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Within the field of reliability multistate systems represent a natural extension of the classical binary approach. For an
extensive introduction to this topic, see Natvig (2011b). Repairable multistate systems quickly become too complex
for exact analytical calculations. Fortunately, however, such systems can be studied efficiently using discrete event
simulations. See Huseby and Natvig (2012). In the binary case importance is usually measured using the approach
by Birnbaum (1969). Several authors have extended the notion of importance measures to multi-state systems. See
e.g., Zio et al. (2007) and Huseby et al. (2020). In the latter paper the component state processes were modelled
as homogenous semi-Markov processes. Such processes typically reach stationary states very quickly. Thus, most
properties of the system can be analysed using asymptotic distributions which typically are determined by mean
waiting times and the transition matrix of the built-in Markov chain. In the present paper we follow the approach
suggested by Huseby et al. (2020). Here, however, we focus on the non-homogenous case. This is relevant in systems
subject to e.g., seasonal variations or aging. In order to model this we use an approach similar to Lindqvist et al.
(2003). When the component processes are not homogenous, the analysis should cover the entire time frame, not just
the asymptotic properties. This makes comparison of importance more complicated. Several numerical examples are

included in order to illustrate the methodology.
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1. Introduction

Basic reliability theory for multistate systems was
established in the mid 1980s, and has been de-
veloped continuously since then. In particular,
many different methods for analysing importance
of components in multistate systems have been
developed. There are two main reasons for cal-
culating importance of components in a system.
Firstly, it permits the analyst to determine which
components merit the most additional research
and development to improve overall system relia-
bility at minimum cost or effort. Secondly, it may
be used in diagnostics as a way of generating a list
of components ordered with respect to how likely
they are to have caused the system failure.

In the present paper we adopt the framework
introduced in Huseby et al. (2020) where a re-
pairable multistate system is described in a way
emphasising the physical properties of the com-
ponents and the systems. Within this framework
Huseby et al. (2020) introduced four different
generalisations of the classical Birnbaum mea-
sure. All these measures can be viewed as gen-
eralisations of the classical Birnbaum measure
in the binary case. The measures are charac-
terised along two axes: forward-looking versus
backward-looking, and with respect to how crit-
icality is measured. Forward-looking importance

measures focus on the next component states. Ac-
cording to this approach the most important com-
ponent is the one that has the highest probability
of changing the system state. Backward-looking
importance measures focus on the previous com-
ponent states: According to this approach the
most important component is the one that has the
highest probability of having changed the system
state. Furthermore, two approaches to measuring
criticality are considered: probability of criticality
versus impact of criticality.

Huseby et al. (2020) considered a case where
the component state processes were modelled
as homogenous semi-Markov processes. Such
processes typically reach stationary states very
quickly. Thus, most properties of the system can
be analysed using asymptotic distributions which
typically are determined by mean waiting times
and the transition matrix of the built-in Markov
chain. Here, however, we focus on the non-
homogenous case. This is relevant in systems
subject to e.g., seasonal variations or aging. In
order to model this we use an approach similar to
Lindqvist et al. (2003). When the component pro-
cesses are not homogenous, the analysis should
cover the entire time frame, not just the asymptotic
properties. This makes comparison of importance
more complicated. Several numerical examples
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are included in order to illustrate the methodology.

By using the proposed simulation techniques it
is easy to analyse much more complex systems
than those considered in the paper without running
into time issues. Software for doing such simula-
tions in realistic cases have been developed.

2. Multistate systems

For an extensive introduction to multistate sys-
tems we refer to Natvig (2011a). In the present
paper we define a multistate system as an ordered
pair (C, ¢), where C' = {1,...,n} is the compo-
nent set, and ¢ is the structure function expressing
the state of the system as a function of the com-
ponent states. We let X () = (X (¢), ..., X, (1))
denote the state vector of the components where
X;(t) is the state variable of Component ¢ at time
t.Fori € C,weletS; ={0,1,...,r;} denote the
set of states for Component ¢.

2.1. The component state processes

The component state processes {X;(t)}, i =
1,...,n are modelled as semi-Markov processes.
In particular, the state transition for Component
i € C follows Markov chain, referred to as the
built-in Markov chain for this particular compo-
nent.

