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Abstract
The main objective of this work is to better our understanding of the surface
water and energy balance in Norway in the context of climate change and land
cover change. From a meteorological point of view, the land surface is a set of
surface boundary conditions for a set of differential equations, which together
may be discretized on a numerical grid to, e.g. provide a weather forecast. From
a hydrological point of view, the land surface is an incompletely mapped layer
(something with depth), with a more completely mapped atmospheric forcing,
for which a combination of physically based equations and data-driven methods
may provide an early flood warning, or water resource guidance.

The land surface is thus placed at the physical boundary between the two
disciplines meteorology and hydrology. From a research modeler’s perspective,
the land surface may be explored in a setting coupled with an atmospheric
model, or offline, as a stand-alone land surface model driven by atmospheric data.
The two methods compliment each other. Coupled model studies capture the
connectedness of land-atmosphere processes, such as land-atmosphere coupling
and feedback. Stand-alone land surface models demand much less computational
resources, allowing longer and higher resolution studies, and benefit from the
additional constraint of being forced by observational atmospheric variables,
since modeled atmospheric variables often contain biases.

Norway is located at the receiving end of storms that have passed over the
North Atlantic. This results in a particular interest in weather and numerical
weather prediction, and has further facilitated Norway becoming the largest
hydroelectric producer in Europe. In this thesis, the Norwegian land surface
water balance and its drivers and feedback mechanisms are investigated by
combining numerical model experiments and new observational data, while
keeping the problem of climate change and land cover change in mind.

The atmosphere’s sensitivity to changes in land surface conditions has been
explored using regional, high resolution runs of the Weather Research and
Forecasting (WRF) model, perturbing either the forest extent, snow cover, or sea
surface temperature (SST), revealing a considerable sensitivity of annual runoff
to both vegetation and SST changes. In a second study, a method for producing
high-resolution data-sets of near-surface humidity and incident radiation was
developed; variables integral to assessing the surface energy balance, needed
to estimate evaporation and snow melt. A third study utilized data developed
using the method of the second study, and modified a conceptual hydrological
model covering mainland Norway on a 1x1 km grid to respond to changes in
humidity and incident radiation. More than three decades of model integration
showed that the altered model produced equally good or better results than
the previous model versions, despite containing fewer calibrated parameters.
In addition to daily discharge, its ability to simulate snow water equivalent,
potential evaporation, and discharge trends, was scrutinized - to evaluate its
suitability for applications under climate change. The water balance produced
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showed lower mean annual evaporation than previous estimates for Norway.
Future observational and modeling studies are needed to further constrain and
enhance the estimated surface water balance in Norway.
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1. Introduction
How can we better understand the inter-dependency between land-surface and
atmospheric characteristics? In particular, how can we understand the impact
of changes in land surface characteristics on atmospheric variables such as
near-surface temperature, humidity, and precipitation? Further, how can we
better our understanding and simulations of the response of terrestrial variables
such as snow cover, surface temperature, evaporation and runoff to changes in
atmospheric characteristics?

For more than 1000 years the inter-dependencies between land-surface and
atmospheric characteristics has been discussed and analyzed, both to better
understand our environment, but also driven by necessity, as severe weather
events producing droughts and floods impact human life, health, infrastructure
and food resources. Understanding these inter-dependencies is also rewarding, as
land water resources may be managed to provide e.g. irrigation for agriculture,
or electricity from hydro-power plants, and infrastructure may be adapted to
local flood risk. At least for the last 50 years researchers have been unraveling
the effect of land use and land cover on atmospheric characteristics, providing
information relevant for regulating forestry and agriculture. The interplay
between observations, scientific understanding, modeling, validation, prediction,
and societal benefits was recently nicely illustrated in a schematic in Stith et al.
(2018) which is reproduced in Fig. 1.1.

Figure 1.1: Schematic of science serving society. Reprint of Figure 2-7 of Jeffrey
L. Stith et al. (Jan. 2018). “100 Years of Progress in Atmospheric Observing
Systems”. In: Meteorological Monographs 59, pp. 1–2. issn: 0065-9401. doi:
10.1175/amsmonographs-d-18-0006.1, ©American Meteorological Society;
used with permission.
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1. Introduction

For at least 100 years these inter-dependencies have been modeled. Com-
puterized numerical models have catalyzed new model applications and insights
since the 1950s. Land-atmosphere coupling is central to both meteorology and
hydrology. These two disciplines have traditionally relied on (slightly) different
models. From a meteorological point of view, the land surface is a set of surface
boundary conditions for a set of differential equations, which together may be
discretized on a numerical grid to, e.g. provide a weather forecast. From a
hydrological point of view, the land surface is an incompletely mapped layer
(something with depth), with a more completely mapped atmospheric forcing,
for which a combination of physically based equations and data-driven methods
may provide an early flood warning, or water resource guidance.

The land surface is thus placed at the physical boundary between the two
disciplines meteorology and hydrology. This PhD-thesis is inspired by both
academic traditions. My aim is to show that the two disciplines may fruitfully
complement each other. Using data from Norway, we have investigated the
Norwegian land-surface water and energy balance by perturbing it and applying
constraints to it.

Norway is located at the receiving end of storms that have passed over the
North Atlantic. These climatic conditions can explain why meteorology have a
strong academic tradition in Norway, reflecting a particular interest in weather
and numerical weather predictions. The same climatic conditions has facilitated
the interest in hydrology, and Norway becoming the largest hydroelectric producer
in Europe. Therefore, Norway is an interesting case for studying the inter-
dependency between land-surface and atmospheric characteristics. Presently,
the boundary conditions for the surface water and energy balance are shifting
due to climate change and land use and land cover change. This results in a
heightened societal need to better quantify and understand the present surface
water and energy balance, and how it responds to perturbations.

1.1 Objectives

The main objective of this work has been to advance our understanding of the
surface water and energy balance in Norway in the context of climate change
and land cover change. These topics are investigated in three papers, which
are linked together to form a whole. The three studies address the scientific
and societal needs of improving our understanding of the land surface’s impact
on atmospheric variables in Norway, and getting a clearer picture of Norway’s
surface water and energy balance.
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Objectives

Main objective (O): To better our understanding of the sur-
face water and energy balance in Norway in the context of
climate change and land cover change.

The secondary objectives are:

• O1: To identify the surface water and energy balance’s
sensitivity to changes in the boreal tree line, snow cover,
and SST in a state-of-the-art regional climate model.

• 02: To quantify, compare, and possibly enhance the
quality of long-term datasets with atmospheric vari-
ables necessary to integrate the surface water and en-
ergy balance in an offline model.

• O3: To utilize high-quality forcing data and additional
physical constraints to provide enhanced long-term es-
timates of the surface water balance.

The secondary objective O1 contributes to the main ob-
jective by perturbing features impacting the surface water
and energy balance in Norway. Secondary objectives O2 and
O3 contributes to the main objective by constraining the sur-
face water and energy balance in Norway.

The first study, Paper I, considers the secondary objective O1. In a state-of-
the-art regional climate model it considers three research questions (RQ): what
is the sensitivity of the surface water and energy balance in South Norway

• (RQ1.1) to a boreal tree line perturbation; and

• (RQ1.2) to snow cover changes and

• (RQ1.3) to a SST perturbation.

The study is ambitious in terms of constructing numerical model experiments
perturbing surface compounds in a regional climate model. It is titled “The
sensitivity of the terrestrial surface energy and water balance estimates in the
WRF model to lower surface boundary representations: A South Norway case
study”. We explored the sensitivity of the South Norway surface water and
energy balance, by constructing experimental runs in a high resolution (3.7 km)
regional climate model. Three surface compounds: vegetation, snow, and sea
surface temperature (SST), were perturbed in model simulations covering two
hydrological years, i.e. 12 consecutive months starting at a time with minimum
snow storage. In the first hydrological year, 2009/10, a persistent negative phase
of the North Atlantic Oscillation resulted in winter drought and a relative dry
year, while the second year, 2010/11, was relatively warm and wet.
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1. Introduction

The perturbations consisted of 1) increasing the boreal forest line, 2) in-
creasing ground snow by altering the snow/rain criterion in the land surface
scheme, and 3) perturbing SST. The three experiments shed light on the regional
importance of each of these surface features within South Norway, while keeping
the limitations of a single model study in mind. The study further provides
information on expected sensitivities in similar regional weather and climate
models. The results are summarized in Sec. 5.3.1, and the full article is provided
(see Paper I).

The subsequent study, Paper II: “Merits of novel high-resolution estimates
and existing long-term estimates of humidity and incident radiation in a complex
domain” considers the secondary objective 02: to quantify, compare, and possibly
enhance the quality of long-term datasets with atmospheric variables necessary to
integrate the surface water and energy balance in offline models. It follows up on
concerns regarding our ability to accurately model the surface energy balance and
the hydrologic variables sensitive to near-surface humidity and incident radiation,
e.g. snow and evaporation, and thus runoff. Quality controlled estimates of
incident radiation and humidity are also valuable for assessing the quality the
same variables simulated within weather and climate models, such as those
simulated by the regional climate model used in Paper I.

At the time, few quality controlled time-series of observed incident shortwave
radiation were available in Norway. Further, little information existed on the
quality of estimates of near-surface humidity and incident radiation, particularly
longwave radiation, from reanalysis datasets1 for Norway. In addition to reanal-
ysis datasets, estimates of these variables were also available from reanalysis
datasets post-processed using additional sources of observational data. We also
evaluated the estimates provided by two existing methods, commonly applied
within hydrology, which use empirical algorithms relating humidity and incident
radiation to two more readily observed variables, precipitation and near-surface
temperature. In the process of the study it became evident that we could provide
enhanced post-processed reanalysis-based estimates by making use of reanalysis
data and national, gridded, observation-based estimates of temperature and
precipitation. The second study produced both a scientific article and a dataset.
Two major hypotheses were investigated in Paper II:

1. (Ha) There are vertical gradients in near-surface humidity and incident
radiation in our domain.

2. (Ha) The added value of the high horizontal resolution of the more empiri-
cally based estimates outweighs the added value of relying on estimates
from coarser-resolution numerical weather prediction reanalyses.

Paper III considers O3: To utilize high-quality forcing data and additional
physical constraints to provide enhanced long-term estimates of the surface water
balance. The study further aimed to produce a more robust and more physically
based hydrological model suitable for studies of changes in water balance elements

1see Chapter 4 for a description of reanalysis datasets
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Objectives

in a non-stationary climate. The study is titled: “Constraining the HBV model
for robust water balance assessments in a cold climate”. The method outlined
in Paper II for constructing high resolution estimates of near-surface humidity
and incident radiation was applied to generate a new version of driving data for
a gridded hydrological model covering mainland Norway with a resolution of 1x1
km. The method was applied using the most recent input data available, the
Era5 reanalysis (Hersbach et al. 2020) and novel versions of the national, gridded
SeNorge precipitation and temperature datasets (Lussana et al. 2019). Following
Paper II the new dataset was published (dois: 10.5281/zenodo.3351430, 10.
5281/zenodo.3516560), and evaluated by comparison to surface observations
and other available datasets.

After the new dataset was compiled and prepared a gridded version of the
HBV model (Beldring 2008) was updated with model structural changes allowing
it to respond to changes in additional atmospheric variables than precipitation
and temperature. The structural changes included (i) introducing enhancements
to a physically-based evaporation parameterization recently implemented (Huang
et al. 2019), (ii) a net radiation-restricted degree-day factor for snow-melt, and
(iii) a diagnostic precipitation phase threshold based on temperature and humidity.
Although model complexity was increased in some aspects it was also reduced in
others. The degree-day factor was restricted in range and made region-specific
instead of vegetation-type specific. The number of soil classes was reduced, and
the traditional, lognormal SWE-based grid cell tiling was replaced with a simple
sigmoidal tanh-function representing grid cell snow cover fraction. The model
alterations allowed a reduction in the number of calibrated model parameters.

The model was calibrated and validated making use of observations from
more than 100 discharge stations. Both independent discharge observations and
time-periods were included in the discharge evaluation. Additionally the model
was evaluated in terms of its emulated snow and potential evaporation, and the
long-term (1985-2014) monthly emulated discharge trends were compared to
those observed. Finally, the estimated 1980-2014 mean annual water balance
was compared to previous estimates of mainland Norway’s annual water balance,
highlighting where considerable uncertainty still is present. The major findings
are presented in Sec. 5.3.4, and the full study is provided, see Paper III.

These studies address the scientific and societal needs of improving our
general understanding of the land surface’s impact on atmospheric variables and
vice versa, and getting a clearer picture of the surface water and energy balance.
In particular, the Norwegian land surface water balance and its drivers are
investigated by combining numerical model experiments and new observational
data, while keeping the problem of climate change and land cover change in
mind.

The rest of this thesis is structured as follows. To reveal the academic su-
perstructure within which the papers are located, I present in some length the
historical and institutional contexts of the surface water and energy balance
(Chapter 2). Chapter 3 presents numerical models, i.e. weather forecasting and
climate models, land surface models, and hydrological models. An overview of
meteorological and hydrological observational data is provided in Chapter 4.
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Main objective (O): To better our understanding of the surface water and energy
balance in Norway in the context of climate change and land cover change.

Figure 1.2: Schematic of the study. The main objective (O): To better our
understanding of the surface water and energy balance in Norway in the context
of climate change and land cover change is met in three secondary objectives,
where each of them comprise a paper within this thesis. Themes that are central
to the thesis are: Norway - with ample water resources, land-atmosphere coupling,
and climate and land cover change. The objectives O1 provides information on
the land surface water and energy balance by exploring its sensitivity to changes
in surface compounds, while O2 and O3 provide information to better constrain
the surface water and energy balance in Norway.

These chapters not only reveal how the questions and conclusions of previous
research has developed over time, but also show how and why development of
models and improvements in data gathering has facilitated improved under-
standings and empirical predictions. Third, I present a synthesis of the thesis,
including a description of the study area (Sec. 5.1), and summaries of the
methods and numerical models applied (Sec. 5.2) and the major findings of
each of the three papers - also showing studies’ placement in historical and
institutional context (Sec. 5.3), and, finally, a summery and outlook based on
the findings of all three papers (Sec. 5.4). The interconnections between the
thesis’ overall topic of investigation and the three papers should be clear: each of
the studies touch upon related, but slightly different issues within hydrology and
land-surface modeling, using Norway as a case. Fig. 1.2 illustrates the objectives
of the thesis investigated in three papers.
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2. The surface water and energy bal-
ance
Water is present in our current climate, in our atmosphere, hydrosphere and
lithosphere, in three aggregation states, commonly known as ice (or snow), liquid
water, and water vapor. The concentration of water in each state varies according
to the surrounding temperature and pressure, and its physical and radiative
properties varies according to state, pressure, and temperature. Subjected to
changing pressure and temperature water moves about the hydrological cycle,
affecting the short wave and longwave radiation balance and changes state and
thus heat with the environment (see Fig. 2.1). Water vapor and clouds stand for
around two thirds of the atmospheric greenhouse effect in our current climate.

In a changing climate, with changing atmospheric temperature or pressure,
water in the atmosphere responds rapidly by evaporating, condensing and pre-
cipitating, thus changing the concentration and location of water, and the global
and local energy balance. Water vapor and clouds are consequently identified as
fast feedback processes of the climate system. This sensitivity causes large local
and seasonal variations in their distribution and concentration. Typical resident
time for water vapor in the atmosphere and within plants is in the order of
ten days. Convective (microscale) weather processes can occur on spatial scales
less than one kilometer and with temporal scales of less than an hour, while
mesoscale weather systems occur on spatial scales typically between five and 200
km and within a day. Changes in seasonal snow cover and significant changes
in soil moisture over areas with a spatial scale of 100 km generally occurs over

Figure 2.1: The global energy balance is inherently connected to the global water
balance. The fluxes are describe as percentages of the average incoming flux of
solar radiation [Wm−2] at the top of the atmosphere. Figure from NOAA ESRL
website (2020)

7



2. The surface water and energy balance

months. (National Research Council 1991)
There is substantial uncertainty in the globally averaged terrestrial water

balance (Haddeland et al. 2011; Wild 2017), and evidence of slight changes in it
(Trenberth et al. 2005; Stephens et al. 2012). Estimates indicate that average
terrestrial precipitation is about 30% of precipitation over the oceans, and
evapotranspiration over land is about 17% of ocean evaporation. Of terrestrial
precipitation it is estimated that 65% originates from terrestrial evaporation,
while the remaining part is ocean evaporation advected to land (Trenberth
et al. 2011). The following section provides a brief overview of the scientific
findings contributing to our current understanding of the surface water and
energy balance.

2.1 da Vinci to Stefan-Boltzmann

McMahon et al. (2016) and Duffy (2017) provide overviews of the history of
estimating evaporation and the terrestrial hydrological cycle, respectively, while
Ohmura (2014) gives an account of the development of energy balance climatology.
The start of scientific hydrology in western science has been placed to 1674, with
Perrault’s publication of ‘De l’origine des fontaines’ (On the origin of springs),
describing that there was enough rainfall draining into the Sein to account for
the flow of the Sein (McMahon et al. 2016). Perrault is also credited with making
the first measurment of evaporation, by measuring sublimation from a block of
ice (McMahon et al. 2016). Before this time, most western scientists believed
that underground networks provided the water for springs, providing water all
the way up to the highest summits (Duffy 2017); as illustrated in Kircher (1678)
(see Fig. 2.2). Even Leonardo da Vinci (1452-1519) at some time stated that,
similarly to blood circulating in the body, underground veins connected the sea
with the highest mountains providing water for rivers, but, at least within the
last decade of his life, his notes showed that he re-assessed his views1 (Isaacson
2017).

About a decade after Perrault’s publication the English astronomer-mathematician
Edmond Halley put forward a study (Halley 1686) where he measured the amount
of water loss of a heated pan, and stated that evaporation was driven by the
heating of water atoms, leaving them lighter than air so that they rise, and, con-
versely, that the cooling of them might result in precipitation. During the latter
part of the 18th century Joseph Black coined the term latent heat to describe a
heat transfer that caused a volume change in a substance while its temperature
was constant. Latent heat describes energy in a hidden form, which is needed or
extracted for a substance to change phase state from or to solid, liquid, or gas
form. As water evaporates from a surface to the air, the air increases its latent
(or hidden) heat content due to the energy which might be released from the

1In the Codex Leicester he noted: “The origin of the sea is contrary to the origin of the
blood ....[because] all the rivers are caused solely by the water vapors raised up into the air.”
(Isaacson 2017)
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da Vinci to Stefan-Boltzmann

Figure 2.2: The philosopher Athanasius Kircher illustrated in his work Mundus
Subterraneus, in the chapter The origin of rivers (Kircher 1678), how, supposedly,
tides pump seawater into hidden, underground channels, before the water arrives
at outlets feeding rivers.

water vapor if it later condenses. A similar amount of energy as is transferred to
the atmosphere is spent on the surface as the water is vaporized.

In 1802 Dalton conducted a series of pan experiments concluding that the
evaporation rate from the pan of water is proportional with the temperature
of the water, diminishes with increasing humidity, and increases with wind
speed (McMahon et al. 2016). Following Dalton’s experiments various empirical
equations were derived in the 19th century concerning evaporation over water
(McMahon et al. 2016), which could be expressed as:

E = (es − ed)f(u), (2.1)

where E is evaporation, e is vapor pressure (needed at two levels, both the
evaporating surface and at some height (d) in the atmosphere above), while f(u)
is a function of horizontal wind speed.

The field of thermodynamics also further developed in the 19th century, with
experiments and theoretical development leading to the identification of the
ideal gas law, and a scientific consensus regarding the conservation of energy
in various forms. The term sensible heat was known at the time, and were as
“an energy that was indicated by the thermometer”. Within thermodynamics
sensible heat contrasts latent heat, and is associated with an energy transfer
resulting in a temperature change.

Hydrology was further developed in the 19th century with experiments
resulting in the 1856 publication of Darcy’s law for laminar flow though a
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porous media (Duffy 2017). The law was based on the work of the French
engineer Henry Darcy, who had previously worked on building a pressurized
water distribution system in Dijon, and was published during the last years
of his life where he dedicated his work to theoretical development based on
sand column experiments. Notable historical development for energy balance
climatology are given in Ohmura (2014); e.g. in 1838 the solar constant and
atmospheric emissivity were likely measured for the very first time in Paris,
Stefan-Boltzmann’s law of radiation was first derived in 1884, while the first
quantitative description of the energy balance of the climate system was likely
provided in Heinirch Hertz’s inaugural lecture at the University of Karlsruhe in
1885 (presented in Mulligan and Hertz (1997)).

2.2 Planck to Bowen

In 1900 Max Planck published results on black body emission, authenticating the
Stephan-Boltzmann equation and ultimately leading to improved radiometers,
i.e. instruments for measuring radiation (Ohmura 2014). The following decades
the surface heat (or energy) balance became a topic of increased research, in
part due to its potential to optimize agricultural development, and measurement
instruments were developed and refined, which made way for new discoveries.

It was known at the time, that heat could be transferred in the atmosphere
via radiation, conduction and convection, and that the heat balance of the surface
could be estimated more or less as we may state it today2 :

Rnet = SW ↓ (1− αs) + LW ↓ (εs)− εsσT 4
s = G+ SH + LH, (2.2)

where Rnet is net incident surface radiation, SW ↓ is incident shortwave (or solar)
radiation, αs the surface’s albedo, LW ↓ the incident longwave (or thermal)
radiation, εs the surface emissivity or absorbtivity, σ is the Stefan-Boltzmann
constant, Ts the surface temperature, G the heat stored in the surface layer, SH
is sensible heat, and LH is latent heat. The two latter components, SH and LH,
are often referred to as the turbulent fluxes. The latent heat term is commonly
defined as heat required to convert ice or water to vapor, while sensible heat is
commonly defined as heat transferred to and from the surface and atmosphere
via conduction and convection.

During the same period the theory regarding turbulent transfer in the near-
surface atmosphere was developed. Fluid mechanical theory for momentum
transfer was applied for the turbulent vertical transport of heat in the atmosphere,
i.e. eddy motion in the atmosphere Taylor (1915). The topic of near-surface
thermal stratification was advanced by the British scientist Lewis Fry Richardson;
he expressed atmospheric stability as the ratio of buoyancy forces to shear forces
(the Richardson number) (Richardson 1920).

2there are additional terms which sometimes are included and defined explicitly in the
surface energy balance, such as heat used to melt, but not vaporize, ice or snow, heat released
by deposition (water vapor condensing on the surface), heat input via precipitation with a
warmer temperature than the surface, heat released by precipitation freezing on or in the
surface, etc.
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“We realize thus that: big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity – in the molecular
sense.”

Lewis. F. Richardson, 1922 (p. 66, Richardson ([1922]2007))

Richardson also introduced the concept describing the turbulent heat fluxes
in an electrical analogue form, where the flux is described by the potential
difference between two layers and a resistance between these layers (Richardson
([1922]2007), Randall et al. (2018)):

flux = potential difference
resistance (r) . (2.3)

An elegant method for estimating the surface fluxes without calculating
turbulent exchange coefficients was later provided by Bowen (1926). If the heat
(CSH) and water vapor (CLE) turbulent exchange coefficients are equal, the
Bowen ratio (β), in current notation, is:

β = SH

LE
= cpρCSHu(Ts − Ta)
λρCLEuε/Ps(es − ea) = γ

Ts − Ta
es − ea

, (2.4)

where λ is the latent heat of vaporization, ε is the ratio of the molecular weight
of water vapor to dry air, 0.622, cp is the specific heat capacity of air, Ts is the
temperature of the evaporating surface, Ta the atmospheric temperature, es the
vapor pressure at the evaporating surface, ea the atmospheric vapor pressure,
and γ = (cpPs)/(λε) is the psychometric constant3. Monteith (1981) describes γ
by considering an air mass with a temperature T and humidity e. Under certain
conditions changes (δ) in these variables may be related by γ:

δe

change in latent heat = γδT

change in sensible heat (2.5)

If the turbulent exchange coefficients differ the Bowen ratio may be expressed
as:

β = SH

LE
= γ

CSH(Ts − Ta)
CLE(es − ea) = γ

rLE(Ts − Ta)
rSH(es − ea) , (2.6)

where rSH is the resistance to turbulent exchange of heat, rSH = 1/(uCSH),
and rLE is the resistance to turbulent exchange of moisture, rLE = 1/(uCLE).

3It should be noted that this ’constant’ is only approximately a constant. Further, it is used
in conjunction with variables of various units, and has in those cases a different form. E.g. for
a Bowen ratio expression where humidity is provided as specific humidity (q ' εe/Ps), and the
turbulent exchange coefficents are considered equal: β = SH

LE
= cpρCSHu(Ts−Ta)

λρCLEu(qs−qa) = γ Ts−Ta
qs−qa

,
where γ will be: γ = cp/λ.
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2.3 Budyko

In Europe, North America, and Soviet Russia meteorological and hydro-meteorological
monitoring systems expanded. Theoretical advances and new observational in-
struments paved way for the Soviet climatologist Mikhail I. Budyko’s monograph
"Heat balance at the earth’s surface", containing methods for calculating the
climatological components of the surface heat (energy) balance. The monograph
was translated into English (Budyko 1958) and thus had an impact on research
outside Soviet Russia. Budyko (1958) also provided a scheme for estimating
evaporation in two stages (Eq. 92-96). The first stage considers cases where
there is ample soil water (w) available, defined as levels exceeding the critical
soil moisture threshold (wK), denoted as at least 70-80% of field capacity. Field
capacity is a practical measure of soil water-holding capacity defined as the
amount of water the soil can store after excess water has drained away. Above
the critical soil moisture threshold evaporation is equal to its maximum potential,
E0, which is independent of soil moisture and depends only on the meteorological
conditions:

E = E0, w ≥ wK . (2.7)

The second stage for estimating evaporation considers cases where soil mois-
ture is below the critical threshold. In this case evaporation decreases linearly
with increasing soil water deficit:

E = E0
w

wK
; w < wK . (2.8)

Published ideas of natural zonality in vegetation, governed by climatic con-
ditions, dates back to late 18th century Russian scientific literature, and to
Alexander von Humboldt’s 1807 Tableau Physique (Humboldt 1807). von Hum-
boldt put forward the idea that climate is an organizing principle of life, shaping
the distinct communities of plants and animals found at different altitudes and
latitudes (see Figure 2.3) (Appenzeller 2019). Budyko’s monograph (Budyko
1958) highlights how empirical relationships derived in the early 1900, which
related long-term evaporation to the greatest possible evaporation and precip-
itation, were validated by, at the time, novel observations. With this he put
forward the usefulness of of considering the long-term hydrological equilibrium
limits as boundary conditions for geographic zonality and ecosystem biomes.

The relationship between annual evaporation, annual precipitation and net
surface radiation is illustrated in Budyko (1958), replicated in Figure 2.4. If the
received surface radiation (here: R), converted by division with the latent heat
of fusion (here: L) to possible evaporation (E), is equal to or larger than annual
precipitation (here: r); i.e. R/Lr ≥ 1.0 on the x-axis, there is enough energy
for evaporation to equal precipitation (E/r = 1.0, as indicated from point A in
Fig. 2.4). Over time (without a long-term water source nearby, such as melting
glacier) evaporation cannot exceed precipitation, and evaporation is thus water
(supply) limited. If the radiative energy provided is less than that needed to
evaporate the received precipitation - the fraction of evaporation to precipitation
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Figure 2.3: Alexander von Humboldt’s 1807 Tableau Physique was an innovative
diagram depicting a cross-section of equatorial Andes mountains, showing how
plant communities changed with elevation and climate (Humboldt 1807). Figure
source WIKIMEDIA COMMONS

Figure 2.4: The relationship between annual climatological evaporation (E) to
precipitation (here: r), according to the ratio of received surface radiation (R)
divided by the latent heat of fusion (here: L) and precipitation. Reprinted with
permission, original Fig. from M I Budyko (1958). The heat balance of the
earth’s surface. Teplovŏı balans zemnŏı poverkhnosti.English. Washington: U.S.
Dept. of Commerce, Weather Bureau, 259 p. ©Taylor & Francis.
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will decrease proportionally. In this case evaporation is limited by a lack of
energy input.

Budyko (1958) further included renditions of the first global (from 70◦N to
60◦S, excluding high mountain areas) energy balance charts including estimates
of latent and sensible heat. The surface radiation charts were based on 1050
observation sites on land and 350 ocean sites, while charts with estimates of latent
and sensible heat, and heat advection by the ocean were based on observations
from 650 ocean sites and 650 land sites.

Figure 2.5: Schematic showing how soil water conditions vary with soil textures
of various degrees of porosity. The source of this material is the COMET®Website
at http://meted.ucar.edu/ of the University Corporation for Atmospheric Research (UCAR),
sponsored in part through cooperative agreement(s) with the National Oceanic and Atmospheric
Administration (NOAA), U.S. Department of Commerce (DOC). ©1997-2017 University
Corporation for Atmospheric Research. All Rights Reserved.

2.4 Green and Ampt, Richards, Horton

A number of advances within the field of soil hydrology occurred within the first
half of the 20th century. The publication Green and Ampt (1911) advanced
the work of Darcy regarding water and soil permeability in soil. Green and
Ampt (1911) made the following observation “We may regard a porous soil as
composed-of a bundle of capillary tubes, irregular in area, length, direction and
shape, but sufficiently minute to reduce the velocity of flow of air or water”. A
more complete description of vertical flow of water through soil arrived with the
publication “Capillary conduction of liquids through porous mediums” (Richards
1931); by combining the expression for soil water diffusion based on Darcy’s law
and the continuity equation (for water):
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∂θ

∂t
= ∂

∂z
[K(θ)(∂h

∂x
+ 1)] (2.9)

where K is hydraulic conductivity, h is the matric head, z is elevation, θ is the
volumetric water content, and t is time. This equation (Eq. 2.9) is commonly
referred to as Richard’s equation after Richards (1931), however, the previously
mentioned British scientist Lewis F. Richardson included a similar equation
in his visionary book Weather Prediction by Numerical Process (Richardson
([1922]2007) published nine years earlier (see Sec. 3).

Richard’s equation is non-linear and was difficult to apply in practice at
the time. American civil engineer and soil scientist Robert E. Horton provided
an empirical equation for rainfall infiltration into soil, simplifying Darcy’s law.
In 1931 he also summarized “The field, scope, and status of the science of
hydrology” (Horton 1931). Here he defined hydrology: “As a pure science,
hydrology deals with the natural occurrence, distribution, and circulation of
water on, in, and over the surface of the Earth.”. In Horton (1933) the rate
at which rain enters the soil was related to maximum infiltration capacity, a
term describing the maximum rate which rain can be absorbed by soil in a given
condition. Rainfall at rates exceeding the infiltration capacity would instead
be diverted to overland flow. He further reserved the expression percolation to
refer to free downward flow by gravity of water below the soil surface, above
the water table. Infiltration capacity and field capacity were further discussed
in terms of soil texture (e.g. clay, gravel), and Horton (1933) stated that the
two soil properties scale oppositely with soil texture. For finer scale soil such as
clay, infiltration capacity is low while the field capacity is high, while for coarse
scale soil such as gravel the infiltration capacity is high while the field capacity is
low. A medium soil texture was thus regarded as most advantageous for plants
(disregarding groundwater supply). Figure 2.5 provides a modern depiction of
the relationship between field capacity, soil water availability, and soil texture.

2.5 Penman and Monteith

Another advancement was the approach for estimating evaporation, suggested in
Penman (1948). While ocean evaporation could be estimated by measuring sea
surface temperature, land evaporation was more difficult to estimate, in part due
to the difficulty of measuring a surface temperature, especially for vegetation
covered surfaces. The British soil physicist Howard L. Penman’s provided a
method for calculating evaporation from a saturated surface by combining two
existing approaches for estimating evaporation, the energy balance approach
and the sink strength approach, essentially the then more than a century old Eq.
2.1. He further made use of Bowen’s ratio (Eq.2.4), and calculated evaporation
for two near-surface layers, and replaced (Ts − Ta)/(es − ea) with the slope of
the saturation vapor pressure - temperature curve (the es : T - curve4), ∆. He
arrived at, using modern day notation:

4Similarly to γ, the units of ∆ vary according to the humidity variable used.
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λE = ∆Rn + γλEa
∆ + γ

(2.10)

where Rn is the surface net radiation, Ea is given according to Dalton, Eq.
2.1, but with the first term, the saturation vapor pressure of the evaporating
surface - replaced with the saturation vapor pressure at air temperature (T ):
Ea = (es(T )− e(T ))f(u). The expression is thus the product of the atmospheric
the vapor pressure deficit (the difference between saturation vapor pressure
at ambient temperature (es(T )) and saturation vapor pressure at dew point
temperature (es(Td)), or, similarly, the actual vapor pressure (e(T ))) and a wind
speed function.

Penman’s original formula was in non-standard units, and thus less accessible
for researchers outside the U.S.A. Further, the formula did not explicitly consider
plant transpiration (the formula was “restricted to consideration of the early
stages that would arise after thorough wetting of the soil by rain or irrigation,
when soil type, crop type and root range are of little importance.” (Penman 1948)).
The concept of capillary rise and plant transpiration had been studied at least
since the 1700s. Plants transpire water from within the leaf through opening of
pores (stomata) on the leafs, regulating gas exchange for photosynthesis. Plants’
root systems give access to soil moisture at considerable depths below the surface,
further plants extend vertically from the surface in complex forms altering
surface roughness and the height of surface atmosphere exchange. Further,
plant transpiration is largely constricted to the daytime, when photosynthesis
occur, and plants impact surface albedo as sunlight which is not useful for
photosynthesis, e.g. the green part of the color spectrum of visible light and the
longer wavelengths referred to as near infrared light, are reflected.

“I believe that the nature and distribution of life on our planet depends just
as much on the value of ∆/γ as on the magnitude of the Solar Constant and
other prestigious parameters of geophysics.”

Monteith (p. 24, Monteith 1981)

A more explicit treatment of surface resistance for plant communities, or
canopies, based on measurements, became well known with the publication of
Monteith (1965). John Monteith worked under Penman at the Rothamsted
Experimental Station outside London (Ong and Black 2012). His publication
built on a similar description of single leaf evaporation deduced by Penman in
1953 (Monteith 1965). Monteith (1965) highlighted that Eq. 2.10 is not valid for
a surface which is not necessarily saturated, such as at the surface of a leaf, or a
canopy. Monteith (1965) further argued: “The path for the diffusion of water
vapour from leaf cells into the free atmosphere is divided into two parts, one
determined primarily with the size and distribution of stomata, and the other
by wind speed and the aerodynamic properties of the plant surface. Diffusive
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resistances for single leaves and for plant communities are established from
measurements in the laboratory and in the field [...]”.

For these surfaces Monteith (1965) modified the Penman equation (Eq. 2.10)
to consider a resistance to latent heat transfer (rLE) different from the resistance
for sensible heat transfer (rSH) (see equation 2.3 and 2.6). A modified psy-
chometric constant (γ) is defined: γ∗ == γ(rLE/rSH). The Penman-Monteith
equation for plant potential evaporation stated below. Its derivation following
Snyder and Paw U (2002), using the energy-balance approach, is provided in
Appendix I.

LE =
ρcp

γ∗rSH
(es(T )− e(T )) + ∆

γ∗Rn
γ∗+∆
γ∗

=
∆Rn + ρcp

rSH
(es(T )− e(T ))

γ∗ + ∆ (2.11)

The above equation is often formulated with rLE , the resistance to vapor
transfer, replaced with two resistances, one component describing the plant
specific resistance to vapor exchange from the plant to some level above the canopy
surface (rs), and another component describing the aerodynamic resistance (ra)
from that level and on wards: rLE = rs + ra. If one further assumes that the
aerodynamic resistance for heat and vapor transfer is the same (rSH = ra),
γ∗ = γ(rLE/rSH) = γ((rs + rSH)/rSH) = γ(rs/ra + 1), the Penman-Monteith
expression for canopy evaporation is:

LE =
∆Rn + ρcp

ra
(es(T )− e(T ))

∆ + γ(1 + rs

ra
) (2.12)

Equation 2.11 and 2.12 are usually referred to as the Penman-Monteith equa-
tion, although Monteith himself underscored that he did not derive the equation
(Monteith 1981). The two component resistance to canopy vapor exchange is
further referred to as the “big-leaf” approximation. The big-leaf approximation
is the assumption that the canopy can mathematically be condensed to a single
plane, and treated as one big leaf (Sinclair et al. 1976). Monteith (1965) included
examples of maximum rates of transpiration for different crops and climates,
and crop surface resistances based on field measurements.

2.6 Nomenclature related to evaporation

Horton (1931) stated that “there is a simple basic fact involved in the hydrologic
cycle

Rainfall = Evaporation + Runoff

There are different processes contributing to evaporation, which may be given
distinct names.” Horton (1931) noted that: “Inasmuch as most persons think of
evaporation in a more restricted sense, it is better to define runoff as equal to
rainfall minus water-losses. Water-losses are of three kinds, all evaporative in
their natures (a) Interception; (b) transpiration; (c) direct evaporation from soils
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and water-surfaces.)”. Interception (a) is the difference between the precipitation
input towards the surface and the amount of which reaches the bare ground
(throughfall). Transpiration (b) is evaporation taking place inside the vegetation
before it is transported to the surrounding air. Direct evaporation from soils (c)
occur due to vapor diffusion and capillary rise in the soil. Direct evaporation from
water surfaces (also c), e.g. from ocean, fjords, and lakes, swamps, rice paddies,
and other water covered surfaces, is a type of evaporation where surface resistance
is zero while aerodynamic resistance is present. This type of evaporation also
occurs from surfaces which are intermittently water covered, such as foliage or
rocks after precipitation, and is thus related to (a).

Additionally, during winter, in many regions, sublimation, the transfer of
water from solid (ice or snow) to gas state, is a source of water flux to the
atmosphere. Further, when accounting for water fluxes at the surface-atmosphere
interface, in certain conditions, one also might consider additional moisture flux
sources than precipitation to the surface; the relatively small fluxes due to dew
formation (vapor condensing on the surface), and deposition (water changing
from vapor to a solid state) on surface material. One might also consider latent
heat exchange due to water freezing and melting on the ground.Although the
surface latent heat flux does not equate to evaporation, evaporation is by far
largest component of the surface latent heat flux, and the term evaporation is
often used interchangeably when assessing large scale, global, or annual surface
latent heat flux.

Evaporation on land is further described using a range of terms. Many use
the term evapotranspiration, abbreviated ET, to describe either the combination
of soil evaporation and transpiration, or the combination of soil evaporation,
transpiration, and evaporation from intercepted precipitation (see e.g. Miralles et
al. 2020, for references), while others prefer the term evaporation when referring
to compound sources (e.g. Horton 1931; Monteith 1985; Lhomme 1997; Kay
et al. 2013; McMahon et al. 2016; Miralles et al. 2020). Further, the term
actual evaporation (AE or AET) is sometimes used to differentiate evaporation
from potential evaporation, however, if the term ‘potential’ always is used when
referring to potential evaporation, the term ‘actual evaporation’ should not be
necessary to use. In this text the term evaporation is used when referring to
evaporation in general, or evaporation from compound sources, while potential
evaporation is used to refer to that calculated using e.g. the Penman-Monteith
equation. It is further interesting to note that incident radiation, both longwave
and shortwave radiation, provide energy for many evaporative processes on
land, such as water evaporating from intercepted precipitation, dew covered
vegetation, sublimation,and soil evaporation, while plants use distinct parts of
incident shortwave radiation for transpiration. A further complicating matter is
the rather complex transfer of radiation within plant canopies, a topic which
will not be discussed here.
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2.7 Use and lack of use of the Penman-Monteith algorithm

The Penman-Monteith algorithm relies on input data (forcing data), such as
near-surface humidity and surface net radiation, variables which were not, and
still are not regularly observed in most areas. Monteith (1981) stated that:
“The Penman formula was soon adopted by hydrologists and irrigation engineers,
meteorologists were more cautious [...] they were also critical of the relatively large
number of empirical constants which were needed to determine net radiation, for
example, in the days before instruments were available to measure this quantity”.
More empirically based evaporation expressions requiring less input data were,
and are still, often used instead of the Penman-Monteith equation. A range of
equations express evaporation as forced only by atmospheric mean temperature,
or temperature and dew point temperature, or e.g. temperature and potential
extra-terrestrial solar incident radiation (see e.g. Xu and Singh 2001, for an
overview). It should be noted that the different equations are suitable for distinct
purposes; certain equations are only valid to calculate crop transpiration, and it
is often unclear whether these estimates are valid for vegetation in regions where
evaporation of intercepted precipitation is common, such as in Norway. Further,
the aggregation of the distinct physical processes controlling evaporation into
one or a few observation-calibrated parameters provides equations which are
strictly only at least valid at the time and place where the model was calibrated.

While some have developed algorithms for evaporation which rely on forcing
data more readily available, others summarized guidelines and/or developed
methods for estimating unknown forcing variables from known forcing vari-
ables. Examples and guidelines for estimating dew point temperature, incident
shortwave, and incident longwave radiation are provided e.g. in “Crop evapo-
transpiration: Guidelines for computing crop requirements” (Allen et al. 1998),
also referred to as FAO-56; and are also listed in the supplemental material
of McMahon et al. (2016). Further, software such as MTCLIM (Bristow and
Campbell 1984; Thornton and Running 1999; Bohn et al. 2013) is available to
estimate unknown forcing variables from known variables, taking into account
elevation differences as well. Examples of common approximations are that
humidity, in the form of dew point temperature, is given by daily minimum
temperature, incident shortwave radiation is approximated making use of the
astronomical extra-terrestrial solar radiation, and longwave radiation is estimated
using 2-meter temperature, and, perhaps, the previously estimated humidity;
further, in some cases, the incident radiation is modulated using precipitation
and the diurnal temperature range as proxies for cloud-cover.

The Penman-Monteith equation for evaporation would later be applied in
land surface models included in numerical weather prediction and global climate
models, where the availability of forcing data is not a problem, since the models
were developed for that specific purpose, to model atmospheric variables.
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3. Numerical models
3.1 The advent of numerical weather and climate prediction

models

At the turn of the 20th century - the then common method for weather forecasting:
finding historical similar weather charts, was proposed replaced a two-step
approach. The method’s first step consisted of analysis of the initial state of
the atmosphere using observations, while a second, prognostic step consisted of
applying the physical laws of motion, to calculate how the initial state changes
over time. The approach was suggested in Bjerknes (1904) (translated in e.g.
Bjerknes (2009)), by Norwegian mathematician who had diverted his attention
to meteorology, with the ambition “to make meteorology an exact science, a true
physics of the atmosphere” (Randall et al. 2018).

Almost 100 years ago, in 1922, the same mathematician who gave name
to the Richardson number for thermal stability published a ground breaking
book called “Weather Prediction by Numerical Processes”, outlining a scheme
for numerical weather prediction. His work was based on the publications of
Bjerknes. Richardson took note from the physically based astronomical forecasts
available at the time in nautical almanacs, and stated in the book’s preface
that “Perhaps some day in the dim future it will be possible to advance the
computations faster than the weather advances and at a cost less than the saving
to mankind due to the information gained. But that is a dream.” (Richardson
([1922]2007). In the book he lay the foundations for a gridded solution to set
of equations Bjerknes had proposed.1 He noted the observations needed to
conduct the first step of the method, the analysis, were lacking, and thus laid
out a plan outlining where variables would be observed to be most useful for
the gridded approach. The possibilities of treating land and ocean purely as a
surface boundary condition to the atmosphere, or, instead, attempting concurrent
forecasts of land and sea states together with the atmosphere were discussed.
Richardson vouched for the latter approach, since forecasts of land and sea
states were of independent value, e.g. for agriculture. For numerical schemes
evolving land state he proposed using two equations, one for the conduction of
heat, and one for the transfer of water. He further proposed discretizing soil in
levels of varying depth, with a thin layer close to the surface, and thicker layers
further down. He also included a separate section of the book on vegetation,
describing their effect on the atmosphere trough transpiration, interception, and
modulating surface roughness. He proposed a scheme for transpiration, and
noted that transpiration would become limited if soil moisture became lower
than a soil type specific threshold (akin to Budyko’s later proposed critical soil
moisture threshold), citing literature providing critical values based on field
research, e.g. 0.02 for coarse sandy soil, and 0.1 for sandy loam.

1a finite differences approach on a staggered grid
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Richardson estimated that 64 000 people were needed to numerically solve
the differential equations to provide a weather forecast. Later studies have found
the estimate to be a vast underestimation (Randall et al. 2018). Richardson
attempted himself to manually compute a weather hindecast. He used an idealized
pressure field to initialize his scheme. The idealized pressure field happened to
be closely related to one of two solutions for the set of equations he used, the
solution for rapidly traveling gravity-inertia waves. It was the second solution,
low frequency waves linked to Earth’s rotation, which would have provided
more realistic initial conditions for his numerical weather prediction model
(Lynch 1992). Richardson’s numerical scheme was also not numerically stable2

using the model time step (3 hours) he had chosen (Lynch 1992). His attempt
of compiling a weather forecast thus failed. In the years that followed both
theoretical, technical and observational advances paved way for the fulfillment
of Richardson’s dream. From 1927 radiosondes started providing upper air
observations, and an increase in aviation during and after the second world war
provided further upper air observations.

The first numerical weather forecast produced using an electronic computer
is described in Charney et al. (1950). The computations were performed using
the Electronic Numerical Integrator and Computer (ENIAC), and care had been
made to ensure numerical stability and to avoid the presence of the high-frequency
waves which had caused problems for Richardson. A simplified version of the
dynamical equations known to describe atmospheric flow, the quasi-geostrophic
approximation with constant static stability resulting in a barotropic state3,
was used for several reasons. The first reason was to start of numerical weather
computations considering the solutions to a simpler problem first. The second
reason was practical; the scheme was possible to solve numerically, using the
ENIAC computer, within reasonable time. The model consisted of 15x18 grid
cells, and covered an area over and around North America with a horizontal
resolution of about 736 km. The model’s integration time step was increased to
three hours, however, the total integration time for providing a 24-hour forecast
was about 24-hours. Thus, this first attempt of numerical weather prediction
(NWP) using an electronic computer nearly fulfilled Richardson’s dream of a
weather forecast advancing faster than the weather.

In the 1950s observational studies provided more information on the global
atmospheric general circulation. Concurrently, several nations initialized opera-
tional, regional NWP prediction systems. These initial regional NWP systems
first showed best results using simple, one-level, barotropic models (Lynch 2008).
It wasn’t until the 1960s and 1970s that smart solutions allowing stable numerical
schemes using less simplified equations and more atmospheric layers evolved
(Lynch 2008).

2meaning that the numerical error of the finite difference scheme grows in time
3where pressure is a function of density alone, so that temperature gradients does not vary

across pressure gradients.
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3.2 Development of general circulation models with
parameterized processes

The first study including a longer term numerical integration of the quasi-
geostrophic equations was published in Phillips (1956). It included a month
long integration of a model with two atmospheric (vertical) levels. The Phillips
(1956) experiment was inspired by simple laboratory dish-pan experiments, where
monitions developed within the fluid of a dish-pan subjected to heating around
its edges and cooling in the center. In Phillips (1956) one hemisphere was
represented by a cylinder 17 cells high with a 16 cell circumference, with heating
in one end.

His model also included “empirical elements in that the representation of
certain physical effects is based on meteorological experience with the actual
atmosphere, rather than being predicted from the fundamental laws of physics.”
(Phillips 1956). These elements are what we now refer to as parameterized
processes. The term “parameterized processes” is often used for all processes
within a NWP model except for the scheme describing atmospheric motion (now
usually referred to as the model’s dynamical core). Parameterized processes thus
include all processes not (fully) represented or resolved in the dynamical core,
such as radiation, precipitation, unresolved turbulence, phase changes of water,
and so on. When aiming to understand the large scale general circulation these
processes are more important to include. Phillips (1956) aimed to replicate basic
known features of the atmospheric general circulation such as surface zonal wind,
the existence of the jet stream, pole-ward energy transport, the mean latitudinal
temperature gradient, and to a large extent he succeeded in doing so.

3.3 Land surface models

During the 1960s a team within the Geophysical Fluid Dynamics Laboratory
(GFDL) of the National Oceanic and Atmospheric Administration (NOAA)
dedicated their work to understanding the atmospheric global circulation us-
ing computers. The models were developed iteratively, each advancing the
description of unresolved processes, including e.g. for the first time a radiation
parameterization, a cumulus parameterization, and, later on, the first land
surface model (Randall et al. 2018).

What is commonly referred to as the first land surface model (e.g. Pitman 2003;
Randall et al. 2018) was the “Budyko bucket model”-hydrology implemented
in the general circulation model described in Manabe (1969). Manabe (1969)
aimed to construct “a mathematical model of the joint ocean-atmosphere system
and to investigate the problem of ocean-atmosphere interaction”, and with this
“to simulate the hydrologic cycle in the atmosphere and to find how the hydrology
of the earth’s surface interacts with the general circulation of the atmosphere”.
The model was run without representation of seasonal or diurnal variations, with
a horizontal grid resolution of about 475 km, and a symmetric distribution of
ocean and continents across the equator. Surface hydrology was represented
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Figure 3.1: Schematic of the Manabe (1969) first generation land surface model,
using a bulk aerodynamic formulation and “Budyko bucket model”-hydrology.
Latent heat flux was parameterized following Eq. 2.7 and Eq. 2.8. β describes
the reduction of evaporation when soil moisture is below the critical level (here
Eq. 2.8 is E = E0w/wK = E0β). (Left) The sensible (here: H) and latent
(λE) heat fluxes flow from the surface to the atmosphere, and both have an
aerodynamic resistance ra. (Right) The latent heat flux is regulated by the
level of moisture (W) in the bucket through the moisture availability function
β. Reproduced with permission, Figure 2A (“Schematic the "bucket model"
hydrology implemented in Manabe (1969)”) from P. J. Sellers (Jan. 1997).
“Modeling the Exchanges of Energy, Water, and Carbon Between Continents
and the Atmosphere”. In: Science 275.5299, pp. 502–509. issn: 00368075. doi:
10.1126/science.275.5299.502; reprinted with permission from AAAS.

based on Budyko (1958). It was assumed that the land surface was covered
with 1 m deep soil boxes. All boxes had a field capacity of 150 mm of water,
so that any water input which would result in more than 150 mm of soil water
was converted to runoff. Surface albedo was prescribed, except for in areas
with snow cover, where it was adjusted to 0.7. Surface hydrology was added
to simulate both a sensible and a latent heat flux, where latent heat flux was
parameterized following Budyko (1958) (using Eq. 2.7 and Eq. 2.8), linearly
reducing evaporation for soil moisture values below 75% of the field capacity.
Potential evaporation was calculated using a bulk aerodynamic resistance. Thus,
the surface resistance of plant communities to transpiration (canopy resistance),
as e.g. had recently been described in Monteith (1965), was not included. Figure
3.1 provides a schematic of the “Budyko bucket model” hydrology implemented
in Manabe (1969).

Land surface models similar to the description above are now referred to
as first-generation land surface models (Sellers 1997). Second generation land
surface models evolved from the late 1970s and during the 1980s. In Deardorff
(1978) the Penman-Monteith type evaporation formula and the inclusion of a
foliage layer near the ground was described and tested. Intercepted water, or
precipitation retained on foliage, was also considered. The new scheme increased
computational time, but this was argued as justified as Deardorff found errors
of up to a factor of 2 in evaporation estimates without the new treatment of
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vegetation. Lack of computational resources also impacted the treatment of
soil temperature in the land surface models. Although it was known that soil
temperature could be dealt with by solving the diffusion equation for soil heat
transfer, this scheme required as many horizontal layers in the soil as the global
circulation models at the time included for the atmosphere; and was hence not
implemented. The simplest models assumed that the soil had no heat capacity,
and thus needed to omit the diurnal variation in solar radiation in order to
avoid exaggerated amplitudes in surface temperature. Deardorff (1978) showed
that good results could be achieved using an efficient method for calculating soil
temperature and soil moisture involving only two slab-layers of soil, using the
force-restore method.

Deardorff’s schemes were partly incorporated into the National Center for
Atmospheric Research (NCAR) third generation general circulation model (Wash-
ington et al. 1980). It was acknowledged that to some extent weather forecasts
could include very simple parameterizations of surface processes without detri-
mental effects to the rather short term and low resolution forecasts developed
at the time. The implementation of more realistic and complex land surface
process in global circulation models was actively discussed, and e.g. Manabe
(1982) recommended to develop a hierarchy of hydrological parameterizations
with a varying degree of complexity and to evaluate how the simulated climate
was altered by each added increment in complexity. Indeed, Monteith himself
stated that “the specification of surface wetness for atmospheric models is not
likely to improve rapidly and there is no immediate hope of replacing the rather
arbitrary empirical expressions in current use by more fundamental relationships.
I therefore see little point in constructing physically elaborate but morphologically
unrealistic models of vegetation as proposed in Deardorff (1978).” (Monteith
1981).

3.4 Anthropogenic land use and climate change emerges as
scientific topics of interest

Since the late 19th century spectroscopic measurements had become advanced
enough to detect the most important electromagnetic absorption bands of wa-
ter vapor and carbon dioxide, identifying carbon dioxide as a greenhouse gas
(Ohmura 2014). It was suspected that CO2 was increasing due to the use of
coal, oil, and gas; however, the measurements to support the suspicion were
lacking. With the funding and support of the first International Geophysical
Year, which commenced in 1957, measurements of atmospheric near-surface CO2
concentrations started at several locations (Keeling et al. 2011).

