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Abstract

This work analyzes the use of hidden Markov model, HMM, based recom-
mendation systems to predict the evolution of user interests. The HMM
is combined with ideas from matrix factorization to fit more sparse data
and further exploit potential correlation between user interests. The main
focus of this work is on analyzing whether the model gives a reasonable
modeling of user interests. The model turns out to give surprisingly
intuitive results for such a simplistic modeling of user interests. While not
the main focus, this system was also tested as a recommendation system.
The model was put into production at FINN giving recommendations
on the site in real time. The model performed at roughly 75% of the
click rate of the best model FINN currently have implemented. Several
potential avenues for improvements are discussed, but due to time and
software issues have not been tested live on the FINN site.

1 Motivation

With the large amount of products currently available to a customer through
online stores and streaming services its no longer possible for a average user to
always know of their desired products, or look though all products available
to find them. It would be much more desirable if the user was presented with
only ads they might not know exists but are interested in. This is the problem
recommendation systems try to solve. The goal is to learn a users iterest such
that the user can be shown only relevant ads.

A popular online marketplace in Norway is FINN (Schibsted 1996). This
site allows user to place ads for properties, cars, jobs and travel as well as for
smaller items like furniture, clothes and appliances. With users being able
to post ads, not only is the number of ads available large but what ads are
available is also changes a lot over time. To get some sense of the scale around
1 million ads can be placed within a month. This situation underlines the need
for a recommendation system, no user can be expected to know what ads are
available at any given time.

The FINN website gives users recommendations in two main ways. The user
can select a category they are interested inn and ads within that category will
be shown, ranked according to how much a recommendation system believes
the user would like said ad. The user is also given recommendations on any ad
for any other ads a recommendation system predicts a user to be interested,
given a users previous actions up to and including the ad the user is currently
viewing.

Such online marketplaces with a huge amount of possible selections for a
user is a relatively new problem. When such marketplaces first arrived the tools
available to find ads were relatively simplistic and required some work by the
users. These are tools like a search functionality and being able to sort within
a category based on specific criteria, like popularity. As the user bases for such
sites grew and our ability to collect and process large amount of data bettered
it became plausible to create models to predict which ads a user is possibly
interested in. However using past data to train such a model presents a problem,
user interests are not static. This means older data could be irrelevant to a
users current interests, and only serves to skew the resulting recommendations
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away from more relevant ads. This is a quite common experience for users
where the recommended ads seem stuck on a past interests even when the user
feels this should be obviously incorrect based on their recent actions.

The goal with this work is to attempt to model such change in iterest events
and generate recommendations using a system that allows for such changes
in iterest. A signal for a change in iterest event could also be used in other
recommendation systems to remove the influence of older potentially irrelevant
ads.

As part of this work a significant amount of code has been written, im-
plementing a recommendation model. The recommendation model has been
implemented to run training on the GPU to make it possible to train a model
on the large amounts of data available. Furthermore the presented model has
be implemented to give recommendations live on the FINN website giving
reasonable results.

This report will first give some background information on recommendation
systems and the difficulties in creating them. Then some of the current solutions
used at FINN are presented along with potential shortcomings. Then the statist-
ical definition of iterest used for our system is presented along with its relevance
to hidden Markov model. A previous hidden Markov chain recommender is
then presented along with simulation results which show that this model could
not effectively be used on FINN. We then present some improvements on their
recommender and show results both from offline testing and from running the
recommender live on FINN. Finally results in prediction of change in iterest
events are given.

2 Background

2.1 Recommendation Systems

Recommendations given by a recommendation system consist of a small number
of ads such that its reasonable to expect a user to see and consider all of them.
Some systems take into account that only a few ads are show and try to optimize
this subset for example by trying to keep the recommendations varied(Zhang and
Hurley 2008, Adomavicius and Kwon 2012). It is however much more common
to have the goal of a recommendation model to be giving a score to each
item. Then usually pick the highest scoring ads as the recommendation This
simplifies the problem as each ad can be considered independently at prediction.
The recommendation models presented in this work focus on other areas of
improvement for recommendation systems, so we will use this simplification
and consider the goal of a recommendation system to be generation a ranking
or giving a score to all ads.

The goal of a recommendation system is to generate recommendations
that promote some desired user behaviour. To generate recommendations a
recommender needs to take the past actions of the user recommendations are
generated for, and potentially past actions of other users, to to predict a score
or ranking over all ads. Therefore this score should be optimized such that the
highest scoring ads for a given user are the ads that are most likely to make
the user perform the desired action. This could be clicking an ad, purchasing
an advertised item, giving a rating and so on.
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A common assumption to use data from other users to generate recommend-
ations for a specific user is, if two users have shown interest in the same ads
then ads only one user has shown interest in might be of interest to the other
user. Models that try to find user interests through such an assumption are
called collaborative filters(Goldberg et al. 1992). This assumption is vague and
can be included in a model in many, potentially more strict, ways.

The recommendation methods considered in this work are trained offline.
Offline training means previous user actions are stored, and models are trained
to predict a users interest based on this history. This is in contrast to recom-
menders who treat recommendation as a bandit problem, dynamically updating
recommendations based on user feedback to its current recommendations (Li
et al. 2010).

Data used for offline training is usually of ads users have clicked on and/or
purchased. Data can also include more detailed information for example whether
the user purchased the advertised item or provided any rating of the ad. The
goal of the recommender in offline training then to maximize the likelihood or
other score function over user actions given the past.

If data for the desired user behaviour is readily available then the making a
training scheme can be quite simple. The goal is for the model to give a high
score for the ads where the desired user behaviour was observed. The model
should be sufficiently restrictive such that maximising the score for ads where
the desired behaviour is observed also results in a high score where the desired
behaviour was not observed in training data but is likely to happen if the user
was presented with the specific ad in the future. For example, if the model can
recognize that two ads are similar, if the desired behaviour is only observed on
one ad, we would still expect the same user to be interested in the second ad,
and both ads should be given a high score. The opposite can also be the case
where a user was observed interacting with an ad different to all other ads a
user had interacted with. This could indicate that even if the interaction was
observed the ad should be given a low score.

2.2 Previous Work

The problem of giving personolized recommendations is an active area of research
and new models are presented regularly. Even so, simpler models, even just
giving recommendations based purely on popularity, can perform surprisingly
similar or even better than much more complicated models (Ludewig and
Jannach 2018). This could however change depending on how much information
is available on users and ads.

This paper will combine previous work around hidden Markov model, HMM,
recommendation model and matrix factorization. The HMM recommendation
model which will be presented in chapter 6. The model presented in Sahoo,
Singh and Mukhopadhyay 2012 will be used as a reference for such models.
Hidden Markov models do however require the probability of a users actions to
be calculated. Some further analysis of the problems and potential solutions
around fitting such probabilities are given in chapter 5.

Matrix factorization, which be presented in chapter 4.2, became a popular
recommendation tool after its performance in the Netflix prize (Funk 2006).
These methods are widely explored with many variants and ways of fitting,
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regularizing, including data and allowing for behaviour changes over time (Y.
Koren, Bell and Volinsky 2009a, Yehuda Koren 2009). How these methods for
recommendation relate to the presented recommendation system is covered in
chapter 8.

A method for using neural networks to generate recommendations is also
covered in chapter 4.1. This is used as example of models FINN currently have
implemented that can fit changing user interest. Specifically the model is that
presented in Hidasi et al. 2016. This model is one of the better performing
neural recommendation methods currently available (Ludewig and Jannach
2018).

2.3 Explicit vs. Implicit Feedback

Recommendation systems usually divide data into two main categories , explicit
and implicit feedback. Explicit feedback is data where the user is stating that
they in fact are interested in an ad. This could be through for example a 5 star
rating system, a thumbs up/down rating or an only positive thumbs up system.
If we get such feed back we can know it means the user was/wasn’t interested
in a specific ad.

Implicit feedback is data where a user interacts with an ad in a way which
may indicate interest but not necessarily. This can include clicking on an ad
and further interaction with an item listing. Such actions are an indication of
interest but not necessarily and could be a result of anything form the user
finding the listing funny while having no interests of a purchase to a user clicking
it by mistake. Weaker and implicit feedback usually provide much denser data
than stronger explicit feedback as it takes less effort from the user to generate
it. How useful implicit feedback is and how simply it can be used may depend
on the goal of the recommender. A recommendation system just focusing on
maximising a click though rate can use data of what users clicked directly
maximising the probability of past clicks though some model definition. For a
recommendation system that wants to maximize the number of purchases it is
no longer necessarily correct to maximize click probability.

2.4 Issues with Creating Recommendation Systems

Due to the fact that recommenders deal with real world, usually massive
amounts of data, concerning real people, there are some issues to consider when
implementing a recommender.

Firstly different data sources can present quite different problems. Different
marketplaces can experience different user behaviour, have a different number
of available ads, different ways of including recommendations or different types
of data available. Having a high number of ads to choose between can lead to
very sparse datasets, this problem is further exaggerated due to the fact that
there can be very skewed popularity, meaning there is a small sample of ads that
get a majority of all the traffic while a majority of ads will have barely no user
interaction at all. There could be different ammount and type of correlation
between and within user data due to different user behaviour, and different
input data to fit a model.
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The goal of a recommendation model might even be different, online market-
places would usually want to maximize purchases, but other goals may include
maximizing clicks or a rating. For these reasons this paper will be limited to
specifically optimize a model and test it to a specific use case and not as a
general recommender. The fact that different recommendation data can present
different challenges can be seen from the fact that the relative performance of
recommenders can be quite different between data sets (Ludewig and Jannach
2018).

Secondly many problems encountered when creation a recommendation
model are more closely related to psychology than data science. This is a
problem as, while a good solution to maximize some goal can be found through
data based methods, it to some extent can seem like a problem where it is
inappropriate to choose the optimal solution without considering the underlying
reason why users respond to a specific solution. It is not at all guaranteed that
a solution which maximizes sales is also good for users happiness or satisfaction.
It might even be beneficial to appeal to a users negative emotions to encourage
a sale. This is not only a problem from a moral standpoint but also for the
problem itself as the models are often trained over shorter periods of new data.
Over shorter periods the potential benefits of creating a happy satisfied user
base might not be seen, while appealing to a users anxieties/insecurities might
be a much better solution in the short term.

Making some assumptions on user behaviour is still necessary to create a
statistical model so in this paper some assumptions around user behaviour
will be used and the strengths and weaknesses of these assumptions will be
discussed. Determining whether these assumptions and the model itself is good
for users outside of the optimization goal is considered out of scope for this
paper but we mention that this is an important consideration for such models.

The problem of privacy also contributes to the complexity of creation a
recommendation model. It is clear that the more information one has about
users the greater a models possible ability to explain and predict user interests
gets. However there are types of data that would not be considered appropriate
or illegal to use and collect. The solution is of course to only use data that is
appropriate to use, but there are some issues related to this that should still be
considered. Firstly from a modeling perspective leaving out such information
leads to a lot of unknowns which can make model definition more difficult and
having to make a lot of assumptions and approximations. An example of this
would be if one wanted data of which ads a user has been shown to a user. The
naive solution is that if an ad was loaded on a users page then a user has been
seen this ad. This is however not guaranteed as a user might not have looked at
the ad. The additional data one would want is eye/cursor tracking to see if the
ad was looked at, but many people would consider this too invasive. Without
the additional information one is then left with the choice of either assuming
that if an ad was show it was seen or allow for the possibility that ads shown
were not seen, increasing model complexity.

It also needs to be considered that there is possibly correlation between such
sensitive data and user interests, which is exactly the motivation to use it in
the first place. The model could therefor indirectly predict sensitive informa-
tion about the user to generate recommendations. In generating personalized
recommendations it is unavoidable for the results not to give some information
on the users interests and further the users personality and life situation. There
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User Interest Example

Figure 1: Plots showing the final interest prediction by the model. Each line
represents a different interest the model observed in the dataset. The y-axis
essentially represents the predicted probability that the user belongs to the
specific interest.

are however some areas, when it comes to people, where making decision based
on maximizing clicks or purchases would be considered inappropriate.

2.5 Problem Formulation

This work will, again, be mainly focused on the problem of user interests
evolving over time. Especially short term interest changes are the main focus
in this work. Figure 1 shows some examples of what his work aims to achieve.
The model should recognize when the user is within the same interest over time,
when a change in interest occurs and if the user has any specific interest at all.

With marketplaces like FINN where data is continually collected, its often
only recent data that is used for training. This is especially the case for FINN
as new ads are published and old ads are removed continuously. Therefore slow
changes in interest are less of a concern as there is no very old data being used
for training that could bias the resulting recommendations.

Such short term iterest changes can be caused by several different factors.
Some of these factors are unobserved, for example the user could have lost or
broken an item they had and now need a replacement. The event that caused a

8



Observations for torget
Unique Users 1 997 254
Unique ads 2 232 315

Clicks 32 586 368

Table 1: Number of unique users and ads as well as the number of observations
for different event types and clicks observed in a sampled week. Observations
are measured across "torget" for one week. Torget is where ads for smaller items
that do not belong in any of the larger categories are placed.

Observations for Cars
Unique Users 1 301 120
Unique ads 189 403

Clicks 18 465 247

Table 2: Number of unique users and ads as well as the number of observations
for different event types and clicks. Observations are measured across ads for
cars for one week.

change in interest could alternatively be observed if a user looking at an ad is
what caused it. Outside events that affect user interest could also be correlated
with the ads a user has interacted with in the past. We will treat all of these
possibilities the same as no matter the cause the model will have to learn the
correlation between interaction with an ad and future iterest.

