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Abstract

Mutation Testing (MT) is a technique for evaluating how well software is tested.
MT makes small changes to the software, and the goal is to see whether the current
test cases are able to distinguish mutants from the original software. If mutants are
not distinguished, it is likely that the software was not tested well enough. However,
apart from trivial software, making changes to software might have dangerous side
effects on the host where test cases are executed. For example, a program that
manipulates files might end up in deleting or overwriting important files in the file
system if such program is arbitrarily mutated with MT. For programs written in
Java, it is possible to execute MT in a sandbox, to avoid these types of problems.
But how often such problems happen in practice? What is the overhead of using
such a sandbox? Are there ways to improve MT to reduce the negative impacts
of these side effects? In this thesis, we investigate whether and how often mutants
cause undesirable side effects. We carried out MT sessions for ten different large real
world projects downloaded from SourceForge, and wrote tools to analyze the results
and run MT in a sandbox. The data from these experiments are used to study
several correlations among the factors that affect MT applied to real world software
where unwanted side effects of the testing phase can be harmful. We identified some
types of MT operators that have higher probabiltiy of causing harmful side-effects.
These operators could be removed from MT analyzes and tools.
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Chapter 1

Introduction

Our society is becoming more and more dependent on computers. The evidence is the abundance
of computer controlled devices (CCD) that surrounds us. While these devices make our lives
more convenient as we rely heavily on them, the quality of service (QOS) in the sense of normal
operation is inevitably becoming crucial. In the ideal world, every CCD should be error-free.
However, it is not feasible to produce software without errors. [15, 32].

The infeasibility of error-free software imposes us to endure with “good enough quality” of
software [8,12,22,57]. This necessarily applies to our CCD also as they are software controlled.
The idea of “good enough quality” is connected to the cost of the testing process, which is a
substantial part of the whole software development process. The extent of the testing process,
i.e. when to finish, is related to the quality requirements of the software. This means that
important software undergoes a more thorough testing process than less important software as
the consequences of a malfunction weighs more in the case of the first.

Nevertheless, it makes sense to improve the QOS without a substantial increase in the total
cost of the software [17]. To realize this idea, the approach of test automation (among others)
have been suggested. There are a plethora of different test automation methods. Mutation
testing is a considerable contribution to the test automation paradigm.

Mutation testing is a fault-based testing technique. Testing is fault-based when its motiva-
tion is to demonstrate the absence of prespecified faults. The main idea is to introduce faults
into correct programs to produce faulty versions. These faulty versions are variants of the orig-
inal and is referred to as a mutant. These faults can be seeded manually by an experienced
programmer, or it can be done automatically. When it is performed in the latter fashion, the
mutant is generally viewed as the result of applying an operator which transforms the code.
The process of analyzing when mutants fail and test suites trigger is referred to as mutation
analysis.

This testing technique was initially proposed by Lipton [14] and Hamlet [24]. Since then,
the development of mutation testing has evolved [30]. A lot of research is conducted with the
objective of refining the mutation testing process, e.g. optimization of resource utilization [46,
47, 59, 61], elimination of mutation operators which generates multiple variations of the same
mutated statement [64] and removal of mutants which cannot be detected by a test suite. [23,58].
We strongly believe that further improvements of the mutation testing process is welcomed by
the testing community.

1.1 Background

The premise for a well accomplished development project is a framework to structure, plan and
control the process of developing the final product, i.e. the information system. This framework
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is usually based on formalized methodologies or deviations of the latter. We will refer to this
as the development model. This development model is divided into segments, where the former
segment is a prerequisite for the next. These segments will be referred to as phases. Likewise,
test engineers are using methodologies to organise the quality assurance (QA) tasks. This is
often referred to as the QA process. The QA process is ideally adapted to the development
model allowing QA to co-exist with the development process. The V-Model [9] is an example
of a model for a QA process.

The resource consumption of the QA process tends to vary in extent, sometimes occupying
up to 80 percent of the whole development cost [4,55]. This is justified on the grounds that the
cost of correcting an error increases exponentially when it is allowed to live over a transition of
a phase in the software development process. [68].

To alleviate the cost of the process, one aims to move as much of the test process as possible
to the automated space. [26]. However, as a consequence of this new challenges emerge, as for
mutation testing.

1.2 Mutation Testing

A fault based [43] approach to test automation is mutation testing, seminally described by
Lipton [14] and later elaborated by, inter alia, A.J. Offutt. Testing is fault-based when its
motivation is to demonstrate the absence of prespecified faults. These faults may be introduced
manually, preferably by experienced programmers, or it may be generated automatically by
lexical analyzing the code and apply them by following a predefined pattern. This is called
mutant generation.

The main advantage of this technique is that the faults are described precisely and thus pro-
vide a well-defined fault-seeding process, as opposed to manual seeding. Every faulty program
is then executed and the results are logged. The last, but important step is to analyze when
these mutated programs fail. This is known as mutation analysis. In this thesis, we refer to
test cases without any mutation operator applied to its encompassed classes to the pre-mutated
test case. When a mutation operator is applied to at most one of its classes, we refer to the
test case as the mutated test case. Sometimes it is referred to as simply the test case and the
status, i.e. mutated or not depends on the context.

Given a program p, a test case τ , mutation operators µn, n ∈ N and a test oracle O, the
idea behind mutation testing is basically to produce small variants, e.g. p1, p2, p3 by applying
µ1, µ2, µ3 to p [49]. An application of a µ is similar to an error in code done by a programmer [7].
When the pre-mutated τ(p) is run, the output should comply to the description given by O(τ).

After an execution of τ(p1) is done, its output (ideally) is distinguished or is not distinguished
from O(τ). If the difference between τ(p) and τ(pn) is detected, we say that µn is killed. If the
difference is undetected, µn is referred to as a live mutant. The more mutants that are killed
by τ , more likely is it that τ will detect errors similar to the killed mutants.

When a mutant is live, it is either an equivalent mutant or the portion of the class where
this mutation reclines is not exercised, i.e. not covered by the test. A third option is that it
only caused weak mutation [27] to the code. Weak mutations does not propagate through the
execution cycle, thus does not affect the outcome. An equivalent mutant causes grammatical
modifications to the code, but does not modify its semantics [23] with respect to the input. For
this reason, it remains undetected.

This method of mutation testing has proven well in assessing the robustness of test cases [19],
despite that it also contains weaknesses [23, 58]. Coarsely, mutation testing consists of three
steps, mutant generation, mutant execution and result analysis. All these steps are expensive
both computationally and manually. Expensive in the means of the latter because analyzing
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requires manual labour. We will understand why it is expensive w.r.t. both fashions after
reading the next three subsections and understand that a fully automated and unattended
process of mutant generation and mutant execution is crucial.

1.2.1 Mutant generation

The first step is to analyze the source code to establish which mutants that are eligible to the
code. This process includes a lexical analysis of the source code in conjunction with a set of
rules describing which modifications that can be done without violating the grammar of the
language. The modification or mutant patterns are described by mutation operator, such as e.g.
AOI and JTD. These two replaces an arithmetic operator (e.g. it replaces a ’-’ with a ’+’) and
removes a this-keyword (this.foo = foo) respectively. Please refer to the bibliography [38,51,52]
for more information on these operators. In the context of Java, for every class for which a
mutation operator is applied, an extra class file is produced. In our study, a mutated class will
contain at most one modification produced by applying a mutation operator, except from the
example in Section 3.4.

In this experiment, two different classes of mutation operators are applied to the code;
traditional mutation operators and object-oriented mutation operators. The aforementioned
mutation operators are examples of mutation operators belonging to these classes respectively.
Traditional mutants makes modifications to the methods in code [37], while object-oriented
mutants makes modifications to object oriented code constructs, e.g. encapsulation, inheritance,
and polymorphism [52].

Papers report that thousands of mutants were generated from a relatively few lines of code
(LOC). From [50] we learn that by analyzing mutant generation from 28 Fortran-77 programs
with LOC ranging from 8 to 164, 43 to 27331 mutants were produced and a total of 81159 accu-
mulated mutants. [44] reports a mean of 3211 mutants generated from 10 programs with a mean
of 43.7 source statements. Dasso et al. suggests the numbers of mutants generated to be the
square of the LOC [3, p. 136]. Effectively, this means that one compilation is required for each
mutation operator applied to the source code. Please be cognizant of that compilation impli-
cates all necessary classes and libraries to be loaded for each and every compilation. When the
amount of mutants applied is large (which usually is the case), this process is computationally
expensive.

1.2.2 Mutation execution

Mutation testing is often performed in conjunction with unit testing, which also is the case
for this experiment. When performing mutation testing in this context, the total execution
time is roughly determined by the execution time of the pre-mutated test case multiplied by
the numbers of executions required to execute all generated mutants encompassed by that test
case. In Java, this typically means that if a test case consumes t time units and n mutants are
eligible to the classes in the test case, the total execution time will increase by approx. t × n
time units.

In advance, it is difficult to predict outcome w.r.t. execution time of a test case involving a
mutated class. An estimated execution time can for simplicity be expressed as:

O(t × n), t is the time to run the pre-mutated test case, n is the number of mutated classes
encompassed by the test case.

Some of the executions of the same test case may take longer than the pre-mutated test case
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or it may terminate prematurely due to exceptions or errors. According to Table 6.1, this will
level off, hence we justify the average time approximately equal to t.

When this is being performed with the number of mutant expected (we expected a vast
amount of mutants), the total execution time may take days or weeks. In our study, we ran
12 projects (which two were rejected due to inadequate results) over a period of 5 weeks.1 No
need to further elaborate that this is an expensive process.

1.2.3 Result analysis

The mutants that are killed, normally requires no further extensive analysis, as opposed to
the live mutants. In a study conducted by Schuler et al., live mutants were dichotomized
into “not covered” and “covered, not killed” [23] with a distribution of 32 and 20 percent
respectively. The first group suggests that a significant amount of the mutants in our study
remain unassessed. The second group was inspected manually, revealing that 40 percent of the
mutants were considered to be equivalent. The same authors also reports that the average time
consumption for manually assessing a mutant is 15 minutes [58].

In this study, however, we are not concerned by the analyze of live mutants. Our principal
interest are the mutants which cause file access violations. When such an incident are detected,
they are of course being detected.

1.3 Problem Description

With the aforementioned characteristics of mutation testing in mind, there is no need to say
that it is desirable that such a process should, between commencing and completion, persist
unattended. An unexpected premature termination of this process could, in the full extent,
havoc a project considering the strict constraints that generally confine the software development
projects to a given time frame.

Considering Java, a run-time environment is required for program execution, namely the
Java Runtime Environment (JRE). The JRE can be visualized as a logical layer between the
operating system (OS) and the Java application (Figure 1.1). The JRE constitutes a virtual
machine (VM) which, in addition to perform execution of the Java byte code, is responsible
of loading all required classes, transfer control from the application to the OS (file requests,
network calls etc). When, for instance the application requests access to a file residing in the
file system of the OS, it is in fact the JVM that accesses this file on behalf of the application.
Even though this is transparent to the programmer, a lot of system calls are being performed
“behind the scenes”.

From the introduction we know that no computer program is error free. A programmer may
unintentionally write code that performs deletion of vital files, thus causing an impact on the
availability of the resources of the OS. Since we also know that mutation operators emulates
error made by programmers, it is reasonable to assume that mutation operators may modify
the code so that the program renders the host computer unstable by intervening with the run
time system.

“Out of the box” JVMs does not enforce any restrictions on which resource that can be
accessed, hence a hostile application may operate on any file available, including those which are
vital for the OS. (This does not apply when running Java-Applets where the security is enabled
by default.) The consequences of a malicious file deletion could be severe. The aftermath of
such an operation may demand an audition of the logs by systems engineer to reconstruct the

1We needed to restart the process occasionally, when this is taken in account, the whole process elapsed for
almost 10 weeks.
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Java Application

Java Runtime Environment

Operating System

Figure 1.1: An abstract and simplified overview over the Java Runtime Environment (JRE).
The arrows shows transfer of control.

run-time environment of the OS or other files that may have been inappropriate deleted. It
is also possible that such an incident entails a complete reconstruction of the whole testing
environment, which would cause additional delay of the QA process. In addition, the test
engineers are required to weed out the mutant causing this incident and re-assess the risk
analysis as there might be other possible hazards in the pipeline.

Besides all these tasks, the test environment might be subject to re-design to make it more
resilient, resulting in an environment too different from the production environment. This
raises concerns, as these characteristics may have serious impact on the stability of the QA
process [63], thus the release of the final product.

To pave our path towards safe testing and eliminate potential risk factors such as the afore-
mentioned, we want to investigate this claim by analyzing several execution cycles of mutation
testing performed on different software projects with the aim to support or abandon the hy-
pothesis of hazardous mutation operators.

1.3.1 Rationale for this thesis

To our best knowledge after reviewing several articles from IEEE and ACM, none of these
discuss the potential hazardous side effects of the application of mutations. [6, 10,16,18–21,23,
30,31,33,35,47,48,54,58,60,61,64–66,72].

On this basis we want to investigate if evidence of such hazards exists or not. If such a
hazard do exists, we also want to discuss usages for the security mechanisms of in the context
of mutation testing.

