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Abstract

Motivated by the possible connection between the many submarine
canyons and the high bioproductivity in the Lofoten-Vesterålen (LoVe)
ocean region, this study investigates the flow over an idealized continental
slope with a submarine canyon, focusing on cross-slope transport. An
important feature is the addition of a well-developed eddy-field, and also
the inclusion of periods with reversed wind. In addition, the suitability
of quasi-geostrophic theory for predicting flow over a canyon is studied.
Both a stratified and a single-layer analytical, quasi-geostrophic model for
flow over a slope with topography are developed, based on atmospheric
Mountain-wave theory, and numerical model simulations of along-shore
wind driven flows are conducted.

Numerical model simulations show that there is an asymmetrical response
to flow direction in early flow stages. Under retrograde conditions (flow
in the same direction as the topographic wave propagation), there is
increased cross-slope transport when a canyon is included, while under
prograde conditions (flow in the opposite direction of the topographic wave
propagation), the canyon has little effect on the transport. The analytical
model predicts this asymmetry to be due to arrested topographic
waves resonating with the canyon under retrograde flow. Comparing
wavelengths of the arrested topographic waves between the theoretical
quasi-geostrophic models and numerical model simulations, we find good
agreement, especially in unstratified systems. There is also qualitatively
good agreement between flow patterns for prograde flow between the
analytical and numerical models.

The slope currents in the LoVe ocean region are highly unstable,
motivating us to further explore how increased cross-slope transport,
and thus increased nutrient concentration in the shelf region, can occur
under these flow conditions. Two possible mechanisms are further
explored; 1) the effect of high eddy-activity, both under prograde and
retrograde conditions, and 2) periods of reversed wind under mean
prograde conditions. We find the same asymmetry under high eddy-
activity as for early flow stages, with increased transport in canyon-runs
for retrograde flow, and little difference between canyon and no-canyon
runs for prograde flow. However, when periods of reversed winds are
included in the prograde runs, we see heightened transport in canyon
runs in the period after the wind reversal, compared to no-canyon runs.
Since observations show periods of winds opposing the flow direction in
LoVe, this mechanism may be part of the reason why we see such high
bioproductivity in the region.
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CHAPTER 1

Introduction

1.1 Motivation

The continental shelf off the Lofoten-Vesterålen (LoVe) archipelago in Northern
Norway is known as an important site for aquatic life, and for its high marine
productivity. In spring and summer, the area is an internationally valuable
feeding and spawning area for several fish species, and it is the main spawning
area for Northeast Arctic cod and haddock (Quillfeldt, 2010).

Large fish stocks are dependent on plankton growth, which is again limited by the
availability of resources, like nutrients and light. Liebig’s Law of the Minimum,
stating that growth is controlled by the scarcest resource, has traditionally
been used to explain the limitation of plankton growth. In the ocean, nitrate is
usually considered to be the limiting factor, and concentration of said nutrient
in the euphotic zone regulates the plankton blooming (Kämpf and Chapman,
2016, pp. 11–18). Nitrate is quickly exhausted, so a consistent supply is needed
for the continuation of plankton growth. This could happen through intrusion
of nutrient-rich deep ocean water onto the shelf. However, the steep continental
slope off LoVe sets up a strong potential vorticity gradient, acting as a barrier
between the shelf region and the open ocean. Flowing along this shelf break
is the Norwegian Atlantic Slope Current (Fer et al., 2020). In order to have
renewal of the coastal water, some dynamics must be present, facilitating the
flow in crossing isobaths.

Looking at the map of the LoVe ocean region in Figure 1.1, we see that multiple
submarine canyons cut into the continental slope. Bosley et al., 2004 showed
that physical processes can lead to concentration of marine organisms in the
vicinity of submarine canyons, as the canyon affects the transport of nutrients.
Several modeling studies, e.g., Jordi, Klinck, et al., 2008; Jordi, Orfila, et al.,
2005; Skliris, Goffart, et al., 2001, show that the presence of a submarine
canyon can lead to a large cross-slope water exchange. However, the response
depends on the direction of the along-slope flow, which can be either prograde
(same direction as the topographic wave propagation), or retrograde (opposite
direction of the topographic wave propagation). For retrograde flow, strong
on-shore transport occurs, while for prograde flow, the exchange is weaker (Allen
and Durrieu de Madron, 2009; Klinck, 1996; She and Klinck, 2000). Spurgin
and Allen, 2014 even found that numerical simulations of prograde flow over
a canyon exhibits net downward nitrate advection, suggesting a reduction in
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Figure 1.1: Ocean bathymetry off the LoVe archipelago. Purple and light blue
signify deeper and shallower regions, respectively. White regions represent
missing data. Map is downloaded from dybdedata.no, ©Kartverket.

productivity in nitrate-limited areas.

Studying flow over a submarine canyon, the question arises whether the
flow patter can be described theoretically. Some studies suggest that the
asymmetrical response to along-shelf flow direction may be related to the
canyon’s influence on the propagation of Kelvin waves or continental shelf-waves
(Allen and Durrieu de Madron, 2009; Killworth, 1978). Using a coastal-trapped
wave model, Zhang and Lentz, 2017 showed that the increased transport for
retrograde flow over a shelf valley is the result of arrested coastal-trapped
waves resonating with the valley, and establishing lee waves downstream of
the valley. These lee waves can give large lateral fluctuations and increased
transport. Because of the similarity in the physical set-up between shelf valleys
and submarine canyons, this is expected to be applicable to submarine canyons
as well. Further, Zhang and Lentz, 2018 developed scales for along-valley
transport in both prograde and retrograde flow regimes. However, in the study
of Zhang and Lentz, the problem of arrested coastal-trapped waves was solved
numerically.

A somewhat related problem as flow over a submarine canyon is the atmospheric
flow over a mountain. In both situations, we have relatively small perturbations
of the lower boundary. Held, 1983 analytically describes the lee wave forming due
to arrested planetary waves interacting with a mountain, using quasi-geostrophy.
Held considered Rossby waves supported by the planetary β-effect, which are
similar to topographic waves supported by a sloping bottom, in that they
both result from a tendency towards conservation of potential vorticity. The

2
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1.1. Motivation

likeness between the two physical problems makes it alluring to investigate how
well-suited quasi-geostrophy is to describe the flow response over a submarine
canyon. To our knowledge, the mountain wave theory developed by Held has
not been applied to submarine canyons before.

Returning to LoVe, the high concentration of submarine canyons in the area
could be part of the explanation to why there is such high bioproductivity in
the area. Since submarine canyons can enhance the cross-shore transport and
induce renewal of the coastal water masses, nutrients can be transported onto
the shelf. However, the slope current off Northern Norway is flowing in the
same direction as the topographic waves, making it a prograde flow. As stated
earlier, model studies have shown that there is less exchange present under
prograde flow conditions, making the high bioproductivity in LoVe a possible
paradox.176 MARINE MAMMAL SCIENCE, VOL. 1 7 ,  NO. 1, 2001 

Figure 1. Bleik Canyon showing 180 documented sightings of sperm whales. 

degree based on availability of prey, and Christal and Whitehead (1997) list 
concentrations of prey as possible causes for aggregations of males on the 
Galapagos breeding grounds. Although it is not known that the sperm whales 
identified at Bleik Canyon are male, length estimates indicate this may be the 
case. 

Photo-identification procedures at Bleik Canyon differ from those described 
by researchers using dedicated platforms (Whitehead and Gordon 1986, Arn- 
bom 1987, Whitehead 1990, Childerhouse et al. 1995) in that whale-watch 
vessels typically head directly to the first whale sighted and remain with that 
individual. No random sampling is carried out, thus the area covered is re- 
stricted only to the area of the initial sighting, often within a radius of one 
nautical mile. 

Vessels are positioned for the tourists, and not for the benefit of the iden- 
tification photographer; therefore, the acquisition of photographs useful for 
analyses is contingent on the qualifications, experience, and discretion of the 
photographer and not on the maneuvering of the vessel itself. 

Methods for identifying individual sperm whales first described in White- 
head and Gordon (1986) and further developed in Arnbom (1987) and White- 
head (1990) were used for this study. Crenulations on the trailing edge of the 
fluke are considered sufficiently invariable to be used to  identify individuals 
over several years (Whitehead 1990, Dufault and Whitehead 1995, Palacios 
and Mate 1996, Huele and Ciano 1999). 

Photographers were instructed to take identification photographs if the sky 
was clear, (ie., no rain, snow, or fog); the sea state (using the Beaufort Scale) 
was 3 or less; the subject was within 200 m from the photographer on deck; 

Figure 1.2: Bleik Canyon, situated outside Andøya in Vesterålen, showing 180
documented sightings of sperm whales. Figure from Ciano and Huele, 2001

Yet, previous studies focus on the exchange in early stages of the flow, where
the eddy field is not fully developed. In the case of LoVe, observations reveal
high eddy kinetic energy (EKE) in the area (Søiland and Rossby, 2013), and
eddy-resolving numerical ocean simulations have shown that the flow is the most
unstable over the steep Lofoten escarpment (Isachsen, 2015). High eddy activity
can in itself increase the cross-slope transport through lateral mixing. But,
observations of marine life suggests that the canyons also play an important
role in the local ecosystem. As an example, there is a high concentration of
sperm shale sightings in the Bleik canyon, as seen in Figure 1.2, indicate that
these canyons are especially productive.

A few studies have investigated the effect of a canyon on the eddy field. Saldías
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1. Introduction

and Allen, 2020, which studied retrograde wind-driven flow along a continental
slope, found that the inclusion of a canyon modifies the eddy field, increasing
the wavelength of the instabilities downstream of the canyon. Jordi, Klinck,
et al., 2008 studied the interaction of prograde flow produced by an unstable
density front with a canyon, and found that both frontal instability and a canyon
modifies the flow field and enhances the cross-slope exchange. However, in this
study, the transport was calculated over a plane limited to the vicinity of the
canyon, not taking into account conservation of mass. Common for both of these
studies is the short durations of the model runs, with a runtime of 25 and 20
model days, respectively. The effect of a canyon on a well-developed eddy field
is thus poorly understood. Since eddies are shown to alter the flow, even in early
flow stages, we want to further explore how the cross-slope transport is affected
by submarine canyons and flow direction in a highly active eddy field. Since the
currents in LoVe are known as highly unstable, the high bioproductivity may
be connected to the interaction between submarine canyons and the eddy field.

Another possibility for increased cross-slope transport are episodically winds
opposing the prograde flow direction. Model simulations with realistic
topography have shown that short wind bursts can induce increased cross-
slope transport (Ardhuin et al., 1999; Skliris, Goffart, et al., 2001). Using a
high-resolution hydrodynamic model coupled to a coastal plankton ecosystem
model, Skliris and Djenidi, 2006 showed that a period of reversal of wind in a
prograde system increased the nitrate concentration in the upper ocean layer
through vertical turbulent diffusion. Wind reanalysis (ERA5) data from the
LoVe area does exhibit periods of winds in the opposite direction of the slope
current (see Figure 3b in Fer et al., 2020). We therefore speculate that wind
reversal in a well-developed eddy field may also affect the cross-slope exchange,
leading to increased onshore transport of nutrients.

1.2 Research questions

Motivated by the high bioproductivity in the LoVe ocean region, this thesis aims
to explore how cross-slope exchange can occur in the presence of a submarine
canyon under prograde flow regimes. Especially, the role of reversed wind and
eddy activity will be studied. For completeness and comparison, the effect of
eddy activity on transport in retrograde flow regimes will be studied as well.

Additionally, as we seek to find an analytical model of the flow response
to a canyon, an equally important part of this thesis will be to evaluate the
applicability of quasi-geostrophic theory to the problem of flow over a submarine
canyon. To the author’s knowledge, an analytical model describing arrested
topographic waves interacting with the topography has not been applied to
submarine canyons before.

This raises the following research questions:

• Can quasi-geostrophic theory be used to describe flow patterns over a
submarine canyon?

• How does high eddy-activity affect the cross-slope exchange due to a
submarine canyon?

4



1.3. Outline

• What is the effect of periods of reversed wind on the cross-slope exchange
under mean prograde flow over a canyon?

With the purpose of answering these questions, a numerical ocean model is
set up, and a series of numerical experiments are carried out. We will have
a qualitatively and process-oriented focus, and will thus set up an idealized
model. By doing so, we will have full control over the different parameters, and
can vary them systematically.

1.3 Outline

The rest of the thesis is organized as follows:

Chapter 2 presents derivations of analytical models for flow over a submarine
canyon in a quasi-geostrophic framework. Both a barotropic and a
baroclinic model are presented.

Chapter 3 introduces the numerical model set-up used in this study. This
section also contains descriptions of the numerical experiments carried
out.

Chapter 4 presents results from the numerical experiments, including compari-
son with analytical theory.

Chapter 5 contains discussion of the result. Also, limitations of the thesis are
discussed.

Chapter 6 concludes the thesis, featuring a summary and main contributions.
A section on future research is also included.

Appendix A features additional figures.

Appendix B contains derivations of the quasi-geostrophic equations.

5





CHAPTER 2

Theoretical model

Drawing inspiration from Held, 1983, we will use a quasi-geostrophic framework
to analyze flow over a canyon. Held showed how atmospheric flow over
topography can excite planetary Rossby waves, given the right flow properties.
We will have a similar approach as Held, but consider topographic waves
supported by a sloping bottom instead of the planetary β-effect.

Our goal is thus to develop an analytical model explaining the asymmetrical
response to along-shore flow over a submarine canyon. In Section 4.2, we will
assess the agreement between our analytical model and numerical model runs.

