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A New Method to Balance Measurement Accuracy and Attribute
Coverage in Cognitive Diagnostic Computerized Adaptive Testing
Abstract

As one of the important research areas of cognitive diagnosis assessment, cognitive diagnostic
computerized adaptive testing (CD-CAT) has received much attention in recent years.
Measurement accuracy is the major theme in CD-CAT and both the item selection method and
the attribute coverage have a crucial effect on measurement accuracy. A new attribute coverage
index, the ratio of test length to the number of attributes (RTA), is introduced in the current
study. RTA 1is appropriate when the item pool comprises many items that measure multiple
attributes where it can both produce acceptable measurement accuracy and balance the attribute
coverage. With simulations, the new index is compared to the original item selection method
(ORI) and the attribute balance index (ABI), which have been proposed in previous studies.
The results show that: (1) the RTA method produces comparable measurement accuracy to the
ORI method under most item selection methods; (2) the RTA method produces higher
measurement accuracy than the ABI method for most item selection methods, with the
exception of the mutual information item selection method; (3) the RTA method prefers items
that measure multiple attributes, compared to the ORI and ABI methods, while the ABI prefers
items that measure a single attribute; and (4) the RTA method performs better than the ORI
method with respect to attribute coverage, while it performs worse than the ABI with long tests.
Keywords

Cognitive diagnostic computerized adaptive testing, the ratio of test length to the number of

attributes, measurement accuracy, attribute coverage
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Introduction

Cognitive diagnosis assessment (CDA) has recently received much attention in
educational and psychological assessment (Rupp & Templin, 2008). Compared to classical test
theory and item response theory (IRT), which only provide an overall score to indicate the
information about the position of one individual relative to others on one specific latent trait
(de la Torre & Chiu, 2016), CDA can provide detailed information about the strengths and
weaknesses of individuals for specific content domains. Consequently, efficient remediation
can be conducted based on the fine-grained information available about individuals (Gierl,
Leighton, & Hunka, 2007; Lim & Drasgow, 2017; Sawaki, Kim, & Gentile, 2009).

One important research area in CDA is cognitive diagnostic computerized adaptive testing
(CD-CAT; Cheng, 2009; McGlohen & Chang, 2008; X. Xu, Chang, & Douglas, 2003). CD-
CAT combines a cognitive diagnostic model (CDM) and computer technology to improve
testing efficiency and measurement accuracy. Like IRT-based CAT, CD-CAT has compelling
advantages over traditional paper-and-pencil (P&P) tests. For example, the performance of
individuals can be estimated immediately after they provide a response to each item (Cheng &
Chang, 2009). CD-CAT can also provide equivalent or higher accuracy in the measurement of
an individual’s latent skills, with reductions in test length.

The primary goal of CD-CAT is to improve the measurement accuracy of individuals
(Zheng & Chang, 2016) and the item selection method is one of the most important keys to
this. Numerous item selection methods have been proposed, such as the Kullback-Leibler

method (KL; X. Xu et al., 2003), the Shannon Entropy method (Tatsuoka, 2002), the posterior-
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weighted KL method (PWKL; Cheng, 2009), the mutual information method (MI; Wang,
2013), and the modified PWKL method (MPWKL; Kaplan, de la Torre, & Barrada, 2015).
Recently, Zheng and Chang (2016) developed two new item selection methods designed for
short-length tests: the posterior-weighted cognitive diagnostic index (PWCDI) and the
attribute-level discrimination index (PWADI), based on previous work by Henson & Douglas
(2005) and Henson, Roussos, Douglas, & He (2008).

In addition to the item selection method, the coverage for each attribute can also impact
the measurement accuracy. Cheng (2010) indicated that attribute coverage influences both
measurement accuracy and reliability, and it is important to make sure that each attribute is
measured adequately to ensure the validity of the inferences based on the test. Therefore, she
used the modified maximum global discrimination index (MMGDI) method, first used in IRT-
based CAT by Cheng and Chang (2009), to balance the attribute coverage and improve
measurement accuracy. The simulation study showed that, compared with the original KL
method, the MMGDI method produced a relatively higher attribute correct classification rate
(ACCR) and pattern correct classification rate (PCCR).

When the minimum number of items that measure each attribute is not satisfied, the
attribute balance index (ABI) used in Cheng (2010) tends to select items with a single attribute
(Mao & Xin, 2013), which means that the ABI is suitable when the item pool is composed of
many items that measure a single attribute. Measurement accuracy would however be lower if
the item pool is comprised of many items that measure multiple attributes. Although a test with
single-attribute items can produce high PCCR in the CDA framework (e.g. Madison &

Bradshaw, 2015; Wang, 2013), it is difficult to construct such items because more than one
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attribute is required to successfully solve items in real testing situations (DeCarlo, 2011; Huang,
2018). An extreme case is when there are hierarchical relationships among attributes (Leighton,
Gierl, & Hunka, 2004), where the ABI tends to produce low measurement accuracy. In addition,
the ABI has only been used with the KL method and its performance with other item selection
methods is unknown. Therefore, the current study proposes a new method — the modified ratio
of test length to the number of attributes (RTA), influenced by the study conducted by Kuo,
Pai, and de la Torre (2016) — to balance attribute coverage and improve measurement accuracy
when the item pool comprises many multiple-attribute items. Furthermore, the study examines
whether the RTA and ABI can be extended to more types of item selection methods.

The remainder of the paper is organized as follows: First, we will introduce the two CDMs
used in the study and summarize the item selection methods used. After that, the ABI and RTA
will be presented. Then, a simulation study is conducted to examine the RTA with respect to
the correct classification rate conditional on several manipulated factors. Finally, the discussion
and conclusions are presented.

Cognitive diagnostic models and item selection methods

Numerous CDMs have been proposed to deal with different test situations and with
CD-CAT, the ‘‘Deterministic Input, Noisy ‘And’ Gate’’ (DINA) model (Junker & Sijtsma,
2001) and the Reduced Reparameterized Unified Model (RRUM; Hartz, 2002) are commonly
used (e.g., Chen, Xin, Wang, & Chang, 2012; Cheng, 2010; Huebner, Finkelman, & Weissman,
2018; G. Xu, Wang, & Shang, 2016). Let ¢, denote the mastery of attribute & for individual i

and ¢, denote if the attribute & is required to answer item j correctly. The item response

function (IRF) of the DINA model is then
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P(x, =1|77,]~)=(1—S,-)7'” g ",

wherez, = H::l (a, )™ and s, and g are item parameters. With the RRUM, the IRF is

K
— — 7 * (1= )
P(xi/—1|ai)—7z_j||rjk ,
k=1

where 7rj. and r, are the item parameters. The item selection method plays an important role in

CD-CAT and is the main determinant of ACCR and PCCR. This study uses the four item
selection methods MI (Wang, 2013), MPWKL (Kaplan et al, 2015), PWCDI and PWADI
(Zheng and Chang, 2016). For details on the interpretation of the cognitive diagnostic model
parameters and the item selection methods, we refer to the supplementary material.
Attribute coverage indices

ABI. The ABI was proposed to make sure that each attribute was measured adequately to

improve the correct classification rate (Cheng, 2010). It is defined as

ast, =T (5 ~0)/B)".

k=1

where B, is the minimum number of items that should measure the k" attribute and b, is
the number of items that have already been selected to measure the £ attribute.

RTA. Kuo et al. (2016) proposed the RTA to ensure that each attribute is adequately
measured when constructing a P&P cognitive diagnostic test. In this paper, we extend this
method to CD-CAT and modify it to balance the attribute coverage. The RTA in a CD-CAT

context can be written as

1

RTA, =
D i(H<B)Y I(g,=q)

, H=min(b,,b,,L ,b) ,

where V refers to the number of items that have already been selected; /(*) is the indicator

function; and ¢; and q: are the g-vectors of items that have not been and have already been
5
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given to a specific person, respectively.

The term /(g =¢q.) controls the usage of items that measure different numbers of
attributes, and the relationship between H and By strives to ensure that each attribute is
measured at least By times. If ZVVZI I(q;= q.) is larger than 0 and H is no larger than B, then
the value of I(H < B, )ZVV:II (q =4, ) tends to be large. Consequently, the RTA becomes
small and the ;! item will not be selected. Instead, items with different attribute patterns to the
previously selected items will tend to be selected. On the other hand, when H is larger than By
or ZLII (q;= q,)is 0, then the RTA is equal to 1. In such a case, RTA will not affect the item
selection method and therefore the items will then be selected based on the original item
selection method.

The RTA criterion balances the attribute coverage and prefers multiple-attribute items.
On the contrary, the ABI criterion balances the attribute coverage and prefers single-attribute
items. Note that the RTA is determined by both H and ZLI (q;= q.), which means that, if
H is larger than By (or Z;[ (q,= q.)is 0), then Z;I (q;= q.) (or H) can be ignored.
Therefore, the RTA criterion may not guarantee that each attribute is covered completely. In
sum, we expect ABI to perform better than RTA regarding attribute coverage given a long
enough test, with RTA performing better than ABI regarding measurement accuracy when the
item pool contains many multiple-attribute items. Item selection methods that consider both
the attribute coverage and the information that an item provides can be developed by
multiplying the attribute coverage indices (ABI or RTA) and the original item selection
methods, for example the MMGDI can be obtained by the multiplication ABI x KL.

Simulation study
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The goals of the simulation study are to examine the performance of the new attribute
coverage index and examine whether the RTA and ABI can be extended to other item selection
methods. Several factors are manipulated: model type, number of attributes, Q-matrix structure,
test length, attribute coverage index, and item selection method. In total there are 2 (model
type) X 2 (number of attributes) X 2 (Q-matrix structure) X 3 (test length) X 3 (attribute
coverage index) X 4 (item selection method) = 288 conditions in the study. The details of the
simulation study are given in the following.

Model type. Both the DINA model and the RRUM will be used in the current study since
these two CDMs are commonly used in CD-CAT (e.g., Cheng, 2010; Huebner et al., 2018;
Mao & Xin, 2013; G. Xu et al., 2016).