While the topic of human’s influence on climate via emissions of carbon
dioxide was gaining traction, early studies conducted with global circulation
models were mostly academical, with no immediate applications considered
(Randall et al. 2018). The impact of the presence of greenhouse gases such as
water vapor, carbon dioxide, and ozone was first studied in the simplified single
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column4 model described in Manabe and Strickler (1964). About ten years later
“The Effects of Doubling the CO2 Concentration on the climate of a General
Circulation Model” was published in Manabe and Wetherald (1975). The study
used a simplified general circulation model without any seasonal or diurnal
variation. Though the model was rather simple, major findings of the study
included a polar amplification of the surface temperature response due to the
ultimately positive temperature-snow-albedo-temperature feedback mechanism5,
and an intensification of the hydrologic cycle.

Global circulation models were also used to study present day land-atmosphere
interactions, e.g. the impact of land use change. “Anthropogenic Albedo Changes
and the Earth’s Climate” by Sagan et al. (1979) summarized topics of concern
regarding how humans had influenced climate by modifying the land surface e.g.
by agriculture and the use of forest for energy. Of particular concern was the
recent desertification of the Sahel region of Africa, which was shown could have
been exacerbated by albedo changes due to deforestation (Charney et al. 1975).
Other studies, e.g. Shukla and Mintz (1982) and Yeh et al. (1984), found that in
the general circulation model used at the time precipitation showed sensitivity
to soil moisture variation.

3.5 Second generation land surface models

Likely, the increase in computational resources with time, and the interest in
understanding land-atmosphere processes paved way for additional development
and complexity in the description of the land surface (e.g. Dickinson 1984). While
the group of parameterizations used to described the land surface in the late
1960s and 1970s are now referred to as first generation land surface models, it
was not until the mid-1980s that the group of parameterizations used to describe
land surface processes were given proper names.

Two early examples of named land surface models are the Biosphere Atmo-
sphere Transfer Scheme (BATS) (Dickinson et al. 1986) and the Simple Biosphere
Model (SiB, Sellers et al. (1986). According to Pitman (2003) two models built
philosophically on Deardorff (1978) and implemented the now commonly used
Jarvis-type surface evaporation resistance formula (Jarvis 1976). Jarvis (1976)
showed that by using non-linear least square regression they could independently
relate the different components of vegetation surface resistance (rs) to vapor
pressure deficit, photosynthetic active radiation (PAR), temperature, and leaf
water potential, giving the total resistance as the product of each of the latter
components.

BATS was first developed to be used with the general circulation model
of NCAR, and later implemented in NCAR’s global, spectrally discretized
Community Climate Model (CCM). CCM was intended for use for both global
circulation studies and long-term weather forecasts, and was further intended

4that it a model including just one horizontal cell, but several cells in the vertical dimension
5an increase in temperature reduces snow cover, which then lowers the mean albedo which

increases absorbed sunlight, which increases surface temperature
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. PRECIPITATION

A. ^

GROUNDWATER RUNOFF

Figure 1. Schematic diagram illustrating the features included in the land-
surface parameterization scheme used here.

4

Figure 3.2: Schematic of an early version of the land surface model BATS.
Reprint of Figure 2 “Schematic diagram illustrating the features included in the
land surface parameterization scheme used here” of Dickinson et al. (1986) (CC
BY-NC 4.0)

to be used and developed by a larger community, including universities. Its
code was thus freely available and documented. Freely and openly sharing code
and technical documentation of numerical weather prediction models and global
circulation models became widespread, and would continue until the present day.

The early version of BATS, described in Dickinson et al. (1986), consisted
of about 3000 lines of code. It was developed with the possibility to run the
model coupled to a global climate model, or in a stand-alone, offline version,
i.e. driven by previously derived near-surface atmospheric variables, with no
coupling from the soil to these atmospheric variables. Instead of relying on near
uniform prescriptions of surface parameters, each model grid square was assigned
a land cover type and with soil information. Data from various ground based
surveys were assessed and aggregated to provide gridded land cover and soil
information. The land cover classification was reduced to 18 vegetation/land
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TABLE 2. VEGETATION/LAND COVER PARAMETERS

Parameter Land Cover/Vegetation Type*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a) Maximum fractional 0.85 0.80 0.80 0.80 0.80 0.90 0.80 0.0 0.60 0.80 0.10 0.0 0.80 0.0 0.0 0.80 0.80 0.80
vegetation cover

* . .. I * .I n ' n~ nl lS 0.3 0.0 0.2 0.6 0.1 0.0 0.4 0.0 0.0 0.2 0.3 0.2b) Difference between maxi-
mum fractional vegeta-
tion cover and cover at
temperature of 269 K

c) Roughness length (m)

d) Depth of the total soil
layer (m)**

e) Depth of the upper soil
layer (m)**

f) Rooting ratio (upper to
total soil layers)

g) Vegetation albedo for
wavelengths <0.7um

h) Vegetation albedo for
wavelengths )O.7um

i) Minimum stomatal
resistance (s m'1 )

J) Maximum LAI

k) Minimum LAI
1) Stem (& dead matter)

area index

m) Inverse square root
of leaf dimension (m1/ 2)

n) Light sensitivity
factor (m

z W- 1 )
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*See definitions in Table 1.

**Soil depths in code are in mm as are all water storages to make the
conversion factor 1.0 between water amounts and SI energy fluxes.

0.6 0.1 U. I U -.3 V. .3 W.0 %P. - -.-

to&
-4

Figure 3.3: Table 2 (p. 17) of Dickinson et al. (1986) (CC BY-NC 4.0), listing
vegetation/land cover parameters for each of 18 vegetation/land cover classes
defined.

cover types. Parameters associated with the land cover and soil classes, such
as albedo, minimum stomatal resistance, soil porosity, were taken from a range
of literature sources, and listed in tables (see Figure 3.3 and 3.4), which were
read by the model during model integration. In contrast to most land surface
model these days, the model included a varying depth of the total active soil
layer, which varied between 0.5 to 2 m according to the grid cell land cover type
(see 3.3).

The Simple Biosphere Model, SiB, is described as a biosphere model, designed
for use with global circulation models, intended to be both as physically and
biologically realistic as possible (Sellers et al. 1986). Plant soil moisture potential
was calculated by summing up soil moisture from the surface to the vegetation
type’s given root depth (i.e. the number of soil layers the plant has access
to). Also SiB had the possibility to be run offline, to be tested and evaluated
when driven by measured near-surface variables. Sellers et al. (1986) notes the
atmospheric variables necessary for driving SiB in an offline mode: grid area
average values of near-surface temperature, humidity, wind speed, and incident
shortwave and longwave radiation, partitioned into five sources. A lack of high
quality field data available for testing the land surface model was, however, also
noted in Sellers et al. (1986).

Sellers et al. (1986) stated a long-term goal of producing a fully interactive
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TABLE 3. SOIL PARAMETERS

I/FUNCTIONS OF TEXTURE

Parameter

a) Porosity (volume of voids
to volume of soil)

b) Maximum soil suction (m)

c) Saturated hydraulic
conductivity (nmm s l)

d) Ratio of saturated thermal
conductivity to that of
loam

e) Exponent "B" defined in Clapp
& Hornberger (1978)

f) Moisture content relative
to saturation at which
transpiration ceases

II/FUNCTIONS OF COLOR

Parameter

a) Dry soil albedo
< 0.7 um
>0.7 pm

b) Saturated soil albedo
< 0.7 um
> 0.7 Pm

1
0.33

0.03

0.2
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Figure 3.4: Table 3 (p. 22) of Dickinson et al. (1986) (©CC BY-NC 4.0), listing
soil parameters for each of six soil classes defined.

biosphere-atmosphere model yielding predictions over decades or longer, with
vegetation responding to increasing CO2. Land surface model which include a
vegetation actively responding to and interacting with carbon and nitrogen via
photosynthesis are now referred referred to as a third generation land surface
model (e.g. Pitman (2003)). These third generation models are sometimes used
together with global climate models which simulate a biogeochemically and
radiatively coupled carbon–climate system with time-varying greenhouse gases.
Some of these models have to option to include dynamic vegetation, which allows
shifts in vegetation species due to changing climate conditions (Randall et al.
2018). Third generation land surface models will not be further discussed here as
they are not used in the studies conducted within this thesis. Third generation
land surface models are most relevant when greenhouse gas budget and cycling is
considered, for simulations of vegetation and atmosphere interaction over periods
where observations of vegetation is not available, and/or during long climate
simulations (several decades or more). The added complexity of these third
generation land surface models further implies larger possibilities for ill-posed
model set-ups resulting in unwanted or unrealistic results (see e.g. Rosero et al.
(2010) and other examples given in Randall et al. (2018)).

Also underground processes were better described in second generation land
surface models, e.g. vertical flow of water through soil. Dickinson (1984) stated
that “soil moisture determines the demand rate at which occurs the switch
over from demand limited to supply-limited evapotranspiration” and outlined in
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detail a numerical scheme for soil water diffusion based on Darcy’s law and the
continuity equation (the Richards equation, see Eq. 2.9).

The initial versions of BATS and SiB included fairly simplified descriptions of
snow cover. For thermal processes snow was parameterized as part of the upper
soil layer, while for hydrological processes snow was parameterized separately
(Pitman 2003). Multi-layer snow models were not implemented in land surface
models until the 1990s (Pitman 2003). Surface albedo was given attention,
perhaps inspired by the work in Hansen (1983), where a early version of a global
climate model was found to have an improper snow masking depth for vegetation
resulting in a surface albedo of 0.6-0.7 in forested parts of Canada and Siberia,
while observations indicated an albedo of 0.35-0.55. In BATS (Dickinson et al.
1986) surface snow cover fraction and surface roughness were modulated by the
presence of vegetation protruding from snow, which was estimated by scaling up
the vegetation’s assigned roughness length (see row c) of Table 3.3. The surface
albedo values (listed for different vegetation types in Table 3.3) were mostly
based ground measurements by Monteith, but publications including satellite
derived albedo values were also considered in their derivation.

3.6 Physiographic fields in land surface models

Dickinson (1983) lamented that: “One of the primary obstacles to improving
model descriptions of surface processes over the earth is the great heterogeneity in
surface structure over most land areas. The minimum horizontal spatial elements
of global climate models are generally rectangular surfaces with sides at least
several hundred kilometers in dimension. Over such a surface, there can be
thousands of individual land elements as characterized by particular vegetative
cover, soil type, and terrain. The question as how to properly characterize
averages over these individual elements within a model grid square is still largely
unresolved. Before such complexities are addressed, it is perhaps important to first
better establish the sensitivity of different climate parameters to various aspects
of simplified but still somewhat realistic average descriptions of land surfaces.”.
He also noted in a subsequent publication, Dickinson (1984), that, concerning the
Richard’s equation, “the largest source of error in applying the parameterization
will come from difficulties in specifying the soil hydraulic properties due to their
vertical and horizontal variability”.

Since the mid 1980s the increase in computational resources have facilitated
land surface modeling at a much higher resolution; however, uncertainty sur-
rounding the physiograhic fields which map out soil and vegetation types, and the
parameter values assigned to these soil and vegetation types, such as soil porosity,
vegetation rooting depth, and minimum stomatal resistance, particularly when
scale issues are considered, are still seen as main challenges within land surface
modeling (Mendoza et al. 2015; Cuntz et al. 2016; Samaniego et al. 2017; Dai
et al. 2019).
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3.6.1 Physiographic fields - land cover

The land cover classes included in the BATS (Dickinson 1983) were based on
work summarized in Wilson and Henderson-Sellers (1985) and Matthews (1983,
1984). Wilson and Henderson-Sellers (1985) digitized 53 land cover classes based
on global and national atlases. Matthews (1983) produced a 1°x1°data-base of
land cover using the UNESCO vegetation classification system (UNESCO 1973),
drawing upon more than 100 global and national sources, and used satellite
imagery to complement the ground based sources. The satellite data used was
NASA Landsat images, which were used to find fingerprints of human land use
among natural vegetation. In Matthews (1984) the land cover classification
of Matthews (1983) was altered to provide input to the Goddard Institute for
Space Studies General Circulation Model II (GISS Model II), reducing the total
number of classes to eight.

Satellites had been monitoring the weather since the 1960s, and observations
from satellites were consulted in e.g. Hansen (1983) and Dickinson et al. (1986)
when determining sea-ice and surface albedo. Matthews (1983) stated that
“neither the specifics of vegetation type nor of crop combinations can be determined
from visual interpretation of these images [...]”, referring to the satellite images
from Landsat. The Landsat program launched in 1972, with what is now referred
to as Landsat 1, the first satellite with a dedicated purpose of studying and
monitoring landmasses. With time information from satellites would provide a
range of information on land cover and land use, first making use of vegetation’s
differing reflection in parts of the visible and near infrared electromagnetic
spectrum, as quantified in the normalized difference vegetation index (NDVI). In
1994 the first satellite derived global land cover dataset was published, with a 1◦

resolution, based on data from the Advanced Very High Resolution Radiometer
(AVHRR) (see further references within Friedl et al. 2002).

Figure 3.5: Land cover types in and around Norway according to Broxton et al.
(2014b)
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The range of information possible to retrieve from satellites on land cover and
land use was, and is still, used to better emulate land surface processes within
numerical models. The sheer mass of rather high quality products satellites
can retrieve on vegetation has likely fueled land surface model development.
Example of more recent satellite derived products are e.g. more robust global,
high resolution products providing land cover type classification (Broxton et al.
2014b) (see Fig. 3.5 depicting the land cover classification in and around Norway),
maximum green vegetation fraction (Broxton et al. 2014a); and regionally refined
products, such as forest albedo values for Norway, Sweden, and Finland (Bright
et al. 2018). These products are not without uncertainty, and ground and
near-ground based surveys are still of importance, both for refining retrieval
algorithms and their post-processing (e.g. Majasalmi et al. 2018).

3.6.2 Physiographic fields - soil

Early offline modeling results using BATS showed that surface temperature had
comparable sensitivity to the specified soil texture as to specified vegetation
characteristics (Wilson et al. 1987a). Different soil textures are linked to different
soil water conditions, as seen in Fig. 2.5. The soil data used in the early version
of BATS (Dickinson et al. 1986) was based on the FAO Soil Map of the World
(FAO/UNESCO 1974). This soil map was the product of a 20-year project
starting in 1961, with the aim to map out the soil types of the world, while
at the same time producing trans-national communities of soil experts, and
harmonizing soil mapping and labeling (Selcer 2015). According to Dai et al.
(2019) the FAO Soil Map of the World “was made based on soil surveys conducted
between the 1930s and 1970s and technology that was available in the 1960s”.
The derived soil map consisted of 18 76x110 cm sheets including 5000 different
map units, and thus resulted in a product which was not easily accessible for
non-experts. Due to the coarse scale of the map (1: 5 000 000, about 50 km),
only three textural classes, sand, clay, and silt were included (FAO/UNESCO
1974).

The schematic of the texture classes displayed in FAO/UNESCO (1974) is
reproduced in Fig. 3.6. In Wilson and Henderson-Sellers (1985)’s “A global
archive of land cover and soils data for use in general circulation climate models”
the dataset was digitized with a 1°x 1°resolution, and prepared for use in
numerical models. Prior to this there was, at the time, according to Wilson and
Henderson-Sellers (1985), “no global soils data in digital form”. For the BATS-
implementation the data was upscaled to BATS coarser grid (about 4.5°latitude
x 7.5°longitude), and with this the three texture classes were increased to twelve
classes (see the table of BATS soil properties, Fig. 3.4).

Later on different digitized version of the FAO Soil Map of the Wold were
constructed, e.g. the 1°x 1°version of Zobler (1999). Figure 3.7 shows the soil
types in and around Norway according to Zobler (1999). Though it is outdated
in many regions, the FAO Soil Map of the World has been widely used up until
today (see e.g. a recent overview in Table 1 in Dai et al. 2019). It served up until
very recently as the only soil map available for regions outside the conterminous
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Figure 3.6: Schematic of the texture classes used in FAO/UNESCO (1974) on the
basis of the upper 30 cm soil composition of clay, silt, and sand. The schematic
is from FAO/UNESCO (1974).

United States for the state-of-the-art Weather Research and Forecasting (WRF)
model (Skamarock et al. 2008)6 (see also Dy and Fung 2016).

Figure 3.7: Soil types in and around Norway according to a digitized,
1°x1°resolution, version of the FAO Soil Map of the Wold by Zobler (1999).

Figure 3.8 depicts the default soil texture classes for a model domain covering
areas in and around Norway and Great Britain. The dominant soil texture

6until April 2017, with the release of WRF ARW WPS version 3.9, see https://www2.mmm.
ucar.edu/wrf/users/wpsv3.9/updates-3.9.html
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category for the whole soil column is categorized as the soil texture of the top
soil layer (Lin and Cheng 2016). Limited emphasis on soil texture has also been
evident in other numerical weather prediction models. The global numerical
weather forecasting model of the European Centre for Medium-Range Weather
Forecasts (ECMWF), the Integrated Forecast System (IFS), was run with a
globally uniform soil texture until the modifications described in Balsamo et al.
(2009) were implemented.

Figure 3.8: Soil texture in and around Norway and Great Britain as categorized
using WRF 3.5.1 (the soil map is from the file initializing a WRF run (wrfinput)
using the Noah land surface model).

Recently, more updated global soil maps have been derived, e.g. Batjes
(2016). Most climate and weather forecasting models ingest global physiographic
fields. For soil information in particular, the quality of these fields hinge on that
information from regional and national surveys is made available; however, data
on soil type and texture from Norway was only very recently added to the World
Soil Information Service (WoSIS) (Batjes et al. 2020).

Another relevant physiographic field for land surface modeling, which is even
less well mapped than soil type and texture, is depth to bedrock. Depth to
bedrock or depth of soil (and unconsolidated material) is linked to land surface
model soil variables and parameters, since these usually are given in volumetric
form (see e.g. Deardorff 1978). In the land parameterization of Hansen (1983)
outlined for GISS Model I and II optimum soil depths were chosen to minimize
the error in the daily surface temperature for the upper soil layer, and the annual
amplitude of surface temperature for the lowest soil layer. Hansen (1983) found
that optimum levels were 10 cm for the upper layer and 4 m for the lower layer,
and further noted that that these depths are close to the typical 1/e damping

34



Parameters and model complexity

depths for daily and annual thermal waves. Today many land surface models
(LSMs) have a uniform soil depth between two or three meters.

3.7 Parameters and model complexity

The physiographic fields determining vegetation type and soil type are sometimes
referred to as primary parameters, while their associated qualities, such as
roughness length, soil porosity, etc. may be referred to as secondary parameters
(see e.g. Yang 2004). Land surface models differ in whether parameters are
treated as primary or secondary fields. As an example, when configuring the
WRF model one has the option to treat maximum albedo in the presence of
snow as a physiographic field, ingesting a gridded dataset based on satellite
observations, or to treat it as a secondary parameter associated with local
vegetation type.

Secondary soil parameter values such as soil hydraulic and thermal parameters
are usually estimated by pedotransfer functions, often based on soil texture (see
e.g. Dai et al. 2019). Many early land surface models used the results from
Clapp and Hornberger (1978), which based their results on soil samples from
34 locations with the United States. Clapp and Hornberger (1978) cautioned
that the average values they presented had not been verified and that there was
considerable variability in their derived values also within soil texture types.

Different land surface models have been produced tailored for different appli-
cations. The SiB model intended to realistically simulate controlling biophysical
processes (Xue et al. 1991); however, it was criticized for describing above ground
processed in a complex way, while below ground processes were more simply
described (Pitman 2003). Its large number of estimated parameters was found
to make model sensitivity studies and validation difficult (Xue et al. 1991).
Xue et al. (1991) described a simplified version of SiB model (SSiB), where the
number of input parameters were reduced from 54 to 26, by describing vegetation
in one layer instead of two, and simplifying other parameterized processes. The
simplification about halved the computational cost of running the model.

Wood et al. (1992) questioned whether the versions of BATS and SiB, at the
time, were of an appropriate level of complexity when confronted by lack of micro-
meteorological data to calibrate or validate the models, and when considering
that a more simple model could be run with a higher resolution demanding the
same computational resources. In the same Paper It was demonstrated that a
three parameter, calibrated version of the variable infiltration capacity (VIC)
water balance model, sometimes been referred to as the Nanjing model, driven
with precipitation, potential evapotranspiration, temperature from a general
circulation model, could reproduce observed flow with higher skill than a bucket
model.

The large number of land surface models and their complexity, led to
project such as the Project for Intercomparison of Land-Surface Parameter-
ization Schemes (PILPS) (e.g. Henderson-Sellers et al. 1993). Findings from
PILPS, presented in Chen et al. (1997), evaluated the capacity of 23 land surface
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models for simulating surface fluxes, surface net radiation, upward longwave
radiation, and ground heat flux for a full year at an observation site in the
Netherlands. Second generation models generally outperformed first genera-
tion land surface models. Particularly, the lack of stomatal resistance under
non-water-stressed conditions limited the first generation schemes.

In Koster et al. (1999) annual runoff produced by nine different land surface
models run offline at a 1°x1°resolution were aggregated within catchments
to river discharge and compared to observations. Their skill was additionally
benchmarked by comparison to the annual discharge derived from a climatological
relation provided in Budyko (1958). At an annual time-scale the models did not
perform significantly better than the simple Budyko-relationship. Not much later
Milly and Shmakin (2002) tested the added value of increasing model complexity
in various sub-processes, a study in line with the suggestion by Manabe (1982) of
evaluating added complexity incrementally (see Sec. 3.3). Particularly, the use of
globally variable land parameters over uniform parameter values were tested, and,
following Koster et al. (1999), the modeled annual discharge was benchmarked
against that provided by the simple semi-empirical Budyko (1958)-relationship.
Unlike Koster et al. (1999), Milly and Shmakin (2002) found that their model
provided significantly better estimates than the Budyko (1958)-relationship,
and speculated that the poor results found in Koster et al. (1999) partly was
attributed to errors in the precipitation forcing data. Milly and Shmakin (2002)
further found that introducing globally variable land parameters significant
enhanced the capability of the model to simulate the annual runoff ratio.

As of 2001 there existed 30 different land surface models (Bastidas et al.
2001). Efforts were undertaken to bound parameter values via calibration to
observational data. Bastidas et al. (2001) found that optimization state variables
in a version of BATS by calibrating parameters to fit observations deteriorated
BATS fluxes, and vice versa; and hypothesized a deficiency in the BATS model
structure. Duan et al. (2001) stated that the secondary parameters, those tied
to soil and vegetation classes, had not been fully validated using retrospective
forcing data and corresponding data on land surface characteristics.

Duan et al. (2001) listed several arguments against the a priori definition
of land surface parameter values. One was that tuning of various land surface
models had resulted in different optimal parameter values for different land
surface models and configurations. Another argument was scale dependency, as
previous studies (e.g. Koren et al. 1999) had showed that models run with forcing
data of differing spatial and temporal resolution resulted in different output.
The latter had in part to do with the coarse scale forcing data at the time, which
provided a mean precipitation flux for grid cell covering perhaps 3000 km2, while
real world precipitation includes local areas of high intensity precipitation and
other areas with no precipitation. The parameterization of rainfall infiltration to
soil, or, oppositely, rainfall exceeding the maximum infiltration capacity diverted
to overland flow (Hortonian flow), is, unsurprisingly, sensitive to the averaging
out of rainfall in time or space.

Results from the Model Parameter Estimation Experiment (MOPEX) was
presented in Duan et al. (2006). Their finding included that calibration has huge

36



Parameters and model complexity

potential for improvement parameter estimation, and that hydrological processes
were differently represented in different models, and that all of the models were
(are) imperfect. A contributing cause to the differing parameter sets found after
calibration or tuning of various land surface models is the complexity of the land
surface and land surface models. The large number of included parameters in
land surface models leads to a high degree of freedom in the models. This means
that in a calibration or tuning exercise of model parameters, different parameter
sets may result in the same model output.

According to Beven and Freer (2001): “Given current levels of understanding
and measurement technologies, it may be endemic to mechanistic modelling of
complex environmental systems that there are many different model structures
and many different parameter sets within a chosen model structure that may be
behavioural or acceptable in reproducing the observed behaviour of that system.”.
This may be referred to as the equifinality concept, and is used where “ [...] there
should be sufficient interactions among the components of a system that, unless
the detailed characteristics of these components can be specified independently,
many representations maybe equally acceptable”.

While the original version of BATS (Dickinson et al. 1986) was described by
four authors using 79 equations and 69 pages, a third generation land surface
model, the Community Land Model version 4.5 (CLM4.5 Oleson et al. 2010),
needed 26 authors, 1093 equations and 420 pages, and additional technical notes
(Bonan 2019). Bonan (2019) notes that while an increase in process richness and
thus complexity may increase realism, it likely reduces robustness and reliability.
This is due to the general increase in model flexibility with model complexity, as
depicted in Fig. 3.9. If validation is limited, it is possible that a model produces
right results for the wrong reasons, i.e. that parts of the model which are not
validated includes unrealistic parameterizations, inappropriate parameter values,
or unrealistic values for state variables. Models may also be tuned to produce
realistic output for certain variables, even while ingesting incorrect meteorologic
forcing data.

Physically based models are necessary to construct model experiments altering
physical boundary conditions in order to learn something about the real world.
Any physically based model which includes one or more parameters which
are poorly constrained by observations must be considered partly empirical
(Abramowitz 2012). A high number of processes included in a model, which in
part rely on parameter values which are unmeasured or impossible to measure,
increases a model’s degree of freedom and decreases parameter transferability (e.g.
Newman et al. 2017). A large number of poorly constrained calibrated or tuned
parameters may ultimately produce what Kirchner (2006) termed “mathematical
marionettes”, i.e. models which are overfitted and likely will provide poor results
when confronted with out-of-sample validation data.
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Figure 3.9: The figure, reproduced from Höge et al. (2018) visualize concepts
and effects of bias and variance: “(a) Accuracy and precision visualized as bias
and variance of shots on a target. Bias is the distance between the target center
and the average position of shots. Variance is the spread of shots around their
average. (b) Decomposition of total squared error into squared bias and variance
(after e.g., Friedman et al. (2001)). Bias is supposed to decrease and variance is
supposed to grow with increasing model complexity, both due to growing model
flexibility. Their superposition forms a minimum that marks optimal model
complexity.” Reprint of Fig. 1 in Marvin Höge et al. (Mar. 2018). “A Primer for
Model Selection: The Decisive Role of Model Complexity”. In: Water Resources
Research 54.3, pp. 1688–1715. issn: 19447973. doi: 10.1002/2017WR021902,
reused with permission, ©2018 American Geophysical Union

3.8 Conceptual hydrological models

Early general circulation models were built with the purpose to replicate general
features of the climate system by modulating and refining the early, physically
based models developed for numerical weather prediction (see Sec. 3 and 3.2).
Hydrology is the study of the land component of the hydrological cycle (Peel and
McMahon 2020). Early hydrological models varied in structure and philosophy,
but have generally been developed to aid in managing, understanding, and making
predictions for water resources. Hydrologic models used for watershed modeling,
as will be discussed here, have been approached from both the perspective of
an engineer and that of a earth scientist (see Fig. 3.10). According to Dooge
(1986) the engineer uses observations to check predictions made with the purpose
of controlling materials and forces of nature for the use and benefit of man,
while a scientist uses observations to validate and compare predictions from
models built on a theoretical system of various hypotheses in order to understand
nature. Similarly to Dickinson (1984) (see Sec. 3.6), Dooge (1986) lamented that
“hydrologic processes can be analyzed on the basis of the equations of hydraulics
and soil physics, but the high degree of spatial variability in a catchment of any
size poses serious problems of parameter specification”; and that “the linking of
the hydraulic conductivity which is a macroparameter to the microparameters
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Figure 3.10: Dooge (1986) illustrated that hydrology, as one of the earth sciences
and as the basis of water resources development, has been approached both from
the perspective and motivation of an earth scientist, and from the perspective and
motivation of an engineer. Reprint of Fig. 1 in James C. I. Dooge (Aug. 1986).
“Looking for hydrologic laws”. In: Water Resources Research 22.9S, 46S–58S.
issn: 00431397. doi: 10.1029/WR022i09Sp0046S, reused with permission
©1986 American Geophysical Union

of the porous media structure has been tackled using both deterministic and
probabilistic models but remains a daunting problem”.

This problem, and that hydrological modeling has often been approached
from an engineering point of view, has resulted in models which range from black-
box regression type models, where it is hard to derive a physical meaning from
model parameters, to more physically based models, akin to land surface models.
The models that fall in between these two categories are sometimes referred to
as conceptual models. All of the modeling approaches, however, are subjected to
the fact that “The physical laws governing water movement at small scales have
been understood for decades. What we still don’t understand well enough is how
to apply these physical laws to systems that are complex, heterogeneous on all
scales, and often poorly characterized by direct measurement.”(Kirchner 2006).
Further, as put forward in Clarke (1973): “[...] models originally formulated
without reference to physical processes may have parameters for which some
physical interpretation can be found, whilst models apparently firmly based in
physics may contain obviously empirical components”.

An example of a model parameterization often used in conceptual hydrologic
models is the degree-day method for computing snow-melt. It usually relates
daily snow-melt to near-surface temperature on days where the temperature is
above zero, and may be presented as:

M = max(Ctemp(T2− T2melt), 0); (3.1)
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where M is snow melt, Ctemp is an empirical parameter, T2 is the near-surface
temperature, T2melt is the near-surface temperature associated with snow melt.

The degree-day method for snow melt known to be old; a version is e.g.
provided in Horton (1915) : “The writer’s experiments indicate that the melting
constant is about 0.04 to 0.06 inch depth of water per 24 hours per degree of
temperature above 33°F. ”. Different snow-melt index-based algorithms were
reviewed and tested in Snow hydrology; summary report of the snow investigations.
(United States Army Corps of Engineers 1956). The engineers or scientists at the
time were knowledgeable of the physical processes governing snow melt; however,
the snow report summarized: “Temperature indexes of snow-melt have been
widely used to estimate runoff from snow-melt for areas where it’s contribution
to total runoff warranted consideration. Temperature was used because it was
generally thought to be the best index of the heat transfer processes associated
with snow-melt and because it was (and in many cases will continue to be)
the only reliable and regularly available meteorological variable.”(United States
Army Corps of Engineers 1956). Indeed, a more recent study (Ohmura 2001)
found that incident longwave radiation flux was the major source of snow- and
ice-melt in several observational datasets from glaciers, and that the near-surface
temperature was, in most cases, closely connected with the incident longwave
radiation. The lack of information on below-ground features and the reliance
as much as possible on reliable and regularly available meteorological variables
partly explain why many of the hydrological models developed were something
in-between black-box regression models and physically-based models.

3.9 Numerical hydrological models

During the late 1950s and early 1960s the availability of rapid computational
resources and long-term records of both precipitation and runoff laid the founda-
tion for the for the development of computer-based hydrologic models. In 1967,
current advances and issues were summarized in “Digital Computer Simulation
in Hydrology” (Dawdy and Thompson 1967). The usefulness of using digital
computers for modeling was highlighted by referring to Folse (1929), where it is
stated that the computation of an early model for the hydrologic cycle involved
41 people, 16 years, and over 34000 man-hours to complete.

The earliest well documented and successful attempt of a rainfall-runoff
modeling on a digital computer is perhaps “Computation of a synthetic stream-
flow record on a digital computer” (Linsley and Crawford 1960). A water-
accounting procedure was programmed for a solution on an IBM 650 computer
to synthesize daily streamflow when rainfall records were available. It is noted
that the work was not based on scientific research, but rather a project of
necessity, resulting from a request for advice from the university (Stanford
University) on increasing the capacity of the one of their water supply reservoirs.
The treatment of potential evaporation in the model was discussed at length, as it
was parameterized in a rather simple manner, in part due to lack of observational
data. The model was further developed and later given the name the Stanford
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Watershed Model (see references within Crawford and Linsley 1963; Crawford
and Burges 2004).

An early application of the Stanford Watershed Model is described in Ap-
plication of Stanford watershed model concepts to predict flood peaks for small
drainage areas (Clarke 1968). The model was applied to a small catchment
in Kentucky. The purpose of the study was to “equate total rainfall to total
runoff and losses throughout a span of years, and, if all significant hydrological
parameters may be deduced; then through direct measurements of some essential
input descriptors and indirect estimates of others, the water-balance concept may
be applied to other basins.” (Clarke 1968).

The model was what is now referred to as a lumped model, meaning that the
entire catchment was treated as a single numerical unit which is integrated in
time. The most important model input, precipitation data, was retrieved from
a nearby precipitation gauge. The model included 23 parameters, some which
could be derived from watershed characteristics, some by analysis of measured
discharge, and some by trial and error (i.e. tuning or calibration).

Figure 3.11: Reproduction of Fig. 28 in K. D. Clarke (1968). Application
of Stanford watershed model concepts to predict flood peaks for small drainage
areas. Tech. rep. Division of Research Department of Highways Commonwealth
of Kentucky, “Fig. 25. Moisture Accounting in Stanford Watershed Model ”.

Parameters which could be derived based on watershed characteristics in-
cluded the ratio of average rainfall on the catchment to the average rainfall at the
rain gauge, a parameter representing the catchment vegetation’s interception rate
of precipitation, and a parameter representing rate of loss through evaporation.
The latter two could be taken from vegetation dependent tabular values. Two

41



3. Numerical models

recession rate parameters for base-flow and interflow could be estimated using
graphical techniques analyzing observed flood events. Parameters defined by
tuning or calibration included e.g. indices defining within and above soil storage
capacity and infiltration capacities. Evaporation was scaled to potential evapora-
tion data fed into the model, since “Flood peaks are not sensitive to evaporation
rates” (Clarke 1968). Further, in order to simplify the computational process,
and since “snow-melt does not produce extreme flood events on small Kentucky
watersheds” (Clarke 1968) all precipitation was treated as rain. By ingesting
estimates of potential evaporation and not representing snow, the model did not
need temperature data input. The Stanford Watershed Model had at the time
other versions including snow processes (see e.g. Anderson 1968). Just a few
years later the version IV of the Stanford Watershed Model was selected for use
in the operational U. S. National Weather Service river forecast system (Staff
Hydrologic Research Laboratory 1972)

Another early hydrological model was the Streamflow Synthesis and Reservoir
Regulation (SSARR) model. Similarly to the Stanford Watershed Model, SSARR
was also developed first for the Pacific coast of the U.S.. While the model was
first developed in 1957 for an IBM 650 computer for synthesizing streamflow in
the Columbia River Basin, it was later applied various places, e.g. as described in
Application of Streamflow Synthesis and Reservoir Regulation-" SSARR"-Program
to the Lower Mekong River (Rockwood 1968).

A myriad of different computer-based hydrological models were developed
from the 1960s and on-wards, see e.g. Table S1 in Peel and McMahon (2020).
With time, distinct versions of existing models were developed. An example
is the HBV model (Bergström and Forsman 1973), developed at the Swedish
Meteorological and Hydrological Institute, which now exits in a range of forms,
e.g. also in a gridded version modified and further developed by Norwegian
researchers (Beldring 2008). The first distributed or gridded hydrological model
was presented in Huggins and Monke (1968). The principles of a physically
based hydrological model was outlined in Freeze and Harlan (1969). A model
which was both distributed and physically based, implementing e.g. the Richards
equation for capillary flow (Eq. 2.9), did not come about until around the same
time as second generation land surface models were developed (see Sec. 3.5),
with the Système Hydrologique Europeén (SHE) model (Abbott et al. 1986).
Unlike the second generation land surface models, many hydrological models are
not freely and openly distributed; and some have been developed as commercial
software (e.g. the MIKE SHE model, see Refsgaard et al. 2010).

The numerical hydrological modeling community has also been concerned with
what is known as the inverse problem, that is establishing model parameter values
from more or less well known model input and output values (e.g. Moradkhani
and Sorooshian 2008). This is referred to as an ill-posed problem due to the
non-uniqueness of the problem’s solutions (see also Sec. 3.7 on equifinality).
The first step of numerical weather prediction, analysis of the initial state of the
atmosphere, is also usually tackled as an inverse problem (see e.g. Bauer et al.
2015).

Establishing model parameter values which are not available from observations
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were first done based on expert knowledge or tuning. With time model calibration
procedures were refined, and various methods and software have been developed
to assist in objective parameter calibration (e.g. Bastidas et al. 2001; Duan
et al. 2001; Wang et al. 2019). An highly influential publication was “River flow
forecasting through conceptual models part I - A discussion of principles” (Nash
and Sutcliffe 1970), where an a dimensionless goddness-of-fit index for use in
objective optimization was suggested; now known as the Nash-Sutcliffe efficiency
score.

The different approaches and philosophies hydrological models are based on
are still debated. Physically based models akin to land surface models might be
better suited for “what-if”-studies, exploring e.g. the effect of vegetation change;
however, several studies have found lumped and more conceptually-based hydro-
logical models preform well in model inter-comparison studies evaluating runoff
in the form of catchment discharge (e.g. Newman et al. (2017)). The simpler
models usually demand less forcing data. They are also more computationally
efficient, which is important considering that hydrological models rely on model
calibration.

Since the first conceptual models were developed there has been some em-
phasis on reducing the number of calibrated parameters to counter over-fitting
(see e.g. Fig. 3.9) and thus make the models more robust (Peel and McMahon
2020). At the same time there has been an emphasis to include a realistic
description of the fundamental physics, particularly as this can be useful for the
purpose of transferring calibrated parameters to ungauged catchments (i.e. for
parameter transferability). The simplified description of some processes, relying
on calibrated parameters for e.g. evaporation, have also been criticized as less
than optimal for certain applications, e.g. climate change studies, since the
parameter values might not be valid in other climates than that considered in
the model calibration and validation (see e.g. Milly and Dunne 2011a; Arsenault
et al. 2018). The possibility of achieving robust calibrated values hinges on long
time-series of high-quality observational data. Further, the implementation of
e.g. a physically-based evaporation scheme requires similarly long-term, high
quality estimates of additional meteorological variables than precipitation and
evaporation, namely incident radiation, and near-surface humidity, and wind.
As discussed in Sec. 2.7, a myriad of approaches has been developed to imple-
ment more physically based evaporation algorithms, often relying on empirical
estimates of the unobserved meteorological variables.
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servational data
Observational data are at the center point of land modeling, whether or not
the models are mainly data driven or more physically-based. Further, the
theories which form the basis of the models have been developed and refined
in confrontation with observations (see Fig. 1.1). Milly and Shmakin (2002)
divided error sources of model variables into intrinsic model errors, forcing errors,
and parameter errors, and stated that, at the time, they believed that insufficient
characterization and control of forcing data errors, particularly precipitation, is
the main limiting factor when land models are tested, since large forcing data
errors likely mask model improvement.

An early example of this issue is documented in “Investigation of the sensitiv-
ity of the land-surface parameterization of the NCAR Community Climate Model
in regions of tundra vegetation” (Wilson et al. 1987b), where the climate model’s
high temperature bias in the arctic tundra was sought redeemed by altering land
surface parameterizations. However, unrepresentative observational data (due to
majority of observation stations located on or very near the coast) and biases in
the model’s estimated incident radiation (July net radiation was likely around
50% too high in places1) made model development more difficult. A newer
example is “Global evaluation of runoff from 10 state-of-the-art hydrological
models” (Beck et al. 2017a) where precipitation biases is found to likely be the
cause of discharge biases, particularly peak-discharge in snow-dominated areas.
The study further speculates that poorer performance of the land surface models
compared to global hydrological models in snow-dominated regions may be due
to a reliance on sub-optimal forcing data.

Offline runs of land surface models and hydrological models rely on atmo-
spheric data input. The minimal input for a rainfall-runoff model is rainfall
(see Sec. 3.8). Near-surface temperature is a necessary input if evaporation
is included with a minimum level of sophistication, or if snow processes are
represented. Further, more physically based processes-descriptions require ad-
ditional inputs which drive the surface energy balance, such as near-surface
humidity, incident shortwave and longwave radiation, and wind information.
Land surface models developed for use coupled with atmospheric models need
similar atmospheric variables, usually with a sub-daily temporal resolution, and
often require more detailed information on the frequency distribution of received
radiation. Soil moisture, snow cover, snow depth, and snow water equivalent
observations are relevant for model initialization and validation. The inverse
problem of rainfall-runoff modeling rely on river discharge observations. Vali-
dation of evaporation estimates in both land surface models and hydrological
models require evaporation observations, while validation and development of

1“[...] presumably because of poor estimation of cloud cover and properties” (Wilson et al.
1987b)
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models solving the surface energy balance also require observations of the two
turbulent fluxes, received, reflected and emitted radiation, and ground heat flux.

The availability of various observational data vary wildly according to variable.
Precipitation and temperature are and have been measured for a considerable
time. According to Dooge (1988) both rain gauges and stream gauges were first
likely deployed for societal purposes. The first stream gauges were deployed four
thousand years ago to relate the level of the Nile to the level of taxation. Similarly,
the first record of a rain gauge a thousand years ago in India was also used to
estimate taxation. Temperature is a variable which required sensor development
to measure. Discontinued, early measurements were at least retrieved along side
instrument development from the 17th century (e.g. Camuffo and Bertolin 2012).
Around the same time early versions of the barometer, measuring pressure, and
hygrometers, measuring humidity, were also developed. From the middle of
the 19th century more systematized national networks of weather observation
were established with standardized thermometer shelters, and the invention
of the telegraph provided a means for data communication. The number of
weather stations increased greatly in the 20th century, particularly with the
development of automated weather stations; however, to this day many regions
are poorly sampled, particular locations away from population centers, such as
in the mountains. Further, a number of sources of measurement errors exist in
present time, e.g. the underestimation of precipitation in the form of snow due
to wind effects (e.g. Wolff et al. 2015).

The measurement of incident radiation required both theoretical and in-
strument development (see Sec. 2.1 and Ohmura (2014)). While instruments
measuring radiation existed from the last decade of the 19th century, dome-
covered (all-weather) instruments were not developed until the 1950s (Ohmura
2001). Not long after satellite measurements became useful for climatology,
particularly the quantification of the top of the atmosphere (TOA) energy bal-
ance. Satellite-based quantification of surface radiative fluxes require, due to
changing effects of the atmosphere in between, and a limited number of surface
observations to inform calibration, additional input data and additional empirical
or physical algorithms. As a result higher uncertainty is associated with satellite
estimates of surface radiative fluxes than those from the TOA (Wild 2017).

Radiation sensors are more costly than e.g. temperature sensors, and also
require more in terms of maintenance. The Baseline Surface Radiation Network
(BSRN) was proposed established by the World Meteorological Organization
(WMO) in 1988, to collect and archive freely available, high-quality ground-based
radiation measurements (Driemel et al. 2018). When it commenced in 1992 data
from just 9 stations met the standards. Today the network includes around 64
stations (see Fig. 4.1 and BRSN Webiste (2016)). Measurements of shortwave
radiation are generally more available than longwave radiation, and the latter is
lacking to a point where it hinders both model development and validation (e.g.
Carrer et al. 2012; Erlandsen et al. 2019). For comparison, for the recent years,
temperature and precipitation data are available from around 16000 and 40000
observation station, respectively, in the data archive GHCN-Daily (Jaffrés 2019)
(see also Fig. 4.2 depicting surface meteorological data ingested by a weather

46



forecasting model).

Figure 4.1: Stations included in the Baseline Surface Radiation Network. Figure
retrieved from the BRSN Webiste (2016).

Over time, the first of the two-step procedure for numerical weather prediction,
outlined by Richardson, has been refined. Present day models ingest a vast
amount of data, not only from weather stations on land, but also oceanic
observations, e.g. from ships, buoys, and oil platforms, and upper-air observations
from e.g. weather balloon-soundings, air crafts, and satellites. The increase
in data availability, better methods to ingest the data, model development,
and techniques to work with uncertainty in initial conditions by running several
streams of the same forecast based on slightly different initial conditions (ensemble
forecasting), has led to The quiet revolution of numerical weather prediction
(Bauer et al. 2015). The skill in predicting large scale features, such as the height
of the 500hPa pressure level (geopotential height) 3 to 10 days in advance has
increased with about one day per decade (Bauer et al. 2015).

Data from numerical weather prediction models may act as a surrogate
for observational data, and have the quality of coverage and a high number
of output variables; some which are prognostic, e.g. surface temperature and
incident radiation, while others are diagnostic, e.g. 2-meter temperature, and
snowfall. The development of global weather reanalysis projects, which are based
on combining a numerical weather prediction model, kept at a frozen model
development state for consistency, advanced data assimilation techniques, and
vast amounts of observational data, particularly data not readily available in
time to be used in operational weather forecasting, have become essential for
atmospheric science research (Randall et al. 2018). The first global reanalysis
product (see Kalnay et al. 1996) was developed in the mid-1990s, with a horizontal
resolution of around 210 km. The available variables from the reanalysis were
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ranked from A to C according to their reliability, largely based on whether they
were heavily constrained by observational data (e.g. upper-air temperature and
wind) or derived solely from the model fields (e.g. precipitation).

Figure 4.2: Geographical data coverage ECMWF website (n.d.).

While the use of the exact same numerical weather predictions model in
a reanalysis system is a source of consistency, the ingested observational data
vary with time. Time-varying observational input is usually a caveat of gridded
observational datasets as well. Additionally, the very process of data assimilation,
and the many different short forecasts the reanalysis prognostic fields are a
product of, means that the surface water and energy balance is not closed
over time in these products (e.g. Kauffeldt et al. 2015; Hersbach et al. 2020).
Reanalysis datasets may further have considerable biases in variables which are
less constrained by observations (e.g. Balsamo et al. 2015). One may speculate
that some variables, might have benefited less from development within numerical
weather prediction if their errors did not significantly degrade the quality of
regularly reported output of short-term weather forecasts. An additional aspect
concerning the output of global reanalysis datasets are issues regarding spatial
scale. At the perhaps 1-km resolution of a regional hydrological model, output
from a global reanalysis might not be representative.

The representativeness of a variable at a given scale is in part related to the
variable’s spatial auto-correlation. At a given instance atmospheric temperature
has a smoother spatial field than e.g. precipitation. Near the land surface
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temperature is closely connected to topography. The first law of thermodynamics,
the hydrostatic equation, and the ideal gas law provide some information to
adjust temperature valid for one elevation to another elevation. These type of
physical relationships are used in hydrological and land surface model frameworks
to adjust temperature from forcing data with one mean grid cell elevation to
the grid cell elevation of the model to be run. Elevation adjustment does not
resolve biases unrelated to altitude. Further, the presence of ground snow, dense
vegetation, water bodies, and orographic features such as sheltered valleys and
ridge tops may cause vertical gradients deviating from those assumed under
standard elevation adjustment procedures (e.g. Daly et al. 2010). At a higher
horizontal resolution these “problematic” features need to be addressed. Thus,
with land surface models run at resolutions of one kilometer or less: “High-
resolution meteorological datasets of sufficient accuracy are thus greatly needed.”
(Bierkens et al. 2015).

Surface latent heat flux, or evaporation, is a variable produced by both hydro-
logical models and land surface models. This essential variable for determining
the surface water and energy balance is particularly hard to measure (see e.g. Sec.
2.6 and 2.7, Fisher et al. (2017), Allen et al. (2020)). A variety satellite-derived
evaporation estimates exist. Since evaporation is not possible for the satellites
to measure directly algorithms are used to produce satellite-based evaporation
products. The algorithms used are “almost indistinguishable from land surface
hydrology models, such that it is questionable that this qualifies as “observation".”
(Fekete et al. 2015). Depending on the choice of input data, particularly the
choice of incident radiation data, the algorithms arrive at drastically different
estimates of global terrestrial evaporation (Badgley et al. 2015). Surface or near-
surface measurements are thus still essential data sources regarding evaporation.
Since around 1997 surface measurements based on eddy covariance methods
have routinely been measured in a global network, called FLUXNET, with more
than 140 long-term measurement sites (in 2001) (Baldocchi et al. 2001), and
more today.

The monitoring of river discharge near the outlet of a river is beneficial, not
only because of its application for flood and engineering design, but also because
it is constitutes a spatial aggregate of the catchment water balance. It thus
holds information from considerable areas, which can help constrain and correct
e.g. precipitation estimates based on scattered rain gauges which routinely
under-catch snowfall (e.g. Beck et al. 2017b). Without the presence of a dam
or a glacier the catchment annual discharge may not exceed catchment annual
precipitation. However, in order to constrain precipitation further a sensible
minimum and maximum range of evaporation must be estimated. In Beck et al.
(2017b) a similar formula as the Budyko-relationship depicted in Fig. 2.4 was
used to estimate long-term catchment evaporation.

Similarly to the difference in code sharing policies between hydrological
and meteorological numerical model developers, there is also a difference in
the availability of e.g. stream gauge and rain gauge observations. Budgetary
constraints and political instabilities hinder the collection and sharing of in-
situ streamflow measurements (Hannah et al. 2011). In some cases streamflow
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observations are measured by privater companies, e.g. hydro-power companies,
with little incentive for sharing data. According to Fekete and Vörösmarty
(2007) 50% of continental land mass were at some point considered monitored
by streamflow gauges, however, it was emphasized that the data coverage in the
global archive, the WMO Global Runoff Data Centre (GRDC), has decreased
rather than increased in the recent decades. The lack of data availability and
homogenization of streamflow measurements have likely contributed to their
under-utilization in climate studies. Hopefully, the continued emphasis on
streamflow data value and the general global push towards FAIR (Findability,
Accessibility, Interoperability, and Reusability) guiding principles for scientific
data management and stewardship (Wilkinson et al. 2016) will contribute to an
increase in freely available data from in-situ streamflow monitoring in the future.
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The previous chapters (Chapter 2, 3, and 4) have outlined the historical and
international context of the studies undertaken as a part of this thesis, and
should illustrate the connectivity of the objectives, methods and models used,
and the research questions and hypotheses investigated (see Sec. 1.1). Each of
the studies touch upon related, but slightly different issues within hydrological
and land surface modeling in Norway. The following part of this thesis presents
the study region, Norway. Thereafter a brief overview of the numerical models
and methods used is presented (Sec. 5.2), before each study and their major
findings are presented (Sec. 5.3). Finally, a summery and outlook is offered (Sec.
5.4).

5.1 Placement - Norway

Norway is a country located in the north-west corner of continental Europe.
Mainland Norway boarders on the eastern side mostly to Sweden, however, the
northern regions also border to Finland and Russia. While its land boarder is
about 2500 km long, and its baseline coastline is of similar length, the coastline
including bays and fjords is about ten times longer. Mainland Norway stretches
several latitudes, from 58◦ North across the polar circle to 71◦ North.

Inland the Scandinavian Mountains divide the Norway’s western and eastern
regions. The combination of the Scandinavian Mountains and Norway’s location
on the eastern end of the North Atlantic, with prevailing westerly winds, results
in high annual precipitation on Norway’s western coast. The eastern regions
leeward of the mountain range receive distinctly lower precipitation rates. Mean
annual precipitation received mainland Norway is likely around 1300 to 1400
mm (e.g. Erlandsen et al. 2021). The mean temperature (1971–2000) varies from
-4◦C in the mountains to about 7◦C near the coast. The 2-meter temperature
increased by 0.5◦C per decade between 1976 and 2014 (Hanssen-Bauer et al.
2017). At least a third of precipitation falls as snow. The length of the snow
season varies from a few days to 300 days a year, depending on latitude, elevation,
and distance from the coast.

About 38% of the land area is forest covered, while elsewhere the land surface
is dominated by bare rock and shallow deposits (see e.g. Fig. 4.1). Relatively
shallow soils with a low water storage capacity in large parts of the country make
way for a rapid runoff response to precipitation (Beldring 2002), but also for
moisture stressed conditions in periods of meteorological drought (e.g. Buckland
et al. 1997). The annual evaporation is not well constrained by observations. In
Erlandsen et al. (2021) evaporation was estimated in a hydrological model to be
on average around one-sixth of the received precipitation; however, in regions of
South-East Norway it was more than 40% of received precipitation.

The larger amounts of precipitation received has facilitated a large hydro-
power industry within Norway. The first hydro-power plants were established
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in the latter decades of the 1800s to provide energy for industry development.
In the 1930s around 3000 hydro-power plants were established in Norway, and
electricity was available to more than 70% of the population (Fladen et al. 2017).
Today more than 90% of Norway’s produced electricity is from hydro-power.
Norway has been referred to as the ‘green battery’ of Europe, as the largest
hydroelectric producer in Europe, also with the largest installed hydro-power
generation capacity (Askeland et al. 2019).

The surface water balance in Norway is interesting to understand in order to
provide information for the public. This can be done through flood and drought
forecasting, weather forecasting, and climate projections. A range of sectors
rely and benefit from this type of information, e.g. the hydro-power industry,
the agricultural and forestry industry, insurance companies, and the public and
governmental sector which provide land use plans, zoning plans and municipal
plans.

