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Abstract

There are many complex factors that govern the development of fracture
networks and the timing of macroscopic failure in rock. So far, we lack a
unifying theory to predict fracture development in heterogeneous rock, and
the corresponding timing of macroscopic failure. To better understand the
factors that most strongly influence fracture development and impending
macroscopic failure, we analyze the characteristics of fracture networks in
rock under increasing differential stress. These characteristics describe the
fracture volume, fracture orientation, fracture length, fracture aperture,
and spacing between fractures in a network.

We train extreme gradient boosting (XGBoost) machine-learning models
with these features to predict the change in fracture volume in local
subvolumes throughout the rock (i.e., local failure) and the stress distance
(as a proxy for time) to macroscopic failure (i.e., global failure). We
train models on data from eight individual experiments on several rock
types: Carrara marble, Westerly granite, and monzonite. The resulting
models exhibit a wide range of R2-values, with scores up to 0.99 for some
experiments.

We examine the Shapley Additive Explanation, SHAP, values to determine
which fracture network characteristics exert the strongest impact on local
and global failure. When the models predict the change in total fracture
volume in sub-volume, the volume of individual fractures has the highest
feature importance, followed by the fracture orientation, aperture, and
fracture. We observe that subvolumes that decrease in fracture volume
are correlated to larger fracture lengths and apertures. In most cases,
we find that a high volume of individual fractures is also associated with
subvolumes that decrease in fracture volume.

When the models predict the stress distance to failure, the fracture
orientation is the most important feature, followed by the minimum
distance between fractures, the fracture length, the fracture aperture, and
the volume of individual fractures. In models where the fracture aperture
has a high importance, there is a negative trend in the fracture aperture
as failure approaches. Changes in fracture length with approaching failure
varied by rock type. The minimum distance between fractures decreases
as we approach failure, implying increased localization. We also observe
an increase in the volume of individual fractures. As failure approaches,
the fractures orient their shortest axis (the eigenvector of their smallest
eigenvalue) to a mean angle of 64◦ from the maximum compression
direction, consistent with Mohr-Coulomb theory.
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CHAPTER 1

Introduction

Understanding the factors that promote and inhibit the growth and interaction
of microfractures are a key component in understanding how earthquakes
occur. Because crustal faults can heal in the interseismic period, earthquake
nucleation requires the breakage of intact rock, and not only sliding on frictional
surfaces. Therefore, understanding fracture propagation is a crucial component
to earthquake prediction.

Microfractures are discontinuities in rock that form as a result of deformation.
Earthquakes can produce distributed microfractures and damage in rocks. The
grain structure of rocks, such as sandstone and limestone, can also introduce
preexisting weaknesses into rocks that nucleate microfractures.

Laboratory experiments reveal the development of microfractures in rocks under
triaxial compression with X-ray microtomography. As the differential stress
on a rock sample increases, fractures elongate, growing outwards from their
tips. This growth changes orientation over time, first propagating parallel to
the maximum compression direction, and then more oblique to it, depending
on the applied confining stress [Wu et al., 2000]. Eventually, the volume of the
fracture network grows significantly, leading to fracture coalescence into one
or more shear bands [Wu et al., 2000, Golshani et al., 2006, Bordignon et al.,
2015], regions of significant weakness in the rock that often develop preceding
macroscopic failure [Meyers, 2001].

Identifying correlations between the properties of fracture networks and their
rate of growth, as well as their time to failure could help us identify earthquake
precursors [J. A. McBeck, Aiken et al., 2020]. Because we currently lack an
analytical method to predict the coalescence and localization of hundreds and
thousands of fractures [Bonamy and Bouchaud, 2011], we develop machine
learning models from experimental data. Our goal is to create models that
predict the change in the volume of fractures in rock, i.e., local failure, and
others that predict the timing of macroscopic failure in core samples under
increasing triaxial compression, i.e., global failure.

For the machine learning models, we select features from our data, such as the
spacing between individual fractures, and the volume, length, and orientation of
individual fractures. Previous work indicates that features are linked to fracture
propagation [Dahlen, 1984, Wu et al., 2000, J. McBeck et al., 2019; Kandula
et al., 2019]. Using Shapley additive explanations (SHAP), we will identify
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1. Introduction

which features are the most important in the model prediction and analyze
their evolution with the two target values. We shed light on the mechanisms
that cause fracture propagation and coalescence, and macroscopic failure by
comparing our results with existing fracture mechanics frameworks and prior
experiments.
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CHAPTER 2

Background

2.1 Fracture Development in Rocks During Triaxial
Compression

In rock, fractures may propagate due to increases in loading, and subsequent
interaction between neighboring fractures. Macroscopic failure, in which a
system can no longer support the applied load, can occur in response to
fracture interaction. Under triaxial compression, rock heterogeneity can
produce shear and tensile stress concentrations, leading to the growth of
preexisting microcracks at tensile stress concentrations, such as at the tips of
preexisting weaknesses [Paterson, 1978]. Because the internal stresses within a
heterogeneous rock structure are not distributed uniformly, stress concentrations
can produce microcracks and flaws in the structure.

As these fractures grow, the stress concentrations at the fracture tips propagate
further away from their point of origin, orienting themselves parallel to the
maximum compression direction [Paterson, 1978]. Eventually, both stable and
unstable growth may lead to coalescence with neighboring fractures [Paterson,
1978]. When multiple fractures coalesce in a rock sample, this strain localization
can produce shear zones, then the accumulation of strain within these bands
causes macroscopic failure [Wu et al., 2000, Bordignon et al., 2015].