We will start by presenting the quasi-geostrophic potential vorticity (QGPV)
equations, before we apply them to barotropic and baroclinic flows along a
sloping bottom with white spectered topography. Lastly, we will look into how
a submarine canyon affects the theoretical flow response.

2.1 Quasi-geostrophic equations

A systematic derivation of the quasi-geostrophic equations based on scaling
theory was first done by Jules Charney in 1948 (Vallis, 2017). As the name
suggests, the equations apply to flow in close to geostrophic balance. Here, we
will present the QGPV equations, and the assumptions leading to them. For a
derivation of the equations, see Appendix B.

The main assumptions are:

• The flow is in near-geostrophic balance, meaning that the Rossby number
Ro = U/Lf is small. Here, U and L are respectively a characteristic
velocity and length scale, and f is the Coriolis parameter.

• Variations in the Coriolis parameter are small. Specifically, for a β-plane
where the Coriolis parameter can be expressed as f = f0 + βy, we have
|βL|/|f0| = O(Ro)

• The bottom topography hB is small compared to the total depth h0, that
is, |hB |/h0 = O(Ro).

• Similarly, the surface elevation η is small compared to the total depth;
|η|/h0 = O(Ro).

7



2. Theoretical model

Further, we have to distinguish between barotropic and baroclinic flow, since
the two regimes allow different interior vertical flow structures. In a barotropic
flow, surfaces of constant pressure are parallel to surfaces of constant density.
Since all density surfaces are parallel to the sea surface, the pressure gradient
driving the horizontal flow will not vary with depth, and the flow itself will
be two-dimensional in the interior. An exception from this is in the Ekman
layers, where we can have a shear in the flow due to friction. In baroclinic flow,
surfaces of constant pressure are inclined to surfaces of constant density. The
horizontal pressure gradient thus varies with depth, and the flow can have a
vertical shear.

The terms barotropic and baroclinic can be a bit ambiguous, since the same
system can have both barotropic and baroclinic modes. We therefore define
a barotropic model as a 1-layer model, while a baroclinic model refers to a
stratified model.

For barotropic flow, the QGPV equation can be written as
Dg

Dt

(
∇2ψ + βy + f0(hB − η)

h0

)
= −r∇2ψ (2.1)

where
Dg

Dt
= ∂t + ug∂x + vg∂y.

Here, ∂t denotes the partial derivative with respect to t. The partial derivative
with respect to other variables are defined similarly. Further, ug and vg are the
geostrophic velocities. The streamfunction ψ is defined so that

ug = −∂yψ, vg = ∂xψ, ζg = ∇2ψ.

As is conventional, ζg = ∂xvg − ∂yug is the relative vorticity. The right side of
Equation (2.1) is a forcing term expressing the net effect of a thin bottom friction
layer, often called Ekman friction, with r being the Ekman drag coefficient.

For baroclinic flow, the QGPV equation is given as
Dg

Dt

(
∇2ψ + ∂z

(
f2

0
N2 ∂zψ

)
+ βy

)
= 0, (2.2)

with the bottom boundary condition
f0

N2
Dg

Dt
∂zψ

∣∣∣∣
z=zb

= −ug · ∇hB − r∇2ψ, (2.3)

which is a buoyancy equation. Here,

N2 ≡ − g

ρ0
∂zρ0

is the squared Brunt–Väisälä frequency, where g is the gravitational constant
and ρ0 is the background density. This parameter, also known as the buoyancy
frequency, is a measure of the stability of the fluid, and can be used as a measure
of fluid stratification.

The first term on the left hand-side in Equation (2.3) is the vertical flow resulting
from flow over topography, while the second term is the vertical velocity at the
top of the bottom Ekman layer, which is proportional to the relative vorticity.

8



2.2. Barotropic flow along a slope

2.2 Barotropic flow along a slope

We will now consider barotropic flow over sloping topography in a quasi-
geostrophic framework. First, we will examine the possibility of standing
topographic waves, arrested by the mean flow. We will then look at how these
waves can be excited by a submarine canyon.

The coordinate system is defined so that the x-axis extending from west to
east, and the y-axis from south to north. Later, in the barotropic model, we
will include a z-axis, which is increasing with height and equal to zero at the
bottom. We assume flow over a slope with constant steepness α, and some
topography h′T , so that the seabed height hB can be expressed as

hB = αx+ h′T (x, y). (2.4)

This gives a sloping bottom with increasing depth towards the west, similar to
the conditions in LoVe.

Both terms in Equation (2.4) are assumed to be small compared to the mean
depth h0. Here, and later, the prime denotes that the variable is assumed to
be small, so αx is assumed to be larger than h′T . In our case, h′T describes the
canyon topography.

We also assume a stationary mean meridional flow V , which may vary in the
x-direction. The full flow can hence be expressed as

u = u′̂ı + (V (x) + v′) ̂, (2.5)

where u′ and v′ are perturbations from the mean, assumed to be small compared
to V .

Further, we define a streamfunction ψ′, so that

− ∂yψ′ = u′, ∂xψ
′ = v′, ∇2ψ′ = ζ ′. (2.6)

Note that ψ′ does not describe the horizontal shear in V , only the perturbation
flow.

Substituting Equation (2.4) and Equation (2.5) into Equation (2.1), and
linearizing, i.e., including only terms containing one prime, we obtain

(∂t + V ∂y)∇2ψ′ −
(
∂2
xV + f0

h0
α

)
∂yψ

′ = −V f0

h0
∂yh
′
T − r∇2ψ′. (2.7)

In the above equation, we have included Ekman friction as a linear damping on
the perturbation vorticity, and not the full vorticity of the flow, since we only
want to include dynamics of the same scale, i.e., of primed variables. We have
also assumed a rigid lid, so that η is ignored. Since the scale of the flow response
to the topography is assumed to be small-scaled, we also omit the β-term. The
h′T -term is included on the right-hand side, since it acts as a forcing.

Now, we want to identify an eventual standing wave arrested by the mean flow.
By writing the perturbation streamfunction ψ′ as a Fourier series

ψ′ = Re

∑
k,l,ω

ψ̂k,l,ωe
ikx+ily−iωt

 ,
9



2. Theoretical model

we find that the dispersion relation for unforced waves is

ω = V l +

(
αf0
h0

+ ∂2
xV
)
l

κ2 ,

where k and l are the zonal and meridional wavenumber, respectively. The
variable ω is the angular frequency. Here, κ2 = k2 + l2 is the full wavenumber.
From the dispersion relation, we can find the meridional phase velocity cy as

cy = ω

l
= V + αf0

h0κ2 + ∂2
xV

κ2 . (2.8)

This is the phase velocity of topographic waves, where we have included the
effect of a lateral shear in the meridional velocity.
Ignoring the lateral shear in the mean flow for a moment, we see that the
direction of the topographic waves relative to the mean flow is determined by
the orientation of the slope and the sign of the Coriolis parameter. In the
Northern Hemisphere, topographic waves travel with shallow water to the right,
while in the Southern Hemisphere, the waves will travel with shallower water
to the left.
It is now straightforward to find the wavenumber of the topographic wave
arrested by the mean flow by setting cy = 0 and solving for κ. Doing so, we
find that the stationary barotropic topographic wavenumber is given by

κ2 = −
(
αf0

h0V
+ ∂2

xV

V

)
≡ κ2

s,bt. (2.9)

To see how a canyon can excite the response, we now consider the stationary
version of Equation (2.7), assuming that both the streamfunction and the
topography can be written in terms of Fourier series on the form

ψ′ = Re

∑
k,l

ψ̂k,le
ikx+ily

 , h′T = Re

∑
k,l

ĥk,le
ikx+ily

 , (2.10)

where ψ̂k,l and ĥk,l are Fourier coefficients. Combining Equation (2.10) and
Equation (2.7), this time including the forcing, we find that the streamfunction
can be expressed in the wavenumber domain as

ψ̂k,l = ĥk,l
f0

h0

(
κ2 + f0α

h0V
+ ∂2

xV

V
− i rκ

2

V l

)−1

.

Or, recognizing the expression for the stationary topographic wavenumber
defined in Equation (2.9),

ψ̂k,l = ĥk,l
f0

h0

(
κ2 − κ2

s,bt − i
rκ2

V l

)−1

. (2.11)

Ignoring the friction term for a moment, we see that we have a singularity at
κ2 = κ2

s,bt, describing resonance between the arrested wave and the topography.
The addition of friction removes the singularity, dampening the response, and
also introduces a phase shift. For resonance to occur, V must be in the opposite
direction of the relative phase velocity of the topographic waves, i.e., the flow
must be retrograde.

10



2.3. Baroclinic flow along a slope

2.3 Baroclinic flow along a slope

In the baroclinic case, we assume the same bathymetry as in Equation (2.4).
Again, we assume a stationary mean meridional flow V , but this time dependent
both on x and z, since baroclinic flow inherently allows a vertical shear.

In order to arrive at simple, analytical expressions, we assume that the flow V
is separable with a linear dependency on height, so that it can be written as

V (x, z) = V0(x) · P (z),

where
P (z) = az + b, a, b ∈ R.

The full velocity field is then

u = u′̂ı + (V0(x) (az + b) + v′) ̂. (2.12)

We note that the velocity at the bottom, Vb, and the vertical shear in the flow,
∂zV , can be written as

Vb = V0b, ∂zV = V0a,

where we have assumed that z = 0 at the bottom. For simplicity, we also
assume that the buoyancy frequency N is constant.

Now, to find the dispersion relation in the baroclinic case, we assume a stationary
solution, and thus drop the time derivative in the interior QGPV-equation. By
doing this, we get an analytically solvable differential equation, at the expense
of a general expression for the dispersion relation. Nevertheless, we are still
able to find the wavenumber of the stationary waves.

Substituting Equation (2.12) into the stationary version of the baroclinic QGPV
equation (Equation (2.2)) and linearizing, we are left with

V0∂y

(
∇2ψ′ + f2

0
N2 ∂

2
zψ

)
− ∂yψ′∂2

xV0 = 0.

We now assume that the streamfunction can be written as a Fourier series on
the form

ψ′ = Re

∑
k,l,ω

ψ̂k,l,ω(z)eikx+ily−iωt

 , (2.13)

where the Fourier coefficients ψ̂k,l,ω(z) are dependent on the height z.

This yields the second order differential equation

∂2
z ψ̂ =

(
N2

f2
0
κ2 + N2

f2
0V0

∂2
xV0

)
ψ̂. (2.14)

Depending on the sign of the expression in the parentheses, we can have either
a wave solution or an exponential solution in the vertical.

11



2. Theoretical model

Assuming a positive expression in the parentheses, the solution is given by

ψ̂(z) = ψ0e
−µz, µ = N

|f0|

(
κ2 + ∂2

xV0

V0

) 1
2

(2.15)

Here, ψ0 is some constant. For simplicity, the subscript of ψ̂(z) is left out. We
have only kept the solution decaying with height, as the wave is assumed to
be trapped to the bottom, with a negligible amplitude at the surface. This
assumption is a potential shortcoming of our model, as it assumes that 1/µ
is much smaller than h0. Note that in the case where V does not vary in the
horizontal direction, Equation (2.15) is the general solution, and not just the
solution to the steady problem with exponential variation in the interior.

In the case where the expression in the parentheses is negative, the solution to
Equation (2.14) is given by

ψ̂(z) = ψ0e
imz, m = ± N

|f0|

(
−κ2 − ∂2

xV0

V0

) 1
2

(2.16)

Now we apply the bottom boundary condition. We substitute the expression
for the bottom height (Equation (2.4)) and the flow field (Equation (2.12)) into
the bottom boundary condition (Equation (2.3)). Linearizing and writing the
perturbed velocities in terms of the streamfunction, we get

(∂t + bV0∂y) ∂zψ′− ∂yψ′∂zV0−
αN2

f0
∂yψ

′ = −V N
2

f0
∂yh
′
T −

rN2

f0
∇2ψ′. (2.17)

As for the barotropic case, we now consider the steady, forced version of
Equation (2.17). Writing h′T as a Fourier series as described in Equation (2.10),
and ψ′ as described by Equation (2.13), using either Equation (2.15) or
Equation (2.16) for the vertical structure, we find an expression for the constant
ψ0.

When we have a wave structure in the interior, the solution is

ψ0 = ĥN

(
f0∂zV

NVb
+ αN

Vb
+ i

(
−κ2 − ∂2

xV

V0

) 1
2

− i rNκ
2

Vbl

)−1

,

while when the vertical structure is exponential, the solution is

ψ0 = ĥN

((
κ2 + ∂2

xV

V0

) 1
2

+ f0∂zV

NVb
+ αN

Vb
− i rNκ

2

Vbl

)−1

. (2.18)

Looking at the two above solutions, we see that, when ignoring friction, a
singularity dependent on κ is only possible in Equation (2.18). Since we want
to explore the possibility of arrested waves resonating with the topography, we
will assume a solution for the interior structure as described by Equation (2.18),
and thus discard the other solutions.

Again, we want to find the dispersion relation for the unforced wave, setting
the right side of Equation (2.17) equal to 0. Writing the streamfunction as a

12



2.3. Baroclinic flow along a slope

Fourier series as described in Equation (2.13) and Equation (2.18), we find that
the angular frequency ω can be written as

ω = Vbl + αN2l

f0µ
+ ∂zV l

µ
,

with µ as described in Equation (2.15). This is the stationary dispersion relation
when there is a x-dependency in the mean flow, and the general dispersion
relation in the absence of such a shear.