The three studies conducted in this thesis improve upon a range of unresolved
issues relevant for land surface modeling within Norway. The first study uses a
regional numerical climate model to investigate the atmospheric sensitivity to
perturbations in surface compounds. The second study compares the quality
of various estimates of near-surface humidity and incident radiation, i.e. atmo-
spheric drivers of the land surface, and provides a new method for providing
estimates of these variables suitable for kilometer-scale land surface modeling
in Norway. The third study utilizes the dataset developed in the second study,
and implements structural changes in a gridded hydrological model covering
mainland Norway to allow sensitivity to near-surface humidity and incident
radiation. The augmented hydrological model is then run over several decades
to shed light on mainland Norway’s surface water balance.

5.2 Models and methods

The work presented in this thesis has involved the use of several numerical
models. In Paper I a version of a regional climate model commonly used for
research and weather forecasting, the Weather Research and Forecasting (WRF)
model, specifically the Advanced Research WRF, version 3.5.1 (Skamarock et al.
2008) was used. The model version used is presented in further detail in Paper I.
Validation of the two-year control run of the model was performed by comparing
the model output to gridded observational data and station observations using
methods developed in Python, and using a version of the MET software (Brown
et al. 2009), ingesting surface and upper-air observations of temperature and
humidity in Binary Universal Form for the Representation (BUFR) format (see
Fig. 5.1). Some general aspects of the WRF model framework are discussed
in Sec. 5.3.2), and an example of the numerical components of the model is
provided in Table 5.1.

WRF model structure and parameters depend on model configuration, since
a wide range of options are available to the user. For each physics region of
the model (land surface, surface layer, planetary boundary layer, shortwave
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Figure 5.1: The panels provides examples of the model validation and experiments
conducted for the study region defined in Paper I. A displays output from MET
software; the mean error of the control run’s diagnosed 2-meter temperature
compared to surface observations at different hours of the day (marker color)
between October 1st 2010 and September 30th 2011. B displays the monthly areal
mean surface runoff from offline, experimental runs (October 1st 2010 - September
30th 2011) of the community Noah land surface model with multiparameterization
options [Noah-MP] (e.g. Niu et al. 2011). The offline runs were conducted with
output from the control run of Paper I as forcing, utilizing an option within the
WRF-Hydro framework (Gochis et al. 2013).

radiation, longwave radiation, micro-physics, cumulus), a hand-full to a dozen
scheme options are available. In addition to the scheme options used in Paper I, a
few additional scheme options were tested, such as the use of a parameterization
providing a diurnal variation in SST for daily SST (see Fig. 5.2). The effect
of varying the model’s physical scheme options was further investigated for a
subset of the model integration time. The model was restarted around the start
of the melting season of 2011 (April through June) with different scheme options.
Options tested were different variants of the land surface scheme, a different
set of radiation and cloud microphysics schemes, and exclusion of the cumulus
scheme (see Fig. 5.3).

The land surface model used in Paper I is the Noah land surface model
(see e.g. Mitchell 2001, and references therein) with alterations in the snow
parameterizations described in Wang et al. (2010). Noah is an open source,
community model. It builds upon the Oregon State University (OSU) model.
OSU was chosen in the 1990s to be further developed for use in the National
Centers for Environmental Prediction (NCEP) operational weather and climate
prediction based on existing familiarity with the model, and fair performance in
the PILPS (see Sec. 3.7, Mitchell (2001)). The OSU model was developed to be
used in NWP and thus to be computationally efficient (Mahrt and Pan 1984;
Ek et al. 2003). It shares several similarities with the first second generation
land surface models, BATS and SiB, described in Sec. 3.5, e.g. that soil and
vegetation secondary parameters are read from table values. An example of
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Figure 5.2: A WRF option tested, but not used in Paper I was the inclusion
of a diurnal SST parameterization (Zeng and Beljaars 2005), as it was found
to slightly reduce the daily average SST throughout most of the year. The
parameterization reduced SST with about 0.5◦C and in summer produced, in
many locations, temperature spikes which look spurious.

the numerical components of the model is provided in Table 5.1. More details
regarding the Noah land surface model are provided in Paper I.

Since atmospheric coupling to land (and ocean) was investigated in detail in
paper I, the model was not initialized with land surface and soil fields from the
reanalysis providing lateral boundary conditions for the model, as is commonly
done. Instead, a framework (the HRLDAS software, Chen et al. (2007)) for
running the land surface model Noah offline, was implemented to provide soil
and surface variables. This is due to fact that soil, also as represented in the
land surface model, has a significant capacity for storing heat and moisture
over days, months, or longer, depending on the ground characteristics and soil
depth. The energy and water received and exchanged by the land surface is
related to elevation, i.e. the orography of the model. Additionally, different land
surface model schemes have different structures which means soil values from one
model (in this case the land surface model used in Era-Interim) is not necessarily
suitable for another model (e.g. Kristiansen et al. 2012). To spin-up the soil and
surface fields Noah was run looping over the hydrological year preceding the
staring point of Paper I ten times, using data from the reanalysis Era-Interim as
forcing data. Fig. 5.4 shows the initial soil moisture in the third soil layer of
Noah without spin-up and after 1-year of spin-up using HRLDAS.

For Paper II the libRadtran software package version 1.7 for radiative transfer
calculations (Mayer and Kylling 2005) was used to provide surface incident clear-
sky shortwave radiation to be used to quality control the observations of incident
shortwave radiation. Paper II developed a method to generate high resolution
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Figure 5.3: Time-series of daily emulated fraction of precipitation diagnosed as
snowfall (Snow/Prec), precipitation (Prec), runoff (Roff), surface evaporation
(Evap), and day to day changes in snow cover (∆ SWE) when the model
configuration options in Paper I were altered. Data from the control run is
marked in black, a model version run without the cumulus scheme is marked
in green, a model version run without the cumulus scheme and further with
different schemes representing microphysics and radiation is marked in blue, and
a model version where a different version of the land surface model is used is
marked in red.

estimates of incident radiation and near-surface humidity estimates, which
also was published. The software was written in Python (doi: 10.5281/zenodo.
1435010), making particular use of the package xarray (Hoyer and Hamman 2017)
for data handling in general, xesmf (Zhuang 2020) for regridding and reprojecting
the data, and Dask (Dask Development Team (2016), a flexible library for parallel
computing in Python). This was first applied to the Era-Interim reanalysis and
two versions of the SeNorge dataset. For paper III the method was applied to
the Era5 reanalysis and a recently updated version of the SeNorge dataset. The
new dataset is stored at Zenodo: doi: 10.5281/zenodo.3351430), and the code
used to compile it is provided in Appendix II.

For Paper III a conceptually based, gridded version of the hydrological model
HBV, described in Beldring et al. (2003), was used. Versions of the HBV model
has been used by the Norwegian Water and Energy Resources Directorate for
decades for research and operational flood forecasting. The HBV model was
first developed in Sweden in the early 1970s (e.g. Bergström and Forsman 1973),
and shares similarities with the Stanford Watershed Model and the SSARR
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Figure 5.4: The panels depict soil moisture in Noah’s lowest soil layer (from 1 to
2 m depth) at October 1st. The left panel displays the soil moisture field from
Era-interim interpolated by the WRF model pre-processor to the inner domain
of Paper I (see Fig. 5.5). The right panel shows soil moisture after a 10-year
offline spin-up and two additional years where the land surface model is run in a
coupled mode within the WRF model. The areas with the highest amounts of
soil moisture are in and around glaciers.

model described in Sec. 3.9. HBV was developed to be a model of reasonable
complexity, requiring input data readily available in Swedish catchments. The
Beldring et al. (2003) version of the HBV model is further described in Sec. 5.3.4
and paper III. Paper III also involved calibrating the HBV model, implemented
with a 1-by-km resolution for mainland Norway. This involved using the PEST:
Model-Independent Parameter Estimation and Uncertainty Analysis (Doherty
2015) software, calibrating model parameters for each of five regions defined.

The components of the WRF model, the Noah land surface model, and the
HBV model are listed and compared in Table 5.1. It is evident that the three
models have features in common, such as the reliance on surface physiographic
fields. The Noah land surface model may be integrated in the WRF model or
in stand-alone mode using the e.g. HRLDAS or WRF-Hydro software. The
models differ in their complexity; WRF is by far the most complex “model”,
while the HBV model is the least complex. The computational cost of running
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the WRF model is much greater than running the Noah land surface model
offline or running the HBV model.

Table 5.1: Schematic defining numerical model components and presenting ex-
amples of these from a land surface model (Noah), a regional weather forecasting
and research model (WRF), and a distributed hydrological model (HBV). The
table is adapted from Williams et al. (2009)

Numerical Example Example Example
model Noah-LSM WRF HBV

components Definition (Paper I) (Paper I) (Paper III)
System Limits of the South-Norway’s 10◦W-20◦E, Norway’s land

boundary physical domain surface incl. 57-59◦N, land surface
where processes vegetation to soil surface or 2 m incl. vegetation
are integrated 2 m below ground below ground to and soil

TOA1 (50 hPa)
State Variables which Surface and soil Atmospheric, Upper and lower

variables may be computed moisture and surface, and soil reservoir water
by their previous temperature, temperature and level, SWE
state in time SWE, snow albedo moisture, SWE,
(prognostic (αs) αs
variables)

Forcing Variables needed Near-surface sub- Atmospheric Near-surface daily
input at system’s daily T, wind, RH, T, humidity T, precipitation,

spatial boundary incident radiation, pressure incident radiation,
to evolve the precipitation wind wind, RH
state variables

Initial State variables As for As for As for
conditions at initial state variables state variables state variables

time
Model Numerical Interception Conservation of Conservation of

structure discretization capacity, momentum, mass, soil water
of variables; their aerodynamic, moisture, & mass resistance,
evolution & soil water diff. Eq. of state, to diffusion,
and interaction resistance αs Penman-Ep, snow snow melt

decay, snow melt melt, interception
Parameters May be global Orography, Orography, Orography,

gridded, gravitational gravitational gravitational
primary, constant, constant, soil and constant, soil
secondary, soil and veg. types, and veg. types,
unit-less, veg. types, ozone climatology, degree-day
uncertain Zilitinkevich Zilitinkevich snow-melt factor,
scale-dependent, thermal roughness thermal roughness snow-fall under-
determined length, beta (β), length, beta (β), catch correction
by calibration soil conductivity orographic drag, factor, beta (β),

soil conductivity field capacity
Model State variables Runoff, Runoff, Runoff,
output and diagnostic surface outgoing surface outgoing SWE, soil

variables longwave radiation, longwave radiation moisture deficit,
snow depth, precipitation, groundwater
surface cloud cover, table depth,
evaporation, 2-meter surface
sensible heatflux temperature evaporation

and humidity
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5.3 The papers and their major findings

5.3.1 Paper I : Sensitivity of the Terrestrial Surface Energy and Water
Balance Estimates in the WRF Model to Lower Surface Boundary
Representations: A South Norway Case Study

The first study (Paper I) investigates, in a regional numerical climate model,
how perturbations in three surface compounds impose changes in the surface
water and energy balance in South Norway. Changes were implemented in a
version of the WRF model covering South Norway with a horizontal resolution
of 3.7 km. The model domain is depicted in Fig. 5.5. The experiments were
implemented for both a relatively cold and dry hydrological year (2009/10) and
a relatively warm and wet hydrological year (2010/11).

Figure 5.5: Image reproduced from Erlandsen et al. (2017) Journal of Hydrome-
teorology 18, 1; 10.1175/JHM-D-15-0146.1. The outer area of the figure depicts
the outer model integration domain. The inner domain, or study area, is within
the blue rectangle. Areas originally covered with evergreen needleleaf are marked
with dots. Areas where mixed or wooded tundra are replaced by an evergreen
needleleaf forest in the Veg experiment are marked with a dark green color (stars)
in the inner (outer) domain.

Paper I is thus a sensitivity study of a numerical weather forecasting model.
These types of studies are as old as numerical weather forecasting models are.
Sensitivity studies have been conducted to better understand our numerical
models, to discover possible errors in them, and, if the models are fair, sensitivity
studies can further our understanding of real world sensitivity to various pertur-
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bations. This latter precaution also holds for impact studies in general. Early
examples of sensitivity studies have been discussed in Sec. 3.4, e.g. Charney
et al. (1975), Shukla and Mintz (1982), Hansen (1983), and Yeh et al. (1984),
and also includes the early sensitivity studies of the BATS land surface scheme
published in Wilson et al. (1987a,b), discussed in Sec. 3.6 and Chapter 4.

The study resonates with the suggestion provided in Dickinson (1983), stated
in Sec. 3.6. Segments of the text are repeated also here, since the concern is
still valid today. While today’s numerical models may be run with a horizontal
resolution of a few kilometers, parts of the physiographic data which the numerical
models build on are poorly sampled to this day (see e.g. Sec. 3.6 and Fig. 3.8).
Dickinson (1983) stated “One of the primary obstacles to improving model
descriptions of surface processes over the earth is the great heterogeneity in
surface structure over most land areas. [...] The question as how to properly
characterize averages over these individual elements within a model grid square
is still largely unresolved. Before such complexities are addressed, it is perhaps
important to first better establish the sensitivity of different climate parameters
to various aspects of simplified but still somewhat realistic average descriptions
of land surfaces.”.

Studies comparing the sensitivity of terrestrial atmospheric variables to land-
cover change and SST anomalies in other regions have found they produce
impacts of a similar magnitude (Findell et al. 2009; De Noblet-Ducoudré et al.
2012). In Paper I we evaluated and compared the role of feedbacks exerted from
changes in the land cover to the remote effects of a perturbation in SST, using
a regional climate model. The purpose of the experiments was to learn more
about the sensitivity of the surface water and energy balance in South Norway to
changes in each of these compounds; reflecting on possible effects of an improper
description of these compounds and the effects which might be expected if these
compounds change, e.g. due to climate change.

Three surface compounds were perturbed, the height of the boreal forest
line (the Veg-experiment), ground snow cover (the Snow-experiment), and SST
(the SST -experiment). The current context of each experiment and the research
questions RQ1.1, RQ1.2, and RQ1.3 (see Sec. 1.1) are listed in the following:

• (RQ1.1) Veg: There is a considerable uncertainty regarding historical and
future land-cover distribution (see e.g. Sec. 3.6 and e.g. Meiyappan and
Jain (2012). A recent study using a dynamic global vegetation model (a
third generation LSM, see Sec. 3.5) found that it produced large over-
estimations of boreal forest in Norway (Horvath et al. 2021). Agricultural
abandonment, grazing pressure, tree planting campaigns, and climate
warming influence the density and extent of the Norwegian forests (Bryn
2008; De Wit et al. 2014). In many regions forest lines have expanded
to higher altitudes. However, because of historic and current land-use
practices, in certain areas the forest line can be as much as 200 m below
its present potential (Wehn et al. 2012). To shed light on this model
experimental runs were conducted where mixed and barren tundra below
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1150 m were replaced with evergreen needleleaf forest, increasing the forest
line by about 200 m (see Fig. 5.5).

• (RQ1.2) Snow: Studies dating back to Yeh et al. (1983) have looked at
how anomalies in ground snow may influence weather the following seasons
by initializing experimental runs with added or removed snow. Numerical
weather forecasting models and even reanalyses regularly show biases in
snow cover (e.g. Slater et al. 2007; Balsamo et al. 2015; Broxton et al.
2017). In Erlandsen et al. (2017) we introduced a novel approach for
perturbing the ground snow without initializing the model with added water,
which would have confounded the analysis. We altered the discrimination
of precipitation phase to more often determine snowfall. Precipitation
was treated as snow if the near-surface temperature was below 2.5°C. This
increased ground snow cover with one to two weeks on average.

• (RQ1.3) SST : Biased SST may preclude a hindcast, weather forecast, or
climate projection; e.g. in historical runs CMIP5 models generally show
colder than observed SST in the extra-tropical North Atlantic (Wang et al.
2014). Further, SST in the North Atlantic has increased with about 0.29◦C
per decade between 1978–2007 (Cattiaux et al. 2011), and this warming
has contributed to warming terrestrial Europe in the same period. To shed
light on the effect of a SST perturbation a uniform SST increase of 0.4◦C
was implemented in both model domains (see Fig. 5.5).

5.3.1.1 Major findings

The differences in ground snow cover, surface temperature, net radiation, sensible
heat, latent heat, evaporation, precipitation, and runoff produced by the model
experimental runs were analyzed. In general the sensitivity was found was
mostly similar in the relatively cold and dry 2009/10 and the warmer and wetter
2010/11. Fig. 5.6 (b-d) shows the fall (SON), winter (DJF), spring (MAM), and
summer (JJA) runoff response of each of the three experiments in 2010/-11.

Major findings of each of the experiments (and research questions) are listed
here:

• (RQ1.1) Veg: Increasing the boreal tree line led to an increase in annual
evaporation in the study area of 8%. Snow-melt generally started earlier,
shifting a fraction of runoff from summer to spring (see Fig. 5.6). Annual
runoff was not much affected, as precipitation increased by nearly the same
amount.

– Future model studies and ideally observational studies are are needed
to explore this finding further. The mechanisms triggering precipi-
tation could be studied in greater detail by e.g. perturbing one and
one secondary vegetation related parameter, using a variety of model
structures (e.g. a different physical schemes), and also varying soil
settings. If the finding holds true it means that vegetation changes
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Figure 5.6: a) depicts mean daily runoff in the control run during the 2010/-
11 fall (SON), winter (DJF), spring (MAM), and summer (JJA). b)-d) show
significant changes in seasonal mean daily temperature from the control run, for
b): the forest line heightening experiment (Veg), c): the snow cover experiment
(Snow), and d): the 0.4 ◦C SST increase experiment (SST); with the mean
change in the areas of significant change denoted in the upper left corner. Areas
of no significant change are marked in gray. Figure reproduced from Erlandsen
et al. (2017) Journal of Hydrometeorology 18, 1; 10.1175/JHM-D-15-0146.1.

modeled in offline land surface or hydrological models will neglect
this balancing effect of water recycling.

Significant increases in annual net radiation and surface temperature were
found. Temperature increased in all seasons except summer, when evapo-
rative cooling dominated. In areas of significant change, the magnitude of
the average annual warming was about 0.2°C. The findings regarding the
temperature response were similar to results found in both modeling and
observational studies (see Paper I).

• (RQ1.2) Snow: The experiment changing ground snow cover by altering
the amount of received precipitation treated as snow had the smallest
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effect on annual precipitation and runoff. Large changes in seasonal runoff
occurred (see Fig. 5.6): peak runoff was on average delayed with more
than one month, and showed a higher amplitude. Slight reductions in
precipitation were seen, predominantly in late spring and early summer;
however, in scattered inland areas, slight precipitation increases were seen.
Surface temperature was on average reduced with 0.2◦C.

– As with the experiment altering vegetation, these finding regarding
how snow anomalies influence atmospheric variables might be in part
model specific. Future observational and modeling studies are needed
to confirm these findings. Later, we have become aware that the WRF
model most likely has a too high field capacity within most of Norway.
In principle, this exaggerated field capacity might hinder the soil
shifting into water-stressed conditions, which would impact the ratio
of latent to sensible heat flux, surface and two meter temperature,
and possibly also precipitation.

• (RQ1.3) SST : Of the three experiments the 0.4◦C SST perturbation re-
sulted in the smallest change in net radiation and turbulent fluxes within
South Norway. Incoming and outgoing longwave radiation increased with
similar amounts. Significant changes in annual surface temperature were
found in most of the study area. Land surface temperature increased on
average with 0.2◦C, half of the SST increase. The temperature increase
was largest in the colder seasons. The SST perturbation further induced
the largest change in annual runoff over South Norway. This was due to an
increase in moisture transportation from the ocean increasing precipitation,
and smaller overall increases in evaporation. Also for precipitation the
largest change was seen in winter. The larger response in temperature and
precipitation in winter is consistent with findings in Cattiaux et al. (2011)
and Køltzow et al. (2011).

We believe there is some uncertainty regarding whether the findings are
representative of real world sensitivity; especially those regarding the sensitivity
to changes in snow and vegetation cover. This is elaborated on below and in
Sec. 5.4.

5.3.2 Use of the WRF model in Paper I

The WRF model software consists of a framework allowing users to build a
model based on various assumptions, or schemes, describing physical processes
relevant for a numerical weather prediction model, e.g. the parameterization
of the land-surface, radiation, and the planetary boundary layer. In general,
in regional weather and climate prediction models choices of parameterization
schemes, domain location and size (see e.g. Køltzow et al. 2011), initialization
of soil moisture, soil temperature and snow, horizontal, vertical and temporal
resolution, surface parametric fields, configuration of lateral boundary conditions,
drag and diffusivity options, nesting, nudging, etc. (see e.g. Køltzow et al.
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2011; Warner 2011) influence model results. The combination of these choices
ant the frequent updates of the model’s numerical code results in the WRF
model versions results in considerably different model output (e.g. Katragkou
et al. 2015a). Since 2017 the specification of distinct suites of physical schemes
which are known to perform well for certain configurations and domains have
received more attention (Powers et al. 2017). The consequence of this flexibility is
uncertainty regarding the quality of the model, and that in order to distill robust
and relevant information from the studies undertaken parts of the model output
must at minimum be validated. A literature survey, personal communication
with researchers at the University of Oslo, and some experimental model runs
formed the basis for the scheme options selected for the study. The set of physics
choices used are listen in Table 1 in Paper I.

A control run and the model experiments were run for two hydrological
years, with lateral boundary conditions and SST from Era-Interim. To provide
higher confidence in that the model also reflected real world sensitivity a rather
rigorous validation of several variables of the control run output was implemented.
An evaluation of 2-meter temperature, precipitation, specific humidity, wind
speed, and snow depth showed that the model mostly performed well, but had
a temperature bias of -0.9◦ on average, and slightly to high specific humidity
(4% higher than the observations). The quality of the estimated precipitation is
more uncertain since precipitation has a lower spatial auto-correlation than e.g.
temperature, and the observation-based, gridded precipitation dataset used for
validation (SeNorge) also contain uncertainties (see Sec. 4). In terms of snow
cover the model showed fair values; however, snow cover was underestimated in
some coastal areas while it was slightly overestimated many inland regions of
eastern Norway.

While a subset of the model’s output was rater rigorously validated, demon-
strating that the model was fairly skillful in emulating these variables, a lack of
quality controlled surface radiation observations hindered the validation of these
variables. Given the research’s roots within both meteorology and hydrology,
we wanted to further study catchment hydrology. Input from experts within
hydro-meteorological modeling during a research stay at the National Center
for Atmospheric Research (NCAR), and consultation with hydrologists at NVE
made it clear that the possible analysis of catchment hydrology was in part
hindered by a lack of validation data; since any errors in the variables feeding
the land surface scheme would percolate into the land surface scheme output
(i.e. garbage in, garbage out). The complexity of a regional climate model also
made it clear that any land surface model development would more easily be
conducted in an offline modeling setting. Paper II considers estimates of near
surface humidity and incident radiation, variables integrated in the surface water
and energy balance, which, at the time, were inadequately evaluated within
Norway.
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5.3.3 Paper II : Merits of novel high-resolution estimates and existing
long-term estimates of humidity and incident radiation in a
complex domain

As discussed throughout Chapter 2 and 4, observational data are at the center
point of land modeling, whether or not models are mainly data driven or more
physically-based. Snow-melt has a non-linear sensitivity to air-temperature (see
e.g. Sec. 3.8), and evaporation is governed by a range of atmospheric and surface
variables (see Sec. 2.5, 2.7 and Eq. 2.11).

There exists long-term, high-resolution (1-by-1 km) national, gridded, observation-
based estimates of precipitation and near-surface temperature for Norway in
the SeNorge datasets (see e.g. Lussana et al. 2019). Additionally, a near-surface
wind speed dataset had been developed by researchers at the Norwegian Meteo-
rological Institute. Meanwhile, at the time, we could not find any information
on the merits and caveats of existing long-term estimates of of near-surface
humidity and incident shortwave (SW↓) and longwave (LW↓) radiation available
for Norway. Establishing this was the purpose of Paper II.

In the process we discovered that we could modify an existing approach
where reanalysis estimates are post-processed with gridded observation-based
data by using the national SeNorge dataset instead of coarser, global datasets.
In particular, Norway’s complex topography and coastline (see Sec. 5.1) made us
suspect that standard atmospheric lapse rates regularly used during altitude ad-
justment of forcing variables to the resolution and orography of numerical models
might be unreasonable (see e.g. Sec. 4 or e.g. Daly et al. (2010), Kotlarski et al.
(2010), and Mizukami et al. (2014)). Using a finer-scale gridded observational
dataset we hoped to further enhance the post-processing of reanalysis-based
estimates of humidity and incident radiation. The method for producing the
dataset is described briefly in the article (Paper II), and more fully in the ar-
ticle’s supplement. The code used to develop the data is available at GitHub
(https://doi.org/10.5281/zenodo.1435555). The new dataset, named HySN, cov-
ers 1979 to 2017 with a daily resolution, and was made available through the
research data archive Zenodo (https://doi.org/10.5281/zenodo.1970170).

Paper II addressed the sources of uncertainty concerning commonly used
estimates of humidity, SW↓, and LW↓ available for long-term land surface
modeling in the region through the following processes.

• The construction of an original dataset, HySN.

• Gathering long-term gridded datasets of humidity (either in the form of dew
point temperature (Td) or vapor pressure (V P )) and incident radiation:

– from two global reanalysis datasets
∗ Era-Interim, developed by ECMWF, available from 1979 to Au-
gust 2019 with a horizontal resolution (∆x,y) of about 0.66◦ x
0.66◦ (Dee et al. 2011);

∗ MERRA 2, developed by NASA, available from 1980 until the
present, ∆x,y ' 0.5◦ x 0.625◦ (Bosilovich et al. 2015);
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– two post-processed reanalysis datasets:

∗ PGMFDv2: An updated version (see Schmied et al. 2016) of
the 0.5◦ x 0.5◦ Princeton global meteorological forcing dataset
(Sheffield et al. 2006):

∗ WFDEI, the WATCH forcing data methodology to ERA-Interim
reanalysis data, described in Weedon et al. (2014);

∗ HySN, post-processing ERA-Interim with SeNorge data; devel-
oped and described in the same study;

– and two versions of empirically based estimates compiled for conti-
nental Norway:

∗ VFDv1, 1 x 1 km VIC (see e.g Wood et al. (e.g. 1992) and
Sec. 3.7) type forcing data (VFD) version 1, with estimates of
humidity and incident shortwave radiation based on the MTCLIM
algorithms (see Sec. 2.7)

∗ VFDv2, as for VFDv1, however, based on slightly different algo-
rithms and input data.

The orography and land mask of the datasets are displayed in panel
(a)-(e) in Fig. 5.7.

• Surface observations from between 1982 and 1999 were gathered from vari-
ety of providers. Humidity measurements from 84 stations were used, and,
by employing quality control routines and including agricultural stations,
SW↓ observations from 10 stations were made available. Meanwhile, only
two stations had observations of LW↓. The location of the observation
stations are shown in Fig. 5.7 (f) and (g). Lacking observations of incident
radiation, particularly longwave radiation is a common problem, hindering
both model development and model evaluation (see Sec. 4).

• Multiple linear regression models were constructed to provide vertical gra-
dients in both the observations and the model estimates in order to adjust
the estimates to the altitude of the observations before their differences
were assessed.

• The correlation of model estimates with observations were compared on a
daily timescale by compiling anomaly correlation coefficients.

• Further, the cumulative distributions; sensitivity to weather types, conti-
nentality, and latitude; and decadal trends were compared.

We also investigated two hypotheses: Ha that there are vertical gradients in
near-surface humidity and incident radiation in our domain, and Hb – that the
added value of the high horizontal resolution of the more empirically based esti-
mates outweighs the added value of relying on estimates from coarser-resolution
numerical weather prediction reanalyses.
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Figure 5.7: The orography and land mask of MERRA2 (a), ERA-Interim (b),
PGMFDv2 (c), WFDEI (d), and SeNorge (c) are visualized on the SeNorge
grid with a green–brown color scheme. For reference, national borders and
the coastline derived from a high-resolution dataset are delineated in black.
Locations of the 84 VP stations used in the model comparison are denoted with
red crosses in (f). In panel (g) the stations where SW↓ measurements were
retrieved are marked with red, and those where LW↓ were retrieved are marked
with orange. The last map (h) displays the difference in meters between the
SeNorge and ERA-Interim orography in common land areas. Higher elevations
in SeNorge are indicated with red, while blue indicates higher elevations in
ERA-Interim. The figure is reproduced from Erlandsen et al. (2019).

5.3.3.1 Major findings

The number of stations with observations of humidity and SW↓ allowed deriving
vertical gradients for the variables for the observations and model estimates. To
derive dependencies for SW↓ the data were first converted to clearness index (CI),
which describes the daily incident shortwave radiation fraction of the potential
extraterrestrial radiation at the local position and time. For LW↓ the vertical
gradients were found by fitting regression models to a well performing dataset,
Era-Interim.

(Ha) Paper II showed that altitude is a significant predictor of humidity,
SW↓, and LW↓ in the domain:

• The vertical gradient in humidity in the observations considered is similar
to the moist adiabatic lapse rate, but varies with season and distance to
the coast. Vapor pressure vertical gradients were on average -0.25 hPa per
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100 m in winter and -0.34 hPa per 100 m in summer (see Fig. 5.8 a). The
summer gradient is similar to what was found in the Alps in summer in
Marty (2000) (-0.35 hPa per 100m). The gradient found in winter was
larger than that found in Marty (2000).

• Observed SW↓ was shown to increase with altitude in all seasons. Vertical
gradients in SW↓, translated to CI, were 0.020 per 100 m in winter, 0.013
100 m in spring, 0.005 100 m in summer and 0.003 100 m in fall (see Fig.
5.8 b). The vertical gradients found were larger than the clear-sky type
gradient of 0.00295 per 100 m used in the implementation of the Bristow
and Campbell (1984) in versions of MTCLIM. Converted back to SW↓ the
vertical gradients amount to about 0.3 Wm−2 per 100 m in fall and winter,
1.6 Wm−2 per 100 m in spring, and 1.2 Wm−2 per 100 m in summer.
The seasonality of the gradients were different than those found in Marty
(2000), which might be explained by differences in the cloud and snow
cover climatology or the received extraterrestrial radiation.

• Average vertical gradients in LW↓ were analyzed in Era-Interim and were
found to be -4.5 Wm−2 per 100 m in winter and -1.8 Wm−2 per 100 m in
summer. The gradients have a opposite sign than those in SW↓, and show
a similar magnitude to those in SW↓ in summer, but a considerably higher
magnitude in winter. The gradient was larger than what the clear-sky
adjustment implemented in HySN and similar post-processing methods
provide. The range in the vertical gradients was similar to that found in
Marty (2000).

(Hb) The second hypotheses investigated was rejected. The added value
of the high horizontal resolution of the more empirically based estimates did
not outweigh the added value of relying on estimates from coarser-resolution
numerical weather prediction reanalyses. For all variables the estimates based
on newer reanalysis data showed a higher daily temporal correlation (ACC) with
the observations than the empirically based VIC type forcing data. Several of
the reanalysis-based products (ERA, WFDEI, HySN) also showed a lower mean
absolute station bias than the VIC type forcing data.

• (Vapor pressure): The new estimates, HySN, based on reanlysis data,
provided humidity estimates with the overall highest quality given for the
metrics considered in Paper II. VFDv1 and VFDv2 showed a 60% stronger
decrease in humidity with distance from the coast than the observations
(see Fig 5.8 a).

• (SW↓): The HySN estimates further outperformed the empirically based
VIC type forcing data and the MERRA2 estimates of SW↓. It was unclear
whether the HySN estimates had much added value compared to ERA-
Interim and WFDEI. The VIC type forcing data showed an exaggerated
latitudinal gradient in SW↓, likely a result of using diurnal temperature
range as a proxy for cloud cover, which is perhaps not appropriate in
coastal environments or at high latitudes.
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Figure 5.8: Seasonal and geographical dependencies of seasonal humidity (a)
and daily clearness index (b) are depicted. The row names are the names of the
coefficients, including the intercept (I), of the multiple linear regression model.
The regression coefficients of the observational data are shown in the leftmost
column of each plot, while the coefficients found for the model estimates are only
shown if they are significantly different from those of the observations (using a
limit of p<0.01 for humidity and p<0.05 for CI). Lower p values are indicated
with darker colors using a logarithmic color scale (log10(p)). Figure reproduced
from Erlandsen et al. (2019).

• (LW↓) The evaluation of LW↓ was partly hindered by a lack of high-quality
historical observations. All models except WFDEI showed higher estimates
of LW↓ at the stations (Bergen and Trondheim) than the observations.
Analysis of the Era-Interim estimates for Bergen using observed cloud
cover showed that LW↓ was underestimated in both clear-sky and cloudy
conditions. Underestimation LW↓ and overestimation of SW↓ has been a
long-standing issue in many reanalyses and in climate models (Katragkou
et al. 2015b; Li et al. 2016; Wild et al. 2017). Observational uncertainty
might also play in as both of the sensors measuring LW↓ were unshaded
from solar radiation.

Paper II further inspected trends in the estimates and observations, where
possible. E.g. between 1985 to 1999 many observation stations showed an
increase in humidity in April and September. The estimates mostly reproduced
the September increase, but not the April increase. More details of these finding
are provided in Paper II.

To our knowledge this was the first study comparing more empirically based
estimates of humidity and incident radiation with reanalysis-based estimates for
a region within Europe. The study may assist impact modelers, and also be
relevant for climate change studies. The knowledge of the quality of forcing data
is important to know so that model developers do not tune model parameters or
parameterizations for the wrong reason. Over-estimations of spring and early
summer SW↓ may e.g. influence snow-melt timing and peak runoff.
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Future work envisaged in Paper II includes updating the input data to Era5
and a newer version of the SeNorge dataset, and applying the HySN data as
forcing data for a hydrological model. Additionally, initial results showed that
differences in ground snow conditions between the reanalysis and the observations
were significant in predicting the difference between ERA-Interim estimates of
SW↓ and the observations. A correction to incident radiation based on surface
albedo differences due to e.g. terrain-induced snow-cover variations could be an
interesting post-processing option to test in future research.
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5.3.4 Paper III : Constraining the HBV model for robust water balance
assessments in a cold climate

The aim of the third paper was to produce a more robust and more physically
based hydrological model suitable for studies of changes in water balance elements
in a non-stationary climate. Paper III directly follows up on the suggested
further research suggested in Paper II, of applying the HySN method producing
high-resolution reanalysis-based estimates of incident radiation and near-surface
humidity to a hydrological model. The HySN method, outlined in Paper II was
first updated making use of the Era5 reanalysis (Hersbach et al. 2020) and novel
versions of the national, gridded SeNorge precipitation and temperature datasets
(Lussana et al. 2019). The validation of the new version of the dataset, HySN5
is summarized in Paper III and Paper III’s supplementary material.

The hydrological model used is a gridded version of the conceptually based
HBV model described in Beldring et al. (2003). The Beldring et al. (2003) version
of the model, from here on called HBV-B03, has a daily resolution and covers
mainland Norway with 1 km2 grid cells. Each grid cell represent up to three
land cover classes, and one soil type, and possibly glacial and lake fractions. It
has a snow routine and a land cover-dependent evaporation-routine. It has relied
on daily temperature, precipitation, and a climatological estimate of potential
evaporation as input data.

Six soil parameters are routinely calibrated, and until recently, HBV-B03
included calibrated, often land cover-dependent, parameters for precipitation
phase diagnosis, the melting temperature of snow, the snow-melt degree-day
factor, and for the temperature-based scaling of monthly climatological potential
evaporation providing estimates of evaporation. Recently a more detailed land
cover description has been made available for the model, with 19 land cover
classes (see Huang et al. 2019). A larger number of land cover classes combined
with calibrated land cover dependent parameters for both snow and vegetation
processes may potentially cause poorly constrained or confounded parameters
(see e.g. Fig. 3.9). This can again make land use and land cover change studies
more difficult due to disentanglement problems.

The availability of high-quality input data made way for adding the following
physically based updates to the HBV model, (i) an augmented Penman–Monteith
based evaporation scheme (see Sec. 2); (ii) a regionally calibrated, radiation-
restricted degree-day factor; (iii) a diagnostic temperature- and humidity-based
threshold for diagnosing precipitation phase. Additionally, the number of soil
classes was reduced from 12 to 5, and the traditional, lognormal SWE-based grid
cell tiling was replaced with a simple sigmoidal-function representing grid-cell
snow cover fraction.

• (i: an augmented Penman–Monteith based evaporation scheme:)
In Wong et al. (2011) the HBV-B03 calibrated, temperature-index based
evaporation routine was discussed as a large source of uncertainty when
analyzing end-of-century changes in summer droughts for Norway. Milly
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and Dunne (2011b) found that a temperature-index based evaporation
parameterization may simulate considerably larger evaporation changes
than net radiation changes might justify. In Huang et al. (2019) a Pen-
man–Monteith based evaporation scheme was implemented in HBV-B03.
In Paper III we optimized the Penman-Monteith evaporation scheme by
driving it with HySN5 forcing data, adding a correction to its temporal
aggregation, and modifying surface resistance according to Leuning et al.
(2008). The Supplementary Material provides an overview of the imple-
mented Penman–Monteith algorithm, which is a based on Eq. 2.12, the
Penman-Monteith algorithm for canopy evaporation.

• (ii: a regionally calibrated, radiation-restricted degree-day fac-
tor) The degree-day factor, which represents the amount of snow-melt
per degree above freezing (see Sec. 3.8), may vary considerably depending
on catchment, climate, and time-of-year (Kustas et al. 1994; Merz et al.
2011). A snow-melt routine where the degree-day factor is restricted by a
radiative term allows snow-melt to be influenced by land cover class via
albedo, without the need of a land cover class-dependent calibration. The
radiative term allows for a sensitivity to changes in surface albedo, and
incoming shortwave and longwave radiation. Further, the radiative term
makes it less likely that an unreasonably large amount of snow remains
over the summers, producing artificial ‘snow towers’ or ’model glaciers’.
In Paper III a radiation-restricted degree-day factor based on Kustas et al.
(1994) was implemented. A radiation-based melt rate, in meters per day,
obtained by converting net radiation (Rn) to snow-melt rate, was added to
the common degree-day factor expression:

M = max(Ctemp(T2− T2melt) + Crad
Rn
λfρw

, 0)2 (5.1)

• (iii: a diagnostic temperature- and humidity-based threshold for
diagnosing precipitation phase) Jennings et al. (2018) and Jennings
and Molotch (2019) showed that the accuracy of diagnosing precipitation
phase may be increased by including humidity as a predictor, since snowfall
is more likely in dryer environments given the same near-surface tempera-
ture. In Paper III we made use of the high quality of the HySN5 humidity
data to modify the often calibrated rain/snow criterion to a diagnostic
temperature- and humidity-based (in the form of dew point temperature)
criterion.

precipitation phase =
{
rain, if T2 > 1◦C & Td > 0◦C
snow, otherwise (5.2)

2M is the melt rate per day in meters, Ctemp is a calibrated degree-day factor, and T2melt
is the minimum near-surface temperature where snow melts, λf is the latent heat of fusion,
0.334 MJkg−1, Rn is in MJm−2day−1, ρw is the density of water (1,000 kgm−3), and Crad
is a fraction scaling the radiation term (always less than unity, see Supplementary Table S3).
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The simulated discharge was evaluated in terms of bias and Kling–Gupta
Efficiency (KGE; Gupta et al. (2009)) using measurements from more than
100 catchments, of which 34 were excluded from the calibration. Calibration
was conducted over 2000-2010, and as Era5 data from the preceding decades,
1980–1999, model estimates from this period, exempt from calibration, was
used as an independent validation period. Keeping in mind that the model
often is applied for climate change impact studies we also validated the model’s
ability to reproduce monthly discharge trends, and maximum winter SWE.
The evaporation scheme’s output of reference evaporation-like3 evaporation
was compared to the only in-situ measurements of evaporation available for
several locations throughout mainland Norway, pan evaporation measurements
conducted between 1967-1972 (see also Sec. 4). The model was integrated for
the period 1980 to 2014, and the estimated mean water balance was assessed
and compared with previous estimates for Norway.

5.3.4.1 Major findings

The model achieved a median KGE of 0.74 during calibration, 0.75 for the
independent period, and 0.78 for the 34 independent catchments when evaluated
over both the validation and calibration period (1980–2010). The mean bias
ranged from -0.1 mm/day for the independent period to -0.8 mm/day for the
34 independent catchments (1980–2010). Simulated SWE showed a Pearson
correlation coefficient of 0.78 to SWE observations from around the time of
maximum SWE. A positive SWE bias of 6 cm was seen, however, the model grid
cell altitude was generally higher than at the locations where SWE measurements
were conducted. The model’s performance was equally good or better than
previous gridded HBV versions applied to the same domain, despite that it
contains fewer calibrated parameters.

Simulated evaporation for the land cover class ’Open’ gave a May to September
evaporation of 272 mm, which was 96% of the measured pan evaporation. A
slightly lower reference-type evaporation than pan evaporation is in line with
observational studies (e.g. Allen et al. 1998) Overall, the trend patterns in the
observations were reproduced by the model; however, there were some regions and
times of the year with discrepancies. Both the simulated values and observations
show a notable shift in discharge from early summer or late spring to earlier in
spring. The quality of the estimated evaporation and interception from, e.g.,
coniferous forest remains uncertain due to the lack of observations to constrain
the estimates (see also the discussion in Sec. 4).

The water balance was assessed. Between 1980 and 2014, the areal mean
annual precipitation (P) was 1367 mm, runoff (R) was 1179 mm, evaporation
(E) 178 mm, and potential evaporation (Ep) was 210 mm (see Fig. 5.9). The
evaporation fraction (E/P) was on average just above one-sixth (0.17); however,
in the eastern regions of Norway E/P reached 40%.

3see e.g. Allen et al. (1998). We calculated evaporation for the land cover class ‘Open’, which
represents short vegetation (height = 20 cm, leaf area index = 2, see Paper III Supplementary
Material, Table S3)
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Figure 5.9: 1980-2014 mean annual potential evaporation (Ep), evaporation (E),
precipitation (P), runoff (R), and evaporation fraction (E/P). The areal median
and mean are denoted in the upper left corner, with the mean in parenthesis.
Figure reproduced from Erlandsen et al. (2021)

Comparison with previous estimates of the water balance of mainland Norway
(estimates published in 2009, 2017, and 2019), all based on variants of HBV-B03
driven with different forcing data, showed that the runoff estimate is rather
similar, 1100-1200 mm, but the evaporation and precipitation estimates vary
considerably, with nearly 300 mm. Since precipitation is a variable with a
limited horizontal auto-correlation which is incompletely sampled, and since
the measurements have some uncertainty, particularly for snowfall (see Sec.
4), correction factors for the precipitation received from the forcing dataset
are routinely calibrated within hydrological modeling. In HBV-B03, there are
two multiplicative correction factors for precipitation, one for precipitation in
general, and one which is only applied (multiplied) when there is snowfall. In
Paper III the calibrated precipitation correction factors were small; the model
corrected precipitation was just 1.4% larger than in the original precipitation
dataset (SeNorge2018, Lussana et al. (2019)). The estimated mean annual
evaporation (and thus precipitation) was smaller than that estimated in 2009
(346) and 2017 (500 mm). We conclude that future studies further enhancing
the precipitation forcing data, and observational and modeling studies with
emphasis on evaporation, and particularly forest interception, are needed to
further constrain our estimates on Norway’s annual water balance.

5.4 Summary and outlook

The main objective of this thesis is to better our understanding of the surface
water and energy balance in Norway in the context of climate change and land
cover change. We have worked towards this through three secondary objectives
and studies. The key findings are listed here:

• O1: We have, in a regional climate model, identified the sensitivity of the
surface water and energy balance to changes in the boreal tree line, snow
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cover, and SST in a state-of-the-art regional climate model. The study,
Paper I, is published in Erlandsen et al. (2017). The main findings are
summarized in the Sec. 5.3.1. Highlights include:

– (RQ1.1) Annually, heightening the boreal tree line increased net
radiation, which was largely balanced out by an increase in latent
heat flux. The latter was balanced by an increase in precipitation,
leaving annual runoff mostly unchanged. Additionally, the annual
surface temperature increased by 0.1°C.

– (RQ1.2) Increasing ground snow by altering the snowfall/rainfall
criterion led to a decrease in net radiation, despite slight increases
in both downward shortwave and longwave radiation. The surface
temperature was reduced by 0.2°C, however, the annual water balance
remained mostly unchanged.

– (RQ1.3) The 0.4°C SST increase led to more downward and upward
longwave radiation in South Norway, raising the annual surface tem-
perature by 0.2°C, on average. Ocean to land moisture advection
increased, and with this also both precipitation and runoff (+2.8%).

• 02: In Paper II we have quantified compared, and produced enhanced
long-term estimates of atmospheric variables necessary to integrate the
surface water and energy balance in offline models. This work is published
in Erlandsen et al. (2019). The study’s main findings and some directions
for future work are summarized in Sec. 5.3.3. Highlights include:

– (Ha) Altitude is a significant predictor of humidity, SW↓, and LW↓
in Norway.

– (Hb) The added value of the high horizontal resolution of the more
empirically based estimates did not outweigh the added value of rely-
ing on estimates from coarser-resolution numerical weather prediction
reanalyses. The estimates produced by the method introduced in Pa-
per II produced the overall highest ranking for the humidity estimates
and showed similar performance to WFDEI and Era-Interim for the
radiation estimates adjusted to the altitude of the observations based
on the findings of Paper II (Ha).

– The study further revealed 1985-1999 trends in humidity and incident
radiation, which sometimes varied between observations and estimates.

• O3: Paper III combined physically-based parameterization alterations, a
decrease in the number of calibrated parameters, and quality controlled and
enhanced forcing data to provide better constrained long-term estimates of
Norway’s surface water balance. The study is published (Erlandsen et al.
2021). Its main findings and directions for future research are summarized
in Sec. 5.3.4. Highlights of the study are:
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– More than three decades of model integration showed that the altered
model produced equally good or better results than the previous
model versions, despite containing fewer calibrated parameters.

– The altered hydrological model mostly reproduced the observed dis-
charge trend patterns (1985–2014) in most months and catchments.
Both the simulated values and observations showed a notable shift in
discharge from early summer or late spring to earlier in spring.

– The mean annual water balance produced showed lower mean annual
evaporation than previous estimates for Norway.

This work has, of course, revealed a number of remaining challenges which
may be worked on to better understand and constrain the surface water and
energy balance in Norway.

5.4.1 Remaining challenges

Sec. 3.7, 3.8, 3.9, and Chapter 4 highlight that a fair model necessitates a
fair description of the model structure, model parameters, and forcing data.
In retrospect, we learned that several parts of the land surface configuration
(default soil parameters) of the WRF model, used in Paper I and many other
studies, likely are suboptimal for Norwegian conditions. Paper III involved
working more closely with expert hydrologists. During this work I became
familiar with the upper and lower limits for soil parameter values which were
considered plausible for Norway. The soil parameterization in an off-the-shelf
version of the WRF model would likely provide a too high field capacity (and/or
soil depth) in most regions of Norway. Additionally, as touched upon in Sec.
3.7 the parameters describing soil hydraulic conductivity should optimally be
calibrated. Establishing soil hydraulic conductivity from pedotransfer functions
based on soil texture alone is criticized in Vereecken et al. (2019), since these
functions often were developed for point scale and not grid scale, and field scale
infiltration experiments have found soil hydraulic conductivity differing in the
order of magnitude from those estimated using pedotransfer functions based on
e.g. the soil map such as Zobler (1999) (see Fig. 3.7).

Kishné et al. (2017) found that the default soil hydraulic parameters for the
Noah land surface model resulted in a strong overestimation of plant available
water in their study region (Texas), and suggested revised soil parameters for
the land surface model. Zhang et al. (2020) compared the 13 different pedotrans-
fer functions, and found a high variation among 13-pedotransfer functions in
estimated field capacity for the Nordic countries (Fig. 2, Zhang et al. (2020)).

Field capacity is an example of a parametric variable linked to soil depth (see
e.g. Yang (2004) Eq. 8). An early study (Russell and Miller 1990) comparing ob-
served river discharge and simulated catchment discharge in Model II of Hansen
(1983) found that in certain catchments discharge was underestimated even
while precipitation was overestimated, likely due to excessively large prescribed
soil-water holding capacities which led to exaggerated water storage and evapo-
transpiration. A more recent model study, Brunke et al. (2016), implemented a
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Figure 5.10: A depicts ’Depth to rock’ according to the European Soil Database
distribution v2.0 published by the European Commission and the European
Soil Bureau Network in 2006 (Liedekerke et al. 2006), B depicts soil, immobile
regolith, and sedimentary deposit thicknesses according to Pelletier et al. (2016),
while C depicts 5 minute resolution absolute depth to bedrock as assessed by
Shangguan et al. (2017). Note the different range in grey tones in each map plot.

variable soil depth in the land surface model CLM4.5, the Pelletier et al. (2016)
dataset (see Fig. 5.10 B). Compared to the default simulation with 10 soil
layers and a uniform soil depth of 3.8 m, the largest impacts of implementing
a varying soil depth were found in regions with shallow soil. In these regions
impacts included both amplitude and phase changes in annual runoff and ampli-
tude changes in latent heat flux; and further, the inter-annual soil and surface
temperature variation increased. These findings may be especially relevant for
future studies within Norway. According to estimates from the European Soil
Database distribution v2.0 and Pelletier et al. (2016), considerable regions of
Norway consist of shallow soil (see Fig. 5.10).

Although the need to better various parts of the soil parameterization in land
surface model has been discussed for some time, there are still major issues which
might be improved upon in several regions. A recent example is provided in the
manuscript Xue et al. (2021), where a first international effort is undertaken
to improve the description of spring land surface and subsurface anomalies
in high mountain areas so that the properly initialized temperature may feed
into subseasonal to seasonal precipitation prediction through land-atmosphere
interaction and teleconnections. The initial study (Xue et al. 2021), focusing
on the Tibetan Plateau, and found that inadequacies in the land models and
reanalysis data hindered the development of the initialized anomalies to the
subsequent observed temperature anomalies.

As described above, the soil configuration will have some impact on tem-
perature, how the surface water and energy balance responds to perturbations,
and likely impact the strength of land-atmosphere coupling and feedback. In
an unpublished study (see the ‘List of papers’ ), we used a land-atmosphere
coupling metric to investigate if dry soil conditions exasperated heat during
summer droughts in Norway. Using the WRF model, we found little evidence of

76



Summary and outlook

this in the model; however, instead using soil and evaporation data input from
the HBV model and the SeNorge gridded 2-meter temperature data as input to
the software compiling the metric there was ample evidence of land-atmosphere
feedback exacerbating the heatwaves. To complicate matters further, changing
the metric’s input once more, to the estimated variables of the HBV model
version developed in Paper III, the land-atmosphere coupling was significant in re-
gions of South Norway, but much less widespread than when the previous version
of the HBV model was used. The spatial pattern of the land-atmosphere cou-
pling metric used showed a strong Spearman’s rank correlation to the secondary
parameter field capacity (linked to the grid cell dominant soil type).

The metric considered if latent heat flux decreased with time while near-
surface temperature increased, indicating that the soil had been moved into a
state where lack of soil water limited evaporation. In this dryer state, less of
the energy received would be converted to a latent (i.e., hidden, see Sec. 2.1)
heat flux, leaving more energy to heat the surface and near surface air (via
the sensible heat flux). As an experiment, we reran the HBV model of Paper
III between 1980 and 2014 with a high field capacity, equivalent to that of the
default WRF configuration used e.g. in Paper I, and found that the indication
of significant land-atmosphere coupling now was lacking.

Paper II and the subsequent analysis and validation including the recently
released reanalysis Era5, provided in the supplementary material of Paper
III, pinpointed a number of unresolved issues regarding humidity and incident
radiation, variables that force the surface water and energy balance. Apart from
the lack of observations of incident radiation, a common issue found was that
even the best performing reanalysis datasets considered, such as Era-Interim
and Era5, overestimate shortwave and likely underestimate longwave radiation
in our study region. The validation conducted in Paper II revealed that the
difference in ground snow conditions between the observations and Era-Interim
was a significant predictor of the difference between observed and estimated
SW↓. An interesting option for future development is to include a snow-cover
correction when downscaling of incident shortwave radiation to a finer resolution
and orography. The latter finding is in line with the findings in Paper I (RQ1.2),
which showed that surface incident shortwave radiation increased with increasing
ground snow cover.

While the HBV model used in Paper III included several alterations aiming
to make the model more robust under changing climatic conditions, a number
of additional enhancements may be considered. The treatment of evaporation,
particularly of intercepted precipitation, is uncertain in a model with a daily
temporal resolution. However, this is further complicated by the lack of evapora-
tion observations to help constrain the parameters involved in the estimation of
evaporation. Additional suggestions for future research are provided in Paper
III.

These findings have only come about through cross-disciplinary collaboration,
and further cross-disciplinary collaboration is necessary to resolve the remaining
challenges we have seen. A future effort should be undertaken to:
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1. improve parameters and physiographic fields ingested in land surface models
and hydrological models for Norwegian conditions.

a) This could be done by expert consultation, or by calibration and
tuning using e.g. the information available in discharge observations
(as is currently done for hydrological models),

b) the ingestion of better physiographic fields, such as the land cover
dataset used in Paper III, or improved depth-to-bedrock information,
and

c) making, or making available, observations of surface turbulent and
radiative fluxes, and other variables which are lacking.

