to 5 show more clearly), we are
not aiming to cover all of the RUME community’s foci in a single thesis. The
research presented here is focused mainly on Student Thinking and Learning,
but Teaching and Interdisciplinary Research are also important features of the
work.

3



1. Introduction

Figure 1.1: Current RUME research foci in the context of computing as outlined
in (Lockwood and De Chenne, 2020), with the foci of the papers in this thesis
highlighted. Each sub-field is detailed in Figures 1.2 to 1.5.

Student Thinking and Learning deals with how students learn and think
about mathematical practices and concepts. How computing may interact with
students’ reasoning is important to uncover, and not only because the presence of
computing in classrooms is growing. To realise the full potential in the interplay
between computing and mathematics, it is vital to be aware of both affordances
and hindrances to student understanding in learning environments that depend
on computing. The sub-foci of Student Thinking and Learning that are relevant
to this thesis are depicted in Figure 1.2.

An important subset of this research focus concerns transfer, the ability to
make use of what one has learned outside the context in which it was learned.
Indeed, one can claim that the concept of transfer is the very foundation on
which institutions of education rest. What good, after all, is knowledge that
cannot be employed outside the school or university setting? (Billett, 2013) We
will elaborate on how we regard transfer later in this section.

In pedagogical terms, the work in this thesis springs from an individual
cognitive perspective, as I take the constructivist view and study how the
individual constructs knowledge from pieces of information. This does not mean
that I have entirely ignored the sociocultural dimension, where learning is rooted
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Figure 1.2: RUME sub-foci in Student Thinking and Learning, with the foci of
the papers in this thesis highlighted.

in the social context. Even though I have not deliberately used it here, social
constructivist theory incorporates both of these perspectives (Penprase, 2020),
which at least demonstrates that they need not be incompatible.

Issues of Equity are important both inside STEM and elsewhere. However,
as most of these issues affect an entire cohort of students over long periods of
time, it was difficult to study them with the few students that we worked with
for a single semester each. Nonetheless, I do address one such issue, namely
ways to support student engagement in the design of the tutorials for papers 2
and 3 (see Figure 1.3).

Research on Teaching, as shown in Figure 1.4, can be divided into several
categories. I do not focus on the instructors (including pre-service teachers), nor
on department or program level issues, for the same reasons that I selected few
Issues of Equity. I found student engagement, task design and the specifics of
integrating mathematics and computing to be a better fit to our scope.

The final category is Interdisciplinary research, shown in Figure 1.5. Cross-
disciplinary integration of computing proved difficult to fit to our scope, and
terminology had to take a back seat to make room for the more salient issues of
generalising, problem solving, concepts, symbols, and operations.

Some symbols, like the equality symbol (=), take on different meanings in
each of the two domains of mathematics and computing. In Python, its role
is to assign a value to a variable. In mathematics, it can play the similar role
of defining a symbol, but not necessarily assigning a data type to the value or
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Figure 1.3: RUME sub-foci in Issues of Equity.

Figure 1.4: RUME sub-foci in Teaching.
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Figure 1.5: RUME sub-foci in Interdisciplinary Research.

storing it somewhere in a computer’s memory. Depending on context, = can
also be used to equate one quantity (which may be more complex than just a
symbol) to another and argue mathematically what follows from that – this is
often called an equation instead of a definition. A different Python operator
(==) can determine whether two quantities are equal or not (returning True of
they are and False otherwise), but the mathematical reasoning of what follows
from this is missing.

Variables and functions have different, but related, meanings in mathematics
and computing (Knuth et al., 2011; Wright et al., 2013). A mathematical
function can be seen as a mapping between sets: input to output. Although
many different inputs may produce the same output, the converse is not true1.
Computational functions do not respect this constraint. A classic example is
random.random(), a Python function which returns a different pseudorandom
number between 0 and 1 each time it is called. Additionally, computational
functions can do things that mathematical functions cannot, such as printing
some text to screen, and may not even produce (return) any output at all.

1For instance, if x can be any real or any complex number, f (x) = 42 is a perfectly legal
function definition in mathematics. f (42) = x is not – such a definition would implicitly
constrain x to be just one number, and the "definition" does not even tell us which one it is.
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Regarding mathematical functions as a true subset of computational functions
would be too simplistic, however. Take for example the Dirichlet function
(Kudryavtsev, 2017), which is defined on the interval 0 < x < 1, so that
f (x) = 0 if x is an irrational number, and f (x) = 1 if x is rational. Determining
whether or not a number is rational is no easy task for a computer. A rational
number could turn out to contain repeating sequences of 10100 digits or longer,
so one would need infinite resources to determine this with certainty. This is
an example of a non-computable function that is nonetheless mathematically
useful, for instance in measure theory.

Since Seymour Papert introduced the concept of computational thinking
(Papert, 1993), several studies have tried to apply it to the mathematics classroom
(Hickmott et al., 2018; Sinclair and Patterson, 2018). However, it has been
rather challenging for the research community to settle on a working definition
of the concept, as noted by Shute et al., 2017. Additionally, (Tedre and Denning,
2016) address the dangers of, among other things, exaggerating the potential for
transfer from computational practices to other areas of science: computational
problem-solving skills do not automatically transfer to other domains.

As (Lockwood and Mørken, 2021) point out, many studies that examine
claims such as these take a rather traditional view of transfer, where transfer
is measured by student performance on a "transfer task" that is pre-defined
and as such may miss the ways in which novice learners (attempt to) generalise
their knowledge2. Nonetheless, I find the issues mentioned above problematic
enough to not use computational thinking as a theoretical lens in this thesis or
its papers.

This thesis is built around three academic papers, and the sub-foci each
paper addresses is shown in Figure 1.6. The first paper is centred on the concept
of sensemaking, which intersects all four research foci. The second paper is about
Student Thinking and Learning, while the third is a Teaching paper.

Figure 1.7 maps out my theory landscape, showing the theoretical framework
for each paper and the ways in which these theories connect to each other.
Each paper represents an important step on my journey through this map, and
a timeline of these milestones is shown in Figure 1.8. In this chronological
representation of the work, I also point out how the papers are related.

I refer to Section 3 and the papers themselves to elaborate on each theoretical
focus, but we have time for a brief summary of the ways in which they are
connected, as depicted in Figure 1.7. In short, sensemaking is a cyclical process
by which students realise there is something they do not understand and try
out various ways of resolving the conflict in their understanding (Odden and
Russ, 2018). This process may be conceived to consist of many individual
connections: realising that two pieces of knowledge are related, similar, or
dissimilar. These connections are central to the theory of actor-oriented transfer
(AOT) as described in (Lobato, 2012), where transfer is defined as any generalising
activity, regardless of correctness, by the learners. On the basis of this, I

2We shall return to this issue shortly, in Section 3
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Figure 1.6: Map of papers and their intersections with the research foci from
Figure 1.1.

relate these concepts by granularity: sensemaking describes the process of
understanding as a whole, whereas AOT looks at it at a more fine-grained level.

The use of the term understanding in the previous paragraph suggests that
both of these theories may also relate to the Understanding by Design (UbD)
framework put forward in Wiggins and McTighe, 2005, and it may not come as
a surprise that I believe this to be the case. Whereas AOT looks at connections
from the learners’ point of view, UbD takes the teacher’s or teaching designer’s
perspective. Essentially, UbD defines the understandings that we seek and
promotes clarity on learning goals and learning activities, while sensemaking is
the process on the students’ part that leads to these understandings.

These relations can be summed up as follows:

• Sensemaking consists of many connections that we can study with AOT.
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Figure 1.7: Map of the theory landscape, showing connections between the
theoretical frameworks.

Figure 1.8: Timeline of the papers, showing the paths I traversed through the
theory landscape presented in Figure 1.7.
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The Big Questions

• Sensemaking and AOT describe what happens from a student perspective;
UbD brings the teacher perspective into the mix: how do we enable and
support students’ understanding?

My first paper examines sensemaking in a physics context, where mathematics
and computing are both strongly present. From that proof of existence, I wanted
to (a) provide more examples of this happening, and (b) examine the connections
between mathematics and computing in detail. This led to my second paper,
in which I provide several examples of integrated teaching of mathematics and
computing, as well as using AOT as a theoretical lens to investigate the process
in greater detail.

In parallel to this, having demonstrated that a task I designed for such an
integrated context could produce sensemaking in students, I was also curious
about the implications for teaching. How could I produce more learning
experiences like this? Which design principles best bring about sensemaking and
understanding? To answer these questions, I designed three tutorials using the
UbD framework and investigated the results.

Examples from all three tutorials made it into Paper II, so that I had as
complete a picture of the students’ connections as my data allowed. Paper III,
on the other hand, investigates one of the tutorials in greater detail, to examine
what happened as a result of our design choices and why that happened. While
all the tutorials were designed for a first-semester course at the University of
Oslo, we have made them available for a wider audience (see Sections A to C),
and believe they could be useful in many higher education contexts with little
or no modification.

1.4 The Big Questions

Looking at my project as a whole, my work can be summarised as attempts to
answer the following questions:

• How do the students themselves integrate science, mathematics, and
computing in the context of representing real numbers on the computer?

• What are the resulting affordances for learning?

• How does the design of learning activities support or hinder this integration?

As cross-disciplinary research in this field is sparse (see Section 2) my work
in all three papers takes the form of exploratory case studies. I went looking
for interesting ways in which the students reasoned across domains, what that
afforded them, and which design principles allowed this to occur. Therefore, I
will not be able to answer these questions comprehensively. Nonetheless, these
questions guided my inquiries and helped with the selection and analysis of the
cases I present here.
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1.5 Organisation of Thesis

The remainder of the thesis is organised as follows:

• Section 2 elaborates on the context of my research. What does it mean
to integrate mathematics and computing, how is it done at the University
of Oslo, and more specifically, what do we mean by the computer’s
representation of real numbers?

• Section 3 lays out the theoretical landscape which I mapped out in Figure
1.7. To be able to describe the connections between these theories, this
section overlaps somewhat with the theory sections in the three papers.

• Section 4 presents the methodology that is common to all three papers,
again with some overlap with the methodology sections of the papers
themselves.

• Sections 5 and 6 tells the story of my research, as represented by Figure
1.8. I briefly motivate each paper and explain our choices along the way.
These sections are presented chronologically, so the reader can read the
papers in the order that they were conceived.

• Section 7 is dedicated to a summary and discussion of my results, in which
I also seek to answer the questions of Section 1.4.

• Finally, the tutorials (including Python code) that I designed for the final
two papers can be found in the appendix (Sections A to C).

1.6 Summary of Papers

Paper I demonstrates how a student used a computational representation of a
problem as a resource in sensemaking.

Paper II uses actor-oriented transfer to describe four ways in which students
connected the domains of mathematics and computing.

Paper III shows how we used the Understanding by Design framework to
iteratively design a tutorial and the lessons learned from that process.
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Chapter 2

Mathematics and Computing
In the beginning, computers were designed to do mathematics. Ada Lovelace
is recognised as the author of the world’s first computer program, one that
described an algorithm for calculating Bernoulli numbers (Carlucci Aiello, 2016).
Algorithm design was considered part of mathematics for a long time afterwards.
In the beginning, the hardware was highly specialised, but around 1940, the
quest for nuclear fission resulted in machines that were both general and flexible,
and eventually rather fast. This led to a renaissance of the numerical methods
for approximation known since the times of Newton. Finally, in the late 50s,
computer science emerged first as a term, then as a field in its own right.

This separation between mathematics and computer science has also been
reflected in an educational context, at least up until the time that computer
hardware became common enough to be used in schools. When I speak of
integrating the two domains of mathematics and computer science, in a sense
I mean re-integrating two fields with a common origin and many connections
between them, merging the results of this parallel evolution where it is appropriate
to do so.

Section 2.1 will discuss this integration in broad terms, provide a literature
review of other studies in the field, and position my own work relative to what
has been done before. I will similarly position the University of Oslo context
in an international perspective, using research literature to describe similarities
and differences.

Section 2.2 will focus on one aspect of computing in science that has been
central to all three papers in this thesis: the representation of real numbers
on the computer. It is well known that the computer cannot represent all real
numbers, not even most of the rational ones (Mørken, 2017). But instead of
considering this to be only a limitation of the hardware, is it possible that the
computer’s model of the real numbers can teach us something about the real
numbers themselves, and vice versa?

2.1 Integrating Computing and Mathematics

One of the first to discuss computing in a mathematics education context was
Alan J. Perlis, a central founding figure of computer science as a discipline. He
argued that the way one teaches approximations and algorithms in relation to
discrete and continuous analysis matters greatly. If done in a sensible way, both
students and the fields themselves would be better off for it (Forsythe et al.,
1970)1.

1The other authors’ contributions to the same paper are well worth reading, as it offers
a contemporary perspective on what the overlaps and differences between mathematics and
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The perceived value of computing in mathematics education was popularised
by the work of Seymour Papert (Papert, 1993), who proposed that the computer
offered unique affordances for students learning mathematics. Using the Logo
programming language designed for this purpose, Papert studied children’s
discovery of algorithmic ways of thinking about geometry though use of the
computer. The classic example of this is children writing programs that direct a
Turtle across the screen, tracing out geometrical shapes in the process. Papert
found that in this setting, children were motivated and able to construct
knowledge: powerful abstract ideas became concrete for them as they worked
with computers that afforded meaningful representations of these ideas.

Integrating mathematics learning with computing is best illustrated by a
counterexample. In a disintegrated design, the students learn to code in a context
that is mathematical only by accident. For instance, creating a webpage for flight
booking with a database back-end would exemplify such a disintegrated learning
activity. Presupposing then that students know how to program, instructors in
future courses might then simply refer students to the relevant math software
libraries and focus on the application of these presupposed skills.

The issue with this approach is related to transfer of learning: the context in
which learning takes places has an impact on both the learning itself and the
potential for transfer to other contexts (Billett, 2013). Hence, learning to code
in a non-mathematical context and separately learning mathematics does not
equate to students being able use code effectively in mathematics.

(Buteau et al., 2020) point to one feature of what this may entail: To
articulate a mathematical process in a programming language, one translates
into the language what one would do by hand. To do this, one must realise that
the code can indeed work in a similar manner as one does by hand, which is
neither self-evident nor independent of what kind of mathematical work one
engages in. Integrating coding in mathematics then entails supporting the
students in learning, in the words of Buteau et al., "to transform a programming
technology into a rich ‘mathematical instrument’ enabling him/her to [participate]
in programming-based mathematical work" (p. 1029).

On the other hand, the way the computer solves mathematical problems is
more often than not very different from the way a human would go about it. To
quote an example from (Mørken, 2017) in the context of solving equations:

This illustrates how an experienced equation solver typically works,
always looking for shortcuts and simple numbers that simplify the
calculations. This is quite different from how a computer operates. A
computer works according to a very detailed procedure which states
exactly how the calculations are to be done. The procedure can tell
the computer to look for simple numbers and shortcuts, but this is

computer science are. Forsythe, for instance, asks (and attempts to answer) why mathematics
and computer science should be considered different fields at all. It is somewhat amusing
that 50 years later, we are looking back and arguing for the benefits of integrating the two
disciplines in education.
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usually a waste of time since most computers handle fractions just
as well as integers. [. . . ]
These simple examples illustrate that when (experienced) humans
do computations they try to find shortcuts, look for patterns and
do whatever they can to simplify the work; in short, they tend to
improvise. In contrast, computations on a computer must follow
a strict, predetermined algorithm. A computer may appear to
improvise, but such improvisation must necessarily be planned in
advance and built into the procedure that governs the calculations.
(pp. 7-8)

In short, this suggests that computing and mathematics and computing need
not be taught or learned separately, that students can replicate (and perhaps
extend) their mathematical work by computing, and that the ways in which they
do this may differ from what they are used to.

The big questions in Section 1.4 then motivate the following question: How
will the differences in how students approach mathematics computationally, as
opposed to analytically, manifest themselves in the students’ understanding of
mathematics? The answer, one suspects, is that it may depend on how one goes
about it.

2.1.1 A brief literature review of computational tools in
mathematics education

This literature review is all but identical to the one that appears in my third
paper (Paper III). As it is relevant to all my work, however, it bears repeating
here rather than having the reader wait until near the end to see it.

There are numerous examples in the mathematics education literature of
different computational tools being implemented as part of learning activity
designs in university mathematics. (Dimiceli et al., 2010) showcase a design
experiment where the symbolic Computer Algebra System (CAS) features of
the WolframAlpha app were used as an asset in an introductory calculus course.
Compared with other CAS software, they found that it had several advantages,
although processing power was a limitation. A similar design experiment
described in (Caglayan, 2016) demonstrates ways to use the GeoGebra dynamic
software to visualise Riemann sums, allowing students to visualise and discover
important properties of these sums.

Beyond showcasing that designs incorporate these technological tools, there
are also studies that investigate the relationship between task design and students’
use of them. (Olsson, 2019) comparatively investigated two designs that used
GeoGebra, in this case a task involving functions designed for schoolchildren in
grade 7 to 9. That study, interviewing students in pairs, found that students
who were encouraged to explain their thinking performed better overall than
students who were encouraged to follow a set of written instructions.

There are also examples of software being designed specifically for educational
purposes. One such example is Grid Algebra (Hewitt, 2016), a software designed
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for learners as young as 9-10 years old to visualise the four basic arithmetic
operations as movements on a grid when solving linear equations. The software
called Configure (Greenstein, 2018) similarly lets younger students visualise and
conceptualise topological equivalence.

In addition to using pre-existing software and writing dedicated software
for educational purposes, there is a third option: having students write or
modify computer programs written in a generic programming language. An
integrated approach then demands that these programs are written in a
mathematical context. One example of this is (Lockwood and De Chenne,
2020), in which students related combinatorial counting problems of different
types to corresponding conditional statements in Python programs. This resulted
in a reinforcement of conceptual understanding in an area students traditionally
have difficulties with, and this reinforcement was attributed to the computational
setting. My work in this thesis aims to provide more examples of this.

Another example is the design of a project (Ramler and Chapman, 2011)
where students statistically analyse whether players’ missed notes in the Guitar
Hero video game are randomly distributed by writing code in R. In the process of
analysing complex data, students would gain hands-on experience using statistical
concepts to test their hypotheses (and generally find that the randomness of
missed notes depends on the skill level of the player and the difficulty of the song
being played). Unlike Lockwood and De Chenne, Ramler and Chapman focus
mostly on their design and less on how the setting may influence the reinforcement
of concepts. Nonetheless, their design resembles that of the previous example
and belongs in the same category.

Like the two examples just mentioned, our work is focused on university
students using the Python programming language in a mathematical setting
(this context is described more closely in the following section). In practice, that
means our students use Python programming to articulate, visualise, investigate,
and solve mathematical problems. Because the setting in which we collected
data is unique, I will now focus on the particular integrated approach at the
University of Oslo and situate this program within the literature.

2.1.2 The University of Oslo approach in perspective

Parts of this subsection also appeared in my second paper (Paper II).
All my studies are done in the context of undergraduate mathematics and

science students learning mathematics and computing at the University of
Oslo, Norway. Since the Computing in Science Education (CSE) initiative was
introduced in the early 2000s, the first semester for students in mathematics,
physics and electronics have consisted of three courses:

• A traditional Calculus course.

• A hybrid course focusing on Modelling and Computations, where calculus
concepts are discussed in the context of computational algorithms and
computer hardware. My last two papers concern the development of and
research on a set of tutorials that I designed for this course.
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• An Introduction to Programming with Scientific Applications course where
students learn basic Python programming and implement the algorithms
from Modelling and Computations in a scientific setting.

Typically, concepts are taught in a staggered approach, appearing first in Calculus,
then discussed further in Modelling and Computations the week after, and in the
third week becoming the topic of Introduction to Programming with Scientific
Applications (Malthe-Sørenssen et al., 2015). A typical example is differentiation.
After analytical differentiation has been covered in Calculus, algorithms for
numerical differentiation appears in Modelling and Computations the next week,
and the students implement these in the programming course the week after
that. This setup can be interpreted as a realisation of the potential pointed out
by Alan J. Perlis in (Forsythe et al., 1970), who argued that a well-integrated
approach made sense in introductory courses like these.

It should be mentioned that in the early days of the CSE initiative, the
programming course was decoupled from mathematics (much like our example
of a disintegrated approach), and the students were not pleased about it. After
the introduction of the current programming course in 2007, where students
learn programming basics in a scientific setting, the trend in feedback from
students has been that they are impressed with how well integrated computing
has become in the first semester.

While this context of teaching mathematics and computing is to the best of
our knowledge fairly unique, (Buteau et al., 2016) provide an example of a similar
approach. In Brock University, Canada, they do not coordinate across informatics
and mathematics courses in the same way. They do, however, dedicate a set of
courses where students can use knowledge from both in an integrated fashion
after learning programming and mathematics separately in earlier semesters.

In their paper, the authors present a case study of a single student spanning
three semesters and the student’s work on 14 assignments in the Mathematics
Integrated with Computers and Applications (MICA) courses. These assignments
were connected to many different mathematical topics, and the authors focused
on the student’s learning experience across these semesters. They concluded that
the student meaningfully engaged with mathematics and a constructionist2 type
of learning. This study differs from my work in that they investigate courses
designed from the ground up to provide these experiences – my tutorials, on the
other hand, were designed to fit into and complement the pre-existing Modelling
and Computations course.

Going beyond the undergraduate context, there are a higher number examples
of studies exploring the interplay between mathematics and computing for
younger students (grades 5 to 8 in these examples): (Lavy, 2006) used Logo to
investigate the different types of mathematical arguments such students construct
when working in a computerised environment. Lavy characterised four types of
mathematical arguments that the students constructed in this setting.

More recently, Benton and colleagues designed interventions using Scratch to
have schoolchildren reason with geometrical concepts and the values assigned

2Building knowledge structures (Papert, 1993.
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to digits due to their positions in a number (Benton et al., 2017; Benton et al.,
2018), demonstrating how this allowed the students to engage with challenging
ideas in meaningful and generalisable ways. DeJarnette also used Scratch to
investigate the difficulties that schoolchildren face when trying to understand
the meaning of symbols and how they fit together DeJarnette, 2019, finding that
young students were able to create their own representations that, while less
detailed than those of experts, were nonetheless meaningful to their creators.

Going forward, the recent change in curriculum for Norwegian schools (UDIR,
2020) integrates algorithmic thinking into mathematics, taking a cue from
the CSE initiative. The result of this will be that from 2023 and onwards,
the majority of Norwegian first-year undergraduate students will have previous
experience with using computer programming to do mathematics. In this context,
how higher education will be able to meet the needs of these students is likely
to depend on the level of understanding (see Section 3.1) that these students
bring with them. Will they see mathematics and computing as separate, or
interconnected? Will they have mainly procedural knowledge, but require more
conceptual knowledge to tie it all together?

Whatever the answer, it is evident that Norwegian institutions of higher
education must rise to the challenge, however it will be defined: to provide
coherence and understanding of the skills students learn in high school, or to
build on existing understanding in ways that are meaningful to the learners.
Existing integrated learning environments like those at the University of Oslo
will have to adapt, and programs that have not yet incorporated computing,
or taught it separately from mathematics may have to be redesigned in more
fundamental ways to be able to leverage the knowledge and meet the needs of
the next generation of students in mathematics and science.

It should be noted that integrating computing with mathematics is not the
only way to teach computer science in schools. For instance, it has been proposed
(Connor et al., 2017) that schools in Scotland should introduce a curriculum not
explicitly connected to mathematics. Whether the fields of computer science
and mathematics should be integrated is an interesting and complex question,
and I will not attempt to answer it with certainty in this thesis. I do, however,
hope that my investigations of the integrated approach will prove useful to those
that seek to answer questions like these.

2.2 Representation of Real Numbers on the Computer

This section goes into more detail on how the computer represents real numbers.
Readers unfamiliar with the topic, be warned: we are about to get rather
technical. The essence of what follows is that I explain the difference between
how numbers are actually represented on the computer and the simplified version
of it we exposed the students to in my third paper. This simplified version
corresponds to the standard form of binary numbers, however, and there exists
a Python function that returns this form, so while not entirely accurate, this
version of what the computer does is still useful. In the process, I will also
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discuss rounding errors in more detail, and explain why they are inevitable for
most real numbers on the computer.

An important aspect of translating by-hand mathematics into code is being
aware of the limitations of representing real numbers on a computer. Having
typically 64 bits (binary digits) available to represent a real number, the computer
will be unable to represent every number exactly, and this inability imposes
hard restrictions on the relative accuracy of this representation, as well as on
the results of calculations involving real numbers (Mørken, 2017).

Computers are built for working with binary numbers consisting of zeros
and ones, and perform calculations most efficiently, if not most accurately, in
this number system3. The standard representation of a real number x is the
floating-point4 representation as specified in the binary64 standard (“IEEE
Standard for Floating-Point Arithmetic”, 2019):

x̃ = (−1)s · m · 2e−(210−1)

where:

• s is the sign of the number (1 binary digit, or bit)

• m is the mantissa (53 bits in 64-bit double precision)

• e is the exponent (11 bits in double precision)

An observant reader will notice that 1+53+11 = 65, which seems too much for
a 64-bit format. As it turns out, any normalised non-zero binary number has
1 as its first significant digit. Hence, we can represent 53 bits of information
using only 52 bits in memory when we include this hidden bit 5. Therefore,
one implicitly assumes that this digit is present and do not store it in memory,
so that the mantissa is interpreted as the digits following the radix point6 in
the number 1.b52b51 . . . b1, where bi is bit number i in the 52 bits of m. If we
interpret these 52 bits as an integer, we obtain the 53-bit mantissa by

m = 1 + b52b51 . . . b1

252
3Relatively efficient encodings that allow computers to work with decimal numbers do

exist and are used in calculations where accuracy and minimal rounding error in the results
are considered crucial, such as finance. One example is the densely packed decimal (DPD)
representation, summarised in (Cowlishaw, 2002). These representations are still limited in
accuracy, and they are slower in general (Anderson et al., 2009). Thus, the trade-off between
accuracy and efficiency that our students faced in our research interviews is also something
that concerns experts.

4As opposed to fixed-point representations, where one has a given and unchangeable number
of bits to the left and right of the radix point.

5The trade-off is that if all the bits are zero, the number does not represent zero unless
e = 0. In this special case, the first significant digit is assumed to be zero, meaning that we
give up the ability to represent numbers with mantissa 2−1023 in order to make way for the
arguably more useful . Similarly e = 2048 can be taken to represent infinity (Muller et al.,
2010.

6More commonly known as the "decimal point", I avoid this usage because it implies that
we are using decimal numbers. I could have used "binary point", but this term is rather
uncommon in colloquial language.
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As a result, we have

• 1 ≤ m < 2 (not an integer)

• 0 ≤ e < 211 (integer)

For educational purposes, this is rather technical. It may instead be useful, to
express m and e using the derived properties:

• M = m · 2−1 0.5 ≤ M < 1

• E = e − (210 − 2) − 1022 ≤ E < 1025

Note that I have added 1 to the expression for E compared to the original
representation to compensate for halving the mantissa. This choice of M reflects
the standard form of exponential notation, which is what the Python function
frexp() returns. This transformation results in a simplified representation,
which I made use of in Papers II and III).

x̃ = (−1)s · M · 2E

For a 64-bit binary number, the precision is determined by the 53 bits available
to M : there is no error in s or E. Using Lemma 5.21 in (Mørken, 2017), the
relative error is then bounded by∣∣∣∣x − x̃

x

∣∣∣∣ ≤ 2−53 = 1.110223 · 10−16

meaning that 53 bits in the mantissa allows the real number x and its floating-
point representation x̃ to have roughly 15 or 16 digits in common (if the error
in the 16th digit turns a 9 into a 0 or vice versa, the 15th digit is also affected).
Beyond that, we are bound to be victims of rounding errors for most real
numbers, including every irrational number. When these numbers are used in
calculations, there errors can be magnified considerably if we are not careful.

So far, we have looked at the computer’s finite-precision model of the real
numbers, which is quite different from the real numbers themselves. For instance,
the mapping between the models is not one-to-one: given that we can pack
infinite information into a real number, meaning that behind each floating-point
number the computer can represent, an infinite number of real numbers may
be hiding. However, there may be advantages to the way computers model real
numbers as well, not only limitations.

As (Mørken, 2017) demonstrates, one can use the mathematics of real numbers
to gain insight into the computer model. It turns out that rounding errors are
not arbitrary, unpredictable quantities that we can only model statistically. In
theory, it is possible to predict when rounding errors will occur. To use an
example that I employed in the first version of Tutorial 1, I asked the students
to print the result of the calculation 2.2 · 55 in Python and explain the result
(Figure 2.1):
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Representation of Real Numbers on the Computer

Figure 2.1: An unexpected rounding error in Python.

In the normal (decimal) arithmetic7, it would seem absurd that this
calculation would produce anything other than the precise value 121.0 (the
integer 55 gets converted to the floating-point number 55.0 during the calculation).
And at first glance, 2.2 seems to be a good fit for binary calculations as well.
Unfortunately, the decimal part 0.2 = 1

5 which only has one decimal digit turns
out to be endlessly repeating in binary:

0.210 = 0.001100110011 . . .2

Our students experimented with this unexpected result, discovering that the
rounding error occurs when 2.2 is multiplied with integer values larger than 42
(Figure 2.2). The original rounding error is small enough that Python gets all
the digits correct when displaying the result as a decimal number, but when it is
magnified by multiplying with a large enough number, the error becomes visible.

Figure 2.2: The practical limit for the rounding error in Figure 2.1 to appear,
found by students that I interviewed.

Another way that students may benefit from using mathematics to understand
numbers in the computer is related to my third tutorial (Section C). Here, the
students discover that when you increase the number of terms in the Riemann
sum of a numerical integration, the accuracy grows worse due to the computer’s
limited precision. In this tutorial, the students integrate the standard normal
distribution. This amounts to adding a large number of function values, and
once past the peak one adds very small values to a comparatively very large,
accumulated value. Prior to addition, the numbers are converted so their
exponents are the same, with the result that the smaller numbers will be
truncated and contribute very little, if anything, to the sum (Mørken, 2017).

7The numbers in Figure 2.1, although represented as decimal numbers were actually
calculated with binary floating-point arithmetic, as per the rules of the binary64 standard. If
they had instead been calculated using decimal arithmetic like that of DPD (see footnote 2.2),
we would not have gotten the same result.
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Even as we use mathematics to understand the computer’s model of real
numbers, from a teaching point of view one can also go in the opposite direction
and claim that working with floating-point numbers can increase students’
understanding of true real numbers.

One example is the fundamental property that one can always find a sequence
of rational numbers that converges to a given real number. On the computer,
the most practical way to do this is to construct a sequence of fractions with
powers of 2 in the denominator, which will approximate the number to arbitrary
precision:

0.2 ≈ 1
23 + 1

24 + 1
27 + 1

28 + 1
211 + 1

212 . . . =
∞∑

i=1

1
24i−1 + 1

24i
=

∞∑
i=1

3
16i

This convergence and the resulting completeness of real numbers is not something
one should take for granted. It is connected to the concept of limits in that we
can get arbitrarily close to the target number given sufficient memory, even if
the number itself is irrational or impossible to represent using only powers of
two8.

Another example is my work in Tutorial 2 (Section B), which has students
approximate the natural logarithm using the Taylor expansion:

ln x = ln
(
M · 2E

)
= ln M + E · ln 2 ≈ ln a +

n∑
i=1

[
−

(
1
i

) (
1 − M

a

)i
]

+ E · ln 2

for carefully chosen values of a and n when we presume to know the value of
the constants ln 2 and ln a to the required precision9. In so doing, the students
learned a practical use for the mathematical concept of Taylor expansions even
though the function is known, so one could easily think that there is no use
in approximating it. Both of these examples showcase calculations that only
require the basic four arithmetic operations, which computers are built to excel
at.

In short, students can learn a lot about mathematics by working with numbers
on the computer, not just the other way around. These two-way connections
between mathematics and computing can be interpreted as a form of transfer
between the domains of computing and mathematics, which I will examine more
closely in Section 3.2. But I will begin my coverage of the theoretical background
by looking at how students make sense of mathematics and computing more
generally.

8In practice, memory is limited, and if we are working with 64-bit floating-point numbers,
such a sum has to terminate at a certain point. This raises the tricky question of how to test
for convergence with floating-point numbers.

9These values can also be found using appropriate Taylor expansions, and Paper III
demonstrates the use of one to find the value of ln 0.75.
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Chapter 3

Theoretical Background
This section provides the theoretical background for the work, and is divided
into three subsections:

• Section 3.1: The Understanding by Design (UbD) framework

• Section 3.2: Actor-Oriented Transfer (AOT)

• Section 3.3: Sensemaking

Each of the three subsections forms the foundation for one of the three papers.
Some of the material in this section also appears in the papers themselves. Here,
I will elaborate on that material and also clarify the connections between these
three theoretical pillars.

3.1 The Understanding by Design Framework

I based my tutorial designs on the framework of (Wiggins and McTighe, 2005),
which describes a backwards design process of three stages:

1. Attaining clarity of the learning goals and defining the understandings
that students should come to.

2. Determining what would be acceptable evidence for this understanding
having taken place, and design assessments to uncover that evidence.

3. Finally, designing the learning activities by which the students will be able
to uncover the desired understandings.

In the Understanding by Design framework, an understanding is defined as
a specific and useful generalisation that points to transferable big ideas and
requires uncovering and insight to grasp, as opposed to mere drill. Using the
definition of transfer to mean any generalisation students make, without focusing
on correctness (Lobato, 2012), we note that Wiggins and McTighe echo this
sentiment in their discussion of assessment validity: "we typically pay too much
attention to correctness [in our assessments], and too little attention to the degree
of understanding" (Wiggins and McTighe, 2005, p. 183). In other words, we often
fail to take into account the degree to which performance and understanding
are correlated. This is a potential pitfall both in traditional assessments and
traditional transfer studies.

According to Wiggins and McTighe, there are six kinds of understanding:
being able to (a) explain general ideas, (b) interpret specific instances of such
ideas, (c) apply the ideas and knowing when and how to use them, (d) gain
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distance to the subject matter and see it from different perspectives, (e) have
empathy with ideas that seem odd or foreign at first glance, and (f) have self-
knowledge so as to know what one knows, what one does not know and how
one’s learning is progressing.

In the first phase of backwards design, where learning goals are in focus,
it is important to prioritise. From least to most important, the curriculum is
divided into knowledge that is (a) worth being familiar with, (b) important to
know and do, and (c) the big ideas and enduring understandings that everything
else hinges on (Wiggins and McTighe, 2005, p. 71). For the latter especially, a
set of essential questions may be a useful tool for the teaching designer. These
are not answerable in finality with a brief sentence but meant to have students
ponder them and in so doing uncover the understandings we desire. In short:
understandings make use of facts but are not simple facts themselves.

The second design phase focuses on evidence for understanding and
assessment, and here it is crucial to distinguish internalised flexible ideas from
borrowed expert opinions delivered on cue. This involves supplementing the
traditional quiz or test with academic prompts and performance tasks. Academic
prompts, of which our tutorials are examples, pose questions or problems that
require critical thinking, explanations and defence of the answer and methods.
Performance tasks, on the other hand, ask students to do authentic work that
yield tangible products and performances and give students opportunities to
personalise the task.

In designing tasks, Wiggins and McTighe propose a set of design prompts
called GRASPS. The designer should consider the:

• Goal of the task

• Role of the students

• Audience for their work

• Situation that frames the task

• Product/Performance the task results in, and

• Standards by which the work will be judged.

For us to say that they understand, the students need to provide reasons and
support for their choices, in line with the six facets of understanding. It is
important that the students’ answers are not dependent on blatant cues.

Finally, the third phase of backwards design places the focus on learning
activities, of which direct instruction (teaching) is but one example. The optimal
designs provide students with engaging and effective tasks. An engaging task
is recognised as meaningful and intellectually compelling by the learners and
presents them with a mystery or challenge they can go hands-on with. Effective
tasks are ones that help learners become more competent. Their goals of
such tasks are clear, the criteria are well known, and the students are given
opportunities to self-assess along the way.
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Another set of design prompts called WHERETO are suggested as a tool to
analyse the learning activities. These ask the designer whether they have made
clear to the students:

• Where the unit is headed (and Why),

• Hook (and Hold) their attention, and allow them to

• Experience doing the subject,

• Rethink (and Reflect) along the way,

• Evaluate their strategies,

• Tailor and personalise the task to their own preferences, and

• Organise the activity using a whole-part-whole format.

The final versions of my three tutorials (Sections A to C), make use of these
design prompts in the following ways:

• Where/Why: Introductory sections explaining the overall goal of the
tutorial, and the reasons for it.

• Hook/Hold: An element of mystery that I found piqued the students’
interest:

– "What is wrong with this program?" (Tutorial 1)
– "How can we make our own logarithm function?" (Tutorial 2)
– "What is the fastest numerical integration we can do that is still

accurate?" (Tutorial 3)

• Experience: The students get hands-on experience debugging, implement-
ing, and designing programs to solve mathematical problems.

• Rethink/Reflect: I inserted prompts into the tutorials encouraging the
students to reflect on what they had done so far.

• Evaluate: Students were given opportunities to self-assess.

• Tailor and personalise: The students were given real choices of how to
implement things. We highlighted some decisions they might not be aware
of making otherwise.

• Organise: The prompts under "Rethink/Reflect" also allowed us to focus
on the big picture whenever the students had worked with details for a
significant amount of time.
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3.1.1 Black Box Thinking

While not formally a part of the UbD framework, I also found the concept of
black box thinking1 useful for my third paper. We borrowed the term from
computer science education literature (see for instance du Bolay et al., 1981).
Aaron Falbel argued that tools, such as computers, should be transparent and
convivial, in the sense that the social arrangements people create around their
use afford the users of these tools to invest the world with meaning:

In some ways, the design of computers is becoming less convivial.
The simplicity (transparency) of the early models has evolved toward
complexity (opacity). When home computers started to appear in
the mid-1970s, they were often sold in kit form to be assembled at
home by computer hobbyists. [. . . ] These early computers were
designed to be tinkered with. Not so anymore. [. . . ]
The computer is becoming a veritable black box. And in the process,
we are witnessing a reduction in conviviality, the hallmark of which
is self-reliance. The message on the label is clear: You cannot
understand this machine; you must rely on the experts. [...] You
cannot customize it. You cannot “look under the hood” to see how it
works. And while it is possible to use a computer without knowing
how it works, how to program it, or how to repair it, such use limits
our freedom. We must settle for whatever the experts send our way.
[. . . ]
Learning to program a computer can increase its capacity for
conviviality and can help counteract the current trend toward
anticonvivial hardware. Knowledge of a programming language
enables computer users to shape the tool to their needs and tastes.
This allows for further freedom, choice, and flexibility because it
encourages users to determine what computers can be made to do
and what they can be used for. (Falbel, 1991)

For most students, asking an electronic device for the logarithm of a number
can be characterised as such a black box operation: The number is returned as
if by magic, with no reference to the means of its calculation, nor any measures
of its accuracy. While students learn to depend on these answers’ correctness2,
there is little understanding involved beyond figuring out which buttons to press
(Gravemeijer et al., 2017; Watters and Watters, 2006).

Importantly, we should be careful not to say that the student is unable to
understand, but rather that they have not engaged with how the result was

1Not to be confused with the black boxes used in airplanes and the insight they provide in
accident analysis. That concept by the same name, while evidently also useful, ironically does
provide the transparency that is missing in our use of the term.

2While we all have to depend on black boxes from time to time, the danger is that we do
not understand their limitations. Not everyone can be expected to have this understanding,
but the experts that we educate should, especially if the black box is used for computations of
critical importance.
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found as something to be understood. In these cases, it may simply be that the
task does not require students to attend to this aspect: all that is asked of them
is that they get a correct answer without an explanation of how that answer was
derived.

