
Depicting a Black Hole
Merger: A Bridge Between
Einstein Toolkit and GYOTO

Daniel Heinesen
Master’s Thesis, Spring 2021

i

Copyright c© 2021, Daniel Heinesen

ii

Acknowledgements

A special thanks goes to Éric Gourgoulhon and Frederic Vincent from Observatoire de
Paris in Meudon, Paris. Without them this project wouldn’t be possible. Throughout
two week in Paris, and countless Zoom conferences they have patiently listened and
answered all the stupid questions I have had about LORENE and GYOTO. The trip
to Paris would not have been posible without the grant given to me as a STSM by
GWVerse. Thanks to my main supervisor David. F. Mota, who didn’t give up on me
during these one and a half years with ups and downs. Thanks also to Vitor Cardoso
who gave me the idea for this thesis, and who have helped me a lot during this project.
Thank you to Miguel Zilhão for helping me out with all the nuances of Einstein Toolkit.
A huge thanks goes out to Øyvind Christiansen for reading through and correcting all
the terrible spelling and grammar mistakes found in the thesis. Last, but not least I
will like to give maybe the biggest thanks to my girlfriend Laila Andersland for keeping
up with me during these stressful month – and I promise to start helping around the
house again now that the thesis is done.

iv

Contents

List of Figures viii

1 Introduction 5
1.1 Overview of Thesis . 7

I Theory 9

2 Worlds Shortest Primer on General Relativity 11
2.1 Empty Space and Black Holes . 12
2.2 Two Black Holes . 13

3 Numerical Relativity and the 3+1 formulation 15
3.1 Why a New Formalism? . 15
3.2 The 3+1 Formalism . 16

3.2.1 The New Quantities of the 3+1 Formalism, and the First Evolu-
tion Equation . 16

3.2.2 The Constraint Equations and the Second Evolution Equation . 20
3.3 The BSSN Formulation . 22
3.4 The Lapse Function and the Shift Vector 24

3.4.1 Geodesic Slicing . 25
3.4.2 Harmonic Slicing and the 1+log Slicing 25

3.5 Initial Condition and Black Hole Mergers 27
3.6 Apparent Horizons . 29
3.7 Gravitational Waves . 30

4 Numerical Relativity Frameworks 33
4.1 Why Use Numerical Relativity Frameworks 33

4.1.1 Why Einstein Toolkit? . 33
4.1.2 Why GYOTO and LORENE? 34
4.1.3 Need for the Conversion . 34

4.2 Einstein Toolkit . 35
4.2.1 Introduction . 35
4.2.2 Cactus . 35

vi CONTENTS

4.2.3 Grid Functions . 36
4.2.4 Carpet and Adaptive Mesh Refinement 36
4.2.5 Thorns . 36
4.2.6 Black Holes, Mergers and Gravitational Waves 37
4.2.7 Simulation Factory . 38

4.3 Spectral Methods . 38
4.3.1 Theory . 38
4.3.2 Expanding In the Test Function 39
4.3.3 Solving Differential Equations . 41
4.3.4 Using the Spectral Representation without Solving Differential

Equations . 42
4.4 LORENE . 43

4.4.1 Multi-domain Spectral Methods 43
4.4.2 Usage . 44
4.4.3 GYOTO and Ray Tracing in Numerical spacetimes 45

5 Ray Tracing 47
5.1 Introduction . 47
5.2 Doing Ray Tracing . 47
5.3 Ray Tracing in General Relativity and GYOTO 48
5.4 GYOTO . 50

5.4.1 Ray Tracing in an Analytic Metric 51
5.4.2 Numerical Metrics . 52
5.4.3 How the Ray Tracing is Done and Why a Spectral Method . . . 53
5.4.4 Astrophysical Objects . 53

6 Splitting the Black Hole Binary 55
6.1 Splitting the Grids and the Splitting Function 56

II Methods 59

7 Simulating a Black Hole Merger with Einstein Toolkit 61
7.1 Single Schwarzschild Black Hole . 61
7.2 Binary Black Hole Merger . 64

8 Conversion of the Data 67
8.1 Introduction and Overview . 67
8.2 Reading Data From Einstein Toolkit and Making Interpolations 68

8.2.1 Reading the Data . 68
8.2.2 The Simulated Domain . 69
8.2.3 Creating an Interpolation . 69
8.2.4 The None Geometry . 71
8.2.5 Geometries Used Later . 71

CONTENTS vii

8.2.6 Pickling the Interpolation . 72
8.3 LORENE and the Spectral Transformation 72

8.3.1 Finding the Collocation Points 72
8.3.2 Retrieving and Formatting the Collocation Points from LORENE 72

8.4 Getting the Values at the Collocation Points 73
8.4.1 Handling the Boundary . 73
8.4.2 Handling the Symmetries . 74
8.4.3 Applying the Splitting Function 74
8.4.4 Flattening the Results . 75

8.5 The Final GYOTO Formatting with LORENE 76
8.5.1 Running the Last Conversion . 76
8.5.2 What Happens Inside the C Code 76

8.6 Parallelization . 77
8.7 Test Cases . 77
8.8 Parameters Used in the Conversion . 78

8.8.1 Parameters found in the Python Code 78
8.8.2 Parameters found in the C Code 79
8.8.3 Future Plans . 79

9 A Closer Look at the Conversion Code 81
9.1 Structure of the Conversion Code . 81
9.2 Using the Code . 82

10 Adapting and Using GYOTO with Converted Data 87
10.1 Changes Made to GYOTO . 87

10.1.1 Using GYOTO without Spherical Symmetries 87
10.1.2 Using Two Metrics in GYOTO 88
10.1.3 Additions to the Source Code of LORENE and GYOTO 88

10.2 Running GYOTO . 89
10.3 The Anatomy of the XML File . 89
10.4 Looking at Errors in the Raytracing . 91
10.5 Using Dumb Parallelization . 92

III Results 93

11 Note on Units 95

12 Reading from Einstein Toolkit 97
12.1 Single Black Hole . 97

12.1.1 Effect of Different Types of Geometries 97
12.1.2 Effect of Different Grid Sizes . 103

12.2 Binary Black Holes . 107

viii CONTENTS

13 Conversion to LORENE 109
13.1 Conversion of Test Cases . 109
13.2 Single Black Hole . 111
13.3 Binary Black Holes . 116

13.3.1 Effect of Different Resolution . 116
13.3.2 Effects of the Splitting Function 120

14 GYOTO Results 123
14.1 Metric From LORENE . 123
14.2 Test Case . 126
14.3 Single Black Hole . 128

14.3.1 Comparison with LORENE . 128
14.3.2 Reasons for Larger Norm Drift for Fixed Star 131

14.4 Summary and a Final Showcase Result: Page-Thorne Disk 134

IV Conclusion 135

15 Conclusion 137
15.1 Summary . 137
15.2 Conclusion . 139
15.3 Future Work . 139

Appendicies 141

A Installing Einstein Toolkit 143

B What Happens Inside the Code 147

C Additional Plots 151

D Einstein Toolkit Parameter Files 157
D.1 Schwarzschild Black Hole . 157
D.2 Binary Black Hole . 160
D.3 Single Black Hole Two Puncture . 170

E GYOTO Scripts 179
E.1 Fixed Star . 179
E.2 Page-Thorne Disk . 180

F Metric for Use in GYOTO with no Spherical Symmetry 181

Bibliography 185

List of Figures

3.1 Figure illustrating the meaning of the terms defined in the text. Here
we have two time sliced Σt and Σt+dt with a given point xµ. We can see
that the lapse function α is the separation in time between the two slices,
while the shift vector ~β is the distance xi is shifted in space between the
two slices. 17

5.1 An illustration of how ray tracing works. The photons are sent from a
screen (here a 2d screen with four pixels). The color of the pixels are
determined by what they hit on their path, and if they it a light source.
We see that two photons hit nothing (one of them after going through
the sphere). The two others hit the light (one after going through the
sphere). The image will therefore be a partly lit sphere, with a visible
light on the side, in the background. 49

5.2 A ray tracing of a scene similar to the one described in fig. 5.1. This is
a semitransparent red sphere over a light blue floor. There is a light to
the left of the sphere, but the light itself is not rendered. This was made
in the 3D modelling software Blender. 49

6.1 Illustration of the splitting function, with black holes at 5 and −3, with
R1 = 1 and R2 = 1/2. 56

8.1 Illustration of the relation between the simulated domain and the other
domains of the simulation. In the center we find the black hole(s). They
exist inside the spacetime simulated by Einstein Toolkit (simulated do-
main). This is the brownish while field in the illustration. The grid
made by the user must be contained by the simulated domain, or else
the grid outside the domain will be filled with zeros. The outer most
region contains all the other regions and is the values needed by the
spectral transformation. Values found here, which are outside of the
simulated domain, must be extrapolated from the simulated domain. . . 70

8.2 Illustration of the xy-plane of the simulation. Only the part marked
original is given by the Einstein Toolkit simulation. The copies have to
be made by the converter. This is done by simply mirroring around the
z-axis. 75

x LIST OF FIGURES

9.1 A simplified class diagram showing the most important parameters,
methods and relations between the different classes in the Python code.
We see here that ReadQantities is build upon ETQuantities and ETQuant-
ities_gridInterpolator, where the latter of the two is inherent from the
former. ETInterpolater uses ReadQuanties, as is shown here. Not all
private methods and parameters are shown here, just the important ones,
which does something discussed in the text. The private methods do not
have all the parameters listed, since they are not important for the user. 83

12.1 The absolute error for gxx for a single black hole with isotropic Schwar-
zschild metric, plotted against the distance/radius away from the black
hole (at radius r = 0). We see that using the single grid and multi-
grid geometries, with a linear interpolation, gives us errors at 1060 (fig.
12.1(b) and 12.1(a)), while the none-geomtery gives us errors at levels
we can accept (fig. 12.1(c)). 100

12.2 The absolute error for gxx for a single black hole with isotropic Schwarz-
schild metric created using a two puncture method. We have two multi-
grids, one with a linear interpolation and one with a spline. We see that
the linear interpolation gives much lower error than fig. 12.1. For the
spline we have much lower error, but we still see spikes reaching 1023. . 102

12.3 An intensity plot of the error of gxx for a single black hole using a none-
geometry. We can here clearly see the square grids used by Einstein
Toolkit for the mesh refinement. We see some wave patterns spanning the
borders of the grids. The reasons for these are unknown, but surprisingly
these patterns has a lower error than the surroundings. 103

12.4 The results of the reading and interpolation of the Einstein Toolkit data
for a single black hole using a none-geometry. These will be the results
we use as a comparison to the data after conversion to LORENE 104

12.5 The absolute error for gxx for a single black hole using a none-geometry.
Different grid resolutions dx are used to show how the error decrease
with dx . 106

12.6 The results of the reading and interpolation of the Einstein Toolkit data
for a binary black hole system. Here the α and gxx are functions of r
along the x-axis. We see that they are more or less equal, meaning that
the multigrid geometry worked for this simulation. 107

12.7 The difference between the none-geometry and the multigrid geometry
for a simulated binary black hole system simulated in Einstein Toolkit.
We see that difference are quite small. There are sudden increases in
the difference. They seem to be associated with the grid sizes in the
multigrid geometry. 108

LIST OF FIGURES xi

13.1 Here we can see plots of the lapse function α and the spatial metric
coefficient gxx for an analytical isotropic Schwarzschild metric after con-
version. Three domains where used in this conversion, with the limits
[0.5, 8,∞] and the resolution nr = 25, nθ = 7 and nφ = 4. 110

13.2 Here we can see plots of the difference between the lapse function α and
the spatial metric coefficient gxx for an analytical isotropic Schwarzschild
metric after conversion and the analytical expression found in (2.4). We
can see that the difference is around 10−11. Three domains where used
in this conversion, with the limits [0.5, 8,∞] and the resolution nr = 25,
nθ = 7 and nφ = 4. 111

13.3 Here we can see plots of the lapse function α and the spatial metric
coefficient gxx for a single black hole data from Einstein Toolkit, after
conversion. The green dashed lines indicates the domain limits. We have
used Case 5 from table 13.1. 112

13.4 Here we can see the difference between the simulated and analytical gxx
after conversion. The domain parameters are taken from table 13.1. We
can see that the differences are around 10−4 and dependent on domain
limit and resolution. The green dashed lines indicates the domain limits. 114

13.5 We can here see α and gxx using case 5 for distances outside of the
furthest finite domain. We can see that the data here becomes unusable. 115

13.6 Contour plots of α and gxx for a binary black hole system after conver-
sion. For all the plots we have the domain limits [0.5, 1.5, 4, 8, 20,∞], but
for the top plots the resolution is nr = 51, nθ = 21 and nφ = 40, while
for the bottom plots the resolution is nr = [135, 135, 135, 135, 67, 57],
nθ = [51, 51, 51, 51, 51, 31] and nφ = [142, 142, 142, 122, 102, 62]. All the
plots are of the black hole located at +3 at the x-axis, the results for the
other black hole is located in the appendix in fig. C.13. 117

13.7 gxx radially for different values of θ and φ for both of the black holes.
All the radial plots goes from left to right, so the splitting function is
only visible for the black hole at x = −3, since it is to the left of the
other black hole. The resolution is that of the highest resolution in 13.6. 118

13.8 Contour plots of the sums of the two α’s and two gxx’s for a binary
black hole system after conversion. For all the plots we have the domain
limits [0.5, 1.5, 4, 8, 20,∞], but for the top plots the resolution is nr =
51, nθ = 21 and nφ = 40, while for the bottom plots the resolution
is nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31] and nφ =
[142, 142, 142, 122, 102, 62]. 119

13.9 Contour plots of α and gxx’s for a binary black hole system after conver-
sion without the splitting function. The the domain limits are [0.5, 1.5, 4, 8, 20,∞],
and the resolution is nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31]
and nφ = [142, 142, 142, 122, 102, 62]. The dashed lines are the domain
limits. 121

xii LIST OF FIGURES

13.10Zoomed in contour plots of the sum of the two α’s for a binary black
hole system after conversion with and without the splitting function.
The the domain limits are [0.5, 1.5, 4, 8, 20,∞], and the resolution is
nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31] and nφ =
[142, 142, 142, 122, 102, 62]. 122

14.1 Plots showing the intensity of the fixed star. The value at which GYOTO
starts integrating with the star is given by RMax = 5 and RMax = 20.
14.1(c) shows the difference in intensity. The metric used here is a
Schwarzschild metric simulated in LORENE with mass 1, domain limits
[0.51, 1, 2, 4, 8,∞] and resolution nr = 25, nθ = 7 and nφ = 4. The para-
meters for the ray tracing can be found in sec. 10.3 or in the appendix
E.1. 124

14.2 The drift of the norm of the photon momenta from the initial value of
10−16 plotted as for different radii. This shows The metric used here
is a Schwarzschild metric simulated in LORENE with mass 1, domain
limits [0.51, 1, 2, 4, 8,∞] and resolution nr = 25, nθ = 7 and nφ = 4.
The parameters for the ray tracing can be found in sec. 10.3 or in the
appendix E.1. 125

14.3 Plots showing the intensity of the fixed star. 14.3(a) shows the difference
in the intensity between RMax = 5 and RMax = 20, and 14.3(b) is the
difference between a fixed star with RMax = 20 made with the test
case and the one we made using the LORENE metric. The test case
uses domain limits [0.51, 1, 2, 4, 8,∞] and resolution nr = 25, nθ = 7 and
nφ = 4. The parameters for the ray tracing can be found in sec. 10.3 or
in the appendix E.1. 126

14.4 The drift of the norm of the photon momenta from the initial value of
10−16 plotted as for different radii.Here we have used the Schwarzschild
test case with mass 1, domain limits [0.51, 1, 2, 4, 8,∞] and resolution
nr = 25, nθ = 7 and nφ = 4. The parameters for the ray tracing can be
found in sec. 10.3 or in the appendix E.1. 127

14.5 The difference in intensity between fixed stars with RMax = 20 using
metrics simulated with Einstein Toolkit and a metric made by LORENE.
The different spectral parameters for the different cases are found in
table. 14.2. 129

14.6 Photon norm drift for case 1 and 2 compared with LORENE, without a
star and with a fixed star with RMax = 20. 130

14.7 Here the photon norm drift is plotted in a polar plot. Case 1 and the
LORENE metric are used. Each point is one integration step for one
photon. So more points, thus more integration steps. The color of the
point is the norm drift. 132

14.8 Here we see two different plots showing how the norm of the photons are
affected by coming close to the center. Both are made with case 1 and
RMax = 20. 133

LIST OF FIGURES xiii

14.9 Two 200 × 200 images of a Page-Thorne disk, using case 3 and the
LORENE metric. As we can see, they are almost identical. This proves
that it is possible to ray trace using a metric from Einstein Toolkit. . . . 134

B.1 Schematics over the flow of the converter. The left most column shows
what is done by the user; the center python column shows the main loop
doing conversion; and the right python column shows auxiliary python
functions. The C column shows the LORENE functionalities called by
the C code. 148

C.1 Here we can see plots of the lapse function α and the spatial metric
coefficient gxx for a Minkowski metric after conversion. Three domains
where used in this conversion, with the limits [0.5, 8,∞] and the resolu-
tion nr = 25, nθ = 7 and nφ = 4. The results α = gxx = 1 are hidden
but the automatic limits of the plotting class. 151

C.2 An intensity map of α. 152
C.3 A contour plot of α . 152
C.4 An intensity map of gxx . 152
C.5 A contour plot of gxx . 152
C.6 The results of the reading and interpolation of the Einstein Toolkit data

for a binary black hole system using a multigrid with a linear interpol-
ation. We see that compared to a single black hole, we do not seem to
get the errors at 1060. These will be the results we use as a comparison
to the data after conversion to LORENE 152

C.7 An intensity map of α. 153
C.8 A contour plot of α . 153
C.9 An intensity map of gxx . 153
C.10 A contour plot of gxx . 153
C.11 The results of the reading and interpolation of the Einstein Toolkit data

for a binary black hole system using a none-geometry. These will be the
results we use as a comparison to the data after conversion to LORENE 153

C.12 Here we can see the difference between the simulated and analytical α
after conversion. The domain parameters are taken from table 13.1. We
can see that the differences are around 10−5 and dependent on domain
limit and resolution. 154

C.13 Contour plots of α and gxx for a binary black hole system after conver-
sion. For all the plots we have the domain limits [0.5, 1.5, 4, 8, 20,∞], but
for the top plots the resolution is nr = 51, nθ = 21 and nφ = 40, while
for the bottom plots the resolution is nr = [135, 135, 135, 135, 67, 57],
nθ = [51, 51, 51, 51, 51, 31] and nφ = [142, 142, 142, 122, 102, 62]. All the
plots are of the black hole located at −3 at the x-axis, the results for the
other black hole is located in fig. 13.6. 155

Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write it,

how will you ever debug it?

Kernighan’s Law

2 LIST OF FIGURES

Abstract

In this project we create a conversion tool for using numerical general relativity sim-
ulations done in Einstein Toolkit in the numerical relativity ray tracer tool General
relativitY Orbit Tracer of Observatoire de Paris(GYOTO). Due to the different form-
alisms used by Einstein Toolkit and GYOTO, the numerical relativity framework Lan-
gage Objet pour la RElativité NumériquE (LORENE) was used to bridge between the
two. Simulations of a isotropic Schwarzschild metric and a binary black hole merger
initialized with a two puncture method were used as test data to evaluate the tool.
The spectral formalism used by LORENE has a spherical topology, meaning that a
custom splitting function had to be devised to split the binaries into separate, pseudo-
spherical spacetimes. We used Python to read and interpolate the data from Einstein
Toolkit, and to call on a separate C-code using LORENE to take care of the spectral
transformation. We showed that the process of reading and interpolating the Einstein
Toolkit data will lead to numerical errors at order 10−5. This error was also manifest
in the final ray tracing. With proper parameterization, the spectral transformation did
not show any major additions of error, and could in some cases smooth out errors. We
showed that it was possible to transform the black hole binary, but at a much greater
computational cost. Results without using the splitting function was also shown to lead
to artifacts in the transformed metric. We used drift in the photon momentum norm
from a base line of zero to measure errors in the ray tracing. With this we showed that
the numerical errors when using the Schwarzschild metric in GYOTO was about 0−103

times higher than ray tracing done with a standard metric made with LORENE, which
only was an error increase of 10−3 in absolute terms. To use the black hole binary
metric in GYOTO, small changes to GYOTO are still needed, and we weren’t able to
do ray tracing using this metric. We conclude that by using our tool we successfully
used GYOTO with a single black hole metric simulated in Einstein Toolkit, and that
the tool is capable of transforming black hole binary metric for when this function is
implemented in GYOTO.

The code for this project can be found at the repository: https://github.com/dulte/Master

Chapter 1

Introduction

There are few things that catch the imagination more than black holes. For astrophys-
icists to science fiction authors, black holes have become a staple of the outer limits of
physics. They were first proposed back in 1784 by the English clergyman John Michell
as an idea, but it wasn’t before 1915 that Karl Schwarzschild became the first to solve
Albert Einstein’s field equation – only a few months after Einstein had published them
– and mathematically describe a black hole. For many years, or even decades, black
holes were objects which should exist, but were theoretical, exotic objects, which by
their nature made them almost impossible to observe.