To start solving the problem of modelling a users interests and its changes one
could initially want to define what the user interests are and/or what constitutes
as a change in iterest. Defining what is a change of interest is however subjective,
especially with smaller changes. One user might be exploring products and
another might be looking for specific ads with the same click history these two
users could disagree on whether a change of interest occurred at all. This makes
creating a dataset where changes in interest have been labeled very difficult
as these are several possible solutions with probably varying probabilities. A
person could still look at a history over items a user have puchased or looked
at and make a good guess as to what they are interested in and where that
interest changed.

The ads a user did interact with is however known and can easily be used
as data. If one then assume that a good recommendation system also has
a good understanding of user interest, which is reasonable as knowing what
to recommend a user and knowing what a user is interested in is essentially
the same problem, the problems with directly modelling user interest can be
bypassed. The problem then becomes defining a model such that the models
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understanding of a users interest can be analyzed as a process though time.

3 Data

3.1 User-Ad Interaction Data

FINN stores, among others, events of ads being clicked, publishers of a ad
being contacted and ad purchases. For each such event a user id and an ad
id for the relevant user and ad is stored in addition to when it occurred, in
what context the ad was clicked (whether ad was found in a search result, as a
recommendation etc.), ad category, in addition to other information that will
not be used.

This data is continuously updated as data is collected form the FINN website,
and as ads are purchased or otherwise removed older events become less relevant
as the ad referenced in the event is no longer available. This does however not
mean that these events are entirely irrelevant. Interactions with an ad that is
no longer available could still help recognize correlations between events for ads
that are available. Older data is still expected to be less relevant, as the events
with available ads become less frequent.

Since the amount of data available is very large, and the decreasing relevance
of older data, all models used by FINN are trained on only recent data. How
far in the past the cutoff is set depends on the model. Usually a couple of weeks
to a few moths of data is used.

The length of user sequences is also given a limit. This is mostly for practical
reasons as long sequences can cause problems for batching. Long sequences
are also require a large amount of memory for the models presented. Limiting
sequence lengths to a few hundred observations is not expected to be a large
issue when short term interest changes are the main focus.

Different categories and events have different levels of data sparsity. We can
see in Table 1 and Table 3. There is a large difference in average clicks per
ad for different categories. Torget is a more difficult situation as there are less
observations per ad so the data set is more sparse.

For most of the models presented, it is natural to split the data into separate
sets of observations for each user. This set can be ordered as a time series per
user and will often be referred to as the user history. So when referring to the
next ad in this user history, this refers to the user event that happened after
the current event according to the event timestamp. This is convenient as the
goal of a recommender is to predict future actions of the user.

The user history can be further divided into sessions. The definition of
a session can be fuzzy. In this work a session will be defined as the items a
user clicked in a single sitting. once the user leaves their computer/website
the session is over. This can be use full as one can make the assumption that
a users interest is constant within a session. Some experimentation was done
with splitting user history into sessions when more than a set amount of time
had elapsed between observations. The FINN data was however not split into
sessions when fitting to real data for reason discussed later.

This paper will focus on car data. This data set has fewer ads which is very
helpful if one wants to fit models that are slower and has a larger memory usage.
This is because with fewer ads, less data is needed to get enough data per ad
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to a reasonable fit. Since we want to explore how a users interests changes over
time it would also not necessarily work well to only collect data on a subset of
ads. Then events which led a user form one ad to another will be lost and it
could become more difficult to find correlation between ads as a time series. It
therefore did not seem appropriate to exclude a large portion of ads.

There are however users an ads that are included in none to only a hand-
full of events. Giving recommendations to such ads and users are known as
the cold start problem (Schein et al. 2002). With collaborative filters giving
recommendations to such users and especially of such ads is difficult. When
none or very little data is available on an ad or user there are few samples
to compare and ad or users similarity to other ads or users. Excluding ads
with few observations is expected to have less of an impact on the models
ability to predict future events. By only excluding ads with low popularity less
observations are removed from the data set.

FINN has implemented data based recommendation models as well as a
search functionality which do show ads to users, independent of previous clicks
to some extent. Further improvement of such systems is considered a separate
problem and will mostly not be considered in this work. Ads and users with
few observations are therefore ignored.

3.2 Ad Data

Data for each ad can also be accessed. Information such as category, title,
postal code where ad was placed, description, and other ad specific information.
For cars one has manufacturer, production year, miles, model and fuel type.
Some of this information is filled by users, for example car model, and therefore
requires further processing to be useful, this goes for ad title and description
and images as well. Such information is not used here. However with the advent
of neural methods, models for processing text and images are readily available,
especially if gradients are available from the training method and loss/score
function used.

Some users fill information such as car manufacturer manually which leads
to some strange entries. However as long as all text is set to use the same case
information in the vast majority of ads can easily be recognized. All data, even
numerical, such as production year is split into categorical variables. This is
because, with users being able to input such numbers manually some users may
input only the correct decade some the exact year and some the wrong decade
or even century all together.

The data included for car ads in the production year, split into decades
between 1900s to the 2020s, the make, fuel type and body type. We do not
discuss the effect of including such data too much as the effects are very limited.
This is a common result for collaborative filtering models trained at FINN.

To load data for both events and ads one has to choose how far in the past
one wants to gather data from. Data for events is sorted after when the event
occurred and data for ads is sorted after when the ad was published. Due to
restrictions in both computation time and memory not all ads can be loaded.
This can lead to and ad referenced in an event not being loaded in the data-set
for ads. These events are however often involve a user looking at their own
older published ads and are therefore less important. The events referencing
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Observations for Cars
Unique Users 1 101 917
Unique ads 129 852

Clicks 64 338 371

Table 3: Total number of observations ads and user sequences in the offline
training set.

ads not available in the loaded part of the ad data-set were therefore ignored
when training.

3.3 Offline data

All models except those mentioned in chapter 7 and 9.1 are trained on the same
offline data set. The data set what gathered from 35 days of click data. Only
items with over 100 observations and users over 10 were included. User data
was limited to 200 observations and users with longer sequences of observations
had their data split into several sequences. The sequences split form the same
user and a sequence from a different user were treated the same. This can be
somewhat problematic as there likely is some correlation between sequences
from the same user. However the vast majority of sequences were below 200
observations so these potential effects were ignored.

A random 20% of the sequences in the full data set were selected at random
to be used as a test set to give results completely independent of the parameter
estimation process. Another 10% of the sequences were used to create a
validation set. The validation set was used for hyperparameter optimization.

4 Current Models Running at FINN

FINN uses several model to generate recommendations, this includes both
image matching algorithms and neural networks. This section will discuss two
of the methods used to generate user recommendations at FINN. This first
method is a recurrent neural network, RNN, recommendation system which
shows another way of handling changing iterest. The second method is a matrix
factorization method, which is quite popular in collaborative filtering. In the
following sections these methods are briefly discussed.

4.1 RNN Recomender

The RNN recommender FINN uses is based on the model described in Hidasi
et al. 2016. This model uses an RNN to predict the next ad in a session based
on the previous ads. While a standard RNN usually struggles with the problem
of vanishing gradients this recommeder uses a gated recurrent unit (Cho et al.
2014) to mitigate this problem. It introduces an update gate, zt, and a reset
gate, rt, to the basic RNN. The equations for updating the RNN then are
defined as,

zt = σ(Wzxt + Uzht−1)
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rt = σ(Wrxt + Urht−1)

ĥt = tanh(Wxt + U(rt � ht−1))

hi = (1− zt)ht−1 + ztĥt.

Here ht is the hidden state, ĥt is the proposed hidden state, and xt is the
input for the t’th ad clicked in a session. the initial state, h0 is set to zeros.
The matrices, Wz,Wr,W,Uz, Ur, U are parameters to be optimised. We write
the sigmoid function as σ and element-wise product as �. Since ht−1 is the
previous hidden state we see that by introducing zt and rt the network can
select which part of the previous and proposed state to keep in the current state.
This can help the model store information from further back in the session
thereby making more informed decisions.

The input xt is an embedding of t’th ad clicked. With N ads and and
embedding dimension d, we can note this as a matrix X of size d × N that
transforms one-hot encoded vectors, yi, of size N to xt, xt = Xyt. Essentially
we are trying to learn a dense representation of each ad that carries some
information about what the ad is so that similar ads have similar embeddings.
The matrix X can be pre-trained using a word2vec model (Mikolov et al. 2013)
though this has little impact on performance according to FINN.

The output is generated by a feed forward neural network that takes the
current state, ht, as input and transforms it to a vector of size N . This final
vector represents the score for each ad given the sequence of ads up to t. The
ads with the highest score are recommended to the user, though FINN limits
the recommendations to ads from the last 1-2 weeks and excludes any ads the
user has seen before.

For parameter optimization the authors of the recommender introduce a
ranking loss, where negative examples are sampled according to popularity.
Though other loss functions can also be used. This reduces computational cost
as negative samples can be sampled from other batches. They also argue that
the user is more likely to know about the popular ads and therefore we can
have higher confidence that a user does not currently want those ads. With a
sample of scores of other ads, (r̂1, . . . , r̂Ns

), and score for selected ad r̂s, their
ranking loss is defined as,

Ls = 1
Ns

Ns∑
t=1

σ(r̂t − r̂s) + σ(r̂2
t )

The RNN clearly allows for fitting changing interests. Especially with the forget
and update gate, the model can decide what will influence future predictions
based on the current input. However interpreting neural networks is notoriously
hard, therefore figuring out when iterest changes occur or even understanding
to what extent the model is actually recognising a change in interest can be
difficult. This makes the RNN recommender less relevant to our problem

4.2 Matrix Factorization

The matrix factorization method used by FINN (Spark 2021) is static and
does not adapt to changing user interests. There are heuristics to mitigate this
problem (Yehuda Koren 2009, Y. Koren, Bell and Volinsky 2009a) but they
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are not considered here. Instead of using the data as a time series this matrix
factorization method uses all past events to generate a score for each ad for
every user. What score is given for each type of ad interaction has to be set
before training. Typically a user purchasing an ad is given a higher score than
a user just clicking on an ad and so on. For such implicit feedback data the
score should essentially represent both our confidence that the user likes the ad
and how much the user likes the ad which can make the score a bit difficult to
interpret.

These scores the fill a, typically sparse, matrix where a lot of the entries
are 0 as the user has not interacted with the ad. If there are N ads and K
users, these scores fill a K × N , Y . Entry yk,i, k’th row and i’th column of
Y represents the score of ad i for user k. If user k clicked on ad i this would
be a lower score than if user i purchased ad i and if the user did not interact
with ad k ad all yk,i would be 0. This Y matrix is used as input for the matrix
factorization model.

Matrix factorization works by approximating the input matrix with a lower
rank matrix. This lower rank matrix W can be represented as the product of a
matrix U of dimension K ×m and a matrix O of dimension N ×m.

W = U ×OT

The value m is will be termed the embedding dimension. The matrices U and
O are found by minimizing the distance between W and Y under some measure.
The method used at fin minimizes the residual sum of squares so, writing uk

and oi as the rows of S and B respectively,

K∑
k

,

N∑
i

(yk,i − wk,i)2 =
K∑
k

,

N∑
i

(yk,i − uk · oi)2

is subject to minimization.
The method used at FINN uses alternating least squares (Y. Koren, Bell

and Volinsky 2009b; Y. Koren, Bell and Volinsky 2009a) to solve this problem.
This essentially involves solving for the optimal value of one of U and O keeping
the other matrix static. This process alternates between which matrix is solved
and which is kept static until convergence.

One helpful interpretation of such a model is that we create an embedding,
or latent factors, for each ad oi and user, uk and the interest score is represented
by a function of these embeddings. In the simple case presented this is simply
a dot product.

5 Definition of User Interest

5.1 Overview

To define models exploring the evolution of interest over time a definition of
user interest is needed. The definition used for our model will be the same as
in Sahoo, Singh and Mukhopadhyay 2012. However a discussion around the
assumptions this definition implicitly makes is also given. In addition why the
assumptions are probably incorrect but also useful simplifications of reality. To
give a cleaner definition of interest it is assumed that users have been separated

14



into groups that have the same interests and we will consider modelling the
interest of one of these groups.

The goal for this paper is to model user interests and not to maximize
any specific action. The densest available data to indicate user interests was
therefore chosen, namely clicks on ads. While such data can be supplemented
with other inputs like purchases and so on, one would then need to define the
relation between a users interests and all of the inputs taken in addition to how
the different inputs relate to each other.

Many recommendation systems, like the one mentioned in chapter 4.2, create
this relation by giving each interaction a score based on a weighted sum of all
the inputs. Again, the score should essentially represent both our confidence
that the user likes the ad and how much the user likes the ad. While this could
improve recommendations, the goal of this paper is to model and recognize user
interests. Since interpreting a model on top of such a score can quickly become
more difficult, the presented recommender only uses click data.

As defined in Sahoo, Singh and Mukhopadhyay 2012 there is assumed to
be a discrete amount of interests that a user can have. An interest consists
of a probability distribution over all ads for which a user will click on next.
Initially we just define a unique selection probability per ad. Writing ads
clicked by the user as the series (c1, c2, . . . , ct) and user interests as the series
(u1, u2, . . . , ut), the k’th interest over n ads is defined as the probability vector
(v1,k, v2,k, . . . , vn,k). This interest defines the probability,

P (ct = i|ut = k) = vi,k

So given the user belongs to interest k, the user has probability vi,k of selecting
ad i.

5.2 Assumptions

This definition firstly assumes that given a user has the same interests the
probabilities that a user clicks an ad remain constant. This is a reasonable
assumption alone, but we also assume there to be a discrete set of interests. A
somewhat low number of interests will be used for the model presented due
to practical limitations. With such a discrete set of interests it becomes less
reasonable to expect there to be no variation between users who are modeled to
belong to the same iterest. An easy example to see where such an assumption
is incorrect is that the probability that a user clicks an ad remains the same
after a user has clicked on it, if the users general interest remains the same. It
is more reasonable to expect this probability to ether significantly decrease as
the user realizes they are not interested in that specific ad or increase as the
user sees it as a potential purchase.