2.2 Characteristics of Fractures that Predict the Growth of
Individual Fractures

Previous work has shown that a fracture’s orientation, length, and aperture, as
well as the characteristics of its network, can be used to predict its growth using
machine learning [J. McBeck et al., 2019]. We extract these characteristics
using X-ray tomography. X-ray tomography coupled to an X-ray transparent
deformation apparatus (HADES) allows us to extract the characteristics of a
fracture network under triaxial loading in situ.

In such experiments, we place core samples into the deformation apparatus
HADES and obtain X-ray tomograms each time we increase the differential
stress [Kandula et al., 2019]. The tomograms are 3D fields that show variations
in the local density of the material. Thus, we may distinguish fractures from the
surrounding intact rock. We then process the tomograms and the corresponding
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2. Background

fracture networks to extract statistics on the fractures’ positions, shapes, sizes,
and orientations [J. McBeck et al., 2019]. We extract these statistics for spatial
regions within the rock samples, meaning that we divide each sample into
subvolumes and then calculate the statistics of the population of fractures
within each subvolume.

In the present work, we quantify fracture development using the change in
the density of fractures per subvolume. We calculate this value each time the
differential stress on the sample increases. We will attempt to predict this value
using the following geometric characteristics as features: the fracture length,
aperture, orientation, and volume. We also use the distance between fractures.
We selected these characteristics using concepts from linear elastic fracture
mechanics, or LEFM [Griffith, 1921, Isida, 1971, Dahlen, 1984, Wu et al., 2000,
J. McBeck et al., 2019].

In X-ray tomography experiments, closing fractures tend to be longer and
narrower than opening fractures [J. McBeck et al., 2019]. If there is a correlation
between aperture and fracture tip bluntness, a narrow fracture aperture could
encourage propagation due to additional shear stress concentrations at its tips
[J. McBeck et al., 2019]. We also expect closing fractures to have a more
significant shape anisotropy relative to opening fractures. Finally, a fracture’s
length is proportional to the stress intensity factor at its tips [Jaeger, 2010].
Because the likelihood of fracture propagation depends on the loading, greater
fracture lengths can induce an increase in fracture volume [Jaeger, 2010].

The minimum distance between fracture centroids (a measure of fracture spacing)
is closely related to the rate of fracture propagation: a higher density of
fractures increases propagation probability [Olson, 2007, J. McBeck et al., 2019].
Additionally, if the volume of the individual fractures is large, this characteristic
may produce higher densities of fractures, increasing the likelihood of failure
[Lockner, 1995].

2.3 Characteristics of Fracture Networks that Predict the
Timing of Catastrophic Failure

Fracture network development determines how and when macroscopic failure
occurs in the brittle regime. Therefore, fracture networks’ geometric and spatial
characteristics may help predict whether macroscopic failure is likely to occur.
The time to failure can be quantified using the differential stress acting on the
rock relative to the differential stress at macroscopic failure. Previous work has
predicted the stress distance to failure using fracture networks’ geometric and
spatial characteristics [J. A. McBeck, Aiken et al., 2020].

The probability of macroscopic failure is linked to fracture volume and fracture
coalescence. As the differential stress on heterogeneous rock increases, its
fracture networks often increase in volume, and at faster rates near failure
[Cartwright-Taylor et al., 2020]. Additionally, the minimum distance between
fractures, which is a measure of fracture clustering, can help identify how close
a network is to failure as increased clustering has been observed near failure
[Wu et al., 2000, J. A. McBeck, Zhu et al., 2021].
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2.3. Characteristics of Fracture Networks that Predict the Timing of
Catastrophic Failure

The direction in which a fracture propagates changes with loading under triaxial
compression. Initially, the orientation of fractures may attain a variety of angles.
However, with increasing differential stress, fractures tend to propagate in a
direction parallel to the maximum compression direction [Paterson, 1978], and
may form arrays of fractures that trend oblique from this direction [Renard,
J. McBeck et al., 2018]. Consequently, as a rock approaches failure, the
eigenvectors associated with the largest eigenvalues for each fracture tend to
orient themselves between 20◦ and 30◦ relative to the maximum compression
direction [J. A. McBeck, Aiken et al., 2020]. The orientation of a fracture
relative to its maximum compression direction can therefore indicate impending
failure.

As the average fracture length increases, so does the probability of fracture
coalescence. In general, the shape of a fracture significantly influences the
dynamics of its propagation and that of the fractures in its vicinity [Olson and
Pollard, 1991, Thomas et al., 2017]. The characteristics related to fracture
shape (i.e., their length, aperture, and shape anisotropy) can help indicate
whether a rock is near failure [J. A. McBeck, Aiken et al., 2020].
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CHAPTER 3

Method

3.1 Experimental Conditions

We deform eight core samples under triaxial compression in an X-ray transparent
triaxial deformation apparatus (HADES) at the European Synchrotron and
Radiation Facility [J. A. McBeck, Aiken et al., 2020]. These cores consist of
three monzonite, two Carrara marble, and three Westerly granite samples. The
samples are 1.0 cm tall cylinders with diameters of 0.5 cm. Viton polymer jackets
surrounding the cores and oil apply the confining stress [Renard, Cordonnier
et al., 2016].