Number of attributes. Wang (2013) and Zheng and Chang (2016) used five attributes in
their studies, while Cheng (2010) used six attributes in her study. In the current study, both five
and six attributes are considered to examine the performance of RTA and ABI.

Q-matrix structure. Two types of Q-matrix are generated in this study, namely simple
structure and complex structure (Chen et al., 2012; Huang, 2018; Wang, 2013). For the simple
structure Q-matrix, all items are unidimensional, meaning that each item measures a single
attribute. This Q-matrix is generated based on a discrete uniform distribution with equal
probability for all possible patterns. Meanwhile, for the complex structure Q-matrix between
one and three attributes are measured by each item. The generation of the complex structure
Q-matrix is based on Chen et al. (2012) and can be summarized as follows. First, three basic
matrix units are generated. The first matrix unit is a K-by-K identity matrix, while the second

and third matrix units are comprised of all possible g-vectors that measure two and three
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attributes, respectively. Second, the first matrix unit is replicated twenty times while the second
and third matrix units are replicated ten times. This results in 100 items that each measure one,
two, and three attributes, respectively. Third, the items are merged to create a 300-by-K matrix,
and the rows of the 300-by-K matrix are randomly re-ordered.

Test length. Three different test lengths (10, 20, and 30 items) will be used in this study.
We view these as short-length, moderate-length, and long-length tests, similar to previous
research (e.g., Kuo et al., 2016).

Attribute coverage index (ACI). Three types of ACI will be used in the study. The first
type is the original item selection method without attribute coverage control (abbreviated to
ORI), which can be treated as the baseline. The second type is the ABI proposed by Cheng
(2010) and the last type is the RTA which is proposed in the current study.

Item selection method. The item selection methods used in this study are the MI, MPWKL,
PWADI, and PWCDI methods. All these methods can produce high correct classification rates
even for short-length test.

Since the generation of the a-matrix for five and six attributes are the same, we will only
describe the generation of the a-matrix for five attributes. A 1000-by-5 matrix is generated to
represent the true attribute patterns (a-matrix). Each individual can master each attribute with
probability equal to .5 and we assume independence among individuals and independence
among attributes in the a-matrix. For the item parameters, both slipping and guessing
parameters were generated from a uniform distribution U(.05, .30) for the DINA model, and
the baseline and penalty parameters were generated from U(.65, .95) and U(.05, .50),

respectively, for the RRUM. During the item selection procedure, the minimum number of

http://mc.manuscriptcentral.com/apm

Page 8 of 57



Page 9 of 57

oNOYTULT D WN =

Applied Psychological Measurement

items that measure each attribute was set to 3 because previous studies demonstrated that each
attribute should be measured at least three times in the CDA framework (e.g. Fang, Liu, &
Ying, 2019; Gu & G. Xu, 2019; G. Xu, 2017). Finally, the expected a posteriori (EAP) method
is used to estimate the attribute patterns. Twenty replications for each condition are used in
current study.

The evaluation criteria used in this study are averaged ACCR (A-ACCR), PCCR, and the

usage of k-attribute items (Kuo et al., 2016). These statistics are calculated by

N K
A-ACCR=>>1(¢, =a, )/(NxK), and
Usage, :Z[Ailzj:ll(z::lq;h :k)/(NxJ),k:1,2,L LK,

where N and J are the number of individuals and test length, respectively; /(-) is the indicator
function, which will be 1 if OAl,- =a;(or dik =Q, ) is true, and vice versa; &i and @; are the
estimated and true values of an individual’s attribute pattern, respectively; q;,, is the 4™ entry

of g-vector for itemj that has already been answered by individual i. In addition, the empirical

standard errors (SEs) for PCCR and A-ACCR, SE = \/ ! Zm:(é -6 )2 (where n, is the

nsim -1 i=1
number of replications, 9: and @ are the i estimation and the mean value of PCCR and ACCR,

respectively), are calculated to evaluate the uncertainty of these two indices (Morris, White, &

Crowther, 2019).
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Table 1. Correct classification rate for the DINA model (K = 5)

Item Attribute J=10 J=20 J=30

selection ? coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
matrix

method index Est SE Este SE Est SE Est SE Est SE Est SE

MI simple ORI  .752 .015 .945 .003 .891 .013 .978 .003 .953 .007 .991 .001
ABI  .704 .011 .932 .003 .920 .013 .984 .003 .958 .007 .992 .001

RTA 712 .015 .934 .004 .917 .008 .983 .002 .959 .006 .992 .001

complex ORI .694 .014 .926 .004 .881 .012 .974 .003 .948 .005 .989 .001

ABI  .699 .008 .931 .003 .901 .015 .979 .004 .959 .008 .991 .002

RTA .695 .013 .924 .004 .868 .011 .970 .003 .952 .006 .990 .001

MPWKL simple ORI  .844 .012 966 .003 .986 .003 .997 .001 .999 .001 1.00 .000
ABI  .835 .010 .964 .002 .980 .006 .996 .001 .999 .001 1.00 .000

RTA  .838 .007 .965 .002 .987 .004 .997 .001 .999 .001 1.00 .000

complex ORI  .860 .006 .966 .002 .988 .003 .997 .001 .998 .001 1.00 .000

ABI  .798 .014 .955 .003 .982 .004 .996 .001 .998 .001 1.00 .000

RTA  .852 .014 .963 .004 .986 .004 .997 .001 .998 .002 1.00 .000

PWADI  simple ORI  .847 .015 .967 .003 .987 .004 .997 .001 .999 .001 1.00 .000
ABI  .831 .011 .964 .002 .979 .004 .996 .001 .999 .001 1.00 .000

RTA  .845 .013 .966 .003 .985 .005 .997 .001 .999 .001 1.00 .000

complex ORI  .833 .011 .954 .004 .981 .004 .995 .001 .997 .001 .999 .000

ABI  .789 .014 .952 .003 .982 .004 .996 .001 .998 .002 .999 .000

RTA  .827 .014 .951 .005 .980 .004 .995 .001 .998 .001 1.00 .000

PWCDI  simple ORI  .843 .014 966 .003 .989 .003 .998 .001 .999 .001 1.00 .000
ABI  .824 .013 .962 .003 .980 .003 .996 .001 .999 .001 1.00 .000

RTA  .843 .013 .966 .003 .988 .004 .997 .001 .999 .001 1.00 .000

complex ORI  .858 .011 .965 .003 .985 .004 .997 .001 .998 .001 1.00 .000

ABI  .803 .011 .956 .003 .983 .002 .996 .001 .998 .002 1.00 .000

RTA 846 .016 .960 .004 .984 .003 .996 .001 .998 .001 1.00 .000

Note. MI refers to mutual information method; MPWKL refers to modified posterior-weighted
Kullback-Leibler method; PWADI refers to posterior-weighted attribute-level discrimination index;
and PWCDI refers to posterior-weighted cognitive diagnostic index; ORI refers to original item
selection method without attribute coverage control; ABI refers to Cheng’s (2010) method; RTA refers
to the ratio of test length to the number of attributes; PCCR refers to pattern correct classification rate;
A-ACCR refers to averaged attribute correct classification rate; Est refers to the estimate, SE is standard
error.

Results
Correct classification rate

Tables 1 and 2 present the correct classification rates and the corresponding empirical
standard errors (SEs) for the DINA model and the RRUM, respectively, conditional on five
attributes. Table 1 shows that all three attribute coverage indices produce similar PCCRs and

A-ACCRs for the long-length test (/= 30). When test lengths are short (/= 10) and moderate
10
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(J = 20), some differences are found between ORI, ABI, and RTA. The ABI, in general,
produces higher PCCRs and A-ACCRs than ORI and RTA for moderate- and long-length tests
with the MI method, while the RTA performs as well as or even better than ABI with other
three item selection methods regardless of test length and Q-matrix structure. To examine
which factors (attribute coverage index, test length, and Q-matrix structure) have a significant
effect on the measurement accuracy, four repeated measures ANOVAs are conducted for the
item selection methods, respectively. Results show that all main effects, second- and third-
order interaction effects are statistically significant for the MI method, the partial etas (77;)
range from .085 (attribute coverage index) to .996 (test length), and the ABI performs
significantly better than RTA for complex-structure Q-matrix and moderate- and long-length
tests. For short-length tests, RTA produces significantly higher PCCR than ABI for a simple-
structure Q-matrix, while RTA produces relatively lower PCCR than ABI for a complex-
structure Q-matrix. With MPWKL and PWADI, all main effects, second- and third-order
interaction effects are statistically significant, with the exception of main effect of Q-matrix
structure and second-order interaction effect between test length and Q-matrix structure. The
77; range from .101 (interaction effect between attribute coverage index and Q-matrix
structure with PWADI method) to .998 (test length with MPWKL method) for the significant
effects, and the RTA performs significantly better than ABI for complex-structure Q-matrix
and short- and moderate-length tests with both MPWKL and PWADI. Similar to the MI method,
all effects are significant for the PWCDI method, and the 77; range from .052 (interaction
effect between attribute coverage index and Q-matrix structure) to .997 (test length), and the
RTA performs significantly better than ABI for complex-structure Q-matrix and short-length
11
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tests and for a simple-structure Q-matrix and moderate-length tests. In addition, the empirical

SEs are small for all conditions, indicating that the estimates of PCCRs and A-ACCRs are

stable.
Table 2. Correct classification rate for the RRUM (K = 5)

Item Attribute J=10 J=20 J=30
selection i coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method e index Est SE Este SE Est SE Est SE Est SE Est SE

MI simple ORI  .745 .014 .943 .003 .892 .014 .977 .003 .955 .007 .991 .002

ABI  .697 .012 .931 .003 .909 .008 .981 .002 .958 .005 .991 .001

RTA .698 .015 .930 .003 .912 .009 .982 .002 .957 .005 .991 .001

complex ORI .705 .013 .930 .004 .872 .009 .971 .002 .943 .008 .988 .001

ABI  .689 .012 .928 .003 .884 .012 .975 .003 .943 .009 .988 .002

RTA .697 .016 .927 .004 .862 .011 .969 .003 .938 .007 .987 .002

MPWKL  simple ORI  .836 .013 .965 .003 .984 .004 .997 .001 .998 .001 1.00 .000
ABI  .824 .009 .962 .002 .977 .005 .995 .001 .998 .001 1.00 .000