1.4 Research Method

The initial step was to find suitable software projects candidates to take the role of the test
subjects or systems under test (SUTs). We wanted to assess code that met certain quality
criteria. Firstly it should be open source software. This allows us to inspect code without
violate any copyright, let alone inspect the code at all. Secondly, it should be in production
and widely utilized or have a life cycle history. This allows us to assume that the source code
is/has been subject to evolution and refinement, or at least have a certain maturity making it
a suitable test subject. Thirdly it should be easy to install and execute. For this reason, we
chose Maven enabled projects. Maven will also provide commands for extracting the class path
containing all program dependencies for later use by the assessment framework developed for
this purpose (see Section 1.4.2). Fourthly, it must ship with a test suite consisting of JUnit test
cases. Our assessment framework supports JUnit only. With these criteria met, the first step
of the process, i.e. the mutant generation can begin.
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As a mutant generator system, we chose MuJava (formerly JMutation). MuJava generates
mutants on method- and class-level [38, 51, 52]. Note that research on mutation testing for
concurrent programs is also conducted [10], however, these are not utilized in our experiment.
MuJava does not support mutation of concurrent code, thus faults has to be seeded by hand.
This does not guarantee an unbiased seeding. Manually seeding of faults would also require a
concurrency analysis of the code, which is beyond the scope of this experiment.

In addition, concurrent programs are not deterministic. This will likely cause different
output from each and every execution even for pre-mutated test cases. This leaves us with
more interpretation of the results because of the extra dimension added. At last, the degree
of multithreading of the SUTs are not known. Given to SUTs, A and B, SUT A might be
principally sequential compared to B.

MuJava is configurable to a certain extent. It allows selective creation of mutants, both
traditional and class mutants. We chose to apply all possible mutation operators when mutation
the software projects. Despite studies conducted on selective mutation [44,50], which effectively
means that mutation operators are selected after to the Pareto Principle, which states that ..80
percent of the results stems from 20 percent of the work... In our experiment, we did not want
any mutation operator to escape or scrutiny, hence we chose to include all possible operators.

The final product from MuJava for this experiment is a directory structure containing mu-
tants (mutated class files) which are organized by package and mutation operator. This concept
is elaborated in Section 1.4.2. Unfortunately, not all classes were processed due to flaws in Mu-
Java. Some were processed partially and some were omitted.

1.4.1 The JUnit framework

As we said in Section 1.4, criteria four, we support JUnit only. JUnit is a framework for unit
testing. The developers of JUnit provide three rules that all unit test framework should adhere
to [5, p. 8]:

Rule #1 Each unit test [case] should run independently of all other unit tests [cases].

Rule #2 The framework should detect and report errors test [case] by test [case].

Rule #3 It should be easy to define which unit test [cases] will run

The JUnit-book says: ..in order to for each unit test to be truly independent [by rule #1],
each should run in a different class loader instance. This is the case as for every test case
executed by the framework, a new JVM is started.

Rule #2 is also satisfied, as the smallest runnable entity for the framework is a test case.
When this test case is executed, the results of all test methods encompassed are reported.

Rule #3 is trivially satisfied from our adherence to rule #2.

1.4.2 Assessment framework

We constructed a framework to handle execution of unit tests. This framework does not have
a name and is interchangeably referred to as the framework or our framework henceforth. The
premise for the framework is that it should process any valid input in a deterministic fashion
and report errors that are produced during test case execution. The input to the framework is,
on a high abstraction level, a program, mutants for the program and test cases for the program
(Figure 1.2).

The framework should also provide the same environment for every execution, which is
crucial to eliminate errors in the data sampling. From its design, the framework conforms to
the rules stated by the JUnit developers.
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Figure 1.2: Abstract overview of the framework. Mutation operators, a program and a test
suite is input, the output are results enumerated to pass (P), failure (F) and security exception
(SE).

The framework is written in PERL and Java and requires that the SUTs are processed by
MuJava in advance. It requires two different directory structures to operate; the byte code
tree (the SUT) and the mutant tree (Figures 1.5 and 1.6 respectively). When a test case is
executed, an a priori unknown number of files are utilized. These files may be class-files, jar-
archives or other files related to the test case for proper execution. This is accomplished by
utilizing a mechanism which is capable of (among other things) logging every access to the OS
resources requested by the JVM. This mechanism is a sub class of java.lang.SecurityManager
and is referred to as the Custom Security Manager (CSM). CSM can be visualized by a layer
directly under the JRE (figure 1.3). Every request commissioned by the Java application is
executed the JRE. Before it is passed to the OS, it is intercepted by the CSM, which is given
the opportunity to stop the execution. See Section 2.3 for more details on CSM.

Java Application

Java Runtime Environment

Security Manager

Operating System

Figure 1.3: An abstract and simplified overview over the Java Runtime Environment with an
active security manager. Note that a callback from the OS is returned directly to the JRE.

When the initial execution of the pre-mutated test case commence, the information about
the set of class files that are accessed (or exercised) during the execution of a given test case
is assembled and a data structure is created (Figure 1.4). Hopefully, the reader recognized this
as a hash-table with the name of the test case as key and a list of the encompassed classes as
its value. This structure provides the framework with knowledge in advance of which classes
that will be implicated in the execution of a test case. This is important, because each of these
classes needs to be replaced with mutated version for every execution of the test case. The hash
table provides quick access to information about which classes to manipulate for any test case
with a run-time of O(1) for every request. This ensures that every class and every mutant of
the current test case is exercised.
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test case 2

...

test case n

i₁₁ i₁₂ ...

i₂₁ i₂₂ ...

i₃₁ i₃₂ ...

Figure 1.4: Diagram of the data structure which relates classes to their test cases. This is
utilized when test cases are executed. The framework may easily obtain all implicated classes
for any test case by providing the name of the test case.

For each test case in the test suite, one execution is performed by utilizing the pre-mutated
version of the test case. The security manager is configured to allow any operation. An exhaust-
ing list of operations performed during the execution is recorded and two sets are derived from
this information, i.e. the records of the data structure (Figure 1.4) and other files required to
run, as described above. The second set of files, which consists of class files, jar-files and other
vital files, is assembled and a policy file is created. The policy file and its context is described
more detailed in chapter 2, Sections 2.1.1 and 2.1.2. For now, please regard this concept as a
list over allowed operations. After the policy file is created, the CSM uses this for detecting
access violations. For simplicity, we can say this is a test oracle. When policy files from each
and all test cases are collected, the mutation assessment can begin.

The mutation assessment follows a pattern of execution similar to the process above. The
difference is that the test case will undergo one additional execution for each mutant encom-
passed. The first execution is performed with the pre-mutated version of the test case, the rest
with the different mutants. Basically, this means n mutants require n + 1 executions. The
latter 1 execution is performed with the pre-mutated test case. The remaining test cases will
not commence unless this yields P.

The security manager is enforcing the permission policy by verifying each and every opera-
tion against the set of allowed operations described by the policy file. If, for instance, a file that
is not specified in the policy file is accessed, we say that a violation has occurred. The policy
file and the CSM serves as the test oracle and is the sole arbiter when decisions about security
exceptions are made.

When a violation occurs, it is usually caused by a method encountering an abnormal condi-
tion that can not be handled by the method itself. The customary response to such a condition
is to throw an exception. An exception that is thrown is an object with a type (just as any
java object) which for simplicity can be described analogous to an alarm. (Not an alarm as in
POSIX, but an everyday alarm, e.g. fire-alarm.) Just as a fire alarm requires an action or a way
to handle it (which usually is well defined in any developed society), an exception in mature
programs also have well defined handling mechanisms. In our experiment, a specific type of
exception is thrown, namely the java.security.AccessControlException (ACE). This exceptions
is not thrown by any method in the test case, but by the security manager. It follows the same
pattern as above; the security manager intercepts an illegal operation and is signaling this to
the JRE by throwing a security exception.
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Figure 1.5: An excerpt from the byte code tree for PDFBox. Assume the tree classes depicted
are encompassed by a test case. Fault seeding is done by replacing these class files prior to
execution of the test case before execution.

Technically, this exception is inherited from java.lang.SecurityException which super class
is the java.lang.Exception. Please see chapter 2 for more on access control exceptions.

The CSM is active during execution and enforces a pessimistic security policy, i.e. every
operation not specified by the policy file is a security breach. When a test method employs
objects that tries to access a resource that is not specified, the CSM will intercept this request
and prohibit access. The very next step for the CSM (when running in a sequential environment)
is to throw a security exception (an ACE in particular).

Formally, this decision process can be expressed as:

Let Σ be the set of all resources accessed by the pre-mutated test case
Let Σ∗ be the set of all resources accessed by the mutated test case If Σ∗ \Σ is not equal to
∅ then throw new SecurityException

An ACE is thrown iff Σ∗ ⊃ Σ. Any operation omitted when a mutation operator is applied
will therefore proceed unforeseen. There is no reason to believe that a set of operations for a
pre-mutated test case is becoming hazardous if some of the operations are omitted, hence we
do not address this issue.

Normally, an ACE is handled, but in our case it is not. The only thing that is of interest is
that the ACE occurred. If this is the case for a test case, the test is terminated and the outcome
is logged. Then the next test case is started.

When the process is complete, we can start to process the log files that are produced project-
wise. The contents of these files are:

• name of the test case

• name of the mutant
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Figure 1.6: The mutant tree for PDFBox. All mutants are organized by full name of the original
class. Mutants are organized under the mutation operator eligible to the original class, ensuring
the correct class is being replaced by the correct mutant prior to test execution.

• name of the mutation operator

• description of the operation in case of a security exception, such as:

– type of violation (file access, property access)

– name of the target if applicable (object, file, property)

– operation requested

• error traces are also possible

This information provides the basis of an extensive statistical analysis of the whole process.
The error trace provides the opportunity to visit the source code to “see” what happened is
also a possibility. On these foundations we will try discover trends for the mutation operators
which will allow us to draw conclusions about the element of hazard attributed to a particular
mutant operator. Eliminating such hazards will improve the method of mutation testing.

1.5 Thesis Structure

This thesis is structured as follows: Chapter 2 describes the Java policy model and provides
some examples of security exceptions from the test case executions and a canonical example.
Chapter 3 presents the results and an analysis. Chapter 4 provides discussion about the results
and impact on the mutation testing process. Chapter 5 identifies threats to validity. Chapter 6
describes challenges that were met during development and execution. Chapter 7 concludes
the thesis by summarizing the main results. Finally, an appendix is provided for the interested
reader.
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Chapter 2

Security Exception Sources

Java implements a security architecture providing the possibility to permit or prohibit opera-
tions. This can be done with high granularity, e.g. on file and socket level. This is governed by
the java.lang.SecurityManager (SM), described introductory. When the SM is activated, it per-
forms a pessimistic enforcement of the security w.r.t. accesses to resources. The SM intercepts
every operation and it will only be permitted if a corresponding java.security.Permission object
is found. These permission objects are either created from a policy file or programmatical as
any general object during execution.

The SM contains a method checkPermission(Permission perm) which is utilized for every
operation that is performed during execution. The parameter is a permission object enclosing
information about which operation that is requested. By overriding this method in a subclass of
the SM, we are able to deploy a security manager which implements business logic that directs
this information to e.g. a log file. This subclass of the SM is referred to as the Custom Security
Manager (CSM). We have already seen that the CSM is of high importance for accomplishment
of our objective.

2.1 The Java Security Model

A logical diagram of the Java 2 Security Model (JSM) is depicted in figure 2.1. The fundamental
component is the SM. The SM employs another mechanism, the java.security.AccessController
(ACL). The ACL is able to control access with high granularity w.r.t. which classes or code
bases that are granted access to different system resources.

It is in fact the ACL that is the governing mechanism regarding the prohibition of accesses.
The employment of the ACL by the SM is transparent in the means that the ACL is being
utilized to control accesses. For simplicity, we refer to the security component as the SM, even
though the ACL is highly involved.

2.1.1 Permissions

A permission represents an access to a system resource. It typically has a name and a list of
allowed actions. The name is often referred to as the target name. A permission that will permit
read and write access to a file called .shadow1 at the top level of a UNIX-like system may be
specified (in code) like this:

myPermission = new java.io.FilePermission("/.shadow", "read, write");

1Note that the host’s permissions is not overridden by the JVM. Most likely, access will be denied by the host.
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Figure 2.1: The Access Controller is the principal part of the Java Security Model. It is deployed
by the Security Manager to control access with high granularity.

The target name in this case is the file“/.shadow”. A target for a permission object is not
necessarily a file. For instance, a propertypermission has a property as its target.

2.1.2 Policies

Instead of programmatically creating the required permissions, one may provide a policy file.
When this is supplied to the JVM together with the SM parameter, permission objects are
created implicitly. The policy file specification which is logical equivalent to the permission
object in Section 2.1.1 (implicit creation of permission objects) follows:

grant {

permission java.io.FilePermission "/.shadow", "read, write";

};

When the latter is absorbed by the JVM, this construct is logically equivalent to the state-
ment in 2.1.1.

To generate policy files, we need execute a pre-mutated test case. The output of this
execution is assembled and the data is structured identical to the permission above.

Other permissions that may be contained in a policy file are:

...

permission java.lang.RuntimePermission "createClassLoader";

permission java.util.PropertyPermission "java.system.class.loader", "read";

permission java.io.FilePermission "/tmp/-", "read, write, execute, delete";

...

The first allows the thread of execution to create a classloader -object. The classloader is a
mechanism that simply loads a class’ into the memory space of the JVM. The second grants the
same thread to read java.system.class.loader, which would be prohibited of the entry is omitted.
A qualified guess would be that the first permission is pointless upon this omission. The third
permission is an interesting one. Note the hyphen after the directory specification; this allows
the program to perform every known file system operation to the tmp-folder on the root of the
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file system and all files and folders residing directly below. Keep this in mind, as this peculiarity
is central in the example in section 2.6.1.

2.2 Native Security Manager - java.lang.SecurityManager

This is the default and native SM [2, p. 877] which is activated either from the command
line interface or programmatical. When active, SM intercepts all operations requested by the
executing Java program and checkPermission() is called for each request. checkPermission()
compares the operation with the its security policy (which is created either from file or direct
creation of permission objects.) The SM is given the opportunity to stop an operation or let
it complete. By default, when running Java applications, no security manager is active. This
means effectively that every operation possible is allowed.

