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A New Method to Balance Measurement Accuracy and Attribute 

Coverage in Cognitive Diagnostic Computerized Adaptive Testing

Abstract

As one of the important research areas of cognitive diagnosis assessment, cognitive diagnostic 

computerized adaptive testing (CD-CAT) has received much attention in recent years. 

Measurement accuracy is the major theme in CD-CAT and both the item selection method and 

the attribute coverage have a crucial effect on measurement accuracy. A new attribute coverage 

index, the ratio of test length to the number of attributes (RTA), is introduced in the current 

study. RTA is appropriate when the item pool comprises many items that measure multiple 

attributes where it can both produce acceptable measurement accuracy and balance the attribute 

coverage. With simulations, the new index is compared to the original item selection method 

(ORI) and the attribute balance index (ABI), which have been proposed in previous studies. 

The results show that: (1) the RTA method produces comparable measurement accuracy to the 

ORI method under most item selection methods; (2) the RTA method produces higher 

measurement accuracy than the ABI method for most item selection methods, with the 

exception of the mutual information item selection method; (3) the RTA method prefers items 

that measure multiple attributes, compared to the ORI and ABI methods, while the ABI prefers 

items that measure a single attribute; and (4) the RTA method performs better than the ORI 

method with respect to attribute coverage, while it performs worse than the ABI with long tests.

Keywords

Cognitive diagnostic computerized adaptive testing, the ratio of test length to the number of 

attributes, measurement accuracy, attribute coverage
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Introduction

Cognitive diagnosis assessment (CDA) has recently received much attention in 

educational and psychological assessment (Rupp & Templin, 2008). Compared to classical test 

theory and item response theory (IRT), which only provide an overall score to indicate the 

information about the position of one individual relative to others on one specific latent trait 

(de la Torre & Chiu, 2016), CDA can provide detailed information about the strengths and 

weaknesses of individuals for specific content domains. Consequently, efficient remediation 

can be conducted based on the fine-grained information available about individuals (Gierl, 

Leighton, & Hunka, 2007; Lim & Drasgow, 2017; Sawaki, Kim, & Gentile, 2009).

One important research area in CDA is cognitive diagnostic computerized adaptive testing 

(CD-CAT; Cheng, 2009; McGlohen & Chang, 2008; X. Xu, Chang, & Douglas, 2003). CD-

CAT combines a cognitive diagnostic model (CDM) and computer technology to improve 

testing efficiency and measurement accuracy. Like IRT-based CAT, CD-CAT has compelling 

advantages over traditional paper-and-pencil (P&P) tests. For example, the performance of 

individuals can be estimated immediately after they provide a response to each item (Cheng & 

Chang, 2009). CD-CAT can also provide equivalent or higher accuracy in the measurement of 

an individual’s latent skills, with reductions in test length.

The primary goal of CD-CAT is to improve the measurement accuracy of individuals 

(Zheng & Chang, 2016) and the item selection method is one of the most important keys to 

this. Numerous item selection methods have been proposed, such as the Kullback-Leibler 

method (KL; X. Xu et al., 2003), the Shannon Entropy method (Tatsuoka, 2002), the posterior-
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weighted KL method (PWKL; Cheng, 2009), the mutual information method (MI; Wang, 

2013), and the modified PWKL method (MPWKL; Kaplan, de la Torre, & Barrada, 2015). 

Recently, Zheng and Chang (2016) developed two new item selection methods designed for 

short-length tests: the posterior-weighted cognitive diagnostic index (PWCDI) and the 

attribute-level discrimination index (PWADI), based on previous work by Henson & Douglas 

(2005) and Henson, Roussos, Douglas, & He (2008).

In addition to the item selection method, the coverage for each attribute can also impact 

the measurement accuracy. Cheng (2010) indicated that attribute coverage influences both 

measurement accuracy and reliability, and it is important to make sure that each attribute is 

measured adequately to ensure the validity of the inferences based on the test. Therefore, she 

used the modified maximum global discrimination index (MMGDI) method, first used in IRT-

based CAT by Cheng and Chang (2009), to balance the attribute coverage and improve 

measurement accuracy. The simulation study showed that, compared with the original KL 

method, the MMGDI method produced a relatively higher attribute correct classification rate 

(ACCR) and pattern correct classification rate (PCCR).

When the minimum number of items that measure each attribute is not satisfied, the 

attribute balance index (ABI) used in Cheng (2010) tends to select items with a single attribute 

(Mao & Xin, 2013), which means that the ABI is suitable when the item pool is composed of 

many items that measure a single attribute. Measurement accuracy would however be lower if 

the item pool is comprised of many items that measure multiple attributes. Although a test with 

single-attribute items can produce high PCCR in the CDA framework (e.g. Madison & 

Bradshaw, 2015; Wang, 2013), it is difficult to construct such items because more than one 
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attribute is required to successfully solve items in real testing situations (DeCarlo, 2011; Huang, 

2018). An extreme case is when there are hierarchical relationships among attributes (Leighton, 

Gierl, & Hunka, 2004), where the ABI tends to produce low measurement accuracy. In addition, 

the ABI has only been used with the KL method and its performance with other item selection 

methods is unknown. Therefore, the current study proposes a new method — the modified ratio 

of test length to the number of attributes (RTA), influenced by the study conducted by Kuo, 

Pai, and de la Torre (2016) — to balance attribute coverage and improve measurement accuracy 

when the item pool comprises many multiple-attribute items. Furthermore, the study examines 

whether the RTA and ABI can be extended to more types of item selection methods.

The remainder of the paper is organized as follows: First, we will introduce the two CDMs 

used in the study and summarize the item selection methods used. After that, the ABI and RTA 

will be presented. Then, a simulation study is conducted to examine the RTA with respect to 

the correct classification rate conditional on several manipulated factors. Finally, the discussion 

and conclusions are presented.

Cognitive diagnostic models and item selection methods

Numerous CDMs have been proposed to deal with different test situations and with 

CD-CAT, the ‘‘Deterministic Input, Noisy ‘And’ Gate’’ (DINA) model (Junker & Sijtsma, 

2001) and the Reduced Reparameterized Unified Model (RRUM; Hartz, 2002) are commonly 

used (e.g., Chen, Xin, Wang, & Chang, 2012; Cheng, 2010; Huebner, Finkelman, & Weissman, 

2018; G. Xu, Wang, & Shang, 2016). Let denote the mastery of attribute k for individual i ik

and denote if the attribute k is required to answer item j correctly. The item response jkq

function (IRF) of the DINA model is then
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where  and sj and gj are item parameters. With the RRUM, the IRF is 1
jkK q

ij ikk
 


 

,   1* *

1

1| ik jk
K

q
ij i j jk

k

P x r  



  α

where and are the item parameters. The item selection method plays an important role in *
j *

jkr

CD-CAT and is the main determinant of ACCR and PCCR. This study uses the four item 

selection methods MI (Wang, 2013), MPWKL (Kaplan et al, 2015), PWCDI and PWADI 

(Zheng and Chang, 2016). For details on the interpretation of the cognitive diagnostic model 

parameters and the item selection methods, we refer to the supplementary material.

Attribute coverage indices

ABI. The ABI was proposed to make sure that each attribute was measured adequately to 

improve the correct classification rate (Cheng, 2010). It is defined as 

,  
1

jk
K q

j k k k
k

ABI B b B


 

where  is the minimum number of items that should measure the kth attribute and  is kB kb

the number of items that have already been selected to measure the kth attribute.

RTA. Kuo et al. (2016) proposed the RTA to ensure that each attribute is adequately 

measured when constructing a P&P cognitive diagnostic test. In this paper, we extend this 

method to CD-CAT and modify it to balance the attribute coverage. The RTA in a CD-CAT 

context can be written as

 ,
   

 1 2*
1

1 , min , , ,
1

j KV
k j vv

RTA H b b b
I H B I



   
   q q

L

where V refers to the number of items that have already been selected; I(∙) is the indicator 

function; and  and are the q-vectors of items that have not been and have already been jq *
vq
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given to a specific person, respectively.

The term  controls the usage of items that measure different numbers of *
j( )vI q q

attributes, and the relationship between H and Bk strives to ensure that each attribute is 

measured at least Bk times. If  is larger than 0 and H is no larger than Bk, then *
j1

( )V
vv

I


 q q

the value of  tends to be large. Consequently, the RTA becomes    *
1

V
k j vv

I H B I


  q q

small and the jth item will not be selected. Instead, items with different attribute patterns to the 

previously selected items will tend to be selected. On the other hand, when H is larger than Bk 

or is 0, then the RTA is equal to 1. In such a case, RTA will not affect the item *
j1

( )V
vv

I


 q q

selection method and therefore the items will then be selected based on the original item 

selection method.

The RTA criterion balances the attribute coverage and prefers multiple-attribute items. 

On the contrary, the ABI criterion balances the attribute coverage and prefers single-attribute 

items. Note that the RTA is determined by both H and , which means that, if *
j1

( )V
vv

I


 q q

H is larger than Bk (or is 0), then  (or H) can be ignored. *
j1

( )V
vv

I


 q q *
j1

( )V
vv

I


 q q

Therefore, the RTA criterion may not guarantee that each attribute is covered completely. In 

sum, we expect ABI to perform better than RTA regarding attribute coverage given a long 

enough test, with RTA performing better than ABI regarding measurement accuracy when the 

item pool contains many multiple-attribute items. Item selection methods that consider both 

the attribute coverage and the information that an item provides can be developed by 

multiplying the attribute coverage indices (ABI or RTA) and the original item selection 

methods, for example the MMGDI can be obtained by the multiplication ABI × KL.

Simulation study
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The goals of the simulation study are to examine the performance of the new attribute 

coverage index and examine whether the RTA and ABI can be extended to other item selection 

methods. Several factors are manipulated: model type, number of attributes, Q-matrix structure, 

test length, attribute coverage index, and item selection method. In total there are 2 (model 

type) × 2 (number of attributes) × 2 (Q-matrix structure) × 3 (test length) × 3 (attribute 

coverage index) × 4 (item selection method) = 288 conditions in the study. The details of the 

simulation study are given in the following.

Model type. Both the DINA model and the RRUM will be used in the current study since 

these two CDMs are commonly used in CD-CAT (e.g., Cheng, 2010; Huebner et al., 2018; 

Mao & Xin, 2013; G. Xu et al., 2016).

Number of attributes. Wang (2013) and Zheng and Chang (2016) used five attributes in 

their studies, while Cheng (2010) used six attributes in her study. In the current study, both five 

and six attributes are considered to examine the performance of RTA and ABI.