We increase the axial stress incrementally such that the confining stresses range
from 5 MPa to 35 MPa [J. A. McBeck, Aiken et al., 2020]; we then obtain an
X-ray tomogram of the sample during the resting period between each increase
(after the stresses have reached equilibrium). The tomogram reveals the parts
of the sample that are primarily solid, primarily air, at a resolution of 6.5 µm
per voxel [J. A. McBeck, Aiken et al., 2020].

In total, we capture over sixty tomograms per experiment. We use the software
AvizoFire™ to denoise the images, filter out the surrounding apparatus, and
stitch together the resulting data [Renard, Cordonnier et al., 2016]. This process
provides three-dimensional binary arrays in which zeros represent air and ones
represent solid rock. The fractures then need to be identified and tracked
throughout their formation and propagation [Kandula et al., 2019]. We see
a cross-section of one of the time-steps for two experiments (Granite 4 and
Marble 2) in Figure A.1.

Finally, the size, shape, and orientation of what we now consider to be individual
fractures are extracted, as well as various statistics on the spacing between
fractures [J. McBeck et al., 2019].

3.2 Machine Learning Models

Our machine learning algorithm of choice is the decision tree optimized
with extreme gradient boosting (XGBoost). While more straightforward
ensemble methods (i.e., gradient boosting) can optimize decision trees, XGBoost
consistently outperforms these alternatives – such as in the 2015 KDDCup –
and improves upon its training speed due to its scalability and ability to account
for data sparsity [Chen and Guestrin, 2016].

7



3. Method

We employ a grid-search over the model hyperparameters, including the learning
rate, the number of model estimators, the subsample ratio of tree columns, the
L1-regularization term, and the maximum tree depth. To further gauge model
performance, we train the model N times, such that each set of models has its
own unique, random selection of the dataset (80% training, 20% testing). From
each grid-search, we then select the model with the best R2-score, resulting in
a set of N final R2-scores from which we draw our conclusions.

To limit computing time, we set the value of N to the minimum possible value.
We determine this value by running twenty-four grid-searches from N = 5
to N = 100 and select the smallest N at the point where the mean R2-score
reaches an equilibrium.

We vary the number of models N to assess whether the R2-score converges for
larger N (Figure A.2, Figure A.3). These models only differ in how we split
the training and testing data. We see the standard deviation of the R2-score
decreases for increasing N , but not systematically (Figure A.2, Figure A.3). In
the remaining analysis, we use results with N = 25 for each experiment. Thus,
we develop twenty-five models for each experiment differing only in how we
split the training and testing data. The selected experiments: Monzonite 3 and
Granite 1, have scores that differ significantly, such that these two plots are an
excellent example of this instability.

3.3 Feature Extraction

We develop the models to predict the change in total fracture volume ∆Vtot
within subvolumes throughout the tomogram from one scan acquisition to the
next, and the distance to failure, ∇d, acting on the tomogram for individual
experiments. We identify individual fractures as groups of at least three
thousand connected points of air – these are represented by the number one
(i.e., binary true) in each tomogram’s post-processed binary array.

We extract the features following the principles of linear elastic fracture
mechanics (LEFM) and other criteria of rock mechanics described in the
background section. We divide each tomogram into subvolumes before feature
extraction and then calculate the characteristics of the fractures in each
subvolume. After we extract the characteristics of each fracture, we report
the statistics of the characteristics for the population of fractures within
each subvolume, including the minimum, 25th percentile, 50th percentile, 75th

percentile, and maximum. Our features include the density of fractures per
volume, the relative positions of fractures, and the orientation of these fractures
relative to the maximum compression direction σ1. We also account for the
geometric properties of the fractures, such as their lengths, Lmax, apertures,
Lmin, and shape anisotropies, A,

A = 1− Lmin

Lmax
, (3.1)

[J. A. McBeck, Aiken et al., 2020]. To help compare the importance of the
features, one of the features is a random number [J. A. McBeck, Aiken et al.,
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3.4. Evaluation of Models

2020]. We split the data into training and testing datasets and keep 80% in the
training data set.

Table A.1 contains an overview of the features used in each model and their
respective abbreviations, which are present in multiple figures and throughout
this text.

3.4 Evaluation of Models

We evaluate model performance and feature importance using standard machine
learning metrics. We use the coefficient of determination (R2) and the SHapley
Additive exPlanations (SHAP) of our model features.

The R2-score for a set of N observed points yi ∈ y and N corresponding
predicted points fi ∈ f as

R2 = 1−
∑

i(yi − y)2∑
i(yi − fi)2 , (3.2)

where y is defined as the mean value in y.

Lundberg and Lee, 2017 describe how to calculate the SHAP value from machine
learning models. We use the python-pip package shap to calculate the SHAP
programmatically. In each experiment, we develop several models, leaving
us with several sets of feature importance (one per model), so we define the
cumulative importance I for a single feature across N models using the method
described in J. A. McBeck, Aiken et al., 2020,

I =
N∑
i

R2 · sf

smax
, (3.3)

such that sf is the mean of the absolute values of the SHAP for the given
feature, and smax is the maximum mean absolute SHAP over all features.

Additionally, we wish to determine how feature importance varies across
experiments. Therefore, we must normalize the cumulative importance before
comparing models from different experiments, given that N may vary across
them. We accomplish this step by dividing each importance over the number of
models in question, yielding the normalized cumulative importance.