The effort involves possibly model calibration, which can be demanding to set-up
and computationally expensive to do in more complex land models than, e.g., the
HBV model. Improving on the physiographic data involves the gathering and
harmonization of physiographic data, e.g., depth to bedrock, gathered by various
agencies and institutes within Norway. This would require cross-disciplinary
and, perhaps, industry collaboration, since data have been gathered in various
forms and units and sometimes with restrictions in usage. These constraints
should improve the reliability of output from the models we use for making
weather, climate, and hydrological forecasts. Greater gains and impacts still
would be seen if the observations or post-processed physiographic fields might be
shared with global depositories, to make sure that more realistic physiographic
fields are available for global or regional climate and weather forecasting models.
Sub-optimal soil configuration in these may likely at least result in poor forecasts
or projections of the expected future maximum and minimum temperature.

Additional remaining issues are the lack of observation of several essential
variables. While Sweden and Finland have several FLUXNET stations, land
modelers wanting to validate latent heat flux or evaporation estimates within
mainland Norway have, until very recently, had few or no measurements available.
Furthermore, while eddy covariance methods have increased our understanding of
biosphere and atmosphere exchange of vapor and CO2, the sensors do not provide
accurate readings during precipitation (Allen et al. 2020). Additionally,plot-scale
interception loss, particularly that of intercepted snow, is still poorly measured
and understood (Allen et al. 2020). Measurements of shortwave radiation are
generally more available than longwave radiation, and the latter is lacking to
a point where it hinders both model development and validation (e.g. Carrer
et al. 2012; Erlandsen et al. 2019). Locally validated satellite products, e.g. skin
temperature, may potentially help tune or calibrate land surface models, and
are likely underutilized for land model development within our region. Finally,
any further improvements regarding precipitation data are helpful to improve
land model output and constrain parameters and parameterizations.

Thankfully, there are currently several interdisciplinary projects working to
improve on land surface modeling within Norway through both model develop-
ment and gathering new observations: Land-ATmosphere Interactions in Cold
Environments - LATICE (mn.uio.no/geo/english/research/groups/latice/) which
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brings a focus on cold-regions exchange processes within Earth System Sciences as
an interdisciplinary initiative of collaborative research and education, EMERALD
(mn.uio.no/geo/english/research/projects/emerald/), which works to improve the
representation of high latitude ecosystems and their climate interactions in The
Norwegian Earth System Model (NorESM) by integrating empirical data and
knowledge in model development, and last year the project Hydrometeorology to
Operations (H2O, met.no/prosjekter/hydrometeorology-to-operations-h20) was
initiated at the Norwegian Meteorological Institute with the ambition to develop
world leading capacity in regional NWP integrated across the land-atmosphere
domain. This recent increase in cross-disciplinary collaborative projects aiming
to improve our understanding and ability to simulate land and land-atmosphere
processes installs faith that at least parts of these issues will be resolved or
improved upon in the coming years.
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ABSTRACT

A seasonal snow cover, expansive forests, a long coast line, and a mountainous terrain are features of

Norway’s geography. Forests, ground snow, and sea surface temperature (SST) vary on time scales

relevant for weather forecasting and climate projections. The mapping and model parameterization of

these features vary in novelty, accuracy, and complexity. This paper investigates how increasing the

influence of each of these features affects southern Norway’s surface energy and water balance in a

regional climate model (WRF). High-resolution (3.7 km) experimental runs have been conducted over

two consecutive hydrological years, including 1) heightening the boreal forest line (the Veg experiment),

2) increasing ground snow by altering the snow/rain criterion (the Snow experiment), or 3) increasing the

SST (the SST experiment). The Veg experiment led to an increase in annual net radiation Rnet in the

study area (by 3Wm22), largely balanced out by an increase in latent heat flux. Moisture recycling

increased, leaving only a negligible decrease in annual runoff. Surface temperature increased by 0.18C,
and its seasonal variability was dampened. Significant changes were also found outside the area of

vegetation change. Snow decreased Rnet by 1.5Wm22, despite slight increases in downward shortwave

and longwave radiation. Both sensible heat flux and surface temperature decreased (by 1.3Wm22 and

0.28C, respectively), but the annual water balance remained mostly unchanged. The SST experiment led

to increased downward and upward longwave radiation. Surface temperature was raised by 0.28C. Ad-

vected oceanic moisture and thus both precipitation and runoff increased (by 2.5% and 2.8%,

respectively).

1. Introduction

The lower surface boundary to the atmosphere mod-

erates roughness, albedo, and emissivity, and can act as a

water or heat reservoir, depending on its state. The sur-

face can accordingly modify atmospheric stability, hu-

midity, cloud cover, precipitation, and air temperature,

and thus the local and regional surface energy and water

balance, through complex interactions.

International studies point to regions where the land

surface has a high influence on the local weather and

climate, although the strength of the land–atmosphere

coupling in southern Norway is still inconclusive. Norway

is located in the receiving end of the westerlies that have

passed over the North Atlantic. This, combined with a

long coast linedwithmountains, givesNorway on average

nearly 1500mm of precipitation per year. Evaporation
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from the land surface is on average less than one-fourth of

the received precipitation (Hanssen-Bauer et al. 2009).

With a predominantly energy-limited evapotranspiration

regime, Norway has not stood out in land–atmosphere

studies focusing on soil moisture–atmosphere coupling.

Given Norway’s high latitude and maritime location,

representation of sea surface temperature (SST) and

snow cover receives considerable attention in regional

weather, climate, and hydrological modeling. Lack of

observations; computational restraints on model reso-

lution, parameterizations, assimilation routines, and

initialization errors; and model biases in interacting

variables introduce uncertainty in modeled SST and

ground snow. For instance, historical runs (1900–2005)

of the CMIP5 models show cold SST biases in the ex-

tratropical North Atlantic (Wang et al. 2014). The same

models show historical snowfall rates on ice-free land

north of 508N that are nearly twice the amount esti-

mated in the observation-based Water and Global

Change (WATCH;Weedon et al. 2011) dataset (Brutel-

Vuilmet et al. 2013). Even recent reanalysis datasets

such as ERA-Interim may show biases in snow depth

(Balsamo et al. 2015).

Recent studies (Wramneby et al. 2010; Rydsaa et al.

2015) suggest that vegetation change deserves more at-

tention in our region. Previous studies comparing the

sensitivity of terrestrial atmospheric variables to SST

anomalies and land-cover change have found regional (de

Noblet-Ducoudré et al. 2012) and seasonal (Findell et al.

2009) impacts of a similar magnitude. While vegetation

change is now included in IPCC climate projections, it is

usually not included in statistical or dynamical down-

scaling of these models for our region. On the other hand,

impact assessment studies of hydrological changes due to

land surface changes are commonly conducted without

coupling to the atmosphere.

This study explores the sensitivity of the surface

energy and water balance in southern Norway to three

surface representations, namely, vegetation, snow, and

SST. This is done within the constrained environment

of the Advanced Research version of the Weather

Research and Forecasting (WRF) Model (ARW)

framework (Skamarock et al. 2008) by 1) increasing

the boreal forest line, 2) increasing ground snow by

altering the snow/rain criterion in the land surface

scheme, and 3) perturbing the SST. The experiments

are run with a grid spacing of 3.7 km over two hydro-

logical years, the dry 2009/10 and the wet 2010/11. The

experiments shed light on the regional importance of

each of these surface features within weather and cli-

mate models, such as WRF, and on the expected in-

formation loss from using stand-alone land surface and

hydrological models.

The WRF Model, its model configuration, and the

study area are presented in the following section.

Section 3 outlines the design of each of the three

experimental runs, and the results are presented in

section 4. A discussion and conclusions are offered in

sections 5 and 6.

2. The WRF Model, initialization, and forcing

The WRF Model framework is widely used around

the world. It is used for weather forecasting, research,

and regional downscaling inNorway (e.g., Heikkilä et al.
2011) and Europe (e.g., Katragkou et al. 2015). The

WRF Model system is a flexible framework, with two

dynamical cores. In this study, ARW, version 3.5.1

(Skamarock et al. 2008), is used.

a. The ARW and configuration

The model was configured as listed in Table 1, with

the Yonsei University (YSU) planetary boundary layer

(PBL) scheme; the Kain–Fritsch cumulus scheme;

the Goddard shortwave, longwave, and microphysics

schemes; and the MM5 similarity scheme for the sur-

face layer physics. A version of the Noah land surface

model (LSM) was used (Mitchell 2001, and references

therein), with enhancements to improve snow pro-

cesses, as described below. Also tested, but rejected,

was the option to include a diurnal SST parameteriza-

tion (Zeng and Beljaars 2005), as it was found to

slightly reduce the daily average SST throughout most

of the year. A more detailed description of the Noah

LSM is given next, with emphasis on vegetation and

snow parameterizations.

b. The Noah LSM

The unified NCEP–NCAR Noah LSM is an open

source, community model with a wide range of users. It

is a single-column model with four soil layers, a total

soil depth of 2m, with prognostic soil moisture and

temperature and freeze/thaw soil physics. Soil thermal

and hydraulic parameters like conductivity, field ca-

pacity, and wilting point are available as tabulated

values according to local soil type. Lookup tables also

give the vegetation root depth, stomatal resistance, and

maximum snow-covered albedo according to the grid

cell’s dominating vegetation type (Table 2 for param-

eter values for evergreen needleleaf forest, wooded

tundra, and mixed tundra). Noah has a canopy layer

storing water, and snow is stored on the ground in a

single, bulk layer. The surface temperature is a single,

weighted mean of the temperature of snow-covered

ground, canopy, and bare soil, according to their grid-

cell fraction. It has a linearized, noniterative surface
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energy balance, solving for a slab skin temperature

after estimating the evapotranspiration using a modi-

fied version of the Penman equation (Mahrt and Ek

1984).

c. The University of Arizona Noah alterations

The University of Arizona (UA) snow physics for

Noah (Wang et al. 2010) are used in this study. The UA

alterations aim to redeem a too early snowmelt, and

excess snow sublimation and downward sensible heat

flux often found in the Noah model (Wang et al. 2010).

The physical processes associated with deep snow in

boreal forests in spring were specifically considered,

including the effect of vegetation shading on snow, in-

creased (under canopy) aerodynamic resistance under

stable atmospheric conditions (increasingly so with

more vegetation present), and a revised roughness

length for snow-covered vegetation.

d. Vegetation data, forcing data, and spinup

The vegetation types are given by the MODIS Bos-

ton University IGBP dataset, with alterations made by

NCEP to include tundra and lakes. For this study, all

vegetation in the open shrubland class was converted to

the mixed tundra class, as the original was a 608N
threshold for the conversion that resulted in a spurious

schism through the center of southern Norway. Addi-

tionally mixed tundra was changed to wooded tundra

below 950m, representing birch forest, to provide

better consistency with a national vegetation map

(Moen et al. 1998).

The land surface model was spun up, using the NCAR

High-Resolution Land Data Assimilation System

(HRLDAS; Chen et al. 2007) forced with ERA-Interim

data (Dee et al. 2011), cycling the year preceding the

experimental runs, 2008/09.

Apart from ground temperature and moisture fields,

which were transferred fromHRLDAS, theWRFModel

was initialized with fields from the ERA-Interim. The

model was run in climate mode, initialized on 1 October

2009, and forced with fields from ERA-Interim (updated

every 6h on the outer domains’ lateral boundaries, and

every 24h for SST fields). Spectral nudging was not used

in order to allow the model more freedom to react to the

changes in surface representation.

e. Study area

This study focuses on SouthNorway, the southern half

of Norway. The integration domains are presented in

Fig. 1. The outer domain is the enclosed, outer area of

the figure. It consists of 77 3 160 grid boxes, with a grid

spacing of about 18.5 km, or 08100. The inner domain,

shown as a blue rectangle, consists of 156 3 261 grid

boxes with a spacing of 3.7 km or 08020. In further ref-

erence to the study area, only the land area in the inner

domain is considered.

A seasonal snow cover is present in most of Norway.

The number of days with snow varies considerably,

both spatially and from year to year. Normally, it lasts

from 0 to 300 days yr21, with snow water equivalent

(SWE) varying from 0 to 3000mm (Hanssen-Bauer

et al. 2009). Norway receives on average nearly

1500mm of precipitation per year, with large regional

differences, as the Scandinavian mountains split South

Norway into a rainy western part and a drier eastern part.

f. Study period

Interannual weather variability in Norway is influ-

enced by the North Atlantic Oscillation (NAO), espe-

cially in winter. A negative phase of the NAO is usually

concurrent with cold and dry conditions in Norway,

while a positive NAO phase usually indicates warm and

wet conditions. To evaluate to what degree the sensi-

tivities found vary with weather variability, the study is

conducted over a time period when the phase of the

NAO changed from positive to negative.

TABLE 1. Model configuration with the outer domain values given

in parentheses.

Model type ARW, version 3.5.1

Simulation period From October 2009 to

October 2011

Simulation type Climate run, initialized once

Horizontal resolution 3.7 km or 08020

(18.5 km or 08100)
Grid Lambert, rotated

Mesh 156 3 261 (77 3 160)

Vertical resolution 41 layers (top at 50 hPa)

Time step 20 s (100 s)

Forcing data ERA-Interim, Dt 5 6 h

SST update ERA-Interim, Dt 5 1 day

Lake temperature ERA-Interim, mean T2m

Spectral nudging No

Nesting One way

Vegetation type MODIS Boston University

and NCEP 20 category

with lakes

Vegetation type alterations Based on Moen et al. (1998)

Green vegetation fraction MODIS, 1/88 monthly

interpolated

Max albedo with snow ams Barlage et al. (2005)

table values

Land surface scheme Noah, with University of

Arizona physics

Surface scheme MM5 Monin–Obukhov

PBL scheme YSU

Cumulus scheme Kain–Fritsch

Microphysics scheme Goddard

Longwave scheme Goddard

Shortwave scheme Goddard
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A hydrological year is the 12 consecutive months

when the hydrological cycle is on average the most in

balance. In the Northern Hemisphere, this is usually

from October through September. This study spans two

hydrological years: from October 2009 to October 2010,

which was a particularly cold and dry hydrological year

in Norway with themost negative winter (DJF) NAOon

record; and from October 2010 to October 2011, which

was a warm and wet year during which the NAO

switched from negative to positive midwinter. Themean

temperature in 2010 was 18Cbelow the 1961–90 average,

and the precipitation was 85% of the 1961–90 average,

which is the fifteenth driest since 1900. The year 2011

was one of the warmest and wettest years in Norway;

before 2014 it was the warmest and wettest on record.

The mean temperature was 1.98C above the 1961–90

average, and total precipitation was 125% of the 1961–

90 average. The winter of 2011 did, however, start out

fairly dry and cold.

g. Model performance

The 2-m temperature T2m, precipitation, humidity,

wind, and snow cover were compared to gridded and

synoptic observations. Compared to the SeNorge (Mohr

2008) high-resolution (1 km), spatially interpolated T2m

dataset, the model has an average bias of 20.98C in the

study area. The temperature bias is similar in both years,

implying little drift in the model. The largest biases are

in fall and spring. In winter of 2009/10, a cold bias

of20.88Coccurred, whereas in winter of 2010/11 a warm

bias of 11.28C is evident. Compared to the SeNorge

observation-based dataset, the model shows on average

0.2mmday21 lower precipitation. In 2009/10 slight

overestimations are found in all seasons except fall. In

2010/11 slight underestimations are found, which are

largest in summer with a bias of 20.4mmday21.

Relative humidity was compared to observed hu-

midity from more than 100meteorological stations for

2010/11 using the Model Evaluation Tools (MET) soft-

ware (Brown et al. 2009) and observational data from

NOAA/NWS/NCEP (2008). The model shows a slight

positive bias in specific humidity, by approximately 4%,

and a slight exaggeration of the diurnal moisture vari-

ability in the warm season. The wind speed was evalu-

ated similarly and shows good performance but has

slight underestimations of the highest wind speeds.

The modeled snow depth hs was compared with daily

observations from meteorological stations for the entire

simulation period. Following previous snow validation

studies conducted for Norway (Dyrrdal 2010; Saloranta

2012), we require, for each station, an elevation differ-

ence of less than 100m to the corresponding model grid

point and at least 10 days of observations. This resulted

in 100 stations giving in total 23 452 observations. The

station-average correlation r between observed and

modeled hs is good (r 5 0.72) and the bias is low

(12.0 cm). Using a ground snow cover fraction fs similar

to the LSM, fs,g 5min(hs/10 cm, 1) (assuming a 5:1 ratio

between snow depth and SWE), the model shows a fair

representation of the seasonal snow cover, with regions

of overestimation found inland and regions of un-

derestimation seen near the coast (Fig. 2).

TABLE 2. Themodified IGBPMODISNoah vegetation parameters for evergreen needleleaf, wooded tundra, andmixed tundra; that is,

the vegetation types that are changed in the Veg experiment. The parameters with a min and max value are scaled according to the

spatially and temporally varying green vegetation fraction, as provided by an external, satellite-derived dataset. ParametersZtopv andZbotv

are used in the UA subroutines for discriminating vegetation with snow below the canopy and vegetation buried by snow.

Evergreen needleleaf Wooded tundra Mixed tundra

GVF Green vegetation fraction 0.70 0.60 0.60

Rootn Rooting soil layer depth 4 3 3

Rs Stomatal resistance 125. 150.0 200.0

RGL Radiation stress parameter 30. 100.0 100.0

HS Vapor pressure deficit parameter 47.35 42.0 42.00

SNup Parameter scaling snow cover fraction 0.080 0.025 0.025

ams Max albedo with snow 34. 62. 72.

LAImin Min leaf area index 5.00 0.41 0.41

LAImax Max leaf area index 6.40 3.35 3.35

«min Min emissivity 0.950 0.930 0.920

«max Max emissivity 0.950 0.930 0.920

amin Min albedo 0.12 0.15 0.15

amax Max albedo 0.12 0.20 0.20

Z0min Min roughness 0.50 0.30 0.15

Z0max Max roughness 0.50 0.30 0.15

Ztopv Vegetation top 17.0 10.0 5.0

Zbotv Vegetation bottom 8.5 0.1 0.1
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3. Experimental design

After a control run (Cntrl) as described above, three

experimental runs were initiated, each perturbing a

different surface feature, namely, vegetation, snow, and

SST. Table 3 summarizes the three experiments.

a. Increasing the boreal forest line (theVeg experiment)

If global warming continues unabated, the northern

extents of boreal forest ecosystems are expected to

slowly go through a transition from tundra to open

shrubland towoodland to boreal forest (Liess et al. 2012).

There is, however, large uncertainty regarding historical,

present-day, and future land-cover distribution, and

considerably different land-cover inventories and pro-

jections are used in weather forecasting and climate

model runs (Yucel 2006; Klein Goldewijk et al. 2011;

Meiyappan and Jain 2012; Tao et al. 2013; Broxton et al.

2014). Even so, land-use and land-cover (LULC) change

were included in CMIP5 because of its importance (e.g.,

Hurtt et al. 2009; Klein Goldewijk et al. 2011).

Observations by satellites and airplanes and field

studies have shown an upward shift in species elevation in

Europe (Grytnes et al. 2014) and Norway (Bryn 2008;

Wehn et al. 2012). Since 1925, the Norwegian forest

volume has tripled (Tomter and Dalen 2014), and in

many regions forest lines have expanded to higher alti-

tudes. However, because of historic and current land-use

practices, in certain areas the forest line can be asmuch as

200m below its present potential (Wehn et al. 2012).

Subtle vegetation changes (e.g., vegetation densification

or a forest-line advance) are difficult to implement

without using a high-resolution model. Feedback effects

between warming, snow cover, and vegetation cover may

not be adequately addressed in global models unable to

resolve the local terrain, and thus temperature gradients,

well enough (Giorgi et al. 1997).

To shed light on the sensitivity of the surface energy

and water balance to a change in vegetation cover, a

simple perturbation of the boreal forest line is imple-

mented in the Veg experimental run. Mixed and barren

tundra below 1150m are replaced with evergreen nee-

dleleaf forest, increasing the forest line by about 200m

and changing the vegetation type in about a quarter of

the land grid cells (Fig. 1, Table 3).

b. Increasing ground snow (the Snow experiment)

More often than not, models show biases in their snow

simulations (Slater et al. 2007; Chen et al. 2014). For

instance, in ERA-Interim, forests with snow were

given a too low albedo, influencing the timing of spring

snowmelt (Balsamo et al. 2015). If such biases signifi-

cantly affect, for example, modeled precipitation in-

tensity in our region, this needs to be accounted for.

Studies dating back to Yeh et al. (1983) have looked at

the effect of ground snow on the following seasons by

initializing experimental runs with extra snow. These

experiments add moisture to the model. In this study we

aim to evaluate and compare the responses of the surface

energy and water balance to different changes in surface

characteristics. Perturbing the ground snow indirectly by

changing the snow/rain criterion for precipitation in the

land surface part of the model makes it possible to trace

FIG. 1. The outer area of the figure depicts the outer model in-

tegration domain. The inner domain, or study area, is within the blue

rectangle. Areas originally covered with evergreen needleleaf are

marked with dots. Areas where mixed or wooded tundra are re-

placed by an evergreen needleleaf forest in the Veg experiment are

marked with a dark green color (stars) in the inner (outer) domain.
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back a response in precipitation to a change in ground

snow, rather than having to disentangle it from the effect

of extra moisture in the model initialization.

The snow/rain criterion is a feature of the land surface

model itself, used to diagnose whether the incoming

precipitation should be treated as frozen or liquid (e.g.,

Yang et al. 1997; Slater et al. 2007; Niu et al. 2011).When

Noah LSM is coupled with WRF, by default, the snow/

rain criterion relies on the ratio of solid to liquid in-

coming precipitation as diagnosed in the (atmospheric)

microphysical scheme. If this information is not avail-

able, the lowest atmospheric model layer temperature

with a categorical temperature threshold of 08C is used.

In the current model configuration, the snow/rain

criterion is diagnosed from the ratio of solid to liquid

hydrometeors calculated in the Goddard microphysical

scheme. Compared to using a categorical temperature

threshold of 08C, the current model setup (using the

information from the microphysical scheme) leads to a

slightly more snow in coastal areas and slightly less snow

in inland areas (not shown).

Snow/rain criteria temperatures in the literature vary

from258 to over 68C [referenceswithinYang et al. (1997);

Wen et al. (2013)]. In the current model configuration, the

lowest model layer is at about 27m above ground; thus, a

temperature threshold of 2.58C is expected to be in the

higher end of realistic threshold temperatures for snow-

fall. In the Snow experiment, a categorical temperature

threshold of 2.58C is used as snow/rain criterion in the land

surface model in order to increase ground snow without

explicitly adding moisture to the model.

c. The 0.48C SST perturbation (the SST experiment)

A large part of the variability between the models

included in CMIP5 can be attributed to differences in

the models’ representation of snow albedo feedback

effect and NAO (Cattiaux et al. 2013). Historical runs

(1900–2005) of the CMIP5 models show cold SST biases

in the extratropical North Atlantic (Wang et al. 2014).

Biases in surface observational and/or model SST data

may preclude a hindcast, weather forecast, or climate

FIG. 2. The difference between simulated and observed snow cover fraction (Cntrl 2 obs) in fall (SON), winter (DJF), and spring (MAM).

TABLE 3. The surface perturbation experiments.

The Veg expt The Snow expt The SST expt

Replacing tundra

below 1150m

with boreal

forest (Fig. 1)

Using a categorical

2.58C snow/rain

criterion to induce

more snow

Applying a uniform

0.48C SST increase

(Fig. 1)
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projection. A hit or miss of the internal variation (for

instance of the NAO) in an atmosphere–ocean global

circulation model (GCM) providing forcing data for a

regional model has the potential to deteriorate the re-

sults of a regional study (Laprise 2014).

Previous studies have shown that the implementation

of SSTs in a regional climate model (RCM) can influence

temperature over the European continent (Cattiaux et al.

2011) and Norway (Køltzow et al. 2011). A North At-

lantic SST increase of 0.298Cdecade21 for the period

1978–2007 has been observed (Cattiaux et al. 2011).

The oceanic warming has been found to have contrib-

uted to the European land warming over the same

period. Focus in this study is to evaluate the role of

feedbacks exerted from changes in the land cover to

those from a perturbation in SST. Thus, a uniform SST

increase of 0.48C is implemented in both model do-

mains (Fig. 1). Additional SST sensitivity experiments,

such as forcing the model with downscaled SSTs from

CMIP5models, would be of interest but are beyond the

scope of this study.

4. Results

Key variables controlling the surface energy and

water balance are elaborated on below. The land area

of the inner domain (study area) is considered (Fig. 1).

Average changes [experimental run (exp) minus con-

trol run (Cntrl)] over the study area in ground snow

cover, surface temperature Ts, net radiation Rnet, sen-

sible heat (SH), latent heat (LH), evaporation E, pre-

cipitation P, and runoff R are presented in Table 4 for

TABLE 4. Mean difference (exp2Cntrl), averaged over all land grid cells, in 2009/10 and 2010/11 for snow cover, Ts,Rnet, SH, LH,E,P,

and R. For each variable, the two largest differences are marked in boldface. The relative change (%; where a minus sign indicates

a decrease and a plus sign indicates an increase) is given below, where applicable, for the single largest change per variable.

Expt

Snow cover

(days yr21) Ts (8C) Rnet (Wm22) SH (Wm22) LH (Wm22) E (mmday21) P (mmday21) R (mmday21)

Veg 2009/10 6 0.11 3.6 0.7 2.7 0.09 0.07 20.02

110% 18% 18%

Veg 2010/11 4 0.08 3.1 0.1 2.7 0.09 0.08 20.01

Snow 2009/10 8 20.24 21.5 21.3 20.7 20.02 20.02 20.01

Snow 2010/11 13 20.22 21.5 21.3 20.6 20.02 20.01 0.01

15% 233%

SST 2009/10 22 0.20 0.4 20.2 0.5 0.02 0.09 0.06

SST 2010/11 23 0.19 0.3 20.3 0.5 0.02 0.11 0.09

12.5% 12.8%

TABLE 5. The area (%) of significant change in mean value from the control run A and the mean difference (exp2Cntrl) within this

areaM are listed for the 2009/10 and 2010/11 variables. Snow cover changes are listed with areas of significant snow cover fraction changes

andmean change in the number of days per year with snow cover within each of these areas. For each variable, the two largest differences

are marked in boldface. The relative change (%; where a minus sign indicates a decrease and a plus sign indicates an increase) is given

below, where applicable, for the single largest change per variable.

Expt

Snow cover

(days yr21)

Ts

(8C)
Rnet

(Wm22)

SH

(Wm22)

LH

(Wm22)

E

(mmday21)

P

(mmday21)

R

(mmday21)

Veg 2009/10 A 70% 46% 30% 27% 35% 35% 21% 67%

Veg 2009/10M (days yr21) 6 0.22 11.7 2.4 7.6 0.26 0.19 20.03

147% 131% 131%

Veg 2010/11 A 69% 37% 29% 30% 38% 38% 23% 63%

Veg 2010/11M (days yr21) 4 0.19 10.5 0.5 7.2 0.25 0.23 0.00

Snow 2009/10 A 98% 96% 32% 47% 37% 37% 11% 33%

Snow 2009/10M (days yr21) 8 20.25 23.4 22.7 21.3 20.05 20.08 20.03

Snow 2010/11 A 98% 92% 27% 42% 32% 32% 11% 36%

Snow 2010/11M (days yr21) 13 20.24 23.9 22.3 21.5 20.04 20.03 0.01

15%

SST 2009/10 A 76% 96% 10% 16% 21% 21% 25% 67%

SST 2009/10M (days yr21) 24 0.21 1.8 20.8 1.4 0.05 0.23 0.09

SST 2010/11 A 69% 97% 7% 12% 20% 20% 27% 66%

SST 2010/11M (days yr21) 24 0.20 1.7 21.1 1.5 0.05 0.25 0.12
15% 14%
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FIG. 3. Change (exp2 Cntrl) in the length of the snow season (the number of days with ground snow) in (top) the dry, cold hydrological

year 2009/10 and (bottom) the warm, wet hydrological year 2010/11. The study area mean change is denoted in the upper-left corner.
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each (hydrological) year. The surface temperature rather

than the 2-m temperature is discussed, as it is directly

related to the surface energy and water balance and is a

prognostic rather than diagnostic variable. Overall, the

results indicate that the experiments have amodest effect

on the surface energy and water balance when averaging

over the whole period and entire study area. The results

further show minor differences between the relatively

cold and dry 2009/10 and the warmer and wetter 2010/11.

Local and seasonal changes were notably larger.

Paired sample Student’s t tests, using a 95% confidence

interval, were performed at each grid cell to determine

whether there are significant changes in the annual and

seasonal mean values of the control and experimental

runs. Table 5 gives, for each variable and year, the mean

change averaged over the area of significant change.

Percentage land area where significant changes in an-

nual mean values occurred varied from 7% to 98%. For

each variable, where applicable, the largest relative

change [(exp 2 Cntrl)/Cntrl] is also presented.

a. Snow cover and energy balance changes

Changes in ground snow cover and the components of

the surface energy balance are depicted in Figs. 3–5. Local

gridcell changes (exp 2 Cntrl) in the length of the snow

season (the number of days with ground snow) in the two

hydrological years are depicted in Fig. 3. Figure 4 depicts

2010/11 monthly change in the surface energy balance in-

duced by each experiment, and Fig. 5 shows the seasonal

extent and magnitude of significant changes in mean sea-

sonal Ts.

1) INCREASING THE BOREAL FOREST LINE

(THE VEG EXPERIMENT)

The forest-line heightening (the Veg experiment)

caused significant changes in ground snow cover fraction

in over two-thirds of the study area (Table 5). The av-

erage number of days with snow increased by 6 days in

2009/10 and 4 days in 2010/11 (Table 4, Fig. 3), although

in certain areas the first snow-free day occurred earlier

in 2010/11 (not shown). The experiment caused signifi-

cant changes in Rnet and LH in 30%–40% of the land

area and also outside the area of vegetation change

(24% of the land area). In these areas, the average in-

crease in annual Rnet was 10–12Wm22, or nearly 50%,

and LH increased by 7–8Wm22, or 30%. The increase

was slightly larger in the colder and drier 2009/10 than in

the warmer and wetter 2010/11. The changes in the

surface energy balance propagated almost undisturbed

to changes in the energy balance at the model’s top of

the atmosphere (TOA; not shown).

Changes in turbulent fluxes caused by the Veg exper-

iment mainly occurred in the warm season (Fig. 4).

Where tundra was converted to evergreen needleleaf

forest, a shift toward both higher SH and LH can be seen

(Table 5); however, certain locations showed a large in-

crease in LH coinciding with an equivalent decrease in

SH (not shown). Where the vegetation remained un-

altered, some grid cells showed the opposite pattern, that

is, a decrease in LH and a comparable increase in SH.

The colder year, 2009/10, showed a slightly larger in-

crease in Ts, and also significant changes in larger areas

than in the warmer year of 2010/11 (Table 5). Seasonally,

the highest warming was found in spring, with, on

average, a 0.58C increase in areas of significant change

(Fig. 5). In summer, a lower albedo difference (not shown)

and increased LH (Fig. 4) resulted in a surface cooling of a

similar magnitude as the spring warming (Fig. 5).

2) INCREASING GROUND SNOW (THE SNOW

EXPERIMENT)

The parameterization change applied in the Snow ex-

periment clearly increased ground snow cover. Significant

changes occurred in nearly the entire study area (Table 5).

The largest increase was found near the coast in spring and

fall and at higher altitudes in summer (not shown). Aver-

aged over the two hydrological years, the area with ground

snow was increased by around 12%, or 40000km2, on

FIG. 4. The 2010/11 study area average monthly change from the control experiment in

sensible, latent, and remaining (other) fluxes, for the Veg (first monthly bar), Snow (second

monthly bar, marked with diagonal lines), and SST (third monthly bar, marked with hori-

zontal lines) experiments.
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FIG. 5. (a) Mean Ts in the control run during the 2010/11 fall (SON), winter (DJF), spring (MAM), and

summer (JJA). Significant changes from the control run in seasonal mean daily temperature for the (b)

Veg, (c) Snow, and (d) SST experiments are also shown, with the mean change in the areas of significant

change denoted in the upper-left corner. Areas of no significant change are marked in gray.

274 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

116



FIG. 6. As in Fig. 5, but for mean daily P. Note that here increases are marked in blue tones, while

decreases are marked with red tones.
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FIG. 7. As in Fig. 5, but for mean daily R. Note that here increases are marked in blue tones, while

decreases are marked with red tones.
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1November and by around 6%, or 20000km2, on 1May. In

the warmer and wetter 2010/11, the mean number of days

with ground snow increased by about 2 weeks, whereas in

colder anddrier 2009/10, it increasedbyonly 1week (Fig. 3).

The additional snow increased the reflection of short-

wave radiation (albedo) and thus decreased Rnet. Signif-

icant changes in annual Rnet were found in about 30% of

the area, with an average reduction of 3–4Wm22 (Table

5). The increased reflected radiation propagated almost

unabated to the models’ TOA (not shown). Slight in-

creases in low cloud cover and downward shortwave and

longwave radiation were also detected (not shown).

The SH was significantly reduced in nearly half of the

area, by 2–3Wm22, on average. A small decrease in LH

was also found. The largest reduction in turbulent fluxes

coincided with the months of maximum insolation and

snow cover, that is, April–June (Fig. 4). In most months,

slight changes in fluxes other than SH and LH are seen

(Fig. 4). This is mostly due to changes in the fluxes asso-

ciated with melting and freezing on the ground. Annual

averageTs decreased by about 0.258C in both years (Table

5). The most extensive, significant changes were found in

spring, whereas the largest absolute change was a cooling

of 0.88C at some high-altitude areas in summer (Fig. 5c).

3) THE 0.48C SST PERTURBATION (THE SST
EXPERIMENT)

The SST experiment caused significant changes in

ground snow cover in more than 70% of the study area

(Table 5). Thenumber of dayswith ground snowdecreased,

on average, by 2–3 days (Table 4, Fig. 3). Slight increases in

net shortwave radiation were found, but of the three ex-

periments, the SST perturbation had the smallest effect on

Rnet. Meanwhile, both downward and upward longwave

radiation increased (not shown). Further, an increase in

cloud cover was found in the colder seasons (not shown).

Significant changes in turbulent fluxes were found in

less than 21% of the grid cells. The largest changes

were found in summer and fall (Fig. 4), when LH in-

creased at the expense of SH. The SST perturbation

caused significant changes in annual Ts in almost all of

the study area. An average warming of 0.28C, which is

half of the SST increase, was found (Table 5). The

largest impact was found in fall and winter (Fig. 5d).

The SST perturbation had a smaller effect on Ts in

spring and summer, with no significant changes in mean

temperature in more inland areas.

b. Water balance changes

Changes in the components of the water balance are

depicted in Figs. 6–8. The extent and magnitude of the

2010/11 significant changes in mean seasonal pre-

cipitation and runoff are presented in Figs. 6 and 7.

Gridcell evaporation and precipitation changes are

presented, for each experiment, in scatterplots in Fig. 8.

In addition to the surface water balance, the

atmospheric water balance is also analyzed. The

Lagrangian atmospheric water balance is given by

FIG. 8. Scatterplots of the annual mean differences (exp2 Cntrl) in E (x axis) and P (y axis). Points originating from areas where the

vegetation was changed in the Veg experiment are shown, for reference, for all experiments, with a green, hatched color scheme, with

darker colors representing higher densities of points. The remaining points are marked with a black color scheme, with brighter colors

representing higher densities of points.
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›tq1 v � =q5E2P, where dt is the local temporal

derivative, v is the wind (vector), and q is the specific

humidity (e.g., Banacos and Schultz 2005). Integrating

from the first atmospheric level near the surface to about

500hPa (layer 16 in the model), the second term on the

left-hand side of the equation represents the vertically

integrated horizontal moisture flux divergence, or the

negative of the moisture flux convergence (MFC). From

year to year, the temporal change in atmospheric hu-

midity ›tq is usually much smaller than the other terms in

the equation, simplifying the equation to

P5E1MFC. (1)

The annual mean precipitation can thus be sourced

from local evaporation or from advected atmospheric

moisture (MFC). Figure 9 shows the annual mean

change in MFC for each experiment in 2009/10.

1) INCREASING THE BOREAL FOREST LINE (THE

VEG EXPERIMENT)

The Veg experiment led to significant changes in pre-

cipitation in nearly a quarter of the study area (Table 5).

The signal of these changes varied with location and

season (Fig. 6b). The most significant change in pre-

cipitation was found in summer: an increase of 12% in

15% of the study area. The greatest increase in LH was

also found in summer (Fig. 4). Generally, where tundra

was replaced with forest, an increase in both evaporation

and precipitation is evident (Fig. 8). The scatterplot also

shows that in some areas where the vegetation remained

unaltered, a slight increase in precipitation in combina-

tion with a small decrease in evaporation is found. In-

deed, comparing Fig. 6b with Fig. 1 shows that some of

the areas where significant changes in precipitation oc-

curred are outside the area of vegetation change.

The annual increase in precipitation was nearly as large

as the increase in evaporation, averaged over the study area

(Table 4). Compared to the control run, a slight moisture

flux divergence occurred in the study area (Fig. 9), that is,

part of the humidity increase was transported out of the

study area. Only a minor decrease in annual runoff was

found. Seasonal runoff variability was, however, affected

(Fig. 7b), with more runoff in spring and less runoff in

summer in western and central Norway. An increase in

precipitation is seen in the same areas in spring (Fig. 6b).

FIG. 9. Annual (2009/10) change inMFC from the control run for each experimental run. The mean change over the study area is given in

the upper-left corner. Because of the very high variability of the divergence field, a Gaussian filter has been applied.
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2) INCREASING GROUND SNOW (THE SNOW

EXPERIMENT)

The Snow experiment only had a minor effect on the

annual water balance (Tables 4, 5), shown as a slight

decrease in evaporation throughout the year. The

greatest change in precipitation was seen in spring in

coastal areas, areas that had more snow cover in the

Snow experiment than in the control run. In spring,

minor decreases in both convective and nonconvective

precipitation were found (not shown), with an average

reduction of 3% in 13% of the study area, as well as

slight reductions in evaporation. In the other seasons,

less than 10% of the study area showed significant

changes in mean precipitation. Both decreases and

increases in precipitation occurred (Fig. 6). In

summer, a slight increase in precipitation is seen in

inland areas.

The snow cover experiment directly influenced the

partitioning of precipitation between rain and snow and

induced rather large seasonal shifts in runoff. Coastal

areas experienced less runoff in fall and winter, butmore

in spring. At higher altitudes more water was stored

from spring to summer, delaying runoff (Fig. 7c).

3) THE 0.48C SST PERTURBATION (THE SST
EXPERIMENT)

On average, the SST experiment intensified the water

cycle, with increasing precipitation, evaporation, and

runoff (Table 4) in all seasons (Fig. 6d). Average absolute

land surface evaporation increased by about one-fifth of

the precipitation increase. Most of the precipitation in-

crease was due to an increase in atmospheric moisture

flux convergence over the study area (an increase of

0.06mmday21; Fig. 9). The increase in MFC was due to

an increase in west–east (zonal) moisture transport. An-

nual runoff increased by nearly 3% averaged over the

study area.

The SST experiment induced significant precipitation

changes in more than a quarter of the study area. The

most extensive change was found in winter, when 35%

of the land surface experienced, on average, a 7% in-

crease in precipitation (Fig. 6d). A larger mean relative

change (an increase of 9%) in precipitation was found in

the summer but in fewer areas. The largest relative

change in runoff (an increase of 10%) was seen at the

coast in winter (Fig. 7d).

5. Discussion

a. Increasing the boreal forest line (theVeg experiment)

The forest-line heightening, that is, the Veg experi-

ment, caused the largest changes in surfaceRnet and LH.

The changes in the surface energy balance were driven

by increased Rnet due to the lower albedo of the forest

compared to tundra. Significant changes were found also

outside areas of vegetation change. As the land surface

model is a single-column model with no horizontal ad-

vection, these changes were due to atmospheric advec-

tion. The new UA subroutines in Noah applied here

(section 2c) allow part of the incoming shortwave radi-

ation, in areas where vegetation is protruding over snow,

to be absorbed in the canopy instead of in the ground.

The energy is then converted to SH input directly to the

atmosphere, sidestepping the surface energy balance

and thus implying that snow stays longer on the ground.

In the Veg experiment, in areas where tundra was

changed to evergreen needleleaf forest, the first snow-

free day (snow off) was delayed in most areas. However,

in the warmer year, 2010/11, snow off occurred earlier

in western and coastal areas. Even though forests

have a lower albedo than open areas in the presence of

snow, forests are generally considered to delay snow off

because of vegetation shielding the snow from short-

wave radiation (Lundquist et al. 2013; Kremsa et al.

2015). Lundquist et al. (2013) emphasize that whether a

specific forest delays or hastens snow off may change

in a future climate. Although difficult to parameterize,

inclusion of canopy processes is important for correct

runoff timing. In high-latitude, boreal regions, the

complex interdependencies between vegetation, snow,

and temperature changes and their impact on runoff

generation may deserve more attention.

The changes in mean temperature, averaged over the

study area, were the smallest of the experiments; how-

ever, local and seasonal temperature changes were

larger than those caused by the SST experiment. Though

vegetation shading, as parameterized by the model,

delayed the first snow-free day in most areas, snowmelt

generally started earlier, and the number of days with a

full snow cover on the ground was reduced, allowing the

ground to heat up. Warmer Ts values were found in all

seasons except summer, when evaporative cooling

dominated. Similar studies done with lower-resolution

models (Wramneby et al. 2010; Rydsaa et al. 2015) have

found an albedo-dominated warming in the colder sea-

sons and an evaporation-dominated cooling in the

warmer seasons, even in future climate projections. In

areas of significant change, themagnitude of the average

annual warming was about 0.28C. These findings are in

line with Bright et al. (2014), who observed a cooling of

0.258C at a clear-cut site relative to a coniferous site in

southeastern Norway, but smaller than a cooling of

about 0.958C observed in open land relative to nearby

forested FLUXNET stations at boreal latitudes (,458N;

Zhang et al. 2014). The temperature change was slightly

JANUARY 2017 ERLANDSEN ET AL . 279

121



larger in the colder 2009/10. Previous studies have found

that the effect of vegetation change varies with climate

(e.g., Pitman et al. 2011; Bright et al. 2014; de Wit et al.

2014). In long climate simulations, the radiative forcing

of LULC change is expected to diminish compared to

the effects of increased anthropogenic CO2 emissions

(Wramneby et al. 2010; Myhre et al. 2015).

The effect of the Veg experiment was, for the surface

water balance, dominated by an evaporation increase,

predominantly found in spring and summer. Annual

mean precipitation increased by nearly as much as the

evaporation increase. Annual runoff was thus barely

affected. Snowmelt generally started earlier, shifting a

fraction of runoff from summer to spring. If the results

are representative of the sensitivity in other models, it

justifies a stronger emphasis on vegetation type in-

ventories, vegetation model development and valida-

tion, and increased attention to vegetation change in the

region, for example, in regional downscaling of climate

models or when using the results from climate models

that parameterize vegetation changes. Counteracting

precipitation changes may need to be considered when

modeling evaporation changes in southern Norway in

offline land surface or hydrological models. Changes in

vegetation properties may also have affected observed

temperature and precipitation trends. Further, the large

sensitivity of surface and TOA net radiation found here

points to the need for high-resolution studies, including

biogeochemical effects, on the impact of vegetation

change in our region to provide better information for

land management.

b. Increasing ground snow (the Snow experiment)

The Snow experiment increased the number of days

in a year with snow cover by 1–2 weeks. Changes in

snowfall diagnosis could not occur when the conditions

were so cold that the microphysical scheme, which

computed the snowfall fraction in the control run, also

diagnosed precipitation as snow (section 3). Thus, the

impact of the parameterization change was more pro-

nounced in thewarmer 2010/11 than in the colder 2009/10,

and on the coast in winter and in the high mountains in

summer. Because of the additional precipitation di-

agnosed as snow, an increase in the flux associated with

snow melting on the ground was seen. The Snow experi-

ment induced significant changes in Rnet and LH in a

fraction of the study area similar to the Veg experiment

(30%–40%), but the magnitude of changes was consid-

erably lower. However, of the three experiments, the

Snow experiment induced the largest changes in SH and

Ts. For stand-alone land surface models or hydrological

models using an energy balance approach, differences in

snow cover between the offline model and models

providing forcing data may create temperature gradients

that can introduce spurious surface fluxes.

Of the three experimental runs, the Snow experiment

had the smallest effect on annual precipitation and

runoff. Seasonal runoff changes were found, with peak

runoff increasing and being delayed by more than

1 month. Slight reductions in precipitation were seen,

predominantly in late spring and early summer. How-

ever, in scattered inland areas, slight precipitation in-

creases were seen. Observational (Kasurinen et al. 2014)

and modeling (Rydsaa et al. 2015) studies have shown

that evapotranspiration in the boreal regions is primarily

controlled by the atmospheric vapor pressure deficit and

not by soil moisture. In climates and regions, where the

evapotranspiration regime is soil moisture limited, an

increase in snow cover may lead to increased soil

moisture persisting into the warmer seasons when soil

moisture normally would be limited, in turn increasing

evaporation and precipitation in these months (e.g.,

Dutra et al. 2012). This was largely not found here. The

results suggest that in the study region and for the cur-

rent climate, slight differences in modeled snow cover in

similar, coupled land surface–atmosphere models may

be expected to have little impact on modeled evapora-

tion and precipitation rates.

c. The 0.48C SST perturbation (the SST experiment)

The SST experiment resulted in the smallest change in

Rnet and turbulent fluxes among the experiments. How-

ever, both incoming and outgoing longwave radiation

increased. Significant changes in annual Ts were found in

nearly the entire study area, with temperature increasing

in these areas, on average, by about 0.28C, that is, half of
the SST increase. The impact on Ts was stronger in the

colder seasons, when the sea–air temperature gradient

and the westerlies are generally stronger. In summer,

significant changes were mostly found on the coast. In

certain areas, the SST experiment introduced an increase

in LH accompanied by a decrease in SH. This may be

connected to the increase in precipitation found in the

experiment. While the area affected by a change in snow

cover was slightly higher in the colder year, generally, the

changes induced by the experiment were similar in the

anomalously cold and warm hydrological year.

The annual surface water balance showed a large sen-

sitivity to the rather small SST perturbation. Among the

three experimental runs, the SST experiment caused the

spatially and temporally most homogeneous changes to

the land surface water balance and the largest changes in

the annualwater balance.Annual terrestrial precipitation

rates increased about 5 timesmore than land evaporation

rates, and thus runoff increased. Most of the additional

precipitation originated from moisture advected into the
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study area. The largest changes were seen in winter.

These findings, of a stronger sensitivity in terrestrial

precipitation and temperature to SST change in the cold

seasons, are in line with previous research (Cattiaux et al.

2011; Køltzow et al. 2011). The findings show that rather

small biases in SST data may have significant impacts on

the modeled, terrestrial water balance and Ts in the study

region, including inland areas.

d. Limitations

The SST experiment was by design simplistic. By

applying a uniform SST increase in both model domains

throughout the year, it inflicted perturbations of varying

size relative to the mean state of the SST in different

regions and seasons. The sensitivity to SST perturbations

likely depends on the choice of physical parameterization

schemes (Table 1), the size of the model integration do-

main (e.g., Køltzow et al. 2011), and whether or not

nudging is applied. In this study nudging has not been

used, as more autonomy was sought to allow land–

atmosphere coupling effects to develop. Though the lat-

eral boundary conditions of the model’s rather modestly

sized outer domain are expected to constrain the large-

scale circulation, the SST perturbation may have caused

circulation changes (e.g., Graff and Lacasce 2014).

However, this has not been the topic of this study. Simi-

larly, evaluating possible remote or large-scale effects of

the vegetation or snow cover change (e.g., Xu and

Dirmeyer 2011; Orsolini et al. 2013) has not been con-

sidered within the scope of this study.

The Noah LSM is a land surface model of in-

termediate complexity, without an explicit canopy layer

or multiple snow layers. This may impact the robustness

of the results, particularly in winter and at night, since

correctly modeling the stable boundary layer is

generally a challenge for many models (Masson and

Seity 2009; Holtslag et al. 2013). Including a prognostic

surface boundary layer with an explicit canopy could

alleviate some of these issues (Masson and Seity 2009).

The mechanisms involved resulting in precipitation

changes due to the vegetation change, and how sensitive

this response is to choice of model and model configu-

ration (e.g., Hagos et al. 2014) needs more exploring.

Further, a dedicated study on how changing surface

characteristics in a particular LSM influence evapora-

tion and runoff rates in an online versus offline model

run is an interesting topic for future work.

The current study does not include biogeochemical

processes, which influence the effect vegetation change

has on climate. Local biogeochemical effects include, for

instance, the interaction between cloud cover and sur-

face organic aerosols (SOAs) from vegetation. This ef-

fect may reduce the warming caused by the vegetation

change (e.g., Scott et al. 2014). Few observational stud-

ies have been conducted on SOAs and biogenic volatile

organic compounds (BVOCs) in Norway. A recent

study (Yttri et al. 2011) estimated the airmass exposure

to marine and terrestrial surface types for four Nordic

sites. At the Norwegian site, over 90% of the footprint

was marine. The site was, however, located less than

25 km from the coast, so a larger airmass exposure to

vegetation can be expected farther inland.

6. Summary and conclusions

The sensitivity of a regional climate model to pertur-

bations of three surface features, namely, the vegetation

cover, the snow cover, and the sea surface temperature,

has been investigated. The surface perturbations reflect

both the effect of model initialization and parameteri-

zation choices and of surface forcing biases in similar

models. High-resolution (3.7 km) runs have been con-

ducted using the WRF Model coupled to the Noah land

surfacemodel. The area of investigation is SouthNorway.

Two consecutive hydrological years are considered, 2009/

10 (relatively cold and dry) and 2010/11 (relatively warm

and wet).

The vegetation was altered in the Veg experiment by

increasing the boreal forest-line height by about 200m,

to 1150m. This led to an increase in annual evaporation

in the study area of 8%. Annual runoff was not much

affected, as precipitation increased by nearly the same

amount. Significant increases in annual net radiation

and surface temperature were found. Significant changes

were also found outside the area of the vegetation

change. The result justifies more emphasis on vegeta-

tion model development and validation and attention

to vegetation change in the region. The sensitivity also

points to the need to consider counteracting pre-

cipitation changes when modeling vegetation change in

offline land surface or hydrological models.

In the Snow experiment, the ground snow was in-

creased without adding moisture to the model. This was

done by altering the snow/rain criterion, that is, the di-

agnosis of the snowfall ratio of the precipitation, in the

LSM. The number of days with snow increased, on av-

erage, by 1–2 weeks per year, spring runoff was delayed,

and Ts was reduced by more than 0.28C. The extra snow

cover had little effect on precipitation and evaporation

and thus little effect on annual runoff. The results suggest

that in the study region and for the current climate, a

correct snow cover diagnosis is important for the mod-

eled surface temperature and intra-annual runoff.

In the SST experiment, sea surface temperature was

increased with 0.408C. This remote surface forcing per-

turbation had the largest effect on runoff of the three
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experiments. It induced more precipitation over south-

ern Norway, largely due to an increase in moisture

transportation from the ocean, only partially reduced by

an increase in evaporation. Land surface temperature

increased on average by 0.28C, and significant changes

were also found in inland areas. Modest biases in SST

forcing data are thus expected to significantly impact

weather and runoff projections.
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Abstract. To provide better and more robust estimates of evaporation and snowmelt in a changing climate,
hydrological and ecological modeling practices are shifting towards solving the surface energy balance. In ad-
dition to precipitation and near-surface temperature (T2), which often are available at high resolution from na-
tional providers, high-quality estimates of 2 m humidity and surface incident shortwave (SW↓) and longwave
(LW↓) radiation are also required. Novel, gridded estimates of humidity and incident radiation are constructed
using a methodology similar to that used in the development of the WATCH forcing data; however, national
1 km×1 km gridded, observation-based T2 data are consulted in the downscaling rather than the 0.5◦× 0.5◦

Climatic Research Unit (CRU) T2 data. The novel data set, HySN, covering 1979 to 2017, is archived in Zen-
odo (https://doi.org/10.5281/zenodo.1970170). The HySN estimates, existing estimates from reanalysis data,
post-processed reanalysis data, and Variable Infiltration Capacity (VIC) type forcing data are compared with
observations from the Norwegian mainland from 1982 through 1999. Humidity measurements from 84 stations
are used, and, by employing quality control routines and including agricultural stations, SW↓ observations from
10 stations are made available. Meanwhile, only two stations have observations of LW↓. Vertical gradients,
differences when compared at common altitudes, daily correlations, sensitivities to air mass type, and, where
possible, trends and geographical gradients in seasonal means are assessed. At individual stations, differences
in seasonal means from the observations are as large as 7 ◦C for dew point temperature, 62 Wm−2 for SW↓,
and 24 Wm−2 for LW↓. Most models overestimate SW↓ and underestimate LW↓. Horizontal resolution is not
a predictor of the model’s efficiency. Daily correlation is better captured in the products based on newer reanal-
ysis data. Certain model estimates show different dependencies on geographical features, diverging trends, or a
different sensitivity to air mass type than the observations.