Q-matrix structure. Two types of Q-matrix are generated in this study, namely simple 

structure and complex structure (Chen et al., 2012; Huang, 2018; Wang, 2013). For the simple 

structure Q-matrix, all items are unidimensional, meaning that each item measures a single 

attribute. This Q-matrix is generated based on a discrete uniform distribution with equal 

probability for all possible patterns. Meanwhile, for the complex structure Q-matrix between 

one and three attributes are measured by each item. The generation of the complex structure 

Q-matrix is based on Chen et al. (2012) and can be summarized as follows. First, three basic 

matrix units are generated. The first matrix unit is a K-by-K identity matrix, while the second 

and third matrix units are comprised of all possible q-vectors that measure two and three 
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attributes, respectively. Second, the first matrix unit is replicated twenty times while the second 

and third matrix units are replicated ten times. This results in 100 items that each measure one, 

two, and three attributes, respectively. Third, the items are merged to create a 300-by-K matrix, 

and the rows of the 300-by-K matrix are randomly re-ordered.

Test length. Three different test lengths (10, 20, and 30 items) will be used in this study. 

We view these as short-length, moderate-length, and long-length tests, similar to previous 

research (e.g., Kuo et al., 2016).

Attribute coverage index (ACI). Three types of ACI will be used in the study. The first 

type is the original item selection method without attribute coverage control (abbreviated to 

ORI), which can be treated as the baseline. The second type is the ABI proposed by Cheng 

(2010) and the last type is the RTA which is proposed in the current study.

Item selection method. The item selection methods used in this study are the MI, MPWKL, 

PWADI, and PWCDI methods. All these methods can produce high correct classification rates 

even for short-length test.

Since the generation of the α-matrix for five and six attributes are the same, we will only 

describe the generation of the α-matrix for five attributes. A 1000-by-5 matrix is generated to 

represent the true attribute patterns (α-matrix). Each individual can master each attribute with 

probability equal to .5 and we assume independence among individuals and independence 

among attributes in the α-matrix. For the item parameters, both slipping and guessing 

parameters were generated from a uniform distribution U(.05, .30) for the DINA model, and 

the baseline and penalty parameters were generated from U(.65, .95) and U(.05, .50), 

respectively, for the RRUM. During the item selection procedure, the minimum number of 

Page 8 of 57

http://mc.manuscriptcentral.com/apm

Applied Psychological Measurement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



9

items that measure each attribute was set to 3 because previous studies demonstrated that each 

attribute should be measured at least three times in the CDA framework (e.g. Fang, Liu, & 

Ying, 2019; Gu & G. Xu, 2019; G. Xu, 2017). Finally, the expected a posteriori (EAP) method 

is used to estimate the attribute patterns. Twenty replications for each condition are used in 

current study.

The evaluation criteria used in this study are averaged ACCR (A-ACCR), PCCR, and the 

usage of k-attribute items (Kuo et al., 2016). These statistics are calculated by

, 
1

ˆ
N

i i
i

PCCR I N


  α α

, and   
1 1

ˆ-
N K

ik ik
i k

A ACCR I N K 
 

  

,   *
1 1 1

, 1, 2, ,N J K
k ijhi j h

Usage I q k N J k K
  

      L

where N and J are the number of individuals and test length, respectively; I(∙) is the indicator 

function, which will be 1 if (or ) is true, and vice versa;  and  are the ˆi iα α ˆik ik  ˆiα iα

estimated and true values of an individual’s attribute pattern, respectively;  is the hth entry *
ijhq

of q-vector for item j that has already been answered by individual i. In addition, the empirical 

standard errors (SEs) for PCCR and A-ACCR,  (where is the  2

1

1 ˆ
1

simn

i
isim

SE
n

 


 
  simn

number of replications, and are the ith estimation and the mean value of PCCR and ACCR, î 

respectively), are calculated to evaluate the uncertainty of these two indices (Morris, White, & 

Crowther, 2019).
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Table 1. Correct classification rate for the DINA model (K = 5)
Item Attribute J = 10 J = 20 J = 30

selection coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method

Q
matrix

index Est SE Este SE Est SE Est SE Est SE Est SE
ORI .752 .015 .945 .003 .891 .013 .978 .003 .953 .007 .991 .001 
ABI .704 .011 .932 .003 .920 .013 .984 .003 .958 .007 .992 .001 

simple

RTA .712 .015 .934 .004 .917 .008 .983 .002 .959 .006 .992 .001
ORI .694 .014 .926 .004 .881 .012 .974 .003 .948 .005 .989 .001 
ABI .699 .008 .931 .003 .901 .015 .979 .004 .959 .008 .991 .002 

MI

complex

RTA .695 .013 .924 .004 .868 .011 .970 .003 .952 .006 .990 .001
ORI .844 .012 .966 .003 .986 .003 .997 .001 .999 .001 1.00 .000 
ABI .835 .010 .964 .002 .980 .006 .996 .001 .999 .001 1.00 .000 

simple

RTA .838 .007 .965 .002 .987 .004 .997 .001 .999 .001 1.00 .000
ORI .860 .006 .966 .002 .988 .003 .997 .001 .998 .001 1.00 .000 
ABI .798 .014 .955 .003 .982 .004 .996 .001 .998 .001 1.00 .000 

MPWKL

complex

RTA .852 .014 .963 .004 .986 .004 .997 .001 .998 .002 1.00 .000
ORI .847 .015 .967 .003 .987 .004 .997 .001 .999 .001 1.00 .000 
ABI .831 .011 .964 .002 .979 .004 .996 .001 .999 .001 1.00 .000 

simple

RTA .845 .013 .966 .003 .985 .005 .997 .001 .999 .001 1.00 .000
ORI .833 .011 .954 .004 .981 .004 .995 .001 .997 .001 .999 .000 
ABI .789 .014 .952 .003 .982 .004 .996 .001 .998 .002 .999 .000 

PWADI

complex

RTA .827 .014 .951 .005 .980 .004 .995 .001 .998 .001 1.00 .000
ORI .843 .014 .966 .003 .989 .003 .998 .001 .999 .001 1.00 .000 
ABI .824 .013 .962 .003 .980 .003 .996 .001 .999 .001 1.00 .000 

simple

RTA .843 .013 .966 .003 .988 .004 .997 .001 .999 .001 1.00 .000
ORI .858 .011 .965 .003 .985 .004 .997 .001 .998 .001 1.00 .000 
ABI .803 .011 .956 .003 .983 .002 .996 .001 .998 .002 1.00 .000 

PWCDI

complex

RTA .846 .016 .960 .004 .984 .003 .996 .001 .998 .001 1.00 .000
Note. MI refers to mutual information method; MPWKL refers to modified posterior-weighted 
Kullback-Leibler method; PWADI refers to posterior-weighted attribute-level discrimination index; 
and PWCDI refers to posterior-weighted cognitive diagnostic index; ORI refers to original item 
selection method without attribute coverage control; ABI refers to Cheng’s (2010) method; RTA refers 
to the ratio of test length to the number of attributes; PCCR refers to pattern correct classification rate; 
A-ACCR refers to averaged attribute correct classification rate; Est refers to the estimate, SE is standard 
error.

Results

Correct classification rate

Tables 1 and 2 present the correct classification rates and the corresponding empirical 

standard errors (SEs) for the DINA model and the RRUM, respectively, conditional on five 

attributes. Table 1 shows that all three attribute coverage indices produce similar PCCRs and 

A-ACCRs for the long-length test (J = 30). When test lengths are short (J = 10) and moderate 
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11

(J = 20), some differences are found between ORI, ABI, and RTA. The ABI, in general, 

produces higher PCCRs and A-ACCRs than ORI and RTA for moderate- and long-length tests 

with the MI method, while the RTA performs as well as or even better than ABI with other 

three item selection methods regardless of test length and Q-matrix structure. To examine 

which factors (attribute coverage index, test length, and Q-matrix structure) have a significant 

effect on the measurement accuracy, four repeated measures ANOVAs are conducted for the 

item selection methods, respectively. Results show that all main effects, second- and third-

order interaction effects are statistically significant for the MI method, the partial etas ( ) 2
p

range from .085 (attribute coverage index) to .996 (test length), and the ABI performs 

significantly better than RTA for complex-structure Q-matrix and moderate- and long-length 

tests. For short-length tests, RTA produces significantly higher PCCR than ABI for a simple-

structure Q-matrix, while RTA produces relatively lower PCCR than ABI for a complex-

structure Q-matrix. With MPWKL and PWADI, all main effects, second- and third-order 

interaction effects are statistically significant, with the exception of main effect of Q-matrix 

structure and second-order interaction effect between test length and Q-matrix structure. The 

 range from .101 (interaction effect between attribute coverage index and Q-matrix 2
p

structure with PWADI method) to .998 (test length with MPWKL method) for the significant 

effects, and the RTA performs significantly better than ABI for complex-structure Q-matrix 

and short- and moderate-length tests with both MPWKL and PWADI. Similar to the MI method, 

all effects are significant for the PWCDI method, and the  range from .052 (interaction 2
p

effect between attribute coverage index and Q-matrix structure) to .997 (test length), and the 

RTA performs significantly better than ABI for complex-structure Q-matrix and short-length 
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tests and for a simple-structure Q-matrix and moderate-length tests. In addition, the empirical 

SEs are small for all conditions, indicating that the estimates of PCCRs and A-ACCRs are 

stable.