2.3 The Custom Security Manager

It is possible to subclass the native SM to create a custom built SM. In our case, this is crucial
in order to create policy files automatically from execution of test cases. The native security
manager will basically to the same job in context of restricting unauthorized operations. The
difference is that with the CSM, the method checkPermission() is overridden and contains
business logic to record the details of each an every operation requested and transpiring by
the executed code. These details are logged to a file, security.log. In addition they are sent
to standard out, which will allow the framework to capture output for immediate processing.
These properties makes creation of policy files and the data structure (Figure 1.4) possible.

2.4 Automatic Creation of Policy Files

From the information in security.log, we create policy files for each test case. (Recall that the
test case is the smallest runnable entity in our context, our framework does not support higher
granularity such as executing single test methods.)

Listing 2.1 contains a fragment of the security log from the pre-mutated execution of the
test case org.apache.mina.statemachine.transition.MethodTransitionTest.

Listing 2.1: Mina Security Record

302 <record>

303 <date>2011-02-10T17:45:01</date>

304 <millis>1297356301054</millis>

305 <sequence>43</sequence>

306 <logger>no.ronnyma.MySecurityManager.CustomSecurityManager</logger>

307 <level>INFO</level>

308 <class>no.ronnyma.MySecurityManager.CustomSecurityManager</class>

309 <method>checkPermission</method>

310 <thread>10</thread>

311 <message>|class java.io.FilePermission|/home/ronnyma/Development/mscience/

SUT/mina/test/org/apache/mina/statemachine/transition/

MethodTransitionTest.class|read|</message>

312 </record>
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In line 311, the message from the security manager conveys information about a permis-
sion, a file URI and an operation. The corresponding entry in a policy file created from this
information and that would grant read access to MethodTransitionTest.class is:

grant {

...

permission java.io.FilePermission "MethodTransitionTest.class", \

"read";

...

};

This operation is performed for every access to a resource when executing the pre-mutated test
case. This ensures us that every resource that is accessed are logged and that reliable policy
files can be created from this information.

2.5 Unstable Host Computer

We know that a Java program requires a JRE to execute and that the JRE requires a host
computer (referred to as the host) with a compatible OS which in turn executes the JRE. A
host comprises a great deal of libraries, executables, meta data which is required for proper
operation. These entities are persisted as datafiles (referred to as just files) which exist in the
file system.

When vital files are accidentally deleted from the host (or as a part of an assailed attack,
just for the record), the host is prone to become unstable. Missing libraries, for instance would
reduce the register of operations crucial for the host by removing required functions.

The consequences may be all from symptoms of malfunction to errors (Figure 2.2). A missing
driver file could probably render a test case failed, which in the full extent will report a false
negative, with the premise that the code which is tested by the test case is correctly written. A
more severe consequence of a deleted file is kernel panic which is an action taken by an operating
system upon detecting an internal fatal error [which may be caused by missing kernel modules]
from which it cannot safely recover (Figure 2.3). This is equivalent to a blue-screen [69] on
Windows Systems. This incident requires a restart of the host.

Figure 2.2: An example of an error message on the Windows platform caused by a missing
library. The file containing the library is for some reason missing.

In the context of automated testing, such incidents can be hazardous. There is no reason
to believe that a successful test execution can be accomplished with errors such as the one
in Figure 2.2 arised, let alone a kernel panic. Furthermore, unattended execution is of high
importance. System errors as these are great antagonists to automated testing processes, be it
testing processes in general.

To substantiate the understanding of the correlation of mutated code and exceptions we
provide an analysis and a dry-run of the four permission violations causing the access control
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Figure 2.3: Kernel panic on a *NIX-system. To recover a kernel panic, a restart is required. In
addition, the cause must be traced and any potential missing libraries needs to be restored.

exception (which is a direct subclass of security exception). The most important violation is of
the java.io.FilePermission which we believe may cause the host to de-stabilize.

2.6 AccessControlException

From Oracles Java Documentation [42]: This exception is thrown by the AccessController [em-
ployed by the Security Manager] to indicate that a requested access (to a critical system resource
such as the file system or the network) is denied.

When such a violation occurs from running the mutated test case, with the precondition that
the pre-mutated version executes as expected, it is an indication of that the mutant caused that
security exception. The environment of execution is set to be equal for each run (memory space,
set-up and tear-down methods of JUnit with proper scaffolding), hence the only discrepancy is
represented by the mutated class file executed by the test case. This suggests that the mutated
code in the current execution space is the culprit.

2.6.1 FilePermission

There are four operations than can be performed on files and folders within the context of the
JVM: read, write, delete and execute. These permissions are governed by the security manager
and a policy specification. The security manager is given the opportunity to prevent completion
of the requested operation.

To ease the comprehension of the consequences of a mutant causing FilePermission-violation,
we have provided a canonical example of such a scenario (Listing 2.4). Please note that this
example is trivial and constructed with the sole purpose of demonstration.

The cycle of execution starts by creating an instance of the class Cleaner with a location
on the file system passed to its constructor, in this case “tmp/work”. This is a path relative
to the root of the file system. Cleaner constructs the target path by concatenating the existing
value of the field “path” with it self and the parameter from the constructor, i.e. the variable
“path”. When this instantiation is done, the method cleanDir of Cleaner is called. Then the
directory“/tmp/work” is traversed and all files and folder beneath are deleted recursively.

Listing 2.2: Canonical example
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1 import java.io.*;

2

3 public class MalFile {

4 public static void main(String[] args) {

5 Cleaner cl = new Cleaner("tmp/work");

6 cl.cleanDir();

7 }

8 }

9

10 class Cleaner {

11 public Cleaner(String Path) {

12 this.Path = this.Path + Path;

13 }

14

15 public void cleanDir() {

16 File fullPath = new File("/" + this.Path);

17 recursiveDelete(fullPath);

18 }

19

20 private void recursiveDelete(File dirPath) {

21 String[] ls = dirPath.list();

22

23 for (int idx = 0; idx < ls.length; idx++) {

24 File file = new File(dirPath, ls[idx]);

25 if (file.isDirectory())

26 recursiveDelete(file);

27 file.delete();

28 }

29 }

30

31 private String Path = "/";

32 }

When we apply the mutation operator JTI [52], the code is modified.

Listing 2.3: Canonical example

11 public Cleaner(String Path) {

12 this.Path = this.Path + Path;

13 }

The mutation JTI is applied

(line 12) Path => this.Path (2.1)

Listing 2.4: Canonical example

11 public Cleaner(String path) {

12 this.path = this.path + this.path;

13 }
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The execution of this results in failure to a proper initialization if the field “path” which
denotes the top level of the working directory. The field “path” will then assume the value “//”
which effectively is the root of the file system. When recursiveDelete is called, Java will sift
through the whole file system, diving into folder recursively, deleting everything it encounters2

This is an extreme example, regarding both the semantics of the code and the outcome of
the execution. Nevertheless, it does not suggest that production code does not possess the same
arcane properties or that other code structures will not encounter similar changes in semantics
after a mutant is applied. More specific examples from test subjects are provided below.

The first example is from BCEL. Given code Listing 2.5, it specifies a method that returns an
object of type ClassFile based on the existence of a file represented by the field file. According
to its documentation: “Responsible for loading (class) files from the CLASSPATH. Inspired by
sun.tools.ClassPath.”

After inspecting the code, we see that file is initialized with an URI to a class file which is
subject to loading into the JVM. Line 435 replaces the dots with slashes in name which indicates
a translation from a full qualified class name to a folder structure containing the physical class
file. (A dry-run session confirmed this.)

Listing 2.5: BCEL ClassPath getClassFile

423 ClassFile getClassFile( String name, String suffix ) throws IOException {

424 final File file = new File(dir + File.separatorChar

425 + name.replace(’.’, File.separatorChar) + suffix);

426 return file.exists() ? new ClassFile() {

427

428 public InputStream getInputStream() throws IOException {

429 return new FileInputStream(file);

430 }

431

432

433 public String getPath() {

434 try {

435 return file.getCanonicalPath();

436 } catch (IOException e) {

437 return null;

438 }

439 }

440

441

442 public long getTime() {

443 return file.lastModified();

444 }

445

446

447 public long getSize() {

448 return file.length();

449 }

450

451

2The outcome depends on permissions and the account the program is executed on behalf of.
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452 public String getBase() {

453 return dir;

454 }

455 } : null;

After LOI was applied, a test execution reported this:

java.security.AccessControlException

(testFieldAnnotationEntrysReadWrite)

( access denied

(java.io.FilePermission target/testdata/./-47AnnotatedFields.class

read))

Clearly, -47AnnotatedFields.class was not accessed by the original test case, i.e. does not
exist in the set of permitted files. (It might not even exist physically.) To get a comprehension
of what caused this incident, we need to examine the source code of the class causing it. The
relevant source code segment, original version and mutated version, is listed below (Listing 2.6
and 2.7). As we can see from these excerpts, an abstract representation of a file is created from
the variable dir concatenated with the file separator character defined by the system, the fields
name and suffix. A closer look reveals that a minus sign is put in front of the File.separatorChar
causing the filename to be different from the filename specified in the security policy file, hence
a security exception is thrown.

Listing 2.6: BCEL ClassPath

423 ClassFile getClassFile( String name, String suffix ) throws IOException {

424 final File file = new File(dir + File.separatorChar

425 + name.replace(’.’, File.separatorChar) + suffix);

426 return file.exists() ? new ClassFile() {

427

428 public InputStream getInputStream() throws IOException {

429 return new FileInputStream(file);

430 }

The mutation LOI is applied:

(line 424) File.separatorChar => −File.separatorChar (2.2)

Listing 2.7: BCEL ClassPath LOI

423 ClassFile getClassFile( String name, String suffix ) throws IOException {

424 final File file = new File(dir + -File.separatorChar

425 + name.replace(’.’, File.separatorChar) + suffix);

426 return file.exists() ? new ClassFile() {

427 public InputStream getInputStream() throws IOException {

428 return new FileInputStream(file);

429 }

This mutation operator caused an AccessControlException, hence it is a strong mutation [27,
72]. The null returned from getFilePath() will propagate through the cycle of execution when
the ternary condition construct in line 426, Listing 2.5 is fed with False from file.exists().
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2.6.2 ManagementPermission

This permission has two target names; control and monitor. The latter were reported when
runningVmPipeSessionCrossCommunicationTest in Apache Mina.

The monitor permission allows the ability to retrieve run time information about the JVM
such as thread stack trace, a list of all loaded class names and input arguments to the JVM.
The risks of allowing this permission is that malicious code can monitor run time information
and uncover vulnerabilities.

From the Javadoc for org.apache.mina.transport.vmpipe (the package of VmPipe) we learn
that “In-VM pipe support which removes the overhead of local loopback communication.”
VmPipe has a field of type IoServiceListenerSupport which is a helper class which provides
addition and removal of IoServiceListeners and firing events.

Listing 2.8 shows the relevant code segment.

Listing 2.8: Mina VmPipe Excerpt

25 class VmPipe {

26

27 private final VmPipeAcceptor acceptor;

28

29 private final VmPipeAddress address;

30

31 private final IoHandler handler;

32

33 private final IoServiceListenerSupport listeners;

34

35 VmPipe(VmPipeAcceptor acceptor, VmPipeAddress address,

36 IoHandler handler, IoServiceListenerSupport listeners) {

37 this.acceptor = acceptor;

38 this.address = address;

39 this.handler = handler;

40 this.listeners = listeners;

41 }

42 ...

43 }

The violation that was reported:

access denied (java.lang.management.ManagementPermission monitor))

In listings 2.9 and 2.10, line 40 the delta is easily seen..

Listing 2.9: Mina VmPipe

35 VmPipe(VmPipeAcceptor acceptor, VmPipeAddress address,

36 IoHandler handler, IoServiceListenerSupport listeners) {

37 this.acceptor = acceptor;

38 this.address = address;

39 this.handler = handler;

40 this.listeners = listeners;

41 }
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The mutation JTI is applied:

(line 40) listeners => this.listeners (2.3)

Listing 2.10: Mina VmPipe JTI

35 VmPipe(VmPipeAcceptor acceptor, VmPipeAddress address,

36 IoHandler handler, IoServiceListenerSupport listeners) {

37 this.acceptor = acceptor;

38 this.address = address;

39 this.handler = handler;

40 this.listeners = this.listeners;

41 }

In our case, the application of the JTI-mutant impedes the initialization of the class field
listeners. Its value was intended to be passed from the method parameter with type IoSer-
viceListenerSupport and name listeners. However, the insertion of this transforms line 40 to
an idempotent clause, hence no value is modified. Apparently, this propagated the whole call
stack, thus being classified as a strong mutation.

2.6.3 RuntimePermission

RuntimePermission is a cousin of FilePermission, i.e. both are direct subclasses of java.security.Permission.
RuntimePermission violations occur when a running program tries to access a system resource
for which no access is granted. In our experimental case, the Security Manager is enforcing the
security policy when test cases are executed, thus capturing this exception and reporting as an
AccessControlException.

The Security Manager yields this message:

java.security.AccessControlException (test1)

( access denied

(java.lang.RuntimePermission accessDeclaredMembers))

When inspecting the original source code and the mutant, listings 2.11 and 2.12 respectively,
we discover that a discrepancy leads to different properties are collected.