Thus, the meridional phase velocity is given as

cy = ω

l
= Vb + αN2

f0µ
+ ∂zV

µ
= 0 (2.19)

or in the case where ∂2
xV0/V0 = 0, the phase velocity is

cy = Vb + |f0|αN
f0κ

+ |f0|∂zV
Nκ

. (2.20)

Ignoring the shear in the mean flow, we see that the direction of the topographic
wave relative to the bottom flow depends on the slope orientation and the
Coriolis parameter. Just as in the barotropic case, the waves travel with shallow
water to its right in the Northern Hemisphere, and to its left in the Southern
Hemisphere.

The last term in Equation (2.20) is not related to the topography, but to the
vertical shear in the flow. This term is the phase velocity of an Eady wave, i.e.,
waves associated with a horizontal density gradient.

Solving for the wavenumber κ in Equation Equation (2.19), we find that the
wavenumber of the arrested wave in a baroclinic system can be expressed as

κ2 =
(
−f0∂zV

NVb
− αN

Vb

)2
− ∂2

xV

V0
≡ κ2

s,bc. (2.21)

The full solution is thus

ψ̂(z) = ĥN

((
κ2 + ∂2

xV

V0

) 1
2

+ f0∂zV

NVb
+ αN

Vb
− i rNκ

2

Vbl

)−1

e−µz,

µ = N

|f0|

(
κ2 + ∂2

xV0

V0

) 1
2

(2.22)

In the absence of a horizontal shear, Equation (2.22) can be reduced to

ψ̂(z) = ĥN

(
κ− κs,bc − i

rNκ2

Vbl

)−1

e
−
∣∣Nκ
f0

∣∣z
.

Similarly as for the barotropic case, there is a resonance singularity at κ = κs,bc,
which is removed by the inclusion of friction. Again, the bottom flow must be
retrograde for resonance to occur.
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2. Theoretical model

2.4 White spectrum response

To better understand the flow response to topography, the amplitude and
phase spectra of the barotropic and baroclinic streamfunction resulting from
a topography containing all wavenumbers, i.e., a white spectrum, is shown in
Figure 2.1. This figure shows a similar response as Figure 3.16 in Held, 1983.
To the left in Figure 2.1 is the barotropic response, while the baroclinic response
is shown to the right.
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Figure 2.1: Amplitude and phase spectrum of the streamfunction response to a
slope with topography containing a uniform distribution of all wavenumbers.
Left is barotropic response, right is baroclinic response. Solid lines are for flow
with bottom friction and dashed lines are for friction-less flow. Top panels show
the amplitude normalized with the maximum amplitude for a prograde flow.
Bottom panels show the phase. In all panels, the wavenumber is normalized
with the wavenumber of the stationary topographic wave in the retrograde case.

Looking at the amplitude of both the barotropic and baroclinic prograde
response to a white spectrum, we see that smaller wavenumbers, i.e. larger
wavelengths, are weighted more than larger wavenumbers in the Fourier
representation of the streamfunction. Additionally, the response is almost
in phase with the topography. This way, the flow functions as a longpass
filter of the topography, transmitting longer wavelengths. As a result, the
streamfunction of prograde flow over topography resembles a smoothened
version of the bathymetry.

We should also note that in Figure 2.1, the wavenumbers on the x-axis are
scaled with the wavenumber of the corresponding arrested wave. In the prograde
case, this is calculated as |κ2

s,bt|
1
2 and |κ2

s,bc|
1
2 , to have real solutions. If |κ2

s,bt|
1
2
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2.5. Response to a canyon

and |κ2
s,bc|

1
2 decreases, we see from Figure 2.1 that larger wavenumbers in the

topography are expected to be weighted even less in the streamfunction response,
resulting in an even smoother flow. Correspondingly, if these variables were to
increase, larger wavenumbers are weighted more, allowing the flow to follow
the topography to a greater degree. So, according to quasi-geostrophy, the
variables predicting the flow response to a given topography are the variables
found in the expressions for κ2

s,bt and κ2
s,bc, as declared in Equation (2.9) and

Equation (2.21). An important example is that increased flow speed would
result in lower values for |κ2

s,bt|
1
2 and |κ2

s,bc|
1
2 , resulting in a smoother flow.

Moving on to the retrograde flow, we see from the amplitude spectrum in
Figure 2.1 that in the absence of friction, there is a singularity at κ = κbt,s
and κ = κbc,s. This signifies that there is resonance between the arrested
topographic wave and the topography. We also see that wavenumbers close to
the wavenumber of the arrested wave are heavily weighted.

As mentioned, the singularity is removed by including bottom friction. Still,
the wavenumber of the topographic wave, and the wave numbers close to it, is
heavily weighted in the Fourier representation of the streamfunction response,
meaning that the arrested wave will grow in amplitude. Another effect of
friction is a phase shift, which depends on κ. From the phase spectrum, we see
that the resonant streamfunction is 90° out of phase with the topography.

As for the difference between the response in a barotropic and a baroclinic
system, there is a wider band of wavenumbers that are heavily weighted in the
baroclinic case, as seen in Figure 2.1. This tells us that there is a wider range of
topographies that can give a strong response under baroclinic conditions, given
the same wavenumber of the arrested wave in barotropic and baroclinic flow.

2.5 Response to a canyon

We will now consider the flow over a canyon with a Gaussian shape, specifically.

Figure 2.2 shows the barotropic streamfunction response to a Gaussian canyon,
given h0 = 500 m, f0 = 10−4 s−1, α = 0.025, |V | = 0.20 m/s and r = 10−4 s−1.
The canyon shape h′T is given by

h′T = −h0e
−x2/L2

,

where h0 =100 m and L =10× 103 m. A qualitatively equivalent behavior is
seen in a baroclinic system (not shown).

Indeed, as discussed, we see that the prograde barotropic flow resembles a slightly
smoothed version of the topography. In the retrograde case, the streamfunction
grows in amplitude over a canyon, and exhibits a gradually dampened wave
response downstream of the canyon. The degree of dampening is controlled
by the friction, and in the case of no friction, the wave signal extends over
the whole domain (not shown). An important point is that the strength of
the response is dependent on the geometry of the canyon. As we can see from
the expressions for the Fourier coefficients of the barotropic and baroclinic
streamfunction response (Equation (2.11) and Equation (2.18)), the amplitude
of the streamfunction response is the product of the amplitude spectrum of the
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Figure 2.2: Streamfunction response to a slope with a Gaussian canyon as a
function of along-slope position in a barotropic system. Prograde flow is towards
the right, while retrograde flow is towards the left.

canyon and the amplitude spectrum shown in Figure 2.1. This means that for a
prescribed flow, there exists an optimal canyon which maximizes the amplitude
of the streamfunction response.

From the definition of the streamfunction (Equation (2.6)), we have that
streamlines coincide with the streamfunction contours, and we can thus say
something about the horizontal flow response, based on the streamfunction
response. In the case of a submarine canyon, we would expect the prograde
flow to almost follow isobaths, resembling a wider canyon, given that the flow is
suitably slow. As the velocity increases, given that other flow characteristics are
unchanged, we would expect the flow to follow the isobaths to a lesser degree,
as shorter wavelengths in the topography are weighted less. Similarly, we would
expect the flow to follow the isobaths to a greater degree in wider canyons than
in narrower canyons, given the same flow characteristics.

For the retrograde response, we would expect a similar horizontal wave pattern
downstream of the canyon, as we see for the retrograde streamfunction in
Figure 2.1.
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CHAPTER 3

Numerical model set-up

In order to see how well our quasi-geostrophic models preform in predicting
the flow over a canyon, and to assess the cross-slope transport under varying
conditions, we run a series of numerical simulations, which are preformed using
the Regional Ocean Modeling System. Here, we will go through the specific
set-up of our model, and describe the experiments we conduct.

3.1 The Regional Ocean Modeling System

The Regional Ocean Modeling System (ROMS) is an open source software
developed by Rutgers University and the University of California, Los Angeles
ocean modeling groups. It is a free-surface, hydrostatic, primitive equation
ocean model that uses stretched, terrain-following coordinates in the vertical
and orthogonal curvilinear coordinates in the horizontal1. The horizontal grid
is an Arakawa-C grid, where quantities are evaluated at different positions
in the grid. ROMS has been applied in numerous studies, including studies
considering submarine canyons (e.g. Saldías and Allen, 2020; She and Klinck,
2000). Since it was initially developed, several versions of ROMS have been
launched. In this study, version 3.9 is used.

A thorough description of the ROMS algorithms can be found in Moore et al.,
2004; Shchepetkin and McWilliams, 2005; Shchepetkin and McWilliams, 2003.
Here, we will go through the specific set-up for our applications.

3.2 Model domain

In our set-up, we use an idealized domain representing a submarine canyon
cut into a continental slope. By stripping away unnecessary aspects of the
topography, we can more easily identify the effect of the canyon itself. An
idealized domain also makes the implementation easier, since we can use
Cartesian coordinates in the horizontal and an analytical function for the
bathymetry. We will below go through relevant aspects of the domain set-up,
which is designed after the domain used by Saldías and Allen, 2020. We first
present the bathymetry, before we go through implementation choices.

1On the topic ”What is ROMS?” from the ROMS forum https://www.myROMS.org/forum/
viewtopic.php?t=83
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3. Numerical model set-up

Bathymetry

In this study, the shelf and canyon topography is similar to that used in previous
studies on canyon dynamics (Klinck, 1996; Saldías and Allen, 2020). The basin
depth H(x, y) is defined by

H(x, y) = Hm −
Hs

2

[
1− tanh xm − x− x0(y)

a

]
, (3.1)

where x and y are the cross-shore position and along-shore position, respectively.
The parameter x0(y) gives the cross-shore distance from the coastal wall to the
shelf break, and is given by

x0(y) = xn + xb

[
1− exp − |y − y0|2

2b2

]
. (3.2)

The above equation is where the canyon shape is defined. To construct a
continental slope without a canyon, x0 is set equal to xn + xb. A description of
the different parameters in Equation (3.1) and Equation (3.2), together with
the specified value used in model runs, can be found in Table 3.1.

Table 3.1: Parameters for the model bathymetry. *The parameter a is different
for some experiments, see Table 3.3 and Table 3.4.

Parameter Description Value Unit
Hm maximum domain depth 500 m
Hs depth change from shelf to open ocean 400 m
xn offshore canyon distance 12 km
xb distance added to xn to reach shelf break 10 km
xm cross-shore domain-length 155 km
ym alongshore domain-length 600 km
y0 alongshore canyon position 300 km
a slope transition scale 5* km
b canyon width-scale 2.5 km

In order to trigger the onset of instabilities in the stratified model runs, random
noise is added to the topography. This noise has a normal distribution with
zero mean, and a standard deviation of 0.1 m. Without the noise added to the
seabed, we found that instabilities took a long time to evolve.

The above configurations give a bathymetry as seen in Figure 3.1. Here, and
in the following results, the axes are shifted so that the canyon is centered
around y=0, and with x=0 at the coastal wall. Parameters as given in Table 3.1
produces a canyon about 20 km long and 10 km wide at the mouth. The
continental shelf is 100 m deep, while the open ocean reaches down to a depth
of 500 m.

This idealized canyon is of about the same scale as the canyons situated outside
LoVe, in terms of length and width. However, the deep ocean and shelf are
deeper in the LoVe ocean region than in our model, with depths of 75-150 m on
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Figure 3.1: Model bathymetry. The two lower panels show the depth as a
function of cross-shore (x) and along-shore (y) position. The right panel is a
zoomed in version of the area enclosed in a gray box in the left panel. The
upper right panel is a side-view of the shelf, with the continental slope in black
and the canyon in gray. Top left panel shows the cross-shore grid spacing.

the shelf and 2000-3000 m off the shelf2. A deeper model is possible, but would
be more resource-intensive, and wouldn’t necessarily give a better conceptual
understanding.

Boundaries

The model domain is a rectangular basin with a coastal wall at the eastern
boundary. Periodic boundary conditions are applied at the northern and
southern boundaries, so that the domain represents a channel. At the offshore
boundary, a radiation boundary condition is used, while at the continental wall
the boundary is closed, with free slip along the wall.

Since the model domain is periodic in the meridional direction, signals originating
from the canyon and moving downstream can eventually wrap around and reach
the canyon from the upstream direction. This will most likely influence the
response. One way to handle this is to consider only the initial response, before
waves have time to wrap all the way around. Alternatively, one can be attentive
to the effect of waves wrapping around the domain, but nevertheless let the
model run for longer. Looking at the map of the LoVe ocean basin in Figure 1.1,
we see that multiple canyons cut across the continental slope. Linking our

2Values from dybdedata.no.
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3. Numerical model set-up

experiment to the LoVe basin, we can look at the response wrapping around
the domain as having multiple succeeding canyons carved into the continental
slope.

Horizontal grid spacing

Grid spacing in the along-shore direction is 500 m for the whole domain. In the
cross-shore direction, the grid spacing is 500 m within 50 km of the shore, and
then gradually increasing towards 10 km at the offshore boundary. For each step
towards the offshore boundary after the first 50 km, the cross-shore grid-size is
increased with 500 m. This is done to increase computational efficiency. The
resulting cross-shore grid spacing is plotted in the top-left panel in Figure 3.1.
In total, the length of the domain is 155 km and 600 km in the cross-shore and
along-shore direction, respectively.

Vertical layers

In the vertical, we have terrain-following coordinates (also known as σ
coordinates and s coordinates), so that −1 and 0 is always at the bottom
and surface, respectively. In total, our set-up includes 30 layers, distributed so
that the distance between layers are smaller near the surface and bottom. The
bottom panel of Figure 3.2 shows a vertical section of the distribution of the
layers.
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Figure 3.2: Depth of the model’s terrain-following s-levels from west to east,
together with tracer concentration. Lower panel shows the depths of the
horizontal s-levels, which divides the model into a total of 30 layers. Top panel
shows the initial tracer concentration c.

