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CHAPT ER

1
Introduction

In the traditional computational paradigm, which was introduced by von Neumann,
problems are solved by an ordered set of instructions known as a program. These in-
structions are fed to the CPU in a sequential order, and processed in this order. An
instruction typically just do a simple arithmetic operation or change the location of
where to fetch the next instruction – a jump-instruction. To solve complex problems
one usually have to process the same set of instructions thousands of times inside tight
loops, that can be nested inside other tight loops. This means that it can take billions
of instructions to solve such problems. Even the fastest supercomputers existing today,
running advanced AI systems, can not perform real time visual or auditory recognition
like you and me, but even simple mammals perform such visual and auditory recogni-
tion constantly.

The biological brains ability to perform very complex tasks, with a minimum set of
activities and resources, has inspired scientists to study the field of neural computation,
and to try to implement artificial neural systems. There are also other properties as-
sociated with the biological brain that are desirable. It is very fault tolerant, and even
though there are dying nerve cells every minute, it is still functioning without significant
loss of performance. It is not like a digital computer where one damaged transistor can
make the whole system go down. It is also very flexible, and is continually adapting to
the psychological environment, that is, it can be trained to cope with new situations. It
is also massively parallel, and has the ability to deal with inconsistent and noisy infor-
mation. Last, but not least important, is the size of the brain and power consumption
compared to its computational abilities.

There is a great difference in the complexity of the computational elements in tradi-
tional computers and neural systems. In a digital CPU there are a few but very complex
elements performing the instructions, and the processing of the instructions is very fast.
In neural systems on the other hand there are lots of small simple elements performing a
very local computation. These elements are organized in highly parallel networks, and
even though the biological processing elements are slow, compared to digital silicon cir-
cuits, the high parallelism ensures low total processing times. Most of the networks are
organized without feedback loops, so there is a linear dependency between the depth
of the network and the total processing time. Only in tasks based on solving numerical

1
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Dendrites
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Figure 1.1: Biological neuron. (Source: Adapted from [Mead, 1989b])

equations or answering well defined questions, with high accuracy, the digital computer
is superior.

1.1 Biological neural networks - a brief description

The human brain consists of approximately 1011 computational elements [Hertz et al.,
1991]. These elements are of different types, but they are all called neurons or nerve
cells. They are organized in a huge parallel network where the output of one typical
neuron can be connected to the inputs of a few thousand other neurons. The number
of inputs to one neuron can range from just a few to about a hundred thousand.

The type of neuron covered here have extensions from the cell body, organized in
tree-like structures, called dendrites (see figure 1.1). These nerve fibers serves the pur-
pose of transmitting electrical charge to and from the cell body. The whole structure is
called a dendritic tree. The dendrites are covered with elements called synapses, and
it is through these synapses most of the neural interaction, and primary information-
processing, takes place. Most neurons have one long fiber extending from the cell body,
called the axon. This fiber split up into branches, and each branch finally connect to a
synapse on another neuron. The axon therefore take the function as the neurons out-
put, and the synapses serves as inputs. There are other types of communication in a
biological brain, like in neurons without an axon, but these aspects are not covered in
this text

The signal type used for communication between neurons are electric pulses with
an amplitude of a few hundred millivolt, and a duration in the range of milliseconds.
When such a pulse reaches the synapse on another neuron, the change of potential on
the presynaptic membrane initiate a chain of chemical processes in the synaptic cleft,
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which results in the opening of ion-specific channels in the postsynaptic membrane.
The channels are either for positively or negatively charged ions. The conductance
of the postsynaptic membrane either charges or discharges the capacitance in the cell
body. The amount of charge conducted depends on the potential on the presynaptic
membrane, and the existence of chloride channels which increases the conductance of
the membrane.

When the potential of the cell body reaches a given threshold voltage, usually about
�40mV , a chemical process inside the cell body generates a pulse that is propagated
down the axon. While the neuron is in a firing state, it lacks the ability to fire again. It
has to wait a specific time called a refractory period, which brings the potential of the
cell body back to its initial state, before it can fire again.

The complexity of a neural system does not derive from the complexity of its com-
ponents, but from the complexity of the interaction between these components. Even
though we do, to some extent, understand the behavior of these components, the organi-
zation of them are by no means fully understood. A description of some network-types
can be found in [Kandel and Schwartz, 1985]. It is clear that the interconnection of
neural components is the secret of thought, and it is assumed that the large connectiv-
ity between the components, is the most significant reason for the high redundancy of
neural systems.

The choice of signal representation for information transmission in biological sys-
tems is not a result of accidental circumstances. During millions of years of natures own
deadly effective evaluation system, named natural selection, biological nervous systems
have evolved to the size, complexity and versatility of human brains. This makes it very
difficult to argue against the choice of information representation in natural systems.
One can try to use the poor signal transmission abilities of chemically based transmis-
sion media as the axon, to explain the development of pulse representation. But any
computational or transmitting media of the physical size of neurons, synapses and ax-
ons, implemented in a practically manageable material, will introduce a large potential
for noise and variations of the media responses to electrical potentials and currents.
It should be no doubt that to achieve such massively parallelism and large number of
computational elements as in biological brains, the physical size of the computational
building blocks and signal lines must be minimized. The pulse representation is there-
fore a consequence of other factors of much more importance than poor transmission
media.

Details about biological topics can be found in [Shepherd, 1979] and [Mead, 1989b].

1.2 Artificial neural networks

The first approach to model the computational operation performed by a neuron was
done by [McCulloch and Pitts, 1943], and the fundamental issues of their work are pre-
sented in [Hertz et al., 1991]. They proposed a simple model of a neuron as a binary
threshold unit. This unit perform a weighting of its inputs from other units, sums up
these inputs, and then outputs a one or a zero depending on whether this sum is larger
or smaller than a certain threshold ¼:

oi D 2.
X

j

wi j oj � ¼i/;
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where 2.x/ is the unit step function

2.x/ D
²

1 if x > 0
0 otherwise

:

A binary ’1’ and ’0’ on the output represent a firing and non-firing state respectively.
This is a straightforward binary modeling of the biological neuron discussed in the pre-
vious section. Most of the existing network models use, with some variations, this im-
plementation of a neuron.

Due to the lack of knowledge about what kind of algorithm the brain use in its train-
ing process, one usually do not try to reconstruct the biological counterpart to a great
detail when designing an artificial implementation of the learning part of neural net-
works. It is more convenient to develop abstract mathematical models for training that
resembles the biological neural networks to some degree. The key aspects of biological
neural systems, ie. simple and consistent building-blocks, high redundancy and adapt-
ability, are included in these models. The most common models are the Hopfield model
[Hopfield, 1982], recurrent networks and layered feed-forward networks.

Most implementations of artificial neural networks do not use pulses to represent
information. In software implementations all quantities are represented by integer or
real values. This is also the case for most digital implementations. In most analog
implementations voltages and currents represent the synaptic weights and firing rates
of neurons. Only a few serious attempts have been made to actually implement artificial
neural networks incorporating the beneficial aspects of representing information with
pulses.

1.3 The Issues

The main issue of this thesis is to implement an artificial neural network of the lay-
ered feed-forward type, usually called perceptron networks or just perceptrons, in hard-
ware. The network incorporates an on-chip backpropagation of error learning algo-
rithm for training, and on-chip storage of synaptic weights in UV-light programmable
analog memories. Both on-chip learning and storing of weights are essential if one
wants to make cheap autonomous neural networks capable of solving real-time prob-
lems in embedded systems.

At an early stage I decided that the network to be implemented should be able to
solve a problem that is not linearly separable, like the parity problem. Such problems are
hard to solve, and a network solving these kind of problems must have hidden layers.
Linearly inseparable problems are therefore often used for testing and evaluation of
neural network designs.

Backed with nature’s evolutionary conclusion that pulse representation is the best
way of representing an analog value in a network of computational elements where el-
ement size should be downward scalable and network size upward scalable, it should
be reasonable to use this representation in a hardware implementation of an artificial
neural network too. Even though we do not know how the learning part of biological
neural systems is implemented, which means we can not be certain about the signal rep-
resentation used in the learning part, pulse streams are both used in the feed-forward
and backpropagation part of the network. The reason for this was that more compat-
ibility between processing elements was ensured if all of them used the same coding.
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The same type of basic computational circuitry can be used in both the feed-forward
and the backpropagation calculation.

The exact representation of a value as a pulse stream used in the implementation is
by no means a copy of the biological counterpart. It is used a stochastic representation,
which ensures that complex computations can be performed with only a minimum re-
quirement of hardware. One of the nicest non-linearities of biological neural systems,
the non-linear saturation of signal quantities, is also easily implemented with this rep-
resentation. From a more philosophical point of view,

one may hypothesize that a little ingredient of stochastics in nervous systems
as it is provided by some noise from unreliable elements and the indetermin-
ism originating from probabilistic processing is by no means an evolutionary
accident but a precise reflection of certain environmental conditions which
otherwise would have been very difficult to catch.

[Banzhaf, 1988].

All the computations including the stochastically represented values are based on
boolean algebra. This means that the circuitry implementing the stochastic computing
elements, which is the elements performing both the feed-forward and backpropaga-
tion of error computation, is of a digital type. To ensure high network scalability, that
is eliminate problems with high power consumption and heat dissipation, the digital
circuits are implemented in a low power design.

All storing of synaptic weights are done on-chip in analog UV-programmable float-
ing gate memories. The circuitry for programming these memories, and converting the
programmed analog voltage to a pulse-encoded weight, are of course analog.

Two chips were made to test the network. The first chip contained all necessary test
structures to investigate the behavior of the network elements thoroughly. This chip was
implemented with the 2¼m P-well process from Orbit Semiconductor Inc. The second
chip contained the complete network, with two additional test structures. For this chip
the 2¼m N-well analog process, from the same silicon foundry, was used for the physical
implementation.

In chapter 2, I present background material of feed-forward neural networks and
the backpropagation of error learning algorithm, and I also give an introduction to low
power digital CMOS circuits.

In chapter 3, the specialized theoretical equations, modeling a network with pulse
stream signals in both the feed-forward and backpropagation part, are derived and the
circuitry implementing these equations is presented.

In chapter 4 the necessary hardware to generate the error of an output signal from
the network is presented, together with simulations or measured results of the circuits
behavior.

In chapter 5, I investigate two different types of analog memory devices. Both types
use a floating-gate of a transistor as capacitor to store the programmed value, but two
different approaches are used to program the floating-gate. One use UV-light exposure
to lower the resistance of the silicon dioxide so current can pass, the other use Fowler-
Nordheim tunneling. These investigations leads to the choice of a UV-light memory
for my network. The circuitry needed to program the floating-gate, and to convert the
stored voltage to a pulse stream representing the weight is then presented.
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In chapter 6, the different circuits developed in chapter 3, 4 and 5 are assembled
into a network with 3 inputs, 6 hidden neurons and 2 outputs. Measurements of the
performance of the network are also presented here.

Chapter 7 gives a summary and conclusion of the work. What works as expected,
and what can be done to improve the network even further.



CHAPT ER

2
Background

In this chapter a brief introduction to the fields of feed-forward neural net-
works and low power digital CMOS design is given. The former will give
the reader the background material to understand the development and
implementation of the network building-blocks at a system-level, while
the latter will help understand transistor-level implementations.

2.1 Feed-forward neural networks

2.1.1 The problem

In all types of neural networks the problem is to map a set of input-patterns to a set
of output-patterns. To solve this problem we need at least a layer of input-neurons
and a layer of output-neurons. If the output-patterns are very different from the input-
patterns, like in a linearly inseparable problem as the parity problem, we also need
hidden layers of neurons, as stated by [Rumelhart et al., 1986, Hertz et al., 1991]. With
the expression hidden layer one refers to a layer of neurons that is not directly connected
to the inputs or outputs. A typical structure of a feed-forward neural network with
hidden layers is shown in figure 2.1.

2.1.2 Network topology and fault tolerance

It has been shown that it is sufficient with one layer of hidden neurons to approximate
any continuous function to any desired accuracy [Hornik et al., 1989]. But this theorem
does not state anything about how many neurons that are required in the hidden layer
to approximate a given function, and there is no such rule for networks with several
hidden layers either. The only thing we now is that for networks with only one hidden
layer, the number of neurons in this layer may increase exponentially with the number
of inputs [Hertz et al., 1991]. The design of network topology is therefore still a black
art, and I will not cover it any further in this text.

7
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1

2

3 j

1

2

i

Output-layer with j neurons

K hidden layers, each with
a different number of neurons

Input-layer with i neurons

Figure 2.1: A typical layered structure of a feed-forward network

All artificial neural networks are highly scalable. There is no limit of the number
of neurons in a layer, or the number of inputs and outputs of a neuron. This makes
it possible to implement networks that are fully functional even if parts of them are
not working. A network with more inputs, outputs and hidden neurons than strictly
necessary to solve a specific problem, can solve the problem even if some neurons are
dead at the manufacturing time, and/or are damaged due to wear out.

2.1.3 The feed-forward computation

A very important aspect of layered feed-forward networks is that all signals involved in
the mapping of a input-pattern to a output-pattern, is fed from the outputs of neurons
in one layer, to the inputs of neurons in the next layer. There is no feedback of signals
during this mapping, neither between a neuron and neurons in previous layers or neu-
rons in the same layer. Usually there are no connections to neurons more than one layer
ahead, as shown in figure 2.1, but sometimes though, some neurons can be shortened
to simplify a network. But then of course you must be sure that the network you get
can be trained to solve the problem it is supposed to do. [Rumelhart et al., 1986] show
some examples of such networks.

The computation performed by a neuron in a feed-forward neural network is almost
the same that [McCulloch and Pitts, 1943] proposed. The output is an explicit function
of the input, and is described by

opj D fj

 X
i

wj i opi C 	j

!
D f j

�
netpj

Ð
; (2.1)

where wj i is the weight of input i to neuron j , opi is input i , that is output i from the
previous layer, for input-pattern p, 	j is the threshold value and fj is the activation
function for neuron j . Before we specify the activation function any further, we better
take a look at the learning algorithm, since this algorithm put some limits on it.
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2.1.4 Learning by backpropagation of error

There are several different methods for setting synaptic weights and threshold values.
The most common, and the one I will use in my implementation, is the backpropagation
of error algorithm. This is a supervised learning algorithm, which means that you have
to teach the network how to respond on a particular set of input-patterns. This teaching
incorporates the following steps:

ž Present an input-pattern.

ž Read out the produced output-pattern.

ž Compare the produced output-pattern with the desired output-pattern, and gen-
erate an error signal if there is a difference.

ž This error-signal is fed to the output-neurons, and propagated through the network
in the opposite direction of the feed-forward signals.

ž The weights and thresholds are then changed on basis of these error signals to
reduce the difference between the output and the target.