Listing 2.11: Log4J RendererMap

165 ObjectRenderer r = (ObjectRenderer) map.get(c);

166 if(r != null) {

167 return r;

168 } else {

169 Class[] ia = c.getInterfaces();

170 for(int i = 0; i < ia.length; i++) {

171 r = searchInterfaces(ia[i]);

172 if(r != null)

173 return r;

174 }

175 }

176 return null;

The mutation EAM is applied:

(line 169) c.getInterfaces() => c.getDeclaredClasses() (2.4)
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Listing 2.12: Log4J RendererMap EAM

165 ObjectRenderer r = (ObjectRenderer) map.get(c);

166 if(r != null) {

167 return r;

168 } else {

169 Class[] ia = c.getDeclaredClasses();

170 for(int i = 0; i < ia.length; i++) {

171 r = searchInterfaces(ia[i]);

172 if(r != null)

173 return r;

174 }

175 }

176 return null;

According to the Java Documentation the former accessor method “determines the interfaces
implemented by the class or interface represented by this object.”. The latter “returns an array of
Class objects reflecting all the classes and interfaces declared as members of the class represented
by this Class object (..)” The policy file for the original code does not allow this to happen,
hence an ACE is thrown.

2.6.4 SocketPermission

A socket is used by a Java program to connect to other hosts (or itself via the network). This
permission is almost self explanatory, but a synopsis is that a SocketPermission consists of a
host specification and a set of actions specifying ways to connect to that host, e.g. port number,
protocol and {accept|connect|listen|resolve}.

In this case, the PCI operator emulates a programming error by inserting an incorrect type
cast operator which casts from int to org.apache.mina.transport.socket.apr.AprSocketConnector.

Listing 2.13: Mina IOServiceStatistics

256 private void resetThroughput() {

257 if (service.getManagedSessionCount() == 0) {

258 readBytesThroughput = 0;

259 writtenBytesThroughput = 0;

260 readMessagesThroughput = 0;

261 writtenMessagesThroughput = 0;

262 }

263 }

(line 257) service => ((AprSocketConnector)service) (2.5)

Listing 2.14: Mina IOServiceStatistics PCI

256 private void resetThroughput() {

257 if ((AprSocketConnector)service.getManagedSessionCount() == 0) {

258 readBytesThroughput = 0;

259 writtenBytesThroughput = 0;

260 readMessagesThroughput = 0;

261 writtenMessagesThroughput = 0;
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262 }

263 }

To find the root-cause of this violation, a thorough analysis of the source code of Apache
Mina is required, which is beyond our scope. The most important factor is that the exception
is manifest, which means that a violation occurred.

2.7 FilePermission violation

The most abundant of all ACEs that occurs in this study is caused by accesses to files by mutated
test cases that were not accessed by the pre-mutated test cases, i.e. insufficient file permissions.
This exception is an indication that a file-level violation has occurred. This incident is suspected
to cause the most crash-prone scenarios, especially when the operation is write or delete. To
elaborate the reader’s comprehension of this violation, more examples are provided.

2.7.1 Apache Scout - EAM

This source of exception is somewhat peculiar. After visiting the source code of java.lang.Throwable,
it is clear that the pre-mutated version and the mutant should return the same field. In the in-
heritance chain for this class,i.e. org.apache.ws.scout.registry.RegistryException these methods
are never overridden. Anyway, this mutant is reported to cause a file access violation, thus it is
included for demonstrative purposes.

Listing 2.15: Scout RegistryException:RegistryExeption

144 /**

145 * Constructs a RegistryException instance.

146 * @param ex the original exception

147 */

148 RegistryException(String fCode,int errno,String msg)

149 {

150 super(buildMessage(errno,msg));

151

152 String errCode = lookupErrCode(errno);

153

154 if (fCode != null) {

155 setFaultCode(fCode);

156 }

157

158 setFaultString(getMessage());

159

160 Result r = this.objectFactory.createResult();

161 ErrInfo ei = this.objectFactory.createErrInfo();

162

163 if (errCode != null) {

164 ei.setErrCode(errCode);

165 }

166

167 ei.setValue(getMessage());

168 r.setErrno(errno);

169
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170

171 if (ei != null) {

172 r.setErrInfo(ei);

173 }

174

175 addResult(r);

176 }

Listing 2.16: Scout RegistryException

163 if (errCode != null) {

164 ei.setErrCode(errCode);

165 }

166

167 ei.setValue(getMessage());

168 r.setErrno(errno);

(line 167) getMessage() => getLocalizedMessage() (2.6)

Listing 2.17: Scout RegistryException

163 if (errCode != null) {

164 ei.setErrCode(errCode);

165 }

166

167 ei.setValue( getLocalizedMessage() );

168 r.setErrno(errno);

2.7.2 PDFBox - AOIS

This violation occurs for the following reasons: Consider listing 2.15, line 169: retval, which
later on is used as a filename is initialized. getBytes() returns a byte array containing a filename,
start denotes the offset in the byte array (to start reading from), data.length-start is the amount
of bytes to read and encoding specifies the encoding in which the string should be.

The delta applied by the AOIS (2.7) increases the integer start, thus the first byte is not
included in the String-constructor.

This deviation propagates when the method returns, as retval is used as a filename. The
value contained in retval is used as a file name and is not specified in the policy file, hence an
access control exception occurs.

Listing 2.18: PDFBox - COSString:getString

144 public String getString()

145 {

146 if (this.str != null)

147 {

148 return this.str;

149 }

150 String retval;

151 String encoding = "ISO-8859-1";
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152 byte[] data = getBytes();

153 int start = 0;

154 if( data.length > 2 )

155 {

156 if( data[0] == (byte)0xFF && data[1] == (byte)0xFE )

157 {

158 encoding = "UTF-16LE";

159 start=2;

160 }

161 else if( data[0] == (byte)0xFE && data[1] == (byte)0xFF )

162 {

163 encoding = "UTF-16BE";

164 start=2;

165 }

166 }

167 try

168 {

169 retval = new String( getBytes(), start, data.length-start, encoding );

170 }

171 catch( UnsupportedEncodingException e )

172 {

173 //should never happen

174 e.printStackTrace();

175 retval = new String( getBytes() );

176 }

177 this.str = retval;

178 return retval;

179 }

Listing 2.19: PDFBox - COSString:getString

263 try

264 {

265 retval = new String( getBytes(), start, data.length-start, encoding );

266 }

(line 265) start => + + start (2.7)

Listing 2.20: PDFBox - COSString:getString

263 try

264 {

265 retval = new String( getBytes(), ++start, data.length-start, encoding )

;

266 }

2.7.3 PDFBox - JSI

This is an interesting case. The only delta is that a object field is modified to a class field,
hence the static modifier keyword. A dependency analysis reveals that the class COSString is
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intricately involved in the class hierarchy of the test case that threw a security exception, i.e.
depended on by quite a few of these classes. As we can see from listing 2.21, no this-keyword is
used when on the variable modified by the mutation, hence the compiler will face no problems
regarding if out is a class field or an object field. Alas, the semantics are being changed, and the
adept Java programmer will understand that out is shared by all created instances of COSString.
Having it mutable will not be an advantage either since a modification to this will be reflected
in all instances of this class.

The exception message conveys that an access to an unexpected file is attempted.

java.security.AccessControlException (testExtract) (

access denied (

java.io.FilePermission org/apache/pdfbox/resources/cmap/Microsoft \

Word - Document1-Microsoft Word - Document1-UCS2 read))

Listing 2.21: PDFBox - COSString:out

78 public COSString( String value )

79 {

80 try

81 {

82 boolean unicode16 = false;

83 char[] chars = value.toCharArray();

84 int length = chars.length;

85 for( int i=0; i<length; i++ )

86 {

87 if( chars[i] > 255 )

88 {

89 unicode16 = true;

90 break;

91 }

92 }

93 if( unicode16 )

94 {

95 byte[] data = value.getBytes( "UTF-16BE" );

96 out = new ByteArrayOutputStream( data.length +2);

97 out.write( 0xFE );

98 out.write( 0xFF );

99 out.write( data );

100 }

101 else

102 {

103 byte[] data = value.getBytes("ISO-8859-1");

104 out = new ByteArrayOutputStream( data.length );

105 out.write( data );

106 }

107 }

108 catch (IOException ignore)

109 {

110 ignore.printStackTrace();

111 //should never happen
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112 }

113 }

Here are two listing of the same code segment after applying 2.8. As we can see, out is
utilized extensively by in 2.21.

Listing 2.22: PDFBox - COSString:out

78 private ByteArrayOutputStream out = null;

79 private String str = null;

(line 78) static is inserted (2.8)

Listing 2.23: PDFBox - COSString:out JSI

78 private static ByteArrayOutputStream out = null;

79 private String str = null;

2.7.4 Maven3 - JTI

ReactorContext has-a ProjectIndex which is responsible for the book keeping of projects. Reac-
torContext.getProjectIndex() will return the ProjectIndex object. After 2.9 is applied, normal
operation is abrupted. The adept java developer will understand that null is returned.

Listing 2.24: Maven ReactorContext

32 public class ReactorContext

33 {

34 private final MavenExecutionResult result;

35

36 private final ProjectIndex projectIndex;

37

38 private final ClassLoader originalContextClassLoader;

39

40 private final ReactorBuildStatus reactorBuildStatus;

41

42

43 public ReactorContext( MavenExecutionResult result, ProjectIndex

projectIndex,

44 ClassLoader originalContextClassLoader,

ReactorBuildStatus reactorBuildStatus )

45 {

46 this.result = result;

47 this.projectIndex = projectIndex;

48 this.originalContextClassLoader = originalContextClassLoader;

49 this.reactorBuildStatus = reactorBuildStatus;

50 }

51

52 public ReactorBuildStatus getReactorBuildStatus()

53 {

54 return reactorBuildStatus;

36



55 }

56

57 public MavenExecutionResult getResult()

58 {

59 return result;

60 }

61

62 public ProjectIndex getProjectIndex()

63 {

64 return projectIndex;

65 }

66

67 public ClassLoader getOriginalContextClassLoader()

68 {

69 return originalContextClassLoader;

70 }

71

72 }

In the original code segment, this.projectIndex is initialized in the constructor.

Listing 2.25: Maven ReactorContext

43 public ReactorContext( MavenExecutionResult result, ProjectIndex

projectIndex,

44 ClassLoader originalContextClassLoader,

ReactorBuildStatus reactorBuildStatus )

45 {

46 this.result = result;

47 this.projectIndex = projectIndex;

48 this.originalContextClassLoader = originalContextClassLoader;

49 this.reactorBuildStatus = reactorBuildStatus;

50 }

(line 24) projectIndex => this.projectIndex (2.9)

This modification causes this.projectIndex to have a object fields default value.

Listing 2.26: Maven ReactorContext

43 public ReactorContext( MavenExecutionResult result, ProjectIndex

projectIndex,

44 ClassLoader originalContextClassLoader,

ReactorBuildStatus reactorBuildStatus )

45 {

46 this.result = result;

47 this.projectIndex = this.projectIndex;

48 this.originalContextClassLoader = originalContextClassLoader;

49 this.reactorBuildStatus = reactorBuildStatus;

50 }
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All real examples are extracted from the test subjects (the projects) and are selected by
random. When a test case fails, the cause is attributed to one mutant only since we never apply
more than one mutation operator per execution.

The next step in our experiment is to see if some of the mutation operators are more prone to
make the subject class to cause security exception than other mutation operators. To discover
a trend, several parameters need to be accounted for, e.g. the proneness a class possess per se
for making a test case fail, i.e. if a class is inclined to cause the test case to fail even when no
mutation operator is applied.

38



Chapter 3

Results and Analysis

When all the results from the executions of the mutants are collected, a thorough analysis is
required. We wish to see if there is a trend for the mutation operators, i.e. if a statistical
relationship between a security exception and the mutant exists. Note that the word statistical
is emphasized to stress that we do not expect to find a deterministic relationship.

The quantitative metrics such as #classes (number of classes), #methods (number of meth-
ods), LOC (line of code), #Classes (T) (number of classes encompassed by the test case ), LOC
(T) (lines of test code) were collected with UnderstandTMfor Java. Code coverage (denoted by
just Cover) were measured by Code Cover for Maven from AtlassianTM(full functional trial
version.)

The percentage of outcome, i.e. passed (P), failed (F) and security exceptions (SE) produced
by the test cases was gathered from the log files with bash-scripts and the UNIX-commands
sed, awk, sort and uniq.

Violations are: FP, RP, SP and MPM which are FilePermission, RuntimePermission,
SocketPermission and ManagementPermission respectively.

The test code coverage (denoted just Cover) was obtained from method coverage, statement
coverage (aka. basic block coverage) and conditional coverage aggregated (see table 3.2). No
whitespace or comments are included in the metrics.

Box plots, histograms and Kruskal-Wallis are generated with R. Other plots are generated
with Matlab.

3.1 Test Subjects and Characteristics

From the set of all Maven enabled projects, the set of test subjects (projects) were selected from
the specification in Section 1.4. Their application areas implies that they necessarily possess
different qualities regarding operations performed during execution.

Take for instance BCEL (...intended to give users a convenient possibility to analyze, create,
and manipulate ... Java class files), Maven 3 (tool for building and managing any Java-based
projects), Log4J (...a tool to help the programmer output log statements to a variety of out-
put targets), Apache Scout (an implementation of Java API for XML Registries [JAXR]) and
PDFBox (...allows creation of new PDF documents, manipulation of existing documents and
the ability to extract content from documents). The description provided by the developers sug-
gests that file accesses happens frequently, hence we would expect a higher rate of file access
violations compared to Apache Commons Math when executed within our framework. From the
home page of the latter: ...library of lightweight, self-contained mathematics and statistics com-
ponents addressing the most common problems not available in the Java programming language
or Commons Lang.
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By code inspection, we discovered that Apache Commons Math consists of quite a few
computationally intensive routines, but very few file accesses. A preliminary expectation is a lot
of failed test cases, due to errors in output compared to the expected output given by the oracle.
These errors are expected to be caused by mutation operators that makes modifications to
arithmetic operators. A quick review of the code revealed nested loops enclosing logic containing
basic numerical operators for addition and subtractions among others.