Inorm = 1
N

N∑
i

R2 · sf

smax
. (3.4)
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CHAPTER 4

Results

4.1 The Phases of Rock Deformation by Rock Type

We observe the differential stress applied to each experiment as functions of their
respective axial strains in Figure A.4. The trends in each sub-figure correspond
to the three main stages of rock deformation under triaxial compression.

1. Initially, we have a linear period of stress vs. strain, in which elastic
deformation occurs, and the material can return to its initial configuration
assuming a subsequent decrease in pressure (reversible strain).

2. Once the linear portion ends and the slope changes, the material begins
to experience ductile deformation – after this point, there is irreversible
damage to the material (irreversible strain).

3. After applying even more pressure that we reach macroscopic (or
catastrophic) failure; this is not visualized in Figure A.4 since
measurements ceased as soon as we reached failure under experimentation.

Each of the experiments in Figure A.4 has a unique trend, with similarities
across rock types. Marble 1 and Marble 2 appear to evolve similarly to one
another, with relatively smooth transitions from elastic to inelastic deformation.
Additionally, their inelastic portions take place over a wide range of axial strains.

Monzonite 3 and Monzonite 4 also resemble each other, with long-lasting elastic
deformation followed by a short inelastic deformation before failure. Monzonite
5, on the other hand, behaves quite uniquely, with an evident transition between
the elastic and inelastic parts of its deformation and a long inelastic deformation
across an extensive range of axial strains.

Granite 1, Granite 2, and Granite 4 follow trends, not unlike Monzonite 3 and
Monzonite 4, but tend to have much smoother elastic-inelastic transitions with
respect to the other rock types. The three granite experiments also have some
of the shortest inelastic portions of deformation and quickly begin to fracture
after this point is reached.
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4. Results

4.2 Predicting the Change in Fracture Volume

Model Success

We assess how well each experiment’s models perform with respect to one
another when considering their R2-scores for the target ∆Vtot (Figure A.5).

Figure A.5 shows how the models perform when they predict ∆Vtot in each
experiment. The models developed with the granite experiments produce the
best prediction of ∆Vtot, while the marble and monzonite produce lower R2-
scores on average. The model developed with Monzonite 5 produced several
acceptable models comparable to those based on granite, but these are outliers
as most monzonite models have lower R2-scores.

Figure A.6 shows a wide range in R2-scores when we change how we split
the training and testing data. To assess why these differences occur, we show
the training and testing data sets for the two best performing and two worst-
performing models developed with the Monzonite 3 data. Figure A.6 shows
that the predictive ability of the poorly performing models (for experiment
Monzonite 3) arises from the heterogeneous nature of rock deformation. In
particular, the training data tends to perform reasonably well, even when the
testing set performs poorly (e.g., Figure A.6d).

Identifying the Characteristics that Control Fracture Development

We analyze the importance of the features in our best-performing models trained
to predict ∆Vtot. We quantify feature importance using the Shapley Additive
Explanation values, SHAP. The SHAP measure estimates how vital a given
feature is in predicting the model target (see Section 3.4). We examine the
SHAP metric of models with R2-score above 0.7.

Although the R2-scores for the granite models consistently perform well, the
most critical features differ between Granite 1, Granite 2, and Granite 4 (Figure
A.7). In Figure A.7, The best-performing models (Granite 1) differ from the
other granite models in that the individual fracture volume (v) is not a factor
in their success, while v is among the important features for Granite 2 and
Granite 4.

The features that are most important in the experiment Granite 1 include
the minimum distance between fracture centroids (dmin), followed by the
fracture aperture (Lmin). The other features do not appear to affect the
models’ performances, except for the fracture length (Lmax).

The models based on Granite 2 and Granite 4 depend on the individual fracture
volume (v). Granite 2 also depends on the fracture length (Lmax). The second
most important feature for the models created using the Granite 4 experiment
is the shape anisotropy (A).

We now examine the distribution of SHAP values for the marble experiments
and disregard any models that fail to reach the R2-score threshold of 0.7. We,
therefore, only examine the influence of features in the Marble 2 models.
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4.2. Predicting the Change in Fracture Volume

Figure A.8 shows that the individual fracture volume (v) is the most significant
contributor to model performance for experiment Marble 2, followed by the
distance between fracture centroids (dc) and the fracture length (Lmax).

Monzonite is the rock type that yielded the lowest R2-scores of the examined
rock types. Thus, only one model produced R2-scores above 0.7.

Figure A.9 shows that the most crucial feature for Monzonite 5 is the orientation
of the smallest fracture dimension relative to the maximum compression direction
(θ1), followed by the fracture aperture (Lmin), the individual fracture volume
(v), and the fracture length (Lmax).

Figure A.10 shows the most important features of each rock type, and not by
experiment, as in the previous three figures. The features that contribute the
most to each rock type vary, though all the rock types depend on the individual
fracture volume (v). Note, the marble and monzonite curves represent the
Marble 2 and Monzonite 5 experiments, respectively, because the other marble
and monzonite experiments did not yield R2-scores above 0.7.

The most critical features overall in the granite models are the individual
fracture volume (v) and the minimum distance between fracture centroids
(dmin), followed by the fracture length (Lmax) and the fracture aperture (Lmin).

