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Abstract

In this thesis, we develop, analyze and implement adaptive finite ele-
ment methods for fully coupled, time-dependent fluid–structure interac-
tion problems and incompressible flows. The presented adaptive methods
are based on a posteriori error estimates, where both space discretization
and time discretization are adaptively modified based on the solution of
an auxiliary linearized dual problem to control the error in a given goal
functional of interest. We also include in our analysis the effect of using
an inconsistent finite element formulation, such as an operator splitting
method, in the computation of the numerical solution. We demonstrate
the accuracy and efficiency of the adaptive algorithm with a series of nu-
merical examples.

Keywords: Adaptive finite element method, fluid–structure interaction, a pos-
teriori error estimate, dual problem, goal-oriented, incompressible flow, Navier–
Stokes, operator splitting method
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1 Introduction

Computer simulation is an important tool in many disciplines of science and
engineering. Complex mathematical models are solved in large computer simu-
lations as a complement to experimental techniques and theoretical studies. In
order to interpret the results correctly, the quality of the simulations is a key is-
sue. To ensure that a simulation is of high quality, it is crucial that the accuracy
of computed solutions can be determined. Moreover, many of the problems that
are being simulated in science and in engineering are computationally expensive
and computer resources must therefore be used wisely. Ultimately, the solution
should be computed with the highest possible accuracy using a given (limited)
amount of computing resources.

One such example of a computationally expensive problem is fluid–structure
interaction (FSI). This type of problem occurs when a fluid interacts with a solid
structure, exerting surface tractions that cause deformation of the structure
and, as a consequence, alters the flow of the fluid itself. The occurrence of
FSI problems is abundant and this category of problems is of great importance
and relevance in many applications. In particular, many problems of interest in
biomedical research involve the coupling between a fluid and some kind of solid
structure. Blood flow in arteries and the human respiratory system are typical
examples. In industrial applications, such as the design of airplanes, pipelines
and fishing lures, the analysis of the FSI problem is an important part of the
engineering process.

In this thesis, we investigate and design adaptive numerical methods for FSI
and fluid flow. We base our investigation on so-called goal-oriented adaptive
finite element methods. This provides a general framework for the design of
methods that provide error control for a given goal functional that prescribes a
physical quantity of interest. In particular, one may use an a posteriori error
estimate to quantify the error in the computed goal functional and thus deter-
mine the accuracy of the computed solution. Based on the a posteriori error
estimate, one may also design adaptive algorithms for efficient use of computa-
tional resources.

1.1 Thesis objectives

The main objectives of this thesis are to:

• derive a posteriori error estimates using duality techniques for fully cou-
pled, time-dependent FSI problems and construct a corresponding goal-
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oriented adaptive finite element method;

• derive a posteriori error estimates using duality techniques for operator
splitting schemes for the incompressible Navier–Stokes equations and con-
struct a corresponding goal-oriented adaptive finite element method, in-
cluding an analysis of the numerical error introduced by the operator
splitting;

• develop a user-friendly free/open-source software for goal-oriented adap-
tive finite element methods for fully coupled, time-dependent FSI prob-
lems.

1.2 Main results

Below, we summarize the main results of this thesis, consisting of the contribu-
tions presented in Papers I, II and III.

An adaptive finite element method for fluid-structure interaction
(Paper I)

In Paper I, we derive a duality-based a posteriori error estimate for fully cou-
pled, time-dependent FSI problems. Further, we develop a corresponding goal-
oriented adaptive finite element method based on the derived a posteriori error
estimate. Our methodology relies upon a partitioned primal FSI problem where
the three subproblems for the fluid, structure and mesh use separate solvers,
making it easy to replace the individual solvers and the governing equations
modeling the different subproblems. The primal fluid subproblem is solved in
a moving computational domain in the Arbitrary Lagrangian Eulerian (ALE)
framework using an operator splitting method. Both the primal structure and
mesh subproblems are posed and solved in a stationary reference domain in
a Lagrangian framework. By relating the primal fluid subproblem to the sta-
tionary reference domain, a corresponding primal problem is formulated in the
reference domain, which allows for the derivation of a duality-based a posteriori
error estimate for the fully coupled, time-dependent FSI problem.

The duality-based a posteriori error analysis yields a computable error esti-
mate of the form

|M(e)| ≤ Eh + Ek + Ec,

whereM(e) is the error in a given goal functionM, and Eh, Ek and Ec account
for the space discretization error, time discretization error, and computational
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error, respectively. The computational error Ec measures the effect of the error
introduced by using an operator splitting method for the fluid subproblem. The
adaptive algorithm adapts the space discretization and time discretization based
on the information obtained from Eh and Ek.

Numerical results presented in Paper I demonstrate the accuracy and ef-
ficiency of the presented goal-oriented adaptive finite element method. The
numerical results also highlight the importance of studying in more detail the
effect of the splitting scheme on the size of the computational error Ec.

An adaptive finite element splitting method for the incompressible
Navier–Stokes equations (Paper II)

In Paper II, we derive a duality-based a posteriori error estimate for an operator
splitting scheme for the incompressible Navier–Stokes equations. By comparing
the splitting method to a pure Galerkin formulation, the derived a posteriori
error estimate expresses the error in a goal functional of interest as a sum of
contributions from space discretization, time discretization and a term that mea-
sures the deviation of the splitting scheme from the pure Galerkin formulation.
Based on the error estimate, a goal-oriented adaptive finite element method is
developed for control of space and time discretization errors.

Numerical results presented in Paper II demonstrate good performance of
the goal-oriented adaptive algorithm. The results indicate that it is possible to
combine the simplicity and efficiency of splitting methods for the incompress-
ible Navier–Stokes equations with the powerful framework offered by the finite
element method for error analysis and adaptivity.

An adaptive finite element solver for FSI problems (Paper III)

In Paper III, we present a goal-oriented adaptive finite element solver framework
for fully coupled, time-dependent FSI problems. The presented solver frame-
work is implemented in a user-friendly Python environment as a part of the
collaboratively developed free/open-source project named CBC.Solve1 (released
under the GNU GPL). The paper describes the methodology used for solving
the partitioned primal FSI problem, including how the different subproblems
are solved and implemented. We further discuss strategies for adapting the
space and time discretization using the dual-weighted residual method derived
in Paper I. The goal-oriented adaptive FSI solver framework is demonstrated

1CBC.solve is freely available from its source repository at https://launchpad.net/cbc.

solve/ and its only dependency is a working FEniCS installation.
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with numerical examples. Code examples are included to demonstrate how our
presented methodology is implemented using the finite element software library
FEniCS (Logg and Wells, 2010). The presented code illustrates the resemblance
between the mathematical notation and the code which is crucial to implement
the very complex dual problem for the fully coupled FSI problem. Moreover, we
illustrate the flexibility of the solver framework and how one may easily replace
or modify the individual solvers for the three subproblems.

1.3 Future work

The presented methodology for adaptive finite element methods applied to fully
coupled, time-dependent FSI problems is suited for structures that undergo
small to moderate deformation. For large deformations, the mesh smoothing
subproblem is a key issue to ensuring a mesh of sufficient quality. Even though
the presented method is designed to reduce element distortion for the fluid
subproblem by solving an additional mesh smoothing problem, it is not possible
to avoid re-meshing for large deformations. To avoid introducing errors when
interpolating from an old mesh to a mesh that has been completely or partially
re-meshed, a fixed background mesh approach is desirable.

As an approach to handling large deformations, one might consider using the
so-called Nitsche’s method (Nitsche, 1971). Nitsche’s method provides a general
approach to weakly imposing interface conditions for various kinds of coupled
problems, such as FSI problems. In addition, Nitsche’s method may be used to
pose interface conditions on overlapping non-matching meshes, which could be
used to formulate fixed background mesh methods suitable for FSI problems on
complex geometries with large deformations. Since Nitsche’s method is formu-
lated as a variational problem, it is also well suited for adapting the space and
time discretization using a dual-weighted residual method.

1.4 Outline of the thesis

The purpose of this introductory part of the thesis is to give a general and
compact overview of adaptive finite element methods and their application to
FSI problems. We start in Section 2 by introducing the finite element method.
Next, in Sections 3–4, we go through the basic concepts of duality-based error
analysis for finite element methods. In Section 5, we give a brief introduction
to FSI problems and discuss their solution in Section 6. Finally, we discuss the
application of adaptive finite element methods to FSI problems in Section 7.
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2 The finite element method

Engineers all over the world are on a daily basis formulating and solving prob-
lems that do not have analytical solutions; instead approximate numerical so-
lutions are necessary. A very successful method for solving a vast diversity of
engineering problems is the finite element method. The name was coined by
Clough (1960), some years after the method had been introduced for structural
engineering applications by Clough and co-workers in Turner et al. (1956). The
method was proposed independently by Courant (1943) for the mathematical
community without receiving much attention. The mathematical foundation of
the finite element method was developed by Galerkin (1915). Galerkin formu-
lated a general method for solving differential equations which is closely related
to the variational principles of Leibniz, Euler, Lagrange, Hamilton, Rayleigh
and Ritz (Ritz, 1909). Although the majority of users of finite element methods
today are engineers in industry, it has a strong mathematical foundation which
provides the tools to derive error estimates that can be used in a constructive
way to improve the accuracy of approximate numerical solutions.