Table 2. Correct classification rate for the RRUM (K = 5)
Item Attribute J = 10 J = 20 J = 30

selection coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method

Q
matrix

index Est SE Este SE Est SE Est SE Est SE Est SE
ORI .745 .014 .943 .003 .892 .014 .977 .003 .955 .007 .991 .002 
ABI .697 .012 .931 .003 .909 .008 .981 .002 .958 .005 .991 .001 

simple

RTA .698 .015 .930 .003 .912 .009 .982 .002 .957 .005 .991 .001
ORI .705 .013 .930 .004 .872 .009 .971 .002 .943 .008 .988 .001 
ABI .689 .012 .928 .003 .884 .012 .975 .003 .943 .009 .988 .002 

MI

complex

RTA .697 .016 .927 .004 .862 .011 .969 .003 .938 .007 .987 .002
ORI .836 .013 .965 .003 .984 .004 .997 .001 .998 .001 1.00 .000 
ABI .824 .009 .962 .002 .977 .005 .995 .001 .998 .001 1.00 .000 

simple

RTA .835 .011 .964 .003 .984 .004 .997 .001 .998 .001 1.00 .000
ORI .849 .010 .965 .003 .980 .004 .996 .001 .997 .002 .999 .000 
ABI .784 .016 .951 .004 .976 .005 .995 .001 .996 .002 .999 .000 

MPWKL

complex

RTA .841 .010 .962 .002 .976 .006 .995 .001 .996 .002 .999 .000
ORI .831 .011 .963 .002 .985 .003 .997 .001 .998 .001 1.00 .000 
ABI .825 .013 .962 .003 .978 .004 .995 .001 .998 .001 1.00 .000 

simple

RTA .832 .012 .964 .003 .983 .005 .997 .001 .998 .001 1.00 .000
ORI .836 .011 .959 .003 .980 .004 .995 .001 .996 .002 .999 .000 
ABI .768 .011 .948 .003 .973 .006 .994 .002 .996 .002 .999 .000 

PWADI

complex

RTA .831 .012 .959 .003 .978 .003 .995 .001 .995 .002 .999 .001
ORI .839 .013 .965 .003 .984 .004 .997 .001 .998 .002 1.00 .000 
ABI .826 .011 .962 .003 .977 .005 .995 .001 .998 .001 1.00 .000 

simple

RTA .829 .012 .963 .003 .982 .004 .996 .001 .998 .001 1.00 .000
ORI .842 .009 .963 .002 .981 .005 .996 .001 .997 .001 .999 .000 
ABI .780 .012 .951 .003 .972 .005 .994 .001 .995 .003 .999 .001 

PWCDI

complex

RTA .835 .011 .961 .003 .975 .004 .995 .001 .995 .003 .999 .001

The results in Table 2 exhibit a similar pattern to that observed with the RRUM model: 

the ABI performs better than ORI and RTA for moderate- and long-length tests for the MI 

method while it performs worse for short-length tests. In addition, both RTA and ORI produce 

larger PCCRs than ABI for short- and moderate-length tests for the MPWKL, PWADI, and 

PWCDI methods. Moreover, all of these three attribute coverage indices produce very similar 

PCCRs when the test length is long. Furthermore, the RTA produces a lower A-ACCR than 
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ABI for the MI method, while it produces an identical or larger A-ACCR than ABI for most 

conditions. All main effects and second- and third-order interaction effects are statistically 

significant, with the exception of the second-order interaction effect between test length and 

Q-matrix structure for the MPWKL method, and the  range from .046 (interaction effect 2
p

between attribute coverage index and Q-matrix structure with MI method) to .998 (test length 

with PWADI method) for the significant effects. Finally, the empirical SEs are small and the 

corresponding estimates are stable.

The PCCR and A-ACCR for six attributes are presented in the supplementary material 

and the results can be summarized as follows: (1) The ABI, in general, produces higher PCCRs 

and A-ACCRs than RTA for the MI method; (2) the RTA and ORI methods produce higher 

PCCRs and A-ACCRs than ABI with the MWPKL, PWADI, and PWCDI methods regardless 

of Q-matrix structure and test length; (3) all the third-order interaction effects are significant, 

and the  range from .251 (for RRUM and PWCDI method condition) to .534 (for DINA 2
p

model and MWPKL method condition); (4) with the increase of test length, the SEs are 

decreased for all conditions.

The usage of items

Since all of the items in the simple-structure Q-matrix are single-attribute, all item 

selection methods select single-attribute items, which results in no differences in the usage of 

items that measure k-attributes for ORI, ABI, and RTA. Therefore, the details will not be 

presented. Table 3 presents the usage of items that measure k-attributes for five attributes and 

with the complex-structure Q-matrix. The usage of items that measure k-attributes for six 

attributes is consistent with the results with five attributes, and the details can be accessed in 
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the supplementary material. Unsurprisingly, the RTA method selects the least items that 

measure a single attribute in most of the conditions, followed by the ORI method. The ABI 

method uses the most items that measure a single attribute. Specifically, 

Table 3. The usage of items measures k-attribute for five attributes and complex Q-matrix

J = 10a J = 20a J = 30a

model
item 

selection 
method

attribute 
coverage 

index 1-A 2-As 3-As 1-A 2-As 3-As 1-A 2-As 3-As

ORI .489 .381 .131 .507 .337 .156 .528 .306 .166
ABI .864 .063 .074 .738 .178 .084 .633 .245 .122

MI

RTA .420 .433 .147 .436 .397 .167 .490 .339 .171
ORI .468 .366 .166 .400 .373 .227 .408 .358 .233
ABI .888 .077 .036 .671 .212 .117 .540 .291 .168

MPWKL

RTA .435 .396 .169 .377 .393 .230 .397 .369 .233
ORI .368 .406 .226 .360 .388 .253 .386 .368 .246
ABI .833 .130 .037 .622 .243 .135 .513 .307 .180

PWADI

RTA .359 .421 .220 .346 .402 .253 .379 .376 .245
ORI .431 .385 .184 .387 .377 .236 .404 .358 .238
ABI .882 .083 .035 .665 .215 .119 .538 .291 .171

DINA

PWCDI

RTA .405 .408 .187 .367 .395 .239 .394 .367 .239
ORI .480 .395 .125 .443 .396 .161 .430 .392 .178
ABI .932 .032 .036 .729 .189 .082 .574 .299 .127

MI

RTA .410 .411 .179 .377 .422 .200 .396 .406 .198
ORI .492 .355 .153 .427 .381 .192 .413 .381 .206
ABI .875 .090 .035 .662 .231 .107 .524 .316 .160

MPWKL

RTA .434 .390 .175 .385 .408 .207 .399 .391 .211
ORI .434 .380 .186 .402 .392 .205 .400 .387 .213
ABI .829 .135 .036 .622 .260 .118 .504 .330 .166

PWADI

RTA .406 .393 .201 .372 .408 .219 .392 .391 .217
ORI .475 .365 .160 .418 .385 .197 .409 .382 .208
ABI .866 .099 .036 .653 .236 .111 .519 .319 .163

RRUM

PWCDI

RTA .427 .391 .182 .381 .408 .212 .396 .391 .213
Note. k-A(s) means items measure k attribute(s);

a 4-As and 5-As equal to 0 for all conditions.

the proportion of items that measure a single attribute ranges from .346 to .490, .360 to .528, 

and .504 to .930 for the RTA, ORI, and ABI criteria, respectively. In addition, among these 

three attribute coverage indices, the RTA method produces the largest proportions of items that 

measure two and three attributes, followed by the ORI method, and the ABI method yields the 

smallest proportions of items that measure two and three attributes. These results can be 
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expected since the RTA criterion tends to choose items that measure different attributes to the 

already administered items. The ABI criteria, on the contrary, tends to penalize items that 

measure multiple attributes by taking the product of deviances for all attributes. Consequently, 

items that measure a single attribute tend to be selected by the ABI criteria.

Coverage of attributes

Table 4 lists the proportion of individuals who have been administered at least three times 

measuring each attribute for moderate- and long-length tests. The results are omitted for the 

short-length test (i.e. J = 10) because all three attribute coverage indices do not satisfy the 

attribute coverage requirement. The ABI can ensure that most of the tests satisfy the attribute 

coverage regardless of number of attributes, model type, Q-matrix structure, item selection 

method, and test length, while RTA performs worse than ABI but better than the ORI. 

Repeated measures ANOVAs are conducted to investigate the differences among ORI, ABI, 

and RTA. The results show that most main effects, second-, third- and fourth-order 

interaction effects are significant under the DINA model, and most of the  are larger 2
p

than .50. Although the differences between ABI and RTA are significant for some conditions, 

the  range from .001 to .114, which indicates that stronger evidence is needed to support 2
p

differences between ABI and RTA. For the RRUM, all main effects and second-, third- and 

fourth-order interaction effects are significant, and the  range from .797 to .999. In 2
p

addition, all of the main effects of attribute coverage index, test length, and number of 

attributes are significant for all item selection methods, and all of the  are larger 2
p

than .950. Although the fourth-order interaction effects are significant for all item selection 

methods, the partial etas are small and range from .002 to .065. Furthermore, the third-order 
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i n t e r a c t i o n  e f f e c t s  a m o n g  a t t r i b u t e  c o v e r a g e
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Table 4. Overall percentage for moderate- and long-length tests
J = 20 J = 30Number

of
attributes

Model
type

Q
matrix

Attribute
coverage

index
MI MPWKL ADI CDI MI MPWKL ADI CDI

ORI .357 .846 .842 .851 .881 .997 .998 .997 
ABI .986 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

simple

RTA 1.00 .892 .891 .892 1.00 .999 1.00 .999
ORI .772 .940 .956 .945 .974 .998 .999 .998 
ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

DINA

complex

RTA 1.00 .965 .976 .969 1.00 1.00 1.00 1.00
ORI .326 .812 .813 .817 .867 .996 .996 .996 
ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

simple

RTA 1.00 .872 .876 .871 1.00 .999 .999 .999
ORI .795 .910 .919 .910 .977 .996 .995 .995 
ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

K = 5

RRUM

complex

RTA 1.00 .981 .984 .982 1.00 1.00 1.00 1.00
ORI .034 .468 .464 .463 .495 .983 .984 .985 
ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

simple

RTA 1.00 .516 .507 .507 1.00 .993 .959 .961
ORI .714 .775 .823 .793 .971 .988 .988 .987 
ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

DINA

complex

RTA .935 .828 .860 .834 1.00 .995 .987 .983
ORI .020 .327 .318 .322 .430 .957 .953 .957 
ABI 1.00 1.00 1.00 1.00 .993 1.00 1.00 1.00 

simple

RTA 1.00 .427 .357 .418 1.00 .985 .952 .922
ORI .569 .721 .755 .733 .865 .974 .981 .977 
ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

K = 6

RRUM

complex

RTA .900 .804 .794 .805 1.00 .999 .986 .972

Note. The results are omitted for the short-length test (i.e. J = 10) because all three attribute coverage indices do not satisfy the attribute coverage requirement.
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index, number of attributes, and test length are significant for all item selection methods, and 

the corresponding  are at the range of .969 and .980, and the ABI performs better than the 2
p

RTA at six attributes and moderate-length tests.

Discussion and conclusions

The goals of this study are to develop a new attribute coverage method, RTA, to deal with 

empirical situations when more than one attribute is involved in successfully solving a test item 

(DeCarlo, 2011; Huang, 2018) and to examine the performance of both ABI and RTA when 

different item selection methods are used. A simulation study is conducted to examine the 

performance of RTA and ABI, and promising results are produced.

The results show that the RTA produces lower PCCRs than ABI for moderate- and long-

length tests with the MI method, especially with a complex structure Q-matrix. On the contrary, 

the RTA produces relatively high PCCRs than the ABI for short- and moderate-length tests 

with the MPWKL, PWADI, and PWCDI methods. A possible explanation is that both the MI 

method and the ABI criterion prefer single-attribute items, while the RTA and three other item 

selection methods tend to use fewer single-attribute items than ABI and MI method. As 

Madison and Bradshaw (2015) and Huebner et al. (2018) demonstrated, the more single-

attribute items there are in a test, the higher the measurement accuracy is for long-length tests. 