Thus, while black box thinking can be said to represent knowledge in the
sense that the students know how to formulate a query of the computer to get
an answer, understanding in our context means that they also know how the
computer finds the answer, and that they are able to interpret and connect it
to other forms of knowledge as well. Black box thinking, then, is not what we
would consider to be understanding, but it is nonetheless particularly relevant
for contexts that involve computing, and we saw an interesting example of this
in one of our interviews (see Paper III).

3.2 Actor-Oriented Transfer

As I mentioned in the introduction, transfer of knowledge can be regarded as one
of the foundations for the existence of schools and universities. However, there
is growing evidence that rather than being a product of institutional practices,
transfer is a process shaped first and foremost by the learners (Billett, 2013).
This suggests that the attending to the student perspective is crucial when
attempting to study transfer of learning.

The actor-oriented transfer (AOT) perspective (Lobato, 2003, 2012; Lobato
and Siebert, 2002) is a theoretical framework that takes a student-focused view
of transfer. Here, "transfer is defined as the generalization of learning, which
can also be understood as the influence of a learner’s prior activities on her
activity in novel situations" (Lobato, 2012, p. 233). This applies even when
students make unexpected connections that may or may not result in incorrect
performance, and stands in contrast with more traditional views of transfer, in
which students are only considered to be transferring knowledge if they correctly
solve transfer tasks that are predetermined by researchers/observers (Lobato,
2008).

In AOT, taking the actors’ point of view3 affords making explicit the elements
of mathematical understanding that can remain implicit in traditional transfer
studies that employ an observer’s point of view. For this reason, AOT is regarded
as a useful tool in iterative design-based research studies that seek to improve
instruction and the ways in which students generalize (Lobato, 2012).

AOT emerged out of design-based research where a traditional transfer failed
to capture the students’ generalisation and the similarities they noticed. The
usefulness of AOT in design-based research comes from its power to inform design
decisions and identify what is salient for students. AOT and design research
both focus on learning processes, learner-centric classrooms and the recognition
that learning is social as well as cognitive (Lobato, 2003).

As we have seen, an important facet of the AOT framework is its focus on
similarities and dissimilarities as seen from the student’s point of view. These

3In our context, the actors are the students that I interviewed.
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allow actors to make connections between the activity they find themselves in
and some previous activity that they regard as similar and relevant. (Lobato,
2012) quotes (Hohensee, 2011) in saying that the features that the students
notice are

conceptually connected to the ways in which students transfer their
learning experiences. [It] is unlikely for a teacher to simply say ‘Look
here!’ and her students will notice what she targets. Instead, there
is a system of elements (discourse practices, mathematical tasks, and
the nature of mathematical activity) that work together to bring
forth the noticing of particular mathematical features in classrooms.
(pp. 242-243)

This is not to say that context is irrelevant in the AOT perspective, nor that
it only serves as a barrier to transfer which learners can overcome by abstraction.
Combining AOT with a knowledge-in-pieces4 perspective (diSessa, 1993; Wagner,
2010) found that the formation of abstract representations is not the only way
in which transfer occurs. It may also be supported through incremental growth
and organisation of pieces of knowledge that are highly sensitive to context.

I investigate students working with knowledge from the two domains of
computing and mathematics in the same setting it has been taught, which does
not require proof of transfer to a different context. That is to say, the actor-
oriented transfer that I investigate occurs between domains, but the context of
my tutorials is not fundamentally different from the one that our students are
familiar with from their classes.

I use the term affordances to describe what benefit students derived from
making connections across domains. The term has often been used in the
mathematics education research literature, most notably in the context of
technology. The term describes a relationship between an actor and an object
that is expressed by some activity: an illustrative example by (Gibson, 1979)
is that water affords drinking and drowning to human beings, while it affords
breathing to fish (Brown et al., 2004). In our context, when I discuss affordances
and limitations, I am concerned with the activities that are helped or hindered,
respectively, as a result of interactions between humans and computers.

A recent example that uses the AOT framework in the context of computing
comes from (Lockwood and De Chenne, 2020), which explores how students
use Python to list and count the outcomes of combinatorial counting problems5.
One way to achieve this is using conditional statements to eliminate outcomes
that do not respect restrictions on ordering, repetition, or both6. Lockwood

4Imagine knowledge as a relational network where the nodes - the pieces - are elements
that can be linked together in different ways to constitute knowledge. Concepts can be linked
together in this way, but may also have internal structure of finer-grained knowledge pieces
that are nested in a similar way. DiSessa likens the pieces that make up a concept to the
ingredients of a cake, and knowing their relations to having a full recipe (diSessa, 2014).

5Combinations (unordered) and permutations (ordered), with and without replacement.
6For any two elements a and b that belong to the same set of numbers, we can insist that

they be ordered (a ≤ b), unique (a ̸= b) or both (a < b).
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and De Chenne found that this approach focused students’ attention on the
outcomes they were counting, which again reinforced the conceptual differences
between different types of counting problems.

I consider the AOT and UbD frameworks to be complementary. Where
AOT takes the point of view of the learner, UbD takes the teacher or teaching
designer point of view. UbD recognises that students making connections is
important and goes about exploring how one might initiate or support this.
Therefore, using AOT to describe these connections and identify the features
of the learning environment that supported these is important for the designer
as well. Furthermore, describing the affordances of such connections may help
motivate and explain design choices.

3.3 Sensemaking

The challenges facing modern humans and scientists are complex, ranging from
global warming (Ryghaug et al., 2011) to pandemics (Weinreich et al., 2021)
to figuring out how the evolution of the universe is affected by gravity and the
properties of elementary particles (Sand, 2016). Most of these complexities
demand building coherent theories, comprehending why something is, and when
to use and not use what we know. This goes well beyond simply knowing or
recalling the facts (Wiggins and McTighe, 2005). In other words, we require our
students to make sense of things.

As computers become more powerful and interconnected, the wealth of
information available to any of us can be overwhelming. Modern education
requires educators to equip students with the skill of critical thinking, to separate
facts from opinions, and connect facts in a consistent way with the power to
provide explanations of these complex phenomena. An important aspect of
teaching critical thinking is therefore to encourage and model the process of
sensemaking (Maloney, 2015; McPeck, 2016).

In the education research communities, sensemaking has taken on many
different meanings. A recent example from mathematics education research
can be found in (Biccard, 2018). The definition of sensemaking I use in this
thesis is from physics education research: "A dynamic process of building or
revising an explanation in order to [. . . ] resolve a gap or inconsistency in one’s
understanding" (Odden and Russ, 2018), pp. 5-6.

While there have been numerous other attempts to define what sensemaking
is, I chose this one since it unifies several aspects of sensemaking that others
have highlighted: sensemaking as an epistemological frame, a cognitive process,
and a discourse practice, all three of which are rooted in the science education
literature.

Sensemaking as an epistemological frame concerns how students approach
learning-based activities and what they think is going on with those activities.
Sensemaking then becomes such a frame when students interpret their task as
constructing an explanation for something not understood or figuring something
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out. The foundation for this aspect comes from the resources-based perspective,
see for instance (Hammer et al., 2005).

Sensemaking as a cognitive process is built on the theory of knowledge
integration (see among others Chiu and Linn, 2011), which is a process where
students articulate, consider, compare and possibly integrate different mental
models of a phenomenon. Some authors term this process as generating self-
explanations (Kapon, 2017).

Sensemaking as a discourse practice involves argumentation - constructing
and defending arguments. This is a different goal than persuasion. It can be
broken down into two sub-processes: construction and critique of arguments.
These can be done in a group or within the mind of one person (Ford, 2012).

In (Odden and Russ, 2018), the process of sensemaking involves the following
steps, illustrated in Figure 3.1:

1. becoming aware that there is a gap or contradiction in one’s knowledge,

2. proposing ideas and attempting to connect them to existing knowledge or
other ideas, and

3. evaluating that these ideas are consistent and do not lead to additional
contradictions.

Figure 3.1: The sensemaking process, according to ((Odden and Russ, 2018).

This process can be iterative: if an idea proves to be troublesome, one must
try a revised suggestion that ensures the theory is not internally inconsistent or
contradicting the external facts.

Sensemaking is far from the only theoretical framework attempting to describe
learning at this level of granularity. Another example is conceptual change, which
is inspired by paradigm shifts in research communities and aims to illuminate
implications for education. It is assumed that the scientist and the student
both have a current concept and see a rational part to learning (student) or
adopting (scientist) a new one. Strike and Posner outline four conditions for
conceptual change to occur: (a) dissatisfaction with existing conceptions, (b)
new conceptions being intelligible, (c) new conceptions appearing plausible, and
(d) new conceptions being able to open up new areas of inquiry (Strike and
Posner, 1982).

The first of these four points strongly resembles the first step of Odden
and Rush, under the assumption that one is not satisfied with one’s knowledge
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being incomplete. Similarly, a new concept being intelligible and appearing
plausible allows it to be proposed to bridge the gap. In contrast to Strike and
Posner sensemaking as Odden and Russ define it does not require that new
areas of inquiry being opened up: it may happen or it may not. In that sense,
sensemaking is more concerned with the immediate process and less so with its
after-effects. One way to interpret this difference is to propose that sensemaking
is a process that may lead to conceptual change if successful. On the other hand,
Strike and Posner’s version of conceptual change leaves implicit the evaluation
that sensemaking emphasises in its third step, and the ideas that are rejected in
the process. I thus view these perspectives as complementary.

Another perspective on conceptual change is that of diSessa, who approaches
the problem from the knowledge-in-pieces perspective (Section 3.2). DiSessa
argues that if concepts are components of larger-scaled systems, the systemic
constraints can constrain individual concepts to the effect that changing a concept
becomes difficult. DiSessa argues that "a nearly unique property of [knowledge-
in-pieces] in the field of conceptual change is that it sees ’naïve’ students as full
of ideas, many of which can or even must be re-used in developing scientific
understanding" (diSessa, 2014, p. 12), though these ideas are usually less coherent
than those of experts.

In that sense, diSessa’s perspective is more focused on the here-and-now
of learning than Strike and Posner. Compared to sensemaking as defined by
Odden and Russ, the most striking difference is grain size - knowledge-in-pieces
conceptual change may operate at a finer grain size than sensemaking. Both
perspectives can operate on a short time scale, however, as demonstrated in
(diSessa, 2017). The event described by diSessa in this paper resembles a
sensemaking process: a student’s intuitive ideas about thermal equilibrium is
challenged by experiment, whereupon the student suggested an explanation7 for
the observed behaviour. As with Strike and Posner, diSessa’s analysis seems to
leave implicit the evaluation of these ideas and focus more on their construction.

It is not obvious that sensemaking is the superior theory to analyse the events
in our data. Conceptual choice might very well have produced valuable insights
and both theories are appropriate to use on short time scales to investigate
learning that is more than rote acquisition of simple facts. The reasons we
chose sensemaking were its larger gain size, deemed more suitable for a first
exploratory study and its focus on evaluating ideas for consistency, a process
which features heavily in our data, as it turned out.

Sensemaking is also related to the UbD framework. The most prominent
links between the two theories are:

• When considering what students should make sense of, the UbD framework
provides clarity on the learning goals (in the first phase of backward design).

• When considering how to design learning activities (in the third phase),
the UbD framework describes how to design for sensemaking to take place.

7The further liquids are from equilibrium, the more they "freak out" and the harder they
work to regain equilibrium (diSessa, 2017).
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• The UbD framework describes what understanding is, and how to identify
learning goals and activities that promote this understanding from the
teaching designer’s point of view. It does not describe in detail the process of
coming to an understanding from the students’ point of view. Sensemaking
provides this very piece of the puzzle.

• The role of essential questions in the UbD framework (see Section 3.1) as
a strategy to identify what is important to understand and to promote
students engaging in the big ideas is mirrored in sensemaking. These
questions require uncovering and are not answerable with just facts, and
(Odden and Russ, 2019) posit that such questions can initiate and sustain
a sensemaking process.

Sensemaking is also related to Actor-Oriented Transfer. Sensemaking describes
the whole of the process of constructing new understandings, whereas AOT
focuses on the parts: the individual connections, such as similarity or dissimilarity,
that make up the sensemaking process. Indeed, with AOT’s connections we are
approaching a grain size comparable to knowledge-in-pieces conceptual change8.

To illustrate the overlap between sensemaking and AOT with a simple
example, the following occurred in the writing of Section 2.2:

I know that the exponential standard form of a binary number is a number
between 0.5 and 1 multiplied with a power of two, and this is the format returned
by Python’s frexp() function, which returns the mantissa and exponent. I
also know that the mantissa and exponent of a floating-point number are stored
in memory as binary integers. Here is a dissimilarity – the author makes the
connection that the mantissa cannot both be an integer and a number between
0.5 and 1. This connection and what follows from it constitutes stage 1 of the
sensemaking process.

I propose that the mantissa is in fact stored as an integer, and that the
computer then interprets that integer as the numerator of a fraction (stage 2 of
sensemaking).

In evaluating this idea for coherency and looking for contradictions, I find a
similarity – if that fraction is a number between 0.5 and 1, the two representations
could be one and the same. This connection contributes to stage 3 of sensemaking.

This process might well be cyclic, requiring more three-stage iterations to
resolve fully. For instance, if "bbb. . . " denotes the individual bits (b) in the
mantissa, the standard for floating-point arithmetic specifies that the mantissa
is interpreted as "1.bbb. . . ", which is clearly not a number between 0.5 and 1,
but between 1 and 2. This differs notably from what the frexp() function
returns. A subsequent sensemaking iteration, however, could have us discover
that these numbers differ only by a factor of 2, which could be pulled into the
exponent with little difficulty.

We will see a similar process at work in Paper I where we encounter a student
trying to make sense of an apparent contradiction concerning the relationship

8In fact, we recognise the data in diSessa, 2017 as something that could very well be
analysed in terms of connections and similarities.
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between mathematical accuracy and realism. In that paper, we did not consider
individual connections in the way that I did here, but I will demonstrate that
this is possible in Section 7.1.
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Chapter 4

Methodology

With the theoretical landscape of Figure 1.7 thus established, we are nearly
ready for the story of my path through this landscape, with the three papers
of Figure 1.8 as important milestones along the way. But first, we need to
summarise the methodology common to the three papers.

4.1 Iterative design process

For all three papers, design of the learning activities was done iteratively:

• I proposed design ideas for faculty teaching the course whose learning goals
the designs were based on.

• After incorporating their feedback, the initial design was tested by
interviewing students as described in Section 4.2.

• Between individual interviews, minor adjustments and clarifications were
done as necessary based on the interview data. Typically, all interviews
in one such cycle happened during the same week, so the students were
roughly in the same place in the course schedule. This allowed at least
rough comparisons between interviews in the same cycle.

• Larger changes were done in between cycles of interviews. These reworkings
could take from several months up to one year. In these design phases, the
lessons from the entire set of interviews using the previous version were
incorporated, with additional input from teaching faculty and the research
group.

• Successive interview cycles brought in additional data, which were used to
finalise the design.

The three tutorials for Paper II and III were all designed in this way. The
versions I include in the appendix are the final versions, which may differ in
important ways from those used for the papers. The lessons learned that I
describe in the papers have been incorporated in these final versions. All versions
of the tutorials were, with a few exceptions, also used in class alongside the
interview cycles.

For Paper I, I found the interview task too short to deserve to be labelled
a full tutorial. Unlike the tutorials, this task was never used in class, and only
served as a pilot experiment to get research data. For that reason, I have opted
to not include it in full, for the following reasons:
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• Paper I describes the task in sufficient detail for researchers to reproduce
and for educators to take inspiration from, should they wish.

• This task was very exploratory, and I do not deem it to be "classroom
ready". Including it in the appendix might give the impression that it is as
finished as the tutorials that I did test in class, with observations, which is
not the case.

Finally, I note that the tutorials were designed using the backward design process
described in Section 3.1.

4.2 The Interviews

I recruited students in two ways: (a) asking them to volunteer using an online
form during one of the first lectures of the semester, and (b) recruiting groups
of students during in-class observations. I conducted all the interviews in person
using both video and screen recording on a computer where a familiar Python
programming environment had been set up for the students to use1. They also
had access to a whiteboard, which the video camera captured.

After these pilot interviews, we changed our focus from individual think-aloud
interviews (as in the case of Sophia in Paper I), to interviews with groups of
students. This we did for the following reasons:

• The think-aloud interviews, while illuminating, are not realistic in terms of
how students work with exercises in class. Instead, the interviewer tended
to take on the role of both Teaching Assistant (TA) and fellow student to
discuss with. Therefore, we found that interviewing students in groups
would provide more realistic data and make our conclusions easier to apply
to teaching in the classroom.

• Having the interviewer play a more withdrawn role, only intervening when
necessary or requested by the students, would similarly add to the realism
of the learning activity and usefulness of the data. For generalisability and
reproducibility, we would prefer students discussing the work with each
other, not with an expert.

• Inviting three students proved to be optimal, as sometimes individual
students had to cancel. Thus, I could interview the remaining pair of
students instead of cancelling the entire interview or switching to think-
aloud because I only had one student left.

• With two to three students, at least in theory the cognitive load would
be spread across more people , which would free up students’ cognitive
resources as some of the complexities involved would be handled by the
other students (Costley, 2021).

1JupyterHub for the BIOS1100 students of Paper I, a code editor (Atom) and a terminal
window (Anaconda) for the MAT-INF1100 students of Paper II and III.
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• Given our research interest in connections especially, we found it more
likely that more interesting connection patterns would surface between
groups of students than with only one student, as they could build on each
other’s connections.

In these group interviews, the students were told to work together as they would
in a normal group session in the course, using the interviewer as a TA where
necessary. The authors collectively decided on follow-up questions to gather
feedback for the next design cycle and record the students’ previous experience
with programming, which might differ substantially and would make us alert
to cases where the student’s actions might be influenced more by previous
experience than by the tutorials themselves.

These follow-up questions were generally (with the exception of Paper I)
saved for the end of the interviews. While this tends to affect validity, as students
then have to recall their experience from earlier in the interview, it ensures that
their thought processes during the interviews themselves are affected as little
as possible by the interviewer (van Someren et al., 1994). General follow-up
questions pertaining to the students’ background and their thoughts on using
computing and mathematics together were agreed on by the research group
ahead of time. Other follow-up questions would ask students to elaborate on
certain choices or actions during the interviews: these were noted down during
the interview and asked at the end.

4.3 Analysis

In this section, I describe my analysis in broad terms: more detail will be
provided in each respective paper. Common to all three papers is that they are
exploratory case studies, and no pre-existing code book was available for use in
the analysis. We therefore performed a thematic analysis of the data, following
roughly the six-phase process outlined in (Nowell et al., 2017).

4.3.1 Phase 1: Familiarising Yourself With Your Data

As a first step, the interview audio was transcribed at the end of each semester.
I reviewed the transcripts to divide them into short segments with brief
descriptions of each. Segments were flagged for further review if they involved
both mathematics and computing, and the students’ work was focused on
understanding something, as opposed to performing a skill or recalling simple
facts.

This selection process produced several episodes (usually consisting of several
consecutive segments) where students either (a) were engaged in some activity
that contained elements of both computing and mathematics, (b) made a
transition between computing and mathematics, or (c), both. I then translated
the transcripts from Norwegian into English and enhanced them with evidence
from other sources, such as screen and video captures, photos of the whiteboards
and collected worksheets. These enhanced transcripts were shared with the rest
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of the research group (the co-authors) and formed the basis of the analysis from
that point onward.

4.3.2 Phase 2: Generating Initial Codes

Initially, I divided each episode into short segments and coded each segment. We
then looked at the bigger picture, focusing on the patterns that were apparent
from the students’ point of view. Based on this, I formulated claims relevant to
the particular paper, supported by evidence from the transcripts, in analytical
memos. The co-authors of each paper reviewed the claims and their justifications
for the sake of validation and helped refine the claims in several steps. Examples
of these early codes showing our interest in the integration between mathematics
and computing were: pure coding, pure math, integrated2.

4.3.3 Phase 3: Searching for Themes

We assigned labels to the episodes, identifying and highlighting key actions
that we took as justifications for this coding. Examples of these include verbal
utterances from the students, things they wrote in the code editor or the
whiteboard, and other actions. In the process I kept detailed notes of each
version of these descriptive labels and triangulated the labels with the co- authors.
Examples of early themes or labels were: "mapping code to mathematics",
"mapping mathematics to code" and "explicitly telling the code what to do".

4.3.4 Phase 4: Reviewing Themes

We created new enhanced transcripts with a separate column for coding and key
actions to get a clearer picture of the codes as applied to raw data, including
data we had not previously analysed in detail. In the process, we also linked the
key actions to theory. For example, for my second paper, we noticed that a lot
of our key actions were students making connections or noticing similarities.

4.3.5 Phase 5: Defining and Naming Themes

We summarised what each of the selected episodes demonstrated and refined
our coding of these based on this, before going back into the data and re-coded
them using the updated labels. In the process, we collectively decided on names
for the labels in several steps. This resulted in the label names and definitions
presented in Table II.1 of Paper II.

4.3.6 Phase 6: Writing Up the Report

Finally, we started writing the papers, initially focusing on describing the themes
and the process leading to their development. We referred back to the theoretical
framework to justify our choice of themes, and attempted to articulate what

2This example, and the examples in the following subsections are all from Paper II
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each theme meant and revealed about the topic. In our second paper this
appeared in the form of patterns of connections and what each pattern afforded
the students (a step up in grain size). We also sent finished drafts of each paper
to all respondents to establish the fit between their views and our representation
of them.

For further details as to how each individual theoretical framework was
applied in the course of the analysis, I refer to the papers themselves (Paper I,
II and III).
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Chapter 5

The Path to Paper I

It is now time to turn our attention to the papers themselves. In order to
contextualise the papers, this section gets us started along the chronological path
through the theoretical landscape outlined in Figure 1.7 and Figure 1.8. What
follows in this section through to Section 7, is the story of what I did and what I
learned from it. The papers themselves appear as separate chapters where they
belong chronologically. This section represents the beginning of that story and
focuses on the early work in 2017 and 2018 that culminated with Paper I.

The first paper sprung out of classroom observation in the course BIOS1100:
Introduction to computational models for Biosciences (Nederbragt, n.d.). This
compulsory course for first-year bio-science students integrates both mathematics
and computer programming to help students solve relevant biological problems,
such as bacterial growth, DNA sequence analysis, and disease spreading through
a population.

I would like to stress that this was the very first semester the course was
taught, and as such it represented the first of three phases that I have observed
in the evolution of the course since then:

1. Main focus on students learning programming – presence of mathematics
mostly implicitly.

2. Explicit focus on mathematics but taught alongside programming with
little integration of the two domains (thus not following the approach
outlined in Section 2.1).

3. A movement toward integrating mathematics and computing.

My observations, in addition to help motivate and lay the groundwork for my
research, also led to some changes in the course after the first semester. These
came in addition to the great effort the course teachers put into improving the
course over the next years.

In the first semester, when the course was still in phase 1, I was left with an
impression that the students possessed a set of computational and mathematical
skills, but they had a hard time making sense of how to use them effectively. To
probe this further and make use of sensemaking as described in Section 3.3, I
recruited volunteers from the class and interviewed them as they worked on a
task that was designed to highlight the ways in which they made sense of what
they were doing. This would specifically allow further insight into how these
students worked with loops and variables.

During these pilot interviews, we noticed something interesting. The original
task was designed to shed light on how the students made sense of the program
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they were writing. The task, written in the JupyterHub environment with which
the students were familiar from class, can be summarised as:

Given an initial population of 10 rabbits that increases by 10% every
month, calculate by hand the number of rabbits after 1 and 2 months.
Perform the same calculation in Python and print the results. Make
a loop that calculates the number of rabbits for the first 10 years
and plot the results.

The interesting thing that surfaced in this interview data, was that the
students very quickly got fractions of rabbits:

Month 0: 10 rabbits
Month 1: 10 · 1.1 = 11 rabbits
Month 2: 11 · 1.1 = 12.1 rabbits

This brings into play a trade-off or conflict between accuracy and realism:
Mathematically, 12.1 rabbits more accurately represents 110% of 11 if we abstract
away the context, but even if you could have an extra 10% of a rabbit, the idea
that this fraction of an animal could contribute to further population growth is
absurd. As one of the students said in the follow-up session:

Interviewer: In your calculation – both on paper and in Python –
you got 12.1 rabbits after 2 months. How realistic do you feel this
answer is?
Student: Very unrealistic because you can’t have 0.1 rabbit [laughs].
Interviewer: Do you remember what you were thinking when you
chose not to round it? I remember that you rounded to 3 decimals
[in your later calculations], but not to integers. And what do you
think the choice of rounding or not will mean for the correctness of
your answer after 120 months?
Student: I chose 3 decimals because I thought it gave a prettier
answer, which was easier to relate to. I didn’t round the final answer
because I was unsure how to get the round() function into the
print(). Whether that affects the answer after 120 months in my
opinion depends on whether it’s the rounded number or the number
with decimals that is used for further calculations. If the round()
is only in the print(), then it shouldn’t matter in my opinion. [. . . ]
If the answer should be as realistic and accurate as possible, I would
calculate with all the decimals – which is what I did – and then
round the answers in the end.

Note that this choice still implies that mathematical correctness takes
precedence over realism: in this interpretation, we still have fractions of rabbits
contributing to the population growth, even though the answers are rounded
after all the calculations are done. If the student had favoured realism, only
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whole rabbits (or even pairs of whole rabbits) could have contributed to the
growth of the population, and as the student observes, this would have led to a
very different answer, as seen in Code Sample 5.1 and Figure 5.1:

r_a = 10
r_b = 10

for i in range(1, 121):
r_a = r_a * 1.1
r_b = round(r_b * 1.1)

print("Month", i, "-->", round(r_a))
print("Month", i, "-->", r_b)

Code Sample 5.1: Python code illustrating the difference between two approaches
to rounding: during and after the calculation (the author’s work, not the
student’s).

Figure 5.1: Output of the code in Code Sample 5.1.

There is, however, a way to reconcile these two approaches, as we will see
in the next section. There, I will describe one of the interviews I conducted
based on an altered version of the task, designed to bring this very issue to the
forefront. For the last batch of these pilot interviews in the spring semester of
2018, I re-worded the exercise to involve decaying radioactive nuclei, for three
reasons:

• these students were taking an introductory physics class that semester, so
the task seemed relevant to them in that sense,

• if the students could not make sense of the task with this framing, I could
re-frame the task for them in terms of rabbits and see if bringing it into a
context that was more familiar for them changed anything, and

• decay would highlight the issue of rounding (see below).

For radioactive nuclei, exponential decay was a more natural choice than the
exponential growth typically associated with rabbit populations. Here, the issue
of whether to round during or after calculation that I discussed in Section 4 would
be even more pronounced: if we round the number of nuclei during calculation,
we can never go below 4 nuclei. If we start with 1000 nuclei and 10% of them
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decay every month, we eventually get1:

4 · 0.9 = 3.6 ≈ 4

This is simply not how the world works on small scales. Any radioactive nucleus,
even if left to itself, will eventually decay spontaneously. Its half-life (the time it
takes 50% of nuclei to decay), is simply a statistical expectation value that is
only meaningful when we have a large population of nuclei. The time it takes an
individual nucleus to decay is governed by quantum mechanics and is inherently
random. At this point, stating that "10% of nuclei decay every month" becomes
physically absurd2, while mathematically, there is nothing wrong with taking
this statement at face value and insisting on calculational accuracy. My task
was therefore designed to produce situations with very few nuclei, so I could
investigate the students’ processes of making sense of this apparent contradiction.

The task I gave the students used this very set-up and I asked the students
how many months it would take for there to be no radioactive nuclei left. Some of
the students were completely fine with having fractions of nuclei until I re-framed
the situation as an exponentially declining rabbit population. At that point,
they realised that fractions of rabbits did not make sense and made the logical
connection that fractions or nuclei (or "atoms" as the task called them, since we
would not expect the nuclei to be bare of electrons) did not make sense either.

One student, whom I gave the pseudonym Sophia, went much further than
this, however. My first paper is devoted in its entirety to the interview with
Sophia, which I present in the next section.

1Mathematically, one would expect this calculation to stop at 5. In Python 3, however,
floating-point numbers equidistant from two powers of 10 (that is, ending with the digit 5) are
rounded toward the nearest even number. This so-called banker’s rounding ensures that there
is no accumulated bias toward higher numbers if we add together many such numbers, as the
following example shows:
Normal rounding: 8 = 0.5 + 1.5 + 2.5 + 3.5 ≈ 1 + 2 + 3 + 4 = 10
Banker’s rounding: 8 = 0.5 + 1.5 + 2.5 + 3.5 ≈ 0 + 2 + 2 + 4 = 8

See also https://docs.python.org/3/library/functions.html{#}round.
2We do not expect students to know this in an introductory physics course. This made the

problem an interesting one, as it can appear to be self-contradictory until they make sense
of it. The isomorphism with rabbits was also helpful: if we stated the problem such that 10
percent of a rabbit population dies every month, students were less likely to interpret this as
the death of partial rabbits.
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Abstract

We present a case study featuring a first-year bio-science university student
using computation to solve a radioactive decay problem and interpret the
results. In a semi-structured cognitive interview setting, we build on
previous work on sensemaking by studying the process in a computational
science context. We observe the student using computation as an entry
point into the sensemaking process and then making several attempts to
resolve the perceived inconsistency, drawing on knowledge from several
domains. The key to making sense of the model for this student proves
to be thinking about how to implement a better model computationally.
We demonstrate that integrating computation in physics activities may
provide students with opportunities to engage in sensemaking and critical
thinking and discuss some implications for instruction.
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I.1 Introduction

It is a well-known conundrum that students can progress through introductory
physics courses, sometimes with good grades, and still lack understanding of the
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underlying principles, relations, and concepts. A dreaded, but common scenario
is students employing "plug and chug" strategies to manipulate mathematical
formulae without engaging with the underlying physical principles. With this in
mind, getting students to engage in sensemaking is crucial for achieving learning
goals in critical thinking and understanding the physics itself Maloney, 2015.

Computation is important for students of physics to learn because it reflects
current practices in the field, teaches important skills for research and other
careers, and allows students to solve a greater number of more realistic problems
“AAPT Recommendations for Computational Physics in the Undergraduate
Physics Curriculum”, 2016. As a consequence, research-based efforts to sensibly
integrate computation into the physics curriculum are well underway Caballero
et al., 2012. Therefore, we want to study to what extent computation provides a
potential for students engaging in sensemaking, and under what conditions that
potential may be fully realised.

We present evidence for sensemaking in the case of Sophia, a bio-science
student who is interviewed while solving a physics problem on radioactive decay.
Sophia uses both computational and non-computational arguments to make
sense of the model she is working with. We claim that because Sophia can easily
modify her program and compare the corresponding outputs, sensemaking is
facilitated. We justify this claim by presenting evidence for how computation
was helpful in Sophia’s sensemaking process. Finally, we discuss implications for
teaching and future research.

I.2 Analytical Framework

The analytical framework for this study is founded on the following definition
of sensemaking from Odden and Russ, 2018, pp. 5-6: "A dynamic process of
building or revising an explanation in order to [. . . ] resolve a gap or inconsistency
in one’s understanding." While there have been numerous other attempts to
define what sensemaking is, we chose this one since it unifies several aspects of
sensemaking that others have highlighted: sensemaking as an epistemological
frame, a cognitive process, and a discourse practice, all of which are relevant to
this project.

The process of sensemaking involves (a) realising that there is a gap or
contradiction in one’s knowledge, (b) iteratively proposing ideas and attempting
to connect them to existing knowledge or other ideas, and (c) evaluating that
these ideas are consistent and do not lead to additional contradictions Odden and
Russ, 2018. In this paper, we will use this definition to study how computational
activities may provide opportunities for sensemaking in interdisciplinary science
problems.

I.3 Methods

The case comes from a pilot study conducted with first-year bio-science students
at a large research-intensive university in Norway. These students learned
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computation integrated with biology in the previous semester and were following
a physics course in the semester when this study took place. The physics course
had not yet covered radioactive decay by the time we interviewed the students.
We targeted students with a wide range of self-reported programming expertise
who were also comfortable thinking aloud.

Subsequently, we performed a series of semi-structured cognitive interviews
in Norwegian where students worked on the task alone. The interviews borrowed
heavily from think-aloud protocols (van Someren et al., 1994), but students
could ask for help with syntax should they need it, provided they were able to
articulate what they wanted the code we gave them to do. Otherwise, they were
instructed to articulate as much of their thinking as possible. The interviewer
would occasionally ask the students to elaborate on their thinking.

Follow-up questions on students’ reasoning were asked by the interviewer on
various occasions, interspersed throughout the think-aloud segments. While this
tends to change the students’ thought processes, so they generally do somewhat
better, protocols obtained in this way tend to be more valid than the ones were
students recall their reasoning after the fact (van Someren et al., 1994).

We gave the interviewees a toy model starting off with 1000 radioactive nuclei
and told them that 10% of the remaining nuclei would decay every month. The
students first calculated the remaining number of nuclei for the first two months
(where the answers were still integers) by hand. We then had them reproduce
these answers by writing a Python program in Jupyter Notebook, the familiar
programming environment they used throughout the previous semester. Finally,
they were asked to extend the calculations to 60 and 100 months and (if time
allowed) plot the results.

This task was specifically designed to allow students to discover a perceived
trade-off between accuracy and realism that would require sensemaking to resolve.
After a while, you need several decimal points to mathematically describe 10% of
what remains, yet when counting nuclei, in general one expects the numbers to
be integers. While the toy model we provided may be approximately correct for a
large number of nuclei, at lower amounts one would have to interpret the output
as an average across many identically prepared experiments for the numbers to
make sense.

All the students interviewed (N=5) at some point considered rounding the
answers to the closest integer to avoid working with fractions of nuclei, although
some did this only in response to follow-up questions from the interviewer. Every
student also expressed some amount of concern about the mathematical accuracy
of their results when rounding the numbers in this way. Two of the interviewees
made some progress toward resolving this contradiction by interpreting the
un-rounded numbers as an average, one of which was Sophia.

The typical length of an interview was about one hour. All interviews were
recorded on audio and video, both of the student and the computer screen.
Subsequently, the transcripts were translated from Norwegian into English. We
analysed the transcripts using the definition in Odden and Russ, 2018 and
looked for the following: The student (a) realising she cannot fully explain
the physical phenomenon she is modelling or aspects of the model itself, (b)
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proposing explanations and trying to connect them to scientific or everyday
knowledge and (c) evaluating these explanations to ensure consistency.

We then looked at what the student was doing with computation inside and
outside of these sensemaking episodes, and asked the following questions: What
happens in this computational context when the student engages in sensemaking?
Is the computational aspect of the task a help or hindrance to this process?

The case we present illustrates how sensemaking may happen in a
computational context. While not the most typical case for this group of
students, Sophia’s interview was chosen for analysis because her sensemaking
was rather explicit in the transcript. Additionally, she ended up using language
that was clearly computational to make a profound argument about how to
model the physical phenomenon and interpret the results.

I.4 Computational Sensemaking Case

"Sophia" (pseudonym) is a Norwegian student in her mid-20s, a few years
older than most students taking first-year university courses. She describes
her experience with programming as one of a fair degree of mastery in most
cases. Compared to the average student in the programming course for bio-
science students, she comes across as more confident and relaxed than most
when working with computer code.

We begin our analysis at the point where Sophia has set up her program to
calculate the number of remaining nuclei for the first three months: 1000, 900.0
and 810.0, respectively.

Sophia [14:35] There. Now it’s right. [But] now I might want to
round these [indicates 900.0 and 810.0] to get. . . well, just whole
numbers.

In reaction to her program’s output, she implements this rounding to the
closest integer and checks that it works. Note that she adds rounding when
printing the output from the program to the screen, but not in the actual
calculations.

Interviewer [15:05] Could you tell me a little more about why you’d
round them?
Sophia Because these are atoms, and you sort of can’t have half. . .
or I don’t know. . . it seems a little unnecessary to include, like, 810.0
atoms, in a way.

We interpret "you sort of can’t have half. . . " as that you cannot have a
fraction of a nucleus and still call it a nucleus of that particular element, which
is a point Sophia returns to later on.

At this point, we have reached the starting point of the sensemaking process.
We divide it into three separate segments that correspond to the three ideas
Sophia proposes to make physical sense of the numbers given to her by her
program.
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I.4.1 Sensemaking segment I

She moves on to the next part of the task, modifying her program to repeat
calculations all the way up to 60 months. She inspects the output and indicates
the last ten months in the sequence, with 3, 3, 3, 2, 2, 2, 2, 2, 1, and 1 nucleus,
respectively.

Sophia [16:30] This looks a little strange. . . Because here there
are no decimals. So. . . here I’d include the decimals because, like. . .
you can’t take 10 percent of. . . or, I get that you get, like, the same
number several months in a row. [indicates the earlier sequence 6,
6, 5, 5] Because 10 percent of 6 is still above 5, like. I’m going to
include the decimals.

While cutting the decimals for large numbers seems fine to her, Sophia realises
that for smaller numbers there is something she needs to find an explanation for:
The number of nuclei remaining constant for several time steps and then changing
considerably more than 10% rather abruptly. Importantly, the sensemaking
process starts as a reaction to the computational output.

Using computing also allows her to implement and test this change, which she
immediately does. Yet, the argument Sophia makes here is purely mathematical.
She talks about numbers in a sequence, decimals and percentages, but this
discussion stands on its own removed from the physics and computational
contexts it occurred in.

I.4.2 Sensemaking segment II

After resolving some bugs (one syntax error and a few logical errors), Sophia
sees the un-rounded numbers for all 60 months. After verifying that they seem
to be the correct numbers mathematically, she is told that she is free to move
on to the next task. Still, she hesitates.

Sophia [20:18] Umm, yes. Right now, I’m thinking – I just have
to say it, because right now I am a little unsure about. . . because
there are now so many decimals and. . . [indicates the final months
with 2.21. . . , 1.99. . . and 1.79. . . nuclei] because one atom can’t. . .
you can’t take 10 percent of one atom, like. So, this becomes sort of
random whether, in a way. . . whether it splits or, like, if it loses one
atom to radioactivity or not. So, I’m really not entirely happy with
these numbers. But I can move on to the next one, I guess.

We interpret this as Sophia revisiting her earlier statement: Can you have
a fraction of a nucleus? This segment shows a lot of critique of her previous
choice, which is indicative of sensemaking going on. Once again, we claim that
Sophia engages in sensemaking as a response to the program output.

Sophia seems hesitant to exit the sensemaking process prematurely, and she
may be experiencing some friction between the sensemaking and how she frames
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the interview situation. The initial "I just have to say it" at 20:18 seems to
indicate that at that point she was about to engage in an activity she considered
not wholly appropriate for the way she was framing the activity at the time
(Russ et al., 2012).

We also note that in contrast to the previous sensemaking attempt, this
one contains mainly physics ideas (atoms, radioactivity) with a nod to the
mathematics embedded in them (percentages, probabilities).

I.4.3 Sensemaking segment III

At this point the interviewer intervenes and invites Sophia to discuss a little more
why she’s not happy with the numbers, in effect sustaining the sensemaking
frame. Initially this invitation is met with minor resistance. Sophia states
that she doesn’t want to spend so much time and energy thinking about an
open-ended task that isn’t clear about what it wants from her, so she’s "choosing
the easy way out". After being asked what she would do if she were a scientist and
this was an important result to her, Sophia resumes the sensemaking process:

Sophia [23:20] So, already after the third month here, then I would
have taken, like, [indicates month 4 with 656.1 nuclei] here it reads
point 1 – then I might have put in a for loop with choice? I think it
is [random.choice()1] you use. Whether or not, like, that one. . .
like, whether the decimal, whether that is a whole atom that goes
away or not. So, in a way it becomes a sort of choice. . . thing. Such
that when you run it as a model for the first time, then maybe. . .
yes. Then maybe all. . . eh, the radioactive atoms are spent after,
like, 56 months. . . and then the next time they are spent after 60
months. And the time after that maybe after 70 months. Eh, and
then I would. . . yes, then I would have made a program or maybe a
def-function and then run that many times and look at, percentage-
wise, then, how probable is it that, eh, all the atoms. . . yeah, are
gone after 50 months or after 70 months. So, I’d rather make that
kind of model, because. . . eh, you kind of can’t make this [indicates
the output] completely accurate... But at the same time, when I think
about it, it is. . . the probability of when that is going to happen is a
little present in these numbers, too.