To obtain a numerical approximation using the finite element method for a
given problem, we identify four stages: the strong problem, the weak problem,
the finite element formulation and, finally, the algorithm. We summarize these
stages below for an abstract model problem.

2.1 The strong problem

Differential equations are often formulated in strong form derived from funda-
mental principles of physics, such as balance of momentum and conservation of
mass and energy. We here consider the following strong abstract linear model
problem: find the unknown function u : Ω× [0, T ]→ R

n (n = 1, 2, 3) such that

u̇+Au = f in Ω× (0, T ], (1)

where Ω ⊂ R
d (d = 1, 2, 3) is an open bounded domain, T a given final time,

u̇ = ∂u/∂t denotes the partial time derivative and A denotes a differential
operator in space. We also amend (1) with a suitable set of initial and boundary
conditions. Equation (1) states that rate of change u̇+Au, in space and time, of
the unknown u is equal to a given driving force f . The unknown u can represent
a wide variety of physical quantities such as a fluid flow, the concentration of
a chemical substance over a catalyst bed, or the deformation of a material
continuum.
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2.2 The weak problem

The starting point of the finite element method is to rewrite the strong problem
(1) as a variational or weak problem. The weak form of the problem is obtained
by multiplying (1) with a suitable test function v and integrating over the space–
time domain. We thus obtain the equation

∫ T

0

〈v, u̇〉 dt+
∫ T

0

〈v,Au〉 dt =
∫ T

0

〈v, f〉 dt, (2)

where 〈·, ·〉 denotes the L2-inner product on Ω. The left-hand side of (2)
is typically integrated by parts to move one or two derivatives onto the test
function v. By a careful choice of test and trial spaces V̂ and V (typically
Sobolev spaces), one may phrase the strong problem (1) as the following weak
problem: find u ∈ V such that

a(v, u) = L(v) (3)

for all v ∈ V̂ . This abstract weak problem forms the basis for the mathematical
foundation of the finite element method. Under suitable assumptions on the
bilinear form a : V̂ × V → R and the linear form L : V̂ → R, one may prove
existence of the weak solutions; see Debnath and Mikusiński (1999); Kreyszig
(1978); Oden and Demkowicz (1996); Brenner and Scott (2008).

We note that we may alternatively write the variational problem (3) in the
form

0 = a(v, u)−L(v) ≡ r(v) ≡
∫ T

0

rt(v) dt ≡
∫ T

0

〈v, u̇〉+at(v, u)−〈v, f〉 dt, (4)

where r : V̂ → R is the residual and at(v, u) = 〈v, Au〉.

2.3 The finite element formulation

To obtain the finite element discretization of the weak problem (3), we seek
the solution in a discrete (finite dimensional) subspace Vhk ⊂ V that fulfils the
variational problem for all test functions in a discrete test space V̂hk ⊂ V̂ : find
uhk ∈ Vhk such that

a(v, uhk) = L(v) (5)

for all v ∈ V̂hk.
The discrete subspaces are constructed by subdividing the domain Ω into

a mesh T = {K} of cells K consisting of intervals, triangles and tetrahedra
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in one, two and three space dimensions, respectively. Other partitions such
as partitions into quadrilaterals or hexahedra are also possible. For the time
discretization, we let 0 = t0 < t1 < · · · < tM = T be a partition of [0, T ] into
time intervals In = (tn−1, tn] of length kn = tn − tn−1 . On each space–time
slab Sn = T × In, we make the following Ansatz for the finite element solution
uhk:

uhk(x, t) =
N∑
j=1

Uj(t) ϕj(x). (6)

Here, U : [0, T ] → R
N is an unknown vector-valued function that is piecewise

polynomial on the partition on the time interval and {ϕ}Nj=1 is a piecewise
polynomial basis on the mesh T .

A fundamental property of the finite element solution is the Galerkin or-
thogonality :

a(v, uhk − u) = 0 (7)

for all v ∈ V̂hk which follows by subtracting (3) from (5). The Galerkin or-
thogonality states that the error e = uhk − u is orthogonal to Vhk with respect
to the bilinear form a, or that the approximate finite element solution uhk is a
projection of the true solution u into Vhk.

2.4 The algorithm

To compute a solution of the discrete variational problem (5), we make the
assumption that the test functions of V̂hk are piecewise discontinuous and poly-
nomial in time. This is the case for the family of cG(q) and dG(q) meth-
ods. (Eriksson et al., 1996) We may then take v(·, t) = 0 for t /∈ In. It follows
that

a(v, u) ≡
∫ T

0

〈v, u̇〉+ at(v, u) dt =

∫
In

〈v, u̇〉+ at(v, u) dt, (8)

where now the test function is a polynomial in time on the interval In. Similarly,
we have L(v) =

∫
In
〈v, f〉 dt. By taking v constant on the time interval In, it

follows that the finite element solution uhk satisfies the variational problem

∫
In

〈v, u̇hk〉+ at(v, uhk) dt =

∫
In

〈v, f〉 dt (9)
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for all v ∈ V̂h where V̂h = span {ϕ̂i}Ni=1. Inserting the Ansatz (6) and noting
that

∫
In
〈v, u̇hk〉 dt = 〈v, uhk(·, tn)− uhk(·, tn−1)〉, we find that

M(Un − Un−1) +

∫
In

AhU dt =

∫
In

MF dt, (10)

where M is the mass matrix with entries Mij = 〈ϕ̂i, ϕj〉, Ah is the discretized
operator (the stiffness matrix) with entries (Ah)ij = at(ϕ̂i, ϕj) and F is the
vector of nodal basis expansion coefficients for the (projection of the) right-
hand side f . For a piecewise linear in time approximation, equation (10) is
sufficient to determine the vector of degrees of freedom Un = U(tn). Higher
order methods require a consideration of higher order moments; that is, one
must consider other test functions than those constant in time. In the case
of the cG(1) method, we note that the integral

∫
In
AhU dt may be evaluated

exactly and find that the solution vector Un at time tn can be obtained by
solving the linear system(

M +
kn
2
Ah

)
Un =

(
M − kn

2
Ah

)
Un−1 + bn, (11)

where bn =
∫
In
MF dt. The cG(1) method is sometimes referred to as the

Crank–Nicolson method. We note that extensions may be made to higher order
methods and nonlinear problems, in which case one must solve a system of
nonlinear equations in each time step.

3 Adaptive finite element methods

Adaptive finite element methods are based on the idea that we want to com-
pute the solution with good accuracy to a minimal computational cost, or,
alternatively, compute a solution with as good accuracy as possible to a given
computational cost. In many applications, we are interested in finding an ac-
curate solution in terms of a specific target quantity of the solution, a so-called
goal functionalM : V → R. This goal functional is in many situations the main
reason for the computation and it expresses a physical quantity of interest. For
example, we may want to accurately compute the displacement of a material
continuum in a fully coupled fluid–structure interaction problem. To achieve an
accurate solution of such a target quantity to a minimal computational cost, we
need a reliable computational method that guarantees

|M(uhk)−M(u)| ≤ TOL, (12)
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for a given tolerance TOL > 0. The key steps in an adaptive algorithm targeted
at achieving (12) using adaptive refinement in space and time are listed below
(Algorithm1).

Algorithm 1 Adaptive algorithm

Given a goal functional M =M(u) and a tolerance TOL > 0:

0) Select an initial coarse discretization.

1) Compute an error estimate E ≥ |M(uhk)−M(u)|.

2) If E ≤ TOL, then stop.

3) Refine the discretization based on the error estimate E.

4) Continue from step 1).

Since u is in general unknown, the important step 1) in Algorithm 1 is far
from trivial. To evaluate the error estimate of the goal functional, one may
express the error by a so-called duality argument. This technique is explained
in the subsequent section.

3.1 Goal-oriented error estimation using duality

In adaptive algorithms for finite element methods, we usually distinguish be-
tween two different types of error estimates; a priori error estimates and a pos-
teriori error estimates. An a priori error estimate relates the error to the
regularity of the exact global solution u and the resolution h and k in space and
time, respectively. The strength of this method is that it provides asymptotic
convergence rates for a particular choice of finite element. From a practical
point of view, an a priori error estimate makes use of information from the
exact solution which is not known for many real world applications, such as
engineering problems. On the other hand, in an a posteriori error estimate, the
error is related to the residual of the computed numerical approximation and
other computable quantities. Pioneering work on a posteriori error analysis of
finite element methods was made by Babuška (Babuška and W. C. Rheinboldt,
1978; Kelly et al., 1983; J. P. De S. R. Gago et al., 1983).