1 Introduction

Geophysical modeling is advancing, and more and more hy-
drological, ecological, and land surface models (from here
on referred to as land models) are now estimating the sur-
face energy balance (Mueller et al., 2013). Shortwave radi-
ation is the exogenous energy provider to Earth. At middle
and higher latitudes, surface downward longwave radiation is
an equally important radiative driver at the surface. Estimat-

ing the surface energy balance provides a sensible heat flux,
as well as a latent heat flux, which in turn can be converted
to evaporation or snowmelt, key variables for estimating the
surface water balance.

Recent studies have shown the added value of us-
ing more forcing data than only precipitation and tem-
perature when modeling evaporation (Milly and Dunne,
2011; Lofgren et al., 2011; Haddeland et al., 2012;
Pierce et al., 2013; Stagge et al., 2014) or snow cover
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(Raleigh et al., 2016; Harpold et al., 2017). High-quality and
robust diagnoses, forecasts, and projections of evaporation-
and snowmelt-related processes are essential for flood and
hydropower management. Further, gridded data sets of high
quality are needed to statistically bias-correct or downscale
future climate scenarios (Abatzoglou, 2013), to spin up land
surface models (e.g., Rodell et al., 2005; Koster et al., 2004;
Kristiansen et al., 2012), and to assist model development.

Considerable effort is used to improve process description
in environmental models and compare the results of different
models. When land models are run without coupling to an
atmospheric model, i.e., in offline or stand-alone mode, me-
teorological near-surface variables, commonly referred to as
forcing data, are required. In practice, different communities
use different forcing data estimates, such as the more empir-
ically based estimates from the MTCLIM algorithms (Bris-
tow and Campbell, 1984; Thornton and Running, 1999; Bohn
et al., 2013), estimates from numerical weather and climate
models, or a combination of the two (see, e.g., Mizukami
et al., 2016). The different approaches used make it more
difficult to compare the output across land models and have
resulted in dedicated projects where various models are run
with similar forcing data in, for example, the Inter-Sectoral
Impact Model Intercomparison Project (ISI-MIP; Warsza-
wski et al., 2014).

The Norwegian operational hydrological models have his-
torically been calibrated and adapted to use high-resolution,
gridded 2 m temperature and precipitation data as forcing
data. For this purpose high-resolution (1 km×1 km) data
sets, which cover the period from 1957 until the present
(2019) with a daily resolution have been developed, namely
the SeNorge data (Mohr, 2008; Tveito and Førland, 1999;
Lussana et al., 2018a, b). In recent times a long-term
high-resolution, quantile-mapping-based gridded data set of
near-surface wind speed has also been developed at the
Norwegian Meteorological Institute (MET Norway, avail-
able from http://thredds.met.no/thredds/catalog/metusers/
klinogrid/KliNoGrid_16.12/FFMRR-Nor/catalog.html, last
access: 10 June 2019). Gridded, observation-based, high-
resolution data sets for humidity and incident radiation are,
however, lacking.

Previous studies have compared and validated gridded es-
timates of humidity or incident radiation globally (Bohn
et al., 2013; Schmied et al., 2016; Weedon et al., 2011), for
regions in the US (Slater, 2016; Mizukami et al., 2014; Pierce
et al., 2013; Lapo et al., 2017), coastal Brazil (Almeida and
Landsberg, 2003), France (Szczypta et al., 2011), and the
pan-Arctic region (Shi et al., 2010). No previous studies
have, as far as we know, compared and assessed the quality
of high-resolution empirically based and reanalysis-based es-
timates of humidity and incident radiation for regions within
Europe (let alone for Norway specifically). This results in
an additional and unnecessary source of uncertainty for land
modeling in Norway.

Norway’s complex topography and coastline may suggest
that high-resolution data sets would perform better. When
land models are run the near-surface temperature from the
forcing data is usually adjusted to sea level and then to the
land model’s fine-resolution grid cell elevation that uses a
standard atmospheric lapse rate to account for the differ-
ence in terrain height in the forcing data model and the land
model to be run. A standard atmospheric temperature lapse
rate may be unreasonable in winter, at high latitudes (Kot-
larski et al., 2010; Brinckmann et al., 2016), and in complex
terrain (Mizukami et al., 2014), and a much lower resolu-
tion in the forcing data grid compared to the land model may
increase these error components. Further, if humidity is not
also adjusted for inconsistencies between temperature and
humidity will likely result in an unrealistic relative humid-
ity (Haddeland et al., 2006; Weedon et al., 2011). Incident
radiation is influenced by variables showing a strong verti-
cal dependence like near-surface temperature and humidity,
cloud cover (e.g., Marty, 2000), and local variations in sur-
face components like vegetation and snow cover (Erlandsen
et al., 2017; Rydsaa et al., 2017), and thus may likely benefit
from vertical adjustment.

While the spatial correlation may improve in a data set
with a high spatial resolution, Decker et al. (2012) high-
light the need to address temporal correlation on timescales
shorter than monthly scales in data constructed from reanal-
yses for the purposes of forcing land surface models. A high
horizontal resolution may lead to a better representation of
the average state of a variable but not necessarily to an im-
proved description of the concurrent temporal evolution of
the forcing variables on shorter timescales, e.g., during the
rapid passage of a low-pressure system with multiple distinct
air mass characteristics and precipitation types.

This study addresses the aforementioned sources of un-
certainty concerning commonly used estimates of humidity,
either in the form of vapor pressure (VP) or converted to dew
point temperature (Td), incident longwave radiation (LW↓),
and incident (global) shortwave radiation (SW↓) available
for long-term land surface modeling in the region through
the following processes.

– The construction of an original data set, HySN (to ex-
plore the benefit of utilizing a 1 km×1 km national data
set of 2 m temperature in the post-processing reanalysis
data);

– The gathering of global long-term gridded data sets
of humidity and incident radiation from two reanalysis
data sets, two post-processed reanalysis data sets, and
two versions of empirically based estimates compiled
for continental Norway;

– The aggregation of available observations of humidity
and incident radiation between 1982 and 1999 from a
variety of providers, and where necessary, implement-
ing quality control routines;
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– The construction of multiple linear regression models to
provide vertical gradients in both the observations and
the model estimates, so that the variables may be ad-
justed to a similar altitude before their differences are
assessed;

– The correlation of model estimates with observations on
a daily timescale is explored by compiling anomaly cor-
relation coefficients;

– The comparison of the model estimates’ cumulative dis-
tributions; their sensitivity to weather types, continen-
tality, and latitude; and their decadal trend to the obser-
vational data.

Additionally, two hypotheses are investigated. Ha – there
are vertical gradients in near-surface humidity and incident
radiation in our domain. Hb – the added value of the high
horizontal resolution of the more empirically based estimates
outweighs the added value of relying on estimates from
coarser-resolution numerical weather prediction reanalyses.

The data sets considered are two global reanalysis data
sets, the NASA Modern-Era Retrospective Analysis for Re-
search and Applications version 2 (MERRA2) (Bosilovich
et al., 2015, 2017), and ECMWF’s ERA-Interim (Dee et al.,
2011), two products based on reanalysis data post-processed
using higher-resolution gridded observational data, the
Princeton Global Meteorological forcing data set, version
2 (PGMFDv2) (Sheffield et al., 2006), the WATCH forcing
data methodology applied to ERA-Interim (WFDEI) (Wee-
don et al., 2014), and two versions of high-resolution empir-
ically based estimates from the preprocessor of the Variable
Infiltration Capacity (VIC) model, a macroscale hydrologi-
cal model (Liang et al., 1994) largely based on the MTCLIM
algorithms. Finally, a novel data set, the HySN data set, is
compiled for the current study and evaluated. HySN is com-
piled by employing a similar method as was used in the de-
velopment of PGMFDv2 and WFDEI; however, in this case
ERA-Interim near-surface humidity and incident radiation
are post-processed using a national, high-resolution, gridded
2 m temperature data set, SeNorge2 (Lussana et al., 2018b).

2 The gridded humidity and radiation estimates
considered

Long-term data sets that are freely available, which can
be used to drive hydrological, ecological, and land sur-
face models for the Norwegian domain, include the newer
reanalyses: MERRA2 and ERA-Interim. Due to computa-
tional constraints, currently available long-term global re-
analysis data have horizontal resolutions ranging from 2◦×2◦

to 0.5◦× 0.66◦. The MERRA2 reanalysis has a resolution
of 0.5◦ latitude ×0.66◦ longitude. Around Oslo, Norway,
this corresponds to a grid cell height and length of about
56 km×42 km. The reanalysis data sets are based on global
circulation models ingesting large amounts of observational

data by making use of complex assimilation techniques.
However, substantial biases may still occur in reanalysis
data. Heikkilä et al. (2011) found a mean error of +42.9 %
in precipitation intensity in ERA-40 over Norway between
1961 and 1990. Bromwich et al. (2016) found a negative bias
in ERA-Interim surface LW↓ radiation and precipitation be-
tween November 2007 and December 2008 across middle
and high latitudes in the Northern Hemisphere.

The coarse resolution of reanalysis data and the knowl-
edge of biases that may be present in them has spurred
the development of post-processed reanalysis data sets. The
PGMFDv2 and WFDEI are data sets consisting of variables
relevant for forcing land surface models. The relevant vari-
ables are extracted from reanalysis data and post-processed
and downscaled with gridded observational data. Both data
sets are global and have horizontal resolutions of 0.5◦×0.5◦.
PGMFDv2 and WFDEI both adjust reanalysis estimates of
humidity and LW↓ with the gridded, 0.5◦× 0.5◦ Climatic
Research Unit (CRU) T2 following the methods described in
the development of NLDAS (Cosgrove, 2003). Taking a note
from these methods, a novel high-resolution product is devel-
oped and validated in the current study: Hybrid SeNorge, ab-
breviated as HySN. HySN is constructed by post-processing
ERA-Interim humidity and radiances in a similar manner to
PGMFDv2 and WFDEI but utilizing a national data set, the
1 km×1 km SeNorge2 T2, rather than the 0.5◦× 0.5◦ CRU
T2.

Another source of near-surface humidity and incident ra-
diation estimates are the MTCLIM algorithms, which com-
bine first principles from atmospheric physics with empirical
extrapolation logic. Precipitation and temperature, variables
that often are available from a dense network of surface ob-
servation stations, are used to estimate shortwave radiation
and humidity. Versions of the MTCLIM routines are used to
provide forcing data for a large number of hydrological and
ecological models; it has, for example, recently been made
available for the Mesoscale Hydrological model (MHm v5.9,
https://doi.org/10.5281/zenodo.1069202). The variables esti-
mated from MTCLIM are often utilized for impact studies,
e.g., the impacts of climate change and forest management
on ecosystem services in Europe (Bugmann et al., 2017).
The algorithms have also been used to generate several grid-
ded data set products of humidity and radiation for the US
(e.g., Livneh et al., 2013) and are used to provide climate
change projections of humidity and radiation for the US (Bu-
reau of Reclamation, 2013). However, several recent studies
have found regionally inconsistent biases in the MTCLIM
algorithms (Shi et al., 2010; Bohn et al., 2013; Pierce et al.,
2013; Slater, 2016; Mizukami et al., 2014).

The orography and land masks of the models are presented
in Fig. 1. Compared to ERA-Interim orography, the SeNorge
grid elevation is on average higher (mean: 37 m, median:
13 m; see the red areas in Fig. 1). The difference in maximum
elevation is more than 1000 m. Meanwhile, near the coast and
in inland areas the ERA-Interim orography is predominantly

www.earth-syst-sci-data.net/11/797/2019/ Earth Syst. Sci. Data, 11, 797–821, 2019

133



800 H. B. Erlandsen et al.: Humidity and incident radiation estimates

higher (see the blue areas in Fig. 1). The data sets are sum-
marized in Table 1. Further details considering ERA-Interim,
MERRA2, WFDEI, PGMFDv2, WFDEI, HySN, and two
data sets from the VIC model’s preprocessor, largely based
on the MTCLIM algorithms, are presented in the following.

2.1 ERA-Interim

The ERA-Interim (Dee et al., 2011) is a reanalysis data set
developed by ECMWF, covering the time period from 1979
until the present. It is based on a 2006 release of the ECMWF
operational model system (IFS Cy31r2) and has a horizon-
tal resolution of about 80 km. It includes a four-dimensional
variational analysis (4D-Var). Surface observations are in-
gested by optimal interpolation. The variables evaluated in
this study are daily means of 2 m temperature and dew point
temperature from analysis times (00:00, 06:00, 12:00, and
18:00 UTC) and LW↓ and SW↓ taken between +12 and
+24 h into the forecast to allow for spin-up (see, e.g., Wee-
don et al., 2014).

2.2 Modern-Era Retrospective Analysis for Research
and Applications 2 (MERRA2)

MERRA2 is an atmospheric reanalysis data set developed by
NASA, available from 1980 until the present, with a horizon-
tal resolution of 0.5◦×0.625◦(Bosilovich et al., 2015). Mass
conservation constraints are imposed so that assimilated ob-
servations do not cause large violations of the global water
balance. In MERRA2 land surface observations are not as-
similated. The data variables used in this study are model
orography (Mer, 2015a), pressure, and humidity from atmo-
spheric single level diagnostic (Mer, 2015c), LW↓, and SW↓
(Mer, 2015b).

2.3 Princeton’s global meteorological forcing data set
version 2 (PGMFDv2)

PGMFDv2 is an updated version of the 0.5◦× 0.5◦ 60-year
Princeton global meteorological forcing data set (Sheffield
et al., 2006). The updates are described in Schmied et al.
(2016). The humidity, LW↓, and SW↓ estimates are based on
the National Centers for Environmental Prediction–National
Center for Atmospheric Research (NCEP-NCAR) reanalysis
but post-processed to comply with the gridded, observation-
based time series of precipitation, temperature, and cloud
cover, with a horizontal resolution of 0.5◦×0.5◦ from the Cli-
matic Research Unit (CRU TS 3.2.1) and satellite estimates
of LW↓ and SW↓.

2.4 The WATCH forcing data methodology applied to
ERA-Interim (WFDEI)

The application of the WATCH forcing data methodology to
ERA-Interim reanalysis data, WFDEI, is described in Wee-
don et al. (2014). The data are available from 1979 to the

present and have a horizontal resolution of 0.5◦× 0.5◦. The
humidity, LW↓, and SW↓ estimates are based on ERA-
Interim data, post-processed to comply with the global grid-
ded, observation-based time series of 2 m temperature, cloud
cover, and interannual aerosol loading from CRU TS, using
CRU TS 3.2.1 prior to 2009 similar to PGMFDv2.

2.5 Hybrid SeNorge ERA-Interim, HySN (H)

As part of this study, additional estimates of humidity and
LW↓ are derived, using methods based on Cosgrove (2003),
adjusting ERA-Interim humidity and LW↓ to comply with
the newly developed, 1 km×1 km SeNorge2 T2 data set (Lus-
sana et al., 2018b). Further, the ERA-Interim SW↓ estimates
are adjusted based on the previously adjusted humidity esti-
mates and the 1 km ×1 km orography.

ERA-Interim humidity and longwave radiation are ver-
tically adjusted on a daily basis by consulting the daily
SeNorge T2. The method differs from that used in the con-
struction of the WFDEI and Princeton forcing data, where
the reanalysis T2 is adjusted to sea level and then to the
CRU grid elevation using a constant lapse rate, before ad-
justing it on a monthly basis to fit the monthly mean CRU T2.
The vertical adjustment of humidity makes use of the com-
mon approximation that relative humidity remains constant
with height (see, e.g., Feld et al., 2013), making it easy to
solve for a SeNorge2 compatible dew point temperature Td
based on ERA-Interim relative humidity (RH) and SeNorge2
T2. Humidity is corrected to saturation if supersaturation oc-
curs. Surface pressure is adjusted using an approximation of
the hypsometric equation. The vertical adjustment of long-
wave radiation is done by scaling an empirical expression for
clear-sky LW↓ to the SeNorge T2 and the previously com-
piled vertically adjusted humidity estimate. No consistent
approach is used in other forcing data sets when vertically
adjusting SW↓. Given that SW↓ is very sensitive to near-
surface humidity and that the Cosgrove (2003) method used
above adjusts humidity, we chose to scale the ERA-Interim
SW↓ to the ratio of estimated clear-sky transmissivity cal-
culated using an empirical equation from Thornton and Run-
ning (1999), taking into account the difference in altitude and
humidity in the two data sets. A clear-sky type correction ap-
proach is thus used to adjust both SW↓ and LW↓.

For consistency with SeNorge precipitation and T2, the
variables have a temporal resolution of a day, starting from
06:00 UTC. The data are currently compiled for the time pe-
riod 1979–2017 and cover the same domain as the SeNorge2
grid. The data compilation is described in detail in the Sup-
plement. The HySN data product is freely available from
Zenodo (https://doi.org/10.5281/zenodo.1970170), and the
Python code to generate the data is available on GitHub
(https://doi.org/10.5281/zenodo.1435555).
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Table 1. The following data sets provide estimates of humidity, LW↓, and SW↓, which are then evaluated. Precipitation is denoted as P ,
2 m temperature as T2. The global data sets are retrieved from online repositories, while the data sets with regional coverage are compiled
locally based on the stated input data, the VFD data sets using the VIC model’s preprocessor, and the HySN data set based on the methods
outlined in the current study. Additional references are given elsewhere in the text.

Product Resolution Coverage Type Processing methods Input data Surface obs.

M MERRA2 0.5◦× 0.66◦ Global Reanalysis No

E ERA-Interim 0.66◦× 0.66◦ Global Reanalysis Yes

P PGMFDv2 0.5◦× 0.5◦ Global, Post- VP, LW↓ re-gridded and NCEP-NCAR (2◦× 2◦), Yes
land processed adjusted to monthly CRU T2, CRU TS3.1 T2 & cloud cover,
only reanalysis method from Cosgrove (2003). NASA MEaSUREs

SW↓ & LW↓ adjusted to LW↓ & SW↓
satellite-based data set

W WFDEI 0.5◦× 0.5◦ Global, Post- VP, LW↓ re-gridded and ERA-Interim, Yes
land processed adjusted to monthly CRU T2, CRU TS3.1 T2 (1979–2009),
only reanalysis method from Cosgrove (2003). CRU cloud cover and

SW↓ re-gridded and adjusted aerosol loading
to CRU cloud cover &
interannual aerosol loading

H HySN 1 km×1 km Regional, Post- VP, LW↓ re-gridded and ERA-Interim, Yes
locally processed adjusted to daily SeNorge2 T2, SeNorge2 T2
compiled reanalysis method from Cosgrove (2003).

SW↓ re-gridding and adjustment,
method from
Thornton and Running (1999)

V1 VFDv1 1 km×1 km Regional, Empirical The VIC4.0.6 preprocessor: SeNorge P & T2, Yes
locally model MTCLIMv4.2, & Nora10 sub-daily T2
compiled TVA+Bras LW↓

V2 VFDv2 1 km×1 km Regional, Empirical The VIC4.2.d preprocessor: SeNorge2 P, T2min, & T2max Yes
locally model MTCLIMv4.3, &
compiled Prata+Deadroff LW↓

2.6 VIC type forcing data, VFDv1, and VFDv2

The humidity and radiation estimates referred to here as VIC
type forcing data (VFD) (see, e.g., Bohn et al., 2013; Pierce
et al., 2013) are products of the VIC model’s preprocessor.
The VIC model includes the option to generate gridded hu-
midity and radiation from gridded daily precipitation and
maximum and minimum temperature. The VIC model pre-
processor includes a slightly modified version of the MT-
CLIM model and algorithms for estimating longwave radi-
ation. The MTCLIM algorithms included in the VIC pre-
processors to estimate humidity use a modified version of
the Magnus formula with daily minimum temperature used
as a proxy for Td (Kimball et al., 1997). Shortwave radia-
tion is estimated using the Thornton and Running algorithm
(Thornton and Running, 1999). The variables are estimated
simultaneously; i.e., the algorithms supply each other with
information (Bohn et al., 2013).

Two versions of VFD are evaluated in this study. The first
version, from here on called VFDv1, uses daily precipita-
tion and mean temperature from SeNorge version 1.1 (Tveito
and Førland, 1999; Mohr, 2008), supported by hourly tem-

perature fields from a regional atmospheric reanalysis data
set, NOrwegian ReAnalysis (NORA10, Reistad et al., 2011),
with a resolution of about 11 km to compile maximum and
minimum temperature using a method similar to Vormoor
and Skaugen (2013). The VIC4.0.6 preprocessor is used with
default options, i.e., a modified version of MTCLIM4.2, and
the TVA clear-sky and Bras full-sky LW↓ algorithm (Bras,
1990).

The second version of VIC type forcing data, from here
on called VFDv2, is based on slightly different input data,
i.e., precipitation and mean, maximum, and minimum tem-
perature from a newer version of the 1 km by 1 km SeNorge
data, SeNorge2 (Lussana et al., 2018a, b). The VIC4.0.6 pre-
processor is used with default options, i.e., a modified ver-
sion of MTCLIMv4.3, and with LW↓ estimates based on the
Prata (1996) clear-sky algorithm combined with the Dear-
dorff (1978) full-sky algorithm (for further references see
Bohn et al., 2013).
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3 Study area

Norway is located in the receiving end of the westerlies that
pass over the North Atlantic. This, combined with a long
coast lined with mountains provides Norway with 1500 mm
of precipitation a year, with distinct regional differences in
precipitation amounts received. Although almost 40 % of
Norway is covered by forest, evaporation from the land sur-
face is estimated to be less than a fourth of the received
precipitation (Hanssen-Bauer et al., 2009). Most of Norway
will normally have snow cover in the winter season, with the
length of the snow season varying from a few days to 300 d a
year (dependent on latitude, elevation, and distance from the
coast). Mean temperature (1971–2000) is 1.3 ◦C, and varies
from 7 ◦C near the coast in southern Norway to −4 ◦C in the
mountains. Between 1976 and 2014 T2 increased by half a
degree Celsius per decade (Hanssen-Bauer et al., 2017).

4 Surface observations

The model estimates and observational data are compared
between 1982 through 1999. The observational data include
humidity measurements from 84 sites, SW↓ observed at 10
sites, and LW↓ observed at two sites. The comparison of the
model estimates of incident radiation with stations data is
only made possible by including observations from agricul-
tural stations and applying quality control routines. The ob-
servations are gathered from the University of Bergen (UiB,
SW↓ and LW↓ measurements), and from the Norwegian
Meteorological Institute’s repository for observational data,
which also includes measurements from agricultural stations
conducted by the Norwegian Institute of Bioeconomy Re-
search (NIBIO). The locations of the stations used in the
comparison with the model estimates are shown in Fig. 1.

4.1 Humidity

Humidity observations from 84 stations are included in the
study (see Fig. 1). A minimum of 5 years of daily data was
necessary for the station data to be included; however, most
stations have the complete station record (18 years) avail-
able. The observations, once converted to vapor pressure,
have an uncertainty ranging from around 5 % at 20 ◦C to 6 %
at −20 ◦C (Gabriel Kielland, personal communication, MET
Norway, 2019). The latitude, longitude, altitude, distance to
the ocean, and the start and end date of the time series are
given for each station in the Supplement (Tables S1 and S2).

4.2 Shortwave radiation

The location of the 10 stations included in the evaluation of
modeled SW↓ is displayed in Fig. 1 and covers a latitudinal
range from 58.8 to 69.7◦ N. Seven of the stations are agri-
cultural stations managed by NIBIO. The latitude, longitude,
altitude, distance to the ocean, the start and end date of the

Table 2. An overview of the automatic quality control tests, based
on the relative values of the solar zenith angle (SZA), measured
(SWraw ↓), extraterrestrial (SWE ↓), and clear-sky (SWCS ↓) inci-
dent global radiation. The table is adapted from Table 4.1.1 in Grini
(2015).

Name Quality requirement Quality procedure

Offset SWraw ↓≤ −12 Wm−2 Visual control
SWraw ↓< 6 Wm−2 if SZA< 93◦ of flagged data

Upper SWraw ↓< SWE ↓ Flagged
bound 1 as erroneous
Upper SWraw ↓≤ 1.1 SWCS ↓ if SZA< 88◦ Flagged as
bound 2 SWraw ↓≤ 2 SWCS ↓ if SZA≥ 88◦ erroneous
Lower µ

SWraw↓
SWE↓

≤ 0.03 The day flagged
bound 1 as erroneous
Lower SWraw ↓≤ 10−4 (80 SZA) SWE ↓ Flagged as
bound 2 if SZA≤ 80◦ erroneous

time series, and the percentage of flagged data are given for
each station in the Supplement (Table S3). The number of
days of data used in the validation varies from 5.6 years for
Gjengedal to more than 17 years for Bergen.

Most stations measure global radiation with a Kipp & Zo-
nen CM11 thermoelectric pyranometer. The estimated uncer-
tainty of hourly and daily totals of CM11 may be as low as
3 % in optimal conditions (Grini, 2015). Daily global SW↓
measurements from Bergen station (UiB) are included in
the World Radiation Data Centre (WRDC) and are quality-
controlled by the data provider (UiB, A. Olseth). The daily
estimates have an uncertainty of 3.5 % (Parding et al., 2016).
Measurement errors and uncertainty may depend on sensor
calibration, placement (e.g., sky-view), the temporal resolu-
tion of the measurements, cleaning of the pyranometer, and
local weather conditions.

For stations other than Bergen, quality control procedures
follow the methodology suggested by Grini (2015) as out-
lined in Table 2. This procedure involves running rtmrun
(Godøy, 2013); a Perl wrapper around Libradtran 1.7 (Mayer
and Kylling, 2005); a library for radiative heat transfer to pro-
vide solar zenith angle (SZA), extraterrestrial (SWE ↓), and
clear-sky (SWCS ↓) incident shortwave radiation for each
station location; and the Python scripts developed in Grini
(2015) to screen and flag the data based on automatic quality
control tests. Measurements exceeding the upper and lower
bounds given in Table 2 were flagged. Additionally, all sta-
tion time series were visually inspected at hourly, daily, and
monthly levels in order to flag erroneous data not captured by
the automatic routines, with emphasis on data points marked
as suspicious due to large hourly increments or very high or
low variation in the ratio of observed to extraterrestrial ra-
diation. Figure 2 shows the mean monthly values of SZA,
SWE ↓, SWCS ↓, the raw measured values (SWraw ↓), and
values passing the quality control routines (SWQC ↓) for
Løken station.
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Figure 1. Panels (a)–(e) show the orography and land mask of MERRA2 (a), ERA-Interim (b), PGMFDv2 (c), WFDEI (d), and SeNorge (c),
respectively, visualized on the SeNorge UTM33 grid with a green–brown color scheme. For reference, national borders and the coastline
derived from a high-resolution data set are delineated in black. The locations of the 84 VP stations used in the model comparison are denoted
with red crosses in (f). The locations of SW↓ and LW↓ stations are marked in (g) with red and orange markers, respectively. Note that the
southernmost LW↓ station also measures SW↓. The last map (h) displays the difference in meters between the SeNorge and ERA-Interim
orography in common land areas. Higher elevations in SeNorge are indicated with red, while blue indicates higher elevations in ERA-Interim.

Figure 2. Estimated and measured shortwave radiation (Wm−2)
at Løken station (61.1◦ N, 9.1◦ E) for the period January 1991
to December 1999. Mean monthly solar zenith angle (SZA),
(global) shortwave incident radiation at the top of the atmo-
sphere (SWE ↓), modeled clear-sky incident shortwave radiation
SWCS ↓), and station measurements of incident shortwave radiation
before (SWraw ↓) and after (SWQC ↓) quality control are shown.

In the calculation of daily means, values were flagged as
erroneous and subsequently excluded from the validation if
more than two hourly data points were flagged or missing
during daytime. The number of discarded days varied from
4 % at Kise to 29 % at Tromsø.

4.3 Longwave radiation

Bergen station and Voll station (Trondheim), denoted with
orange markers in Fig. 1g, have observations of incident
longwave radiation available for the time period considered.
The lack of LW↓ measurements is not an uncommon chal-
lenge (see, e.g., Carrer et al., 2012). The stations’ latitude,
longitude, distance to the coast, and the start and end date of
the data used are listed in the Supplement (Table S3). Both
measurement stations are located within 5 km of the coast
(see Fig. 1). The measurements from Bergen are managed
and quality-controlled by UiB. In the first part of the pe-
riod they are from a Schulze radiation balance meter, while
later in the period they are from an Eppley pyrgeometer.
The sensors are placed on the roof of UiB. The observation
station at Voll, Trondheim, was managed by MET Norway
from March 1996, until it was shut down. The Trondheim
measurements are from a Kipp & Zonen CG 1 pyrgeome-
ter located on the ground. At both stations unshaded sensors
were used, possibly leading to slight overestimation due to
solar near-infrared radiation contamination (overestimations
of 10 % on cloud-free days were found in de Oliveira et al.,
2006; Meloni et al., 2012). The data were quality-controlled
by visual inspection for spikes and jumps and by compar-
ing the consistency between the two time series. The Stefan–
Boltzmann blackbody longwave radiation was set as an up-
per limit of the measurements, using the air temperature from
the station. If more than 2 h were missing or flagged during
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a day, observations from that day were omitted in the subse-
quent validation.

5 Evaluation methods

Daily estimated values are compared to station observations.
The nearest model grid cell is selected from the data sets
without interpolation, to avoid introducing spatial or tempo-
ral smoothing of the meteorological fields (see Hofstra et al.,
2010; Gutmann et al., 2012). This study specifically looks
into the altitudinal dependence of the humidity and surface
incident radiation estimates, and as a starting point the es-
timates without adjustment to the observation stations’ alti-
tudes are used.

5.1 Vertical adjustment to station altitude

Prior to the comparison of the model estimates with the sta-
tion observations, the observations and model estimates of
VP and SW↓ were analyzed using multiple linear regression
with geographical features as predictors, in order to find ver-
tical gradients so that the model estimates could be adjusted
to station altitude. The geographical predictors used were al-
titude (either the stations’ altitude or, for the models, the alti-
tude of the nearest-neighbor grid cell to the stations), latitude
above 57◦ N, and distance to the coast, which was calculated
in Python using the Haversine distance from the station to
the coastline, extracted from a coastline data set (Wessel and
Smith, 1996) that is available via the Matplotlib Basemap
Toolkit, implemented at a coarse resolution to not include
large inland lakes. The limited number of SW↓ measure-
ment stations and the varying temporal availability of high-
quality observational data made an evaluation of the altitu-
dinal dependence of the SW↓ more demanding. The SW↓
data were first converted to clearness index (CI), which de-
scribes the daily incident shortwave radiation fraction of the
potential extraterrestrial radiation at the local position and
time (SW↓ /SWE ↓), and then daily data of over 1000 con-
current measurements from eight stations were used in the
regression.

The model estimates were adjusted to station altitude by
multiplying their grid cell values with the difference in alti-
tude to the observation station and a vertical adjustment gra-
dient. For each model the vertical adjustment gradients were
computed as the mean of coefficients found for the model in
question and those found for the observational data, linearly
interpolated from a seasonal to a daily frequency. A similar
regression model was constructed to find vertical gradients in
LW↓ using a well-performing data set in lieu of observations
due to the limited number of LW↓ observation stations.

5.2 Evaluation metrics

Seasonality and aggregated means are assessed by plotting
the mean monthly station values for the observations and

models. The differences between the model estimates and ob-
servations at individual stations are displayed in heat maps.
For each variable a table is provided listing several metrics.
The tables list the following variables for each model:

1. 1= µstation,model−µstation,observation, the mean (µ) of
the station differences;

2. |1| = |(µstation,model−µstation,observation)|, the mean of
the station absolute differences;

3. |δ|max =max(|µstation,model−µstation,observation|), the
largest absolute difference at any station;

4. |δs
|max =max(|µseason,station,model−

µseason,station,observation|), the largest absolute differ-
ence found at any station in any season.

Also listed are the mean daily anomaly correlation coef-
ficient (ACC), i.e., the daily Pearson correlation coefficient
of the time series where the observed day-of-year mean is
subtracted and the number of stations where the cumulative
distribution of daily mean estimates passes (p > 0.001), and
finally the Kolmogrov–Smirnov test of similarity with the cu-
mulative distribution of the observations. The Kolmogrov–
Smirnov test returns the probability that the underlying one-
dimensional probability distributions are the same (H0). The
similarity between the models and observations on a daily
frequency is visualized in Taylor plots, where the normal-
ized standard deviation, the root-mean-square error, and the
correlation coefficient of the de-seasonalized time series are
displayed. The time series are de-seasonalized by subtract-
ing the observed day-of-year climatology. The correlation
coefficient thus corresponds to a non-centered version of the
anomaly correlation coefficient (ACC).

5.3 Evaluation of geographical gradients

In order to see if the geographical dependencies of the model
estimates of humidity and shortwave radiation differ signifi-
cantly from those seen in the observational data, similar mul-
tiple linear regression models as those previously constructed
to find vertical gradients are used. The predictors are the sea-
son, altitude (z), latitude above 57◦ N, and distance to the
coast (C). The regression is first performed separately for
each model and for the observations. However, a second it-
eration of regression is performed for each of the models,
where the input data are composed of the observational data
and model data are appended together with the data sources
indicated. The data source is then used as a categorical pre-
dictor allowed to interact with any of the model coefficients.
Significance of the interaction term, e.g., between latitude
and model source, will indicate that the model’s latitudinal
gradient is significantly different from the gradient seen in
the observations.
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5.4 Air mass type sensitivity

The differences between the model estimates and observa-
tions are also inspected for an air mass type dependence.
Bower et al. (2007) found significant decreases in the fre-
quencies of dry moderate and dry polar air mass types at
Bergen (Flesland) between 1974 and 2000. If the precision
of the model estimates is dependent on air mass type, the
derived changes in the variables with time may be less ro-
bust if the frequencies of the air mass types also change
with time. The spatial, synoptic air mass type classification
has been constructed for 48 stations in Europe and 7 sta-
tions in Norway (Sola, Flesland, Fornebu, Ørlandet, Bodø,
Tromsø, and Slettnes) by Bower et al. (2007), according to
the methods developed in Sheridan (2002) and Kalkstein
et al. (1996). The categorization is done by using sub-daily
surface observations of temperature, dew point, wind, pres-
sure, and cloud cover at individual stations (often airports).
The synoptic weather-typing classifies the local air mass con-
ditions into the categories DP (dry polar), DM (dry moder-
ate), DT (dry tropical), MP (moist polar), MM (moist mod-
erate), MT (moist tropical), and TR (transitional). The dry
weather types are associated with clearer conditions, while
the moist weather types are associated with clouds and higher
humidity. TR days are defined by large shifts in the synop-
tic variables, i.e., days where the weather type is changing.
The MT weather type is often found in the warm sectors of
cyclones, while the MP and MM type may be found in the
vicinity of a front or in air transported inland from a cool
ocean.

5.5 Comparison of trends

The year 1985 is considered the start of the SW↓ brighten-
ing period in Europe after a period of SW↓ dimming due to
aerosol emissions (see, e.g., Wild et al., 2005). For time se-
ries of a sufficient length and quality, the observational data
and the model data are inspected for trends. Stations that
have less than 10 % missing daily data between January 1985
and December 1999 are considered, and trends are calcu-
lated for each calendar month using the Mann–Kendall test
and by calculating the Sen slope (Hirsch et al., 1982). The
analysis is done using the R software and functions within
the “trend” package (Pohlert, 2018). A total of 59 humid-
ity stations meet the criteria and are grouped into five geo-
graphical regions, southwest (SW, stations with < 61.8◦ N,
< 8◦ E), southeast (SE, stations with < 61.8◦ N, > 8◦ E),
central (C, 61.8> ◦ N< 64◦ N), northwest (NW, > 64◦ N,
< 20.6◦ E), and northeast (NE,> 64◦ N,> 20.6◦ E) when as-
sessing trends. For SW↓ and LW↓ only the station in Bergen
(UiB) meets the criteria. For consistency the humidity obser-
vations from Bergen-Florida are inspected for trends as well.

6 Comparison between existing long-term estimates
and the new hybrid approach, HySN

Daily estimates of near-surface humidity and SW↓ and LW↓
from MERRA2, ERA-Interim, PGMFDv2, WFDEI, VFDv1,
VFDv2, and HySN (see Table 1) from 1982 to 1999 are first
inspected for vertical gradients in order to adjust the model
estimates to station altitude in the following. Further, the es-
timates’ quality on a multi-annual timescale is assessed by
considering their mean and absolute deviations from station
measurements. The model estimate’s distribution is assessed
by comparing their daily cumulative distribution to that of the
station observations. The estimate’s similarity to the obser-
vations on a daily timescale is considered by inspecting the
anomaly correlation coefficient, i.e., their daily correlation
with the measurements after the seasonal cycle has been sub-
tracted, and by considering if their differences to station mea-
surements show sensitivity to the local daily air mass type,
which has been classified for seven Norwegian stations by
Bower et al. (2007). For humidity and SW↓, the geographical
gradients in the models are compared with those in the obser-
vations using multiple linear regression. A separate subsec-
tion presents modeled and observed trends in each calendar
month from 1985 to 1999. Humidity trends are compared af-
ter grouping the observations and model estimates into five
regions, while SW↓ and LW↓ are computed for Bergen, the
only location where long-term measurements of SW↓ and
LW↓ are available within the time period with little missing
data.

6.1 Humidity

The model estimates of near-surface humidity are compared
against humidity observations from 84 stations. The observa-
tion stations used in the validation of humidity are located on
average 200 m below the coarse-scale grid cell elevation, i.e.,
in the fjords and on the coast rather than in the surrounding
terrain.

6.1.1 Vertical gradients in humidity

Multiple linear regression of seasonal mean humidity at the
location of the humidity stations shows that altitude is a sig-
nificant predictor of humidity in the observations and all
models (see Sect. S2 of the Supplement). The vertical gra-
dient in the observations is close to the moist adiabatic lapse
rate but varies considerably with season and distance to the
coast (C). On average, dew point temperature decreases by
5.2 ◦C km−1 increase in altitude in summer and freeze point
temperature decreases by 4.4 ◦C km−1in winter. Regression
based on vapor pressure is found to give smaller relative er-
rors than regression based on dew point temperature. This
is because dew point temperature has a higher sensitivity to
temperature at low temperatures. The observed vertical gra-
dient in vapor pressure is −0.39 hPa per 100 m in summer
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and −0.24 hPa per 100 m in winter, and the vertical gradient
is weakened by 0.11 hPa per 100 m every 100 km away from
the coast.

The vertical gradients in the humidity data differ depend-
ing on the data source; e.g., the estimates from PGMFDv2
and WATCH show a weaker decrease with altitude than the
observations and other models. For each model the vertical
gradients are computed as the mean of the seasonal coeffi-
cients found in the regression analyses of the model in ques-
tion and the observations, linearly interpolated from a sea-
sonal to a daily frequency. The altitudinal adjustment results
in a mean difference in humidity, expressed as dew point tem-
perature (Td) of about 1 ◦C for the coarse-scale models and
about 0.06 ◦C for the estimates with a 1 km×1 km resolu-
tion. The largest adjustment is an increase in MERRA2’s Td
of 7.3 ◦C at Tafjord station, where the model’s orography is
1154 m above the station altitude.

6.1.2 Differences of humidity estimates to station
observations

The seasonal cycle of the observations and models (adjusted
to station altitude) is shown in Fig. 3a. The largest devia-
tions are seen in the period of highest humidity, i.e., during
summer. The signs of the average deviations are consistent
throughout the year. PGMFDv2 (denoted with P), MERRA2
(M), and to some degree ERA-Interim (E) and WFDEI (W)
show larger estimates than the observations, whereas VFDv1
(V1) and VFDv2 (V2) generally show lower estimates. The
HySN (H) estimates follow the mean monthly values of the
observations closely. This is also evident in Table 3, where
summary of statistics for the humidity estimates presented,
and HySN shows a mean station error in Td of just 0.1 ◦C.
An aggregated mean similar to the observations does not en-
sure small deviations from the measurements at individual
stations.The VFD estimates have the second smallest devia-
tion in aggregated mean (1); however, when considering the
average absolute deviation (|1|) HySN, WFDEI, and ERA-
Interim perform better than VFD.

Differences between the model estimates and the station
measurements of humidity, expressed as dew point temper-
ature, are depicted for each station, sorted from south (up-
per y axis) to north (lower y axis) in Fig. 4. The mean ab-
solute difference (|1| or MAE) varies from 0.7 ◦C for the
HySN estimates to 1.8 ◦C for the PGMFDv2 estimates. The
largest deviation occurs at an inland station, Fagernes, where
PGMFDv2 Td estimates a 5.4 ◦C higher Td than observed.
The figure suggests a latitudinally dependent bias for certain
models, and this is further explored in the following subsec-
tion by evaluating the models’ geographical gradients.

The humidity estimates are evaluated on a daily basis by
de-seasonalizing the time series (subtracting the observed
day-of-year mean). Figure 5 shows, for each model, the de-
seasonalized time series of humidity, the mean temporal cor-
relation coefficient (now equivalent to the anomaly corre-

Table 3. Summary of metrics showing the humidity estimates’
similarity to station observations. Differences (1) are given in
dew point temperature in degrees Celsius. 1 is the mean station
difference, |1| is the mean absolute station difference, |δmax| is
the largest absolute difference at any station, while |δs

|max is the
largest seasonal difference at any station. ACC is the anomaly (de-
seasonalized) daily correlation coefficient, while K-S indicates the
number of stations where the daily mean cumulative distribution
passes the Kolmogrov–Smirnov test of similarity (p > 0.001). The
best scores are shown in bold.

Model 1 |1| |δ|max| |δ
s
|max ACC K-S

MERRA2 1.4 1.5 4.1 4.7 0.79 0 %
ERA-Interim 0.9 1.0 3.7 4.4 0.86 10 %
PGMFDv2 1.7 1.8 5.4 6.2 0.52 0 %
WFDEI 0.7 0.9 3.3 3.9 0.85 15 %
VFDv1 −0.7 1.0 −4.2 −6.1 0.58 5 %
VFDv2 −1.0 1.2 −5.3 −7.2 0.66 3 %
HySN 0.1 0.7 2.8 3.7 0.83 15 %

lation coefficient, ACC), the mean normalized root-mean-
square error, and the mean standard deviation in a Taylor
plot. Figure 5a visualizes the mean station metrics for the
de-seasonalized time series of humidity. The estimates from
ERA-Interim and post-processed ERA-Interim (HySN and
WFDEI) are closest to the observations and show similar re-
sults. MERRA2 also shows a high ACC. PGMFDv2, which
is based on an older reanalysis with lower spatial resolution,
and the VIC type estimates show slightly poorer results, with
an ACC ranging between 0.5 and 0.7 (see also Table 3).

6.1.3 Evaluation of geographical humidity gradients

Multiple linear regression models are fitted to seasonal mean
humidity with the four seasons as categorical predictors,
where fall (autumn) is the baseline season in the model. The
geographical predictors considered are altitude (z given in
kilometers), latitude (above 57◦ N), and distance to the coast
(C, given in per 100 km increments). Further, interactions
between altitude and season and between altitude and con-
tinentality are included. Each model is paired with the obser-
vational data in a common regression model where the data
source is included as a categorical predictor.

Figure 6 displays the regression coefficients for the ob-
servations and the coefficients for the models if they are
significantly different (p < 0.01) from those of the obser-
vations. Higher significance is marked with a darker color.
The HySN estimates have similar coefficients to the obser-
vations. The regression shows (Fig. 6) that MERRA2 and
PGMFDv2 have significantly higher intercepts (higher fall
mean values at the coast of southern Norway) than the obser-
vations. MERRA2 further shows a stronger latitudinal gradi-
ent and a much weaker decrease in humidity with distance
from the coast than the observations. In addition to having
a higher intercept than the observations, PGMFDv2 shows a
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Figure 3. The seasonal cycles of monthly 2 m vapor pressure (a), incident shortwave radiation (b), and incident longwave radiation (c),
averaged over the location observations are available. The month of the year is denoted on the horizontal axis. The observations (O) are
plotted with a thick, continuous black line. MERRA2 (M, solid) and ERA-Interim (E, dashed) are plotted in red, PGMFDv2 (P, solid) and
WFDEI (W, dashed) in blue, VFDv1 (V1, solid) and VFDv2 (V2, dashed) in orange, and HySN (H) with a dashed lilac line.

Figure 4. For each station, sorted from south to north (y axis), and each model (x axis) the differences between the modeled and observed
station mean dew point temperature (a), incident shortwave radiation (b), and incident longwave radiation (c) are shown.

more pronounced seasonal dependency, a weaker continen-
tal gradient, and a 50 % stronger latitudinal gradient than the
observations. VFDv1 and VFDv2 show a more than 60 %
more pronounced decrease in humidity with continentality
than the observations. VFDv2 also shows a weaker increase
in humidity in summer than the observations.

6.1.4 Air mass type sensitivity of humidity deviations

In Fig. 7a the daily deviations of the humidity estimates are
grouped according to the location’s daily air mass type clas-
sification (SSC type; see Sect. 5). The classification is avail-
able for Sola, Fornebu, Flesland, Bodø, Tromsø, and Slet-
tnes stations and the humidity observations considered are
from Saerheim, Aas, Bergen, Bodø, Tromsø, and Kirkenes
stations. All the estimates are too humid in dry weather
types. The PGMFDv2 and VFDv2 estimates show consid-
erable overestimations of humidity in dry weather types and
underestimations in moist weather types. The lack of range is
consistent with the lower normalized standard deviation seen
in the Taylor plot (Fig. 5a). The ERA-Interim, WFDEI, and
HySN differences also show a slight sensitivity to air mass

type but much less than the VFDv1, VFDv2, MERRA2, and
PGMFDv2.

6.2 Incident global shortwave radiation (SW ↓)

SW↓ observations from 10 sites on the Norwegian mainland
are considered. At most locations the coarse-scale models’
corresponding grid cells have an altitude 300–400 m above
station altitudes.

6.2.1 Vertical gradients in clearness index (CI)

Multiple linear regression was used to provide a vertical
gradient in SW↓, expressed as clearness index (CI, i.e.,
the fraction of SW↓ of the extraterrestrial incoming radi-
ation, SW↓E), in order to adjust the estimates to the sta-
tions’ altitudes. Multiple linear regressions, including both
continentality and altitude as predictors resulted in altitu-
dinal coefficients varying in both magnitude and sign for
the different models and observations (not shown). This was
likely because the correlation between altitude and conti-
nentality varies between 0.56 and 0.86 depending on the
data source. Excluding continentality from the predictors

www.earth-syst-sci-data.net/11/797/2019/ Earth Syst. Sci. Data, 11, 797–821, 2019

141



808 H. B. Erlandsen et al.: Humidity and incident radiation estimates

Figure 5. Taylor plots depicting the standard deviation ratio and correlation coefficients (ACCs) for the de-seasonalized time series of vapor
pressure (a), incident shortwave radiation (b), and incident longwave radiation (c).

Figure 6. Seasonal and geographical dependencies of seasonal humidity (a) and daily clearness index (b) are depicted. The row names
are the names of the coefficients, including the intercept (I), of the multiple linear regression model. The regression coefficients of the
observational data are shown in the leftmost column of each plot, while the coefficients found for the model estimates are only shown if they
are significantly different from those of the observations (using a limit of p < 0.01 for humidity and p < 0.05 for CI). Lower p values are
indicated with darker colors using a logarithmic color scale (log10(p)).

provided vertical CI gradients with a consistent sign. The
observations show vertical CI gradients of 0.020/100 m in
winter, 0.013/100 m in spring, 0.005/100 m in summer and
0.003/100 m in fall (see Fig. 6b). The observed SW↓ thus
increases, on average, with altitude in all seasons.

The effect of adjusting the model estimates to sta-
tion altitude is an average reduction in SW↓ of 0.7–
1.5 Wm−2 for the coarse-scale models (MERRA2, ERA-
Interim, PGMFDv2, and WFDEI) and a reduction of merely
0.1–0.3 Wm−2 for the models with a 1 km×1 km grid
(VFDv1, VFDv2, HySN). The largest adjustment is a mean
reduction of the PGMFDv2 SW↓ estimate of 4 Wm−2 at a
station in southeastern Norway (Gjengedal).

6.2.2 Differences of SW↓ estimates to station
observations

The mean monthly model estimates of SW↓ averaged over
all 10 stations, after adjustment to station altitude, are vi-

sualized in Fig. 3b. In winter the deviations are small, but
in spring and summer all models except VFDv1 overesti-
mate SW↓. The MERRA2 SW↓ is on average 35 Wm−2

higher than the observations in July, and the VFDv2 SW↓ is
29 W m−2 higher than the observations in both June and July.
ERA-Interim, WFDEI, and HySN show the largest overesti-
mations in May, a month when solar radiation is high and
snow cover is variable.

Figure 4b depicts the mean difference between the model
estimate and the observations of SW↓ at individual sta-
tions. At half of the stations the mean difference between
the WFDEI and HySN and the observations is lower than
the measurement uncertainty of newer pyranometers in opti-
mal conditions (Sect. 4). The figure further shows that most
models consistently overestimate SW↓. This is not true for
VFDv1. While VFDv1 has the second lowest mean monthly
deviation (Fig. 3), its mean absolute difference is larger, on
average 10 Wm−2. This is also evident in Table 4 where sum-
mary statistics for the SW↓ estimates are presented.
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Figure 7. Differences between model estimates and observed values binned according to the daily air mass type, classified for nearby
stations within Norway (Bower et al., 2007). The air mass types are dry polar (DP), dry moderate (DM), dry tropical (DT), moist polar (MP),
moist moderate (MM), moist tropical (MT), and transitional (T). Panel (a) shows the mean difference in vapor pressure for Saerheim, Aas,
Bergen, Bodø, Tromsø, and Maze stations. Panel (b) shows differences between model estimates and observed incident shortwave radiation
at Saerheim (Sola airport), Aas (Fornebu airport), Bergen (Flesland airport), and Trondheim (Ørland airport). Panel (c) depicts differences in
incident longwave radiation binned according to air mass type in Bergen (Flesland airport) and Trondheim (Ørland airport).

Table 4. As in Table 3 but with metrics listed for SW↓. Except
for ACC and K-S, which are dimensionless, the units are given in
Wm−2.

Model 1 |1| |δ|max |δs
|max ACC K-S

MERRA2 13 13 32 49 0.73 10 %
ERA-Interim 4 4 19 20 0.78 60 %
PGMFDv2 11 11 19 38 0.31 0 %
WFDEI 2 4 8 19 0.76 60 %
VFDv1 −4 10 −23 −62 0.48 10 %
VFDv2 9 10 26 54 0.40 20 %
HySN 3 4 9 20 0.78 70 %

Table 4 shows that at individual stations seasonal devi-
ations in model estimates from station observations are as
large as −62 W m−2. The large underestimation is found in
VFDv1 and not VFDv2 at a coastal station in northern Nor-
way, Bodø. Also listed in the table is the percentage of sta-
tions where the daily model estimate, adjusted to station al-
titude, passes the Kolmogorov–Smirnov test of similarity of
their cumulative distribution with the observations, which is
zero cases for PGMFDv2 and 70 % for HySN.

The similarity of the model estimates to the obser-
vations at a daily frequency is visualized in a Taylor
plot (Fig. 5b). As also seen for the humidity estimates,
PGMFDv2, VFDv1, and VFDv2 have lower ACCs (31 %–
48 %) than the estimates based on newer reanalysis data
(73 %–78 %). PGMFDv2 in particular shows a variance at
a daily frequency that is considerably smaller than the obser-
vations.

6.2.3 Evaluation of geographical gradients in clearness
index

Similar to what has been done for humidity, the observations
and the corresponding vertically adjusted model estimates of
daily CI are compared using multiple linear regression. The
seasons, latitude, and altitude are used as predictors, includ-

Figure 8. Mean daily clearness index (CI) during winter (a) and
summer (b) is depicted in violin plots, where the kernel density dis-
tribution of the observations and each model is shown, mirrored
across the y axis. The observed median value is drawn with a blue
solid line.

ing interaction between season and latitude and between sea-
son and altitude. Figure 6b shows the regression coefficients
of the observational data in the leftmost column. The coef-
ficients found for the model estimates are only displayed if
they are significantly different (p < 0.05) from those of the
observations. Larger differences (log10(p)) are marked with
a darker color.
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The estimated intercept of PGMFDv2 stands out in the
plot. It is 40 % higher than the estimated intercept of the ob-
servations. The second most evident difference is the lati-
tudinal gradient in both VFDv1 and VFDv2, which is sev-
eral times stronger than observed. PGMFDv2 also shows a
stronger latitudinal gradient than observed. Other notable dif-
ferences are the estimated summer CI values of MERRA2,
which are considerably higher than those seen in the obser-
vations.