Overall, the individual fracture volume (v) has the most effect on model
performance across all rock types, followed by the fracture length (Lmax) and
fracture aperture (Lmin). Otherwise, the other features’ importances vary across
rock types – in the case of the marble models, the distance between centroids
(dc) significantly influences the model score, but not in the other rock types.

In the granite models, the minimum distance between fracture centroids (dmin)
is highly influential. In contrast, the monzonite models and the granite models,
to a lesser extent, are heavily affected by the orientation of the smallest fracture
dimension concerning the maximum compression direction (θ1).

Evolution of the Characteristics that Control Fracture
Development

We now examine the evolution of the most important features according to the
SHAP values with respect to the change in total volume ∆Vtot.

Figure A.11 shows how the fracture aperture changes with the change in
total volume ∆Vtot. The experiments selected – Granite 1, Granite 2, and
Monzonite 5 – are when the fracture aperture has the highest normalized
cumulative importance. Using a polynomial fitting technique, the line of best fit
illustrates that there are larger apertures in these experiments when fractures
are predominantly closing, producing negative ∆Vtot, and smaller apertures
when fractures are predominantly opening, producing positive ∆Vtot.

Figure A.12 shows that the fracture length evolves with the change in total
volume, ∆Vtot. The experiments selected – Granite 1, Granite 2, and Monzonite
5 – are those in which the fracture length has the highest normalized cumulative
importance. The line of best fit illustrates that in these experiments, there are
more extended fractures when fractures are predominantly closing and shorter
fractures when fractures are predominantly opening.
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Figure A.13 shows the volume of individual fractures relative the change in
total volume ∆Vtot. The experiments selected – Marble 2, Granite 4, and
Monzonite 5 – are those in which the volume of individual fractures has the
highest normalized cumulative importance. The line of best fit illustrates that
we cannot universally tie v to the proportion of opening and closing fractures
(Figure A.13a). In Figures A.13b and A.13c, there is a trend in which a higher
proportion of closing fractures indicates a higher v, while a higher proportion
of opening fractures is linked to lower v.

In Figure A.14, we show the minimum distance between fractures relative to
the change in total volume ∆Vtot. Granite 1 is the only experiments in which
its models had a high normalized cumulative importance in dmin. The line of
best fit illustrates that in this experiment, dmin increases as a function of the
change in total volume, with a major increase in dmin for subvolumes where the
volume of fractures is increasing.

Overall, the feature values as functions of the change in total volume seem to
follow distinct and apparent trends, especially when the feature in question is of
high importance. We see that there exists a clear relationship between the scale
of the change in volume between multiple features, a relationship that indicates
microfracture characteristics depend on whether there are more opening or
closing fractures.

4.3 Predicting the Proximity to Failure

Model Success

We now assess how well each experiment’s models perform with respect to one
another with respect to their R2-scores for the target ∇d. Figure A.15 shows
the model performance in predicting the distance to failure, ∇d.

The granite and marble models perform similarly well, while the R2-values
for monzonite are generally worse (Figure A.15). Experiment Monzonite 4
performed particularly poorly, while Monzonite 3 and Monzonite 5 resembled
Marble 1 and Granite 2. Marble 2 and Granite 1 are the top-scoring experiments
when the models predict ∇d.

Identifying the Characteristics that Control Distance to Failure

We now analyze the importance of the features in our best-performing models
developed to predict ∇d . We quantify feature importance via the SHAP value.
The SHAP measure estimates how vital a given feature is in predicting a target
(see Section 3.4). We examine the SHAP metric in models with R2-score above
0.7.

The granite models performed well for all three experiments, so we examine
the feature importance for all three of these models (Granite 1, Granite 2, and
Granite 4). The most important features are the length (Lmax), the orientation
of the smallest fracture dimension relative to the maximum compression direction
(θ1), and the fracture volume (v) (Figure A.16).

We now examine the SHAP values of the marble models with R2-scores greater
than 0.7 (Figure A.17). The most significant features are the orientation of the
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smallest fracture dimension relative to the maximum compression direction, the
distance between centroids (dc), and the fracture aperture (Lmin).

Figure A.18 summarizes the SHAP for models trained on the monzonite
experiments predicting the distance to failure. The monzonite experiments
produced the worst model predictions overall, and only Monzonite 3 yielded
models with R2-scores above 0.7.

The most important feature for Monzonite 3 is the orientation of the smallest
fracture dimension relative to the maximum compression direction (θ1), followed
by the minimum distance between centroids (dmin).

In Figure A.19, the features that contribute the most to each rock type (rather
than experiment) vary, except for the orientation of the smallest fracture
dimension relative to the maximum compression direction (θ1), which is the
most critical feature across all rock types.

Other than θ1, The marble models favor the fracture aperture (Lmin), the
distance between centroids (dc), and the total volume (vtot). In the case of the
granite models, the other most important features are the volume of individual
fractures (v), the fracture length (Lmax), and the fracture aperture (Lmin).

The monzonite models’ second, third, and fourth most important features are
the minimum distance between fracture centroids (dmin), the orientation of the
largest fracture dimension relative to the maximum compression direction (θ3),
and the fracture length (Lmax).

Evolution of the Characteristics that Control Fracture
Development

Figure A.20 shows the minimum distance between fractures with the normalized
time to failure ∇d. The experiments selected – Granite 2, Monzonite 3, and
Marble 2 – are those in which the minimum distance between fractures has the
highest normalized cumulative importance. In these experiments, the minimum
distance between fracture centroids tends to decrease as failure approaches.