The use of duality arguments in adaptive finite element methods was pi-
oneered by Eriksson and Johnson (1991, 1995), followed by the survey paper
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Eriksson et al. (1995). In these works, stability properties are derived from con-
tinuous dual problems by means of analytic arguments. The duality technique
was further developed in Becker and Rannacher (1995, 1996) into the so-called
“dual-weighted residual method”. In this method, a more general set of goal
functionals are analyzed using stability properties derived from the numerical
solution of discrete dual problems. The dual-weighted residual method, includ-
ing mesh adaption based on the discrete dual problem, is summarized in Becker
and Rannacher (2001).

Numerous applications of the dual-weighted residual method have followed
over the last two decades. Error estimates and adaptive finite element methods
derived from these frameworks include ordinary differential equations (Estep
and French, 1994; Estep, 1995; Logg, 2004), eigenvalue problems (Heuveline and
Rannacher, 2001), systems of reaction–diffusion equations (Estep et al., 2000),
plasticity (Rannacher and Suttmeier, 1998), the incompressible Navier–Stokes
equations (Becker and Rannacher, 2001; Hoffman, 2004; Becker et al., 2002),
reactive flow problems (Sandboge, 1999), the Black–Scholes equation (Foufas,
2008), multiphysics problems (Larson and Bengzon, 2008; Larson and Målqvist,
2007), and free-boundary problems (van der Zee et al., 2010b,c).

In the subsequent sections, we explain the basic concepts of the dual-weighted
residual method.

3.2 The dual problem

To analyze the error in a given goal functionalM : V → R for the finite element
approximation (5) of the weak problem (3), we assume that the goal functional
can be expressed as

M(u) ≡MT
1 (u(·, T )) +

∫ T

0

Mt
2(u) dt

= 〈u(·, T ), ψT1 〉+
∫ T

0

〈u, ψt2〉 dt,
(13)

where MT
1 is a target functional at the end time t = T and Mt

2 is a target
functional integrated over the time interval t ∈ [0, T ]. Here, (ψT1 , ψ

t
2) denote the

Riesz representers of the target functionals.
The error in the goal functional M may now be represented in terms of the

residual r(v) = a(v, uh)−L(v) of the weak problem (3) and the solution z of an
auxiliary dual problem. The (weak) dual problem reads: find z ∈ V ∗ such that

a∗(v, z) =M(v), (14)
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for all v ∈ V̂ ∗. Here, the pair of dual test and trial spaces are defined as
(V̂ ∗, V ∗) = (V0, V̂ ), where V0 = {v − w : v, w ∈ V }. We note that dual
test and trial spaces are obtained by simply swapping the primal test and trial
spaces, with the exception that the dual test space is obtained from the primal
trial space by subtracting Dirichlet boundary and initial conditions, which is
the effect of the construction v − w for v, w ∈ V . Further we note that the
definition of the adjoint operator ∗ simply amounts to interchanging the order
of the test and trial functions.

We now take a closer look at the abstract dual problem (14) for the specific

(abstract) model problem (1). We then have a(v, u) =
∫ T
0
〈v, u̇〉 + at(v, u) dt.

The dual problem is thus given by

∫ T

0

〈z, v̇〉+ at(z, v) dt =MT
1 (v(·, T )) +

∫ T

0

Mt
2(v) dt (15)

for all v ∈ V̂ ∗. This is an initial value problem with initial data ψT1 given
(weakly) at the final time t = T . To see this, we integrate the first term by
parts to obtain

∫ T

0

〈z, v̇〉 dt =
∫ T

0

〈−ż, v〉 dt+ 〈z(·, T ), v(·, T )〉 − 〈z(·, 0), v(·, 0)〉

=

∫ T

0

〈−ż, v〉 dt+ 〈z(·, T ), v(·, T )〉,
(16)

since v ∈ V̂ ∗ = V0 and thus v(·, 0) = 0. If now the dual solution z satisfies
the initial condition z(·, T ) = ψT1 , where ψ

T
1 is the Riesz representer of MT

1 ,
the boundary terms at t = T cancel and we may write the dual problem in the
following form: find z ∈ V ∗ with z(·, T ) = ψT1 such that

∫ T

0

〈−ż, v〉+ at(z, v) dt =

∫ T

0

Mt
2(v) dt (17)

for all v ∈ V̂ ∗ with v(·, T ) = 0. We note that the Riesz representer of the
functional Mt

2 does not have to be computed explicitly since it enters directly
as the right-hand side functional in the weak dual problem. It also follows
from (17) that the weak dual problem corresponds to the following strong dual
problem:

−ż +A∗z = ψt2 in Ω× [0, T ),
z(·, T ) = ψT1 ,

(18)
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together with homogeneous Dirichlet boundary conditions at the Dirichlet bound-
aries of the primal problem. Here, A∗ denotes the adjoint operator of the primal
differential operator A.

3.3 Error representation

It now follows directly by taking v = e = uhk − u in (14) that

η ≡M(uhk)−M(u) =M(e)

= a∗(e, z) = a(z, e) = a(z, uhk)− a(z, u) = a(z, uhk)− L(z)
≡ r(z).

(19)

In other words, the error in the goal functional M is the (weak) residual r of
the dual solution z. We note that for this analysis to be valid, it is necessary
that e ∈ V̂ ∗ so that we may take v = e in (14). This is fulfilled since both uhk
and u are members of the primal trial space V . Their difference must therefore
be a member of the dual test space V̂ ∗ = V0, provided that the discrete solution
uhk satisfies the boundary and initial conditions exactly. (If this is not fulfilled,
we may add and subtract the corresponding contributions and include those in
the analysis.) We further require that z is a member of the primal test space V̂
so that a(z, u) = L(z). This is fulfilled since z ∈ V ∗ and V ∗ = V̂ . This explains
the choice of the dual test and trial spaces.

When analyzing the error of a time-dependent problem, it is useful to isolate
the contributions from space and time discretization. We do this by construct-
ing a special interpolant πhk = πkπh : V̂ → V̂hk where πh is a semi-discrete
interpolant into the space of piecewise polynomial functions in space at each
fixed time t, and where πk is a semi-discrete interpolant into the space of piece-
wise polynomial functions in time at each fixed coordinate x. By the Galerkin
orthogonality (7), we know that r(πhkz) = 0. It follows that

η = r(z) = r(z)− r(πhkz) = r(z − πhkz) = r(z − πhz + πhz − πhkz)
= r(z − πhz) + r(πhz − πhkz) ≡ ηh + ηk,

(20)

where ηh represents the error contribution from space discretization and ηk
represents the error contribution from time discretization, respectively.

If the computed solution uhk does not satisfy the Galerkin orthogonality (7),
we may add and subtract r(πhkz) to obtain

η = r(z − πhz) + r(πhz − πhkz) + r(πhkz) ≡ ηh + ηk + ηc. (21)
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The result is an additional contribution to the total error η. We refer to this error
as the computational error. In Paper I and Paper II, a splitting operator method
is used compute the solution. Since the splitting method only partially fulfills
the Galerkin orthogonality, we must then account for the additional contribution
from Ec.

3.4 Error estimates

3.4.1 Space discretization error estimate |ηh| ≤ Eh

To express the space discretization error ηh as a sum of contributions from the
cells of the mesh, we integrate by parts on each cell K ∈ T to obtain the error
estimate

|ηh| = |r(z − πhz)| =
∣∣∣∣∣
∫ T

0

rt(z − πhz) dt
∣∣∣∣∣ ≤

∫ T

0

|rt(z − πhz)| dt

≤
∫ T

0

∑
K∈T

|〈z − πhz, RK〉K |+ |〈z − πhz, 1
2�R∂K�〉∂K | dt

=
∑
K∈T

∫ T

0

|〈z − πhz, RK〉K |+ |〈z − πhz, 1
2�R∂K�〉∂K | dt

=
∑
K∈T

ηK ≡ Eh.

(22)

The error indicators ηK consist of two residual contributions: the interior cell
residual RK and the facet residual R∂K . The exact form of these contributions
varies between different applications and depends on how the weak problem (3)
has been obtained from the strong problem (1), but typically RK is equal to
the residual u̇hk +Auhk − f and the boundary term R∂K represents a flux or a
normal stress. Furthermore, �R∂K� denotes the jump of the facet residual over
the boundary ∂K of the cell K.