At this point Sophia is using the language of computing as a tool for
sensemaking, something that was absent in her earlier attempts. The
mathematics and physics are still present in her argument. Sophia did mention
randomness in segment II, but only here is she quantifying that randomness.
She interprets these numbers (56, 60, 70 months) as probabilities of having 0
nuclei across an ensemble of simulations: "I would have made a program [. . . ]
and then run that many times and look at, percentage-wise, then, how probable
is it that [. . . ] all the atoms [. . . ] are gone after 50 months or after 70 months."

1https://docs.python.org/3/library/random.html#random.choice
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Discussion and Conclusions

The numbers that are printed by the program Sophia wrote are not
probabilities of having 0 nuclei. But we note with interest that she states:
"when I think about it, it is. . . the probability of when that is going to happen is
a little present in these numbers, too." Sophia did not elaborate, but she is not
wrong. The numbers printed by our simple program can be interpreted as the
average number of nuclei left across an ensemble of simulations, and the chance
that number is 0 in any given month will depend on that average2.

We claim that thinking in terms of writing code and the output that code
produces is key for Sophia’s bridging the gap in her understanding she has
been wrestling with. As opposed to the simplified difference equation she was
working with originally, the approach suggested here incorporates elements of
randomness: two sets of 1000 nuclei would not necessarily decay in identical ways.
This realisation does not mean she has a complete idea of how to implement it
computationally, but sensemaking is about how you get there.

In summary, we have identified three sensemaking segments, where Sophia
draws on knowledge from the following domains to explain the program output:

• Segment I: Mathematics

• Segment II: Physics (mathematics)

• Segment III: Computing (physics, mathematics)

These three segments together clearly demonstrate the sensemaking process:
Sophia (a) realises that rounding the numbers hides information. It seems
inaccurate that the number of nuclei appears unchanged for several time steps
and then abruptly changes significantly more than 10%. But not rounding the
numbers leads to working with fractions of a nucleus, which conflicts with her
intuition about how the world works, as established prior to segment I. In each
segment Sophia (b) iterates by proposing ideas and (c) critiquing these to make
sure they are consistent in themselves and with other ideas.

The sensemaking process ends with the resolution of changing the interpreta-
tion of the numbers in the toy model. Instead of the actual number of nuclei in
one experiment they represent probabilities across an ensemble of computational
simulations. At this point Sophia has also attained a rough idea of how to
implement the simulations in question.

I.5 Discussion and Conclusions

In this paper, we have shown that computing helped Sophia in two ways. First,
she was able to modify her program back and forth between rounding and
no rounding with relative ease. In the first two sensemaking segments, the
inspecting and comparing the outputs of these approaches is her entry point into
the sensemaking process: "This looks a little strange. . . "

2It is not calculable from that average alone, however. To calculate such a probability, one
would need the probability distribution function, which in this case is the binomial distribution.
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Second, we argue that the key to Sophia’s interpretation of the program output
as representing probabilities is to think computationally about the problem,
which is what happens in segment III. When discussing how to implement a
more realistic model computationally, she realises that there is a connection
between the code she is describing and her current output: "The probability of
when that is going to happen is a little present in these numbers, too."

We argue that this case study provides an existence proof that computing
can provide fertile ground for students engaging in sensemaking. Specifically,
working computationally allowed Sophia to (a) realise a gap in her understanding,
(b) implement ideas and (c) test and critique the results for consistency. We
observed that in this context, the idea that drew most heavily on computational
knowledge (segment III) proved the most fruitful in the sensemaking process.
Sophia uses computational language to frame her answer to the question of
how she would approach the problem if thinking like a researcher. Framing the
question in terms of the code she would write and the output it would produce
allows her to make sense by connecting code to output, much as the computer
would do.

This is last point is distinctly reminiscent of students linking problem types
to counting outcomes in combinatorics, which students ordinarily have problems
with. A study that expressed combinatorics problems in terms of conditional
statements in Python found that connecting code to output allowed students to
also connect problem types to problem outcomes. These results of that study
suggests that thinking in terms of code and output may facilitate mathematical
learning (Lockwood and De Chenne, 2020). The case of Sophia suggests the
same in an interdisciplinary setting. Even though students may arrive at the
correct answer without computing, their reasoning differs when students use
computing.

Of course, one may question whether computing causes sensemaking in our
example, and this is a fair question. Even though we have shown that Sophia
initiates and sustains sensemaking in response to the program output, it is also
possible that doing the calculations by hand could have produced the same
results. We do believe, however, that Python’s insistence that values are typed3

influenced Sophia’s thinking. When asked why she would round the numbers,
she remarked that including the decimal point in 810.0 seemed unnecessary
when the result was an integer. We think it unlikely that she would have seen
similar output from a by-hand calculation (though of course her point that you
cannot have half an atom still stands).

It is of course possible that Sophia’s sensemaking was due to the task design
or interviewer intervention. The former is not something we regard as a problem.
If task design, rather than computing as such, should prove to be what caused
Sophia to make sense of the activity, we have also demonstrated not only that it
is possible, but also how. To a lesser extent that points also applies to interviewer

3The number 900.0 is a floating point number, while 900 is an integer, which Sophia
learned in her programming class. Multiplying an integer such as 1000 with a floating point
number such as 0.1 results in an implicit conversion of the former to a floating point number,
which is what Sophia noticed when she printed these values.
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intervention: asking Sophia to "think like a researcher" seemed key to have her
frame the activity in a way that allowed sensemaking to continue. Requiring
these kinds of interventions would be impractical for a large class of students,
but it is possible that this framing could also be integrated into the task design
to ease the demands on the teacher to intervene.

To determine under to what extent computing facilitates sensemaking, further
research is needed. This would most likely require a large number of respondents
and some research-based assessment task that produces evidence of whether
students engage in sensemaking and whether they do so successfully. Such a task
could, in this case, come in two versions, one with computing and one without,
allowing for comparison of the groups of students.

In the other four interviews, we did note other examples of students beginning
to engage in sensemaking in response to the output of their programs. What
is special about Sophia’s case was the way her computational resources helped
her make sense of the apparent contradiction between the physics (realism) and
mathematics (accuracy) in the model. It remains to investigate how this would
play out in a classroom setting, where there is no interviewer to help sustain the
sensemaking process like in Sophia’s case.

Future studies could compare the thresholds for entering and successfully
resolving a sensemaking process, respectively, using computing. This would
have profound implications for how instructors integrate computing in science
classes. If critical thinking is important to us, we should attempt to realise the
full sensemaking potential in computational activities. It is then necessary to
ensure that our students have sufficiently strong computational foundations to
engage in these sensemaking tasks.
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Chapter 6

The Path to Papers II and III
I now continue in describing my trajectory and the development of my research.
This section describes how I went on to design the study that yielded papers
II and III. Two standout features of the interview with Sophia influenced my
subsequent choices of theories:

• Sophia connected knowledge across domains. Her computational reasoning
first connects to the physical knowledge of decay (for each nucleus, decay
is random), then to the mathematical model she had been working with
(these numbers contain those probabilities). To better understand the
finer elements of Sophia’s sensemaking, I found that actor-oriented transfer
(Section 3.2) would give us a language to describe how previous activity
influence current activity.

• The task was designed to bring up an apparent contradiction: physically,
we can only have an integer number of nuclei every month but rounding the
numbers take away their explanatory power (no change for several steps,
then suddenly much more than 10%)1. I attribute Sophia’s sensemaking
process at least in part to the task design that provided her with something
to make sense of. The UbD framework (Section 3.1) might then allow
us to describe the design features and principles involved, as well as the
understandings Sophia came away with from the interview.

Both of these lessons were ultimately incorporated in the next task that
I designed: a set of tutorials for the course MAT-INF1100: Modelling and
Computations. This section serves as a bridge between my first paper and the
final two. It describes the latter part of my work, from late 2018 until 2021, that
resulted in these two papers.

As noted previously (in Section 2.1.2) MAT-INF1100 is a compulsory first-
semester course for students in mathematics, physics, and electronics at the
University of Oslo (Mørken, n.d.). This course integrates elements from both
computing and mathematics and is taught alongside more traditional courses in
calculus and programming. This triad of courses is intentionally coordinated.

While BIOS1100 (that I described in Section 5) made for an exciting context
in which to study computing, mathematics and science complementing each
other, I made the switch to designing learning activities for and interviewing
students in MAT-INF1100 for the following reasons:

1If Sophia had insisted on using only integers in these calculations for the sake of physical
realism, it would, interestingly enough, have led to a physically absurd result (we could never
have gone below 4 nuclei). Insisting on mathematical accuracy, in contrast, does allow the
number of nuclei to reach zero. That a realistic calculation (although invalid for small numbers
of nuclei) leads to the least realistic answer is profoundly counterintuitive.

57



6. The Path to Papers II and III

• BIOS1100 was a course in its infancy at the time and was changing rapidly
from one fall semester to the next. This would have made an iterative
design cycle spanning several years impractical in terms of comparing
versions. In contrast MAT-INF1100 represented a more stable context
for my research: the course itself changed very little, and changes to the
tutorials would be able to explain more of the differences we might observe
from one semester to the next.

• A course integrating knowledge from two domains (mathematics and
computing) would be simpler to study than one integrating three
(mathematics, computing and biology or physics), while still allowing
for extension of my findings to other contexts later.

• Mathematics and computing are important for many fields in science
education (Caballero et al., 2012; Malthe-Sørenssen et al., 2015; Reddy and
Panacharoensawad, 2017; Weintrop et al., 2016). Thus, focusing on these
two domains represents a higher potential for generalising my findings.

• I was invited to help teach BIOS1100 the following fall semester, and it
would have been difficult, if not impossible, to combine this role with that
of a researcher.

I designed three tutorials for MAT-INF1100. On the most fundamental level,
these are centred on the following questions, that connect to the big questions
from Section 1.4: How does one represent mathematical ideas in a computer
program? And can one use math to represent computational ideas as well?

More specifically, a common thread running through all my teaching designs
are ideas related to the representation of real numbers in the computer’s memory.
Few rational numbers can be represented exactly in the memory available to
represent a number in the computer, let alone irrational numbers. Rounding
errors2 are important to be aware of for anyone using computers to model
mathematics of science: even though they are often very small errors, the can
accumulate and become very large if one is not careful3 (Mørken, 2017).

Additionally, students may encounter mathematical errors that have little
or nothing to do with how the computer represents numbers. One example of
this is the error in approximations such as a Taylor polynomial, where the error
can be quite large far from the point we expand around if we include too few
terms. In numerical differentiation and to some extent integration, one will often
run into both: with a too long step length, mathematical error will dominate,
whereas one runs into accumulating rounding error if there are too many steps,

2Note that this represents a departure from the kind of rounding encountered in Sophia’s
task (Paper I). There, we were concerned with rounding to have our mathematical model
accurately represent a physical phenomenon. The rounding errors we describe here, on the
other hand, represents the fact that most numbers are impossible to represent exactly with a
finite number of bits.

3I discuss this in greater detail in Section 2.2.
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and these need to be balanced against each other. In both of these cases, it is
important to be able to estimate and control the different types of error involved.

The overarching essential questions (see Section 3.1) that I ask the students
across all my tutorials are:

• How do you know if an error is a rounding error or a math error?

• How do you balance the need for efficiency (speed) with the need for
accuracy?

Table 6.1: Overview of the MAT-INF1100 tutorials and where they fit into the
course schedule. The semester typically runs from late August to late November.

Tutorial Content Position in course schedule
1 Rounding errors

Consequences for calculations
Week 3 (early September)

2 Taylor polynomials
Optimal number of terms
Logarithm functions

Week 8 (mid-late October)

3 Numerical integration
Optimal number of terms

Week 12 (mid-late November)

The tutorials themselves, whose final versions can be found in Section 12.1,
each focus on a particular aspect of computer representations and mathematical
approximations of real numbers, shown in Table 6.1. Course material is
introduced in lectures, and students work together in so-called group sessions
under the supervision of a TA who answers questions that the students have.
Typically, the material that appears in lectures one week is the topic of group
sessions the week after that. Hence, "Week 3" in Table 6.1 refers to the third
week of group sessions (the first lecture would be in week 0, which is perhaps
appropriate for a course that incorporates this much computing). The midterm
exam week, typically early October, is not counted as one of these weeks, as no
teaching happens then.

The same set of interviews were used for the analysis of both Paper II
and 3, as shown in Figure 6.1. Paper II uses data from all three tutorials to
provide examples of the connections that students make between the domains of
mathematics and computing. Paper III, in contrast, takes a more longitudinal
view of one of the tutorials. I chose the Taylor expansion tutorial for this paper:
initially, it was the tutorial that students struggled with, but after a thorough
re-design it ended up providing the most interesting data in the second round of
interviews.

It should also be mentioned that due to the COVID-19 pandemic, several
interviews in the second phase had to be conducted digitally via the Zoom
platform. For instance, if any of the students or the interviewer had any

59



6. The Path to Papers II and III

symptoms those persons could not be physically present. I also offered a digital
interview if any of the participants felt uncomfortable with the risk of conducting
the interview in person. As such, the interviews in the second phase (fall of
2020) were conducted in the following ways:

A In-person interviews (3 of 7) on campus with video camera. Different
students were designated to man the computer and whiteboard, respectively,
so that at distance of at least 2 meters between participants was achieved
throughout the interview.

B Hybrid interviews (2 of 7) where the students were present on campus and
the interviewer attended remotely via Zoom. This required an elaborate
setup where one student shared the computer screen and the other filmed
the whiteboard.

C Digital interviews (2 of 7) where all the participants were in separate
locations and shared their screens as necessary. In one interview I
experimented with using a computer screen as a whiteboard, in the other
one student had access to a physical whiteboard.

While these measures were successful in that we recorded no cases of COVID-
19 connected to any of the interviews, only the data from category A were
deemed usable. Category C interviews changed the way students worked in so
many ways that any findings could not reliably be traced back to the tutorials
themselves. Most notably, if the students used a keyboard to write math, it
seemed to affect what they did in ways that presented difficulties for the analysis
– the change of medium apparently presented a barrier for applying what they
knew from traditional math, as they often interpreted these keyboard-written
statements as computational instead4.

Nonetheless, even with access to a physical whiteboard, such as in the other
category C interview and both category B interviews, the students appeared
to be significantly less engaged in their work when the interviewer was not
physically present. They spent less time on all parts of the task compared to
the category A interviews (and those from the first phase) and seemed more
concerned with completing the tutorial quickly. We speculate that the students
may have been suffering from a form of "digital teaching fatigue" at this point,
and comparisons between the interviews may indeed have been interesting, but
as this is unlikely to be limited to mathematics and computing and at the same
time quite likely to be studied at length by others in the education research
community, we opted against making this phenomenon an object of analysis for
the moment.

That said, this is the main reason I am only including one interview from
the second round. On the other hand, this particular interview proved to be
a goldmine of data for both papers. Supplemented with the breadth of data
available from the first round, the overall impression is that we have enough

4This is interesting in and of itself, and even though we opted against focusing on this
data due to its overall quality, we return to this phenomenon in Section 7.5.
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Figure 6.1: Distribution of tutorial versions across the final two papers.

data to investigate both transfer and tutorial design. Of course, it helps that we
are not aiming to make broad, exhaustive claims of all possible ways students
could work with mathematics and computing. Instead, both papers lay the
groundwork for future studies by providing examples of what is possible.

A danger with such an approach in education research is that one tends to
generalise based on extraordinary events. I hope to have avoided this by not
making overly broad claims that my data cannot support. It may well be that
some or even all of the students I interviewed are quite exceptional. Therefore,
I do not claim that my findings demonstrate what is common; instead, I ask
what is possible and what made it possible, with the implication that if we find
these possibly extraordinary events desirable to recreate in the classroom, we
have an idea how they came to occur. There might be barriers for most students
to realise the potential I have outlined and identifying these would be a future
research goal that complements my current work.

The most interesting episodes that I chose for the final analysis are summarised
in Table 6.2. The final two papers are based on this data (see Paper II and III).
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Table 6.2: Students and interviews included in the final two papers. Gina,
Benjamin, Martin, Lydia, and Roger were all part in more than one of the
included interviews.

Semester and tuto-
rial

Students
(pseudonyms)

Paper II Paper III

Fall 2019: Tutorial 1 Gina
Benjamin

Yes -

Fall 2019: Tutorial 2 Gina
Benjamin
Martin
Ruth

- Yes

Fall 2019: Tutorial 2 Lydia
Roger
Mathias

- Yes

Fall 2019: Tutorial 3 Martin
Lydia
Roger

Yes -

Fall 2020: Tutorial 2 Rita
Lena

Yes Yes
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Abstract

This study uses actor-oriented transfer to investigate different ways in
which students make connections across the domains of mathematics and
computing. We interview first-year students at the University of Oslo as
they work with a set of tutorials that we designed to integrate knowledge
from both domains. The cases we present here demonstrate four different
types of cross-domain connections: (a) mathematically reproducing the
work of a computer program, (b) cyclically improving a program to produce
better output, (c) coupling math to output to justify program improvements
and (d) coupling math to code to justify program design. We provide rich
examples of the ways in which students make these connections and discuss
affordances for and barriers to mathematical learning in this context.
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II.1 Introduction

The last several decades has seen computers take over more and more tasks that
used to be the domain of the human mind alone. Already, there is a concern that
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II. Three Cases That Demonstrate How Students Connect the Domains of
Mathematics and Computing

while mathematics is at the core of what computers can do, "the omnipresent
mathematics is mainly hidden in all sorts of apparatus, which function as black
boxes for its users" (Gravemeijer et al., 2017, p. 53). In mathematics classrooms,
the worry is that students will become dependent on computational tools to do
mathematics without understanding the underlying principles that allow these
tools to do mathematics.

Nevertheless, computers and programming are becoming ever more important
in the practice and teaching of mathematics (Broley et al., 2018; Passey,
2017). The reasons for this movement are manifold, and include allowing
for the investigation of more and different topics, giving students more hands-on
experience, and the envisioned potential "to have mathematics come to feel more
natural, relevant, and less intimidating" (diSessa, 2018, p. 25). However, we as
a field are just beginning to understand how the integration of computing into
math affects student thinking and learning. How does one domain connect to the
other from the students’ point of view, and what do these connections afford?

Such connections have long been the territory of the study of transfer, which
is seen as a fundamental goal of the existence of educational institutions (Billett,
2013). However, traditional transfer studies’ focus on correctness means they
tend to miss many of the generalisations that students make (see Section II.2.1).
With the actor-oriented transfer perspective, the students’ point of view is put
front and centre, allowing for a more detailed account of students’ generalisations
(Lobato, 2008).

Our focus in this paper is to study the ways in which undergraduate students
connect mathematics and computing. While studies of undergraduate students’
mathematical work using computing do exist (Section II.2.2), there have been
calls for more attention to be paid to computing in math education research
(e.g., (Lockwood and Mørken, 2021). We therefore aim to provide several rich
examples that demonstrate how working in a context where mathematics and
computing are integrated can be beneficial for the students’ thinking and learning
about mathematics.

To that end, we first present our theoretical perspective and position our study
within the literature, before formulating our research questions (Section II.2.3).
In Section II.3, we describe the study design, the process of analysis and the
analytical framework we employed. Finally, we present our cases (including brief
descriptions of the tutorials we designed) and our analysis of each in Section II.4,
and discuss these results and their implications for teaching and further research
in Section II.5.

II.2 Theoretical Perspective and Background Literature

II.2.1 Theoretical Perspective

Connections and their importance in the context of learning was highlighted
as early as the 19th century. Høffding, 1892 argued that "what matters is how
the new situation is connected with the thinker’s trace of a previous situation,
which may be quite idiosyncratic" (cited in (Lobato and Siebert, 2002). While
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there are many different types of situations students may encounter as they work
with computers in mathematics and science (see for instance Weintrop et al.,
2016), the ways in which students connect their work on the computer with
mathematical concepts is largely unexplored territory (the examples of previous
work we found are cited in Section II.2.2).

While this paper is not focused on transfer of learning per se, the actor-
oriented transfer (AOT) perspective (Lobato, 2012; Lobato and Siebert, 2002)
provides us with a useful language to describe these connections. An important
facet of the AOT framework is its focus on similarities as seen from the student’s
point of view. These similarities allow actors to make connections between the
activity they find themselves in and some previous activity that they regard as
similar and relevant. In (Lobato and Siebert, 2002), "[AOT] is defined as the
personal construction of relations of similarity between activities, or how ’actors1’
see situations as similar." This applies even when students make unexpected
connections that may or may not result in incorrect performance, and stands in
contrast with traditional views of transfer (Lobato, 2008).

An example of a study grounded in AOT that explores connections in a
mathematical setting is that of (Karakok, 2019), who looked at physics students’
connections among representations of eigenvectors. In this context, Karakok
reports on "the necessity of developing flexible shifts between different modes
of thinking" and links this to the development of "instructional materials and
interventions that emphasize opportunities for students to inquire and connect
multiple modes of thinking" [emphasis added]. These are the kinds of connections
we are looking for between computing and mathematics.

The modes of thinking Karakok describe correspond to different representa-
tions of eigenvectors that correspond to points of view which each has different
affordances for the students. The term affordances has often been used in the
mathematics education research literature, most notably in the context of tech-
nology. The term describes a relationship between an actor and an object that
is expressed by some activity: an illustrative example by (Gibson, 1979) is that
water affords drinking and drowning to human beings, while it affords breathing
to fish (Brown et al., 2004). In our context, when we discuss affordances and
limitations, we are concerned with the activities that are helped or hindered,
respectively, as a result of interactions between humans and computers.

(Greeno et al., 1993), one of the inspirations for the AOT perspective,
discussed affordances in the context of reasoning with representations. This use
of the term is notably different from discussing the affordances of computational
tools in themselves:

Representations include symbolic expressions that represent actual
or potential states of affairs. Representations also include physical
constructions such as diagrams, graphs, pictures, and models with
properties that are interpreted as corresponding to properties of
situations. [. . . ] Affordances for reasoning, on this account, are

1In our case, the actors are students.
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properties of representations in relation to a person’s or group’s
abilities to use the representations to make inferences. Reasoning is
an activity that transforms a representation, and the representation
afford that transformational activity. Abilities for reasoning activities
include knowing the operations to perform on the notational objects
in the representation and understanding the semantic significance
of the objects and operations. Conceptual reasoning occurs when
representations of concepts are included in the representations that
are used in reasoning. [. . . ] Generally, concepts correspond to
properties or relations in a domain (pp. 108-109).

Greeno goes on to present algebraic or arithmetic representations as examples
that present affordances for reasoning within the domain of mathematics. This
paper aims to investigate the affordances of cross-domain reasoning, across the
domains of mathematics and computing. To that end, describing the connections
(or, in Greeno’s terms, the reasonings) that translate representations from one
domain to the other is of interest.

It should be mentioned that the concept of domains is somewhat contentious2

and points to bigger questions than we have room for in this paper. While it is
certainly worthwhile to investigate and discuss which knowledge belongs to a
particular domain, our research questions (see Section II.2.3) implicitly assume
that the domains of mathematics and computing exist, if only as arbitrary
organising principles. We do not claim that any particular piece of knowledge
is inherently mathematical/computational, nor do we suggest that there is no
overlap between domains. In fact, if there were no overlap at all, we expect that
any connections we identified would be both rare and rather contrived. Our
data, as we shall see, suggests otherwise.

In this paper, we will analyse how university students make connections
and interpret affordances when working with computer programming to solve
problems that integrate elements of mathematics. Henceforth, when we use
the term "computing", we will follow (Lockwood and Mørken, 2021), who
consider machine-based computing, i.e. "the practice of developing and precisely
articulating algorithms that may be run on a machine". Applied to our context,
this means that the students use Python to solve problems that are both
mathematical and computational.

The computational representations that our students encountered were mainly
of two types: the source code they were working with and the various outputs
that code produced when the students ran their programs. We do not claim that
these are the only possible representations or activities within machine-based
computing (and certainly not within computing in general), but our data and
interest in classifying connections suggest that this distinction is useful for our
purposes. It is entirely possible that different, perhaps finer, distinctions are
useful in other contexts.

2For instance, Inagaki and Hatano, 2002 spend some time questioning the conventionally
assumed nature of domains in their work on the development of biological knowledge, while
(diSessa, 2017) aims to show that at a fine grain size, domain boundaries appear to be false.
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II.2.2 Relevant Literature

Having established our theoretical perspective, we will proceed to frame this study
within existing literature in mathematics education research. More precisely,
our study features among those that explore connections between mathematics
and computing at the undergraduate level. Such studies most often explore a
particular subdomain of mathematics, for example combinatorics (Lockwood
and De Chenne, 2020) or statistics (Ramler and Chapman, 2011). Our examples
in this paper span several such domains, such as Taylor series, logarithms,
and integration. There is a common theme, however: the computational
representation of real-valued variables and functions.

The perceived value of computing in mathematics dates back to the work of
Papert, who proposed that the computer offered unique affordances for students
learning mathematics. Using the Logo programming language designed for this
purpose, Papert studied children’s discovery of algorithmic ways of thinking
about geometry though use of the computer. The classic example of this is
children writing programs that move a Turtle across the screen, tracing out
geometrical shapes in the process (Papert, 1993).

A more recent example that uses the AOT framework in the context of
computing is (Lockwood and De Chenne, 2020), which explores how students use
Python to list and count the outcomes of combinatorial counting problems. One
way to achieve this is using conditional statements to eliminate outcomes that
do not respect restrictions on ordering, repetition, or both. Lockwood and De
Chenne found that this approach focused students’ attention on the outcomes
they were counting, which again reinforced the conceptual differences between
different types of counting problems.

There are also examples of studies that use other frameworks or that cover
several mathematical subdomains; (Buteau et al., 2016) is an example of both.
In this paper, the authors present a case study of a single student spanning
three semesters and the student’s work on 14 assignments over these semesters.
These assignments are connected to many different mathematical topics, and
the authors focus on her learning experience across these semesters. This study
differs from ours in that they investigate courses designed from the ground up
to provide these experiences - our tutorials, on the other hand, are designed to
complement a pre-existing mathematics course (see Section II.3.1 for details).

Going beyond the undergraduate context, there are numerous examples of
studies exploring the interplay between mathematics and computing for younger
students. Ilana Lavy used Logo to investigate the different types of mathematical
arguments such students construct when working in a computerised environment
(Lavy, 2006. More recently, Benton and colleagues (Benton et al., 2017; Benton
et al., 2018) designed interventions using Scratch to have students reason with
geometrical concepts and place value. (DeJarnette, 2019) also used Scratch to
investigate the difficulties that schoolchildren face when trying to understand the
meaning of symbols and how they fit together. (Kaufmann and Stenseth, 2020)
had young students program in Processing to solve mathematical problems, and
found that their mathematical arguments became more elaborate over time, but
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that the trial-and-error method the students often used might counteract this
effect to some extent.

The context we are examining (Section II.3.1) is one in which mathematics
and computing are taught in an integrated fashion. We investigate students
working with knowledge from these two domains in the same setting it has been
taught, which does not require proof of transfer to a different context. The
actor-oriented transfer that we investigate occurs between domains, but the
context of our tutorials is not fundamentally different from the one that our
students are familiar with from their classes.

This paper aims to provide several examples of how students use computing
and mathematics together. These examples are mainly related to the
representation of real numbers in computers, and we view them through the lens
of student connections and generalising activity that we presented in Section II.2.1.
To this end, we will present a framework in Section II.3.2 that allows us to describe
the different ways in which students make connections across the domains of
mathematics and computing.

II.2.3 Research Questions

The research questions of this paper are as follows:

1. What types of cross-domain connections do students form between
mathematics and code/output?

2. What do each of these connections afford the students?

3. Which patterns of connections emerge in the students’ work?

Research Question 1 will be the focus of the theoretical framework in
Section II.3.2, which was constructed based on the analysis of the data. The
cross-domain connections also emerge and are exemplified in Section II.4, where
we apply the framework to examples from the interview data. Research Question
2 will also be treated in Section II.4, while Research Question 3 is addressed in
Section II.5, where we summarise the interviews based on the answers of the
first two questions.

II.3 Methods

II.3.1 Data Collection

We collected data in two phases: a first phase in the fall of 2019 and a second
phase in the fall of 2020. In both semesters, we recruited students from the course
MAT-INF1100: Modelling and Computations, a compulsory first-semester course
for students in mathematics, physics, and electronics at the University of Oslo,
Norway. This course integrates elements from both computing and mathematics
and is taught alongside courses in calculus and programming (Mørken, n.d.). As
this course appears at the beginning of the students’ undergraduate program, it
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is taught in Norwegian. We conducted the interviews in Norwegian and, later,
translated relevant parts to English for joint analysis and publication.

We designed three tutorials that were used both for the interviews and regular
group sessions in the course. Our use of the term "tutorials" is in the sense that
students mostly work independently, but have access to the assistance of teaching
assistants (TAs) in these group sessions at need 3. In the interview sessions the
interviewer performed this role when the students got stuck or requested it. We
summarise each of these tutorials in the introduction to the corresponding case
in Section II.4.

II.3.1.1 First Phase

In the first phase, we initially recruited volunteers using an online form in a
lecture and grouped their answers according to time availability, gender, previous
programming experience in general and in Python specifically. Based on the
students’ responses, we assembled 3 pairs with different gender configurations and
levels of experience. Unfortunately, only one student from each pair showed up
to each interview, which necessitated using a think-aloud protocol (van Someren
et al., 1994) to ensure that we got somewhat useful data from these individual
interviews. In the end, we did not use this data for the analysis, however, as the
group data proved richer and closer to the classroom setting.

We assembled a fourth group (Case A in this study) to get at least one
group interview for Tutorial 1 and started inviting 3-4 students to each interview
to account for no-shows. During classroom observations, we became aware of
some groups of students working together in ways we thought would provide
interesting interview data. We therefore recruited additional groups of students
in this way. This second set of students had the advantage of having worked
together previously, and insofar as they were all available at the same time, we
tried to interview them together for the last two tutorials.

All in all, in the first phase we interviewed 13 students in 8 interviews: four
interviews with Tutorial 1 and two each with the last two. Five of the students
participated in two interviews (the three students in Case C were interviewed
with Tutorial 2 and Tutorial 3). In the cases we selected for inclusion in this
paper (Section II.4), we will describe the participating students in the beginning
of each case.

The first author conducted all the interviews in person using both video
and screen recording on a computer where a familiar Python programming
environment had been set up for the students to use. They also had access
to a whiteboard, which the video camera captured. The students were told
to work together as they would in a normal group session in the course, using
the interviewer as a TA where necessary. The authors collectively decided on
follow-up questions to gather feedback for the next design cycle and record their
previous experience with programming.

3It also evokes the format that inspired the early versions: the Maryland Tutorials (Steinberg
et al., 1997)
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The interview protocol was set up ahead of time, inspired by (van Someren
et al., 1994) even for the group interviews. It reminded the interviewer to
intervene only when students were stuck for an extended period of time or if
they explicitly asked for it (the students were also informed about this at the
beginning of each interview). This was done to ensure that the students’ own
ideas were not needlessly affected by interviewer interventions, even though such
interventions proved difficult to avoid entirely.

The sole exception to this instruction was that when students did something
interesting, the interviewer could ask them to elaborate on their thinking. While
these elaborations might well affect the students’ thought process, the interviewer
would not ask specific questions that could reveal the interviewer’s thinking,
as could be the case when the students asked for help or got stuck. Follow-
up questions were devised ahead of time, though interesting event during the
interview could also be the topic of such questions. In these cases the interviewer
would write down the question and return to it once the students’ work with the
tutorial had finished. This reflects the trade-off between not wanting to influence
the students’ work versus the possibility of inaccurate answers to questions posed
so long after the fact.

II.3.1.2 Second Phase

In the second phase (fall of 2020), we once again recruited students using an online
form, this time asking them to specify when and where they were scheduled to
have group sessions. This was done for three reasons, which were (a) to interview
students that were used to working together, for the sake of authenticity, (b) to
comply with COVID-19 protocols and ensure minimal mixing of cohorts, and (c)
for ease of scheduling. The interviews were conducted at the same time as the
ordinary groups worked on the same tutorial; hence, the students were likely to
be available for interviews at that time.

In the registration form, we asked the students to volunteer names of
other students they preferred to be interviewed with, and we complied
with their preferences where possible. Observations from the first round of
interviews suggested that students who knew each other from class had an
easier time participating actively and verbalising their understandings and non-
understandings.

In this phase we interviewed a total of 7 students in 7 interviews: two pairs
of students were interviewed with all three tutorials (Case B represents one such
pair), whereas the remaining three students declined further interviews after
Tutorial 1.

The interview protocol remained largely unchanged in the second phase,
except that the follow-up questions in the second semester targeted how students
perceived using mathematics and computing in an integrated way, as well as
mapping their programming experience as before. An important exception is
the interviewer giving two students an extra challenge not originally part of the
tutorial. This on-the-fly change was not planned ahead of time, but ended up
producing very interesting results (see Section II.4.2).
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II.3.2 Analysis

In this subsection, we first present the analytical framework that we developed
to characterise the students’ connections. Then, we describe the process of
developing and applying this framework to our analysis of the interview data.

II.3.2.1 Analytical Framework

In this project, our focus is on student connections that straddle the domain
boundary between computing and mathematics. We would like to note that it
is not completely trivial to identify what is a mathematical activity, what is a
computational one, and what is both. As a starting point, we assigned confidence
levels to these labels, and the first author then grouped the high-confidence
segments together to see what they had in common. This work became the
foundation for our analytical framework for labelling connection types.

We distinguish between two aspects of the domain of computing: Code
(programs the students write in the code editor) and Output (terminal window
printouts and plots produced by these programs), as we observed that students
tend to interact differently with each of these aspects. We take the Code as a
mutable set of instructions for the computer to interpret literally, whereas the
Output is a result of the computer’s activity. The students can only affect it
indirectly, by altering the Code or other input data.

After categorising relevant segments in our data, we developed a classification
scheme to label these connections. These labels became a useful lens for us to
view the data through in the process of analysing them.

To assign a label to a connection, we focus on the four properties outlined in
Table II.1. Some of these properties mirror the discussion of symbolic notation
found in (DeJarnette, 2019). In particular, Target Syntax and Target Structure
are reminiscent of "vocabulary" and "grammar", respectively: the former describes
the meaning of specific symbols, whereas the latter refers to the way the symbols
are connected to communicate meaning.

For a connection, each of these four properties can be valued Code, Output,
or Math. In both Paper I and Lockwood and De Chenne, 2020, there are signs
that students interact with Code and Output differently. The former can be
manipulated directly, and the latter only indirectly, through making changes
in the former. The Output can also visualise a great number of data points
produced by the Code, and reveal patterns that are not evident when writing the
program. The Code, on the other hand, can make visible the algorithms or the
logic behind the program in a way that the output often obscures. We therefore
find it meaningful to distinguish between these two subdomains of Computing.

We will exemplify these ideas in the results, but present here a contrived
but illustrative hypothetical example: imagine a group of students making a
connection in speech to a program that they remember making (Source Domain:
Code) as they are writing "cat = 42" on a whiteboard (Target Medium: Math)
and describing this as an equation (Target Structure: Math). From the students’
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Table II.1: Properties used for labelling connections.

Property Meaning Evidence
Source Domain The previous activity stu-

dents reference as they
make the connection (from
where is something being
transferred?)

Verbal utterances
Observing written work

Target Medium The physical/visual
medium students work
with as they make the
connection

Observing actions
Verbal utterances

Target Structure The ways in which stu-
dents structure or organize
pieces of information in the
Target Medium

Verbal utterances
Observing written work

Target Syntax The ways in which stu-
dents represent and inter-
pret the pieces of informa-
tion themselves

Verbal utterances
Observing written work

conversation it is clear that they interpret the piece of information "cat" as the
product of three variables, c, a, and t (Target Syntax: Math).

Other possible interpretations that do not apply in this example could have
been interpreting "cat = 42" as a variable assignment (Target Structure: Code),
or as something that could be printed to the terminal window by the program
(Target Structure: Output).

A cross-domain connection such as the one in the example above is recognised
by the Source Domain and the three Target properties belonging to different
domains. We consider Code and Output to both belong to the domain of
computing, while Math is in a domain of its own. There are four types or labels
that we have assigned to the connections we found in our data, see Table II.2.
We acknowledge that this is not an exhaustive list, but an account of the kinds
of cross-domain connections that we observed in our interview data.

We label a connection (1) Math Implementation when the Source Domain
is Math, and the Target properties are all Code. An example of Math
Implementation is when the students write a loop in code to calculate the
sum of a series of numbers that follows a particular pattern.

We label a connection (2) Code Modelling when the Source Domain is Code,
and the Target properties are all Math. An example of Code Modelling is when
students produce a mathematical proof of concept for a piece of a program.
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Table II.2: Connection labels.

Label Source
Domain

Target
Medium

Target
Structure

Target
Syntax

Math Implementation Math Code Code Code
Code Modelling Code Math Math Math
Output Modelling Output Math Math Math
Mathematical Interpretation Math Output Output Output

We use the label (3) Output Modelling when the Source Domain is Output,
and the Target properties are all Math. An example of Output Modelling is
when students make use of mathematics to determine the required changes to
a program that makes it produce some desired output (instead of resorting to
trial and error). Where Code Modelling is mainly associated with designing or
attempting to understand programs, Output Modelling is instead associated with
debugging or refining a program that is already implemented and reasonably
well understood.

Finally, we have (4) Mathematical Interpretation, meaning that the Source
Domain is Math, and the Target properties are all Output. An example of
Mathematical Interpretation is when students call on mathematical knowledge
as they are engaging with the output of a program. For instance, they could be
verifying that the Output makes sense mathematically or making informed
decisions on how to improve the program going forward. Unlike Output
Modelling, they are attending to plots, tables or files produced by the program
instead of the Math itself.

Note that while Table II.2 might suggest an insistence that all the Target
properties must be identical, we do allow for exceptions when there is supporting
evidence that allow us to assign a label with confidence. For the data presented
in this paper, that was rarely the case. In some cases, the Target properties
instead painted a hybrid picture. On two occasions, we came to interpret these
hybrids as half-formed connections that the students returned to and connected
fully later on4.

In Figure II.1, we illustrate the labels from Table II.2 as connections
originating from the Source Domain to the Target activity.

4While these "half-connections" are not our primary focus in this paper, they are still
relevant, as a pair of them can be interpreted as a full connection happening in two distinct
stages. As an example, consider the stages of a connection that we will examine more closely
shortly, in Case A:

Source Domain: Code → Target properties: Math/Code hybrid
Source Domain: Math/Code hybrid → Target properties: Math
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Figure II.1: Cross-domain connections. Note that the name of the label
corresponds to the starting point of the arrow, which represents the Source
Domain.

II.3.2.2 Data Analysis

This paper constitutes an exploratory case study, and no pre-existing code book
was available for use in the analysis. We therefore performed a thematic analysis
of the data, following roughly the six-phase process outlined in (Nowell et al.,
2017):

1. Familiarising yourself with your data

2. Generating initial codes

3. Searching for themes

4. Reviewin themes

5. Defining and naming themes

6. Writing up the report

In phase 1, the interview audio was transcribed at the end of each semester.
I reviewed the transcripts to divide them into short segments with brief
descriptions of each. Segments were flagged for further review if they involved
both mathematics and computing, and the students’ work was focused on
understanding something, as opposed to performing a skill or recalling simple
facts.