Therefore it is potentially more correct to view these discrete interests as the
marginal distribution over many/a continuous distribution of similar interest.
How a users interest evolves through theses similar interests will then not be
captured by a model using discrete interests. This could potentially be captured
by a model using a more complex interest definition. However limiting the
model to a finite set of interest can also be a useful restriction exactly because it
requires creating these marginal distributions, essentially generating a clustering
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of what is potentially a much more complex space. Interpretation of the model
and analysis for the evolution of interests can then become much simpler.

Such a definition also implicitly assumes that the user is presented with,
and is selecting from, all ads. When users are only presented with a subset,
the selection probabilities do not sum to one and user behaviour is undefined.
A simple assumption to make to solve this issue is that user ad selection is
independent what ads are being shown to the user. If the user click, sampled
from interest probability vector, is not in the set of ads shown to the user,
then the user wont click anything. In this case no observation is made. This is
equivalent to if the shown ads sum to vs then the user has a probability 1− vs

of selecting nothing at all. And again these events are not observed as we only
consider click data.

It should also be noted that it is somewhat naive to assume users probability
of selecting an ad is independent of the fact that it is shown. An alternative
is that when a user is presented with a subset of ads they click according to a
transform of the click probabilities such that they sum to one over the shown ads.
For example users click according to normalizing shown ad click probabilities.

How exactly a user behaviour is affected by what is recommended could be
considered more of a a psychology question than statistics and is considered
out of scope here. True user behaviour is most likely a mixture of the two
possibilities. When only a subset is shown the user will have a higher probability
of clicking nothing at all while also having a higher probability of clicking the
shown items.

5.3 Observed Click Probability vs. Interest

The probability of an ad appearing in the subset of ads for the user to select at
time t will be noted as si,t, these do not sum to one over ads as the number
of presented ads is greater than one. Given the assumption of independence
mentioned above the observed selection probabilities are in fact,

P (ct = i|ut = k) = vi,k ∗ si,t∑n
j=1 vj,k ∗ sj,t

(1)

Since a previous recommender placed ads in the subset a user selects from
(ignoring use of search and other similar functionality), the probabilities that an
ad would be in the set of ads a user is presented with is neither constant over
time or ads. This because previous recommenders have been retrained during
data collection or adapt to user data. Furthermore these probabilities are likely
also highly correlated with ad selection probabilities as previous recommenders
will likely recognize similar user interests. If the previous recommenders are
unavailable or are not easily interpretable finding si,t can be difficult.

There are methods to minimize the dependence on the previous recommender
numerically, using the data over all ads presented to the user, for example the
previously mentioned ranking loss. However methods that involve processing
the ads not clicked by the user as well are expected to be slower, since the
methods presented here are quite slow to begin with using recommended ads to
estimate the true ad selection probabilities is not considered here.

However, while using data for all recommended ads, not just clicked ads,
during training is expected to be too slow, one can estimate the true selection
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probabilities after training. As mentioned above if we train on click data
directly, the model estimates the probabilities given in (1). If we assume si,t

to be constant over time, which again is not expected to be entirely correct,
then these probabilities can be directly estimated from data. One just needs
to calculate how often an ad appears in a users recommendations. The true
selection probabilities can then also easily be estimated,

vi,k ∝
P (ct = i|ut = k)

si,t
(2)

This estimator will have a high variance for ads rarely show to a user. So
some care has to be taken when estimating the true selection probabilities. For
example using the lower bound of a confidence interval.

Estimating the true selection probabilities using this method will however
treat each iterest equally. It is therefore less important to better our predictions
of user interest. It would be more relevant for giving better recommendations or
recommending less popular items. In our case it underlines what probabilities
the model actually fits. The probabilities fit by the model is not necessarily
representative of the actual click rate of an interest but can be skewed by
previous recommendations.

6 HMM Recommender

6.1 Introduction

Hidden Markov models, HMM, model a sequence of observations whose distri-
bution depend on some unobserved state of the system. The focus here will
be on a discrete HMM with a finite number of states. This means the system
has discrete steps between each observation. For each observation the system
belongs to a specific state which can change from one step to another. The
distribution of the observations depend on this unobserved state.

6.2 HMM

The observations used for this work are sequences over time. We note these
sequences as (X1, X2, . . . , Xsu

). Here Xt is a random variable for which item(s)
a user clicked at time t, and su is the sequence length for user u. The hidden
state at time t is noted as Zt and form a parallel sequence to the observations.
We again assume there to be a finite number of states. The variable K will
be used to represent the number of states. If the state at time t is k we write
zt = k.

Hidden Markov models follow the dependence structure show in figure 2.
The hidden states are assumed to have the Markov property meaning, given
Zt−1, the state at Zt is independent of all previous states. Furthermore given
Zt the observation Xt is independent of all previous observations, and states.

Transitions between hidden states are defined by the probabilities,

P (Zt+1 = k|Zt = l), k, l ∈ [1, . . . ,K].

For finite sequences an initial state distribution also needs to be defined, P (Z0 =
k). The distributions of the observed variable given the hidden state is referred
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Figure 2: Dependence structure in a Hidden Markov Model. The unobserved
hidden states are labeled Z and the observed events are labeled X. Dashed
arrows represent dependence according to a Markov property. Solid arrows
represent dependence trough the defined emission distribution

to as the emission distribution. The emission distribution can be continuous but
will be assumed to be a discrete distribution that can take a finite number of
values. This emission distribution then defines P (Xt = i|Zt = k), i ∈ [1, . . . , N ],
where the emission distribution can take N possible values.

6.3 Recommendation Model

From the definition of a HMM, we can see that the interest definition given in
chapter 5 fits quite well as an emission distribution. This definition describes
the user behaviour given that we know a user to belong to a specific interest.
The HMM allows the use of such a definition by modeling the unobserved states,
which in this case is which interest a user currently has.

By using the definition of interest presented in chapter 5 in an HMM one
gets a similar model to that presented in Sahoo, Singh and Mukhopadhyay
2012. User interests are represented by K probability vectors which contain
the observed selection probabilities (1) for each state. Each user belongs to one
state, the state of a user determines which of the K probability vectors the
observations from the user currently follow. The hidden Markov chain describes
how the users move/transition between these states.

Again, in a hidden Markov model the hidden states are assumed to have
the Markov property. So transitions to the next hidden state only depend
on the current hidden state. This assumption is restrictive. One could easily
describe some reasonable user behaviour where the Markov property is not
valid. Though user interest is influenced by a lot more outside factors, like items
getting lost or broken, than just previous interest. So while this assumption is
restrictive it might also help with not over fitting such outside influences to the
many possible permutations of previous states.

In this simple HMM recommendation model, unique probabilities are fit to
each of the, initial state probabilities, P (Z1 = k) = πk, transition probabilities,
P (Zt+1 = k|P (Zt = l) = Ak,l, and emission probabilities, P (Xt = i|Zt = k) =
vk,i.

The matrix A is often referred to as a transition matrix giving probabilities
of moving between states. The vector π is the distribution of starting states.
With N possible ads this gives model parameters as shown in table 4.

It should also be mentioned that when predicting recommendations these
states need to be estimated from the observed data. Therefore probabilities
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Prameter Size Description
π 1×K Starting probabilities
A K ×K Transition probabilities
V K ×N Selection probabilities for each state

Table 4: Parameters in simple HMM model

for the next observation can depend on many previous observations selections,
as the probabilities of the current hidden states can depend on many previous
observations. This is only to say that while the Markov assumption would too
strict on the item level, moving this assumption to a hidden state relaxes it,
while we still are able to observe what state the model believes a user belongs
to.

Of course there is the extreme case where each hidden state describes the
selection of one item, having probability zero for all other items. This means
there is no longer any uncertainty in the hidden states and we have the Markov
property on the item level as well. This situation should be avoided through
regularization as we only want low probabilities of selecting an item if this is
significant from the data.

The model presented in Sahoo, Singh and Mukhopadhyay 2012 worked on a
less granular timescale considering each observation to be the selections made
by a user over a month. This means each observation potentially consists of
several click events. From a modelling perspective having multiple or single
click events in an observation is quite similar. Both cases represent draws from
a multinomial distribution with probabilities given by V , just with a different
number of trails.

While the data used here allows for a single click event per observation,
model definitions and equations will be given to allow for multiple click events
per observation. In Sahoo, Singh and Mukhopadhyay 2012 the number of click
events was also modeled, however here the number of clicks will be assumed to
be independent of user state and therefor ignored.

6.4 Optimization

Optimization is done through the EM algorithm (Dempster, Laird and Rubin
1977). This is a method in which a local maximum of the likelihood is reached
by iteratively updating the parameters. The parameter update comes from
maximising the function,

Q(θ|θ(m)) = E(l(θ)|θ(m)),

which is the expected log-likelihood given previous parameter estimates, θ(m) =
(π(m),A(m),V (m)), and observed data over the hidden states.

The likelihood for this model is additive over users. To avoid cluttered
indexes we first derive Qu(θ|θ(m)) for each user where,

Q(θ|θ(m)) =
U∑

u=1
Qu(θ|θ(m)),
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for U users. To find this function we start with the complete log-likelihood for
one user, u, with su sessions,

l(θ)u = log(P (Z1 = z1)) +
N∑

i=1
x1,i log(P (X1 = i|Z1 = z1))

+
su∑

t=2
log(P (Zt = zt|Zt−1 = zt−1)) +

N∑
i=1

xt,i log(P (Xt = i|Zt = zt)).

(3)

Note each user has unique observations xt,i the index is ignored for clarity.
Here, Xt is a random variable for selecting items at each session, t. The number
of items i observed in session t is xt,i. This will usually be 1 or 0. Lastly, zt

is the hidden state for session t. We can introduce indicator variables to (3)
indicating which hidden state each observation comes from,

l(θ)u =
K∑

k=1
1(z1 = k)[log(P (Z1 = k)) +

N∑
i=1

x1,i log(P (X1 = i|Z1 = k))]

+
su∑

t=2

K∑
k=1

K∑
l=1

1(zt = k, zt−1 = l)
[

log(P (Zt = k|Zt−1 = l))

+
N∑

i=1
xt,i log(P (Xt = i|Zt = k))

]
.

We recognize, P (Z1 = k) = πk, as the initial state probabilities, P (Zt =
k|Zt−1 = l) = Ak,l, as the transition probabilities and, P (Xt = i|Zt = k)) =
vk,xt

, as the multinomial selection probability from the model definition. The
likelihood is then,

l(θ)u =
K∑

k=1
1(z1 = k)[log(πk) +

N∑
i=1

x1,i log(vk,i)]

+
su∑

t=2

K∑
k=1

K∑
l=1

1(zt = k, zt−1 = l)[log(Ak,l) +
N∑

i=1
xt,i log(vk,i)].

(4)

Taking expectation of (4) gives,

Qu(θ|θ(m)) =
K∑

k=1
Pr(Z1 = k|x, θ(m))[log(πk) +

N∑
i=1

x1,i log(vk,i)]

+
su∑

t=2

K∑
k=1

K∑
l=1

Pr(Zt = k, Zt−1 = l|x, θ(m))[log(Ak,l) +
N∑

i=1
xt,i log(vk,i)].

(5)

For update equations we need the probabilities Pr(Zt = k|x, θ(m)) and
Pr(Zt = k, Zt−1 = j|x, θ(m)), which can be found by a forward and backward
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pass trough the data. For ease of notation and reading we write,

qt|j(k) = Pr(Zt = k|x1:j = (x1, . . . ,xj), θ(m))

fk(xt; θ) = Pr(xt|Zt = k, θ(m)) =
(
∑N

i=1 xt,i)!∏N
i=1 xt,i!

N∏
i=1

(v(m)
k,i )xt,i

Note the normalizing factor of the multinomial distribution never needs to be
calculated as it cancels out when normalizing the qt|j(k) values. Since we take
the previous parameter estimates, θ(m) as given, we can find q1|1(k) with the
initial state probabilities, π(m)

k ,

q1|1(k) =
π

(m)
k fk(x1; θ)∑K

l π
(m)
l fl(x1; θ)

(6)

The previous transition probability estimates are also given, A(m)
k,l , therefore we

can also find q2|1(k) trough,

q2|1(k) =
K∑

l=1
Pr(Z2 = k|Z1 = l,x1)Pr(Z1 = l|x1)

=
K∑

l=1
A

(m)
k,l q1|1(l),

(7)

and q2|2(k),

q2|2(k) = Pr(Z2 = k|x1)P (x2|Z2 = k)
P (x2|x1) ∝ q2|1(k)fk(x1; θ), (8)

of course
∑

k qt|t(k) = 1. In fact we see that (7, 8) can be used to update any
qt|t(k) to qt+1|t+1(k). So with q1|1(k) we can find qt|t(k) for t ∈ (1, . . . , su).