To compute the error estimate Eh, we need to evaluate the error indicators
ηK , for which we need access to the dual solution z and its interpolant πhz.
One may attempt to compute an approximate dual solution zhk by solving the
following discrete dual problem: find zhk ∈ V ∗

hk ⊂ V ∗ such that

a∗(v, zhk) =M(v) (23)

for all v ∈ V̂ ∗
hk ⊂ V̂ ∗. However, by the Galerkin orthogonality (7), it follows that

r(zhk) = 0 if V ∗
hk = V̂hk. The error representation (19) thus evaluates to zero
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for the discrete dual solution. Furthermore, πhzhk = zhk so the error indicators
ηK and thus the error estimate Eh also evaluate to zero if we make the approx-
imation z ≈ zhk. A common way to overcome this problem is to compute the
discrete dual solution in a richer space, say using higher degree polynomials. For
a sufficiently smooth dual solution, a higher order method will result in a more
accurate dual solution and thus a sharper error estimate. However, in partic-
ular for linear problems, the computational cost of solving the dual problem is
then significantly higher than the cost of solving the primal problem. To avoid
solving the discrete dual solution on a richer space, the discrete dual solution
zhk can be computed on the same mesh and using the same polynomial degree
as the primal problem, if combined with a recovery/extrapolation procedure.
In Rognes and Logg (2010), a simple procedure is presented where one may
obtain an enhanced version Ezhk by local extrapolation on patches. We thus
replace z by the extrapolated discrete solution and make the approximation

z − πhz ≈ Ezhk − πhEzhk ≈ Ezhk − zhk. (24)

A similar approach is described in Bangerth and Rannacher (2003) for quadri-
lateral meshes.

3.4.2 Time discretization error estimate |ηk| ≤ Ek

To express the time discretization error ηk as a sum of contributions from each
time interval, we write

|ηk| = |r(πhz − πhkz)| =
∣∣∣∣∣
∫ T

0

rt(πhz − πhkz) dt
∣∣∣∣∣ ≤

∫ T

0

|rt(πhz − πhkz)| dt

≤
M∑
n=1

∫
In

|rt(πhz − πhkz)| dt ≡ Ek.

(25)

In (Logg, 2003), it was noted that the residual rt behaves like a Legendre polyno-
mial on each time interval In under the assumption that the right-hand side f is
a piecewise polynomial of the same degree as used to approximate the solution.
It follows that the cG(1) residual is zero at the midpoint and takes its maximum
(and minimum) values at the endpoints of each interval. We now make the as-
sumption that the interpolant πk interpolates at the midpoint of each interval
to obtain the following approximate estimate based on the computed discrete
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dual solution zhk:

Ek ≤
M∑
n=1

kn|rt(zhk(·, tn))− rt((zhk(·, tn−1) + zhk(·, tn))/2)|

=
1

2

M∑
n=1

kn|rt(zhk(·, tn))− rt(zhk(·, tn−1))|.
(26)

One may similarly construct a suitable interpolant for higher order methods; see
(Logg, 2003) for a discussion. We note that the above expression corresponds
to using an interpolation estimate with interpolation constant C = 0.5 and a
finite difference approximation of the time derivative of rt.

The above estimate Ek is useful as an estimate of the time discretization
error ηk. However, it involves the dual solution as a local weight which is
impractical in adaptive time step control. In particular, when the adaptive
time steps are determined as part of a time-stepping process on a refined mesh,
the dual solution has typically been computed on a previous (coarser) mesh
and the weights are therefore not directly accessible on the new mesh. For this
reason, we derive an upper bound for Ek where the local-in-time dual weights
are replaced by a global stability factor. We find that

Ek =

∫ T

0

|rt(πhz − πhkz)| dt =
∫ T

0

|〈πhz − πhkz, Rt〉| dt

≤
∫ T

0

‖πhz − πhkz‖ ‖Rt‖ dt

≤ max
[0,T ]

{kn(t)‖Rt‖}
∫ T

0

k−1
n ‖πhz − πhkz‖ dt

= S(T )max
[0,T ]

{kn(t)‖Rt‖}

≡ Ēk,

(27)

where Rt denotes the Riesz representer of rt and S(T ) =
∫ T
0
k−1
n ‖πhz−πhkz‖ dt

is a stability factor.

3.5 Adaptivity

If it is found that the computed solution uhk does not satisfy the requirement
|η| ≤ TOL, an algorithm is needed to improve the accuracy of the approximate
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finite element solution. To reduce the size of the space discretization error ηh,
there are essentially three strategies to improve the finite element solution: h-
refinement (decreasing the local mesh size), p-refinement (increasing the local
polynomial degree) and hp-refinement (a combination of h- and p-refinement).
In this thesis, we focus on h-refinement based on the size of the local error
indicators ηK .

A number of different algorithms have been proposed for how the cells of the
mesh should be marked for refinement based on the size of the local error indica-
tors. An effective marking strategy is so-called Dörfler marking (Dörfler, 1996)
in which a large enough subset T ′ of all cells (sorted by decreasing indicators)
are marked for refinement such that the sum of the corresponding indicators con-
stitute a given fraction α of the total error estimate; that is

∑
K∈T ′ ηK ≥ αEh.

Another option is to use fixed fraction marking in which a given fixed fraction α
of all cells are marked for refinement, again based on a sorting of all cells by the
size of their error indicators. Typical values of the parameter α range between
0.1 and 0.5. In Paper I, we compare the two different marking strategies and
study the effect of varying the parameter α.

In our work, we have chosen (for simplicity) to keep the mesh constant over
the interval [0, T ] in each adaptive iteration, as described in Algorithm 1. Each
adaptive iteration consists of a solution of the primal problem, the dual problem,
evaluation of error estimates and adaptive mesh refinement, as illustrated in
Figure 1. The adaptive time steps are determined as part of the time-stepping
process; at the end of each time step, the size of the next time step is determined.
We emphasize the difference between the refinements in space and time; the
mesh remains fixed throughout the time interval and the step size changes in
each time step. For a detailed discussion on the time step selection process
based on (27), see Logg (2003), Paper I and Paper II.
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Figure 1: Each adaptive iteration consists of a full solution of the primal problem
forward in time, followed by a solution of the dual problem backward in time.

3.6 Extensions to nonlinear problems

We note that if the differential operator A in (1) is nonlinear, then the corre-
sponding weak form is nonlinear. We may again form a corresponding weak
primal problem by multiplying the strong problem by a test function v. The
weak primal problem then reads: find u ∈ V such that

a(v;u) = L(v) (28)

for all v ∈ V̂ . We use the notation that the form a is linear in all arguments

preceding the semi-colon. Let now a′(v, δu;u) ≡ ∂a(v;u)
∂u δu denote the Fréchet

derivative of a(v;u) with respect to its second argument. Furthermore, let a′(·, ·)
denote the linearized form averaged over the discrete solution uhk and the exact
solution u of the weak primal problem (28); that is

a′(·, ·) =
∫ 1

0

a′(·, ·; suhk + (1− s)u) ds. (29)

The weak dual problem then reads: find z ∈ V ∗ such that

a′
∗
(v, z) =M(v) (30)

for all v ∈ V̂ ∗. A similar linearization may be performed to handle any nonlin-
earities in the goal function M.
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To obtain an error representation for the nonlinear problem (28), we note
that by the chain rule, the averaged linearized form a′(·, ·) satisfies

a′(v, e) ≡
∫ 1

0

a′(v, e; suhk + (1− s)u) ds

=

∫ 1

0

d

ds
a(v; suhk + (1− s)u) ds

= a(v;uhk)− a(v;u) = a(v;uhk)− L(v)
= r(v).

(31)

It follows that

M(uhk)−M(u) = a′
∗
(e, z) = a′(z, e) = r(z). (32)

We thus recover the error representation (19). It should be noted that the
linearized dual problem depends on the computed discrete solution uhk as well as
the unknown exact solution u. In practice, we replace a′

∗
(v, z) by a′∗(v, z;uhk);

that is, we make the approximation uhk ≈ u in the solution of the dual problem.
From a practical point of view, a nonlinear problem requires the solution

of the primal problem to be stored on the entire time interval [0, T ], since the
solution of the linearized dual problem depends on uhk. In each dual time step,
one must thus access the solution of the primal problem at the current time
before the adjoint linearized operator can be evaluated.