Terrain-following coordinates are beneficial for regional applications, since the
topography and lower boundary layers are well resolved. However, the use of
such coordinates can introduce errors in the pressure-gradient and spurious
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diapycnal diffusion (Marchesiello et al., 2009). This can especially be a problem
at the canyon rim, where the topography is steep. It is therefore important to
monitor the evolution of the properties of the water masses, and experiment
with advection schemes and vertical transformation parameters. We found that
the 4th-order Akima advection algorithm for temperature, and the 3th-order
HSIMT-TVD advection algorithm for salt and tracer gave best results.

3.3 Initializing

When setting up a ROMS application, the initial state of the system must be
specified. Here, we will first go through the initial state of the active tracers,
which are the temperature and salinity fields. Then we will look at passive
tracers. Other variables, as initial velocities and the sea surface height, are set
to zero.

Temperature and salinity fields

An active tracer is a tracer that influences the current itself through altering
properties included in the equation of motion. Salinity and temperature does
this through their effect on water density.

Depending on the experiment, primarily two different active tracer initial states
are used. For some experiments used to validate the theoretical model, the
initial profiles differ from these two states. We will return to these cases in
Section 3.5. The first state is for a system with no stratification. To achieve
this, we omit the salinity and only include temperature and set it equal to a
constant value through the whole domain. That way, the whole water column
has the same density.

The second state is for a stratified system. Here, both temperature and salinity
are included. Both are set to be initially only dependent on depth. To construct
profiles of temperature and salinity, in-situ measurements from the LoVe basin
of these variables are fetched from the World Ocean Dataset 2018 (WOD18).
Plots of number of observations per level and cast distribution can be found in
Appendix A (Figure A.1 and Figure A.2). Then, the regional mean for each
depth level is computed. The resulting profiles can be seen in Figure 3.3. In
addition to salinity and temperature, Figure 3.3 also shows the corresponding
potential density anomaly and squared Brunt–Väisälä frequency.

While profiles constructed from in-situ measurements are to a degree
representative of the actual conditions, these profiles are still a considerable
simplification. The profiles are constructed as a mean over time, ignoring that
conditions change according to the seasons and even through the day as the
incoming solar radiation changes. In reality, we would also expect variations in
the horizontal dimensions, with fresher water at the surface closer to the shore,
due to freshwater runoffs. However, for our idealized study, these are deemed
reasonable simplifications.
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Figure 3.3: Profiles of initial potential temperature, salinity, potential density
anomaly and the squared Brunt–Väisälä frequency in the ROMS applications
with stratification.

Passive tracer

Passive tracers are variables that don’t affect the flow. They can be thought
of as dye added to the water, advected by currents and diffused by turbulent
stirring.

We want to include a passive tracer acting as a signature for deep ocean water,
so that we can estimate the cross-slope exchange by computing the tracer flux.
To do so, we set up a passive tracer which initially follows the shape of the
bathymetry, with the canyon omitted. At the shore, the concentration is set
to zero, while at the open ocean the concentration is 1. The initial tracer
concentration c(x) is expressed as

c(x) = 1− 0.5
[
1− tanh xm − xn − xb − x

a

]
, (3.3)

with parameters as described in Table 3.1. The expression is plotted in the top
panel of Figure 3.2.

3.4 Forcing

Along-shore flow is set up by a horizontally uniform meridional surface wind
stress. Initially, the model is left unforced for the first 10 days. This is done to
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check for spurious vertical velocities. After the initial 10 days, the forcing is
linearly increased over 5 days to its maximum magnitude. After day 15, the
forcing is held constant. In this set-up, a positive stress represents northward
wind, resulting in a prograde flow, while a negative stress gives a retrograde
flow.

In some prograde experiments, the forcing is reversed for a period of time. The
mean flow over time is then prograde, while (parts of) the flow field becomes
episodically reversed. This is called an event, and consists of a sinusoidal wave
cycle. To illustrate how the forcing evolves over time, forcing setting up prograde
flow, with a wind event between day 50 and 60, is plotted in Figure 3.4. Note
that even though the wind event lasts for 10 days, the stress is only reversed for
5 of those days. The length of the wind reversal is based on data exploration of
observations of wind direction from Røst airport, south-west in Lofoten. The
data is fetched from the Norwegian Centre for Climate Services, seklima.met.no.
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Figure 3.4: Meridional surface wind stress as a function of time, illustrative of
the forcing used in model runs. The forcing is zero for the first 10 days, and
then linearly increasing over 5 day to its maximum magnitude. After day 15,
the forcing is kept constant, except if a wind event is included. An example of
a wind event is here shaded in gray between day 50 and 60. In the experiments,
the wind event does not necessarily take place in this period. The wind in this
plot is from the south. Wind from the north is identical, except for opposite
sign.

3.5 Experiments

The numerical experiments carried out can be divided into three categories; a
collection of baseline experiments highlighting the asymmetrical response to
flow direction; model runs intended for affirmation of the theoretical models
described in Chapter 2; and experiments intended for investigating the effect of
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eddy activity and reversal of winds. We will go through the main aspects of
each category here.

Baseline experiments

In total, eight baseline experiments are carried out. They are constructed
from the two choices of initial stratification and flow direction. In addition,
experiments both with and without a canyon are included for each choice. An
overview of the baseline experiments are given in Table 3.2.

Table 3.2: Characteristics of baseline numerical experiments.

Experiment Stratification Flow direction Canyon
NS-R-NC No Retrograde No
NS-R-C No Retrograde Yes
NS-P-NC No Prograde No
NS-P-C No Prograde Yes
S-R-NC Yes Retrograde No
S-R-C Yes Retrograde Yes
S-P-NC Yes Prograde No
S-P-C Yes Prograde Yes

Validation of theoretical model

For validating the quasi-geostrophic theory described in Chapter 2, we run
a series of experiments where we vary parameters effecting the arguments in
Equation (2.9) and Equation (2.21). In these experiments, we will only look at
retrograde flow, which is where we expect arrested waves. We can then compare
theoretical wavelengths with the wavelengths of the arrested waves in model
runs.

To validate the model, experiments both with and without stratification are
conducted. Unstratified experiments used to validate the barotropic theoretical
model are listed in Table 3.3, while stratified experiments used to validate the
baroclinic theoretical model are listed in Table 3.4. In the two last experiments
listed in Table 3.4, the initial temperature profile differs from that in Figure 3.3.
In order to vary the buoyancy frequency N, the temperature profile is here
initialized as a linear function, with different slope in the two experiments. The
resulting mean N over the slope can be read from Table 3.4.

Additionally, we want to qualitatively evaluate how well the theoretical models
describe prograde flow. This is done based on the baseline experiments described
in Table 3.2. QG-theory predicts that flow characteristics, specifically V and
∂2
xV for barotropic flow and Vb, ∂2

xV and ∂zV for baroclinic flow, affects the
streamfunction response, so by inspecting the flow field at different times as the
flow evolves, we can assess whether the evolution is in accordance with theory.
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3.5. Experiments

Table 3.3: Characteristics of numerical experiments used for validating the
barotropic theoretical model. RDRG2 is the non-dimensional quadratic bottom
drag coefficient used by ROMS. The parameter a is the slope transition scale,
determining the shelf slope, used in the analytical expression for the bathymetry
(Equation (3.1)), with units km. The forcing has units Nm−2, and is a surface
wind stress.

Label Forcing RDRG2 a

baseline -0.03 3.0× 10−3 5
2×forcing -0.06 3.0× 10−3 5
3×forcing -0.09 3.0× 10−3 5
4×forcing -0.12 3.0× 10−3 5
2×friction -0.03 6.0× 10−3 5
0.5×α -0.03 3.0× 10−3 10

Table 3.4: Characteristics of numerical experiments used for validating the
baroclinic theoretical model. RDRG2 is the non-dimensional quadratic bottom
drag coefficient used by ROMS. The forcing has units Nm−2, and is a surface
wind stress. N is the mean value of the buoyancy frequency over the slope
at the beginning of the model run, with units 10−2s−1.The parameter a is
the slope transition scale used in the analytical expression for the bathymetry
(Equation (3.1)), with units km. The last column tells us at which model day
the arrested wavelength is evaluated.

Label Forcing N RDRG2 a Evaluated
baseline -0.03 0.43 3.0× 10−3 5 50
2×forcing -0.06 0.43 3.0× 10−3 5 29
3×forcing -0.09 0.43 3.0× 10−3 5 50
4×forcing -0.12 0.43 3.0× 10−3 5 30
2×friction -0.03 0.43 6.0× 10−3 5 40
0.5×α -0.03 0.43 3.0× 10−3 10 50
sN -0.03 0.30 3.0× 10−3 5 41
lN -0.03 0.62 3.0× 10−3 5 31

Eddy activity and periodical reversal of winds

With the intent to investigate eddy activity and periodical reversal of winds, the
stratified baseline experiments are extended until day 225, so that the eddy-field
becomes well-developed. At day 225, the passive tracer is reset to its initial
state, as shown in the top panel of Figure 3.2. After that, the model is left
running for a given period length, before the tracer is reset again, and a new
period starts. This is done for prograde and retrograde flow, in addition to an
experiment with a wind event. The wind event experiment has a mean prograde
flow, but between the 5th and 15th day after the tracer is reset, a wind reversal,
as shown in the gray shaded area in Figure 3.4, is present in the forcing. Since
we reset the tracer multiple times, several wind reversals are included in the
forcing. Depending on the experiment, the period length and the total running
time varies. The difference in run-time is simply due to time and resource
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3. Numerical model set-up

limitations. An overview of the experiments are shown in Table 3.5.

Table 3.5: Characteristics of numerical experiments intended for investigating
the effect of eddy-activity and periodical reversal of winds on the cross-slope
tracer transport. The period length signifies how long the model is run between
each reset of the tracer field.

Experiment Flow Canyon Start End Period
direction day day length

EXT-R-C Retrograde Yes 225 325 10
EXT-R-NC Retrograde No 225 325 10
EXT-P-C Prograde Yes 225 425 10
EXT-P-NC Prograde No 225 425 10
EXT-W-C Prograde Yes 225 425 25
EXT-W-NC Prograde No 225 425 25
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CHAPTER 4

Results

In this chapter, we will go through the results from the numerical experiments
described in Section 3.5. First, we will consider the general flow patter over a
canyon, as seen in the baseline experiments. Then, we will compare model runs
with the theoretical model described in Chapter 2. Finally, we examine the
cross-slope tracer transport, both in the initial flow stages, and at later stages
when the eddy field has developed. Here, we will also look at the effect of wind
reversal on predominantly prograde flow. In all the following results, the daily
mean model output values are used in the calculations.

4.1 General flow pattern

We will start by looking at the general flow pattern that evolves in the baseline
experiments described in Table 3.2 containing a canyon. Figure 4.1 shows
the streamlines for the mean flow at 95 m depth in the vicinity of the canyon
between day 40 and 50. The shelf is situated at 100 m depth, so the flow 5 m
over the shelf break is shown. Similar streamlines are found for other periods
and depths as well (not shown).

In the two leftmost panels in Figure 4.1, the flow in a system without
stratification is shown. Panel a. shows the response to wind from the north,
setting up a retrograde flow. In panel b., the winds are from the south,
establishing a prograde flow. Upstream of the canyon, both the retrograde and
prograde flow exhibits the same pattern, with streamlines running parallel to
the shore in the same direction as the wind.

At and downstream of the canyon, however, the flow pattern differs considerably
between the two flow directions. In the prograde case, the flow veers onshore
for the first half of the canyon, and then steers back to its earlier cross-shore
position. In the process, the flow crosses isobaths, so that the streamlines
resemble a smoothened version of the bathymetry. Downstream of the canyon,
the streamlines are again parallel to the shore, resulting in streamlines symmetric
about the canyon axis. In contrast, there is a strong signal downstream of the
canyon in the retrograde case. The flow turns onshore in the canyon, and a
wave-like pattern is formed downstream, with the flow crossing isobaths back
and forth. From the width of the streamlines, which indicate flow speed, we
can see that the flow downstream of the canyon has the highest velocity.
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4. Results

The two rightmost panels in Figure 4.1 show streamlines for retrograde (panel
c.) and prograde (panel d.) flow in a stratified system. These experiments have
similar features as the experiments without stratification, with the prograde
flow being symmetric about the canyon axis and the retrograde flow exhibiting a
wave-like pattern downstream of the canyon. However, the streamlines at 95 m
depth are to a lesser degree altered by the canyon in the stratified experiments,
compared to the experiments without stratification. In the prograde case, the
onshore detour of the flow is smaller than in the corresponding case without
stratification. In the retrograde situation, the signal originating at the canyon
ceases closer to the canyon in the stratified case. Additionally, the distance
between troughs and crests of the disturbance is longer in the stratified case.
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Figure 4.1: Streamlines depicting the mean flow at 95 m depth between model
day 40 and 50. Panel a. and b. show the flow pattern in a system without
stratification, while panel c. and d. show a stratified system. Panel a. and c.
show the response to retrograde flow, while panel b. and d. show the response
to prograde flow. Width of the streamlines indicate flow speed, with wider
streamlines implying stronger flow. The 150, 225, 300, 375, and 450 m isobaths
are shown in gray.

In order to survey the time evolution of the flow, Hovmöller diagrams of the
sea surface height (SSH) anomaly at the middle of the slope at x=−22 km are
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4.1. General flow pattern

shown in Figure 4.2 and Figure 4.3. These diagrams are based on the baseline
experiments in Table 3.2.