These steps are either repeated in discrete steps or performed simultaneously in a true
parallel and continuous manner for all input-patterns, until the network responds cor-
rectly for all of them.

The learning algorithm can be expressed with two equations. One that measures
the error on the output, and one that expresses the change of a given weight. The
error is usually measured as the difference between the desired output, or target, and
the actual output. The weight-change function is then defined to be proportional to
the derivative of the square of the measured error for each output-pattern with respect
to each weight, and with negative constant of proportionality [Rumelhart et al., 1986].
This will implement a gradient decent search in the error space for the minimum error.
To be more specific, let

Ep D 1

2

X
j

�
tpj � opj

Ð2 (2.2)

be the square of the error measured for input-pattern p, where tpj represents the target
for output neuron j , and opj the actual output. The weight-change equation is then
defined to be

1pwj i D ��
@ Ep

@wj i
; (2.3)

where 1pwj i is the change of the weight, and � is a scaling-factor that defines the learn-
ing rate of the algorithm. The solution to this differentiation can be stated in two equa-
tions, depending on the weight under consideration. If the weight belongs to an output-
neuron the differentiation is straightforward, and we get

1pwj i D ��
@ Ep

@wj i
D �

�
tpj � opj

Ð
f 0

j

�
netpj

Ð
opi D �Žpj opi ; (2.4)

where f 0
j is the derivative of the activation function for output-neuron j and opi is input

i to this neuron for pattern p. The Ž-term is only the standard way of expressing the
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error scaled by the derivative of the output. If the weight belongs to a hidden neuron,
one apply the chain rule to equation 2.3 and get

1pwj i D ��
@ Ep

@wj i
D �

 X
k

Žpkwkj

!
f 0

j

�
netpj

Ð
opi D �Žpjopi ; (2.5)

where Žpk is the Ž for neuron k in the subsequent layer. Since threshold values can
be looked upon as weighted inputs where the input values are always clamped at �1
or 1, these can be trained with the same set of equations. This implementation of
the backpropagation of error learning algorithm is called the generalized delta rule,
and the derivations of equation 2.4 and 2.5 can be found in [Rumelhart et al., 1986,
Hertz et al., 1991].

2.1.5 The activation function

If we take a closer look at equation 2.4, we see that the activation function has to be
differentiable. This excludes the unit step function that [McCulloch and Pitts, 1943]
used, since this function is discontinuous and therefore not differentiable. Instead we
pick a non-linear and differentiable function. The function has to be non-linear, because
hidden neurons with linear activation function provides no advantage over plain two-
layered networks [Rumelhart et al., 1986]. The function must also have the property of
being non-decreasing. That means a neuron shall not be able to go from a firing state to
a non-firing state with an increase in the input to the neuron [Rumelhart et al., 1986].
One usually also wants the activation function to saturate at both extremes to keep
the feed-forward signals from getting out of range, even though this is not necessary in
theory.

2.2 Low power digital CMOS design

I have already pointed out that scalability and fault tolerance is two key aspects of neural
networks. These networks are therefore well suited for Ultra Large Scale Integration
(ULSI). Chips covering a whole wafer may be approached. But even though neural
networks have high redundancy to the manufacturing errors which will be present in
chips of these sizes, the power consumption of such large chips may be a problem. Using
a standard complementary CMOS digital implementation, the heat dissipation will be
high enough to destroy the chip. So a fully scalable implementation must have very low
power consumption, to reduce heat dissipation.

As mentioned in the introduction, the network is designed using a mix of digital and
analog circuits. Both types must be of a low power design. Low power analog circuits
can be designed using a subthreshold analog technique. Details about this will not be
covered, as it is expected that the reader have basic knowledge about this topic. For an
excellent discussion see [Mead, 1989b].

2.2.1 Digital circuits with static current limitations

There are several approaches that can be made to reduce the current flowing through
a transistor operated as a switch. In a complementary CMOS design one can reduce
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Figure 2.2: Low power digital circuits: (a) inverter gate, (b) its simulated behavior and
(c) a nand gate.

the power supply voltage, usually from 5 volt to 3.3 volt, giving a current reduction of
the same amount. But this technique does not reduce the heat dissipation enough, and
because of smaller tri-state margins, special care is required during the design. Sub-
micron processing and special operating temperatures may also be required [Foty and
Nowak, 1994] , which result in higher development and manufacturing costs. For these
reasons I chose another design approach.

Another approach is suggested by Lazzaro [Lazzaro, 1992a], which is a design tech-
nique very similar to NMOS design. But instead of using a bleeder transistor as a pull-up
device, one uses a subthreshold biased p-type transistor. The transistor schematic of a
digital inverter gate and NAND gate of this design, are shown in figure 2.2 (a) and (c)
respectively. The static current through the transistors is limited by the bias current of
the p-type pull up transistor.

Figure 2.2 (b) shows a simulation of the inverter response for a pull-up bias voltage
(Vb) of 4:3 volt. As we can see the switching time, that is the raise time, is not fast at all.
Faster raise times can be achieved by lowering the bias voltage, but that means higher
static currents and power consumption as well. But in highly parallel neural networks
the speed of each network component is not critical. The highly parallel processing
more than compensates the slow circuits.





CHAPT ER

3
Stochastic computing
network elements

The contents of this chapter are related to the representation of values
as stochastic pulse streams, and the computing elements needed to build
a feed-forward neural network with a backpropagation of error learning
scheme. Only the computational elements are covered here. The storage
of synaptic weights is covered in chapter 5.

There are several reasons to use pulse stream encoding of neural signals instead
of pure analog signals. Logic pulse signals are more redundant to noise than analog
currents or especially voltages. Our own brains are good examples of this. The signal
transmitters are poor, and a lot of noise are added to the signals, but they are easy to
reconstruct at required intervals.

Another reason is that digital logic is well developed, and as shown later in this
chapter, some arithmetic operations on pulse streams can be done with a minimum
of transistors. This is a very important feature, since physically small computational
elements makes larger networks and more computational power on a dedicated silicon
area possible.

Why not use a common digital approach with binary coding of signals? The main
reason is simply that synaptic weighting includes multiplication and storing of weights,
and the binary hardware needed for these operations occupy to much silicon area. Rep-
resenting values in binary form also imply a lot of wiring. Digital serial communication
is seldom beneficial for local communication and is therefore not attractive at all in neu-
ral networks, where all communication is very local. The result is that it is difficult, if
not impossible, to design large systems on one chip.

13
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3.1 Representing values with pulse streams

There are several slightly different methods for representing values as sequences of
pulses. [Murray and Tarassenko, 1994] mention six different, were variations of pulse
amplitude, pulse width, pulse frequency, pulse density, pulse phase and pulse code mod-
ulation (weighted bits) can be used to represent the actual value. All of these encoding
techniques can be used in VLSI neural systems, but not all are equally well suited. With
pulse amplitude modulation one encounter the same noise problem as with pure analog
voltage encoding. The pulse phase modulation technique is more robust to noise. The
pulse code modulation (PCM) technique is used both in data transmission systems and
1-bit D/A converters for compact disc players, but it is made for pure digital construc-
tions and has never been used in neural systems.

The last three variants are all very attractive. They all share the same advantage
of using time as the information coding axis, and they are therefore only susceptible
to edge-jitter noise. Such noise will be less significant in a conventionally noisy and
adaptive environment as a neural system. Another aspect that must be taken into con-
sideration is that since the actual value such pulse stream signals represents is measured
over time, with normal gaussian distributed noise, the noise will average out and be even
less significant.

[Murray and Tarassenko, 1994] use both the pulse frequency and pulse width modu-
lation techniques in neural networks, and [Mead, 1989b], [Lazzaro and Mead, 1989abc]
, [Lazzaro, 1991ab,1992ab] , and [Meador et al., 1991] use pulse density modulation,
also described as mean rate encoding, in very biologically inspired implementations.
The network presented in this text employ a mix of pulse frequency, pulse width and
pulse density modulation.

3.2 Stochastic pulse streams

In stochastic computation, values are represented as the probability that a logic signal
will be on or off at a given time. Arithmetic operations are performed by virtue of the
completely random and uncorrelated nature of the logic signals representing data. The
actual probability of such a pulse stream being on, can be found through moving time
integration of the pulse stream, and there is no way one can predict the sequence of
logic levels on basis of a probability. A given value can be represented by several quite
different pulse streams. A quantity represented by a pulse stream signal being on half
of the time and else off, can give rise to a lot of quite different pulse streams. One ex-
treme possibility is that the signal line is on for first half of the time and off for the last
half. Another possibility is a signal fluctuating nicely at a steady frequency, with equally
spaced pulses. The most common types of stochastic pulse stream on the other hand,
consists of pulses of totally random width and inter-pulse distances. There is no limita-
tions on the pulse-width or frequency, but the pulse amplitude is constant. Because of
this signals of this type often appears like random noise. This is generally regarded as a
waste product, but not in the context used here. Such sequences of logic levels where
successive levels are statistically independent, and the probability of the logic level be-
ing on is a measure of the quantity, are called Bernoulli sequences. Figure 3.2 shows a
pulse stream signal and its moving probability of being on.

This method of representing information was first presented by von Neumann in
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Figure 3.1: Pulse stream signal: The actual pulse stream at the top, and its moving
average probability value at the bottom. The moving average is calculated over the last
5ms.

his classical paper [von Neumann, 1956]. In this paper he speculated on a statistical
principle through which some properties of the nervous system could be explained. His
work was not aimed at making any hypothesis about neurophysiological phenomena.
His intentions was to show that basically inaccurate representation of information and
unreliable processing components, through redundancy, could be made reliable to yield
accurate results.

During the last half of the 1960’s much work was put into this field, to make con-
ventional computers, specialized hardware to make approximate solutions to partial dif-
ferential equations and circuitry to mimic parts of the nervous system. [Gaines, 1969]
presents some of the results of all this work, and gives an overview of parts of stochastic
computation, and its implementation in hardware. Three different ways of representing
a value is sketched out, depending on the constraints of the values needed in a given
system. Two of these representations are of interest for the neural network implemen-
tation presented in this thesis. If a system only uses unipolar values, either positive or
negative, the representation mentioned at the start of section 3.2 can be used directly.
A quantity E in the range 0 � E � V , is represented by the pulse stream signal A with
generating probability P, were

P D P .A D 1/ D E

V
:

Maximum quantity is represented by a signal which is always on, and zero quantity by
a signal which is always off.

If bipolar values are needed, as is true for most problems, we can differentiate the
signal on two lines, one representing the the negative part and the other the positive
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Figure 3.2: Simple logic gate arithmetic: (a) Multiplication performed by an AND-gate.
(b) The non-linear summation performed by a wired or-gate. For low levels of activity
the summation is linear, but for high levels the summation saturates.

part of the value. The transformation from actual quantity to pulse stream probability
for a bipolar quantity E such that �V � E � V , will be described by [Gaines, 1969]:

E

V
D P .positive line on/ � P .negative line on/ : (3.1)

Maximum positive quantity is represented by the positive line always on, and the neg-
ative line always off. For maximum negative quantity the negative line is always on,
and the positive always off. Zero value is represented by both lines off, or both lines
fluctuating with the same probability of being on.

3.3 Arithmetic operations on stochastic signals

The two most common arithmetic computations in neural synaptic elements are multi-
plication and summation. Necessary hardware to carry out these two operations must
therefore be developed.

Under the restriction that two unipolar signals are stochastically uncorrelated, that
is their probabilities of being on are statistically independent, the product of the two sig-
nals can be computed by a single AND gate [Gaines, 1969]. The output signal’s prob-
ability of being on is given by the product of the probabilities on the input. This is
reasonable since the output only is on if both inputs are on. Figure 3.2 (a) shows such
multiplications for two different sets of pulse streams.

For bipolar quantities the positive output should be on if both positive or both neg-
ative inputs are on, and otherwise turned off. The negative output should be on if one
positive and one negative input are on at the same time. Written in terms of boolean
algebra we get [Gaines, 1969]:

oC D aCbC C a�b� ;

o� D aCb� C a�bC : (3.2)

Summation of stochastic pulse streams can be done in several ways, depending on
the accuracy needed. The simplest way is to use wired-OR summation. Just hook the
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signal lines to be summed up to the same node. The summation performed by this
scheme is not linear for all types of signals. As the probabilities of being on increases,
pulse overlap also increases, and the summation saturates gradually as shown in fig-
ure 3.2 (b). For some applications this is not satisfactory, but in neural systems it can be
used as a very desirable feature. The generated sums will not add up to values exceed-
ing beyond the defined limits. Overflow will never occur, regardless of the number of
signals summed. The upper limit is always represented with a signal always on and the
lower limit by a signal always off. There is in theory an infinite number of achievable
states between the two limits. In practice the density is as good as for a pure analog
signal. There is also another great feature with non-linear summation. If we recall from
section 2.1, the output of a neuron is the result of a non-linear transformation of the
sum of the weighted inputs through an activation function. With a non-linear summa-
tion scheme most of the work with this transformation is already done. For a review of
other methods see [Gaines, 1969].

[Tomlinson et al., 1990] express the non-linear sum saturation as

1 � e�Pi pi ;

where pi is the probability of signal line i being on. This is a very interesting result, but
unfortunately the initial condition used in the derivation makes you doubt if it is true
or not. I will therefore give a more precise derivation.

To find the non-linear relationship between the probability of the sum being on, and
the probabilities of each input i D 1; : : : ; n being on, we look at the inputs as a series
of n independent Bernoulli trials, each having probability ai of a logic on. Then we use
binomial distribution to express the probability of one or more of the inputs being on,
and get

P .1 or more inputs on/ D
nX

kD1

�
n
k

	�P
i ai

n

	k �
1 �

P
i ai

n

	n�k

;

were k represents the number of inputs that is on.
P

i ai

n
is the average probability of any

input being on.
This is not an entirely pleasant equation to compute, but using the well known sta-

tistical limit theorem of Poisson, the problem turns out to be quite simple. By using the
fact that P.Y D 1/ D 1 � P.Y D 0/, we get

P .1 or more inputs on/ D P .SU M D 1/ D
1X

kD1

e�Pi ai
�P

i ai

Ðk

k!

D 1 � e�Pi ai
�P

i ai

Ð0

0!
D 1 � e�Pi ai : (3.3)

The limit theorem is only an approximation, but it is well accepted in statistical
analysis. The agreement between the actual value and the approximation converges as
the number of inputs increases.

A plot of equation 3.3 is shown in figure 3.3, and as one can see this function takes
the form of the upper half of a sigmoid type function often used as the non-linear acti-
vation function for neurons.
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Figure 3.3: Saturation of wired-OR summation of pulse streams.