4 Coupled systems of nonlinear time-dependent
problems

In this section, we extend the error analysis to time-dependent coupled problems
consisting of m ≥ 2 equations. We do this in preparation for our study of
the fully coupled fluid–structure interaction problem. We start by stating the
strong form of the model problem for a fully coupled system of nonlinear time-
dependent problems. The problem reads: find u = (u1, u1, . . . , um) such that

u̇i +Ai(u) = fi, i = 1, 2, . . . ,m, (33)

together with suitable initial and boundary conditions. The coupled system (33)
thus consists ofm equations where the couplings between the equations are given
by the nonlinear operators Ai(u) for i = 1, 2, . . . ,m. To rewrite the system in
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weak form, we construct the total variational problem by summing the weak
forms for each individual equation for i = 1, 2, . . . ,m. The weak problem reads:
find u = (u1, u2, . . . , um) ∈ V such that

ai(vi;u) = Li(vi), (34)

where the repeated index i implies summation over i = 1, 2, . . . ,m. The test
and trial spaces are defined as the following product spaces:

V̂ = V̂1 × V̂2 × · · · × V̂m,
V = V1 × V2 × · · · × Vm.

(35)

The discrete finite element formulation now follows as before: find uhk ∈ Vhk ⊂
V such that

ai(vi;uhk) = Li(vi) (36)

for all v ∈ V̂hk ⊂ V̂ . Problem (36) can be solved in several ways depending of
the characteristics of each individual subproblem.

To obtain the linearized dual problem, we linearize in each component of u.
Adopting the notation from Section 3.6, we write

a′ij(·, δuj ;u) =
∂ai(·;u)
∂uj

δuj . (37)

With the linearization so defined, we can now introduce the linearized dual
problem for the model problem (33): find z ∈ V ∗ such that

a′
∗
ji(vi, zj) =Mi(vi), (38)

for all v ∈ V̂ ∗. Here, Mi denotes a goal functional of interest for subproblem i.
The total goal functional is the sum of the goal functionals for the subprob-
lems. We also note the double adjoint in the form of a system-level transpose
(subscripts ji) and the block-level adjoint ∗.

Letting vi = ei in (38), we obtain the error representation

M(uhk)−M(u) = a′
∗
ji(ei, zj) = a′ji(zj , ei) = a′ij(zi, ej)

= ai(zi, uhk)− Li(zi) = ri(zi),
(39)

We thus recover the same error representation as in (19).
We notice that the adjoint operation has a special meaning for a coupled sys-

tem expressed as a sum of variational problems compared to a single variational
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problem. We may view the left-hand side of (38) on block form containing the
linearized variational problems as blocks. The dual problem is obtained by first
taking the transpose of the block-system and then taking the adjoint of each
block operator.

5 Fluid–structure interaction

In its most simple form, fluid–structure interaction (FSI) occurs when a fluid in-
teracts with a solid structure, exerting surface tractions that cause deformation
of the structure and, thus, alters the fluid flow. By definition, an FSI problem
is a true multiphysics problem where the different physics of the fluid and the
solid mutually exchange data that define the fully coupled FSI problem. This
category of multiphysics problems is of great importance and of great relevance
in both industrial applications as well as in many areas of research, such as
biomedicine. The design of airbags, bridges and airplanes are typical examples
of industrial applications where the analysis of an FSI problem is an impor-
tant part of the engineering process. In biomedical research, a vast number
of problems consist of the coupling between a fluid and a solid. As an exam-
ple, blood flow in arteries and the resulting surface tractions on the vessel wall
are important to analyze in order to understand various cardiovascular diseases
(Formaggia et al., 2009).

Fluids and solids obey the fundamental conservation laws that hold for any
adiabatic continuum body: the balance of linear and angular momentum and the
conservation of mass. Without any consideration of a specific reference system,
the balance of linear momentum and conservation of mass can be written in
local form as

dt(ρu)− div σ = b, (40)

dt(ρ) = 0. (41)

Equation (40) states the balance of linear momentum and equation (41) states
the conservation of mass. Here, dt(·) denotes the total time derivative with
respect to a given control volume, ρ denotes a density and u denotes a velocity.
Moreover, σ denotes a stress tensor that is symmetric to satisfy the balance of
angular momentum, and b a given body force per unit volume.

In an FSI problem, the fluid and the solid exchange and transfer data in
terms of normal stresses (surface tractions) at a given common fluid-structure
boundary. Denoting the fluid subproblem with a subscript F and the solid
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subproblem with a subscript S, the following equilibrium equation holds for the
surface tractions at the common fluid–structure interaction boundary:

σ
F
· n

F
= −σ

S
· n

S
, (42)

where n
F
and n

S
denote the outward-pointing unit normal on the fluid–structure

boundary, viewed from the fluid and structure domains, respectively. Hence,
n

F
= −n

S
. The equilibrium equation (42) connects the conservation laws (40)-

(41) for the different physics of the fluid subproblem and the structure subprob-
lem. In addition to (42), we also require kinematic continuity at the boundary,
that is, the velocity of the fluid and the solid are equal,

u
F
= u

S
. (43)

Fluid and solid mechanics belong to the same branch of mechanics denoted
continuum mechanics, so they obey the same conservation laws (see above).
However, the constitutive behavior, i.e., the relationship between deformation
(strains and strain rates) and the stress differ significantly. This fundamental
difference requires different constitutive laws for modeling the fluid stress σ

F

and the solid stress σ
S
. As a consequence, the kinematics for fluids and solids

are naturally described in different frameworks.
These frameworks are referred to as the Lagrangian framework and the Eu-

lerian framework. The kinematics of a solid is natural described in terms of
the displacement in the Lagrangian framework (associated with the material
domain) whereas a fluid is naturally described in terms of the velocity and
pressure in the Eulerian framework (associated with the spatial domain).

In the remainder of this section, we will give an introduction to these different
frameworks and explain how quantities may be transferred between the two
frameworks. Moreover, we will also state the solid equations and the fluid
equations governed by the constitutive laws for a St. Venant–Kirchhoff material
and for an incompressible Newtonian fluid, respectively.

5.1 Lagrangian framework

The Lagrangian description of motion relates the motion of a body with respect
to a fixed material coordinate X. In this description, attention is paid to each
particle motion and one observes the labeled particles as they move through
space. The position of a point is a function of the material coordinate X and
the time t such that

x = Φ(X, t). (44)
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A function u(x, t) is referred to in the Lagrangian framework as U(X, t) ≡
u(Φ(X, t), t). We note that Ẋ = 0 and the total time derivative in the La-
grangian framework is given by

Dt(U(X, t)) = U̇(X, t). (45)

Thus, from the Lagrangian viewpoint, one observes the value at a material
point X that moves with the velocity U(X, t) = Φ̇. The advantage with this
framework is that the motion of individual particles is described and thus it
serves as a natural framework for bodies that undergo moderate deformations
over a relatively long period of time. Hence, the Lagrangian framework is a
natural approach to model structural mechanics.

In conservative form, the balance of linear momentum and conservation of
mass in the Lagrangian framework associated with the material domain Ω are
given by

d

dt

∫
Ω

ρ0U dX =

∫
∂Ω

Σ ·N dS +

∫
Ω

B dX, (46)

d

dt

∫
Ω

ρ0 dX = 0. (47)

Here, ρ0 is a reference density, U a velocity, Σ a stress tensor that is related
to the symmetric Cauchy stress tensor as given below in (61), N a normal and
B is a given body force per unit material volume. Equation (46) is Newton’s
second law stating that a material continuum is accelerated in proportion to
the resulting forces acting on it. The conservation of mass (or the continuity
equation) (47) states that mass can not be created, nor can it be destroyed.
Recalling that the material domain Ω is fixed in space and using Gauss’ theorem,
we can formulate the corresponding local form:

Dt(ρ0U)−Div Σ = B, (48)

Dt(ρ0) = 0. (49)

We note that the total time derivative in the momentum equation is, by the
continuity equation (49), Dt(ρ0U) = ρ0U̇ .

5.2 Eulerian framework

The Eulerian framework relates the motion of a body with respect to the spatial
point x at any given time t, where no attention is paid to each individual particle.
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Each such spatial point x at time t corresponds to an initial material point X
at time t = 0. Thus, the velocity in the Eulerian framework is interpreted as
the velocity of the material point with the initial position X, i.e., u(x, t) = ẋ.
The total time derivative of a function in the Eulerian framework is given by

dt(u) = u̇+ grad u · u. (50)

The second term on the right-hand side is the convective rate of change and
expresses the contribution of the particle motion (i.e., position change). In
contrast to the Lagrangian framework, the Eulerian framework describes the
behavior of a function at a specific spatial point instead of the behavior of
each individual particle. This kind of description is thus a natural approach
for modeling fluid flow since the movement of each individual particle in a fluid
flow is less interesting than flow properties at certain spatial positions.