In Figure 4.2, Hovmöller diagrams for experiments without stratification are
shown. The two top panels, a. and b., show model runs with retrograde flow,
while the two bottom panels, c. and d., show runs with prograde flow. To the
left, in panel a. and c., the responses to a topography without any canyon are
shown, while panel b. and d. show the responses when a canyon is included.

From panel a. and c., it is clear that there is negligible meridional variation in
SSH over the slope in the absence of a canyon. This is a sign of the flow being
stable. In the experiments where a canyon is included, similar behavior as in
the plot of the mean streamlines in Figure 4.1 can be found. Specifically, the
response is symmetric around the canyon axis and confined to the proximity of
the canyon in the prograde case, while disturbances can be seen downstream of
the canyon in the retrograde case. Looking at panel b., one can see that in the
retrograde case, the disturbances form a wave pattern with alternating positive
and negative anomalies, gradually extending downstream over time. Eventually,
the wave response wraps around the whole domain, reaching the canyon from
the upstream side.
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Figure 4.2: Hovmöller diagrams of SSH anomalies at the middle of the slope
(x=−22 km) for the first 75 model days in a system without stratification. Panel
a. and b. show the response to retrograde flow, while panel c. and d. show the
response to prograde flow. In panel a. and c., the bathymetry does not include
a canyon, while panel b. and d. contain a canyon. Red and blue show positive
and negative anomalies, respectively.

Figure 4.3 shows similar Hovmöller diagrams as Figure 4.2, but for experiments
with stratification. In this case, meridional anomalies in the SSH can be seen
also in the experiments without a canyon, chiefly after day 50. This is a sign of
the formation of eddies, developing due to baroclinic instability. Comparing
the inclination of the SSH anomalies to the integrated mean meridional surface
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4. Results

velocity, shown as a gray line, the anomalies seem to propagate slower than
the mean surface current. This is in accordance with theoretical models of
baroclinic instability, like the Eady model, which predicts the propagation speed
of the perturbations to be equal to the mean flow speed at the midpoint in the
vertical (Vallis, 2017, pp. 365–366). Because of the vertical shear in the velocity,
this speed is smaller than the surface speed.
Comparing panel b. in Figure 4.3 with the corresponding panel in Figure 4.2,
we can see that the wave-like features in the stratified system is less pronounced,
but still present, especially close to the canyon and at later time-steps. As for
the system without stratification, the signal originating at the canyon extends
downstream over time, and eventually reaches the canyon again at the upstream
side.

−200

0

200 a. S-R-NC b. S-R-C

20 40 60

−200

0

200 c. S-P-NC

20 40 60

d. S-P-C

−10

−5

0

5

10

S
ea

su
rf

ac
e

h
ei

gh
t

an
om

al
y

[m
m

]
Time [days]

A
lo

n
gs

h
or

e
d

is
ta

n
ce

[k
m

]

Figure 4.3: Hovmöller diagrams of SSH anomalies for the first 75 model days
in a stratified system. Panel a. and b. show the response to retrograde flow,
while panel c. and d. show the response to prograde flow. In panel a. and c.,
the bathymetry does not include a canyon, while panel b. and d. contain a
canyon. Red and blue show positive and negative anomalies, respectively. The
gray line is the integrated mean meridional surface velocity, integrated from
day 45 and shifted to start at y = ±300.

Until now, we have considered the early flow stages, before the eddy field has
developed to any considerable degree. But, as stated in our research questions,
we are interested in how eddy activity affects the flow, and specifically the cross-
slope transport. We therefore want to estimate when the eddy field becomes
well-developed. To do so, we compute the time evolution of the EKE. For each
time step, this is calculated as

EKE = 1
V

∑
i

1
2
(
u′2i + v′2i

)
Vi, (4.1)

where u′i = ui − ui and v′i = vi − vi are deviations from the mean velocities in
grid box i. Mean velocities ui and vi are calculated as the temporal moving
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4.2. Comparison with quasi-geostrophic theory

average, with a window size of 20 days. This window size is chosen so that
transient eddies wouldn’t project onto the mean to any considerable degree. V
is the total volume of the domain, while Vi is the volume of grid box i.

We also calculate the mean kinetick energy (MKE), which is the kinetic energy
associated with the mean flow. MKE is given by

MKE = 1
V

∑
i

1
2
(
u2 + v2)Vi. (4.2)

Figure 4.4 shows the evolution of MKE (top) and EKE (bottom) up to day
315 for stratified systems. These are similar runs as the stratified baseline
experiments, but for an extended period. Both retrograde and prograde flow
are shown, with and without a canyon.

We can see that in all cases, the EKE increases until about day 150. After day
150, prograde systems with and without a canyon seem to stabilize, fluctuating
around a value of about 1.2× 10−3 m2/s2. For the retrograde experiments, the
case without a canyon seems to stabilize around a value of 2× 10−3 m2/s2 after
day 175, while the case containing a canyon keeps increasing for the whole
period.

The MKE, on the other hand, increases much earlier than the EKE. When
the increase in EKE accelerates, the MKE decreases slightly, suggesting that
some of the energy in the mean flow is transferred to the eddy field. At around
day 175, the retrograde runs stabilize around a value of about 9× 10−3 m2/s2,
while the prograde runs stabilize around a lower value of about 7× 10−3 m2/s2

around day 150.

To illustrate how the intensity of the vorticity increases, snap-shots of the
relative vorticity field for stratified retrograde flow over a canyon at different
stages are shown in Figure 4.5. Here, contour plots of the daily mean of the
depth-averaged relative vorticity for model day 25, 75, 150, 225 and 300 are
shown.

As we can see from the leftmost panel in Figure 4.5, an area with higher,
contrasting vorticity develops downstream of the canyon already at day 25. As
time passes, the vorticity increases, especially at the shelf and slope area. At
day 225, we see that eddy-features have developed over the deeper ocean. These
seem to continue to develop, as we see more eddy activity over the deep ocean
at day 300.

4.2 Comparison with quasi-geostrophic theory

Before we proceed into flow stages with high eddy activity, and investigate how
this affects the cross-slope exchange, we will dwell a bit on earlier flow stages
where the canyon response is not yet superimposed with a strong vorticity field.
Specifically, we will evaluate the theoretical model derived in Chapter 2.
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Figure 4.4: Time evolution of MKE (top) and EKE (bottom) in a stratified
system up to model day 315. Both MKE and EKE are normalized with the total
volume. Blue and red lines represent retrograde and prograde flow, respectively.
Model runs including a canyon are shown as solid lines, while dashed lines
represent model runs without a canyon.
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Figure 4.5: Evolution of the depth-averaged relative vorticity field for stratified
retrograde flow over a canyon. The mean values for day 25, 75, 150, 225 and
300 are shown.
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4.2. Comparison with quasi-geostrophic theory

Prograde flow

We will qualitatively evaluate the applicability of the theoretical model for
prograde flow by studying the flow pattern over the canyon, both in a stratified
and unstratified system.

As earlier noted, streamlines coincide with the streamfunction contours. We
therefore inspect the streamlines that form over the canyon, to see if these are
in accordance with the theoretical model, as elaborated in Section 2.5.

In Figure 4.6, streamlines for prograde flow over a canyon in a system without
stratification are shown for selected time steps, where the velocity is still
increasing. Above each panel, the day and estimated wavenumber of the
corresponding arrested wave for the area is included. Since we are considering
prograde flow, this wavenumber is calculated as |κ2

s,bt|
1
2 , where κ2

s,bt is given
by Equation (2.9). For simplicity, we will address this value as the arrested
wavenumber in this section, even though there are no arrested waves in our
prograde runs. As for evaluating Equation (2.9), the variables are taken as
the mean values for the plotted area. In addition, the arrested wavenumber is
normalized with the value corresponding to the top-left panel.

Further, the correlation between one of the streamlines (shaded red) and the
isobath starting at the same southern boundary point as the streamline is
included, together with the mean absolute x-distance between said streamline
and isobath. A smaller mean absolute distance and higher correlation coefficient
corresponds to the streamlines following the bathymetry to a larger degree.
By comparing the different panels and associated values, we can get an idea
of how the response evolves in time and changes dependent on the arrested
wavenumber.

In all cases, the flow detours onshore and resembles a smoothened version of the
isobaths, with the most pronounced onshore detour at the middle of the slope.
For the first days, we also see that the flow makes a slight offshore adjustment,
indicating an initial adjustment to the wind forcing. This affects both the
correlation and absolute distance parameter, since the streamline veer slightly
offshore. However, we do see a trend of declining correlation and increasing
mean absolute distance between the streamline and isobath as the arrested
wavenumber decreases.

Figure 4.7 is the equivalent to Figure 4.6, but for a stratified system. Note
that when computing κ2

s,bc, the vertical shear was not taken into consideration,
and both Vb and V0 was approximated by the mean meridional velocity for the
given area. However, as we are only interested in the time evolution of the
arrested wavenumber, these approximations are deemed reasonable. Also note
that different time steps are selected than in the unstratified case, which was
done because the flow take longer to stabilize in the stratified system.

A similar pattern can be found as in the system without stratification, with
close to symmetric streamlines around the canyon axis and the flow making
an onshore detour at the canyon. Additionally, there is a general tendency of
increasing mean absolute distance between the streamline and isobath with
time. The correlation, however, is fairly constant, except for a decrease in the
third to last and last time step. Overall, we see that the arrested wavenumber

33



4. Results

−20

−10

0

10

20
d15 k1.00 r0.94 e0.88 d16 k0.86 r0.94 e0.83 d17 k0.77 r0.93 e0.83

−20

−10

0

10

20
d18 k0.71 r0.93 e0.88 d19 k0.67 r0.92 e0.93 d20 k0.63 r0.92 e0.94

−20 0
−20

−10

0

10

20
d21 k0.64 r0.91 e0.99

−20 0

d22 k0.61 r0.91 e0.95

−20 0

d23 k0.57 r0.91 e1.03

Cross-shore distance [km]

A
lo

n
gs

h
or

e
d

is
ta

n
ce

[k
m

]

Figure 4.6: Streamlines depicting the response to prograde flow over a canyon
in a system without stratification at 95 m depth at selected time steps. The
corresponding day (d), normalized arrested wavenumber for the depicted area
(k), Pearson correlation coefficient between the streamline marked in red and
an isobath (r) and the mean absolute x-distance between said streamline and
isobath (e, with units km) are written over each panel. Width of the streamlines
indicate flow speed, with wider streamlines implying stronger flow. The 150,
225, 300, 375, and 450 m isobaths are shown in gray.
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4.2. Comparison with quasi-geostrophic theory

decreases with time, simultaneously as the flow seems to make a smaller onshore
detour, resulting in straighter streamlines.

As discussed in Section 2.4, quasi-geostrophic theory predicts that both stratified
and unstratified flow will act as a longpass filer of the topography, with less
and less weight on shorter wavelengths as the arrested wavenumber decreases.
This can be seen from the amplitude spectrum of the prograde streamfunction
response, shown in Figure 2.1. In this figure, the wavenumbers are normalized
with the arrested wavenumber; as the arrested wavenumber decreases, less
weight is put on larger wavenumbers in the response, again resulting in
smoother flow. So the behavior we see in Figure 4.6 and Figure 4.7 is indeed in
qualitatively accordance with our theoretical model, signifying that GQ theory
can qualitatively describe the prograde flow response over a canyon.

Retrograde flow

In the retrograde case, validation of the theoretical model can be done by
comparing the measured and theoretical wavelength of the arrested wave in
model experiments. To ensure a variation of wavelengths, multiple experiments,
as described in Table 3.3 and Table 3.4, are taken into consideration.

In order to estimate the wavelength λm of the arrested wave in model runs, the
SSH along the middle of the slope at x=−22 km downstream of the canyon at
a given time step is inspected. Especially in model runs with no stratification,
there is a clear wave signal in the SSH. In stratified experiments, the signal is
generally more noisy, with variations in noisiness between time steps. Therefore,
the unstratified experiments are all evaluated at the same time step (day 75),
while the stratified experiments are evaluated at varying time steps, specified
in Table 3.4. When the wave signal is located visually, autocorrelation is used
to estimate the wave length.

Here, autocorrelation is calculated as the Pearson correlation between the SSH
data and its shifted self. The along-shore distance that corresponds to the
shift giving the first maximum autocorrelation value is then interpreted as the
wavelength of the signal.

The theoretical wavelength λt of the arrested waves is calculated for the
same time step as λm. Given the expression for the arrested wavenumbers
in Equation (2.9) and Equation (2.21), the wavelength can be computed as
λ = 2π/κ. This wavelength is dependent on bathymetry, flow characteristics and,
in the baroclinic case, the stratification. These variables vary both vertically
through the water column and horizontally across and along the slope. To
handle this, the meridional mean of relevant variables are calculated first. The
vertical variation is handled by computing the mean value for the water column.
In the baroclinic case, where vertical variations in the velocity is relevant, the
depth dependent velocity is approximated by the linear function minimizing
the squared error. Then, for each x-position over the slope, the theoretical
wavelength for that position is calculated. Finally, the mean of these wavelengths
is calculated.

To evaluate the degree of agreement between λt and λm, the root mean square
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Figure 4.7: Streamlines depicting the response to prograde flow over a canyon
in a stratified system at 95 m depth. The corresponding day (d), normalized
arrested wavenumber for the depicted area (k), Pearson correlation coefficient
between the streamline marked in red and an isobath (r) and the mean absolute
x-distance between said streamline and isobath (e, with units km) are written
over each panel. Width of the streamlines indicate flow speed, with wider
streamlines implying stronger flow. The 150, 225, 300, 375, and 450 m isobaths
are shown in gray.
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4.2. Comparison with quasi-geostrophic theory

deviation (RMSD) is computed. RMSD can be calculated as

RMSD =

√√√√ n∑
i=1

(
λim − λit

)2

n
.

where λim and λit is the modeled and theoretical wavelength for the ith
experiment, and n is the number of experiments.