RTA .835.011 .964 .003 .984 .004 .997 .001 .998 .001 1.00 .000

complex ORI  .849 .010 .965 .003 .980 .004 .996 .001 .997 .002 .999 .000

ABI  .784 .016 .951 .004 .976 .005 .995 .001 .996 .002 .999 .000

RTA  .841 .010 .962 .002 .976 .006 .995 .001 .996 .002 .999 .000

PWADI simple ORI  .831 .011 .963 .002 .985 .003 .997 .001 .998 .001 1.00 .000
ABI  .825 .013 .962 .003 .978 .004 .995 .001 .998 .001 1.00 .000

RTA .832 .012 .964 .003 .983 .005 .997 .001 .998 .001 1.00 .000

complex ORI  .836 .011 .959 .003 .980 .004 .995 .001 .996 .002 .999 .000

ABI  .768 .011 .948 .003 .973 .006 .994 .002 .996 .002 .999 .000

RTA  .831 .012 .959 .003 .978 .003 .995 .001 .995 .002 .999 .001

PWCDI  simple ORI  .839 .013 .965 .003 .984 .004 .997 .001 .998 .002 1.00 .000
ABI  .826 .011 .962 .003 .977 .005 .995 .001 .998 .001 1.00 .000

RTA .829 .012 .963 .003 .982 .004 .996 .001 .998 .001 1.00 .000

complex ORI  .842 .009 .963 .002 .981 .005 .996 .001 .997 .001 .999 .000

ABI  .780 .012 .951 .003 .972 .005 .994 .001 .995 .003 .999 .001

RTA  .835 .011 .961 .003 .975 .004 .995 .001 .995 .003 .999 .001

The results in Table 2 exhibit a similar pattern to that observed with the RRUM model:

the ABI performs better than ORI and RTA for moderate- and long-length tests for the MI

method while it performs worse for short-length tests. In addition, both RTA and ORI produce

larger PCCRs than ABI for short- and moderate-length tests for the MPWKL, PWADI, and

PWCDI methods. Moreover, all of these three attribute coverage indices produce very similar

PCCRs when the test length is long. Furthermore, the RTA produces a lower A-ACCR than

12
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ABI for the MI method, while it produces an identical or larger A-ACCR than ABI for most
conditions. All main effects and second- and third-order interaction effects are statistically
significant, with the exception of the second-order interaction effect between test length and
Q-matrix structure for the MPWKL method, and the 77; range from .046 (interaction effect
between attribute coverage index and Q-matrix structure with MI method) to .998 (test length
with PWADI method) for the significant effects. Finally, the empirical SEs are small and the
corresponding estimates are stable.

The PCCR and A-ACCR for six attributes are presented in the supplementary material
and the results can be summarized as follows: (1) The ABI, in general, produces higher PCCRs
and A-ACCRs than RTA for the MI method; (2) the RTA and ORI methods produce higher
PCCRs and A-ACCRs than ABI with the MWPKL, PWADI, and PWCDI methods regardless
of Q-matrix structure and test length; (3) all the third-order interaction effects are significant,
and the 77; range from .251 (for RRUM and PWCDI method condition) to .534 (for DINA
model and MWPKL method condition); (4) with the increase of test length, the SEs are
decreased for all conditions.

The usage of items

Since all of the items in the simple-structure Q-matrix are single-attribute, all item
selection methods select single-attribute items, which results in no differences in the usage of
items that measure k-attributes for ORI, ABI, and RTA. Therefore, the details will not be
presented. Table 3 presents the usage of items that measure k-attributes for five attributes and
with the complex-structure Q-matrix. The usage of items that measure k-attributes for six
attributes is consistent with the results with five attributes, and the details can be accessed in

13
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the supplementary material. Unsurprisingly, the RTA method selects the least items that
measure a single attribute in most of the conditions, followed by the ORI method. The ABI

method uses the most items that measure a single attribute. Specifically,

Table 3. The usage of items measures k-attribute for five attributes and complex Q-matrix

item attribute J=10¢ J=20¢ J=30¢

model  selection coverage

. 1-A  2-As  3-As 1-A  2-As  3-As 1-A  2-As  3-As
method index

DINA MI ORI 489 381 131 507 337 156 528 306 .166
ABI 864 .063 .074 738 178 .084 633 245 122

RTA 420 433 147 436 397 167 490 339 171

MPWKL ORI 468 366 .166 400 373 227 408 358 .233
ABI .888 .077 .036 671 212 117 540 291 (168

RTA 435 396 169 377 393 230 397 369 233

PWADI ORI 368  .406 226 360 388 253 386 368 246
ABI 833 130 .037 622 243 135 513307 180

RTA 359 421 220 346 402 253 379 376 245

PWCDI ORI 431 385 184 387 377 236 404 358 238
ABI .882  .083 .035 .665 215 119 538 291 (171

RTA 405 408 187 367 395 239 394 367 239

RRUM MI ORI 480 395 125 443 396 .161 430 392 178
ABI 932 .032 .036 729 189 .082 5740299 127

RTA 410 411 179 377 422 200 396 406 .198

MPWKL ORI 492 355 153 427 381 192 413 381  .206
ABI 875 .090 .035 .662 231 107 524 316 160

RTA 434 390 175 385 408 207 399 391 211

PWADI ORI 434 380 .186 402 392 205 400 387 213
ABI .829 135 .036 622 260 118 504 330 .166

RTA 406 393 201 372408 219 392 391 217

PWCDI ORI 475 365 160 418 385 197 409 382 208
ABI 866 .099 .036 .653 236 111 519 319 163

RTA 427 391 182 381 408 212 396 391 213

Note. k-A(s) means items measure & attribute(s);

@ 4-As and 5-As equal to 0 for all conditions.

the proportion of items that measure a single attribute ranges from .346 to .490, .360 to .528,
and .504 to .930 for the RTA, ORI, and ABI criteria, respectively. In addition, among these
three attribute coverage indices, the RTA method produces the largest proportions of items that
measure two and three attributes, followed by the ORI method, and the ABI method yields the

smallest proportions of items that measure two and three attributes. These results can be
14
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expected since the RTA criterion tends to choose items that measure different attributes to the
already administered items. The ABI criteria, on the contrary, tends to penalize items that
measure multiple attributes by taking the product of deviances for all attributes. Consequently,
items that measure a single attribute tend to be selected by the ABI criteria.

Coverage of attributes

Table 4 lists the proportion of individuals who have been administered at least three times
measuring each attribute for moderate- and long-length tests. The results are omitted for the
short-length test (i.e. J/ = 10) because all three attribute coverage indices do not satisfy the
attribute coverage requirement. The ABI can ensure that most of the tests satisfy the attribute
coverage regardless of number of attributes, model type, Q-matrix structure, item selection
method, and test length, while RTA performs worse than ABI but better than the ORI.
Repeated measures ANOVAs are conducted to investigate the differences among ORI, ABI,
and RTA. The results show that most main effects, second-, third- and fourth-order
interaction effects are significant under the DINA model, and most of the 77; are larger
than .50. Although the differences between ABI and RTA are significant for some conditions,
the 77127 range from .001 to .114, which indicates that stronger evidence is needed to support
differences between ABI and RTA. For the RRUM, all main effects and second-, third- and
fourth-order interaction effects are significant, and the 77; range from .797 to .999. In
addition, all of the main effects of attribute coverage index, test length, and number of
attributes are significant for all item selection methods, and all of the 7712, are larger
than .950. Although the fourth-order interaction effects are significant for all item selection
methods, the partial etas are small and range from .002 to .065. Furthermore, the third-order

15
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1
2
2 Table 4. Overall percentage for moderate- and long-length tests
5 Number Attribute J=20 J=30

Model Q
6 of i coverage
7 ) type matrix ) MI MPWKL ADI CDI MI MPWKL ADI CDI
8 attributes index
9 K=5 DINA simple ORI 357 .846 .842 851 .881 .997 .998 .997
10 ABI .986 1.00 1.00 1.00 1.00 1.00 1.00 1.00
11 RTA 1.00 .892 .891 .892 1.00 .999 1.00 999
12 complex ORI 172 940 956 945 974 998 .999 998
12 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 RTA 1.00 965 976 969 1.00 1.00 1.00 1.00
16 RRUM simple ORI 326 812 813 817 .867 996 .996 .996
17 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
18 RTA 1.00 872 .876 871 1.00 .999 999 .999
19 complex ORI 795 910 919 910 977 .996 995 .995
;? ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
22 RTA 1.00 981 .984 982 1.00 1.00 1.00 1.00
23 K=6 DINA simple ORI .034 468 464 463 495 983 .984 .985
24 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25 RTA 1.00 516 507 507 1.00 .993 959 961
;? complex ORI 714 775 823 793 971 988 988 987
28 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29 RTA 935 .828 .860 .834 1.00 .995 .987 983
30 RRUM simple ORI .020 327 318 322 430 957 953 957
31 ABI 1.00 1.00 1.00 1.00 993 1.00 1.00 1.00
32 RTA 1.00 427 357 418 1.00 985 952 922
gi complex ORI .569 721 155 733 .865 974 981 977
35 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
36 RTA .900 .804 794 .805 1.00 .999 .986 972
; ; Note. The results are omitted for the short-length test (i.e. /= 10) because all three attribute coverage indices do not satisfy the attribute coverage requirement.
39
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index, number of attributes, and test length are significant for all item selection methods, and
the corresponding 77§ are at the range of .969 and .980, and the ABI performs better than the
RTA at six attributes and moderate-length tests.

Discussion and conclusions

The goals of this study are to develop a new attribute coverage method, RTA, to deal with
empirical situations when more than one attribute is involved in successfully solving a test item
(DeCarlo, 2011; Huang, 2018) and to examine the performance of both ABI and RTA when
different item selection methods are used. A simulation study is conducted to examine the
performance of RTA and ABI, and promising results are produced.