In conservative form, the balance of linear momentum and conservation of
mass in the Eulerian framework associated with the spatial domain ω(t) are:∫

ω(t)

˙(ρu) + div (ρu⊗ u) dx =

∫
∂ω(t)

σ · n ds+

∫
ω(t)

b dx, (51)

∫
ω(t)

ρ̇+ div (ρu) dx = 0. (52)

Here, ρ is a density, u a velocity, σ a (symmetric) stress tensor, n a normal, b
is a given body force and ⊗ represents the tensor dyadic product, (i.e., u⊗ u =
uiuj). The balance of linear momentum (51) is interpreted in the Eulerian
framework as the net outflow from ω(t) that equals the resulting forces acting
on it (minus the acceleration within ω(t)). The corresponding interpretation of
the continuity equation (52) is that the flux of matter into ω(t) must either exit
or be accumulated within ω(t). Using Gauss theorem, we can write the local
forms of (51) and (52) as

dt(ρu)− div σ = b, (53)

ρ̇+ div (ρu) = 0. (54)

5.3 Transformation between frameworks

To be able to transform quantities from one framework to the other, the proper-
ties of the mapping Φ from equation (44) needs to be defined, where Φ describes
the motion and deformation of the spatial domain ω(t) relative to the material
domain Ω.
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The motion of a body that undergoes deformation can be tracked by a suffi-
ciently smooth bijective map Φ, parameterized by the common time coordinate
t ∈ [0, T ]. At any given time t ∈ [0, T ], Φ(X, t) maps the material point X ∈ Ω
to its spatial position x ∈ ω(t) such that

Φ(·, t) : Ω → ω(t) = Φ(Ω, t), t ∈ [0, T ]

X 
→ x = Φ(X, t), X ∈ Ω.
(55)

Clearly, for t = 0 we have Ω = ω(0). As mentioned earlier, for any function
U = U(X, t) ∈ Ω there exists a corresponding function u = u(x, t) ∈ ω(t)
defined by the composition of U with Φ, i.e.,

U(X, t) = u(Φ(X, t), t), X ∈ Ω, (56)

and we recall that the time derivative of the mapping defines the velocity relative
to the reference domain such that Φ̇(X, t) = ẋ = u(x, t). Thus, we relate the
time derivatives in the reference domain of a function U with its counterpart u:

Dt(U) = dt(u). (57)

The non-singular Jacobian matrix of the mapping Φ is defined as

F = Grad Φ(X, t), (58)

and the corresponding volume change is given by the Jacobian determinant
J = det F . To relate the stress tensor Σ with the stress tensor σ, we recall the
Cauchy stress theorem (Gurtin, 1981) stating that there exist unique second
order tensor fields σ = σ(x, t) and Σ = Σ(X, t) such that

Σ ·N = σ · n, (59)

where Σ and σ are the first Piola stress and the Cauchy stress, respectively.
Using Nanson’s formula, which relates boundary integrals such that

JF−� ·N d(∂Ω) = n d(∂ω(t)), (60)

we can relate the Cauchy stress to the first Piola stress as

Σ = Jσ · F−�, (61)

which is called the Piola transform. Thus the stresses are easily transformed
from one framework to another.
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5.4 Solid and fluid equations

Formulating the balance of linear momentum and conservation of mass is not
sufficient to distinguish one solid material from another, or one fluid type from
another. In addition, constitutive laws need to be specified for representing ma-
terials. Essentially, these constitutive laws are mathematical models that model
the stress tensor as a function of a certain kinematic measures. In this section,
we describe the set of constitutive laws that are used to model the structure
(solid) equations and the fluid equations in this thesis, namely the St. Venant–
Kirchhoff equations and the incompressible Navier–Stokes equations. For a more
comprehensive treatment of constitutive laws for solids and continuum mechan-
ics in general, see, e.g., Gurtin (1981); Holzapfel (2000) and for fluid mechanics,
see, e.g., Panton (1984); Batchelor (1967); Welty et al. (2001).

5.4.1 The St. Venant–Kirchhoff equation

When formulating constitutive laws for the hyperelastic solid stress tensor Σ
S
in

the Lagrangian framework, it is natural to relate the stress to the displacement
field. Deviating from the previously presented notation2, the solid displacement
field U

S
associated with the Lagrangian solid domain Ω

S
× [0, T ] is defined as

U
S
(X, t) = Φ

S
(X, t)−X, (62)

where we relate the deformation of the structure domain Ω
S

with its corre-
sponding mapping Φ

S
, defined in the same manner as the mapping (55), for all

X ∈ Ω
S
. The tangent map of the Lagrangian domain is given by the so-called

deformation gradient tensor,

F
S
= I +Grad U

S
, (63)

where I denotes the identity matrix. A fundamental measure of a deforming
body is the strain, which measures how much a given displacement differs locally
from a rigid body displacement. One such strain measure is the Green–Lagrange
strain tensor E

S
= 1

2 (F
�
S
F

S
−I). Formulating constitutive laws for hyperelastic

materials, the Frechét derivative of the strain energy functional Ψ(E
S
) can be

related to the first Piola–Kirchhoff stress tensor Σ
S
by

Σ
S
= F

S
· dΨ(E

S
)

dE
S

. (64)

2This is motivated in order to get a consistent notation for the finite element formulation
of adaptive FSI problems in Paper I and Paper III.
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For the St. Venant–Kirchhoff model, which is a classical nonlinear model for a
compressible elastic material with a constant reference density ρ

S
, the energy

functional is defined as Ψ(E
S
) = μ

S
tr(E2

S
)+

λ
S

2 (tr(E))2, for some given positive
Lamé constants μ

S
and λ

S
. Thus, we can formulate the strong form of the

St. Venant–Kirchhoff equation in the Lagrangian framework as follow: find the
displacement U

S
: Ω

S
× [0, T ]→ R

d such that

D2
t (ρS

U
S
)−Div Σ(U

S
) = B

S
in Ω

S
× (0, T ],

Dt(ρS
) = 0 in Ω

S
× (0, T ],

(65)

with corresponding initial and boundary conditions

U
S
(·, 0) = U0

S
in Ω

S
,

U̇
S
(·, 0) = U1

S
in Ω

S
,

U
S

= G
S,D

on Γ
D
× (0, T ],

Σ(U
S
) ·N

S
= G

S,N
on Γ

N
× (0, T ].

(66)

Here, B
S
is a given body force per unit reference volume and the acceleration

term is given by D2
t (ρS

U
S
) ≡ ρ

S
Ü

S
, where ρ

S
is the constant reference structure

density. Since the reference density ρ
S
is constant, the continuity equation is

reduced to Dt(ρS
) = ρ̇

S
= 0 in the Lagrangian framework and thus we usu-

ally omit this equation in (65). The boundary ∂Ω is assumed to be divided
into two parts Γ

D
and Γ

N
which are associated with the Dirichlet and Neu-

mann conditions G
S,D

and G
S,N

, respectively. In a coupled FSI problem, the
Neumann boundary usually consists of at least one part which coincides with
the fluid and defines the common fluid–structure interaction boundary Γ

FS
.

Here, the traction force from the fluid is imposed as a Neumann condition. For
a St. Venant–Kirchhoff material, the first Piola–Kirchhoff stress tensor Σ

S
is

given by
Σ

S
(U

S
) = F

S
· (2μ

S
E

S
+ λ

S
tr (E

S
)I). (67)

5.4.2 The incompressible Navier–Stokes equations

For fluids, the constitutive laws are essentially divided into two categories: New-
tonian fluids and non-Newtonian fluids. The viscous stress of a Newtonian fluid
is proportional to the rate of strain. For such fluids, the Cauchy stress tensor
σ

F
in the Eulerian framework is a function of the fluid velocity u

F
(x, t) and the

fluid pressure p
F
(x, t) and it is given by

σ
F
(u

F
, p

F
) = 2μ

F
gradsu

F
− p

F
I. (68)
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Here, 2μ
F

gradsu
F
≡ 2μ

F

1
2 (grad uF

+ grad u�
F
) denotes the viscous stress

tensor where μ
F

is the constant dynamic fluid viscosity. In addition, if we
assume that the fluid is incompressible, we can formulate the strong form of
Newtonian incompressible fluid flow, also know as the incompressible Navier–
Stokes equations3 in the Eulerian framework as follows: find the velocity u

F
:

ω
F
(t)→ R

d and the pressure p
F
: ω

F
(t)→ R such that

dt(ρF
u

F
)− div σ

F
(u

F
, p

F
) = b

F
in ω(t),

div u
F

= 0 in ω(t),
(69)

with the corresponding initial and boundary conditions

u
F
(·, 0) = u0

F
in ω

F
(0),

u
F

= g
F,D

on γ
F,D

(t),
σ

F
(u

F
, p

F
) · n

F
= g

F,N
on γ

F,N
(t),

(70)

for 0 < t ≤ T . Here, b
F

is a given body force and the total time derivative
is given by dt(ρF

u
F
) = ρ

F
(u̇

F
+ grad u

F
· u

F
) and ρ

F
is the constant fluid

density. The boundary ∂ω(t) is assumed to be divided into two parts γ
D

and
γ

N
, which are associated with the Dirichlet and Neumann conditions g

F,D
and

g
F,N

, respectively. In a coupled FSI problem, at least one part of the Dirichlet
boundary coincides with the structure and defines the common fluid–structure
boundary γ

FS
(t), where the kinematic continuity from the structure problem is

imposed.