In Figure 4.8, λt is plotted against λm for unstratified, retrograde model runs
described in Table 3.3. Since all the model runs are without stratification, the
barotropic theoretical wavenumber, given by Equation (2.9), is used to calculate
λt. From the plot, we can see that both λt and λm are in the range 35 km
to 55 km. The RMSD is 4.6 km, with the experiments labeled 0.5 × α and
4×forcing being marginal outliers. The experiments labeled baseline, 3×forcing
and 2×friction has a wider 95% confidence interval for the mean of the theoretical
wavelengths, indicating that there is a larger spread in flow characteristics across
the slope in these experiments. As we see from the figure, most of the modeled
wavelengths are within the confidence intervals for the mean, except for the
experiments labeled 0.5 × α and 4×forcing, in which the modeled value lies
about 5 km and 1 km outside the confidence interval, respectively. This signifies
that there is a good agreement between the quasi-geostrophic theoretical model
and numerical model runs. Also, the relatively small RMSD between λt and
λm, compared to the range of λt and λm, indicates that the calculated mean
value λt is in good agreement with λm.
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Figure 4.8: Theoretical wavelengths of the arrested barotropic topographic
waves as described in Equation (2.9) plotted against the wavelengths found
in model runs without stratification. Each dot represents an experiment as
described in Table 3.3. The error bars show the 95% confidence interval for the
mean, while the gray dashed line is the 1-1 line. RMSD is 4.6 km.

Figure 4.9 shows λt against λm for the stratified experiments described in
Table 3.4. Here, the baroclinic theoretical wavenumber of the arrested wave
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(Equation (2.21)) is used when computing λt. A wider range of wavelengths
are found among the stratified experiments compared to the unstratified
experiments, with values ranging between 35 km and 80 km. Similarly, the
confidence intervals for the mean are wider in the stratified experiments,
reflecting that there is a wider range of background parameters over the slope
in these experiments, and consequently a wide range of theoretical arrested
wavelengths. Here, λt lies outside the confidence interval for three out of eight
experiments; baseline, 0.5× α and 2×forcing. Compared with the barotropic
case, the fit of λt to λm is poorer, with a RMSD of 14.5 km. We also see that λt
generally underestimates the wavelength, except for the experiment labeled sN,
where the wavelength is slightly overestimated. Nevertheless, the theoretical
model seems to capture features of the canyon response, as we do see a linear
dependency in Figure 4.9.
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Figure 4.9: Theoretical wavelengths of the arrested baroclinic topographic waves
as described in Equation (2.21) plotted against the wavelengths found in model
runs with stratification. Each dot represents an experiment as described in
Table 3.4. The error bars show the 95% confidence interval for the mean, while
the gray dashed line is the 1-1 line. RMSD is 14.5 km.

For corresponding experiments in the stratified and unstratified experiments,
we see that λm, and to a degree also λt, are larger in the stratified experiments.
We have seen signs of this earlier as well, as in Figure 4.1, where the distance
between peaks in the streamlines are larger in the stratified retrograde case
compared with the unstratified retrograde case.

Despite a large scatter and a systematic tendency of underestimating the
wavelength in the stratified case, there is surprisingly good agreement between
the theoretical model and model simulations in both the stratified, and especially
the unstratified systems. Considering the many simplifications and assumptions
in the quasi-geostrophic theoretical model, the tendency of a linear dependency
we see between λt and λm is not given. Notably, the assumption that variations
in the bottom height is small compared to the mean depth is not realized, as
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4.3. Cross-slope tracer transport

the change in depth between the shelf and the deep ocean is of the same order
as the mean depth.

4.3 Cross-slope tracer transport

In this section, we will consider the cross-slope water exchange, estimated by
cross-slope tracer transport. As described in Section 3.3, the tracer is initialized
so that the concentration is 1 over the deep ocean, and 0 over the shelf. Over
the slope, the tracer concentration has the same shape as the bathymetry. So by
computing the net cross-slope tracer transport, we get a measure of how much
deep ocean water is transported onto the shelf and stays there. We expect the
tracer to be transported by possibly three mechanisms: 1) Ekman transport, 2)
eddy transport and 3) canyon effects. These mechanisms are not necessarily
isolated from each other, as the canyon could affect the eddy field, for example.

In the case of Ekman transport, the wind stress sets up either an onshore or
offshore Ekman flow in the upper layer, depending on the wind direction. This
leads to either upwelling or downwelling at the shelf, and sets up a counter-flow
lower in the water column. Depending on the wind direction, either the upper
or lower flow will transport deep ocean water onto the shelf, while the opposite
flow will transport shelf water with a lower tracer concentration into the deeper
ocean.

As we saw from the time series in Figure 4.4, the EKE increases with time,
before it stabilizes around some value. An exception seems to be the retrograde
canyon run, where the EKE doesn’t stabilize during our run time. For the first
75 days, the EKE is considerably smaller compared to later staged, indicating
little eddy activity. At later time steps, the effect of the eddy field can no
longer be ignored. We will therefore look at the tracer transport both in the
early stage until day 75, and in later stages, after day 225, and thus be able to
examine the transport with and without a well-developed eddy field.

In order to compute net cross-slope passive tracer transport, the zonal tracer
transport is integrated over a vertical plane situated at the middle of the slope
at x=−22 km. The vertical plane extends along the whole slope, so that the net
mean mass transport through the plane over time is zero. The total transport
is then normalized with the area of the plane, so that the unit of the tracer flux
is mass per unit area per time.

Setting up a passive tracer to estimate cross-slope exchange is beneficial over
studying the volume transport, since we are able to estimate the property
transport across the slope. However, as time passes and tracer is transported
onto the shelf, the cross-slope tracer gradient is reduced. As a result, the net
onshore tracer transport is reduced, even if the actual water exchange remains
constant. As a consequence of this, differences in tracer transport between
an experiment with high transport and an experiment with less transport can
decrease over time, since the tracer gradient in the experiment with higher
transport is reduced faster.
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Early stages

The cumulative, i.e., time integrated, tracer transports across the slope for the
first 75 days are shown in Figure 4.10. Since the area in which the net flux is
calculated over covers the whole yz-plane, and there are no sinks or sources of
tracer, this value can be interpreted as the mass of tracer accumulated on the
shelf for the given day. The top panel shows the cumulative tracer transport
in the unstratified baseline experiments, while the bottom panel shows the
results from the stratified baseline experiments. In each panel, experiments
with retrograde and prograde flow, and with and without a canyon, are shown.
In all cases, the transport in the first 10 model days is zero, agreeing with the
model being at rest for this period. For the following days, the cumulative
tracer transport increases almost linearly, showing that there is a build-up of
tracer at the shelf.

Comparing corresponding model runs with and without a canyon, we see a
difference for the experiments with retrograde flow, with a larger transport
in the canyon runs. Especially in the unstratified cases is there a substantial
difference. In the prograde experiments, the difference between canyon and
no-canyon runs is minimal, indicating that the canyon has little effect on the
total transport under prograde flow conditions. Still, these model runs exhibit
substantial cross-slope tracer transport, meaning that other processes than
those connected to a submarine canyon, e.g., Ekman and eddy transport, also
yield ample cross-slope exchange.

To better demonstrate the difference between canyon and no-canyon runs and
isolate the canyon effect, the difference in cumulative tracer transport between
canyon runs and no-canyon runs is shown in Figure 4.11. For all experiments,
the difference is minimal in the first 20 days, which includes the 10 days when
the model is at rest. In the top panel, which is depicting the experiments
without stratification, there is a steady increase in the difference in cumulative
tracer transport after day 20 in the retrograde experiment. This translates to
the canyon run showing a consistent larger transport than the no-canyon run
for retrograde flow direction. There is also an increase in the difference for the
stratified retrograde experiments until about day 45. Between the 45th and
60th day, the difference decreases. After day 60, the difference increases a bit
and then stays constant. It should be noted that at this time, we have starting
eddy-formation, in addition to pronounced reduction in the cross-slope tracer
gradient, which most likely affect the tracer transport. For the prograde model
runs, the difference between canyon and no-canyon runs is negligible.

In Figure 4.12, the cumulative tracer transport up to day 50 is shown as a
function of alongshore position. The baseline experiments containing a canyon
is shown, with the left and right panels showing unstratified and stratified
systems, respectively. In both prograde situations, we see onshore transport in
the canyon upstream of the canyon axis, and then a seemingly equally large
offshore transport downstream of said axis. However, the magnitude of the
transport is 3-4 times as large in the unstratified case. This pattern can be
connected to the onshore detour we have seen in the prograde flow streamlines,
as this would result in volume transport onshore upstream of the canyon axis,
and then offshore volume transport downstream of the axis. The difference in
magnitude can be contributed to the larger detour in the stratified system.
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Figure 4.10: Cumulative tracer transport (CTT) across the slope at x=-22 for
the first 75 model days for retrograde and prograde flow, both with and without
a canyon. Top panel shows the transport for a system without stratification,
while the bottom panel shows the transport in a stratified system. Blue and red
lines represent retrograde and prograde flow, respectively. Model runs including
a canyon are shown as solid lines, while dashed lines represent model runs
without a canyon.

For the retrograde flow in an unstratified system, there is a wave pattern
of alternating onshore and offshore cumulative transport downstream of the
canyon, with decreasing magnitude further from the canyon. A qualitatively
similar pattern is found in the stratified case, but here the wavelength of the
signal is larger, and the magnitude is smaller and decreases faster. Again, this
is the same tendency as we saw in the mean streamlines in Figure 4.1 and in
the values for λm in Figure 4.8 and Figure 4.9.

Later stages

We will now concentrate on the transport in later flow stages, where the eddy
field is more developed. In all the following results, only stratified systems are
considered. As stated in our research question, we are interested in whether
high eddy-activity affect the cross slope exchange due to a submarine canyon.
Especially, we are interested in 1) whether we still see an effect of the canyon
in retrograde cases, even in a turbulent field, and 2) if the canyon affects the
transport in prograde flow when eddies are present, in contrast to early flow
stages.

First, we want to get an idea whether the flow responds similarly to a canyon in
a highly turbulent field, as in earlier stages. Figure 4.13 shows streamlines for
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Figure 4.11: Difference in cumulative cross-slope tracer transport between the
model runs with and without a canyon in Figure 4.10. Top panel shows the
difference in transport for a system without stratification, while the bottom
panel shows the difference in transport in a stratified system. Blue and red lines
represent retrograde and prograde flow, respectively. Note that both panels
have the same scale.

the mean flow at 95 m depth between day 225 and day 325. Taking the mean
over a long period, we remove the transient eddy signal from the field. As we
see from the left panel, which shows the retrograde response, we still get a lee
wave forming downstream of the canyon. In the prograde case, shown in the
right panel, we see that the flow acts as a longpass filter of the topography, with
a symmetric response around the canyon axis. So, even with a well-developed
eddy field, we get a canyon response which is in qualitatively agreement with
flow patterns in early stages, and also with our quasi-geostrophic theoretical
model.

We will now look at the tracer transport and cumulative tracer transport for
retrograde flow in a turbulent field. After day 225, the model is run for a further
100 days, resetting the tracer distribution every 10th day to avoid the tracer
becoming fully mixed, and thus no longer acting as a proxy for deep ocean
water. Each time the tracer is reset, a new period starts, resulting in a total of
10 periods. All the periods are then superimposed, and the mean is calculated.

Figure 4.14 shows the mean of the tracer transport and cumulative tracer
transport for retrograde runs, both with and without a canyon. The values
between the 0.1 and 0.9 quantile are shown by the shaded areas. As we can see
from the plot of the cumulative tracer transport, model runs with a canyon have
more tracer transported to the shelf area than the no-canyon runs, on average.
From the top panel, depicting the tracer transport, we see that the difference
between canyon runs and no-canyon runs is largest at the beginning of the
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Figure 4.12: Cumulative cross-slope tracer transport up to day 50 as a function
of along-shore position in systems containing a canyon. To the left is the
cumulative transport in a system without stratification, while the right shows
the cumulative transport in a stratified system. Blue and red lines represent
retrograde and prograde flow, respectively.

period, when the tracer gradient between the open ocean and shelf is at its
largest. To summarize, the increased transport in canyon runs, compared with
no-canyon runs, indicates that a canyon still enhance the cross-slope transport
in retrograde flow, even under turbulent conditions.

Figure 4.15 is constructed similarly as Figure 4.15, but for prograde flow.
Additionally, the model is run until day 425, resulting in a total of 20 periods.
As we see from the top panel, the second day has the largest transport, with
transport decreasing as time passes after that. This difference between prograde
and retrograde in which day shows the largest transport runs is probably due
to opposite directions of the Ekman overturning in the two cases, combined
with the domain geometry.

Here, in the prograde case, there is no substantial difference between canyon
and no-canyon runs in tracer transport. Admittedly, there is a slightly higher
transport in the canyon runs for the first day, but this difference is quickly
evened out.