What we wanted was qt|su
(k), i.e. the probability of Zt = k given the whole

session, not just up to t. With (7, 8) we can find qsu|su
(k) so we only need

backward updates to find, qt|su
(k) from qt+1|su

(k),

qt|su
(k) = P (Zt = k|x1:su

)

=
K∑

l=1
P (Zt = k|Zt+1 = l,x1:t)P (Zt+1 = l|x1:su)

=
K∑

l=1

P (Zt+1 = l|Zt = k, x1:t)P (Zt = k|x1:t)
P (Zt+1 = l|x1:su

) qt+1|su
(l)

=
K∑

l=1

A
(m)
l,k qt|t(k)
qt+1|t(l)

qt+1|su
(l).
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We also need Pr(Zt = k, Zt−1 = l|x1:su
, θ(m)),

Pr(Zt = k, Zt−1 = l|x1:su
, θ(m)) = Pr(Zt−1 = l|Zt = k,x1:t−1, θ

(m))qt|su
(k)

= Pr(Zt = k|Zt−1 = l,x1:t−1)Pr(Zt−1 = l|x1:t−1)
Pr(Zt = k|x1:t−1) qt|su

(k)

=
qt−1|t−1(l)A(m)

k,l

qt|t−1(k) qt|su
(k)

The steps required to find Qu(θ|θ(m)) becomes,

q1|1(k) =
π

(m)
k fk(x1; θ)∑
l π

(m)
l fl(x1; θ)

(9)

qt+1|t(k) =
K∑

l=1
A

(m)
k,l qt|t(l) (10)

qt+1|t+1(k) ∝ qt+1|t(k)fk(xt; θ) (11)

qt|su
(k) =

K∑
l=1

A
(m)
l,k qt|t(k)
qt+1|t(l)

qt+1|su
(l) (12)

π̂u
k = q1|su

(k) (13)

Âu
l,k = Pr(Zt = k, Zt−1 = l|x1:su , θ

(m)) =
qt−1|t−1(l)A(m)

k,l

qt|t−1(k) qt|su
(k) (14)

The process is initialized by (9) and then iterates through the session with (10)
and (11) to obtain qsu|su

(k). With qsu|su
(k) we can start iterating backward

through the session with (12) to obtain qt|su
(k) = Pr(Zt = k|x1:su

, θ(m)). We
can find the expected initial state probabilities and transition probabilities for a
user session with (13) and (14). We assume user sessions to be independent so
this can be done independently for each user session. The complete Q(θ|θ(m))
for all data is then,

Q(θ|θ(m)) =
U∑

u=1
Qu(θ|θ(m))

With Q(θ|θ(m)) we want to maximize for the model parameters, however
Sahoo, Singh and Mukhopadhyay 2012 found that maximum likelihood estim-
ators (MLE) was not appropriate in this situation. We can for example easily
assign 0 probability for a transition or selection of an item if the transition or
selection is not observed in the data. We want the model to be more restrictive
so instead use maximum a posteriori (MAP), assigning a dirichlet prior to model
parameters,

π, Ak,∗ ∼ Dir(x;αk),αk = {αk,l}1:K

vk,∗ ∼ Dir(x;βk),βk = {βk,i}1:N

where Ak,∗ is the k’th row of A and vk,∗ = (vk,1, . . . , vk,N ) is the k’th row of
V . The MAP estimates for π and A are given as normal with HMM with the
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added dirichlet prior,

π
(m+1)
k =

[∑
u(q1|su

(k))
]

+ αk,0 − 1[∑
u

∑
k(q1|su

(k))
]

+ (
∑

k αk,0)−K
(15)

A
(m+1)
k,l =

[∑
u

∑
t Pr(Zt = k, Zt−1 = l|x1:su

, θ(m))
]

+ αk,l − 1[∑
u

∑
t

∑
l Pr(Zt = k, Zt−1 = l|x1:su

, θ(m))
]

+ (
∑

k αk,l)−K
(16)

To find estimators for vk,i we maximise Q(θ|θ(m)). We have that
∑N

i vk,i = 1
since these are probabilities for the multinomial distribution, so a lagrange
multiplier is added to maximize within this constraint.

Q(θ|θ(m)) =
U∑

u=1

[
K∑

k=1
π̂u

k [log(πk) +
N∑

i=1
x1,i log(vk,i)]

+
su∑

t=2

K∑
k=1

[ K∑
l=1

Âu
l,k[log(Ak,l) +

N∑
i=1

xt,i log(vk,i)]
]]

− λ
K∑

k=1

( N∑
i=1

vk,i − 1
)

+
K∑

k=1

N∑
i=1

(αk,i − 1) log(vk,i).

Taking derivative w.r.t vk,i,

δQ(θ|θ(m))
δvk,i

=
U∑

u=1

[
x1,iπ̂

u
k

1
vk,i

+
su∑

t=2
xt,i

1
vk,i

[ K∑
l=1

Âu
l,k

]]

− λ+ (αk,i − 1) 1
vk,i

.

Since,

K∑
l=1

Âu
l,k =

K∑
l=1

Pr(Zt = k, Zt−1 = l|x1:su , θ
(m)) = Pr(Zt = k|x1:su , θ

(m)),

this simplifies to,

δQ(θ|θ(m))
δvk,i

=
U∑

u=1

[
x1,iq1|su

(k) 1
vk,i

+
su∑

t=2
xt,iqt|su

(k) 1
vk,i

]
− λ+ (αk,i − 1) 1

vk,i

= 1
vk,i

U∑
u=1

[
su∑

t=1
xt,iqt|su

(k)
]
− λ+ (αk,i − 1) 1

vk,i
.

Taking derivative w.r.t λ gives,

δQ(θ|θ(m))
δλ

=
K∑

k=1

( N∑
j=1

vk,j − 1
)
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Solve for 0,

N∑
j=1

vk,j − 1 = 0 (17)

1
vk,i

U∑
u=1

[
su∑

t=1
xt,iqt|su

(k)
]
− λ+ (αk,i − 1) 1

vk,i
= 0 (18)

Rewriting (18),

1
λ

U∑
u=1

[
su∑

t=1
xt,iqt|su

(k)
]

+ 1
λ

(αk,i − 1) = vk,i

Using this vk,i in 17 gives,

N∑
j=1

[
1
λ

U∑
u=1

[ su∑
t=1

xt,jqt|su
(k)
]

+ 1
λ

(αk,i − 1)
]

= 1

U∑
u=1

[
su∑

t=1

N∑
j=1

xt,jqt|su
(k)
]

+ ((
∑

i

αk,i)−N) = λ

U∑
u=1

[
su∑

t=1
qt|su

(k)
N∑

j=1
xt,j

]
+ ((

∑
i

αk,i)−N) = λ

With the value of λ we get the next estimate for vk,i,

v
(m+1)
k,i =

[
∑U

u=1
∑su

t=1 xt,iqt|su
(k)] + αk,i − 1

[
∑U

u=1
∑su

t=1 qt|su
(k)
∑N

j=1 xt,j ] + (
∑

i αk,i)−N
(19)

With (15, 16, 19) we have all parameter updates. The EM algorithm
guarantees that the likelihood for estimates θ(m+1) will be higher than θ(m),
therefore parameters need to be updated until convergence. It should be
noted that it is not guaranteed to reach the maximum likelihood, only a local
maximum.

7 Simulation Testing

There are some pitfalls with such a model which is easiest to show though simu-
lated data. The fitted model can then be compared against the true distribution.
To simulate data we need to generate the distribution parameters for this true
model, Markov chain parameters and multinomial selection probabilities.

By looking at a sample of user sessions it is clear that users are mostly
looking for specific items or item types. If it is the case that users are only
looking for a subset of items then using a uniform prior to generate the true
distribution, does not necessarily reflect this behaviour. A large amount of
selection probabilities for each state are expected to be close to zero.

To get simulated data closer to this behaviour we zero expand V , meaning
only a subset of item selections are possible. The fact that there are items
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users find not interesting makes it easier to distinguish and recognize states, as
selection probabilities become very different.

In real data there is probably some correlation between states of what items
are not interesting. For example there could be several states describing different
interest in different clothing all of which may have no interest in boats. This
correlation is exploited in chapter 8, but is ignored for now.

There are also some distributions that are not fitted in our model but are
needed for simulation. This includes the distributions for session length, and
number of session per user. Data indicates we can approximate them with a
geometric distribution. This is also convenient as we then have a distribution
equivalent to that of a HMM with smaller sessions but higher diagonal transition
probabilities.

Such simulation testing might seem somewhat unnecessary in a situation
where we have an unending ammount of data. By the time a model has finished
training a test set can be created from new observations. However from a
statistical point of view we want to figure out what problem the model can
solve. What is the distribution we are actually fitting when training the model?

The parameters of the true distribution will be noted as θ = (π,v,A) and for
the estimated model as θ̂ = ((π̂, v̂, Â)). After generating some true parameters
we can simulate data and fit the model. Comparing likelihood of the true and
fitted model will mostly be used to evaluate the fitted parameters. Comparing
the true and fitted model directly is however difficult as discussed in chapter
7.1.

7.1 Label Switching

A state k is defined by, (πk,vk,Ak,∗), where πk is the probability of starting in
the state, k is the selection probabilities within the state and A

k,∗ , k’th row of
A, is the transition probabilities out from the state. The model behaviour is
independent of which k one assigns the state to. Note that if one reassigns the
order of states, both rows and columns of A need to be reordered the same to
keep the same transition probabilities.

With a rearrangement r(k), such that all r(k) contain the same set of values
as all k the following rearrangement, performed for all k, results in the same
model,

π′k = πr(k)

v′k = vr(k)

A′k,∗ = Ar(k),∗

A′′∗,k = A′∗,r(k)

As in the model defined by, (π,v,A) is the same as the model defined by
(π′,v′,A′′).

This independence of ordering can be seen in the likelihood. In (4) the result
is the same if we used indexes r(k) for k and r(l) for l as a new order is just
permuting a sum. This means the first hidden state in the true parameters may
not be fitted to the first hidden state in the estimated model, depending on the
random initialization. Therefore it is not appropriate to compare the i’th state
from the true distribution to the i’th state from the model directly.
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This issue is referred to as label switching. The label in this case is the
index we assign to the states. A reasonable loss function between the true
model parameters and the fitted model then needs to be label invariant. Label
invariant loss functions (Jasra, Holmes and Stephens 2005) are loss functions
that give the same result no matter what order labels are in. The loss function,

L =
∑

i

l(v̂,vi).

for example, comparing the i’th state from the distribution and model is not
label invariant. With this loss switching the i’th state of the model with another
would lead to different loss, which is strange as the model before and after
switching is equivalent. The estimated model and the true model may even have
a different number of states in which case this loss could not be implemented
at all. Comparing the likelihood of two models is label invariant.

Any further comparisons between the model should also be label invariant.
One way of achieving this is by relabeling the fitted model. This relabeling
process should be such that the states in the fitted model are given the same
label as the closest state in the fitted model. However one then needs to define
closeness in relation to states.

Due to the fact that state selection probabilities need to sum to one the
model is motivated to separate the data as much as possible. The more the
model manages to separate different states the higher the selection probabilities
for the items within the state will be. To separate the states the model need to
create state definitions such that the user only has a high probability of existing
in the state over specific observations, Figure 1 shows this trend.

States are therefore, if the model is able, defined such that they only have
a high probability for a certain subset of observations in the training data. A
similar state would then be expected to have a high probability for approximately
the same observations in the training set. To measure the similarity between
states we can therefore calculate the correlation between the probability of users
belonging in the a state for every state in the true and fitted model.

The fitted model can then be relabeled by first calculating the correlation
between qt|su

(k) calculated using true parameters and qt|su
(l) calculated using

fitted parameters for all combinations of k and l.
Comparing each true state to the closest estimated state is label invariant as

the closest estimated state is invariant to a reordering of the estimated states.
Note though that this reordering does not necessarily result in the same model,
some states may be excluded. We can also get duplicate states if one state of
the fitted model is the closest to several states. Though this is not really an
issue for what this process will be used for. So we have the following method of
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Figure 3: Plot showing a histogram over transition probabilities for a subsection
of the fitted transition matrix. Each model was fitted to a different data set
sampled from the true distribution. The true transition probabilities are shown
in the dashed line.

relabeling,
Algorithm 1: Relabel Estimated Model
Initialize index list r for all true states j do

i = fitted state with highest correlation to j;
r[j] = i

end
Reorder π with r
Reorder rows of v with r
Reorder rows of A with r
Reorder columns of A with r
(Row normalize A and v)
Figure 3 shows that the relabeled models seem to have distributions centered

around the true transition probabilities which shows that we mange to recognize
similar states.

This relabeling will be needed in chapter 9.4 to perform hyperparameter
tuning in a reasonable amount of time and without using too much compu-
tational resources. Essentially this allows a previous model to be used a an
initialization by collapsing states which are most similar. The assumptions that
are made for this to be reasonable are mentioned there.

7.2 Simulation Performance

To evaluate the performance of the model, the fitted model is compared to the
true model and a naive popularity recommender. In the context of our hidden
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Figure 4: Plot showing a histogram of likelihoods of models trained on the same
dataset with random initializations. The likelihood of the true model is given
in the vertical line.

Markov model, this is a model with one state with selection probabilities,

vi =
αn − 1 +

∑U
u

∑su

t xt,i

α−N +
∑U

u

∑su

t

∑N
i xt,i

This will serve as an indication of whether the fitted model has found some
useful clustering of the data. If the fitted model performs better than this
naive model on a test set this indicates we have found some generalizeable
information.

Firstly as the fitting algorithm only finds a local maxima of the likelihood
we need to check to what extent the model manages to find a solution close to
the global maxima. We then expect the likelihood on the training set to be as
large or greater that the true likelihood if we have converged to the maximum
likelihood estimators.

Figure 4 shows that the final model training set likelihood varies with
different initializations. If one had the maximum likelihood estimators all
solutions would arrive at the same likelihood, but in this case we do get struck
in local maxima. In general this means that, if possible, its good to start with
some different random initialization as there are cases where we do not converge
to a good solution.

While getting a better likelihood than the true model is a good indicator
for convergence. It is a bad indicator for model performance, in fact it can
indicate bad model performance as we have over fitted to the training data.
This means the model fit is too close to the observed numerical distribution
having also fitted some of random variance in the training set. That could be
and over/under representation of an ad or state transition. While this leads
to higher likelihood for the training set it leads to a worse likelihood to an
independent test set. To evaluate how well the model managed to fit the true
distribution we evaluate it on a independent test set.
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Figure 5: Test performance on a simulated test and training set of increasing
size for the presented model and a popularity recommender. Since datasizes
are changing the log likelihood observations are subtracted by the true log
likelihood. We see that as data increases model performance converges towards
the true model.