Almost impossible doesn’t mean actually impossible. In 1964 the object Cygnus
X-1 was discovered[12]. After careful observations over many years, it was concluded
that this objects most likey must be a black hole[47]1. One of the most famous obser-
vations of a black hole was published in 1998[14], when observations of objects orbiting
Sagittarius A*, the object in the center of the Milky Way, showed that Sagittarius A*
must be a black hole. This was evidence, but still indirect evidence.

The last 6 years have been a golden age for black holes. In 2015 the first detections
of gravitational waves were made[2]. These are waves made by astrophysical objects
colliding and making waves in spacetime itself. From the data found in these detections
it was proved that the collision must have been between two black holes. This was an
even greater evidence that black holes, and especially binary black holes orbiting each
other, existed! An even more definitive proof came only four years later when, in April
2019, the Event Horizon Telescope announced that they had managed to take the first
direct image of a black hole! While it is impossible to prove that black holes exist[16],
these observations strongly points to their existence.

Neither the image nor the detection of gravitational waves came as a shock to
scientific community. The LIGO project, which detected the gravitational waves had
its start back the the 1960s, and in 1968 the physicist Kip Thorne laid the theoretical
ground work for the detection.

Researchers wanted to understand what they were looking for, and for this they

1There was a famous bet between Stephen Hawking and Kip Thorne on whether or not this actually
was a black hole. Hawking, who bet against to being a black hole, was deemed to have lost the bet.

6 Introduction

had to find more complicated solutions of Einstein’s field equations than Schwarzschild
had found. They quickly understood that this wasn’t possible to do with pen and
paper, and they needed help from computers. This gave birth to the field of numerical
relativity. The field was started in the 1960s but didn’t come to maturity before the
1980s and 1990s. The reason was two fold: Firstly the computational power increased
drastically in this time period, meaning that now they had the computational power
needed to solve the field equations numerically.

The other reasons was that solving the equations turned out to be incredibly dif-
ficult. When trying to solve Einstein’s field equations numerically for simple binary
black holes, the computations often crashed or diverged suddenly. Throughout 1980s
and 1990s the researchers found that they had to reshape the field equations using some
fancy mathematical tricks.

In the 2000s they had finally found ways of making the simulations stable, and
computational power had increased enough that it was possible to simulate complicated
binary black holes on even personal computers. This means that you can simulate the
collision of black holes emitting gravitational waves on a work station – although it will
take some time. This can be done with the powerful framework Einstein Toolkit, which
is an open source framework which lets everyone run numerical relativity simulations
at home. We will be looking a lot at this framework during the thesis.

We did also know what to expect when we first were able to take an image of a
black hole. Kip Thorne also have a hand in this subjects, and even made calculations
for how a black hole will look like for the movie Interstellar. These give approximate
solutions for how a black hole will look like. We can also use a numerical method called
ray tracing. With this method we send photons towards the a black hole and look at
how the photons move. This lets us not only make pretty images, but also look at the
physics of the photons as they travel close to the black hole.

What we want is to combine the research fields above. We want to look at photons
travelling close to two black holes colliding and creating gravitational waves. This is not
an easy task, as these collisions are very difficult to describe with pen and paper. We
will be using the aforementioned Einstein Toolkit to simulate the collision, and another
program called GYOTO to do the ray tracing, as this is one of the few programs that
let us do ray tracing on simulated spacetimes. This will let look at how light behaves
around these most extreme objects in the universe.

There is a major hurdle in this task. GYOTO is built upon another numerical
relativity framework, LORENE, which used a simulation formalism different for that
of Einstein Toolkit. This means that the main task we will be looking at is bridging
the gap between the two formalism.

LORENE has built in a spherical topology. This means that it used a spherical
coordinate system, meaning that objects deviating too much from this topology, e.g. a
black hole binary, will be represented poorly by this formalism. It has the capability
to do binary black holes, but this is limited to quasi-circular orbits. If we want to
look at the merger itself, then we cannot use LORENE. We will work around this by
introducing a splitting function which will separate the binary into separate single black
holes. This will enforce a pseudo-spherical topology.

1.1 Overview of Thesis 7

A black hole binary is complicated to get to work on our first try. We will therefore
focus on taking a single Schwarzschild black hole from Einstein Toolkit to GYOTO.
This lets us try out all the different parts of the method. This is not a trivial results
in of itself, and managing to get this Einstein Toolkit simulation to GYOTO would be
a good result, and leaves the door open for more simulations done in Einstein Toolkit
to be used in GYOTO.

By the end of the thesis we hope to have a working pipeline which can take spacetime
simulated in Einstein Toolkit and make it usable for GYOTO. To get the black hole
binary to work with GYOTO and to be able to study the effects of gravitational waves
might not be possible within the scope of this thesis, but we will lay the ground work,
so that either we or other researchers may finish that project later. This will let
researchers look at the effects of mergers and the resulting gravitational waves on the
passing photons in more detail that other previous approximations have done[20].

1.1 Overview of Thesis

We will start by looking at how to reformulate general relativity in such a way that
we can solve the equations numerically. We will then look at Einstein Toolkit and
LORENE, two programs/frameworks which we will use to do the simulations. Next we
will look at ray tracing, both in the conventional sense and using numerical relativity,
and how we can use GYOTO to do this. This will lead us to the methods. Here
we will describe how to configure and run both Einstein Toolkit and GYOTO. The
main part of the method section will consist of looking at how to convert the Einstein
Toolkit data to a formalism which we can use in GYOTO. This will consist of reading
and interpolating the data, getting the collocation points needed to do the spectral
transformation, handling the symmetries and boundaries of the data and then handing
the data over to LORENE for the actual transformation. For the black hole binary we
will also need to apply a splitting function, so we will look at this function. We will
then evaluate the result of the most crucial steps of the conversion: The reading and
interpolation, the spectral transformation and the ray tracing. Finally we will make
a conclusion on whether we succeeded in using a Einstein Toolkit metric in GYOTO,
and discuss future work.

8 Introduction

Part I

Theory

Chapter 2

Worlds Shortest Primer on
General Relativity

In this section we assume a familiarity with general relativity. If the reader has problems
following along, I recommend reading up on the subject in either [18], or [40] if they
are feeling adventures. For those who aren’t I will present what I think is the worlds
shortest primer on general relativity, what it is and the simplest types of solutions.

Our best understanding of gravity comes from the general theory of relativity as
described by Albert Einstein[22]. Combining space and time into a four-dimensional
manifold he, he showed that energy – and this matter – bends spacetime. Matter,
moving on geodesics, will be affected by this curvature, thus giving rise to gravitation
1. This relation can be described using the infamous Einstein field equations

Rµν −
1

2
Rgµν = 8πGTµν , (2.1)

where gµν is the metric tensor, which describes the manifold – more specifically infinites-
imal distances on said manifold –; Rµν is the Ricci tensor, and describes the curvature
of the manifold; R = Rµµ is the Ricci scalar; and Tµν is the energy-momentum tensor,
which describes the energy and matter content of space. (2.1) is a set of highly non-
linear 2nd order differential equations.

Our goal is to be able to send photons around one or more black holes. This means
we have to be able to describe a black hole. This is where (2.1) comes in. If we manage
to solve this differential equation we get a description of a black hole. When we have a
metric tensor that solves this equation, we can use this to describe how light behaves
near the black hole. We will look at how this is done in sec. 5.

Actually solving these equations are very difficult. All but the simplest cases can
be solved analytically. We will look at one of the simplest solutions below, namely the
Schwarzschild solution.

Note that we can get a lot of the field equations without solving them completely.
A very powerful way of looking at solutions to the field equations are perturbation the-

1Meaning that gravitation is no longer described as a force, but as a geometrical effect.

12 Worlds Shortest Primer on General Relativity

ory, where we don’t try to find complete solutions but instead look at already known
solutions and try to change them a small amount. We will look briefly at the simplest
perturbation method in sec. 3.7, which gives us gravitational waves. For more com-
plicated methods, like Post-Newtonian expansions, see [37] and [40].

2.1 Empty Space and Black Holes

So what is the simplest solutions for the field equations(2.1)? Well, we can start by
saying that we have empty space, in other words vacuum. This means that Tµν = 0,
since we have no energy2. This can only be true if the Ricci tensor Rµν = 0.

The simplest vacuum solution is just flat space

gµν = ηµν =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.2)

This is the Minkowski metric, which describes flat space in special relativity. It isn’t
much to look at, and isn’t very interesting when looking at general relativity. We will
use it later in the thesis, since it is excellent to use as a test case when ray tracing,
since we expect nothing to happen, meaning that if something happens it will be due
to numerical error. But we will look into that in sec. 8.7.

We will now look at the solution that might be the most known, namely that of a
black hole. So, yes, a black hole is a vacuum solution of the field equations, or at least
the normal black hole solutions like Schwarzschild and Kerr solutions. We will look at
the Schwarzschild solution here, and then mention the Kerr solution in sec. 5.3.

The Schwarzschild solution is a vacuum solution where we assume the maximum
degree of symmetry in spacetime. The metric then takes the form

gµν =

− (1− rs/r) 0 0 0

0 (1− rs/r)−1 0 0
0 0 r2 0
0 0 0 r2 sin θ

 , (2.3)

where rs = 2GM
c2

is the Schwarzschild radius and is an event horizon, meaning that it
is the radius from which nothing, not even light can escape.

We will use this metric a lot through out the thesis. But we will not look at the
metric in exactly this form. The matrix representation of the metric is not unique, it
is instead a result of the coordinates we choose. In (2.3) we have used the so called
Schwarzschild coordinates. We are free to change these, and will instead use them in

2This is not entirely correct since we have gravitational energy

2.2 Two Black Holes 13

the so called isotropic coordinates. This gives us

gµν =

− (1−rs/4R)
(1+rs/4R) 0 0 0

0 (1− rs/4R)4 0 0

0 0 (1− rs/4R)4 0

0 0 0 (1− rs/4R)4

 , (2.4)

where R =
√
x2 + y2 + z2 and the event horizon now is rs/4. This metric will be used

for comparison later in the thesis.

2.2 Two Black Holes

We can then ask what will happen when we use two black holes and let them collide.
This will not only lead to some interesting visuals, but also gravitational waves (see sec.
3.7). The problems is that this becomes vastly more difficult. It is possible to make
approximations of the period before and after a collision using different approximations,
see [37] and [38], but for the collision itself it is more or less impossible. We must instead
look to computers to do the job for us. And this is what we will look at in the next
section.

14 Worlds Shortest Primer on General Relativity

Chapter 3

Numerical Relativity and the
3+1 formulation

We have seen that only in highly symmetric cases, like a single black hole, is it possible
to solve the field equations analytically. It is possible to use perturbation theory to
obtain approximate solutions for gravitational waves [23]. With quite sophisticated
tools, like post-newtonian expansion it is even possible to find the gravitational waves
emitted by merging black holes[37][38]. But if we want the full story of the merger
of two black holes such approximations wouldn’t be enough: They break down as the
black holes actually merge. So there is a need for some method to solve Einstein’s
field equations (2.1) outside of these idealized situations. It is here numerical relativity
comes to the rescue!

3.1 Why a New Formalism?

The goal of numerical relativity is to be able to use computers to solve the field equations
(2.1). But does one do that? Equation 2.1 consists of derivatives of the metric gµν over
both space and time. It therefore sounds like we have a Cauchy problem

∂nui
∂tn

= F

(
t, xj , uj ,

∂kui

∂xkj

)
. (3.1)

A Cauchy problem is the normal way of writing a general partial differential equa-
tion, and something we know how to solve[51]. The problem is the our equation(s) 2.1
treats space and time on equal footing – as a four dimensional spacetime. There is no
easy ways of writing it into the form of (3.1). There have been efforts to actually solve
(2.1) in this form, but this has been only partially accomplished[45]. We therefore need
to reformulate general relativity á la Einstein into a something on the Cauchy form!
The most popular form of doing this is the so called 3+1 formalism. This formalism
was first formulated by Richard Arnowitt, Stanley Deser and Charles W. Misner in
1959 [21] in an effort to get a Hamiltonian for the use in quantum gravity. James York

16 Numerical Relativity and the 3+1 formulation

then rewrote the formulation in 1979 into the one we use today[1]. This formulation,
as we shall see below, was on the form of a Cauchy problem, and it was not long before
researchers began to use this formulation to simulate the collapse of stars, black hole
mergers, and more. This is why the normal formulation of 3+1 numerical relativity is
called the ADM formulation. It soon became clear that this formulation alone wasn’t
well suited for simulations, since it’s mostly weakly hyperbolic1, meaning that the equa-
tions that needed to be solved wasn’t stable, in most cases leading to instabilities and
divergences. As it became clear that the Laser Interferometer Gravitational-Wave Ob-
servatory (LIGO) was beginning to get founding and that the hunt for gravitational
waves was nearing, the field of numerical relativity exploded in the late 80’s and 90’s,
and people began to try to find ways of stabilizing the equations of the ADM formalism.
Over the year multiple methods of achieving this has be proposed, like the Z4 formu-
lation [10] and the BSSN formulation developed by Thomas W. Baumgarte, Stuart L.
Shapiro, Masaru Shibata and Takashi Nakamura in the years 1987-1999. The latter
formalism is by far the most popular, and is the one used in most numerical relativity
codes today. It is ADM, with the addition of BSSN, we will discuss below.

3.2 The 3+1 Formalism

This is meant as an heuristic introduction to the subject. I will not cite every assump-
tion and steps not explicitly calculated. Thorough derivations can be found in most
textbooks on the subjects. This introduction are based on the books from Gourgoul-
hon[27], Baumgarte & Shapiro [6][7] and Alcubierre [3], and the wonderful lectures
given on the subject by Dennis Pollney at the Chris Engelbrecht Summerschool 2020
[44]2. It is first and foremost Baumgarte & Shapiro I’m basing derivations on, meaning
that the notation and order of the derivation is taken from here. I’ve changed some of
the order of the derivation when I found it more pedagogical to do so.

3.2.1 The New Quantities of the 3+1 Formalism, and the First Evol-
ution Equation

As we saw above, one of the problems we had with the normal formulation of general
relativity is that time and space is treated as one. We therefore begin with splitting
them up. This is done by foliating spacetime into discrete 3-dimensional, space-like
hypersurfaces, denoted Σt. Note that two observers on different parts of one slice don’t
have to agree on the proper time 3. The important point is that we have sliced spacetime
into non-intersecting 3-dimensional slices. The slices as constants of a global function
t, which turns out to be time. Now we have 3d slices living in a time t, therefore a 3+1
formalism.

We now need a way to describe the slices Σt. We start be defining a 1-form
1To prove this is actually quite hard, and has only been done in specific cases.
2This page with the notes has sadly been taken down in the last half a year. I will not use any more

citations from this, since it is based on [6].
3As one has come to expect in relativity.

3.2 The 3+1 Formalism 17

α

~β

Σt

Σt+dt
xi

xi

Figure 3.1: Figure illustrating the meaning of the terms defined in the text. Here we
have two time sliced Σt and Σt+dt with a given point xµ. We can see that the lapse
function α is the separation in time between the two slices, while the shift vector ~β is
the distance xi is shifted in space between the two slices.

Ωµ = ∇µt. (3.2)

This is a vector normal to the slice. We then get a normal unit vector to the slice

nµ = αΩµ. (3.3)

If we say that our function t is time, it is easy to show that

α2 = − 1

g00
, (3.4)

meaning that α describes how time evolve at a given position on the slice. α is
what is called the lapse function, and is one of the fundamental quantities used in
3+1 formalism. Figure 3.1 shows the interpretation of Σt and α together with another
quantity ~β which will be introduced later.

Before moving on with further description of the slices, we need to know how a
tensor is represented in the slices. It is possible to introduce a timelike projection
operator with the help of the unit normal vector

Nµ
ν = nµnν , (3.5)

and a spacelike projection operator

18 Numerical Relativity and the 3+1 formulation

Pµν = δµν + nµnν . (3.6)

The projection operators are going to help us immensely: We can now take the Einstein
equations (2.1) and project different indices into spacelike or timelike parts. This will
give us the type of equations we are looking for.

Having this unit normal vector and the projection operators, we can start looking
into the curvature of the slices. We need to distinguish between two types of curvature:
Intrinsic and extrinsic curvature. Intrinsic curvature is the curvature we are used to
from GR á la Einstein, described by the Riemann tensor. It describes how a vector on
the slice changes if it is parallel transported. Since the Riemann tensor is given by just
the metric and its first derivatives, we need only to find the metric for the slices. This
can be done by simple projecting the metric onto the slices

γµν = P σµP
τ
ν gστ = gµν + nµnν . (3.7)

Notice that this is an 3d tensor, and is the metric of the slices and is sufficient to
describe the intrinsic curvature.

In our description of GR, extrinsic curvature also plays an important role. Where
the intrinsic curvature described the change of a vector on the slice, the extrinsic
curvature describes the change of the unit normal vector as it is parallel transported
around in the slice. This is a symmetric tensor given as

Kµν = −Pαµ∇αnν = −∇µnν − nµaν , (3.8)

where aj = nα∇αnν is called the acceleration. Notice that Kµν is described completely
by nµ. With (3.7) and (3.8) we are now able to describe the 3d slices.

We can note here that we are left with two things we are free to choose, namely how
we divide up spacetime into slices, and how we travel through them. These freedoms
lay in α and the time vector tµ. If we rewrite

tµ = αnµ + βµ, (3.9)

where ~β is the shift vector. The reason we rewrote this is that now we are guaranteed
that tµ is dual to the surface 1-form Ω, and this gives us the free parameters α and
~β. The interpretation is that α tells the temporal distance between two slices, while
β tells us how the spatial coordinates changes from slice to slice. Fig. 3.1 gives an
illustration of this. Since these two quantities are free parameters they are treated as
gauge choices.

The four quantities α, ~β, gµν and γij are enough to describe the whole manifold,
and are what we are evolving to simulate GR. Having a way of describing spacetime
as a set of 3D hypersurfaces is great, but we do not know yet how they interact with
matter. We now need to find equation that describe this, and how the slices will evolve
with time!

The easiest evolution equation to start with is that of the spatial metric. We’ll find
this by taking the Lie derivative of the spatial metric along the normal vector

3.2 The 3+1 Formalism 19

£~nγµν = nσ∇σγµν + γσ(µ∇ν)nσ = · · · = γσµ∇σnν + γσν∇σnµ = −2Kµν . (3.10)

For the last step we have used metric compatibility (its covariant derivative is zeros),
and that the acceleration is zeros. We now have an expression for the evolution of γij ,
but it is inside a Lie derivative, so we need to deal with that.

A feature of the ADM equations is that they are expressed in a certain set of basis
vectors ea(i), with i = 1, 2, 3. They are defined such that lay on a slice

Ωje
j
(i) = 0. (3.11)

The time basis vector we choose to be out time vector (3.9), we get that

tµΩµ = αnµΩµ + βµΩµ = 1⇒ tµ = (1, 0, 0, 0). (3.12)

This alone actually gives us that
£t = ∂t. (3.13)

We can also use eq. 3.3 and 3.11 and write

Ωµe
µ
(i) = − 1

α
nµe

µ
(i) ⇒ ni = 0. (3.14)

Since we know that ~β is spatial, we can use 3.9 to show that

nµ =
1

α
(tµ − βµ) =

(
1

α
,
βi

α

)
. (3.15)

From this we get a reformulation of the metric in 3+1 formalism

gµν = γµν + nµnν =

(
−α+ βlβ

l βi
βj γij

)
. (3.16)

Now we come back to the Lie derivative of the spatial metric (3.10). Since we have
a set of basis vectors, it is possible to rewrite this in a way that we know how to solve.
Looking at the Lie derivative in (3.10)

£~nγµν =
1

α

(
£t −£~β

)
γµν (3.17)

with
£~β
γµν = βk∂kγij + γkj∂iβ

k + γik∂jβ
k. (3.18)

One can show that if the connection is symmetric, one can exchange the partial deriv-
ative in the definition of the Lie derivative for a covariant derivative [6]. In our case,
since we are working on our 3D hypersurface, let ∂i → Di, where Di is the covariant
derivative on said hypersurface, given by γij . Thus we get

20 Numerical Relativity and the 3+1 formulation

£~β
γµν = βkDkγij + γkjDiβ

k + γikDjβ
k = Diγkjβ

k +Djγikβ
k = D(iβj), (3.19)

where we have used metric compatibility Dkγij = 0. We can now see that we are left
with a nice expression for (3.10)

Kµν =
1

2α

(
−∂tγµν +D(iβj)

)
,

where we only care about the spatial part. This gives us

∂tγij = −2αKij +D(iβj). (3.20)

This is our first evolution equation, and determines how the spatial metric evolve with
time. This is the first of equation governing the evolution of our system.