Figure A.21 shows the fracture aperture relative to the normalized time to failure
∇d. The experiments selected – Granite 2, Marble 1, and Marble 2 – are those in
which the fracture aperture has the highest normalized cumulative importance.
The fracture aperture tends to become smaller as failure approaches, but not
always by a large margin. This trend may occur as more and more fractures
develop, the fracture population includes many smaller fractures, rather than
only the preexisting pore space. Under low differential stress, the preexisting
pores produce the measurements of the fracture aperture.

Figure A.22 shows the fracture length evolving with respect to the normalized
time to failure ∇d. The experiments selected – Granite 2, Granite 4, and Marble
1 – are those in which the fracture length has the highest normalized cumulative
importance. The fracture length has a trend that differs in each experiment.
We observe a sudden increase in fracture length near failure for Granite 2 and
a more gradual increase near failure for Granite 4. In Marble 1, we observe a
continuous decrease in fracture length as failure approaches.
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4. Results

In Figure A.23, we show the orientation of the smallest fracture dimension
relative to the maximum compression direction evolving with respect to the
normalized time to failure ∇d. The experiments selected – Granite 1, Marble
1, and Monzonite 3 – are those in which some percentile of θ1 has the highest
normalized cumulative importance. In these experiments, θ1 varies in trend,
but always ends up between 60 and 70◦ from σ1. More specifically, Granite 1
takes a stable orientation until failure approaches, then increases quickly to 77◦.
Marble 1 decreases from an average angle of 76◦ and reaches an average of 65◦.
Monzonite decreases in visible steps from 90◦ to an average of 60◦.
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CHAPTER 5

Discussion

5.1 Characteristics that Control the Change in Fracture
Volume

Many of the experiments produced models that predict the change in fracture
volume with high accuracy: the granite models all resulted in R2-scores above
0.80, with Granite 1’s average R2-score close to 0.99. Monzonite 5 and Marble
2 also managed to yield a few models with scores above 0.80. In summary,
we successfully trained machine learning models to predict the change in total
volume for granite, and some of the other experiments.

Generally, the experiments whose features have more clustered distributions
result in better model performance, while features with irregular values produce
worse models. The model performance is governed by a unique subset of features
that varies by experiment.

Only the granite and monzonite models depend strongly on the fracture aperture.
In the models where they have high importance, the 25th and 50th percentile
of Lmin depend on the change in total volume. If most fractures are closing
(a negative change in total volume), the fracture aperture tends to be larger
than when there are more opening fractures, consistent with prior observations
[J. McBeck et al., 2019]. In addition, we observe larger negative changes in
total volume with larger apertures (Figure A.11).

In the models where the fracture length, Lmax, has high importance (Granite 2
and Monzonite 5), we observe the same trends as the fracture aperture (Figure
A.12). The larger the fracture length, the more likely most of the fractures
are closing, producing a negative change in total volume. While the trends in
fracture length agree with prior research [Jaeger, 2010, J. McBeck et al., 2019],
the trend in fracture aperture does not. Interestingly, the models in which the
fracture length is important are the same models in which the fracture aperture
is important.

The volume of individual fractures is of high importance in every model except
for Granite 1. The fracture volume often correlates with the change in total
volume, but not always (Figure A.13). In most of the experiments, we observe
higher negative changes in fracture volume associated with higher 50th percentile
of v. Additionally, the 50th percentile of v is more important in models when
it increases as the experiment approaches failure. This evolution may be
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indicative of acceleration in the growth of the fracture network as it approaches
failure. Thus, experiments that experience systematic increasing fracture volume
produce models that exploit this reliable feature.

The minimum distance between fracture centroids did not exhibit high
importance in most models, except for those trained on Granite 1. In this
experiment, fracture closing produces a small minimum distance between
fractures. For slightly larger minimum distances, we see a mixture of increases
and decreases in the total fracture volume. Larger amounts of opening fractures
produce larger minimum distances between fractures (Figure A.14). In the other
experiments, no such trends are identifiable. Prior work has shown that a high
degree of fracture clustering increases the likelihood of propagation [J. McBeck
et al., 2019].

5.2 Characteristics that Control the Distance to Failure

For the models that predict the time to failure, three experiments yielded
models who’s mean R2-scores equal or surpassed 0.80: Granite 1, Marble 2,
and Granite 4. When training a machine learning model on the change in total
volume, all three experiments yield models with scores greater than or equal to
0.80, indicating that there is some overlap in the characteristics that control
the distance to failure and those that control the change in total volume. Some
models trained on Marble 1, Monzonite 3, and Granite 2 also had good scores
(R2-score above 0.75).

The minimum distance between fractures has high importance in the models
trained on Granite 2, Monzonite 3, and Marble 2 (Figure A.20). The minimum
and 75th percentiles of dmin decrease in value over time, highlighting the
increasing fracture density as the fracture network approaches failure, similar
to previous work [Tapponnier and Brace, 1976, Wu et al., 2000, Golshani et
al., 2006, Cartwright-Taylor et al., 2020]. Similarly, the volume of individual
fractures has high importance in experiments Granite 1, Granite 2, and Marble
2. In these experiments, the evolution of v demonstrates that fractures grow as
the network approaches failure, consistent with previous work [Golshani et al.,
2006, Tapponnier and Brace, 1976, J. A. McBeck, Zhu et al., 2021].