Therefore, the RTA can be expected to produce lower measurement accuracy since fewer 

single-attribute items are used for the MI method. As for the MPWKL, PWADI, and PWCDI 

methods, the differences between the usage of items that measure one and two attributes are 

small, meaning that these item selection methods prefer items that measure either one or two 

attributes. Therefore, when the ABI criteria, which prefers the single-attribute items, is added 

Page 18 of 57

http://mc.manuscriptcentral.com/apm

Applied Psychological Measurement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



19

to these three item selection methods, information provided by two-attribute items may be lost 

and, consequently, lower measurement accuracy is produced for the ABI compared to the ORI 

and RTA criteria. Meanwhile, a possible reason why the ABI performs worst in most 

conditions for short-length tests (J = 10) is that it is hard to satisfy the minimum number of 

items that measure each attribute when the test length is short. Although previous studies 

demonstrated that tests containing more single-attribute items tend to produce higher 

measurement accuracy (Huebner et al., 2018; Madison & Bradshaw, 2015), the prerequisite 

for a high measurement accuracy is that the test length is long enough.

Moreover, the results show that the ABI is not suitable for all item selection methods. In 

the current study, the ABI is suitable for the MI method, while it is unsuitable for the MPWKL, 

PWADI, and PWCDI methods. In the study of Cheng (2010), the combination between ABI 

and KL method (MMGDI) can produce higher measurement accuracy than the original KL 

method (MGDI). Since both the ABI criterion and KL/MI methods prefer single-attribute items 

rather than multiple-attribute items, using the ABI criterion further reinforces the tendency of 

the KL and MI methods to select single-attribute items. Hence, the combination between the 

ABI criterion and the original item selection methods would produce high measurement 

accuracy if the original item selection methods prefer single-attribute items. On the flipside, 

low measurement accuracy would be produced if more than one attribute is preferred by the 

original item selection methods (e.g. MPWKL, PWADI and PWCDI).

It’s worth noting that, although the RTA criteria produces higher measurement accuracy 

than the ABI criteria with the MPWKL, PWADI, and PWCDI methods, this does not indicate 

that the RTA performs better than ABI for all situations. By examining the ABI and RTA 
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criteria, the ABI tends to penalize items that measure multiple attributes, while the RTA tends 

to select items that measure multiple attributes. Therefore, it is reasonable to infer that the 

composition of items that measure different number of attributes in the item pool have an 

important influence on these two criteria. The RTA performs better than ABI if there is a large 

number of multiple-attribute items in the item pool. Meanwhile, the ABI performs better than 

RTA if there is a majority of single-attribute items, producing higher measurement accuracy 

than RTA for all conditions.

The results also show that the ABI performs better than the RTA for moderate- and long-

length tests concerning the attribute coverage, which coincides with our expectation. As stated 

previously, the formulation of the RTA is determined by two components. One is used to 

control the usage of items that measure different numbers of attributes and the other is used to 

control the attribute coverage. When one of the components is satisfied, the other component 

is ignored. For instance, when the summation of the first component is zero, the component 

that controls the attribute coverage is ignored and consequently the attribute coverage will not 

be satisfied.

In conclusion, the new attribute coverage control method—RTA—is suitable for 

controlling the attribute coverage and producing acceptable measurement accuracy when the 

item pool is comprised of a large number of items that measure multiple attributes, which is a 

common phenomenon in empirical testing situations (DeCarlo, 2011; Huang, 2018). The ABI, 

on the other hand, is appropriate for test situations when the majority of an item pool is 

comprised of single-attribute items. Furthermore, the ABI is suitable for item selection methods 

that prefer single-attribute items, such as the KL method (Cheng, 2010) and the MI method, 
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but is not suitable for methods that prefer both single- and multiple- attributes items such as 

the MPWKL, PWADI, and PWCDI methods.

Although some promising results are found in the current study, several remaining open 

issues deserve further studies. First, we assume that the minimum number of items that measure 

each attribute are the same for all attributes. Considering that different attributes may carry 

different importance, this is not a necessary constraint and further studies can take the 

importance of each attribute into consideration to further investigate the performance of 

attribute coverage methods in CD-CAT. Second, fixed-length tests were used in the current 

study. Therefore, everyone was administered the same test length. Future studies can examine 

the performance of RTA when the test length is different for each individual (variable-length 

tests). Third, both the DINA model and the RRUM are specific CDMs and some constraints 

imposed on these specific CDMs are (a) only a single model is available across the entire test 

and (b) either compensatory or non-compensatory relationships is assumed for the test (Ravand, 

2016). General CDMs relax these constraints and therefore a general CDM can be used in 

future studies.
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Supplementary material

CDMs

The item response function (IRF) of the DINA model can be written as 

,    11| 1 ij ij
ij ij j jP x s g

    

where is the ideal response, which indicates whether the individual  1
jkK q

ij ikk
 


 

masters all the attributes that a specific item requires; is the slip parameter, which js

indicates the probability of an individual who has mastered all the attributes that are 

required for item j to obtain an incorrect response and is the guess parameter, which jg

indicates the probability of an individual who has not mastered all the required 

attributes to obtain a correct response for item j.

The IRF of the RRUM can be expressed as

,   1* *

1

1| ik jk
K

q
ij i j jk

k

P x r  



  α

where is the baseline parameter, which refers to the probability of correct response *
j

to item j when individuals master all the attributes that item j requires. Meanwhile,  *
jkr

is the penalty parameter, which indicates the reduction in the probability of correct 

response to item j when individuals lack attribute k. Both and range from 0 to 1.*
j *

jkr
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Item selection methods

Mutual information (MI) method. The MI method in CD-CAT has been proposed 

as an item selection method for short-length tests. It is defined as the expected KL 

divergence between the joint distribution of the posterior distribution of attribute 

pattern α given the first j−1 items, , and the posterior predictive probability  1| j α X

of the jth item given all previous j−1 items, , and the product of the  1|ij jP X x  X

marginal distributions of and  (Wang, 2013). The MI  1| j α X  1|ij jP X x  X

index can be written as

,     
 

1 2
1

1 1
0 1 1

| ,X
| | ,X log

|

K

c j ij
ij ij j c j ij

x c c j

x
MI P X x x







 
  

  
     

    
 

α X
X α X

α X

where  can be calculated as  1|ij jP X x  X

,     
   
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

X α α
X α α X

X α α

and  is the posterior probability conditional on the first j items. 1| ,Xc j ij x  α X

Modified posterior-weighted Kullback-Leibler (MPWKL) method. The MPWKL 

method is a modification of the PWKL method. The PWKL method uses the point 

estimate to represent an individual’s posterior probability of the attribute patterns given 

the response pattern. The MPWKL method, on the other hand, uses the entire rather 

than a single posterior distribution of attribute pattern(s) to represent the KL divergence 

between the current estimate of the attribute pattern and other attribute patterns; 

therefore, it can be expected that the MPWKL method can provide more information 

and produce smaller measurement error of the posterior probability about individuals 
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than the PWKL method (Kaplan et al., 2015). The MPWKL index can be calculated as

.
 
       

2 2 1

1 1
1 1 0

|
log | | |

|

K K

ij d
ij ij d c n d n

d c x ij c

P X x
MPWKL P X x

P X x
  

  

              
  

α
α α X α X

α

Posterior-weighted cognitive diagnostic index (PWCDI) and posterior-weighted 

attribute-level discrimination index (PWADI) methods. Henson and colleagues (2005, 

2008) proposed CDI and ADI to construct cognitive diagnostic testing in a P&P context 

and Zheng and Chang (2016) extended them to CD-CAT. And based on the same logic 

as the PWKL method, Zheng and Chang (2016) proposed the PWCDI and PWADI 

methods, which can be written as

 
  1

1
1 ,

,j u v juvu v
u vu v

PWCDI h PWD
h



 
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α α
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where is the Hamming distance between attribute patterns  1
, K

u v uk vkk
h


 α α α α

and , and refers to any pair of attribute patternsuα ( , 1, 2, , 2 )K
v u v α L  , 1u vh α α uα

and with the Hamming distance equal to 1; and are either the IRFs vα  
u jP Xα  

v jP Xα

of the DINA model or the RRUM, and is the posterior probability of all attribute   α

patterns (2K).

Items with the largest value will be administered to an individual for those item 
selection methods mentioned above.
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Results
Table A. Correct classification rate for the DINA model (K = 6)

Item Q Attribute J = 10 J = 20 J = 30
selection matrix coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method index Est SE Est SE Est SE Est SE Est SE Est SE

MI simple ORI .672 .019 .936 .004 .818 .014 .967 .003 .905 .009 .984 .002
ABI .649 .014 .930 .003 .874 .007 .978 .001 .928 .009 .988 .002
RTA .649 .018 .930 .004 .872 .012 .978 .002 .928 .006 .988 .001

complex ORI .538 .012 .893 .004 .792 .013 .959 .003 .896 .008 .981 .002
ABI .576 .011 .913 .003 .825 .010 .968 .002 .915 .008 .985 .001
RTA .556 .015 .899 .004 .775 .011 .955 .002 .894 .008 .980 .002

MPWKL simple ORI .742 .013 .951 .003 .966 .005 .994 .001 .996 .003 .999 .000
ABI .734 .012 .950 .003 .925 .008 .987 .002 .995 .003 .999 .000
RTA .743 .015 .952 .003 .963 .005 .994 .001 .995 .002 .999 .000

complex ORI .759 .013 .948 .003 .965 .004 .993 .001 .996 .003 .999 .000
ABI .693 .016 .940 .003 .939 .007 .988 .001 .995 .002 .999 .000
RTA .752 .011 .944 .003 .962 .006 .993 .001 .994 .002 .999 .000

PWADI simple ORI .734 .011 .950 .002 .967 .004 .994 .001 .994 .003 .999 .000
ABI .735 .013 .950 .003 .928 .009 .988 .002 .995 .003 .999 .000
RTA .737 .014 .950 .003 .964 .006 .994 .001 .992 .003 .999 .000

complex ORI .713 .016 .927 .004 .955 .006 .989 .001 .992 .002 .998 .001
ABI .688 .018 .936 .004 .942 .007 .988 .001 .994 .003 .999 .001
RTA .711 .010 .927 .003 .946 .009 .988 .002 .992 .004 .998 .001