6.2.4 Air mass type sensitivity of SW↓ deviations

Figure 7b shows the differences between the models’ SW↓
estimates and observations at Aas, Saerheim, Bergen-GFI,
Bodø, and Tromsø stations, grouped according to the weather
type at nearby weather stations (Fornebu, Sola, Flesland,
Bodø, and Tromsø, respectively). All models except VFDv1
show positive SW↓ deviations during weather types classi-
fied as moist, which occur most frequently. In the less preva-
lent dry weather types all models except MERRA2 show
slightly lower estimates than observed. The largest underes-
timations are seen for the VFDv1 estimates. Further, the de-
viations of PGMFDv2, VFDv1, and VFDv2 show a stronger
dependency on weather type than MERRA2, ERA-Interim,
WFDEI, and HySN. The MERRA2 SW↓ estimates are, how-
ever, overestimated during all weather types. The WFDEI
SW↓ estimates show considerable deviations from the ERA-
Interim estimates, with larger underestimations found during
both dry polar and dry tropical weather types, and consid-
erably lower overestimations found on days classified with
a moist tropical weather type. Grouping the clearness in-
dex into either dry or moist and transitional weather types
shows that the observed CI decreases on average by 0.22
in moist and transitional types. A similar decrease is seen
in MERRA2, ERA-Interim, WFDEI, and HySN but not in
VFDv1 and VFDv2 (−0.12) or PGMFDv2 (−0.05). The
summer and winter distributions of clearness index at the
stations considered are depicted in Fig. 8. It is evident that
PGMFDv2 spans a much smaller range of transmissivity than
observed in both summer and winter and that the VIC type
estimates have a bias towards low estimates and show less
variability than observed in winter.

Since both WFDEI and HySN are based on ERA-Interim,
and ERA-Interim shows overestimations of SW↓ in summer,
where observations were available, the differences in esti-
mated SW↓ in ERA-Interim and the observations were in-
spected for dependencies on differences in modeled and ob-
served cloud cover, near-surface humidity, and snow cover
using regression. The results varied with both season and lo-
cation but for the aggregated data significant dependence on
differences in observed and modeled 2 m humidity and snow
cover was found (with higher snow cover in the model as-
sociated with higher SW↓ estimates in the model), and in
the warm season larger overestimations were seen in ERA-
Interim when the model produced high clouds.

6.3 Incident longwave radiation (LW↓)

Only two stations have LW↓ observations available during
the validation period, Bergen-GFI (western Norway) and
Trondheim-Voll (central Norway); both are located near the
coast (see Fig. 1 and the Supplement). More than 17 years of
daily measurements are available from the Bergen-GFI sta-
tion, while at Trondheim-Voll only about 2 years of observa-
tions are available.

6.3.1 Vertical gradients in LW↓

Since only two stations have longwave observations, no al-
titudinal gradient can be inferred from the observations; in-
stead altitudinal gradients are taken from ERA-Interim. The
previous comparison of altitudinal gradients within the ob-
servations and models has shown that ERA-Interim has sim-
ilar altitudinal gradients to the observations. Further, ERA-
Interim has not previously been vertically adjusted. The ver-
tical gradients found ranged from −4.0 Wm−2 per 100 m in
December to −0.6 Wm−2 per 100 m in June, were weak-
ened by 0.20 Wm−2 per 100 m for every 10 km away from
the coast, and strengthened by 0.23 Wm−2 per 100 m for
every latitude north of 57◦ N. On average the vertical gra-
dients were around −4.5 Wm−2 per 100 m in winter and
−1.8 Wm−2 per 100 m in summer. The gradients were tem-
porally interpolated to day-of-year values and applied to the
models in order to adjust the estimates to the altitude of the
two observational stations. The largest change in the esti-
mates due to altitudinal adjustment is an average increase of
8.6 Wm−2 for MERRA2 when adjusted to the 278 m lower
altitude of Bergen station compared to MERRA2’s grid cell
altitude.

6.3.2 Differences of the LW↓ estimates to station
observations

Figure 3c depicts the mean monthly LW↓ at the two stations.
Summary statistics for the LW↓ estimates after adjustment to
station altitude are also presented in Table 5. At the two sta-
tions all models except WFDEI estimate lower values than
observed in all months. WFDEI, however, estimates on aver-
age 10–15 W m−2 more LW↓ than is observed from October
through January. The largest absolute differences are found
in MERRA2, where LW↓ is underestimated at 8 Wm−2 in
winter and at 25 Wm−2 midsummer. The remaining models
estimate 11 to 17 W m−2 less LW↓ than observed in summer,
and show smaller underestimations in winter.

The skill of the model estimates in capturing the day-
to-day variability in LW↓ is visualized in Fig. 5c, indi-
cating the correlation and normalized standard deviation
of the de-seasonalized time series. The estimates based on
newer reanalysis data, MERRA2, ERA-Interim, WFDEI,
and HySN have anomaly correlation coefficients around 0.8,
while PGMFDv2, VFDv1, and VFDv2 have lower ACCs
(46 %–60 %).
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Table 5. As in Table 3 but with metrics listed for LW↓. Except for
ACC and KS, which are dimensionless, the units are in Wm−2.

Model 1 |1| |δ|max |δs
|max ACC K-S

MERRA2 −14 14 −20 −24 0.81 0/2
ERA-Interim −8 8 −13 −14 0.79 1/2
PGMFDv2 −10 10 −12 −16 0.46 0/2
WFDEI 6 6 11 12 0.82 1/2
VFDv1 −9 9 −11 −15 0.51 0/2
VFDv2 −15 15 −17 −21 0.60 0/2
HySN −11 11 −15 −17 0.84 0/2

6.3.3 Air mass type sensitivity of LW↓ deviations

Figure 7c depicts the differences between the model’s LW↓
estimates and the observed values at Bergen and Trond-
heim stations, grouped according to the daily weather type
(classified at Flesland and Ørlandet stations). On days clas-
sified with moist or transitional weather types, all models
except WFDEI underestimate LW↓. PGMFDv2, VFDv1,
and VFDv2 clearly have weather-type-dependent devia-
tions from the observations, with underestimations in moist
weather types and smaller underestimations or even overes-
timations compared to the observations in dry weather types.
The MERRA2, ERA-Interim, WFDEI, and HySN estimates
largely show similar differences to the observed values in all
weather types. An additional comparison of the ERA-Interim
estimates at Bergen, where cloud observations are available,
showed no difference in average deviation in the estimates of
incident longwave radiation on common clear-sky days com-
pared to the remaining days (not shown). The lower estimates
of incident longwave radiation in ERA-Interim are thus not
likely to be primarily related to differences in cloud proper-
ties.

6.4 Modeled and observed trends in near-surface
humidity, SW↓, and LW↓ from 1985 to 1999

January 1985 is considered to be the start of the brighten-
ing period in Europe after a period of SW↓ dimming due to
aerosol emissions (see, e.g., Wild et al., 2005). In the fol-
lowing, where available, observations and co-located model
estimates are inspected for trends in near-surface humidity,
SW↓, and LW↓ from 1985 to 1999.

After screening the observational time series 59 humidity
stations are grouped into five geographical regions (south-
west (SW), southeast (SE), central (C), northwest (NW), and
northeast (NE); see Sect. 5). Table 6 lists the results of the
trend tests for each calendar month and region, listing only
the Sen slope if the Mann–Kendall trend test is significant
at a 5 % or 10 % level, with the latter denoted in italics. In
all regions except the northeastern part of Norway signifi-
cant increases in observed Td occurred in September from
1985 to 1999. The observations further show an increase in
Td in April in southern Norway, an increase July in the north-

eastern part of Norway, and a decrease in May Td in central
Norway. For southern and central Norway all of the models
capture the increase in September Td. The models reproduce
the observed trends in spring and in northern Norway to a
lesser degree.

Bergen is the only location in Norway where long-term
records of incident shortwave or longwave radiation are
available with little missing data within the time range.
Between January 1985 and December 1999, observations
from the University in Bergen show trends in annual SW↓
of 1.7 Wm−2 per decade (p < 0.1), while LW↓ decreases
with −8.4 W m−2 per decade (p < 0.001). At the nearly co-
located measurement station of the Norwegian Meteorolog-
ical Institute, at Bergen-Florida, annual dew point tempera-
ture has a trend of 1.2 ◦C per decade (p < 0.0001).

In individual calendar months larger trends were found.
Observed August mean SW↓ increased with 51 Wm−2 per
decade (Table 7). The observations also show modest, but
significant, increases in October and December. Apart from
WFDEI and VFDv1, which show no significant SW↓ trends,
the models reproduce a significant increase in SW↓ in Au-
gust, and no models show trends of the opposite sign during
the time period considered.

Monthly mean LW↓ in Bergen shows a significant de-
crease during several months of the year: the largest is found
in May, with −21 Wm−2per decade (Table 8). In August,
October, and December, months when concurrent increases
in shortwave radiation were found (Table 7), the observa-
tions show significant decreases in incident longwave radia-
tion. None of the models show equally strong negative trends
in monthly mean LW↓ in their corresponding grid cells.
MERRA2 and ERA-Interim show no significant trends dur-
ing the time period, whereas PGMFDv2, WFDEI, and HySN
exhibit one single month with a negative trend. Meanwhile,
VFDv1 and VFDv2 show weakly positive trends in Septem-
ber. The increasing trend in incident longwave radiation in
September in the VIC type estimates may be related to the
concurrent increase in humidity. All the models also show an
increasing trend in humidity in the grid cell covering Bergen
in September; however, the models generally show weaker
trends than observed at Bergen-Florida station (see Table 9).

7 Discussion

Historical estimates of humidity and incident shortwave and
longwave radiation have been compared to station observa-
tions from mainland Norway from 1982 through 1999. A
total of 84 stations provide vapor pressure (VP) observa-
tions, 9 stations provided SW↓ observations, while only 2
stations provided LW↓ observations. The estimates evalu-
ated are from two reanalysis data sets, MERRA2 and ERA-
Interim; three data sets composed of reanalysis data blended
with gridded observational data, PGMFDv2, WFDEI, and
HySN; and two versions of the VIC type forcing data, es-
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Table 6. Linear, decadal trends in monthly mean Td (◦C) between 1985 and 1999, significant at a 5 % or 10 % (denoted in italics) level in
the observations (O) and the model estimates, listed with the month and region denoted on the left (month, region).

O M E P W V V2 H

Apr,SW 1.7
Apr,SE 2.2
May,SW –1.2 –1.5 –1.1
May,SE −1.8
May,C –1.3 −1.2 −1.4 −1.3 –1.3 −1.5
May,NE –0.9
Jul,NE 1.6
Aug,SW 1.1 1.0
Aug,SE 1.6
Sep,SW 2.7 2.0 2.4 2.3 2.3 2.6 2.4 2.2
Sep,SE 3.0 2.6 3.0 2.3 3.0 3.2 2.9 3.3
Sep,C 2.1 1.9 1.9 1.8 2.3 1.9 2.0
Sep,NW 1.8 1.6 1.6
Oct,C –1.6

Table 7. Linear, decadal changes in monthly mean SW↓ (Wm−2)
at Bergen between January 1985 and December 1999, significant at
a 5 % or 10 % (denoted in italics) level.

O M E P W V1 V2 H

Jan 1
Aug 51 26 47 42 25 46
Sep 24 15 23
Oct 7 7
Nov 3
Dec 1 1 2 1

Table 8. Linear, decadal changes in monthly mean LW↓ (Wm−2)
at Bergen between January 1985 and December 1999 significant at
a 5 % or 10 % (denoted in italics) level.

O M E P W V V2 H

Apr 8
May −21 –12
Aug −13 −12 –11
Sep 14 14
Oct –17
Dec −17

timates based on gridded observational data combined with
empirical algorithms.

Differences between the estimates and observations are
not necessarily due to errors in the estimates, as a vertical ad-
justment to station altitude is not a sufficient reason to require
that the model grid cell estimates should equate to the ob-
served values. The numerical model estimates may still differ
from the observations for valid reasons, such as differences
in snow cover, differences in land cover type (the observa-

Table 9. Linear, decadal changes in monthly mean Td (◦C) for
Bergen-Florida station and for the co-located grid cells of the model
estimates between January 1985 and December 1999, significant at
a 5 % or 10 % (italics) level.

O M E P W V1 V2 H

Apr 2.0 1.2 0.9
May –1.3 −1.4 −1.4
Jul 1.7
Aug 1.9
Sep 3.2 2.3 2.3 2.1 3.1 2.6 2.2

tions are from sensors usually located over grass or, in some
cases, on top of buildings), and the averaging out of sub-grid
variability in the models (see, e.g., Göber et al., 2008). The
uncertainty in the observations may also contribute to the dif-
ferences. However, large differences may suggest biases in
the estimates.

7.1 Vertical gradients

Significant vertical gradients were found for humidity, in-
cident shortwave, and incident longwave radiation, justify-
ing an altitudinal adjustment to station altitude before com-
parison of the model estimates with the station observa-
tions (Ha). The altitudinal vapor pressure gradients found
here were on average −0.25 hPa per 100 m in winter and
−0.34 hPa per 100 m in summer. The summer gradient is
similar to what Marty (2000) found in the Alps in sum-
mer, −0.35 hPa per 100 m; however, the winter gradient is
considerably higher than found in the Alps (−0.14 hPa per
100 m). The impact of adjustment to station height was small
for the estimates with a finer spatial scale, only a 0.06 ◦C
change in Td on average, while for the coarser-scale esti-
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mates, MERRA2, ERA-Interim, PGMFDv2, and WFDEI,
the impact of the vertical adjustment was considerably larger,
resulting in an average 1 ◦C increase in Td. The WFDEI and
PGMFDv2 showed weaker vertical humidity gradients than
observed. This may be a result of the interpolation techniques
employed in the CRU T2 data set used to bias-correct and
downscale both the ERA-Interim and NCEP-NCAR Reanal-
ysis, or due to the use of a constant temperature lapse rate of
6.5 ◦C when interpolating the temperature of the two reanal-
yses to the CRU orography. Notably, the vertical gradients in
near-surface humidity in MERRA2, a reanalysis where sur-
face observations are not assimilated (see Table 1), are sim-
ilar to the vertical gradients found in the observations and
those found in ERA-Interim.

Observed SW↓ in the form of clearness index (CI; see
Sect. 5) showed the highest altitudinal gradient in winter, a
slightly lower gradient in spring, and rather low gradient in
summer and fall. The vertical gradients found are larger than
the gradient of 0.00295 per 100 m used in the implementation
of the Bristow and Campbell (1984) algorithm in historical
versions of the VIC preprocessor (MTCLIM versions before
4.2, before the Thornton and Running, 1999, algorithm was
implemented). Though the CI gradient is stronger in winter,
the considerably smaller amount of SW↓ received leads to a
weaker gradient in SW↓. The CI gradients translates to SW↓
gradients of about 0.3 W m−2 per 100 m in fall and winter,
1.6 Wm−2 per 100 m in spring, and 1.2 Wm−2 per 100 m
in summer. Marty (2000) found all-sky gradients in SW↓ in
the Alps of 1.1 W m−2 per 100 m in winter and 0.7 W m−2

per 100 m in summer. The differences between the gradients
found here and those given in Marty (2000) may likely be
explained by the differences in the received extraterrestrial
radiation and differences in cloud and snow cover climatol-
ogy. The models largely showed similar vertical CI gradi-
ents to the observations. The exceptions were PGFMDv2 and
VFDv1; PGMFDv2 showed significantly (p < 0.01) weaker
vertical gradients with a weaker seasonality, and VFDv1 pro-
duced a stronger vertical CI gradient in summer than in win-
ter. The adjustment of the coarser-scale estimates resulted,
on average, in a 5 times larger change in SW↓ for the coarse-
scale estimates than the finer-scale estimates. The regression-
based vertical adjustment produced similar SW↓ estimates
for ERA-Interim and the HySN estimates.

Since two LW↓ stations located more than 400 km apart
could not provide an observation-based vertical gradient in
LW↓, ERA-Interim was consulted instead. The gradients
were, on average, −4.5 W m−2 per 100 m in winter and
−1.8 Wm−2 per 100 m in summer. Marty (2000) found ver-
tical gradients in incident longwave radiation of−2.8 Wm−2

per 100 m in winter and −3.1 Wm−2 per 100 m in summer
for the Alps and of −4.1 Wm−2 per 100 m in winter and
−2.6 Wm−2 per 100 m in summer, when considering a sub-
set of observation stations in Switzerland. The different ver-
tical gradients found may be explained by differences in tem-
perature and humidity gradients, different climatological dis-

tributions of clouds, and the difference in initial temperature,
as LW↓ is a function of temperature to the power of 4. The
regression-based vertical adjustment of ERA-Interim LW↓
estimates resulted in a larger correction of LW↓ than the
clear-sky adjustment implemented in HySN, alluding to the
fact that the clear-sky altitudinal adjustment implemented in
similar data products might be too low, especially for loca-
tions with a maritime climate, like Bergen.

7.2 Differences to station observations

7.2.1 Humidity estimates

The empirically based model estimates, VFDv1 and VFDv2,
show, on average, slightly lower estimates of humidity than
observed. Both VFD type estimates are found to show a 50 %
stronger decrease in humidity with continentality than the
observations (see Sect. 6.1.3). The modified version of the
Magnus type formula, based on Kimball et al. (1997), used
in MTCLIM to generate the VFD humidity estimates is likely
not appropriate for Norway. Previous studies, e.g., in the de-
velopment of gridded climate variables by New et al. (1999)
and in the application of the MTCLIM model over complex
terrain in Australia (Thornton et al., 2000) and in the west-
ern US (Pierce et al., 2013), found that the Kimball et al.
(1997) method did not result in overall improved humidity
estimates. Indeed, in Kimball et al. (1997) the method is
found to give improved estimates of humidity in locations
where the ratio of potential evaporation to annual precipita-
tion is larger than 2.5. In most regions of Norway this ratio
is well below unity. The more conventional method of using
daily minimum temperature as a proxy for dew point tem-
perature will likely give relatively small overestimations of
humidity compared to the underestimations resulting from
using the Kimball et al. (1997) method.

The reanalysis-based estimates all overestimate humidity,
and the overestimations are generally higher in weather types
classified as dry according to the methodology of Bower et al.
(2007). MERRA2 and PGFMDv2 particularly overestimate
humidity in dry conditions. The same two models also show a
significantly stronger decrease in humidity with latitude than
observed. MERRA2 also shows a weaker decrease in hu-
midity with continentality. The weaker decrease in humidity
with continentality seen in MERRA2 may perhaps be partly
explained by the model’s coarse resolution and land mask
(see Fig. 1), and MERRA2’s exaggerated latitudinal gradi-
ent in humidity in Norway may perhaps be associated with
MERRA2’s larger latitudinal gradient in SW↓.

The humidity estimates from HySN match the observa-
tions best, considering all metrics except from the anomaly
correlation coefficient (ACC). The ACC of ERA-Interim es-
timates is marginally higher (0.02) than in HySN. This is
likely due to the capping of relative humidity at 100 % when
applying the SeNorge2 temperature in the development of
HySN. Combining the methods outlined in Cosgrove (2003),

www.earth-syst-sci-data.net/11/797/2019/ Earth Syst. Sci. Data, 11, 797–821, 2019

147



814 H. B. Erlandsen et al.: Humidity and incident radiation estimates

which for humidity relies on the assumption of constant rela-
tive humidity with altitude, a high-quality reanalysis data set
(ERA-Interim), and a high-resolution, national, observation-
based temperature data set is found to provide high-quality
daily estimates of humidity in the current study region. The
coarser, reanalysis-based data sets generally show higher
ACCs than the VFD estimates. Numerical weather predic-
tion (NWP) models are skilled at capturing synoptic events,
i.e., weather or climatological patterns on a spatial order of
1000 km, and a temporal order of days or weeks, such as cold
air outbreaks and the changing sources of air masses during
the passage of warm and cold fronts. Though the NWPs may
have systematic biases and a much lower spatial resolution
than empirically based estimates, it is not surprising that they
are useful in representing daily weather variability.

7.2.2 Incident shortwave radiation

Shortwave incident radiation is, on average, overestimated
for all model estimates except VFDv1. HySN, ERA-Interim,
and WFDEI vary in obtaining the highest ranking depend-
ing on the metric considered. For instance, WFDEI shows a
slightly lower average deviation from the observations than
ERA-Interim and HySN. On the other hand, WFDEI shows
larger underestimations in dry weather types than ERA-
Interim and HySN (Fig. 7). Overall, the three models pro-
vide vertically adjusted estimates of incident SW↓ close to
the observations, with average deviations from station mea-
surements below 4 W m−2 and ACCs above 0.76.

The average difference between the ERA-Interim esti-
mates and the observations is smaller than in Urraca et al.
(2018), where an average overestimation of 12 W m−2 was
found when comparing ERA-Interim SW↓ estimates to sta-
tion measurements in Europe between 2010 and 2014. The
smaller difference seen in the current study may in part
be explained by the relatively small amount of solar radi-
ation reaching Norway, the different time periods consid-
ered, and the vertical adjustment included in the current
study. Urraca et al. (2018) also found that MERRA2 shows
poorer results than ERA-Interim, with average overestima-
tions of 18 Wm−2. This is consistent with our findings,
where MERRA2 has the highest mean deviation from the
observations of any of the considered estimates. Overestima-
tions of incident shortwave radiation over land are not only
an issue of reanalysis data sets covering Europe but have
been a long-standing issue in global (Wild et al., 2015) and
regional climate models (Katragkou et al., 2015; Jerez et al.,
2015).

Two versions of VIC type forcing data are evaluated in the
current study. The two versions differ in their input data and
in the version of VIC preprocessor used. The oldest version
of the VFD data sets is partly based on a 11 km national re-
analysis (NORA10) to provide maximum and minimum tem-
perature. The older version showed large underestimations of
incident shortwave radiation at several stations, particularly

near the coast in northern Norway (Fig. 4). These findings
are in line with Bohn et al. (2013), where the MTCLIM al-
gorithms were found to underestimate incident SW↓ radi-
ation by 26 %, on average, at coastal sites. The MTCLIM
algorithms implemented in VFD rely in part on the diurnal
temperature range to estimate cloud cover, using a low range
as an indication of cloud cover. Near the coast, the diurnal
temperature range may be low due to the moderating influ-
ence of the nearby ocean, due to its high heat capacity. The
more recently compiled version of VFD data, VFDv2, which
is based on a newly developed, high-resolution gridded data
set of Tmin and Tmax, does not show similar underestimations
near the coast of northern Norway. The different estimates
produced indicate that great care must be taken to make sure
the VIC style forcing data have consistent input data and al-
gorithm versions if the data are used in, for example, climate
change impact studies.

The newer and higher-resolution input data used in VFDv2
did not result in a lower mean absolute station deviation,
as its SW↓ estimates were consistently overestimated. Both
VFD versions show a much stronger latitudinal gradient than
observed and a too strong altitudinal gradient in summer. The
latter finding is in line with Mizukami et al. (2014), where
VFD type estimates for the Colorado River basin showed
increasing overestimations of SW↓ with increasing altitude.
The exaggerated latitudinal gradient in SW↓ may be con-
nected to the use of the diurnal temperature range in the al-
gorithm. Bohn et al. (2013) found that the relationship be-
tween cloud cover and the diurnal temperature range breaks
down for ranges below 5 ◦C. Further, New et al. (1999) states
that the relationship between diurnal temperature range and
cloud cover is weak at around 60◦ N in winter and, further,
becomes positive in the Arctic.

Binning the estimates according to air mass type shows
that the PGFv2 and VIC type estimates show less sensitiv-
ity to the prevailing weather type than the observations. The
observations and the remaining model estimates show a de-
crease in clearness index of about 0.22 on days classified
as moist or transitional weather types rather than dry, while
the VIC type estimates and PGFv2 show reductions of 0.12
and 0.05, respectively. On average, the VIC type estimates
and PGFv2 underestimate incident radiation in dry weather
types (see Fig. 7). The similarity between the PGMFDv2 and
VFD estimates of SW↓may be explained by the fact that the
PGMFD SW↓ is bias-corrected based on gridded cloud cover
from CRU using the Thornton and Running (1999) relation-
ship between SW↓ and cloud cover, which is also used in
VFD. Further, the gridded CRU cloud cover data set is a sec-
ondary or derived observational data set, which is, similar to
VFD, in part based on regression using diurnal temperature
range as a predictor (New et al., 1999). The lower sensitivity
to air mass type found in PGMFDv2 and the VIC type forc-
ing data might contribute to the lower ACC found for these
estimates.
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7.2.3 Incident longwave radiation

The evaluation of incident longwave radiation is compro-
mised by the lack of observational data. Only two sites ob-
serve incident longwave radiation in the considered time pe-
riod. The difference between the annual mean of the model
estimates and observations are for the two stations consid-
ered larger for incident longwave radiation than for incident
shortwave radiation. The annual deviations ranges from −16
to+7 Wm−2. Underestimations of monthly means are found
throughout the year for all models except WFDEI. The devi-
ations from the station observations for WFDEI, MERRA2,
ERA-Interim, and HySN are largely similar in all weather
types; i.e., the underestimations are also found on days clas-
sified with dry weather types. An additional evaluation of the
ERA-Interim LW estimates for Bergen, where cloud obser-
vations are available, showed that the deviations from station
observations were similar on days where clouds were present
in the observations, the model, and the remaining days.

While overestimation of incident shortwave radiation has
been a long-standing issue in many climate models and re-
analyses, incident longwave radiation is typically underes-
timated (Katragkou et al., 2015; Li et al., 2016; Zib et al.,
2012; Wild et al., 2017). The causes of the underestima-
tion are, however, debated. Li et al. (2016) points to an im-
proper representation of interactions between radiation and
suspended frozen water particles in the atmosphere (solid hy-
drometeors) as a culprit, while Zib et al. (2012) speculate that
errors in simulated aerosols, water vapor content, and cloud
properties (rather than cloud amounts) are the cause. Local
issues such as longwave emissions from nearby terrain may
also contribute to the deviations (Rontu et al., 2016). Lastly,
observational uncertainty confounds the picture further, par-
ticularly given that the two sensors were unshaded.

The anomaly correlation coefficients are, as also seen
for humidity and incident shortwave radiation, considerably
lower for PGFMDv2 and the VFD estimates than the esti-
mates based on newer reanalysis data (0.46–0.60 vs. 0.79–
0.82). This may be caused by the representation of clouds in
the models. As discussed for the PGFMDv2 and the VFD
SW↓ estimates, the use of diurnal temperature range as a
proxy for cloud cover may not be suitable for the current
maritime, high-latitude study region.

7.3 Trends

The analysis of observed humidity trends from 1985 to 1999
showed significant increases in April in southern Norway, a
decrease in May in central regions of Norway, significant in-
creases in July in the northeastern part of Norway, and in-
creases in all regions except the northeastern part of Norway
in September. All the data sets, both the reanalysis-based es-
timates and the more empirically based VFD estimates, cap-
ture the increase in humidity seen in September. The signif-
icant increases found in humidity when averaging over the

stations in southeastern and southwestern Norway in April
are not seen in any of the models. The VFD estimates do,
however, capture some of the increases in humidity that were
seen in the measurements from Bergen-Florida (Table 9). A
recent study by Nilsen et al. (2017) found that changes in
large-scale weather patterns can, in part, explain the signif-
icant increases in 2 m temperature between 1981 and 2010
seen in Scandinavia in September but not most of the in-
creases seen in April. Another inquiry by Rizzi et al. (2017)
found that the increasing temperature trends seen in May
in many parts of Norway showed a strong correlation with
a concurrent decrease in snow cover. The decline in snow
cover in May found in Rizzi et al. (2017) was particularly
strong in low-lying areas. If the changes in temperature and
humidity are connected to local changes in snow cover, it is
possible that the coarser-scale reanalysis data, which often
have a mean grid cell altitude above the measurement station
elevation, do not capture the measured changes.

Surface incident radiation was inspected for trends from
1985 to 1999 at the one station where measurements are
available in the time period with little missing data: Bergen.
A hardly significant (p < 0.1) annual trend in SW↓ was
found in the observations, 1.7 W m−2 per decade. However,
in individual calendar months larger trends were found. The
largest trend, 51 Wm−2 per decade, was found in the obser-
vations in May. The observed August trend was reproduced
fairly well in ERA-Interim, PGMFDv2, and HySN, and a
weaker but still significant trend was seen in MERRA2 and
VFDv2. While ERA-Interim largely reproduces the trend,
WFDEI shows no significant trends. For the considered lo-
cation, the post-processing of ERA-Interim radiances, based
on CRU cloud cover and interannual aerosol loading con-
ducted in the production of WFDEI, has a negative effect
on its ability to reproduce the observed trend. The clear-sky
type post-processing of ERA-Interim implemented in HySN
estimates left the trend close to its original value. The two
versions of VFD also differed in their ability to capture the
SW↓ trend. This might be due to the maritime location of
Bergen and coarser VFDv1 input data for Tmin and Tmax.
A previous study by Parding et al. (2016) showed that cir-
culation type changes could account for a large part of the
dimming that was observed in Bergen before around 1980
but a lesser fraction of the subsequent brightening. The fact
that ERA-Interim, which does not explicitly account for in-
terannual aerosol changes, picks up the trend while WFDEI,
where a correction for interannual aerosol loading has been
applied does not, implies that a considerable part of the
trend before 2000 must be included in the indirect effects
of aerosol changes, which ERA-Interim assimilates, or other
factors. On the other hand, MERRA2 accounts for interan-
nual aerosol loading in the time period considered and cap-
tures a positive, albeit weaker trend in SW.

The annual trends in LW↓ during the same period in
Bergen were larger in magnitude than those found for SW↓,
−8.4 Wm−2 per decade. The observed trend in any calen-
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dar month was larger for SW↓, while the LW↓ trend showed
more consistency throughout the year. More of the models
reproduced the SW↓ trend than the LW↓ trend. Both ver-
sions of the VIC type forcing data, VFDv1 and VFDv2, sim-
ulated a weak increasing trend in September. Given that the
VFD estimates did not produce changes in SW↓ in the same
month, the increase is likely due to the clear-sky parametriza-
tion and the concurrent simulated increase in September Td.
WFDEI and HySN reproduce the decrease in LW↓ seen in
August, while ERA-Interim does not. This points to the fact
that changes in near-surface temperature, which are used as a
scaling factor and to adjust near-surface humidity in WFDEI
and HySN, capture the signal that contributes to the decrease
in LW↓. A larger sample of stations measuring incident radi-
ation with a high quality is needed to evaluate how well the
models capture trends within the region, particularly given
the uncertainty in the observational data.

8 Code and data availability

The HySN data product is available archived in Zen-
odo (https://doi.org/10.5281/zenodo.1970170, Erlandsen,
2018a). The code used to produce the HySN estimates
is written in Python and is available at https://github.
com/helene-b-e/HySN.git (last access: 10 June 2019). Fur-
ther, the particular version of the software code used to
produce the HySN estimates validated here is archived
in Zenodo (https://doi.org/10.5281/zenodo.1435555, Erland-
sen, 2018b). The remaining data sets are available from the
various named data providers.

9 Conclusions

Hydrological, ecological, and crop modellers seek
landscape-scale data. Norway has a long coastline with
mountains, fjords, and small islands. Strong land–sea
contrast, high mountains, and a seasonal snow cover that
is highly dependent on continentality and altitude results
in a fine-scale variability difficult for coarse-scale models
to represent. A Python script to downscale and consoli-
date reanalysis data with high-resolution national gridded
temperature data has been developed, which, leaning on
previously well-tested empirical relationships, provides esti-
mates of humidity and incident radiation on a fine-scale grid.
The downscaled humidity ensures that relative humidity
is constrained at 100 %, so that, for example, reasonable
evaporation estimates can be sought. The new estimates,
HySN, provide humidity estimates with the overall highest
quality given for the metrics considered here, also surpassing
those based on estimating humidity from temperature alone,
such as for the VIC type forcing data. The new estimates
outperform the VIC type forcing data and the MERRA2
estimates of incident radiation; however, it is not clear that
the new estimates have an added value compared to ERA-

Interim and WFDEI. The lack of high-quality historical
observations, particularly of incident longwave radiation,
hinders a proper evaluation of the data sets.

– Additionally, this study has shown that (Ha) altitude is
a significant predictor of humidity, SW↓, and LW↓ in
the domain. The coarse-scale estimates of Td increased
on average by 1 ◦C, SW↓ by 0.7–1.5 W m−2, and LW↓
increased by as much as 8.6 Wm−2, when adjusted to
station altitude.

– Further, the results have shown that a high resolution
does not necessarily indicate high-quality estimates.
The added value of the high horizontal resolution of
the more empirically based estimates does not out-
weigh the added value of relying on estimates from
coarser-resolution numerical weather prediction reanal-
yses (Hb). Not only is a higher daily temporal corre-
lation (ACC) seen in the estimates based on newer re-
analysis data compared to the VIC type forcing data but
also a lower mean absolute station bias is seen for sev-
eral reanalysis-based products (ERA, WFDEI, HySN).
VFDv1 and VFDv2 show a 60 % stronger decrease in
humidity with distance from the coast than the observa-
tions, alluding to the fact that the modified version of the
Magnus type formula based on Kimball et al. (1997),
implemented in VFD to estimate humidity from daily
minimum temperature, is not appropriate for the Nor-
wegian domain. Both VFDv1 and VFDv2 also show a
decrease that is several times stronger in solar radia-
tion with latitude than the observations, likely a result
of using diurnal temperature range as a proxy for cloud
cover, an assumption likely not appropriate in coastal
environments and at high latitudes.

To our knowledge reanalysis-based estimates have not
been compared with VIC type forcing data for regions within
Europe (or Norway specifically). The comparison of model
estimates may assist impact modellers that have not yet se-
lected data to use. Some of the findings might help ex-
plain persistent errors, for instance found in the timing of
snowmelt in a hydrological model. The findings provide em-
phasis for climate researchers to not only downscale T2 and
precipitation from climate projections, and later use these to
estimate humidity and incident radiation, but to utilize the
climate model estimates of near-surface humidity and inci-
dent radiation. This is already done, for example, in Tekle-
sadik et al. (2017), where the impact of climate change on
surface hydrology is examined based on, depending on the
hydrological model’s structure, bias-corrected climate model
output of precipitation, temperature, humidity, and incident
radiation from the ISI-MIP project (Hempel et al., 2013).
Similarly, we envisage that further work would involve ap-
plying the HySN as an input to a hydrological model. Such
a model exercise would imply modulating the model’s code
to accommodate humidity and radiation as input variables.
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Once the model includes more physically based parameter-
izations, the sensitivity in simulated runoff to the choice of
forcing data can be assessed, including the impact of errors
or perturbations in each of the forcing data variables.

The source code for computing HySN has been made
available and may easily be configured to use other reanal-
ysis data or other national data sets as input. The compilation
of HySN requires merely half a day on a modern desktop
computer. Part of the code might also be implemented in a
model preprocessor or in the calculation of various indices,
so that the variables do not need to be stored for long time
spans. Future work entails calculating indices, such as refer-
ence evaporation, and updating the input data to ERA5 and
a new version of SeNorge once the full historical time series
of the two are available. Additionally, sub-daily estimates,
the inclusion of terrain features such as slope and aspect, and
adding a correction based on the lack of coupling between
the land surface and the atmosphere at times when the dif-
ferences in the local snow cover and snow cover modeled
by the reanalysis are large might be promising, as initial re-
sults showed that differences in ground snow conditions be-
tween the reanalysis and the observations were significant in
predicting the difference between ERA-Interim estimates of
SW↓ and the observations.
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1 Procedure to calculate the HySN data set

Era Interim daily mean 2 meter dew point temperature
(T2dE), 2 meter temperature (T2E), surface pressure (psE)
are taken as the arithmetic mean of the Era-Interim analy-
sis fields, available every 6 hours. Surface incident longwave5

(LWE) and shortwave (LWE) radiation are taken from +12,
+18,and +24 hours of the Era-Interim forecasts at 00 and
12 UTC, to reduce the influence spin-up effects have on the
fields (see e.g. Weedon et al., 2014; Balsamo et al., 2015).
The high resolution gridded observational dataset used in the10

compilation is the daily SeNorge v2.1 2-meter temperature
(T2SN) (Lussana et al., 2018).

The Era-interim data is interpolated to the SeNorge grid
in three stages, using bilinear interpolation in most areas, but
nearest-neighbour interpolation for SeNorge land areas close15

to the Era-Interim landmask, and bilinear interpolation for
SeNorge land areas outside Era-Interims landmask.

1.1 Vapour pressure [VP] and surface pressure [ps]

The method for downscaling near surface humidity follows
Cosgrove (2003), where relative humidity (RH) is assumed20

constant with height. The assumption of constant relative hu-
midity with elevation is explored in e.g. Feld et al. (2013),
and is used in the making of NLDAS, WFD, and PGMFD.
RH is given by the ratio of the ambient vapour pressure [VP]
(the vapour pressure at dew point [Td] or frost point [Tf ]25

temperature) divided by the saturation vapour pressure [VPs]
of moist air at the actual air temperature, multiplied by 100:

RH =
V P · 100

V Ps
(S1)

The Era-Interim 2-meter RH (RHE) is calculated using
the Era-Interim surface pressure (psE), T2E, and T2dE, and30

Equation ew1 in Buck (1981) [Buck81]. The resulting, ver-
tically adjusted HySN dew point or freeze point tempera-
ture (for simplicity, denoted T2dH) is computed (in Celsius)
directly from RHE (see e.g. Feld et al. (2013)) using the
Buck81 equation for water and the AERKi equation in Al-35

duchov and Eskridge (1996) for ice:

T2dH =
c · [ln(RHE/100) + b(T2SN )/(c+T2SN )]

b− ln(RHE/100)− b(T2SN )/(c+T2SN )
.

(S2)

For water b is 17.502 and c is 240.97. For ice b is 22.587 and
c is 273.86.

The vapour pressure is then calculated (still using the40

Buck81 for water and AERKi for ice,) with suggested pres-
sure dependent enhancement factors (fe) from Alduchov and
Eskridge (1996). The HySN surface pressure (psH) is esti-
mated by vertically adjusting the Era-Interim surface pres-
sure to SeNorge orography combining the hydrostatic ap-45

proximation and the ideal gas law equation (Eq. 6 in Cos-
grove (2003), similar to the hypsometric equation):

psH =
psE

e(g∆z)/(RT2m)
, (S3)

where T2m = T2SN+T2E

2 is the estimated mean temperature
(in Kelvin) in the atmospheric column between the SeNorge 50

grid elevation and the ERA-Interim grid elevation. ∆ z is
the difference in elevation between the SeNorge grid and
the ERA-Interim grid. Finally the adjusted vapour pressure
is calculated:

fe = d · eg·psH/100. (S4) 55

V PH = fe · a · eb·TdH/(c+TdH) (S5)

For water d is 1.00071 and g is 0.0000045, while for ice d is
0.99882 and g is 0.000008 (Alduchov and Eskridge, 1996).
b is 17.502 and c is 240.97 for water [Buck81]. For ice b is
22.587 and c is 273.86 [AERKi]. If supersaturation occurs 60

vapour pressure is calculated for saturation, limiting RH to
100%.

1.2 Longwave incident radiation [LW]

The longwave radiation is adjusted (following Eq. 14 in Cos-
grove (2003)) by scaling LWE with the ratio of the estimated 65

Stefan-Boltzmann grey body radiation in the SeNorge grid to
the estimated Era-Interim Stefan-Boltzmann grey body radi-
ation.

LWH =
εH σsb
εE σsb

(
T2SN

T2E
)4 LWE . (S6)

σsb is the Stephen-Boltzmann constant, εE is the 70

Satterlund (1979) estimate of clear sky emissiv-
ity given the Era-Interim humidity and temperature:
εE = 1.08(1− e(−V PT2E/2016

E )), and εH is similarly
the Satterlund (1979) estimate of clear sky emissivity
given the SeNorge temperature and HySN humidity: 75

εH = 1.08(1− e(−V PT2SN/2016
H )).

1.3 Shortwave incident radiation [SW]

No consistent approach is used in other forcing datasets for
adjusting SW radiation. Given that SW is very sensitive to
near surface humidity, and that the Cosgrove (2003) method 80

used above adjusts VP, we choose to scale the Era-Interim
SW based on the estimated clear sky transmissivity for the
two datasets; i.e. a method similar to that used to the derive
the adjusted LW is used. In Thornton and Running (1999)
[TR99] different empirical estimates of the total daily clear 85

sky transmissivity of SW are found, given different input
data. Method (z,e) in Table 2 in TR99 predicts the daily clear
sky transmissivity based on altitude (z) and VP (denoted with
e in TR99):
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τcc= τ
ps(z)/ps0
0 +αV P

τ0 is 0.72 and is an empirical expression of the instanta-
neous transmittance for a dry atmosphere at reference pres-
sure, ps(z) is the surface air pressure at grid elevation and
ps0 is the reference surface pressure (e.g. 101300 Pa; it is
cancelled out in the calculations). α is −1.5 · 10−5Pa−1 and5

is a slope parameter relating the influence of water vapour
on the transmissivity. The adjusted SW is then calculated by
scaling the Era-Interim SW with the ratio of the empirical ex-
pression of clear sky SW transmissivity given the difference
in grid elevation and VP in the SeNorge and the Era-Interim10

grid. Since the expression for SW in TR99 is a multiplicative
expression of extra-terrestrial (astronomical) radiation scaled
by both an all-sky and clear-sky transmissivity, the ratio of
the clear-sky transmissivity is squared.

SWH = (
τ
psH(z)/ps0
0 +αV PH

τ
psE(z)/ps0
0 +αV PE

)2 SWE . (S7)15

The HySN data product is freely available from Zenodo
(https://doi.org/10.5281/zenodo.1970170), and the Python
code to generate the data is available on GitHub (https:
//doi.org/10.5281/zenodo.1435555).

2 Vertical gradients in vapour pressure20

Both the observations and model estimates were analysed for
dependence on geographical predictors. In order to derive the
coefficients to adjust the model estimates to the station obser-
vations linear regression was used on seasonal mean values at
the location of the 84 measurement stations (see Table S1 and25

S2). For brevity the vertical gradients of the annual mean hu-
midity values is show in in Fig. S2. Fig S3 shows the vertical
gradient when also latitude (above 57 ◦N) is included in the
regression models, while Fig. S4 shows the vertical gradient
when altitude, latitude (above 57 ◦N), distance to the coast,30

with interaction allowed between the altitude and distance to
the coast. Altitude is a significant predictor of vapour pres-
sure in the observations and models, also when additional
geographical predictors are included.
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Figure S1. Mean (1982-2000) vapor pressure (VP), incident shortwave (SW ↓) and longwave (LW ↓) radiation estimates in fall (SON) and
spring (MAM) of Era-Interim, WFDEI, and HySN. The mean value for the points which are land points for all models are denoted in the
upper left corner of each image.
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O: altitude slope: -0.24hPa/100m, p-value: 4.51e-12
M: altitude slope: -0.29hPa/100m, p-value: 2.40e-19
E: altitude slope: -0.25hPa/100m, p-value: 1.88e-13
P: altitude slope: -0.20hPa/100m, p-value: 3.42e-09
W: altitude slope: -0.21hPa/100m, p-value: 8.79e-14
V1: altitude slope: -0.28hPa/100m, p-value: 2.08e-11
V2: altitude slope: -0.28hPa/100m, p-value: 3.15e-11
H: altitude slope: -0.23hPa/100m, p-value: 6.90e-11

Figure S2. Vapour pressure as a function of altitude based on linear regression using only altitude, with annual means of vapour pressure at
or near the location of the 84 measurement stations as predictand.
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V2: altitude slope: -0.31hPa/100m, p-value: 8.98e-19
H: altitude slope: -0.26hPa/100m, p-value: 2.93e-21

Figure S3. Vapour pressure as a function of altitude based on linear regression using only latitude (above 57 ◦N) and altitude, for mean
annual values of vapour pressure at or near the location of the 84 measurement stations.
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Figure S4. Vapour pressure as a function of altitude alone (excluding the interaction term between distance to the coast and altitude), when
based on a linear regression model including latitude (above 57 ◦N), altitude, distance to the coast, with interaction allowed between the
latter predictors. The regression is based on annual mean values of vapour pressure at or near the location of the 84 measurement stations.
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Table S1. Stations observing humidity which are included in the analysis. For each station the name, latitude (lat, [◦N]), longitude (lon,
[◦E]), altitude [m], and distance to the ocean [km] of the station are denoted, as well as the first and last month and year of the time-series
included in the study.

Name Lat Lon Altitude [m] ∆ ocean [km] From To
MANDALII 58.0 7.4 138 2.3 January 1982 December 1999
LANDVIK 58.3 8.5 10 4.6 January 1982 December 1999
NELAUG 58.7 8.6 142 18.1 January 1982 December 1999
OBRESTADFYR 58.7 5.6 24 0.5 January 1982 December 1999
BYGLANDSFJORD-SOLBAKKEN 58.7 7.8 212 49.7 January 1982 December 1999
SOLA 58.9 5.6 7 1.3 January 1982 December 1999
SIRDAL-TJOERHOM 58.9 6.8 500 21.7 January 1982 December 1999
STAVANGER-VAALAND 59.0 5.7 72 1.0 January 1982 January 1988
PRESTEBAKKE 59.0 11.5 157 16.6 January 1982 December 1999
TVEITSUND 59.0 8.5 252 45.3 January 1982 December 1999
RENNESOEY-GALTA 59.1 5.6 19 11.3 January 1982 December 1999
SKUDENESII 59.1 5.2 2 1.2 November 1992 December 1999
MELSOM 59.2 10.3 26 1.2 January 1982 August 1994
SARPSBORG 59.3 11.1 57 10.1 December 1991 December 1999
RYGGE 59.4 10.8 40 4.9 January 1982 December 1999
GVARV 59.4 9.2 26 34.4 January 1982 July 1989
AAS 59.7 10.8 94 9.4 January 1982 December 1999
KONGSBERGIV 59.7 9.7 168 34.5 January 1982 December 1999
DRAMMEN-MARIENLYST 59.7 10.2 3 18.0 January 1982 December 1999
MOESSTRANDII 59.8 8.2 977 93.0 January 1982 December 1999
MIDTLAEGER 59.8 7.0 1079 33.8 January 1982 December 1999
ASKER 59.9 10.4 163 3.2 January 1983 December 1999
DOENSKI 59.9 10.5 59 2.3 January 1982 December 1999
LYNGDALINUMEDAL 59.9 9.5 288 27.1 January 1982 December 1999
OSLO-BLINDERN 59.9 10.7 94 3.2 January 1982 December 1999
MAGNOR 60.0 12.2 154 35.7 January 1982 December 1999
HAKADAL-BLIKSRUDHAGAN 60.1 10.9 174 21.9 December 1982 December 1999
GARDERMOEN 60.2 11.1 202 22.6 January 1982 December 1999
VINGER 60.2 12.0 175 48.7 January 1982 December 1999
FLESLAND 60.3 5.2 48 1.5 January 1982 December 1999
BERGEN-FLORIDA 60.4 5.3 12 0.96 January 1982 December 1999
KVAMSKOGEN 60.4 5.9 408 8.1 January 1982 December 1999
GEILO-GEILOSTOELEN 60.5 8.2 810 58.1 January 1982 December 1999
NESBYEN-SKOGLUND 60.6 9.1 167 60.7 January 1982 December 1999
VOSS-BOE 60.6 6.5 125 18.2 January 1982 December 1999
GOL-STAKE 60.7 8.9 542 65.3 January 1982 February 1991
KISEPAHEDMARK 60.8 10.8 129 3.1 April 1987 December 1999
MODALENII 60.8 6.0 114 14.5 January 1982 December 1999
AABJOERSBRAATEN 60.9 9.3 639 48.2 January 1982 December 1999
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Table S2. Stations observing humidity which are included in the analysis. For each station the name, latitude (lat, [◦N]), longitude (lon,
[◦E]), altitude [m], and distance to the ocean [km] of the station are denoted, as well as the first and last month and year of the time-series
included in the study.

Name lat lon altitude [m] ∆ ocean [km] start end
FAGERNES 61.0 9.2 358 53.8 July 1982 December 1999
LOEKENIVOLBU 61.1 9.1 521 68.8 January 1982 December 1999
RENA-HAUGEDALEN 61.2 11.4 240 42.5 January 1982 December 1999
EVENSTAD-OEVERENGET 61.4 11.1 255 49.8 January 1982 December 1999
FJAERLAND-SKARESTAD 61.4 6.8 10 2.3 February 1982 December 1999
SKAABU-STORSLAAEN 61.5 9.4 890 71.1 January 1982 December 1999
SOGNEFJELLHYTTA 61.6 8.0 1413 23.2 January 1982 December 1999
VENABU 61.7 10.1 930 61.6 January 1982 December 1999
BJOERKEHAUGIJOSTEDAL 61.7 7.3 305 24.7 January 1982 December 1999
SANDANE 61.8 6.2 51 1.9 January 1982 December 1999
DREVSJOE 61.9 12.0 672 7.7 January 1982 December 1999
KJOEREMSGRENDE 62.1 9.0 626 69.1 January 1982 December 1999
FISKAABYGD 62.1 5.6 41 1.0 January 1982 December 1999
FOKSTUGU 62.1 9.3 973 72.9 January 1982 December 1999
TAFJORD 62.2 7.4 11 0.1 January 1982 December 1999
LESJASKOG 62.2 8.4 621 48.9 January 1982 December 1999
VIGRA 62.6 6.1 22 7.8 January 1982 December 1999
ROEROS 62.6 11.4 628 31.6 January 1982 December 1999
SUNNDALSOERAIII 62.7 8.6 10 1.5 February 1983 December 1999
TINGVOLL-HANEM 62.8 8.3 69 2.2 January 1982 December 1999
ORKDAL-OEYUM 63.2 9.8 22 12.1 January 1982 December 1999
SELBU-STUBBE 63.2 11.1 242 28.0 January 1982 December 1999
VAERNES 63.5 10.9 12 1.8 January 1982 December 1999
OERLANDIII 63.7 9.6 10 2.4 January 1982 December 1999
NAMDALSEID 64.3 11.2 86 6.9 August 1982 November 1999
LEKA 65.1 11.7 47 8.7 January 1982 December 1999
SVENNINGDAL 65.4 13.4 121 24.3 January 1982 June 1987
GLOMFJORD 66.8 14.0 39 1.4 January 1982 December 1999
BODOEVI 67.3 14.4 11 1.0 January 1982 December 1999
FINNOEYIHAMAROEY 68.0 15.6 53 5.0 January 1982 December 1999
NARVIKIII 68.5 17.5 17 1.0 January 1982 December 1999
BOEIVESTERAALENII 68.6 14.5 12 3.0 January 1982 December 1999
SORTLAND-KLEIVA 68.6 15.3 14 2.5 January 1982 August 1991
TENNEVOLL 68.7 17.8 22 1.8 January 1982 December 1999
SIHCCAJAVRI 68.8 23.5 382 122.3 April 1982 December 1999
BORKENES 68.8 16.2 36 3.1 September 1983 December 1999
DIVIDALEN 68.8 19.7 228 48.9 January 1982 December 1999
BARDUFOSS 69.1 18.5 76 15.0 January 1982 December 1999
ANDOEYA 69.3 16.1 10 1.9 June 1982 December 1999
CUOVDDATMOHKKI 69.4 24.4 286 77.5 January 1982 December 1999
KARASJOK 69.5 25.5 155 67.5 January 1982 December 1999
SUOLOVUOPMI 69.6 23.5 377 41.2 March 1982 December 1999
TROMSOE 69.7 18.9 100 3.3 January 1982 December 1999
TROMSOE-LANGNES 69.7 18.9 8 2.0 January 1982 December 1999
KIRKENESLUFTHAVN 69.7 29.9 89 0.9 January 1982 December 1999
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Table S3. The stations observing SW ↓ and LW ↓ included in the analysis are listed. For each station the name, latitude (lat, [◦N]), longitude
(lon, [◦E]), altitude [m], and distance to the ocean [km] of the station are denoted, as well as the first and last month and year of the time-
series included in the study. The stations with a +-sign are agricultural stations drifted by Bioforsk. The LW observation stations are marked
with an asterisk. The percentage of discarded data within the time-series and the total number of days used in the validation are given, for
LW data this is given in parenthesis. % flagged data includes missing data within the time-series.

Name lat. lon. altitude ∆ ocean start end % flagged # Days
+Saerheim 58.8 5.7 90 27.6 April 1987 December 1999 27 3365
+Aas 59.7 10.8 94 9.4 August 1991 December 1999 13 2655
*Bergen-GFI 60.4 5.3 40 3.5 January 1982 December 1999 3(*4) 6357(*6460)
+Apelsvoll 60.7 10.9 262 88.2 March 1987 December 1999 25 3494
+Kise 60.8 10.8 129 96.1 April 1987 December 1999 4 4455
Loeken 61.1 9.1 527 73.4 January 1991 December 1999 15 2778
Gjengedal 61.7 6.0 355 24.6 July 1989 June 1996 18 2062
+*Trondheim 63.4 10.5 127 4.1 September 1996 December 1999 (23) (675)
+Bodoe 67.3 14.5 26 6.5 April 1987 December 1999 15 4002
Maze 69.5 23.7 277 59.0 August 1982 January 1990 13 2408
+Tromsoe 69.7 18.9 12 3.5 June 1987 December 1999 29 3468
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Constraining the HBV model for robust water balance

assessments in a cold climate

Helene Birkelund Erlandsen, Stein Beldring, Stephanie Eisner,

Hege Hisdal, Shaochun Huang and Lena Merete Tallaksen

ABSTRACT

Robust projections of changes in the hydrological cycle in a non-stationary climate rely on

trustworthy estimates of the water balance elements. Additional drivers than precipitation and

temperature, namely wind, radiation, and humidity are known to have a significant influence on

processes such as evaporation, snow accumulation, and snow-melt. A gridded version of the rainfall-

runoff HBV model is run at a 1 × 1 km scale for mainland Norway for the period 1980–2014, with the

following alterations: (i) the implementation of a physically based evaporation scheme; (ii) a net

radiation-restricted degree-day factor for snow-melt, and (iii) a diagnostic precipitation phase

threshold based on temperature and humidity. The combination of improved forcing data and model

alterations allowed for a regional calibration with fewer calibrated parameters. Concurrently,

modeled discharge showed equally good or better validation results than previous gridded model

versions constructed for the same domain; and discharge trend patterns, snow water equivalent,

and potential evaporation compared fairly to observations. Compared with previous studies, lower

precipitation and evaporation values for mainland Norway were found. The results suggest that a

more robust and more physically based model for climate change studies has been obtained,

although additional studies will be needed to further constrain evaporation estimates.