We therefore expect different results regarding file access violations when different projects
are evaluated in the context of mutation testing.

We will refer to our test subjects quite a few times in this chapter, thus we choose to identify
them by an index (table 3.1). For instance, when we say project 1, we mean BCEL.

Table 3.1: Henceforth, projects are identified by an integer.

Project Index

BCEL 1
Apache Cactus 2
Maven 3 3
Squirrel SQL 4
Struts 5
Log4J 6
Apache Commons Math 7
Apache MINA 8
PDFBox 9
Apache Scout 10

3.2 Test Subject Metrics and Statistics

For starters, we provide some quantitative metrics of the test subjects. As we can read from
table 3.2, the quantitative dimensions differ quite a bit, e.g. projects 4 and 5: The latter
outnumbers the first regarding number of classes in approximately a magnitude of six. Measured
in LOC, the same parameter is approximately four. A further review indicates a difference in
nature for all the projects. On these grounds, we justify that our sample possesses a diversity
w.r.t. to measured quantities.

The code coverage ratio ranges from 9.50 to 88.30. The low ratio may suggest badly written
test cases, which again will affect the quality of the outcome. This is because low quality test
cases detect less malicious results than its cousins with higher quality. Mutants that escape the
test execution will definitely not throw a security exception.

Table 3.2 shows different metrics for the projects, among the test code coverage. Notice that
no data for projects 2 and 5 exists, because we were unable to run a coverage assessment for
these projects. Nonetheless, we will try to alleviate this by investigating the metrics for the
other projects. This will allow us to make suggestions about the coverage for projects 2 and 5.
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Table 3.2: Quantitative metrics from the executions of mutants.

Project #Classes #Methods LOC #Classes (T) LOC (T) #Muts. Kill Muts.

1 468 3735 34393 21 1916 55085 3157
2 417 2103 28279 71 5958 1445 302
3 1063 6433 92086 258 15695 13350 5176
4 4475 17933 235891 612 35041 237016 8370
5 719 6322 65320 672 6360 11338 997
6 531 2473 34461 134 9114 99097 21697
7 1091 4679 88147 486 43829 423009 55820
8 838 4686 46143 171 17790 66447 28905
9 528 4282 52787 28 1939 47346 16646
10 189 1464 18630 34 3852 2919 1680

Average 1032 5411 69614 249 14149 90705 5934

Project % Cover % Pass % Fail % SE % FP % RP % SP % MPM

1 20.00 94.27 5.72 .01 100 0 0 0
2 N/A 79.10 19.17 1.73 100 0 0 0
3 31.40 61.29 37.39 1.39 100 0 0 0
4 15.10 96.47 3.53 0 0 0 0 0
5 N/A 91.21 8.79 0 0 0 0 0
6 36.50 78.11 21.89 .01 0 100 0 0
7 88.30 86.79 13.21 0 0 0 0 0
8 40.50 56.49 38.62 4.88 0 0 99.99 .01
9 9.50 64.84 35.11 .05 0 0 0 0
10 38.00 42.45 57.52 .03 100 0 0 0

Average 28 75.10 24.1 .81 40 10 10 0

Table 3.3: This table shows that there are only small discrepancies with respect to the different
coverage measurement models. Unfortunately, Cactus and Struts did not execute after the
instrumentation by Cover.

Project m-cover s-cover c-cover (Cover)

1 24.40 21.00 14.10 20.00
2 N/A N/A N/A N/A
3 32.30 32.30 8.60 31.40
4 21.20 14.70 11.80 15.10
5 N/A N/A N/A N/A
6 38.00 36.40 35.90 36.50
7 84.10 89.80 86.40 88.30
8 41.60 42.10 35.00 40.50
9 9.10 9.80 8.90 9.50
10 44.90 38.80 30.80 38.00
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3.2.1 Preliminary Data Analysis - Code Coverage for projects 2 and 5

From table 3.2 some questions can be answered, especially regarding (2 and 5) where coverage
data is missing. We will try to make a suggestion about the code coverage by investigating
characteristics of the other projects. Test code coverage is correlated to the robustness of a test
case, hence it is important when we are discussing threats to validity later.

Goodness of Fit w.r.t. Mutant Kill Ratio

To alleviate the impact caused by missing coverage data for projects 2 and 5, we wish to find
the correlation between code coverage and the mutant kill ratio for all projects (except from
projects 2 and 5.) On this basis, we can make a suggestion concerning the code coverage for
the projects with omitted coverage information. This is important for the validity of the data.

Now, since we already know the observed data (code coverage) and the expected data
(mutant kill ratio), we want to employ Pearson’s chi-square test to calculate χ2 and then
suggest whether projects 2 and 5 possess a decent test code coverage.

We state the null-hypothesis:

| H0: The distribution of killed mutants follows the code coverage distribution.

The alternate hypothesis:

| Ha: The distribution of killed mutants does not follow the code coverage distribution.

Let Oi, {i ∈ [1,10] /∈ 2,5} be the coverage ratios for test subject i. Let Ei, {i ∈ [1,10] /∈ 2,5}
be the relative mutant kill ratio for test subject i. Since we are operating with 8 values, the
degrees of freedom (df) is 7. Let α be .05 denoting a confidence interval of 95 percent, we
calculate the chi-square by employing Pearson’s chi-square test.

The chi-square is then: χ2 = (Oi−Ei)
2

Ei
= 2664.2800

From the chi-square table (Table A.4), the value for a 95 percent confidence interval lies
below 14.07 having 7 degrees of freedom. Our χ2 if definitely in the rejection region, hence H0

is rejected.

In this basis, we cannot make a suggestion of code coverage ratio for project 2 and 5.

Test Code Coverage vs Detected Failures

We still does not have any code coverage data for projects 2 and 5, hence we move on. Studies
suggests that test coverage is highly correlated with test suite effectiveness [7,28,45]. This may
aid us to make assumptions of the code coverage for projects 2 and 5.

This time we will investigate in which degree this applies to our test subjects as well. We
start by plotting the coverage and the detected failures. Failures in this sense comprise both
failed test cases and security exceptions.

We start by stating the null-hypothesis:

| H0 = Test code coverage is correlated with detected failures.
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On the contrary, an alternate hypothesis is:

| Ha = Test code coverage is not correlated with detected failures1

According to Figure 3.1, it seems like the distribution is random. One would expect the
dotted line to lie strictly below the solid.

Following the same procedure as Section 3.2.1, we calculate the χ2 to be 537.4565. With df
= 7 (projects 2 and 5 are omitted) and α = .05, the critical value is still 14.07, hence χ2 is in
the rejection interval. This approves Ha, and H0 is rejected.
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Figure 3.1: Test Code Coverage with failed tests, with a χ2 = 537.4565. Note that projects 2
and 5 are omitted from the calculations.

Nonetheless, the studies [7, 28, 45] allows us to make an important assumption regarding
projects 2 and 5, where no coverage data is reported. The fault-detection ratio (failures +
mutants killed) is approx. 21 and 9 percent respectively. Considering the average coverage,
which is 28 percent, this suggests that the coverage is average for 2 and substandard for 5. The
latter assumption is based on [13,71]. We choose to include these in the experiment, due to the
average low coverage among the projects based on this assumption.

3.3 Research Questions

When running unit tests in the context of this experiment, the three possible outcomes are
pass (P), fail (F) and security exception (SE). Recall that we smallest unit of execution is
one test case, which may contain an arbitrary number of test methods. Each of these test
methods are completely disjoint to the other test methods w.r.t dependency among them. This
is synonymous with the claim that for two test methods t1 and t2, the operation of t2 is not
in any mean dependent on the operation of t1. If, for instance t1 initializes a variable which
value functions as a precondition for t2, then the two test methods are conjoined. This is not
according to best practice.

1Failures in this sense comprise both failed test cases and security exceptions.
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Let τ be a test case encompassing n > 1 test cases, n ∈ N. Let P be the outcome iff all
tests in τ passes. If one or more of the test cases yield a SE, the outcome is SE. If no SE is
yielded and at least one of the test case yields an F, the outcome is F. See Figure 3.2. If n =
1, the result evaluation is trivial.

start

E
E > 0

F
E == 0 && F > 0

P
E == 0 && F == 0

end

Figure 3.2: State Machine Diagram of the result evaluation process for mutants. Information
about the outcome from the test cases in the log files is used as input. This is typically a list of
results for a test case containing each distinctive result from the test methods of the test case.
The output is a scalar.

After all projects were evaluated, we possessed information about the test case that were
executed, the class that were mutated in this execution context and which mutation operator
that spawned the mutant. This provides us with valuable information.

We will use the results from this process to answer the research questions below.

RQ1
What are the differences in proportions regarding P/F/SE among the different projects?

RQ2
What are the proportional variations in P/F/SE among the different mutated classes?

SRQ2.1 Are there properties to the each of the classes that makes it prone to yield a
specific outcome?

RQ3
What are the proportional variations in P/F/SE among the different mutation operators?

SRQ3.1 Are there properties for some mutation operators that makes the classed inclined
to yield a specific outcome?
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3.3.1 RQ1

What are the differences in proportions regarding P/F/SE among the different projects?
Most of the mutants that were exercised during execution of the test cases yield P. This

suggests that test cases are inept of detecting faults, which reflects the low test code coverage.
From Figure 3.3, the proportions are easily identified. Overall, there is just a few security
exceptions. Some of the projects did not yield security exceptions at all, thus deteriorating our
investigational basis.

The deviant is project 10, its ratio of failed test cases are higher than the other projects.
Initially, we were inclined to believe that the test cases possessed higher quality than for the
other projects. Alas, these results are due to projects 10 sparse number of few classes that were
exercised during the test. A few failures will have a visible impact on the outcome, which is
evident for project 10.

Figure 3.3: The outcome for the projects in terms of exceptions are low, which may rely on
several conditions. Firstly, the test code coverage ratios are low, which may make the test cases
inept of detecting failures. This is also suggested by this graph. Since fault are introduced by
mutation operators, as with security exceptions, we can not expect the test classes to discover
all potential security exceptions.
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3.3.2 RQ2

What are the differences in proportions regarding P/F/SE for each mutant (class with mutant
operator applied) among the different projects?

Mutation testing employs test cases for execution. A test case employs at least one class
for each execution. For each execution of a test case, at most one mutation operator is applied
to at most one class from the set of classes encompassed by the test case. The result from this
test execution (P/F/SE) is attributed to that mutated class. To justify this, recall when the
pre-mutated test case is executed, the test case yields P. When the outcome is different after
a mutation operator is applied, the modification of the test case is represented solely by the
mutant. The purpose of this is to see if a particular class in the test case, when mutated, is
prone to produce an overweight of a specific outcome after a mutation operator is applied. This
is accomplished by inspecting the ratios of passed, failed and security exceptions from the total
outcome, w.r.t. the mutants grouped by project.

Ratios w.r.t. mutant:
Given a class A and a test case τ . Let Σ be the set of classes encompassed by τ , i.e. the
classes that are executed during an execution of τ . Let A ∈ Σ and n, i, j, k ∈ N.

Assume that in the case of A, there are n variations, i.e. n mutants eligible to A . This
requires n executions of τ , i.e. one execution for each mutant of A to ensure that all mutants
eligible to A are executed.

For each of the m executions of τ , we replace A with a different mutant and we record the
outcome. Assume that τ yields i passed test executions (P), j failed test executions (F)
and k executions where a security exception is thrown (SE).

For mutants, we then define the p-ratio as (i ÷ n) × 100, the f-ratio as (j ÷ n) × 100
and the se-ratio as (k ÷ n) × 100. Note that i + j + k is always equal to n.

In this model, the outcome from τ is grouped by the mutants it encompasses (See Figure 3.4
for the relationship.)

Class μ₄

μ₃μ₁

Figure 3.4: The class-mutant relationship. When calculating the ratios w.r.t mutant, we are
interested in the yield (P/F/SE) of each mutant spawned from each class.
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All ratios from all executions are collected and grouped by project. The type of ratio
(p/f/se) is used when we divide the ratios per project into three groups. These groups will be
visualized with box plots. Figure 3.5 visualizes the p-ratios, Figure, 3.6 visualizes the f-ratios
and Figures 3.7 and 3.8 visualize the se-ratios for all projects with and without outliers. The
solid line denotes the mean and the dotted line denotes the median.

Each point in the figures represents a ratio of either outcome for a mutant encompassed by
the test case. This will enable us to see the proportions and other characteristics of the ratio
distribution among the projects.

For instance, the most extreme outlier for project 6 in Figure 3.5 represents a class with
a p-ratio of approx. 10. Likewise, the f-ratio is approx. 90 for the most extreme outlier in
Figure 3.6. It is easy to see that the first Figure are almost the inverse of the second.

From Figure 3.5 we see that most of the projects contain classes with a high p-ratio. Not
surprisingly, Figure 3.6 convey that the same projects contain classes with a low f-ratio. The
outliers represents classes that are more prone to fail (or less prone to pass) after a mutation
operator is applied.

Schuler et al. [23] partitions mutants into three categories: Not covered, covered not killed
and killed. In Figures 3.5 and 3.6, not covered and covered, not killed applies to the first and
covered, not killed (henceforth live) applies to the second.

The distribution from our executions is not completely unexpected. The same authors
reported a distribution of 52 percent live mutants and 48 percent killed mutants. An analysis of
our results shows that the overall ratio of passed mutants are as high as 95 , where the F-ratio
is about 4. Taking account for the low coverage of the test cases for our test subjects, we justify
our vast overall P-ratio with the quality of test cases which is suggested to be correlated with
test code coverage [45].