The results show that the RTA produces lower PCCRs than ABI for moderate- and long-
length tests with the MI method, especially with a complex structure Q-matrix. On the contrary,
the RTA produces relatively high PCCRs than the ABI for short- and moderate-length tests
with the MPWKL, PWADI, and PWCDI methods. A possible explanation is that both the MI
method and the ABI criterion prefer single-attribute items, while the RTA and three other item
selection methods tend to use fewer single-attribute items than ABI and MI method. As
Madison and Bradshaw (2015) and Huebner et al. (2018) demonstrated, the more single-
attribute items there are in a test, the higher the measurement accuracy is for long-length tests.
Therefore, the RTA can be expected to produce lower measurement accuracy since fewer
single-attribute items are used for the MI method. As for the MPWKL, PWADI, and PWCDI
methods, the differences between the usage of items that measure one and two attributes are
small, meaning that these item selection methods prefer items that measure either one or two
attributes. Therefore, when the ABI criteria, which prefers the single-attribute items, is added

18
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to these three item selection methods, information provided by two-attribute items may be lost
and, consequently, lower measurement accuracy is produced for the ABI compared to the ORI
and RTA criteria. Meanwhile, a possible reason why the ABI performs worst in most
conditions for short-length tests (/ = 10) is that it is hard to satisfy the minimum number of
items that measure each attribute when the test length is short. Although previous studies
demonstrated that tests containing more single-attribute items tend to produce higher
measurement accuracy (Huebner et al., 2018; Madison & Bradshaw, 2015), the prerequisite
for a high measurement accuracy is that the test length is long enough.

Moreover, the results show that the ABI is not suitable for all item selection methods. In
the current study, the ABI is suitable for the MI method, while it is unsuitable for the MPWKL,
PWADI, and PWCDI methods. In the study of Cheng (2010), the combination between ABI
and KL method (MMGDI) can produce higher measurement accuracy than the original KL
method (MGDI). Since both the ABI criterion and KL/MI methods prefer single-attribute items
rather than multiple-attribute items, using the ABI criterion further reinforces the tendency of
the KL and MI methods to select single-attribute items. Hence, the combination between the
ABI criterion and the original item selection methods would produce high measurement
accuracy if the original item selection methods prefer single-attribute items. On the flipside,
low measurement accuracy would be produced if more than one attribute is preferred by the
original item selection methods (e.g. MPWKL, PWADI and PWCDI).

It’s worth noting that, although the RTA criteria produces higher measurement accuracy
than the ABI criteria with the MPWKL, PWADI, and PWCDI methods, this does not indicate
that the RTA performs better than ABI for all situations. By examining the ABI and RTA
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criteria, the ABI tends to penalize items that measure multiple attributes, while the RTA tends
to select items that measure multiple attributes. Therefore, it is reasonable to infer that the
composition of items that measure different number of attributes in the item pool have an
important influence on these two criteria. The RTA performs better than ABI if there is a large
number of multiple-attribute items in the item pool. Meanwhile, the ABI performs better than
RTA if there is a majority of single-attribute items, producing higher measurement accuracy
than RTA for all conditions.

The results also show that the ABI performs better than the RTA for moderate- and long-
length tests concerning the attribute coverage, which coincides with our expectation. As stated
previously, the formulation of the RTA is determined by two components. One is used to
control the usage of items that measure different numbers of attributes and the other is used to
control the attribute coverage. When one of the components is satisfied, the other component
is ignored. For instance, when the summation of the first component is zero, the component
that controls the attribute coverage is ignored and consequently the attribute coverage will not
be satisfied.

In conclusion, the new attribute coverage control method—RTA—is suitable for
controlling the attribute coverage and producing acceptable measurement accuracy when the
item pool is comprised of a large number of items that measure multiple attributes, which is a
common phenomenon in empirical testing situations (DeCarlo, 2011; Huang, 2018). The ABI,
on the other hand, is appropriate for test situations when the majority of an item pool is
comprised of single-attribute items. Furthermore, the ABI is suitable for item selection methods
that prefer single-attribute items, such as the KL method (Cheng, 2010) and the MI method,
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but is not suitable for methods that prefer both single- and multiple- attributes items such as
the MPWKL, PWADI, and PWCDI methods.

Although some promising results are found in the current study, several remaining open
i1ssues deserve further studies. First, we assume that the minimum number of items that measure
each attribute are the same for all attributes. Considering that different attributes may carry
different importance, this is not a necessary constraint and further studies can take the
importance of each attribute into consideration to further investigate the performance of
attribute coverage methods in CD-CAT. Second, fixed-length tests were used in the current
study. Therefore, everyone was administered the same test length. Future studies can examine
the performance of RTA when the test length is different for each individual (variable-length
tests). Third, both the DINA model and the RRUM are specific CDMs and some constraints
imposed on these specific CDMs are (a) only a single model is available across the entire test
and (b) either compensatory or non-compensatory relationships is assumed for the test (Ravand,
2016). General CDMs relax these constraints and therefore a general CDM can be used in
future studies.
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Supplementary material

CDMs
The item response function (IRF) of the DINA model can be written as
P(xl.j =1] 771.1.) = (l -5, )UU gjlfn‘f" ,

wherez, = Hszl(“ik )™ is the ideal response, which indicates whether the individual
masters all the attributes that a specific item requires; S is the slip parameter, which
indicates the probability of an individual who has mastered all the attributes that are
required for item j to obtain an incorrect response and g is the guess parameter, which
indicates the probability of an individual who has not mastered all the required
attributes to obtain a correct response for item j.

The IRF of the RRUM can be expressed as

K
_ - * (1=ay )g
P(x,=1la,)=z]]r ,
k=1

where ﬂj is the baseline parameter, which refers to the probability of correct response

to item j when individuals master all the attributes that item j requires. Meanwhile, r_;
is the penalty parameter, which indicates the reduction in the probability of correct

response to item j when individuals lack attribute k. Both ﬂj and 7”;{ range from 0 to 1.
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Item selection methods

Mutual information (MI) method. The MI method in CD-CAT has been proposed
as an item selection method for short-length tests. It is defined as the expected KL
divergence between the joint distribution of the posterior distribution of attribute
pattern a given the first j—/ items, 7 (a | X, ) , and the posterior predictive probability
of the jth item given all previous j—/ items, P (X =X X, ) , and the product of the

marginal distributions 0f7z'<a | Xj_l)and P(Xij :x|Xj_l) (Wang, 2013). The MI

index can be written as

; S X X =
MIU=Z;P(Xy=x|Xj_1) Z‘/z(a(jxj_l,xlj:x)xlog[ﬂ(a;l(a,|1x A/) x)J ,
X= c= ’ j_l

where P(X ;=X X _}._1) can be calculated as

K

P(X,,.

S X,.j.=x|ac)7r0(ac)

P(X, =x1X,) = X P(X, =xla (e | X,,) =

oK
S P(X, 10 (@)
c=1

9

and ﬂ(ac | X, . X, = x) is the posterior probability conditional on the first j items.

1

Modified posterior-weighted Kullback-Leibler (MPWKL) method. The MPWKL
method is a modification of the PWKL method. The PWKL method uses the point
estimate to represent an individual’s posterior probability of the attribute patterns given
the response pattern. The MPWKL method, on the other hand, uses the entire rather
than a single posterior distribution of attribute pattern(s) to represent the KL divergence
between the current estimate of the attribute pattern and other attribute patterns;

therefore, it can be expected that the MPWKL method can provide more information

and produce smaller measurement error of the posterior probability about individuals
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than the PWKL method (Kaplan et al., 2015). The MPWKL index can be calculated as

2K | o
MPWKL@‘/':; Z:, Z(;log E |Zd; (Xi/:x|“d)”(ac|Xn—1) (ad|Xn—1) .
=l | ¢ x= lj c

Posterior-weighted cognitive diagnostic index (PWCDI) and posterior-weighted
attribute-level discrimination index (PWADI) methods. Henson and colleagues (2005,
2008) proposed CDI and ADI to construct cognitive diagnostic testing in a P&P context
and Zheng and Chang (2016) extended them to CD-CAT. And based on the same logic
as the PWKL method, Zheng and Chang (2016) proposed the PWCDI and PWADI

methods, which can be written as

PWCDI, = 1 > h(a,.a,) PWD,,

u:tvh (au > av )7

and

I
PWADI, =— > PWD

Juv 2
h(a, .a,)=1

P (X,_x)

a,

P, = (e )enla )< 2R (X, )1og[M]

where h(a,,a,)=>"

k=1

a,, —a,|is the Hamming distance between attribute patterns

uk
a,anda, (u,v=12,L ,2%) andh (a,,@,)=Irefers to any pair of attribute patterns ,
and a, with the Hamming distance equal to 1; (X ; ) and P, (X ; ) are either the IRFs

of the DINA model or the RRUM, and;r(a) is the posterior probability of all attribute

patterns (2X).