3.2.2 The Constraint Equations and the Second Evolution Equation

To find the rest of the equations needed to do the evolution, it is no surprise that we
need to do some rewriting of Einsteins field equations (2.1). The rewriting will consist
of doing projections of the field equation. Before we look at the whole set of equations,
we will start be applying the projections to the Riemann tensor.

We have two types of projections, one spasial projection and one timelike projection.
As we saw above, they are given by eq. 3.6 and eq. 3.5. Each time we apply one of
these projection operators, they will project only one index. This means that there
are multiple ways we can do the projection of all the indices. One can show that, due
to the antisymmetrical properties of the Riemann tensor, there are only three unique
ways of doing the projections

P σαP
τ
βP

γ
µP

δ
ν
(4)Rστγδ, (3.21)

nδP σαP
τ
βP

γ
µ
(4)Rστγδ, (3.22)

nτnδP σαP
γ
β
(4)Rστγδ, (3.23)

where (4)Rστγδ is the 4D Riemann tensor – in contrary to the 3D Riemann tensor,
which will be used for the 3+1 equations. Doing the actual calculations are not difficult
nor technical, but involves a lot of tensor index manipulation, and a lot of time and
concentration. A good derivation can be found in [6], or done with Mathematica [44].
After doing the projections we are left with three equations

P σαP
τ
βP

γ
µP

δ
ν
(4)Rστγδ =(3) Rαβµν +KαµKβν +KανKβµ, (3.24)

nδP σαP
τ
βP

γ
µ
(4)Rστγδ = DβKαµ −DαKβµ, (3.25)

nτnδP σαP
γ
β
(4)Rστγδ = £~nKαβ +

1

α
DαDβα+KσβKασ. (3.26)

3.2 The 3+1 Formalism 21

We now have projections for the Riemann tensor, which will help us out when looking
at the projections of the field equations.

One more thing we have to look at before tackling the field equations are the
energy-momentum tensor Tµν . This will be done by decomposing the tensor into a
energy density

T 00 = ρ = nµnνTµν , (3.27)

the momentum density
T 0i = T i0 = ji = P iµnνT

µν (3.28)

and the spatial stress tensor

T j i = T ii = Sij = P iµP
j
νT

µν . (3.29)

Now we have all we need to do the projection of the field equations.
We can now move on to look at the field equations. We start by projecting the

Einstein Tensor with the use of the normal vector

2nµnν (4)Gµν = 2nµnν
(

(4)Rµν −
1

2

(4)

Rgµν

)
= 2nµnν (4)Rµν +(4) R. (3.30)

With this in mind, we can try to apply the spatial metric to Gauss’ equation 3.24

γβνP σαP
τ
βP

γ
µP

δ
ν
(4)Rστγδ = γτδP σαP

γ
µ
(4)Rστγδ =(3) Rαµ +KαµK +Kσ

αKσµ, (3.31)

where the first step comes from the fact that the spatial metric operated on by two
projection operators yields the spatial metric. We then do a contraction again

γαµγτδP σαP
γ
µ
(4)Rστγδ = γσγγτδ(4)Rστγδ =(3) R+K2 −KµνK

µν . (3.32)

If we look at the equation in the second step, we see that this can be written as

γσγγτδ(4)Rστγδ = (gσγσnγ)(gτδ + nτnδ)(4)Rστγδ = 2nµnν (4)Rµν +(4) R. (3.33)

Combining (3.30), (3.32) and (3.33) we see that we get

2nµnν (4)Gµν = 2nµnν (4)Rµν +(4) R =(3) R+K2 −KµνK
µν . (3.34)

Looking at the Einstein tensor, we know from the field equations that Gµν = 8πTµnu.
We also know from (3.27) that nµnν (4)Gµν = 8πρ. This leaves us with

(3)R+K2 −KµνK
µν = 16πρ. (3.35)

This is an equation governing the spacetimes we want to simulate. But there are no
time derivatives here, meaning that this isn’t an evolution equation. This is instead
a constraint equation, meaning that this differential equation must hold at all time.

22 Numerical Relativity and the 3+1 formulation

Since is a differential equation determined by the energy density, this is called the
Hamiltonian Constraint.

We can now do the similar procedures with one timelike and one mixed projection,
and using the Codazzi-Mainardi equation 3.25 and the Ricci Equation 3.26, arrive at
two more equations:

DµK −DνK
ν
µ = 8πjµ (3.36)

and

∂tKij = −DiDjα+ α
(
(3)Rij − 2KikK

k
j +KKij

)

−8πα

(
Sij −

1

2
(S − ρ)

)
+
(
βkDkKij +D(iβj)

)
.

(3.37)

As can be seen, this has a time derivative, so this is the evolution equation for the
extrinsic curvature. Note that it is due to our choice of coordinates that a partial
derivative appears in (3.37) instead of a Lie derivative.

This leaves us with a system we can solve. We have two evolution equations (3.20)
and (3.37) and two constraint equations, (3.35) and (3.36). These are called the ADM
equations.

Notice that (3.20) and (3.37) and contain partial differential operators time separate
from the spatial derivatives. This means that we can write the equations on the form
needed to have a Cauchy problem (3.1)! This means that we have made the mixed
derivatives of the field equations into something that we know how to solve numerically!
This is what we were looking for when switching to the 3+1 formalism!

But if we now try to solve these equations numerically, we will see that they are
very unstable. This is because they at best are strongly hyperbolic in certain ideal
situation and at worst weakly hyperbolic or elliptic in the scenarios we want to look
at. This is where the BSSN formalism comes in, which we will look at next.

3.3 The BSSN Formulation

From the conception of the ADM equations (3.37), (3.20), (3.35) and (3.36), researchers
were plagued with instabilities in the simulations, and all but the most ideal systems
were impossible to simulate. This was because the equations are at best weakly hyper-
bolic, meaning that they are inherently unstable. As mentioned before, there are a lot
of proposed solutions to this problem, but the most popular is the one we are going to
explain here: The Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism.

So how does one go about stabilizing the equations? We want to have strongly
hyperbolic equations. The hyperbolicity of the equations are determined by the higher
derivatives. In our case, both the evolution equations and the constraint equations
contain second derivatives of the gravitational fields. This is why many reformulation
schemes introduce new variables, consuming the first derivative. This leaves schemes
where we have first derivatives of these new variables, instead of second derivatives of

3.3 The BSSN Formulation 23

the gravitational field. This is the case with BSSN. Other formalisms, like Z4, have
extra variables, Zµ, which do not absorb the first derivatives of the metric, but still
contribute in the principle part, counteracting the effect of the second derivative of the
metric [10].

We start by first rewriting the extrinsic curvature as a sum of its trace and traceless
part

Kij = Aij +
1

3
γijK. (3.38)

We will also take the determinants of (3.20) and (3.37), giving us the rewritten evolution
equations

∂t ln γ1/2 = −αK +Diβ
i (3.39)

and
∂tK = −D2α+ α

(
Kij + 4π(ρ+ S)

)
+ βiDiK. (3.40)

We can now start the actual reformulation.
We start be doing a conformal rewriting of the the spatial metric and the traceless

part of extrinsic curvature. We are allowed to rewrite the metric as

γ̄ij = e−4φγij , (3.41)

where φ is the conformal factor, and γ̄ij is the conformal metric, were we require that
the determinant γ̄ = 1. We can do the same with the tracefree part of the curvature

Āij = e−4φAij . (3.42)

If we now take the trace of (3.40) and (3.39) we get the evolution equations of K and
γ̄, and if we subtract these from (3.20) and (3.37) we get evolution equations for γ̄ij
and Āij . They are

∂tφ = −1

6
+ βi∂iφ+

1

6
∂iβ

i, (3.43)

∂tK = −γijDjDiα+ α

(
ĀijĀij +

1

3
K2

)
+ 4πα (ρ+ S) + βi∂iK, (3.44)

∂tγ̄ij = −2αĀij + βk∂kγ̄ij + γ̄ik∂jβk + γ̄kj∂iβk −
2

3
γ̄ij∂kβ

k, (3.45)

and
∂tĀij = e−4φ

(
−(DiDjα)TF + α(RTFij − 8πSTFij)

)
+

α(KĀij − 2ĀilĀ
l
j) + βk∂kĀijĀik∂jβk+

Ākj∂iβk −
2

3
Ā∂kβ

k,

(3.46)

where TF markes the tracefree part of the tensor.
In (3.46) we see that we have the Ricci tensor. This can be separated into two parts

24 Numerical Relativity and the 3+1 formulation

Rij = R̄ij−2(D̄iD̄jψ+γ̄ij γ̄
lmD̄lD̄mψ)+4

(
(D̄iψ)(D̄jψ)− γ̄ij γ̄lm(D̄lψ)(D̄mψ)

)
. (3.47)

The second part is only dependent on the conformal factor ψ, while the first part is the
Ricci tensor calculated with the conformal metric γ̄ij . It is here much of the instability
lies. γ̄ij contains mixed (second) derivatives of the metric. To combat this, we can
instead introduce the variable

Γ̄i ≡ γ̄jkΓ̄ijk = −∂j γ̄ij . (3.48)

This is called the conformal connection function, and as we can see this contains the
first derivative of the metric. This only holds if γ̄ = 1. We now get

R̄ij = −1

2
γ̄lm∂m∂lγ̄ij + γ̄k(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + γ̄lm
(

2Γ̄kl(iΓ̄j)km + Γ̄kimΓ̄klj

)
. (3.49)

What we are missing now is an evolution equation for the conformal connection
function. It is possible to show that this takes the form

∂iΓ̄
i = −2Āij∂jα+ 2α

(
Γ̄ijkĀ

kj − 2

3
γ̄ij∂jK − 8πγ̄ijSj + 6Āij∂jψ

)

+βj∂jΓ̄
i − Γ̄j∂jβ

i +
2

3
Γ̄i∂jβ

j +
1

3
γ̄li∂l∂jβ

j + γ̄lj∂j∂lβi.

(3.50)

Equations (3.43), (3.40), (3.45), (3.46) and (3.50) are the new evolution equations
used in the BSSN scheme. We see that Γ̄i evolves independently of the metric, meaning
that (3.48) is a new constraint equation.

This system of equations is much more stable than the ADM equations, and is the
scheme used in most numerical relativity codes.

3.4 The Lapse Function and the Shift Vector

In sec. 3.2 we defined (3.9) as a function of the lapse α and the shift vector ~β. We could
do this due to the degrees of freedom found in GR. Since all the 4 components of tµ

are degrees of freedom, we can choose α and the three components βi freely. Choosing
these 4 degrees of freedom is the same as choosing a coordinate system. In the same
section we saw that the shape of the time slice Σ is a function of α, meaning that by
choosing the lapse we choose the shape of the time slice. We can also look at our choice
in βi as a choice in how spatial points are shifted between time slices.

But how should we choose the lapse and the shift, and why does it matter? In
simulating different spacetimes there are a lot of problems we can encounter. The most
obvious problems arise around black holes: If there are regions near a black hole where
the math breaks down, how can we expects computers to fare any better... At the
center of black holes we have real singularities which may cause real problems, but

3.4 The Lapse Function and the Shift Vector 25

due to cosmic censorship[41] these will always be covered by a horizon. We will later
discuss puncture methods of removing such singularities. We also need to handle the
singularity at the horizon itself. These are coordinate singularities, meaning that they
arise only due to our choice of coordinate system. Since choosing the lapse and the
shift are equivalent to choosing coordinate system, we can therefor choose some lapse
and shift that avoid singularities.

Avoiding singularities is not the only motivation for choosing lapse and shift, but
is the most relevant for our purpose. We will now describe two (out of many) ways of
choosing the lapse and the shift. The first is one of the easiest, and the second is a bit
more complicated and is the most similar to the one we are going to use.

3.4.1 Geodesic Slicing

The simplest way we can choose the lapse function and a shift vector is to simply choose

α = 1, βi = 0. (3.51)

It can be shown that the acceleration an observer feels is given as ab = Db lnα. With
our choice of lapse, this means that ab = 04. Since the observer feels no acceleration,
we know that he/she must follow a geodesic, therefore the name geodesic slicing.

While this seems like a good choice, it is not well suited for simulations. The reason
is that this slicing easily leads to singularities. For a black hole we have many geodesics
that leads into the horizon, and thus into a singularity. Therefore a large portion of
the simulation that starts outside of the horizon will follow a geodesic and with time
will end up at the horizon, where the simulation will stop due to the break down of the
equations. Even for vacuum this will most likely as well. One can show that even in
flat space a small perturbation in the form of a gravitational wave packet, will lead to
observers moving towards each other and forming a singularity.

All of this means that geodesics slicing, though simple, is not well suited for simu-
lations. We will instead look at a choice that is much better suited.

3.4.2 Harmonic Slicing and the 1+log Slicing

Harmonic coordinates are coordinates which leaves

gµνΓσµν = 0. (3.52)

Since the left side of the equations is also the definition of one of our BSSN quantities,
we see that

(4)Γµ = 0.(3.53)We are free to choose (4)Γµ = 0 since we have four degrees of
freedom. Now we cannot directly choose the lapse and the shift, but instead we get
differential equations for them

4This also shows why we cannot have α = 0, since this would lead to infinite acceleration.

26 Numerical Relativity and the 3+1 formulation

(∂t − βj∂j)α = −α2K (3.54)

(∂t − βj∂j)βi = −α(γij∂j lnα+ γijΓ
i
jk). (3.55)

This is called harmonic coordinates. This is not used that much in numerical
relativity, but a close cousin of it is. If we instead of (4)Γµ = 0, we use one of our
degrees of freedom to set (4)Γ0 = 0 and the rest to set βi = 0. This is called harmonic
slicing. We have directly chosen βi, but, as with harmonic coordinates, the lapse needs
to be determined with a differential equation

∂tα = −α2K. (3.56)

This yields the solution
α = Cγ1/2, (3.57)

where C is a constant of integration dependent only on space.
This slicing has the same advantage as the geodesic slicing in that it is very simple to

find. Contrary to the geodesic slicing it is also stable, and can also avoid singularities5.
The final slicing we will discuss here is the one we will use. It is a generalization of

harmonic slicing, and the only difference the addition to the positive function f(α) to
the above differential equation

∂tα = −α2f(α)K. (3.58)

f = 1 gives harmonic slicing, while f = 0 gives geodesic slicing. We are going to use
f = 2/α. This gives us

α = 1 + log γ. (3.59)

This is known as 1+log slicing. This still has a simple form, but is much more effective
at avoiding singularities than harmonic slicing.

We can also not that if we do not choose βi = 0, we can instead solve the differential
equation

(∂t − βj∂j)α = −α2K (3.60)

for the shift. This is called an advective shift, and leads to better simulations, especially
for moving puncture simulations (binary black holes) which will be discussed later.

We have now seen how to get more stable simulations by being smart when choosing
the lapse and the shift vector. We have mentioned black hole simulations and moving
puncture simulations without discussing how to actually make such simulations. Next
we will discuss how to set up the initial conditions in such a way that we are simulating
black holes.

5It is not always able to do this. A better method for avoiding all singularities is maximal slicing,
which is not discussed here.

3.5 Initial Condition and Black Hole Mergers 27

3.5 Initial Condition and Black Hole Mergers

We now have a set of differential equations we can use to numerically solve Einstein’s
field equations. But as is the case when solving every differential equation we need initial
conditions. We have seen that two of the equations are time independent, namely the
constraint equations (3.36, 3.35), and thus should hold for every time step. We can thus
use these to create systems which are physical and can be evolved using the evolution
equations. This is a convoluted way of saying that we can use the constraint equations,
together with some physical intuition about the slicing, to create initial conditions.

This is not as straight forward as it might seem. The constraint are not trivial to
solve, so to get the initial conditions will involve solving these complicated differential
equations. We will here look at one, and maybe the most used, solution for the initial
conditions: the two puncture method. This method will yield initial conditions describ-
ing n black holes, with mass, velocity and spin. This initial condition will then be used
in creating binary black hole mergers.

We will here just give a quick summation of the initial steps of solving for the initial
conditions. This will follow [4] and chapter 3 in [6]. For a more detailed calculation see
the latter or [19].

The first step is almost identical to what we did when looking the BSSN equations:
Doing a conformal transformation of the spatial metric. We will use a slightly different
notation than in (3.41), and instead write that

γij = ψ4γ̄ij , (3.61)

where ψ is the conformal factor and γ̄ij is the conformal related metric. The point here
is that ψ has absorbed the scale of the metric, meaning that we are free to choose γ̄ij .
This means that, just as in the BSSN formalism, the constraint equations will now be
a function of ψ and not γij .

Looking at the Hamiltonian constraint (3.35) we see a dependent on the Ricci scalar
R. We can use (3.61) and calculate R and get the new Hamiltonian constraint

8D̄2ψ − ψR̄− ψ5K2 + ψ5KijK
ij = −16πψ5ρ. (3.62)

We can first look at the simplest solution for this equation. A simple solution will
be a vacuum solution, meaning that ρ = 0. We will also let βi = 0 (see chapter 3.1.2 in
[6] for more detail) which means that Kij = K = 0. This means that (3.62) reduces to

D̄2ψ =
1

8
ψR̄. (3.63)

We then choose the spacetime to be conformally flat, meaning γ̄ij is Minkowski, and
therefore R̄ = 0. This gives us

D̄2ψ = 0. (3.64)

This is a Laplace equation, with the solution

ψ = 1 +
M
2r
, (3.65)

28 Numerical Relativity and the 3+1 formulation

where, if we takeM to be the mass, we see that the spatial metric we retrieve is that
of a Schwarzschild metric! But it is a simple Schwarzschild metric, without velocity or
spin.

Going back to (3.62) we can now continue the decomposition we started with (3.38),
where we take two further decompositions

Āij = ĀijT T + ĀijL, (3.66)

ĀijL = D̄iV jD̄jV i − 2

3
γ̄ijD̄kV

k, (3.67)

where V i is a vector potential. We can with these retrieve the extrinsic curvature[4] as

Kij = ψ−2
(
∂jVi + ∂iVj −

2

3
δij∆~V

)
(3.68)

This reduce the Hamiltonian and momentum constraint equations to[4]

∆ψ +
1

8
ψ8KijK

ij = 0 (3.69)

and
∆~V +

1

3
∇(∇× ~V) = 0. (3.70)

This can be shown to have the solutions

~V =

Np∑

n=1

(
− 7

4| ~xn|
~Pn −

~xṅ~Pn
3| ~xn|3

~xn +
1

| ~xn|3
~xn × ~Sn

)
, (3.71)

where ~Pn can be interpret as the linear momentum and ~Sn is the angular momentum
of the nth black hole. We also get

ψ = 1 +

Np∑

n=1

Mn

2rn
+ u, (3.72)

where the last term u has to be solved numerically. So why have we done this? The
reason is that if we solve for ψ directly we will have a singularity at r = 0, as we would
expect from a black hole, meaning that we need to find a way to handle the singularity.
Having gone through the steps above we are left with (3.72) where we can see that we
have two parts: The first two terms, which are analytical and contains a singularity at
r = 0; and u, which is called the correction term. It can be shown that u is regular
everywhere, meaning that we can now use the Hamiltonian constrain to solve for u
without having to worry about the singularity.

Solving for u numerically and using the resulting ψ and K together with the 1+ log
slicing (3.60) we can get the initial conditions for moving punctures, with mass, linear
and angular momentum given byM, ~Pn and ~Sn respectively. This is the standard way
of simulating black holes.

3.6 Apparent Horizons 29

Note that this initial condition will not reduce to Schwarzschild exactly, but instead
to something more like a "trumpet" solution[6]. It is actually difficult to get analytical
solutions for these solutions, but it is possible to estimate solutions as asymptotical
behaviour. See appendix H in [6] for more detail.

Using Np = 2 we get two so called two punctures method. But we still have the
unknown function u. This needs to be solved numerically. The main method for doing
this is described in [4], and is the method used by Einstein Toolkit to get the initial
data for binary black holes (see sec. 4.2). This method uses a spectral method(see sec.
4.3) to solve the differential equations at the start of each simulation.

This method can also be used to find the initial condition for a single black hole, as
we have seen above as well. But later we will use analytical initial data for single black
holes, since it exists.

3.6 Apparent Horizons

We will see situations were we have to find the event horizon of the black hole, the
border from which nothing, not even light, can escape. For simple analytical metrics
like the Schwarzschild metric this can be found analytically, e.g. rhorizon = 2GM/c2.
But this is generally not the case, and especially for a black hole merger, the concept
of the event horizon becomes unclear. We will instead look at the apparent horizon.
This is something that is possible to calculate and is a good approximation to the event
horizon.