Figure 6: Test performance on a simulated test and training set with increasing
size with constant item-observation ratio for the presented model and a popular-
ity recommender. Since datasizes are changing the log likelihood observations
are subtracted by the true log likelihood. As both data and number of possible
items increase we see a decrease in model performance.

Here the each user follows the observed distribution from FINN data over
5 days splitting sessions at 30 minute breaks. This leads an expected sessions
per user of 14.7 and expected items per session of 5. The simulated users could
select between 200 items. and could move between 50 sates. As the amount of
training data increases we see the expected increase in test performance as the
observed distribution approaches the true distribution.

In the real data around 100 clicks per item is observed on average. An
important check is then to see if this recommendation model performs well with
this observation to ad ratio. Therefore performance as the model is trained on
an increasing number of observations and ads keeping the observation to ad
ratio approximately constant is tested.

29



Figure 6 we see the opposite trend than what we want. As data and number
of ads increase model performance decreases. This test was done using 50 states
and 20 observations per item. The trend worsens when increasing states. With
such a large number of items and users one would expect a lot more states to
be reasonable.

Additionally, the FINN data also contains a huge amount of variation in
popularity between items. Depending on how this variation manifests itself
within states this could be very detrimental to model performance compared
to the simple recommender. If, for example all state selection probabilities are
scaled by popularity, this is a correlation this recommender does not take into
account. For the current recomender all states are fitted independently which
means we need enough observations within each state to fit this popularity
scaling.

Both the number of items and difference in popularity of items in the true
distribution indicate that we need a more restrictive recommender.

7.3 Issues with the Pure HMM Recommender

This model can not generalize between items. Every item is seen as a completely
separate entity. This can quickly lead to issues like overfitting and mostly giving
popular items as recommendations. Not generalizing between items also leads
to a inefficient use of data. We expect there to be a correlation in interest
between similar items. This current model does not exploit any such correlation.
Distance from some item embeddings could be used as a difference measure.
Smoothing selection probabilities according to this distance measure. Comparing
observed frequency and obervations within a state to see if the difference in
selection likelihood between similar items is in fact significant.

One could include different measures of "interaction strength". Just a click
is a weak interaction and browsing an items images is a stronger interaction.
However this would change the model interpretation. An observation is then
no longer a click on an item but a score. Furtermore v is then not an array of
selection probabilities but a matrix with rows of normalized scores. This make
statistical interpretation more difficult.

8 HMM with Matrix Factorization

8.1 Introduction

The model presented in Sahoo, Singh and Mukhopadhyay 2012 was not suffi-
ciently restrictive to get a good fit with the number of items observed in the
FINN dataset. A more restrictive model can be achieved without changing the
model definition, for example by using fewer states or using restrictive priors.

Using fewer states will limit the number of different recommendations users
can be given, and reduce the extent of niche recommendations. With more
restrictive priors, some prior information to define them is required. This
essentially moves the problem of getting good state definitions to the prior
definitions.

Due to the amount of items in these datasets, most of the parameters are
the selection probabilities, V , Table 4. Other collaborative filtering methods
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are based on a user-item matrix similar to V . Matrix factorization presented
in chapter 4.2 is one of these methods. In V each entry represents a user in
state interests in a particular item. In matrix factorization data, referred to as
Y in chapter 4.2, is represented as a user-item matrix, so each row is the score
for each item given the user data. Under the assumption that users belong to
specific interests used by the recommendation models presented in this work,
the user in state interests and user interests matrices should be equivalent.
Assuming of course data is collected over a short period, the user interest matrix
only contain duplicate rows for users in the same state. In matrix factorization
however matrix entries are a arbitrary score. The matrix V is different in that
entries are instead a selection probability, meaning they must sum to 1.

8.2 Probability Matrix Factorization

The selection probability matrix, V , is a K ×N matrix. Since the matrix V
is a probability matrix where rows sum to 1. To restrict this matrix through
matrix factorization it is reasonable to use a link function between the matrix
multiplication of parameters S and B and the selection probabilities V . The
link function used here is the softmax. This is mostly for practical reasons as
in can be computed in log space and is quite efficient. The entries of V are
defined as,

S ×BT = H

vk,i = eHk,i∑N
j eHk,j

. (20)

The linear combinations in H are then transformed to a [0, 1] range where each
row sums to one.

The model presented in Sahoo, Singh and Mukhopadhyay 2012 needs K,
the number of states, new parameters for each new item in the dataset. In a
matrix factorization model we only need as many as the embedding dimension.
With such a model we assume that there exists a vector representation of states
and items of a specific size such that a funcion of these vector representation
gives the item selection probability.

While one could draw some similarities between our model and logistic
regression, interpretation of the model is much closer to that of a matrix
factorization model as the goal is to allow the model generalize between states.
From this point on it is assumed that V is of a higher rank that the embedding
dimension. This is not guaranteed, but still reasonable since V results from a
random initialization.

8.3 Optimization

To fit the S and B parameter matrices the main choices are alternating least
squares (ALS) and stochastic gradient ascent (Y. Koren, Bell and Volinsky
2009a). While both algorithms have the undesirable quality that the time/it-
erations needed to converge is unknown and it is not exact. Gradient ascent
does allow complete freedom in defining restrictions so long as gradients can
be calculated. With alternating least squares one matrix is fixed, without the
link function, the problem then becomes quadratic and an exact solution to the
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other matrix can be found. The link function causes some problems for the
ALS approach as the optimization equations to be solved for S and B become
quite similar to those of logistic regression. The highly non-linear link function
means there is no simple solution and the optimum has to be found by some
form of gradient ascent. ALS is therefore expected to be substantially slower in
this case and stochastic gradient ascent is used to fit S and B.

The gradients for the parameters can be calculated by inserting the defini-
tions of vk,i for the factorized model, (20), into (5). Calculating the Q function
by iterating though data would be too slow to do gradient ascent. We can
however reorder this function such that we only need to iterate though a K×N
matrix. In very sparse datasets there could be more entries in this matrix than
data points, however in practice performing computation on matrices is much
faster than performing computation on lists of varying lengths. Furthermore
many libraries exist to easily perform gradient acent/decent with matrices on
the GPU.

The Q function,

Q(θ|θ(m)) =
U∑

u=1

[
K∑

k=1
π̂u

k [log(πk) +
N∑

i=1
x1,i log(vk,i)]

+
su∑

t=2

K∑
k=1

[ K∑
l=1

Âu
l,k[log(Ak,l) +

N∑
i=1

xt,i log(vk,i)]
]]

with respect to vk,i is proportional to,

U∑
u=1

[
K∑

k=1
π̂u

k

N∑
i=1

x1,i log(vk,i) +
su∑

t=2

K∑
k=1

qt|su
(k)

N∑
i=1

xt,i log(vk,i)
]

=
U∑

u=1

su∑
t=1

K∑
k=1

qt|su
(k)

N∑
i=1

xt,i log(vk,i)

=
K∑

k=1

N∑
i=1

log(vk,i)
U∑

u=1

su∑
t=1

xt,iqt|su
(k)

=
K∑

k=1

N∑
i=1

log(vk,i)Ṽk,i

Ṽk,i =
su∑

t=1
xt,iqt|su

(k) (21)

So maximizing Q is equivalent to maximizing the sum of element-wise
multiplication between the matrices log(V ) and Ṽ . Since Ṽ is independent of
V , we do not need to go through the data for each iteration.

Some additional degrees of freedom are limited, both for interpretation
and identifiability. Each column of B are centered. Since the rows of V are
normalized a constant offset to a row of H would be normalized away,

vk,i = eHk,i+C∑N
j eHk,j+C

= eHk,i∑N
j eHk,j

.
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This leaves the model unidentifiable if rows of S and columns of B are not
centered.

Furthermore both rows of S and columns of B can adjust the variance of
the rows of V, so one needs to be limited to a constant variance, we chose B.
We can see this issue as,
s1,1c1 s1,2c2 · · · s1,mcm

s2,1c1 s2,2c2 · · · s2,mcm

...
...

...
sK,1c1 sK,2c2 · · · sK,mcm

×

b1,1/c1 b1,2/c1 · · · b1,N/c1
b2,1/c2 b2,2/c2 · · · b2,N/c2

...
...

...
bm,1/cm bm,2/cm · · · bM,N/cm



=


b1 · s1 b2 · s1 · · · bN · s1
b1 · s2 b2 · s2 · · · bN · s2

...
...

...
b1 · sK b2 · sK · · · bN · sK

 = H

where (c1, . . . , cm) is some constant.
We can also naturally get a popularity parameter by centering columns of S,

but giving each item an intercept by adding a column to S with all entries set to
one. This intercept would then represent how much more or less prevalent this
item is than what its data/embedding would fit. This is desirable as the data
we use to train the model is the result of another recommender which may have
a bias towards some items. Therefore one might want to give recommendations
that are less affected by popularity. At prediction, the popularity sensitivity of
item selection probabilities can be adjusted by multiplying the intercept by a
constant between 0 and 1. This intercept is similar to the bias term introduced
in many collaborative filtering methods Y. Koren, Bell and Volinsky 2009a;
Yehuda Koren 2009. However centering the columns of S in not mentioned in
the referenced papers. Without centering the factorization can still implicitly
fit an item bias as shown below.


s′1,1 + c1 s′1,2 + c2 · · · s′1,m + cm

s′2,1 + c1 s′2,2 + c2 · · · s′2,m + cm

...
...

...
s′K,1 + c1 s′K,2 + c2 · · · s′K,m + cm

×

b1,1 b1,2 · · · b1,N

b2,1 b2,2 · · · b2,N

...
...

...
bm,1 bm,2 · · · bM,N



=


b1 · s′1 + c · b1 b2 · s′1 + c · b2 · · · bN · s′1 + c · bN

b1 · s′2 + c · b1 b2 · s′2 + c · b2 · · · bN · s′2 + c · bN

...
...

...
b1 · s′K + c · b1 b2 · s′K + c · b2 · · · bN · s′K + c · bN


Here (s′1,i, . . . , s

′
K,i) = (s1,i − ci, . . . , s

′
K,i − ci), and ci =

∑K
k sk,i. The inter-

cept/item bias implicitly fit for item i when a restriction is not applied is,
c · bi. These methods also implement a sum of squares regularization to both
the S and B matrix but not on the bias, so at convergence the S matrix will
be centered over columns, and the correct bias/intercept will be achieved to
minimize the regularization loss.

For our model we have an iterative method to fit the matrix factorization
within an iterative method to fit the Markov chain. It is the reasonable, to
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expect that at least for the initial initializations running the matrix factorization
optimisation to convergence to in a waste of computation time. Therefore we
implement the intercept with this limit on S such that even with a early stop
the intercept is correctly defined.

This presents a problem in theory as the EM algorithm only guarantees
an increase in the likelihood if the true maximum of the Q function is found.
It does however not seem to be a problem in practice. The likelihood always
increases unless the model is close to convergence where numerical inaccuracy
also plays a role.

8.4 Including Ad Data

Matrix factorization methods also allow for the inclusion of data Y. Koren, Bell
and Volinsky 2009a. While the states are generated by the model and there is
no natural data to include for them some data is available for the items. This
could include price, postcode, item category and some item information specific
to its category. This item data can given in matrix form Bd similar to linear
regression methods and corresponding coefficients can be fit for each item.

The full H matrix, including item data is then,

S ×BT + Sd ×BT
d + b = H

Where b ∈ RN is the item bias/intercept. Which through the link function
gives the item selection probabilities.

8.5 Prediction

Theory
When predicting a users current state we do not have future observations,
meaning we can only predict, qt+1|t, the next state given previous observations,
and not given all data. As the user gives click events for the next observation,
one can choose to update the prediction as the user clicks further ads to be
included in the observation. This would give the following prediction algorithm.

When a new user arrives, at t = 0 the current state is initialized by the
estimated initial state probabilities, π̂ = q0|0. When a new observation starts
we have their current estimated state probabilities qt|t and can predict the next
user state for this new observation with 10 and get qt+1|t. As the user starts
clicking ads for this observation, if we choose to update the current state based
on this partial observation we can use 11 to get q∗t+1|t+1. As the user adds
further events to the observation q∗t+1|t+1 can be recalculated.

With the current predicted state we need to generate some recommendations.
While one could just select the state with maximum probability according to
the predicted state. Then generate recommendations based on this states
selection probabilities. This would not take in to account the certainty of the
predicted state. To take into account the certainty of the predicted state we
can instead generate recommendations based on a linear combination of the
selection probability vectors, v̂k, proportional to the predicted current state
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probabilities,

v∗ =
K∑

k=1
q∗t+1|t+1(k)v̂k

With the predicted current state probabilities, v∗, we can generate recommend-
ations either by sampling or by selecting the most probable items.

8.6 Implementation

If the given data has a somewhat small amount of users or items the models can
be implemented directly however with a larger number of items and observations
some numerical issues will arise.

Firstly, with a large amount of items, calculating the multinomial probability,
fk(xt; θ), will require handling numbers very close to zero before normalization.
This problem arises from calculating,

N∏
i=1

(v(m)
k,i )xt,i ,

for each session. With a large number of items the relevant v(m)
k,i will be very

small, at least at initialization. The result could then easily become too small
to be represented directly on a computer. We therefore perform this calculation
in log space,

log(fk(xt; θ)) = C +
N∑

i=1
(v(m)

k,i )xt,i.

These log values eventually need to be normalized. To normalize we first
subtract the largest value, Cmax, from all log values. so that the larges value is
0. This means taking the exponential will give values we can represent.