Items with the largest value will be administered to an individual for those item
selection methods mentioned above.
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Results
Table A. Correct classification rate for the DINA model (K = 6)
Item Q Attribute J=10 J=20 I=

selection  matrix  coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method index Est SE Est SE Est SE Est SE Est SE Est SE
MI simple ORI .672 .019 936 .004 818 014 967 .003 905 .009 984  .002
ABI .649 014 930 .003 874 .007 978 .001 928 .009 988  .002
RTA .649 018 930 .004 .872 012 978 .002 928 .006 .988 .001
complex ORI 538 012 .893 .004 792 .013 959 .003 .896 .008 981 .002
ABI 576 011 913 .003 825 010 968 .002 915 .008 985  .001
RTA .556 .015 .899 .004 75 .011 955 .002 .894 .008 980 .002
MPWKL  simple ORI 742 .013 951 .003 966  .005 994 .001 .996 .003 999  .000
ABI 734 012 950 .003 925 .008 987 .002 995 .003 999  .000
RTA 743 015 952 .003 963 .005 994 .001 995 .002 .999 .000
complex ORI 759 .013 948 .003 965 .004  .993 .001 996 .003 999  .000
ABI .693 016 .940 .003 939  .007  .988 .001 .995 .002 999 .000
RTA 752 011 944 .003 962 .006 993 .001 994 .002 999 .000
PWADI  simple ORI 734 011 950 .002 967  .004 994  .001 994 .003 999  .000
ABI 735 013 950 .003 928 .009 988 .002 995 .003 999  .000
RTA 737 014 950 .003 964 .006 .994 .001 992 .003 .999 .000
complex ORI 713 016 927 .004 955 .006  .989 .001 992 .002 998  .001
ABI .688 018 936 .004 942 .007 988 .001 994 .003 999  .001
RTA 11 .010 927 .003 946 .009 988 .002 992 .004 998 .001
PWCDI  simple ORI 735 014 950 .003 965 .005 994 .001 995 .002 999  .000
ABI 734 013 950 .003 927  .006  .987 .001 995 .002 999  .000
RTA 736 012 950 .003 966 .005 994 .001 992 .003 .999 .001
complex ORI 750 014 943 .004 968 006 994  .001 995 .003 999  .000
ABI .700 015 940 .003 939  .006  .988 .001 994 .002 999  .000
RTA 147 .016 943 .006 961 .007 992 .002 993 .003 .999 .000
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Item Attribute J=10 J=20 J=
selection m:t)rix coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method index Est SE Est SE Est SE Est SE Est SE Est SE
MI simple ORI 631 .016 927 .004 197 .014 963 .003 .892 .008 981 .001
ABI .601 .017 919 .004 851 .010 974 .002 .894 011 982 .002
RTA .598 .015 918 .004 .849 .013 973 .002 916 .006 985 .001
complex ORI 571 .014 906 .003 770 .010 955 .002 .882 .009 978 .002
ABI 557 .019 907 .004 765 .013 956 .003 .848 .010 971 .002
RTA 572 .016 906 .004 765 .013 953 .003 .873 011 976 .002
MPWKL  simple ORI 704 .015 943 .003 954 .006 992 .001 991 .004 998 .001
ABI .699 .015 942 .003 902 .009 983 .002 .990 .003 998 .001
RTA 701 .014 942 .003 948 .008 991 .001 .989 .003 .998 .001
complex ORI 728 .013 942 .003 954 .008 991 .002 .990 .003 998 .001
ABI .660 .014 931 .003 919 .009 985 .002 988 .004 998 .001
RTA 712 .013 937 .003 943 .009 .989 .002 .990 .003 .998 .001
PWADI simple ORI 706 012 943 .003 951 .008 992 .001 992 .002 .999 .000
ABI .700 012 943 .003 904 011 983 .002 .990 .003 998 .001
RTA 706 .016 943 .003 943 011 990 .002 987 .003 998 .001
complex ORI 704 .014 932 .004 947 .006 .989 .002 .989 .004 998 .001
ABI .666 .014 931 .004 915 .007 983 .002 987 .003 .997 .001
RTA .700 .013 931 .004 942 .007 988 .001 988 .003 998 .001
PWCDI simple ORI 710 .013 944 .003 951 .006 992 .001 .990 .003 998 .001
ABI .698 .013 942 .003 .900 011 982 .002 .989 .003 .998 .001
RTA 714 .014 945 .003 951 .008 992 .001 987 .003 998 .001
complex ORI 726 .014 940 .003 951 .007 991 .001 991 .002 998 .000
ABI .665 011 932 .002 917 .010 984 .002 988 .003 998 .001
RTA 715 .015 937 .003 943 .008 .989 .002 .990 .003 998 .001
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Table C. The usage of items that measuring k-attribute for six attributes and complex Q-matrix

item attribute J=10¢ J=20¢ J=30¢
model selection coverage
method index I-A  2-As  3-As I-A  2-As  3-As I-A  2-As  3-As
DINA MI ORI 450 359 191 445 343 212 465 326 .209
ABI 935 .033  .032 .845  .086 .069 650 213 137
RTA 417 388 .195 356 416 228 418 366 216
MPWKL ORI 426 335 238 374 356 270 382 353 266
ABI 875 .090 .035 769 132 .098 578 241 181
RTA 393 368 239 326 394 280 361 369 270
PWADI ORI 314 377 308 312 381 .307 351 365 284
ABI 780 177 .042 680 192 128 528 272 200
RTA 298 398 304 287 401 312 351 365 284
PWCDI ORI 401 343 256 357 363 280 376 353 271
ABI 870  .094 .036 765 134 100 S77 0 241 183
RTA 373 369 258 315 395 .290 375 355 270
RRUM MI ORI 479 331 .190 403 407 .190 378 429 193
ABI 935 .034 .031 836 .113  .052 432 347 221
RTA 441 360 200 320 451 229 331 452 218
MPWKL ORI 443 354 204 354 426 220 342 434 224
ABI 798 170 .032 700 211 .089 5220 321 158
RTA 416 372 212 312 445 244 318 447 235
PWADI ORI 354 401 245 318 443 239 325 443 232
ABI 786 179 .035 683 219  .097 509 328 163
RTA 346 405 249 303 445 251 408 391 202
PWCDI ORI 415 364 221 345 430 226 337 435 228
ABI 796 171 .033 694 213 .094 S18 0 .321 160
RTA 399 376 225 306 444 250 334 436 230

Note. k-A(s) means items measure k attribute(s);
@ 5-As equal to 0 for all conditions.
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A New Method to Balance Measurement Accuracy and Attribute
Coverage in Cognitive Diagnostic Computerized Adaptive Testing
Abstract
As one of the important research areas of cognitive diagnosis assessment, cognitive diagnostic
computerized adaptive testing (CD-CAT) has received much attention in recent years.
Measurement accuracy is the major theme in CD-CAT and both the item selection method and
the attribute coverage have a crucial effect on measurement accuracy. A new attribute coverage
index, the ratio of test length to the number of attributes (RTA), is introduced in the current
study. RTA is appropriate when the item pool comprises many items that measure multiple
attributes where it can both produce acceptable measurement accuracy and balance the attribute
coverage. With simulations, the new index is compared to the original item selection method
(ORI) and the attribute balance index (ABI), which have been proposed in previous studies.
The results show that: (1) the RTA method produces comparable measurement accuracy to the
ORI method under most item selection methods; (2) the RTA method produces higher
measurement accuracy than the ABI method for most item selection methods, with the
exception of the mutual information item selection method; (3) the RTA method prefers items
that measure multiple attributes, compared to the ORI and ABI methods, while the ABI prefers
items that measure a single attribute; and (4) the RTA method performs better than the ORI
method with respect to attribute coverage, while it performs worse than the ABI with long tests.
Keywords
Cognitive diagnostic computerized adaptive testing, the ratio of test length to the number of

attributes, measurement accuracy, attribute coverage
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Introduction

Cognitive diagnosis assessment (CDA) has recently received much attention in
educational and psychological assessment (Rupp & Templin, 2008). Compared to classical test
theory and item response theory (IRT), which only provide an overall score to indicate the
information about the position of one individual relative to others on one specific latent trait
(de la Torre & Chiu, 2016), CDA can provide detailed information about the strengths and
weaknesses of individuals for specific content domains. Consequently, efficient remediation
can be conducted based on the fine-grained information available about individuals (Gierl,
Leighton, & Hunka, 2007; Lim & Drasgow, 2017; Sawaki, Kim, & Gentile, 2009).

One important research area in CDA is cognitive diagnostic computerized adaptive testing
(CD-CAT; Cheng, 2009; McGlohen & Chang, 2008; X. Xu, Chang, & Douglas, 2003). CD-
CAT combines a cognitive diagnostic model (CDM) and computer technology to improve
testing efficiency and measurement accuracy. Like IRT-based CAT, CD-CAT has compelling
advantages over traditional paper-and-pencil (P&P) tests. For example, the performance of
individuals can be estimated immediately after they provide a response to each item (Cheng &
Chang, 2009). CD-CAT can also provide equivalent or higher accuracy in the measurement of
an individual’s latent skills, with reductions in test length.

The primary goal of CD-CAT is to improve the measurement accuracy of individuals
(Zheng & Chang, 2016) and the item selection method is one of the most important keys to
this. Numerous item selection methods have been proposed, such as the Kullback-Leibler

method (KL; X. Xu et al., 2003), the Shannon Entropy method (Tatsuoka, 2002), the posterior-
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weighted KL method (PWKL; Cheng, 2009), the mutual information method (MI; Wang, 2013),
and the modified PWKL method (MPWKL; Kaplan, de la Torre, & Barrada, 2015). Recently,
Zheng and Chang (2016) developed two new item selection methods designed for short-length
tests: the posterior-weighted cognitive diagnostic index (PWCDI) and the attribute-level
discrimination index (PWADI), based on previous work by Henson & Douglas (2005) and
Henson, Roussos, Douglas, & He (2008).

In addition to the item selection method, the coverage for each attribute can also impact
the measurement accuracy. Cheng (2010) indicated that attribute coverage influences both
measurement accuracy and reliability, and it is important to make sure that each attribute is
measured adequately to ensure the validity of the inferences based on the test. Therefore, she
used the modified maximum global discrimination index (MMGDI) method, first used in IRT-
based CAT by Cheng and Chang (2009), to balance the attribute coverage and improve
measurement accuracy. The simulation study showed that, compared with the original KL
method, the MMGDI method produced a relatively higher attribute correct classification rate
(ACCR) and pattern correct classification rate (PCCR).

When the minimum number of items that measure each attribute is not satisfied, the
attribute balance index (ABI) used in Cheng (2010) tends to select items with a single attribute
(Mao & Xin, 2013), which means that the ABI is suitable when the item pool is composed of
many items that measure a single attribute. Measurement accuracy would however be lower if
the item pool is comprised of many items that measure multiple attributes. Although a test with
single-attribute items can produce high PCCR in the CDA framework (e.g. Madison &

Bradshaw, 2015; Wang, 2013), it is difficult to construct such items because more than one
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attribute is required to successfully solve items in real testing situations (DeCarlo, 2011; Huang,
2018). An extreme case is when there are hierarchical relationships among attributes (Leighton,
Gierl, & Hunka, 2004), where the ABI tends to produce low measurement accuracy. In addition,
the ABI has only been used with the KL method and its performance with other item selection
methods is unknown. Therefore, the current study proposes a new method — the modified ratio
of test length to the number of attributes (RTA), influenced by the study conducted by Kuo,
Pai, and de la Torre (2016) — to balance attribute coverage and improve measurement accuracy
when the item pool comprises many multiple-attribute items. Furthermore, the study examines
whether the RTA and ABI can be extended to more types of item selection methods.