We can define a 2-dimensional surface S living on our spatial hypersurface Σ, with
the outward pointing normal vectors si. With this we can define the induced metric

mij = γij − sisj = gij − ninj − sisj , (3.73)

where we recall that ni is the normal vectors on Σ.
We are interested in how light move around this surface, so we construct a vector

parallel to the outgoing null geodesic

ki =
1√
2

(ni + si). (3.74)

With this we can now define the outgoing null geodesic orthogonal to S

Θ = mij∇ikj . (3.75)

We want to construct this surface so that the null geodesic vanishes, meaning that
we have no outgoing light. This means that we have a surface with the same properties
as our event horizon. So we want

Θ = 0. (3.76)

Finding an expression for this is not trivial, so for more detail see chapter 7.3 in [6].
If we define the surface of the apparent horizon as a scalar function τ(xi) = 0, with a

30 Numerical Relativity and the 3+1 formulation

radius from the center given as h(θ, ψ), it can be shown[6] that

mij

(
λ

rC
(δij − σiσj) + λ∂i∂jh− skΓki j −Kij

)
= 0, (3.77)

where rC is the distance from the center to some xi, λ = (γijDijτ)−1/2, σi = ∂rC ,
and h = h(θ, φ) is the distance from the center to the apparent horizon, in other words
what we are after.

Equation (3.77) is a second order elliptic partial differential equation, meaning that
it is not simple to solve. We will not look at how to solve it here. When we are using
Einstein Toolkit later the apparent horizon will be found numerically by the Thorn
AHFinderDirect[49] if we give it an initial guess for the size and position. We will use
this horizon as the event horizon in our conversion.

3.7 Gravitational Waves

The end goal of this project is to be able to use ray tracing on a spacetime containing
gravitational waves from a black hole merger. We therefore need to look at what
gravitational waves are, a bit about how they are created and a bit about how they are
generally represented in numerical relativity.

Gravitational waves are a weak field solution to perturbations in the metric

gµν = ηµν + hµν , (3.78)

where ηµν is the background metric (here Minkowski) and hµν is the perturbation, with
the condition |hµν | << 1. It is normal to rewrite this as

h̄µν = hµν −
1

2
ηµνh, (3.79)

where h is the trace of hµν .
Due to the coordinate freedom of spacetime, we can introduce a gauge, or more

precisely the Lorenz gauge
∇µh̄µν = 0. (3.80)

It is possible to show that there are gauge freedoms associated with h̄µν , which
means that we can introduce two more gauges, which will leave us with the transverse-
traceless version of the perturbation

h̄µ
T
0
T = 0, h̄T T = 0. (3.81)

The "TT" here indicates that this tensor is transverse and traceless. Plugging this into
(3.79) we see that hµTν T = h̄µ

T
ν
T .

If we plug this into the field equations we get the solution[37]

hµ
T
ν
T = −16

c4
Tµν , (3.82)

3.7 Gravitational Waves 31

or for a vacuum solution
hµ

T
ν
T = 0. (3.83)

We recognize this as a wave equation for a wave with the wave speed c.
After using all the gauge terms we are left with 10 − 8 = 2 freedoms. For the

transverse-traceless waves this is the two polarization amplitudes h+ and h×. They
together with the polarization tensors give the vacuum solution

hT Tj i = h+e
+
i j + h×e

×
i j =

(
h+ h×
h× −h+

)
. (3.84)

If we instead want to solve the full equation (3.82) it can be shown that with weak
field and slow velocity approximation, we get to the leading order[37]

hTTij (t, ~x) =
1

r

2G

c4
Λij,kl(n̂)M̈kl(t− r/c), (3.85)

where Λij,kl is a projection tensor and M̈kl(t− r/c) is the double time derivative of the
quadruple momentum

M ij =
1

c2

∫
d3xT 00(t, ~x)xixj . (3.86)

t− r/c is the retarded time, meaning that something will happen at a coordinate only
after the information has travelled there at the speed of light.

We will of course not calculate all of this, and instead simulate the source of the
gravitational waves (the merger). So we need instead to find a way of keeping track
of the gravitational wave forms given the simulated metric. For this we, and Einstein
Toolkit, use the Newman-Penrose scalar ψ4. This is, in the Newman-Penrose formalism,
one of the five complex scalars describing the traceless part of Riemann tensor.

It is possible, using a null tetrad, to show that ψ4 can be constructed by components
of the Riemann tensor (chapter 9.4 in [6]), and using the definition of hTTij that

ψ4 = ḧ+ − iḧ×. (3.87)

So knowing ψ4 we know all that is to know about the gravitational wave form.
It is possible to calculate ψ4 using spin-weighted spherical harmonics[6]. This is

what Einstein Toolkit does when calculating ψ4.

32 Numerical Relativity and the 3+1 formulation

Chapter 4

Numerical Relativity Frameworks

4.1 Why Use Numerical Relativity Frameworks

We have in the theory section described how we can cast general relativity into a form
which is possible to solve using computers. So how do we move along and solve the
BSSN equations(3.43 3.40 3.45 3.46 3.50)? Trying to do it ourselves would probably
take the work more akin to a PhD than to part of a master thesis1. So we will instead
look at two already existing and well tried frameworks for doing numerical relativity
simulation: First we will look at Einstein Toolkit, which we will be using to do most
of our simulations. Secondly we will look at LORENE, which uses a different kind of
formalism for doing the PDE solving. We will mostly use LORENE for the conversion
into its grid formalism (see below), and not to do any actual simulations.

Below we will go through and more thoroughly introduce the frameworks, but before
this we will take a look at the reasons we use the specific frameworks. You may also
ask why we are using two frameworks, and what the reason is for this thesis. Can we
not just simulate a merger and run it through some ray tracing? We hope to be able to
answer these questions before we move on to describe the frameworks in more detail.

4.1.1 Why Einstein Toolkit?

Einstein Toolkit[36] is one of, if not the largest numerical frameworks out there. It
is open source, and has a large community with everything for forums and YouTube
lectures to annual meet-ups2. It is also quite versatile, with a modular structure making
it easy to set up simple simulations as well as add simulations of custom numerical
relativity problems. All of this makes Einstein Toolkit the easiest framework to use for

1I once tried to ask Dennis Pollney – whom I have cited a couple of times in this thesis – how I
could go around to try and make a Z4 numerical relativity simulator[10]. But he just shook his head
and would explain how to do it in 1+1 dimensions. So I gave up making a real 3+1 simulation, and
continued using Einstein Toolkit...

2One of which – London 2019 – I planned to attend. But two days before departure I got very ill,
and instead of leaning and discussing Einstein Toolkit with a group of fellow researchers I spent that
time in the hospital with severe food poisoning...

34 Numerical Relativity Frameworks

most cases.
Einstein Toolkit is also used in most research on black hole mergers and gravitational

waves, with many parameter files (see below and sec. 7) already existing and freely
available. This meant that the simulation part of the thesis could be minimised and
focus could be shifted to more important aspects.

4.1.2 Why GYOTO and LORENE?

LORENE is a framework developed by researchers at Observatoire de Paris in Paris,
France[26]. This framework is based on the spectral method (see sec4.3) rather than
the Cartesian grid with finite difference method. This means that LORENE is more
suited for simulations done in a spherical topology, which restricts the simulations
done compared to Einstein Toolkit, but instead gives a superior numerical resolution
compared to normal finite difference. It has the capability to do binary black holes,
but this is limited to quasi-circular orbits. If we want to look at the merger itself, then
we cannot use LORENE.

So why are we using LORENE then, since the goal is a black hole merger, which has
a more complex topology? The main reason is GYOTO[53]. GYOTO is a relativistic
ray tracer, also developed by researchers at Observatoire de Paris – with some, but not
complete overlap. As seen in sec. 5.3 GYOTO can do ray tracing in both analytical and
numerical spacetime. This means that we can use GYOTO on out merger simulated
in Einstein Toolkit.

The reason we have to talk about LORENE when talking about GYOTO is that
GYOTO is built upon LORENE. So all the positives and negatives of LORENE are
present in GYOTO as well. We will see right below what this means for our project.

4.1.3 Need for the Conversion

So we now have a spacetime simulated in Einstein Toolkit and a ray tracer capable of
ray tracing using numerical spacetime. So we’re done? No, sadly not... There are two
problems we need to solve. The first is that Einstein Toolkit uses a Cartesian grid with
finite difference and GYOTO and LORENE use a spectral representation. The second
is the problem of a merger not having a spherical topology.

The first problem is the main problem of the thesis. A spectral representation is in
essence interpolation of the data using Chebyshev polynomials as basis(see sec. 4.3).
Going from a spectral representation to "normal" Cartesian representation is more or
less trivial, but going the other way takes a bit more effort. LORENE has many useful
features for doing this, so this gives LORENE an important role in this transformation.
So we want a pipeline capable of taking data from Einstein Toolkit and then converting
it to a spectral representation using LORENE. We can then use this data in GYOTO.

The second problem arises from the spherical nature of the spectral representation
used in LORENE: It has a spherical topology, meaning that it is based on spherical
coordinates. We will see that trying to convert a binary black hole system to LORENE

4.2 Einstein Toolkit 35

leads to a poor representation. We therefore need to force spherical topology onto the
binary system. We will see how this is done in 6.1.

So to conclude this discussion. Einstein Toolkit is well suited to simulate binary
mergers, while our ray tracer program, GYOTO, is based on LORENE, which uses a
spectral representation of the 3+1 quantities. This means that we need to convert the
data from Einstein Toolkit to a spectral representation. We will also need to take care
of the "non-spherical" topology of the binary black hole merger.

But before discussing all of this, we will look at the two numerical relativity frame-
works.

4.2 Einstein Toolkit

4.2.1 Introduction

Einstein Toolkit[32, 36, 57] grew out of the community in search for a simple yet
versatile and fast framework to simulate numerical relativity, and especially neutron
and black hole mergers. Einstein Toolkit is not one monolithic code, but instead a highly
modular framework, build to be easy to use and to contribute custom code. While we
will use Einstein Toolkit as an umbrella term for the whole framework –as does most
of the literature –, Einstein Toolkit actually consist of underlying frameworks, such as
Cactus and Carpet, which works on their own and can be used for simulations outside
of numerical relativity.

We will here take a look at the different parts and how Einstein Toolkit is structured.
How Einstein Toolkit is used in practise is described in the method section (see sec. 7).
We will instead try to give a broader overview here.

4.2.2 Cactus

The main skeleton of Einstein Toolkit is Cactus[25]. Cactus was designed to be open
source and highly modular, and was originally developed at Louisiana State University
for numerical relativity, but has branched out and is now used by other fields of physics.
What makes this possible is that while designed for numerical relativity, there are
no concrete physics being done by Cactus alone. Cactus is instead focuses on the
High Performance Computing(HPC) part of the simulation. Cactus is instead the
"flesh" (this is the actual term for this part of Cactus) of the simulation, taking care
of the memory management as well as communication between all the modules written
for Cactus, called Thorns. These thorns will therefore not have to think about the
memory management of its variables, how to communicate with other thorns or how
paralellization is done. It just need to tell Cactus about the variables and its functions,
and Cactus will take care of the rest. The author of the thorns can instead focus on
the physics. This is in fact the core philosophy of Cactus and Einstein Toolkit: When
writing a thorn, the author should not have to care about the inner workings of any of
the other thorns or how they communicate, just the physics of their thorn.

36 Numerical Relativity Frameworks

Cactus will handle some physics. Most physical simulations will have some kind of
functions over a grid, as well as some time evolution of these functions. Cactus will take
care of these aspects of the simulation as well. The author of a thorn will only have to
give some function over a grid and a differential equations describing the evolution.

4.2.3 Grid Functions

We will throughout the thesis use the term grid functions a lot. Einstein Toolkit will
normally hold and evolve variables, functions, tensors, etc on a Cartesian grid using
finite difference integration. This is contrary to LORENE, as we will see later uses a
spectral grid and a spectral method to evolve data. So to distinguish the way Einstein
Toolkit holds data to that of LORENE, we will call the Einstein Toolkit data for grid
functions.

4.2.4 Carpet and Adaptive Mesh Refinement

The part of Cactus that takes care of the memory management, the mesh refinement
and the evolution scheme is called the driver. There exist many driver for Einstein
Toolkit, with the two normally used being PUGH and Carpet [17]. We will take a small
look at the latter, since it provides the most versatile and powerful driver.

Carpet is build upon Cactus and it main feature is its adaptive mesh refinement(AMR).
Most simulations in physics have different regions in the simulation with different
amount of "activity". By this we mean that in some regions of the simulation nothing
will happen for the entire simulation, while in other regions we might have so much
happening that we get divergence in the integration. We could try the simulation again
with a higher resolution, but then a lot of the simulation will have much higher resol-
ution than needed, and the simulation will be unnecessary slow. We can instead use
an adaptive mesh refinement, where the simulation refines the resolution in the parts
where it is needed. This is done during run time and can be done for both spatial and
temporal resolution.

The AMR used in Carpet is the Berger-Oliger algorithm[8]. This algorithm will can
make refinements to regions of the simulations of a factor 2, which is one refinement
level. This will lead to difficulties in what to do on the boundaries of the refinement
levels, both in time and space. Thankfully Carpet takes care of all of this, and the user
can just used Carpet (with some parameters (see sec. 7). We will not go into details
on how this is done, since this is not relevant for the thesis, but if the reader want a
good figure to describe the method they can look at fig. 1 in [36].

4.2.5 Thorns

We have now looked at the skeleton and flesh of Einstein Toolkit, but up to now we
have not discussed any actually numerical relativity. This is where Thorns come in.
Thorns are the modular parts that together with the flesh make up Cactus – a cactus
consists of cactus flesh and thorns, giving their names to the parts of Cactus – and
Einstein Toolkit. So the user will use different thorns that do different tasks. Some

4.2 Einstein Toolkit 37

thorns will set up initial conditions, some will take care of the positions of the black
hole, some will handle the output, some the possible errors. Most of the functionality
of Cactus and Carpet is actually also thorns.

Thorns are categorized into so called arrangements. These are groups of thorns has
similar responsibilities. One example is EinsteinBase. This is an arrangement which
take care of the variables often used in numerical relativity. In this arrangement some
of the thorns we can find are

• ADMBase: Sets up, keep track of, and can convert the normal 3+1 quantities in
the ADM formalism.

• TmunuBase: Handles the components of the energy-momentum tensor Tµν .

• HydroBase: Handles the variables needed to do hydrodynamical simulations.

Note that these thorns do not handle the evolution of these variables, that is up to
other arrangements and thorn, e.g. ML_BSSN [39].

4.2.6 Black Holes, Mergers and Gravitational Waves

We have now seen that thorns are what makes up most of code used to make numerical
relativity simulations in Einstein Toolkit. As an example we will look at some thorns
used in simulating a single black hole and a black hole merger. To see how this is done
in practise, see sec. 7.

Having set up Cactus and a Carpet AMR grid, we can now take care of initial
conditions. We can then use the arrangement EinsteinInitialData, where we find the
thorn TwoPunctures[4]. This will set up initial conditions using the two puncture
method (see sec. 3.5. This lets us set up binary black holes with arbitrary spin,
momentum and mass. By setting the mass of one of the black holes to zeros, we can
also make single black holes with this thorn. For the single black hole we can also
use the thorn IDAnalyticBH [43]. This lets us make initial conditions using analytical
values for the metric.

We now have initial conditions but want to evolve the spacetime. For this we can
look in the McLachlan arrangement. This lets us use the thorn ML_BSSN [15] what
will use the BSSN formalism to evolve the spacetime.

We have now made some initial conditions and evolved the spacetime. If this is all
we add then we will be disappointed to see that the output folder is empty. We need
another thorn to actually output the result. In the 3D data we are going to use here,
we want to output the data as HDF5 files. We can thus use the thorn CarpetIOHDF5,
found in the Carpet arrangement. We can tell this thorn which variables and grid
functions we want to output. Note that we never told the thorns holding the grid
functions how to output. Instead the I/O thorn will take care of all the formatting and
outputting. As long as the grid functions exist in the simulation, the I/O will know of
it and know how to output it (depending of the type of the function).

There are some more functionality we need to add to the simulation. We want to
find and store the horizons of the black holes throughout the simulation. For this we

38 Numerical Relativity Frameworks

can use the arrangement EinsteinAnalysis. The first thorn we will use from here is
PunctureTracker. This thorn will track the punctures made by TwoPunture. There
are two reasons we do this. The first, and arguably most important reason, is that we
want to use the AMR around the punctures. PunctureTracker allows this to be done
automatically (for more detail see the section on AMR in [36]). The second reason is to
give the position of the black holes to the next thorn AHFinderDirect [49]. This thorn
will, given a guess for the position and radius of the horizon, calculate the apparent
horizons(see sec. 3.6) of the black hole(s).

For a black hole merger we are interested in the gravitational waves generated. For
this we can use the thorns WeylScal4 and Multipole. These can generate the Weyl
Scalars for the outgoing gravitational waves(see sec. 3.7), which makes it possible for
us to look at the gravitational wave patterns of the merger.

4.2.7 Simulation Factory

An other important feature of Einstein Toolkit is Simulation Factory. This is a wrapper
for all the parts described above. Simulation Factory is the part which the user will
actually interact with when using Einstein Toolkit, and takes care of distributing the
code over a cluster or supercomputer, logging and debugging, I/O and actually running
the code. To see how it is used, look in sec. 7.

4.3 Spectral Methods

4.3.1 Theory

As mentioned above in section 4.2.2, Einstein Toolkit uses a finite difference method
to calculate the derivatives. Finite difference is maybe the most used method to solve
differential equations, ordinary and partial. Given some grid xi with i = 1, . . . , N , we
can have defined some grid function fi = f(xi). Through a simple Taylor expansion of
fi, it is trivial to find that a first order approximation of the derivative of said function
is given as

f ′i = f ′(xi) ≈
fi+1 − fi
xi+1 − xi

. (4.1)

This holds to an order of ∆x = xi+1 − xi, which means that given a fixed interval,
the error will be inversely proportional to the number of grid points N , so ∆x ∼ 1/N .
We know that it is possible to find schemes with have a higher order of accuracy, for
example central difference

f ′i ≈
fi+1 − 2fi + fi−1

∆x2
, (4.2)

which is of second order error ∼ 1/N2. In general, the best accuracy we can get with a
finite difference method is that the error goes as a power law 1/Nn for some n’th order
scheme.

4.3 Spectral Methods 39

Instead of representing the functions on a discrete grid, and using finite difference
to differentiate the functions, we can instead use a spectral method. We can start by
representing our function as an expansion/interpolation over some test function

f(x) ≈
N∑

i=0

aigi(x), (4.3)

where g(xi) is the trial function and ai is some coefficients. The trial function can for
example be cosx and sinx for a normal Fourier series – suited for periodical functions
–, or, as we will use often, Chebyshev polynomials. The important feature of the test
function is that they need to form a basis for some space, so that a function in that
space may be expanded in said basis.

Some of the magic of this method is in how derivatives of our function is found.
In this representation we have a continuous approximation of our function – this is
discrete in the grid method –, represented a known test function and some coefficients,
meaning that we can take a normal differentiation of our function

f ′(x) ≈
N∑

i=0

aig
′
i(x), (4.4)

where g′(xi) is analytical and know! This means that a good approximation of f(x) we
also have a good approximation of f(x).

So, does this mean that we have a better approximation of the derivative with a
spectral method than with a finite difference method? In most cases yes: 4.3 is an
approximation where the accuracy is dependent on the number if points use to find the
approximation N , but it can be shown that this accuracy goes faster than a power law
of N , and can be close to exponential in ideal cases[31]. This means that to get the
same accuracy as in the finite difference case, we need a lot fewer points – in some case
a couple of order of magnitude lower. This means that with a spectral method, we are
able to both speed up the calculation and/or get a more accurate simulation (two sides
of the same coin).

We will below see how to find these expansions, and how they are used to solve
differential equations.

4.3.2 Expanding In the Test Function

We have seen that when expanding our function to a trial function we get analytical
expressions for the derivative and can solve differential equations with close to expo-
nential accuracy. But the question is then: Which (set of) functions should we use as
trial functions. A good answer for this is the "Moral principal 1" found in [13] which,
paraphrased, says to always use Chebyshev polynomials unless we have periodical func-
tion – in which case use a normal Fourier series – or if "you’re really, really sure that
another set of basis functions is better"[13].

So how do we expand into Chebyshev polynomials? Chebyshev polynomials are
polynomials orthogonal with respect to the weight w(x) = (1−x2)−1/2 over the interval

40 Numerical Relativity Frameworks

[−1, 1] and defines as Tn(cos θ) = cos(nθ). From this we can show that gives us the
polynomials[31][6]

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, Tn+1 = 2xTn(x)− Tn−1(x), (4.5)

where the last term is a recursive expression used to find all the higher order terms.
Each of the above polynomials have N zeros at

xi = cos

(
π(k + 1/2)

N

)
, k = 0, 1, ..., N − 1 (4.6)

and N + 1 extrema at

xi = cos

(
πk

N

)
, k = 0, 1, ..., N. (4.7)

These points will be very useful when trying to do the expansion.
We can now do the expansion. We want to have an expansion

f(x) =
N∑

k=0

f̃kTk(x), (4.8)

where f̃k is the kth coefficient of the expansion. To do this expansion, we do as we do
in a Fourier expansion, we take the inner product

f̃k = (f, Tk) =
2− δi0
π

∫ 1

−1
Tk(x)f(x)w(x)dx, (4.9)

where w(x) = (1 − x2)−1/2 is the weights of the Chebyshv polynomials. This integral
is often impossible to solve, so we have to use numerical integration instead. The
methods used are normally Gauss integration or Gauss-Lobatto integration[31]. In
these methods only a few points are needed to do the integrations. These are the
collocation points and are given as the zeros of the Chebyshev polynomials(4.6) when
using Gauss integration and the extrema(4.3.2) when using Gauss-Lobatto. Following
[6] we can use Gauss-Lobatto to get that

f̃i =
2

Nci

N∑

k=0

1

ck
fkTk(Xk), (4.10)

where ci = 2 at i = 0 or i = N and is 1 everywhere else, and Xk are the collocation
points. fk is also evaluated at the collocation points. We can then get the original
function from (4.8).