Next, the fracture aperture Lmin decreases as failure approaches for every
experiment (Figure A.21), though its importance is limited to experiments
Granite 2, Granite 4, Marble 1, and Marble 2. These observations indicate that
the fracture aperture can help predict the time to failure, but not in all cases:
this result did not apply to the monzonite experiments, where the fracture
aperture was of little importance.

The fracture length also evolves throughout all of the experiment, though this
evolution is not consistent across rock types (Figure A.22). In the marble
experiments, the mean and variance of the minimum and 25th percentiles of
Lmax decrease as we approach failure. In the monzonite experiments, these
values decrease in mean and an increase in variance. In Granite 2 and Granite
4, their means increase near failure, which is consistent with prior observations
in granite [Golshani et al., 2006]. Note that the fracture length has a medium
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to high importance in the models trained on Granite 1, Granite 2, Granite 4,
Marble 1, and Monzonite 3.

A decrease in variance of fault length implies that the lengths are becoming
more uniform. Thus, we observe an increase in fracture length homogeneity
in the marble experiments, and an increase in the variety of fracture lengths
in the other experiments. Marble may experience more homogeneous fault
network development that the other rock types because marble is composed
of cemented grains that can influence fracture growth. The grain structure
can limit the extent of fractures, producing fracture networks with a more
uniform distribution of fracture lengths than the granite and monzonite rocks
[J. A. McBeck, Aiken et al., 2020].

While the orientation of the largest fracture dimension relative to the maximum
compression direction did not have very high importance in any of the
experiments, the orientation of the smallest fracture dimension was critical
to most of the models; specifically, those trained on Monzonite 3, Marble 1,
Granite 1, Granite 2, and Granite 4. In these models, the 75th percentile of θ1
had a final average of 64.4◦ to σ1, with minimal variance (Figure A.23). These
values always increase near failure in the granite experiments but decrease
near failure in the others. Previous work indicates that the orientation of the
largest fracture dimension relative to the maximum compression direction first
trends towards zero degrees, then towards thirty degrees as failure approaches
[Tapponnier and Brace, 1976, J. McBeck et al., 2019]. Instead, we observe a
consistent trend for the orientation of the smallest fracture dimension.
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CHAPTER 6

Conclusion

We developed machine learning models to predict the change in the total volume
of fractures (local failure) and distance to macroscopic failure (global failure)
with an acceptable success rate. Many models yielded R2-scores above 0.80,
with some near 0.99. The model performance varied by experiment. Each
model had a slightly different set of highly important features, although some
features were universally important.

For the change in the total volume of fractures, the importance of the volume
of individual fractures was significant across almost all of the experiments. This
importance was possibly due to the correlation between decreases in the fracture
volume and higher volumes of individual fractures in many experiments. The
fracture length was also important universally, possibly due to the observed
correlation between decreases in the fracture volume and higher lengths.

For the distance to failure, the fracture orientation was the most important
feature across experiments. The orientation of the fractures’ smallest axes
tend to move towards an average angle of 64◦ from the maximum compression
direction. While there were no other universally important features, the fracture
aperture, and fracture length contributed significantly to model performance,
although there were varying trends in their values across different experiments.
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APPENDIX A

Tables and Figures

A.1 Tables

Table A.1: An overview of each feature’s symbolic representation or abbreviation
(e.g., McBeck et al., 2020).

Feature Symbol Unit
The minimum distance between fracture centroids dmin voxels
The orientation of the minimum fracture dimension θ1 degrees
relative to the maximum compression direction
The orientation of the maximum fracture dimension θ3 degrees
relative to the maximum compression direction
The fracture aperture (i.e., width) Lmin voxels
The fracture length Lmax voxels
The fracture shape anisotropy A none
The volume of individual fractures v voxels
The distance between fracture centroids dc voxels
The total fracture volume vtot voxels
A random number rand none

A.2 Figures
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A. Tables and Figures

Figure A.1: Slices from the tomograms for experiment Granite 4 while under
triaxial compression, prior to failure. The fracture network is highlighted in
blue.
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A.2. Figures

Figure A.2: The mean and standard deviation of the R2-scores for multiple sets
of models using the experiment Monzonite 3 where the number of models in
each set is shown on the x-axis. The x-axis represents the number of models
over which the mean and standard deviation are being taken. At x = 10 for
example, the mean was calculated for ten unique models. Every single model
used in this figure has a unique training dataset, selected by random split prior
to training.
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Figure A.3: The mean and standard deviation of the R2-scores for multiple sets
of models created using the experiment Granite 1, where the number of models
in each set is shown on the x-axis. The x-axis represents the number of models
over which the mean and standard deviation are being taken. At x = 10 for
example, the mean was calculated for ten unique models. Every single model
used in this figure has a unique training dataset, selected by random split prior
to training.
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A.2. Figures

Figure A.4: The differential stress in each rock experiment shown relative to its
respective axial strain, as they were compressed in the HADES apparatus. The
experiment label is shown above each subplot, and the axis labels apply to all
subplots.
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A. Tables and Figures

Figure A.5: R2-scores of each rock type and the average ± one standard
deviation of the twenty-five models for the target ∆Vtot. Each model is created
using a unique random split of the full dataset. The red squares represent the
mean value of the R2-scores for an experiment, while the attached blue bars
represent their standard deviation. The blue triangles represent the R2-values
themselves.
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A.2. Figures