Wind event

Our final research question was whether periodical reversal of winds could
affect the cross-slope exchange under mean prograde flow over a canyon. To
investigate this, a composite plot is made for prograde flow containing a wind
reversal. For more realistic conditions, the wind reversal is implemented in a
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Figure 4.13: Streamlines depicting the mean flow at 95 m depth between model
day 225 and 325. Panel a. shows prograde, stratified flow over a canyon,
while panel b. shows retrograde, stratified flow over a canyon. Width of the
streamlines indicate flow speed, with wider streamlines implying stronger flow.
The 150, 225, 300, 375, and 450 m isobaths are shown in gray.
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Figure 4.14: Composite plot of cross-slope tracer transport and cumulative
tracer transport in turbulent, stratified systems for retrograde flow. Orange and
teal represents systems with and without a canyon, respectively. Only model
runs after model day 225 are included. The model ran until day 325, and the
tracer was reset every 10 days. Each time the tracer is reset, a new period
starts, resulting in a total of 10 periods. The solid line is the mean of all the
periods, while the shaded area shows the values within the 0.1 to 0.9 quantile.

model state with high eddy activity. The model is run from day 225 until day
425, where the tracer is reset every 25 days, resulting in a total of 8 periods.
In each period, a wind event starts at the fifth day, and lasts for 10 days. The
wind stress evolution during the wind event has the form of one sinusoidal cycle,
with actual reversal of winds for a total of 5 days, as illustrated in Figure 3.4.
For consistency between the periods, the first period is discarded, as this period
is not preceded by a wind event.

The resulting mean tracer transport and cumulative tracer transport is shown
in Figure 4.16. From the bottom panel, we see that there is a larger mean
cumulative tracer transport in the canyon runs, compared to no-canyon runs.
Surprisingly, the difference in transport between canyon runs and no-canyon
runs is largest outside the wind event, while the mean tracer transport is about
equal for the two cases during the wind event. As each period follows after
another period containing a wind event, the difference in transport that we see
right after the concentration reset must be caused by the previous wind event.

In order to assess whether the wind event results in reversal of bottom flow
direction, and thus opens for the possibility of arrested topographic waves as an
explanation for the increased transport, the mean meridional bottom velocity
for the same periods as in Figure 4.16 is shown in the top panel in Figure 4.17.
We see that the velocity decreases from wind event day 2 (period day 7), and
starts to increase again at wind event day 8 (period day 13). In other words,
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Figure 4.15: Composite plot of cross-slope tracer transport and cumulative
tracer transport in turbulent, stratified systems for prograde flow. Orange and
teal represents systems with and without a canyon, respectively. Only model
runs after model day 225 are included. The model ran until day 425, and the
tracer was reset every 10 days. Each time the tracer is reset, a new period
starts, resulting in a total of 20 periods. The solid line is the mean of all the
periods, while the same colored shaded area shows the values within the 0.1 to
0.9 quantile.

the bottom velocity roughly reflects the change in wind forcing, shifted with
about 2 days. We can also see that the meridional bottom velocity is generally
slightly stronger in the cases without a canyon. This is not the case in mode
runs without wind reversal (not shown). Note that even though the velocity
decreases, the direction does not change. So, one possible condition for having
arrested topographic waves is not present.

Another possibility for achieving arrested waves is through strong vertical shear
in the flow, so that the term containing ∂zV in Equation (2.19) becomes strongly
negative. Then, the condition in Equation (2.19) for an arrested wave can still
be satisfied, even though Vb is positive. But inspection of the velocity data
shows that this is not the case. In other words, the increase we see in tracer
transport in wind event runs can not be explained with our theoretical model
for arrested topographic waves.

In Figure 4.17, the bottom panel shows the mean EKE for the wind event
periods. Here, EKE is computed slightly differently than in Equation (4.1).
Since the forcing, and consequently the mean flow, is not constant, interpreting
the perturbations u′i and v′i as deviations from the temporal mean flow could
yield faulty results. Instead, we assume u′i = ui − ũi and v′i = vi − ṽi, where ũi
and ṽi are meridional mean values.
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Figure 4.16: Composite plot of cross-slope tracer transport in turbulent,
stratified systems for initially prograde flow with a wind event. Orange and teal
represents systems with and without a canyon, respectively. Only model runs
after model day 250 are included. The model ran until day 425, and the tracer
was reset every 25 days. Each time the tracer is reset, a new period starts,
resulting in a total of seven periods. Each period has one wind event, shown as
the gray shaded area. The solid line is the mean of all the periods, while the
same colored shaded area shows the values within the 0.1 to 0.9 quantile.

As we see from Figure 4.17, the EKE is higher in the no-canyon runs, especially
before day 7, and after around day 17. Again, since the composite plot is cyclic,
the increase at the beginning of the period is most likely due to the previous
wind event. Comparing the top panels in Figure 4.16 and Figure 4.17, we see
that the period with increased EKE in no-canyon runs coincides with the period
where we also have higher tracer transport in canyon runs. One could think
that the heightened transport in canyon runs could be due to more eddies in
these runs, but surprisingly Figure 4.17 shows the opposite. As for now, the
detailed dynamics behind the heightened transport in canyon runs with periods
of reversed winds are not fully understood.
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Figure 4.17: Composite plot of mean meridional bottom velocities along the
slope (top) and mean EKE (bottom) in turbulent, stratified systems for initially
prograde flow with a wind reversal. EKE is calculated from perturbations from
the meridional mean values, and not from the temporal mean values. Orange
and teal represents systems with and without a canyon, respectively. The plots
are composed of seven periods, as in Figure 4.16. Each period has one wind
event, shown as the gray shaded area. The solid line is the mean of all the
periods, while the same colored shaded area shows the values within the 0.1 to
0.9 quantile.
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CHAPTER 5

Discussion

5.1 Quasi-geostropic theory and canyon flow

From our comparison between numerical model simulations of flow over
a canyon, and the corresponding quasi-geostrophic theoretical models, we
found good agreement, especially for unstratified systems, indicating that the
simplified quasi-geostrophic models does indeed describe important qualitative
and quantitative aspects of the dynamics.

During the development of the theoretical model, we found that it was important
to include the horizontal potential vorticity gradient stemming from the x-shear
in the meridional flow. In our approach, we assumed the velocity to have a
constant vertical shear, but the theoretical model opens for other approximations
for the flow, which can be tailored to the specific application. It should be noted
that not all forms for the velocity give analytical solutions. One possibility that
does, is an exponential structure in the vertical for the velocity.

The mechanism of arrested topographic waves interacting with the topography,
and thus causing an asymmetrical response to flow in opposite directions
along the slope, has already been investigated by Zhang and Lentz, 2017. By
the use of a model for coastal trapped waves, as described in Brink, 1990;
Brink, 2006, Zhang and Lentz were able to calculate the wavelength of the
downstream meander forming in retrograde simulations. However, contrary to
the model presented in this thesis, their model has to be solved numerically. The
model presented here is thus easier to implement, and less resource-demanding.
Additionally, one of the advantages of an analytical model describing the flow
response is the intuitive understanding it provides us. From our analytical
expressions, we can see how changes in geometry, hydrographic properties and
flow characteristics influence the response.

Especially, we see that the amplitude of the streamfunction response depends
both on the spectrum of the topography, and the amplitude spectrum plotted
in Figure 2.1, which is given by flow characteristics, stratification, latitude,
mean depth and steepness of the slope. The lesser overlap there is between
the amplitude spectrum of the topography and the amplitude spectrum of the
streamfunction response to a white spectrum, the less pronounced will the
response be. Likely, this will lead to a smaller cross-slope exchange. As a
practical application, an estimate of the response to a given bathymetry can
thus be calculated for varying flow and hydrographic conditions as given by
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Equation (2.11) and Equation (2.22), without the need of refined numerical
methods. Similarly, given the stratification and flow, one can estimate the
canyon dimensions needed for a considerable response. We can then make rough
prior estimates of which canyons that should give a larger response.

It should also be noted that Saldías and Allen, 2020 preformed the same
numerical analysis as Zhang and Lentz, 2017 for retrograde alongshore flow over
a canyon, without finding a connection between the characteristics of the flow
response, and the coastal trapped wave. The numerical set-up of Saldías and
Allen, 2020 is similar to that used in this thesis, but their model is only run
for 25 days, which means that the analysis of Saldías and Allen was preformed
in earlier flow stages compared to the analysis in this thesis. This indicates
that the wavelength of the lee wave forming downstream of the canyon may be
controlled by some other mechanisms as well, at least in initial flow stages. In
that case, QG theory may not be as well suited for initial flow stages.

5.2 Possible mechanisms behind on-shelf tracer transport

As expected, based on results from earlier studies of prograde and retrograde
flow over canyons, the cross-slope tracer transport in our simulations is enhanced
by the canyon in retrograde flow, while the transport in prograde flow regimes
is nearly unaffected by the inclusion of a canyon, at least for constant wind
forcing. This is true for both the stratified and the unstratified case. As an
important result, we found that this is also true for a highly turbulent field.

The wave structure forming downstream of the canyon in retrograde flow regimes
results in water being transported back and forth over the slope (see Figure 4.1).
This motion in itself does not necessarily result in displacement of deep ocean
water to the shelf area, as the net mass flux must be zero over time. However,
if there are some irreversible processes present that result in mixing of water
properties, like turbulent diffusion, deep ocean properties can be mixed in
with the current over the deeper parts of the slope, and then transported onto
the shelf and mixed in with the shelf water. This way, the arrested wave can
transport shelf water properties to the deep ocean and deep ocean properties
back on to the shelf, resulting in net transport of e.g. nutrients onshore. As we
see in Figure 4.12, which shows the cumulative tracer transport as a function
of alongshore position, the tracer is indeed transported back and forth in a
wave-like structure. The difference in the extent of the downstream wave
pattern between the unstratified and stratified system in the initial period is
also consistent with the bigger difference in tracer transport between canyon
and no-canyon runs in the unstratified system than in the stratified system for
the same period. The picture is different in the prograde cases, where the mean
flow follows the isobaths both upstream and downstream of the canyon. As
we have seen, the flow does make an onshore detour over the canyon, given
the right combination of flow characteristics and likely also canyon width. One
could expect a similar effect as discussed for the retrograde flow, where deep
ocean properties are transported onshore and mixed with adjacent water masses
on the shelf. But, in the prograde case, this would happen over a much smaller
section, making a considerably smaller contribution to the cross-slope transport.
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5.3. Applicability to LoVe

As a result, the transport is almost equal in canyon and no-canyon runs in the
prograde initial model runs.

Here, we have focused on how a large horizontal detour of the prograde flow can
increase the transport. But, under conditions where the flow makes a smaller
detour, the flow crosses more isobaths, consequently resulting in larger vertical
velocities along the canyon walls. These vertical velocities can lead to increased
vertical mixing in the canyon, possibly increasing the nutrient concentration in
the euphotic zone locally in the canyon. Since this process doesn’t necessarily
result in tracer crossing the slope, this effect is not detected in our analysis.

5.3 Applicability to LoVe

The inspiration for this thesis was the flow over submarine canyons off the
LoVe archipelago, and whether the large fish stocks, many whale sightings and
otherwise high bioproductivity in this area can be linked to enhanced cross-slope
transport of nutrients induced by canyons. As described in the introduction,
the Norwegian Atlantic Slope Current follows the shelf break in this area, with
the coast to the right, making it a prograde flow.

The question arises whether the behavior predicted by quasi-geostrophy is
applicable to the LoVe region. From our theoretical model for the flow response
in a stratified model, given in Equation (2.22), we would expect prograde
flow to follow the isobaths to a larger degree when the current velocity is
lower. For higher velocities, we would expect the current to flow in a more
straight manner over the topography, crossing more isobaths. A tendency of
this is seen in our idealized model, as shown in Figure 4.7. But what about
in more realistic simulations? In Figure 5.1, borrowed from Matuszak, 2021,
backwards in time particle trajectories for a realistic model domain based on
the LoVe ocean region, computed using OpenDrift simulations, are plotted.
These trajectories are illustrative of the paths of particles prior to reaching
the Hola reef, which is situated at the bottom of a canyon in LoVe. Both
summer (June 2020) and winter (December 2020) conditions are shown, with
velocities taken from the Norkyst-800 model. In summer, the current velocity is
lower than in winter. Consequently, we can see that the particle trajectories for
the summer, as seen in Figure 5.1a, follows the canyon walls closely, without
much depth change. In the winter, however, the particles flow almost straight
over the canyon wall, as we can see in Figure 5.1b. In other words, there is
good qualitatively agreement between the quasi-geostrophic model and idealized
numerical simulations presented in this thesis, and more realistic numerical
simulations. This further indicates that the results presented here are indeed
applicable to LoVe.

As we have seen, a single canyon has little effect on the cross-slope transport
under prograde conditions even in a turbulent field, at least for persistent
alongshore wind forcing. However, we saw that when we included subsequent
periods with reversal of the wind stress, the canyon did in fact enhance the
transport, even if the flow did not change direction. But how relevant is this
for LoVe? Figure 5.2 shows monthly wind rose plots for Røst airport, which
is situated on the outermost island south-west in Lofoten. Assuming that
observations from this station are representative for the whole region, the wind
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5. Discussion

(a) Particle trajectories of ten particles
released on 30th of June 2020, tracked
backwards in time until 23rd of June
2020.

(b) Particle trajectories of ten particles
released on 8th of December 2020, tracked
backwards in time until 1st of December
2020.

Figure 5.1: Backwards in time trajectories for ten particles released at the ocean
bottom in a 100 m radius around the Hola Reef. The particles are released at
30th of June 2020 and 8th of December 2020, and traced back for a week. Hola
is marked in red. Bottom topography is indicated by gray contours, with a
200 m depth interval between each contour line. The particle depth is indicated
by their color. Figure courtesy of Matuszak, 2021.

rose plots can give us information on the distribution of wind directions and
speeds through the year over the slope. Keeping in mind that the slope is
situated along the south-west to north-east axis, we see that the wind does
indeed occasionally blow in the opposite direction of the current. Especially in
the summer season, in the period April to August, a substantial amount of the
measurements show winds coming from the north, signifying that a considerable
component of the wind blows in the opposite direction of the current. So the
submarine canyons off the North-Norwegian coast could indeed cause enhanced
cross-slope exchange even if the flow is prograde, due to reversal of winds.