Key words | climate, evaporation, HBV, Norway, snow-melt

HIGHLIGHTS

• The distributed HBV model is updated with physically based parameterizations.

• High-quality forcing data are included to enhance estimates evaporation, precipitation phase,

and snow-melt.

• More than 100 discharge measurements are used for calibration and validation.

• The updates help constrain the long-term water balance for Norway.

• Additional work is called for to better constrain the evaporation estimates.
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GRAPHICAL ABSTRACT

INTRODUCTION

Many hydrological models were developed for operational

water resources management and have accordingly been

built to rely only on input data that is commonly available,

and to be easy to use. Any increase in model complexity

should be justified by an increase in model performance,

often measured according to the ability of the model to

reproduce daily or monthly catchment runoff (Nash &

Sutcliffe ; Lindström et al. ; Ferguson ).

Today, gridded input data are becoming more widely avail-

able, either from numerical weather prediction models,

reanalysis data such as Era5 (Hersbach et al. ), gridded

observational data, e.g. SeNorge2018 (Lussana et al. ),

or hybrid products such as HySN (Erlandsen et al. )

and WFDEI (Weedon et al. ). Further, the non-stationar-

ity of the current climate calls for hydrological models with

a stronger physical basis and a higher robustness in a wide

range of climates (Ferguson ; Clark et al. ).

Hydrological models range from the simplest, data-

driven, lumped, and conceptually based water balance

models, to those akin to land surface models, where the sur-

face energy balance is solved numerically (see e.g. Kauffeldt

et al. ). The different modeling strategies have compli-

menting merits (Hrachowitz & Clark ). For example,

numerically solving the surface energy balance requires an

increase in input data requiring higher storage and pre-pro-

cessing capacity, as well as an increase in model

integration time; however, it allows the computation of sur-

face temperature, and imposing a closed surface energy

balance, which further constrains the latent heat flux or

evaporation estimates. In this paper, the term evaporation

encompasses water loss from soil, leaves, lakes, and plant

stomata (transpiration).

A large number of hydrological modeling studies involve

replacing a rather simple conceptual process description

with a more physically based one and comparing the results

(Bruland et al. ; Zappa et al. ; Hegdahl et al. ),

while other studies compare models of different complex-

ities (e.g. Magnusson et al. ). In cases where a more

physically based model was compared with a more concep-

tually based model and an increase in model performance

was not found, it is difficult to say whether this was due to

an ill-stated empirical equation or parameter being included,

over-parameterization, or that the more physically based

process description relied on input variables that were

poorly estimated. Thus, an important question raised in

Clark et al. () is ‘to what extent is additional model com-

plexity supported by the available information on

geophysical attributes (topography, vegetation, soils,

geology, and fine-scale meteorological data)?’.

A particular challenge for using conceptual, calibrated

models for hydrological impact assessment is that parameter

values can be overfitted to the climate conditions in the cali-

bration period. Merz et al. () found that calibrated

parameters representing snow and soil moisture processes

were sensitive to the choice of the calibration period.

Milly & Dunne () found that a temperature-index

based evaporation parameterization may simulate consider-

ably larger evaporation changes than net radiation changes

might justify. Any change in vapor pressure deficit with cli-

mate change, or plant physiological mechanisms for

preserving water, are also not accounted for in tempera-

ture-index based evaporation parameterizations. Besides

evaporation-related calibrated parameters, other often cali-

brated parameters which potentially might be omitted
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from calibration, or considerably restricted in range, are the

precipitation phase threshold temperature and the com-

monly used degree-day factors for calculating snow-melt.

Precipitation phase may be diagnosed using near-surface

temperature and humidity (Jennings et al. ). The

degree-day factor, which represents the amount of snow-

melt per degree above freezing, may vary considerably

depending on catchment, climate, and time-of-year (Kustas

et al. ; Merz et al. ). Indirectly, it reflects biases in

accumulated snowfall, sublimation and deposition processes

not accounted for, spatial and temporal variation in incident

longwave and shortwave radiation, vegetation shading, long-

wave radiation emitted by vegetation, and variation in

surface albedo, to name a few. Accordingly, in climate

change studies, for some processes in particular, there is a

need to move from a simple and conceptually based descrip-

tion to a more robust, physically based one.

In Norway, a gridded version of the conceptual HBV

rainfall-runoff model (Beldring et al. , from here on

referred to as HBV-B03) has been used to study the effect

of climate change on hydrology (see e.g. Hanssen-Bauer

et al. ). Until recently HBV-B03 included calibrated,

land cover-dependent parameters for precipitation phase

diagnosis, the melting temperature of snow, the snow-melt

degree-day factor, and for the temperature-based scaling of

monthly climatological potential evaporation to provide

estimates of evaporation. In Wong et al. (), the existing

evaporation routine was discussed as a large source of

uncertainty when analyzing end-of-century changes in

summer droughts for Norway. Further, the lack of an in-

line computation of potential evaporation may be particu-

larly unsuitable in cold climates – since potential

evaporation is limited by the received incident radiation,

which is bound to increase in a warmer climate with

reduced snow cover and thus albedo.

There has been a recent effort to improve the physical

basis of evaporation estimates in HBV-B03 by implementing

a Penman–Monteith (Monteith ) potential evaporation

routine. Simultaneously, the number of land cover classes

represented by the model was increased from 7 to 19 to

allow for more spatial heterogeneity related to natural veg-

etation cover and land use activity. These alterations are

described in Huang et al. (), from here on this version

of the model is referred to as HBV-H19. The inclusion of

a more detailed land cover description combined with

land use dependent, calibrated parameters controlling pro-

cesses such as snow accumulation and ablation may lead

to confounded or poorly constrained parameters, and thus

disentanglement problems if the model were to be applied

to study the effect of a perturbed land cover. Kustas et al.

() suggested an enhanced degree-day factor parameteri-

zation, where the degree-day factor is restricted by an

additive term relating snow-melt to net radiation. A snow-

melt routine where the degree-day factor is restricted by a

radiative term allows snow-melt to be influenced by land

cover class via albedo, without the need of a land cover

class-dependent calibration.

The implementation of more physically based process

descriptions as described above is here facilitated by a

newly established hybrid method, HySN, for producing

gridded estimates of near-surface vapor pressure and inci-

dent radiation. HySN was derived by merging reanalysis

data with the 1 × 1 km SeNorge data and showed high fide-

lity when compared with station observations (Erlandsen

et al. ).

In this study, we aim at obtaining a robust and more

physically based model for studies of changes in water bal-

ance elements in a non-stationary climate. The HySN

method for deriving estimates of evaporation and incident

radiation was paired with an improved version of the

SeNorge temperature and precipitation fields, SeNorge2018

(Lussana et al. ) and used as forcing data for a modified

version of HBV-H19. The availability of high-quality input

data made way for adding the following physically based

updates to the HBV model:

i. an augmented Penman–Monteith based evaporation

scheme;

ii. a regionally calibrated, radiation-restricted degree-day

factor;

iii. a diagnostic temperature- and humidity-based threshold

for diagnosing precipitation phase.

Simulated discharge was evaluated in terms of bias and

Kling–Gupta Efficiency (KGE; Gupta et al. ) using

measurements from more than 100 catchments, of which

34 were independent, i.e. not used for calibration. Cali-

bration was conducted for the period 2000–2010. In

addition, an independent validation time period, 1980–1999,
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was identified. The model’s suitability for climate studies

was assessed by evaluating its ability to reproduce monthly

discharge trends, simulated maximum winter snow water

equivalent (SWE), and by comparing estimated potential

evaporation with pan evaporation measurements. The

model was run from 1980 to 2014. Its simulated mean

water balance was assessed and compared with previous

water balance estimates for Norway.

STUDY AREA AND DATA

Study area

Mainland Norway stretches several latitudes, from 58� to

71� North, on the western coast of northern Europe (see

Figure 1). Its coastline is lined with fjords, while further

inland the Scandinavian Mountains divide the country’s

western and eastern regions. Norway’s location on the east-

ern end of the North Atlantic and its prevailing westerly

winds, together with the Scandinavian Mountains, leads to

a high annual precipitation on its western coast, with

distinctly lower precipitation rates received leeward of the

mountain range. Around a third of precipitation falls as

snow. About 38% of the land area is forest covered, while

the land surface is dominated by bare rock and shallow

deposits (see e.g. Figure 17.1, replication of the Geological

Survey of Norway (NGU) sediment map in Weynants

et al. ()). Relatively shallow soils with a low water sto-

rage capacity in large parts of the country make way for a

rapid runoff response to precipitation (e.g. Beldring ),

but also for moisture stressed conditions in periods of

meteorological drought (Buckland et al. ).

Forcing data

The model is forced with gridded daily temperature and pre-

cipitation fields from SeNorge2018, and with surface

incident shortwave radiation, surface net longwave radi-

ation, and vapor pressure deficit derived following the

HySN method, and with a 1 × 1 km resolution wind data

set from the Norwegian Meteorological Institute (MET

Norway). Details of the forcing data are given below.

Figure 1 | The study region, Norway, with catchment areas outside Norway which drain into Norway included. (a) The orography and (b) the five regions used in the model calibration, with

catchments used for calibration shown with a more opaque color. Please refer to the online version of this paper to see this figure in color: https://doi.org/10.2166/nh.2021.132.
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SeNorge2018

SeNorge2018 version 18.12 is the newest version of the 1 ×

1 km gridded data sets of 2-meter temperature (T2) and pre-

cipitation (P) based on observations from surface

meteorological stations, developed by MET Norway. The

data have a daily resolution and cover the period 1957

until the present. SeNorge2018 includes several innovations

compared with the previous SeNorge version, such as the

inclusion of a wind-induced undercatch correction for pre-

cipitation based on Wolff et al. (), and the use of

climatological background fields from a convection-permit-

ting dynamical downscaling of the global reanalysis ERA-

Interim (Dee et al. ) instead of observational gridded

data. For the model integration period, 1980–2014,

SeNorge2018 shows an annual mean precipitation of

1,348 mm for Norway, while the previous version,

SeNorge2.1 (Lussana et al. ), which did not include pre-

cipitation undercatch corrections, shows 1,068 mm, i.e.

280 mm less (see Supplementary Figure S1).

Klinogrid wind

The wind data set used to force HBV is a high-resolution,

quantile-mapping-based gridded data set of near-surface

wind speed developed at MET Norway. The daily wind

data is available for October 1957 until May 2015 from

http://thredds.met.no/thredds/catalog/metusers/klinogrid/

KliNoGrid_16.12/FFMRR-Nor/catalog.html (accessed 13

December 2019).

HySN5

HySN5 is a modified version of HySN, a high-resolution

HYbrid SeNorge data set of daily near-surface humidity, sur-

face incident shortwave and longwave radiation, and surface

pressure. The data have the same temporal frequency and

projection as the SeNorge data sets. It is described and com-

pared with surface observations and other data sets in

Erlandsen et al. (). The downscaling procedure used to

produce HySN5 is unchanged from Erlandsen et al. ();

however, Era5 has replaced Era-Interim and SeNorge2018

has replaced SeNorge2. The assumptions and methods

used to downscale humidity and longwave radiation are

similar to those used in the WATCH and WFDEI data sets

(Weedon et al. ), PGMFD (Sheffield et al. ), and

NLDAS-1 (Cosgrove ).

HySN5 is compared with surface observations for the

same time period as used in Erlandsen et al. ()

(1982–1999), including 84 stations where measurements

of 2-meter humidity are available, and 10 (2) stations

where incident shortwave (longwave) radiation are

observed. The comparison shows that HySN5 vapor

pressure has a similar mean daily correlation with station

measurements, 0.95, and a slightly lower mean absolute

station bias than HySN, 31 kPa rather than 35 kPa (see

Supplementary Figure S2). The incident shortwave radi-

ation of HySN5 shows a slightly higher daily correlation

with observations (0.95) than HySN (0.94, see Supplemen-

tary Figure S3); however, it also shows a larger mean

difference to the station observations (7.9 W m�2) than

HySN (3.2 W m�2). A proper validation of incident long-

wave radiation is difficult since only two stations are

available, both situated near the coast; nevertheless, at

the two stations, HySN5 shows a higher daily correlation

with observations than HySN, 0.94 rather than 0.91; how-

ever, also here HySN5 shows a higher average difference to

the observations (Supplementary Figure S4).

Vapor pressure deficit was estimated by calculating

vapor pressure at saturation using SeNorge2018 T2. Net

longwave radiation was calculated assuming a surface emis-

sivity of 0.96 and that surface temperature can be

approximated by T2. These two derived variables are avail-

able on request. At present, HySN5 is available from

Zenodo from 1979 through 2000 (https://doi.org/10.5281/

zenodo.3351430) and from 2001 through 2017 (https://doi.

org/10.5281/zenodo.3516560).

Calibration and validation data

Discharge observations, quality controlled and available

from The Norwegian Water Resources and Energy Directo-

rate (NVE), for 119 catchments across Norway, were used

for calibration and validation. Additional evaluation data

includes 24,148 observations from 1,181 measurement

sites of SWE. SWE was derived from snow depth and
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density, which are routinely measured, predominantly

measured in the mountainous regions of southern Norway,

by hydropower companies (Saloranta ), usually once a

year, around the time of maximum SWE.

Few measurements of evaporation are available for

Norway as compared with other Nordic countries. Pan

evaporation was measured in the summer season, May

through September, between 1967 and 1972. Table 7.5 in

Hetager & Lystad () lists the mean monthly Pan evap-

oration, covering 3–5 years, for 42 stations (reproduced in

the Supplementary Material). The measurements were

retrieved by a Thorsrud 2500 evaporimeter, composed of

a 50 cm deep sunken pan with a diameter of 56 cm, filled

with water.

METHODS

The gridded HBV model

HBV-B03

HBV-B03 (Beldring et al. ) has a daily resolution and

covers mainland Norway with 1 km2 grid cells. The

model performs water balance calculations for square

grid cells characterized by their elevation, land use, and

soil type. Each grid cell includes glacial and lake fractions,

and up to three land cover classes, and one soil type. It has

a snow routine with components for accumulation, and

sub-grid scale distribution and ablation of snow. It also

includes glacier melt. The evaporation routine includes a

land cover-dependent evaporation, lake evaporation, and

interception storage. Soil moisture and discharge are simu-

lated including a sub-grid scale distribution of soil moisture

storage, groundwater storage, and runoff response. Six soil

parameters are routinely calibrated: field capacity (FC), an

exponent controlling the fraction of infiltration that perco-

lates to the upper zone (beta), a parameter controlling the

percolation to the lower zone (perc), the upper (kuz) and

lower (klz) zones’ runoff response coefficients, and the

upper zone recession parameter (alpha). The model further

includes a routing module; however, routing has not

been included in either of the model implementations

discussed in this study.

HBV-H19

In HBV-H19 (Huang et al. ), HBV-B03 was modified by

replacing its simple, temperature-based scaling of potential

evaporation (Ep) with a Penman–Monteith big leaf approxi-

mation for estimating daily Ep. Ep parameters were set as

fixed parameters based on the literature or physical empiri-

cal relationships in a look-up table; however, maximum

interception storage was for most land cover classes cali-

brated according to the region and land cover class. The

precipitation phase threshold temperature was set to 0 �C,

while the threshold temperature for snow-melt and the

degree-day factor were calibrated according to the region

and land cover class. The minimum and maximum degree--

day factor allowed during calibration was 0.0001 and

0.01 m �C�1, respectively (Table 1 in Huang et al. ()).

The land cover class was diagnosed based on the high-resol-

ution National Land Resource Map (Ahlström et al. )

combined with a structural forest classification map pro-

vided by Majasalmi et al. (). Forests were classified

into three species groups (spruce, pine, and deciduous)

with four structure classes, each reflecting a low (class 1)

to high (class 4) biomass density, among other attributes.

The number of land cover and soil types represented by

the model was increased to 19 and 12, respectively (see

Huang et al. ). The model domain was divided into

five calibration regions (see Figure 1(b)), which resulted

from k-means clustering of two temperature and two precipi-

tation indices.

HBV-E20

The model version used in this study, HBV-E20, builds upon

HBV-B03 and HBV-H19. The land cover and soil type

classification are based on the same data sets as in HBV-

H19; however, the resulting classification is slightly modi-

fied for land cover, while the soil type classification was

simplified, allowing a total of seven classes for all of

Norway. Figure 2 depicts the dominant land cover class

and soil type in each grid cell.

The evaporation scheme is similar to that described in

HBV-H19. The Supplementary Material provides an over-

view of the implemented Penman–Monteith algorithm

(Equation S3). In HBV-E20, surface resistance (rs) is
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modified from HBV-H19. The new approach describes

rs as a function of humidity deficit, visible radiation at

the top of the canopy, and leaf area index, according to

Leuning et al. (). Standard parameters are used, as

recommended by Leuning et al. (), with maximum

stomatal conductance given as a function of land cover

class, and based on literature recommendations (Schulze

et al. ; Kelliher et al. ; Körner ). Additionally,

the surface resistance formula in Leuning et al. () is

modified to include a temperature constraint, as described

in Mu et al. (). Look-up table values with parameters

related to the 19 land cover types are provided in Sup-

plementary Table S3.

HBV-E20 further includes changes to the model’s snow-

melt routine. We implement a radiation-restricted degree-

day factor based on Kustas et al. (). A radiation-based

melt rate, in meters per day, obtained by converting the Rn

to snow-melt rate, is added to the common degree-day

factor expression:

M ¼ max Ctemp(T2� T2melt)þ Crad
Rn

λfρw
, 0

� �
(1)

where M is the melt rate per day in meters, Ctemp is a cali-

brated degree-day factor, and T2melt is the melt temperature

of snow, λf is the latent heat of fusion, 0.334 MJ kg�1, Rn is

Table 1 | Summary statistics comparing model simulated discharge and observations for the calibrated catchments in the calibration period and the independent period, and for inde-

pendent basins

Number of
catchments KGE (–)

Mean bias (simulated�
observed) (mm/day)

Mean observed discharge
(mm/day)

Relative
bias (%)

Calibration period (2000–2010) 79 0.71 (0.74) �0.3 17.2 �1.9

Independent period (1980–1999) 76 0.70 (0.75) �0.1 13.6 �0.7

Independent basins (1980–2010) 34 0.74 (0.78) �0.8 17.0 �4.8

Figure 2 | The dominant land cover class within each grid cell is shown in (a), while (b) shows the soil type. Please refer to the online version of this paper to see this figure in color: https://

doi.org/10.2166/nh.2021.132.
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in MJ m�2 day�1, ρw is the density of water (1,000 kg m�3),

and Crad is a fraction scaling the radiation term, which is

always less than unity (see Supplementary Table S3). Ctemp

is allowed to vary between 0.0014 and 0.0030 m �C�1

during the calibration, a considerably smaller range than

allowed in e.g. HBV-H19 (0.0001 – 0.01 m �C�1). The

inclusion of a radiative term makes it possible for the simu-

lated snow cover to respond to changes in incoming

shortwave and longwave radiation, as well as surface

albedo. Further, adding a radiative term makes it less

likely that an unreasonably large amount of snow remains

over the summers, ultimately building up so-called ‘snow

towers’ (see e.g. Figure 6 in Skaugen & Weltzien ()).

The adjustment makes it possible to run the model over con-

secutive years without zeroing out snow at the beginning of

the hydrological year, which has been a common procedure

to get rid of ‘snow towers’ in similar models (Skaugen &

Weltzien ). The Supplementary Material includes an

example of aggregated SWE in a simplified snow module

when a traditional degree-day factor, with a constant

melt rate of 2.5 mm �C�1 day�1 is employed, and when

the new, radiation-restricted degree-day factor is used

(Equation (1)).

The snow module of the HBV model is further modified.

The former versions of the model decompose grid cells

where ground snow is present into 1–9 sub-grid tiles,

depending on the total grid cell SWE, where each tile rep-

resents similar snow depths within the grid cell; and

further, the numerical snow scheme is applied separately

to each of the tiles. In conjunction with adding a radi-

ation-restricted snow-melt routine, the traditional, log-

normal SWE-based grid cell tiling is replaced with a

simple sigmoidal tanh-function representing grid cell snow

cover fraction ( fs¼ tanh(75 SWE), similar to e.g. Roesch

et al. (). Omitting tiling simplifies the model structure,

which, following the implementation of the radiation-

restricted degree-day factor, would also have needed a tile-

area-based discretization of net radiation. Furthermore, the

previously used tiling approach was also associated with

the build-up of ‘snow towers’ (Frey & Holzmann ).

A final, physically based model enhancement was

implemented, which has its base in the availability of high-

quality humidity estimates. The traditionally, often calibrated,

precipitation phase threshold temperature was replaced with

a diagnostic criteria where precipitation is set as snowfall if

T2 is below 1 �C and the 2-meter dew point temperature is

below 0 �C, and as rain otherwise. Recent studies (Jennings

et al. ; Jennings & Molotch ) have shown that includ-

ing humidity as a predictor of precipitation phase increases its

accuracy, as snowfall is more likely in drier rather than more

humid environments given the same T2.

Calibration and validation

The model was calibrated with the aim to minimize the

regional mean catchment bias in discharge (simulated –

observed daily discharge) and to maximize the regional

mean KGE. KGE is related to the Nash–Sutcliffe efficiency

(NSE), but avoid two caveats embedded within NSE,

namely (i) that in order to reach a maximum NSE, variabil-

ity has to be underestimated, and (ii) within NSE, bias

is scaled by the observed temporal standard deviation,

which may inflate scores in watersheds with a high seasonal

component. The KGE version used is from Gupta et al.

():

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(r � 1)2 þ (σs=σo � 1)2 þ (μs=μo � 1)2

q
(2)

where r is the Pearson correlation coefficient, σs and σo are

the simulated and observed standard deviation, and μs and

μo are the simulated and observed mean. The optimal

KGE, and highest possible value, is unity, while it has no

lower limit. The KGE is a relative bias measure, so the

two optimization goals used in model calibration are not

entirely independent.

The model was jointly calibrated for catchments within

each of the five calibration regions. The regions following

HBV-H19 and are shown in Figure 1(b). Observed daily dis-

charge during the period 2000–2010 from 85 catchments

located across mainland Norway was used in the calibration,

and discharge observations from 34 independent stations

were used for validation. At all calibrated stations, the model

was additionally validated for an independent period, 1980

through 1999.

For each of the five regions, only three above-ground

parameters were calibrated: a multiplicative correction

factor for precipitation, an additional multiplicative
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undercatch correction factor in case of snowfall, and the

snow-melt degree-day factor (Ctemp). The six soil parameters

described in HBV-B03, FC, beta, perc, kuz, klz, and alpha

were individually calibrated for each soil class, except for

the glacier and till class, which were merged. Thus, the

parameters of a maximum of six soil classes were calibrated

for each region, depending on the number of soil classes

represented within a region. Lower zone lake runoff

response (klz) was set according to that of soil class bog.

The regional calibration was conducted using PEST:

Model-Independent Parameter Estimation and Uncertainty

Analysis (Doherty ).

Model evaluation

In order to assess the HBV-E20 model’s ability to simulate

relevant hydrological states, fluxes and temporal dynamics,

results were evaluated against a variety of observational

data sets: (i) Simulated SWE was compared with 24,148

SWE observations from 1,181 unique locations from

around the time of maximum SWE. (ii) The routine for esti-

mating potential evaporation (Ep), including surface

resistance, was evaluated by comparing to May–September

mean monthly pan evaporation observations (1967–1972).

Ep was calculated for the land cover class ‘Open’, which rep-

resents short vegetation (height¼ 20 cm, leaf area index¼ 2,

see Supplementary Table S3). The estimated Ep was

obtained for the five closest years for which the HBV forcing

data is available, i.e. 1979–1984. (iii) The model’s ability to

reproduce observed trends in monthly discharge was evalu-

ated using a modified Mann–Kendall test including a trend

free pre-whitening method (Yue & Wang ), as

implemented in pyMannKendall (Hussain & Mahmud

). For the trend test to be applied 29 out of 30 complete

years of daily observations were required, following in-filling

of up to two consecutive days of missing data by linear

interpolation.

RESULTS

The model was calibrated and validated in terms of regional

mean KGE and bias of its daily discharge estimates. The

calibrated model parameters are presented in the

Supplementary Material. The calibrated parameters were

either derived for each calibration region or for each soil

class within a calibration region. The calibration provided

values for the full study domain except for parameters for

the soil class ‘marine’ within region 1 and 2. These were

given calibrated parameters from the soil class ‘fluvial’.

The model calibration resulted in minor correction factors

for rain and snowfall, with the product of the two correction

factors amounting to an average increase of 3%. The model

corrected precipitation was just 1.4% larger than the

SeNorge2018 precipitation between 1980 and 2014 (see

Supplementary Material). The model’s ability to reproduce

potential evaporation, winter maximum SWE, and dis-

charge trends are evaluated below. Finally, the physically

enhanced HBV model is applied to provide a mean water

balance for the period 1980–2014.

Daily discharge, potential evaporation, maximum SWE,

and monthly discharge trends

Daily discharge

The results of the model calibration and validation are given

in Table 1, including only catchments where at least 5 years

of observations are available. Daily mean and median KGE,

with the median given within brackets, mean bias, mean

observed discharge, and relative bias are provided. The cali-

bration resulted in a median KGE of 0.74. A KGE above 0.6

was achieved in 86% of the catchments, values above 0.7 in

66% of the catchments, while a KGE score above 0.8 was

achieved in 22% of the catchments. In five catchments,

the KGE score was above 0.85. The mean bias was

�0.3 mm/day or �1.9% of mean discharge. When the

model was run for an independent time period, 1980–

1999, the median KGE for the catchments was 0.75, while

the mean bias was �0.1 mm/day or �0.7% of the mean

observed discharge. The model was further evaluated for

34 independent catchments not included in calibration.

For these catchments, the median KGE was 0.78, and the

mean bias �0.8 mm/day, or �4.8% of observed discharge,

for the period 1980–2010. The distribution of KGE and

mean bias for the calibration and independent catchments,

and for the calibration period and the independent time

period is displayed in Supplementary Figure S10. Depending
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on the metric considered HBV-E20 show equally good or

better performance than previous gridded HBV versions

applied for the same domain (see Huang et al.  and

references therein).

Winter maximum SWE

SWE observations from around the time of maximum SWE

are in Figure 3 compared with the model’s simulated SWE.

The observations and model estimates show a Pearson cor-

relation coefficient of 0.78 (Figure 3(a)). The model’s

simulated maximum SWE is on average 6 cm higher than

the observations; however, as seen in Figure 3(b), there is

a strongly significant, positive correlation (p < 0.000)

between SWE bias and the difference between model grid

cell and measurement altitude.

Potential evaporation

The new scheme to calculate potential evaporation, Ep, is

compared with pan evaporation in the growing season

from May through September in Figure 4. The maps

(upper row) and box plots (lower row) compare mean

monthly simulated Ep for the land cover class ‘Open’

(1979–1984) to the pan measurements (1967–1972).

A reasonable agreement is found; however, the simulated

Ep tends to show higher values than the pan measurements

in July, but lower values in September. Overall, the pan

measurements show a May to September evaporation of

284 mm, while the simulated values give 272 mm, i.e. 96%

of the measured values.

Discharge trends

Trends in observed and simulated monthly discharge for

the period 1985–2014 at various measurement stations

are shown as a heat map in Figure 5, where a blue color

indicates an increasing trend and a red color indicates a

decreasing trend. The trends’ significance is evaluated

using a Mann–Kendall test, and significant trends (low

p-values) are marked with one or more asterisks in the

plot. At most of the stations, a notable shift in discharge

can be seen from early summer or late spring to earlier in

spring. This is evident in both the model simulations and

observations; the largest monthly change in both is an

increase in discharge of around 1.6% in April. The single,

largest observed change is an increase of 5.2% at the

Figure 3 | Observed (x) and simulated (y) SWE around the time of maximum SWE (a), and difference between simulated and observed SWE (x) plotted against difference in altitude

between the model grid cell and observation (y) (b). The Pearson correlation and its significance are denoted near the top of each plot.
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station Sundbyfoss, where the model shows a correspond-

ing 3.3% increase. Overall, the trend patterns in the

observations are reproduced by the model; however,

there are some regions and times of the year with discre-

pancies, e.g. an observed increase in winter discharge at

several stations in Finnmark and Nordland and at Bjoreio

(50.13, Hardanger county), which are not reproduced by

the model.

1980–2014 water balance

The September 1980 to August 2014 simulated mean annual

Ep, evaporation (E), precipitation (P), runoff (R), and the

evaporation fraction of precipitation, i.e. E/P, are depicted

in Figure 6. There are large regional variations in the

water balance elements, with the coastal regions receiving

the most precipitation and producing the highest runoff,

while more continental regions show the highest potential

and actual evaporation. Areal median (mean) annual P is

1,168 (1,367) mm, while R is 975 (1,179) mm, E 157 (178)

mm, and Ep 182 (210) mm. The evaporation fraction is

0.17, i.e. just above one-sixth; however, in southeastern

and northeastern parts of Norway, annual evaporation

reach 40% of precipitation.

DISCUSSION

Model calibration and validation

The herein alterations to the gridded HBV model code

implemented in HBV-E20, including a modified physically

based potential evaporation routine, a radiation-restricted

degree-day factor for snow-melt, and the introduction of

humidity as a predictor of precipitation phase led to fewer

calibrated parameters. A reduction in the number of par-

ameters reduces the dimensions in parameter space and

with that parameter uncertainty, contributing to a more

robust model in general, and for climate change impact

assessment in particular.

The model achieved a median KGE between 0.74 and

0.78, and a mean bias between �0.1 and �0.8 mm/day,

depending on the period and catchments considered.

Though the primary goal of the alterations was to increase

the physical robustness of the model under climate change,

we find that the HBV-E20 model’s performance in simulating

daily discharge is equally good or better than previous

gridded HBV versions applied for the same domain (see

Huang et al.  and references therein). Additionally, the

model showed a fair amount of skill in reproducing observed

annual maximum SWE, with a correlation of 0.78 and a

Figure 4 | Mean monthly pan evaporation measured at 42 sites across Norway (1967–1972) shown within black circles overlaid the simulated Ep for the land cover class ‘Open’ (1979–

1984). The lower box plots show the pan measurements in purple and the simulated Ep for collocated grid cells in green. Please refer to the online version of this paper to see

this figure in color: https://doi.org/10.2166/nh.2021.132.
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mean difference of 6 cm to the point observations. The

improved availability of high-quality forcing data facilitated

the implementation of model alterations and thus likely con-

tributed to the improved model performance.

A reasonable agreement was seen between pan evapor-

ation measurements (1967–1972) and Ep calculated for the

land cover class ‘Open’ (representing short vegetation)

(1979–1984), with the latter amounting to 95% of the

former. The pan evaporation measurements show higher

regional variability than the estimates. This may, in part,

be explained by the fact that the measurements represent

points in the terrain with a varying degree of exposure

(Hetager & Lystad ), while the estimates are provided

for 1 × 1 km grid cell averages. The pan measurements

showed relatively higher values in September, whereas the

calculated Ep showed relatively higher values in July. Evap-

oration rates from pans are on average above that of larger,

natural water bodies, since pans are surrounded by drier

areas, leaving the air less saturated (the oasis effect), and

because the pan itself can absorb heat and sunlight, ulti-

mately increasing evaporation. According to Allen et al.

(), reference crop evaporation may be 0.5–1.1 of that

measured from a pan, depending on the wind speed, humid-

ity, fetch, and surrounding vegetation. The calculated Ep for

the ‘Open’ land cover class should, similarly to reference

crop evaporation, show lower values than the pan measure-

ments. While the variation in the time periods considered

may influence the differences seen in observed and simu-

lated Ep, it is possible that the HySN5 incident shortwave

radiation, which shows slight overestimations compared

with surface observations, contributes to the slightly larger

calculated Ep than the pan observations mid-summer. How-

ever, the lack of surface observations of incident longwave

radiation limits a comprehensive validation of the forcing

data estimates, and it is thus difficult to say if the total inci-

dent radiation is overestimated or not. A likely larger impact

on the calculated Ep is the choice of Ep parameter values for

the land cover class ‘Open’. The values chosen for the cur-

rent implementation in HBV should, however, be

reasonable, given the close agreement found with the pan

measurements. It should be noted that the veracity of esti-

mated Ep for other vegetation types, and the estimates of

evaporation from the coniferous forest, where interception

loss plays a significant part, remains uncertain due to the

lack of observations to constrain the estimates.

A comparison of monthly discharge trends revealed an

overall good agreement of the trend; however, for some

catchments and calendar months, the simulated and

Figure 5 | Observed (left panel) and simulated (right panel) monthly trends in discharge

(%) between 1985 and 2014 for individual catchments, sorted from north

(upper rows) to south (lower rows). *p < 0.1, **p < 0.05, ***p < 0.01.

Please refer to the online version of this paper to see this figure in color:

https://doi.org/10.2166/nh.2021.132.
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observed trends did not agree. These discrepancies, where

present, might be explained by deficiencies in the model,

e.g. in its diagnosis of precipitation phase, melting tempera-

ture, or perhaps its lack of representation of land use change

(e.g. Erlandsen et al. ). The lack of precipitation obser-

vations in some regions, particularly in the mountains, and

the variation in the station network feeding into the

SeNorge precipitation data set with time, likely limits the

ability of the HBV model to reproduce observed discharge

trends. Work is currently in progress to resolve the latter

issue; a gridded precipitation data set where the observation

network is consistent with time (see e.g. Masson & Frei

) is under construction (pers. comm. C. Lussana, MET

Norway).

The model calibration resulted in very small correction

factors for rain and snowfall; model corrected P was just

1.4% larger than the SeNorge2018 precipitation. Allowed

ranges of precipitation and snow correction factors under

calibration typically vary from around 0.5, i.e. a halving, to

2–3, that is doubling or tripling the precipitation amount

(e.g. Table 1 within Huang et al. ()). The small correc-

tion factors of the current study can likely largely be

attributed to the high quality of the SeNorge2018 forcing

data, which, unlike its predecessor, SeNorge2, includes a

correction for precipitation undercatch. The mean

annual P for Norway is about 280 mm or 26% higher in

SeNorge2018 than its predecessor, SeNorge2. The phys-

ically based Ep estimates, being considerably smaller than

those estimated in previous versions of the HBV model

(see the discussion below), also contribute to smaller pre-

cipitation correction factors.

1980–2014 water balance

Averaged over continental Norway, HBV-E20 produced a

September 1980 to August 2014 mean annual water balance

of 1,367 mm P, E of 178 mm, and 1,179 mm R. Previous

water balance estimates for Norway vary considerably (see

Table 2). HBV-H19 gives 1983–2012 average annual water

balance elements of about 1,333 mm P, 221 mm E, and

1,121 mm R. The climate synthesis report for Norway

(Hanssen-Bauer et al. , in Norwegian) states that

1961–1990 areal average P is 1,486 mm, E 346 mm, and R

1,140 mm; while the similar, updated climate report pub-

lished in 2017 (Hanssen-Bauer et al. ) states that

1971–2000 average P is 1,600 mm, E slightly less than

500 mm, and R 1,100 mm.

Figure 6 | The 1980–2014 mean annual potential evaporation (Ep), evaporation (E), precipitation (P), runoff (R), and E/P, in mm/year. The areal median and mean are denoted in the upper

left corner, with the mean in parenthesis. Please refer to the online version of this paper to see this figure in color: https://doi.org/10.2166/nh.2021.132.

Table 2 | Estimates of the annual surface water balance, provided for annual precipitation

(P, mm), evaporation (E, mm), and runoff (R, mm), over continental Norway

Source Period P E R

HBV-E20 1980–2014 1,367 178 1,179

Huang et al. () HBV-H19 1983–2012 1,333 221 1,112

Hanssen-Bauer et al. ()
HBV-B03

1971–2000 1,600 500 1,100

Hanssen-Bauer et al. ()
HBV-B03

1961–1990 1,486 346 1,140
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It should be noted that the estimates provided in the two

climate synthesis reports were based on a simple, tempera-

ture-dependent E approximation (as outlined in HBV-

B03), and that the estimates are for different reference

periods. Furthermore, the precipitation estimates have

different sources. The estimates provided in Hanssen-

Bauer et al. () were based on stations measurements

that were interpolated and given correction factors within

the gridded hydrological model. The estimates in Hanssen-

Bauer et al. () were based on a previous version of the

national, gridded, observation-based precipitation estimates

(SeNorge), and precipitation correction factors added

during calibration. The SeNorge data set likely overesti-

mated precipitation (Saloranta ). The P estimate of

HBV-H19 was based on SeNorge2, after precipitation cor-

rection factors had been added.

While the various R estimates are similar, likely since

this estimate is constrained by discharge measurements,

the estimates of P and E vary considerably. New and

improved observational data, particularly of evaporation,

incident longwave radiation, and high-altitude precipitation,

would help constrain the water balance estimates. Further-

more, future studies regarding the treatment of intercepted

precipitation, particularly given that the model is run with

a daily resolution, are needed to reduce uncertainty regard-

ing Norway’s mean water balance (Tallaksen et al. ;

Haddeland et al. ). Examples of physically based

model enhancements that could help constrain long-term

water balance estimates include, e.g.: (i) a sub-daily temporal

resolution, which could make way for an improved rep-

resentation of rain- and snowfall interception; (ii)

improved description of sublimation processes; and (iii)

inline computation of surface net longwave radiation, poss-

ibly based on the inclusion of snow-pack thermal inertia

(cold content).

CONCLUSIONS

With the availability of updated and improved forcing data,

a gridded version of the HBV model has been enhanced to

include a physically based evaporation scheme, a net radi-

ation-restricted degree-day factor approach for snow-melt,

and a prescribed precipitation phase threshold based on

2-meter temperature and humidity. The improved forcing

data combined with more physically based parameteriza-

tions allowed for the model to be calibrated for mainland

Norway with fewer free parameters, i.e. only three cali-

brated above-soil parameters for each of five calibration

regions. The model calibration resulted in relatively small

correction factors for rain and snowfall, increasing precipi-

tation with just 1.4% compared with the original field. The

model showed equally good or better results than previous

gridded versions constructed for the same domain. Further-

more, annual maximum SWE, Ep, and discharge trends

were satisfactorily represented by the model when com-

pared with observations. The model’s mean annual water

balance showed lower P and E values for mainland

Norway than previous estimates. Additional modeling

studies and more observational data are needed to get

higher confidence in current and recent estimates of Nor-

way’s water balance.

These are the first steps among several that might be

undertaken to improve process representation in the

model providing more robust long-term water balance esti-

mates in a changing climate. Additional constraints, which

might further improve and constrain the physical process

description and calibration of the model, include enhanced

gridded precipitation data sets, further improved represen-

tation and parameterization of the land surface (soil,

bedrock, and vegetation), and additional physically based

model enhancements.
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Supplement to Constraining the HBV model for robust water balance assessments in a cold
climate

S1 Data and methods

S1.1 Forcing data

S1.1.1 SeNorge2018

Annual mean precipitation (1980-2014) over mainland Norway of SeNorge2.1, SeNorge2018, and the difference
between the two (SeNorge2018 - SeNorge2.1) are shown in Figure S1.
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Figure S1: The annual mean precipitation (1980-2014) of SeNorge2.1 (left hand side), SeNorge2018 (center),
and SeNorge2018 - SeNorge2.1 (r.h.s) in mainland Norway.

S1.1.2 HySN5

HySN5 ingests reanalysis variables from Era5, which means that the data-set may be extended back in time
to cover the full SeNorge historic period once Era5 covers these periods. HySN5 estimates between 1982 and
2000 of vapour pressure (VP), incident shortwave (SW) and incident longwave (LW) radiation are compared
to surface observations. The results are listed in Figure S2, S3, and S4, for VP, SW, and LW, respectively.
The daily Pearson correlation coefficient and the mean difference to the station observations, after adjustment
to station altitude (using the same method as stated in Erlandsen et al. (2019)) are shown for each station
in heatmap plots. Correlations and differences for other estimates of VP, SW, and LW are also shown, for
comparison. Table S1 gives an overview of the various data sources compared.
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Table S1: The data set estimates of vapour pressure (VP), LW ↓, and SW ↓ which, are compared to observations are listed.
Precipitation is denoted as P , 2-meter temperature as T2. The table is a modified version of Table 1 in Erlandsen et al. (2019).
References are available in Erlandsen et al. (2019) for all sources except Era5 (Hersbach et al. (2019), Copernicus Climate Change
Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. (2017)).

Product Resolution Coverage About Input data.

M MERRA2 1/2◦ x 2/3◦ Global Reanalysis

E ERA-Interim 2/3◦ x 2/3◦ Global Reanalysis

E5 Era5 1/4◦ x 1/4◦ Global Reanalysis

P PGMFDv2 1/2◦ x 1/2◦ Global, Post-processed reanalysis, NCEP-NCAR (2◦ x 2◦),
land VP LW ↓ re-gridded and CRU TS3.1 T2

only adjusted to monthly CRU T2, CRU TS3.1 cloud cover,
method from Cosgrove (2003). NASA MEaSUREs
SW ↓ & LW ↓ adjusted to LW ↓ & SW ↓
satellite-based data set

W WFDEI 1/2◦ x 1/2◦ Global, Post-processed reanalyis, ERA-Interim,
land VP, LW ↓ re-gridded and CRU TS3.1 T2

only adjusted to monthly CRU T2, (1979-2009),
method from Cosgrove (2003). CRU cloud cover and
SW ↓ re-gridded and adjusted aerosol loading
to CRU cloud cover &
inter-annual aerosol loading

V1 VFDv1 1 x 1 km Regional, Empirical model, SeNorge2 P & T2,
locally The VIC4.0.6 pre-processor: Nora10 sub-daily T2

compiled MTCLIMv4.2 & TVA+Bras LW ↓

V2 VFDv2 1 x 1 km Regional, Empirical model, P,
locally The VIC4.2.d pre-processor: SeNorge2 T2min,
compiled MTCLIMv4.3 & Prata+Deadroff LW ↓ SeNorge2 T2max

H HySN 1 x 1 km Regional Post-processed reanalyis, ERA-Interim,
locally VP, LW ↓ re-gridded and SeNorge2 T2

compiled adjusted to daily SeNorge2 T2,
method from Cosgrove (2003).
SW ↓ re-gridding and adjustment,
method from
Thornton and Running (1999)

H5 HySN5 1 x 1 km Regional Post-processed reanalyis, Era5,
locally VP, LW ↓ re-gridded and SeNorge2018 T2

compiled adjusted to daily SeNorge2018 T2,
method from Cosgrove (2003).
SW ↓ re-gridding and adjustment,
method from
Thornton and Running (1999)
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Figure S2: VP estimates, from the sources listed in Table S1, compared with surface observations, sorted from
South to North (y-axis). The leftmost panel shows, in each column, the Pearson correlation coefficient of daily
VP estimates and observed values, with the mean correlation denoted below each column. The rightmost
panel shows the mean bias at each station for each VP estimate (columns), with the mean absolute station
bias denoted below each column.
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Figure S3: As in Fig. S2, but for SW ↓.
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S1.2 Calibration and validation data

Table S2 is a replication of Table 7-5 within Hetager and Lystad (1974), with added station coordinates,
displaying mean May to September pan evaporation sum measured between 1967 and 1972. The table list the
station number (Num.) ,the name of the station (station), the stations latitude (lat.) and longitude (lon.),
the station altitude (m.a.s.l.), the number of years the monthly average is based on (n years), and finally the
mean monthly values and sum.
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Table S2: Replication of Table 7-5 within Hetager and Lystad (1974), with added station coordinates.
Num. station lat. lon. m.a.s.l. n years May June July Aug. Sept. sum

12 Avdal 62.03 10.78 485 6 61.60 76.00 73.40 66.70 36.80 314.30
34 Lesja 62.13 8.72 572 4 63.10 80.30 67.80 64.50 33.80 309.50
53 Varden 61.18 8.15 1012 4 66.90 95.10 61.60 66.40 37.00 327.00
66 Loesset 61.37 11.38 262 6 52.20 62.40 58.00 49.40 28.10 250.10
68 Trysil 61.33 12.25 356 6 57.30 67.00 60.00 67.10 48.00 299.30
70 Bjørke 60.80 11.20 200 5 80.00 119.50 100.70 85.10 43.20 428.40
72 Kise 60.77 10.82 128 4 66.20 91.50 81.50 70.10 47.20 356.40
86 Aust Torpa 60.93 10.13 495 6 44.60 62.90 60.80 55.00 31.80 255.00
900 Furusmo 60.17 11.12 200 5 87.50 107.80 101.70 93.80 59.50 450.30
901 østby 60.17 11.00 170 5 65.00 82.60 81.00 67.70 41.20 337.60
112 Blindern 59.93 11.53 94 6 88.90 135.60 95.00 89.00 53.60 462.10
148 Lyngdal 59.90 9.53 190 5 60.60 73.10 67.90 62.10 40.00 303.50
164 Stokke 59.25 10.28 76 5 63.80 83.00 69.60 56.30 38.20 311.00
180 Eidsberg 59.50 11.28 141 6 61.10 87.10 83.00 75.50 42.40 349.00
197 Prestebakke 58.98 11.53 189 6 82.40 98.10 84.40 64.80 42.40 372.20
204 Gvarv 59.38 9.18 24 6 64.30 86.60 87.00 65.10 34.20 337.20
233 Landvik 58.33 8.52 6 6 73.70 97.50 83.20 67.60 41.90 363.90
268 Lista 58.10 6.57 13 6 78.20 88.00 93.30 81.50 55.80 396.70
272 Tonstad 58.67 6.70 57 3 65.20 67.70 59.70 60.00 40.60 293.20
296 Fister 59.18 6.07 1 6 42.60 46.80 40.10 34.80 27.60 191.90
304 Skudesnes 59.15 5.25 7 4 57.30 66.90 59.20 46.90 31.70 264.00
324 Ullensvang 60.32 6.65 12 6 56.60 66.10 52.80 47.40 32.10 255.10
350 Stend 60.27 5.35 50 4 62.90 76.80 68.10 65.30 45.10 318.20
372 Fjærland 61.42 6.07 10 6 50.30 51.70 46.60 47.30 25.30 221.20
376 Laerdal 61.07 7.52 36 6 73.20 87.20 69.20 63.60 33.30 326.60
396 Førde 61.47 5.85 43 6 48.90 55.00 45.30 45.20 26.80 221.10
417 Hareid 62.37 5.98 25 3 51.70 50.60 47.80 44.80 36.30 231.20
418 Orstavik 62.20 6.15 35 6 47.60 45.00 44.60 42.70 32.40 212.40
419 Stranda 62.30 6.80 84 4 52.20 47.20 45.70 35.90 15.00 196.00
421 Valldal 62.30 7.23 50 4 59.30 57.10 55.50 50.80 30.40 253.00
422 Skodje 62.50 6.68 30 5 58.00 53.90 51.20 43.30 31.10 237.60
454 Smøla 63.43 6.68 30 6 79.00 75.00 66.50 53.00 30.00 303.40
478 Øvre Gjervan 63.33 10.65 176 4 57.70 54.50 42.50 41.90 28.00 224.60
486 Stugusjø II 62.90 11.88 616 3 59.90 60.50 41.50 37.80 23.00 222.70
496 Sulstua 63.67 12.02 251 6 54.10 61.40 52.20 47.50 29.70 245.00
528 Leka 65.10 11.70 50 6 57.70 54.60 57.70 52.80 38.40 261.20
545 Sandnessjøen 65.98 12.58 75 4 74.40 60.20 59.80 39.70 35.80 270.00
596 Narvik 68.47 17.50 32 6 40.50 37.40 36.20 26.30 16.60 157.00
640 Bø 68.63 14.47 11 5 56.50 67.20 59.70 47.50 38.20 269.10
642 Borkenes 68.77 16.20 36 6 50.20 40.30 40.80 37.70 20.60 189.60
680 Tromsø 69.65 18.97 102 6 38.30 42.10 44.00 29.60 13.70 167.80
714 Brennelv 70.07 25.12 34 6 43.00 51.60 47.80 36.00 21.70 200.00
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S1.3 The gridded HBV model

S1.3.1 HBV-E20

Figure S5 shows an example of the evolution of mean snow melt equivalent (SWE) from September 1979 to
1999 for the study area, in a simplified snow accumulation and snow melt model implemented in Python,
without precipitation correction factors, tiling of snow, or refreezing of melted snow. The melt temperature of
snow (T2melt), used in the degree-day factor expression, is set to 0 ◦C. The degree-day factor, Ctemp, provides
the melt rate in meters for every degree Celsius the daily mean 2-meter temperature (T2) is above T2melt. A
blue, stippled line shows SWE when snow melt (M) is given by a traditional degree-day factor expression:

M = max(Ctemp(T2− T2melt), 0) (S1)

where the degree-day factor, Ctemp, is 0.0025 m/◦C. In HBV-E20 the degree day factor expression is modified
by adding a radiative term to the traditional equation. Figure S5 shows, in orange and green stippled lines,
an example of the evolution of mean SWE for a radiation-restricted degree day factor:

M = max(Ctemp(T2− T2melt) + Crad
Rn
λfρw

, 0), (S2)

where Crad is a fraction scaling the radiative term which is added to the degree-day factor, set to 0.82 , λf
is the latent heat of fusion, 0.334 MJkg−1, Rn is net surface incident radiation in MJm−2day−1, while ρw is
the density of water (1000 kgm−3). The net incident shortwave radiation was calculated as a weighted mean
according to the grid cell snow cover fraction (fs) and the albedos (one for snow free conditions and one for
snow covered conditions) provided in the look-up table (Table S3) for the grid cell dominant land cover class.
The orange stippled line shows SWE when fs is expressed as fs = 0.95 · tanh(100 · SWE), as in Eq. 6,
Roesch et al. (2001) while the green stippled line shows SWE when fs is expressed as fs = tanh(75 · SWE).
fs = tanh(75·SWE) is used in HBV-E20. Figure S5 shows that with Ctemp given as 2.5 mm/◦C, the simplified
snow model shows a build-up of SWE over summer when the traditional degree-day factor expression (Eq. S1)
is used to describe snow-melt, while snow moslty does not build-up over time when the radiation restricted
degree factor expressions (Eq. S2) are used.

Table S3 list various land use type dependent parameters. Other parameters related to vegetation and snow
include the degree day melt rate for ice, Cice, which is set to 1.2 mm/day, the melt temperature for snow
(0.0◦C, the amount of melt water which may refreeze (0.05 mm), and maximum interception capacity (in
meters) is calculated as one fifth of the the land use type’ s LAI.

The Penman-Monteith equation for Ep, in millimeters per day, is implemented as follows:

Ep =
td
λ

∆ ·Rn +
ρacpV Pd

ra

∆ + γ(1 + rs/ra)
(S3)

Here td is the seconds in a day (s day−1), λ is the latent heat of vaporization (' 2.45106 Jkg−1), ∆ is the
slope of the saturation vapour pressure (∆ = b · c · es(T )/(c + T )2 in kPaK−1) and is calculated with the
constants a, b, c taken from Buck (1981) to be consistent with the formulas used to derive vapour pressure.
Rn is surface net radiation (Wm−2), ρa air density (kgm−3). cp is the specific heat capacity of water (1013
Jkg−1K−1); V Pd is the vapour pressure deficit (kPa), while γ is the psychrometric constant (K−1), given by
γ = cp/εps/λ, where ε is the ratio of the molecular weight of water vapor to dry air, 0.622, and ps is surface
pressure. ra (sm−1) is the aerodynamic surface resistance, and rs (sm−1) is the surface resistance. Surface
net radiation, Rn, is calculated from HySN5 LWn(estimated from HySN5 LW and SeNorge2018 T2) and SW ,
and surface albedo (α), which is calculated as a weighted average of land cover class albedo with and without
snow, according to the snow cover fraction.
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Figure S5: Evolution of SWE for the study area between September 1979 and September 1999 in a simpli-
fied snow accumulation and ablation mondel implemented in Python, where snow melt is given by Eq. 1
(blue. stapled line), or by Eq. 2 (orange and green stapled lines), including two grid cell snow cover fraction
parameterizations: fs = 0.95 · tanh(100 · SWE) (orange line), and fs = tanh(75 · SWE) (green line).