6 Solving FSI problems

In the previous section, the governing continuous equations for the fluid (69) and
the solid (65) were formulated in their natural frameworks. Via the mapping
(55), it is possible to transfer traction forces from one framework to another and
thus formulate an FSI problem. Typically, in a continuous formulation of an
FSI problem, the stresses Σ

S
and σ

F
are transferred using the Piola transform

(61) at the common fluid–structure boundary, denoted Γ
FS

and γ
FS

(t) in the
Lagrangian and the Eulerian framework, respectively.

To combine the Lagrangian and the Eulerian frameworks in a discrete finite
element setting, the deforming boundary γ

FS
(t) needs to be tracked in the spatial

3The idea of the linear relation between stress and strain-rate was first proposed by Newton.
Much later, Navier and Stokes produced the exact same equations that govern the flow for
Newtonian fluid, hence the name Navier–Stokes.
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fluid domain. The deformation of the boundary γ
FS

(t), given by the structure
solution in the material domain, does not only influence the boundary conditions
for the fluid; the mesh in the computational fluid domain must also be updated.
A mesh obtained by simply moving the vertices at the fluid–structure interface,
without any additional algorithms to enhance the mesh quality, will result in a
very poor mesh quality. It is well known that poor quality meshes have a strong
influence on the stability and accuracy of a numerical method. For this reason,
an additional mesh problem has to be solved to enhance the mesh quality in
the spatial fluid domain. This mesh problem can be formulated and solved in
various ways, see, e.g., Hermansson and Hansbo (2003); López et al. (2008);
Hansbo (1995). However, rearranging the vertices to avoid mesh distortion
will result in an additional movement (excluding the vertices attached to the
boundary γ

FS
(t)) of the fluid problem in the spatial domain and this movement

needs to be accounted for in the FSI algorithm. A common numerical technique
to handle this is the so-called Arbitrary Lagrangian–Eulerian (ALE) formulation
of the FSI problem; see Donea et al. (2004); Hughes et al. (1981); Donea et al.
(1982). In the subsequent section, we explain briefly the ALE method for solving
FSI problems.

6.1 The ALE formulation of an FSI problem

As a result of introducing an additional mesh problem, an arbitrary frame-
work of reference is needed which is independent of both the Lagrangian and
the Eulerian description. This arbitrary reference domain is often the initial
computational domain which typically is undeformed.

For the sake of simplicity, we now let Ω ⊂ R
d (d = 2, 3), denote the ref-

erence computational domain at time t = 0. Further, we let Ω be partitioned
into two disjoint subsets Ω

F
, the fluid domain, and Ω

S
, the structure (solid)

domain. Moreover, we let ω(t), ω
F

and ω
S
denote the corresponding current

computational domains.

6.1.1 Domain mappings

In order to map quantities from the current computational domain ω(t) and the
reference computational domain Ω, we now let Φ denote the sufficiently smooth
bijective “ALE map” Φ(·, t) : Ω → ω(t). At any fixed time t ∈ [0, T ], Φ(·, t)
maps a reference point X ∈ Ω to a corresponding current point x ∈ ω(t):

X 
→ x = Φ(X, t). (71)
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X
x

Γ
FS

Ω
F

ω
F
(t)

X

x

Ω
F

ω
F
(t)

γ
FS

(t)

Φ
M
≡ Φ

F

Φ
S

Figure 2: The reference computational domain Ω and the current computational
domain ω(t). A reference point X maps to the current point x via the ALE mapping
Φ(X, t). Since we allow the meshes to deform independently, the ALE map is split
into two parts: ΦS and ΦM , which are associated with structure subdomain and the
fluid subdomain, respectively.

As a consequence of introducing the mesh problem in the current fluid do-
main ω

F
(t), we allow the fluid and structure portions of the domain to deform

independently, only enforcing that these deformations are identical on the com-
mon boundary, γ

FS
(t), and we split the map Φ as follows:

Φ(X, t) =

{
Φ

S
(X, t), X ∈ Ω

S
, 0 ≤ t ≤ T,

Φ
M
(X, t), X ∈ Ω

F
, 0 ≤ t ≤ T.

(72)

Here, Φ
S
is the map introduced in (62) and thus describes the (physical) defor-

mation of the structure computational domain. The additive map Φ
M

is defined
as

Φ
M
(X, t) = X + U

M
(X, t), (73)

where U
M

is the solution (displacement field) to an arbitrarily chosen mesh
problem. The mesh problem can be solved in either the current domain or
the reference domain and then pushed forward to the current domain. For
convenience, we choose the latter and we choose the following mesh problem:
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Figure 3: A partitioned FSI algorithm. In each time step kn, the three subproblems
are solved iteratively using a simple fixed point method.

find the mesh displacement U
M

: Ω
F
× [0, T ]→ R

d such that

U̇
M

+Div Σ
M
(U

M
) = 0 in Ω

F
× (0, T ],

U
M
(·, 0) = 0 in Ω

F
,

U
M

= U
S

on Γ
FS
× (0, T ].

(74)

In (74), the “mesh stress tensor” Σ
S
is defined in a similar way as for linear

elasticity:
Σ

M
(U

M
) = 2μ

M
GradsU

M
+ λ

M
tr(Grad U

M
)I, (75)

for some positive constants μ
M

and λ
M
. As input data for the mesh prob-

lem (74), the solid displacement U
S
is set as a Dirichlet condition at the common

fluid–structure boundary Γ
FS

.

6.1.2 Algorithmic considerations

A straightforward approach to solving the coupled FSI system consisting of the
three subproblems for the fluid, the solid and the mesh is to use an iterative
method. In such a partitioned algorithm, the three subproblems are solved using
a simple fixed point iteration in each time step as depicted in Figure 3.

To couple the three subproblems, we impose the following boundary condi-
tions at the common fluid–structure boundaries Γ

FS
and γ

FS
(t):

(J
M
σ

F
(Φ

M
) · F−�

M
) ·N = Σ

S
·N, (76)
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ϕ(·, tn−1) ϕ(·, tn)

knu̇M

u̇
M

Figure 4: A sketch illustrating a moving Lagrange basis function in 1D in the moving
fluid domain ωF (t) . The velocity of the basis function is given by the mesh velocity
u̇M . The basis function ϕn−1 at time t = tn−1 is moved the distance knu̇M to reach
the position where the basis function ϕn is defined for t = tn.

u
F

= u̇
S
, (77)

U
M

= U
S
, (78)

where F
M
≡ I + Grad U

M
and J

M
≡ det F

M
. The boundary conditions (76)-

(77) account for equilibrium of traction forces and for the kinematic continuity,
and (78) makes sure that the fluid and structure subdomains coincide on the
common interface.

To account for the additional (unphysical) mesh movement introduced by
the mesh problem (74), the mesh displacement U

M
is pushed forward to the

current fluid domain ω
F
(t) where u̇

M
represents the current mesh velocity. This

mesh velocity affects the basis functions on the fluid domain ω
F
(t), depicted

in Figure 4. By construction, ϕ(x, t) = ϕn(x − (t − tn−1)u̇M
, tn−1) and by

the chain rule, we obtain the time derivative of the moving basis function as
ϕ̇ = −grad ϕ · u̇

M
. To compensate for this extra mesh movement, an additional

(negative) convective mesh velocity term appears in the discrete finite element
formulation in the fluid momentum equation; see Paper I and Paper III for
details.

With the proposed algorithm, the three subproblems can be solved indi-
vidually, allowing the different problems to be solved using different numerical
methods. This is advantageous, since the different physics of the fluid and the
structure require different types of methods. Thus, for each subproblem, we
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can use specific numerical methods that are optimized to solve each given sub-
problem. In short, we have chosen to solve the subproblems using the following
methods:

• Fluid subproblem: Incremental Pressure Correction Scheme (IPCS) by
Goda (1979);

• Structure subproblem: A standard cG(1)cG(1) method (Eriksson et al.,
1996) solved on each time step with Newton’s method;

• Mesh subproblem: A standard cG(1)cG(1) method.

For a more comprehensive discussion on the above methods, as well as the iter-
ative method used to solve the coupled FSI problem, see Paper I and Paper III.
Moreover, for a discussion on the IPCS method, see Paper II.