PWCDI simple ORI .735 .014 .950 .003 .965 .005 .994 .001 .995 .002 .999 .000
ABI .734 .013 .950 .003 .927 .006 .987 .001 .995 .002 .999 .000
RTA .736 .012 .950 .003 .966 .005 .994 .001 .992 .003 .999 .001

complex ORI .750 .014 .943 .004 .968 .006 .994 .001 .995 .003 .999 .000
ABI .700 .015 .940 .003 .939 .006 .988 .001 .994 .002 .999 .000

　 　 RTA .747 .016 .943 .006 .961 .007 .992 .002 .993 .003 .999 .000
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Table B. Correct classification rate for the RRUM (K = 6)

Item Attribute J = 10 J = 20 J = 30
selection coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method

Q
matrix

index Est SE Est SE Est SE Est SE Est SE Est SE
MI simple ORI .631 .016 .927 .004 .797 .014 .963 .003 .892 .008 .981 .001

ABI .601 .017 .919 .004 .851 .010 .974 .002 .894 .011 .982 .002
RTA .598 .015 .918 .004 .849 .013 .973 .002 .916 .006 .985 .001

complex ORI .571 .014 .906 .003 .770 .010 .955 .002 .882 .009 .978 .002
ABI .557 .019 .907 .004 .765 .013 .956 .003 .848 .010 .971 .002
RTA .572 .016 .906 .004 .765 .013 .953 .003 .873 .011 .976 .002

MPWKL simple ORI .704 .015 .943 .003 .954 .006 .992 .001 .991 .004 .998 .001
ABI .699 .015 .942 .003 .902 .009 .983 .002 .990 .003 .998 .001
RTA .701 .014 .942 .003 .948 .008 .991 .001 .989 .003 .998 .001

complex ORI .728 .013 .942 .003 .954 .008 .991 .002 .990 .003 .998 .001
ABI .660 .014 .931 .003 .919 .009 .985 .002 .988 .004 .998 .001
RTA .712 .013 .937 .003 .943 .009 .989 .002 .990 .003 .998 .001

PWADI simple ORI .706 .012 .943 .003 .951 .008 .992 .001 .992 .002 .999 .000
ABI .700 .012 .943 .003 .904 .011 .983 .002 .990 .003 .998 .001
RTA .706 .016 .943 .003 .943 .011 .990 .002 .987 .003 .998 .001

complex ORI .704 .014 .932 .004 .947 .006 .989 .002 .989 .004 .998 .001
ABI .666 .014 .931 .004 .915 .007 .983 .002 .987 .003 .997 .001
RTA .700 .013 .931 .004 .942 .007 .988 .001 .988 .003 .998 .001

PWCDI simple ORI .710 .013 .944 .003 .951 .006 .992 .001 .990 .003 .998 .001
ABI .698 .013 .942 .003 .900 .011 .982 .002 .989 .003 .998 .001
RTA .714 .014 .945 .003 .951 .008 .992 .001 .987 .003 .998 .001

complex ORI .726 .014 .940 .003 .951 .007 .991 .001 .991 .002 .998 .000
ABI .665 .011 .932 .002 .917 .010 .984 .002 .988 .003 .998 .001

　 　 RTA .715 .015 .937 .003 .943 .008 .989 .002 .990 .003 .998 .001
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Table C. The usage of items that measuring k-attribute for six attributes and complex Q-matrix
J = 10a J = 20a J = 30a

model
item 

selection 
method

attribute 
coverage 

index 1-A 2-As 3-As 1-A 2-As 3-As 1-A 2-As 3-As

ORI .450 .359 .191 .445 .343 .212 .465 .326 .209
ABI .935 .033 .032 .845 .086 .069 .650 .213 .137

MI

RTA .417 .388 .195 .356 .416 .228 .418 .366 .216
ORI .426 .335 .238 .374 .356 .270 .382 .353 .266
ABI .875 .090 .035 .769 .132 .098 .578 .241 .181

MPWKL

RTA .393 .368 .239 .326 .394 .280 .361 .369 .270
ORI .314 .377 .308 .312 .381 .307 .351 .365 .284
ABI .780 .177 .042 .680 .192 .128 .528 .272 .200

PWADI

RTA .298 .398 .304 .287 .401 .312 .351 .365 .284
ORI .401 .343 .256 .357 .363 .280 .376 .353 .271
ABI .870 .094 .036 .765 .134 .100 .577 .241 .183

DINA

PWCDI

RTA .373 .369 .258 .315 .395 .290 .375 .355 .270
ORI .479 .331 .190 .403 .407 .190 .378 .429 .193
ABI .935 .034 .031 .836 .113 .052 .432 .347 .221

MI

RTA .441 .360 .200 .320 .451 .229 .331 .452 .218
ORI .443 .354 .204 .354 .426 .220 .342 .434 .224
ABI .798 .170 .032 .700 .211 .089 .522 .321 .158

MPWKL

RTA .416 .372 .212 .312 .445 .244 .318 .447 .235
ORI .354 .401 .245 .318 .443 .239 .325 .443 .232
ABI .786 .179 .035 .683 .219 .097 .509 .328 .163

PWADI

RTA .346 .405 .249 .303 .445 .251 .408 .391 .202
ORI .415 .364 .221 .345 .430 .226 .337 .435 .228
ABI .796 .171 .033 .694 .213 .094 .518 .321 .160

RRUM

PWCDI

RTA .399 .376 .225 .306 .444 .250 .334 .436 .230
Note. k-A(s) means items measure k attribute(s);
a 5-As equal to 0 for all conditions.
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1	
	

A New Method to Balance Measurement Accuracy and Attribute 

Coverage in Cognitive Diagnostic Computerized Adaptive Testing 

Abstract 

As one of the important research areas of cognitive diagnosis assessment, cognitive diagnostic 

computerized adaptive testing (CD-CAT) has received much attention in recent years. 

Measurement accuracy is the major theme in CD-CAT and both the item selection method and 

the attribute coverage have a crucial effect on measurement accuracy. A new attribute coverage 

index, the ratio of test length to the number of attributes (RTA), is introduced in the current 

study. RTA is appropriate when the item pool comprises many items that measure multiple 

attributes where it can both produce acceptable measurement accuracy and balance the attribute 

coverage. With simulations, the new index is compared to the original item selection method 

(ORI) and the attribute balance index (ABI), which have been proposed in previous studies. 

The results show that: (1) the RTA method produces comparable measurement accuracy to the 

ORI method under most item selection methods; (2) the RTA method produces higher 

measurement accuracy than the ABI method for most item selection methods, with the 

exception of the mutual information item selection method; (3) the RTA method prefers items 

that measure multiple attributes, compared to the ORI and ABI methods, while the ABI prefers 

items that measure a single attribute; and (4) the RTA method performs better than the ORI 

method with respect to attribute coverage, while it performs worse than the ABI with long tests. 

Keywords 

Cognitive diagnostic computerized adaptive testing, the ratio of test length to the number of 

attributes, measurement accuracy, attribute coverage 
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2	
	

 

Introduction 

Cognitive diagnosis assessment (CDA) has recently received much attention in 

educational and psychological assessment (Rupp & Templin, 2008). Compared to classical test 

theory and item response theory (IRT), which only provide an overall score to indicate the 

information about the position of one individual relative to others on one specific latent trait 

(de la Torre & Chiu, 2016), CDA can provide detailed information about the strengths and 

weaknesses of individuals for specific content domains. Consequently, efficient remediation 

can be conducted based on the fine-grained information available about individuals (Gierl, 

Leighton, & Hunka, 2007; Lim & Drasgow, 2017; Sawaki, Kim, & Gentile, 2009). 

One important research area in CDA is cognitive diagnostic computerized adaptive testing 

(CD-CAT; Cheng, 2009; McGlohen & Chang, 2008; X. Xu, Chang, & Douglas, 2003). CD-

CAT combines a cognitive diagnostic model (CDM) and computer technology to improve 

testing efficiency and measurement accuracy. Like IRT-based CAT, CD-CAT has compelling 

advantages over traditional paper-and-pencil (P&P) tests. For example, the performance of 

individuals can be estimated immediately after they provide a response to each item (Cheng & 

Chang, 2009). CD-CAT can also provide equivalent or higher accuracy in the measurement of 

an individual’s latent skills, with reductions in test length. 

The primary goal of CD-CAT is to improve the measurement accuracy of individuals 

(Zheng & Chang, 2016) and the item selection method is one of the most important keys to 

this. Numerous item selection methods have been proposed, such as the Kullback-Leibler 

method (KL; X. Xu et al., 2003), the Shannon Entropy method (Tatsuoka, 2002), the posterior-
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3	
	

weighted KL method (PWKL; Cheng, 2009), the mutual information method (MI; Wang, 2013), 

and the modified PWKL method (MPWKL; Kaplan, de la Torre, & Barrada, 2015). Recently, 

Zheng and Chang (2016) developed two new item selection methods designed for short-length 

tests: the posterior-weighted cognitive diagnostic index (PWCDI) and the attribute-level 

discrimination index (PWADI), based on previous work by Henson & Douglas (2005) and 

Henson, Roussos, Douglas, & He (2008). 

In addition to the item selection method, the coverage for each attribute can also impact 

the measurement accuracy. Cheng (2010) indicated that attribute coverage influences both 

measurement accuracy and reliability, and it is important to make sure that each attribute is 

measured adequately to ensure the validity of the inferences based on the test. Therefore, she 

used the modified maximum global discrimination index (MMGDI) method, first used in IRT-

based CAT by Cheng and Chang (2009), to balance the attribute coverage and improve 

measurement accuracy. The simulation study showed that, compared with the original KL 

method, the MMGDI method produced a relatively higher attribute correct classification rate 

(ACCR) and pattern correct classification rate (PCCR). 

When the minimum number of items that measure each attribute is not satisfied, the 

attribute balance index (ABI) used in Cheng (2010) tends to select items with a single attribute 

(Mao & Xin, 2013), which means that the ABI is suitable when the item pool is composed of 

many items that measure a single attribute. Measurement accuracy would however be lower if 

the item pool is comprised of many items that measure multiple attributes. Although a test with 

single-attribute items can produce high PCCR in the CDA framework (e.g. Madison & 

Bradshaw, 2015; Wang, 2013), it is difficult to construct such items because more than one 
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4	
	

attribute is required to successfully solve items in real testing situations (DeCarlo, 2011; Huang, 

2018). An extreme case is when there are hierarchical relationships among attributes (Leighton, 

Gierl, & Hunka, 2004), where the ABI tends to produce low measurement accuracy. In addition, 

the ABI has only been used with the KL method and its performance with other item selection 

methods is unknown. Therefore, the current study proposes a new method — the modified ratio 

of test length to the number of attributes (RTA), influenced by the study conducted by Kuo, 

Pai, and de la Torre (2016) — to balance attribute coverage and improve measurement accuracy 

when the item pool comprises many multiple-attribute items. Furthermore, the study examines 

whether the RTA and ABI can be extended to more types of item selection methods. 