Table S3: Look-up table providing parametric values for vegetation related parameters used in HBV-E20
Land use type no. Crad α αs height LAI T2open T2close z0g gsmax

[−] [−] [−] [m] [−] [◦C] [◦C] [m] [sm−1]

Open 0 0.85 0.14 0.57 0.2 2.0 12.02 -8.0 0.001 0.0060
Bog 1 0.85 0.13 0.58 0.5 2.0 8.80 -8.0 0.010 0.0066
Built-up 2 0.75 0.13 0.14 10.0 4.0 12.02 -8.0 0.020 0.0060
Crop 3 0.75 0.15 0.32 2.0 5.0 12.02 -8.0 0.010 0.0110
Heather 4 0.85 0.15 0.64 0.3 1.0 8.80 -8.0 0.020 0.0060
Bedrock 5 0.95 0.12 0.60 0.1 0.0 12.02 -8.0 0.001 0.0090
Spruce 1 6 0.75 0.13 0.36 7.5 1.4 8.31 -8.0 0.020 0.0057
Spruce 2 7 0.75 0.12 0.32 12.3 4.3 8.31 -8.0 0.020 0.0057
Spruce 3 8 0.75 0.10 0.18 16.8 6.7 8.31 -8.0 0.020 0.0057
Spruce 4 9 0.75 0.09 0.13 22.0 9.1 8.31 -8.0 0.020 0.0057
Pine 1 10 0.75 0.12 0.40 7.5 0.9 8.31 -8.0 0.020 0.0057
Pine 2 11 0.75 0.10 0.30 11.6 2.4 8.31 -8.0 0.020 0.0057
Pine 3 12 0.75 0.10 0.24 17.0 2.3 8.31 -8.0 0.020 0.0057
Pine 4 13 0.75 0.10 0.17 17.2 4.4 8.31 -8.0 0.020 0.0057
Deciduous 1 14 0.75 0.13 0.57 4.9 0.5 9.09 -6.0 0.020 0.0046
Deciduous 2 15 0.75 0.13 0.46 8.4 1.8 9.09 -6.0 0.020 0.0046
Deciduous 3 16 0.75 0.14 0.42 12.2 3.9 9.09 -6.0 0.020 0.0046
Deciduous 4 17 0.75 0.12 0.24 18.3 7.0 9.09 -6.0 0.020 0.0046
Glacier 20 0.95 0.50 0.50 0.1 0.0 12.02 -8.0 0.001 0.0093
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S1.4 Calibration
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Figure S6: The three above soil parameters calibrated for each of the five climatic zones, the degree day factor
(Ctmep), a multiplicative correction factor for all precipitation (Pcorr), and an additional one only applied for
snowfall (Scorr).

Table S4: Calibrated above-soil parameters each of the five climatic zones (rows), the degree day factor (Ctmep),
a multiplicative correction factor for all precipitation (Pcorr), and an additional one only applied for snowfall
(Scorr).

Zone Ctmep Pcorr Scorr
[mm day−1] [−] [−]

1 1.40 0.99 1.00
2 2.25 1.04 1.06
3 2.81 0.98 1.08
4 3.00 0.96 1.02
5 2.92 1.01 1.05
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Figure S7: Percentage of soil types (columns) within each calibration zone (rows). The lower diagonal indicates
the percentage within the full calibration zone, while the upper diagonal indicates the percentage within the
calibration catchments within the zone. A white indicates no presence of the soil type.

Figure S8: Calibrated parameter values for field capacity (FC), β (BETA), percolation to the lower zone
(PERC), the upper (KUZ) and lower (KLZ) zones runoff response coefficients, and the upper zone recession
parameter (ALFA), for the five soil types (columns) for each calibration zone (rows).
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Figure S9: Time-series of simulated (green line) and observed (black line) discharge at Eggafoss catchment in
central Norway.

Figure S10: Catchment KGE scores, depicted in violin plots, are displayed in the left panel, for calibration (left)
and independent (right) catchments, for the calibration period (2000-2010, orange color) and an independent
time period (1980-1999, green color). The right panel shows similar violin plots for catchment bias.

S2 Results

S2.1 Validation

The model calibration resulted in high KGE values for many catchments, as exemplified in Figure S9, where a
close fit between observed and simulated runoff at Eggafoss, a validation catchment in the Trøndelag region of
Norway, is displayed. The distribution of KGE and mean bias for the calibration and independent catchments,
and for the calibration period and the independent time period is further provided (Fig. S10).
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A. Derivation of the Penman-Monteith
equation for plant and canopy evapo-
ration
The original Penman-48 equation (Eq. 2.10) may be written :

LE = λE =
∆Rn + ρacp

rSH
(es(T )− e(T ))

∆ + γ

The Penman-Monteith expression may be derived by expressing both turbu-
lent fluxes in terms of the resistance to sensible heat transfer (rSH), by defining
a modified psychometric constant (γ), γ∗ == γ(rLE/rSH). The sensible and
latent heat fluxes may then be given by by the following two expressions:

SH = ρcp
rSH

(Ts − T ) = − ρcp
rSH

(T − Ts),

LE = λρε

rLEps
(es(Ts)− e(T )) = ρcp

γrLE
(es(Ts)− e(T )) = ρcp

γ∗rSH
(es(Ts)− e(T )),

.
Assuming, as Penman did, that es(Ts) = es(T )−∆(T − Ts), and inserting

this into the expression for latent heat above gives:

LE = ρcp
γ∗rSH

(es(T )−∆(T − Ts)− e(T )).

T0 may be removed by using the expression for sensible heat:

LE = ρcp
γ∗rSH

(es(T )−∆(−(SH rSH
ρcp

))− e(T )) = ρcp
γ∗rSH

(es(T )− e(T )) + ∆
γ∗SH.

SH can be expressed as SH = Rn − LE (with ground heat flux omitted here
for brevity):

LE = ρcp
γ∗rSH

(es(T )− e(T )) + ∆
γ∗Rn −

∆
γ∗LE.

Rearranging LE to the left hand side provides:

(1 + ∆
γ∗ )LE = (γ

∗ + ∆
γ∗ )LE = ρcp

γ∗rSH
(es(T )− e(T )) + ∆

γ∗Rn,

which finally gives:

LE =
ρcp

γ∗rSH
(es(T )− e(T )) + ∆

γ∗Rn
γ∗+∆
γ∗

=
∆Rn + ρcp

rSH
(es(T )− e(T ))

γ∗ + ∆ (A.1)
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A. Derivation of the Penman-Monteith equation for plant and canopy
evaporation

Often the above equation is used with rLE , the resistance to vapor transfer,
replaced with two resistances, one component describing the plant specific
resistance to vapor exchange from the plant to some level above the canopy
surface (rs), and another component describing the aerodynamic resistance (ra)
from that level and on wards: rLE = rs + ra. If one further assumes that the
aerodynamic resistance for heat and vapor transfer is the same (rSH = ra),
γ∗ = γ(rLE/rSH) = γ((rs + rSH)/rSH) = γ(rs/ra + 1), the Penman-Monteith
expression for canopy evaporation is:

LE =
∆Rn + ρcp

ra
(es(T )− e(T ))

∆ + γ(1 + rs

ra
) (A.2)
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B. Source code written for Paper III
B.1 The Python script which compiles the HySN5 dataset

The Python script to compile the HySN5 dataset, and vapor pressure deficit
and estimated net incident longwave radiation, used in Paper III as input to the
HBV model:� �

1 # !/ usr / bin / env python
2 # -*- coding : utf -8 -*-
3 # author : Helene B. Erlandsen
4 # date 09.01.2019
5 # updating for Era5 and SeNorge2018 use
6
7 import sys , os , glob
8 import os . path
9 from datetime import date

10 today = str ( date . today ( ) )
11 import numpy as np
12 import bokeh
13 import dask
14 import pandas as pd
15 import xarray as xr
16 import xarray . ufuncs as xu
17 from dask . diagnostics import ProgressBar
18 from dask . distributed import Client , LocalCluster , TimeoutError
19 import gc # garbage collector
20 # from pyproj import Proj
21 # The interpolation could be done with scipy interp ,
22 # Basemap interp or xarray interp
23 # choosing to use xesmf cause saves weights , needs pip install
24 import xesmf as xe # pip install
25 # pip install -- upgrade git + https :// github . com / JiaweiZhuang / xESMF .

git@masking
26 #( https :// github . com / JiaweiZhuang / xESMF / issues /22)
27 # Follows SCRIP convention where 1 is unmasked and 0 is masked .
28 # See https :// github . com / NCPP / ocgis / blob /61

d88c60e9070215f28c1317221c2e074f8fb145 / src / ocgis / regrid / base . py #
L391 - L404

29 # extrapMethod = extrap_method ,
30 # ESMF ESMC_EXTRAPMETHOD_NEAREST_IDAVG
31 # : param ExtrapMethod extrap_method : Specify which extrapolation method

to use on unmapped destination points after regridding . ESMF . api .
regrid . Regrid ESMF_FieldRegrid () ~/* conda */ lib / pythonN .N/ site -
packages / ESMF / api / regrid . py

32 # conda install -c nesii -c conda - forge esmpy =7.1.0 r
33 # conda create -n esmpy -c nesii -c conda - forge esmpy =7.1.0 r
34 # esmpy =7.1.0 r or higher includes extrap_method
35
36
37
38 from pyproj import Proj
39 # if you want to print run time of script
40 # import cProfile
41 # pr = cProfile . Profile ()
42
43 import matplotlib . pyplot as plt
44
45
46 def convert_bytes ( num ) :
47 """
48 this function will convert bytes to MB .... GB ... etc
49 """
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50 for x in [ ’ bytes ’ , ’KB ’ , ’MB ’ , ’GB ’ , ’TB ’ ] :
51 if num < 1 0 2 4 . 0 :
52 return " %3.1 f %s" % ( num , x )
53 num /= 1024.0
54
55
56 if __name__ == ’ __main__ ’ :
57 try :
58 cluster = LocalCluster ( processes=False , memory_limit=’25 GB ’ ,

n_workers=2, threads_per_worker=4, scheduler_port =8780 ,
dashboard_address=9787)

59 # processes vs threds pool https :// github . com / pydata / xarray /
issues /2417

60 client = Client ( cluster )
61
62 except TimeoutError :
63
64 pass
65 with dask . config . set ({ ’ temporary_directory ’ : ’/ home / helenebe / storah /

HySN / script / dtmp ’}) :
66 pass
67 client
68 print ( client )
69 print ( client . scheduler_info ( ) )
70 os . system ( " export HDF5_USE_FILE_LOCKING = FALSE " )
71 # os . system (" export OMP_NUM_THREADS =4")
72
73 chnkt=10 # ’auto ’ # chunk for time
74 datadir=" ../ data /"
75 E5path=datadir+’Era5 / ’
76 savedir=datadir+" HySN5 /"
77
78 startyr=1979
79 endyr=2000
80 # Make precip_24hours_means ie 06 UTC to 06 UTC set RRday to True
81 RRday=True
82
83 if RRday==True :
84 dayshh=6
85 lab=’ right ’
86 else :
87 dayshh=0
88 lab=’left ’
89
90 # Constants
91
92 T0NVE =273.1
93 # -----------------------------------------------------
94 # EC constants from IFS manual and mars wiki
95 # Double check that same is true for Era5
96 # Td is calculated for saturation above water
97 ecg=9.80665 # gravitational constant
98 T0=273.16 #K
99 Rd=287.0597 # JK

100 Rv=461.5250 # JK
101 eps=Rd/Rv
102 R=287.# J/ kg /K
103
104 # Buck (1981) used to calculate Td in Era - interim
105 aw=611.21
106 bw=17.502
107 cw=240.97
108 # ----------------------------------------------------
109 # AERKi to calculate Tf ( freeze point temperature )
110 ai=aw
111 bi=22.587
112 ci=273.86
113
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The Python script which compiles the HySN5 dataset

114 # SW regridding
115 tau=0.720
116 alpha=- 1 . 5 E - 5
117
118 # LW net
119 sigma =5.670373 E - 8 # Wm -2 K -4
120 epsgr=0.96 # https :// journals . ametsoc . org / doi / full /10.1175/ JCLI3720 .1
121
122
123 # SeNorge initialization -----------------------------
124 SeNorgegeo=’http :// thredds . met . no / thredds / dodsC / senorge / geoinfo /

seNorge2_dem_UTM33 . nc ’
125 dx=1000.
126 SeNorge2018p=’ https :// thredds . met . no / thredds / dodsC / senorge /

seNorge_2018 / Archive / seNorge2018_ ’
127 SeNyear=2000 # random
128 SeNorge2018pd=’ https :// thredds . met . no / thredds / dodsC / senorge /

seNorge_2018 / Archive / seNorge2018_ ’
129 SeN=xr . open_dataset ( SeNorge2018pd+str ( SeNyear )+’. nc ’ , cache=False ) #
130 projs=SeN [ ’ UTM_Zone_33 ’ ] . proj4
131 myP=Proj ( projs )
132
133 # maybe make def below ------------------------------------------
134 Xcorners=np . arange ( SeN [ ’X ’ ] . data [ 0 ] - dx / 2 . , SeN [ ’X ’ ] . data [ - 1]+3∗ dx

/ 2 . , dx )
135 Ycorners=np . flipud ( np . arange ( SeN [ ’Y ’ ] . data [ - 1 ] - dx / 2 . , SeN [ ’Y ’ ] . data

[0 ]+3∗ dx / 2 . , dx ) )
136 Lon2 , Lat2 = myP (∗ np . meshgrid ( SeN [ ’X ’ ] . data , SeN [ ’Y ’ ] . data ) , inverse=

True )
137 Lon2b , Lat2b = myP (∗ np . meshgrid ( Xcorners , Ycorners ) , inverse=True ) #
138
139 lons=np . asarray ( Lon2 )
140 lats=np . asarray ( Lat2 )
141 SeN . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
142 SeN . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
143 SeN . set_coords ( [ ’lat ’ , ’lon ’ ] )
144
145 SeN . coords [ ’Xb ’ ] = ( Xcorners )
146 SeN . coords [ ’Yb ’ ] = ( Ycorners )
147 SeN . set_coords ( [ ’Xb ’ , ’Yb ’ ] )
148
149 SeN . coords [ ’ lat_b ’ ] = ( ( ’Yb ’ , ’Xb ’ ) , Lat2b )
150 SeN . coords [ ’ lon_b ’ ] = ( ( ’Yb ’ , ’Xb ’ ) , Lon2b )
151 SeN . set_coords ( [ ’ lat_b ’ , ’ lon_b ’ ] )
152
153 write_to_file=False
154 if write_to_file :
155 mapSN=SeN . drop ( ’tg ’ ) # ][0 ,: ,:]
156 mapSN=mapSN . drop ( ’rr ’ )
157 mapSN=mapSN . drop ( ’time ’ )
158 mapSN . set_coords ( [ ’ lat_b ’ , ’ lon_b ’ ] )
159 mapSN . to_netcdf ( ’ SeN_UTM33_with_crns_4_HySN . nc ’ , mode=’w ’ ,

format=’ NETCDF4 ’ ,
160 group=None , engine=’ netcdf4 ’ , encoding={’lon ’ : {’

_FillValue ’ : False } ,
161 ’lat ’ : {’

_FillValue ’ : False } ,
162 ’ lon_b ’ :

{’ _FillValue ’ : False } ,
163 ’ lat_b ’ :

{’ _FillValue ’ : False }})
164 # -------------
165
166 SeNoro=xr . open_dataset ( SeNorgegeo )
167 SeNorge_oro=SeNoro [ ’ elevation ’ ]
168 SeNorgemask=SeNorge_oro . isnull ( ) # True /1 for water , False /0 for land
169 SeNorgelsm=SeNorge_oro . notnull ( ) ∗ 1 . 0 # 0. for water , 1. for land
170 SeN . coords [ ’mask ’ ] = ( ( ’Y ’ , ’X ’ ) , SeNorgelsm )
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171 SeN [ ’ orography ’ ] = ( ( ’Y ’ , ’X ’ ) , SeNorge_oro )
172
173 # SeNorge is indexed as precip days with the stamp reflecting
174 # the accumulated 24 hour precip until the date at 06 hours
175
176
177 #Era -5 orography
178 Era_oro = xr . open_dataset ( E5path+’ Era5_land_sea_mask_oro_region . nc ’ )
179 # Era -5 grid
180 eclat=Era_oro [ ’ latitude ’ ] [ : ]
181 eclon=Era_oro [ ’ longitude ’ ] [ : ]
182 dl=abs ( eclat . diff ( ’ latitude ’ ) . data [ 0 ] )
183 lonc=np . arange ( eclon . data [ 0 ] - dl / 2 . , eclon . data [ - 1]+3∗ dl / 2 . , dl )
184 latc=np . flipud ( np . arange ( eclat . data [ - 1 ] - dl / 2 . , eclat . data [0 ]+3∗ dl

/ 2 . , dl ) )
185
186 def fixcoords ( var ) :
187 var=var . rename ({ ’ longitude ’ : ’lon ’ , ’ latitude ’ : ’lat ’})
188 var . coords [ ’ lat_b ’ ] = ( latc )
189 var . coords [ ’ lon_b ’ ] = ( lonc )
190 var . set_coords ( [ ’ lat_b ’ , ’ lon_b ’ ] )
191 return var
192
193 Era_oro=fixcoords ( Era_oro )
194 ecsgeo=Era_oro [ ’z ’ ] [ 0 ]
195 ecmaskbf=Era_oro [ ’lsm ’ ] [ 0 ] # 0 for water , fractional
196 ecmaskb=ecmaskbf . where ( ecmaskbf ==0. ,1) #
197 ecnamask=ecmaskbf . where ( ecmaskbf==0. ,np . nan )
198 ## Land - sea mask values
199 ’’’ When interpolating the land - sea mask field , MIR returns

fractional values greater than or equal to 0 and less than or equal
to 1 whereas EMOSLIB returns only 0s and 1s. Users should regard

land - sea mask values greater than or equal to 0.5 as representing
land points and those less than 0.5 as representing sea points . (
https :// confluence . ecmwf . int / display / UDOC / MARS + interpolation + with +
MIR ) ’’’

200 ecmask=ecnamask . notnull ( )
201 ECoro=ecsgeo / ecg
202 ECoro . attrs [ ’ units ’ ] = ’ meters ’
203 ECoro . name=’ orography ’
204
205 Era_oro . coords [ ’mask ’ ] = ( ( ’lat ’ , ’lon ’ ) , ecmaskb )
206 Era_oro [ ’ orography ’ ] = ( [ ’lat ’ , ’lon ’ ] , ECoro . data , ECoro . attrs )
207 savEra=False
208 if savEra :
209 Era_oro . to_netcdf ( ’ Era5_with_crns0_5lsm . nc ’ , encoding={’lon ’ : {’

_FillValue ’ : False } , ’lat ’ : {’ _FillValue ’ : False } , ’ lon_b ’ : {’
_FillValue ’ : False } , ’ lat_b ’ : {’ _FillValue ’ : False }})

210
211
212 #Era -5 - hourly SW and LW files
213 Era5_rad= xr . open_dataset ( E5path+’ ssrd_slrd_Era5_1979_t2000RRok . nc ’ ,

cache=False )
214
215 #Era -5 2- meter temperature ( T2 ) and 2- meter dew point temperature ,

from analysis fields
216 Era5_termo_a = xr . open_dataset ( E5path+’

t2m_d2m_ps_Era5_1979_tom2000RRday06stamp . nc ’ , cache=False )
217
218 Era5_rad=fixcoords ( Era5_rad )
219 Era5_termo_a=fixcoords ( Era5_termo_a )
220
221 T2E=Era5_termo_a [ ’t2m ’ ]
222 T2dE=Era5_termo_a [ ’d2m ’ ]
223 psE=Era5_termo_a [ ’sp ’ ]
224 SW=Era5_rad [ ’ msdwswrf ’ ]
225 LW=Era5_rad [ ’ msdwlwrf ’ ]
226
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227 # shoud be enough
228 SW , T2E=xr . align ( SW , T2E , join=’ inner ’ )
229 LW , T2dE=xr . align ( LW , T2dE , join=’ inner ’ )
230 LW , psE=xr . align ( LW , psE , join=’ inner ’ )
231
232 #Era - Interim Vapour pressure
233 e2w=aw∗np . exp ( bw ∗( T2dE - T0 ) /( T2dE - T0 +cw ) ) # /1000. # for water , ref ifs

copernicus knowledge base
234
235 #Era - Interim saturation vapour pressure
236 e2si=ai∗np . exp ( bi ∗( T2E - T0 ) /( T2E - T0 +ci ) )
237 e2sw=aw∗np . exp ( bw ∗( T2E - T0 ) /( T2E - T0 +cw ) )
238
239 # do not need to use enhancement factors because they are cancelled

for RH
240 RHEw=e2w/ e2sw ∗100 .
241 RHEi=e2w/ e2si ∗100 .
242 # check RH not more than 100%
243 RHEi=RHEi . where ( RHEi <100. ,100 . )
244 RHEw=RHEw . where ( RHEw <100. ,100 . )
245
246
247 # Regridding this is based on
248 # pip install -- upgrade git + https :// github . com / JiaweiZhuang / xESMF .

git@masking
249 #( https :// github . com / JiaweiZhuang / xESMF / issues /22)
250
251 regridder=xe . Regridder ( Era_oro , SeN , ’ bilinear ’ , reuse_weights=True )
252
253 regridder_s2d = xe . Regridder ( Era_oro , SeN , ’ nearest_s2d ’ ,

reuse_weights=True )
254
255 dr_mask_bil=regridder ( Era_oro [ ’mask ’ ] )
256 extrapolate=dr_mask_bil . where ( dr_mask_bil !=0 , - 99999)
257 dr_mask=regridder_s2d ( Era_oro [ ’mask ’ ] )
258
259 # look to check
260 # dr_mask_bil_f_IDV = regridder ( T2E . isel ( time =0) )
261 # dr_mask_NN = regridder_s2d ( T2E . isel ( time =0) )
262 # plt . imshow ( dr_mask_bil_f_IDV ); plt . colorbar () ; plt . title (’ oro w/ IDW

? ’); plt . figure () ; plt . imshow ( SeN [’ mask ’]); plt . colorbar () ; plt . title
(’ SeN mask ’); plt . figure () ; plt . imshow ( dr_mask_NN ); plt . colorbar () ;
plt . title (’ oro NN ’); plt . show ()

263 # dr_mask_bil_f_IDV_NN = dr_mask_bil_f_IDV . where ( extrapolate != -99999 ,
dr_mask_NN )

264 # plt . imshow ( dr_mask_bil_f_IDV ); plt . colorbar () ; plt . figure () ; plt .
imshow ( SeN [’ mask ’]); plt . colorbar () ; plt . figure () ; plt . imshow (
dr_mask_bil_f_IDV_NN ); plt . colorbar () ; plt . show ()

265
266 # dr_mask_bil1 = regridder ( Era_oro [’ mask ’]* ecnamask )
267 # sav = dr_mask_bil1 . isnull ()
268 # plt . imshow ( SeN [’ mask ’]); plt . colorbar () ; plt . show ()
269
270 def regrid2step ( data ) :
271 dr_out_bil=regridder ( data )
272 # dr_out_cons_norm = regridder_consnorm ( data )
273 dr_outs2d=regridder_s2d ( data )
274 # outside mapped places nearest s2d ( nearest neighbour ; IDW not

supp yet ):
275 dr_out=dr_out_bil . where ( extrapolate != - 99999 , dr_outs2d )
276 # add coords
277 dr_out . coords [ ’X ’ ] = ( SeN [ ’X ’ ] . data )
278 dr_out . coords [ ’Y ’ ] = ( SeN [ ’Y ’ ] . data )
279 dr_out . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
280 dr_out . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
281 dr_out . coords [ ’mask ’ ]=SeN [ ’mask ’ ] . astype ( ’i2 ’ )
282 dr_out . name=data . name
283 dr_out=dr_out . astype ( ’f4 ’ )
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284 return dr_out
285
286 E5mask=regrid2step ( Era_oro [ ’mask ’ ] )
287 # after much thought using bilinear on all except near coast for

consistency
288 # 1: since reanalysis is already bil - interp from original grid
289 # 2: since going from 0.25 deg to 1 km --> difference mostly small
290 # 3: on all vars and params for consistency :
291 #i.e. if Eras T2 is bilinearly interp and then oro or LW is not ,
292 # the ds will be somewhat inconsistent . eg T2 =b+ lapse *z
293
294 dr_oro=regrid2step ( Era_oro [ ’ orography ’ ] )
295
296 # --DZ --------
297 dz=SeN [ ’ orography ’ ] - dr_oro #
298 # dz . plot () ; plt . show ()
299 Commask=(dr_mask_bil . data >0.999) & ( SeNorgelsm . data==1)
300 dzmask=dz . where ( Commask , np . nan ) # masked to common land points
301 print ( ’mean elevation diff ( SeNorge2018 - Era5 ): ’ , np . nanmean ( dzmask ) )
302
303
304
305 def writetotmp_nc ( data , pn ) :
306 filname=’tmp / ’+data . name+pn+’. nc ’
307 data . to_netcdf ( filname , format=’ NETCDF4 ’ , encoding={data . name : { ’

dtype ’ : ’f4 ’ , ’ _FillValue ’ : - 9999 .}})
308 # data . close ()
309 # faster IO w/o zlib , but takes much more space
310
311 # To work with pc memory , and due to issues with dask + opendap or

thredds bug ?
312 # the data is sliced in time
313 # Three bolks a year [’ p1 ’, ’p2 ’,’p3 ’]
314 # p1ul = ’ <120 ’; p2ll = ’ >=120 ’; p2ul = ’ <140 ’; p3ll = ’ >=140 ’
315 littlemem=True
316 if littlemem :
317 loweri = {}; upperi={}
318 loweri [ ’p1 ’ ]=0
319 loweri [ ’p2 ’ ]=120
320 loweri [ ’p3 ’ ]=240
321 upperi [ ’p1 ’ ]=120
322 upperi [ ’p2 ’ ]=240
323 upperi [ ’p3 ’ ]= None
324 partslist=[’p1 ’ , ’p2 ’ , ’p3 ’ ]
325 else :
326 partslist=[’pu ’ ]
327 loweri = {}; upperi={}
328 loweri [ ’pu ’ ]=0
329 upperi [ ’pu ’ ]= None
330
331 if not os . path . exists ( ’tmp ’ ) :
332 os . makedirs ( ’tmp ’ )
333
334
335
336 Epsn=psE . name
337 ET2n=T2E . name
338 ERHwn=’RHw ’
339 ERHin=’RHi ’
340 ESWn=SW . name
341 ELWn=LW . name
342 Ee2n=’e2 ’
343 SNTn=’tg ’
344 yr=2000
345
346
347 for yr in np . arange ( startyr , endyr+1) : # make loop
348 print ( ’year loop top ’ )
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349 if not os . path . isfile ( ’tmp / ’+’tgp3 ’+str ( yr )+’. nc ’ ) :
350 for filename in glob . glob ( ’tmp /* ’ ) :
351 os . remove ( filename )
352 SeNTd=xr . open_dataset ( SeNorge2018pd+str ( yr )+’. nc ’ , chunks={’

time ’ : chnkt })
353 print ( ’ starting ’+ str ( yr ) )
354 for pn in partslist :
355 SeNTu=SeNTd [ ’tg ’ ] [ loweri [ pn ] : upperi [ pn ] , : , : ]
356 SeNTu , SWp=xr . align ( SeNTu , SW , join=’ inner ’ , copy=False )
357 SeNTu , LWp=xr . align ( SeNTu , LW , join=’ inner ’ , copy=False )
358 SeNTu , psp=xr . align ( SeNTu , psE , join=’ inner ’ , copy=False )
359 SeNTu , RHwp=xr . align ( SeNTu , RHEw , join=’ inner ’ , copy=False )
360 RHwp . name=’RHw ’
361 SeNTu , RHip=xr . align ( SeNTu , RHEi , join=’ inner ’ , copy=False )
362 RHip . name=’RHi ’
363 SeNTu , T2p=xr . align ( SeNTu , T2E , join=’ inner ’ , copy=False )
364 SeNTu , e2p=xr . align ( SeNTu , e2w , join=’ inner ’ , copy=False )
365 e2p . name=’e2 ’
366
367
368 # -- Regridding some variables ----------
369 print ( ’ regridding ’+pn )
370 Mps=regrid2step ( psp )
371 writetotmp_nc ( Mps , pn=pn+str ( yr ) )
372
373 del Mps
374 MT2=regrid2step ( T2p )
375 writetotmp_nc ( MT2 , pn=pn+str ( yr ) )
376
377 del MT2
378 MRHw=regrid2step ( RHwp )
379 writetotmp_nc ( MRHw , pn=pn+str ( yr ) )
380
381 del MRHw
382 gc . collect ( )
383 MRHi=regrid2step ( RHip )
384 writetotmp_nc ( MRHi , pn=pn+str ( yr ) )
385
386 del MRHi
387 MSW=regrid2step ( SWp )
388 writetotmp_nc ( MSW , pn=pn+str ( yr ) )
389
390 del MSW
391 MLW=regrid2step ( LWp )
392 writetotmp_nc ( MLW , pn=pn+str ( yr ) )
393
394 del MLW
395 Me2=regrid2step ( e2p )
396 writetotmp_nc ( Me2 , pn=pn+str ( yr ) )
397
398 del Me2
399 writetotmp_nc ( SeNTu , pn=pn+str ( yr ) )
400
401 print ( ’ regridded ’+pn+’ ’+str ( yr ) )
402 gc . collect ( )
403
404 SeNTd . close ( )
405
406
407 # START

------------------------------------------------------------
408 print ( ’ Starting downscaling ’ )
409
410 SeNT=xr . open_mfdataset ( ’tmp / tg *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
411 SeNT . close ( )
412 SeNTr=SeNT [ ’tg ’ ]
413 SeNTr . attrs={}
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414
415 EraT=xr . open_mfdataset ( ’tmp / t2m *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
416 EraTr=EraT [ ’t2m ’ ]
417
418 # calculating hypso adjusted pressure
419 Eps=xr . open_mfdataset ( ’tmp / sp *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
420 Epsr=Eps [ ’sp ’ ]
421
422 if not os . path . isfile ( savedir+’ HySN5_Surface_Pressure_ ’+str ( yr )+

’. nc ’ ) :
423 pSN=Epsr/xu . exp ( ecg∗dz /( Rd ∗ ( ( SeNTr+T0NVE )+EraTr ) / 2 . ) ) #

Kelvin
424 pSN . attrs [ ’ longname ’ ]=’ surface pressure ’
425 pSN . attrs [ ’unit ’ ]=’Pa ’
426 pSN . name=’sp ’
427 pSN . attrs [ ’ notes ’ ]=’ Instantaneous , average of the last 24

hours , sampled every six hours . ’
428 pSNd=pSN . to_dataset ( dim=None , name=’sp ’ )
429
430
431 # Make DataArray to nice dataset
432 pSNd . attrs [ ’ date_created ’ ] = today
433 pSNd . attrs [ ’ license ’ ] = ’ Norwegian Licence for Open

Government Data ( NLOD ) , https :// data . norge . no / nlod / en /1.0 ’
434 pSNd . attrs [ ’ creator_name ’ ] = ’ Helene B. Erlandsen ’
435 pSNd . attrs [ ’ proj4 ’ ]= projs
436
437 delayed_obj=pSNd . to_netcdf ( savedir+’ HySN5_Surface_Pressure_ ’

+str ( yr )+’. nc ’ ,
438 compute=False , unlimited_dims=

None ,
439 encoding={’sp ’ : { ’ dtype ’ : ’f8 ’ , ’

_FillValue ’ : - 9 9 9 9 . ,
440 ’

least_significant_digit ’ : 1 , ’zlib ’ : True } ,
441 ’lon ’ : {’ _FillValue ’ :

False } ,
442 ’lat ’ : {’ _FillValue ’ :

False } ,
443 ’X ’ : {’ _FillValue ’ :

False } ,
444 ’Y ’ : {’ _FillValue ’ :

False } ,
445 ’mask ’ : { ’ _FillValue ’ :

- 9999}})
446
447 print ( ’ Writing downscaled surface pressure for year ’+str ( yr

) +’ to file : ’+
448 savedir+’ HySN5_Surface_Pressure_ ’+str ( yr )+’. nc ’ )
449 with ProgressBar ( ) :
450 results = delayed_obj . compute ( )
451
452 gc . collect ( )
453 EraT . close ( ) ; Eps . close ( ) ; pSNd . close ( ) ; del pSN
454 print ( ’ Finished : ’+ savedir+’ HySN5_Surface_Pressure_ ’+str ( yr )

+’. nc ’ )
455 else :
456 print ( ’ Found : ’+ savedir+’ HySN5_Surface_Pressure_ ’+str ( yr )+’.

nc , assuming finished ’ )
457 file_info = os . stat ( savedir+’ HySN5_Surface_Pressure_ ’+str ( yr

)+’. nc ’ )
458 size= convert_bytes ( file_info . st_size )
459 print ( ’Size is : ’ + size )
460
461 #

#-------------------------------------------------------------------
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462 # Calculating adjusted vapour pressure assuming constant RH with
height

463 ERHw=xr . open_mfdataset ( ’tmp / RHw *. nc ’ , chunks={’time ’ : chnkt } ,
combine=’ by_coords ’ )

464 ERHwr=ERHw [ ’RHw ’ ]
465 ERHi=xr . open_mfdataset ( ’tmp / RHi *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
466 ERHir=ERHi [ ’RHi ’ ]
467
468 # in Celsius :
469 TdH0w=cw ∗( xu . log ( ERHwr / 1 0 0 . ) + bw∗ SeNTr /( cw+SeNTr ) ) /( bw - xu . log (

ERHwr / 1 0 0 . ) - bw∗ SeNTr /( cw+SeNTr ) )
470 TdH0i=ci ∗( xu . log ( ERHir / 1 0 0 . ) + bi∗ SeNTr /( ci+SeNTr ) ) /( bi - xu . log (

ERHir / 1 0 0 . ) - bi∗ SeNTr /( ci+SeNTr ) )
471
472 PS=xr . open_dataset ( savedir+’ HySN5_Surface_Pressure_ ’+str ( yr )+’.

nc ’ , chunks={’time ’ : chnkt })
473 pSN=PS [ ’sp ’ ]
474 fw=(1.00071∗ xu . exp (0 .0000045∗ pSN / 1 0 0 . ) ) # Ald Esk 1996 eq 17
475 fi=(0.99882∗ xu . exp (0 .000008∗ pSN / 1 0 0 . ) ) # Ald Esk 1996 eq 18
476
477 eHw=fw∗aw∗xu . exp ( bw∗ TdH0w /( cw+TdH0w ) ) # Buck
478 eHi=fi∗ai∗xu . exp ( bi∗ TdH0i /( ci+TdH0i ) ) # AERK ice eq 24 want temp

in C , p in hPa
479 if not os . path . isfile ( savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )+’

. nc ’ ) :
480
481 eH=eHi . where ( SeNTr <0, eHw ) /1000. # test if tmean is lower

than zero . making it kPa
482 eH . attrs [ ’ longname ’ ]=’ Vapour Pressure ’
483 eH . attrs [ ’unit ’ ]=’kPa ’
484 eH . attrs [ ’ notes ’ ]=’ Average of the last 24 hours , based on

SeNorge2018 T2 and Era5 Td and T2 ’
485 eH . name=’e2 ’
486 eH . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
487 eH . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
488 eHd=eH . to_dataset ( dim=None , name=’e2 ’ )
489 eHd . attrs [ ’ date_created ’ ] = today
490 eHd . attrs [ ’ license ’ ] = ’ Norwegian Licence for Open

Government Data ( NLOD ) , https :// data . norge . no / nlod / en /1.0 ’
491 eHd . attrs [ ’ creator_name ’ ] = ’ Helene B. Erlandsen ’
492 eHd . attrs [ ’ proj4 ’ ]= projs
493 delayed_obj = eHd . to_netcdf ( savedir+’ HySN5_Vapour_Pressure_ ’

+str ( yr )+’. nc ’ ,
494 compute=False , unlimited_dims=None

,
495 encoding={’e2 ’ : { ’ dtype ’ : ’f8 ’ , ’

_FillValue ’ : - 9 9 9 9 . ,
496 ’

least_significant_digit ’ : 3 , ’zlib ’ : True } ,
497 ’lon ’ : {’ _FillValue ’ :

False } ,
498 ’lat ’ : {’ _FillValue ’ :

False } ,
499 ’X ’ : {’ _FillValue ’ :

False } ,
500 ’Y ’ : {’ _FillValue ’ :

False } ,
501 ’mask ’ : { ’ _FillValue ’ : -

9999}})
502
503 print ( ’ Writing downscaled vapour pressure for year ’+str ( yr )

+’ to file : ’
504 +savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )+’. nc ’ )
505 with ProgressBar ( ) :
506 results = delayed_obj . compute ( )
507 eHd . close ( )
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508 del eH ;
509 gc . collect ( )
510 print ( ’ Finished : ’ +savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )

+’. nc ’ )
511 else :
512 print ( ’ Found : ’+ savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )+’.

nc , assuming finished ’ )
513 file_info = os . stat ( savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )

+’. nc ’ )
514 size= convert_bytes ( file_info . st_size )
515 print ( ’Size is : ’ + size )
516
517
518 # VPD = esSN - eH
519 if not os . path . isfile ( savedir+’

HySN5_Near_Surface_Vapur_Pressure_Deficit_ ’+str ( yr )+’. nc ’ ) :
520 VPDw=eHw ∗ ( 1 0 0 . / ERHwr - 1 . ) /1000.
521 VPDi=eHi ∗ ( 1 0 0 . / ERHir - 1 . ) /1000.
522 VPD=VPDi . where ( SeNTr <0, VPDw )
523 # qH = eps * eH /( pSN -(1 - eps )* eH ) # are all in Pa
524 VPD . attrs [ ’ longname ’ ]=’ Vapour Pressure Deficit ’
525 VPD . attrs [ ’unit ’ ]=’kPa ’
526 VPD . attrs [ ’ notes ’ ]=’ Average of the last 24 hours , based on

SeNorge2018 T2 and Era5 Td and T2 ’
527 VPD . name=’VPD ’
528 VPD . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
529 VPD . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
530 VPD=VPD . to_dataset ( dim=None , name=’VPD ’ )
531 VPD . attrs [ ’ date_created ’ ] = today
532 VPD . attrs [ ’ license ’ ] = ’ Norwegian Licence for Open

Government Data ( NLOD ) , https :// data . norge . no / nlod / en /1.0 ’
533 VPD . attrs [ ’ creator_name ’ ] = ’ Helene B. Erlandsen ’
534 VPD . attrs [ ’ proj4 ’ ]= projs
535 # , writer = xarray_api . ArrayWriter ()
536 delayed_obj = VPD . to_netcdf ( savedir+’

HySN5_Near_Surface_Vapur_Pressure_Deficit_ ’+str ( yr )+’. nc ’ ,
537 compute=False , unlimited_dims=None

,
538 encoding={’VPD ’ : { ’ dtype ’ : ’f8 ’ , ’

_FillValue ’ : - 9 9 9 9 . ,
539 ’

least_significant_digit ’ : 3 , ’zlib ’ : True } ,
540 ’lon ’ : {’ _FillValue ’ :

False } ,
541 ’lat ’ : {’ _FillValue ’ :

False } ,
542 ’X ’ : {’ _FillValue ’ :

False } ,
543 ’Y ’ : {’ _FillValue ’ :

False } ,
544 ’mask ’ : { ’ _FillValue ’ : -

9999}})
545
546 print ( ’ Writing downscaled vapour pressure ’+str ( yr ) +’ to

file : ’
547 +savedir+’ HySN5_Near_Surface_Vapur_Pressure_Deficit_ ’+

str ( yr )+’. nc ’ )
548 with ProgressBar ( ) :
549 results = delayed_obj . compute ( )
550
551
552 ERHw . close ( )
553 ERHi . close ( )
554 # VPD . close ()
555 PS . close ( )
556 gc . collect ( )
557 print ( ’ Finished : ’ +savedir+’

HySN5_Near_Surface_Vapur_Pressure_Deficit_ ’+str ( yr )+’. nc ’ )
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558 else :
559 print ( ’ Found : ’+ savedir+’

HySN5_Near_Surface_Vapur_Pressure_Deficit_ ’+str ( yr )+’.nc , assuming
finished ’ )

560 file_info = os . stat ( savedir+’
HySN5_Near_Surface_Vapur_Pressure_Deficit_ ’+str ( yr )+’. nc ’ )

561 size= convert_bytes ( file_info . st_size )
562 print ( ’Size is : ’ + size )
563
564 # Longwave clear sky scaling
565 Ee=xr . open_mfdataset ( ’tmp / ’+Ee2n+’*. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
566 Eer=Ee [ Ee2n ]
567 ELW=xr . open_mfdataset ( ’tmp / ’+ELWn+’*. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
568 ELWr=ELW [ ELWn ]
569 SeNTt=xr . open_mfdataset ( ’tmp / tg *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
570 SeNTr=SeNTt [ ’tg ’ ]
571 SeNTr . attrs={}
572
573 EraT=xr . open_mfdataset ( ’tmp / t2m *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
574 EraTr=EraT [ ’t2m ’ ]
575
576 eHn=xr . open_dataset ( savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )+’.

nc ’ , chunks={’time ’ : chnkt })
577 eHr=eHn [ ’e2 ’ ] # is kPa
578
579 # check power in dask xr
580 epsE =1.08∗(1 - xu . exp ( - ( ( Eer / 1 0 0 . ) ∗∗( EraTr / 2 0 1 6 . ) ) ) ) # hpa correct
581 epsH =1.08∗(1 - xu . exp ( - ( ( eHr ∗ 1 0 . ) ∗∗ ( ( SeNTr+T0NVE ) / 2 0 1 6 . ) ) ) ) #

satterlund 1969 # eH already div by 1000. and is kPa . kPa *10 = hPa
582 sca=(epsH/ epsE ) ∗ ( ( SeNTr+T0NVE ) / EraTr ) ∗∗4
583 LWSN=sca∗ ELWr
584 LWSN . name=’rlds ’
585 LWSN . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
586 LWSN . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
587 LWSN . attrs [ ’ longname ’ ]=’ Surface Downwelling Longwave Radiation ’
588 LWSN . attrs [ ’ standard_name ’ ]=’

surface_downwelling_longwave_flux_in_air ’
589 LWSN . attrs [ ’unit ’ ]=’W m -2 ’
590 LWSN . attrs [ ’ notes ’ ]=’ Average over the last 24 hours . Positive

downwards ’
591
592 if not os . path . isfile ( savedir+’

HySN5_Surface_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ ) :
593 LWSNd=LWSN . to_dataset ( dim=None , name=’rlds ’ )
594 # LWSN = LWSN . to_dataset ( dim = None , name =’ rlds ’) already
595 LWSNd . attrs [ ’ date_created ’ ] = today
596 LWSNd . attrs [ ’ license ’ ] = ’ Norwegian Licence for Open

Government Data ( NLOD ) , https :// data . norge . no / nlod / en /1.0 ’
597 LWSNd . attrs [ ’ creator_name ’ ] = ’ Helene B. Erlandsen ’
598 LWSNd . attrs [ ’ proj4 ’ ]= projs
599
600 delayed_obj = LWSNd . to_netcdf ( savedir+’

HySN5_Surface_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ ,
601 compute=False , unlimited_dims=

None ,
602 encoding={’rlds ’ : { ’ dtype ’ : ’f8 ’

, ’ _FillValue ’ : - 9 9 9 9 . ,
603 ’

least_significant_digit ’ : 2 , ’zlib ’ : True } ,
604 ’lon ’ : {’ _FillValue ’ :

False } ,
605 ’lat ’ : {’ _FillValue ’ :

False } ,
606 ’X ’ : {’ _FillValue ’ :
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False } ,
607 ’Y ’ : {’ _FillValue ’ :

False } ,
608 ’mask ’ : { ’ _FillValue ’ :

- 9999}})
609
610 print ( ’ Writing downscaled longwave radiation for year ’+str (

yr ) +
611 ’ to file : ’+savedir+’

HySN5_Surface_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ )
612 with ProgressBar ( ) :
613 results = delayed_obj . compute ( )
614 print ( ’ Finished : ’+savedir+’

HySN5_Surface_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ )
615 else :
616 print ( ’ Found : ’+ savedir+’

HySN5_Surface_Downwelling_Longwave_Radiation_ ’+str ( yr )+’.nc ,
assuming finished ’ )

617 file_info = os . stat ( savedir+’
HySN5_Surface_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ )

618 size= convert_bytes ( file_info . st_size )
619 print ( ’Size is : ’ + size )
620 # sigma =5.670373 E -8 # Wm -2 K -4
621 # epsgr =0.96 # LWnet_g = recieved - emitted = epsgr * LWdown - BB * epsgr #

Kirchoffs law abs \ simeq em
622
623 if not os . path . isfile ( savedir+’

HySN5_Surface_Net_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ ) :
624 LWnet=epsgr ∗ LWSN - epsgr ∗ sigma ∗( SeNTr+T0NVE ) ∗∗4
625 LWnet . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
626 LWnet . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
627 LWnet=LWnet . to_dataset ( dim=None , name=’rls ’ )
628 LWnet [ ’rls ’ ] . attrs [ ’ longname ’ ]=’ Surface Net Downwelling

Longwave Radiation ’
629 LWnet [ ’rls ’ ] . attrs [ ’ standard_name ’ ]=’

surface_net_downward_longwave_flux ’
630 LWnet [ ’rls ’ ] . attrs [ ’unit ’ ]=’W m -2 ’
631 LWnet [ ’rls ’ ] . attrs [ ’ notes ’ ]=’ Average over the last 24 hours .

Positive downwards . Ground emmissivity assumed to be 0.96 , and
with tskin = t2m ’

632
633 # LWnet = LWnet . to_dataset ( dim = None , name =’ rlds ’) already
634 LWnet . attrs [ ’ date_created ’ ] = today
635 LWnet . attrs [ ’ license ’ ] = ’ Norwegian Licence for Open

Government Data ( NLOD ) , https :// data . norge . no / nlod / en /1.0 ’
636 LWnet . attrs [ ’ creator_name ’ ] = ’ Helene B. Erlandsen ’
637 LWnet . attrs [ ’ proj4 ’ ]= projs
638
639 delayed_obj = LWnet . to_netcdf ( savedir+’

HySN5_Surface_Net_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ ,
640 compute=False , unlimited_dims=

None ,
641 encoding={’rls ’ : { ’ dtype ’ : ’f8 ’ ,

’ _FillValue ’ : - 9 9 9 9 . ,
642 ’

least_significant_digit ’ : 2 , ’zlib ’ : True } ,
643 ’lon ’ : {’ _FillValue ’ :

False } ,
644 ’lat ’ : {’ _FillValue ’ :

False } ,
645 ’X ’ : {’ _FillValue ’ :

False } ,
646 ’Y ’ : {’ _FillValue ’ :

False } ,
647 ’mask ’ : { ’ _FillValue ’ :

- 9999}})
648
649 print ( ’ Writing downscaled longwave radiation for year ’+str (
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yr ) +
650 ’ to file : ’+savedir+’

HySN5_Surface_Net_Longwave_Radiation_ ’+str ( yr )+’. nc ’ )
651 with ProgressBar ( ) :
652 results = delayed_obj . compute ( )
653 SeNTt . close ( ) ; EraT . close ( ) ; Ee . close ( ) ; ELW . close ( ) ; LWnet .

close ( )
654 gc . collect ( )
655 print ( ’ Finished : ’+savedir+’

HySN5_Surface_Net_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ )
656 else :
657 print ( ’ Found : ’+savedir+’

HySN5_Surface_Net_Downwelling_Longwave_Radiation_ ’+str ( yr )+’.nc ,
assuming finished ’ )

658 file_info = os . stat ( savedir+’
HySN5_Surface_Net_Downwelling_Longwave_Radiation_ ’+str ( yr )+’. nc ’ )

659 size= convert_bytes ( file_info . st_size )
660 print ( ’Size is : ’ + size )
661 #

##---------------------------------------------------------------
662 # ## Cosgrove end

------------------------------------------------
663
664 if not os . path . isfile ( savedir+’

HySN5_Surface_Downwelling_Shortwave_Radiation_ ’+str ( yr )+’. nc ’ ) :
665 # SW clear sky scaling T&R

--------------------------------------
666
667 # tau_H = np . power (tau , pSN /101300.) + alpha * eH
668 PS=xr . open_dataset ( savedir+’ HySN5_Surface_Pressure_ ’+str ( yr )

+’. nc ’ , chunks={’time ’ : chnkt })
669 pSN=PS [ ’sp ’ ]
670 eHn=xr . open_dataset ( savedir+’ HySN5_Vapour_Pressure_ ’+str ( yr )

+’. nc ’ , chunks={’time ’ : chnkt })
671 eHr=eHn [ ’e2 ’ ] ∗ 1 0 0 0 . # divided by 1000. above to make kPa , now

in Pa
672 Ee=xr . open_mfdataset ( ’tmp / ’+Ee2n+’*. nc ’ , chunks={’time ’ :

chnkt } , combine=’ by_coords ’ )
673 Eer=Ee [ Ee2n ]
674 Eps=xr . open_mfdataset ( ’tmp / sp *. nc ’ , chunks={’time ’ : chnkt } ,

combine=’ by_coords ’ )
675 Epsr=Eps [ ’sp ’ ]
676 tau_H=tau ∗∗( pSN /101300 . )+alpha ∗ eHr
677 tau_E=tau ∗∗( Epsr /101300 . )+alpha ∗ Eer
678 Taut_ratio=tau_H / tau_E
679
680 ESW=xr . open_mfdataset ( ’tmp / ’+ESWn+’*. nc ’ , chunks={’time ’ :

chnkt } , combine=’ by_coords ’ )
681 ESWr=ESW [ ESWn ]
682
683 SWSN=(Taut_ratio ∗∗2) ∗ ESWr
684 SWSN . attrs [ ’ longname ’ ]=’ Surface Downwelling Shortwave

Radiation ’
685 SWSN . attrs [ ’ standard_name ’ ]=’

surface_downwelling_shortwave_flux_in_air ’
686 SWSN . attrs [ ’unit ’ ]=’W m -2 ’
687 SWSN . attrs [ ’ notes ’ ]=’ Average over the last 24 hours .

Positive downwards ’
688 SWSN . name=’rsds ’
689 SWSN . coords [ ’lon ’ ] = ( ( ’Y ’ , ’X ’ ) , Lat2 )
690 SWSN . coords [ ’lat ’ ] = ( ( ’Y ’ , ’X ’ ) , Lon2 )
691 SWSN=SWSN . to_dataset ( dim=None , name=’rsds ’ )
692
693 SWSN . attrs [ ’ date_created ’ ] = today
694 SWSN . attrs [ ’ license ’ ] = ’ Norwegian Licence for Open

Government Data ( NLOD ) , https :// data . norge . no / nlod / en /1.0 ’
695 SWSN . attrs [ ’ creator_name ’ ] = ’ Helene B. Erlandsen ’
696 SWSN . attrs [ ’ proj4 ’ ]= projs
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B. Source code written for Paper III

697 # SWSN . attrs [’ creator_email ’] = ’ hebe@nve . no ’
698 # ncfile . Proj4_string =
699
700
701 delayed_obj=SWSN . to_netcdf ( savedir+’

HySN5_Surface_Downwelling_Shortwave_Radiation_ ’+str ( yr )+’. nc ’ ,
702 compute=False , unlimited_dims=None

,
703 encoding={’rsds ’ : { ’ dtype ’ : ’f8 ’ , ’

_FillValue ’ : - 9 9 9 9 . ,
704 ’

least_significant_digit ’ : 1 , ’zlib ’ : True } ,
705 ’lon ’ : {’ _FillValue ’ :

False } ,
706 ’lat ’ : {’ _FillValue ’ :

False } ,
707 ’X ’ : {’ _FillValue ’ :

False } ,
708 ’Y ’ : {’ _FillValue ’ :

False } ,
709 ’mask ’ : { ’ _FillValue ’ : -

9999}})
710
711 print ( ’ Writing downscaled shortwave radiation for year ’+str

( yr ) +
712 ’ to file : ’+savedir+’

HySN5_Surface_Downwelling_Shortwave_Radiation_ ’+str ( yr )+’. nc ’ )
713 with ProgressBar ( ) :
714 results = delayed_obj . compute ( )
715
716 Ee . close ( ) ; eHn . close ( ) ; ESW . close ( ) ; EraT . close ( ) ; Eps .

close ( ) ; PS . close ( ) ; SWSN . close ( )
717 print ( ’ Finished : ’+savedir+’

HySN5_Surface_Downwelling_Shortwave_Radiation_ ’+str ( yr )+’. nc ’ )
718 else :
719 print ( ’ Found : ’+savedir+’

HySN5_Surface_Downwelling_Shortwave_Radiation_ ’+str ( yr )+’.nc ,
assuming finished ’ )

720 file_info = os . stat ( savedir+’
HySN5_Surface_Downwelling_Shortwave_Radiation_ ’+str ( yr )+’. nc ’ )

721 size= convert_bytes ( file_info . st_size )
722 print ( ’Size is : ’ + size )
723
724 # for filename in glob . glob (’ tmp /* ’) :
725 # os . remove ( filename )
726 print ( ’ finished ’+ str ( yr ) )
727
728
729
730 print ( ’done all ’ )
731 # client . stop_worker (w)
732
733 client . close ( )� �
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