We have now transformed our function into a spectral representation using Cheby-
shev polynomials. As we will see below in sec. 4.4, we can expand in many other basis.
Note that in most code this expansion is done using the Fast Fourier Transform (FFT).

4.3 Spectral Methods 41

4.3.3 Solving Differential Equations

So we have now transformed a function into a spectral representation. We will now look
at how we can use a function in a spectral representation to solve differential equations.

A general differential equation can be written as

Lu(x) = s(x), (4.11)

where L is a linear differential operator, s(x) is some source term and u(x) is the
function we want to solve for. We then define the residue for a numerical solution
solution ũ as

R = Lũ− s. (4.12)

Since we want to have ũ as close as possible to u(x) we want the residue to be minimized.
There are three main methods for doing this: the first two, Galerkin and Tau can be
found in [31]. The third is the so called the pseudospectral or collocation method, and
consists of evaluating (4.12) at some collocation points.

When using Chebyshev polynomials as an expansion for our functions we have that
the collocation points used to evaluate (4.12) are the same as the collocation points we
used to do the spectral transformation (4.10).

We can see how we do this is practice. First the source term should be transformed
with (4.10). Next note from (4.8) that any derivative of the function u(x) instead
becomes a derivative of the Chebyshev polynomials

f ′(x) =
N∑

k=0

f̃kT
′
k(x). (4.13)

The derivative of the Chebyshev polynomials are analytical, meaning that we have an
analytic expression for the derivative, instead of an approximation which we have in
finite difference. Since we have polynomials with a recursive relation we can write the
derivatives of the Chebyshev polynomials as some matrix times the polynomials them
self[6]

T ′k =

N∑

i=0

DlkTl(x), (4.14)

where the matrix Dlk is[31]

Dlk =

0 1 0 3 0 · · ·
0 0 4 0 8 · · ·
0 0 0 6 0 · · ·
0 0 0 0 8 · · ·
0 0 0 0 0 · · ·
...

...
...

...
...

. . .

. (4.15)

From this we also see that the double derivative becomes Dl
2
k. This means that

the differential operator L becomes a normal matrix in the spectral representation:

42 Numerical Relativity Frameworks

L→ Llk. This means that we have

LklũkTl = s̃lTl, (4.16)

where the summation over the k and l are implicit. We then evaluate this at the
aforementioned collocation points. We know Lkl, Tl and s̃l, meaning ũk is the only
unknown. Since we have evaluated this at N collocation points, we have N+1 equations
for N + 1 unknowns in the form of a matrix equation. We have thus made the different
equation into a matrix inversion problem. This is the magic of the spectral method. Not
only that, but since the Chebyshev polynomials have close to a exponential precision,
the value of N can be orders of magnitude lower than the resolution normally used in
finite difference! This is still not a perfect method, since solving a large matrix inversion
can be computationally difficult.

This was a short description of the spectral method for solving differential equations.
Below we will look a bit on how this is used with numerical relativity in LORENE.

4.3.4 Using the Spectral Representation without Solving Differential
Equations

We have said that we will solve Einstein’s field equations in Einstein Toolkit and not
in a spectral method. So why involve the spectral representation at all? As we will
see below this is because GYOTO use LORENE, which uses spectral representation.
But before looking at this we will give a short reason for why to have the functions in
a spectral representation, even when not solving differential equations using spectral
methods.

Let us say that we now have our function as a numerical representation given by
the N spectral coefficients (4.10). We now want to know our function at some arbitrary
point x. In a normal numerical representation of a function, we would need to do an
interpolation of the data if x wasn’t in our original numerical representation. In a
spectral representation we don’t need to worry about that, we can get this function
value of f at any x using (4.8), without having to worry about any interpolation. Thus
with N spectral coefficients we can get the function value of f anywhere.

This is not completely true, since the interpolation is hidden in the spectral repres-
entation itself, which the function transformed into a Chebyshev basis being the actual
interpolation. But as we have seen this interpolation can have exponential precision.
This means that we can get the function value at any point with a high precision.

Say we now want to find the derivative of the function. With a normal numerical
representation we would need to use some finite difference scheme. But we have seen
that the derivative of a spectral representation has an analytical expression (4.13). So
we can find the derivatives with a high precision at an arbitrary point.

These features of the spectral representation will be used by GYOTO to quickly and
precisely get the 3+1 quantities and their (spatial) derivatives to calculate the geodesic
equations(5.13).

4.4 LORENE 43

4.4 LORENE

Langage Objet pour la RElativité NumériquE or LORENE[26] is a framework, or more
precisly a set of C++ classes, used for numerical relativity, numerical astrophysics as
well as tensor manipulation created mainly by Eric Gourgoulhon, Philippe Grandclé-
ment, Jean-Alain Marck, Jérôme Novak and Keisuke Taniguchi.

The main difference between Einstein Toolkit and LORENE is that LORENE uses
a multi-domain spectral method to solve the differential equations associated with nu-
merical relativity instead of the finite difference used by Einstein Toolkit. We have
already seen what is meant by a spectral method, but we will look at bit more on the
multi-domain part below.

4.4.1 Multi-domain Spectral Methods

We have above discussed how to transform a function into a spectral representation as
well as using this to solve differential equations. The real world is rarely this simple.
When using this method in numerical relativity we have different areas with differ-
ent needs for resolutions. We are also using a spherical coordinate system, mean-
ing that we need different basis for θ and ψ. For this we use a multi-domain spec-
tral method[11][31]. This consists of defining different domains with different radii
(r0, r1, .., rn−2, rn−1, where rn−1 can go to infinity.

Each of these domains can then have different resolution: Nr, Nθ and Nφ. This
means that we can do a spectral transformation of our function with a different resol-
utions at different regions. So if some simulation has something strange happening at
r = 3 we can define a domain spanning from r = 2 to r = 4 with a higher resolution
than the other domains. After doing all the transformations we need to do some more
work to "sew" the regions together[11]. This is thankfully done inside LORENE.

There is one problem here. We have already seen that the Chebyshev polynomials
are defined in the region [−1, 1]. This means that we need to transform our r into this
region, as well as compacting r =∞. This is done with the transformation[53]

ζ(r) =

r/r0 for r ≤ r0
2r−rl−rl−1

rl−rl−1
for rl−1 ≤ r ≤ rl

1− 2rn−2

r for r > rn−2.

(4.17)

We can then look at the final expression for the spectral transformation, using both
Chebyshev polynomials as well as Fourier transforms for the periodical θ and φ. From
[53] we get

f(t, r, θ, φ) =

Nφ−1∑

k=0

Nθ−1∑

j=0

Nr−1∑

i=0

f̃ijk(t)Rij(ζ)Θjk(θ)Φk(φ), (4.18)

where

Φk(φ) =

{
cos(mkφ) for k even
sin(mkφ) for k odd (4.19)

44 Numerical Relativity Frameworks

mk = integer part of k/2, (4.20)

Θjk(θ) =

{
cos(jθ) for mk even
sin(jθ) for mk odd (4.21)

Rij(ζ) =

T2i(ζ) for j even and r ≤ r0
T2i+1(ζ) for j odd and r ≤ r0
Ti(ζ) for r ≥ r0

(4.22)

The matrix f̃ijk is the actual spectral representation of f(t, r, θ, φ) and is everything
that is needed to get back the original function. This is also what is needed to be able to
do the ray tracing with GYOTO, as this matrix lets GYOTO get the original function
at any point as well as its derivatives.

4.4.2 Usage

LORENE has the capacity to simulate a wide range of numerical relativity and astro-
physical systems, from MOND [9] to strange quark stars[24]. It is actually also able
to create binary black holes[30][28] as well as black hole-neutron star binaries[29]. In
fact there exist three Thorns for Einstein Toolkit inside the EinsteinInitialData ar-
rangement called Meudon_Bin_BH, Meudon_Bin_NS and Meudon_Mag_NS which
uses LORENE to set up initial data for Einstein Toolkit using LORENE. It is also
possible to call on LORENE code in Einstein Toolkit using the Thorn LORENE in the
arrangement ExternalLibraries.

We will not use LORENE to such an extent. We will instead use the fact that
LORENE is the framework which the ray tracing program GYOTO it built upon (see
below). This means that we need to get data from Einstein Toolkit into LORENE,
which then can send the data to GYOTO.

The first thing we can use LORENE to, is to do the spectral transformation needed
to have the data in the formalism used by GYOTO. LORENE has this capability, and
by declaring the domain sizes and resolutions, LORENE can then calculate the needed
collocation points needed. If we then give LORENE these points, LORENE is able to
do the transformations.

Our transformed data will be the 3+1 quantities discussed in the section on numer-
ical relativity (sec. 3.2). This means that we have one scalar, one 3-vector and two
tensors (3× 3 matrices)3. LORENE is capable of holding all of these different objects,
and of doing algebraic, as well as some calculus operations on them. This means that
we can do things like inverting the metric as well as transforming everything into a
spherical triad, which is needed for GYOTO, inside of LORENE.

All of this is what will be done by the converter, which will be discussed more in
the method section.

3Technically all of these quantities are tensors, but they are different objects in LORENE.

4.4 LORENE 45

4.4.3 GYOTO and Ray Tracing in Numerical spacetimes

The reason we have talked so much about LORENE is that this is the numerical
relativity framework on which the ray tracing program we want to use, GYOTO, is
build upon. This means that we needed a good understanding of LORENE to be able
to understand and use GYOTO. We will now look more closely at ray tracing, and use
that to introduce GYOTO.

46 Numerical Relativity Frameworks

Chapter 5

Ray Tracing

5.1 Introduction

We want to make an image of the black hole merger. But how does one go about this?
This is where ray tracing comes in. Ray tracing is a technique where we simulate the
path of the photons as it leaves a light source, interacts with objects and finally hits the
pixels of the camera – represented by a pixel screen –, creating an image we can see.
This way we will have both a fine image of the objects in the scene, but we will also
have simulated the effects of the objects on the photons, meaning that we can get some
physics from the image, e.g. how the gravitational waves have affected the photons.

The idea of ray tracing is not new, and traces its origins back to the German
Renaissance painter Albrecht Dürer, who used a thread going from points on an object
to a screen, representing the image[55]. The thread is meant to be the path of the light.
This was used as a tool for understanding the path of light and to help paint. We will
of course not tie a string at some star and stretch it around a black hole (I would if I
could). Instead we will let the computer simulate the path of the photons. Ray tracing
with computers has been done since the early 1970s[56], and is now the standard for
simulating the effect of light on objects in everything from Pixar movies to video games
– especially after the release of NVIDIA’s new RTX 2000/3000 graphic cards, which
have built in support of extremely effective ray tracing.

Below we will describe in general terms how ray tracing is done. This will be done
from a general computer graphics points of view. This will of course not be exactly
the same as ray tracing around merging black holes, but many of the concepts are the
same. After that we will describe how ray tracing can be done in general relativity,
both with a known analytical metric and with a numerical metric.

5.2 Doing Ray Tracing

We will here look at how ray tracing is done. We are going to look at a more general
scenario where we have a simple sphere and a light in the scene. This will give a
broad understanding about how ray tracing is done. More or less everything here is

48 Ray Tracing

transferable to the general relativity case, except that it will be more complex since
we have to introduce geodesics for the path of the light instead of assuming that light
travels in a straight line (which is technically mean that they travel on a geodesic).

I described above that as the light travelling from the source and hitting the camera
is not how ray tracing is done. This would result in many photons being simulated
travelling from the light source, but never hitting the camera, thus leading to a very
ineffective and wasteful simulation. Ray tracing is rather done in reverse, with the light
travelling from the camera, interacting with objects in the scene and finally terminating
at a light source or at some distance determined to be infinity and therefore dark. The
color of the image is thus determined by the objects the photons passed through or is
reflected by, and whether the photon hits a light source or not. When the photon passes
through or is reflected by an objects, the property of the object will change that of the
object, e.g. a red semitransparent sphere will make the photon more red and decrease
the intensity of the photon. This setup with light source and a red sphere is illustrated
in fig. 5.1. Here we can see a 2D screen with four pixels. The photons are sent from
each pixel at an angle determined by the field of view of the image. Here it is about
45◦. We see that the bottom photon does not hit anything, meaning that this pixel
will be dark. The second pixel (from the bottom) hits the sphere but travels through it
and into infinity. This will also be dark. The third photon hits the sphere, bends, exits
the sphere and hits the light source. Since it hit the sphere, its intensity is decreased
and it becomes red. The top photon hits the light directly and just becomes white. So
what we will see is a sphere which is dark at the bottom and red and transparent on
the top, with a shining white light above and behind. An example of how this would
look can be found in fig. 5.2.

This is a simple description of how ray tracing is done by the computer. In real
cases the light and objects in the scene might be more complex and interact with the
photons in a more complicated manner. But the general method of sending photons
from the screen to interact with the objects is the same, and is also the same when we
now move over to ray tracing in general relativity.

5.3 Ray Tracing in General Relativity and GYOTO

We have now briefly looked at how ray tracing works. Above we described it in a
general way, and assumed that light moves in straight lines, and only changes direction
when it interacts with objects in the scene. We will now move over to ray tracing in
general relativity, meaning that we have non-Euclidean space(time) and that photons
no longer move in straight lines. Instead they move on so called geodesics. This path
is governed by the geodesic equation (5.10), which describes the shortest path between
two points. While we can include objects in the scene, such as e.g. stars and accretion
disks, the biggest effect on the path of the light is spacetime itself.

All the above steps of doing ray tracing described above still holds, we now have to
include a way of calculating the path of the photons as they travel through empty space.
It is this effect of the curvature of spacetime on the photons, such as event horizons,

5.3 Ray Tracing in General Relativity and GYOTO 49

Light SourceScreen/Camera

Photon Paths

Semitransparent
Sphere

Figure 5.1: An illustration of how ray tracing works. The photons are sent from a
screen (here a 2d screen with four pixels). The color of the pixels are determined by
what they hit on their path, and if they it a light source. We see that two photons
hit nothing (one of them after going through the sphere). The two others hit the light
(one after going through the sphere). The image will therefore be a partly lit sphere,
with a visible light on the side, in the background.

Figure 5.2: A ray tracing of a scene similar to the one described in fig. 5.1. This is a
semitransparent red sphere over a light blue floor. There is a light to the left of the
sphere, but the light itself is not rendered. This was made in the 3D modelling software
Blender.

50 Ray Tracing

gravitational waves, etc, which we are interested in. We will look at two ways of doing
this. The first assumes that we are ray tracing in a spacetime containing a single and
possibly spinning black hole. In this case we can find an analytical expression for the
metric. From this metric we can find expression for how photons will move in said
spacetime – even without going through the geodesic equation.

For everything but the most trivial situations, an analytical expression for the metric
is not possible to find. We thus have to resort to numerical methods for finding the
metric. As we have seen earlier, to find numerical metrics we need to use the 3+1
formulation. This means that we need to do the same with the geodesic equation. This
will be done below.

We have now described how to do the ray tracing in curved spacetime. The analyt-
ical method is not too difficult to implement, and can be done as a fun project without
understanding much of the math1. For the numerical spacetime the implementation is
far more difficult, and to implemt it myself would probably constitute a master thesis
all by itself. We will therefore use the program GYOTO[53]. How this program works
and how we are going to use it will be described later.

5.4 GYOTO

The main goal of this thesis is to look at how photons behave around the black hole
merger, and ultimately how the gravitational waves emitted by the merger affects the
light. Having a simulation of the spacetime of the merger, we now need to be able
to send light at the black holes. This is where a ray tracer comes in. A ray tracer is
program that simulates the path of photons in a given spacetime2. This is something
which we might write ourselves, and for simple analytical metric like a Schwarzschild
or a Kerr metric it is not that much work. But since we are dealing with numerical
spacetimes the program becomes more complicated. Thankfully, researchers have been
writing ray tracers for numerical relativity since the 70s, to study everything from
how stars orbiting black holes will look to accretion disks around supermassive black
holes[48] and neutron stars with an atmosphere [54]. Though there are many ray tracers
out there, my choice landed on GYOTO [53]

GYOTO (General relativitY Orbit Tracer of Observatorie de Paris) is an open
source ray tracer written by F. Vincent, T. Paumard, E. Gourgoulhon and G. Perrin
from the Observatorie de Paris [53]. GYOTO is written in C++ and is modular,
meaning that it is easy for users to add functionalities to the simulation as plug-ins,
without having to edit the main code of the program. It is also possible to use Yorick3

and Python as scripting languages to run GYOTO simulations.

1A good example of how to do this can be found here:
https://www.codeproject.com/Articles/994466/Ray-Tracing-a-Black-Hole-in-Csharp

2More generally a ray tracer will also simulate objects in the path of the photons, and how the
photons scatter and interact with said objects. In our case the spacetime itself is the most important,
but gas or optically thin disk might be added around the merger.

3A scientific scripting language found at https://github.com/LLNL/yorick

https://github.com/LLNL/yorick

5.4 GYOTO 51

GYOTO has two main ways of raytracing. The first is with the use of analytical
Kerr metrics (sec. 5.4.1). This is the fastest way of raytracing, since the simulation is
highly optimized. This is typically used to look at disks and tori, and stars orbiting
Kerr black holes. The downside with this is that it is limited to just Kerr metrics.
The second way is raytracing with the use of non-analytical, simulated metrics(sec.
5.4.2). This allows for investigations of more interesting metrics, like our binary black
hole merger. According to the authors, it is this feature that makes GYOTO standout
compared to other ray tracers. It is also this feature which makes it possible for me to
ray trace in a merger metric.

5.4.1 Ray Tracing in an Analytic Metric

The first way of doing raytracing is with an analytical metric; the Kerr metric, de-
scribing a rotating black hole. The angular momentum of the black hole is given by
aM , where a is the spin parameter and M the mass, so with a = 0 this reduces to the
Schwarzschild metric. The Kerr metric is given as

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ+

Σ

∆
dr2

+ θ2 +

(
r2 + a2 +

2Ma2r sin θ

Σ

)
sin2 θdφ2,

(5.1)

where Σ = r2 + a2 cos2 θ and ∆ = r2 − 2Mr + a2. This metric gives rise to three
constants of motion: E = −pt is the energy at infinity, L = pφ is the axial component
of the angular momentum and Q = p2θ + cos2 θ[a2(µ2−E2) + sin−2 θL2] is the so called
Carter constant. These four constants will be used later to ensure the stability of the
integration. One of them is the particle mass squared µ2 = −pσpσ. For general particles
this is as mentioned the mass, but since we are dealing with photons this will be µ2 = 0.
As we will see later, this identity will be used when checking the procession ray tracing.

To be able to integrate the geodesics we have to rewrite the metric above using
Hamiltonian formalism. Following [35] we get

ṫ =
1

2∆Σ

∂

∂E
(R+ ∆Θ) (5.2)

ṙ =
∆

Σ
pr (5.3)

Θ̇ =
1

Σ
pθ (5.4)

φ̇ = − 1

2∆Σ

∂

∂L
(R+ ∆Θ) (5.5)

ṗt = 0 (5.6)

ṗr = −
(

∆

2Σ

)′
p2r −

(
1

2Σ

)′
p2θ +

(
R+ ∆Θ

2∆Σ

)′
(5.7)

52 Ray Tracing

ṗθ = −
(

∆

2Σ

)θ
p2r −

(
1

2Σ

)θ
p2θ +

(
R+ ∆Θ

2∆Σ

)θ
(5.8)

ṗφ = 0, (5.9)

where the dot is the derivative with respect to the proper time, ′ with the respect
to r and θ with respect to θ, and Θ = Q − cos2[a2(µ2 − E2) + sin−2 θL] and R =
(E(r2 + a2)− aL)2 −∆(µ2r2 + (L− aE)2 +Q).

The above equations are possible to integrate, using a Runge-Kutta 4 integrator
with adaptive steps. Each photon is integrated backwards in time. This means that
the photon starts at the lens of the camera, with one photon for each pixel of the final
image. Each pixel of the camera is associated with one direction, corresponding with
one pixel of the background . Thus the initial position and momentum are given.The
photon is then integrated backwards until it either: Hits an emitting object, reaches
infinity (or some range from an object set as infinity) or gets close to an event horizon.

The constants of motion mentioned above are used to ensure a correct integration.
E and L are directly conserved through eq. (5.6) and (5.9), while Q is used to correct
θ̇. The magnitude of the momentum |~p| is also a constant of motion, and is used to
correct ṙ. All of this, together with the RK4 integrator ensure an accurate simulation.
(an overview of the accuracy is shown in [53]).