For each Component i € C' we let X;"(¢) and

X, (t) denote respectively the next and previous
state of Component 7 at time ¢ > (. Each time
Component 7 enters a state u € 5;, it remains in
this state for a random amount of time, and then
makes a transition to some other state v € S;. For
w,v € S; we assume that:

P(XF(t) = vl Xs(t) =u) = P{). (D)
The matrix of transition probabilities for the built-
in Markov chain for Component ¢ is denoted by

PY, i € C. Note that P is assumed to be
independent of the time ¢ > 0.

In order to find a similar expression for the
conditional distribution of X, (¢), we need the
transition matrix for the backwards version of the
built-in Markov chain, which we denote by Q“).
It then follows that for all u,v € S; we have:

PX; () =v[Xi(t) =u)=QF. @

For Component i € C we denote the stationary

probabilities of the built-in Markov chain by m&i),
u € S;. We then have the following well-known

relation between the transition matrices P and
Q" (see e.g., Ross (2014)):

)

(i) — (@)

u,v € S;. 3)

vu
u

Note that if the stationary distribution of the built-
in Markov chain is uniform, i.e., if m(f) =1/(r;+
1), for all u € S;, we have:
QY =PI jec.
It is well-known that an irreducible aperiodic finite
Markov chain has a uniform stationary distribu-

tion if and only if PY is a doubly stochastic
matrix, i.e., all row sums and column sums are
equal to 1.

The Semi-Markov model specification is com-
pleted by introducing the times spent in each state
between the transitions:

WIS? = The kth waiting time in state s
for Component i, s € S;, i € C.

In the homogenous case we assume that all the
waiting times are independent, and that for all
states s € S; and all components ¢ € C

the waiting times Wl(i)7 WQ(?, ... are identically
distributed with finite mean 1{”. Then it fol-
lows from standard renewal theory (see e.g., Ross
(2014)) that the stationary distribution of X; is
given by:

)

_W,se&,iea
s'eS; Tgr Hgr

)

2.2. The structure function

For each component ¢ € C' we introduce a func-
tion f; : S; — R representing the physical state
of the component as a function of the state. Thus,
if X;(t) = x; € S, then the physical state of
Component i at time ¢ is f;(X;(t)) = fi(z;). If
e.g., Component ¢ is a pipeline, then the physical
state of the component at a given point of time
may be the capacity of the pipeline at this point
of time. Being a physical property of the pipeline,
this may be any non-negative number, and the
function f; provides a convenient way of encoding
this directly into the model.

Note that the functions f1, ..., f, do not nec-
essary need to be nondecreasing. By skipping this
restriction additional useful modelling flexibility
is gained. This allows e.g., for the inclusion of
burn-in phases, maintenance as well as minimal
or partial repairs of a components as part of its life
cycle before it reaches its failure state.

The structure function ¢ represents the state of
the system expressed as a function of the states
of the components. It is common in multistate
reliability theory to assume that ¢ also assumes
values in a set of non-negative integers. In this
context, however, the structure function represents
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the physical state of the system and is expressed
as:

(X (1) = o(f1(X1(2)), - -, fa(Xn(t)))

Thus, the physical state of the system is a function
of the physical states of the components. The
advantage with this approach is that the system
state is expressed in terms of physical quantities
rather than being encoded more abstractly as non-
negative integers.

2.3. Criticality and importance in
multistate systems

According to standard conventions from reliabil-
ity theory, the notation ¢(x;, X) is defined as:

P(zi, X) = ¢(Xy, ...

In cases where the index 7 is obvious from the
context, we simply write ¢(z, X ). Using X, (¢)
and X (t) Huseby et al. (2020) introduced two
notions of criticality. Component i is n-critical at
time ¢ if:

P(Xi(t), X (1) # (X[ (1), X (1))

Hence, Component ¢ is n-critical at time ¢ if
changing the component to its next state would
result in a system state change as well. Similarly,
Component ¢ is p-critical at time t if:

P(X; (1), X (1) # o(Xi(t), X (£))-

Hence, Component 7 is p-critical at time ¢ if
changing the component to its previous state
would result in a system state change as well.