Another possible reason for enhanced exchange is the effect of multiple
subsequent canyons. Looking at the map over the LoVe basin in Figure 1.1, we
see that multiple canyons cut into the shelf break, with about 10 km distance
between them. As predicted by quasi-geostrophic theory and confirmed in
model runs, the current makes an onshore detour over the canyon. One can
therefore hypothesize that when the canyon density is high, the prograde flow
can exhibit a wavelike structure over the shelf break, transporting water masses
back and forth over the slope multiple times, resulting in onshore transport of
nutrients through mixing. Or, given flow conditions that the flow passes almost
straight over the canyons, the vertical velocities along the canyon walls might
cause considerable transport of nutrients. In other words, even though we saw
little effect of one canyon, the net effect of multiple canyons may be notable.
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5.4 Limitations

Finally, we discuss some limitations of this study.

In this study, the domain had an along-shore length of 600 km, while the canyon
itself had a width of about 10 km. When calculating the cross-slope transport,
this had to be done along the whole domain length, in order to have conservation
of mass. Since cross-slope transport due to Ekman transport and turbulent
mixing happens along the whole domain, and the extent of the domain is
considerably larger than that of the canyon, the effect of the canyon can be
outweighed, especially if the effect is highly localized in the canyon. This is
relevant especially in the prograde model runs.

In addition, it should be mentioned that the model simulations presented in
this thesis are relatively short, considering that we are investigating the effect of
eddies. As shown in the time evolution of EKE in Figure 4.4, the eddy field in
the retrograde simulations with a canyon doesn’t seem to stabilize in the period
we are looking at. For a more robust analysis, longer runs would be necessary.

Finally, the way the theoretical and modeled wavelength of the arrested
topographic wave is detected and calculated needs to be addressed. Especially
in the stratified model runs, the downstream wave response could be hard to
detect, and the analysis had to be preformed for varying time steps between the
experiments in order to find a clear signal. Most likely, the unclear signal is due
to eddies affecting the SSH. In order to have better estimates of the wavelength
of the arrested waves, the effect of eddies could have been (partly) removed by
calculating the mean SSH over time. Subsequently, the values used to calculate
the theoretical wavelengths could also be taken from time-averaged fields.
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Figure 5.2: Monthly wind rose plots of Røst airport wind observations. The
contours show the speed distribution and the direction the wind is coming from,
with northerly to the top. Observations are hourly mean values for the period
May 1st 2011 to May 1st 2021, fetched from the Norwegian Centre for Climate
Services, seklima.met.no.
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CHAPTER 6

Conclusion

This final section concludes the thesis, and contains a summary of the study
and the main contributions, together with a section on further research.

6.1 Summary and main contributions

An analytical, quasi-geostrophic model for the streamfunction response to flow
over a canyon was developed, both for a barotropic and a baroclinic system.

Furthermore, idealized numerical experiments of prograde and retrograde flow
along a continental slope, both with and without a canyon, have been set up,
run and analyzed. Some of these model runs were compared with the response
predicted by the analytical model. Another important aspect was to let the
model run long enough to let the eddy field develop, so that the effect of high
eddy activity on cross-slope transport difference between canyon and no-canyon
runs could be investigated. Additionally, periods of reversed winds was included
in some model runs.

There was generally good agreement between the theoretical, quasi-geostrophic
model and numerical model runs, indicating that the theoretical model does
indeed describe important dynamics in the system. To our knowledge, this is
the first analytical model describing flow patterns over a submarine canyon.

As expected, based on results from earlier studies, the canyon enhanced the
cross-slope tracer transport under retrograde flow conditions in early flow stages.
The difference was largest in stratified experiments. In the prograde case, there
were negligible differences between runs with and without a canyon in the initial
flow stages. We found that the same was true in a highly turbulent field, with
higher transports in retrograde runs with a canyon than in runs without a
canyon, and with little effect of the canyon in prograde runs.

However, we found that when periods of reversed winds was present, the canyon
did increase the cross-slope tracer transport, even if the mean flow was prograde.
The detailed dynamics behind this effect is still unknown.

6.2 Further research

As is the nature of a Master’s thesis, the extent of the analysis and numerical
experiments is restricted by time limitations. Nevertheless, or maybe because
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6. Conclusion

of that, several ideas for further research have emerged during the writing of
this thesis. Here, we present some of these ideas.

When comparing model runs of retrograde flow over a canyon with the theoretical
quasi-geostrophic model, we have concentrated on varying parameters affecting
the flow characteristics and stratification in order to achieve a spread in the
possible wavelengths of the arrested topographic waves. In the prograde case,
we focused on different time steps in the flow evolution. In both cases, we kept
the canyon geometry constant. However, to further investigate the applicability
of quasi-geostrophic theory, we would benefit from systematically varying the
canyon geometry, and thus see how the wavenumber spectrum of the topography
affects the response when the flow conditions are prescribed. Also, the strength
of the response under retrograde flow conditions can be further investigated.
For example, one can calculate the Fourier coefficient for the wavenumber of
the arrested wave for a given canyon-geometry, and compare this with the
strength of the response in numerical simulations. This way, the applicability
of quasi-geostrophic theory to flow over a canyon can be further explored.

Additionally, how consecutive canyons affects transport of nutrients onto the
shelf, especially in prograde flow regimes, would be of interest to investigate. As
we speculated in Section 5.3, this may be relevant for the high bioproductivity
in the LoVe ocean region, which has a high concentration of canyons along the
continental slope. Since we have worked with a channel domain in this thesis,
the effect of the canyon signal propagating downstream and reaching a canyon
on the upstream side is present. However, our domain has a meridional length
of 600 km, making the distance the signal has to travel before reaching a canyon
considerable. So, investigating the effect of a high canyon density could be done
either by including several canyons in the model bathymetry, or, alternatively,
by shortening the length of the channel.

Finally, further investigation of how periods of reversed winds affects the
cross-slope transport of nutrients in LoVe can give us deeper insight regarding
mechanisms behind the high bioproductivity in the region. An important
finding in this study was that the presence of a submarine canyon enhances the
cross-slope transport after periods of reversed winds, even for prograde flow
with high eddy activity. The next step could be to conduct realistic model
simulations of currents in the LoVe region, where periods of reversed winds are
included. This could answer important questions on how canyons can affect
the transport of biologically important resources, even under prograde flow
conditions.
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APPENDIX A

Additional figures

Figure A.1 shows the number of observations per depth level, while Figure A.2
shows the geographic distribution of casts used for computations of mean salinity
and potential temperature profiles for stratified model runs.
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Figure A.1: Number of observations used when calculating mean salinity and
potential temperature profiles shown in Figure 3.3.
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A. Additional figures

Figure A.2: Geographic distribution of casts providing hydrographic observa-
tions used to create Figure 3.3. Casts are restricted to the area 68.5°- 70.0°N,
12.0°- 16.0°E.
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APPENDIX B

Derivation of quasi-geostrophic
equations

We will here go through a possible way to derive the QGPV equations in order
to illuminate which assumptions are made, and how they are applied.

The main assumptions are:

• The flow is in near-geostrophic balance, meaning that the Rossby number
Ro = U/Lf is small.

• Variations in the Coriolis parameter are small. Specifically, for a β-plane
where the Coriolis parameter can be expressed as f = f0 + βy, we have
|βL|/|f0| = O(Ro)

• The bottom topography hB is small compared to the total depth h0, that
is, |hB |/h0 = O(Ro).

• Similarly, the surface elevation η is small compared to the total depth;
|η|/h0 = O(Ro).

To further derive the QGPV equations, we must distinguish between barotropic
and baroclinic flow, since the two regimes allow different vertical flow structures.

B.1 Barotropic flow

To arrive at the QGPV equation for barotropic flow, we consider first the
shallow water equation for conservation of potential vorticity:

D

Dt

(
f + ζ

H

)
= (∂t + u · ∇)

(
f + ζ

H

)
= 0. (B.1)

Here, H = h0 +η−hB is the full layer thickness. The operators ∂t, ∂x and ∂y are
partial derivatives with respect to t, x and y, respectively. As is conventional,
f is the Coriolis parameter, also referred to as the planetary vorticity, and
ζ = ∂xv − ∂yu is the relative vorticity. Equation (B.1) states that the ratio of
the absolute vorticity and the fluid depth is conserved following a fluid column.
This ratio is what we call the potential vorticity.
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B. Derivation of quasi-geostrophic equations

Introducing a β-plane, so that f = f0 + βy, we see that the shallow water
potential vorticity can be written as

f + ζ

H
= f0 + βy + ζ

h0 + η − hB

= 1
h0

(
f0 + βy + ζ

1− (hB − η)/h0

)
≈ 1
h0

(f0 + βy + ζ)
(

1 + hB − η
h0

)
≈ 1
h0

(
f0 + βy + ζ + f0(hB − η)

h0

)
.

(B.2)

The last approximation follows from the quasi-geostrophic assumption that we
have a small Rossby number, which is equivalent to f being much larger than
ζ. We also have that β is much smaller than f0, so we only keep the small
therm (hB − η)/h0 when multiplied by the relatively large f0. To make the
approximation that

1
1− (hB − η)/h0

≈ 1 + hB − η
h0

,

we utilize that hb − η is much smaller than h0, and approximate the fraction as
the first two therms in its geometric series.

Substituting Equation (B.2) into Equation (B.1), and noting that the advection
of the potential vorticity should be by the geostrophic velocity, we arrive at

Dg

Dt

(
ζg + βy + f0(hB − η)

h0

)
= 0, (B.3)

where
Dg

Dt
= ∂t + ug∂x + vg∂y.

Notice also that we kept only the geostrophic part of the relative vorticity,
therefor the subscript.

This is the QGPV equation for barotropic flow, without forcing.

B.2 Baroclinic flow

Here, we will follow an informal derivation of the quasi-geostrophic potential
vorticity equation for baroclinic flow, as in Vallis, 2017, p. 193. A more vigorous
derivation can be found in the mentioned book.

We start with the vertical component of the vorticity equation, which is obtained
by cross-differentiating the horizontal momentum equations. We have

D

Dt
(ζ + f) = − (ζ + f) (∂xu+ ∂yv) + (∂zu∂yw − ∂zv∂zv∂xw)

+ 1
ρ2 (∂xρ∂yp− ∂yρ∂xp) .
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B.2. Baroclinic flow

By the Boussinesq approximation, therms containing the density ρ disappears
(except when multiplied with the gravitational constant g), so the last therm is
omitted.

We now apply the quasi-geostrophic assumptions. By the first assumption, we
replace the velocities on the left hand-side with the geostrophic counterpart. The
divergence on the right hand-side is small, but we keep it when it is multiplied
with the relatively large Coriolis parameter.

From the second assumption, we have that f can be replaced with the constant
f0, except where it is differentiated.

To show that the second therm on the right hand-side can be omitted, we use
a scaling argument. This therm scales as UW/(HL), while the left hand-side
scales as U2/L2, giving the ratio [UW/(HL)]/[U2/L2] = [W/H]/[U/L]. This
ratio is small, since ∂zw ∝ W/H equals the divergence of the ageostrophic
velocity.

We are then left with
Dg

Dt
(ζg + f) = −f0 (∂xu+ ∂yv) = f0∂zw. (B.4)

Since the horizontal velocities are geostrophic, they can be replaced with a
stream function ψ so that

ug = −∂yψ, vg = ∂xψ. (B.5)

Equation (B.4) then has two unknowns; the stream function ψ and the vertical
velocity w. We therefore include a second equation to close the system, namely
the thermodynamic equation.

∂tρ+ u · ∇ρ = D

Dt
ρ = 0. (B.6)

The density ρ is assumed to be nearly constant, so we divide the density into a
background density and a perturbation, writing ρ = ρ0(z) + ρ′(x, y, z, t). We
do the same decomposition of the pressure p = p0(z) + p′(x, y, z, t). We can
then write the hydrostatic balance as

∂zp0 = −gρ0, ∂zp
′ = −gρ′.

Keeping only the geostrophic components of the horizontal velocities, we can
write Equation (B.6) as

Dg

Dt
∂zp− wg∂zρ0 = 0,

where we have neglected the vertical advection of the perturbation density, since
this is much smaller than the advection of the background density. Hydrostatic
and geostrophic balance enables us to define the stream function as a function
of the pressure

ψ = p

f0ρ0
,

resulting in the equation
Dg

Dt
f0∂zψ + wN2 = 0. (B.7)
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B. Derivation of quasi-geostrophic equations

Combining Equation (B.4) and Equation (B.7), and thus eliminating w, we get

Dg

Dt

(
∇2ψ + ∂z

(
f2

0
N2 ∂zψ

)
+ βy

)
= 0. (B.8)

This is the QGPV Equation for baroclinic flow.

A lower boundary condition can be found from Equation (B.7). Vertical flow
at the lower boundary can come from either flow over topography or Ekman
pumping, yielding the lower boundary condition

f0

N2
Dg

Dt
∂zψ

∣∣∣∣
z=zb

= −ug · ∇hB − r∇2ψ. (B.9)

The first therm on the left hand-side is the vertical flow resulting from flow over
topography, while the second therm is the vertical velocity at the top of the
Ekman layer, which is proportional to the relative vorticity.
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