This selection process produced several episodes (usually consisting of several
consecutive segments) where students either (a) were engaged in some activity
that contained elements of both computing and mathematics, (b) made a
transition between computing and mathematics, or (c), both. The first author
then translated the transcripts from Norwegian into English and enhanced them
with evidence from other sources, such as screen and video captures, photos
of the whiteboards and collected worksheets. These enhanced transcripts were
shared with the rest of the research group (the co-authors) and formed the basis
of the analysis from that point onward.
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In phase 2, we divided each episode into short segments and coded each
segment. We then looked at the bigger picture, focusing on the patterns that
were apparent from the students’ point of view. Based on this, we formulated
claims supported by evidence from the transcripts, in analytical memos. The
co-authors reviewed the claims and their justifications for the sake of validation
and helped refine the claims in several steps. Examples of these early codes
showing our interest in the integration between mathematics and computing were:
pure coding, pure math, integrated. We also attempted to describe different
subtypes of integration based on what was in our data, arriving at early versions
of the figures in Section II.5.1.

For phase 3, we assigned labels to the episodes, identifying and highlighting
key actions that we took as justifications for this coding. Examples of these
include verbal utterances from the students, things they wrote in the code
editor or the whiteboard, and other actions. These key actions are listed in the
"Evidence" column of Table II.1.

Initially, we made a broad pass and subsequently selected the most promising
episodes, focusing on justifying why these episodes should be a priority. Cases A
and C in Section II.4 came out of this pruning process. In the process we kept
detailed notes of each version of these descriptive labels and triangulated the
labels with the co- authors. Examples of early themes or labels were: "mapping
code to mathematics", "mapping mathematics to code" and "explicitly telling
the code what to do".

Phase 4 involved creating new enhanced transcripts with a separate column
for coding and key actions to get a clearer picture of the codes as applied to raw
data, including data we had not previously analysed in detail. In the process,
we also linked the key actions to theory. For example, we noticed that a lot of
our key actions were students making connections or noticing similarities.

After several iterations, we decided to focus on cross-domain connections
alone, ignoring connections that belonged exclusively to one of the domains
(all mathematics or all computing). In the AOT literature we found nothing
about connections between domains in general, even though (Lockwood and
De Chenne, 2020) is another example of the same.

In phase 5 we summarised what each of the selected episodes demonstrated
and refined our coding of these based on this, before going back into the data
and re-coded them using the updated labels. In the process, we collectively
decided on names for the labels in several steps. The result of this process was
an early version of the diagram in Figure II.1.

Realising that we had to define these arrows/labels more clearly, the first
author suggested names and descriptions for each, and the other authors
contributed to the discussions about how to define these. During these iterative
discussions, the four properties Source Domain, Target Medium, Target Structure,
and Target Syntax emerged, as shown in Table II.1 The pattern described in
Figure II.20 was also identified at this time, as well asthe half-connections
described in the previous subsection (see footnote II.3.2.1, plus Case A and B in
Section II.4).
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For the final phase, we started writing the papers, initially focusing on
describing the themes and the process leading to their development. We referred
back to the theoretical framework to justify our choice of themes, and attempted
to articulate what each theme meant and revealed about the topic. This appeared
in the form of patterns of connections and what each pattern afforded the students
(a step up in grain size).

At this point, we also had available transcripts from the second phase and
highlighted episodes from this second round of data, where we recognised that
the emerging framework could be used for analysis. Case B was identified at this
stage, as well as a new label (Output Modelling) that had not emerged in the
first phase data. We finally sent finished drafts of each paper to all respondents
to establish the fit between their views and our representation of them.

II.4 Results

This section contains our three cases, one from each tutorial. We will describe
the students at the beginning of each case, after we provide a summary of each
tutorial as necessary background. Cases A and C are from the first phase (fall
2019), while Case B is from the second (fall 2020). All three tutorials went
through design changes between the two phases, but only Tutorial 2 underwent a
complete redesign and change of focus as a result of the interviews and feedback
from the students. The other tutorials were refined for clarity and to make better
use of the students’ time. We expanded the tasks that we identified as central to
the tutorials’ learning goals and removed several tasks that were time-consuming
but involved little conceptual understanding.

II.4.1 Case A: Gina and Benjamin (Tutorial 1, 2019)

In our first case, we focus on two students, Gina and Benjamin. This case
highlights the ways in which these students used mathematics on a whiteboard
to model a piece of code and in the process, they constructed a proof of its
correctness. At that point, the students’ focus shifted to the output produced
by the program, where they sought to explain it based on their mathematical
considerations. This, using the framework of Section II.3.2, constitutes an
example of Code Modelling followed by Mathematical Interpretation.

II.4.1.1 Tutorial 1: Rounding Errors

Before we present excerpts of the interview followed by our analysis, we provide
a summary of the tutorial as necessary background, as we will do for all the
cases under consideration. In the first tutorial, the students were presented with
a short program designed to take a randomly generated number between 0 and
1, and then calculate what number (the step size) must be added to the original
random number 9 times to get exactly 1.0 as the result (see Code Sample II.1):
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from random import random
x0 = random()
sum = x0
diff = (1 - x0)/9
while sum < 1.0:
print(sum)
sum = sum + diff

print(sum)

Code Sample II.1: The program from Tutorial 1, written by the first author.

In practice, however, the program did not produce 1.0 every time, even
though the code contained a while loop that kept running as long as the sum up
to that point was less than one. The point of this task was to raise the issue of
rounding errors, as a rounding error in the sum would frequently cause the loop
to continue for an additional iteration beyond what was intended, leading to a
large error in the final answer.

We tasked the students with testing the code and finding out what, if anything,
was wrong with it. At the end of the tutorial, they were given a set of exercises to
help them understand how the computer’s binary representation of real numbers
determine where rounding errors will appear and where they will not.

II.4.1.2 Case A: Interview and Analysis

Gina and Benjamin were first-year students, neither of which had any previous
experience with programming prior to the semester. By the time of the first
interview, they had two and a half weeks of Python experience. Gina self-
identified as a "problem solver" and tended to verbalise her thinking, including
working theories and understandings. Benjamin tended to speak somewhat less
than Gina and would typically comment on the work Gina did on the computer
or whiteboard. At times, Benjamin would take over the computer or whiteboard
and direct the conversation.

Gina and Benjamin had spent some time discussing what the code did, and
they ran the program a few times. Subsequently, they used the whiteboard to
mathematically describe an imagined case where the random number was 0.55,
and the resulting step size 0.05. They predicted what the program would print
in such a case, and Gina noted explicitly that she recognised this as what she
referred to as uniform spacing.

The students then focused on the code for a while, trying to debug it by
looking for logical errors5, such as using the wrong variable at the start of the
calculation. There was no evidence of mathematical reasoning in this process.
Unable to find any such errors, the started discussing what the piece of code was
supposed to accomplish, but soon began to express some hesitation and doubt.

At this point, Gina turned to the whiteboard and wrote the expression in
Figure II.2, presumably to help move the process along:

5An error that does not produce an error message. In the presence of such an error, the
program can run, but it does not produce the intended result due to faulty logic.
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Figure II.2: Gina’s first expression.6

Gina [while writing] So, we’ve got x, eh, plus, no. . . [looks over at
worksheet] was it plus or was it times? We were supposed to add
another number [resumes writing] plus diff , eh. . .
Benjamin times 9?
Gina [keeps writing] 9 times, we were sort of supposed to. . . 1 plus
blah blah blah, and up to diff9, eh. . .
Benjamin Yes, then all of them are equal to [inaudible].
Gina And all of this together should become 1.

We suggest that this change of activity represents the beginning of a cross-
domain connection from Gina and Benjamin’s point of view. We have labelled
this connection as an instance of Code Modelling (see Table II.2). Interestingly,
this connection happens in two stages, where the exchange above marks the
starting point. A little later in the interview, we will see the students make a
further connection from this work to something they regard as fully mathematical,
completing the Code Modelling. But first, we present our justifications for the
labelling applied here.

We identify the Target Medium as Math from Gina’s writing on the
whiteboard in Figure II.2. The Source Domain (the idea being represented) is
Code because her expression models the mathematical operation that the code is
performing on the left-hand side, and the desired outcome on the right, pointing
back to their engagement with the code just moments prior. While the Target
Structure in Figure II.2 certainly looks like Math to an observer, we shall see
that both Gina and Benjamin displayed excitement later, when they realised
that this statement could in fact be interpreted as an equation. It is therefore
problematic to claim that the Target Structure was Math from the students’
point of view before they made that realisation.

The Target Syntax is an interesting hybrid between Code and Math,
containing some elements of each. We recognise Code syntax in the variable
names, as x0 and diff1 are identical to the variable names in the code and are
unconventional ones to use in mathematics. We would consider x and d1 to be
more traditional choices.

Furthermore, in mathematics it would be considered unnecessary to write the
constant 1 as 1.0, whereas in computing, 1 and 1.0 are values with different data
types (integer and floating-point number, respectively). Gina said 1 aloud but
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wrote 1.0, and we infer that meant this as a computationally typed representation
(1.0) of a mathematical value (1). We do note, however, that their decisions to
write the numbers in this way may have been influenced by their appearance in
Code Sample II.1, where they do indeed have different data types.

Math syntax was also present: Gina wrote the while loop as a sum (because
the loop adds one term each iteration), using subscripts 1 and 9 to label the
different iterations. The use of ". . . " on the whiteboard to mark repetition is
a conventional mathematical way of describing the sort of repetition the loop
represents, and her saying "blah blah blah" as she wrote it implies that she meant
it in that way.

We interpret the equality to stand for mathematical equivalence and not
computational variable assignment from the students’ point of view, because
throughout the interview the students demonstrated that they knew that the
latter requires a single variable on the left-hand side to store the value on the right.
Nonetheless, we do not claim that the students thought of the Target Syntax
as Math at this point - even though this hybrid syntax laid the groundwork for
their subsequent interpretation of the expression in Figure II.2 as something
mathematical.

In sum, we interpret this event as the students writing a pseudo-mathematical
expression on the whiteboard that they regarded as similar to the code. We find
it interesting that they did so on their own accord, without prompting.

Gina went on to say:

Gina Okay, you can surely write a, that is, by hand we can surely
write something sum of [inaudible].

Benjamin Yes, that is, because all those diffs are equal then.

Gina Those diffs are equal.

Benjamin So it is really. . .

Gina So it is, but the diffs are in a way dependent [connects x and
diff1 with a curved line as seen in Figure II.3], that is, these are
connected because the expression for diff is 1 minus x[writes the
statement in Figure II.4].

Benjamin Yes, but that happens outside the loop.

Gina Mm-hmm, that happens outside the loop, yes.

Benjamin So it is just calculated once.

Gina’s choice of words "by hand" emphasises that she sees the Target Medium
as Math-related. Her mention of writing something as a "sum" could indicate
that she does not regard the Target Structure as being Code at this point. The
Source Domain could still be Code, however, if she was thinking of the loop
being represented by a sum sign, which is something the students were likely
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Figure II.3: Line connecting x and diff1.

Figure II.4: Gina’s second expression.

80



Results

to have seen in the lecture notes by this point7. Gina and Benjamin’s explicit
use of the word "loop", and their concern with how many times something is
calculated both seem to support this interpretation. We therefore infer that in
their whiteboard inscriptions, they are attempting to represent the code.

Furthermore, in writing her second expression (Figure II.4), Gina indicated
explicitly that from her point of view there was a similarity between the variable
assignments in the code (the Source Domain) and the mathematical concept
of dependent variables (the Target Structure). Because the expression for
the value assigned to the variable diff(line 4 in Code Sample II.1) contains
the value of x,Gina realised that these variables were not independent from a
mathematical point of view. Furthermore, she refers to the variable assignment
of diffas an "expression". This seems to suggest that Gina implicitly believed
the mathematical definition to be equivalent to the computational assignment,
even if she kept using the variable names directly from the code. It should be
mentioned, however, that the tutorial worksheet text also used the variable name
x to describe this number.

At this point, the interviewer intervened, as the students seemed increasingly
hesitant and uncertain about what to do next. The interviewer pointed their
attention to the nature of their activity, and suggested that it might be taken
further in the direction of Math:

Interviewer For if you’re not just interpreting the task then you’re
doing something mathematical, and that is. . .
Gina Yes, clearly, I thought it was hard to understand the task, but
maybe that’s because there are so many steps here.

The interviewer followed up on this by asking Gina and Benjamin what they
were doing on the whiteboard, why they were doing it and what they would
use the result for. Gina responded that she supposed it was to visualise for
themselves what the problem was.

We find these last two exchanges to be interesting for two reasons. First,
they reveal what the students thought they were engaged in (visualising does
fit with our label of Code Modelling) and why (there were many steps to the
task, and it was hard to understand). Second, it is possible that the students’
familiarity with mathematical syntax as opposed to Python syntax could factor
into their decision to model the code’s behaviour in this way.

At this point, Benjamin seemed to pick up on the interviewer’s suggestion that
the work on the whiteboard could be interpreted as something more mathematical.
While looking at the whiteboard, he interrupted the conversation between Gina
and the interviewer, and the following exchange occurred:

Benjamin Because this is very interesting.

7See Subsection 1.4.3 in (Mørken, 2017), where two simple sums are represented by loops
in one of the first introductions to algorithms. It is possible that this presentation could have
made the students think of sums and loops as equivalent in some cases.
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Gina Yes.
Benjamin Because right if we now insert diff here.
Gina Mm-hmm [affirmative].
Benjamin [starts writing on whiteboard] because here it says, right,
it says x.

Gina Yes.
Benjamin Plus 9.
Gina Times, yes when we went, let’s see.
Benjamin Equals. . .

Figure II.5: Benjamin’s first expression.

Gina Yes, that’s an equation!
Benjamin That’s an equation, so if we now insert that one [indicates
Gina’s second statement in Figure II.4], then that’s basically x divided
by 9.

Figure II.6: Benjamin’s second expression.

Gina [eagerly] Yes!

We now conjecture that this sequence of statements completes Gina and
Benjamin’s Code Modelling connection, for three reasons:

First, what Benjamin did here was to perform a mathematical substitution
using Gina’s two statements. This appears to be an affordance of interpreting
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their whiteboard model as a mathematical construct, because even though Gina
noted the dependence of diff on x0 earlier, she did not substitute diff for
its definition at the time. After all, no such substitution was evident in the
code, so for the purpose of "visualising" alone, there was no need to do this. We
conjecture that substitution is an affordance of Code Modelling.

Second, we have Gina and Benjamin’s exclamations of excitement ("this is
very interesting", "yes, wow"). These suggest that in the students’ eyes, this was
a new possibility that had just surfaced, but had not been evident before. This
supports our earlier claim that Gina did not think of the Target Structure as
being Math until this point.

Finally, we note a change in Benjamin’s use of the Target Syntax in response
to Gina’s equation statement. In his first statement (Figure II.5), he continued
using Gina’s syntax with no subscript in x. In his second (Figure II.6), he
adopted the more mathematically conventional x0, which he kept using from
that point on. The multi-symbol variable diffhad been substituted away, leaving
the constant 1.0 as the only relic left over from the earlier mixed syntax that
contained both Math and Code elements. We interpret this as a clear shift in the
Target Syntax from a hybrid state towards Math in response to the interviewer’s
suggestion.

Benjamin proceeded to solve the equation analytically. His work on it is
shown in Figure II.7 and Figure II.8. At the end, Gina seemed disappointed in
the result:

Figure II.7: Benjamin’s third expression.

Gina Yes, wow! It cancelled, okay, eh. . .
Benjamin So then. . . but. . .
Gina That was a little disappointing, but it’s probably that way I. . .
Benjamin Eh. . .
Gina . . . be a sensible way to set it up, but. . .

We conjecture that Benjamin’s attempt to solve the equation is another
affordance of Code Modelling. The students made no attempts to solve for
anything while thinking of what they were doing as "visualising" the code. It is
possible that Benjamin’s solution attempt was guided more by the affordances
in the Target Structure than by the stated goal of the task: to find out what, if
anything, was wrong with the program.
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Figure II.8: Benjamin’s final expression.

As far as Target Syntax is concerned, in Python, 1.0 - 1 in Figure II.7
would be a legal operation, but, under the hood, the integer value 1 would be
converted to a decimal number. Hence, the computationally typed result of
such a calculation would be 0.0. Benjamin’s choice of representing the answer
as the integer 0 is further justification for our claim that the Target Syntax is
Math at this point, where data types are not considered important. We do not
claim that Benjamin consciously left 1.0 as a float value and then made this
conversion we described, however. Rather, we believe that Benjamin carried over
1.0 unchanged from Gina’s first expression even after the change of Target Syntax
to Math (perhaps as an oversight), and then Benjamin ended up converting to
mathematical syntax as soon as the value changed.

The final 0 = 0 expression (Figure II.8) is interesting for other reasons. From
an observer perspective, one may interpret the result 0 = 0 as a proof that the
equality holds for all values of x0. In an equation, a relationship that always
holds, such as x + x = 2x, is reducible to 0 = 0 through algebraic manipulation.
In contrast, a contradictory statement, such as x = x + 1, would yield 0 = 1
through the same means. In both cases, the variable x has been eliminated,
showing that the truth or falsity of the relation that the equation represents
does not depend on the value of that variable.

However, taking an actor-oriented perspective, we infer that Gina’s comments
reveals that she was not viewing 0 = 0 in this way. Rather, she seemed to be
almost disappointed in the result and did not see it as helping them progress
toward their goals. We speculate that even though this demonstrates constructing
a proof as yet another affordance of Code Modelling from our point of view, Gina
did not see it as such. Instead, she might have expected to find a particular value
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of x0 that would have made the program behave as intended. In introductory
mathematics courses, students are frequently asked to solve for some variable to
find a value that satisfies a constraint represented by the equation, and it is not
surprising if Gina interpreted the goal of the activity in this way.

With this interpretation in mind, the equation failing to result in a satisfying
value might have suggested to her that either such a value does not exist, or the
method itself was inadequate to identify it. We conjecture that Gina did expect
this method to produce a result in most instances, due to her stated belief in
it being a "sensible way to set it up", but that it failed in this particular case.
Hence, for Gina, their strategy seemed like it would be useful in general, just
not in this particular instance. Benjamin appeared to be of a different mind,
however:

Benjamin But, why isn’t it working here then, why doesn’t that
become 1? [uses the computer to switch from the code editor to the
output in the terminal window shown in Figure II.9].

Figure II.9: The output visible in the terminal window, showing two rounding
errors: one that makes the loop take an extra iteration (left), and one that does
not (right).

We interpret from this remark that Benjamin was acting as though, from
his point of view, the program’s method had been proven, although he did not
articulate or attempt to defend this belief. If he shared Gina’s belief that the
program would only work for a certain value of x0, or even just that their method
was unable to find such a value, we do not think he would act surprised that
the program did not produce the expected answer for the two examples in the
output. In fact, that would be rather expected behaviour from the program.

We conclude that Benjamin saw the affordance of constructing a proof that
Gina did not. The question for him then became why the program failed
to reproduce the predicted output. From an observer point of view, a non-
mathematical reason such as rounding errors would explain the result without
invalidating the proof. Because the students did not take such errors into account
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in their model, their appearance (in theory recognisable in Figure II.9) might
have pointed them toward the source of the problem if they had followed this
line of reasoning. We do not claim that this insight was available to Benjamin
at the time, however.

This change in activity on Benjamin’s part signifies a new connection, as
their previous Math activity on the whiteboard now became the new Source
Domain. The Target Medium became Output, as does the Target Structure (the
table of numbers in the terminal window that the students are now considering).
We interpret this connection as an example of Mathematical Interpretation,
especially on Benjamin’s behalf. He seemed to initially trust the mathematical
proof but then was surprised the code’s inability to accurately reproduce the
mathematical result. To the extent that he saw his work as a proof, it is possible
that the output made him doubt it.

Gina proceeded to imagine two possibilities: either the program must be
told explicitly that the answer needs to be 1 (Source Domain: Code) or an x0
that satisfies the equation could be found in some other way (Source Domain:
Math). We would not consider the former to be a cross-domain connection, but
the latter fits the label of Mathematical Interpretation.

Gina’s conclusions here point to a possible difference between computing and
mathematics that might have been relevant to her: in computing, the answer
must be known ahead of time (so one can tell the computer explicitly what it
is), whereas in mathematics one can at least attempt to find answers. This
might help explain why they needed to go fully into the mathematical syntax
of Code Modelling before they were able to construct a proof of concept. It is
possible that from these novice programmers’ point of view, only mathematics
can produce answers for the computer to make use of, whereas the computer
can only work with information that is known explicitly in advance.

One possible consequence of this mindset is the notion of the program only
working perfectly for a particular x0, which had not been evident before this
exchange. The idea seemed to resonate strongly enough with the students that
also Benjamin appeared to believe in it himself later on, at the expense of his
initial interpretation that was more in line with the observer point of view. This
belief effectively prevented Gina and Benjamin from focusing on the important
difference between mathematical theory and computational practice until the
interviewer intervened.

To summarise, in this case, we identified that the students made cross-domain
connections, and we explored what these connections afforded. First, Gina’s
uncertainty about how the code worked led her to transition into modelling it
using the more familiar (to her) syntax of mathematics. This afforded their
focus to shift from the code itself (and its output) to what it represented (the
mathematical way these results were calculated).

Second, the interviewer’s observation that the model of the program could
in fact be interpreted as something inherently mathematical seemed to cause
Benjamin to ignore what the statements represented and instead take them
as mathematical givens. This afforded the use of the students’ repertoire of
mathematical tools, resulting in a proof of concept for the program. We interpret
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this as the completion of the connection that began with Gina’s first attempt on
the whiteboard.

Finally, Benjamin’s apparent acceptance of the proof led him to shift his focus
to the code’s output, to make sense of the dissimilarity between the mathematical
and the computational result. This evaluation could potentially have afforded a
useful investigation into the differences between the mathematical statements
and the code that they modelled if not for Gina’s rejection of 0 = 0 as a useful
result. Instead, Benjamin’s focus on the output allowed Gina to express her
own ideas on how to achieve the program’s stated purpose: either instruct the
program in clear terms what the answer should be, or somehow identify a value
of x0 that would make this happen by mathematical means. We believe that
these two ways of ensuring the desired result are treated as equally viable from
the students’ point of view is a feature of their integrated approach to working
with computing in mathematics.

II.4.2 Case B: Rita and Lena (Tutorial 2, 2020)

Our second case is about Rita and Lena’s work on Tutorial 2. This case highlights
how students can flexibly go back and forth between computing and mathematics
to suit their immediate needs.

II.4.2.1 Tutorial 2: Logarithms and Taylor Expansions

The second tutorial (described in greater detail in Paper III) asked students to
write their own function for calculating logarithms using a Taylor expansion.
The first part of Tutorial 2 gave students functioning code to calculate the Taylor
expansion of the natural logarithm. Then, it asked them to implement a function
to calculate the remainder for their choice of a, the point chosen as the basis for
the Taylor expansion, and n, its number of terms. After having implemented a
function that calculated the remainder, the students were given the opportunity
to experiment with the two key parameters a and n, and observe the results.

The tutorial’s second part asked the students to exploit the binary
representation of floating-point numbers in the computer to relax the accuracy
requirements on using Taylor expansions to calculate logarithms. This is of
particular interest because it mirrors how algorithms that calculate logarithms
are made, even though approximations that require fewer terms than Taylor
expansions are often used in practice.

The basic idea is as follows: Taylor expansions are usually intractable to
use directly because they require a very large number of terms to reach the
desired accuracy far from the fixed point a one chooses as a basis to construct
the expansion. However, by exploiting the way floating-point numbers are
represented in the computer’s binary memory, one may map the half-open
interval of all positive real numbers to the closed interval of numbers between
0.5 and 1.

This transformation is more impactful than it might appear at first glance.
Achieving the desired accuracy for this small interval is vastly simpler than doing
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so for all positive numbers. This means that we can indeed use the computer’s
proficiency for working with basic calculations (such as polynomials) to represent
more complex functions such as the logarithm.

At the end of the tutorial, the students were asked to implement their own
log function in this way. With this done, the final task was for the students
to make use of their earlier work on the remainder to pick optimal parameters
for the Taylor expansion. The goal was that their log function would become
machine-accurate on the one hand and as fast and efficient as possible on the
other.

II.4.2.2 Case B: Interview and Analysis

In this interview, the students adhered to social distancing guidelines because
of COVID-19 safeguards: Rita wrote on the whiteboard and Lena did all the
typing on the computer keyboard. Lena had previously taken IT classes8 in high
school but mentioned that the class focused mostly on creating webpages and
working with databases. Rita had no prior programming experience, but she
displayed familiarity and skill with many mathematical methods throughout the
interview. Rita and Lena had already been interviewed together for an updated
version of Tutorial 1 - this was their second interview together.

In this case, we use timestamps in the interview excerpts to indicate where
they appear out of chronological order. This happens where we needed additional
data from the follow-up questions at the end of the interview to make our point.

In this segment, Rita and Lena were in the final part of the tutorial. They had
correctly calculated the remainder and completed writing their own logarithm
function as described in the previous subsection. Their next task was to use
the remainder to check that their choices of a and n had achieved the desired
accuracy in the interval 0.5 ≤ x < 1. As it turned out, their initial choices led
to a much higher accuracy than the tutorial required (see Figure II.10), which
prompted the following challenge from the interviewer:

Interviewer [1:06:19] You’ve seen that it’s faster9 when we have
fewer terms.
Lena Yes.
Interviewer How fast can we get it to go? With that ln?(a)? How
few terms can we get away with?
Rita Ehm. . . I guess one has to. . . One could calculate it. Or, sort
of. We could either just try with a lot of different n’s. [laughs]
Lena And stopwatch and just see how fast it goes? [laughs]

8These Norwegian IT classes referenced here predate the recent initiative to introduce
programming into the high school curriculum. While some programming concepts are covered,
these courses were very general, and covered everything from databases to making web pages.
Lena herself expressed that she did not feel those classes had prepared her very well for tasks
such as the one in this tutorial.

9In this context, "fast" refers to the running time of the program.
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Figure II.10: The students’ initial results for a = 0.75 and n = 100 led to a
much lower absolute value for the remainder than the stated goal of 10−10 in
the entire interval (the dashed line in the plot).

Rita And just take the smallest n, if not then you can sort of set
that, if you set the remainder as. . . 10−10, then.
Lena Yeah. Can we manage that?
Rita And. . . Sort of, or if you have to calculate10 it. I don’t know.

We interpret this exchange as Rita trying to decide between two options
in response to the interviewer’s suggestion: some form of trial and error or a
more rigorous mathematical calculation. She proceeded to ask Lena to open the
document where the formula for the remainder was displayed. Rita then asked
the interviewer whether they should try to solve that expression for n or use
trial and error instead. The interviewer conceded that the latter was the original
intent, because there would have been a lot of x values to check for otherwise.

Rita Oh yeah, no, but I thought that we just tested for 0.5 and 1
because that’s the worst case.

10In Norwegian, the implication was that they would do a calculation by hand; this
distinction was obfuscated in translation.
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Interviewer You wanted to test the endpoints where, sort of, it’s
the worst case?
Rita Yeah.
Interviewer That sounds like a really good idea to me.

Rita did express some uncertainty about how to do it but proceeded to write
down an equation where the remainder was equal to 10−10, the limit for an
acceptable remainder according to the tutorial. With Lena’s help, she substituted
the required values for x = 1 into the remainder formula, resulting in an equation
with n as the only unknown (see Figure II.11).

Figure II.11: Rita’s equation for the remainder at x = 1 after substituting in
the known quantities. The right-hand side is the upper limit of an acceptable
remainder, according to the tutorial.

This activity fits the Output Modelling label. Rita going to the whiteboard to
perform the calculation and stating that she wanted to do so analytically show us
that the Target Medium and Target Structure are both Math. Figure II.11 shows
us that the Target Syntax is also mathematical, using conventional symbols
that are not used in Python and single-letter variable names. We infer that
the Source Domain is Output, as the interviewer’s challenge that the students
responded to points back to the plot in Figure II.10. We also note that Rita
consulted a mathematical resource (the formula sheet that accompanied the
tutorial) instead of looking at the code they had implemented earlier.

We can also find supporting evidence in the follow-up questions at the end
of the interview, when Rita and Lena talk about why they did the whiteboard
calculations:

Lena [1:48:33] I think it was to get an overview, sort of. That it’s
easier to get it written down in a little larger. . .
Rita Yeah, I’m stronger. . . or I’m better at math than I am at
programming.
Lena Yeah.
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Rita So I often feel that if it’s something that’s calculable11, I feel it
becomes more correct when I do it mathematically.

Interviewer Or clearer, perhaps?

Rita Yeah, I kind of like having an expression for things.

From the student point of view, it appears that this Output Modelling
afforded clarity and confidence in the result. It also afforded the use of familiar
(to the students) mathematical tools like the substitution and simplification Rita
made use of. This mirrors Gina and Benjamin’s Code Modelling in Case A.

Figure II.12: The endpoint of Rita’s first whiteboard calculation.

The students then spent some time manipulating this expression analytically
on the whiteboard (see Figure II.12), but eventually concluded that it would
be difficult for them to solve. It turns out that their hunch was correct, as the
expert solution involves a function called the product log function that is only
implicitly defined as the solution to equations on this form (“Wolfram Alpha”,
n.d.). Importantly, then, they reached a point here where they did not have a
clear way to proceed from a strictly analytical perspective. Instead, they found
another way forward:

Rita [1:15:34] ln (1010) equals ln . . . But we don’t get an expression
for n in this case.

Lena No. [inaudible]

Interviewer What’s the problem here? Or what were you about to
say, Lena?

Lena Mmm. I was about to ask whether it’d be easier to write that
formula here in Python or something. Whether we’re able to calculate
it in that case.

11She means analytically (see footnote 17).
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Rita and Lena clearly stated that the operations they saw as available to
them would only make them come full circle, and to progress they would have
to take another approach. We note with interest that Lena suggested Python
without prompting on the interviewer’s part. In the follow-up question part of
the interview, she elaborated on this transition back to computing:

Interviewer [1:47:08] But how did you come up with "hey, we can
do this in Python", Lena? Because that was also sort of a breakthrough
idea that helped us further.
Lena Yeah. No, really, the thing is that when there are very
complicated expressions, or like when we have something raised to
the power of 1000 or something like that.
Interviewer Mm-hmm [affirmative].
Lena Then you do quickly think that it can’t be done by hand. But
that it’s quite easy to type. And then you get an answer. So then you
save some time.

She also commented on what this transition afforded her:

Interviewer So, but this way of working, does it enable us to do
things we couldn’t otherwise? If we should just have done math or
just. . .
Lena Absolutely.
Rita Mhm. We wouldn’t have been able to find that expression for n.

Lena No, not without using programming to do it.

Lena proceeded to open a new Python file in the code editor and translated
the equation on the whiteboard to the form in Code Sample II.2, which contained
no fractions or logarithms. We interpret this as Lena considering such a form to
be the simplest one to solve, because this was not the form that they had written
on the whiteboard in Figure II.12. In this, Lena was in alignment with the
expert perspective, except for getting Python’s assignment operator = confused
with == that tests for equality.
(n+1)*3**(n+1) = 10**10

Code Sample II.2: Lena’s translation of the equation in Figure II.12 to the code
editor (for x = 1).

The students were unsure how to progress from there, however:

Rita How do you, like, get that to solve for n?
Lena Yeah. Are there some functions in Python? "Solve equation"
or something like that?
Rita Maybe. Try some thing or other. Just write something like
"from math import star", it’s guaranteed to be a, sort of, math module.
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from math import *

math.solve((n+1)*3**(n+1) = 10**10)

Code Sample II.3: Lena’s first attempt at a Python solution.

Lena made an attempt at such a solution (see Code Sample II.3), but the
interviewer discouraged this approach due to time constraints and the requirement
of using Python libraries unfamiliar to the students like sympy.

We classify this connection as Math Implementation. The Source Domain
is Math, through Rita’s earlier whiteboard work. The Target Medium and
Syntax are Code, as the focus was on Lena’s work on the computer at this
point. As for the Target Structure, we claim that this represents the first stage
in a two-step connection, much like Gina and Benjamin in Case A, with two
important differences: (a) the Target Syntax is not a hybrid state containing
elements of both Math and Code12, and (b), Lena’s work is a computational
representation of a mathematical entity, which is the opposite of what Gina
and Benjamin made. Like in Case A, this would soon change as the interviewer
intervened.

First, however, we note that the way the students first attempted to implement
the problem was still very closely linked to their earlier analytical whiteboard
work. They initially wanted the computer to do the exact same thing they had
attempted themselves by hand. When that did not work, they did not seem
to see how to connect the equation to familiar Python concepts on their own,
perhaps due to their still interpreting it as something mathematical. Wanting to
remain in the Python environment, the interviewer offered an alternative way to
accomplish the task using Python:

Interviewer We could just try different n values and see whether it
becomes 1010, though.

Lena Yeah.

Interviewer In this one. But it could also be that there is a way to
have Python try... a lot of different n values for us. So that we don’t
have to try each and every. . .

Rita Oh, yes.

Lena For loop?

Rita If we write, like, while or for, yeah.

Lena Yeah. That’s not such a bad idea.

12In theory, one could object that the use of single-letter variable names points us toward
Math, but in Code these are perfectly legal. Furthermore, while shortening variable names so
that they are not interpreted as the product of many variables (cat ̸= c · a · t) makes sense
when representing Code using Math, as Gina and Benjamin did, lengthening variable names
makes little sense from an expert perspective, as there is no such ambiguity in Lena’s resulting
expression (Code Sample II.2).
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The interviewer’s first idea ("try many different values") was enthusiastically
received by the students, who immediately related this intentionally vague
statement to the computational concept of loops. The interviewer’s further
suggestion that they use a while loop that would stop when the answer is
good enough was immediately connected to and expressed as an inequality by
Rita, which Lena then leapt at the chance to implement. In other words, they
articulated a connection between the mathematical educated guess (picking
a possible solution that seems reasonable and checking if that satisfies the
inequality) and the computational iteration (trying out every possibility in
ascending order until the inequality is satisfied).

This connection completes the transition into Math Implementation. The
change from earlier is that the Target Structure seems to have changed from
Math to Code at this point. This is based on the students implementing the
inequality as a test condition that yields True or False, which is structurally
different from simply enclosing an equation within math.solve() as they did
earlier (in Figure 15).

The affordance of this connection is a better understanding of the process
of determining the optimal value of n, which now features in a computational
role as the loop variable in addition to being the mathematical unknown that
is solved for. The additional affordance to leverage their coding experience
without resorting to symbolic algebra libraries was not lost on the students.
They explicitly rejected the idea of using the sympy library for the task at hand,
given their lack of familiarity with it.

Instead, they started setting up two possible loop structures (while and for)
and initially tried to combine them (see Code Sample II.4), but eventually decided
that the for loop was unnecessary and with some input from the interviewer on
correct syntax arrived at a functioning while loop (Code Sample II.5).

for n in range(100):
while ((n+1)*3**(n+1) < 10**10):

Code Sample II.4: Competing loop possibilities, combined.

n = 1
while ((n+1)*3**(n+1) < 10**10):
print(n)
n += 1

Code Sample II.5: Lena’s final version of the loop.

At this point, the students tried running the code, resulting in the output
seen in Figure II.13. The inequality was satisfied as long as the remainder was
too large - in this case, the loop would continue. It stopped at the point where
the remainder was acceptably small, hence the final printed value represented
the minimum number of terms that produced an acceptable result:

Lena proceeded to modify the code the students used earlier, reducing the
number of terms from 100 to 17, while keeping the fixed point a of the Taylor
expansion unchanged. Unfortunately, attempting to use the newfound minimal

94



Results

Figure II.13: Output of the students’ program for x = 1, with n = 17 as the
number of terms that keeps the remainder sufficiently small.

value n = 17 did not result in the desired accuracy in the entire interval between
0.5 and 1, as it proved to be insufficient for low values near x = 0.5 (see
Figure II.14). The students’ first reaction to the result suggested scepticism,
as they remained completely stationary upon seeing the plot, and a significant
pause followed before they spoke in a hesitant tone of voice. The students did not
immediately buy into the interviewer’s interpretation of the result as a partial
success:

Figure II.14: Plot of the remainder with n = 17.

Rita Ehhh, yes. Right.
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Interviewer I thought that worked well, actually.
Rita But, it’s not below 10−10 though.
Lena [inaudible] Yeah. How do you think that works well?
Interviewer Because I’m looking at the point 1.x = 1. And there’s
it’s sort of a hair’s breadth below.
Lena Yeah.
Rita Oh yeah, that’s what we calculated, yes. Yeah, because then
we should do that for both sides, then. But that. . . yeah. [The others
voice agreement.] Because that did work well. And then you just take
the largest n value of the two endpoints.

Here, Rita made another cross-domain connection between the output (plot)
and her earlier work on the whiteboard: one needs to choose the point on the
curve that maximises the remainder to say that the remainder is acceptably small
in the entire interval. We label this connection Mathematical Interpretation, as
the Target Medium, Structure and Syntax were all the Output that the students
attended to, while the Source Domain was Math (pointing back to Rita’s original
choice x = 1 when setting up the original equation). This connection afforded
validation of the result and making a better choice for the next attempt.

We conjecture that a fourth connection was made shortly thereafter when
Rita proceeded to repeat the calculation for x = 0.5 and the interviewer pointed
out that the parameter ξ = min?(ax) in the remainder formula would also change
because of the change in x to a value smaller than a. Rita then immediately
reasoned that these changes would in fact explain why one endpoint produced a
greater remainder than the other:

Rita Yeah, that’s it, because then you’re dividing by a smaller number,
and then it does become larger. . .

This connection is another example of Output Modelling. We claim that the
Source Domain Rita is referring to would be Output (the plot in Figure II.14),
where the fact that x = 0.5 had a greater remainder was evident. The Target
properties were all Math, as Rita was working with the new equation at the
whiteboard at this point, repeating the work she did earlier where we assigned
the same label. This connection then afforded explaining why changing the value
of a variable had a particular effect on the output.

She then completed the calculation with these new values on the whiteboard
and arrived at the result in Figure II.15, which Lena then used as the basis for
modifying their Python program. She then used the output (Figure II.16) as an
input parameter to the remainder function, resulting in the plot of Figure II.17.

Upon seeing the result in Figure II.17, both the interviewer and the students
expressed satisfaction with the result:

Interviewer Wow.
Rita Shit, we’re smart.
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Figure II.15: Rita’s calculation for x = 0.5. Note the similarities with the
expressions in Figure II.11 (top) and Code Sample II.2 (bottom).

Figure II.16: Output of the students’ code for x = 0.5.

Lena [laughs] Yeah.

As a final test, Rita and Lena used a = 0.75 and n = 27 as input to their
logarithm function. A comparison between the commonly used numpy library’s
log function and the students’ own results can be found in Figure II.18.

Lena It’s quite a lot of identical digits.
Rita Wow, now it was really nice.
Lena Oh, my god. Relative error 0.0.

To sum things up, the students were faced with the dilemma of how many
terms to include in the Taylor expansion. They connected that question to a
mathematical equation. When this failed to provide an analytical answer, they
further connected the equation13 to a numerical trial-and-error approach using

13Which by then had been transformed into a form that made it simpler to use numerically,
with no need for a function to calculate the absolute value, for instance. From an expert
perspective, one could argue that the students could have done this without the mathematical
work, but the fact that the students used the results of their work indicates that it had value
to them.
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Figure II.17: Result of using the number of terms in Figure II.16.

Figure II.18: Tests of the students’ own log function.
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a loop. Starting with Output, the students went from there to Math and then
to Code. The computer then closed the circle by taking the Code and producing
new Output.