The remainder of the paper is organized as follows: First, we will introduce the two CDMs 

used in the study and summarize the item selection methods used. After that, the ABI and RTA 

will be presented. Then, a simulation study is conducted to examine the RTA with respect to 

the correct classification rate conditional on several manipulated factors. Finally, the discussion 

and conclusions are presented. 

Cognitive diagnostic models and item selection methods 

 Numerous CDMs have been proposed to deal with different test situations and with 

CD-CAT, the ‘‘Deterministic Input, Noisy ‘And’ Gate’’ (DINA) model (Junker & Sijtsma, 2001) 

and the Reduced Reparameterized Unified Model (RRUM; Hartz, 2002) are commonly used 

(e.g., Chen, Xin, Wang, & Chang, 2012; Cheng, 2010; Huebner, Finkelman, & Weissman, 2018; 

G. Xu, Wang, & Shang, 2016). Let ik denote the mastery of attribute k for individual i and 

jkq denote if the attribute k is required to answer item j correctly. The item response function 

(IRF) of the DINA model is then 
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    11 | 1
ij ij

ij ij j jP x s g
     , 

where  
1

jkK q

ij ikk
 


  and sj and gj are item parameters. With the RRUM, the IRF is 

   1* *

1

1| ik jk

K
q

ij i j jk
k

P x r  



  α ,	

where *
j and *

jkr are the item parameters. The item selection method plays an important role in 

CD-CAT and is the main determinant of ACCR and PCCR. This study uses the four item 

selection methods MI (Wang, 2013), MPWKL (Kaplan et al, 2015), PWCDI and PWADI 

(Zheng and Chang, 2016). For details on the interpretation of the cognitive diagnostic model 

parameters and the item selection methods, we refer to the supplementary material. 

Attribute coverage indices 

ABI. The ABI was proposed to make sure that each attribute was measured adequately to 

improve the correct classification rate (Cheng, 2010). It is defined as  

  
1

jk
K

q

j k k k
k

ABI B b B


  , 

where kB  is the minimum number of items that should measure the kth attribute and kb  is 

the number of items that have already been selected to measure the kth attribute. 

RTA. Kuo et al. (2016) proposed the RTA to ensure that each attribute is adequately 

measured when constructing a P&P cognitive diagnostic test. In this paper, we extend this 

method to CD-CAT and modify it to balance the attribute coverage. The RTA in a CD-CAT 

context can be written as 

   
 1 2*

1

1
, min , , ,

1
j KV

k j vv

RTA H b b b
I H B I



  
   q q

  , 

where V refers to the number of items that have already been selected; I(∙) is the indicator 

function; and jq  and *
vq are the q-vectors of items that have not been and have already been 
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given to a specific person, respectively. 

The term *
j( )vI q q   controls the usage of items that measure different numbers of 

attributes, and the relationship between H and Bk strives to ensure that each attribute is 

measured at least Bk times. If *
j1

( )
V

vv
I


 q q  is larger than 0 and H is no larger than Bk, then 

the value of    *

1

V

k j vv
I H B I


  q q  tends to be large. Consequently, the RTA becomes 

small and the jth item will not be selected. Instead, items with different attribute patterns to the 

previously selected items will tend to be selected. On the other hand, when H is larger than Bk 

or *
j1

( )
V

vv
I


 q q is 0, then the RTA is equal to 1. In such a case, RTA will not affect the item 

selection method and therefore the items will then be selected based on the original item 

selection method. 

The RTA criterion balances the attribute coverage and prefers multiple-attribute items. On 

the contrary, the ABI criterion balances the attribute coverage and prefers single-attribute items. 

Note that the RTA is determined by both H and *
j1

( )
V

vv
I


 q q , which means that, if H is 

larger than Bk (or *
j1

( )
V

vv
I


 q q is 0), then *

j1
( )

V

vv
I


 q q  (or H) can be ignored. Therefore, 

the RTA criterion may not guarantee that each attribute is covered completely. In sum, we 

expect ABI to perform better than RTA regarding attribute coverage given a long enough test, 

with RTA performing better than ABI regarding measurement accuracy when the item pool 

contains many multiple-attribute items. Item selection methods that consider both the attribute 

coverage and the information that an item provides can be developed by multiplying the 

attribute coverage indices (ABI or RTA) and the original item selection methods, for example 

the MMGDI can be obtained by the multiplication ABI × KL. 

Simulation study 

Page 39 of 57

http://mc.manuscriptcentral.com/apm

Applied Psychological Measurement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7	
	

The goals of the simulation study are to examine the performance of the new attribute 

coverage index and examine whether the RTA and ABI can be extended to other item selection 

methods. Several factors are manipulated: model type, number of attributes, Q-matrix structure, 

test length, attribute coverage index, and item selection method. In total there are 2 (model type) 

ൈ 2 (number of attributes) ൈ 2 (Q-matrix structure) ൈ 3 (test length) ൈ 3 (attribute coverage 

index) ൈ 4 (item selection method) = 288 conditions in the study. The details of the simulation 

study are given in the following. 

Model type. Both the DINA model and the RRUM will be used in the current study since 

these two CDMs are commonly used in CD-CAT (e.g., Cheng, 2010; Huebner et al., 2018; 

Mao & Xin, 2013; G. Xu et al., 2016). 

Number of attributes. Wang (2013) and Zheng and Chang (2016) used five attributes in 

their studies, while Cheng (2010) used six attributes in her study. In the current study, both five 

and six attributes are considered to examine the performance of RTA and ABI. 

Q-matrix structure. Two types of Q-matrix are generated in this study, namely simple 

structure and complex structure (Chen et al., 2012; Huang, 2018; Wang, 2013). For the simple 

structure Q-matrix, all items are unidimensional, meaning that each item measures a single 

attribute. This Q-matrix is generated based on a discrete uniform distribution with equal 

probability for all possible patterns. Meanwhile, for the complex structure Q-matrix between 

one and three attributes are measured by each item. The generation of the complex structure 

Q-matrix is based on Chen et al. (2012) and can be summarized as follows. First, three basic 

matrix units are generated. The first matrix unit is a K-by-K identity matrix, while the second 

and third matrix units are comprised of all possible q-vectors that measure two and three 
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attributes, respectively. Second, the first matrix unit is replicated twenty times while the second 

and third matrix units are replicated ten times. This results in 100 items that each measure one, 

two, and three attributes, respectively. Third, the items are merged to create a 300-by-K matrix, 

and the rows of the 300-by-K matrix are randomly re-ordered. 

Test length. Three different test lengths (10, 20, and 30 items) will be used in this study. 

We view these as short-length, moderate-length, and long-length tests, similar to previous 

research (e.g., Kuo et al., 2016). 

Attribute coverage index (ACI). Three types of ACI will be used in the study. The first 

type is the original item selection method without attribute coverage control (abbreviated to 

ORI), which can be treated as the baseline. The second type is the ABI proposed by Cheng 

(2010) and the last type is the RTA which is proposed in the current study. 

Item selection method. The item selection methods used in this study are the MI, MPWKL, 

PWADI, and PWCDI methods. All these methods can produce high correct classification rates 

even for short-length test. 

Since the generation of the α-matrix for five and six attributes are the same, we will only 

describe the generation of the α-matrix for five attributes. A 1000‐by‐5 matrix is generated to 

represent the true attribute patterns (α-matrix). Each individual can master each attribute with 

probability equal to .5 and we assume independence among individuals and independence 

among attributes in the α-matrix. For the item parameters, both slipping and guessing 

parameters were generated from a uniform distribution U(.05, .30) for the DINA model, and 

the baseline and penalty parameters were generated from U(.65, .95) and U(.05, .50), 

respectively, for the RRUM. During the item selection procedure, the minimum number of 
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items that measure each attribute was set to 3 because previous studies demonstrated that each 

attribute should be measured at least three times in the CDA framework (e.g. Fang, Liu, & Ying, 

2019; Gu & G. Xu, 2019; G. Xu, 2017). Finally, the expected a posteriori (EAP) method is 

used to estimate the attribute patterns. Twenty replications for each condition are used in 

current study. 

The evaluation criteria used in this study are averaged ACCR (A-ACCR), PCCR, and the 

usage of k-attribute items (Kuo et al., 2016). These statistics are calculated by 

 
1

ˆ
N

i i
i

PCCR I N


  α α , 

   
1 1

ˆ-
N K

ik ik
i k

A ACCR I N K 
 

   , and 

   *

1 1 1
, 1, 2, ,

N J K

k ijhi j h
Usage I q k N J k K

  
       , 

where N and J are the number of individuals and test length, respectively; I(∙) is the indicator 

function, which will be 1 if ˆ
i iα α (or ˆ

ik ik  ) is true, and vice versa; ˆ
iα  and iα  are the 

estimated and true values of an individual’s attribute pattern, respectively; 
*
ijhq  is the hth entry 

of q-vector for item j that has already been answered by individual i. In addition, the empirical 

standard errors (SEs) for PCCR and A-ACCR,  2

1

1 ˆ
1

simn

i
isim

SE
n

 


 
   (where simn is the 

number of replications, î and  are the ith estimation and the mean value of PCCR and ACCR, 

respectively), are calculated to evaluate the uncertainty of these two indices (Morris, White, & 

Crowther, 2019). 
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Table 1. Correct classification rate for the DINA model (K = 5) 

Item 
Q 

matrix 

Attribute J = 10  J = 20   J = 30 

selection coverage PCCR A-ACCR  PCCR A-ACCR   PCCR A-ACCR 

method index Est SE Este SE  Est SE Est SE   Est SE Est SE 

MI simple ORI .752 .015 .945  .003  .891 .013 .978 .003   .953 .007 .991  .001 
ABI .704 .011 .932  .003  .920 .013 .984 .003   .958 .007 .992  .001 
RTA .712 .015 .934 .004  .917 .008 .983 .002   .959 .006 .992 .001 

complex ORI .694 .014 .926  .004  .881 .012 .974 .003   .948 .005 .989  .001 
ABI .699 .008 .931  .003  .901 .015 .979 .004   .959 .008 .991  .002 
RTA .695 .013 .924 .004  .868 .011 .970 .003   .952 .006 .990 .001 

MPWKL simple ORI .844 .012 .966  .003  .986 .003 .997 .001   .999 .001 1.00  .000 
ABI .835 .010 .964  .002  .980 .006 .996 .001   .999 .001 1.00  .000 
RTA .838 .007 .965 .002  .987 .004 .997 .001   .999 .001 1.00 .000 

complex ORI .860 .006 .966  .002  .988 .003 .997 .001   .998 .001 1.00  .000 
ABI .798 .014 .955  .003  .982 .004 .996 .001   .998 .001 1.00  .000 
RTA .852 .014 .963 .004  .986 .004 .997 .001   .998 .002 1.00 .000 