Based on these criticality concepts Huseby et al.
(2020) proceeded by introducing the following
four different measures of importance:

aXi—17$i7Xi+17 s ,Xn)~

(&)

(6)

I (1) = Plo(Xi(t), X (1)) # ¢(X (1), X (1))]
TP (t) = Plo(X7(£), X (1) # ¢(Xi(t), X (1))
L) = Blo(X(1), X () — o(X;F (1), X (1))]
I () = Blo(X; (1), X (1) — (Xi(t), X (2))]

We observe that I](\Z}g(t) is the probability that

Component 4 is n-critical, while Igg (t) is the
probability that Component ¢ is p-critical. More-

over, | ;,(g (t) is the expected impact on the struc-
ture function if Component ¢ is changed to its next
state, while 1 }*D(ZB) (t) is the expected impact on the
structure function if Component ¢ is changed back

to its previous state.

By conditioning on X;(¢) and X" () we obtain

the following expression for [ 1(\;)3 (t):

I = 3" Plo(s, X (1) # o(s', X (1))]

s,8'€S;

- P[X;(t) = 5] - P %)
Similarly, by conditioning on X, (t) and X;(t)

the following expression for 1 1(}33(75) is obtained:

Ippt) = Plo(s, X (1) # o(s', X (¢))]

s,s'€S;

- P[Xi(t) = 5] - Q1) @®)

The corresponding expressions for I;,(g (t) and
1359 (t) are:

LY =Y Elé(s, X (1) # o(s', X(2))]

s,8'€S;

- PIX(t) = 5] - P{) ©)

M =3 Ele(s. X (1) £ o(s', X(2))]
s,s'€8S;

PIX(t) = 8] - QU

ss’

(10)

For further result on I](\’;%B(t), I}% (1), I;,(g (t)

and I;(g (t) in the homogenous case we refer to
Huseby et al. (2020).

3. The trend-renewal model

We start this section by considering a regular pure
jump process with jumps at times 77 < 15 < ---.
We also let 7y = 0 and introduce the waiting times
between the event times:

Wi =T, —Te1, k=12....

In a homogenous semi-Markov process the wait-
ing times are independent and identically dis-
tributed. If the events represent state changes of
some component in a system, this may not be a
realistic model. In order to include aging and sim-
ilar effects, a trend-renewal process offers more
flexibility. Following Lindqvist et al. (2003) we
define a general trend-renewal process as follows:

Definition 3.1. Let A(¢) be a nonnegative inten-
sity function defined for all ¢ > 0, satisfying
At) = fot AMu)du < oo for each ¢ > 0 and
A(00) = oo. Furthermore, let F' be a cumulative
distribution distribution function such that F'(0) =
0. The pure jump process is a trend-renewal pro-
cess with respect to F' and A, and written as
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TRP(F,)\), if the waiting times between the
time-transformed event times A(Tp), A(TY),. ..
are independent and identically distributed with
cumulative distribution function F'.

Note that for a given process T'RP(F, \) and con-
stant ¢ > 0, we may deﬁne alternative functions
A=chand A(t) = [ Au)du = ¢ [} Nu)du =
cA(t), for all ¢ 2 0. 1f Vi, = ATy A(Tk 1) is
the waiting time between A(7}_1) and A(T%), it
follows that P(V}, < v) = F(v),fork =1,2,....

We then let Vi, = A(Tk) — A(Tk-1), k =
1,2,... be the waiting times obtained using the
alternative time-transform A. Then we obviously
have that Vj, = ¢V, k = 1,2,.... This implies
that F(U) P(Vi, < v) = F(v/r) kE =
1,2,.... Hence, it follows that TRP(F A) can
alternatlvely be written as TRP(F, ). In order
to avoid this ambiguity, Lindqvist et al. (2003)
only considered trend-renewal processes where
the waiting times between the time-transformed
event times had expectation 1. In the present pa-
per, however, we focus on using trend-renewal
processes as a modelling tool. From this perspec-

tive the two models, TRP(F,\) and TRP(F, \)
are equivalent, and we may choose the one that is
most convenient in a given situation. Thus, in this
context, the ambiguity is not causing problems,
so we simply skip the restriction suggested by
Lindqvist et al. (2003).