Secondly, with a large number of items, the observation matrices are very
sparse, for each observation most of the items were not clicked. This leads
to wasted memory usage and compute power with a direct implementation.
Converting this model to take a sparse data structure input, only non-zero
values, is trivial. However it is difficult to achieve similar performance (in
computation time) for less sparse situations due to lack of vectorization.

If the model only uses a single click event per observation implementation
can be much more efficient. Users history can the easily be batched together
with user histories of equivalent length. Preforming operations on batches is
much more efficient than performing the computation on each user individually.
With such matrix operations efficient libraries can be used, larger batches results
in less calls to the Python API which is generally slow.

To further accelerate fitting user data sequences had up to 5 elements
removed to batch as many user sessions together as possible. With these
larger batches it became very beneficial to use the GPU to also calculate HMM
parameter equations given in chapter 6.4, in addition to the matrix factorization.

Online Prediction
It would be somewhat troublesome for FINN the add additional data to be
stored with users. This means the current user state probabilities qt|t are not
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stored. To get the current state probabilities one then needs to iterate through
the whole user history. To give recommendations in an online setting however
predictions need to be fast. Furthermore prediction runs on a single core of a
CPU so there is quite a bit less compute power than when training.

To make predictions fast enough to be able to run an online test the length
of the user data included had to be limited to 25-10 ads. Furthermore when
performing the weighted sum over the selection probabilities only the top 10
states with the highest probabilities were used. Finally while iterating though
the user history user states, state prababilities are not fully normalized. The
max value is subtracted in log space to avoid numerical issues, however after
moving back from log-space state probabilities are not normalized as the solution
is the same only multiplied by a constant. Full normalization can be performed
as a final step.

Click Events per Observation
The model assumes the user can only belong to one state within an observation.
If the recommendation model includes several click events per observation as
the recomendation model presented above allows, It seems less reasonable for
this assumption to be true. For this assumption to be true it means that the
click events have been separated into observations at the exact points where
changes in interest occurred. With the data considered in this work, where click
events are split into observations is more or less arbitrary. While it might be
more reasonable to expect a change in interest to occur when there is a larger
amount of time between click events, there is no reason why changes of interest
can’t occur between shorter time intervals.

When an observation does include clicks from several different interests there
is no way for the model to separate these events. The model would have to
assign all of the click events to the probable states as seen in equation 19. This
means the model would not have the ability to completely separate interests.
One could perhaps relax the assumption that users only belong to one state,
allowing the model to separate the more messy user sessions. However a simpler
solution that works withing the presented model framework is to only use one
click event per observation.

The useful restriction combining click events close in time into one observa-
tion enforces is that interests do not change very rapidly. Say the model has
defined two states where users within either tend to with high probability move
between them. A situation like this will result in the transition probability of
staying within a state is similar to the probability of transitioning to the other
state. It would be reasonable in this case that the two states actually describe
the same interest as the user has similar probability for clicking an ad in their
current state as the other.This can be seen in Figure 1 as the model predicts
the user returning to a previous interest several times. While the change in
interest might make some sense in when only considering the local observations
the fact that the user moves back ant fourth between interests does make it
more difficult to conclude that there was in fact a change in interest.

However the belief users belong to a state for an extended period of time
can also be rephrased as a prior belief. In which case it would be correct to
include this belief in the priors for the transition matrix. If the belief is that
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users belong to the same state for an extended period of time this would mean
a higher prior should be included in the diagonal of the transition matrix prior.

Using a more informative prior for the transition matrix while using only one
event per observation allows the model to predict changes in interest between
any click event while still allowing the model to be restricted in how often a
change in interest should be predicted. However calculating the forward and
backward equations 7, 8 for every event can be computationally slow.

In this work model trained on real data only used single click events per
observation. This is because evaluating how a users interests evolves a a time
series is more straightforward when observations have the same size and one
does not need to handle the possibility that a user might have been in multiple
states within a observation. If the goal was purely recommendation however
grouping click events in observations might be beneficial for the decreased
computation time.

9 Results and Discussion

9.1 Online Testing

As discussed in the introduction, evaluating whether predicted changes in
interest are good is difficult to do directly. It is easier to test if the model has
the ability to gives good recommendations since, to give good recommendations
the model needs to understand a users current interests. Due to the prediction
function slowing down for some unknown reason after software updates the
model using optimal parameters, chapter 9.4, could not be tested. The model
tested had 200 hidden states, an embedding dimension of 50, no penalty and
uninformative priors.

Testing model performance was done in an online test. This means the
model was put in production at FINN and users were given recommendations
predicted by the model. The performance of the model is determined by the
click rate of users. The click rate is determined by how often users click an ad
given in a recommendation. Say a user was given 10 recommended ads and
clicks one of them, then the user was given 10 recommended ads and clicks
none, then the click rate is at 0.5 as one of the two recommendations were
interacted with.

The recommendations were given to a user in a category search. The user
selects some overarching categories they would like recommendations within.
Then the items within those categories with the highest click probabilities were
shown to the user.

The model was tested against the current recommendation model used by
FINN for this purpose. This model is a pure matrix factorization model using
the Alternating least squares, ALS, implementation in pyspark (Spark 2021).
This model trains on 60 days of data with an embedding dimension of 100. It
uses the default restriction parameters and no item data.

The ALS model is retrained every 24 hours so it still does adapt to user
interests. This is also in contrast to our model which was retrained every 48
hours. The ALS model recommendations was shown to 80% of users while the
HMM model was shown to 20% of users. The HMM model was first trained for
160 iterations. This required quite a large amount of computation so later the
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Model Click Rate Relative to Max
ALS 37.5% 1.0

HMM 160-iter 29.0% 0.77
ALS 39.0% 1.0

HMM 90-iter 31.2% 0.80

Table 5: Results of an online test comparing our HMM implementation and
pySpark ALS. The HMM tests for different number of iterations were done
at different times so ALS results during over the same time period are given
for both tests. Otherwise the HMM model used 200 hidden states with an
embedding dimension of 50.

model was adjusted to only use 90 iterations to train. These tests were not run
at the same time which means different ads and users may be active over that
time period adding some bias to the results. Therefore ALS result is given for
both tests.

Table 9.1 shows the resulting action rates from the online test. The ALS
method clearly performs better here. However the results shows that recom-
mendations are reasonable and can to some extent compare to the best recom-
mendation model at FINN for this purpose. So while the goal in this work
was not to give good recommendations but rather to detect interest changes,
this result does show that the ads the model ranks as likely for a user to be
interested are often relevant to the users current interests.

9.2 User Interest Prediction

To show how the model predicts the evolution of a users interests and furthermore
when a change in interest occurs both qt|t and qt|su

are plotted against the
items clicked by the user. The probabilities qt|su

are calculated backward from
the last item shown in the plot. This way both what the model believed the
user interests to be at the time of the observation and given future observations
can be seen.

To show what the user clicked, the make, model and production year of the
car in the ad clicked is given. The class of car is also given to give some easy
indication of what type of car the specific make and model is. The images from
the ad could not be used as the rights are held by the user who published the
ad.

The user sessions shown were chosen at random, though some are excluded as
they show a similar trend to other user sessions included. To select the sessions
shown, the test set was given a random order, then sessions were considered
in the order assigned in this test set. The indexes included to be shown were
[0, 1, 2, 4, 8, 9, 10, 12, 16]. The plots also only include state probabilities from
states that had the highest or second highest probability at any point. Including
all states leads to a lot of distracting noise between 0 and 0.1.

For each of the sessions included, state probabilities were calculated both
using the optimal model found in chapter 9.4 and the same model just using
150 states, half the number of states. This is to show that while the likelihood
would indicate that more states would lead to better recommendations this does
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introduce some issues when predicting user interests. These plots are given in
appendix .1. The different examples are labeled session 1 through session 8.

The plot of state probabilities given past data only, qt|t, shows at what
point in the session the model predicted a specific interest. The plot of these
probabilities do not show what the model believed the evolution of user interests
to be at any point. To show this one would need to calculate qt|su

backward
from each observation. The plot of qt|t should therefore be taken as point
estimates rather than a series. This plot is however drawn as lines to more
easily see which states are the same between observations.

The user state probabilities given all shown observations, qt|su
, however

is how the model believes the specific users interest evolved given all of the
shown observations. This plot therefore represents how the model, models users
interests. This plot is obviously the same as qt|t at the final observation as this
is qsu|su

.

Simple Interest Changes
Firstly the model manages to recognize a changes in interest when the change
is clear. Session 1 and 7 are good examples of such simple cases. Here the
user is clearly looking for a specific model of car and then switch to look for a
different model of car. This change was recognized as an interest change quite
quickly, see qt|t plot, usually only taking two observations of a different model
to recognize a change, i.e. predict a higher probability for a different state.

The speed of this change is of course dependent on how likely the different
ads are to be clicked for the different interest states. If the different ads for
cars have very similar probability of being clicked then the change would be
slow. A very slow or fast predicted change in interest is not a problem, so long
as it is sensible from data. Ideally a slow change, meaning similar selection
probabilities means the ads are very similar and a user clicking one or the other
indicates very similar interest.

When comparing the state probabilities given past and given all data for
session 1 and 7 we see that while the model is a bit delayed in recognizing
the change in interest this is corrected in the backward step. The switch in
interest is then placed more correctly. Though in session 1 the 300 state model
seemingly predicted the change in state early, granted with very low probability.
This is caused by the difference in transition probabilities between the two
states and the quite slow change in interest the model seems to predict in this
instance.

The high values in the diagonal of the transition matrix and similar selection
probabilities lead to these long tails, slow interest changes. Though this beha-
viour can seem a bit strange under the model assumptions, that the probability
of the user having changed state increases even as the types of ads the user
clicks remains the same. It makes more sense if one sees the process as a little
less discrete, even though this is not the process the model assumes. Then one
could see the user as becoming more and more inclined to switch state until
they finally end up clicking different types of ads.

Ultimately this shape of the modeled state probabilities is a consequence of
that interest states can not be completely separated leading to items potentially
having similar selection probabilities between states as seen in figure 14. If the
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interest transitions seem unreasonably slow this could then be improved by
increasing the number of states or using a different hidden model.

Exploratory Behaviour
The model seems to also be able to give quite reasonable results in cases where
the user interest appear to be non specific and more exploratory. Take session 2
where initially it is difficult to understand what the user is specifically looking
for. High and low price, station wagons, vans and electric cars are clicked
in quick succession. The model then seems to have a low confidence in any
interest state which is reasonable, more reasonable than being very confident in
a specific interest.

The model in some cases seems to fit a less noisy result with exploratory
behaviour as seen in session 3. Here the user also explores less different cars,
but we observe the 150 state model has a somewhat constant prediction with
two states with somewhat high probability. The 300 state model is however
quite confident in a single state, and given that the user is not clicking too
different ads neither predicted behaviour seem unreasonable.

In session 2 the 150 state model seems to have fit a quite high selection
probability to a specific state for the Tesla ad clicked by the user. At this point
the model becomes very confident that the user has switched state. When
conditioning on future data this confidence is lowered but still apparent. This
could be a case of overfitting by the model, having too low selection probability
for the Tesla in other states ans the user seems uninterested in Tesla ads
considering the future clicks. It could also be the observation which is the
outlier and one actually would, with a high probability, expect users to continue
exploring Teslas after one click. The fact that we do not see this behaviour
in the 300 state model points towards this behaviour not being very apparent
from data as the higher state model has not fit the same amount of confidence
in a Tesla interest state.

This behaviour of quite sudden confidence when a user clicks a Tesla is
observed for the 300 state model towards the end of session 6. Here the model
shows predicts that the previous interest state has a probability close to 0 after
one click on a Tesla event though the last click by the user seems to follow
this interest. It could be that user behaviour around Teslas consists of users
either clicking many Teslas in a row creating states with very high concentration
around Teslas, while there also exists quite a number of users who click a Tesla
ad once. If the model does not form two separate states for this behaviour for
all Tesla ads it can lead to such model predictions. We see that in this case it
is the 150 state model which has fit seemingly more reasonable user behaviour.

In session 4 we observe what we would prefer in situations where the user
explores a somewhat wide range of ads. After the user stops clicking very
specific ads, the model starts out having low confidence for most states but
eventually one state wins out. This means not significant interest changes are
predicted over the period where the user explores different options. This is
important as all ads this user clicked after the Hyundai Kona do seem to be
related to the same interest so all items could help give some indication of the
users current interests. If this model was then used to eliminate irrelevant clicks
for a separate recommendation model, none of these clicks would be removed.
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Session 9 is a bad example when it comes seemingly spurious interest changes.
All the clicks in this session could easily be from the same interest. The user
may be undecided if they want a normal sedan or station wagon or something
more robust and the user is exploring options withing these categories. In such
situations one would very much want the model to not predict any interest
changes. Predicting changes in interest where there potentially is none will
lead to the conclusion that clicked ads that in reality relate to the users current
interest are irrelevant.

The sudden interest changes with the Tesla ads in session 2 and 7 while
having predicted quite slow changes in session 1 and 8 underlines the need for
a more complex interest model. With the current number of states, to help the
issues is session 2 and 7 one would either need to restrict the model to higher
transition probabilities along the diagonal. This can be done through higher
priors or grouping clicks into a single observation. This will also inevitably lead
to slower transitions between states. On the other hand one could lower the
transition probabilities along the diagonal through priors. This will speed up
transitions but also lead to more spurious interest changes.

In theory increasing the number of states can solve these problems giving the
model the ability to fit more specialized states and transition probabilities. In
practice this is difficult for a number of reasons. Firstly, as previously mentioned,
training time is already an issue and transitions, forward and backward, are an
O(n2) operation so computation time increases quite quickly. Increasing the
number of states likely requires more data because, while figure 9 shows quite
good correlation, there is still a good amount of noise especially for transition
probabilities. Since there is no form of restriction on the transition probabilities
it is expected that to increase the number of states significantly one would
also want to use more data. Beyond just increasing training time this would
include data from further back in time. This means the time dependence of
state definitions is even more prevalent and many of the new states available to
fit some interest might not even be useful as they relate to older items.