3.4 Feed-forward network elements

3.4.1 Previous work

Even though both [Gaines, 1969], [Ribeiro, 1967] and other researchers in this field dur-
ing the late 1960’s mention the potential of using stochastic signals and computations
in artificial neural networks, the first serious attempt to make a VLSI implementation,
that I know about, was done by [Tomlinson and Walker, 1990, Tomlinson et al., 1990]
at Neural Semiconductor, Inc. In this implementation the feed-forward part is combi-
natorial and asynchronous, but the weights are synchronously clocked. The implemen-
tation lacked on-chip learning. Networks were trained off-chip, and then the weight
values were dumped into a memory on the chip. Later [Eguchi et al., 1991, Dickson et
al., 1993] have extended this implementation scheme with on-chip learning.

None of these implementations are implemented in a low-power technique, and they
either use fully digital synaptic memories, or analog memories where the stored analog
weights are converted to a digital value through an A/D-converter. Both of these im-
plementations tends to consume a lot of silicon area, mostly because of the number
of discrete weight levels needed to make the probability of learning convergence suffi-
ciently large. Usually up to 16-bit density is needed.

Both [Eguchi et al., 1991] and [Dickson et al., 1993] report good results on learn-
ing capability of their implementation. On the other hand the learning algorithm im-
plemented by [Eguchi et al., 1991] is a very simplified version of backpropagation, and
[Dickson et al., 1993] points out that this implementation is insufficient for several real
world applications.

For a description of the differences of the implementation presented in this thesis
and the referenced implementations, see table 3.1.

3.4.2 Implementing the forward computation

Before we can start the actual design of hardware elements to implement the feed-
forward computation in a network, we have to decide what type of signal representation
to use for the different parts. The decision is actually rather straight forward.

The quantity of input values fed to the neurons in the input layer, and the output from
all neurons, can be represented by a unipolar stochastic pulse stream. These values are
not negative. They only moves from a non-firing state, to a firing state. In the notation
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Tomlinson Eguchi Dickson This thesis
Stochastic Yes Yes Yes Yes
On-chip No Yes Yes Yes
learning
Learning Very simplified Backprop Backprop
algorithm backprop
On-chip wei- Yes Yes Yes Yes
ght storage
Memory type Analog with Static RAM Up/down Analog

A/D-converters counters
Implemen- Digital Digital Digital Low-Power
tation type CMOS CMOS CMOS digital/analog

(Analog weights) CMOS
Other aspects Clocked Clocked Clocked Fully

weights weights weights asynchronous

Table 3.1: Table showing differences between the implementation presented in this the-
sis and earlier implementations.

used above the input/output values are represented by opi D P.Opi D 1/, where opi D 1
represents a maximum firing output and opi D 0 a non-firing output.

Since synapses can be either excitatory or inhibitory, the weight of an input must be
represented by a bipolar quantity. The positive and negative parts of a weight signal is
represented by wC

j i D P.WC
j i D 1/ and w�

j i D P.W�
j i D 1/ respectively.

The weighted input must of course also be represented by a bipolar quantity. From
equation 2.1 we know that the weighted input is the product of the input and the weight.
The multiplication of bipolar signals was presented in equation 3.2, and expressing the
weight multiplication in the same way, regarding one of the signals as unipolar, the
weighted input becomes

P .positive weighted input on/ D wC
j i opi

P .negative weighted input on / D w�
j i opi : (3.4)

The inverted weighted input signals can be computed with 3 transistors in a low-power
design, excluding the necessary pull-up transistors, as shown in figure 3.4. This is a con-
siderably less than the 3 NAND gates and one inverter used in complementary CMOS
implementations [Tomlinson and Walker, 1990]. The circuit in figure 3.4 is the differen-
tial pair from analog MOS design. It can be used under the restriction that only one of
the differential lines are on at a given time. Transistor Q2 and Q3 can not both be open
at the same time. Just imagine a scenario where Q1 is closed, and Q2 and Q3 are open.
Then the two net-input lines would be shortened, and contain the same signal value.
But as we shall see later, it is not difficult to implement circuitry that generate weight
signals fulfilling this restriction.

The summation of the weighted net-inputs are performed by wired-OR summation.
In figure 3.4 the two lines representing the inverse positive and inverse negative net-
inputs are marked 1�netCpj and 1�net�pj respectively. The total quantity of net-input can
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Figure 3.4: Three transistor weight computation circuit.

be described with the two equations, [Tomlinson et al., 1990]:

netCpj D
X

i

wC
j i opi D 1 �

Y
i

�
1 � wC

j i opi

Ð
net�pj D

X
i

w�
j i opi D 1 �

Y
i

�
1 � w�

j i opi

Ð
: (3.5)

The positive and the negative net-input incorporates the non-linear saturation described
in equation 3.3. This fact can be taken advantage of in the generation of the non-linear
activation function performed by the neuron. Equation 3.1 represents the transforma-
tion from differential bipolar representation to the actual quantity. The negative quantity
is subtracted from the positive quantity. Both quantities are the result of a non-linear
sum, and have the characteristic shown in figure 3.3, but of opposite signs. The subtrac-
tion of two such characteristics, gives a result that takes the form of a complete sigmoid
function, which is the most common function to use as an activation function in neu-
rons. The subtraction can be looked up on as a merging of two characteristics as shown
in figure 3.3, where one characteristic is a mirror of the other characteristic. Due to this
the neuron do not need to take any further action to implement the activation function.
Only a transformation of the bipolar quantity to a unipolar one is necessary.

The transformation to unipolar representation can be obtained as follows. The out-
put should obviously be off if both net-inputs are off, or if the positive net-input is off
and the negative net-input is on. The output should be on if the positive net-input is on
and the negative off. But what about the last case, where both the positive and negative
net-input are on at the same time? [Tomlinson et al., 1990] suggests a simplification,
and letting the output be off for this case. This leads to the quite simple expression

opj D netCpj

�
1 � net�pj

Ð D 1 � ��
1 � netCpj

ÐC net�pj

Ð
(3.6)

for the output. As we can see, the negative net-input is contributing more to the output
than the positive net-input do. One inhibitory input on will set the output off, even if
all excitatory inputs are on. This also indicates that the activation function will vary,
depending on the number of inputs to a neuron. As the number of inputs increases the
steepness of the transfer function will decrease. One inhibitory weight will keep the
probability of the output on low.
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Figure 3.5: Circuitry to perform the neuronal computation and the total transfer func-
tion: (a) The neuron circuit, which incorporates the pull-up transistors for the net-
inputs. (b) The transfer-function for neurons with three different number of inputs.

Based on the inverted net-input signals generated by the weighting circuit, the neu-
ron circuit become as shown in figure 3.5 (a), a circuit which incorporates the pull-up
transistors for the net-input signal lines. This circuit is of approximately the same size
as the inverter and AND gate circuit used in complementary digital implementations.

To make a plot of the activation function on basis of equation 3.3 and 3.6 is beyond
my knowledge in statistics. A plot based on empirical data generated from equation 3.4,
3.5 and 3.6 were made instead. Randomly uniform distributed probabilities were as-
signed to both inputs and weights, and curves were generated by averaging the results
for 1 million iterations in the case of 4 and 7 inputs, and 5 million iterations for the 10
input neuron. The resulting curves are plotted in figure 3.5 (b), and we can see that the
theoretical observation done previously is correct. There is a variation in the transfer
function for different number of synaptic inputs.

3.5 Backpropagation of error with stochastic pulse streams

3.5.1 Weight change implementation

The necessary hardware to do the forward computation in a feed-forward network is
now discussed. The next step is to make an implementation of the learning algorithm
presented in section 2.1.4. [Tomlinson et al., 1990] presents an implementation of the
backpropagation of error algorithm, but this implementation only handles the error of
an output of a neuron as a unipolar value. No results from systems using this imple-
mentation is presented, and I expect that such a representation will be insufficient for
an effective learning to take place.

The implementations used by [Dickson et al., 1993] and [Eguchi et al., 1991] both
use bipolar values to represent the error. Both proclaim good results, but the most at-
tractive is the implementation presented by [Dickson et al., 1993], since this is a com-
plete implementation of the backpropagation algorithm. A problem though is the lack
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of formal derivation of the special equations for the weight change and error generation.
There are also inconsistencies between theoretical equations, and actual implementa-
tion. I will therefore give a full derivation of the necessary equations to implement
the backpropagation of error learning algorithm with stochastic computing elements.
The equations derived here will be aimed at implementations were all calculations in-
volved in the backpropagation part are performed in the synapses, which ensures local
computations and a minimum of wiring. For the implementation presented here, a min-
imization of wiring, at the extra cost of a few transistors for each synapse, results in the
most compact networks. The appearance of the equations are therefore different than
how [Dickson et al., 1993] presents them, but they are functionally equal.

To implement the backpropagation of error algorithm, we use the same approach as
with the feed-forward part. We start with the derivation of the necessary boolean/prob-
ability equations that represents the algorithm, and then make straightforward circuit
implementations. If we recall from equation 2.3 and 2.2 the weight change is expressed
as

1pwj i D ��
@ Ep

@wj i
; (3.7)

where
Ep D 1

2

X
j

�
tpj � opj

Ð
:

Since the weight signal is split into two signals, one representing the positive weight and
one the negative weight, equation 3.7 must be split into two equations, one representing
the change of the weight when the positive signal line is active, and one the change when
the negative signal line is active. These two equations, expanded using the chain rule,
yields

1pw
C
j i D ��

@ Ep

@wC
j i

D ��
@ Ep

@opj

@opj

@netCpj

@netCpj

@wC
j i

(3.8)

1pw
�
j i D ��

@ Ep

@w�
j i

D ��
@ Ep

@opj

@opj

@net�pj

@net�pj

@w�
j i

: (3.9)

In equation 3.8 and 3.9 the part @ Ep

@opj
represents the error of the output of a neuron, and

its value is assumed to be bipolar. We define the total error value to be represented by

"Cpj � �@ EC
p

@opj
I "�

pj � �@ E�
p

@opj
: (3.10)

With this representation it should be obvious that a weight should be changed in pos-
itive direction when "C

pj is on, and in negative direction when "�
pj is on. Substituting

equation 3.10 into equation 3.8 and 3.9, the total positive weight change is modeled by

1C
p wj i D 1C

p wC
j i C 1C

p w�
j i

D �

�
"C

pj

@opj

@netCpj

@netCpj

@wC
j i

Swj i
C "C

pj

@opj

@net�pj

@net�pj

@w�
j i

�
1 � Swj i

Ð	

D �"C
pj opi

��
1 � net�pj

Ð 1 � netCpj

1 � wC
j i opi

Swj i C netCpj

1 � net�pj

1 � w�
j i opi

�
1 � Swj i

Ð	
; (3.11)
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where Swj i represents the sign of the weight, and is on for a positive sign or else off. The
sign must be incorporated since the 1C

p wC
j i and 1C

p w�
j i should only make contributions

when the weight is positive and negative respectively.
As we can see the weight change equation incorporates a division. Implementing

division between two stochastic asynchronous pulse streams is not easy at all. [Gaines,
1969] mention a space and time consuming method for synchronous signals, but this
method is highly dependent on clocked signals, and can not be converted to asyn-
chronous signals. [Dickson et al., 1993] ignores the divisor with the argument that it
do not affect the sign of the quantities nor greatly their magnitude. This is an interesting
approach, but since it is not obvious that the effect on the magnitudes are small, further
investigation of the introduced error is needed.

Rewriting the division part, using equation 3.5, yields

1 � netpj

1 � wj i opi
D
Q

i

�
1 � wj i opi

Ð
1 � wj i opi

:

We can see that the result of the division is the sum of the weighted inputs from all
the synapses, except for the one the weight change is calculated. The magnitude of the
weighted input from one synapse will, in most cases, be small compared to the total
magnitude of the net-input. The error accumulated by ignoring the divisor is therefore
assumed to be small. Only in cases where one particular synapse is contributing most of
the total input, the error will be significant and a potential problem with learning may
occur.

Imagine a situation where the convergence of learning depends upon one synapse
controlling most of the net-input. In such a situation the learning performance will
be poor and the learning speed is assumed to decrease significantly. A reasonable and
simple solution to this problem is to make extra copies of this particular synapse. The
generated error for each of the synapses is then reduced to an acceptable magnitude,
even though the total accumulated error will be the same. Extra controlling dynamics
introduced with these synapses should also increase the networks capability of learning
a specific problem.

In the generalized case, adding extra synapses to a neuron, means adding extra neu-
rons to the previous layer. The conclusion is therefore that a network with enough
hidden neurons should have a fair chance to solve a problem. The final conclusion
must be that for large networks no problems should occur when ignoring the divisor.

On the other hand the
�
1 � netpj

Ð
=
�
1 � wj i

Ð
can be computed by summing up the

weighted inputs for all the synapses to the neuron, except the one to be changed. For
each synapse we will need n�1 (where n is the number of synapses to the neuron) extra
weighting circuits of the type shown in figure 3.4. For each neuron this will give a total
number of extra weighting circuits equal to n.n � 1/. So the number of extra transistors
is quadratically increasing in the number of synapses.

We also need extra wiring lines. For each synapse we need two extra wires, one for
the positive and one for the negative part, to all the other synapses. It sums up to a total
of 2n extra wires for each neuron.

It should be clear that this method is unacceptable for neurons with more than about
5-6 synapses. The extra area overhead will be to large.

If we are ignoring the divisor in equation 3.11, the positive weight change is modeled
by

1C
p wj i ³ �"C

pjopi

�
1 � net�pj

Ð ��
1 � netCpj

Ð
Sw j i C netCpj

�
1 � Swj i

ÐÐ
: (3.12)
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Figure 3.6: Weight-change circuit.

Using the same approach the negative weight change is modeled by

1�
p wj i ³ �"�

pjopi

�
1 � net�pj

Ð ��
1 � netCpj

Ð
Swj i

C netCpj

�
1 � Swj i

ÐÐ
: (3.13)

With this model a weight should be changed in positive direction when 1C
p wj i >

1�
p wj i , and in negative direction when 1�

p wj i > 1C
p wj i . The signal 1C

p wj i is larger than
1�

p wj i when 1C
p wj i is on and 1�

p wj i is off. The duration of the state decides the amount
of change.

In these equations the learning rate is explicitly given as a pulse stream �. Its purpose
is to reduce the amount the weight is changed for each pattern presentation. To much
change will result in an divergent oscillation of the error along one of the axis in error
space [Hertz et al., 1991]. A small change results in very slow learning. The size of
the learning rate giving the fastest programming is dependent of the exact form of the
error space, which of course is dependent on the network topology and the problem
presented. It will therefore be an advantage if the learning rate can be controlled.

The fact that the learning rate pulse stream must be supplied from off-chip, and dis-
tributed to all the synapses, which of course requires extra wiring and the dedication of
one extra pad for the signal, calls for the investigation of other easier ways to implement
the learning rate. In the implementation presented in this thesis the learning rate is con-
trolled by the memory it self. Physical factors that determine the programming speed of
the synaptic memory are used to adjust the learning rate. The explicit representation of
the learning rate as the � part of equations 3.12 and 3.13, can therefore be removed.