The students then made further connections by using mathematics to explain
what had happened and decide what to do next when the plot surprised them. As
they re-did the whiteboard calculations, they referred to the plot and explained
what happened to the remainder using mathematics. This set of connections
thus took them from Math to Output and back to Math again.

What these connections have in common is that each of them afforded a
new perspective that provided deeper insights into the problem. The guessing
game to find the ideal value for the parameter n transformed into a rigorous
mathematical solution with the potential for greater explanatory power. The
realisation that the equation was hard to solve analytically transformed into
a systematic way to find a numerical solution. They were now able to explain
why x = 0.5 was the better choice, not just that it was better than x = 1. And
finally, they were able to justify their choices of parameters as ideal with regards
to calculating the logarithm with as few terms as possible.

II.4.3 Case C: Lydia, Martin, and Roger (Tutorial 3, 2019)

In our final case, we present work by Lydia, Martin, and Roger on Tutorial 3. This
case highlights how a task that asked the students to implement mathematics
on the computer facilitated fruitful mathematical discussion.

II.4.3.1 Tutorial 3: Numerical Integration

The final tutorial had students numerically integrate a familiar function whose
integral value is well known but impossible to calculate analytically: the standard
normal distribution. The students were tasked with implementing a function that
calculated one term in the Riemann sum using the midpoint method (they were
given code that would then use their function to calculate the entire integral).

It is worth noting that the midpoint method with step length h they were
asked to use, ∫ b

a

f (x) dx =
b∑

x=a

f

(
x + h

2

)
· h

can be interpreted as a special case of the more general Euler’s midpoint method
for differential equations (Mørken, 2017),

x
′ = f (t, x)

xk+ 1
2

= xk + h
2 f (tk, xk)

xk+1 = xk + h · f
(

tk + h
2 , xk+ h

2

)
Note that in the latter case the symbol x has taken on a different meaning (a
function) than in the former (where it is the independent variable). Expressing
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the integral midpoint method with differential equation notation would look like∫ b

a

f (t, x) dt =x0 +
n∑

k=1
xk =

b∑
t=a

f

(
t + h

2

)
· h

The reason for this is that in the special case of the integral, f (t, x) has no
dependence on x and the boundary condition is x0 = x (a) = 0. It is perhaps
not surprising, then, that the students in Case C would confuse the two and
treat these as two unrelated methods. They really do look different from one
context to the next.

The central question in this tutorial was how many steps (terms in the
Riemann sum) would be needed to balance accuracy with efficiency. After being
encouraged to try out some values and note the results, the students were asked
to plot the relative error as a function of the number of steps. The goal was that
they should discover a sweet spot, where the mathematical error is as small as
possible, and the rounding errors (that increase with more terms) also having
minimal effect.

II.4.3.2 Case C: Interview and Analysis

Lydia was verbally active and asked several questions throughout the interview.
She often asked the group to pause their current activity to discuss the underlying
concepts. Martin stated that he had previous experience using Python from work,
and Lydia and Roger often deferred to him in times of discussion. Martin also
typically initiated the writing or typing on the keyboard. Roger’s interactions
with the group mostly concerned completing the given tasks. The three students
were used to working together from the group sessions in class.

Lydia, Martin, and Roger had just been asked to implement the midpoint
method for numerical integration in Python (not the complete integral, but a
function that returned a single term in the Riemann sum). Lydia’s first reaction
was to mention that this sounded like Euler’s method.

Martin OK, so. . . should we. . .
Lydia . . . run it by hand first?
Martin Or, I just thought about drawing it.
Lydia Yes
Martin So, you have a function. . . [begins drawing on his worksheet]

We interpret this exchange as another example of Code Modelling. This
drawing, as seen in Figure II.19, was done on the tutorial worksheets that we
collected, hence the Target Medium is Math, as is the Target Syntax (variable
and function notation) and Target Structure (a plot of a function with boxes
representing steps in the integration). The Source Domain is the Code, namely
the function they were asked to design and implement. They had opened the
code editor before Martin started drawing.
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Figure II.19: The drawing from Martin’s worksheet. This version of the drawing
is likely more complete than it is when it is first referenced in the transcript
(Martin returns to this drawing several times during this episode).

In contrast to Case A, the students were not deciphering a piece of code
they had been given but were instead asked to write and implement the code
themselves. They also used a mathematical drawing rather than setting up an
equation to solve. Nonetheless, Lydia’s comment about "running it by hand"
reminds us of Gina’s "by hand" comment in Case A. Unlike that comment,
however, Lydia explicitly blended a computational construct ("running") with
a mathematical one ("by hand"). The possibility that something written by
hand could be run supports our interpretation that Lydia was aiming at Code
Modelling much like it played out in Gina and Benjamin’s case.

After completing the first version of the drawing, computational ideas kept
emerging in the students’ conversation:

Roger What was n?
Martin n is the number of points we’ve been given. . .
Roger Yes, OK.
Martin . . . or the size of the precision.
Martin Yeah, yeah.
Lydia Now you’re multiplying [inaudible] along.
Martin Ehm, does anyone remember the midpoint method?
Lydia Yes, first we must go a half-step [points to Martin’s drawing].
Martin Yes [keeps drawing].
Lydia Ehm. . . and then we have to store that variable.
Martin Mm-hmm [affirmative].

In this conversation, we note that the students used language that referenced
not only computational concerns, but also specifics of the implementation.
Computational elements were re-introduced when Roger asked about a
computational variable (n) that was not present in the drawing. Moreover,
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Lydia’s explanation of the midpoint method explicitly referenced storing a result
in a variable, which would be an unconventional way of putting it in traditional
mathematics.

It is also possible that this comment points to what Lydia meant earlier by
"running the code by hand": doing a calculation on paper while at the same time
imagining what it would take to implement it on the computer and considering
the process of that implementation. We find this to be consistent with our idea
of Code Modelling.

What this connection appeared to afford the students was, much like in
Case A, a visualisation of the code and method they were asked to implement.
Unlike Gina and Benjamin, these students did not apply mathematical tools like
substitution and equation solving. Instead, they used Martin’s drawing as the
basis for a mathematical discussion about the midpoint method and its relation
to other concepts, and this discussion continued throughout the interview.

The discussion of how to implement the midpoint method initially lasted
until Martin recognised that they had something calculable, which we identify
as Math Implementation:

Martin [looking down at his drawing] f of x plus h halves.
Roger Yes.
Lydia h divided by two, yes.
Martin . . . yes. We are able to calculate that.

At this point, Martin began modifying the Python code, as shown in Code
Sample II.6:
def midpoint(x,h):
return h * f(x+h/2)

Code Sample II.6: Martin’s implementation of the midpoint function.

Martin thus produced a computational function to represent a mathematical
function14, and chose variable names so that the computational variables
represented their mathematical counterparts. This could suggest that the Target
Syntax is Math, but the variable names x and h were given in the tutorial
itself and lengthening them would be uncommon (see footnote in Case B).
Furthermore, failure to make the Target Syntax Code would likely have led to
error messages.

The Target Medium is Code, as is the Target Structure, because Martin
was writing a function in the code editor15. His utterances as he wrote the

14This distinction is perhaps not obvious. While a mathematical function is a one-to-one
mapping between two sets of elements (typically numbers), computational functions can
perform tasks that have little to do with the mapping between input and output, such as
writing to the screen or saving to a file. It is therefore prudent to regard mathematical functions
that can be represented computationally as a subset of all computational functions.

15It would be uncommon, but possible, to use the code editor as a sketchpad to solve an
equation analytically. That would make the Target Structure Math, as opposed to what we
describe here.
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function strongly suggested that the Source Domain is Math, as there would
be no differentiated function available to him in the code. His claim that "we
are able to calculate that" also connects the code he subsequently wrote to the
earlier mathematical midpoint method discussion between the students, at which
point he was focused on his drawing.

This suffices for us to interpret this connection as Math Implementation, which
suggests to us that the variables were intended to be Code representations of the
original Math variables. What this connection afforded was an implementation
of the method they had been recalling and describing. We note that while
doing Code Modelling the students were attending to the particulars of the
implementation, but they ended up using none of the particulars they discussed
(the number of terms and storing the result of a half-step in a variable). Even so,
we claim that the Code Modelling laid the foundation for the method discussion
that was later transferred into the Math Implementation.

The students then evaluated the work to see if what Martin had done made
sense. Martin asked the interviewer (who had informed the students that he
functioned as a TA in this setting) a question:

Martin [to interviewer] Is it the same as the Euler midpoint
method, where he takes a half step to find one point and its derivative
and then he takes the derivative. . .
Lydia [draws parallel, slanted lines in the air with her hand] and
then he makes another one below that is parallel with the other line
[laughs] where everyone reacted to [the instructor] drawing it very
badly. . . heh.

To see what the other students made of the question, the interviewer withheld
his answer until the discussion came to a stop, which did not occur. Instead,
the students confirmed that their implementation gave the result that they were
supposed to get (as indicated in the tutorial).

At this point Martin and Lydia both seemed to be seeking to reconcile the
method they just wrote with what they learned in the recent lectures on Euler’s
method. Roger seemed less concerned as long as what they did both worked
and made sense in itself. Martin then expressed his belief in there being two
different midpoint methods, and Lydia noted that the one they had used seemed
much easier to use than the method she remembered from the lectures. Finally,
Martin made a connection that allowed them to distinguish between the two
methods:

Martin Now I have to think a little. . . [pause] No, that one’s for
differentiation. . .
Roger Yes. . . because then you take. . . then you take the tangents,
don’t you?
Lydia Fo. . . [inaudible]
Martin Yeah.
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Roger Yeah, in each point.
Martin Because if you’re coming from here [indicates the drawing
in Figure II.19] then you should remove the next point. . . No, that’s
for differential equations, of course!
Lydia There it is, there it is.
Martin There it was.
Lydia Now I follow you, there was something that really didn’t fit
there [laughs].

This represents something of a breakthrough for the three of them. We claim
that the realisation that there were two different midpoint methods (from their
point of view) and the subsequent categorisation of their uses both sprung from
the computational task of implementing the method for numerical integration.
The same can be said for Lydia’s successful attempt to categorise the method
they had used, which she recognised as Riemann sums.

To summarise his episode, this group of students went back and forth between
Math and Code as they designed their function, and only subsequently made
use of the Output to determine its correctness. Finally, they took a step back
from the code to a mathematical discussion which helped them see similarities
between their work and earlier lectures.

II.5 Discussion and Conclusions

In these three cases, we have seen students make connections between
mathematical and computational ideas as they worked with tasks that integrated
knowledge from these two domains. Each case demonstrates a distinct way that
students connect these ideas, often in ways that they had not done earlier in the
interviews, or in ways that were not anticipated by the tutorial designs. Our cases
also represent mathematical contexts in which mathematics and computing were
integrated, and these exemplify the kinds of situations in which such integration
may be leveraged and explored.

II.5.1 Summary of Cases

This subsection provides summaries of the connection types that surfaced in
each of the three cases. We will identify four unique patterns, defined as certain
connection types appearing together, that the cases exemplify. These patterns
are summarised in Table II.3. The affordances we link to each pattern in that
table are taken from our analysis of the connections as they appeared in the
analysis in Section II.4.

In Case A, we saw Gina and Benjamin use mathematics to model the program
we gave them, in order to grasp how it was supposed to work. After having
translated the program to mathematical symbol language, they were able to take
those expressions and treat them like mathematical quantities such as equations.
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We posit that this kind of algebraic manipulation would not have been so easy
for them to do in a strictly computational setting, as it would require knowledge
of sympy or similar Python libraries.

Through manipulating and reasoning about these mathematical equations,
the students in Case A were able to construct a formal proof of the program’s
intended function. If both had recognised this proof for what it was, we suspect
the resulting comparison between the proof and the output of the program would
have provided them with a rich opportunity to identify the problem with the
program and to discuss numerical problems versus mathematical problems in
general.

This implies that making these kinds of cross-domain connections can lead
students to gain profound insights about Code through thinking of it as Math,
especially when it comes to information that is implicitly present in the code
and requires mathematical thinking to unpack. This notion is in stark contrast
to Gina’s belief that the program must be told everything in clear terms. In
any case, their Code Modelling supported the students’ work, because familiar
algebraic manipulation highlighted a feature of the problem that they (correctly)
perceived as relevant.

Gina and Benjamin followed up this work by going into Mathematical
Interpretation of the Output, allowing them to link Code and Output together
through Math instead of using the program as a black box to produce the output
for them. We have named this pattern Replicating Program and depicted it
in Figure II.20. Note that this only characterises these students in part of the
interview we used for Case A - in other parts of the interview the same students’
connections may be described differently (the same applies to Case B and Case
C).

Figure II.20: Replicating Program, as seen in Case A.

In Case B, we saw Rita and Lena use mathematics and computing flexibly.
They attempted to use mathematics to find the optimal parameters for their
program, and with support were able to find a numerical solution when an
analytical one was not feasible. They went through Output Modelling and Math
Implementation in that order, and the program closed the circle by transforming
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Code to Output. This demonstrates the existence of the circular process seen in
Figure II.21, which we have named Improvement Cycle.:

Figure II.21: Improvement Cycle: Code produces Output, the students then use
Output Modelling to get to Math, and finally Math Implementation is used to
modify the Code further, as seen in Case B.

After completing an iteration of that cycle and being surprised by the result,
Rita and Lena went back and forth between Math and Output to improve their
previous solution and in the process were able to describe why their first choice
was not optimal. This finally led them to choose parameter values that resulted
in a log function that performed admirably in the test cases with many fewer
terms than their initial attempt. Figure II.22 illustrates this patten, which we
have named Justified Improvement.

Figure II.22: Justified Improvement, as seen in Case B.

In Case C, we saw Lydia, Martin, and Roger resort to mathematical drawing
as a step in the process of implementing the code for numerical integration. This
connection enabled them to discuss the mathematical method the program was
supposed to represent and revealed a conflict between their work and what they
remembered from the lectures about Euler’s midpoint method. The resolution
came with the realisation that there are two midpoint methods that they had
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confused, and the case ended with the students reinforcing connections between
what they were doing and their mathematics classes ("this is Riemann").

Lydia, Martin and Roger went back and forth between Code Modelling and
Math Implementation. This subset of connections still afforded them to think
more deeply about the math they had learned and their organisation of that
knowledge. While they finally used the Output for verification, it did not feature
in their subsequent mathematical discussions in this case, in contrast to Case B.
We have named this pattern Justified Design and illustrate it in Figure II.23.

Figure II.23: Justified Design, as seen in Case C.

II.5.2 Synthesis of Patterns Among Cases

To sum up our findings, these cases demonstrate four different ways that students
integrate computing and mathematics (Figure II.20 to Figure II.23). Each of
these patterns represents a way that students chained connections together. This,
along with the properties in Table II.1 and the connection labels in Table II.2, add
a third level of granularity to our classification of the data. On the most detailed
level (properties), we examined the properties to determine which connection
labels to assign. Then, after the connections were labelled, we identified patterns
in connections that occurred dependently on one another. We finally summed
up the affordances we found in the data for each pattern, as seen in Table II.3.

Note that all the patterns, except for Replicating Program, were inherently
cyclic in our data. Because they ended up where they began, students would be
able to repeat these patterns for several iterations if necessary, without additional
changes of activity. It is possible that an extra connection from Output to Code
could make Replicating Program cyclic in the same way. We do not have sufficient
evidence to support this possibility at present, however.

What these cases show us is that working with mathematics and computing in
an integrated way has the potential to support students’ mathematical reasoning
and organisation of knowledge in powerful and flexible ways. These affordances
can be seen as a direct result of making cross-domain connections. For a
certain class of problems, we have demonstrated that it is possible to design for
connections between these domains.
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Pattern Definition Case Main affordances
Replicating
Program

Code Modelling →
Mathematical Interpre-
tation

A Understanding a program
Formal proof

Improvement
Cycle

Output Modelling →
Math Implementation
(→ running the pro-
gram)

B Output closer to standards
Explaining process

Justified
Improvement

Mathematical Inter-
pretation and Output
Modelling (in any
order)

B Output closer to standards
Explaining results

Justified
Design

Math Implementation
and Code Modelling (in
any order)

C Confidence in correctness
Organising mathematical
knowledge

Table II.3: Connection patterns.

II.5.3 Discussion

In this paper, we have categorised students’ cross-domain connections according
to the classification scheme in Table II.2, all of which are based on connections
we saw in our data. These connections demonstrate how students see similarities
across domains and find these relevant enough to merit a shift in activity or use
resources from different domains simultaneously. Our students used mathematics
as a resource to write and understand code, and to interpret output. Conversely,
they used both code and output as the basis for doing mathematical work. These
connections match the descriptions given by (Høffding, 1892) and (Lobato and
Siebert, 2002).

Additionally, we recognise the flexible shifts between multiple modes of
thinking of (Karakok, 2019) in these connections: Code, Output and Math are
the labels we have ascribed to these modes. In Case A we see Gina and Benjamin
treat the whiteboard work differently when interpreting it as a representation of
the code as opposed to when they treat it at something inherently mathematical.
While their shift was perhaps not as flexible as we could have wished for, requiring
the interviewer to re-frame the activity for the full connection to be made, the
elegant proof they produced suggests that supporting students in becoming more
flexible between these modes is something that is worth investigating further.
There might well be more modes (subdomains) than we have encountered here,
or modes of an even finer grain size, that are useful to us.

What is computing good for in a mathematical context? A clue might be
taken from (Greeno et al., 1993), who discussed affordances for student reasoning
in particular. Even if students arrive at similar answers without using computers,
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our results suggest that student reasoning is affected by these shifts between
modes of thinking, and not adversely. Our students were able to reason by
proving that a program works, explaining both the process of the program’s
logic and particular results that it produced. Additionally, we saw students
organising their mathematical knowledge as a result of reasoning mathematically
to write a simple piece of code, suggesting that there is potential value in writing
algorithms so that computers may understand them. Of course, it is possible
that shifting between modes also adds cognitive load to the students, and for
inexperienced programmers especially, this potential may not be immediately
accessible when one begins to learn programming in a mathematical context.

The affordances we saw in the interviews appear to be linked to connection
patterns rather than individual connections themselves, suggesting that what
a single connection affords may depend on the other connections it forms a
pattern with. If our analysis is correct on this point, our connection patterns in
Table II.3 represent a grain size that is more useful for discussing affordances.
We still depend on isolated connections to identify these patterns, however.

One such pattern, the circular process we called the Improvement Cycle is
particularly interesting. This pattern suggests that students might even be able
to iteratively cycle through a pattern several times as they work toward increased
understanding and a better-working program. There is a striking resemblance
to the cycle depicted in p. 15 of (Kaufmann and Stenseth, 2020), where "Use
mathematics" and "Make hypothesis" could be interpreted as Math, "Change
program" and "Test" as Code, and "Observe and analyse" as Output. In Case A
and Case C, then, we have seen possible extensions to Kaufmann and Stenseth’s
model.

II.5.4 Limitations and future directions

First among the limitations that should be discussed is the possibility that the
patterns we observed were due to the tutorial designs and would not occur
spontaneously. We acknowledge this possibility, and it remains to be seen how
much of what we observed was due to the task, prompting by the interviewer,
and spontaneous contributions by the students, respectively. While we claim
that the patterns in Section II.5.2 exist and provide affordances for students
in some circumstances, we do not claim that they occur spontaneously. More
likely, we have taken a first step toward describing contexts in which the patterns
surface, which is useful if we find it desirable that students work in these ways.

We also acknowledge that our data set is restricted to a relatively small
number of students and contexts, and thus there are limits to what we can claim
regarding the generality of our findings. Further research is needed to uncover
other possible connection labels and patterns we did not see in our data. We also
see a potential for unpacking the causal links between teaching design principles
and students’ thinking in this context, and we will examine this more closely in
a future paper.

It would also be prudent to look more closely at limitations and hindrances to
students realising the potential represented by these tutorials. Our data suggests

109



II. Three Cases That Demonstrate How Students Connect the Domains of
Mathematics and Computing

that students who have insufficient prerequisite knowledge may struggle with
making these kinds of connections unless they are supported by other students
or teachers who can help them apply this knowledge in learning situations.

Our data from Case A suggest that some students, especially when they
are new to programming, believe their programs cannot make use of implicit
knowledge - all the knowledge available to the program must be there in plain
sight. If that were true, it would prevent programs from making use of knowledge
that is implicit, such as mathematical knowledge, which may limit the possibilities
that these students see. What caused this belief and how to correct it is
another direction of future research that may prove useful. More generally,
we see potential in investigating students’ conceptions of what is possible in
mathematics, programming, and the integration of the two.

We also note from our data several instances in which the separation between
Math and Code is not so clear. For instance, we had Gina’s whiteboard model
from Case A, before the students made the full transition to thinking of it as
Math, or Lena’s initial attempt at solving the equation with Python from Case
B, before the students made the connection to loops. We suspect that these
"halfway points" will be important stepping-stones for many students in making
cross-domain connections and we see potential in investigating these further,
both from an education research and a teaching point of view.

In conclusion, we posit that an approach to teaching that integrates
mathematics and computing has the potential for making powerful mathematical
ideas tangible for learners in ways that do not diminish their richness or relevance.
With this study, while we have contributed several examples of such by first-year
university students, we cannot claim that our findings are exhaustive. We expect
many more such examples to emerge through research and teaching practice in
the coming decade.
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Abstract

We present here the lessons learned by iteratively designing a tutorial for
first-year university students using computer programming to work with
mathematical models. Alternating between design and implementation,
we used video-taped task interviews and classroom observations to ensure
that the design promoted student understanding. The final version of
the tutorial we present here has students make their own logarithm
function from scratch, using Taylor polynomials. To ensure that the
resulting function is accurate and reasonably fast, the students have to
understand and apply concepts from both computing and mathematics. We
identify four categories of such concepts and identify three design features
that students attended to when demonstrating such understandings.
Additionally, we describe seven important take-aways from a teaching
design point of view that resulted from this iterative design process.
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III.1 Introduction

Our aim with this paper is to showcase the design and implementation of a
tutorial that integrates computing with mathematics to strengthen students’
understanding of important concepts in both domains. From this, we will
articulate important lessons we learned for instructional design. In particular,
we will demonstrate that re-creating how the computer performs familiar tasks
(such as calculating logarithms) provides rich opportunities for students to
make use of mathematics and computing knowledge in an integrated way, as
exemplified by one of the key tasks of this tutorial: applying logarithm rules to
the representation of real numbers in the computer’s memory.

For most students, asking an electronic device for the logarithm of a number
can be characterised as a black box operation, a term we have borrowed from
computer science education (du Bolay et al., 1981): the number is returned as if
by magic, with no reference to the means or processes underlying its calculation,
nor any measures of its accuracy. While students depend on the correctness of
these calculations, there is often little understanding involved beyond figuring out
which buttons to press (Gravemeijer et al., 2017; Watters and Watters, 2006).
In our tutorial, we offered our students an opportunity to do the authentic
work of programming their own logarithmic function using Python and at the
same time learn more about the usefulness of Taylor expansions. Doing so
offered students an opportunity to reason about the mechanisms and processes
behind the calculation of a logarithm, thus deepening their understanding of an
important idea at the intersection of mathematics and computing - namely how
real numbers are represented in a computer.

We based our tutorials on the framework of Wiggins and McTighe (Wiggins
and McTighe, 2005), which is a three-stage process of backwards design: first,
one attains clarity of the learning goals, and define the understandings that
students should come to. Second, one determines what would be acceptable
evidence for this understanding having taken place, and design assessments to
uncover that evidence. Finally, one designs the learning activities by which the
students will be able to uncover the desired understandings.

We elaborate our research questions after defining some key terms and
constructs in the following section. Then, Section III.3 goes into the mathematical
concepts at the heart of the tutorial. In Section III.4 we describe our methodology,
while Sections III.5, III.7, and III.9 detail the three stages of design. In
between these stages, we chronologically present our results from each testing
(implementation) phase, in Sections III.6 and III.8, before discussing our results
and implications for teaching and future research in Section III.10.
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III.2 Theoretical Framework

First, we review the Understanding by Design (UbD) framework that we used in
more detail. Then, we present a literature review of how computing has been
integrated in mathematics education and situate our work in the literature before
presenting our research questions.

III.2.1 Understanding by Design

In the Understanding by Design framework (Wiggins and McTighe, 2005), an
understanding is defined as a specific and useful generalisation that points to
transferable big ideas and requires uncovering and insight to grasp, as opposed
to mere drill. We follow (Lobato, 2012) in defining the concept of transfer
to mean any generalisation students make, without focusing on normative
correctness.(Wiggins and McTighe, 2005) echo this sentiment in their discussion
of assessment validity: "we typically pay too much attention to correctness [in
our assessments], and too little attention to the degree of understanding" (p.
183). In other words, we often fail to take into account the degree to which
performance and understanding are correlated.

Understanding differs from knowledge, but is also connected to it: "An
understanding is a mental construct, an abstraction made by the human mind to
make sense of many distinct pieces of knowledge" (Wiggins and McTighe, 2005,
p. 37). In other words, pieces of knowledge are the dots that are connected by
the act of sensemaking to form an understanding.

As noted previously, the term "black box thinking" could be applied to
situations where a student uses results without understanding the underlying
process. Importantly, we should be careful not to say that the student is unable
to understand, but rather that they have not engaged with how the result was
found as something to be understood. In these cases, it may simply be that the
task does not require students to attend to this aspect: all that is asked of them
is that they get a correct answer without an explanation of how that answer was
derived.

Thus, while black box thinking can be said to represent knowledge in the
sense that the students know how to formulate a query of the computer to get
an answer, understanding in our context means that they also know how the
computer finds the answer, and that they are able to interpret and connect it
to other forms of knowledge as well. Black box thinking, then, is not what we
would consider to be understanding, but it is nonetheless particularly relevant
for contexts that involve computing, and we saw an interesting example of this
in one of our interviews (see Section 8).

According to Wiggins and McTighe, there are six kinds of understanding:
being able to (a) explain general ideas, (b) interpret specific instances of such
ideas, (c) apply the ideas and knowing when and how to use them, (d) gain
distance to the subject matter and see it from different perspectives, (e) have
empathy with ideas that seem odd or foreign at first glance, and (f) have self-
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knowledge so as to know what one knows, what one does not know and how
one’s learning is progressing.

In the first phase of backwards design, where learning goals are in focus,
it is important to prioritise. From least to most important, the curriculum is
divided into knowledge that is (a) worth being familiar with, (b) important to
know and do, and (c) the big ideas and enduring understandings that everything
else hinges on (Wiggins and McTighe, 2005, p. 71). For the latter especially, a
set of essential questions may be a useful tool for the teaching designer. These
are not answerable in finality with a brief sentence but meant to have students
ponder them and in so doing uncover the understandings we desire. In short:
understandings make use of facts but are not simple facts themselves.

The second design phase focuses on evidence for understanding and
assessment, and here it is crucial to distinguish internalised flexible ideas from
borrowed expert opinions delivered on cue. This involves supplementing the
traditional quiz or test with academic prompts and performance tasks. Academic
prompts, of which our tutorials are examples, pose questions or problems that
require critical thinking, explanations and defence of the answer and methods.
Performance tasks, on the other hand, ask students to do authentic work that
yield tangible products and performances and give students opportunities to
personalise the task.

For us to claim that the students understand, they need to provide reasons
and support for their choices, in line with the six facets of understanding. It is
important that the students’ answers are not dependent on blatant cues.

Finally, the third phase of backwards design places the focus on learning
activities, of which direct instruction (teaching) is but an example. The optimal
designs provide students with engaging and effective tasks. An engaging task
is recognised as meaningful and intellectually compelling by the learners and
presents them with a mystery or challenge they can go hands-on with. Effective
tasks are ones that help learners become more competent. The goals of such tasks
are clear, the criteria are well known, and the students are given opportunities
to self-assess along the way.

According to Wiggins & McTighe, a set of design prompts called WHERETO
is suggested for analysing the learning activities. These implore the designer
to ask whether one has made it clear to the students Where the unit is headed
(and Why), Hook (and Hold) their attention, allow them to Experience doing
the subject, to Rethink (and Reflect) along the way, to Evaluate their strategies,
to Tailor and personalise the task to their own preferences, and to Organise the
activity using a whole-part-whole 1 format.

III.2.2 Integrated Design: A Literature Review

Integrating mathematics learning with computing is perhaps best illustrated by
a counterexample. In what we might call a disintegrated design, the students

1First, one considers the big picture (the subject of the activity taken as a whole), then
one goes into the details, and finally one goes back to the big picture and connect the dots
between those detailed pieces of knowledge.
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learn to code in a context that is mathematical only by accident, with learning
activities such as creating a webpage for flight booking with a database back-end.
Presupposing then that students know how to program, instructors introduce
them to the relevant math software libraries and focus on the application of
these presupposed skills.

A potential problematic issue with this approach is related to transfer of
learning: the context in which learning takes places have an impact on both
the learning itself and the potential for transfer to other contexts (Billett,
2013). Hence, learning to code in a non-mathematical context plus learning
mathematics does not necessarily imply that students will be able use code
effectively in mathematics. However, as computational methods are becoming
part of the scientific disciplines to an increasing degree (Weintrop et al., 2016),
opportunities now exist to have students do authentic scientific work that involves
computing.

There are numerous examples in the mathematics education literature of
different computational tools being implemented as part of learning activity
designs in university mathematics. (Dimiceli et al., 2010) showcase a design
experiment where the symbolic Computer Algebra System (CAS) features of
the WolframAlpha app were used as an asset in an introductory calculus course.
Compared with other CAS software, they found that it had several advantages,
although processing power was a limitation. A similar design experiment
described in (Caglayan, 2016) demonstrates ways to use the GeoGebra dynamic
software to visualise Riemann sums, allowing students to visualise and discover
important properties of these sums.

Beyond showcasing that designs incorporate these technological tools, there
are also studies that investigate the relationship between task design and students’
use of them. (Olsson, 2019) comparatively investigated two designs that used
GeoGebra, in this case a task involving functions designed for schoolchildren in
grade 7 to 9. That study, interviewing students in pairs, found that students
who were encouraged to explain their thinking performed better overall than
students who were encouraged to follow a set of written instructions.

There are also examples of software being designed specifically for educational
purposes. One such example is Grid Algebra (Hewitt, 2016), a software designed
for learners as young as 9-10 years old to visualise the four basic arithmetic
operations as movements on a grid when solving linear equations. The software
called Configure (Greenstein, 2018) similarly lets younger students visualise and
conceptualise topological equivalence.

In addition to using pre-existing software and writing dedicated software
for educational purposes, there is a third option: having students write or
modify computer programs written in a generic programming language. An
integrated approach then demands that these programs are written in a
mathematical context. One example of this is (Lockwood and De Chenne,
2020), in which students related combinatorial counting problems of different
types to corresponding conditional statements in Python programs. This resulted
in a reinforcement of conceptual understanding in an area students traditionally
have difficulties with, and this reinforcement was attributed to the computational
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setting.
Another example is the design of a project (Ramler and Chapman, 2011)

where students statistically analyse whether players’ missed notes in the Guitar
Hero video game are randomly distributed by writing code in R. In the process of
analysing complex data, students would gain hands-on experience using statistical
concepts to test their hypotheses (and generally find that the randomness of
missed notes depends on the skill level of the player and the difficulty of the song
being played). Unlike Lockwood and De Chenne, Ramler and Chapman focus
mostly on their design and less on how the setting may influence the reinforcement
of concepts. Nonetheless, their design resembles that of the previous example
and belongs in the same category.

The work we present here resembles these last two examples and belongs in
the same category. Our work is focused on university students using the Python
programming language in a mathematical setting (the context is described more
closely in Section III.4.1). In this paper, when we say computing, we refer to
machine-based computing, "the practice of developing and precisely articulating
algorithms that may be run on a machine" (Lockwood and Mørken, 2021, p.
2). In practice, that means our students use Python programming to articulate,
visualise and solve mathematical problems.

(Buteau et al., 2020) point to a central feature of what this mathematical
coding entails: To articulate a mathematical process in a programming language,
one translates into the language what one would do by hand. To do this,
one must realise that the code can indeed work in a similar manner as one
does by hand, which is neither self-evident nor independent of what kind of
mathematical work one engages in. Integrating coding in mathematics then
entails supporting the students in learning, in the words of Buteau et al., "to
transform a programming technology into a rich ‘mathematical instrument’
enabling him/her to [participate] in programming-based mathematical work" (p.
1029).

III.2.3 Research Questions

Having described understanding by design and articulated our attention toward
integrated design, we now present our research questions. When using the term
"understanding" in these questions, we mean specifically the characterisation of
understanding given by Wiggins and McTighe discussed previously.

1. Which features of the tutorial design do students attend to when they
demonstrate understanding of mathematical concepts?

2. Which mathematical and mathematical-computational concepts did our
students demonstrate understanding of?

3. What did we as designers learn about designing for students’ understanding
from the iterative process of tutorial design?

Note that we focus on cross-disciplinary understanding that integrates
mathematics and computing specifically. We chose this because of the sparse
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amount of research on mathematical understanding in a computational setting
(see Section III.2.2) and because we expect that students’ understanding of
programming in computational settings has already been amply addressed in
computational science research. It might be very interesting to see how the
mathematical context affects students’ understanding of purely computational
concepts, but we consider this an avenue for future research.

III.3 The Big Ideas

In this section, we elaborate on the mathematical concepts that motivated the
tutorial design. What were the big ideas (a term borrowed from Wiggins and
McTighe) that we wanted our students to engage with?

On the most fundamental level, our tutorials are centred on the following
questions: how does one represent mathematical ideas in a computer program?
And can one use math to represent computational ideas as well?

More specifically, a common thread running through all our teaching designs
are ideas related to the representation of real numbers in the computer’s memory.
Few rational numbers can be represented exactly in the memory available to
represent a number in the computer, let alone irrational numbers. Rounding
errors are important to be aware of for anyone using computers to model
mathematics of science: even though they are often very small errors, the can
accumulate and become very large if one is not careful (Mørken, 2017).

The overarching essential questions we ask our students across all our tutorials
are:

• How do you know if an error is a rounding error or a math error?

• How do you balance the need for efficiency (speed) with the need for
accuracy?

Of the three tutorials we designed2, this paper focuses on the second tutorial,
which took place in the middle of the semester. This tutorial was the least
successful in its initial version (in the sense that the students had a hard time
making sense of the tasks and ended up focusing more on the details than on the
big ideas). After a redesign, however, it became the tutorial where the students
had the most opportunities to work toward and show their understanding of the
material. Therefore, it provides valuable insight into the design process, and of
all the tutorials, we learned most from the iterative design process of this second
tutorial. The tutorial focuses on the following topical essential questions:

• Computers excel at the four basic arithmetic operations, and by extension,
polynomials. How do you represent a function like the logarithm using
only polynomials?

• What is the point of Taylor expansions? If we can calculate such a
polynomial, we already know the precise function!

2The other two tutorials are described in Paper II.
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In its final form, the tutorial introduction is centred around a single question
directed at the students: How do computers and calculators calculate logarithms?
As demonstrated in (Watters and Watters, 2006), logarithms are an example of
a mathematical quantity that some students use without understanding of the
concepts. Even students familiar with the mathematical concept may not have
the faintest idea how the calculator or computer calculates these numbers. As
we shall see, this is not necessarily difficult for the students to grasp, and we
expected that many of them would appreciate finding out what happens "under
the hood" after using log functions for several years in school.

For many students, the introduction of the Taylor polynomial appears as a
solution to a non-problem: How do you approximate a function that is already
known? Thus, while most students can calculate Taylor polynomials correctly
and perhaps even convince themselves that these polynomials are reasonable
approximations, for many the question remains: What is the point, when we
already have access to the function itself?

From an educator’s perspective, these two challenges can be tackled in
concert. If we had to re-invent the computer from scratch, how would we go
about programming the first logarithm function? Elder academics may remember
how logarithm tables containing some exact values were once used in lieu of
modern implements, but how do you go from those select values to an accurate
(enough) logarithm for any given number?

The stated learning goals of the final tutorial are that all the students should
understand (a) how the computer calculates logarithms, (b) how the way real
numbers are represented in the computer can be helpful in this regard, and (c)
how Taylor polynomials may be of use to us even if the original function is known.
We elaborate on the development of these learning goals in Section III.7.1.

III.4 Methodology

III.4.1 Context of Study

A tutorial is defined as an educational approach where "instructors are provided
with a classroom-ready tool to target a specific concept, elicit and confront
tenacious student misconceptions, create learning opportunities, and provide
formative feedback to students" (Council, 2012, p. 129).

We designed three tutorials for the first-semester course MAT-INF1100:
"Modelling and Computations" (Mørken, n.d.), which is common to mathematics,
physics, and electronics students at the University of Oslo (UiO). This course
is taught alongside courses in calculus and programming and is intended to
link these courses together. This set of courses is intentionally coordinated;
typically a mathematical concept is first covered in calculus, then MAT-INF1100
covers how to implement the concept numerically, and, finally, the students
write Python code to do just that in the programming class, as described in
(Malthe-Sørenssen et al., 2015).

To the best of our knowledge, this particular approach to integrate
computing intentionally across the curriculum is rather unique in undergraduate
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mathematics education. There are some other models for such integration
(for example, coordinating joint computational projects for mathematics and
engineering courses at Chalmers University of Technology, Sweden (Enelund and
Larsson, 2006; Enelund et al., 2011), and some courses offer explicitly-designed
courses to foster (such as the MICA (Mathematics Integrated with Computers
and Applications) courses at Brock University, Canada (Ben-El-Mechaiekh et al.,
2007; Buteau and Muller, 2017). Furthermore, sometimes mathematics and
computing are integrated in a third context, such as bioscience (Nederbragt,
n.d.).

However, the UiO model, in which concepts are reinforced across multiple
courses and programming is systematically integrated for first year students, is
not common. We point this out to provide some overall context for the study
we describe, and to situate our design activity within the broader departmental,
programmatic, and university systems in which our study took place.

III.4.2 Data Collection

The study was designed and conducted in five distinct phases:

• The initial design phase (spring 2019)

• The initial implementation phase, where we performed pilot research
interviews one week and observations in classes where the tutorials were
used the next (fall 2019)

• The second design phase, were we made changes to the tutorials based on
lessons learned (spring 2020)

• The second implementation phase, where we tested our improved designs
in new research interviews, now concurrent with the classes (fall 2020)

• The final design phase, where we made final versions based on data from
both implementation semesters (spring 2021)

We recruited students in two ways: (a) asking them to volunteer using an
online form during one of the first lectures of the semester, and (b) recruiting
groups of students during in-class observations (not possible in the second
implementation phase due to COVID-19 requirements).

In the initial implementation phase, we conducted 8 interviews with a total
of 13 students, of which 5 participated in two interviews and the rest in one.
Each interview covered just one of the three tutorials we designed. Gina and
Benjamin in Section 0 had already been interviewed using an earlier tutorial,
whereas Martin, Lydia and Roger from the same section would be interviewed
again using a later one.

In the second implementation phase, we conducted 7 interviews with 7
students, of which 4 participated in three interviews (all the tutorials) and the
rest in one. Rita and Lena from Section III.8 were present in all three interviews,
and the interview we present excerpts from here was their second one.
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In both phases, the first author interviewed the students and gave them
instructions to work together to solve the tasks as they would in class. We
captured video of the students and the whiteboard we made available to them,
video of their work on the computer, and audio of their conversation. In class,
had teaching assistants available to answer questions; in the interviews, the
interviewer took on this role if needed. In this way, we were able to resolve any
confusion that occurred as a result of the design. This made it easier to use
essential questions (see Section III.2.1) as a means to promote understanding
without risking that the students got stuck.

III.4.3 Analysis

After the interviews were concluded, we had the audio transcribed and selected
the most promising episodes as candidates for translation from Norwegian
into English. The first author flagged episodes that matched the evidence for
understanding that was identified during the preceding design phase (see Sections
Section III.5 and Section III.7). The rest of the research team independently
reviewed and validated these suggestions.