Our data does not encompass information about mutants not covered by test code, hence
we have no possibilities to say anything about the ratio of mutated classes yielding P due to
inadequate test code coverage. The same authors report that 32 percent settled in the category
not covered. We expect this ratio to be substantially higher for our projects. Our test code
coverage is substantially lower than theirs, which had a total coverage ratio ranging from 77 to
99. This justifies our distribution further.

Furthermore we can see that the medians of some boxes in Figures 3.5 and 3.6 are departed
far from each other. Just by looking at these figures, especially the median we can tell that the
outcome from each project has a strong statistical difference. Also notice the overall median
compared to the median for each project. This will lead to reliable results due to the difference
among the projects.

To further justify this, we employ the non-parametric Kruskal-Wallis test. This is done
with the statistics tool R.

We start with the vectors Pn, Fn, En, {n ∈ N | 1 ≤ n ≤ 10}, where n denotes the project.
Each of these vectors contains the p-ratios, f-ratios and se-ratios respectively for project n.

The vectors Pn, Fn and En are then passed to the R-method kruskal.test() individually.
This means that we do a separate calculation w.r.t. each class of ratio, i.e. for each Pn, Fn and
En the calculation is performed.

kruskal.test() will yield the χ2 and the p-value (Table 3.4). A low p-value indicates a
high probability that a distribution contains statistically different distributions. This correlates
with the observations made by looking at the figures and justifies our claim that the data has
a strong statistical difference.
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Table 3.4: Kruskal-Wallis test for outcome per class.

Per Class

P χ2=275.44 df=9 p-value<2.2 × 10−16

F χ2=275.42 df=9 p-value<2.2 × 10−16

SE χ2=211.95 df=9 p-value<2.2 × 10−16
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Figure 3.5: Test cases passed per class. The
data for most test subjects does depart far from
the true mean. Results for projects 1 and 3 are
presumable due to badly written test cases.

Figure 3.6: Test cases failed per class. This
graph is approx. the inverse of Figure 3.5

Figure 3.7: Test cases with security exception
per class. The outliers are expected and are
due to different responsibilities of the assessed
class. These mutants are more prone to security
exceptions because they contains business logic
for file operations.

Figure 3.8: Test cases with security exceptions
per class w/o outliers. Most of the se-ratio is
contained in the outliers (Figure 3.7, hence the
boxes are small for projects 2 and 8.
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3.3.3 RQ3

What are the differences in proportions regarding P/F/SE for each mutation operator among
the different projects?

To approach this, we start by using the same data foundation which was used to answer
RQ2. The difference is the grouping of ratios. Instead of grouping the ratios by mutant, we
group by the mutation operator and do a count of all classes which this mutation operator is
applied to. The calculation of ratios is becoming a bit different:

Ratios w.r.t mutation operator:
Given a test suite Ω and a mutation operator µ and {m, n, i, j, k} ∈ N.

Let Σ be the set of all classes encompassed by Ω eligible to µ, and ∆ be the set of mutants
created by applying µ to the elements in Σ.

Let σm be the elements of Σ and δn be the elements of ∆. Since µ can be applied to each σ
more than one time, and each application produces a different δ, we have that ‖Σ‖ ≤ ‖∆‖.
Let ‖∆‖ be m. After Ω is executed, we record the outcome for each of the m executions,
each encompassing a different δ.

Assume that Ω yields i passed test executions (P), j failed test executions (F) and k exe-
cutions where a security exception is thrown (SE).

For mutation operators, we then define the p-ratio as (i ÷ m) × 100, the f-ratio as
(j ÷ m) × 100 and the se-ratio as (k ÷ m) × 100. Note that i + j + k is always equal
to m.

In this model, the outcome from the execution of the mutated classes are grouped per
mutation operator (See Figure 3.9 for the relationship.)

All ratios from all executions are collected and grouped by project. The type of ratio (p/f/se)
is used when we divide the ratios into three groups. These groups will be visualized with box
plots. Figure 3.10 visualizes the p-ratios, Figure, 3.11 visualizes the f-ratios and Figures 3.12
and 3.13 visualize the se-ratios for all projects with and without outliers respectively. The solid
line denotes the mean and the dotted line denotes the median.

Each point in the figures represents a ratio of either outcome for a mutation operator applied
to a class encompassed by the test suite. Recall that we group by the mutation operator, which
is common to the test suite. This will enable us to see the proportions and other characteristics
of the distribution of ratios.

Again, by looking at the figures, we see variance in the data. This suggests a strong statistical
variation among the projects. Also notice the overall median compared to the median for each
project. We will also employ the Kruskal-Wallis test to support our claim about the variation.

We start with the vectors Pn, Fn, En, {n ∈ N | 1 ≤ n ≤ 10}, where n denotes the project.
Each of these vectors contains the p-ratios, f-ratio and se-ratio respectively for project n.

The vectors Pn, Fn and En are then passed to the R-method kruskal.test() individually.
This means that we do a separate calculation w.r.t. each class of ratio, i.e. for each Pn, Fn and
En the calculation is performed.

kruskal.test() will yield the χ2 and the p-value (Table 3.5). A low p-value indicates a
high probability that a distribution contains statistically different distributions. This correlates
with the observations made by looking at the figures and justifies our claim that the data has
a strong statistical difference.
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Table 3.5: Kruskal-Wallis test for mutants shows a strong statistical variance which suggests
good reliability of the results.

Per Mutation

P χ2=125.22 df=9 p-value<2.2 x 10−16

F χ2=120.08 df=9 p-value<2.2 x 10−16

SE χ2=138.88 df=9 p-value<2.2 x 10−16

μ₁ Class₁

Class₃Class₂

Figure 3.9: The relationship between the mutant operator and its eligible classes. When calcu-
lating the ratios w.r.t. the mutant operator, we are interested in the yield for each class in the
test suite for which µ is applied.
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Figure 3.10: Test cases passed per mutation.
Each point in each box represents a result from
a test case executing a mutated class.

Figure 3.11: Same as for 3.10, but with failed
test cases

Figure 3.12: Test cases with security exception
per mutation operator. Outliers are interesting,
as they suggests single operators which causes
many security exceptions. We expect to find
important operators among these outliers.

Figure 3.13: Test cases with security exception
per mutation operator w/o outliers. Project 3
possess a good distribution and the entire se-
ratio is related to file violations. We expect to
find important mutation operators among this
set.
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3.4 Mutant Operators and Security Exception Distribution

To revisit the main objective of the study, we remind you that we initially wanted to assess
whether or not mutation operators when applied to classes encompassed by a test case can be
inclined to cause undesirable side-effects, such as malicious file deletions. These file deletions
represents a potential risk, since deletion of files that are vital for the OS may cause the host
to crash.

We have identified some of the mutation operators to be more crash prone than the other
mutation operators. To produce Figure 3.14, we considered the mutation operators that when
applied to classes made the class cause a file access violation. Other violations are omitted, since
the potential risk is related to malicious file accesses. It is easy to discover a trend here, we can
see that the frequency for EAM is twice as high as the second highest. EAM is an abbreviation
of Accessor Method Change and makes modifications to object oriented code constructs, this is
it an OO-mutation operator. A description of this is found in [39]:

The EAM operator changes an accessor method name for other compatible accessor method
names, where compatible means that the signatures are the same. This type of mistake occurs
because classes with multiple instance variables may wind up having many accessor methods with
the same signature and very similar names. As a result, programmers easily get them confused
...

An accessor method is a crucial part of the object oriented encapsulation paradigm. It
provides a controlled access to a class or objects private fields, thus eliminating the need for a
pathological coupling [40, ch. 4.4] between components.

Mutation Operators

A
C

E
 R

a
ti

o

Figure 3.14: Distribution of the exceptions over all mutation operators that cause ACE related to
file accesses. Other causes, like socket-exception are omitted. The EAM -operator is identified
by the relative frequency of ACE. AOIS and JTI are also identified as operators with high
probability of causing ACE.

53



An ACE from a modification by EAM sounds plausible because an accessor, as its name
suggests, accesses a field and return its value to the caller. When wrong accessor is called, due to
a programmatical error or mutant applied to code, an unexpected value will be returned. If this
value is to be used for file access, the incorrect file will be targeted. It is difficult to say anything
general about the possibility that a file vital to the OS will be affected as a consequence of this
mutation operator, however the possibility may exist (or it may not exist.) As an example, we
provide a constructed code segment which is prone to cause an ACE when EAM is applied.

Consider listing 3.3, a fictive class that stores information used for the persistence sub system
for a (also fictive) program. When an object is constructed, it is passed two parameters; the
name of the main database file2 and a temporary file. When a component which requires this
information is executed, it will query an object of this class for file names to use.

Imagine that the string database exists from a recent session and data processed by different
sessions are accumulated in the file that it represents after being processed. When a component
passed this object is requesting the intermediate (temporary) file name, it will typically call
getIntermediate() and continue processing, and maybe delete the temporary file after the process
is complete. Now, if it instead called getDatabase(), it will overwrite the main database and
delete.

Listing 3.1: FileLibrary (constructed)

1 public class FileLibrary {

2

3 public FileLibrary( String database, String intermediate ){

4 this.database = database;

5 this.intermediate = intermediate;

6 }

7

8 public String getDatabase() {

9 return this.database;

10 }

11

12 public String getIntermediate() {

13 return this.intermediate;

14 }

15

16 /*

17 * Fields for storing names of

18 * - Database-file

19 * - Temporary work file

20 */

21 private String database;

22 private String intermediate;

23 }

The EAM-mutant mimics this error pattern by altering the code in this fashion: (Notice
that, for illustrating purposes two mutants are added to one class file since two methods with
equal signatures cannot co-exist.)

2Flat files are rarely used for databases nowadays, just for illustration purposes.
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Listing 3.2: FileLibrary (constructed)

8 public String getDatabase() {

9 return this.database;

10 }

11

12 public String getIntermediate() {

13 return this.intermediate;

14 }

(line 9) getDatabase() => getIntermediate() (3.1)

(line 12) getIntermediate() => getDatabase() (3.2)

Listing 3.3: FileLibrary with EAM (constructed)

8 public String getIntermediate() {

9 return this.database;

10 }

11

12 public String getDatabase() {

13 return this.intermediate;

14 }

Indirectly, an application of 3.1 and 3.2 will mimic an error done by the programmer as
described above. The semantics however is equivalent. Deleting a main database file is not
necessarily disastrous to the OS, but will definitely cause problems.

Regarding the histogram 3.14, the mechanisms that induces the ACEs are not known, let
alone the point here. The significant issue is that they were provoked by EAM, which is an
important discovery in our study. For examples of JTI and AOIS refer to Section 2.6.1 and 2.7.2
respectively.

3.4.1 Mutation Operators with a Higher Probability of causing Side Effects

We have identified the mutation operators EAM, JTI and AOIS to be the three most important
mutation operators discovered from our study because of their frequency of provoked ACEs.
Whether these in general, when applied to a class, makes the class prone to perform undesired
side effects as unintended file deletions is difficult to say. To make such a suggestion, we need
to consider the characteristics of the test subjects as well, e.g. frequency of file accesses, type
of accesses (read, write, execute and delete).
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Chapter 4

Discussion

4.1 Mutants and Evidence of Hazards

In the process of mutation testing, we have discovered that some mutation operators can cause
undesirable side effects to Java programs. These are file accesses that were not performed by
the program originally. Three mutation operators are identified by the characteristic that they
are more prone to make a program cause these undesirable side effects when applied. These
three are the EAM, AOIS and JTI operators and are selected on the basis of the frequency of
file access violations caused by the class for which they are applied.

While there is no hard evidence that any mutation operator causes a class to delete vital
files, one should be careful to omit this possibility. We have already seen several live examples on
file accesses that were different from a pre-mutated program compared to a mutated program.

In general, for a class to be prone to perform these side effects when a mutation operator is
applied, it needs to contain business logic for file operations. Projects that utilizes files for e.g.
data persistence are more prone to experience these side effects. From this, we suggest that
when performing mutation testing on projects involving quite a few file accesses, one needs to
take account for the side effects of applying the mutant operators we identified.

The root causes of these side effects are quite a few times due to modifications of variables
and fields in the Java classes, where these fields are used for storing file names that are intended
for later file operations directly to the disk.

When this experiment was just an idea, we had no knowledge of unwanted side effects in
the fashion as described here. As more of the test executions of the projects were accomplished,
the idea became evident as we observed file access violations.

The potential hazard of applying these operators depends on quite a few factors, e.g. the
nature of the program.

All non-trivial program employs some sort of data persistence, be it on database level or
file level. Roselli et al. suggests a high file system workload in production environments [56].
Since every client in such an environment is using software, it is evident that these accesses
is commissioned by some software. This suggests that almost any system which is subject to
mutation testing may suffer from side effects.

It is suggested that it is as much variation in source code as there are programmers [41,
p. 872], each programmer possessing different imagination and habits [67, p. 119]. Oman and
Cook are even suggesting a taxonomy for programming style [53]. Programmers are inclined
to implement “interesting” solutions to different challenges, which may deviate from standard
design patterns. A design pattern is a general reusable solution to a commonly occurring problem
in software design. Deviating from these design patterns may introduce errors which in turn
will make the code less robust and prone to errors. This justifies the arcane code excerpt in
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Listing 3.3. Since we may encounter similar constructs when performing mutation testing, we
suggest that one may also encounter hazardous side effects for that cause.