Figure 3.6 shows a 14-transistor circuit implementing the inverted backpropagation
weight change signals. As we can see there are five transistors in series in the pull-
down chain. In most digital implementations such long series of transistors are avoided
because of the extra switching delay they introduce. But considering that the pull-up
devices in this circuit are subthreshold biased p-transistors, with switching delays nor-
mally in the range of micro seconds, the extra delay introduced by long transistor series
can be neglected.
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This implementation gives a fairly simple interface to the memory. It takes two in-
verted stochastic pulse streams as inputs, representing the change of the stored value.
As output it gives two other stochastic pulse streams representing the stored value, and
an extra signal line giving the sign of this value explicitly. One extra inverter is needed
to generate the inverted sign.

3.5.2 Error propagation implementation

The implementation of the error generation and propagation circuitry is very similar to
the implementation of the weight change circuit. But if we recall from section 2.1 the
generation of the error signal is different for neurons in the output layer and neurons in
hidden layers. Two different circuits must therefore be implemented. Let us start with
the hidden layer circuit.

Hidden layer error propagation

The error for the output of a neuron was defined in equation 3.10. From equation 2.5
we have that the error to be generated by a hidden synapse is given by the weighted
error from the subsequent layer scaled by the derivative of the output of the neuron the
synapse is contributing input to. The total error to be propagated to a neuron in the
previous layer is the sum of the generated errors from all the synapses which have the
neurons output as their input.

Putting this into equations we get that the positive error part can be modeled by
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: (3.14)

The divisor is ignored in the same way as was done in the weight change model. When
deriving equation 3.14 one must be very careful with the sign of the different equation
parts. We must remember to get a positive error contribution when the error from the
subsequent layer and the weight is positive. With this arrangement the negative error
part is expressed by

"�
pj ³

X
k

�
"C

pknetCpkw
�
kj

�
1 � net�pk

ÐC "�
pk

�
1 � net�pk

Ð
wC

kj

�
1 � netCpk

ÐÐ
: (3.15)

An implementation of this model is shown in figure 3.7. The circuit generates the
inverted signals. The summation of the signals are performed by wired-OR summation.
The sum is then inverted, to get the correct signal.

The wired-OR summation is, as we know, not linear. It introduces an error in
the error signal. This error is only significant for large error signals. When the er-
ror becomes small, ie. the network is about to converge to the right solution, it be-
comes accurate, and the fine tuning of the weights should be successful. The intro-
duced error could even be regarded as added noise, and [von Lehmen et al., 1988] and
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Figure 3.7: Error propagation circuit

[Murray and Tarassenko, 1994] reports that noise can make the backpropagation algo-
rithm more efficient.

Output layer error generation

The error of an output neuron is the difference of the output and target value of that
neuron. With a differentiated signal the error can be represented by

"C
pj D @ EC

p

@opj
D
²

tpj � opj I tpj ½ opj

0 I otherwise
;

"�
pj D @ E�

p

@opj
D
²

opj � tpj I opj > tpj

0 I otherwise
:

(3.16)

It should now be clear that tpj ½ opj when tpj is on and opj is off, and vice versa. The
error could therefore be modeled by

"C
pj D tpj

�
1 � opj

Ð I "�
pj D

�
1 � tpj

Ð
opj :

The error of a output neuron could be generated by the simple circuitry shown in fig-
ure 3.8. But there is a catch. In the introduction to stochastic computation it was strictly
pointed out that signals involved in the arithmetic operations had to be stochastically
independent. With the implementation of the output error generation shown in fig-
ure 3.8, the error signal will be correlated with the output signal of the neuron, and
then of course with the input, net-input and weight signals of the neuron, resulting in
invalid calculation of the weight change and the error propagation signals.

[Dickson et al., 1993] has done some research on this problem, and found that the
simple implementation in figure 3.8 is sufficient for small networks with only a few
neurons and synapses. But for larger systems the correlation effect becomes to large.
The networks are unable to minimize the error and therefore learn a set of input-patterns
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Figure 3.8: Simple output error generation circuit. Unfortunately it is useless due to the
correlation of the error signals with the output signal.

correctly. So other solutions must be found, and the next chapter cover one alternative
solution.





CHAPT ER

4
Output error generation

To generate the output error we need a circuit capable of transforming the difference
of two unipolar stochastic pulse streams into a bipolar stochastic pulse stream that is
uncorrelated with the two input pulse streams. Several schemes can be used to solve
the problem. Two methods springs to my mind. Either make the error signals with the
simple circuit presented in figure 3.8, and then delay them sufficiently to make them
uncorrelated with the output, or make a moving average of both the output and target
signal, then compare the two integrated values and generate a bipolar stochastic pulse
stream that expresses the magnitude of the difference.

The error delay approach

The error delay approach is the preferred approach to use in a clocked network. The
error signals can be fed into two shift registers of sufficient size – 1 bit should actually
be enough since individual pulse occurrences at different clock periods are statistically
independent, [Ribeiro, 1967].

The fact that the output of a neuron is an asynchronous pulse stream introduces some
problems when using this scheme. The time a signal has to be delayed depends on the
average width of the pulses. The shortest average width of the pulses is dependent on
the switching delay of the circuit elements. But the use of wider pulses can be decided
statically through the design or it can be a user adjustable parameter. In both cases
the average pulse width can vary over several orders of magnitude. So there must be
possible to control the delay time.

One could think of using something like the follower delay line presented by [Mead,
1989b]. The basic problem with this circuit is its built in low-pass filter effect. It is
a trade off between delay and cut off frequency. Larger delay results in lower cut off
frequency. The result is that it is not suited for the application of delaying the error
signals. The narrow error signals would have been filtered out, and much of the error
signal lost.

A similar solution as used in a clocked system can be implemented. The input signal
can be sampled and fed to a shift register, where the individual samples are delayed, but
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the register must be capable of holding quite a large amount of samples to be able to
generate a sufficiently large time delay. For this reason the silicon area needed to imple-
ment the circuit will be large, compared to the operation performed. Such a technique
may be very attractive in a clocked system, but not at all useful in an asynchronous one.

4.1 Integration and regeneration circuit

The integration and regeneration approach is the one used in this thesis. The circuit
must first perform a time integration of both the output and the target pulse streams.1

The integration must be of a type where the contribution of the input to the present
output decreases with time into the past. This makes the output a moving average of
the input. The two integrated signals must then be compared, and the magnitude of the
difference transformed to a bipolar pulse stream.

4.1.1 Moving average generation

In a electronic context integration is implemented as charging and discharging of a ca-
pacitor over time. The time it takes to charge the integration capacitor from a zero
value to maximum value is usually referred to as the integrators time constant. The time
constant can be looked upon as a scaling factor of the integration. The larger a time
constant, the more the integration value is scaled down. By controlling the amount
of charge a given input is supplying to the capacitor, the time constant can be varied.
The possibility of controlling the time constant can be critical to make a circuit that
is functional for inputs over a wide range of frequencies, pulse widths and/or rise/fall
times.

To make a moving average, an integration circuit must also have the feature of leak-
ing charge from the integration capacitor, which will make the output more dependent
of the most resent input than of older input. The amount of leakage current depends
on how fast the integrator is supposed to forget old input.

A circuit that implements these aspects is shown in figure 4.1 (a). For every pulse that
is applied to the input Vin, a current Iin is fed through the current mirror. This current
will charge the capacitance on the node Vint. The leakage of charge from the integration
capacitance is contributed through the diode-coupled transistors Q1, Q2 and Q3. To give
the integration node a proper region of operation, both DC and AC, three diodes are
cascaded. The bias voltage Vi controls the current Ii and therefore the time constant of
the integration.

But even though the time constant can be set with the Vi bias, the characteristic of the
integrator is just as much controlled by the integration capacitance, and conductance
of the cascaded diodes. Averaging several wide pulses implies a long time constant,
which results in a small Ii and a small AC operational region on the integration node.
For narrow pulses the time constant must be shorter, i.e. the Ii must be greater, which
leads to a greater AC swing on the Vint node, and faster discharging of the integration
capacitance when the input is off. The result can be ripple on the integration node.
To avoid to much ripple the integration capacitance and the W/L-ratio of transistor
Q1 must be scaled properly. The average width of the input pulses must therefore to

1In a strict sense it is not necessary to integrate the target signal. A DC voltage representing the
integrated voltage of the target signal can be applied directly.
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Figure 4.1: Pulse stream integration circuit: (a) The actual implementation, and (b)
simulated time integration. Upper plot is a theoretical calculated moving average of the
input pulse stream and lower shows the integration voltage. For the simulation the W/L
ration of Q1 was approximately 0.95, and the total integration capacitance 295 f F. Vi

was set to 0:45V .

some degree be decided at implementation time, so the discharge diode and integration
capacitance can be scaled to fit the time constant and acceptable ripple.

Figure 4.1 (b) show a simulated characteristic of the integration circuit and a theo-
retical calculated moving average of the input for comparison. For the simulation the
W/L-ratio of Q1 was approximately 0.95, the same as in the actual implementation, and
the whole integration capacitance was formed by the gate capacitance of transistor Q1,
which was approximately 295 f F.

The circuit in figure 4.1 (a) has both advantages and disadvantages. On the positive
side it is small, it has few bias voltages and it suits its purpose in the application. Dis-
advantages are its highly non-linear integration and the fact that its region of operation
must be defined statically through the integration capacitance and W/L-ratio of Q1.

4.1.2 Comparator circuit

The moving average of the output and target pulse stream is to be transformed to a two
signal line bipolar stochastic pulse stream. One strategy is to make a comparator that
generates a rectified signal representing the absolute value of the difference between the
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Figure 4.2: Comparator: (a) A wide-range OTA with an extra inverting output stage.
The diodes shown in the dashed box can be added to extend the linear region. (b) The
symbol representing the circuit.

target and output, and to let this signal control the pulse stream generating circuitry.
The comparator must also generate a signal that can be used to select the line which
the pulse stream is to be sent out on. Another implementation is to let the comparator
circuitry generate both a positive and a negative output, and then let the outputs control
a pulse stream generation circuit for the positive and negative error part respectively.
Both strategies are equally good. But the latter one surprisingly enough turns out to
occupy less silicon area than the first, even though it incorporates two pulse stream
generators. The reason is the extra space occupied by the rectifier circuitry.

In the implementation presented in this thesis the second implementation have been
chosen. A circuit that generates an output that is dependent on the difference of two
inputs, is an operational amplifier. In low power analog VLSI design, a common ampli-
fier is the Operational Transconductance Amplifier (OTA) presented by [Mead, 1989b].
A wide-range OTA with an extra inverting output stage, as shown in figure 4.2 (a) and
(b), is just what we need. For a bias voltage (Vbias) that make the bias transistor operate
in the weak inversion regime, the output current is given by the equation

ICcmp D I1 � I2 D Ibias tanh
�
�
VC � V�Ð

2UT
;

where UT is the thermal voltage given in units of q
kT

. This value approximates to 25:6mV
at room temperature.

A plot of measured DC-responses for both the positive and negative output is shown
in figure 4.3. As we can see from the plot this amplifier has a narrow linear region of
operation. To extend the linear region, extra diodes can be introduced in the differential
pair as indicated in the transistor diagram. These diodes will introduce source degen-
eration in the differential pair transistors, and it gives a proper region of operation for
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Figure 4.3: Comparator characteristic: Measured response of the positive (solid lines)
and negative (dashed lines) output of the comparator, for different bias-voltages. The
dotted lines show a simulated response for a comparator with extended linear region.

the differential inputs from 1.6–4.9 volt for Vbias D 0:6V , � D 0:7 and Vds sat D 100m V
[Watts et al., 1992]. The result is shown for a simulated response in the same plot as
the measured response for a traditional OTA.

Theoretically all equally sized transistors of the same type have an equal drain-source
current for the same gate-source and drain source potentials. But the real world is dif-
ferent. Effects as variations in doping densities, lithographic variations, edge effects and
striation2 effects results in differences in drain-source currents of typically š20 percent
for physically adjacent and equally sized small transistors. For the comparator these
effects results in offsets in the DC characteristic. As we can see from figure 4.3 the neg-
ative output slope is offset approximately 5mV for this particular circuit, as the positive
output offset is close to zero. This is a bit less than 25m V which is a typical offset for
such transconductance amplifiers [Mead, 1989b].

Further, the transistor mismatch results in a difference in positive and negative sat-
uration current. For the positive output the negative saturation asymptote is about 15%
larger than for the positive asymptote. Transistor mismatch effects can be reduced by
increasing the physical size of the devices. Larger transistors result in smaller relative
variations. More on this topic, including an excellent visualization of transistor mis-
matches, can be found in [Andreou et al., 1991].

Another effect that have influence on the characteristic of the OTA-circuit, and other
analog circuits, is the Early-effect or drain conductance. The Early-effect is the result
of increased depletion regions surrounding the drain and source terminals, for increased
terminal potential (relative to the substrate or well potential). Increased depletion re-

2This is a rather peculiar effect. See [Andreou et al., 1991] for further details.
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gions imply shorter effective channel lengths, and therefore larger drain-source currents.
To reduce the Early-effect the physical length of the transistor can be increased to reduce
the effective channel length reduction.

4.1.3 Pulse stream generator

The output of the comparator is current. The error pulse streams should have a prob-
ability of being on equal to the magnitude of the current from the respective output of
the comparator circuit. From section 3.2 we know that the actual value of a bipolar
stochastic pulse stream is the difference of the on probabilities of the two signal lines,
which implies that only one signal line need to be active at a time, ie. only one line
pulses, the other one is off. Which line depends on the sign of the error. In the context
of the implementation of the pulse stream generator, it should output a pulse stream
equal to the magnitude of a positive current flowing into it.

The pulse stream generated should preferably be random, to ensure as little ’cor-
relation’ between different pulse streams as possible. But as long as it is not directly
correlated with any of the other pulse streams it is supposed to interact with, it will
suffice. A current controlled pulse generator is therefore all that is needed. The output
is only dependent on the input current, and although this current is dependent of the
output pulse stream of the neuron, it should be obvious that the output and error pulse
streams are uncorrelated.

I have chosen to use the pulse generator presented by [Lazzaro, 1992a] shown in
figure 4.4 (a) in my implementation. This is a low-power version of a similar circuit
presented by [Mead, 1989b].