The first author translated the episodes that all the authors had flagged
and enhanced them by inserting images from the video recordings to provide
additional insight into how the students worked with the tutorial. The enhanced
transcripts were coded according to which type of evidence they provided. On the
basis of this coding, we analysed the enhanced transcripts to link this evidence
to design features and principles from (Wiggins and McTighe, 2005).

The flagged episodes were then coded by the first author for the kind of
understanding students exhibited, and what they paid attention to at the time
or just before. Black box thinking was similarly flagged. The rest of the research
team then reviewed this coding, using the enhanced transcripts to provide a more
complete picture in cases where there was uncertainty which factors affected the
understandings and non-understandings students displayed. The tutorial text
was also examined to ensure the understandings were the students’ own: for
example, when students expressed understandings that mirrored text from the
tutorial or hand-out, these episodes were omitted for that reason.

The first author then listed the remaining episodes and selected the ones that
most clearly impacted the design process or otherwise provided evidence of the
tutorials working especially well or poorly according to the learning goals. The
justifications for inclusion and exclusion were once again reviewed by the other
authors for validation. Even though this paper is an exploratory case study,
we wanted to ensure that we picked representative examples that each added
something to the take-aways we formulate at the end of the paper.

III.4.4 Design Experiments

We classify this study as design-based research (DBR), where information about
students’ learning experiences informs the next cycle of design and instruction.
In DBR, one defines pedagogical outcomes and create learning environments that
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address them, with special attention given to supporting human interactions.
One modifies the process until the desired outcomes are attained and finally
reflects on the process to reveal design principles Reeves et al., 2005.

This is not the only way to create research-based teaching. Another
alternative is developmental research, in which one first defines a problem,
then reviews literature and finally settles on the research design Richey and
Klein, 2005. We regard this method as less flexible than DBR in the sense that
one needs to know where one is going ahead of time. For more exploratory case
studies, like those featuring in this paper, DBR allowed the evolving designs to
be influenced by data. Additionally, the focus is on the pedagogical outcomes,
not research for its own sake. While we do not see these foci as mutually
exclusive3, we thought it important to keep the students’ learning outcomes in
focus, especially given the limited amount of literature in the overlap between
computing and mathematics (see Section III.2.2. In short, while the goal was a
product besides research (the tutorials), we also wanted to use research to make
a good product.

DBR excels at addressing complex, often cross-disciplinary, problems. It
also lends itself to authentic inquiry-based tasks, is able to reveal new design
principles and works on long time scales (two to five years) with continual
refinement. We find all of this this to be in excellent agreement with the design
principles of Wiggins and McTighe (Section III.2.1) and our research questions
(Section III.2.3). To identify design features students attend to and describe
the concepts they understood, we needed several cycles of design to produce
the desired outcomes. Especially the final research question with its focus on
extracting design principles from our experience aligns well with DBR.

In the following, we describe the evolution the tutorial which is the focus of
this paper through each of the five phases described in the previous subsection.

III.5 Initial Design

The initial design consisted of the three phases of backwards design as outlined
in Section III.2.1: learning goals, evidence, and learning activities.

III.5.1 Learning Goals

The learning goals for the initial design sought a compromise between several
concerns. Firstly, we considered the potential for including a significant
computational component that warranted a hands-on approach. Some of the
pre-existing course material tended to lean toward the mathematically abstract
side of things, and we wanted to bring in the computational domain to a larger
extent than before.

3In fact, we simultaneously performed research on students’ integration of mathematics
and computing using the same tutorials in Paper II.
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Secondly, we did not want to stray too far from the pre-existing learning
goals of the course (as summarised in Mørken, n.d.) so as not to risk the students
experiencing the activity as irrelevant.

Thirdly, we wanted to follow Wiggins and McTighe’s definitions of an
understanding as something that needs to be uncovered, not covered; something
that makes use of the facts but also explicitly requires the learner to make sense
of the content (Wiggins and McTighe, 2005).

Finally, we wanted to focus on a topic that students had difficulty with from
the traditional approach, in the experience of faculty teaching the course.

We reviewed the learning goals at course level and discussed the focus of the
tutorial with faculty teaching the course. They suggested that one topic that
students found particularly difficult was the fact that certain functions would
display divergent behaviour in certain regions when adding additional terms
to a Taylor series: the more terms one adds, the worse the accuracy gets. We
found this counterintuitive behaviour to be an excellent example of a concept
that required uncovering.

To understand the reason for this strange behaviour, one can consider the
definition of the Taylor polynomial:

f (x) ≈ T (x, a, n) def= f (a) +
n∑

i=1

f (i)(a)
i! (x − a)i

The main factor that assures convergence is the dominant factorial i!, which
ensures that higher order terms will only be small corrections to the preceding
terms, even for values of x far from the point a. However, for the logarithms
and its derivatives, this factor gets cancelled out by a similar factor in the ith
derivative. For the logarithm itself with i > 0, we have

f (i) (a) = (−1)i−1 (i − 1)!a−i

which, when inserted into the Taylor polynomial, yields

T (x, a, n) = ln a +
n∑

i=1

(−1)i−1 (i − 1)!a−i

i! (x − a)i = ln a +
n∑

i=1
−1

i

(
1 − x

a

)i

where the factorial in the denominator has been replaced by a simple factor i.
For the absolute value of the next term to be smaller than that of the previous
one, we require that:∣∣∣∣−1

i

(
1 − x

a

)i
∣∣∣∣ >

∣∣∣∣− 1
i + 1

(
1 − x

a

)i+1
∣∣∣∣

For large values of i, 1
i ≈ 1

i+1 . In this approximation, the convergence we desire
is assured by:

−1 <
(

1 − x

a

)
< 1

0 < x < 2a
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Thus, for any x ≥ 2a, convergence is not assured, and each successive term added
runs the risk of the approximation blowing up, diverging more and more from
the original function it is supposed to represent. This has profound consequences
for our choice of the point a used to create the Taylor polynomial: if we did not
know better, we would be tempted to pick a number like a = 1, so we could
simply drop the zeroth order term (since we then have ln a = 0). What we have
just shown, however, is that if we do so, we may have to abandon all hope of an
accurate approximation outside the quite narrow interval 0 < x < 2.

In fact, we have shown that for this class of functions, the choice of a cannot
simply be dictated by convenience but must be chosen so that for a maximal input
to the function xmax, we want to Taylor expand around the point a = xmax/2.
As seen from the remainder when plotted (see Figure III.6), it is desirable to
have a in the middle of the interval. Then, all that remains is to determine the
number of terms n one needs to ensure the required accuracy. For this, one
needs only consider the worst-case values x = 0 and x = xmax, since the error
(the remainder) grows smaller the closer to a one comes.

Our learning goals for the initial design were thus that the students (a) should
understand that more terms are not always better, (b) that the choice of a is
not always merely a question of convenience, and (c) that while we can make
the mathematical error (remainder) arbitrary small, the presence of rounding
errors mean that there is a practical limit to how good the approximation can
become on a computer.

III.5.2 Evidence for Understanding

Having defined the learning goals, we moved on to examine what we would
consider credible evidence for students understanding the concepts involved.
An important limitation of our context is that we were not re-designing an
entire course, but rather just designing tutorials to fit into one. Throughout the
semester, in each of the three weeks a tutorial would be run, we had access to
one hour of the students’ time in class and up to two hours for the students that
participated in interviews. Therefore, we were not in a position to design formal
assessments; whatever evidence we required needed to be part of the tutorial
itself.

To that end, we designed the tutorials as academic prompts (see Section
2.1). These require the students to think critically and not just recall knowledge.
The focus is on students providing explanations and defending their choice of
methods. Typically, these problems are open-ended, which is not the case here:
there exists an optimal choice for the pair of parameters a and n.

Even so, by requiring that the students use their hands-on experience with
the computer program to justify their eventual choice of parameters, we expected
that the tutorial worksheets would be able to provide evidence of four of the six
facets of understanding as follows: (a) explain (and prove) why the choice of
parameters are important, (b) interpret the plots (identifying rounding errors),
(c) apply their knowledge by identifying optimal parameters and writing code
that measured the error, and (d) display self-knowledge by comparing their
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initial intuition with experiences from working with the tutorial and reflecting
on the process.

III.5.3 Learning Activities

The initial tutorial design took a cue from the Maryland Tutorials in physics
(Redish, 2009), by having students use their intuition to sort statements about
Taylor polynomials into those that they agreed and those they disagreed with.
Some of these would be statements that often, but not always, apply, such as
"adding more terms increases the accuracy of a Taylor approximation". This task
sought to have students think about what they believed to be true regarding
Taylor polynomials, and we repeated the same task at the end of the worksheet
for comparison. In this repeated task, students were given the opportunity to
comment on statements which they had changed their opinion on, or statements
which they interpreted differently after having completed the tutorial.

After the initial task, we asked students to find the Taylor expansion of
f (x) = x−2, providing the first few derivatives to enable them to see the general
pattern f (i) (a) = (−1)i+1 (i + 1)!a−(2+i) that they could plug into the Taylor
formula. Next, we asked them to implement the following mathematical functions
as Python functions (here presented with correct solutions):

taylorterm (x, a, i) = − (i + 1)
a2

(
1 − x

a

)i

relerr (y, yexact) =
∣∣∣∣y − yexact

yexact

∣∣∣∣
The first function returns term number i of the Taylor polynomial4, and the
latter is the relative error, a common measure of accuracy. These functions
would then be used by two programs that we provided the students with. These
programs plotted the relative error as a function of x in two different ways: (a)
for several different values of a, keeping n constant (Figure III.1), and (b) for
several different values of n, keeping a constant (Figure III.2).

After producing the plots, the students were allowed to change the constant
parameter of each program and asked to explain the effects of both parameters.
We asked them to interpret what the plots were telling us, especially concerning
the rounding errors in the bottom of the plots, and the regions evident in
Figure III.2 where more terms make the approximation worse.

Next, we asked them to analyse their own taylorterm formula. They had to
identify the dominant factor (for large i), determine when this factor would grow
without bounds. This factor would be the main source of the divergent behaviour
and identifying it would also help students identify the region of stability where
the expansion always converges.

4In this first design, we chose f (x) = x−2 so that unlike with the natural logarithm, there
would be no need to treat i = 0 as a special case, and to allow for negative values of x. In
retrospect, f (x) = x−1 would have achieved the same, and it would also have been easier to
work with for the students.
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Figure III.1: Relative errors for the Taylor expansion of f (x) = x−2, with n = 10,
for different values of a. Originally, we called the number of terms kmax, which
confused some of the students, who were used to n from the lectures. As a result,
we changed this in the second design phase (Section III.7). Note that the second
axis is logarithmic, hence the "noise" for small values of relative error represents
the presence of rounding errors. In this plot, we see indications of higher values
of a resulting in a broader region of high accuracy for this function.

Their next task was to compare the result with the plots and explain how
they were connected (the students would be able to see the region of convergence
in the plots). Finally, we asked them to explain what it means for a Taylor
polynomial to converge. The idea was that they would connect the known
concept of convergence for a series of numbers to convergence of Taylor terms in
the sum.

As the final step of the design, we used the design standards in (Wiggins and
McTighe, 2005) to validate the learning goals, evidence and learning activities.

III.6 Results, part I: Initial Implementation

In this section, we will describe some results from the first round of implementa-
tion. We will present data from two different interviews - one with four students
and one with three - and describe what we learned from those interviews. In
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Figure III.2: Relative errors for the Taylor expansion of f (x) = x−2, with
a = 5, for different numbers of terms. Note the divergence outside the interval
0 < x < 2a, indicated by vertical dashed lines that we added as extra scaffolding
for the students.

particular, we will focus on where the tutorial described in Section III.5 fell short
of our expectations, and this will form the basis for describing the changes we
made based on these experiences in Section III.10.

Once the design was final, we set up interviews with volunteer students
recruited from earlier in-class observations of an earlier tutorial, as well as some
students that had volunteered to be interviewed at the start of the semester.
For this tutorial, we interviewed two groups of students, one with four students
and one with three. Due to scheduling conflicts, we had to break up the group
of students recruited in class, so that its members were spread over the two
interviews. As such, not all the students had worked together before.

The interviews for each tutorial were scheduled the week before that tutorial
was to be used in class. This meant the tutorial was tested during the same
week the relevant concepts were covered in lectures, as opposed to the week after,
which is typically done to give students some time to digest the material before
they are given tasks related to it. This is likely to have raised the difficulty for
the interview groups, as some students might not have been familiar with Taylor
expansions.
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The purpose of this was to allow for enough time to adjust the material
before subjecting all students to it. The following week, we had planned to let
the rest of the class work with the tutorials and perform in-class observations.
Unfortunately, the interviews revealed problems with the design that necessitated
a re-design from the ground up, as opposed to simple adjustments. As such, this
particular tutorial was only tested on the students we interviewed in the first
implementation phase, not the class as a whole.

The first group of students consisted of four students: Benjamin, Gina,
Martin, and Ruth. Martin had previous experience with computer programming
and often suggested what the group should do. Gina was verbally active and
asked many questions throughout the interview, often initiating discussion around
the mathematical concepts involved. Benjamin and Ruth spoke less than the
other two, and for the most part contributed observations and questions without
guiding the activity of the group as much as Gina and Martin.

Martin solved the initial mathematical task to find the Taylor expansion
almost singlehandedly, as he was the only student who was familiar with the
concept. The others expressed that they had not had time to look at the material
at the time of the interview. Gina took charge of writing the Python code that
reflected Martin’s work on the whiteboard. With input from the rest of the
group, she wrote the necessary functions and ran the code to produce plots.

As it happened, Martin made a mistake that made it difficult to reproduce
the expected results: in the Taylor expansion, he differentiated with respect to
the wrong variable, f (i)(x) instead of f (i)(a). We conjecture that this happened
because the tutorial used that variable in the example derivatives: f

′ (x) = −2x−3

instead of f
′ (a) = −2a−3. When this happened, Martin was attending to his

correct formula for the general Taylor expansion on the whiteboard, and his
general formula for the derivative (using the inappropriate variable) on his
worksheet.

Even though Martin displayed understanding in deriving these general
formulas, we interpret that the way he combined them on the whiteboard
(while saying they could "just plug it in"), is an example of black box thinking.
At the same time Martin displayed understanding by being able to explain what
he was doing to the other students, which exemplifies that understanding and
black box thinking need not be mutually exclusive.

The result was a series of plots that looked almost right, but not quite.
In interpreting the tasks, students assumed their plots (such as the one in
Figure III.3) were correct, when they did in fact look quite different from the
expected results (as shown in Figure III.1):

As a result of this, the interviewer had to intervene and alert the students
to the fact that their plots did not look right. A cursory examination of the
code did not reveal the error, which was only discovered by the first author
after the interview had concluded. In the end, the interviewer had to show the
students figures of correct plots that they could use to answer the questions
on the tutorial worksheet. As such, the tutorial did not succeed in giving the
students opportunities to self-assess, as they had to depend on the interviewer
for this.
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Figure III.3: Plots produced by the students’ code in the first phase interview.
Note the difference from Figure III.1.

Another problem that required interviewer intervention was the task asking
students to analyse which factor in the Taylor terms would dominate when the
number of terms grew large. As it turned out, the expression Martin wrote on
the whiteboard5 for Taylor term number i, which corresponds to

T (x, a, i) = (i + 1) (−x)−2−i (x − a)i

did not group all the powers of i together, but instead kept them as two separate
factors. As a result, it was difficult for the students to pick any one of these
factors as the dominant one - it would depend on how far x was from a. Again,
it was demanding for the students to self-assess their expression. They were able
to interpret what was asked of them and explain their thinking, but the tutorial
did not support them in figuring out what do to when they did not know what
to do, to put it in the terms of Wiggins and McTighe.

The interviewer again had to intervene, assuring the students that they could
not have known that writing the expression in the way they did would make
the task difficult to complete. Gina then transformed Martin’s expression into a

5The error where he had f (i)(x) instead of f (i)(a) is still present in Martin’s expression,
but that in itself would not have prevented them from completing this particular task.
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more usable one on the whiteboard. It turned out that even with an expression
that was easier to work with, the students had some difficulty seeing that ci

would eventually grow larger than i for any c > 1:

Martin: Yeah, 210 is 1024, but 10 is just 10.
Gina: 10is just. . . so that makes a lot of sense, OK.
Interviewer: What about 1.01n, is that greater than n?6

Martin: No, that’s. . .
Gina: No [writes on whiteboard] eh, oh god. . . 1.01, was it?
Interviewer: Yes.
Gina: Raised to the power of n.
Interviewer: Will that also be greater than n when n goes toward
infinity?
Gina: No, because wasn’t it, that is, hmm. . .
Martin: That would grow very slowly.
Gina: Mhm, slowly.
Benjamin: But doesn’t it become. . .
Gina: If it’s 2 it still becomes [inaudible]
Martin: No, it will grow more slowly.

We interpret this exchange as the students focusing on the slow initial growth
of 1.01i compared to i itself. This seems to have prevented them from seeing
(or remembering) that exponential growth will always overtake linear growth at
some point7. Only when the interviewer pointed this out to them did they agree
that 1 was the limit for the exponential term dominating the growth, and that
0.99i would drop off toward zero as i grew larger.

While the students in this example were able to justify their answer and
generalise knowledge about functions, it also demonstrates that this version of
the tutorial often got the students caught up in details rather than pointing
them toward the big ideas and essential questions.

In terms of the design principles, it was not clear to them where the
instructional unit was headed and why, which would have been necessary for us
to claim that the tutorial was effective. This was amply illustrated toward the
end of the interview, while asking follow-up questions:

6In this version of the tutorial, the number of the current term was called k. This was later
changed to i so as to be more consistent with the rest of the course material. The students
seemed to prefer to call this quantity n, which would normally denote the total number of
terms. This choice was not in conflict with the tutorial, however, which instead used kmax to
refer to that quantity.

7An example of such a comparison when i grows large would be that i! > ci > im, where
c > 1 is a real number and m > 1 is an integer. In short, factorials dwarf exponentials, which
again dwarf integer powers.
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Interviewer: Have you thought about why we are calculating
approximate functions that we already have exact expressions for?
What is the point of that? We do have. . .
Gina: I’m wondering the same thing, I don’t really know, haha. I
was thinking. . .
Benjamin: But what is it you use Taylor polynomials for, really?
Interviewer: Didn’t [the professor] tell you?
Benjamin: I didn’t catch it but I think [inaudible]
Ruth: [inaudible] didn’t say that much about it either
Martin: Ehm, as long as you don’t take a limit where kmax goes to
infinity then you have a, is it closed form it’s called? Like, one that
you can calculate simply, though. [. . . ] A sine [inaudible] has a direct
one, or like an expression you can just plug everything into.
Interviewer: Shit, that reminds me of something, because if there was
no log function in Python, how would you be supposed to calculate
it?
Martin: Yes. [Gina and Ruth voice agreement]
Interviewer: Then you could actually, ah, I have no idea how the
logarithm is calculated. But you could use Taylor, but then you just
have to know about the limitation8, hehe.
Martin: But I think it’s that way the computer does it with the
[inaudible] functions, that they make some approximation or other
of the type Taylor polynomials or something, and uses that to
calculate. . .
Interviewer: Yeah.
Gina: Huh.
Ruth: Cool.

The body language and tone of the students toward the end of this exchange
suggested to us that they would be interested in trying to make their own log
function using Taylor polynomials. This would have provided a means to hook
and hold their attention that was missing in this first version of the tutorial.
As such, it was not as engaging as we would have hoped. However, while
it was unfortunate that there were problematic issues that arose, the initial
implementation gave us opportunities to adjust and improve the tutorial.

Before we move on to the next design phase, however, we include an excerpt
from another interview, which took place later the same week. We had been able
to quickly tweak some of the issues that arose for the first group of students;
namely, we updated the example with the wrong variable and provided a plot

8The narrow area of convergence: 0 < x < 2a.
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students could use to check their results against. Note that these were only
minor edits and did not constitute a new design phase.

In this interview, three students that we call Roger, Mathias, and Lydia were
working on a slightly revised version of the same tutorial. Thanks to these minor
revisions, they did avoid differentiating with respect to the wrong variable and
obtained the correct plots. But Roger several times expressed a concern about
the students having trouble seeing the forest for the trees, as it were:

Interviewer: In Exercise 6 we will find out why that happens.
Lydia: Yeah
Roger: Yes, because I have no idea what we are doing. I don’t
understand this.
Lydia: Because. . . no, it’s a little strange and the values are very
confusing, what is k and what is a and all that.

A little later, Roger elaborated on this when prompted by the interviewer,
connecting his confusion to his lack of understanding of Taylor polynomials as a
concept at that point in the semester. Lydia, on the other hand, seemed to have
difficulty keeping track of all the variables involved:

Interviewer: [to Roger] It’s very good that you’re saying what you
said earlier, and it’s helpful if you keep doing that. Eh. . .
Roger: I don’t have a complete grasp of what Taylor polynomials
are, really.
Interviewer: We can have a little de-briefing afterward as well, so
that all. . .
Lydia: Mhm [affirmative]
Interviewer: . . . the threads come together in the end, but. . .
Lydia: Mhm [affirmative]
Interviewer: . . . part of my point is, if confusion arises, what kind of
confusion is it, so it’s just good that that is surfacing. We will follow
this up afterwards as well, yes.
Lydia: It is a little confusing that there are two different plots where
one has a varying and the other kmax. I thought that was. . . I don’t
really see it, but yeah.
Interviewer: Much information?
Lydia: [nodding] Much information.

To summarise, the interview with Gina, Benjamin, Martin and Ruth alerted
us to four issues with the tutorial: (a) we misled the students into differentiating
with respect to the wrong variable, (b) we assumed the students’ Taylor expansion
to be of a form that easily would allow them to identify the dominating factor,
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which we discovered was not always the case, (c) we assumed students are used
to reason around identifying with dominating factors, which they may not be,
and (d) we lacked a way to hook and hold the students’ attention.

Regarding the last issue, we note that Roger and Lydia from the second
interview alerted us to a related one: that the tutorial’s focus was too narrow
and did not point the students toward an issue that was essential from their
point of view (What is a Taylor polynomial? What is it good for?). In addition,
they also expressed that the amount of information the students had to attend to
felt overwhelming at times. The tutorial certainly overshot the one-hour target,
and as a result of these issues, it was dropped from a wider test run in class the
following week. In addition, we flagged this tutorial for a thorough re-design
from the ground up.

In spite of these very real problems, the tutorial did succeed in one thing: the
students spent a lot of time trying to make sense of what they were doing, and
in many instances provided evidence for their understanding by explaining their
reasoning. Even though the tutorial was successful in this regard, we still wanted
to create a version of it that did not only this, but also gave the students a clear
goal, made Taylor expansions seem relevant to them, and did not overwhelm
them with information. We also wanted to provide more opportunities to self-
assess, so that the students could have realised earlier and by themselves that
something was off with their plots.

III.7 Second Design

During and after the initial round of interviews, we discussed the emerging
issues with course instructors and education research colleagues. We compiled
the following list of improvements that could be made to the tutorial for the
second design phase: (a) to forego the narrow focus on convergence of Taylor
polynomials for the bigger issue demonstrating a use for approximating known
functions, (b) develop the tutorial to show students why Taylor polynomials
are useful, not just tell them, (c) provide sufficient scaffolding so that students
are not using all their cognitive resources keeping track of what the different
variables are, and (d) as far as possible retain students’ engagement with the
concepts and keep them from using the computer as a black box.

III.7.1 Learning Goals

An issue with Taylor polynomials that we identified in the first round of interviews
(Section III.6) is that students may not understand the point of them: if you
already have the exact function, why bother with an approximation that is
less accurate? Finding good motivations for Taylor expansions can also be a
challenge for teachers (Johnson, 2011). Some even suggest that we might not
want to motivate Taylor expansions at all (Šikić, 1990).

One often overlooked point is that in computers, approximations are central
to computing most quantities that go beyond the four basic arithmetic operations.
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While these operations, that computers excel at, will suffice for calculating any
polynomial, other common functions such as exponential, trigonometric and
logarithmic functions are not at all trivial for computers to deal with (Arlin,
2012). As such, we depend on these approximations every day, often without
being aware of them.

From an educator’s perspective, we noticed that the two issues mentioned
above are intricately connected. If we imagine, as we did in the interview quoted
in the previous section, that we are re-inventing the computer from scratch, how
would we go about programming the first logarithm function? The students in
the interview responded with interest when confronted with this mystery. What
is the secret behind this magician’s trick?

Taylor polynomials would seem to provide a solution, as polynomials only
require the computer to master the four basic mathematical operations. But
this simplicity comes at a heavy cost: one must pick a point a close to the input
value x to create the polynomial, otherwise the number of terms required for
sufficient accuracy are prohibitive, even for a modern computer.

To make matters even worse, as we saw in Section 5.1, if the function is a
logarithm, we have to pick the point that we expand around with care, or the
accuracy may worsen as we add more terms. It seems that creating one Taylor
expansion for all values of the logarithm would require us to expand around a
point so far from 0 that the accuracy would be abysmal for small numbers.

On the other hand, if a way could be found to overcome these difficulties,
we would in effect have killed two birds with one stone: Taylor approximations
would be useful in a fundamental sense, and the way logarithms are calculated
on the computer would become much more transparent to us.

As the second version of the tutorial neared completion, it was suggested by
faculty teaching the course that we also include the concept of the remainder
in the tutorial. The reasons for this were (a) that students struggled with this
concept and could benefit from hands-on experience with it, and (b) that if the
students were making their own log functions using Taylor polynomials, the
remainder would be useful to them as it provides an upper bound of the error.

We ended up with the following revised learning goals for the second version
of the tutorial:

The students should be able to

• explain how computers calculate logarithms

• explain the usefulness of Taylor polynomials for known functions

• explain how the representation of real numbers on the computer is helpful
here

• interpret plots of the remainder

• apply what they have learned to pick good parameters

• see the problem from both a mathematical and computational perspective,
and be able to merge these perspectives
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• identify own preference for working computationally or mathematically
and self-assess their understanding of either

III.7.2 Evidence for Understanding

To ensure that we had evidence for all these understandings, the updated tutorial
explicitly asked the students to explain and interpret. A stated goal of the tutorial
was that every student in the group should understand what was going on, and
they were encouraged to discuss things they were unsure about with the teaching
assistants. The final tasks asked the students to reflect on using mathematics
and computing together in this fashion.

III.7.3 Learning Activities

The new version of the tutorial first introduced the essential questions: how are
logarithms calculated, and what are Taylor polynomials good for? Then the
students were given functions that calculated the Taylor polynomial and were
asked to write a function that calculated the absolute remainder. We listed and
explained all the functions and variable involved, to help students not become
overwhelmed by all the symbols, like Gina in the previous version.

The starting point for the re-designed tutorial was to figure out how computers
actually calculate logarithms of real numbers. The key turns out to be a mapping
that reduces the range of the function from all positive real numbers to a very
small region. One way to do this is to exploit the way a positive real number is
represented as a mantissa and an exponent in the computer (which, incidentally,
was already part of the course curriculum),

x = M · 2E

where 5 ≤ M < 1 and E is an integer. We can obtain M and E using the
Python function called math.frexp(). Taking the logarithm of each side and
applying logarithmic laws with which the students are familiar, we obtain

ln x = ln M + E · ln 2

which simplifies things more than is apparent at first glance. If we use Taylor
polynomials for our logarithms9, ln x requires machine-accuracy for all real
numbers, whereas ln 2 is a known constant, and ln M only requires us to
approximate the logarithm accurately for numbers between 0.5 and 1 (Hammen,
2012).

In other words, this elegant trick not only addressed both the first two bullet
points above, but additionally leveraged and made relevant something that was
already part of the curriculum: understanding representations of real numbers
on the computer. After this was done, we incorporated the concept of the
remainder.

9In practice, approximations requiring fewer terms than Taylor polynomials are used, but
the basic idea is the same (Hammen, 2012).
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In the course compendium, the absolute value of the remainder can be written
in two ways. The first involves an integral, and we judged that adding a second
layer of inaccuracy by having the student integrating numerically was needlessly
complex. Therefore, we chose the other representation of the remainder of a
Taylor polynomial n terms:

R (x, a, n) =
∣∣∣∣f (n+1) (ξ)

(n + 1)! (x − a)n+1
∣∣∣∣

In fact, the only thing distinguishing this expression from that of the (n + 1)
term of the same Taylor polynomial is the replacement of f (n+1)(a) by f (n+1)(ξ),
where min (a, x) ≤ξ ≤ max (a, x). We do not know the precise value of this
number unless x = a, in which case the remainder is simply zero (Mørken, 2017,
pp. 220-221).

We decided that we could use this limitation to make a point to the students:
When in doubt, pick the worst-case scenario. In this case, that meant choosing
the ξ that makes the remainder as large as possible. That way, we do not risk
underestimating the error, only overestimating it. In our case f (x) = ln x, the
absolute remainder becomes:

R (x, a, n) =
∣∣∣∣∣ 1
n + 1

(
x − a

ξ

)n+1
∣∣∣∣∣

In this case, with ξ in the denominator, we obtain the largest possible remainder
by picking ξ = min?(xa). The resulting expression would be usable by the
students to plot the accuracy of their approximation over a range of x values
without resorting to a direct comparison with a pre-existing log function, as in
the relative error approach we described in Section III.5. We anticipated that
such an approach could support the idea of re-inventing the logarithm from
scratch, which our students in the first round of interviews found so intriguing:
being able to estimate the error without needing to compare with a pre-existing
function would add to the learning activity’s authenticity.

To ensure that students got the plots that we expected them to, we gave them
a test case using some default parameters to test and self-asses their function
with, see Figure III.4. Note that we used ln a instead of a as a parameter for
these functions, so that the zeroth term of the Taylor polynomial would simply be
the value of that parameter. We can always recover a = eln a, and this approach
ensures that we do not have to calculate ln a - we can simply choose it instead.

When the students had a working remainder function, we asked them to
implement their own log function in several steps: (a) provided the representation
of real numbers in the computer, find out what happens when you apply the
logarithm to such a number, (b) implement the result as a function in Python,
and (c) self-assess their work against a test case with the same parameter values
as in Figure III.4. We gave the students a machine-accurate value of ln 2 to use
in their function.

Next, the students combined the results of the previous two tasks. They
could change the parameters in the remainder plot to find parameters ln a and
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Figure III.4: Test case for the remainder function. If the students’ function
reproduced this plot, they were free to move on to the next task. Note the slight
asymmetry of the curve. The dashed line represents our good-enough threshold
value of 10−10 for the remainder. In this second version the students had to
change the plotted region as well, from (1, 14) to (0.5, 1). In the final version
of the tutorial, we instead give them an example in the interesting region (0.5,
1) right off the bat, to give students more time to focus on activities that point
toward the learning goals.

n that made the remainder accurate enough in the entire interval between 0.5
and 1. We found that an upper limit of 10−10 for the remainder made Taylor
expansion accurate enough for our purposes. Then, they were to use these same
parameters in their own log function and compare the result with the log function
from the standard numpy library.

Finally, we asked the students to reflect on the big ideas involved and their
own learning.

III.8 Results, part II: Second Implementation

We conducted a new round of research interviews with students one year after
the initial round. This time, the interviews took place at the same time as the
group sessions where the other students worked on the same tutorial in class.
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From our experience with the first implementation phase, we deemed the designs
to be finished enough that there would be no longer be a need to update them
between interviews and classes. This change also helped with scheduling, as we
knew the students to be available for interviews at that time and making sure
we did not mix students from different cohorts.

We originally planned to interview three groups of three students for each
tutorial in the second phase. Due to Covid-19 safeguards, this was reduced to two
groups of two students for this particular tutorial. One student was designated
to work on the computer, which mirrored its screen on a large external display
for the other student and the interviewer to see easily. The other student was
designated to work on a large whiteboard when necessary. The interview protocol
was largely unchanged from the first phase.

Most of the interesting episodes in the second phase came from our interview
with two students whom we will call Lena and Rita. They were both fairly
outspoken and took initiative to drive the work forward. Rita expressed a
preference for working mathematically over doing programming and chose the
whiteboard, while Lena, who worked the computer, had some limited coding
experience from high school IT classes that mostly focused on web pages,
databases, and the like. Nonetheless, throughout the interview they both
contributed substantially to the work on both the whiteboard and the computer.

To save time, we provided Rita and Lena with a sheet that contained both
the general remainder formula and the formula as applied to the logarithm
specifically. Based on this, the students wrote the code in Code Sample III.1,
which calculated the value of the remainder and then used provided test code to
make a plot that confirmed the correctness of their implementation.
def errorterm(x, lna, n):
a = exp(lna)
if a <= x:
xi = a

else:
xi = x

rest = 1/(n+1)*abs(((x-a)/xi)**(n+1))
return rest

Code Sample III.1: Rita and Lena’s implementation of the function that
calculated the remainder. They wrote everything except the first two lines, which
were given in advance as scaffolding. The function name errorterm was in
later versions changed to remainder, to better evoke the relevant mathematical
concept in familiar terms.

Their next task was to use the representation of real numbers on the computer
to make their own log function. Rita quickly thought of applying logarithm rules
to the exponential representation of a number and wrote down the expression
that she had suggested on the whiteboard (Figure III.5). She then asked the
interviewer if that was what they were supposed to find. The interviewer
confirmed this, and we note that being able to self-assess the results would have
been advantageous for the students at this point.
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Figure III.5: Rita’s usage of logarithm rules on the machine representation of
x. The variable names are the same ones we used in the tutorial text, intended
for Python variables. Note that Rita was flexibly able to apply mathematical
thinking to these variables nonetheless: she switches from Python syntax to
mathematical syntax after the first line.

Interviewer: But is it unclear why we wanted to get this expression?
Rita: Eh. . . No. I suppose it is to see something like how much the
error increases, perhaps? I think [looks over at Lena].
Interviewer: What are you thinking of there?
Rita: Well, like, that, I don’t. . .
Lena: Like, rounding error?
Rita: Well, more like it increases with that fac. . . [laughs] I don’t
know for sure. Ehm. . . Yeah, but sort of if x is a large number, then
in a way. . . then you go far away from a, then in a way it becomes a
larger number, and then that exponent, then it becomes larger. And
then, I’m not really sure, but I’m sort of thinking that then the error
increases further.

These last two exchanges reveal that the purpose of manipulating the
expression in Figure III.5 was not entirely clear to the students. Even though
they were able to do what the task asked them to, they were not sure that
they were finished with the task, and we think it likely that they were trying to
connect the task to things they had seen in lectures as a result. While Rita’s
analysis of the error could be the start of a fruitful mathematical argument
in itself, it appears that the purpose of this particular task should have been
clarified for the students; in other words, they were not entirely sure where the
tutorial was headed and why.

Afterwards, Rita and Lena attempted to connect their work on the whiteboard
to what they had learned in class and to the plot from their code until the
interviewer encouraged them to move on to the next task. They went on to
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write the code for the logarithm function, but they ran into an issue with the
provided taylor function, that calculated values of the Taylor expansion:

Interviewer: Is there something that’s a little unclear?
Rita: We don’t understand how we should use the function taylor
to calculate the logarithm. Does it give. . . does it return a logarithm?
Interviewer: It sh. . . Yes, that is, it’s an approximation. . . to. . .
Lena: So, if we send in10. . .
Rita: Oh, yeah! Yes, because the Taylor polynomial is, it is, like, the
Taylor polynomial of the logarithm.
Interviewer: It would have been nice if that were a little clearer, yes.
Good point.
Rita: Yes. OK. We. . . That Taylor polynomial is in a way an
approximation of the logarithm function.
Lena: OK, yes.
Rita: And then, in a way, it is the sum of all the terms in the Taylor
function, then.
Lena: Yes.
Rita: Which is almost the logarithm function, just. . . except for that
remainder that we calculated.

It took only the mention of taylor being an approximation to have Rita
conclude, correctly, that it was an approximation for the logarithm. Until the
interviewer mentioned this, she only referred to this function as the sum of general
Taylor terms, not something related to the logarithm in particular. Furthermore,
this exchange demonstrates that she was able to explain the relation between
this function, the remainder, and the log function the students were tasked to
make.

There may be a connection between the tables of variables and functions in
the beginning of the tutorial, and this kind of reasoning. Overall, we noted that
the students had far less difficulty keeping track of the various variables and
functions than the students in the first implementation phase, and we attribute
this to these tables and better alignment with the compendium’s choices of
variable names.

Rita and Lena wrote the function in Code Sample III.2, after some further
clarifications from the interviewer. They tested the function and confirmed
that it produced the expected result. Next, they proceeded to choose better
parameters than the default ones. After some discussion and experimentation
with parameters, they found out that n = 1000 made the code run rather slowly.
They settled for n = 100 and decided that they wanted the parameter a in the
middle of the interval of interest:

10Lena’s statement refers to the input parameters that gets sent into the function, but this
got obfuscated in translation.
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def taylorlog(x, lna, n):
mantissa, exponent = frexp(x)
log2 = 0.6931471805599453
lnx = taylor(mantissa, lna, n) + exponent*log2
return lnx

Code Sample III.2: Rita and Lena’s implementation of the logarithm function.
They wrote the last two lines, the rest was given in advance.

Rita: Maybe it’s best to have. . . that a is in the middle between 0.5
and 1?
Lena: Yeah. 0.75?
Rita: Yeah.
Lena: And then it’s ln 0.75?
Rita: I can’t do that one in my head. Eh. But this one [indicates
the code] can calculate that, though.

Here, Rita pointed to a problem with using ln a as an input parameter. To
get a in the middle of the interval 0.5 ≤ x < 1, the students would need to know
the value of ln 0.75 They could have found one by trial and error through plotting
the remainder (as plots like the one in Figure III.4 do display the value of a),
but Rita expressed some dissatisfaction with this approach, and stated at the
end of the interview that she generally liked precise expressions for quantities.

They tested their choice of parameters and found that they resulted in
accuracy well beyond what was needed for the entire interval, as seen in
Figure III.6. The interviewer, noticing that the accuracy was in fact well
beyond what the tutorial required11, challenged the students to find out how
few terms they could get away with:

Interviewer: How far can we get it to go? With that ln (a)? How
few terms can we get away with?
Rita: Ehm. . . I guess one has to. . . One could calculate it [by hand].
Or, sort of. We could either just try with a lot of different n’s.
[laughs]
Lena: And stopwatch and just see how fast it goes? [laughs]
Rita: And just take the smallest n. If not, then you can sort of set
that, if you set the remainder as 10−10, then. . .
Lena: Yeah. Can we manage that?

11A remainder smaller than 10−30, or 30 decimals would be much more accurate than the
15-16 decimals the computer can accurately represent in 64-bit double precision. Hence, the
rounding error that comes from using this precision would be about 1015 times larger than the
mathematical error in the Taylor expansion itself.

144



Results, part II: Second Implementation

Figure III.6: The remainder plot with Rita and Lena’s initial choice of parameters.

Rita and Lena looked up the mathematical formula for the remainder once
more and decided to look for an analytical solution. This was not anticipated:
the design had simply assumed that the students would use trial and error and
let Python do the heavy lifting (which would indeed be a black box approach).
That the students themselves saw a possibility we missed as designers was both a
pleasant surprise and a reminder that we should not underestimate our students’
potential appreciation of mathematical rigour.

This impromptu addition to the tutorial (that was later added to the final
version we describe in Section III.9) hooked the attention of both students,
which certainly fits well with the WHERETO prompt for designing learning
activities in the UbD framework. In terms evidence of understanding, we shall
soon see that this challenge got them to apply their mathematical knowledge to
the task. Beyond this, there are two features of the design that we claim helped
the students in this work and may also have influenced them in believing that
such an approach would be fruitful in the first place.