The family of trend-renewal processes is a
very rich class of non-homogenous pure jump
processes. At the same time such processes are
very easy to simulate due to the property that
the waiting times between the time-transformed
event times, V7, Vs, ... are independent and iden-
tically distributed. More specifically, the event
times 77,75, ... can be calculated using the fol-
lowing relation for k = 1,2,...:

Ty = A HA(Th—1) + Vi) (11
In Lindqvist et al. (2003) a trend-renewal process
was used to model the failure times of a certain
component operating in an environment where
repair times are negligible compared to times be-
tween failures. In the present paper, however, we
consider multistate components. In simple cases
we might be able to justify that waiting times in
the failed state may be negligible. However, we
still need to consider waiting times for more than
one state. In order to handle this we need a more
general type of trend-renewal model.

At this stage we simplify the notation slightly
by considering a single component with states in
the set S = {1,...,r}. For s € S and k =

1,2,... we introduce:

T}, = The kth time the component enters state s
T).s = The kth time the component leaves state s

Note that we always have Tj,_1 < T}, < Tis,
fork=1,2,....

For s € Sand k = 1,2, ... we also introduce
the waiting times spent in each state between the
transitions:

Wy

s = The kth waiting time in state s
=Tks — T,é

S

Finally, we let A( fo u)du denote the
time transform applled to event tlmes affecting the
state s € S.

We now consider two different models:

3.1. The global time model

In this model we assume that the waiting times
for all the states are affected by the same clock.
Thus, e.g., if a component ages by time, this aging
occurs regardless of the state the component is
in. In particular, the component ages also when
it is under repair. A global time model is also
appropriate for components which are subject to
seasonal effects, since such effects typically af-
fects the component regardless of state.

In this case we let the waiting times between the
time-transformed event times be defined as Vs =
As(Ths) — Ag(Ty,), for k = 1,2,.... Assuming
that Vi, Vag, ... are independent and identically
distributed with cumulative distribution function
F, these quantities can easily be generated us-
ing Monte Carlo simulation, and the event times,
Tis,Ths, . . . can be calculated for all s € S using
the following relation for k = 1,2,...:

Tys = As_l[AS(Tlés) + Vks}-

Note, however, that the event times 77,, 75, ...
depends on models for the other states as well
as the matrix of transition probabilities for the
built-in Markov chain. Hence, in this case the
sequences of waiting times for the different states
are stochastically dependent. As a result the event
times Tig,15%s,... do not follow an ordinary
trend-renewal process as defined in Definition 3.1.
Still, when the entire model is specified, it is well-
defined and well-suited for Monte Carlo simula-
tions.

(12)

3.2.

In this model we assume that the waiting times
for the states are affected by individual clocks for
each state. Thus, e.g., aging in one given state is
independent of the time spent in the other states. In
particular, aging in each of the functioning states

The local time model
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is independent of repair times. Such a model, how-
ever, is not likely to fit a case where the component
is subject to global effects.

In order to model this we let Uy, = 0, and
introduce the following quantities for k = 1,2, ...
and s € S

Uks = Wls + -4 Wk.s - Uk:—l,s + Wks-

Thus, Ui, Uss, ... are the points of time when
the component leaves state s, given that we use
a clock which is stopped when the component is
not in state s. We will refer to these points of time
as the net event times for state s.

We then let the waiting times between the
time-transformed net event times be defined as
Vis = Ae(Uke) - As(Uk:fl,S)s for k = 17 2a RS
Assuming that Vi, Vag, ... are independent and
identically distributed with cumulative distribu-
tion function F§, these quantities can easily be
generated using Monte Carlo simulation, and thus,
the net event times for state s can be calculated
for all s € S using the following relation for
k=1,2,...:

Uks = As_l[As(Uk—l,s) + Vks} (13)

By comparing Eq. (13) to Eq. (11) we observe that
this implies the net event times Uy, Uss, . . . fol-
low the trend-renewal process T'RP(Fy, \s). In
fact, when using this model, the component pro-
cess alternates randomly between s independent
trend-renewal processes, one for each state of the
component.

In order to find the event times 77, Tg37 ..., We
recall that 1), = T —|—Wks, k=1,2,.... Hence,
we get for k =1, 2

Tks = Tk-s + Uks - Uk—l,s~ (14)

More generally, it is possible to combine the
two time models by letting some of the states
follow the global time model, and while other
states follow the local time model. In the present
paper, we only consider cases where the same time
model is used for all states. A more general study
of the two models will be covered in an upcoming

paper.