The model can then give quite reasonable predictions of the evolution of
a users interest. This is especially the case for the extreme cases of the user
either considering very specific items or exploring very different items. Both of
these behaviours are quite clear from what the model predicts.

Cases where a user is exploring somewhat different ads, especially if the
user is interested in a few different types of cars as seen in session 9, the model
performance is less consistent. Here the model can predict spurious interest
changes which is very undesirable if one wants to use such a model to determine
what observations a relevant to the users current interests.

9.3 Convergence

The model presented is slow to train. This is highly dependent on the number
of states fitted, however for the highest number fitted for this work, 300 hidden
states, running 90 iterations took 46 hours on a NVIDIA TESLA P100 GPU.
This training time is too high to compete with the models used at FINN. All of
these models train withing 24 hours. This is especially disappointing as this
model handles older data quite naturally. We expect to see almost only benefits
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Figure 7: Evolution of training set likelihood over training iterations. Model
was trained with 100 hidden states and a embedding dimension of 30.

to using older data as the state of a user is allowed to change over time at any
point.

Training the model for 90 iterations does not result in convergence. However
as discussed in chapter 9.1, further iterations does not seem to have a large,
if any, impact on model performance. This is likely due to further iterations
making smaller adjustments to probabilities, however the order of especially
higher probability items could still be constant. It would then look like the model
was still improving when considering likelihood, while the recommendations
stay the same.

Even so, 46 hours to run 90 iterations is too much. Figure 7 shows the
likelihood over training. This shows that the initial steps of the model are
very slow. This can indicate a bad initialization. The reason is likely that
sampling initial parameters from the prior results in parameters with very
similar values. Since this means the different user states are very similar, it then
makes sense that the training is initially slow as the different user states have
little to separate them. The users then have a similar probability to belong to
all of the states which means most items will be included with some significant
probability in all states, as seen in equation 19.

Some simulation testing was done to see in using clustering to initialize
parameters could be helpful. The states were then initialized with small random
values for most items except for a small portion of the items that were often seen
together, which were given a high probability. While this did to some extent
help models converge faster it also increased the variance in the likelihood of
the resulting models for different random initializations.

Increasing the likelihood of landing in a bad local maximum is very undesir-
able in this case as one cannot train several models due to the time required.
When only one model is trained there is nothing to compare to. So without
being able to train several models one cant know if the model trained got stuck
in a bad local maximum. Instead the previous model parameters were used as
an initialization when necessary as discussed in chapter 9.4.

42



9.4 Hyperparameter Optimization

With the amount of time needed to fit a model, hyper parameter tuning becomes
problematic. Optimally one would be able to train several models on a grid
of hyperparamenters. Since the model only converges to local optima it would
also be useful to train several models with random initializations for each point
of the grid of hyperparameters.

Due to the time constraints of this work, low expectation of significant gains
in performance and also cost as servers used for training is lent by FINN full grid
search was not preformed. Hyperparameter tuning was therefore done linearly
for individual parameters with some consideration for possible correlations
between parameters. The search was further limited to the parameters con-
sidered most important, which includes number of hidden states and embedding
dimension. Priors, when less strict, were observed to have little effect on model
performance which is reasonable given the amount of observations.

For hyperparameter training models were also trained from a previously
fitted model. In general this should be avoided for models that optimize through
gradient ascent/descent. If the model used to initialize the training process
is in a local maximum then the model trained may not have the opportunity
of converging out of this maximum. Then every model trained will get stuck
in the same maximum, and there is no possibility to train several samples to
explore the full likelihood function. However as mentioned, training several
samples is not a possibility with this model.

If it is firstly assumed that all models using the same model as an initialization
converges to the same local minimum. This means there is a continuous evolution
of the likelihood the model converges to as hyper parameters are changed, if
the model jumped to a new maximum we would also observe a jump in the
likelihood. If it is also assumed that the change in likelihood due to different
hyper parameters is the same among all maximum in the likelihood function.
This second assumption is likely incorrect especially as the models become more
different and it is only used as several samples cannot be calculated. If these
assumptions are valid then initializing from a pretrained model means no noise
in results and the results are representative of the model in general.

We then need to define how to use a previously trained model to initialize a
model with potentially different number of states, embedding dimension and
penalty. Fitting a different embedding dimension and penalty is simple. First
the observed click probabilities, equation 21, are found using the original model
then the matrix factorization can be fitted with the new parameters to this
observed matrix.

To fit a different number of states, only reducing the number of states was
considered as the preferred time to fit a model for online testing was around 48
hours, so the max number of hidden states had to be around 300 or below to
fit this time window. To reduce the number of states, the correlation between
states were used as described in chapter 7.1. States with high correlation are
combined weighted by their respective popularities.

There is expected to be a large amount of correlation in the effect of penalty
and embedding dimension used in the matrix factorization. Increasing the
dimension of the matrix factorization however increases training time. Therefor
the model penalty was first increased to a point where it made a sizable

43



Figure 8: Plot showing the test set likelihood of models with 150, 200, 250 and
300 states. The other model parameters were optimized for a 300 state model.

improvement on the test set likelihood then the optimal embedding dimension
was found with this penalty.

There is expected to be some correlation between number of hidden states
and embedding dimension/penalty as well. It is expected that for lower number
of states the restriction provided by the matrix factorization is less necessary
and therefore a higher number of dimensions or lower penalty leads to better
results. It was chosen to optimize the embedding dimension with a model with
a high number of states as from preliminary results these models seemed to
perform better. So this may result in models with fewer number of states having
a somewhat lower likelihood than optimal.

The process of hyper parameter tuning then consisted of first fitting a model
to be used as an initialization. This model was fitted with the max number
of states one could reasonably expect to fit which was 300. An embedding
dimension of 50 was chosen for this model with low penalty. Using this ini-
tialization, first a penalty was selected which gives some improvement, but is
still less than optimal so that the embedding dimension can also be reduced to
improve training time.

Then the optimal embedding dimension was found, and finally the optimal
number of states at or below 300. This gave the model parameters of 300 states
with an embedding dimension of 30. Plotting the likelihoods over different
number of states shows that there might be more to gain from using a higher
number of states, as seen in figure 8. While the other hyper parameters were
optimized for a 300 state model, this plot does not seem to show a maxima at
300 states.

9.5 Transition matrix

To get some idea of the correctness of the fitted transition probabilities, fitted
transition probabilities are plotted against the observed transitions in the test
set as seen in figure 9. The observed transitions are calculated from equation
16 using the fitted model parameters. The observed transitions are therefore
calculated given the model parameter estimates. The current estimate of the
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Figure 9: Fitted transition probabilities plotted against observed transitions in
a test set.

Figure 10: Sub plot of figure trans-
ition probabilities plotted against
observed transitions in a test set
with diagonal elements only.

Figure 11: Fitted transition probab-
ilities plotted against observed trans-
itions in a test set with non-diagonal
elements only

45



transition matrix then influence the observed transition probabilities. However
we need a HMM model to calculate what transitions are observed and the
model parameters are calculated completely independently of the test set.
Furthermore it will be seen later the transitions seem very much determined by
the observations.

This plot will show if the transitions described by the fitted model occur in
the test set. Note the deviation between fitted and observed transitions is both
caused by parameters overfitting to the training set and the limited size of the
test. limited test set causes observed transitions probabilities in the test set
to also be different from the true distribution. This plot should therefore not
be seen as indication variation of transition probabilities. It rather indicates
how well the fitted transition probabilities matched that observed in the test
set. This is similar to variance but should not be seen as a direct relation.

The most distinct feature in this plot is that we clearly have two separate
distributions. It turns out that the cluster of larger probabilities are the diagonal
elements of the transition matrix show in figure 10. The cluster in the lower left
are transition probabilities between different states shown in figure 11. This
same behaviour is observed when using uniform priors for the transition matrix.
This means that for this data there is no need to enforce the assumption that a
users interest last over several observations. With the model assumptions this
property if iterest is very much observed in the data.

Interestingly the value of these transitional probabilities seem to be quite
consistent between models. The model shown in Figure 9, with 300 states, had
an average diagonal transition probability of 0.879 while the model trained
with 150 states had an average diagonal transition probability of 0.890. This
means in the 300 state model users on average spent 8.2 clicks in the same
interest before a change. In the 150 state model users spent on average 9.1
clicks before a change in interest. This shows that the increase in likelihood
when increasing the number of states to a larger extent comes from more
accurate state definitions, and does not result in much more rapid changes in
interest. This is also a good indication that the changes in interest are often
quite clear and not continuous. We also see this in the user session examples.
The models mostly agree on how many interest changes occurred. It should be
added that these models were trained completely independently, using random
initialization.

The high values in the diagonal of the transition matrix indicate that the
model will always predict the user to be in a similar state and changes in state
only occur when it is indicated from an observation. This does not mean the
transition matrix is uninformative. There is a large variance in the probabilities
for transitioning between different states. Some transitions have a probability
very close to zero. This means that even if an observation is most likely observed
in one state the transition from the users current state to this state may be
very unlikely resulting in a different predicted state transition.

This plot also shows a quite high correlation between the fitted and observed
probabilities. This shows that there is quite a large agreement between the
transitions predicted by the transition matrix and the test data. The only
slightly worrying result is that there seems to be quite a lot of transitions with
a fitted probability near zero which have a larger probability of appearing in the
test set. This low transition probability will result in the model being slower
to recognize the state change. This can be an indication that some further
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Figure 12: Plot with the initial distribution plotted against the stationary
distribution of the fitted Markov chain. We do not see the expected correlation
in this plot.

restriction to the transition matrix can be useful. The transition probabilities
with a high fitted probability but low observed probability are of less concern as
the test set is smaller than the training set, so some transitions being unobserved
is expected.

An interesting observation is also that the diagonal elements of the transition
matrix have a strong tendency to have a larger fitted probability than observed
probability. A contributing factor to this is likely that the selection probabilities
fit the training set better than the test set. This means that the certainty with
which a user is predicted to belong to a state is on average lower on the test set
than the training set. If the probability that the user belongs to a specific state
in is lower then the probability of any specific transition is dragged towards the
average.

Another sanity check one can make on the hidden Markov chain is to study
its stationary distribution and its relation to the initial distribution. The
stationary distribution of a Markov chain is the distribution the chain converges
to as the number of transition go towards infinity. This stationary distribution
is just a property of the Markov chain and is unrelated to the observations.

By our model assumptions user interests follow this Markov chain. The
data we have collected is however not necessarily at the beginning of a users
data history, and definitely not at the point when the user started to form and
change interests. This is only the case for users who just started using FINN
during the month data was collected from (and were just born). We would
therefore expect the initial distribution to be somewhat close to the stationary
distribution, as for older users their interests at the beginning of this dataset is
the result of all the past transitions/changes in interest.

If figure 13 the stat probability in the stationary distribution and initial
distribution is plotted against each other. However we do not see the expected
correlation between the stationary and initial distributions. This result is quite
strange as it indicates that according to the model parameters the expected
state for a user to belong to changes over the series of observation. This could
be caused by mostly new users or some correlation over time for which items
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a user is recommended or the change in available items means that states are
created for items available at different times.

The fact that the current items change over time and likely also the general
interest and behaviour of the user base is problematic for the Markov chain
model. This means that the users current interest, and how users change
interests, depend on more that just the previous state but the current time as
well. The user state is then not only dependent on the previous state.

It would be undesirable for state definitions to be dependent on when an
item is available. However this is difficult to avoid. Take a group of items one
would consider to belong to the same interest and one would expect them to
be clicked together with items from a particular state. If the state definition is
fitted to items that were available earlier then this new group of items would
not be recognized as the same interest. Since state definitions are created from
observing ads being clicked close together the changing availability of ads can
end up being an important, yet undesirable, factor in the state definitions.

State definitions should relate to an interest not to what items are available
at any given time. There are therefore further reasons, than just maintaining
the Markov property, to reduce the potential of states being defined around
what ads are currently available. An interesting restriction to the model
could be to restrict the initial distribution to the stationary distribution of the
transition matrix. Further restriction to the model could require a constant
population of users in each state over each period of time. This would potentially
limit the extent to which states are dependant on when an item is available
in the store. Finding explicit solutions to initial distribution and transition
probabilities however difficult with such a restriction. Optimizing the Markov
chain parameters would then likely also need to be optimized numerically.

9.6 Importance of Older Observations

The presented recommendation model is based on using previous observations
from a user to generate recommendations. One can the question how much of
this information does the model use to generate its recommendations. Since
users do change their interests over time we do expect the most recent items to
be the most important for predicting future actions. Furthermore the model
is based on the Markov assumption and has somewhat few states which also
pushes the model to mostly use the most recent observations.

To get some idea of the extent to which past data is important on can
calculate the likelihood with varying number of preceding observations given
as input. To calculate the likelihood over a consistent amount of data when
varying the number of preceding observations only the likelihood of the last
observation is calculated given the preceding observations.

This plot shows that only very recent observations have an impact of model
predictions. From this plot it seem like using more than 10 observations
has very little impact on predictions. While one could argue that only the
last 10 observations are usefull, form the online results the model is lacking
in recommendation performance. The fact that information in observations
beyond the last 10 is essentially discarded could be a contributing factor to this.

When considering the transition probabilities given in Figure 9 the average
time a user spends within an interest a little under 10 observations. So This
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Figure 13: Plot of the likelihood of the last observation in all test-set user
histories. This likelihood is calculated given a varying number of preceding
observations as input. This was calculated for a history length of 200 as well
with no improvement.

result indicates that the transition matrix actually does not provide that much
information on predictions. Observations beyond the average time spent in an
interest are unimportant.