5.4.2 Numerical Metrics

If we use only analytical metrics, as above, then the number of cases we can investigate
becomes limited due to the complexity of the field equations. For the more complex
cases, we need to figure out a way to do ray tracing on simulated spacetimes. To be
able to due this, we need to find a 3+1 decomposition3.2 of the geodesic equation

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0, (5.10)

which describes the path of a photon or a particle. This has been done by the authors
of GYOTO (the program we will use to do the ray tracing), and published in [52]. They
start with a covariant form of the geodesic equation

pµ∇pα = 0, (5.11)

where pµ is the 4-momentum. In a 3+1 form, this can be written as

pα = E(nα + V α), (5.12)

where nµV µ = 0. E = −pµnµ is the energy of the particle as measured by the Eulerian
observer, while V µ is the velocity of the particle on Σt, and gives us the 3-velocity of
the particle.

By inserting the 3+1 quantities and rewriting the covariant derivatives in a 3+1
form, and doing a lot of algebra, we end up with two sets of equations describing the

5.4 GYOTO 53

position xi = Xi(t) of the particle

dXi

dt
= αV i − βi

dV i

dt
= αV j [V i(∂j lnα−KjkV

k) + 2Ki
j −3 ΓijkV

k]− γij∂jα− V j∂jβ
i. (5.13)

A detailed calculation can be found in [52].

5.4.3 How the Ray Tracing is Done and Why a Spectral Method

We now have 3+1 form of the geodesic equation. This is solved with a fourth-order
Runge-Kutta scheme in GYOTO, using the 3+1 quantities that come from our con-
verter. The reason that the spectral formalism comes in hand here is that eq. (5.13)
requires the value of the quantities at arbitrary positions. With a normal grid, an
interpolation would be necessary for almost every evaluation, but with the spectral
method it is trivial to find the values at an arbitrary position. We have also seen that
the spatial derivatives for a function in a spectral representation can be found quasi-
analytically (we get an analytical expression containing the spectral coefficients, which
are approximations). This means that we do not have to use a differentiation scheme to
find the derivatives, but we get them from the spectral representation of the functions
themselves. Had the data not been in this representation, GYOTO would have had
to find all the derivatives itself, leading to less accuracy. These two reasons make ray
tracing in a spectral representation easier.

It is also possible to get the 4-metric gµν and solve eq. (5.10) directly. This was tried
at first, but we later moved on to solving eq. (5.13) due to problems with non-linearity
of gµν and other problems.

When using GYOTO is using a numerical metric, it has historically assumed spher-
ical symmetry. This makes finding the Christoffel symbols in (5.13) much easier. As
we will mention again in the method section 10.1.1 to get this project to work, this
assumption had to be removed.

Using GYOTO is quite simple, since it runs mostly through XML file, or scripting
in Python or Yorick. We will look at how we are going to run GYOTO in this project
in sec. 10.2.

5.4.4 Astrophysical Objects

As we have seen the paths of the photons are determined by the spacetime, but until
now we have not placed any objects. So while the photons moves and bends, we haven’t
talked about any light source. Without any light source the photons will register as
going to infinity and thus we’ll get a black image. We can in GYOTO place astrophysical
objects in the scene, which will work as emitting objects giving light to the scene.

The object we will be using most in this thesis is the fixed star. As the name
suggests, this is a star fixed at some coordinate (xc, yc, zc) with a radius rstar. This star
will have some absorption,αν , and emission,jν , coefficients associated with each point

54 Ray Tracing

inside of the star. This means that GYOTO can calculate the intensity of the photons
passing through the star[53]

Iν =

∫ s

s0

exp

(
−
∫ s

s′
αν(s′′)ds′′

)
jν(s′)ds′. (5.14)

There is another radius associated with the fixed star, namely a parameter called
RMax. This is not a physical parameter, but instead the radius at which the in-
tegrator of GYOTO starts to notice the star. This means that RMax < rstar. We will
see when looking into the ray tracing of a fixed star that this parameter has an effect
on the results.

Another objects we will look at is a Page-Thorne disk[42]. This is a type of accretion
disk we will use as a final image to show that the ray tracing was a success.

Chapter 6

Splitting the Black Hole Binary

We have now discussed Einstein Toolkit, LORENE and GYOTO. Before we move on
to how the converter code is built up, and how to run everything we need to discuss
how to deal with the spherical topology of LORENE.

As we have discussed before, LORENE use spherical coordinates when transforming
into a spectral representation. This means that it has a spherical topology. In practise
this means that LORENE works best when the objects transformed is spherical in
nature. It does not need the object to be spherical symmetric, but an object such
as a black hole binary, which has a clearly preferred "direction", will become poorly
resolved.

We thus want a procedure to make out black hole binary more spherical. The way
we will be doing this is by splitting the binary into two "separate" black holes. This
is done by centering one of the black holes, and then applying the splitting function
with the black hole as the center. This splitting function will leave the black hole we
centered on intact, while setting the other black hole to zero. All regions far from the
black holes will be multiplied by 0.5 (we will shortly look at the reason).

Our system will now only have one black hole. We can now proceed as normal: Find
the value at the collocation points, send the data to LORENE and make the GYOTO
file. We will still have some noise in the region where we erased the second black hole,
but since the region is zero – instead of e.g. diverging, as it would have been for the
diagonal metric elements – the noise is significantly less that if we would have had a
black hole there.

We can now center the on the second black hole, and do the same procedure for
that, we will now have two GYOTO file, one centered on each black hole with the
other black hole set to zeros. If we want to retrieve the actual spacetime we can add
the relevant 3+1 quantity from each file. This is the reason we multiplied the regions
away from the black holes with 0.5.

We can now look at some more technical details about the splitting function.

56 Splitting the Black Hole Binary

6.1 Splitting the Grids and the Splitting Function

We want to make sure that our two grids are well behaved around the object not
centered at the origin. We do this by splitting the Einstein Toolkit grid into two grids
with the use of the splitting function. The splitting function gives a factor which is
multiplied with the grid function we want to spectral transform. This function is given
as follows

f(~x,~r1, ~r2, R1, R2) =

1 if |~x− ~r1| < R1

0 if |~x− ~r2| < R2

S(~x,~r1, ~r2, R1, R2) else,
(6.1)

where ~x is a given position in space, ~r1 is the position of the first black hole (centered at
the origin), ~r2 is the position of the other black hole, and R1 and R2 are balls surround-
ing the two black holes. We will normally use that R1 = R2 = D/4 for equal-mass black
holes, where D is the distance between the black holes. The function S(~x,~r1, ~r2, R1, R2)
are comprised of third order smoothing function, and will make it so there is a smooth
transition between the two black holes, and so that limx→∞ f(~x,~r1, ~r2, R1, R2) = 1/2

S(~x,~r1, ~r2, R1, R2) =

−3x̃51 + 7.5x̃41 − 5x̃31 + 1 if |~x− ~r1| < R1 · D
R1+R2

3x̃52 − 7.5x̃42 + 5x̃32 if |~x− ~r2| < R2 · D
R1+R2

1/2 else,
(6.2)

where
x̃1 =

|~x− ~r1| −R1

R1(D/(R1 +R2)− 1)
, x̃2 =

|~x− ~r2| −R2

R2(D/(R1 +R2)− 1)
. (6.3)

What this function looks like can be seen in figure 6.1.

Figure 6.1: Illustration of the splitting function, with black holes at 5 and −3, with
R1 = 1 and R2 = 1/2.

This function is C2, which is necessary when calculating the geodesic of the photon.
Given this splitting function, we can split a given grid function g(~x) from Ein-

stein Toolkit in the following way: g(~x)1 = f(~x,~r1, ~r2, R1, R2) · g(~x) and g(~x)2 =

6.1 Splitting the Grids and the Splitting Function 57

(1−f(~x,~r1, ~r2, R1, R2))·g(~x), where g(~x)1 gets centered on the first black hole and g(~x)2
on the second. We now do the spectral transformation on both of these grids g̃(~x)1 and
g̃(~x)2. Since the features in spacetime made object not in the center is suppressed, a
much more precise spectral representation can be made.

When calculating the geodesics of the photon, GYOTO will calculate g̃(~x)1 from
the first grid, and g̃(~x)2 from the second. Then using g̃(~x) = g̃(~x)1 + g̃(~x)2 it is able to
find the geodesics.

58 Splitting the Black Hole Binary

Part II

Methods

Chapter 7

Simulating a Black Hole Merger
with Einstein Toolkit

The first part of the conversion is to get something to covert, and for this a simulation
from Einstein Toolkit is needed. Einstein Toolkit is made to be very easy to run, using
only parameter files for the simple systems we are looking at. Binary black hole mergers
are also the very reason that numerical relativity and Einstein Toolkit exist, meaning
that finding parameter files for these kinds of simulations are very easy. We will look
at the parameter files for a isotropic Schwarzschild black hole, a binary merger and
the small changes needed to make them work with the converter. In the appendix A
the user might find a guide for installing Einstein Toolkit in the same way as I have it
installed.

7.1 Single Schwarzschild Black Hole

As mentioned above, to run Einstein Toolkit we need only give it a parameter file
describing the spacetime we want to simulate, as well as the methods and output used
for the simulation. In this, and the next, subsection we will look at two parameter files,
one for a single black hole and one for a binary merger, and explain the most important
Thorns and how they are configured.

The first parameter file we will set up a single black hole with a Schwarzschild
metric, which can be found in sec. D.1. This will be the metric which we will use to
test most of the conversion code, so we want the metric to be as numerical precise as
possible, so that numerical errors will be due to the conversion code alone. We will
later discuss the main way we tried to ensure this. Note that we will not comment on
every thorn and every parameter in this parameter file, only the ones we think make
sense to comment, and that is important for our simulation and not something that is
in every parameter file.

The first part of the parameter file is used to declare the active thorns.

1 ActiveThorns = "
2 (...)

62 Simulating a Black Hole Merger with Einstein Toolkit

3 "

Note that this does not need to be done in the start, nor do every active thorn need to
be in this one list. We can declare ActiveThorns multiple times in the file, and as long
as it is done before we use said thorn or any other thorns dependent on it, it should
work. But it is easier to read if we start the parameter file with a list of the active
thorns.

There many ways of outputting data in Einstein Toolkit. Since we only need the
3+1 quantities for these conversions, we only need to include the following output

1 Activethorns = "CarpetIOHDF5"
2

3 # 3D HDF5 Output
4 CarpetIOHDF5 :: out3D_every = 2048
5 carpetIOHDF5 :: out3D_vars = "
6 ADMBase ::lapse
7 ADMBase ::shift
8 ADMBase :: metric
9 ADMBase ::curv

10 "

Here we see that the lapse function, the shift vector, the spatial metric and the extrinsic
curvature are outputted in 3D. We also see that this is done every 2048th time step.
As we will see shortly, the simulation is only 1 iteration long, so the quantities are only
outputted at the very first time step.

As mentioned the simulation only run for 1 iteration. This is set as follows
1 Cactus :: cctk_itlast = 0
2 Cactus :: terminate = iteration

This is done because we are not interested in seeing how the black hole is evolving
with time. We are only interested in a snap shot, to see how Einstein Toolkit data is
converted. We thus only generate the initial data, run 1 iteration and stop.

Next we need to set up the grid we are doing the simulation on
1 CoordBase :: domainsize = "minmax"
2 CoordBase ::xmax = 300
3 CoordBase ::ymax = 300
4 CoordBase ::zmax = 300
5 CoordBase ::xmin = 0.000
6 CoordBase ::ymin =-300
7 CoordBase ::zmin = 0.000
8 CoordBase ::dx = 2.0
9 CoordBase ::dy = 2.0

10 CoordBase ::dz = 2.0
11

12

13 ReflectionSymmetry :: reflection_x = no
14 ReflectionSymmetry :: reflection_y = no
15 ReflectionSymmetry :: reflection_z = yes
16 ReflectionSymmetry :: avoid_origin_x = no
17 ReflectionSymmetry :: avoid_origin_y = no
18 ReflectionSymmetry :: avoid_origin_z = no

7.1 Single Schwarzschild Black Hole 63

19 CarpetRegrid2 :: symmetry_rotating180 = yes

Here we say that the grid is defined from some minimum and maximum, and that these
corners are defined as ~xmin = (0,−300, 0) and ~xmax = (300, 300, 300). We see that x
and z start at 0. This is because we are using symmetries over these axis. This can be
seen in the ReflectionSymmetry and CarpetRegrid2 parameters. We can also see that
dx, dy and dz are set here. These parameters are quite important since they give the
resolution of the grid. Different values for these will be tested to see how they impact
the result. Note also that the size of the grid divided by the resolution must be an
integer for each axis.

We know that far from the black hole not much happens, but closer we come to the
black hole more the metric will change. We therefore make grid refinements closer to
the grid

1 carpet :: max_refinement_levels = 10
2 CarpetRegrid2 :: num_centres = 1
3 CarpetRegrid2 :: num_levels_1 = 10
4 CarpetRegrid2 :: position_x_1 = +0.0
5 CarpetRegrid2 :: radius_1 [1] = 128.0 # 1.536
6 CarpetRegrid2 :: radius_1 [2] = 64.0 # 0.768
7 CarpetRegrid2 :: radius_1 [3] = 16.0 # 0.384
8 CarpetRegrid2 :: radius_1 [4] = 8.0 # 0.192
9 CarpetRegrid2 :: radius_1 [5] = 4.0 # 0.096

10 CarpetRegrid2 :: radius_1 [6] = 2.0 # 0.048
11 CarpetRegrid2 :: radius_1 [7] = 1.0 # 0.048
12 CarpetRegrid2 :: radius_1 [8] = 0.7 # 0.024
13 CarpetRegrid2 :: radius_1 [9] = 0.5 # 0.024

This defines some radii from the center where a new grid is created by Einstein Toolkit,
with a finer grid resolution. We see that I’ve used 10 such radii in this simulation.

Now we come to the meat and bone of the setup, namely the point where we define
how we want our spacetime to look. There are multiple ways of making a Schwarzschild
metric, due to the gauge freedom of numerical relativity. One way is Two Puncture
(see sec. 3.5) with one mass set to zero. The way we are goinh to do this is to just
make the initial metric using an analytical approach. For this we are using the thorn
IDAnalyticBH [43]. This lets us use analytical metric from common black hole metrics,
such as Schwarzschild, Kerr, Nordstrom, etc. This is done with

1 ADMBase :: initial_data = "schwarzschild"
2 ADMBase :: initial_lapse = "schwarz"
3 ADMBase :: initial_shift = "zero"
4 ADMBase :: initial_dtlapse = "zero"
5 ADMBase :: initial_dtshift = "zero"
6 idanalyticbh ::mass = 1.0

The values for the first and second parameters are options from this IDAnalyticBH,
which will set up analytical values for the spatial metric, extrinsic curvature and lapse.
The shift, as well as the time derivative of the lapse and shift, are set as zero, which is
an option with comes from ADMBase. The last parameters tells Einstein Toolkit and
IDAnalyticBH the mass of the black hole.

64 Simulating a Black Hole Merger with Einstein Toolkit

Running this parameter file we will get an Einstein Toolkit representation of a
Schwarzschild metric. This can then be converted and used for ray tracing.

7.2 Binary Black Hole Merger

Next we want to look at the parameter file for a binary black hole, which can be found
in sec. D.2. As mentioned before, one of the main reasons numerical relativity was
developed was to solve the problem of a black hole merger. This means that there are
a lot of parameter files for binary black holes around. We have used the parameter
file for a binary black hole system which can be found accompanying [36] and is one
of the example parameter files which will be installed with Einstein Toolkit. We will
only changed it to output the same 3+1 quantities as above and changed the size and
resolution of the grid.

Most of the parameters described when discussing the single black hole are present
in the binary black hole parameter file as well, and build up much of the backbone
for the simulation. We will not go over these again, but instead look at some of the
changes and additions to the parameter file which adds important information for both
initializing the binary black hole, evolving them and outputting some data needed for
the conversion. This discussion will not be exhaustive, but will go though the most
important parts.

The first and most obvious difference is the different initial conditions
1 ActiveThorns = "TwoPunctures"
2

3 ADMBase :: metric_type = "physical"
4

5 ADMBase :: initial_data = "twopunctures"
6 ADMBase :: initial_lapse = "twopunctures -averaged"
7 ADMBase :: initial_shift = "zero"
8 ADMBase :: initial_dtlapse = "zero"
9 ADMBase :: initial_dtshift = "zero"

10

11 TwoPunctures :: par_b = 3.0
12 TwoPunctures :: par_m_plus = 0.47656
13 TwoPunctures :: par_m_minus = 0.47656
14 TwoPunctures :: par_P_plus [1] = +0.13808
15 TwoPunctures :: par_P_minus [1] = -0.13808

Instead of using an analytical metric, we instead tell Einstein Toolkit to use the Two
Puncture Method (see sec. 3.5) to numerically find the initial conditions of a binary
black hole. We can see that mass of each black hole is set here, as well as the momentum
– TwoPunctures::par_P_plus [1]/TwoPunctures::par_P_minus [1]. The parameter
TwoPunctures::par_b gives the distance between the black holes and the center.

This time we also want to evolve the binary black holes
1 ActiveThorns = "ML_BSSN ML_BSSN_Helper NewRad"
2

3 ADMBase :: evolution_method = "ML_BSSN"
4 ADMBase :: lapse_evolution_method = "ML_BSSN"

7.2 Binary Black Hole Merger 65

5 ADMBase :: shift_evolution_method = "ML_BSSN"
6 ADMBase :: dtlapse_evolution_method = "ML_BSSN"
7 ADMBase :: dtshift_evolution_method = "ML_BSSN"
8

9 ML_BSSN :: harmonicN = 1 # 1+log
10 ML_BSSN :: harmonicF = 2.0 # 1+log
11 ML_BSSN :: ShiftGammaCoeff = 0.75
12 ML_BSSN :: BetaDriver = 1.0
13 ML_BSSN :: LapseAdvectionCoeff = 1.0
14 ML_BSSN :: ShiftAdvectionCoeff = 1.0
15

16 ML_BSSN :: MinimumLapse = 1.0e-8
17

18 ML_BSSN :: my_initial_boundary_condition = "extrapolate -gammas"
19 ML_BSSN :: my_rhs_boundary_condition = "NewRad"
20 Boundary :: radpower = 2

This tells Einstein Toolkit that all of the 3+1 quantities should be evolved using the
BSSN formalism. At the bottom we also see that a special kind of boundary conditions
are imposed. This is because we have gravitational waves, and thus don’t expect
Minkowski at the boundaries. The evolution itself will be done using the Method of
Lines

1 ActiveThorns = "MoL Time"
2

3 MoL:: ODE_Method = "RK4"
4 MoL:: MoL_Intermediate_Steps = 4
5 MoL:: MoL_Num_Scratch_Levels = 1

Here we can see that this method uses a Runge-Kutta integration of 4th order.
These gravitational waves are tracked by the parameters

1 ActiveThorns = "WeylScal4 Multipole"
2

3 Multipole :: nradii = 4
4 Multipole :: radius [0] = 30
5 Multipole :: radius [1] = 40
6 Multipole :: radius [2] = 50
7 Multipole :: radius [3] = 60
8 Multipole :: ntheta = 60
9 Multipole ::nphi = 120

10 Multipole :: variables = "WeylScal4 :: Psi4r{sw=-2 cmplx=’WeylScal4 ::
Psi4i ’ name=’psi4 ’}"

11 Multipole :: out_every = 4
12 Multipole ::l_max = 8

This tells Einstein Toolkit to calculate the Weyl scalar (see sec. 3.7), so that the
gravitational wave profiles can be calculated later. These will not be important in our
case, since we never arrived at the point which we can look at converted spacetimes
gravitational waves.