4.2 Custom Security Manager and Application Domains

Several approaches has been proposed to meet the challenge of confining software executions
in a sandbox environment. Sidiroglou et al. proposes a system called ASSURE [62] which
introduces rescue points that recover software from unknown faults while maintaining both
system integrity and availability. Unknown faults are caused by errors not revealed by a system
test, which may be abundant even after a thorough testing process. Their aim is to trap these
faults and continue running by restoring the systems internal state to a recent working state.

Liang et al. proposes a safe execution environment called Alcatraz [36], An Isolated Envi-
ronment for Experimenting with Untrusted Software. This enables developers, according to the
papers to try out new software or configurations changes to existing software without the fear
of damaging the system in any manner.

Yet another approach is proposed and implemented by Kiriansky et al. [34], a framework
employing program shepherding, which is capable of preventing executions of malicious code ...
monitor all control transfers to ensure that each satisfies a given security policy.

A summary of these three approaches is that the first is allowing any operations and retreats
to a earlier restoration point when a malicious operation occurs. The second provides a sand-box
that isolates an executing program and confines resources that are utilized. The third provides
high granularity of restrictions by only allowing the program under execution to access a subset
of the instruction set architecture and interface provided by the OS.

A mode for these three is low overhead while executed in conjunction with the subject
program, according to the papers. Note that the three aforementioned framework are intended
for a more general usage, e.g. experimenting with untrusted software, prevent security attacks
and protect the host against unforeseen failures caused by software failures.

When a Java program is executed and the CSM is deployed with a security policy adapted to
the execution cycle, it reflects one property of Alcatraz and the program shepherding paradigm.
All transfers of control are intercepted before it reaches its destination and checked to see if it
satisfies the given security policy.

Just as for ASSURE, all these operations are logged which enables the software tester to
do an error trace such that malicious operations can be weeded out. CSM is an experimental
component initially used for the purpose of trapping violations by adhering to a security policy,
thus we do not expect it to compete with any of the three frameworks. Nevertheless, we believe
from what we have seen that it may serve the purpose of an extra layer of security when running
automated mutation tests.

We do not expect issues of this idea to be absent. One important issue is that the CSM will
interfere negatively with the performance of the test subject. Papers report an CPU execution
time penalty from 5 percent to a whopping 100 percent per resource access statement [25]. The
same report discourages the use of any security manager for applications that (e.g.) utilizes
frequent SocketPermission requests for many different hosts or if the policy files are huge and the
application is restarted too frequently (This is the scenario for our experiment.) See Section A.1
for more detailed information on the CSM and performance. These characteristics will increase
total execution time by adding a start up penalty for each execution.

The developers of Jumble [29] states that their rationale is to perform mutation testing in
conjunction with the rapid build cycles carried out by their development environment. The
code is checked out every fifteen minutes and built, tests are run until a new checkout occurs,
which will cause the testing process to restart. Tests that are accumulated are put in a queue
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and will be processed during idle time, typically during the night (where no modifications in
code occurs.) The critical issue is to get sufficient speed of the mutation testing, hence mutation
is performed at byte code level.

There is no doubt that a deployment of the CSM will decrease the performance for a mutation
testing process. When performing unit testing, every test case requires a start-up for each
execution. We know that in the context of mutation testing, a start-up is required for every
mutant encompassed by the test case. For this reason, we will not recommend deployment of
the CSM when execution speed is crucial.

When source code is modified, the policy files also needs an update. Recall that the policy
files are created for each test case by executing and recording the output from the CSM once.
Since we have developed a script that automates this process, the recommendation in [25], which
discourages the use of any SM if ...maintenance of policy files are cumbersome (due to e.g. code
changing often, many different jar-files,etc) is considered invalid.

When a unit test which violates any permission is encountered, it will terminate and the
outcome will be logged, then the next unit test will commence. Assuming that code in the unit
test will affect the system availability, the software testers must decide whether they should be
content with a slower execution or a potential system hazard.

For these reasons we will not recommend the CSM for mutation testing processes where
performance is crucial, but will suggest that it may be useful in mutation testing scenarios
where side effects have a high probability to occur.
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Chapter 5

Threats to Validity

Since there is no such thing as perfect data and perfect analysis that would yield 100 percent
reliable results, there is a need to identify the threats to validity.

In this chapter we will discuss the realism in the means of realistic tasks, realistic subjects
and realistic environment [63].

The first criterion is concerned with the size, complexity and duration of the involved tasks.
Basically, this means that an observable effect must be revealed from our test subject when
execution is performed in the same fashion as it is in a real-life environment, e.g. the industry.

The second is concerned with the selection of subjects to perform the experimental tasks,
i.e. in what extent does the subjects represent the population that we wish to make claims
about?

The last is concerned with the subjects and its tasks and if they are carried out in a real-
istic manner. Is the experimental environment configured with a supporting technology that
resembles and industrial development environment?

Furthermore, we discuss validity of the results of our experiment in the context of three
different types of threats: internal, external and construct validity [11, p. 13] and [1].

The term realism is related to the concept of external validity. We choose to include an
evaluation of the realism together with the three means of validity, we believe that realism will
provide the reader with a more detailed perspective.

5.1 Realism

Sjøberg et al. [63] discusses mundane realism which refers to the resemblance of an experi-
ment with read world situations and, therefore, with our ability to generalize the result of the
experiment to industrial practice.

5.1.1 Realistic Tasks

We have already seen that mutation testing is becoming more popular as a test technique [30]
and that the extent of use is rapidly increasing. Mutation testing is also widely used in con-
junction with unit testing, JUnit in particular, which is a framework adopted by the industry.
The implementation of the test framework that utilizes mutation testing varies, but the mode
is the same disregarding if mutation testing is executed manually by human software testers or
automated by e.g. a build-server.

By virtue of this, we conclude that our tasks are realistic. We are jointly utilizing well-
proven paradigms to produce our results (unit testing in conjunction with mutation testing),
which is a good premise for achieving valid results.
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5.1.2 Realistic Subjects

Our experiments consists of software projects downloaded from SourceForge and are widely
used either as stand-alone programs or intricately coupled to other frameworks (e.g. BCEL,
which is the core of Jumble [29].)

Despite that all these programs possesses different qualities regarding file accesses, we con-
sider these as realistic subjects due to their life cycle span, maturity and utilization.

5.1.3 Realistic Environment

In a production environment, many processes are interconnected and there is a lot of synergy. A
test environment should resemble a production environment as much as possible. The scenario
of the production environment makes it difficult to predict how a programming systems product
is behaving when it is released. The ideal scenario is to have a testing environment resembling
the production environment as close as possible.

When performing unit testing, the scene is a bit different, each test case is a stand-alone
entity with methods for setting up pre-conditions and proper scaffolding for proper execution.

In this study, we aim to contribute to make the testing process safer by eliminating potential
hazardous mutation operators from MT processes. We do that by running JUnit test cases with
pre-mutated projects and mutation operators as input. We see no obstacles for an extrapolation
of this technique into real-world scenarios, hence we believe that the rules which are valid for
our study can be adopted for general usage.

5.2 Validity

5.2.1 Internal Validity

Internal validity concerns the cause and effect of variables. We wanted to investigate if such
a path existed between the mutant (independent variable) and malicious file operations, the
(dependent variable). Our test cases are deterministic, as we have observed that the same
results are produced for consecutive executions of test cases. Likewise, the environment is
unchanged for each and every execution.

We encountered problems which caused spurious effects (see Section 6.4). They were elim-
inated and the test subjects were reassessed. This is supporting the integrity of the internal
validity.

A topic for discussion is the quality of the test cases (written by the software developers.)
From table 3.2, we see that the mutant kill rate, which is known to measure the effectiveness of
a unit test, varies. Likewise, the coverage also possess a strong fluctuation. As this is correlated
to test case effectiveness, this also gives a good indication of the test suite quality.

Nonetheless, papers [13, 70, 71] suggests that a test suite should cover approx. 80 percent
of the code to be considered a test suite with good reliability. With an average coverage of 28
percent, this does not speak in favor for internal validity. It is reasonable to assume that more
mutants could have been killed with a higher coverage ratio. From a higher kill ratio, a higher
ratio of discovered hazardous operators follows.

Another consideration are the flaws in MuJava i.e. it cannot compile classes with generic
code constructs. Since instrumentation is performed on source code level when object oriented
mutants are applied, the source code needs to be compiled in order to be tested. The error
messages issued by MuJava addressed generics and compilation errors quite a few times, as
there are a lot of classes with generic code constructs. This is expected, as many of the latest
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version of the projects were utilized in our study. For this reason, we take into consideration
that quite a few classes were omitted for this reason.

It is also expected that the amount of file operations will fluctuate when different programs
are executed, i.e. some programs employs file system operation more than other does. This
will of course affect the results, as for some programs no file access violations were detected.
A more appropriate set of test subjects, selected with bias to frequent file accesses might have
improved our foundation.

How does this affect the total outcome from the assessments? This is difficult to say, we
do not possess adequate information about the omitted classes to answer that. But we can be
certain that the internal validity is threatened by this flaw in unknown extent.

5.2.2 External Validity

The main result from this study are a set of mutants considered hazardous. Despite threats to
internal validity, we suggested that three operators can impose a potential hazard to the testing
process; EAM, JTI and AOIS. Of course, more studies resembling this should be conducted
and evaluated to support our suggestion before any results are deployed into existing mutation
testing systems.

Nonetheless, if some testers are inclined to solve problems before they arise and apply
these results before further research is available, they should consider some issues regarding the
importance of operators to a test cycle: Studies are conducted on optimizing the efficacy for
mutants by optimizing the subset of the most important operators [47,61,64]. The latter paper
considers the MuJava mutation operators and they report that EAM and AOIS are among the
top three regarding spawning of mutants. They suggest that omitting these comes with a cost
of less mutants killed, which implies a deteriorated set of mutants which are prone to cause the
unit test to trigger.

For these reasons considered alongside with the only a theoretical possibility that these
mutants can cause malicious file deletions, we are certain that the external validity has been
compromised.

5.2.3 Construct Validity

The basis for this experiment is to measure the cause-effect relationship for the outcome of a test
case when a mutation operator is applied. This is exactly what we have done. The only variable
during the execution of the study is the class which a mutation operators is applied to. Several
executions with the same parameters did not reveal any spurious relationships regarding the
cause-effect relationship between mutants and its outcome. From these observations we justify
the construct validity.
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Chapter 6

Implementation: Challenges and
Obstacles

To harness the foundations for this study, which basically are log files from executions of JUnit
test cases from different software projects, a methodical approach is required. All projects
should be executed under equal conditions, hence there was a need for a framework that would
assure that each and every project is initialized and executed on equal premises. To meet this
challenge, several strategical choices were taken.

6.1 Execution Platform and Storage Capacity

As we know, during mutation testing, an enormous amount of mutants can arise from just a
few lines of code. When mutating code with megabytes of source code, we expected almost an
innumerable1 amount of mutants. Take BCEL (1) for instance; the pre-mutated byte code tree
comprising 411 classes with a total size of 2.3 megabyte. After all feasible mutants were applied,
the mutant tree (byte code tree with mutants) contained 43957 class files requiring 1.2 gigabyte
of storage, overhead of the file system not included. Another example is Apache Commons
Math (7). Pre-mutated, 628 classes with a size of only 3.5 megabytes exists. After applying
mutants, over 420 000 mutants were generated with a size of 3.5 gigabytes. In neither of these
space requirements calculations, the space occupied is calculated. This number is presumably
larger due to file system overhead. With a total of ten projects subject to the same procedure,
several gigabytes of storage is required.

6.2 Execution Platform and Processing Capacity

We also know that mutation testing is an expensive process, alluding to Section 1.4.2. To get an
idea of the total running time for all ten projects, an analysis of Squirrel SQL (1) is performed
w.r.t. find the execution time for a single mutant (table 6.1). When we mention speed in the
context of execution, we are referring to mutants × s−1.

Data from Squirrel SQL (1) shows that the execution speed is µ∗ = 2.54 mutants × s−1.
The σ is higher than expected due to the three outliers with execution time from {180 - 1541}
seconds. When assessing 420 000 mutants, we expect a total execution time of approx. 420 000
× s−1 × 2.54 s ≈ 296 hours = 12.3 days. Alas, this is only applicable if the process is allowed
to run continuously without any interruption. As we soon will elaborate, the process was not
straight-forward, let alone unperturbed.

1Not in the context of theoretical mathematics.
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To accelerate the speed of the testing process, sessions were run in parallel. The execution
platform consists of high-end servers having 8 cores each, thus assumed capable of running
several processes simultaneously without affecting the throughput of the other processes. Given
two mutant execution processes A and B, no quantifiable drop in speed were detected when
either were executed in parallel vs executed in solitary. With this considered, we ran two
processes in parallel on each of the four equal equipped servers available at that time.

Table 6.1: Mutants and their execution time, gathered from the execution of 47730 mutants
from Squirrel SQL, µ = 2.54 and σ = 7.37. The high σ is caused by the outliers in the last tree
rows.

Time consumption (s) #mutants

1 3275
2 23656
3 17606
4 2108
5 171
6 24
7 527
8 317
9 21

10 8
11 5
12 3
13 1
16 1

180 5
181 1

1541 1

From this table, we can expect that the average execution time for one test case to be less
than 3 seconds, which will aid us when total execution time is requested.

6.3 Choice of execution platform

From the inducements above, we chose to arrange the testing environment on the hardware
at USIT2. Since the author is familiar with the technology they possess and the organization
that administer them, we believe that it is possible to request modifications or more resources
if required. In addition, they provide a superior help-desk for their users and the latency time
for processing requests is fast. All these claims are experienced by the author.