9.7 Recommendation Analysis

There are some clear weaknesses with the model which underline the difference
between detection of users interests and giving good recommendations. This
is also expected from previous offline tests, usually neural networks or some
version of matrix factorization work best (Ludewig and Jannach 2018). The
problems with this recommender can be related to the lack of variation in the
recommended ads.

Firstly the recommendations are very popularity dependent. Since some ads
have a much higher popularity than others this also means they will be fitted
with a much higher probability of being selected. Some very popular ads will
often be fitted with a high probability for several interest groups. This results
in recommendations for users being less varied. Often the top items can tend to
remain the same even when the users state probabilities seem to show a change
in state.

One then needs to discuss how recommendation performance relates to pre-
dicting interest changes. This is because this model behaviour is not necessarily
wrong. A popular item might not provide a good indication of which state
a user belong in. In fact popular items may usually be worse predictors of
interests. The fact that an ad is popular means that many different people
find it interesting which points to popular items being less informative of what
interests a user currently has. A good example form the data is a six-wheeled
custom monstrosity of a car which often popped up as having a large clickrate
for several states. This isn’t surprising as most people would want to look at
more images of such a car. However this also means that if someone did click
this car it is not very informative of what their current interests are. The model

49



Figure 14: Plot showing the correlation between item popularity and the items
concentration in a single state. A high concentration means the items selection
probability is mostly concentrated in a single state. The plot shows a trend of
items with higher popularity being less concentrated in a single state.

is correct in not jumping to the conclusion that the user now only wants 6
wheeled cars.

To show this trend a measure of state concentration for items is defined.
This measure is achieved by taking the selection probabilities for an item at
each state, i.e. columns of V . These selection probabilities are normalized to
sum to one. The largest value is then defined as the state concentration. This
measure will be 1 if the item is only selected within a single state and has a
selection probability of zero for all other states. The minimum value of this
measure is 1

K , where K is the number of states. This is achieved if the item has
a equal selection probability for all states.

In figure 14 this concentration measure is plotted against item popularity.
We see the expected correlation between item popularity and state concentration.
Higher popularity items to a lesser extent belong to a single state.

The sudden cutoff is caused by only items with more than 100 clicks were
included in the offline data set. There are some items with seemingly 0 or
very few observations in the training set which would seem very unlikely with
random sampling. However there are quite a few user sessions whom mostly
have clicks for a single item. If such sessions are not included in the training
set then some items can be observed to have a very low popularity.

While this correlation looks significant and fits the proposed theory around
popularity, there are no uncertainty estimates for these points. This is important
as popularity, as in number of observations, very much determines the variance
of the observations and an increasing amount of variance can also explain
the shape of this plot. When an item has fewer observations it would have
a larger random chance of only being observed around a very separable set
of observations. As the number of observations increase the ad is to a larger
extend observed in the different contexts the item may be observed. This means
more popular items have a smaller chance of getting a high concentration due
to random chance. This is the reason no attempt at regression to determine the
significance on the correlation was made. It would be pointless without some
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sort of estimate of the posterior distribution of these concentration estimates.
There does however seem to be some correlation. No popular items are

observed with high concentration. Saying this correlation is purely due variance
would then indicate that almost all items have its true concentration below 0.3.
This seems unreasonable, that there is not a significant number of items that
mostly belong to a single state

For less popular items, state concentration is very much item dependent
and there are explanations for this observation beyond higher variance. This is
not necessarily because the item doesn’t appeal to a specific interest but could
also be caused by the model fitting too few interest states.

The reason for an ad being popular is also skewed by the fact that the
training data are clicks from users being given recommendations by a previous
recommendation model. This leaves for the possibility of a feedback loop where
an item is popular because it is recommended a lot and therefore would appear
a lot in the training data so the next model will recommend the same item a lot
as well and so on. This is a result of a lot of recommendation models implicitly
or explicitly making the assumption mentioned in chapter 5, that the user has
considered all other items when making their selection.

This assumption simplifies the model/loss-function definition as it means
the click indicates the clicked ad is better than all other ads for the specific
user at the specific time. Giving recommendations according to the true
selection probabilities, equation 2, would potentially solve this issue however
this test would have to be over a longer period of time to see how training
form data from previous such models affect recommendations over time. Time
constraints and problems with time consumption of the prediction function
made completing such a test difficult. This test is also more relevant to
recommendation performance, and not interest detection, which is the main
focus of this work.

The fact that there is only 200 interest states fitted in the online testing
model also means that there is only around 200 different recommendations
the model can give. This is because, as seen later, the user state probabilities
usually have one state with a much higher probability than the others, so states
rarely combine to give a different ranking. This means the model cant give
very personalized recommendations. However as mentioned in chapter 9.4 the
limitation to below 300 states is related to training time. From model results is
seems that adding more states will improve the model and further improve this
issue. This is not an issue with the ALS model as this model fits a unique score
for each ad for each user not just for each state.

9.8 State Definitions

It is difficult to get any indication of how good the state definitions are by
just considering the ranking of items within them. The problem discussed in
chapter 9.7 with popular items having selection probabilities more spread out
contributes to this. The most popular items and therefore the items with the
highest ranking within in a state will usually repeat themselves between states.
The top items therefor do not give the best indication of what interest a state
actually describes.
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Looking deeper into a state however it seems that the model manages to
create quite reasonable interest groups consisting of either a specific brand or
type of car, excluding some outliers. This is however purely based on intuition
on what users with similar interests would be interested in. To get a better idea
of how the defined stated affect the predicted user interests the evolution of a
users state probabilities, presented in chapter 9.2, are likely better indicators of
how good the state selection probabilities are.

It could be assumed that these state definitions seem natural as the model
is given item specific data, like car make and model, so it can easily separate
these states. From some preliminary testing it however seems that the state
definitions are similarly reasonable both with and without item data.

A contribution factor to why data does not seem to be that use full, which
seems to often be the case for other model trained at FINN, could be the low
state concentration of popular items. When maximizing the likelihood it is
most important to give the most popular items accurate probability estimates.
However these popular items can have probabilities that vary quite little. This
means that for the model to be defined such that data has a large impact on
the selection probabilities. The item and state embeddings need to be defined
such that the effect of data is negated for popular items. This could make
these embeddings much less useful for less popular items and leading to a worse
model over all. If this is the cause of data not being exploited well, it could
potentially be useful to add an additional parameter per item which describes
how much the item data should affect the state probabilities.

9.9 Interpretability

While recomendation performance is lacking, this model, as opposed to the
neural methods or even matrix factorization to some extent provides a good
insight into the main categories in the dataset. This is a result of the limited
number of states the model has available to fit user interest. Ordering a state
based on selection probability, ignoring some of the top items, Gives items in
the dataset which very much seem to belong together. The model achieves
this even without data. This can be useful to recognize which categories users
should be able to choose between. The model can generate a state for ads that
thematically belong together, but do not have any special category. In this case
it could be useful to create a category for those ads such that users with this
interest can more easily fond satisfactory ads.

What would be difficult is assigning ads to a specific category based on these
states. Looking at the top items, it is easy the see what, in general, the state
has fit to. However at which selection probability to set the cutoff for when an
item no longer "belongs" to the specific state is more difficult. These selection
probabilities are also very much affected by popularity which makes setting a
cutoff likely incorrect especially for very popular and unpopular ads. It may be
more useful to consider how the selection probability within the state deviates
from the items selection probability in general.

Another useful feature of states making somewhat intuitive sense is that
predictions can quite easily be explained. Considering the users most recent
actions it is easy to see why a specific state is chosen as most likely. This is
helped by the fact that the transition matrix does not impact results too much,
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which can be disappointing, but means interpretation is easier as one does not
have to consider too many past observations. When the most likely states are
known the model predictions are also easily explained usually only consisting of
a linear combination of two states at most.

The fact that predictions usually only involve linear combinations of a few
states it is easy to check what items might be predicted. This is useful when
a website has user generated content. Checking what items can be predicted
can be checked by looking though the top n items in each state. Checking why
an item was predicted can be seen by checking in which states it has a high
probability. These states will then show which ads users often clicked around
this ad.

This allows easy enforcement of potentially privacy or fairness issues as the
states are discrete, as opposed to neural networks, and there are quite few of
them as opposed to matrix factorization. It is therefore feasible to manually
perform checks on the model if this is necessary.

10 Future work

10.1 Variance Estimates

There is little literature on calculating uncertainty estimates for recommendation
models in general. This is likely due to it being difficult due to these model
usually having very high dimensionality. However in recommendation models
variance estimates are only useful as a far as it can help improve prediction.
There is not really any skewness in which items it would be bad to incorrectly
recommend or nay other penalty. The goal is purely to maximize the number
of times a recommended item was clicked.

There are the many different avenues to improve predictions other than
calculation variance estimates. Improvements which are expected to be more
computationally efficient, easier to implement, easier to derive and give a better
improvement on predictions.

10.2 Computation Time

There are several improvements one can make to improve computation time.
Firstly the python API is slow so while a lot of the computation is done with
accelerated libraries there is still quite a bit of slowdown due to it being a
python implementation. As opposed to normal neural networks which PyTorch
is designed for. This model consist of very many relatively small matrix
computations. Between each such computation calls to the python API is made
which are a potential for improvement. An implementation in a more low level
language like C is therefore expected to give substantially faster results.

10.3 Time Dependence in State Definitions

The fact that the model can create different states that describes the same
interest but at different periods of time is a quite large limitation. This especially
limits the models usefulness as a model to predict changes in users interest.
This is because the model will predict can, or is even motivated to through
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maximizing the likelihood, to predict a change in interest when a user clicks
items that are rarely observed together just due to when the different items
were available.

To mitigate this problem one would have to restrict state definitions such
that the state is observed consistently often over all time periods. This does
mean that there is a risk for the state definition do describe one interest an
one time period and another at a different time period. How effective such a
restriction is therefore needs to be explored further.

10.4 State Transitions

The model by which users transition between states in this model is simplistic
but also of quite high computational complexity. the complexity of calculating
state transitions are O(n2) which greatly hinders the number of states which
can be used. This transition model also has difficulty remembering any long
term user tendencies. The model also fits unique transition probabilities to
each state while it would be reasonable that some especially similar states also
have correlated transition probabilities.

One could instead desire a transition distribution which could exploit poten-
tial correlation in state transitions similar to what matrix factorization achieves
for selection probabilities. A method by which some longer term information
about the user is remembered such that state transitions and potentially also
selection probabilities could depend on some more general user information.
Allowing for some user specific variation could help the state definitions become
more separate as some of the variance included in these could be moved to the
user specific information.

Just introducing a more complex transition function would keep most of the
interpretability benefits of the model. User interest plots and states could still
be interpreted similarly. It could however become less obvious why two items
were included in the same state or why a specific transition occurred.

11 Conclusion

This work has introduced a recommendation system with the goal being creating
a model where the evolution of user interests is interpretable, and changes in
interest can be identified. Since the data available is not directly related to
user interest, the model was trained as a recommendation model, where latent
variables had to be fitted, and where these could be interpreted as user interests.

The model is based on a hidden Markov model, but combined with ideas
from matrix factorization to better handle sparse data and take advantage of
correlations between interests. General user interests within the dataset should
be reflected in the states of the HMM, which would allow for the prediction of
user interests.

Even with a simple model for user interest, a Markov chain, the model
gives a quite sensible modeling of how user interests evolve. This simple model
can furthermore give some potential insight into user interests, for example
that more popular items are popular due to being relevant for several different
interests.
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The model manages to find sensible states representing user interests at a
given moment. Inspection of the fitted states suggests that items with high
click probability appear to qualitatively related to each other. The fact that
click probability is very much dependent on ad popularity does however mean
that there can be some ads that seem out of place when ranking ads based
on a states click probability. This means that while the states can give some
useful insight into the dataset, and the general interests users have, they are
less suited for making any predictions on the category of specific items.

The model predicts a plausible evolution of user interest in the extreme
cases where the user either is very consistent or is exploring a varied selection
of ads. The method occasionally falters, predicting spurious interest changes,
when its less clear whether the user is exploring or trying to find something
specific. This could be helped by more informative priors for high probabilities
along the diagonal transition probabilities although this is a tradeoff against
making the model less responsive to change.

There are however signs that the transition function of this model is too
simplistic. The model has a very short memory, and a mismatch between the
initial and the stationary distributions. This indicates that the transition func-
tion has a quite low impact on predictions and also that the model assumptions
could be incorrect.

Since the model was trained as a recommendation system, it was also
evaluated as such, after significant optimization of code efficiency. A version
of the model was run live on the FINN site over a few weeks alongside other
recommendation models developed by FINN generating 20% of recommendations
in the category search of second hand cars. During this time recommendations
from the model were shown around 100000 times leading to 32000 clicks in total.
Roughly speaking the presented model achieved a click rate of 30% while the
more mature FINN model achieved around 40%. The FINN model has been in
production for a while beating out several other models as well. This online test
was however performed with a suboptimal model due to time constraints and
software issues. Testing a model using optimal hyper parameters and estimating
the true selection probabilities (chapter 5) would potentially achieve better
results. Potential avenues of improvement have been outlined.
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.1 User Session Examples

Session 1
300 States

150 States
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Session 2
300 States

150 States
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Session 3
300 States

150 States
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Session 4
300 States

150 States
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Session 5
300 States

150 States
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Session 6
300 States

150 States
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Session 7
300 States

150 States
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Session 8
300 States

150 States
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Session 9
300 States

150 States
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.2 Implementation

Code written to fit the model and run simulation studies, as well as the various
analysis of the model can be found on GitHub. This code does not include
FINN specific functions to import data. Some functions do however assume
data to be in the same format as that given by FINN. To fit this model to a
new dataset one would therefore need to make some manual changes.

https://github.com/oyboy/Hidden_Markov_Model_Recommendation_System
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