If we assume that Vout is off, ie. transistor Q1 is open and Q2 is closed, a positive
current Icmp will charge the C1 and C2 capacitances. When the potential of the V1 node
reaches the point where transistor Q4 conducts more current than Q5, the node V2 is
turned off and Vout on, which will close transistor Q1 and open Q2. The capacitive
coupling through C2 will pull the potential of V1 equal to:

1V1 D Vdd C2

C1 C C2
: (4.1)

The current Iwidth will discharge the capacitor C1 to the potential of V1 again reaches
the switching potential of the inverter buffer. The output will be turned off, and the
capacitive coupling through C2 will lower the potential of V1 by 1V1. The time from the
output comes on until it turns off again, is dependent of the current Iwidth and the size
of the capacitor C2, and it can be expressed as

twidth D 1V1

d V1=dt
D .C1 C C2/ 1V1

Iwidth
D C2Vdd

Iwidth
:

The charging time, that is the time the output is off, is expressed as

to f f D C2Vdd

Icmp
:

As expressed in equation 4.1 the quantity that V1 switches when the output switches
is given by the capacitive division between C1 and C2. It is therefore important that the
ratio between C1 and C2 is carefully selected, to make sure that the potential of V1 is not



4.1 Integration and regeneration circuit 35

Iwidth

V2

Q5

Q4

V1
Icmp

Q3

Q2

Q1

C2

C1

Vout

Vbl

Vb

Vwidth

0 0.25 0.5 0.75 1

x 10
-9

   0

 0.5

   1

Input current (A)

P
ro

ba
bi

lit
y 

of
 o

ut
pu

t ‘
on

‘ __ mean

-- max
... min

0 0.25 0.5 0.75 1

x 10
-9

   0

12.5

  25

x 10
-3

Input current (A)
S

ta
nd

ar
d 

de
vi

at
io

n

(a) (b)

Figure 4.4: Pulse stream generator: (a) Its implementation. (b) measured response to
a ramp input current. The Vwid th bias is equal 0.32 volt, which gives a pulse width of
200¼s. The Vb and Vbl biases was set to 4.2 and 0.8 volt respectively.

pulled all the way to ground when Vout switches low. A rule of thumb is to keep the
C2=C1 ratio in the range of 1/10 to 1/5.

The Vb and Vbl biases limit the static current consumption in the inverter buffer. The
diode coupled transistor Q3 is applied to raise the switching threshold of the buffer. This
makes it possible to use a larger range of capacitive division ratios, ie. the layout of the
capacitors is more straightforward.

Figure 4.4 (b) shows a measurement of the duty cycle of the output signal as a func-
tion of the input current. The duty cycle is equivalent of the probability of the signal
being on. For each input current 100 measurements was performed, and the mean,
maximum and minimum values were calculated. The lower plot shows the standard
deviation. As we can see there is some variation, and this variation is only beneficial.
The Vwid th bias was adjusted for a pulse width of approximately 200¼s.

4.1.4 The complete circuit

The assembling of two integrators, one comparator and two pulse generators into
a complete output error generation circuit is shown in figure 4.5. In figure 4.6 and 4.7
measurements of the probability of the positive and negative error parts for the complete
output error generation circuit are shown. The circuit was implemented with source de-
generation in the differential pair of the comparator. For the first measurement the target
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Figure 4.5: Complete output error generation circuit.
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Figure 4.6: Output error generation response for different integrator biases: Measure-
ment of the response of a complete output error generation circuit. The duty cycle of
the target signal was kept at 50%. The plotted results are the mean result of 100 mea-
surements.

input was kept at one value, a 2:5k Hz, 5V pulse height, 50% duty cycle signal which gives
a probability of 0.5 for the target being on. For an output signal with the same frequency
and pulse height the duty cycle was swept. This was done for different values of Vi in
the range from 0:52V to 0:64V , which was the biases that gave the best response. It is
slightly larger than for the simulation of the integrator, but the actual threshold voltage
was larger than specified in the transistor parameters used in the simulation.

As we can see from figure 4.6 the best shift in output signals is obtained for a bias
value of approximately 0:56V . For this bias a new measurement was done, were signal
frequency of both the target and output, and dutycycle of the output was swept. The
result is shown in figure 4.7.

In the measurements of figure 4.6 and 4.7 we can see that the positive and negative
error is not totally off when the output duty cycle is less than or greater than the target
duty cycle respectively. The reason can be traced back to ripple on the output of the
integration circuits, and problems getting the universal counter used in the measurement
to trigger on the actual output, and not on small amplitude noise.

Since the differential pair of the comparator is equipped with source degenerative
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Figure 4.7: Output error generation response for different pulse frequencies: Measure-
ment of the response of a complete output error generation circuit. The duty cycle of
the target signal was kept at 50%. Mark the axis!

transistors the comparator may be responsive to twice as much offset in the differential
input as a standard comparator. With a small AC swing on the integrator nodes such
high offsets may result in erroneous outputs. It is therefore important that the differen-
tial pair transistors are scaled properly, to reduce probability of large offsets.





CHAPT ER

5
Long term synaptic
weight storage

One of the greatest challenges faced during the development and imple-
mentations of a VLSI artificial neural network, is the implementation of
the synaptic weight storage circuits. Several of the key aspects of weight
storage are in opposition to each other. The memory should be physically
small, but have a large resolution. The retention time of the stored value
should be infinitely, but changing it should be fast and easy. Two ana-
log memory schemes with a potential of fulfilling all of these aspects are
investigated in this chapter. One of the techniques is then utilized in the
implementation of a synaptic memory block with an interface that fits the
stochastic neural network.

An absolute necessity in any adaptive circuit or system is the possibility to store
values, and change the stored values, to making the adaptation possible. In the neural
network context it is the adaptation of the synaptic weights that makes the network
able to solve problems. There are several aspects of the synaptic memory influencing
the adaptation potential of a network. The memory should preferably have an infinite
resolution, but noisy discrete memories with an resolution of about 10 bits show good
results, [von Lehmen et al., 1988]. Accurate digital memories on the other hand tends
to need larger resolution for a network to achieve the same adaptation potential, as
much as 16 bits may be necessary. This excludes digital memories from being used in
very dense networks, since every synapse needs one memory unit and the units physical
size therefore must be reduced to an absolute minimum. A 16-bit register consumes
way to much silicon area, considering the need for transforming the stored value to the
signal representation used in the rest of the network. In some applications they can
be an interesting approach though, since they are fast, easy to program and come in
standard cells. But for a scalable network implementation as the one presented here, it
is not of great interest.

39
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The synaptic memory must also have the ability to store values over long time. Prefer-
ably no change in the stored value should occur, except through explicit programming.
There should be no need to relearn a problem due to synaptic forgetfulness.

Most artificial neural network training algorithms assumes that the synaptic weights
are randomly initialized. If not the training process may be greatly hampered, and con-
vergence of the training set may be impossible. The possibility to initialize the memory
before training starts must be present, and the initial value should be different for all
memories, and not the same for each initialization.

5.1 Analog storage techniques

Analog storage of values imply storing charge on a capacitor. This gives a resolution
which is only limited by the signal to noise ratio. Even if the programming circuitry is
only capable of charging and discharging minimum fixed amount of charge, which signi-
fies that the memory have a discrete resolution dependent on the amount of the charge,
the iterative programming algorithms used in neural networks together with the noise
present in any analog VLSI system, introduces the possibility of hitting any intermedi-
ate state. The potential of implementing a memory with sufficiently large resolution is
therefore present.

In VLSI CMOS basically two approaches to charge the capacitor can be used. One
technique uses a transistor as a voltage controlled current source to apply charge on
the capacitor. The most significant problem with such a device is short time charge
retention. The leakage current of the reversed-biased diffusion to bulk junction in the
programming transistor only allows storage times in the amounts of a few seconds. The
charge retention time can be increased by either introducing feedback sample and hold
circuitry or a off-chip controlled refresh scheme [Vittoz et al., 1991]. The sample and
hold circuit only introduces a mediocre charge retention at the cost of extra circuitry,
and the memory with a refresh scheme will only allow synchronous access to the stored
value, which make their potential as storage device in an asynchronous neural network
small.

The other arrangement is to use a floating circuit node to store charge on. This model
utilizes the excellent insulating capability of the silicon dioxide (Si O2) that separates the
different layers of a CMOS chip. The floating node is totally trapped inside the Si O2,
and only a part of it constitutes the gate of a transistor and makes it possible to read out
the stored value. The insulating capabilities of the silicon dioxide makes charge reten-
tions for up to 10 years with only 0.1% charge loss possible, [Carley, 1989]. This type
of non-volatile storage have been used in commercial EPROM and EEPROM digital
memories for years. Several methods are available to make charge conduct through the
insulating material when programming. The two oldest are avalanche injection and
hot carrier injection. These methods are very power-consuming and makes it impos-
sible to implement dense circuit designs. The last two approaches are ultraviolet-light
(later referred to as UV-light) exposure and Fowler-Nordheim tunneling, which draw
very small quantities of current, and can be implemented in even the cheapest standard
CMOS process.
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(a) (b)

W L Poly 1
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UV–conductance

(c)

Figure 5.1: UV-structure: (a) A simple first order circuit model for a UV-structure.
(b) Symbol representing the structure. (c) Simple silicon layout of a poly1-poly2 UV-
structure.

5.1.1 UV-light memory

The UV-memory structures are Si-Si O2-Si layered structures were the Si O2 insulator in-
troduces a 4:25eV energy barrier to electrons. Exposing short wave (less than 290nm)
UV-light to the structure will introduce enough kinetic energy in the electrons in the
silicon valence band, to make them surmount the energy barrier and enter the silicon
dioxide conduction band [Williams, 1965]. If there exists an electric field in the diox-
ide these electrons will introduce an electric current through it. The amount of cur-
rent is dependent of UV-light intensity and the size of the electric field in the dioxide
[Kerns et al., 1991, Abusland, 1994]. The insulating properties of the dioxide are not
lost due to UV-light exposure. When light is turned off, the conducted electric charge
are trapped inside the floating node for years.

This simple physical model leads to the first order circuit model shown in figure 5.1
(a). A simple silicon structure utilizing two separate poly layers to form a UV-capacitor
is shown in 5.1 (c) and figure 5.1 (b) shows a symbol representing a UV-structure. The
conductance is the UV-induced dioxide current. Since the upper poly layer is hiding
parts of the lower poly layer, the UV-conductance is mainly created along the edges of
the upper poly layer.

For a long time it was assumed that there was a linear dependence between the
UV-conductance and the electric field in the dioxide. Later investigations have shown
that the dependence is non-linear [Kerns et al., 1991, Benson and Kerns, 1993]. This
non-linearity is most dominant for very low electric fields. As the electric field in the
dioxide drops below a certain constant value (E0), the conductance is significantly re-
duced as the electric field is reduced, [Benson and Kerns, 1993]. For electric fields
larger than E0 the UV-induced current is more or less linearly dependent of the electric
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Figure 5.2: UV-conductance characteristic: The plot shows both the measured charac-
teristic and a theoretical fitted curve. For the plot of the theoretical curve Ileak D 0:0A,
G D 6:3 Ð 10�16 A=V , g D 1 Ð 10�16 A= V and V0 D 0:3V . The circuit setup used in the
measurements is shown in the inset.

field. The reason for the non-linear behavior is not known, but Poole-Frenkel conduc-
tion and charge trapping in the Si O2 have been used as explanations, [Kerns et al., 1991,
Benson and Kerns, 1993]

No accurate analytical model of the UV-light induced current exists. [Benson and
Kerns, 1993] presents an empirical model that fits to measured data. In this model the
dioxide current is expressed as

Iox D Ileak C GVox � V0 .G � g/ tanh

�
Vox

V0

	
; (5.1)

where Ileak accounts for parasitic leakage currents in the UV-structure, and the tanh and
V0 parts models the non-linear behavior for small electric fields. A problem with this
model is the Ileak term. The major leakage currents in a UV-structure is due to parasitic
UV-conductance to other nodes than the control node. The Ileak term is therefore not
constant, but dependent on the potential on the floating node, but for most practical
needs this is not important. Careful design can reduce leakage currents to negligible
quantities, and the Ileak part can be ignored. Figure 5.2 shows a plot of measured I-V
characteristic of a poly1-poly2 UV-structure, and a theoretical plot of equation 5.1 for
comparison. The measurement was obtained through the circuit setup shown in the
inset of the plot. To make the circuits operating environment as close to a practical
environment as possible, the circuit was isolated between two OTA’s connected as fol-
lowers. The floating node voltage as a function of time as it approached the control
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Figure 5.3: Capacitive canceling structure: Canceling the UV-capacitance allows fast
programming and stable floating node

node voltage was measured. The current was then obtained by equation:

Iox D Cf n
d Vox

dt
:

The floating node capacitance was extracted from the layout geometries and interlayer
capacitance parameters supplied with the chip.

UV-memory structure implementation

As seen from the UV-structures I-V characteristic in figure 5.2, the dioxide current is very
small, which indicates that the main goal of the memory structure implementation must
be to achieve as high speed as possible. Gaining sufficiently large resolution should not
be a problem. [Maher, Unpub] propose a memory scheme where the floating node is
capacitively coupled through an equally sized capacitance as the UV-capacitance, to a
node containing the inverted control signal as shown in figure 5.3. This capacitive can-
celing technique ensures that the potential across the UV-capacitance can be high, and
therefore reduces the programming time. The canceling effect also have the property
of keeping the floating node potential stable during fast changes in the control node
potential. This is very important since the fastest programming is achieved by driving
the control node to either of the supply rails when programming. Without the capac-
itive canceling a change in programming direction would have resulted in a dramatic
change in floating node potential through the capacitive coupling of the control node
and floating node. A condition that must be fulfilled for the floating node to be stable is
that the relationship between the control node voltage change and the UV-capacitance
is the same as the relationship between the inverted control node voltage change and
the canceling capacitance.

To achieve as fast programming as possible the total floating node capacitance must
be reduced to an absolute minimum, which implies that the UV-capacitance and the
canceling capacitance must be small. But as we know the UV-induced conductance is
created along the edges of the upper layer forming the UV-capacitance, and the total
amount of UV-induced current is therefore determined by the length of the UV-light
exposed edge of the upper layer. [Kerns et al., 1991] shows that it is a linear dependence
between exposed edge and conductance, except for exposed edges less than 5¼m. To
maximize the conductance and minimize the capacitance the upper poly node should
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be long and narrow. The programming time constant of a memory structure with a
canceling capacitor can be expressed as

−prog D Cf n

Gox
D Cf g C Ccancel C Cg

Gox
D 2 Ð W Ð L Ð Cox=¼m2 C Cg

.2L C W/ Gox=¼m

D W

1 C W= .2L/
Ð Cox=¼m2

Gox=¼m
C 1

2L C W
Ð Cg

Gox=¼m
; (5.2)

where Cox=¼m2 is the capacitance per unit area of the dioxide, Gox=¼m is the UV-induced
conductance per unit length, Cg is the gate capacitance of the sensing transistor, and W
and L are the width and length of the exposed top node. One end of the strip must be
used to connect the node to either the sensing transistor, if it is the floating node, or the
programming logic, and is therefore not contributing anything to the exposed edge. As
can be seen from equation 5.2, increasing the length of a long and narrow device will
increase the capacitance with approximately the same factor as the conductance and
only reduce the effect that the gate capacitance of the sensing transistor have on the
time constant. In an adaptive synaptic environment transistor mismatch, and offsets
in the sensing transistor environment, are not introducing any problems at all, and the
size and capacitance of the sensing transistor can be minimized. So large UV-devices
should only make small improvements in the programming time constant.