PWADI simple ORI .847 .015 .967  .003  .987 .004 .997 .001   .999 .001 1.00  .000 
ABI .831 .011 .964  .002  .979 .004 .996 .001   .999 .001 1.00  .000 
RTA .845 .013 .966 .003  .985 .005 .997 .001   .999 .001 1.00 .000 

complex ORI .833 .011 .954  .004  .981 .004 .995 .001   .997 .001 .999  .000 
ABI .789 .014 .952  .003  .982 .004 .996 .001   .998 .002 .999  .000 
RTA .827 .014 .951 .005  .980 .004 .995 .001   .998 .001 1.00 .000 

PWCDI simple ORI .843 .014 .966  .003  .989 .003 .998 .001   .999 .001 1.00  .000 
ABI .824 .013 .962  .003  .980 .003 .996 .001   .999 .001 1.00  .000 
RTA .843 .013 .966 .003  .988 .004 .997 .001   .999 .001 1.00 .000 

complex ORI .858 .011 .965  .003  .985 .004 .997 .001   .998 .001 1.00  .000 
ABI .803 .011 .956  .003  .983 .002 .996 .001   .998 .002 1.00  .000 
RTA .846 .016 .960 .004  .984 .003 .996 .001   .998 .001 1.00 .000 

Note. MI refers to mutual information method; MPWKL refers to modified posterior-weighted 

Kullback-Leibler method; PWADI refers to posterior-weighted attribute-level discrimination index; and 

PWCDI refers to posterior-weighted cognitive diagnostic index; ORI refers to original item selection 

method without attribute coverage control; ABI refers to Cheng’s (2010) method; RTA refers to the 

ratio of test length to the number of attributes; PCCR refers to pattern correct classification rate; A-

ACCR refers to averaged attribute correct classification rate; Est refers to the estimate, SE is standard 

error. 

Results 

Correct classification rate 

Tables 1 and 2 present the correct classification rates and the corresponding empirical 

standard errors (SEs) for the DINA model and the RRUM, respectively, conditional on five 

attributes. Table 1 shows that all three attribute coverage indices produce similar PCCRs and 

A-ACCRs for the long-length test (J = 30). When test lengths are short (J = 10) and moderate 
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(J = 20), some differences are found between ORI, ABI, and RTA. The ABI, in general, 

produces higher PCCRs and A-ACCRs than ORI and RTA for moderate- and long-length tests 

with the MI method, while the RTA performs as well as or even better than ABI with other 

three item selection methods regardless of test length and Q-matrix structure. To examine 

which factors (attribute coverage index, test length, and Q-matrix structure) have a significant 

effect on the measurement accuracy, four repeated measures ANOVAs are conducted for the 

item selection methods, respectively. Results show that all main effects, second- and third-

order interaction effects are statistically significant for the MI method, the partial etas ( 2
p ) 

range from .085 (attribute coverage index) to .996 (test length), and the ABI performs 

significantly better than RTA for complex-structure Q-matrix and moderate- and long-length 

tests. For short-length tests, RTA produces significantly higher PCCR than ABI for a simple-

structure Q-matrix, while RTA produces relatively lower PCCR than ABI for a complex-

structure Q-matrix. With MPWKL and PWADI, all main effects, second- and third-order 

interaction effects are statistically significant, with the exception of main effect of Q-matrix 

structure and second-order interaction effect between test length and Q-matrix structure. The 

2
p   range from .101 (interaction effect between attribute coverage index and Q-matrix 

structure with PWADI method) to .998 (test length with MPWKL method) for the significant 

effects, and the RTA performs significantly better than ABI for complex-structure Q-matrix and 

short- and moderate-length tests with both MPWKL and PWADI. Similar to the MI method, 

all effects are significant for the PWCDI method, and the 2
p  range from .052 (interaction 

effect between attribute coverage index and Q-matrix structure) to .997 (test length), and the 

RTA performs significantly better than ABI for complex-structure Q-matrix and short-length 
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tests and for a simple-structure Q-matrix and moderate-length tests. In addition, the empirical 

SEs are small for all conditions, indicating that the estimates of PCCRs and A-ACCRs are 

stable. 

Table 2. Correct classification rate for the RRUM (K = 5)	

Item 
Q 

matrix 

Attribute J = 10  J = 20   J = 30 

selection coverage PCCR A-ACCR  PCCR A-ACCR   PCCR A-ACCR 

method index Est SE Este SE  Est SE Est SE   Est SE Est SE 

MI simple ORI .745 .014 .943  .003  .892 .014 .977 .003   .955 .007 .991  .002 
ABI .697 .012 .931  .003  .909 .008 .981 .002   .958 .005 .991  .001 
RTA .698 .015 .930 .003  .912 .009 .982 .002   .957 .005 .991 .001 

complex ORI .705 .013 .930  .004  .872 .009 .971 .002   .943 .008 .988  .001 
ABI .689 .012 .928  .003  .884 .012 .975 .003   .943 .009 .988  .002 
RTA .697 .016 .927 .004  .862 .011 .969 .003   .938 .007 .987 .002 

MPWKL simple ORI .836 .013 .965  .003  .984 .004 .997 .001   .998 .001 1.00  .000 
ABI .824 .009 .962  .002  .977 .005 .995  .001   .998 .001 1.00  .000 
RTA .835 .011 .964 .003  .984 .004 .997 .001   .998 .001 1.00 .000 

complex ORI .849 .010 .965  .003  .980 .004 .996  .001   .997 .002 .999  .000 
ABI .784 .016 .951  .004  .976 .005 .995  .001   .996 .002 .999  .000 
RTA .841 .010 .962 .002  .976 .006 .995 .001   .996 .002 .999 .000 

PWADI simple ORI .831 .011 .963  .002  .985 .003 .997  .001   .998 .001 1.00  .000 
ABI .825 .013 .962  .003  .978 .004 .995  .001   .998 .001 1.00  .000 
RTA .832 .012 .964 .003  .983 .005 .997 .001   .998 .001 1.00 .000 

complex ORI .836 .011 .959  .003  .980 .004 .995  .001   .996 .002 .999  .000 
ABI .768 .011 .948  .003  .973 .006 .994  .002   .996 .002 .999  .000 
RTA .831 .012 .959 .003  .978 .003 .995 .001   .995 .002 .999 .001 

PWCDI simple ORI .839 .013 .965  .003  .984 .004 .997  .001   .998 .002 1.00  .000 
ABI .826 .011 .962  .003  .977 .005 .995  .001   .998 .001 1.00  .000 
RTA .829 .012 .963 .003  .982 .004 .996 .001   .998 .001 1.00 .000 

complex ORI .842 .009 .963  .002  .981 .005 .996  .001   .997 .001 .999  .000 
ABI .780 .012 .951  .003  .972 .005 .994  .001   .995 .003 .999  .001 
RTA .835 .011 .961 .003  .975 .004 .995 .001   .995 .003 .999 .001 

 

The results in Table 2 exhibit a similar pattern to that observed with the RRUM model: 

the ABI performs better than ORI and RTA for moderate- and long-length tests for the MI 

method while it performs worse for short-length tests. In addition, both RTA and ORI produce 

larger PCCRs than ABI for short- and moderate-length tests for the MPWKL, PWADI, and 

PWCDI methods. Moreover, all of these three attribute coverage indices produce very similar 

PCCRs when the test length is long. Furthermore, the RTA produces a lower A-ACCR than 
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ABI for the MI method, while it produces an identical or larger A-ACCR than ABI for most 

conditions. All main effects and second- and third-order interaction effects are statistically 

significant, with the exception of the second-order interaction effect between test length and 

Q-matrix structure for the MPWKL method, and the 2
p  range from .046 (interaction effect 

between attribute coverage index and Q-matrix structure with MI method) to .998 (test length 

with PWADI method) for the significant effects. Finally, the empirical SEs are small and the 

corresponding estimates are stable. 

The PCCR and A-ACCR for six attributes are presented in the supplementary material 

and the results can be summarized as follows: (1) The ABI, in general, produces higher PCCRs 

and A-ACCRs than RTA for the MI method; (2) the RTA and ORI methods produce higher 

PCCRs and A-ACCRs than ABI with the MWPKL, PWADI, and PWCDI methods regardless 

of Q-matrix structure and test length; (3) all the third-order interaction effects are significant, 

and the 2
p  range from .251 (for RRUM and PWCDI method condition) to .534 (for DINA 

model and MWPKL method condition); (4) with the increase of test length, the SEs are 

decreased for all conditions. 

The usage of items 

Since all of the items in the simple-structure Q-matrix are single-attribute, all item 

selection methods select single-attribute items, which results in no differences in the usage of 

items that measure k-attributes for ORI, ABI, and RTA. Therefore, the details will not be 

presented. Table 3 presents the usage of items that measure k-attributes for five attributes and 

with the complex-structure Q-matrix. The usage of items that measure k-attributes for six 

attributes is consistent with the results with five attributes, and the details can be accessed in 
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the supplementary material. Unsurprisingly, the RTA method selects the least items that 

measure a single attribute in most of the conditions, followed by the ORI method. The ABI 

method uses the most items that measure a single attribute. Specifically,  

Table 3. The usage of items measures k-attribute for five attributes and complex Q-matrix 

model 

item 

selection 

method 

attribute 

coverage 

index 

J = 10a  J = 20a  J = 30a 

1-A 2-As 3-As  1-A 2-As 3-As  1-A 2-As 3-As 

DINA MI ORI .489 .381 .131  .507 .337 .156  .528 .306 .166 
ABI .864 .063 .074  .738 .178 .084  .633 .245 .122 
RTA .420 .433 .147  .436 .397 .167  .490 .339 .171 

MPWKL ORI .468 .366 .166  .400 .373 .227  .408 .358 .233 
ABI .888 .077 .036  .671 .212 .117  .540 .291 .168 
RTA .435 .396 .169  .377 .393 .230  .397 .369 .233 

PWADI ORI .368 .406 .226  .360 .388 .253  .386 .368 .246 
ABI .833 .130 .037  .622 .243 .135  .513 .307 .180 
RTA .359 .421 .220  .346 .402 .253  .379 .376 .245 

PWCDI ORI .431 .385 .184  .387 .377 .236  .404 .358 .238 
ABI .882 .083 .035  .665 .215 .119  .538 .291 .171 
RTA .405 .408 .187  .367 .395 .239  .394 .367 .239 