The remainder of the paper is organized as follows: First, we will introduce the two CDMs
used in the study and summarize the item selection methods used. After that, the ABI and RTA
will be presented. Then, a simulation study is conducted to examine the RTA with respect to
the correct classification rate conditional on several manipulated factors. Finally, the discussion
and conclusions are presented.

Cognitive diagnostic models and item selection methods

Numerous CDMs have been proposed to deal with different test situations and with
CD-CAT, the “Deterministic Input, Noisy ‘And’ Gate” (DINA) model (Junker & Sijtsma, 2001)
and the Reduced Reparameterized Unified Model (RRUM; Hartz, 2002) are commonly used
(e.g., Chen, Xin, Wang, & Chang, 2012; Cheng, 2010; Huebner, Finkelman, & Weissman, 2018;
G. Xu, Wang, & Shang, 2016). Let; denote the mastery of attribute k for individual i and

g, denote if the attribute k is required to answer item j correctly. The item response function

(IRF) of the DINA model is then
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P (Xij =1 | i ) = (1— Sj )qij gjl"”ij ,

wherer, =] ::1 (er, )™ ands; and g; are item parameters. With the RRUM, the IRF is

K
_ o * * (1-ay )djic
P(x; =1la)=m[r;" ™",
k=1
where 7 and r;, are the item parameters. The item selection method plays an important role in

CD-CAT and is the main determinant of ACCR and PCCR. This study uses the four item
selection methods MI (Wang, 2013), MPWKL (Kaplan et al, 2015), PWCDI and PWADI
(Zheng and Chang, 2016). For details on the interpretation of the cognitive diagnostic model
parameters and the item selection methods, we refer to the supplementary material.
Attribute coverage indices

ABI. The ABI was proposed to make sure that each attribute was measured adequately to

improve the correct classification rate (Cheng, 2010). It is defined as

el 1((8,-5)/8,)"

k=1

where B, is the minimum number of items that should measure the k™ attribute and bk is
the number of items that have already been selected to measure the k'™ attribute.

RTA. Kuo et al. (2016) proposed the RTA to ensure that each attribute is adequately
measured when constructing a P&P cognitive diagnostic test. In this paper, we extend this
method to CD-CAT and modify it to balance the attribute coverage. The RTA in a CD-CAT

context can be written as

1
1+ (H<B)Y 1 (4,=4)

where V refers to the number of items that have already been selected; () is the indicator

RTA, =

, H=min(b,b,,---,b) ,

function; and ¢; and q: are the g-vectors of items that have not been and have already been
5
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given to a specific person, respectively.

The term 1(q; = q,) controls the usage of items that measure different numbers of
attributes, and the relationship between H and Bk strives to ensure that each attribute is
measured at least Bk times. If z\\:zl I(q; = q,) is larger than 0 and H is no larger than Bk, then
the value of I(H < Bk)z‘\\::1 I (q | = q:) tends to be large. Consequently, the RTA becomes
small and the j item will not be selected. Instead, items with different attribute patterns to the
previously selected items will tend to be selected. On the other hand, when H is larger than Bk
or z\\:zl I(q; = q,)is 0, then the RTA is equal to 1. In such a case, RTA will not affect the item
selection method and therefore the items will then be selected based on the original item
selection method.

The RTA criterion balances the attribute coverage and prefers multiple-attribute items. On
the contrary, the ABI criterion balances the attribute coverage and prefers single-attribute items.
Note that the RTA is determined by both H and Z\vlzl I(g; = q,), which means that, if H is
larger than Bk (or Z\vlzl I(g; = q,)is 0), then Z\::l I(q; = q,) (or H) canbe ignored. Therefore,
the RTA criterion may not guarantee that each attribute is covered completely. In sum, we
expect ABI to perform better than RTA regarding attribute coverage given a long enough test,
with RTA performing better than ABI regarding measurement accuracy when the item pool
contains many multiple-attribute items. Item selection methods that consider both the attribute
coverage and the information that an item provides can be developed by multiplying the
attribute coverage indices (ABI or RTA) and the original item selection methods, for example
the MMGDI can be obtained by the multiplication ABI x KL.

Simulation study
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The goals of the simulation study are to examine the performance of the new attribute
coverage index and examine whether the RTA and ABI can be extended to other item selection
methods. Several factors are manipulated: model type, number of attributes, Q-matrix structure,
test length, attribute coverage index, and item selection method. In total there are 2 (model type)
X 2 (number of attributes) X 2 (Q-matrix structure) X 3 (test length) X 3 (attribute coverage
index) X 4 (item selection method) = 288 conditions in the study. The details of the simulation
study are given in the following.

Model type. Both the DINA model and the RRUM will be used in the current study since
these two CDMs are commonly used in CD-CAT (e.g., Cheng, 2010; Huebner et al., 2018;
Mao & Xin, 2013; G. Xu et al., 2016).

Number of attributes. Wang (2013) and Zheng and Chang (2016) used five attributes in
their studies, while Cheng (2010) used six attributes in her study. In the current study, both five
and six attributes are considered to examine the performance of RTA and ABI.

Q-matrix structure. Two types of Q-matrix are generated in this study, namely simple
structure and complex structure (Chen et al., 2012; Huang, 2018; Wang, 2013). For the simple
structure Q-matrix, all items are unidimensional, meaning that each item measures a single
attribute. This Q-matrix is generated based on a discrete uniform distribution with equal
probability for all possible patterns. Meanwhile, for the complex structure Q-matrix between
one and three attributes are measured by each item. The generation of the complex structure
Q-matrix is based on Chen et al. (2012) and can be summarized as follows. First, three basic
matrix units are generated. The first matrix unit is a K-by-K identity matrix, while the second

and third matrix units are comprised of all possible g-vectors that measure two and three
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attributes, respectively. Second, the first matrix unit is replicated twenty times while the second
and third matrix units are replicated ten times. This results in 100 items that each measure one,
two, and three attributes, respectively. Third, the items are merged to create a 300-by-K matrix,
and the rows of the 300-by-K matrix are randomly re-ordered.

Test length. Three different test lengths (10, 20, and 30 items) will be used in this study.
We view these as short-length, moderate-length, and long-length tests, similar to previous
research (e.g., Kuo et al., 2016).

Attribute coverage index (ACI). Three types of ACI will be used in the study. The first
type is the original item selection method without attribute coverage control (abbreviated to
ORI), which can be treated as the baseline. The second type is the ABI proposed by Cheng
(2010) and the last type is the RTA which is proposed in the current study.

Item selection method. The item selection methods used in this study are the MI, MPWKL,
PWADI, and PWCDI methods. All these methods can produce high correct classification rates
even for short-length test.

Since the generation of the a-matrix for five and six attributes are the same, we will only
describe the generation of the a-matrix for five attributes. A 1000-by-5 matrix is generated to
represent the true attribute patterns (a-matrix). Each individual can master each attribute with
probability equal to .5 and we assume independence among individuals and independence
among attributes in the a-matrix. For the item parameters, both slipping and guessing
parameters were generated from a uniform distribution U(.05, .30) for the DINA model, and
the baseline and penalty parameters were generated from U(.65, .95) and U(.05, .50),

respectively, for the RRUM. During the item selection procedure, the minimum number of
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items that measure each attribute was set to 3 because previous studies demonstrated that each
attribute should be measured at least three times in the CDA framework (e.g. Fang, Liu, & Ying,
2019; Gu & G. Xu, 2019; G. Xu, 2017). Finally, the expected a posteriori (EAP) method is
used to estimate the attribute patterns. Twenty replications for each condition are used in
current study.

The evaluation criteria used in this study are averaged ACCR (A-ACCR), PCCR, and the

usage of k-attribute items (Kuo et al., 2016). These statistics are calculated by

PCCR= ZI = )/N,

i=l

A-ACCR = ZZI /NxK) and

i=1 k=1

Usage, = Z. 12, 1 (Z G = k)/(N xJ),k=12,,K,
where N and J are the number of individuals and test length, respectively; I(-) is the indicator
function, which will be 1 if &i =a;(or 56,k =@, ) is true, and vice versa; &i and @; are the
estimated and true values of an individual’s attribute pattern, respectively; q;h is the ' entry

of g-vector for item j that has already been answered by individual i. In addition, the empirical

standard errors (SEs) for PCCR and A-ACCR, SE = \/ ! " Zm:(é, -0 )2 (where N, is the
NG — 155

sim

number of replications, é and @ are the i'" estimation and the mean value of PCCR and ACCR,

respectively), are calculated to evaluate the uncertainty of these two indices (Morris, White, &

Crowther, 2019).
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Table 1. Correct classification rate for the DINA model (K = 5)

Item Attribute J=10 J=20 J=30

selection ? coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
matrix

method index Est SE Este SE Est SE Est SE Est SE Est SE

MI simple ORI  .752 .015 .945 .003 .891 .013 .978 .003 .953 .007 .991 .001
ABI 704 .011 .932 .003 .920 .013 .984 .003 .958 .007 .992 .001

RTA 712 .015 .934 .004 .917 .008 .983 .002 .959 .006 .992 .001

complex ORI .694 .014 .926 .004 .881 .012 .974 .003 .948 .005 .989 .001

ABI  .699 .008 .931 .003 .901 .015 .979 .004 .959 .008 .991 .002

RTA  .695 .013 .924 .004 .868 .011 .970 .003 .952 .006 .990 .001

MPWKL simple ORI  .844 .012 .966 .003 .986 .003 .997 .001 .999 .001 1.00 .000
ABI  .835 .010 .964 .002 .980 .006 .996 .001 .999 .001 1.00 .000