Another aspect that must be considered when designing a UV-structure is the fact
that UV-induced conductance arises between all silicon structures separated by Si O2.
Therefore all other circuits on a chip except the UV-structures must be shielded against
UV-light. This is accomplished by using a metal layer to cover all the computation
circuitry, making holes in the shield above the UV-structures. It is also important to
reduce the leakage currents from the floating node to a minimum. The layout of the
structure should shield the floating node from other silicon structures than the control
node. [Benson and Kerns, 1993] also reports that the UV-light can be reflected between
the metal shield and underlying structures for distances up to 30¼m away from the holes
in the shield. Even though the conductance decreases significantly as the distance from
the hole increases, special care must be taken to reduce the effect of this light reflection.

Figure 5.4 shows a layout that incorporates many of the discussed aspects. The
control node is formed by poly1 and the floating node by poly2. The poly1 control
node shields the floating node from underlying silicon (well or substrate). A guard ring
formed by metal1 and a poly1/metal1-contact protects the floating node from forming
unwanted UV-conductance with silicon structures under the metal2 shield. This guard
ring also protect surrounding circuitry from indirect UV-light exposure. Some light will
still reach the computational circuitry, but the amount is greatly reduced. The guard
contact violates the design rules of many environments, and not all silicon foundries
may allow you to incorporate such structures on a chip, but for the 2¼m P-well and
N-well processes from Orbit Semiconductor Inc. no problems have ever occurred. It is
also important that your layout tool does not split the guard contact in several uniformly
spaced quadratic contacts.

The floating node is formed by a poly2 piece that is just big enough to allow a con-
tact to metal1. The rational for using metal1 to connect the floating node part of the
UV-capacitance to the outside world, is to reduce leakage to the poly2 floating node
and reduce the poly2 edge not exposed to UV-light to a minimum.1 If poly2 is used

1Poly2 area not exposed to UV-light contribute capacitance, but no conductance except from reflected
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Figure 5.4: Shielded UV-structure: A UV-structure layout that reduces unwanted UV-
light exposure to a minimum. Upper figure is a lithographic layout view, while the lower
shows a cut view along the dashed line.

as connecting material there must either be quite an amount of unexposed edge or an
increased leakage current to the well or substrate. The structure shown in figure 5.4 is
the one used in the current measurement shown in figure 5.2.

Alternative implementation utilizing poly1-diffusion thinoxide

As an alternative to the poly1-poly2 structure discussed, a similar structure which uses
the thinoxide of a transistor gate to form the insulator between the control node (diffu-
sion) and floating node (polysilicon) may be implemented. The reduced thickness of the
dioxide separating the two nodes will increase the electric field in the dioxide compared
to the poly1-poly2 structure. The increase of the electric field will increase the dioxide
current as well. The layout of the structure can be made as for the poly1-poly2 structure,
except that the control node is formed by n-active or p-active, the floating node by poly1
and the guard ring by an active-metal1 contact. This layout will introduce a highly illegal
stacked gate contact on the poly1 floating node. Early investigations, though, indicate
that this may not be a problem.

Other problems introduced in this structure is the variable UV-capacitance and cur-
rent leakage to the substrate. The first problem is due to the fact that the gate-capaci-
tance of the transistor like structure vary significantly for different potentials across the
oxide. The substrate leakage current is a result of the channel formed under the poly

light conductance, which is negligible compared to the conductance of directly exposed edges.
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floating node. There will be a substantial current between the floating node and the
substrate. This may be compensated for by arranging the structure in a well, where the
well potential is the same as the diffusion control node potential.

5.1.2 Fowler-Nordheim tunneling memory

The main reason for searching for alternative long term memories, is the UV-light schem-
es need for a rather awkward external light source. There are two alternatives. Make
very small UV-light sources that can be mounted on top of the chips, or use a different
approach to charge the floating node. Fowler-Nordheim tunneling may be one such
approach.

Fowler-Nordheim tunneling is the standard method to erase, or both program and
erase, commercial digital EEPROM’s. But the last few years several researcher have
investigated the possibilities of using Fowler-Nordheim tunneling to implement analog
memories for trimming analog circuits [Säckinger and Guggenbühl, 1988, Carley, 1989],
and for synaptic memories in neural networks [Vittoz et al., 1991, Pasero, 1991, Sin et
al., 1992, Yang et al., 1992] .

The tunneling mechanism

The tunneling memory must cope with the same problem as the UV-light memory, to get
the electrons to cross the dioxide separating the floating node from the control node.
There is an energy barrier of approximately 3:2eV that prevents electrons in the silicon
conduction band2to enter Si O2 [Carley, 1989]. The kinetic energy of the electrons are
only large enough to give them a probability to tunnel a small distance into the dioxide.
If the potential in the dioxide at this point is less than 3:2V higher than in the silicon
material, the electrons will return to the silicon. But if the potential is large enough,
the electrons will be carried away with the electric field. The result is a small current of
electrons away from the silicon material. The distance an electron is capable to tunnel,
is at a maximum 5nm. As the distance decreases, the probability of an electron making
the distance increases. Increasing the electric field in the dioxide decreases the distance
the electrons must tunnel initially, and therefore increases the electron current.

Theoretically the current density through the Si O2 can be expressed as

J D A Ð E2 Ð e�B=E ; (5.3)

where E is the electric field in the dioxide, and A and B are constants that can be worked
out to various degrees of sophistication, [Lenzlinger and Snow, 1969, Sin et al., 1992,
Sze, 1981, Concannon et al., 1993]. Of practical interest is the fact that both A and B
are functions of the effective mass of free electrons in the forbidden gap between the
material the electrons are leaving and the dioxide. If the two nodes separated by the
dioxide is of different doping degrees, the result is that for the tunneling current for a
positive electric field is different from the tunneling current for a negative electric field,
even for the same field strengths.

From the description above and equation 5.3 we can conclude that there are two
major factors that influence the amount of electron current. Both the thickness of the

2It is a 1:1eV difference in the barrier voltage for electrons in the valence band and the conduction
band, which is the reason for the difference from the barrier height for UV-light induced electrons.



5.1 Analog storage techniques 47

Control
node

Floating
node

GND

Control
node

Floating
node

(a) (b)

Figure 5.5: Standard CMOS tunneling device: The corners in the poly gate overlap
introduces local enhancement of the electric field. (a) structure with diffusion as control
node. (b) Alternative arrangement with poly2 as control node.

dioxide and the potential across it determines the electric field. Thinner dioxide or larger
potential yields higher electric field and more current. In a standard 2¼m process the
thinnest dioxide separating two layers is the gate-oxide of a transistor. With a gate-oxide
thickness of about 40nm, programming voltages of about 25 volt or more are needed to
get a current to flow. With a gate-oxide breakdown voltage of about 28 volt there is a
significant chance of destroying the device if fast programming in such a device is to be
achieved.

In some commercial EEPROM’s the use of an extremely thin tunneling dioxide in
the range from 8–10nm is introduced, which makes it possible to get fast programming
with only 5V programming pulses. Another technique used to reduce the programming
voltage is to utilize the fact that it is not the electric field in the bulk dioxide that matters,
but the electric field 5nm from the Si=Si O2 intersection. This together with the fact that
electric fields can be enhanced locally in sharp edges or corners, can reduce the pro-
gramming voltage. Some special processes makes use of spikes or other nonuniformities
on the silicon surface, referred to as textured surface, to gain local field enhancement in
the tip of the spikes, which can increase the electric field by a factor of 4 to 5.

The ultra thin dioxide and the textured surfaces need special processing, which im-
plies lower processing yield and higher costs. On the other hand there is possible
to make tunneling structures with relatively low programming voltages in a standard
CMOS process. [Carley, 1989] uses photolitographic possibilities of any MOS struc-
ture to locally enhance the electric field. By introducing corners in the poly gate of a
poly-diffusion structure as shown in figure 5.5 (a), the electric field is concentrated at
the corners of the poly rectangle. With this scheme one can achieve appreciable tunnel-
ing currents for programming voltages in the range of 14–17 volt, which is well below
the breakdown voltage. The poly gate of the structure is serving as floating gate, while
the diffusion makes the control node. The stacked gate contact is not necessary, and
should probably be avoided, but to reduce the amount of test structures on the chip a
device that could both function as a poly1–diffusion UV-light and tunneling memory
was implemented.

The main problem with the use of diffusion as control node, is that the same control
node can only be used to program in one direction. A negative (relative to the sub-
strate) programming voltage on a nC-active control node will create a forward biased
diode-junction between the diffusion and substrate, which prohibits one from apply-
ing sufficiently large programming voltages. To allow programming in both directions,
two programming devices can be applied. One with a nC-active control node for pro-
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Figure 5.6: Tunneling device characteristics: The I-V characteristics for the poly1-
diffusion tunneling device showed in figure 5.5 (a). Linear plot left and logarithmic
replot right.

gramming up, and one p�-active for programming down. Alternatively the device can
be implemented as shown in figure 5.5 (b), where a capacitively coupled poly2 node
makes the control node. With this arrangement the same control node can be used to
program in both direction. The tunneling still takes place through the transistor gate
dioxide.

In figure 5.6 an I-V characteristic for the tunneling structure in figure 5.5 (a) is shown.
The characteristic was obtained in the same way as for the UV-structure, by measuring
floating gate voltage change and calculate the current. For each measurement with low
programming voltages a 100ms programming pulse was used. For the largest program-
ming voltages the pulse width was reduced to 10ms. The dioxide voltage was calculated
on the basis of the tunneling structure capacitance3 and the sensing transistor capaci-
tance. As we can see, the tunneling electron current can be several orders of magnitude
larger than a UV-induced current, which results in faster programming. To obtain a 10V
drop over the dioxide for an initial floating node potential of 1:5V , a programming volt-
age in the amounts of 18V had to be applied. If the size of the sensing transistor had
been increased (larger gate-capacitance), the programming voltage could be reduced,
since a change in the control node potential had resulted in less change in the floating
node potential.

Disadvantages with tunneling memories

The high voltages needed to program a tunneling memory is not a major problem. As
already stated the currents introduced by these high voltages are small, so there should
be no need to take any precautions in the layout of the high voltage power supply lines.
The circuitry generating the control voltage potentials must be made to endure the high
voltages. This can be achieved by distributing the high voltage over several cascaded
diode connected transistors, which will prevent damage of the tranistor gateoxide.

The real problem in tunneling devices are the degradation of the tunneling dioxide.
For each programming pulse applied on the control node that introduce tunneling, some

3For this measurement the tunneling capacitance and the sensing transistor capacitance was assumed
constant for simplicity, even though they vary slightly with the floating node potential.
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off the electrons that enters the dioxide will be trapped [Witters et al., 1989]. The charge
of these trapped electrons will reduce the electric field in the dioxide, and therefore
reduce the tunneling electron current. The result is that the programming time constant
increases more and more for each change of the floating node potential. In the literature
this is referred to as a closing of the programming window, where the programming
window is constituted by the maximum and minimum floating node potential achieved
by two fixed width and fixed height up and down programming pulses.

The amount of charge trapped is a function of the maximum electric field in the tun-
neling dioxide. Fast transitions of the control node potential introduces short time high
electric fields in the dioxide, so the trapping effect can be reduced by using programming
pulses with longer raise times [Thomsen and Brooke, 1990].

The degradation process is not a failure mechanism in a neural network memory. The
iterative weight adaptation algorithms should still have a potential to teach the network
a set of patterns, even though the training time will increase for each relearning of a
new pattern set. There is also the possibility to increase the programming voltage with
a small amount each time the degradation problem become a nuisance.

Another effect that arises in tunneling devices with diffusion as control node is
that the large voltage applied results in a substrate hole current [Witters et al., 1989].
This diffusion-substrate current involves a deep depletion band-to-band current, which
even can be amplified by avalanche impact ionization. It leads to the generation of
hot carriers, which is responsible for trapping of positive charges in the dioxide and
an opening of the programming window for the first cycles of programming pulses
[Witters et al., 1989]. The opening of the programming window is small, and is soon
canceled out by the electron trapping.

As for the UV-light memory, it is important that the floating node is kept stable during
programming. Achieving a stable floating node for a tunneling device is a bit more
difficult than for a UV-device. A canceling approach is very difficult to implement. The
canceling capacitor can not be made of the same material combinations as the tunneling
device, since it results in a tunneling current in the canceling device. The current will be
in the opposite direction of the programming current, and both the capacitive coupling
and the tunneling current will be canceled out. Implementing the canceling capacitor in
a different material combination is difficult, since matching capacitances of physically
small VLSI devices are nearly impossible.

5.1.3 The memory of choice

The tunneling memory is very attractive since it do not need any external equipment
except a high voltage power supply source. On the other hand much work is still to be
done before memory devices for fully asynchronous neural networks that works in prac-
tice is developed. The amount of research necessary to achieve this goal was the main
reason that I did not choose a tunneling programming scheme for the neural network
implementation developed in this thesis. Even though I seriously considered using a
tunneling memory device, it would have taken to much time to investigate and develop
the memory circuits. It is my belief though that Fowler-Nordheim tunneling memories
are the choice of the future for neural networks with on-chip storing of weights.

Excluding tunneling as programming method leaves the UV-light memory as the
only interesting choice. The memory structure is fairly simple and its behavior is ad-
equately proven. UV-light memories have also been used with success in both trim-
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Figure 5.7: Voltage to bipolar pulse stream transformation: (a) The circuitry, and (b) the
output pulse probabilities as a function of input voltage change relative to the reference
voltage. Solid line is positive output and dashed line is negative.

ming offsets in amplifiers, [Mead, 1989a], and neural networks, [Soelberg et al., 1994,
Abusland, 1994].

5.2 UV-programmable synaptic weight memory

To achieve positive and negative synaptic weights from a voltage stored on a floating
node, some kind of differential approach must be used. The two most common methods
are either to make a differential implementation with two memories, or an implemen-
tation with one memory and let the value of the stored voltage be relative to a reference
voltage. Since two UV-structures is needed in the first method it is space consuming,
and therefore the use of it was not considered.