When using the splitting function it is important to know the horizon of the black
holes. This is not straight forward to find in numerical relativity, so an approximation
is used instead to find the apparent horizon (see sec. 3.6). This is added as follows

66 Simulating a Black Hole Merger with Einstein Toolkit

1 ActiveThorns = "AHFinderDirect"
2 AHFinderDirect :: find_every = 16
3 AHFinderDirect :: origin_x [1] = +3.0
4 AHFinderDirect :: initial_guess__coord_sphere__x_center [1] = +3.0
5 AHFinderDirect :: initial_guess__coord_sphere__radius [1] = 0.25
6 AHFinderDirect :: which_surface_to_store_info [1] = 2
7 AHFinderDirect :: set_mask_for_individual_horizon [1] = no
8 AHFinderDirect :: reset_horizon_after_not_finding [1] = no
9 AHFinderDirect :: track_origin_from_grid_scalar [1] = yes

10 AHFinderDirect :: track_origin_source_x [1] = "
PunctureTracker :: pt_loc_x [0]"

11 AHFinderDirect :: track_origin_source_y [1] = "
PunctureTracker :: pt_loc_y [0]"

12 AHFinderDirect :: track_origin_source_z [1] = "
PunctureTracker :: pt_loc_z [0]"

13 AHFinderDirect :: max_allowable_horizon_radius [1] = 3

Note that this is just a taste of the full thorn. The full set of parameters set in the file
is about 40 lines, so these are just some important parameters. To find the horizon,
the thorn must be given an approximate location and size of the horizon. A numerical
method is then used to find the horizon from these initial guesses. This is for the first
black hole, and a second block of parameters are also given for the second black hole.
We see that this thorn is dependent on an other thorn PunctureTracker, which is set
up as follows

1 PunctureTracker ::track [0] = yes
2 PunctureTracker :: initial_x [0] = 3.0
3 PunctureTracker :: which_surface_to_store_info [0] = 0
4 PunctureTracker ::track [1] = yes
5 PunctureTracker :: initial_x [1] = -3.0
6 PunctureTracker :: which_surface_to_store_info [1] = 1

This is a thorn that tracks the positions of the black holes as they orbit each other
and at last collide. This is used by AHFinderDirect because it needs a guess for the
positions of the horizons to find the apparent horizons. Since the positions of the black
holes change each step, so the initial guess needs to change. This tracker will also
output the positions of the black holes, so that converter code can read the positions
and apply the splitting function at the correct position.

If we run this parameter file, a simulation of a binary black hole merger will be
created. For our conversion only the first steps are needed, so after some iterations the
simulation can be terminated, and the data we need will be stored and can be accessed
by the converter.

Chapter 8

Conversion of the Data

8.1 Introduction and Overview

One of the bigger challenges faced when ray tracing simulated data from Einstein
Toolkit in GYOTO is the difference in the formalisms used by the frameworks. As
discussed in section 4.2 Einstein Toolkit uses finite difference on a (adaptive) mesh
grid, while GYOTO uses a spectral representation of the functions. This means that
we need some code that convert the simulated data from the mesh grid to the spectral
grid.

Having a finished simulation from Einstein Toolkit, there are some steps needed to
convert the code

1. Read the HDF5 files given by Einstein Toolkit

2. Interpolate over the data, to get the values of the grid functions at arbitrary
points (within a boundary)

3. Find the collocation points needed to make the spectral representation

4. Post-processing of the Einstein Toolkit data

5. Do the spectral transformation with the use of the interpolated data and the
collocation points

6. Save the spectral representation in a form readable for GYOTO

There are three distinct types of tasks solved here: The first consists of point 1
and two, which handle the data from Einstein Toolkit; points 3, 5 and 6, which handle
everything to do with the spectral transformation; and lastly point 4, which has to do
with post-processing of the data.

As seen above LORENE can take care of everything that has to do with the spectral
transformation, but we still need to take care of the reading of the Einstein Toolkit
files, the interpolation and the post-processing.

68 Conversion of the Data

The first hurdle we need to cross was the reading of the Einstein Toolkit data and its
interpolation. Reading of HDF5 files in Python is not that difficult, but since Einstein
Toolkit formats the data in its own way – to deal with time steps and the adaptive
mesh grid – this was not a trivial task. Thankfully we are not the first having to do
this, meaning that there exist tools made for Python to handle this kind of data. The
library we are going to use is called PostCactus/PyCactusET [34]. This library can
both read the Einstein Toolkit data and interpolate it1, and was used to read the grid
functions.

The position and apparent horizons of the black holes are also needed for the spectral
grid as well as the splitting function. This was handled directly by our own code, instead
of going through any external library.

With the grid functions, the apparent horizon and the black hole positions handled,
the next step is to make the Python script able to communicate with LORENE. This
was done by simply calling a LORENE script as a subprocess using Python. When
the Python program needs the collocation points, the LORENE script is called and
the out-stream of this script was caught by Python, where it is processed to reveal
the points. The Python program then does all the interpolation of the grid functions
on these collocation points, and the application of the splitting function. The results
are then written to a file (with a certain format), and the LORENE script is again
called, with the information that it now have to read the processed data and do the
transformation.

Having the processed data, LORENE can now do its magic. Making a scalar for
the lapse function, a vector for the shift and a tensor for the spatial metric and the
extrinsic curvature, the LORENE script can read the files and fill the components of
these objects. Having these it can quickly do the spectral transformation and save the
results as a file readable to GYOTO.

We will below go through all the points in more detail, and see how all these steps
are coded into the converter code. All features discussed below is part of the conversion
code. Features from PostCactus are discussed only where explicitly mentioned.

8.2 Reading Data From Einstein Toolkit and Making In-
terpolations

8.2.1 Reading the Data

The first step of the conversion is to read the simulated data from Einstein Toolkit.
Einstein Toolkit uses different file formats to save the simulated data2, depending on on
the dimensions of the saved data, as well as the users choice. For one and two dimensions
simple ASCII files are normally used. For the more complicated 3−dimensional cases,
as the one we will use here, it is more common to use Hierarchical Data Format version

1It also have a lot of other, quite practical capabilities, but none that was used at this point.
2Here we will just focus on the files that hold the 3+1 quantities. Other quantities like the pressure

or ψ4 will use different conventions.

8.2 Reading Data From Einstein Toolkit and Making Interpolations 69

5 (HDF5 or H5) files. These files can be quite complex, especially since Einstein Toolkit
uses adaptive mesh grids. There are good libraries for using HDF5 files in Python3 and
with some elbow grease it would be possible to write code to read the Einstein Toolkit
data. But thankfully Einstein Toolkit is large enough that other people have done that
before, namely PostCactus[34]. This library is able to read many types of Einstein
Toolkit, as well as post-processing it for easy plotting. Even though PostCactus can
read and interpolate the data, this involves a lot of calls and parameter setting for the
user, so we are going to wrap everything in it own class, to make it easier for the user.

Said class first needs a directory where the simulation is found. This is given as
the root folder of the simulation. Next we have to decide how to interpolate the data.
Following the instructions of PostCactus we have to define a uniform grid on which to
read the Einstein Toolkit data and interpolate it. This is due to the adaptive mesh
grid. To be able to do the full interpolation PostCactus will interpolate the adaptive
mesh points on to the uniform grid and from there do a final interpolation of the data,
which we can access. Inside PostCacus, the gird class is a complicated class that holds
a lot of information about how to get function values from the grid. This is completely
hidden from the user of the converter. We just have to give the corner of the grid we
want to use, as well as the number of grid points. Note that the corners of the grid
must be inside the simulated domain (discussed below). If the grid is bigger than the
simulated domain, then PostCactus will give the points outside the domain the value
0. This will lead to wrong results! As we will see later, this is the way PostCactus is
intended to be used. We will in most of the results instead use another method(see
sec. 8.2.4, which is used internally by PostCactus, but is not meant for users to use,
therefore lacking some features.

8.2.2 The Simulated Domain

There is an important terminology we will use a bit below, and that is crucial for the
result of the conversion. This is the simulated domain. Einstein Toolkit will, of course,
simulated only a finite spacetime. When we have, e.g., a black hole or a merger the
most interesting part of the simulation is close to center. This means in most cases a
large part of the spacetime we need to ray trace is not simulated by Einstein Toolkit.
It is also so small that the metric has yet to converge to Minkowski. This means that
we need to extrapolate the metric (discussed below). How good this extrapolation is, is
dependent on how much of the spacetime is simulated by Einstein Toolkit. This part,
the spacetime simulated by Einstein Toolkit, is what we call the simulated domain. An
illustration of the relation between the simulated domain and the other domains are
found in fig. 8.1.

8.2.3 Creating an Interpolation

The final step of reading the data is to make a callable function that we can use to
get the grid value at an arbitrary point. This can either be in between the defined

3https://docs.h5py.org/en/stable/

70 Conversion of the Data

Black
Hole

Grid

Simulated Domain

Region Needed for Spectral Transformation

Figure 8.1: Illustration of the relation between the simulated domain and the other
domains of the simulation. In the center we find the black hole(s). They exist inside
the spacetime simulated by Einstein Toolkit (simulated domain). This is the brownish
while field in the illustration. The grid made by the user must be contained by the
simulated domain, or else the grid outside the domain will be filled with zeros. The
outer most region contains all the other regions and is the values needed by the spectral
transformation. Values found here, which are outside of the simulated domain, must
be extrapolated from the simulated domain.

gird points or even outside the grid. This means that we need both interpolation and
extrapolation. As of now this is done in three ways. The first is based on the way
PostCactus does it. But instead of using the function from PostCacus we are going to
refactor a bit of the code to do this. This was done so that we can call on the class
instance directly with a coordinate (given as a list or an array) and get the value of the
grid function, and so that the splines made by the code can be pickled (see below). This
way of doing interpolation gives a good interpolation, with splines of order 2-4, giving
good results inside the simulated domain. The major problem with this is that the
SciPy functions used can only extrapolate with a constant value, meaning that we end
up with a discontinuity at the end of the simulated domain. The second way instead
used linear interpolation, given by SciPy. This interpolation will both interpolate and
extrapolate, both with a linear approximation. This means that the interpolation is
worse than the above spline, but the extrapolation is better. It is still a problem outside
the metric of black holes isn’t linear (8.3) outside the simulated domain, so we can risk
that the metric can become lower than one and even below zero far from the center
(where we expect Minkowski).

Since we have the two ways of doing inter/extrapolation, we might want to use
the two methods at different parts of the spacetime, e.g. a precise spline interpolation
close to the black hole(s) and a linear extrapolation far away and outside the simulated
domain. For this reason we have made two classes for the interpolation/extrapolation
(one for each method), and one class that wraps these two, and which is used by

8.2 Reading Data From Einstein Toolkit and Making Interpolations 71

the user. This is named ReadQuantities. This class takes a list of geometries and
a list which contains the time of the interpolation/extrapolation (linear or spline).
ReadQuantities will then make a interpolator for each grid, which is either linear of a
spline. We can also give a list of limits for where we want ReadQuantities to switch
between the interpolations. If no limits are given, then when we call on the instance
to get a function value at a point, ReadQuantities will find the best interpolator to
use and give a function value. The way ReadQuantities find the "best" interpolator
is quite naive: It looks at the limit of each geometry and assumes that the geometries
with corners closer to the center is the one with best resolution. This means that it will
use the smallest geometry containing the point given by the user. Since black holes are
most complex closer to the center and less resolution is need the farther out the point
it, this logic is taken to be sufficient.

8.2.4 The None Geometry

There is a third way of reading and interpolating the data from Einstein Toolkit. If we
don’t give any geometry, or more precisely sets the geometry to None, then PostCactus
will read the data from Einstein Toolkit using the geometry which Einstein Toolkit
used to simulate, and in which the data is stored. This means that there is no initial
interpolation to a grid, which is good. The downside is that there is only a linear
interpolator with a constant extrapolator given by PostCactus for this kind of data.
While this seems to make the spline interpolation superior, this is not necessarily the
case, since PostCactus has already used the linear interpolation to make the uniform
grid.

This way of reading the data is wrapped in the conversion code in such a way that
the user only needs set the geometry parameter in ReadQuantities to None. The rest
will be taken care of by the code, and everything should work the same way as if the
user told the converter to use one or more grids. It is as of now not possible to have
a none-geometry together with other geometries, but this will be added. It is also
not possible to pickle the interpolation function for this geometry (see below) since no
interpolation object is made, and the interpolation is instead done on request.

As we will see in the results, this is the best way of reading data for most data. The
reason all the other interpolation code is included and discussed in details, is because
the none-geometry was found – which from the side of the creators of PostCactus is
internal code and not suppose to be used by the users – late in the master thesis. We
also hope that the other integration methods has their place when using the converter.

8.2.5 Geometries Used Later

Throughout the results we will be discussing and comparing three "types" of geometries.
The three are single grid, multigrid and none-grid. As mentioned above, the conversion
code can use a list of grids when making a the interpolation. From this comes the
difference between single grid and multigrid geometry. The single grid is, as the name
suggests, just a single grid. The multigrid is any geometry where more than one grid is

72 Conversion of the Data

used. We would expect this to give a better result as we have more room to define the
resolution for different parts of the spacetime. The last geometry is the none-geometry
and is the geometry discussed right above.

These three terms will be used ad nauseam in the result section, so it is important
to be able to tell them apart.

8.2.6 Pickling the Interpolation

The process of reading and interpolating the data can be a bottleneck, depending on
the geometry. For a first time conversion of the Einstein Toolkit data, this is more or
less inevitable. But as we will see below, there are a lot of parameters the user can set
which impacts the data after it has been read from the HDF5 files, so the we might
have to rerun the conversion with parameters that don’t impact the reading of the data.
To get around this the converter can pickle objects holding the splines. These pickles
can then be read by the class at the next run of the conversion (given that the uniform
grid is the same). This speeds up this part of the conversion with a factor 20x. We
can choose whether to pickle the results or not. Note that the pickles can become very
large, so for full simulation they might be too big to load into memory. But for smaller
simulations and parameter tests the pickles decrease the runtime significantly.

8.3 LORENE and the Spectral Transformation

8.3.1 Finding the Collocation Points

One of the tedious tasks to have to implement is the actual spectral transformation.
As seen in section 4.3 this involves a good deal of compactification of coordinates and
fast Fourier transformations to get the spectral transformations.

Thankfully LORENE has most of these capabilities build into it, in a way which
is easy to use. LORENE is able to create spectral grids centered at a given position,
then give collocation points needed to do the spectral transformation. Given the grid
function values at these points, LORENE can, with only one command, transform into
a spectral representation.

This means that if we can use LORENE in our conversion code, we will save a lot of
work. The big hurdle here is that the conversion code is in Python, while LORENE is
in C/C++. There are a lot of libraries to be able to call C/C++ functions in Python –
Boost, CTypes and Cython being the ones coming first to mind –, but these takes some
effort to get to work with the somewhat involved LORENE code. We will therefore use
a more messy but purely Pythonic way of running the C-code. The intent was to only
use this temporary, but as time went by temporary became permanent...

8.3.2 Retrieving and Formatting the Collocation Points from LORENE

Instead of calling on the C/C++ functions which run the LORENE code, we instead
call on a separate C program using a sub-process, and catch the outgoing stream. The

8.4 Getting the Values at the Collocation Points 73

C-code, in turn, takes a some command-line arguments, telling the program the center
of the coordinate patch, and some other arguments having to do with the running mode
(the first running mode is described here, the other mode is described below). If the
program is told to create the spectral grid, it will use LORENE to define a map of a
given size and resolution. This size and resolution is for now hard coded into the C
program, so that we have to change the parameters by hand in this program(see sec.
8.8.2). The program will then center the map on the given coordinates of the center,
get a list of the coordinates needed for the collocation points and finally print them to
screen. After the C-code has made found the collocation points and printed them to
the screen, the Python code can catch said stream, and knowing the format at which
they are printed, read through the stream and get an array holding all the relevant
collocation points.

The details of how the output stream is formatted and how the converter handles it is
not important. Regular Expressions (Regex) could have been used4, but instead we just
split the string at the relevant places to get the points, since we already know exactly
the format of the string. The important part is that resulting array of collocation points
is an array consisting of three array, one for x, one for y and one for z. This is turn
are arrays with indices representing the domain l, j indicates θ , k indicates φ and i
indicates r. So if the collocation points is at r[2], φ[3] and θ[0] in the second domain,
the corresponding Cartesian coordinate we need to evaluate is

Collocation Point = (x[l = 1][k = 3][j = 0][i = 2], y[1][3][0][2], z[1][3][0][2]).

We now have all the collocation points needed to make a spectral representation.
The next sections will discuss how the values are found, and how they are sent back to
LORENE for the final transformation.

8.4 Getting the Values at the Collocation Points

We now have a class instance which we can call to get the grid functions from Einstein
Toolkit on any arbitrary point, and we have a list of all the collocation points needed
by LORENE to do a spectral transformation. So now we can just call on the instance
to get the values at the collocation points? No.. We need some more steps to make
sure what the grid values are correct and ready for LORENE.

8.4.1 Handling the Boundary

The first two steps are due to the way Einstein Toolkit simulates the spacetimes. Firstly,
as mentioned, Einstein Toolkit simulates only a finite spacetime, with a abrupt cut-off
point. LORENE and the spectral method on the other hand extend the spacetime out
to infinity (though compacted). This means that, depending on the resolution we want

4There is a famous saying among programmers which goes "I just found a problem which can be
solved with Regex; now we have two problems...". Regex is very powerful, but notoriously difficult to
use.

74 Conversion of the Data

LORENE to use, we may get collocation points outside of this cut-off point. As of
now this is solved in the crudest way possible, by just giving every points outside the
cut-off the same value as the cut-off points. This assumes that spacetime is sufficiently
flat at this points that we get away with this. We might also think that even if the
spacetime is close to flat, but not entirely, this method might lead to discontinuity in
the resulting data. Here the spectral method comes to out rescue, since a spectral
transformation is an interpolation. Meaning that even though the data we give it is
taken from a discontinuous function, the resulting spectral representation is continuous.
So as of now we take this assumptions to hold, but this may have to be changed later,
especially if the assumptions show to be false or if more extensive spacetimes are used.

This changes a bit when we use the extrapolation. If we have a linear extrapolation
this will be needed, since this might lead the linear approximation to overshoot the
Minkowski metric. When using a constant extrapolation, this might not be necessary,
but the feature will still be in the code, and will only bound the coordinates at large
values.

The main reason for having this feature is that LORENE will request collocation
points at infinity. This will, if not handled, cause an error in Python. Thus we must
catch the infinities and instead set them to some large number.

8.4.2 Handling the Symmetries

The second fact is that Einstein Toolkit tries everything in its power to reduce simula-
tion time. This means that it uses a lot of symmetries to make the simulation run faster.
The most used symmetries are either simulating only 180◦ and mirroring around one
axis, or simulating only one quarter of the spacetime and mirroring around two axis.
For a simple Schwarzschild black hole, or even the simplest black hole merger with two
identical black holes, the latter method is used. In fig. 8.2 we can see an illustration
showing the xy-plane of the simulation given by Einstein Toolkit. Only the original is
given by Einstein Toolkit, the rest has to be handled by the converter. This means that
we only get one quarter of the data describing the spacetime. The converter code will
then simply mirror the data over one or two axis, depending on what the user gives as
a parameter (this assumes that the user knows the symmetries of the simulation).

8.4.3 Applying the Splitting Function

The last step has to do with the spherical nature of LORENE, as discussed above(see
sec. 6. If we tell the code that we are dealing with a binary, after the extension
and mirroring is applied to the collocation points, and the grid value is found, the
splitting function (6.1) is multiplied with these values. The splitting function takes the
coordinate of the collocation points, the positions of the black holes, and a factor R
which determines the size of the smoothing, which by default is the distance between
the black holes divided by 4. The position and size of the black holes comes from the
data created by the horizon tracker(sec. 3.6. We have now smoothed out one of the
black hole, meaning that it is a bit more spherical symmetric.

8.4 Getting the Values at the Collocation Points 75

Original

CopyCopy

Copy

Black
Hole

Figure 8.2: Illustration of the xy-plane of the simulation. Only the part marked ori-
ginal is given by the Einstein Toolkit simulation. The copies have to be made by the
converter. This is done by simply mirroring around the z-axis.

Since we are going to split the binary black holes into two grid, each centered on
one of the black holes, we need to find the position of the black holes. Einstein Toolkit
also needs to keep track on the positions of the black hole, and their horizons(sec. 3.6).
This means that all the information we need about the positions and horizons of the
black holes already exist as time series in the same folder as the grid functions. This
means that we can read them straight from these files. The code for doing this is taken
from example code found in [36].

If we tell the code that we are only converting a single object, such as a single black
hole, this part of the conversion is omitted automatically. We can also choose not to
apply the splitting function when converting the black hole binary, but this serves only
a illustrative purpose, and will be used to show that the splitting function is necessary.

8.4.4 Flattening the Results

We can now write the values at the collocation points to file and hand it over to a C
program running LORENE. The files are chosen to be flat, so to be easier to read back
in C. The array is flattened in the following way

1 for index ,domain in enumerate(d):
2 for k in domain.keys():
3 for j in domain[k].keys():
4 for r in range(len(domain[k][j])):
5 flatten_values.append(d[index][k][j][r])

This means that in the C-code we can reverse this flattening with the following

76 Conversion of the Data

formula

d[l][k][j][i] = flatten_array

[(∑

0<=m<l

nr[m] ∗ nt[m] ∗ np[m]

)
+ k ∗ nt[l] ∗ nr[l] + j ∗ nr[l] + i

]
,

(8.1)
where nr[l] is an array holding the resolution of r in domain l, and nr[l] and np[l] are
the same for respectively θ and φ. These arrays are know to the C-code. We now have
a way of finding the values at the collocation points and saving them to a file. Next is
to do the spectral transformation with LORENE.

8.5 The Final GYOTO Formatting with LORENE

8.5.1 Running the Last Conversion

We now have one file per quantity, each containing the function value at the collocation
points for said quantity. We now need to do the spectral transformation. As mentioned
above, LORENE can do this for us. The same C code that gave us the collocation points
have another mode that lets us do the spectral transformation and create a file usable
by GYOTO.