First, we see that the students’ attention was directed to the formula, which
provided them with a solution for the remainder in the particular case of the
logarithm. Having this formula available, whether it be the result of the students’
own work or, as here, as a provided resource, may have served as a natural entry
point. This formula became the right-hand side of the equation they were about
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to set up.
Second, we also see that they were given a simple, if arbitrary, threshold for

the remainder at 10−10, as opposed to not knowing or having to guess. Trusting
that this threshold would produce good enough approximations (which we shall
see that it did), supported setting up the left-hand side of the equation. Put
more concisely, the design offered up quantities that the students were able to
assume being equal to each other, and then investigate analytically what followed
from that assumption.

Shortly after asking Lena for the remainder formula of the logarithm (provided
in the hand-out we gave the students), Rita suggested the following:

Rita: Mm. Because if we set it equal to
Lena: 10−10?
Rita: Yeah.
Lena: Yeah.
Rita: And then you calculate12? Shouldn’t that work? And then
you solve it for n?
Lena: Yeah, and then you get which n wanted in? Yeah.
Rita: [. . . ] Should we try? [. . . ] Or should we just use trial and
error?

Rita and Lena seemed a little bit unsure about how to proceed, and the
interviewer commented that if they didn’t use trial and error, they would need
to test for a lot of x values to ensure that the remainder was below the threshold
everywhere. Rita then demonstrated her understanding by being able to justify
the analytical approach:

Rita: Oh yeah, no, but I thought that we just tested for 0.5 and 1
because that’s the worst case.
Interviewer: You wanted to test the endpoints where, sort of, it’s the
worst case?
Rita: Yeah.
Interviewer: That sounds like a really good idea to me.

We interpret this exchange to be afforded by two design features. First,
the tutorial explicitly mentioned and explained worst-case thinking in helping
students pick a value for the unknown parameter ξ. This might have influenced
Rita’s thinking about the current task, as she uses the phrase "worst case"
explicitly. Note that Rita is providing evidence for perspective here, as she looks
at a problem designed to be solved using computing in a mathematical way.

Second, just prior to asking for the formula, Rita had seen the plot of the
remainder for the entire interval and noticed its U-shape (Figure III.6) and

12The implication that she meant a calculation by hand was obfuscated in translation.
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seemed to have interpreted that "higher is worse" in the that plot, allowing her
to identify the points that were worse in terms of accuracy than all the rest. In
addition to this plot, the students were attending to the example plot in the
tutorial (Figure III.4) and had both plots side by side on the computer screen.

Rita attended to the remainder formula and proceeded to set it equal to
10−10. She then attempted to solve the resulting equation on the whiteboard.
Unfortunately, the unknown parameter n ended up in two different places, as
seen in Figure III.7, and the students quite correctly concluded that they lacked
the mathematical tools to eliminate one of these while preserving the expression’s
correctness. They tried the common approach of taking the logarithm of both
sides to get the unknown quantity out of the exponent, but as a result ended up
trapping the other instance of the unknown inside the logarithm:

Figure III.7: The endpoint of Rita’s first whiteboard calculation of the number
of terms.

The typical way to deal with the latter would be to reverse the process, in
effect making it circular without bringing the students closer to a solution. At
this point, Lena suggested representing the result of their mathematical work in
Python so that they could find a solution:

Rita: ln(1010) equals ln . . . But we don’t get an expression for n in
this case.
Lena: No. [inaudible]
Interviewer: What’s the problem here? Or what were you about to
say, Lena?
Lena: Mm. I was about to ask whether it’d be easier to write
that formula there [indicates Rita’s work] in Python or something.
Whether we’re able to calculate it in that case.
Interviewer: You try that.

This exchange demonstrates that the students were able to justify why they
would want to translate a computational problem into an equation and back.
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This fits well with the perspective subcategory of understanding in the UbD
framework. We attribute this particular occurrence to the overall framing of the
tutorial as a computational activity. We emphasised the computational nature
of the work in the design and provided mathematical resources separately from
the main tutorial (as a form of appendix). We believe this led the students to
expect needing to use Python throughout and have a low threshold for resorting
to computational solutions.

In the same way, it is possible that having many more years of experience
with mathematics (as opposed to computing) may have equipped them with a low
threshold for resorting to analytical mathematics on the whiteboard. However,
it should be pointed out that giving the students designated responsibilities
- one being in charge of the computer, the other the whiteboard - may have
enabled each of them look for opportunities to use "their" tool. If so, it may
warrant consideration to make this a permanent feature of the tutorials even
after COVID-19 safeguards are no longer required.

Rita and Lena’s first attempt at solving the equation using computing was
an example of the black-box mentality that we hoped the tutorial would help
the students grow out of: Rita asked twice if she could use GeoGebra to solve
this equation, claiming that would be the simplest way to find the answer, as
you could just write the expression, and that she was skilled in this kind of
solution. What triggered the black box approach seemed to be that the students
recognised that they were unable to find an analytical solution, by attending to
the impossibility of isolating the unknown quantity:

Rita: Yeah. GeoGebra can do it for us, I think.
Lena: Yeah. So that we don’t have to do it by hand if we’re not that
skilled with calculating logarithms. [laughs]
Interviewer: But is there also a different problem that makes this
difficult to solve for. . . ?
Rita: [indicating her work on the whiteboard] I kind of feel that when
we have n there and. . . Because now we get n + 1 there, but then we
have the logarithm there, and then we need to raise to the power of
e, but then it becomes e to the power of n + 1 again. And I don’t
really see how we are supposed to get an expression [inaudible]
Lena: No, to get an end of it, sort of.
Rita: Yeah.

GeoGebra (“GeoGebra”, n.d.), which featured among the examples in Section
2.2, is a plotting software which has been commonly used in Norwegian high
schools throughout the 2010s. The approach that Rita described would entail
simply writing down each side of the equation and reading off the solution based
on the point of intersection, and it is possible that this was Rita’s go-to strategy
when faced with something she could not solve by ordinary means.

It is important to note that Rita’s explanation is correct: this equation is
impossible to solve analytically. Its solution is called the product log function

148



Results, part II: Second Implementation

or Lambert W-function (“Wolfram Alpha”, n.d.), and is simply defined as the
inverse function of f (W ) = WeW . This is not an explicit definition of the kind
these students are used to, and we suspect they would not find it very helpful.

While recognising that the equation could not be solved analytically and that
a numerical solution might still be possible demonstrates understanding as in the
six facets defined by Wiggins and McTighe (see Section III.2.1), Rita appeared
animated when explaining this, and we interpret this as frustration that her
mathematical work appeared to be going in circles. She stated in the follow-up
questions that she did "like having an expression for things" and seemed to
prefer solutions with mathematical rigour. We interpret her preoccupation with
using GeoGebra to solve the equation as the only alternative she saw when the
equation could not be solved by ordinary means.

Lena’s comment, in contrast, seemed to indicate that a solution might be
found by hand, but that she doubted she had the required skill. One could
argue that GeoGebra does not have to be used in a black box fashion, as the
students could have discussed the merits of plotting the solution and found an
intersection point more generally, perhaps using Python to do so since GeoGebra
was not available during the interview. This, they did not do, and alongside
Rita’s statement that "GeoGebra can do it for us", Lena provided support for
our interpretation of this event as black box thinking in the follow-up questions.
After the students had completed the tutorial, she linked using computing in
mathematics to convenience:

Lena: No, really, the thing is that when there are very complicated
expressions, or like when we have something raised to the power of
1000 or something like that.
Interviewer: Mhm. [affirmative]
Lena: Then you do quickly think that it can’t be done by hand. But
that it’s quite easy to type. And then you get an answer. So then
you save some time.

Their first Python attempt went along similar lines, as they translated the
equation into their Python editor and tried to find some function that would
solve it for them:

Rita: How do you, like, get that to solve for n?
Lena: Yeah. Are there some functions in Python? "Solve equation"
or something like that?
Rita: Maybe. Try some thing or other. Just write something like
"from math import *", it’s guaranteed to be a, sort of, math module.
Interviewer: [laughs] I think it’s a bit advanced to do that. . . to solve
it symbolically, that is.
Lena: OK.
Rita: There isn’t anything called "solve"?
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The interviewer instead suggested a more low-level approach that (a) leveraged
Python features the students had already used in class, and (b) focused on how
Python found the answer rather than the efficiency of finding it. To avoid blatant
cues, he described what he wanted the program to do in hopes that the students
would recognise it, rather than using familiar terms:

Interviewer: But, I do have an idea for how we can do this thing.
Lena: Yeah
Rita: Yeah, okay.
Interviewer: Uhm. The question is whether I can make you think of
that same idea without simply handing it to you.
Lena: OK. Do you have a hint?
Interviewer: A hint. OK. Eh. We could just try different n values
and see whether it becomes 10−10 though.
Lena: Yeah.
Interviewer: In this one [indicates the equation]. But it could also be
that there is a way to have Python try. . . a lot of different n values
for us. So that we don’t have to try each and every. . .
Rita: Oh, yes.
Lena: For loop?
Rita: If we write, like, while or for, yeah.
Lena: Yeah. That’s not such a bad idea.
Rita: No, but then it was how. . .
Lena: OK.
Interviewer: Actually, we can also have that while stop exactly when
we’re happy with the [value of the remainder] as well.
Rita: [looks at equation on whiteboard] Yeah, that’s true. If we just
write, like, (n + 1) · 3n+1. . .

As this exchange shows, the students responded to the rather explicit challenge
of deciphering which programming concept the interviewer was thinking of - a
loop. This demonstrates their understanding of a loop as a way for the computer
to repeat something with variation. Here, the students showed that they were
able to see the challenge of solving the equation from a computational perspective
once the relevant concept had been made relevant (and not in an explicit way).

We note that unlike her statement that she was skilled in GeoGebra, Rita
stated that she was initially unsure how to implement a similar statement in
Python, even after they had translated the idea of a numerical solution to a loop.
When the interviewer built on their suggestion by suggesting a while loop in
particular, and by pointing their attention to the fact that they could decide
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when the loop should stop, Rita was able to convert her whiteboard equation to
a conditional statement that decided when the loop would finish.

Even though conditional statements are written so that the loop continues
as long as it evaluates to True, it is often useful to think about it inversely as
a stopping condition: we want the loop to stop when we are satisfied with the
remainder. Hence, we want the expression to evaluate to False at that point,
and not before. Thus, the conditional we desire is one that evaluates to True
as long as the remainder remains too large. While the interviewer might have
to take the credit for highlighting this idea, attending to the interviewer’s hints
and the equation on the whiteboard led Rita and Lena to demonstrate their
ability to interpret the situation and apply their programming knowledge by
translating the equation into the inequality that we see in Code Sample III.3.
n = 1
while ((n+1)*3**(n+1) < 10**10):
print(n)
n += 1

Code Sample III.3: Rita and Lena’s code to solve the equation computationally.

The students wrote a short program containing a while loop that would start
at the smallest possible number of terms n = 1 and increase the number of
terms13 until the expression Rita mentioned was small enough, demonstrating
that they were able to go from the inverse suggestion to a working Python loop.
It is important to note that Lena used a version of Rita’s expression from the
whiteboard,

(n + 1) · 3n+1 < 1010

to set up the conditional, not the provided expression for the remainder itself.
Thus, they chose a representation without fractions, absolute values, and negative
decimals, demonstrating an application of mathematical skill in a computational
environment, which once again demonstrates that the students can take different
perspectives to the problem.

Furthermore, the equation had now been transformed into an inequality that
would be satisfied as long as the error was too large and was therefore appropriate
to use as the loop’s conditional statement. We interpret this transformation as
further proof of the students’ mathematical and computational understanding of
the task they were engaged in. However, there are other possibilities for their
writing the inequality in this way, and since we did not ask them specifically
about this during the follow-up questions, we cannot know for certain.

Without Rita’s prior work on the whiteboard, we expect this to have been
more involved. Taking a black box approach and translating the formula directly

13The interviewer had not suggested that the loop run through values of n in ascending
order, but it appears that the interviewer’s suggestion of the loop stopping when the remainder
was good enough was sufficient to have the students start with as few terms as possible (ideal
if it satisfies the requirement), and gradually move on to a larger number of terms. At this
point it would have been interesting to ask the students what they expected would happen
to the remainder as the number of terms increased (as the method does not depend on the
remainder decreasing with more terms).
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to Python might have resulted in a conditional statement like the one in Code
Sample III.4.

n = 1
while (1/(n $+$ 1))*abs(((x - a)/min(x, a))**(n $+$ 1)) >

10**-10:
print(n)
n += 1

Code Sample III.4: Equivalent code to Code Sample III.3, without using
mathematical work.

This would not have engaged the students mathematically to the same extent
but would have them rely on Python functions to do the job for them to a
greater degree.

Had the students abandoned Rita’s equation as a failed attempt and started
from scratch, they might have missed out on the experiences that sometimes
computational problems are simplified considerably by first considering them
mathematically. Furthermore, in that case, they might not have realised that
that the whiteboard math could offer additional insight into the problem, as will
be made apparent when we describe the repetition of this calculation that Rita
performed soon afterwards.

Running their code, Rita and Lena found that their loop stopped at n = 17,
and changed their earlier code to plot the remainder to use that result as an
input parameter. While the result was good at x = 1, the remainder was still too
large around x = 0.5 (see Figure III.8), and the students seemed disappointed
with the result until the interviewer offered some encouragement:

Interviewer: I thought that worked well, actually.
Rita: But it’s not beneath 10−10, though.
Lena: [inaudible] Yeah. How do you think that works well?
Interviewer: Because I’m looking at the point 1. x = 1. And there
it’s sort of a hair’s breadth below.
Lena: Yeah.
Rita: Oh yeah, that’s what we calculated yes. Yeah, because then
we should do that for both sides, then. [. . . ] And then you just take
the largest n value of the two endpoints.

Rita’s comments indicate that she not only was able to interpret the output
in the context of her earlier whiteboard calculations, but she was also able to
look forward and apply that interpretation to formulate a plan for getting the
result they wanted.

Our interpretation of these events is that providing the students with code
to plot the remainder with the threshold visible in the plot allowed her to realise
where along the x axis there was a problem and to revise their plan to work
around the issue. As Rita correctly observed, the number of terms had to be the
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Figure III.8: Rita and Lena’s revised parameter choices, leading to a remainder
that was too large near x = 0.5.

larger among those required by each of the two endpoints. In their earlier plots,
the slight asymmetry between the endpoints had been visible, but the students
had not paid attention to it until this plot highlighted that one endpoint was on
the threshold value of 10−10 and the other significantly above it.

Rita then repeated her calculation for x = 0.5, and in the process she was
able to explain why that endpoint had a greater remainder when the interviewer
pointed something out to her as she was writing on the whiteboard:

Interviewer: We forgot something. We forgot ξ.

Rita and Lena: Yeah.

Interviewer: Because that one gets a different value [inaudible].

Rita: Yeah, that’s it! Because then you’re dividing by a smaller
number, and then it does become larger. . .

What Rita was referring to is that the value of the number ξ in the remainder
formula takes on different values for the two endpoints. Since all we know about
ξ is that it resides somewhere in the interval min (a, x) ≤ ξ ≤ max?(ax), the
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worst-case scenario that makes the remainder,
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as large as possible would be to take ξ = min?(a, x). For the two endpoints in
question that leads to the scenarios in Table III.1.

Table III.1: Effects of changing x on ξ and the remainder.

x a ξ Remainder
1 0.75 0.75 1
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While demonstrating that she was able to interpret and explain the situation
in this way, Rita was attending to the plot of the remainder (on screen), her
earlier equation for x = 1 (still visible on the whiteboard), and the interviewer’s
reminder about ξ. Additionally, she took a mathematical perspective to the plot
in question.

Rita continued until she arrived at the expression in the lower right cell
of Table III.1. Then Lena contributed a suggestion for how to deal with the
absolute value in the presence of a negative number:

Rita: What do we do now, because now there’s a minus sign and
then it’s a little more difficult.
Lena: But, no, but it’s inside an absolute value. Doesn’t it become
positive anyway, then?
Rita: Yeah. That’s true.

This demonstrates one additional benefit of implementing Rita’s work on
the whiteboard. Instead of having to use a Python function such as abs(...)
to deal with the absolute value, they were able to apply their mathematical
knowledge to simplify the task and write more readable code. As before, in their
finished expression that went into the while loop,

(n + 1) · 2n+1 < 1010

they had removed all fractions and negative exponents from the equation for
simplicity’s sake. While modifying the program, the students first attended to
Rita’s whiteboard work (repeated at the interviewer’s request for x = 0.5) and
then their old code for x = 1:
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Lena: [switching back to the code editor window, containing the code
in Code Sample III.3]OK, so now the expression is. . . ?
Rita: [moving from the whiteboard to look at the screen] It’s
just. . . where it says 3, you just insert 2, like.
Lena: Yes. [inaudible] And otherwise everything’s the same?
Rita: I think so.

This may look like black box thinking at first glance. However, the program
that the students were treating as a black box is code they wrote themselves,
from scratch. Like Martin in the first version of the tutorial, we conjecture that
Rita and Lena do understand how their code works, and even though they do not
demonstrate this understanding at this stage, the earlier proof of understanding
they supplied makes us confident that they could summon this understanding if
required.

If the problem had been formulated as a code problem, it is possible that the
students would have accepted more convoluted code, as opposed to simplifying
what they could before coding. We therefore postulate that having the students
take the analytical path as far as they can before being forced to switch to
Python is desirable in light of the learning goal that students should be able to
see problems from both a computational and mathematical perspective.

This raises an interesting question, however. Is such work devalued (in the
students’ eyes) by the existence of a way to get around the problem by using
various Python functions and packages instead of mathematics? Rita and Lena’s
initial desire to use math.solve() and find a quick solution seems to point
away from the understandings we seek. If the students see computing primarily
as a means to make laborious mathematics more convenient, then it is possible
that they would prefer the black box solution.

Their satisfaction with how they found their answers might suggest otherwise,
though. Rita was able to explain, with some enthusiasm, why the remainder was
different between the two endpoints, which we posit she could not have done
had they simply translated the formula verbatim into Python. It is possible,
however, that these students were somewhat exceptional in their appreciation of
mathematical rigour. Rita stated during the follow-up questions that she felt her
work was "more correct" when she did analytical mathematics by hand, which
seems to suggest that she would prefer going as far as possible with math alone
before using computational tools.

This time when Lena had finished updating the program, the loop stopped
at n = 27, which gave the desired result: a remainder smaller than 10−10 for all
x in the interval 0.5 ≤ x < 1, with as few terms as possible (see Figure III.9):

Interviewer: Wow.
Rita: Shit, we’re smart.
Lena: [laughs] Yeah.
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Figure III.9: Rita and Lena’s final, optimal choice of parameters.

The interviewer then suggested they try out their log function from the
previous task with these parameters, at which point Rita started considering how
they could have found the parameter value ln 0.75 without resorting to numpy’s
log function:

Interviewer: We did cheese this one14 a bit, but. . .

Lena: Well, so it was 27, and 17 for the last one?
Rita: But, log 0.75, isn’t that. . . no. Kidding. It’s the logarithm
of 3/4, that. But it isn’t any. . . Because we have. . . we do have the
logarithm of 1/4. . . since that is 2 times the logarithm of 2, but we
don’t have the logarithm of 3.
Lena: No.
Interviewer: That would be creative too, I didn’t even think of that.

Here, Rita demonstrated understanding by explaining how to apply the
logarithm rules and what information they would need (ln 3) to find the number

14The interviewer allowed the calculation of ln 0.75 using the built-in Python function to
save time, after the students had expressed a preference for having a in the middle of the
interval.
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they wanted. This reasoning seems to have been prompted by Lena’s question
and the interviewer’s sentiment that this was in a sense cheating, or "cheesing".
Her attempt to find this number by other means can be interpreted as a desire
to re-create the work of the original log function designers in a self-sufficient way,
without having a previous log function available.

To summarise, we found that quite a few features of the new version aligned
with the design standards of the UbD framework, which one may use to evaluate
teaching designs.

Firstly, Rita and Lena seemed to engage with the challenge of redesigning the
original computational log function from scratch. The idea of building it using
only the four basic arithmetic operations and mathematical insight appealed to
them as a worthy accomplishment, and they suggested many of their own ideas
throughout the interview.

Secondly, they were frequently able to demonstrate understanding by
explaining concepts (to each other and the interviewer), interpreting plots, code,
and mathematics, and apply their knowledge of computing and mathematics.

Thirdly, the list of variables at the beginning and/or these variables’ familiar
names resulted in little confusion as to what the variable represented. The only
difficulty of note was that they sometimes found it hard to separate a from ln?(a)
in the sense that they occasionally mixed them up.

Fourthly, the interviewer’s on-the-fly suggestion that the students find the
optimal value of n, and the students’ subsequent analytical, then computational,
work to identify this value hooked the students’ attention and gave the students
valuable experience with integrating mathematical and computational work. The
"worst-case" element of the remainder and the plots seemed to assist the students
in this, and the end result was a simpler form of the equation with no fractions
or absolute values, which is in line with expert behaviour.

Finally, the students were able to explain why one endpoint of the interval
had a higher remainder than the other, which from a UbD perspective is more
valuable than a black box solution that provides the right answer without any
such explanation.

However, there remained some issues that we flagged to be of interest for
the final design phase: (a) the students still spent close to two hours on what
we hoped would be a 1-hour tutorial, (b) the purpose of the transformation
ln M + E · ln 2 was not entirely clear to the students, nor did they know when
the expression was finished enough to move on, (c) the role of the computational
function taylor to provide approximate logarithmic values was not sufficiently
clear, (d) using ln a as an input parameter made the students want to find the
optimal value ln 0.75, but the tutorial did not support this in any meaningful
way, and (e) some scaffolding, building on the interviewer’s rather general cues,
seemed necessary to break the habit of students looking for black box solutions
to problems that are analytically unsolvable (or inconvenient).

Additionally, one open question still remains to be answered. In particular,
we did not ask these students to compare the final form of their equation (the
one they implemented in Python) with one that contains fractions and absolute
values and relies on Python to do all the work. While the UbD framework
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encourages opportunities for students to reflect in general, we worry that this
might send the wrong message: that the mathematical work was in a sense
unnecessary since the black box alternative can be more time efficient. Several
of our students appeared to have been primed from high school to look for these
kinds of shortcuts that may in fact deprive them of opportunities to understand.
As such, we would like to investigate this further in an interview setting before
incorporating it into the learning materials.

With these lessons learned in the second round of interviews, we moved to
the final design phase.

III.9 Final Design

The first major change we made to the final version was to make different versions
of it to allow for flexibility with regard to time. We initially designed the tutorial
to take students one hour to complete, but in practice, the time was closer to
one and a half, in some cases even two. Nonetheless, our data indicated that the
time was well spent by the students, therefore we changed the allotted time to
two hours.

To also allow for a 1-hour version of the tutorial, which was the original target,
we made some tasks optional for the students, at the cost of less opportunity for
insight. In Table III.2, we show which tasks are present in each version of the
final tutorial, as well as the version that was used in the case that we presented
in Section 8. In addition, we suggest some optional exercises that can be used to
extend the 2-hour version for further insight if desired. These will be described
later in this section.

Table III.2: Versions of the tutorial in Section B. In the 1-hour version, students
will have access to all the results they need from the tasks that have been
omitted.

Exercise 1-hour version 2-hour version Interview:
Rita and Lena

1 No Yes No
2 - 3 No Yes Yes
4 - 7 Yes Yes Yes
8 No Yes No
9 No Yes Yes
10 Yes Yes Yes
11 No Optional No
12 No Optional Yes
13 Yes Yes Yes

From the interview with Rita and Lena, we learned that the purpose of
transforming ln(x) using logarithm rules should be better motivated. The
students need to know when the task is complete and why we are asking them
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to do it. To that end, we added a question to have the students consider the
accuracy of taylor(mantissa) compared with taylor(x). The students may
not be used to reasoning in this way, hence some scaffolding is beneficial to make
the purpose of the task clear. This also adds an opportunity for self-assessment,
so that they can see whether the result of their work is meaningful.

The next task, asking the students to implement their own log function, also
needed revision. Rita and Lena had not realised that the function taylor was
meant to be used as a stand-in for the logarithm itself. Therefore, we clarified
the text of the task to highlight this fact.

The interviewer’s suggestion that the students figure out how few terms one
could get away with, was met with enthusiasm by Rita and Lena, who used both
traditional math and computing to pinpoint this number in a flexible way. We
therefore added this as a formal task, encouraging students to use traditional
math as far as they are able, then switching to Python if need be. We kept the
hint asking if there is a way to have Python test many different values of n, as
that proved effective at getting Rita and Lena to think about loops.

Finding the value of ln 0.75 turns out to be reasonably simple using the
Taylor expansion with a = 1:

ln 0.75 ≈ ln 1 +
n∑

i=1

(−1)i−1 (i − 1)!1−i

i! (0.75 − 1)i =
n∑

i=1
−0.25i

i

The students can simply use the taylor function with the appropriate
parameters to calculate this. We could instruct them to set n = 100, which
by the experience of Rita and Lena is likely to be more than enough to save
them the trouble of estimating the optimal number of terms a second time.
This demonstrates that Taylor expansions can also be used to find the values of
troublesome constants, and that the computer is well suited to work with these
expansions15.

Considering the length and complexity of the tutorial overall, however, we
decided to simply provide the machine-accurate constant for ln 3 instead. If
the students have time to spare, it is better spent working with the optional
task of comparing the two remainders at the endpoints and explain why one is
smaller than the other. This, as Rita discovered, is due to ξ taking on a different
value when you go from one endpoint to the other. Based on this experience, we
believe that asking students to explain this is another way to produce evidence
of their understanding.

15Alternatively, one can write a Python program that looks for a fraction −n/d that is as
close as possible to ln 0.75 as possible. By starting with n = 1 and d = 4, incrementing both
by one whenever − n

d
> ln 0.75 or incrementing d by one otherwise, we found that −21/73 is

a very good approximation. The downside of this approach is that we needed an accurate
log function to estimate the error for each fraction, which is not optimal if the context is the
pretence that no such function exists and we are trying to write the first one.
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III.10 Discussion, Conclusion and Avenues for Future
Research

In this section, we summarise our findings and relate them to the research
questions they answer, before presenting conclusions and outlining future
possibilities for research.

III.10.1 Summary of findings

This subsection summarises our findings related to each of our three research
questions:

• Which features of the tutorial design do students attend to when they
demonstrate understanding of a mathematical concept?

• Which mathematical and computational concepts did our students
demonstrate understanding of?

• What did we as designers learn about designing for students’ understanding
from the iterative process of tutorial design?

III.10.1.1 Features to which students attended

Our first research question concerned which features of the tutorial design
students attend to when they demonstrate evidence for understanding related to
mathematical concepts. These understandings, as defined in the UbD framework,
were first and foremost of the facets explaining, interpreting, applying, and
perspective. The specific concepts they demonstrated understanding of will be
covered in the next subsection.

In Section III.6, we saw that when students focused on an example we
provided, they explained their thought process clearly; however, the "just plug
it in" mindset they displayed is not one we would like the final version of the
tutorial to support.

In Section III.8, we found that when the students shifted their attention
from how the function taylor was defined (sum of Taylor terms) to its purpose
(approximating the logarithm), they were able to interpret correctly how to use
it and explain how to do so. This shift was prompted by the interviewer merely
referring to it as an "approximation".

When the students applied their knowledge of setting up and solving equations,
the students attended to the plots 10−10and the remainder formula in concert
to set up an equation for the optimal number of terms. In the process, they
also demonstrated a remarkable ability to explain and justify their thinking,
interpret the possibilities afforded them by these resources.

The same case suggested that black box thinking may occur when the students
view a task as impossible, beyond their capabilities, or very tedious to engage
with. To overcome this tendency, we had to present them with the possibility of
a Python solution that employed computational concepts they could understand.
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As they made use of the interviewer’s hints, they were able to transform their
equation into a program that solved it.

While attending to her own work on the whiteboard, Rita was able to apply
the results of this work to justify and explain changes in the program. Finally,
we saw Rita explain what additional information they would need to avoid using
the pre-defined log function at all, while she focused on the code that Lena had
written.

In sum, our students in this tutorial displayed understanding (as defined by
Wiggins and McTighe) most clearly when they attended to (a) the purpose of
code (both their own and the code we provided), (b) their plots (coupled with
formulae we provided), and (c) their handwritten mathematical work.

III.10.1.2 Mathematical and Cross-Disciplinary Concepts

Our second research question deals with the mathematical and mathematical-
computational concepts that our students demonstrated understanding of. Here,
we found that Rita and Lena in the second round of interviews exemplify the
potential of the tutorial to a greater extent than our first-round interviewees. The
understandings demonstrated by Rita and Lena broadly fall into four categories:
(a) the role of the Taylor expansion and remainder in making a logarithm
function, (b) the relationship between mathematics and computing, (c) how
to apply worst-case thinking to a continuous interval of numbers, and (d) how
logarithmic rules can produce useful transformations.

We note that only the first and partly the second of these overlap directly
with the big ideas as we outlined in them in Section III.3. The final two are
nonetheless highly relevant additions that we simply did not anticipate in the
design stage (Section III.7) but was incorporated into the final design. We will
now summarise the concepts in each of these four categories.

In the first category, we saw Rita and Lena explain the purpose of the
functions that calculate the Taylor expansion of the logarithm and its remainder.
The computer uses the approximation to calculate the logarithm, and we use
the remainder to verify that the mathematical error in this approximation is
sufficiently low in the entire interval of interest. Therefore, Taylor expansion
around a point in the very middle of this interval, as Rita and Lena chose to do,
will result in a lower remainder (and potentially fewer Taylor terms) than using
other points.

In the second category, Rita and Lena stated a preference for rigorous
mathematical solutions and demonstrated that these allowed for greater
explanatory power. They recognised the equation as analytically unsolvable, and
interpreted the computational concept of a loop to be relevant before translating
their equation to an inequality that fit the loop as a conditional statement.

In the third category, Rita and Lena interpreted the plot of the remainder as
an opportunity for worst-case thinking: the endpoints of the interval had the
largest remainder; hence it would suffice to investigate these. The remainders at
the endpoints were not equal, and Rita was able to present an argument for why
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- namely, because the parameter ξ changes when moving from one endpoint to
another, as seen in Table III.1.

In the fourth and final category, we found that Rita was able to use logarithmic
rules to manipulate expressions into more favourable forms. Beyond merely
being able to use logarithmic rules, Rita was able to recognise their relevance
twice, and in the latter instance explain the motivation for their use.

In addition to the understandings demonstrated by these students, we see
potential for more sophisticated understandings of the trade-off between accuracy
and efficiency, the general usefulness of reducing intervals when dealing with
approximations, and the far from self-evident fact that approximations allow
us to represent non-polynomial functions using only the four basic arithmetic
operations. As such, the big ideas in Section 3 that we did not see evidence of
in the interviews are ideas that we hope the final (and future) versions of the
tutorial will target to a greater extent.

III.10.1.3 Design Process

Our third research question concerned what we as designers learned from
designing the tutorials in this iterative way, with alternating design and
implementation phases. In order, we will describe lessons about (a) clarity,
(b) student engagement, (c) the knowledge students possessed prior to the
interview, and (d) lessons related to mathematics and computing in particular
(even though we have also looked at the first three types of lessons in this
context).

In the first round of interviews, we discovered that variable names matter. If
they are unfamiliar to the students or used in a manner that they are not used to,
confusion may arise. These students seemed overwhelmed by all the information.
In contrast, the second round of interviews showed very little discussion of what
the variables represented, which we attribute to all the variables and functions
being presented in orderly tables in the beginning of the tutorial. It is also
possible that having the mathematical derivation of the remainder formula in a
separate document to be referenced at need helped the students organise the
information in a better way.

Even in the second phase, not everything was crystal clear. For instance,
the purpose of transforming ln x initially proved opaque to Rita and Lena. At
first, they had difficulties knowing what they were looking for and why, which
resembles the experience of the students from the first phase. We hope that
the final version has improved on this with the inclusion of more opportunities
for self-assessment and that the purpose of this exercise is now clearer to the
students.

As far as student engagement is concerned, the first version of the tutorial
lacked a way to hook and hold the students’ attention, which would have been
in agreement with Wiggins and McTighe’s design prompts. Even at the end of
the interview, several students expressed that they did not really know what
they were doing, or what Taylor polynomials were. In contrast, the quest for
reinventing the first log function intrigued students of the first interview.
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In the second interview, finding such a function without cheating and using
pre-existing log functions held the students’ attention to the point that they
wanted to adhere more strictly to these "rules" than the tutorial intended,
despite a few interventions from the interviewer being required along the way.
These students did not wonder out loud what Taylor polynomials were good
for, presumably because one explicit goal of the tutorial was to give them an
understanding of exactly this. That is not the same as saying they ended up
with such an understanding, but it is likely that most of the time, they had a
sense where the tutorial was going and why.

The learning goals changed significantly from one version of the tutorial to
the next. The first version aimed students toward an important limitation in
a concept that they had not yet grasped the full significance of. The second
version was redesigned to address two bigger questions that puzzled students in
the first round of interviews, and the second round of interviews had students
engaging with more central, essential questions than the first: (a) what are
Taylor polynomials good for? (b) How was the first logarithm function on a
computer made?

When it comes to student knowledge, we note that in order to have the
students connect the dots, we must first give them dots to connect. In the first
interview phase, the dots proved insufficient. The plots were at times difficult to
interpret, and if the students made mistakes, the task got that much harder. In
the second phase, providing students with a remainder formula and having them
check their code before trusting its plots enabled them to use the information
within these to set up an equation that the designers had not anticipated, but
ultimately proved very useful to the students.

In the first interview, we made the unfounded assumption that students were
able to identify the dominant factor in an expression. It turned out that they
were not used to reasoning in this way, and we complicated the matter further by
not considering that their equivalent expression ended up looking different from
what we anticipated. When the interviewer looked for evidence of their ability
to reason in this way, the students only considered the factors which dominated
initially, despite the fact that they would later be overtaken by other factors.

Finally, concerning mathematics and computing, we noticed a tendency in the
second round of interviews for some students to want their mathematical work
to be rigorous, and they appreciated the explanatory power of their whiteboard
calculations. It is interesting that the same students were often tempted to use
computational tools (both Python and GeoGebra) as a black box. We suspect
that these temptations may stem from the way computational tools have been
used in Norwegian high school classrooms.

III.10.2 Implications for teaching design

The iterative process of designing and testing this tutorial taught us many things
and allows us to formulate seven important take-aways for promoting student
understanding in a context that blends mathematics with computing. This is
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not an exhaustive list, but rather a summary of what we learned from the data
provided by our interviews and may as such be sensitive to context.

First of all, we learned about the importance that students know what they
are doing and why at all times, as Wiggins and McTighe suggest. In the first
version of the tutorial, the students were confused as to what the tutorial wanted
them to learn and why it was important in the first place. Our second version
improved upon this significantly, and the students working on this version gave
evidence of being able to explain, interpret and apply their knowledge on many
occasions.

Second, we found that the students’ reasoning is often limited by the
knowledge they have on hand to reason with. If we overestimate the students’
skills and knowledge in mathematical or programming, the result can be that
they spend all their time learning or re-learning a concept we took for granted,
without being able to use that concept to further their understanding.

Third, we found that black box thinking, where students trust the computer to
find a solution without understanding how it is found, occurs when a mathematics
task seems impossible, too difficult or very tedious. We suspect, but cannot prove
from this data alone, that this behaviour stems from strategies the students have
developed during high school mathematics classes. Even for students that prefer
and enjoy rigorous analytical solutions, like Rita, black box thinking seemed an
acceptable way out of a dead end.

Fourth, we learned that the students use computing in ways that align better
with the UbD framework if the problem is formulated in such a way that their
computational knowledge seems relevant to the problem. The interviewer’s hints,
which were far from blatant, got Rita and Lena to restructure their black box
problem to one that used trial and error, in a particular order, with a well-defined
stopping condition based on their mathematical work. For students with limited
computing experience, this kind of scaffolding can lead to greater understanding
of both mathematical and computational concepts. In teaching design, we need
to support and encourage students to find solutions they understand even when
faced with high difficulty problems, as in Rita’s case16.

Fifth, we note with cautious satisfaction that for the students we interviewed
in the second phase, the tutorial hooked and held their attention throughout the
interview. It may well be that the students that volunteered are exceptional, or
that group composition is key. We might have seen different results if no students
in the group felt somewhat confident in doing mathematics or programming.
Still, we detected increasing engagement with each version of the tutorial and

16We noted initially that learning to code in a non-mathematical context while separately
learning mathematics does not equate to students being able to use code effectively in
mathematics. We claim that Rita and Lena provided many examples of students using
mathematics and computation flexibly, as they transformed a computational parameter choice
to a mathematical equation, which after some work they again used computing to solve.
This process could have ended prematurely with the black box approach, but the way they
wrote their program after the interviewer helped them get back on track highlights both the
importance of this integrated approach and the fact that we should not expect this to happen
automatically in the classroom.

164



Discussion, Conclusion and Avenues for Future Research

framing the task like a mystery and re-creating the authentic work of early
scientists seems to resonate very well with first-year university science students.

Sixth, we learned that students’ understanding in this context benefits from
opportunities to self-assess, which is also part of the UbD framework. In the
first implementation phase, the students had no way of checking their work,
and so both the interviewer and the students initially missed the fact that they
had differentiated with regard to the wrong variable. In the second phase, the
students had plots and screencaps of output to compare their results with.

Seventh and finally, all of the above principles are supported by providing
as much clarity in the finished design as possible. We achieved this in our
second version by listing and explaining all variables and functions and have
since improved upon this further by highlighting the purpose of each function as
much as possible. Borrowing vocabulary from computer science (“Implementing
an Interface”, 1995), we could say that there is a need to separate a function’s
interface (purpose, input parameters, return values) from its implementation
(how the function works "under the hood"). Using familiar variable names is also
helpful to reduce the cognitive load on the students.

To sum this up, the implications for using computing to learn mathematics
are that learning activities should be clear and well motivated, with opportunities
for self-assessment. It is also important that students’ prerequisite knowledge is
made relevant, and that the work is made to seem authentic and meaningful as
far as possible.

None of the above concerns are unique to a computational setting, however. If
students are used to using computers as black boxes that do all the heavy lifting
for them, we need to support students in using computing in a transparent way, so
that they do not miss out on valuable learning opportunities, like Rita and Lena
might otherwise have done. Students might not see how the computational basics
they learn in programming courses apply to mathematical or scientific problems,
and they should be helped in this both by design and teacher intervention when
necessary. A focus on explaining, interpreting and applying knowledge may
help prevent black box thinking in our students and allow them to demonstrate
creativity like Rita and Lena did with their mathematical approach. We suspect
that increased familiarity with programming concepts might help them be equally
creative when writing code.

We would like to emphasise that we have not investigated how students
perform on these tutorials without teacher intervention. This was a choice we
made because students getting stuck and unable to resolve the difficulty on
their own would mean less data of lower quality, and as such would probably
require at least two more design phases. It remains to be seen to what extent
these tutorials can stand on their own. What we have done is try to add the
interventions that were helpful to the tutorials themselves to reduce the load on
the teacher. Further research and adaptations is required to ensure that students
can work on the tutorials without help - at present, we caution against doing so.
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III.10.3 Is Computing Necessary?

We have demonstrated how to to design learning activities that support student
understanding of mathematical and mathematical-computational concepts in a
computer programming context. This begs the question: is computing necessary
to achieve these outcomes? Could the students not just as easily demonstrate
the same understanding working by hand?

While the question is certainly justified, the point of this paper is not to
prove that computing is the only way to promote student understanding. It
would be interesting to compare and contrast students that use computing to
reason with those that do not - it might well be that the reasoning (and the
understandings we see evidence of) will be different, even if both groups arrive
at the right answers. That is not within the scope of this paper to address,
however.