5.2.1 Voltage to pulse stream transformation

As defined in section 3.4.2 the output from the synaptic weight is a differential bipo-
lar stochastic signal. There was also a constraint that only one of the differential signal
lines can be on at the same time. A set of circuits that can implement such an output on
the basis of a differential input was discussed in the previous chapter. One comparator
circuit with an inverting and non-inverting current output drives two pulse generators
to make the bipolar stochastic outputs. Figure 5.7 (a) shows the connection of the
comparator and pulse generators that transform the stored floating node voltage to a
differential pulse stream representation. A plot of the pulse probabilities for the two
output signals for different floating node voltages relative to a reference voltage of Vdd=2
is shown in figure 5.7 (b). There was not possible to measure lower pulse rates than
shown because of trigger problems in the universal counter used for the measurement.
If the outputs are examined on a oscilloscope one will see that the outputs are zero
for zero or negative input current. At the other extreme the characteristic saturation
of an OTA is reflected in the output pulse probability. By increasing the Vbp bias this
saturation characteristic can be avoided. But then of course we get a smaller region of
operation for the floating node.



5.2 UV-programmable synaptic weight memory 51

From the plot we can also see that there is a small region where both of the outputs
pulses at the same time. This is a result of offsets and transistor mismatch in the com-
parator, and violates the constraints set for the memory. But the pulse rates are as we
can see so low that a or-sum will be almost linear (see figure 3.3), and pulse overlaps is
therefore negligible and no problems should occur.

For the final memory circuit an extra copy of the non-inverted output of the com-
parator will be added, which represents the sign of the stored weight.

5.2.2 Programming the UV-memory

To program the UV-memory with capacitive canceling we need a circuit capable of gen-
erating both a non-inverting and inverting output. The shift in the outputs as input
changes must be symmetrical to avoid other changes on the floating node than those
introduced by UV-light induced charging or decharging. The output characteristics must
therefore be both symmetric along the voltage axis and the time axis. A mismatch in volt-
age changes will result in unwanted floating node change due to capacitive coupling. If
the change of one of the outputs is delayed compared to the change of the other output,
a short transient change of the floating node potential will occur. For a memory that
is supposed to be adapted by pulse signals, which implies rapid changes of the control
node, none of these problems can be tolerated.

To achieve as fast programming as possible the inverting and non-inverting outputs
should be pulled to the supply rails when an adaptation pulse arrive. If we recall from
section 3.5.1 the weight adaptation is represented as a bipolar stochastic pulse stream.
To be more specific the floating node potential should be increased when the signal
representing positive weight-change is on, and the signal representing negative weight-
change is off. A decrease in floating node potential should occur for the complementary
signal values. For the situations were both lines are on or off at the same time the floating
node should be kept stable.

The comparator circuit comes to our rescue once again. It is a circuit with a very sym-
metrical characteristic for the outputs. Both the inverted and non-inverted outputs are
equally delayed in the circuit, and with negligible current drawn at the outputs they may
be pulled almost symmetrically to both supply rails. A comparator with a wide range
output stage also have a high voltage gain, usually about 1000–2000 [Mead, 1989b], so
large output transitions for small input changes are achieved. Figure 5.8 shows measure-
ments of the voltage characteristic of a comparator. We can see that there is symmetry,
but the cross point, that is the output when the inputs are equal, ignoring any offsets, is
not at Vdd=2. This is the result of Early-effects in the current mirrors in the OTA. From
the earlier discussion we know that this is not acceptable voltage output values, since
a change in input will make the raising output to change significantly more than the
falling output. Extra circuitry that stabilize the control nodes at other values when the
inputs are equal must be introduced.

The best solution would be to drive the control signal to the same potential as the
floating node potential. No electric field would be present in the dioxide and no charge
would enter or leave the floating node. But if the non-inverted control node is driven to
the floating node potential the inverted control node potential should be driven to the
inverted potential relative to Vdd=2 to keep the floating node stable when a programming
pulse arrives at the input. This is not an easy task to accomplish, and a simple circuit
capable of performing such task is unkown to me.
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Figure 5.8: Comparator voltage characteristics: The two outputs are symmetrical but
the cross point is not at Vdd=2 due to Early effects in the current mirrors.

The second best solution utilizes the fact that the only thing that matters is that
the control nodes are driven to inverted potentials relative to Vdd=2 and that the electric
field in the UV-structure dioxide is kept at a minimum to make the floating node voltage
change as small as possible.

The natural choice for a reference voltage for floating node voltage comparison is
Vdd=2. For a comparator based on the standard wide range OTA, that is without dif-
ferential source degeneration, the area of operation for the floating node potential is
approximately .Vdd=2/ š 150mV . For floating node potentials outside this region the
output current of the comparator will saturate at the bias current. The result is that one
of the pulse outputs will be stuck at an on signal, that is a pulse probability of 1. A
slow drift of the floating node potential towards the reference voltage for this situation
should only be beneficial, since it will help the the floating node stay outside the regions
were the output saturates. The effect can be fulfilled by driving both control nodes to
the reference voltage. For a reference voltage of Vdd=2 the control nodes will be changed
with equal amounts in the opposite direction when a programming pulse arrive at the
input.

The current through the dioxide in the case of no programming and the floating
node potential inside the š150m V range can be calculated with equation 5.1 and the
constant values extracted from the measurements, and one will obtain that the current
for a 150mV drop across the dioxide is approximately 35 times less than for a 2:5V drop
across the dioxide. For a 5V supply voltage the forgetting time constant is at least 35
times larger than the programming time constant.

The forgetting dynamic should not be regarded as a bug. It not only help to bring
a floating node that is out of range back into its region of operation, but also makes it
very simple to initialize synaptic weights. By driving the control nodes to the reference
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Figure 5.9: Synaptic memory circuit: This memory allows for continually adaptation
of the stored weight as the weight signal is read out. The floating node voltage is only
changed by UV-light induced charge. No voltage change due to capacitive coupling
occur, and only a small forgetting dynamic is introduced to ensure this.

voltage and turn on the UV-light source and wait, the floating node potential will soon
reach a voltage inside the š150mV range of operation.

One may argue that the forgetting dynamics will hamper network learning, because
weights will change when they are not supposed to do so. But on the other hand the
forgetting dynamics may also improve learning. One of the main problems with the
backpropagation of error learning algorithm is that networks can be stuck at local min-
ima during learning. That is the network is stuck in a local valley of the error space,
and is not capable of getting out. For a local minima that does not lead to the right
output patterns for all inputs, the consequence is failure in the learning process. The
introduction of forgetting dynamics on the other hand may help the network getting out
of the local minima and into an other part of the error space, where further learning can
proceed.

The circuitry necessary to drive the control nodes to Vdd=2 when no programming
pulses are active on the input is simple. Two follower connected simple amplifiers with
a bias current slightly less than for the programming comparator, with the outputs con-
nected to the inverted and non-inverted control node respectively and the input con-
nected to the reference voltage, as shown in the circuit diagram for the complete synaptic
weight circuit in figure 5.9. When the programming inputs are equal the follower out-
put currents will overpower the programming comparator output current, and drive the
control nodes to the reference voltage, as the comparator will overpower the followers
when a programming signal is active at the input. If not both control nodes are driven
all the way to the supply rails, the reference voltage can be adjusted to a voltage half
way between the upper and lower control node voltages, and the floating node will still
be kept stable during operation.
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Figure 5.10: Synaptic weight programming characteristics.

In figure 5.10 and 5.11 the programming characteristic and forgetting dynamics of
of the memory is shown. The floating node voltage as it is programmed up and down
a couple of times, and its derivative is plotted. As we can see there is no fast floating
node voltage shift when the programming changes sign.

The floating node change is approximately 7:5mV=s when programming and 175¼V=s
when forgetting. That is a difference of about 43, which is a bit better than theoretically
calculated.

5.2.3 Controlling the learning rate

In section 3.5.1 it was pointed out that the backpropagation learning rate should be
controlled by the memory itself. The learning rate expresses the maximum programming
speed of the memory, and it is important that the speed is not to high. The result can
be an oscillating network. With the low conductance of the UV-structures it is assumed
that oscillation is not likely to occur.

On the other hand it is easy to adjust the weight change rate. If we recall from
the introduction to the UV-light memory, the UV-conductance is a function of the UV-
light intensity. By adjusting the intensity of the light source the learning rate can be
adjusted. Usually it is not possible to adjust the intensity of the light source directly,
but for prototype testing the light intensity can be regulated by adjusting the distance
between the light source and the induced silicon surface and/or placing a UV-light filter
between the light source and the chip. UV-light has a fast decay rate in air, so a small
change in the distance between the light source and the chip results in significant change
in programming speed.
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Figure 5.11: Synaptic weight forgetting dynamics.

5.2.4 Synapse layout

In figure 5.12 a layout of a complete synapse with weight, weight change, error propaga-
tion and memory circuitry is shown. The leftmost 2=3 of the layout contains the weight
programming, storing, and voltage to pulse stream transformation circuitry discussed in
this chapter, as the rightmost 1=3 contains the rest of the synaptic circuitry presented in
chapter 3.

The UV-structure and the canceling capacitor are almost identical. The only differ-
ence is that the canceling capacitor is completely covered with metal2. It was done to
ensure that the two capacitances was as equal as one possibly can obtain.

The metal2 top shield is connected to ground, and serves as the ground potential
supply distribution ’line’.
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Figure 5.12: Layout of complete synapse circuit: The whole synapse circuit occupies
264¼m ð 176¼m in a 2¼m-process.



CHAPT ER

6
Composition and performance
of a complete network

Even though the neural network building blocks work perfect in theory,
and when tested as single circuits, it is when the different building blocks
are assembled into a complete neural network that their real performance
can be proven. Unexpected behavior can usually be observed when a cir-
cuit is moved from a test environment to its actual environment of oper-
ation. This chapter covers the performance of a complete network. Prob-
lems that can be solved by the network are presented, as is the limitations
of the network implementation.

6.1 Assembling the network parts into a 3-6-2 network

The reason for choosing a network with 3 inputs, 6 hidden neurons and two output
neurons was simply that this was the largest network which could be fit on the avail-
able silicon area. Of course another network topology could have been chosen, but I
considered it important to have a rather large number of hidden neurons relative to the
number of inputs, to yield large adaptation dynamics.

During the work with the layout little effort was done to minimize area consumption.
A well arranged layout was considered more important than a dense implementation.
Simple and symmetrical building blocks that could easily be put together to a complete
network was implemented. A well arranged synaptic circuit was most important, since
the synaptic weight matrices usually represent most of the circuitry of a complete net-
work.

6.1.1 The threshold synapses

As mentioned in section 2.1.4 the threshold of a neuron can be controlled by a synapse
with its input clamped at �1 or 1. Since the outputs of neurons in the stochastic arith-
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metic implementation used in this thesis are always positive, the input ’pulse stream’
of a threshold synapse should always be on, which implies that it is connected to the
positive supply voltage.

Since the input of a threshold synapse is stuck at a constant value there is no need
for these synapses to propagate any error. The error propagation circuitry of figure 3.7
can therefore be removed from a threshold synapse.

With the input always stuck at 1 the threshold will also have the potential of getting
a larger influence on the total net-input. A change in the threshold weight will result in
a change in the net-input of the same quantity. The input of a synapse also control the
amount of weight change relative to the error (equation 3.12 and 3.13). For a synapse
with the input clamped in an on position the weight will change with a higher rate than
for a synapse with the input fluctuating between on and off. The total result is that the
threshold have a considerable impact on the total change on the output of a neuron
during learning. It can be large enough to make the output totally dominated by the
threshold.

To ensure that the threshold do not dominate the net-input, a method to control the
threshold learning rate must be introduced1. Two possible approaches exists. Either the
learning rate can be reduced statically at implementation time by lithographical changes
in the UV-structure of the threshold weight, or the possibility of controlling the signal
at the opi node of the weight change circuitry (figure 3.6) must be introduced. The last
method was utilized in the implementation presented in this thesis. The opi node of the
weight circuit (figure 3.4) was connected to Vdd , while the opi node of the weight change
circuit (figure 3.6) was controlled by an off chip supplied signal. The learning rate of
the threshold synapses can then be reduced by the desirable quantity by applying an
appropriate pulse stream signal from off chip.

6.1.2 Complete floorplan

By assembling synapse circuits as shown in figure 5.12 side by side in a row the total
dendritic tree of a neuron can be composed. One of the synapses must be of the thresh-
old type. To construct synaptic weight matrices equal rows are placed back to back on
top of each other as shown in figure 6.1. The back to back arrangement implies that
adjacent placed rows are mirrored along the longitudinal axis. The synapses of adjacent
rows also share bias voltage lines, so two slightly different synapse cell layouts must be
prepared.

At one end of the synapse row the neuron circuit of figure 3.5 is placed. Both ends
are equally well suited. The neuron circuits for hidden layers must also incorporate two
inverters for the propagated error signals. As we remember it was the inverted signals
that were generated.

In feed-forward networks the input neurons are only mapping the input value to the
appropriate signal representation. There is no change in the input magnitude. With
pulse stream signals as inputs it is not necessary to implement any circuitry to form the
input neurons. The input neurons are therefore not represented by any circuitry, only
by the wires that the input signals are connected to, which results in the fact that no
error propagation circuitry is necessary in the synapses of the hidden layer.

1The input pulse stream of a threshold synapse must still be constantly on, to ensure that the weighted
input (both positively and negatively) can have a probability of being on over the whole range from 0–1.
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Figure 6.1: Floorplan of a 3-6-2 network: The complete network covers an area of
approximately 1500¼m ð 1500¼m and consists of about 3400 transistors. Solid lines
show feed-forward signal flow, while dashed lines show backpropagated error signals.

The arrangement of the hidden layer in relation to the output layer is straight for-
ward. One layer is rotated 90 degrees relative to the other, and the layers are placed
adjacent to each other. A complete floorplan of the circuit layout is shown in figure 6.1.
Since the synapse cells are not totally square sized, some extra space must be used for
wiring inputs, outputs and error lines between the hidden and output layers together.
To fit the output layer onto the chip die it had to be bent around the corner of the hidden
layer weight matrix as shown in the floorplan. The actual appearance of the network is
shown in the die photo in appendix A.
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6.1.3 Network time constants

The backpropagation learning algorithm was in the first place developed for a discrete
behavior. The feed-forward computation, and the backpropagation of error values, with
weight adaptation, were supposed to be performed in discrete time steps. When this
algorithm is extended to be used in a continuous system one must make sure that the
different time constants embedded in the learning process are well related to each other.
For proper learning to take place there are some restrictions on the choice of time con-
stants. It is already pointed out that the weight change time constant, that is the learning
rate, must be large compared to the other time constants, to keep the network from os-
cillating. A slow learning rate is just as important in a discrete learning approach as in
a continuous one, but in the continuous domain several other time constants must be
chosen correctly. [Pineda, 1988] sums it up in the equation:

−w

M
× −P × −bp × − f f ; (6.1)

where −w is the weight change time constant, M is the number of patterns in the problem,
−P is the characteristic time constant over which input and target patterns fluctuate, −bp

is the error propagation time constant and − f f is the feed-forward time constant. It
implies that the delay in the feed-forward computation should be shorter than the delay
in the backpropagation computation. The backpropagation computation on the other
hand must of course be much faster than the time between pattern changes, which again
must be faster than the learning rate divided by the number of patterns in the problem
presented. The last relation ensures that the network do not learn each pattern trivially
as the subsequent pattern is forgotten.