RTA  .838 .007 .965 .002 .987 .004 .997 .001 .999 .001 1.00 .000

complex ORI .860 .006 .966 .002 .988 .003 .997 .001 .998 .001 1.00 .000

ABI  .798 .014 .955 .003 .982 .004 .996 .001 .998 .001 1.00 .000

RTA  .852 .014 .963 .004 .986 .004 .997 .001 .998 .002 1.00 .000

PWADI  simple ORI  .847 .015 .967 .003 .987 .004 .997 .001 .999 .001 1.00 .000
ABI  .831 .011 .964 .002 .979 .004 .996 .001 .999 .001 1.00 .000

RTA  .845 .013 .966 .003 .985 .005 .997 .001 .999 .001 1.00 .000

complex ORI  .833 .011 .954 .004 .981 .004 .995 .001 .997 .001 .999 .000

ABI  .789 .014 .952 .003 .982 .004 .996 .001 .998 .002 .999 .000

RTA  .827 .014 .951 .005 .980 .004 .995 .001 .998 .001 1.00 .000

PWCDI  simple ORI  .843 .014 .966 .003 .989 .003 .998 .001 .999 .001 1.00 .000
ABI  .824 .013 .962 .003 .980 .003 .996 .001 .999 .001 1.00 .000

RTA  .843 .013 .966 .003 .988 .004 .997 .001 .999 .001 1.00 .000

complex ORI  .858 .011 .965 .003 .985 .004 .997 .001 .998 .001 1.00 .000

ABI  .803 .011 .956 .003 .983 .002 .996 .001 .998 .002 1.00 .000

RTA  .846 .016 .960 .004 .984 .003 .996 .001 .998 .001 1.00 .000

Note. MI refers to mutual information method; MPWKL refers to modified posterior-weighted
Kullback-Leibler method; PWADI refers to posterior-weighted attribute-level discrimination index; and
PWCDI refers to posterior-weighted cognitive diagnostic index; ORI refers to original item selection
method without attribute coverage control; ABI refers to Cheng’s (2010) method; RTA refers to the
ratio of test length to the number of attributes; PCCR refers to pattern correct classification rate; A-
ACCR refers to averaged attribute correct classification rate; Est refers to the estimate, SE is standard
error.

Results
Correct classification rate

Tables 1 and 2 present the correct classification rates and the corresponding empirical
standard errors (SEs) for the DINA model and the RRUM, respectively, conditional on five
attributes. Table 1 shows that all three attribute coverage indices produce similar PCCRs and

A-ACCRs for the long-length test (J = 30). When test lengths are short (J = 10) and moderate
10
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(J = 20), some differences are found between ORI, ABI, and RTA. The ABI, in general,
produces higher PCCRs and A-ACCRs than ORI and RTA for moderate- and long-length tests
with the MI method, while the RTA performs as well as or even better than ABI with other
three item selection methods regardless of test length and Q-matrix structure. To examine
which factors (attribute coverage index, test length, and Q-matrix structure) have a significant
effect on the measurement accuracy, four repeated measures ANOVAs are conducted for the
item selection methods, respectively. Results show that all main effects, second- and third-
order interaction effects are statistically significant for the MI method, the partial etas (77‘2,)
range from .085 (attribute coverage index) to .996 (test length), and the ABI performs
significantly better than RTA for complex-structure Q-matrix and moderate- and long-length
tests. For short-length tests, RTA produces significantly higher PCCR than ABI for a simple-
structure Q-matrix, while RTA produces relatively lower PCCR than ABI for a complex-
structure Q-matrix. With MPWKL and PWADI, all main effects, second- and third-order
interaction effects are statistically significant, with the exception of main effect of Q-matrix
structure and second-order interaction effect between test length and Q-matrix structure. The
77,2) range from .101 (interaction effect between attribute coverage index and Q-matrix
structure with PWADI method) to .998 (test length with MPWKL method) for the significant
effects, and the RTA performs significantly better than ABI for complex-structure Q-matrix and
short- and moderate-length tests with both MPWKL and PWADI. Similar to the MI method,
all effects are significant for the PWCDI method, and the 77‘2) range from .052 (interaction
effect between attribute coverage index and Q-matrix structure) to .997 (test length), and the
RTA performs significantly better than ABI for complex-structure Q-matrix and short-length
11
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tests and for a simple-structure Q-matrix and moderate-length tests. In addition, the empirical

SEs are small for all conditions, indicating that the estimates of PCCRs and A-ACCRs are

stable.
Table 2. Correct classification rate for the RRUM (K = 5)

Item Attribute J=10 J=20 J=30
selection ) coverage PCCR A-ACCR PCCR A-ACCR PCCR A-ACCR
method . index Est SE Este SE Est SE Est SE Est SE Est SE

MI simple ORI  .745 .014 .943 .003 .892 .014 .977 .003 .955 .007 .991 .002

ABI  .697 .012 .931 .003 .909 .008 .981 .002 .958 .005 .991 .001

RTA .698 .015 .930 .003 .912 .009 .982 .002 .957 .005 .991 .001

complex ORI  .705 .013 .930 .004 .872 .009 .971 .002 .943 .008 .988 .001

ABI  .689 .012 .928 .003 .884 .012 .975 .003 .943 .009 .988 .002

RTA .697 .016 .927 .004 .862 .011 .969 .003 .938 .007 .987 .002

MPWKL simple ORI  .836 .013 .965 .003 .984 .004 .997 .001 .998 .001 1.00 .000
ABI  .824 .009 .962 .002 .977 .005 .995 .001 .998 .001 1.00 .000

RTA  .835 .011 .964 .003 .984 .004 .997 .001 .998 .001 1.00 .000

complex ORI  .849 .010 .965 .003 .980 .004 .996 .001 .997 .002 .999 .000

ABI 784 .016 .951 .004 .976 .005 .995 .001 .996 .002 .999 .000

RTA .841 .010 .962 .002 .976 .006 .995 .001 .996 .002 .999 .000

PWADI  simple ORI  .831 .011 .963 .002 .985 .003 .997 .001 .998 .001 1.00 .000
ABI  .825 .013 .962 .003 .978 .004 .995 .001 .998 .001 1.00 .000

RTA  .832 .012 .964 .003 .983 .005 .997 .001 .998 .001 1.00 .000

complex ORI  .836 .011 .959 .003 .980 .004 .995 .001 .996 .002 .999 .000

ABI 768 .011 .948 .003 .973 .006 .994 .002 .996 .002 .999 .000

RTA  .831 .012 .959 .003 .978 .003 .995 .001 .995 .002 .999 .001

PWCDI  simple ORI  .839 .013 .965 .003 .984 .004 .997 .001 .998 .002 1.00 .000
ABI  .826 .011 .962 .003 .977 .005 .995 .001 .998 .001 1.00 .000

RTA  .829 .012 .963 .003 .982 .004 .996 .001 .998 .001 1.00 .000

complex ORI  .842 .009 .963 .002 .981 .005 .996 .001 .997 .001 .999 .000

ABI 780 .012 .951 .003 .972 .005 .994 .001 .995 .003 .999 .001

RTA  .835 .011 .961 .003 .975 .004 .995 .001 .995 .003 .999 .001

The results in Table 2 exhibit a similar pattern to that observed with the RRUM model:

the ABI performs better than ORI and RTA for moderate- and long-length tests for the MI

method while it performs worse for short-length tests. In addition, both RTA and ORI produce

larger PCCRs than ABI for short- and moderate-length tests for the MPWKL, PWADI, and

PWCDI methods. Moreover, all of these three attribute coverage indices produce very similar

PCCRs when the test length is long. Furthermore, the RTA produces a lower A-ACCR than

12
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ABI for the MI method, while it produces an identical or larger A-ACCR than ABI for most
conditions. All main effects and second- and third-order interaction effects are statistically
significant, with the exception of the second-order interaction effect between test length and
Q-matrix structure for the MPWKL method, and the 77; range from .046 (interaction effect
between attribute coverage index and Q-matrix structure with MI method) to .998 (test length
with PWADI method) for the significant effects. Finally, the empirical SEs are small and the
corresponding estimates are stable.

The PCCR and A-ACCR for six attributes are presented in the supplementary material
and the results can be summarized as follows: (1) The ABI, in general, produces higher PCCRs
and A-ACCRs than RTA for the MI method; (2) the RTA and ORI methods produce higher
PCCRs and A-ACCRs than ABI with the MWPKL, PWADI, and PWCDI methods regardless
of Q-matrix structure and test length; (3) all the third-order interaction effects are significant,
and the 77,2) range from .251 (for RRUM and PWCDI method condition) to .534 (for DINA
model and MWPKL method condition); (4) with the increase of test length, the SEs are
decreased for all conditions.

The usage of items

Since all of the items in the simple-structure Q-matrix are single-attribute, all item
selection methods select single-attribute items, which results in no differences in the usage of
items that measure k-attributes for ORI, ABI, and RTA. Therefore, the details will not be
presented. Table 3 presents the usage of items that measure k-attributes for five attributes and
with the complex-structure Q-matrix. The usage of items that measure K-attributes for six
attributes is consistent with the results with five attributes, and the details can be accessed in
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the supplementary material. Unsurprisingly, the RTA method selects the least items that
measure a single attribute in most of the conditions, followed by the ORI method. The ABI

method uses the most items that measure a single attribute. Specifically,

Table 3. The usage of items measures k-attribute for five attributes and complex Q-matrix

item attribute J=102 J=202 J=30°

model  selection coverage

. 1-A  2-As 3-As 1-A  2-As 3-As 1-A  2-As 3-As
method index

DINA MI ORI 489 381 131 507 337 156 528 306 .166
ABI .864 .063 .074 738 178 .084 633 245 122

RTA 420 433 147 436 397 167 490 339 171

MPWKL ORI 468 366 166 400 373 227 408 358 .233
ABI .888 .077 .036 671 212 117 540 291 (168

RTA 435 396 169 377 393 230 397 369 233

PWADI ORI 368 .406 226 360 388 253 386 368 246
ABI .833 130 .037 622 243 135 513307 180

RTA 359 421 220 346 402 253 379 376 245

PWCDI ORI 431 385 184 387 377 236 404 358 238
ABI .882 .083 .035 .665 215 119 538 291 (171

RTA 405 408 .187 367 395 239 394 367 239

RRUM MI ORI 480 395 125 443 396 .161 430 392 178
ABI 932 .032 .036 729 189 .082 5740299 127

RTA 410 411 179 377 .422 200 396 406 198

MPWKL ORI 492 355 153 427 381 192 413 381 .206
ABI 875 .090 .035 662 231 107 524 316 160

RTA 434 390 175 385 408 .207 399 391 211

PWADI ORI 434 380 .186 402 392 205 400 387 213
ABI .829 135 .036 622 260 118 504 330 .166

RTA 406 393 201 372408 219 392 391 217

PWCDI ORI 475 365 160 418 385 197 409 382 208
ABI 866 .099 .036 .653 236 .111 519 319 163

RTA 427 391 (182 381 408 212 396 391 213

Note. k-A(s) means items measure K attribute(s);