6.4 Impediments related to the Execution Process

As stated earlier, the execution process did not carry through unperturbed. In the middle of an
assessment of BCEL (1), the JUnit tests reported java.io.IOExceptions which Signals that an
I/O exception [related to the test case] of some sort has occurred. The execution framework does
not implement an early warning system which intercepts and reports failures during execution,
thus the process was allowed to elapse.

2The University [of Oslo] Centre for Information Technology

66



This exception is processed with the modus operandi of 3.2, i.e. an unknown result is issued
to the code responsible to the evaluation process for the results. Recall that this code accepts
only P, F or SE. The default evaluation when none of these are entered is F. This incident was
not discovered until a manual assessment of the log file was performed. The symptoms was an
incomplete log file with IOException reported as the latest results. Further investigations were
made by executing the last test case and the result was still en IOException.

Unfortunately (or fortuitously), this concerned other test subjects also. We then assumed
that when two or more disjoint test subjects running on the same platform yielded the same
exception, the error is compelled to be caused by factors not encompassed by the execution
framework. This assumption proved to be correct; USIT provides a default disk-quota of 2
gigabyte per user account. The framework directs all logging to disk storage. IN addition,
quite a few test cases persists data to hard drive storage as well. Then the quota was exceeded,
the operations were rendered impossible by the quota-management mechanism of the platform.
Java responded to this by throwing an IOException.

This problem was elucidated by requesting more disk space, which was obliged by USIT.
Nevertheless, valuable time was dissipated and all processes needed to be restarted. However,
no modifications were made to the framework, since the extra resources of 20 gigabytes of disk
space was considered to be more than adequate for the storage requirement for proper execution.

Unfortunately, the problems did not cease to exist at that point. During execution, another
exception were raised. Log files from several executions reported java.lang.OutOfMemoryError,
which is Thrown when the Java Virtual Machine cannot allocate an object because it is out of
[available] memory, and no more memory could be made available by the garbage collector.

The only usefulness of this scenario is that it concerned more than one of the test subjects.
When investigating the cause of the exception, we ended up by monitoring the process list (the
UNIX-command top) during execution.

During normal operation, at most two processes commissioned by the framework should
co-exist per session. We discovered that almost 30 (sometimes more) processes were spawned
from one single session, each utilizing valuable memory from the host. Each of these processes
were stalled JUnit test cases, which execution time was prolonged considerably. This may be
caused by the mutant specifically or the class that was prone to suspend execution when only
small modification were made.

An investigation of the cause is beyond the scope of the experiment. In either case, the
process is suspended, but live, thus consuming resources. Unfortunately, JUnit was not con-
figured with a maximum running time (which when exceeded will cause a TimeoutException).
By our modest knowledge of JUnit, the code needs to be instrumented if timeout should be
configured. This instrumentation is only applicable for JUnit versions > 4. Some the our test
subjects utilizes JUnit < 4, hence this problem requires a different solution.

To surpass this obstacle, a modification to the framework were presented. Still written in
PERL and providing multiple possibilities, we chose a model that confined the sub process
(spawned by the initial process) within a configured time frame. The super process (sometimes
designated mother-process) accomplishes this by employing fork, which is a mechanism of the
UNIX and Linux sub system. The new process is set up with an alarm (POSIX) which will send
a signal which again will terminate the application after a given amount of seconds. This ensures
a maximum execution time for every sub process, which again will prevent OutOfMemoryErrors
caused by non-terminating sub processes. After modifications were deployed, the framework is
considered modified. To ensure identical environment for all test subjects a restart of the entire
assessment was required. This incident of course caused a significant increase in total execution
time.
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6.4.1 Sub Processes and Separate Memory Spaces

One disadvantage of this model is that data from the sub process, i.e. the result from test case
executions cannot be shifted to the mother process without further ado. The sub process is
an exact copy of the super process, but resides in a different location of the memory. Variable
updates in either processes will not affect the other as these are completely disjoint. Trivial
operations, such as populating a variable with data becomes tedious when separate memory
spaces are utilized.

Process AProcess B

Pipe

Figure 6.1: A UNIX-pipe makes it possible for two disjoint processes to share information. Data
from process A is piped to process B.

One approach is to establish a pipe that is capable of reading and writing both memory
spaces. The “openings” symbolizes entrance and exit which are visible to both processes,
allowing them to pass streams of information between them. This implementation makes the
solution concerning the separate memory space transparent and normal operation can continue.
Most important, it alleviates the memory consumption of the framework which introduced a
great antagonist.

6.5 Impediments related to Omissions of the Data Foundation
Specification

Initially, we were logging just a subset of the information currently logged. The idea was
to establish a book-keeping of all security exceptions and which mutation that was involved,
which were considered the most important details. After a discussion with the supervisor for
this thesis, a modification was proposed, This proposition included logging of the exception
message, a description of the incident that caused a security exception. This enables us to
dichotomize the security exceptions into security exceptions related to file accesses and not
related to file accesses. Recall that the first group of security exceptions is believed to cause the
test environment to become unstable by malicious file deletes.

The implementation of this facility was not considerably hard, but as always, a re-run of
the test subject altogether is indeed required, due to modification of the framework. It is easy
to understand that this incident rendered many hours misspent, thus more valuable time was
wasted.
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Chapter 7

Conclusion

This thesis reports on an empirical study performed on ten Java projects, which are available
from Sourceforge. In these projects, faults were seeded by a widely used and mature Java
mutation system, MuJava. We investigated the potential hazards that may be caused by Java
programs that are subjected to mutation testing. This was accomplished by deploying a custom
security manager in conjunction with standard mutation testing. The custom security manager
will report every security exception from the test case and enable us to perform error-traces.

When evaluating the distribution of security exceptions among the different mutation op-
erators, we only considered the cases where a file access violation was performed. Our results
suggests that three mutants are more prone to make classes yield security exceptions than other
mutation operators, hence we identified them as operators with high probability of causing haz-
ards. These operators are EAM, JTI and AOIS. Because of these characteristics, we suggest
that eliminating these from future testing sequences may improve the stability of the mutation
testing process.

We also discussed the confounding effects to the mutation testing process which becomes
evident when we omit the aforementioned operators from the set of mutation operators available
to mutation testing. Two of the operators identified in this study are reported to be of the top
3 mutation operators based on effectiveness measured by the amount of mutants spawned when
they are applied to a class. They are also reported to trigger test cases more than other mutation
operators.

By removing these, we settle with a deteriorated set of mutation operators available, which
will affect the mutation testing process negatively. Effectively, this means that a compromise
must be made between a deteriorated set of operators versus improved stability of the testing
process.

We also discussed other uses for the custom security manager and in which extent this could
replace other suggested software security agents. This should initially be accomplished by
intercepting the current operation performed and terminate the process of a violation occurs.
The answer to this is that the overhead of executing this mechanism is immense, hence we
cannot suggest other practical usages at the time of writing.

We also elaborated challenges met during development and execution of the framework
utilized in this experiment, which caused the total time consumption of the experiment to
elongate.
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Appendix A

Appendices

A.1 Why not Byte Code Mutation?

Mutation of code may be performed on source code level (source code mutation) or byte code
level [29] (byte code mutation). The latter omits the need to compile every mutant that is
generated, since the modification done after the source code is compiled. Mutation on byte
code level is less time consuming than source code mutation since the overhead of compiling is
reduced in the amount of n, where n is the amount of eligible mutations of a test subject.

When applying method-level operators, MuJava performs these on byte code level. This
is assumed to be unproblematic since these operators do not alter code structures related to
the object oriented paradigm. They mostly operate on arithmetic, logical and conditional
operators. Remember that modifying the access modifier (private, default, protected or public)
for a method adding the static-keyword are all object oriented features, hence left untouched
by method-level operators. On the other hand, object-oriented mutation operators are applied
on source code level. While the rationale for this is not mentioned in the sparse documentation
for MuJava, we can contemplate several occasions for this. To illustrate this example, we utilize
an imagined mutation system called Byte Code Mutator (BCM).

Firstly, when the test subject is compiled and resides in the byte code tree, BCM will load
each and every class into memory. Then, the byte code is analyzed and mutants are applied
by modifying the byte code. Consider Listing A.1 and the resulting byte code for OoTest
(Listing A.2) which is where the mutant is applied:

Listing A.1: BCMTest (constructed)

1 public class BCMTest

2 {

3

4 public static void main( String[] args )

5 {

6 OoTest ot = new OoTest( "We will not use Hello World!" );

7 ot.getOut();

8 }

9 }

10

11

12 class OoTest

13 {

14 public OoTest( String t )
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15 {

16 out = t;

17 }

18

19 public void getOut()

20 {

21 System.out.println( out );

22 }

23

24 private String out;

25 }

Listing A.2: OoTest bytecode (constructed)

1 class OoTest extends java.lang.Object{

2 private java.lang.String out;

3

4 public OoTest(java.lang.String);

5 Code:

6 0: aload_0

7 1: invokespecial #1; //Method java/lang/Object."<init>":()V

8 4: aload_0

9 5: aload_1

10 6: putfield #2; //Field out:Ljava/lang/String;

11 9: return

12

13 public void getOut();

14 Code:

15 0: getstatic #3; //Field java/lang/System.out:Ljava/io/PrintStream;

16 3: aload_0

17 4: getfield #2; //Field out:Ljava/lang/String;

18 7: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String

;)V

19 10: return

20

21 }

When applying the JSI -operator (static modifier insertion) to the class OOTest, the source
code and the byte code is modified (Listings A.3 and A.4.)

Listing A.3: BCMTest JSI (constructed)

1 public class BCMTest

2 {

3

4 public static void main( String[] args )

5 {

6 OoTest ot = new OoTest( "We will not use Hello World!" );

7 ot.getOut();

8 }

9 }
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10

11

12 class OoTest

13 {

14 public OoTest( String t )

15 {

16 out = t;

17 }

18

19 public void getOut()

20 {

21 System.out.println( out );

22 }

23

24 private static String out;

25 }

Listing A.4: OoTest bytecode JSI (constructed)

1 Compiled from "BCMTest.java"

2 class OoTest extends java.lang.Object{

3 private static java.lang.String out;

4

5 public OoTest(java.lang.String);

6 Code:

7 0: aload_0

8 1: invokespecial #1; //Method java/lang/Object."<init>":()V

9 4: aload_1

10 5: putstatic #2; //Field out:Ljava/lang/String;

11 8: return

12

13 public void getOut();

14 Code:

15 0: getstatic #3; //Field java/lang/System.out:Ljava/io/PrintStream;

16 3: getstatic #2; //Field out:Ljava/lang/String;

17 6: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String

;)V

18 9: return

19

20 }

Now, go to line 17 and 16 in the byte code listings (Listings A.2 and A.4 respectively).
Notice that 3: getfield #2 is replaced by the command 3: getstatic #2. Likewise, line
10: 5: getfield #2 is replaced by 5: putstatic #2.

Explanation follows:

• getfield ...gets a field value of an object objectref, where the field is identified by field
reference in the constant pool index (index1 << 8 + index2)

• getstatic ...gets a static field value of a class, where the field is identified by field reference
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in the constant pool index (index1 << 8 + index2)

This means that one mutant made several modifications to the byte code, and this is ex-
pected. The results are equivalent when running both code examples.

Now, contemplate a change in byte code which is only considering one line per mutation.
This would change either line 3, 10 or 16/17, causing the class not to be verified by the class
loader, thus it is not executed and the test case would fail. To circumvent this early in the
process, we choose source code level mutation. Considering the overhead by compiling all
source code files for each mutation vs the time available for this process, this is defensible.
Especially since we do not know exactly the outcome of byte code mutation.

Another consideration is that we do not know if all test subjects utilized proper interfac-
ing between objects, i.e. object coupling. If worst comes to worst regarding object coupling,
the programmers may have objects accessing public scoped (or default scoped) fields in other
objects, also known as pathological coupling.

While this is bad practice (site code complete), there is no guarantee that this is not present.
When this coupling is present, a mutation would, if not caught by the class loader, render the
result failed.

To ensure class coupling compatibility, we choose to make the compiler generate byte code
from mutated source code.

A.2 CSM Performance

To support the overhead for the CSM, we measured 747 test case executions for Squirrel SQL.

Figure A.1: It is easy to see the variations for the execution time when the CSM is activated.

From this data, we expect an average execution time of 3.34 seconds for each test case when

76



the CSM is disabled and 6.02 when CSM is enabled. The standard deviation is low for both
configurations, 1.99 and 1.32 seconds respectively. This supports Herzog et al. [25] and their
reported performance of the Java Security Manager.

A.3 Critical Values of Correlation Coefficient (R)

XY-pairs df .01 .05 .1

3 1 0.988 0.997 1.000
4 2 0.900 0.950 0.990
5 3 0.805 0.878 0.959
6 4 0.729 0.811 0.917
7 5 0.669 0.754 0.875
8 6 0.621 0.707 0.834
9 7 0.582 0.666 0.798
10 8 0.549 0.632 0.765
11 9 0.521 0.602 0.735
12 10 0.497 0.576 0.708
13 11 0.476 0.553 0.684
14 12 0.458 0.532 0.661
15 13 0.441 0.514 0.641
16 14 0.426 0.497 0.623
17 15 0.412 0.482 0.606
18 16 0.400 0.468 0.590
19 17 0.389 0.456 0.575
20 18 0.378 0.444 0.561
21 19 0.369 0.433 0.549
22 20 0.360 0.423 0.537
23 21 0.352 0.413 0.526
24 22 0.344 0.404 0.515
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A.4 Chi-square Distribution Table

df Confidence Level
.995 .99 .975 .95 .9 .1 .05 .025 .01

1 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63
2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21
3 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34
4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28
5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09
6 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81
7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48
8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09
9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67
10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21
11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72
12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22
13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69
14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14
15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58
16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00
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