The delay of the feed-forward computation in the network is only a few micro sec-
onds, and with the delay of the integrator in the output error generation circuit it should
be clear that the time constant of the error propagation is much larger than the feed-
forward computation. For the appropriate integrator bias it is in the range of millisec-
onds. The delay between pattern changes can be selected before learning takes place.
The delay depends on the number of patterns and the size of the weight change time
constant. From the plot in figure 5.10 and the region of operation of the comparator
used in the floating gate voltage to weight pulse stream conversion, it can be concluded
that the weight change time constant at a minimum is in the range of 10–15 seconds. For
the 3-6-2 network a maximum of eight binary patterns are possible, so the weight change
time constant may be a bit to short for some problems. It can therefore be necessary to
reduce UV-light intensity for a proper learning to take place.

6.2 Pattern presentation and training algorithm

The backpropagation of error learning algorithm is as stated before based on an iterative
presentation of all the input and target pattern pairs in a sequential order. A presentation
of all the pattern pairs is called an epoch. The total output error can be calculated after
each epoch on the basis of the output error for each pattern. The mean square error –
M S E – for each output is calculated by the equation:

M SEj D 1

M

 X
p

�
tpj � opj

Ð2

!
Ð 100% ;
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which is a variation of the gradient decent error measure, with the only difference being
that the total error for the output is expressed as a percentage of the maximum possible
error. M represents the number of patterns presented.

If the patterns are presented in the same order for every epoch the learning algorithm
is subject to the local minima limitation of backpropagation. Presenting the patterns in
a random order on the other hand will expose the network for a sequence of random
forces with a built in mechanism of helping the network climb out of a local minima
[Pineda, 1988]. The randomness introduces noise to the system, and noise is as we
already know helpful for the learning process.

Taking these reflections into consideration, a simple learning control routine can be
expressed as:

/* Initialize the synaptic weights */

<set the programming comparator bias (Vbt) to 0V>
<turn on the UV-light source>
<wait a predefined period of time to let the floating >
<gate voltages approach the reference voltage>
<turn off the UV-light source>

<set the programming comparator bias to an appropriate value>
<turn on the UV-light source>

i = 0;
finished = false;

/* Present the patterns until the problem is learned or exhaustion occur */

while not finished and i < maxEpochs do
begin

patternSet = <all patterns in the training set>

for the number of elements in patternSet do
begin

<select a pattern from patternSet at random>
<present the pattern for a predefined amount of time>
<measure the output response for all outputs>
<discard the pattern presented from patternSet>

end

<calculate MSE>

if MSE < maximum tolerated error then
finished = true;

else
i = i + 1;
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Pattern I1 I2 I3 Target
Pattern 1 0 0 0 0
Pattern 2 0 0 1 1
Pattern 3 0 1 0 1
Pattern 4 0 1 1 0
Pattern 5 1 0 0 1
Pattern 6 1 0 1 0
Pattern 7 1 1 0 0
Pattern 8 1 1 1 1

Table 6.1: Truth table for the 3-parity problem.

end

<turn off the UV-light source>

Since the stochastic pulse streams representing the network outputs appears as ran-
dom noise, the output signals probability of being on could not be measured by the
universal counter used in the previous duty cycle measurements. The moving average
of the pulse stream outputs was generated with an off-chip operational amplifier integra-
tor. The integrator was implemented to reflect the duty cycle as a voltage between 0 and
5 volt. For more details about the moving average op-amp integrator see appendix B.2.

6.3 Network performance for the 3-parity problem

To benchmark the performance of the 3-6-2 network it was set up to solve the 3-parity
problem, which is the double XOR-function:

O D I1 ý I2 ý I3 : (6.2)

Equation 6.2 is the feed-forward network benchmark XOR-problem generalized to three
inputs. The problem is therefore of course linearly inseparable and a network with
hidden neurons are necessary to solve it. For the problem the output should be on if an
odd number of inputs are on, and off for an even number of inputs on. The truth table
for equation 6.2 is shown in table 6.1.

For the attempt to teach the 3-6-2 network the 3-parity problem the off-chip pro-
gramming parameters shown in table 6.2 was used. The training algorithm presented
was then executed on a workstation controlling all the measuring instruments involved
in the process. For this particular measurement the programming algorithm was slightly
changed. The pattern presentation loop was modified to keep on programming until ex-
haustion even if the network gave a sufficiently good response. The exhaustion time was
set to 600 epochs. The mean square error was also calculated separately for each of the
outputs, and the result is shown in figure 6.2.

As seen the mean square error is not slowly reduced as the learning progress. At first
the error is getting larger, before it goes into a period of fast changing in both directions.
For the last half of the learning period the error very slowly progress to the better. The
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Threshold learning UV-light source UV-Filter Presentation time
reduction factor distance for each pattern

1 3 cm Yes 10s

Table 6.2: Of-chip training parameters for the 3-parity problem.

reason for the very fast changes of the error is not easy to explain. It may be that the
learning rate is to large, and the network is forgetting what it has learned right after a
major progression has been achieved. On the other hand the changes are so fast that
this seems unlikely. Another explanation can be environmental noise that is wrecking
the measurement.

With a mean square error of 20% at the end of the learning phase it was not assumed
that a retrieval of the output response to the inputs would show any good results. It
was therefore quite a surprise that one of the outputs responded with something that
could be called half a success. Presenting the input patterns together with the target
patterns gave an output response that was almost correct. The only failure being that
the output integrator value is fluctuating with 0:5 volt around 1 volt, and not close to
2:5 volt around 2:5 volt. It implies that the network has not be capable of adapting the
weights to give a maximum attainable difference for the binary output values. On the
other hand it may be a bit too ambitious to believe that this is possible. The interesting
point is that the output values are not at all difficult to distinguish.

A measurement of the output response, not presenting any target values was not
promising. As we can see from the lower plot of figure 6.2 the result was a total fail-
ure. The reason for this may be traced back to the memory devices. Even though the
programming circuitry was carefully designed to prevent the floating node from being
disturbed by control node voltage switches, it is apparent that the network response is
very much dependent on the control node switching in the same way during retrieval
as during the end of the learning process. If on the other hand the network had been
capable of gaining output values which had resulted in no propagation of error signals
at the end of the learning process, the response would probably had been correct. With
correct outputs the error signal lines would have been off and the control node stable.

From a practical point of view it is unacceptable that the solution to a problem must
be presented together with a problem to make the network respond correctly. If you
have got the answer to a problem you do not need a neural network to present it for you.
On the other hand the result is quite interesting. It implies that the network is capable
of learning even hard linearly inseparable problems, and further attempts to train the
network should be performed. Sadly enough time did not allow further measurements
to be accomplished, so the presented results are all that is available at the current time.

6.4 Improvements

During the network performance measurements it was observed that it was a difficult
task to match the relationship between the follower bias

�
Vb f

Ð
and the programming

comparator bias .Vbt/ in the synaptic memory. Due to transistor mismatch it was diffi-
cult to get a sufficient number of synaptic memories to function correctly. Only small
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Figure 6.2: Results from the 3-parity learning process: The upper left plot shows the
mean square error, while the right shows output retrieval with targets presented together
with the inputs. The lower plot shows retrieval without target presentation. Solid lines
are the results from output 1, while the dashed lines are the results from output 2.

variations in the bias voltages resulted in either that the followers overpowered the pro-
gramming comparator, or the programming comparator overpowered one or both of
the followers. The first of course results in a inability to program the floating node, as
the latter imply that the control node is kept at one diode voltage above ground (see
figure 5.8) when no programming is supposed to occur. For the last case the total re-
sult is that the synaptic weight is pulled maximally low. Improvements that reduces the
transistor mismatch must therefore be performed to increase the number of synapses
that functions correctly.

Further, an investigation of aspects that can improve the symmetry of the program-
ming comparator should be preformed. The basis for a stable floating node is the fact
that the inverting and non-inverting control node must have a symmetrical behavior. To
achieve the symmetry the programming comparator and it’s interaction with the follow-
ers must be improved. It was not difficult to achieve the necessary symmetry for a single
cuircuit, but as we have seen this does not imply that it will work out for a complete
network of synaptic elements.
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7
Conclusion

In the preceding chapters a low-power, fully scalable, feed-forward neural network with
in situ learning, utilizing the advantage of pulse stream coding of quantities, has been
developed in a standard CMOS process. The different building blocks constituting the
different network parts have been implemented and tested, and finally assembled into
a complete network with one hidden layer of neurons. The network was set up to learn
the linearly inseparable 3-parity problem.

7.1 Conclusion

Taking advantage of the simplicity of arithmetic operations on stochastic pulse streams,
very simple and dense circuits to implement the feed-forward computation and the back-
propagation of error learning algorithm was developed. Even complex multiplications
and summations are performed with a minimum number of transistors, and nearly all
of the computational power embedded in both the feed-forward and backpropagation
of error was implemented locally in each synapse circuit, ensuring a minimum of wiring
and the possibility to implement very dense networks. An analog integration and re-
generation circuit for output error generation was also implemented.

Further a relatively compact synaptic weight storage circuit1 was developed. The
memory make use of floating-gate UV-programmable analog memory devices for long
term storage of synaptic weights, which introduces the rather infrequent combination
of analog storage and ’digital’ (stochastic arithmetic) computational elements. All the
analog circuits were tested and their behavior was proven to be as expected.

All building blocks are developed in a low-power fashion, where subthreshold biased
transistors limit the static currents flowing in the circuits. For typical bias voltages the
complete network consumes power in the range of a few microwatts, which ensure full
scalability.

The network building blocks were then assembled into a complete 3-6-2 network
with a potential to solve the 3-parity problem. The training of the network was a par-
tial success, but due to the networks incapability to converge to almost exact correct

1Compared to other possible implementation schemes.
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response, and the fact that the synaptic memories did not work as good in a complete
network context as opposed to their behavior when tested as single circuits, a successful
training was not achievable. The network was capable of learning the 3-parity problem,
but a correct response was only achieved under exactly the same conditions as used
during training, which implies that the target patterns had to be presented together with
the input patterns during the retrieval phase.

There should be no question about the network implementation’s capability of solv-
ing even hard inseparable problems. The network concept is therefore in principle
correct, but the implementation should be further improved. It can well be that only
marginal corrections is necessary to gain large improvement in learning.

7.2 Further work

Further work of course include improvements of the memory circuit. An implementa-
tion that is even less responsive to noise introduced by control node switching should be
developed. It is assumed that this may improve learning considerably. Methods to im-
prove learning speed should also be investigated. As it stands now the time to train the
network is too long, and only for implementations with very large networks, the pro-
gramming time may compete with the more common off-chip learning schemes. The
employment of variations of the backpropagation of error learning algorithm and the
use of higher pulse frequencies can improve the network learning speed.
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A
Die photo of the chip

A die photo of the chip containing the 3-6-2 feed-forward network is shown below. The
total size of the chip is 2225¼m ð 2220¼m, where the network consumes a total area
of approximately 1500¼m ð 1500¼m. The rest of the space is occupied by a standard
TinyChip pad frame. The total number of transistors for the complete network is 3400.
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B
Miscellaneous

This chapter contains some material that did not fit in other parts of the text. The
program used to calculate the neuron transfer curves in figure 3.5 (b) is listed, and the
op-amp integrator used to measure the network outputs is also presented

B.1 Program for empirical calculation of the neuron transfer
characteristic

/Ł A small C program that calculates the transfer characteristics for Ł/
/Ł neurons in a stochastic arithmetic neural network. Ł/

/Ł Compile command: gcc average.c -o average -lm Ł/

/Ł The format of the output file is matlab ASCII matrix format. Ł/

#include <math.h>

#include <stdio.h>

#include <time.h>

int i, j, k, it, numw;
float w, pnp, pnn, x[301], y[301];
FILE ŁF;
char fname[31];

void main() f

for(i=0;i<301;i++) x[i]=y[i]=0.0;
for(i=150;i<301;i++) y[i] = 1.0;

printf("Enter number of iterations (>100000) : ");
scanf("%d", &it);
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printf("Number of synaptic weights > ");
scanf("%d", &numw);
printf("Output file name (max 30 characters) > ");
scanf("%s", fname);

/Ł Calculate the average for it different possibilities Ł/

for(i=0;i<it;i++) f

/Ł numw weighted inputs to the neuron. Ł/

pnn = pnp = 0.0;

for(j=0;j<numw;j++) f

/Ł Calculate the weighted input with a probability of on in the Ł/
/Ł intervall [0,1], with 3 decimal accuracy. A negative value Ł/
/Ł yields a negative (inhibitory) weight. Ł/

w = ((float)((rand() % 301) � 150))/150.0;

if(w < 0.0) pnn += w;
else pnp += w;

g

k = (int)((pnp + pnn + 15.0)Ł10.0 + ((pnp+pnn>0.0)?0.5:�0.5));

if(x[k] == 0.0)
y[k] = (1.0 � (float)exp(�pnp))Łexp(pnn);

else
y[k] += (1.0 � (float)exp(�pnp))Łexp(pnn);

x[k] += 1.0;
g

/Ł Flush out the result. Ł/

F = fopen(fname ,"w");

for(j=0;j<301;j++)
if(x[j] == 0.0)
fprintf(F,"%2.3f %e\n",((float)(j�150))/(100.0/((float)numw)),y[j]);

else
fprintf(F,"%2.3f %e\n",((float)(j�150))/(100.0/((float)numw)),y[j]/x[j]);

g
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B.2 Op-amp integrator that implements a moving average

To generate the moving time integration of the stochastic pulse streams on the output
of the network a circuit as shown in figure B.1 was supplied off-chip. The circuit is a
standard operational amplifier integrator with an extra resistance in parallel with the
integrator capacitance. The amplifier connection yields a unity gain, and the resistance
and capacitance values were selected to give an integration time constant of 1 second.
The negative feedback results in an output of 0 volt for an input where the signal is on
all the time, and 5 volt output a signal that is off all the time, for on and off voltages
of 5 and 0 volt respectively. For intermediate signals the circuit reflects the mean duty
cycle for the last second. In the results presented in chapter 6 the integrator voltages
are inverted, that is the presented integrator voltage is

5 � actual integrator voltage :

This was done to ensure as simple presentation of the results as possible.

LM348

2.5V

Integrated value

1¼F

1M�

1M�
Input pulse stream

Figure B.1: Operational amplifier integrator.
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