RRUM MI ORI .480 .395 .125  .443 .396 .161  .430 .392 .178 
ABI .932 .032 .036  .729 .189 .082  .574 .299 .127 
RTA .410 .411 .179  .377 .422 .200  .396 .406 .198 

MPWKL ORI .492 .355 .153  .427 .381 .192  .413 .381 .206 
ABI .875 .090 .035  .662 .231 .107  .524 .316 .160 
RTA .434 .390 .175  .385 .408 .207  .399 .391 .211 

PWADI ORI .434 .380 .186  .402 .392 .205  .400 .387 .213 
ABI .829 .135 .036  .622 .260 .118  .504 .330 .166 
RTA .406 .393 .201  .372 .408 .219  .392 .391 .217 

PWCDI ORI .475 .365 .160  .418 .385 .197  .409 .382 .208 
ABI .866 .099 .036  .653 .236 .111  .519 .319 .163 
RTA .427 .391 .182  .381 .408 .212  .396 .391 .213 

Note. k-A(s) means items measure k attribute(s); 

a 4-As and 5-As equal to 0 for all conditions. 

the proportion of items that measure a single attribute ranges from .346 to .490, .360 to .528, 

and .504 to .930 for the RTA, ORI, and ABI criteria, respectively. In addition, among these 

three attribute coverage indices, the RTA method produces the largest proportions of items that 

measure two and three attributes, followed by the ORI method, and the ABI method yields the 

smallest proportions of items that measure two and three attributes. These results can be 
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expected since the RTA criterion tends to choose items that measure different attributes to the 

already administered items. The ABI criteria, on the contrary, tends to penalize items that 

measure multiple attributes by taking the product of deviances for all attributes. Consequently, 

items that measure a single attribute tend to be selected by the ABI criteria. 

Coverage of attributes 

Table 4 lists the proportion of individuals who have been administered at least three times 

measuring each attribute for moderate- and long-length tests. The results are omitted for the 

short-length test (i.e. J = 10) because all three attribute coverage indices do not satisfy the 

attribute coverage requirement. The ABI can ensure that most of the tests satisfy the attribute 

coverage regardless of number of attributes, model type, Q-matrix structure, item selection 

method, and test length, while RTA performs worse than ABI but better than the ORI. Repeated 

measures ANOVAs are conducted to investigate the differences among ORI, ABI, and RTA. 

The results show that most main effects, second-, third- and fourth-order interaction effects are 

significant under the DINA model, and most of the 2
p   are larger than .50. Although the 

differences between ABI and RTA are significant for some conditions, the 2
p  range from .001 

to .114, which indicates that stronger evidence is needed to support differences between ABI 

and RTA. For the RRUM, all main effects and second-, third- and fourth-order interaction 

effects are significant, and the 2
p  range from .797 to .999. In addition, all of the main effects 

of attribute coverage index, test length, and number of attributes are significant for all item 

selection methods, and all of the 2
p  are larger than .950. Although the fourth-order interaction 

effects are significant for all item selection methods, the partial etas are small and range 

from .002 to .065. Furthermore, the third-order interaction effects among attribute coverage
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Table 4. Overall percentage for moderate- and long-length tests 

Number 

of 

attributes 

Model 

type 

Q 

matrix 

Attribute 

coverage 

index 

J = 20  J = 30 

MI MPWKL ADI CDI  MI MPWKL ADI CDI 

K = 5 DINA simple ORI .357  .846  .842  .851   .881  .997  .998  .997  
ABI .986  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA 1.00 .892 .891 .892  1.00 .999 1.00 .999 

complex ORI .772  .940  .956  .945   .974  .998  .999  .998  
ABI 1.00  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA 1.00 .965 .976 .969  1.00 1.00 1.00 1.00 

RRUM simple ORI .326  .812  .813  .817   .867  .996  .996  .996  
ABI 1.00  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA 1.00 .872 .876 .871  1.00 .999 .999 .999 

complex ORI .795  .910  .919  .910   .977  .996  .995  .995  
ABI 1.00  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA 1.00 .981 .984 .982  1.00 1.00 1.00 1.00 

K = 6 DINA simple ORI .034  .468  .464  .463   .495  .983  .984  .985  
ABI 1.00  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA 1.00 .516 .507 .507  1.00 .993 .959 .961 

complex ORI .714  .775  .823  .793   .971  .988  .988  .987  
ABI 1.00  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA .935 .828 .860 .834  1.00 .995 .987 .983 

RRUM simple ORI .020  .327  .318  .322   .430  .957  .953  .957  
ABI 1.00  1.00  1.00  1.00   .993  1.00  1.00  1.00  
RTA 1.00 .427 .357 .418  1.00 .985 .952 .922 

complex ORI .569  .721  .755  .733   .865  .974  .981  .977  
ABI 1.00  1.00  1.00  1.00   1.00  1.00  1.00  1.00  
RTA .900 .804 .794 .805  1.00 .999 .986 .972 

Note. The results are omitted for the short-length test (i.e. J = 10) because all three attribute coverage indices do not satisfy the attribute coverage requirement. 
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index, number of attributes, and test length are significant for all item selection methods, and 

the corresponding 2
p  are at the range of .969 and .980, and the ABI performs better than the 

RTA at six attributes and moderate-length tests. 

Discussion and conclusions 

The goals of this study are to develop a new attribute coverage method, RTA, to deal with 

empirical situations when more than one attribute is involved in successfully solving a test item 

(DeCarlo, 2011; Huang, 2018) and to examine the performance of both ABI and RTA when 

different item selection methods are used. A simulation study is conducted to examine the 

performance of RTA and ABI, and promising results are produced. 

The results show that the RTA produces lower PCCRs than ABI for moderate- and long-

length tests with the MI method, especially with a complex structure Q-matrix. On the contrary, 

the RTA produces relatively high PCCRs than the ABI for short- and moderate-length tests with 

the MPWKL, PWADI, and PWCDI methods. A possible explanation is that both the MI method 

and the ABI criterion prefer single-attribute items, while the RTA and three other item selection 

methods tend to use fewer single-attribute items than ABI and MI method. As Madison and 

Bradshaw (2015) and Huebner et al. (2018) demonstrated, the more single-attribute items there 

are in a test, the higher the measurement accuracy is for long-length tests. Therefore, the RTA 

can be expected to produce lower measurement accuracy since fewer single-attribute items are 

used for the MI method. As for the MPWKL, PWADI, and PWCDI methods, the differences 

between the usage of items that measure one and two attributes are small, meaning that these 

item selection methods prefer items that measure either one or two attributes. Therefore, when 

the ABI criteria, which prefers the single-attribute items, is added to these three item selection 
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methods, information provided by two-attribute items may be lost and, consequently, lower 

measurement accuracy is produced for the ABI compared to the ORI and RTA criteria. 

Meanwhile, a possible reason why the ABI performs worst in most conditions for short-length 

tests (J = 10) is that it is hard to satisfy the minimum number of items that measure each 

attribute when the test length is short. Although previous studies demonstrated that tests 

containing more single-attribute items tend to produce higher measurement accuracy (Huebner 

et al., 2018; Madison & Bradshaw, 2015), the prerequisite for a high measurement accuracy is 

that the test length is long enough. 

Moreover, the results show that the ABI is not suitable for all item selection methods. In 

the current study, the ABI is suitable for the MI method, while it is unsuitable for the MPWKL, 

PWADI, and PWCDI methods. In the study of Cheng (2010), the combination between ABI 

and KL method (MMGDI) can produce higher measurement accuracy than the original KL 

method (MGDI). Since both the ABI criterion and KL/MI methods prefer single-attribute items 

rather than multiple-attribute items, using the ABI criterion further reinforces the tendency of 

the KL and MI methods to select single-attribute items. Hence, the combination between the 

ABI criterion and the original item selection methods would produce high measurement 

accuracy if the original item selection methods prefer single-attribute items. On the flipside, 

low measurement accuracy would be produced if more than one attribute is preferred by the 

original item selection methods (e.g. MPWKL, PWADI and PWCDI). 

It’s worth noting that, although the RTA criteria produces higher measurement accuracy 

than the ABI criteria with the MPWKL, PWADI, and PWCDI methods, this does not indicate 

that the RTA performs better than ABI for all situations. By examining the ABI and RTA criteria, 
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the ABI tends to penalize items that measure multiple attributes, while the RTA tends to select 

items that measure multiple attributes. Therefore, it is reasonable to infer that the composition 

of items that measure different number of attributes in the item pool have an important 

influence on these two criteria. The RTA performs better than ABI if there is a large number of 

multiple-attribute items in the item pool. Meanwhile, the ABI performs better than RTA if there 

is a majority of single-attribute items, producing higher measurement accuracy than RTA for 

all conditions. 

The results also show that the ABI performs better than the RTA for moderate- and long-

length tests concerning the attribute coverage, which coincides with our expectation. As stated 

previously, the formulation of the RTA is determined by two components. One is used to control 

the usage of items that measure different numbers of attributes and the other is used to control 

the attribute coverage. When one of the components is satisfied, the other component is ignored. 

For instance, when the summation of the first component is zero, the component that controls 

the attribute coverage is ignored and consequently the attribute coverage will not be satisfied. 

In conclusion, the new attribute coverage control method—RTA—is suitable for 

controlling the attribute coverage and producing acceptable measurement accuracy when the 

item pool is comprised of a large number of items that measure multiple attributes, which is a 

common phenomenon in empirical testing situations (DeCarlo, 2011; Huang, 2018). The ABI, 

on the other hand, is appropriate for test situations when the majority of an item pool is 

comprised of single-attribute items. Furthermore, the ABI is suitable for item selection methods 

that prefer single-attribute items, such as the KL method (Cheng, 2010) and the MI method, 

but is not suitable for methods that prefer both single- and multiple- attributes items such as 
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the MPWKL, PWADI, and PWCDI methods. 

Although some promising results are found in the current study, several remaining open 

issues deserve further studies. First, we assume that the minimum number of items that measure 

each attribute are the same for all attributes. Considering that different attributes may carry 

different importance, this is not a necessary constraint and further studies can take the 

importance of each attribute into consideration to further investigate the performance of 

attribute coverage methods in CD-CAT. Second, fixed-length tests were used in the current 

study. Therefore, everyone was administered the same test length. Future studies can examine 

the performance of RTA when the test length is different for each individual (variable-length 

tests). Third, both the DINA model and the RRUM are specific CDMs and some constraints 

imposed on these specific CDMs are (a) only a single model is available across the entire test 

and (b) either compensatory or non-compensatory relationships is assumed for the test (Ravand, 

2016). General CDMs relax these constraints and therefore a general CDM can be used in 

future studies. 
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