Figure A.6: The expected vs. predicted values for four unique models trained
on experiment Monzonite 3 for target ∆Vtot, and the models’ test-set R2-scores.
Models (a) and (b) represent the two best performing models, while (c) and (d)
represent the two worst performing models. The blue triangles represent the
training data, while the red circles represent the testing data.
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A. Tables and Figures

Figure A.7: Normalized cumulative importance of features for models of each
granite experiment with R2-scores above 0.7. The features are split by category
via vertical bars, and the statistics of each feature are shown on the x-axis. The
symbols and abbreviations above each column are defined in Table A.1.
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A.2. Figures

Figure A.8: Normalized cumulative importance of features for models of each
marble experiment with R2-scores above 0.7. The features are split by category
via vertical bars, and the statistics of each feature are shown on the x-axis. The
symbols and abbreviations above each column are defined in Table A.1.
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A. Tables and Figures

Figure A.9: Normalized cumulative importance of features for models of each
monzonite experiment with R2-scores above 0.7. The features are split by
category via vertical bars, and the statistics of each feature are shown on the
x-axis. The symbols and abbreviations above each column are defined in Table
A.1.
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Figure A.10: Normalized cumulative importance of features for models of each
rock type with R2-scores above 0.7. The features are split by category via
vertical bars, and the statistics of each feature are shown on the x-axis. The
symbols and abbreviations above each column are defined in Table A.1.
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Figure A.11: The percentiles of the fracture aperture Lmin with the highest
importance for experiments: Granite 1 (a), Granite 2 (b), and Monzonite 5 (c),
as functions of the change in total volume ∆Vtot. It was in the models for these
three experiments that Lmin exhibited the highest importance.
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A.2. Figures

Figure A.12: The percentiles of the fracture length Lmax with the highest
importance for experiments: Granite 1 (a), Granite 2 (b), and Monzonite 5 (c),
as functions of the change in total volume ∆Vtot. It was in the models for these
three experiments that Lmax exhibited the highest importance.
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A. Tables and Figures

Figure A.13: The percentiles of the volume of individual fracture v with the
highest importance for experiments: Marble 2 (a), Granite 4 (b), and Monzonite
5 (c), as functions of the change in total volume ∆Vtot. It was in the models
for these three experiments that v exhibited the highest importance.
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A.2. Figures

Figure A.14: The minimum, 50th, and 75th percentile of the minimum distance
between fractures dmin for experiment Granite 1, as functions of the normalized
time to failure ∆Vtot. It was only in the models for experiment Granite 1 that
percentiles of dmin exhibited a high importance.
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A. Tables and Figures

Figure A.15: A comparison of the R2-scores of each rock type, each averaged
over the twenty-five best performing models for the target ∇d. Each model
is created using a unique random split of the full dataset. The red squares
represent the mean value of the R2-scores for an experiment, while the attached
blue bars represent their standard deviation. The blue triangles represent the
R2-values themselves. The mean value of the R2-scores for Monzonite 4 is
located below zero.
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A.2. Figures

Figure A.16: Normalized cumulative importance of features for models of each
granite experiment with R2-scores above 0.7. The features are split by category
via vertical bars, and the statistics of each feature are shown on the x-axis. The
symbols and abbreviations above each column are defined in Table A.1.
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Figure A.17: Normalized cumulative importance of features for models of each
marble experiment with R2-scores above 0.7. The features are split by category
via vertical bars, and the statistics of each feature are shown on the x-axis. The
symbols and abbreviations above each column are defined in Table A.1.
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A.2. Figures

Figure A.18: Normalized cumulative importance of features for models of each
monzonite experiment with R2-scores above 0.7. The features are split by
category via vertical bars, and the statistics of each feature are shown on the
x-axis. The symbols and abbreviations above each column are defined in Table
A.1.
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A. Tables and Figures

Figure A.19: Normalized cumulative importance of features for models of each
each rock type with R2-scores above 0.7. The features are split by category via
vertical bars, and the statistics of each feature are shown on the x-axis. The
symbols and abbreviations above each column are defined in Table A.1.
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A.2. Figures

Figure A.20: The percentiles of the minimum distance between fractures dmin
with the highest importance for experiments: Granite 2 (a), Monzonite 3 (b),
and Marble 2 (c), as functions of the normalized time to failure ∇d. It was in the
models for these three experiments that dmin exhibited the highest importance.
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A. Tables and Figures

Figure A.21: The percentiles of the fracture aperture Lmin with the highest
importance for experiments: Granite 2 (a), Marble 1 (b), and Marble 2 (c), as
functions of the normalized time to failure ∇d. It was in the models for these
three experiments that Lmin exhibited the highest importance.
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A.2. Figures

Figure A.22: The percentiles of the fracture length Lmax with the highest
importance for experiments: Granite 2 (a), Granite 4 (b), and Marble 1 (c), as
functions of the normalized time to failure ∇d. It was in the models for these
three experiments that Lmax exhibited the highest importance.
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Figure A.23: The 75th percentile of the orientation of the smallest fracture
dimension relative to the maximum compression direction θ1 for experiments:
Granite 1 (a), Marble 2 (b), and Monzonite 3 (c), as functions of the normalized
time to failure ∇d. It was in the models for these three experiments that
percentiles of θ1 exhibited the highest importance.
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