3.3. Additive intensity functions

We close this section by considering more specific
intensity functions. The power law model consid-
ered by Lakey and Rigdon (1992) is a well-known
model with two parameters, o, 3 > 0, where
A(t) = aBt®=1, ¢ > 0. The cumulative intensity
function is given by:

= /t AMu)du = Bte.
0

We observe that if a > 1, the intensity is increas-
ing, while if @ < 1, the intensity is decreasing.

To run simulations we also need the inverse of the
cumulative intensity function. For the power law
model this is given by:

A (u) = (u/B)e.

A more general model could allow non-
monotonic intensity functions as well. This can be
accomplished by using an additive model, i.e., a

model of the form:
= E ViAj (t)
i=1

where Aq,...,\, are intensity functions, and
where 71, ..., 7, are non-negative constants. By
applying appropriate scaling, it is easy and conve-
nient to choose these constants so that:

m

j=1

If this is done, A becomes a convex combination of
the intensity functions A1, ..., A,,. By integrating
the intensity function we find that the cumulative
intensity function is:

0= w0

For additive intensity functions it may not be
possible to find analytical expressions for the in-
verse of A. However, if we can find analytical ex-
pressions for A7 ', ..., AL, then A~! can easily
be determined numerically. Assume more specif-
ically, that for a given u we are able to compute

t; = Aj_l(u),j =1,...,m, and that:
tmin = mln tj, and tpax = max ;.
1<5< 1<j<m

Then it is easy to show that:
tmin S A_l(u) S tmax-

By using these lower and upper bounds we can
easily find A~!(u) numerically using e.g., the
bisection method.

4. Importance measures in the
non-homogenous case

In this section we return to the importance mea-
sures presented in Subsection 2.3, and illus-
trate the trend-renewal model introduced in Sec-
tion 3 by considering a few specific examples.
More specifically, we consider a multistate system
(C, ¢) where C' = {1, 2}, and where both compo-
nents have only three possible states, i.e., 51 =
Sy = {0,1,2}. For simplicity we let f;(s) = s,
for all s € S;, i = 1,2. It should be noted,
though, that the suggested framework can easily
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be applied to more complex situations with many
component states and arbirary transitions without
any modifications. The structure function is given
by:

d(X1 (1), Xa(t)) = min(f1(X1(t)), f2(Xa()))-

The transition matrices of the built-in Markov
chains are:

0.0, 0.1, 0.9
PY = p® =10.9,00,0.1],
0.1,0.9, 0.0
Forse€ S;,ie Candk=1,2,...

M
we introduce:
Té? = The kth time Component ¢ enters state s

T,E? = The kth time Component 7 leaves state s

Moreover, we introduce the waiting times spent in
each state between the transitions:

W,ﬁ? = Component i’s kth waiting time in state s
(@) ()’
=Ty —Tiis

as well as the net event times:
o =wil e wl) =ul W

The time transform applied to event times affect-
ing the state s € 5;, ¢ € C is denoted by:

t
A3 = / O (w)du.
0

Finally, we assume that V(l) V(Z)7 ... are inde-
pendent and identically dlstrlbuted with cumula-

tive distribution function F,fi).
For the global time model we then have:
T = () AT ) + Vi),
while for the local time model we have:
U = A AO) + VD).

More specifically we assume that Vl(;), VQS e
are independent and exponentially distributed

(@)

with expected value 5, where:

uél) = NE)Z) = 0.5,
Y =2 =20
WP = 1 = 75

In order to see the effect of the trend-renewal
model more clearly, we use the following intensity
functions:

AV = A0 =1,
AP () =22 (1) = A (1) = 1.

0.25
0.00 200.00 400.00 600.00 800.00 1,000.00

Fig. 1. The intensity function )\él) (t)

The corresponding cumulative intensity functions
then become:
1 1
AP (1) = A (1) =1,
2 2 2
A (1) = AP () = A (1) = 1.

For state 2 of Component 1, however, a more
complicated intensity function is used:

(1) Z,y] ()é][))jf = )

where the parameters of ,\5“ (t) are:

] = 0757 Qg = ].O7 a3 = ]..6,
f1=20, p2=10, B3=01,
Y1 = 0757 Yo = 0.].5, Y3 = 0.1.

The corresponding cumulative intensity function
then becomes:

A(l) Z,y ﬁ]taj

= 0.70(2.0#’-75) +0.15¢ + 0.1(0.1¢+9).