What we can say is that we identified features of the computational context
that were demonstrably helpful to the students in demonstrating understanding.
For one thing, the students attended to the plots they had made as the basis
for applying worst-case thinking to a continuous interval of numbers. While
we could simply have given the students the plots as a resource, that would
in essence make them black-box, which we are not sure is desirable. Having
students to the authentic work of creating these plots themselves (or part of the
work, in this case) is in better agreement with the framework of Wiggins and
McTighe.

Furthermore, the computational setting provided a very effective motivation
for our students. Its element of mystery and air of authenticity - reproducing the
first log function - both depended on the computer as the target of implementing
the solution, otherwise the algorithm is simply a mind game, as it would not
be practical to employ by hand unless the demands for accuracy and speed
were both very low. As far as analysing the accuracy of such an algorithm
is concerned, the equation for the optimal number of terms turns out to be
insolvable except by trial and error - a process at which the computer excels.
A purely by-hand attempt to do the same work would be time consuming and
probably frustrating, doubly so if one cannot program a once-and-for-all solution,
but has to repeat the work every time a logarithm is needed. In such a case, all
semblance of authenticity would be lost.

Additionally, we suspect that the interface-implementation split from
Section III.10.2 might be more accessible to students in a computational setting:
when writing (or using) a piece of code, it is natural to consider what the code
is supposed to do, although as we have seen, novice programmers do not always
think in these terms. In the literature we found several examples of students and
teachers alike wondering what Taylor expansions are good for. This suggests that
in mathematical settings, such questions may go unanswered, and computing
may be one way (not necessarily the only one) to put these questions front and
centre and answer them.
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III.10.4 Future Research

In addition to the findings above, we have identified several promising prospects
for future research. The simplest would be to continue with at least one
further implementation cycle, if only in the form of classroom observations
to see if students using the final version of the tutorial demonstrate additional
understandings related to the big ideas outlined in Section III.3. One could
also build upon the current work to examine the students’ understanding of
programming, as we mentioned in Section III.2.3, or compare students using
computers with those that do not, as we discussed in Section III.10.3.

One could also investigate further the split between interface and implemen-
tation of functions mentioned in Section III.10.2, to find out how common it is
that students are unable to recognise what a piece of code is doing because they
are too focused on the specific details of how it is done. In computer science
education terms, if the students manifest an understanding of all the parts, but
not the relations between them, they have difficulties considering a block of code
as a whole (Lister et al., 2006). What we would propose, then, is to extend this
research to computing in a mathematical context.

Another avenue of future research that we regard as promising is to investigate
how widespread black box thinking is among high school students, and how
the formation of this mindset is influenced by the way computational aids are
used in high school mathematics classes. With the introduction of computer
programming into Norwegian school mathematics, students will no longer get a
fresh start with computing when they enter university, and as such a comparative
study between current and future students might also be possible for a limited
time.

To comply with COVID-19 protocols and recommendations, we gave each
student in the second phase groups a designated responsibility: one worked
on the computer, as Lena did, while the other wrote on the whiteboard, like
Rita. It is possible that having each student represent a particular perspective
in this way was beneficial to the students, and we cannot rule out that some
of the results were affected by this designation. While we also saw examples
of Rita using computational language, and Lena mathematical, we see value in
investigating the effects of this way of working in a separate follow-up study,
either to strengthen the claims in this paper or identify another potentially
important design factor.

Finally, we envision studies involving a larger number of students. One way
to accomplish this is to put the finished tutorials in a format that allows for
assessing evidence of understanding more systematically, building on the UbD
framework and the findings of this paper. This would allow for investigation of
how widespread these understandings are in the classroom, and how they are
distributed among the student population. This would necessitate the design
of rubrics to assess to what extends the students understand in different ways,
which is something the UbD framework already supports.
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Chapter 7

Discussion and Conclusions

7.1 Summary of Findings

In Paper I, I showcased an example where computing functioned as a resource for
a student in making sense of mathematics and science. I followed up on this work
from different perspectives in the subsequent two papers. Before summarising
those findings, however, we have time to look back and re-interpret the first
paper in light of the theoretical lenses of the last two papers.

In the language of Paper II (summarised in Section 8), the connections in
Sophia’s third sensemaking segment could be described as a form of Improvement
Cycle that involves both Physics and Math. It would not be a literal cycle as in
the two-domain case, because we infer that Sophia ends up in a different domain
than the one she started in. I detected no connection from Math to Physics that
would allow me to close the circle in this case (see Figure 7.1).

Figure 7.1: Sophia’s third sensemaking segment re-interpreted as a sequence
of connections: (1) Cross-domain connection from physics (a single decaying
nucleus) to computing (code that would simulate the physical phenomenon),
(2) Intra-domain connection between Sophia’s imagined code and the imagined
output it would produce, and (3) Cross-domain connection from that imagined
output to mathematics (re-interpreting the simplified model as averages).
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The steps of this pattern are:

• Physics Implementation1: she uses computational language to describe
how she would implement decay from the perspective of an individual
nucleus.

• A connection between code and output that was not named in Paper II,
as it would not be cross-domain. In that paper, this connection from code
to output was performed by the computer (in Case B). I find it interesting
that Sophia was able to (correctly) predict the output of code without
writing and running it.

• Output Modelling: she uses the imagined output of that program (that
she just described) to re-interpret the simple mathematical model I gave
her, now interpreting the numbers as averages.

In the language of Paper III, the learning activity (task) effectively hooked
and held Sophia’s attention. She almost exited the sensemaking process early,
and we interpreted her utterances to mean that she felt this sensemaking was
meaningful to her, but perhaps at odds with what the interviewer wanted her
to do. She confessed a temptation to "take the easy way out" and just produce
an answer, but kept going when the interviewer asked what she would do if she
were a researcher and the result mattered to her (see Paper I). This opportunity
for personal connection and the element of mystery raised by the apparent
contradiction both fit the "Hook and Hold students’ attention" criterion in the
UbD framework (Wiggins and McTighe, 2005); see also Section 3.1 and (Odden
and Russ, 2019).

Similarly, reflecting, rethinking, and revising are also represented in Sophia’s
work with the task, although the task design does not make the need for these
activities explicit. However, I can state more generally that a task designed to
allow students opportunities for reflection and rethinking is indeed compatible
with sensemaking. If the learning goals require sensemaking for students to
come to the desired understandings, this is an element of task design that should
not be ignored, and in retrospect, I speculate that Sophia might have been less
inclined to take "the easy way out" had I incorporated this design prompt more
explicitly.

Furthermore, this "easy way out" can be likened to an example of black
box thinking as seen in Paper III. Sophia might have felt that she would not
have time to implement the model that she envisioned and thought that finding
an answer quickly was the desired outcome of the task. In light of this, her
description of the model she would make and imagining of its output represent
a compromise that fit within the allotted time set aside for the task.

Finally, I am able to describe the understanding that Sophia demonstrated
in the first paper using the six facets of understanding in the UbD framework.
Sophia was able to:

1This would be equivalent to Math Implementation (see Section 8), only drawing on
knowledge from a different domain (Physics) instead.
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• explain the problems with rounding (hides information) and not rounding
(implies fractions of nuclei are possible).

• interpret the mathematical model in light of her imagined computer
program.

• apply her knowledge of Python in an appropriate manner to suggest a
model whose limit for large numbers coincided with the mathematical one,
but also behaved more realistically for small numbers of nuclei.

• regard the problem from a mathematical, physical and computational point
of view, and argued for and against these perspectives.

In my Paper II, I identified four patterns in the ways that students connect
mathematical knowledge and activities to computational ones. They were able
to:

• reproduce or prove a program mathematically to understand how it works,

• iterate in cycles using mathematics to connect outputs to modification in
code in order to explain how they are improving the program,

• employ mathematics to decipher program output to justify choices they
make, and

• employ mathematics to design a program to organise mathematical
knowledge.

In Paper III, I identified six design features students attended to when they
demonstrated understanding of mathematics and computing. From the iterative
design process exemplified by our Taylor expansion tutorial (Section B), I learned
that

• the students need to know where their work is headed, and why,

• the students’ reasoning are limited by the knowledge they see as available
to reason with,

• black box thinking may occur when a task is seen as impossible, very
difficult or very tedious,

• problems need to be framed so that novice programmers see their
computation skills as relevant to the problem2,

• mystery and authenticity matter to students and can hook and hold their
attention,

• students need opportunities to self-assess, and
2These cues need not be blatant, as we saw with the interviewer’s hints to Rita and Lena

in Paper III.
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• all of the above are supported by providing as much clarity and structure
for the students as possible.

It is worth noting that the sensemaking framework from Section 3.3 can also
be applied to the data from the final two papers, especially Paper II, where the
connections students make play an important role:

In the case of Gina and Benjamin (Case A of Paper II), the students realised
that they did not understand the program that the first author gave them.
Benjamin proposed that the program could be understood as an equation and
went about solving it to verify this understanding. As they got 0 = 0 as a result,
Benjamin used the program output to verify it, and realised there was something
more he did not understand when the output did not match the equation they
had set up.

In the case of Rita and Lena (Case B of Paper II, also featuring in Paper III),
the students realised that the number of terms for the Taylor expansion their
script had calculated was not sufficient to get the error low enough in the
entire interval of interest. When the interviewer pointed out that the error (the
remainder) was just good enough at one endpoint, Rita proposed that they had
to use "worst case" thinking and check both endpoints. In doing so, she verified
this by re-doing the math, during which she (a) explained why the endpoints
had different remainders (different values of the parameter ξ) and (b) ended up
with a plot that showed the remainder was low enough in the entire interval.

In the case of Lydia, Martin, and Roger (Case C of Paper II), the students
realised that the midpoint method that they had implemented and tested was
different from the midpoint method that they remembered from the lectures.
Martin proposed that there was two different midpoint methods, and by
discussing and describing the methods, the students were able to remember that
Euler’s midpoint method is used for differential equations3.

In sum, these three papers provide what I hope are valuable example for
educators, education researchers, and ultimately students in the context of
computing integrated with mathematics and science. To sum up the contribution
of each paper in a sentence, Paper I shows how computing may help students make
sense of things, Paper II identifies different patterns of connections between
mathematics and computing that benefit students’ learning, and Paper III
identifies design principles that may be applied in an iterative process to further
students’ understanding.

7.2 Limitations

There are some important limitations to my work that I should address before I
conclude from the results summarised above. Firstly, with a limited number of
students, it is hard to generalise to the entire student population. The students

3This led to a further sensemaking segment after the interview, in which the interviewer
discovered that these methods are indeed related but presented differently in each context. See
Case C in Paper II for details.
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that volunteered and the interviews we selected for deeper analysis could have
been exceptional cases. It may also be that the University of Oslo context is
unique enough that these results are not representative of what one could expect
for higher education institutions in general.

During the analysis, as the theoretical lenses were chosen and the main foci
of the papers became clear, we identified several missed opportunities to ask
students follow-up questions. While this is inevitable in exploratory studies such
as these, it is important to acknowledge that it is a limitation, albeit one that
follow-up studies with predefined foci should be able to remedy.

A third important limitation is that the results may have been influenced
by the tutorial designs4 or interviewer prompting. Therefore, it is important to
note that we do not claim that computing caused these results spontaneously.
More likely, in addition to providing examples of what is possible, we also have
some clues as to how one may bring it about.

Finally, the COVID-19 pandemic significantly impacted the amount and
quality of data we could collect in the fall semester of 2020. While I have worked
hard to make the best of the data that I have, future studies in a less restricted
teaching and research environment should be able to collect more data more
easily.

7.3 The Big Answers

In Section 1.4, I posed the following questions for the project as a whole:

• How do the students themselves integrate science, mathematics, and
computing in the context of representing real numbers on the computer?

• What are the resulting affordances for learning?

• How does the design of learning activities support or hinder this integration?

These are big questions, and the answers are not necessarily simple enough to
be implemented in a concrete teaching situation without considering the context
(more about this in Section 7.4). Nonetheless, I may summarise what I learned
about these questions from the three papers.

For the first question I learned that the students make connections between
computing and other domains that follow certain patterns. These connections, as
we saw in Section 7.1, can make up the steps in a sensemaking process. Examples
include students making sense of both mathematical and computational rounding
errors, using the representation of real numbers to re-invent the computational
logarithm, and finding the sweet spot between accuracy and efficiency that
modern science balances on (see for instance Pena-Marin and Yan, 2021).

For the second question I learned that the results of these processes can be
understandings that students demonstrate, particularly by explaining concepts,

4Not really a problem for Paper III since that focused on teaching design, but more
important for the first two papers.

177



7. Discussion and Conclusions

interpreting complex information, and applying their knowledge from several
domains. The results of their work can be as diverse as formal proofs,
justified program design, and improved organisation of knowledge. Among
the understandings that students demonstrated, the relationship between
mathematics and computing appeared in all my papers. In the final paper
that probed such understanding on a more detailed level, we saw the students
demonstrating understandings of Taylor expansions, remainders, worst-case
thinking and logarithmic rules in particular.

For the third question I learned that hooking and holding the students’
attention with authentic work, giving them clarity of both the detail and the
big picture, and connecting the pieces of knowledge they have to the context
of the problem they are solving all support these efforts. Conversely, lack of
authenticity, clarity and connected knowledge may hinder them. While the data
presented in my three papers provide examples of both, the examples I found
that demonstrates what is possible have been the main focus. While focusing on
possibilities first and limitations second can be said to be an optimistic view, an
initial focus on limitations would have made investigating possibilities harder to
motivate than the other way around.

This is not to say that I do not acknowledge these limitations, however. The
most striking is the barrier that learning to program represents in itself. Students
can become so fixated on getting the syntactic details right that they miss out
on the big picture entirely. In the last two papers especially, the interviewer
had to offer assistance on programming specifics to keep the process running
smoothly. We should therefore be cautious about being too ambitious on our
students’ behalf and consider that they may get stuck in unexpected places.
Often, students will need opportunities to catch up and re-learn basic knowledge
that is suddenly relevant in a new setting. Without sufficient dots, it is hard to
connect them, and doing this catching-up in the middle of an already demanding
activity is likely to be cognitively demanding, to say the least.

7.4 Implications for Teaching

For teaching, these results have several implications, which I have sorted into
four categories.

First, I found that when we integrate computing with mathematics and
science, students do not necessarily ignore the mathematical or scientific content
and leave everything to the computer. Although they may be tempted to resort
to black box thinking when a task is seen as very difficult, the interviewed
students frequently and flexibly connected knowledge from both domains in
order to make sense of concepts form mathematics or physics. Clarity and access
to resources to reason with seems to have been important to make this work.

Second, I have demonstrated that students may be motivated by authentic
work in this context and integrating computing into mathematics and science has
the potential to offer more such opportunities. I am particularly satisfied with
the Taylor expansion tutorial (Section B), because it makes two mathematical
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concepts (transforming an infinite interval to a finite one and Taylor expanding
a known function) relevant in solving the real-life problem of programming a
logarithm function. In other words, I have designed activities that show students
how a concept is relevant instead of telling them that it is. Based on my findings,
I would encourage educators to develop other such examples and researchers to
validate how these affect students’ reasoning.

Third, I have shown that computational concepts may be used as resources
for students when they reason mathematically. The best example is perhaps
how thinking about how to implement a program helped Sophia re-interpret
the numbers in her simple mathematical model in Section I as averages instead
of single results. While I cannot claim that involving computing will always
have this effect, I believe that when the concepts involved lend themselves to
computational reasoning, there is a potential for greater understanding that
careful design can unlock.

Last but not least, I have identified a need for students to be supported
in translating (as in transferring) their thinking across domains. This goes
beyond familiarity and practice with the basics, although I suspect being fluent
in both mathematics and computing is beneficial in this regard. Sophia’s case
was extraordinary in that a single student managed to view the same situation
from three different perspectives (mathematics, physics, computing) and connect
these. The students in the three cases of Section II faced some obstacles when
making these connections, and teaching students to recognise how knowledge
from a different domain is relevant is an important understanding for them to
take away from the work.

As an example, compare Rita and Lena’s initial black box solution with the
loop they set up after some support from the interviewer in Section III. For these
students, solving an otherwise unsolvable equation by systematic trial and error,
in order from few to many terms, was not a simple concept that they could come
to easily on their own. If these applications are taught alongside computational
concepts like loops, students may make these connections with greater ease. At
the same time, I would not recommend that mathematics classes teach or imply
that black box thinking is appropriate when a problem is hard or impossible to
solve. It may be better to focus more on how the calculator or computer is able
to help us solve these problems, at least when the concepts involved are seen as
relevant to the students.

7.5 Implications for Future Research

An important way we could use the data sets of these papers for future research
would be to look at examples that are not as exciting as the ones my three papers
revolved around. In light of these findings, can we identify the reasons not all
the students came to the understandings the students in my three papers did?
Are there obstacles to sensemaking, transfer and teaching design in my data
that I have not illuminated fully? Where are the thresholds of mathematical and
computational knowledge that are required for students to meaningfully take
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part in these learning activities?
Furthermore, can we use the three tutorials in Section A to collect data more

broadly? Having identified some desired understandings and learning goals, it is
conceivable that we could design versions of these tutorials where a much larger
number of students provide evidence for what they understand, and this could
tell us something about how common the examples I provided in this thesis
might be.

Among the connections we observed in Paper II, we sometimes saw students
pausing halfway between domains, making another half-connection to complete
the full connection. Are these halfway points important stepping-stones for
students when they are learning to integrate knowledge form different domains?
Are they desirable to design for, and how would we do that? How do students
progress from these partial connections to complete connections, and how can
we support them in doing so?

In the same paper, we noticed an interesting belief being expressed by
Gina: that the computer only knows what we explicitly tell it. She seemed
surprised to learn that the computer could take advantage of "hidden" or implicit
knowledge, for instance of a mathematical nature. I suspect this belief stems
from programming instructors’ insistence that when we ask the computer to do
something, we will need to be very specific, because the computer will take it
very literally. It would be interesting to investigate whether this mindset (which
may well be beneficial to novice programmers) can be an obstacle when we
want students to connect knowledge across domains, such as when we integrate
computing in a mathematical context.

In Sections I and III, we found that sometimes students focus too much on
how a piece of code works that they have difficulties seeing the code’s purpose.
In computer science terms, these students confuse the function’s interface with
its implementation (see for instance “Implementing an Interface”, 1995). I
can imagine conducting teaching experiments that are designed around this
distinction, to investigate to what extent thinking in these terms help students
look at code from two points of view in the context of integrating computing
with mathematics and science.

In Section 6, we briefly noted that some students doing "paper math" on
the keyboard in online interviews (due to COVID-19 restrictions) appeared to
interpret this work as computational in a way that we never saw in the interviews
where students wrote on a whiteboard. This link between the physical medium
and students’ framing of their work and to what extent it assists or hinders
the students in understanding the concepts is another thing that one could
investigate further.

It would also be of interest to study how the introduction of computer
programming into Norwegian high schools affects students tendency to resort to
black box thinking when faced with difficult problems, and what role teaching
design plays in this. Will there be systematic differences attributable to teaching
that explain why students from some classes are more liable to put blind trust
in computational aids than others? In the same way, we might also have a brief
window of opportunity to compare current university students, who get a fresh
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start in programming, with future students at the same level who have previous
experience with programming from school.
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Appendix A

Tutorial 1: Rounding errors
Here, I present the final versions of the tutorials we made for the course MAT-
INF1100: Modelling and Computations. We expect these to also be useful outside
of the course they were designed for and the University of Oslo context.

A.1 Final Version of Tutorial

A.1.1 Introduction

In this tutorial we will look at the use of a Python program to do a simple
calculation. The program adds probabilities, and these should always sum to
exactly 1 (100%). But if these sums are not always 1, it could be a problem. In
fact, if they are far from 1, it could be a big problem.

Your job is to test the program and fix it if need be. The future of the
statistics community depends on the work that you do here.

All the exercises are designed to be done in groups of at least 2 students.
The goal is that everyone in your group understands what is happening and why.
We encourage you to check in with your TA when you have questions, feel stuck
or just want to test the soundness of your reasoning.

A.1.2 Exercises

A.1.2.1 Exercise 1

For each statement, indicate if you agree or disagree:

• Rounding errors are always small.

• You either do computing or mathematics, you cannot to both at once.

• A computer can only do what we explicitly tell it to do, in clear terms.

• Mathematical proofs and computer programs are unrelated concepts.

You do not have to reach a consensus on these, different opinions are fine, but in
any event try to justify your answers to the rest of the group.

A.1.2.2 Exercise 2

Look at the provided program sum.py (Code Sample A.1). Feel free to run it
to see what the output looks like. Explain briefly in your own words what this
program is doing.
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A.1.2.3 Exercise 3

Do the same calculation on paper. What result do you get? Would you expect
this program to give the same result no matter what the starting value is? Can
you prove this?

A.1.2.4 Exercise 4

What happens if you change the starting value to 0.5? Explain the result.

A.1.2.5 Exercise 5

What happens if you change the starting value to 0.1? Explain the result.

A.1.2.6 Exercise 6

What is the binary representation of 0.1? How could this possibly be related to
what happened in exercise 5?

A.1.2.7 Exercise 7

Fix the program so that it behaves as intended (see exercise 3) and test it.
Explain what you did and how it solved the problem from exercise 5. You are
allowed to be creative here.

A.1.2.8 Exercise 8

For each statement, indicate if you agree or disagree, just like in exercise 1:

• Rounding errors are always small.

• You either do computing or mathematics, you cannot to both at once.

• A computer can only do what we explicitly tell it to do.

• Mathematical proofs and computer programs are unrelated concepts.

If you changed your mind (as a group or individually) on any of these, what
did you experience that made you see things differently? How can this be useful
to you in the future?
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Code for Tutorial 1

A.2 Code for Tutorial 1

x0 = 0.91 # initial value
n = 9 # number of steps

step = (1 - x0)/n # step length

i = 0 # step counter
sum = x0
print()
print("Step", i, ":", sum) # step 0 er just the initial value (

no steps taken yet)
while sum < 1.0:

i = i + 1
sum = sum + step # cumulative sum (i.e. the sum so far)
print("Step", i, ": +", step, "=", sum)

print()
print("Result :", sum, "after", i, "steps")
print("Expected: 1.0 after", n, "steps")

Code Sample A.1: The code given to students for tutorial 1.
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Tutorial 2: Taylor Expansions

B.1 Final Version of Tutorial

B.1.1 Introduction: Your very own log function

Have you ever wondered how computers and calculators know how to calculate
logarithms? And what is the point of Taylor polynomials when the function we
use is known already?

In this tutorial we will investigate these questions.
A computer excels at working with the four basic calculations: adding,

subtracting, multiplying, and dividing. That makes it easy for the computer
to work with polynomials. But how do you go from there to more advanced
functions like logarithms? You are about to find out because we are going to
make one.

The main point of these exercises is that everyone in the group should:

• understand how the computer calculates logarithms,

• understand the role the exponential representation of floating-point
numbers plays in this, and

• understand at least one practical application of Taylor polynomials for
known functions.

Make sure to ask questions and explain to each other along the way so the whole
group ends up with these understandings. This is much more important than
getting the right answer.

B.1.2 Exercises

B.1.2.1 Exercise 1

In these exercises we will work with the natural logarithm ln?(x) or log(x) as
it is called in Python.

Take a look at the file taylorlog.py (Code Sample B.1). It contains the
following functions:

Note the meaning of the following variable names:
Your first task is to complete the taylorterm function, so it returns the ith

term of the Taylor polynomial. Explain how you go from the general formula to
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Table B.1: Functions for Tutorial 2.

Function name Purpose Completed?
taylorterm Calculates one term of the Taylor poly-

nomial for the logarithm
No (exercise 1)

taylor Calculates the entire Taylor polynomial
for the logarithm

Yes

remainder Calculates the absolute remainder of the
Taylor polynomial

No (exercise 1)

taylorlog A smarter way to calculate the natural
logarithm that makes use of the Taylor
polynomial

No (exercise 3)

Table B.2: Variables for Tutorial 2.
Variable Meaning
i Any term in the Taylor polynomial
n Maximal number of terms in the Taylor polynomial
a The point we use to make the Taylor expansion (i.e.,

where it is most accurate)
lna The natural logarithm of a
x Any point where we want to calculate the logarithm

using the Taylor expansion
xi (ξ) Some unknown point somewhere between a and x

that we use to calculate the remainder

the one specific to the logarithm. Note that we use lna as the input parameter
instead of a for practical reasons 1.

B.1.2.2 Exercise 2

Your next task is to also complete the remainder function, so it returns the
correct absolute remainder for the natural logarithm with n terms:∣∣∣∣∣ (x − a)n+1

(n + 1)! f (n+1)(ξ)
∣∣∣∣∣

Again, explain how you go from the general formula to the one specific to the
logarithm.

1This means that instead of changing the value the value of a directly, we need to change
lna instead. If we need the value of a, we can get it by using a = exp(lna). We do this
because term zero in the Taylor polynomial is simply equal to ln a. We can’t calculate this
value without a pre-existing log function, but there is nothing wrong with simply choosing
what ln a should be, and then calculating a if we need to know what it is.
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A problem here is that you do not really know the value of xi, only that it
is somewhere between x and a (both are positive for the logarithm, but we do
not know which one is larger). Work around this issue by using the worst-case
value (the one that makes the remainder as large as possible), so we get an upper
bound for the error.

Why do we want this estimate of the error to be as large as possible, when it
will probably be larger than the actual error?

B.1.2.3 Exercise 3

Test your code by using the program taylor_test.py (Code Sample B.2).
With the default values lna = -0.15, n = 10 it should produce the

following plot of the absolute remainder. The dotted line in the plot below
is a limit of 10−10 which we accept as accurate enough in practice for this
tutorial.

Figure B.1: Test plot for self-assessment in Tutorial 2.

If your code produces a different plot than this, you will need to do some
debugging and correct it before moving on.
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B.1.2.4 Exercise 4

Experiment with changing the values of lna and n in taylor_test.py until
you can explain what happens to the plot of the remainder when you change
each of these: what is the effect of changing the point a? What is the effect of
changing the number of terms n?

B.1.2.5 Exercise 5

It may not come as a surprise that Taylor polynomials are most accurate close
to the point a, and much less accurate far away from that point. Since we can
only pick one point at a time, this makes it very hard to use Taylor polynomials
to give us a logarithm function for all positive real numbers.

To work around this problem, we will exploit the fact that on the computer,
real numbers are represented as floating point numbers on the standard form:

x = mantissa * 2**exponent

Note that mantissa is a number between 0.5 and 1 and exponent is a unique
integer. What happens, mathematically, to the right-hand side when you take
the logarithm of both sides?

Look at your answer and consider how it might be an improvement to use
taylor(mantissa) instead of just taylor(x). Explain which one of these it
is easiest to get accurate values from. (Remember that x can be any positive
number and that mantissa’s range of possible values are very limited.)

B.1.2.6 Exercise 6

Use the expression you found in exercise 5 to finish the function taylorlog in
taylorlog.py. As you can see, Python already has a way to get mantissa and
exponent from the number x.

Remember that the taylor function can be used when you need a logarithm
instead of log – we are trying to build our own logarithm from scratch here, so
we don’t want to cheat. There is one exception to this rule: you can use the
known value of the logarithm of 2, which is given in the code.

B.1.2.7 Exercise 7

To test if your taylorlog function works, run the program log_test.py (Code
Sample B.3) with the standard values lna = 2 and n = 10. If it worked, you
should see this result (or at least something very close to it):

We see that the accuracy is far from perfect. Don’t worry, though; in the
next exercise we’ll improve the accuracy.

If you get different results, check your code and fix any errors you find.
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Figure B.2: Output of test program of log function.

B.1.2.8 Exercise 8

Since we cannot use any built-in log function for this, use the taylor function
to find a value of lna that gives you a really low relative remainder in the entire
interval 0.5 and 1.

The problem is, we only have machine accurate values of two logarithms: ln2
and ln3. These are defined in taylor_test.py, and you can use that program
to test your values (remember that 10−10 is considered close enough in practice
for the remainder in is tutorial).

B.1.2.9 Exercise 9

Now that you have some values that work well enough, investigate mathematically
how few terms n you can get away with and still have a remainder that is smaller
than 10−10.

• You will need to pick a value of x. Which one is the best choice when we
want a small remainder for all x between 0.5 and 1?

• Remember to pick the worst-case value of xi.

• You should end up with an expression where n is the only unknown quantity.

Try to find the value of n analytically. If you cannot, is there a way for
Python to test many different values of n and pick the smallest one that gives a
satisfactory remainder?

When you have an answer, run taylor_test.py to verify that the remainder
is not too large anywhere for this number of terms.
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B.1.2.10 Exercise 10

Once you are happy with the result, use log_test.py to test your very own
logarithm function from Exercise 7 using the best values of lna and n that you
found.

• If the relative error is larger than 0 for some of these examples, adjust n
some more until the error is 0 for all of them.

B.1.2.11 Exercise 11 (Optional)

Consider the expression for the remainder at the two endpoints in Table B.3.
Explain the difference between the remainders at the endpoints in Figure B.3.

Table B.3: Remainder values for Exercise 11.
x a ξ Remainder
1 0.75 0.75 1

n+1

∣∣∣∣( x−a
ξ

)n+1
∣∣∣∣

0.5 0.75 0.5

B.1.2.12 Exercise 12

Finally, sum up in your own words, what we have done, especially:

• How the computer calculates logarithms2,

• How we checked that the calculations were accurate (enough),

• Where the Taylor expansion was useful to us, even though we already knew
the function it was approximating,

• How we changed where the Taylor expansion needed to be accurate from
all positive numbers to a small interval between 0.5 and 1, and

• How we used both mathematics and programming to identify the smallest
possible number of terms.

Your goal here is that all of you understand what you did and why. You
are encouraged to ask a TA if you have problems explaining or understanding
something, or just want to check that you have a good enough understanding of
what you did.

2In practice, even faster approximations with less terms than the Taylor polynomial are
often used, but the principle is the same.
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Figure B.3: Asymmetric remainder to be explained by the students.

B.2 Code for Tutorial 2

from numpy import exp
from math import frexp

# Exercise 1: Calculate the i’th term of the Taylor polynomial
# We have already taken care of term 0, which is simply ln(a)
def taylorterm(x, lna, i):

if i == 0:
return lna

else:
a = exp(lna)
# TODO: calculate the term for i > 0
return 0

# Adds together all the different Taylor terms up to and
including n

def taylor(x, lna, n):
sum = 0.0
for i in range(n + 1):
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sum += taylorterm(x, lna, i)
return sum

# Exercise 2: Calculate the remainder of the Taylor polynomial
def remainder(x, lna, n):

a = exp(lna)
# TODO: calculate the remainder
return 0

# Exercise 6: Your very own logarithm function!
def taylorlog(x, lna, n):

# get the two parts of the number on the form they are
stored in memory
mantissa, exponent = frexp(x)
ln2 = 0.6931471805599453 # ln(2) with machine accuracy (16
digits)
# TODO: Calculate ln(x) by using what you found in Exercise
5
# NOTE: Do not use log(...) for any of this.
# We should use taylor(...) for all out logarithm
needs.
return 0

Code Sample B.1: The file taylorlog.py where students make their own log
function.
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import matplotlib.pyplot as plt
from numpy import abs, linspace, exp
from taylorlog import taylor, remainder

# These constants might be helpful at some point
ln2 = 0.6931471805599453 # ln(2) with machine accuracy (16

digits)
ln3 = 1.0986122886681097 # ln(3) with machine accuracy (16

digits)

# These values affect the Taylor polynomial, and can be changed
:

lna = -0.15
n = 10

# There should be no need to change anything below this point:
xmin = 0.5
xmax = 1
xs = linspace(xmin, xmax, 10000)

remainders = []
for x in xs:

rem = remainder(x, lna, n)
remainders.append(rem)

plt.plot(xs, remainders)
plt.axhline(10**-10, linestyle="--", color="black")
plt.xlabel("x")
plt.ylabel("Absolute Remainder")
plt.yscale("log")
plt.title("n=" + str(n) + ", \ln{(a)}=" + str(lna) + ", a=" +

str(round(exp(lna), 2)))
plt.show()

Code Sample B.2: The file taylor_test.py that plots the remainder.
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from numpy import log, exp
from taylorlog_solution import taylorlog

# These constants might be helpful at some point
ln2 = 0.6931471805599453 # ln(2) with machine accuracy (16

digits)
ln3 = 1.0986122886681097 # ln(3) with machine accuracy (16

digits)

# These values affect the Taylor polynomial, and can be changed
:

lna = -0.15
n = 10

# There should be no need to change anything below this point:
xs = [0.001, 0.1, 10, 1000]
for x in xs:

logx = log(x)
taylorlogx = taylorlog(x, lna, n)
relerr = abs((taylorlogx - logx) / logx)
print()
print("x =", x)
print("---")
print("log: ", logx)
print("taylorlog: ", taylorlogx)
print("relative error:", relerr)

print()
print("ln(a) =", lna)
print("a =", exp(lna))
print("n =", n)

Code Sample B.3: The file log_test.py that tests the students’ log function.
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Appendix C

Tutorial 3: Numerical Integration

C.1 Final Version of Tutorial

C.1.1 Introduction

In numerical differentiation it is important that the step size is not too short
(mathematical error) nor too long (rounding error). Does the same apply to
numerical integration? Why/why not?

In this tutorial, we will work with a function that is impossible to integrate
by hand, for which we know the values of the integral anyway. It is none other
than the normal distribution function:

f (x, µ, σ) = 1√
2πσ2

e− (x−µ)2

2σ2

For simplicity, we set the mean µ = 0 and the standard deviation σ = 1, so that
we get:

f (x) = 1√
2π

e− x2
2

Integrating this from -10 to 10, will definitely give us 1 as the answer (because
the odds that something is as far as 10 standard deviations from the mean is
much, much smaller than the rounding error on the computer1):∫ 10

−10
f (x) dx = 1

Work together and focus on everyone understanding what is going on. Ask a TA
for help if you have trouble convincing each other or want to check that you’re
on the right track.

C.1.2 Exercises

C.1.2.1 Exercise 1: The midpoint method

In the module integrals.py that you have been given (Code Sample C.1), we
have done the following for you:

• Defined the function f that represents f(x) in Python

• Defined a stepsize function that you can use to calculate the step size.
1Try print(f(-10)) and print(f(10)) in integrals.py if you are curious.
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The first thing that is missing is a function area(x, h) that calculates the
area under the curve between x and x + h using the midpoint method2.

Test the function and check that area(0,1) gives the result
0.3520653267642995.

C.1.2.2 Exercise 2: The entire integral

The next thing that is missing is a function integral(a, b, n)that calculates
the entire integral from a to b with n steps.

Once you are happy with your function for numerical integration, test that
you get the value 0.9856162386389232 (or something very close to it) for the
integral with a = -10 and b = 10 using 10 steps.

C.1.2.3 Exercise 3: The optimal number of steps

The file plots.py (Code Sample C.2) uses the functions in integrals.py to
plot how accurate the integration is with different step sizes. It plots the relative
error of the integration as a function of n and also prints out all the results to
the terminal.

What is the minimal number of steps needed for a perfect result when
integrating from -10 to 10?

What is the minimal number of steps needed for a perfect result when
integrating from -100 to 100?

Based on the previous two answers, what would you expect to be the answer
when integrating from -1000 to 1000?

Test your guess for -1000 to 1000. What happens to the running time of the
program as the number of steps grows large?

C.1.2.4 Exercise 4: What is going on?

Compare the two plots of the numerical integrals from -10 to 10 (left) and -100
to 100 (right). The number of steps used are 28 and 270, respectively. The red
dots are the midpoints used to calculate the area under the curve.

Why do you think that we need roughly 10 times as many points when the
integration limits are 10 times larger?

Would you expect the same relation to hold for the integral from -1 to 1?
Why/why not?

C.1.2.5 Exercise 5: Many steps!

You may have noticed that the more steps we use, the fewer of the integrals get
relative error zero. If we use a logarithmic x-axis for the first integral (from -10
to 10), we find that the relative error seems to increase when n grows very large.

Why is the error so large for small n?
2Not Euler’s midpoint method for differential equations, but the related method with the

same name used for definite integrals.
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Figure C.1: Normal distribution function between -10 and 10 standard deviations.

Why is the error steadily increasing for large n? (Hint: With very many
steps, we add very many numbers, some rather large (near x = 0) and many of
them very close to zero.)

Based on this and the running time you observed for the program, what
should one think about when choosing a step size for numerical integration?
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Figure C.2: Normal distribution function between -100 and 100 standard
deviations.

Figure C.3: Relative error scaling of the normal distribution function with
increasing number of steps between -10 and 10 standard deviations.
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C.2 Code for Tutorial 3

from numpy import exp, pi

# normal distribution with standard values for mu and sigma
def f(x, mu=0, sigma=1):

return exp(-(x-mu)**2/(2*sigma**2))/((2*pi*sigma**2)**(1/2)
)

def area(x, h):
# TODO: Calculate the area under the curve between x and x+
h (exercise 1)
return 0

# returns the step size for n steps between x=a and x=b
def stepsize(a, b, n):

return (b - a)/n # n is the number of steps, not the number
of points

def integral(a, b, n):
h = stepsize(a, b, n)
# TODO: Calculate the integral between a and b using n
steps (exercise 2)
return 0

Code Sample C.1: The file integrals.py where the students integrate the
normal distribution.
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from numpy import arange
import matplotlib.pyplot as plt
from integrals import integral

# plot parameters (exercise 3)
nmin = 1 # smallest value of n
nmax = 100 # largest value of n
nstep = 1 # plot every ...th value of n (

skipping some will speed up the program)

# integration limits (exercise 3)
a = -10
b = 10

ns = arange(nmin, (nmax + 1), nstep)
relerrs = []

for n in ns:
relerr = abs(integral(a, b, n) - 1)
relerrs.append(relerr)
print("n =", n, "/", nmax, "--> rel.err. =", relerr)

plt.plot(ns, relerrs, "o")
plt.xlabel("Number of steps (n)")
plt.ylabel("Relative error")
plt.yscale("log")
filename = "a" + str(a) + "b" + str(b) + "nmin" + str(nmin) + "

nmax" + str(nmax) + "nstep" + str(nstep) + ".png"
plt.savefig(filename)
plt.show()

Code Sample C.2: The file plots.py that generates plots of the relative error.

210


	Preface
	List of Papers
	Contents
	List of Figures
	List of Tables
	List of Code Samples
	Introduction
	Why?
	So What?
	Positioning This Work in the Field
	The Big Questions
	Organisation of Thesis
	Summary of Papers

	Mathematics and Computing
	Integrating Computing and Mathematics
	Representation of Real Numbers on the Computer

	Theoretical Background
	The Understanding by Design Framework
	Actor-Oriented Transfer
	Sensemaking

	Methodology
	Iterative design process
	The Interviews
	Analysis

	The Path to Paper I
	How Computation Can Facilitate Sensemaking About Physics: A Case Study
	Introduction
	Analytical Framework
	Methods
	Computational Sensemaking Case
	Discussion and Conclusions
	References

	The Path to Papers II and III
	Three Cases That Demonstrate How Students Connect the Domains of Mathematics and Computing
	Introduction
	Theoretical Perspective and Background Literature
	Methods
	Results
	Discussion and Conclusions
	References

	Students' Development of a Logarithm Function in Python Using Taylor Expansions: A Teaching Design Case Study
	Introduction
	Theoretical Framework
	The Big Ideas
	Methodology
	Initial Design
	Results, part I: Initial Implementation
	Second Design
	Results, part II: Second Implementation
	Final Design
	Discussion, Conclusion and Avenues for Future Research
	References

	Discussion and Conclusions
	Summary of Findings
	Limitations
	The Big Answers
	Implications for Teaching
	Implications for Future Research

	Bibliography
	Appendices
	Tutorial 1: Rounding errors
	Final Version of Tutorial
	Code for Tutorial 1

	Tutorial 2: Taylor Expansions
	Final Version of Tutorial
	Code for Tutorial 2

	Tutorial 3: Numerical Integration
	Final Version of Tutorial
	Code for Tutorial 3