8 4-As and 5-As equal to 0 for all conditions.

the proportion of items that measure a single attribute ranges from .346 to .490, .360 to .528,
and .504 to .930 for the RTA, ORI, and ABI criteria, respectively. In addition, among these
three attribute coverage indices, the RTA method produces the largest proportions of items that
measure two and three attributes, followed by the ORI method, and the ABI method yields the

smallest proportions of items that measure two and three attributes. These results can be
14
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expected since the RTA criterion tends to choose items that measure different attributes to the
already administered items. The ABI criteria, on the contrary, tends to penalize items that
measure multiple attributes by taking the product of deviances for all attributes. Consequently,
items that measure a single attribute tend to be selected by the ABI criteria.

Coverage of attributes

Table 4 lists the proportion of individuals who have been administered at least three times
measuring each attribute for moderate- and long-length tests. The results are omitted for the
short-length test (i.e. J = 10) because all three attribute coverage indices do not satisfy the
attribute coverage requirement. The ABI can ensure that most of the tests satisfy the attribute
coverage regardless of number of attributes, model type, Q-matrix structure, item selection
method, and test length, while RTA performs worse than ABI but better than the ORI. Repeated
measures ANOVAs are conducted to investigate the differences among ORI, ABI, and RTA.
The results show that most main effects, second-, third- and fourth-order interaction effects are
significant under the DINA model, and most of the 77‘2, are larger than .50. Although the
differences between ABI and RTA are significant for some conditions, the 77,2) range from .001
to .114, which indicates that stronger evidence is needed to support differences between ABI
and RTA. For the RRUM, all main effects and second-, third- and fourth-order interaction
effects are significant, and the 77‘2, range from .797 to .999. In addition, all of the main effects
of attribute coverage index, test length, and number of attributes are significant for all item
selection methods, and all of the 77‘2, are larger than .950. Although the fourth-order interaction
effects are significant for all item selection methods, the partial etas are small and range
from .002 to .065. Furthermore, the third-order interaction effects among attribute coverage
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1

2

2 Table 4. Overall percentage for moderate- and long-length tests

5 Number Model 9 Attribute J=20 J=30

6 of ) coverage

7 ) type matrix ) MI MPWKL ADI CDI MI MPWKL ADI CDI
8 attributes index

9 K=5 DINA simple ORI 357 .846 .842 851 .881 .997 .998 .997
10 ABI 986 1.00 1.00 1.00 1.00 1.00 1.00 1.00
11 RTA 1.00 .892 .891 .892 1.00 .999 1.00 .999
12 complex ORI 172 940 956 .945 974 998 999 998
12 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
15 RTA 1.00 965 976 969 1.00 1.00 1.00 1.00
16 RRUM simple ORI 326 812 813 817 .867 .996 996 996
17 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
18 RTA 1.00 872 .876 871 1.00 .999 .999 .999
19 complex ORI 795 910 919 910 977 .996 995 995
;? ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
22 RTA 1.00 981 .984 982 1.00 1.00 1.00 1.00
23 K=6 DINA simple ORI .034 468 464 463 495 983 .984 985
24 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25 RTA 1.00 516 .507 .507 1.00 993 959 961
;? complex ORI 714 775 823 793 971 988 988 987
28 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
29 RTA 935 .828 .860 .834 1.00 .995 .987 983
30 RRUM simple ORI .020 327 318 322 430 957 953 957
31 ABI 1.00 1.00 1.00 1.00 993 1.00 1.00 1.00
32 RTA 1.00 427 357 418 1.00 985 952 922
gj complex ORI 569 721 755 733 865 974 981 977
35 ABI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
36 RTA .900 .804 794 .805 1.00 .999 .986 972
; ; Note. The results are omitted for the short-length test (i.e. J = 10) because all three attribute coverage indices do not satisfy the attribute coverage requirement.
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index, number of attributes, and test length are significant for all item selection methods, and
the corresponding 77,2) are at the range of .969 and .980, and the ABI performs better than the
RTA at six attributes and moderate-length tests.

Discussion and conclusions

The goals of this study are to develop a new attribute coverage method, RTA, to deal with
empirical situations when more than one attribute is involved in successfully solving a test item
(DeCarlo, 2011; Huang, 2018) and to examine the performance of both ABI and RTA when
different item selection methods are used. A simulation study is conducted to examine the
performance of RTA and ABI, and promising results are produced.

The results show that the RTA produces lower PCCRs than ABI for moderate- and long-
length tests with the MI method, especially with a complex structure Q-matrix. On the contrary,
the RTA produces relatively high PCCRs than the ABI for short- and moderate-length tests with
the MPWKL, PWADI, and PWCDI methods. A possible explanation is that both the MI method
and the ABI criterion prefer single-attribute items, while the RTA and three other item selection
methods tend to use fewer single-attribute items than ABI and MI method. As Madison and
Bradshaw (2015) and Huebner et al. (2018) demonstrated, the more single-attribute items there
are in a test, the higher the measurement accuracy is for long-length tests. Therefore, the RTA
can be expected to produce lower measurement accuracy since fewer single-attribute items are
used for the MI method. As for the MPWKL, PWADI, and PWCDI methods, the differences
between the usage of items that measure one and two attributes are small, meaning that these
item selection methods prefer items that measure either one or two attributes. Therefore, when
the ABI criteria, which prefers the single-attribute items, is added to these three item selection
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methods, information provided by two-attribute items may be lost and, consequently, lower
measurement accuracy is produced for the ABI compared to the ORI and RTA criteria.
Meanwhile, a possible reason why the ABI performs worst in most conditions for short-length
tests (J = 10) is that it is hard to satisfy the minimum number of items that measure each
attribute when the test length is short. Although previous studies demonstrated that tests
containing more single-attribute items tend to produce higher measurement accuracy (Huebner
et al., 2018; Madison & Bradshaw, 2015), the prerequisite for a high measurement accuracy is
that the test length is long enough.

Moreover, the results show that the ABI is not suitable for all item selection methods. In
the current study, the ABI is suitable for the MI method, while it is unsuitable for the MPWKL,
PWADI, and PWCDI methods. In the study of Cheng (2010), the combination between ABI
and KL method (MMGDI) can produce higher measurement accuracy than the original KL
method (MGDI). Since both the ABI criterion and KL/MI methods prefer single-attribute items
rather than multiple-attribute items, using the ABI criterion further reinforces the tendency of
the KL and MI methods to select single-attribute items. Hence, the combination between the
ABI criterion and the original item selection methods would produce high measurement
accuracy if the original item selection methods prefer single-attribute items. On the flipside,
low measurement accuracy would be produced if more than one attribute is preferred by the
original item selection methods (e.g. MPWKL, PWADI and PWCDI).

It’s worth noting that, although the RTA criteria produces higher measurement accuracy
than the ABI criteria with the MPWKL, PWADI, and PWCDI methods, this does not indicate
that the RTA performs better than ABI for all situations. By examining the ABI and RTA criteria,
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the ABI tends to penalize items that measure multiple attributes, while the RTA tends to select
items that measure multiple attributes. Therefore, it is reasonable to infer that the composition
of items that measure different number of attributes in the item pool have an important
influence on these two criteria. The RTA performs better than ABI if there is a large number of
multiple-attribute items in the item pool. Meanwhile, the ABI performs better than RTA if there
is a majority of single-attribute items, producing higher measurement accuracy than RTA for
all conditions.

The results also show that the ABI performs better than the RTA for moderate- and long-
length tests concerning the attribute coverage, which coincides with our expectation. As stated
previously, the formulation of the RTA is determined by two components. One is used to control

the usage of items that measure different numbers of attributes and the other is used to control

the attribute coverage. When one of the components is satisfied, the other component is ignored.

For instance, when the summation of the first component is zero, the component that controls
the attribute coverage is ignored and consequently the attribute coverage will not be satisfied.

In conclusion, the new attribute coverage control method—RTA—is suitable for
controlling the attribute coverage and producing acceptable measurement accuracy when the
item pool is comprised of a large number of items that measure multiple attributes, which is a
common phenomenon in empirical testing situations (DeCarlo, 2011; Huang, 2018). The ABI,
on the other hand, is appropriate for test situations when the majority of an item pool is
comprised of single-attribute items. Furthermore, the ABI is suitable for item selection methods
that prefer single-attribute items, such as the KL method (Cheng, 2010) and the MI method,
but is not suitable for methods that prefer both single- and multiple- attributes items such as
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the MPWKL, PWADI, and PWCDI methods.

Although some promising results are found in the current study, several remaining open
issues deserve further studies. First, we assume that the minimum number of items that measure
each attribute are the same for all attributes. Considering that different attributes may carry
different importance, this is not a necessary constraint and further studies can take the
importance of each attribute into consideration to further investigate the performance of
attribute coverage methods in CD-CAT. Second, fixed-length tests were used in the current
study. Therefore, everyone was administered the same test length. Future studies can examine
the performance of RTA when the test length is different for each individual (variable-length
tests). Third, both the DINA model and the RRUM are specific CDMs and some constraints
imposed on these specific CDMs are (a) only a single model is available across the entire test
and (b) either compensatory or non-compensatory relationships is assumed for the test (Ravand,
2016). General CDMs relax these constraints and therefore a general CDM can be used in
future studies.
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