In Figure 1 we have plotted the intensity func-

tion Aél) (t). We observe that )\él) (t) is decreasing
in the beginning, and then increasing later. This
shape is often referred to as a bath tub shape.

The system is simulated using both the global
and local time models over a time horizon of
1000 units. Figure 2 shows how the expected value
of the component processes and system process
develops as functions of time when the global
time model is used, while Figure 3 shows the
corresponding graph when the local time model
is used. In both figures the red curve represents
the expected state of Component 1. Due to the
bath tub shape of the time transform, this curve is



Proceedings of the 31st European Safety and Reliability Conference

128

0.00 200.00 400.00 600.00 800.00 1,000.00

Fig. 2. E[X1(t)] (red), E[X2(t)] (green) and E[¢(t)]
(blue) - Global time model

128
0.00 200.00

400.00 600.00 800.00 1,000.00

Fig. 3. E[X1(1)] (red), E[X2(t)] (green) and E[¢(t)]
(blue) - Local time model

increasing in the beginning and decreasing when
the aging effect starts to dominate. The green
curve represents the expected state of Component
2. Since this component is not subject to any trend
renewal effects, this curve stabilizes very fast. Fi-
nally, the blue curve represents the expected state
of the system. This curve has more or less the
same shape as the curve for the expected state
of Component 1. However, due to influence from
Component 2, the system curve lies below the
curve for Component 1.

We observe that the two figures are very similar.
The only difference is that the curves for Compo-
nent 1 and the system decreases somewhat faster
when the global time model is used, compared to
the local time model. The reason for this is that the
aging develops faster when a global time model is
used since the clock runs uninterrupted.

We have also estimated the importance mea-
sures If\;)B(t) and Iz*v(g(t)’ i = 1,2 both for

0.70

0.00 200.00 400.00 600.00 800.00 1,000.00

Fig. 4. I](\}g(t) (red) and I}\?)B(t) (green) - Global
time model

0.70

0.00 200.00 400.00 600.00 800.00 1,000.00

Fig. 5.
model

I 1(\}1)3 (t) (red) and I ](\?;3 (t) (green) - Local time

0.80
0.00 200.00

400.00 600.00 800.00 1,000.00

Fig. 6. I;,%) (t) (red) and I:,(? (t) (green) - Global
time model

the global and local time models. The results
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1.00

0.80
0.00 200.00 400.00 600.00 800.00

1,000.00

Fig. 7. I;[%) (t) (red) and 11*\1(123) (t) (green) - Local
time model

for I](\ﬁzg(t) are shown in Figure 4 and Figure 5,

*

while the results for I Ng (t) are shown in Figure
6 and Figure 7. For series like systems like the
one we are considering, it is typically the worst
component that is the most important one. With
the current probability models, Component 1 is
better than Component 2 in the beginning, and
worse than Component 2 when the aging effect
starts to dominate. Hence, Component 2 is more
important than Component 1 in the beginning,
while the ranking is reversed when the aging of
component 1 kicks in.

We observe that all the four plots are fairly sim-
ilar in this particular case. The plots for the mea-
sure [ 1*\,(;3) (t) tend to have a larger values since this
measure is defined relative to the expected impact
of component state changes, while the measure

I ](\;39 (t) only takes into account the probability of
an impact of component state changes. The other
main difference between the plots is the impor-
tance of Component 2 decreases somewhat faster
when the global time model is used, compared
to the local time model. This is exactly the same
effect as we saw in Figure 2 and Figure 3.

5. Conclusions

In the present paper we have introduced a mul-
tistate generalization of the trend-renewal model.
By using this model and Monte Carlo simulation
we can analyze expected performance and impor-
tance in multistate systems in non-homogenous
cases. Two different time models have been sug-
gested: the global time model and the local time
model. The global time model is suitable for mod-
eling component state processes in cases where
the components are aging all the time irrespec-
tive of the component states. This type of model
can also be used to represent seasonal variations
in component behavior. The local time model is

suitable when changes in transition rates are tied
to specific component states.

The multistate trend-renewal model has been
applied to importance measure estimation. Con-
trary to homogenous models the trend-renewal
model typically results in component ranking
which may change over time. When decisions
regarding e.g., maintenance and improvements are
based on importance ranking, this lack of stability
may pose a challenge. In such cases there is a need
for unifying time-independent measures. We will
return to this issue in a future project.
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