The presented method for handling the coupling between the subproblems
is one of the most basic algorithms. Another approach is the Immersed Bound-
ary (IB) method by Peskin (2002) which employs a mixture of Eulerian and
Lagrangian variables. The IB method uses an a priori fixed mesh on which the
fluid and structure equations are solved simultaneously. The interaction of the
fluid and structure is handle by an interaction equation where the Dirac delta
function plays a prominent role. In the IB formulation, the Eulerian variables
are defined on a fixed Cartesian mesh and the Lagrangian variables are defined
on a curved linear mesh that moves freely through the fixed Cartesian mesh.

The Fictitious Domain (FD) method by Diniz dos Santos et al. (2008), origi-
nally designed for rigid particles on fixed meshes, considers independent meshes
for the fluid and the structure. By enforcing a kinematic condition with La-
grange multipliers, the interaction between the fluid and the structure is ob-
tained.

Another approach that uses Lagrange multipliers for FSI problems is the eX-
tended Finite Element Method (XFEM) by Gerstenberger and Wall (2008). In
this method, the extended Eulerian fluid field and the Lagrangian structure field
are partitioned and iteratively coupled using a Lagrange multiplier technique.

7 Goal-oriented FEM for FSI

Numerical simulations of FSI problems in general require large computational
resources, and it is typically the fluid subproblem that requires the most com-
putational resources in the coupled system; see, e.g., Farhat (2004). As for
all numerical simulations, regardless of application, the computational cost of
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the solution and the accuracy reached for a given cost are important issues. On
many occasions, the goal is not to resolve the system in full detail throughout the
entire space–time domain; instead the analysis and quantification of a specific
target functional is of more interest. As an example, when simulating vascular
FSI problems, quantities of hemodynamic interest such as the wall shear stress
and wall tension are common target functionals (Bazilevs et al., 2010). Thus,
goal-oriented adaptive finite element methods are highly relevant for studying
FSI problems.

7.1 Earlier work

During the last decade, research on goal-oriented adaptive finite element meth-
ods for FSI has emerged. One of the first works in this field was published
by Grätsch and Bathe (2006), who analyzed two different sets of stationary
FSI problems. This paper studies the sharpness of error estimates obtained by
a dual-weighted residual method but no adaptive method is considered. The
study presents very good quality efficiency indices for the FSI problem.

Based on a full monolithic formulation in both the Eulerian and the ALE
frameworks, Dunne (2007) developed a dual-weighted residual method for a two-
way coupled FSI problem. In this method, the different physics of the fluid and
the structure are tracked using a so-called initial positions set method. The pre-
sented numerical results are for both stationary and time-dependent problems.
However, the adaptivity in both the stationary and time-dependent cases are
based on adaptive h-refinement (the selection of time steps is based on a frac-
tional time stepping scheme). Good quality efficiency indices are presented for
a stationary fluid problem governed by a Stokes flow and a nonlinear structure.
The method has been further refined and discussed in Dunne and Rannacher
(2006); Dunne (2006); Bönisch et al. (2008).

In the work by van der Zee et al. (2008); van der Zee (2009); van der Zee et al.
(2010a), FSI problems of free boundary character are studied. The presented
numerical results consider Stokes flow with an elastic part of the boundary
represented by a low-order structural (string) model. By using a domain map
linearization approach, the corresponding linearized dual is derived with respect
to the domain geometry. The adaptivity relies upon adaptive h-refinement and
the method is applied on different sets of problems. Good quality efficiency
indices are presented.

In Fick et al. (2010), an adaptive finite element method is presented for a
time-dependent FSI problem. Here, the fluid subproblem is assumed to be gov-
erned by a simplified inviscid fluid and the structure kinematics is modeled by an
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Euler–Bernoulli beam. The FSI problem is analyzed using a so-called adjoint-
consistent formulation and adaptive methods for h- and hp-refinement are con-
sidered. The numerical results, in particular for the adaptive hp-refinement,
demonstrate very good efficiency indices.

In Bengzon and Larson (2010), the authors develop an adaptive finite el-
ement method for a one-way coupled stationary FSI problem. In this paper,
the fluid is governed by a Stokes flow and the structure is modeled using linear
elasticity. The adaptivity is based on adaptive h-refinement. The authors do
not present any results regarding efficiency indices.

7.2 Contributions of this thesis

In Paper I and Paper III, we develop a goal-oriented time-dependent adaptive
finite element method using a dual-weighted residual method for fully coupled
FSI problems. The fluid subproblem is modeled by the incompressible Navier–
Stokes equations and the movement of the fluid domain is handled using an ALE
method. The structure subproblem is modeled using a nonlinear hyperelastic
model (St. Venant–Kirchhoff) and the movement of the mesh is modeled using a
linear (time-dependent) elasticity problem. By relating the three subproblems
on a fixed reference mesh, we derive a linearized dual problem and a corre-
sponding a posteriori error estimate for the fully coupled, time-dependent FSI
problem. The error estimate captures errors resulting from space discretization,
time discretization and the use of an inconsistent operator splitting method.
The adaptivity is based on adaptive h-refinement and adaptive time-stepping.

In the remainder of this section, we briefly explain the methodology of our
developed adaptive finite element method for FSI problems. This methodology
relies on the principles of adaptivity described in Section 3 and the presented
FSI formulation in Section 6. For the sake of clarity, the presentation is kept
simple and abstract. All details, and in particular the full dual problem, are
presented in Paper I. For a discussion of the implementation of the proposed
methodology in practice, we refer to Paper III.

Let (f) denote the fluid subproblem (69) defined on the current fluid domain
ω

F
(t) and let (S) denote the structure subproblem (65) defined on the reference

structure domain Ω
S
. Further, let (M) denote the mesh subproblem (74) defined

on the reference fluid domain Ω
F
. We thus obtain the partitioned FSI problem

(f, S,M),
The strong primal coupled problem (f, S,M) is assumed to be solved using

the presented partitioned algorithm described in Section 6.1.2. In this algorithm,
we use an inconsistent splitting method to solve the fluid subproblem and a pure
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Galerkin method for the structure and the mesh subproblems. Let this discrete
problem be denoted (d(f)�, d(S), d(M)), were d indicates that it is a discrete
numerical solution and � emphasizes that the fluid subproblem is solved using
an inconsistent (non-Galerkin) method. In order to formulate a continuous dual
problem for the error analysis of (d(f)�, d(S), d(M)), we need to handle two
fundamental challenges:

i) The fluid subproblem d(f)� is solved using a non-Galerkin method.

ii) The coupled problem (d(f)�, d(S), d(M)) is solved in different domains
with different reference frameworks.

The first challenge may be handled by including in the analysis the effect of
computational errors ηc accounting for the fact that the Galerkin orthogonality
is not satisfied, as was demonstrated in Section 3. This is investigated in more
detail for the fluid subproblem in Paper II.

The methodology for the error analysis of coupled problems developed in
Section 4 assumes that all subsystems are formulated on the same (fixed) do-
main, which is not the case for the primal system (f, S,M). We therefore use
the map Φ−1

M
to pull back the fluid subproblem (f) to the reference fluid do-

main Ω
F
, where a corresponding fluid subproblem (F ) is formulated. One may

then directly apply the machinery presented in Section 4 to derive the dual
problem of the fully coupled problem (F, S,M) posed on the reference domain.
In particular, we derive the corresponding weak problem (w(F ), w(S), w(M)),
from which the weak dual problem (w(F ), w(S), w(M))∗ follows by lineariza-
tion. The resulting weak dual problem is a system of six time-dependent, linear
and coupled partial differential equations. Although the dual problem is quite
complex, spanning more than a full page in very compact notation, its deriva-
tion is completely mechanical and relies on repeated use of the chain rule and
other well known differentiation rules. The use of a modern programming en-
vironment (FEniCS/DOLFIN) also helps, since it allows the dual problem to
be implemented in near identical notation to its mathematical formulation. An
overview of the various subproblems involved in the analysis is given in (79)
below.
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(S,M)⏐⏐�
(F, S,M)

Φ−1

M←−−−− (f)⏐⏐�
⏐⏐�

(d(S), d(M)) ←−−−− (w(F ), w(S), w(M)) d(f)�⏐⏐�
(w(F ), w(S), w(M))∗

(79)
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Vermendung von Teilrämen, die keinen Randbedingungen unterworfen sind.
Abh. Math. Sem. Univ. Hamburg, 11:9–15, 1971.

J. Oden and L. Demkowicz. Applied functional analysis. CRC, 1996.

R. Panton. Incompressible flow. John Wiley & Sons Inc, 1984.

40



C. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.
ISSN 0962-4929.

R. Rannacher and F. Suttmeier. A posteriori error control in finite element
methods via duality techniques: Application to perfect plasticity. Computa-
tional mechanics, 21(2):123–133, 1998. ISSN 0178-7675.
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