There are two ways of running the code to make the GYOTO file. The first is do let
the conversion code do it for you, by setting the do_gyoto_conversion to true when
running the analyze_bbh function. The conversion code will then run the C code using
a sub-process at the right time, with the right parameters. The only thing the user
must be careful with is that they have converted all the 3+1 quantities, or else the code
will crash. The second way is to run the C program in the terminal. Here the user have
to manually give the origin of object, the mode of the program (1 for final conversion),
whether it is the first or second body and the number of the time step. This will then
create the GYOTO file.

Note that since we have split the two (or more) black hole, we will have one file for
each black hole. They are later combined inside of GYOTO (see sec.10.1.2.

8.5.2 What Happens Inside the C Code

When the C program is called, either through the converter or the terminal, it will go
through a couple of steps to do the spectral transformation. The first step is to create
the objects which can represent the 3+1 quantities. This is done with the LORENE
objects Scalar for the lapse α, Vector for the shift βi and Sym_tensor for the 3-metric
γij and the extrinsic curvature Kij . The program will then read in the files containing
the 3+1 quantities. All the above objects are then filled with these quantities. Since
each component of these objects are a function of the above described domain index l,
φ index k, θ index j and r index i. This means that the program will have to reformat
the flatten array, read from the file. A function will therefore use eq. 8.1 to do this.

All the objects (tensors) are now filled with their respective components. With
the simple object.std_spectral_base(); LORENE will now do the spectral trans-

8.6 Parallelization 77

formation using the information about the function values at the collocation points.
We now have a spectral representation of the grid functions. But as mentioned above,
GYOTO use a spherical coordinate. This means that we have to do a change of
basis, to a spherical triad. Again, this is done with a simple command in LORENE:
.change_triad(map.get_bvect_spher()).

We now have the objects we need to do ray tracing. The final step is just to
make a file usable by GYOTO. LORENE lets us make a file, and simply save the
objects to that file, with the object.sauve(file) command. We must also add
Metric(gamma).con().sauve(file_out), this simply saves the inverse metric to the
file, which is needed in GYOTO. After saving all the objects to file, we have successfully
made a file usable by GYOTO!

Note that we also can do a lot of plotting with LORENE. Many of the plots found
in the result section of the data after conversion, are made with LORENE.

8.6 Parallelization

Even after removing the bottleneck for reruns of the conversion, we want the con-
version to run faster. To do this we parallelize the program with Message Passing
Interface(MPI)5, which lets us run the program in parallel on different core. We will
not parallelize the C code, but rather the Python code, meaning MPI is the easiest
choice.

As mentioned above, each 3+1 quantity is read and converted independently of the
others. This means that we quite easily can parallelize the conversion. A wrapper
for the conversion and MPI was then made, mpi_converter.py. This program simple
distribute the 16 different 3+1 quantities (or fewer if the user don’t want to convert
every quantity), among the number of cores the program is given – limited be either
the number given by the user, the number of cores on the used computer or the total
number of quantities. The program then just runs the conversion independently on
each core. This gives a speedup of up to 16x. Note that conversion code will not be
able to run the final formatting to GYOTO, since cores converting each quantity finish
at different times. This instead has to be done manually.

There is another way of running the code in parallel. The value for each collocation
point is also found independently of all the others, meaning that be can distribute the
task for finding the values to different cores or threads. This will need a more invasive
refactoring of the code, and is thus not done yet. The conversion runs much faster than
the ray tracing done by GYOTO, so further optimizing is not needed yet.

8.7 Test Cases

When testing if the code works there many steps that can go wrong. The main steps
that might go wrong are either the reading and interpolation of the data, retrieving of

5https://mpi4py.readthedocs.io/en/stable/

78 Conversion of the Data

the collocation points, bounding the coordinates and the final processing by LORENE
to make the GYOTO files. To be able to test the code without the limitation of using
simulated data, a couple of test cases are implemented. These test cases consist of
analytical metrics, meaning that when the converter finds the values of collocation
points a function is called, giving the analytical value at each points, instead of having
to read the Einstein Toolkit data and bound the coordinates. This will therefore test
all the implementation of LORENE.

The first test is a simple Minkowski metric

α = γii = 1, βi = Kij = 0. (8.2)

This is a trivial metric, but gives us the possibility to manually plot and inspect the
values of the metric after the conversion using LORENE – this is of course possible
with all metrics, but the constant value of the Minkowski metric makes it easy to spot
errors in metric components arising from the conversion.

The second test is a Schwarzschild metric in isotropic coordinates

α =
1− 1

2r

1 + 1
2r

, γii =

(
1 +

1

2r

)4

, βi = Kij = 0. (8.3)

This lets us test a more interesting metric. GYOTO has a lot of its own test cases for
black holes, both analytical and simulated with LORENE. This means that there are
a lot of data we can compare our converter with. So after using our converter on the
above metrics, we can do ray tracing on them, and compare the results with raytracing
done in metrics made by LORENE.

Note that the above test cases are for cases with a single (or no) black hole. This is
in other words only tests the pipeline with LORENE, and not the overall method with
splitting. But if the tests gives good results, then we can assume that the LORENE
pipeline is correct, and any errors occurring in the two-body system should be due bugs
in other parts of the code.

8.8 Parameters Used in the Conversion

There are a lot of parameters that go into the conversion. Most of them are given when
the user calls on the conversion function in the Python code. Some of the parameters
are also found in the C code, and need the C code to be recompiled. We will here discuss
the parameters which have an impact on the conversion. Parameters like whether or
not to pickle, the simulation folder, etc. is discussed in the documentation. An overview
of all the parameters are found in tab. 8.8.

8.8.1 Parameters found in the Python Code

Inside the Python code we find parameters that first and foremost have to do with
the reading of data from Einstein Toolkit. Maybe the most important parameter the

8.8 Parameters Used in the Conversion 79

user sets is the type of geometry. In most cases the none-geometry will yield the best
results, but there might be other cases where another type of geometry is preferred.
In this case the user needs to set is the size and resolution of the geometry which
the Einstein Toolkit will be interpolated on. The size needs to be big enough that
it encompasses most of the spacetime, but if it is bigger than the simulated domain,
it will fill the extra points with zeros. The resolution defines how many points the
geometry will have. Generally the more the better, but this of course comes at the
cost of runtime and memory usage. In this case the parameter determining limits also
becomes important.

8.8.2 Parameters found in the C Code

The second set of important parameters is found in the C code. As we saw in sec. 4.3
the spectral transformation is an interpolation where the degree (and thus precision)
is determined by the number of collocation points we use. This number of collocation
points is something the user has to define in the C code. Remember as well that we split
the spacetime into different domains, where the resolution can be different depending
on the complexity of the spacetime in said domain. So the user will first have to define
the number of domains they want to use; secondly they need to define the r limit of each
domain, and lastly they must define the number of collocation points in each domain.
As for the domain limits, it is wise to define the domain so one domain contains one
feature of the spacetime: so, for example, one region which holds the center black hole,
one that contains the region in between the black holes, one that contains the second
black hole and one that contains the region outside the black holes. The number of
collocation points will also need to be greater for regions where the spacetime varies a
lot and varies non-monotonic. These parameters are the ones that has the most effect
on the results. With a low number of collocation points, the conversion will give rise
to artifacts in the resulting spacetime.

8.8.3 Future Plans

As mentioned the user will have to set the parameters in both the Python code and the
C code, and then recompile the C code. The plan is to implement a wrapper for the
whole library, which makes it easier to use for the user. This will let the user just fill a
parameter file with all the discussed parameters (and some more to do with folder and
saving of the splines), and then run a terminal command to run the conversion, either
from scratch or rerun an existing conversion with different parameters.

80 Conversion of the Data

Name Type Example Found in Effect
Grids List

of
Lists
or
None|

[[[x1, y1, z1], n1],
[[x2, y2, z2], n3], . . .]
or None|

Python file, when
ReadQuantities
are initialized

Higher resolu-
tion gives high
runtime, low
resolution gives
bad interpolation
of metric

Limits List [10, 20, 250] Python file The limits where,
in the case of
a multigrid,
ReadQuantity
switches between
grids.

Interpolation
Type

List
of
Strings

["linear",
"spline", . . .]

Same as Grids Important for ex-
trapolation, and
interpolation near
center.

Spline Or-
der

Int 4 Same as Above.
Only used for
spline interpola-
tion

Smoothness of in-
terpolation

Number of
Spectral
Domains

Int nz=6 Found in C code.
Need compilation
after change.

Higher num-
ber gives better
spectral repres-
entation, but
higher runtime

Number
of Points
in each
Domain.
One each
for r, θ and
φ

Number
of
Ints

[52, 52, 52, 22, 12] Same as above Same length as
number of do-
mains. Higher
numbers give bet-
ter resolution but
higher runtime.

Domain
Limits

List
of
doubles

r_limits[] = {0.,
2, 4., 6, 8, 20,
__infinity}

Same as above Should be one
longer than the
number of do-
mains. Each
domain should
encompass one
interesting part
of the spacetime.
Last should be
__infinity

Table 8.1: Table showing the most important parameters, how to use them, where to
find them and how this affects the conversion. These are only the ones which directly
impact the conversion. There are many more parameters which has to do with folder,
reading and writing data. These are found in the code documentation.

Chapter 9

A Closer Look at the Conversion
Code

As mentioned, the code for the converter consists of Python code and C code. The code
itself can be found at the Github repository https://github.com/dulte/Master. We
will first take a look at the structure of the code, and where to run the code from. We
will so quickly look at how to run the code, and how to use the most usual features in
the code. A deeper look at what is run when, and how the methods inside the code are
called, can be found in appendix B.

9.1 Structure of the Conversion Code

The code is yet to be made into a proper Python package, so as of now the structure
of the code is quite rigorous. In the source folder we can find the following structure

1 src/
2 - C/
3 - old_code (Of no importance)
4 - Makefile
5 - get_point.C
6 - Python/
7 - old_code (Of no importance)
8 - Analytics/
9 - error_plotter.py

10 - image_analytics.py
11 - EinsteinToolkitToGYOTO/
12 - example.py
13 - mpi_converter.py
14 - requirements.txt
15 - ET2G/
16 - __init__.py
17 - ReadQuantities.py
18 - ETQuantities.py
19 - ETInterpolater.py

https://github.com/dulte/Master

82 A Closer Look at the Conversion Code

The two must important folders here are src/C/ and src/Python/EinsteinToolkitToGYOTO/.
The first holds the necessary C code. If the user wants to change come of the C-code
parameters, then the important file get_points.C can be found here. This is the C
code that runs LORENE. As long as the user has installed LORENE and GYOTO, it
should be enough to run the Makefile to compile the code.

The second folder contains the Python package, called EinsteinToolkitToGYOTO
or ET2G. In this folder we can see two files called example.py and mpi_converter.py.
These files show the normal ways of using the conversion code. All programs using the
conversion code must be running from here!!! This is because of the hard coded paths
in the code. This will all be changed in the final wrapper/user interface. Here we can
also find the requirements for the Python code.

In the folder src/Python/EinsteinToolkitToGYOTO/ET2G/ we find the actual con-
verter code. ETQuantities.py contains the two classes that can read the Einstein
Toolkit data and interpolate it, either using linear interpolation or a spline. ReadQuantities.py
is a wrapper wrapping the two ETQuantities classes, and makes it easier for the user to
use. This is the class that should be used for the reading. ETInterpolater.py holds
the last class, and is the code responsible for all the rest of the code: Communicating
with LORENE, evaluating the collocation points, handling symmetries and boundar-
ies, etc. The user will use ReadQuantities and ETInterpolater together, as the former
will read and interpolate the data while the later will use the data to do the spectral
transformation. Figure 9.1 shows how the classes are connected and their methods.

9.2 Using the Code

Remember to install all the requirements before using. For the C code LORENE and
GYOTO is needed. For the Python code the requirements are found in requirements.txt.
Most of the packages should be installable with pip. PostCactus can be found at [34].
Remember that this code is for Python2.7, due to the fact that PostCactus wasn’t
ported to Python3 when this project started.

In example.py we can find examples on how to run a conversion of analytical metric
as well as reading and plotting some simulated data. We will not look at that here, but
from what we will be discussing, the other examples will be self evident.

We will here be looking at some of the code used in mpi_converter.py. This is a
MPI4Py code for running the conversion in parallel. We will ignore the middle code,
which sets up MPI and distribute the quantities among the cores as best as it can. The
interesting code is that at the bottom. To run a conversion we can use the code

1 nb_bodies = 1
2 linear = True
3 smooth = True
4 it = 0
5

6 inter = ETInterpolater(folder , nb_bodies)
7

8 g = None
9 limits = [300]

9.2 Using the Code 83

ReadQuntities

+ Geometries: RegGeom

+ Iteration: Int

+ Interpolation_type: list

+ read(name: string)

+ test_plot(quantity: string)

+ __call__(coords: array)

ETQuantity

+ Geometries: RegGeom

+ Iteration: Int

- pickle_quantity

- load_quantity

+ read(name: string)

+ __call__(coords: array)

ETQuantity_gridInterpolator

+ read(name: string)

+ __call__(coords: array)
parent

child

ETInterpolater

+ dir: string

+ nb_bodies: Int

- get_values_at_coll_points

- bound_coord

- desymmeterize_coords

- split_function

- LORENE_read

- read_bbh_diag

+ make_positive_geometery(corner: list, n_pts: int)

+ analyze_bbh(geometry: RegGeom, ETQuantity: ReadQuantity,
 iteration: Int, do_gyoto_conversion: Bool)

Use

Figure 9.1: A simplified class diagram showing the most important parameters, meth-
ods and relations between the different classes in the Python code. We see here that
ReadQantities is build upon ETQuantities and ETQuantities_gridInterpolator, where
the latter of the two is inherent from the former. ETInterpolater uses ReadQuanties,
as is shown here. Not all private methods and parameters are shown here, just the
important ones, which does something discussed in the text. The private methods do
not have all the parameters listed, since they are not important for the user.

84 A Closer Look at the Conversion Code

10

11 et_q = ReadQuantities ([g], it , folder , pickle_folder=pickle_folder ,
pickle=False , linear=linear ,limits=limits)

12

13 inter.analyse_bbh(g, et_q , [it],quantities=rank_quantities , test=False ,
do_gyoto_converstion=False , split=smooth)

This code will set up a conversion of a single black hole using a none-geometry, and
then run the conversion without the final conversion to the GYOTO file. The first four
lines gives some basic information to the code: We have one object to convert, we will
use a linear interpolation (since we have a none-geometry this is unimportant), we want
to apply the splitting function (since we have only one object, this will be ignored) and
we are at iteration 1 of the Einstein Toolkit simulation. Line 6 makes an instance of
the ETInterpolater class. This is normally done first since it makes the geometries. In
line 8 we set the geometry to be None, which means a none-geometry. Line 11 then
reads the data. The folder parameter is the path to the Einstein Toolkit simulation.
Finally, at line 13, we tell the ETInterpolater instance to analyse and convert the data.
This is called analyse binary black hole since this code first was made for binaries, but
it will handle single objects as well. Notice that do_gyoto_converstion=False, which
means that the final conversion to the GYOTO file won’t be made. Instead the user is
left with one file for each quantity for each object, and has to do the conversion them
self, using the C-code

1 ./ get_points x y z mode body it

Here x, y and z are the center of the black hole, the mode should be 1 to do the final
conversion, body is 1 and it should be 0 as this is the first iteration.

If we instead want to use a multigrid, we can change the relevant parts of the code
to

1 g0 = inter.make_positive_geometry ([-10,-10, -10], 100)
2 g1 = inter.make_positive_geometry ([-50,-50, -50], 100)
3 g2 = inter.make_positive_geometry ([-200,-200, -200], 200)
4 limits = [5, 50, 100]
5

6 et_q = ReadQuantities ([g0,g1,g2], it , folder , pickle_folder=
pickle_folder , pickle=False , linear=linear ,limits=limits)

This will create three different geometries. The limit list tells code when to switch
geometries. For a single grid, we only need give one geometry and one limit.

The Python parameters can be changed in the way we have seen here. The C
parameters will have to be changed inside of the get_points.C. Here the block

1 /*
2 ###
3 User defined variables
4 Change to change conversion!
5 ###
6 */
7 int nz = 6 ; // Number of domains
8

9.2 Using the Code 85

9 // Domain Resolutions
10 int nr_array [] = {25, 25, 25, 25, 25, 25};
11 int nt_array [] = {7,7,7, 7,7,7};
12 int np_array [] = {4,4,4, 4,4,4};
13

14 //Type of Domain
15 int type_r [] = {RARE , FIN , FIN ,FIN ,FIN , UNSURR };
16

17 // Domain Limits
18 double r_limits [] = {0.,0.51 , 1, 2, 4, 8, __infinity} ;

can be used to change the parameters. This can be found at around line 35 in the code.
Remember to compile afterwards. Also note that type_r and the domain resolution
arrays need to be at the same length as nz. The code will not necessary tell you is this
is not done, and will lead to much unnecessary debugging...

86 A Closer Look at the Conversion Code

Chapter 10

Adapting and Using GYOTO
with Converted Data

We have now looked at how to simulate and convert the Einstein Toolkit data. We can
now look at how to use GYOTO. We will first look at some changes that need to be
added to GYOTO to make it work with our metrics. We will then look at how to set
up a parameter file for GYOTO and run it. We will also discuss the outputs and how
this is used to evaluate the results.

10.1 Changes Made to GYOTO

10.1.1 Using GYOTO without Spherical Symmetries

GYOTO was first and foremost made to use either analytical metric 5.4.1 or metrics
simulated in LORENE 5.4.2. Both of these options are metrics with a spherical topo-
logy. This leads to lots of simplifications if both the metric and especially the equations
of motion (5.13), where all the dependencies on φ and θ disappear.

Einstein Toolkit uses some symmetries when running the simulations (see sec. 7.1)
to save on time and computational resources, but these are at best a 180◦ mirroring of
one of the Cartesian axis and not a spherical symmetry. The whole point of introdu-
cing a splitting function was to circumvent the spherical symmetries of LORENE and
GYOTO. So this meant that GYOTO needed to be extended to use metric without
spherical symmetry.

Most of difference between with and without spherical symmetries is in the Chris-
toffel symbols. Thankfully the creators of GYOTO have calculated all the Christoffel
symbols for this general case. This was circulated in an internal document and never
published. In the appendix F I’ve added the parts of this document which give said
Christoffel symbols. This is done with the permission of the author.

88 Adapting and Using GYOTO with Converted Data

10.1.2 Using Two Metrics in GYOTO

For our two metrics describing the binary black hole system, some changes are needed
to GYOTO. As we have discussed above, the metric is split up in such a way that the
sum of the metrics/files becomes the whole metric. Since GYOTO is made to use only
one file as the metric per time step (as would be expected from a normal simulation),
changes to GYOTO are needed to get this system to work.

GYOTO should be able to read the two files independently, and then, when in-
tegrating the photons, it should ask for the value for each 3+1 quantity from each of
the files. GYOTO can then sum the two values for each quantity and get the actual
metric at this point. These changes are not yet implemented to GYOTO. This means
that we won’t be able to test out the ray tracing on the binary black hole system. The
implementation is being worked on, and will be made usable at a later data.

Note that both the converter and this change to GYOTO will be made so that we
can use an arbitrary number of objects.

10.1.3 Additions to the Source Code of LORENE and GYOTO

Most of the changes that have been made to GYOTO have been done by Frederic
Vincent at my request, meaning that I have not changed much of the GYOTO source
code myself. There are three minor changes I have done to the source code of LORENE
and GYOTO.

The first change is to LORENE, and is crucial for the conversion pipeline to work!
The conversion code ask LORENE to print all the collocation points to stream, where
it can pick it up. The way LORENE prints out the collocation points have a set
precision which is way too small, and will lead to errors. In the LORENE file tbl.C we
changed the precision call in the function ostream& operator<<(for me at line 394)
to be o.precision(15). This prints out the collocation points with a much greater
precision.

The second change is to GYOTO, and is needed to get the photon norm drift,
which we will use for testing the conversion. In the file WorldlineIntegState.C the
line cout << Norm << norm_ << " " << coord[1]
<< " " << coord[2] << " " << coord[3] << endl; is added to the function void Worldline::IntegState::Generic::checkNorm
(for me at line 104). This will print the photon norm and the (r, θ, φ) coordinates to
screen when using GYOTO. This will happen for every photon at every integration
step, so it is wise to pipe this output into a text file.

The last change is minor, and is only to get the Page-Thorne disk (see sec. 5.4.4) to
work. The calculation of the disk is dependent on the spin of the black hole. For
this reason, GYOTO won’t let us use this object with a numerical metric, since
the spin is not defined. But since we want to use the disk anyways, we need to
change the source code of GYOTO. In the file PageThorneDisk.C and the function
void PageThorneDisk::updateSpin (for me at line 90) we need to comment out all
the switch statement which can check the type of metric and can trigger an error. We
then force the spin to be zero by adding the line aa_=0.0. In the function below,

10.2 Running GYOTO 89

void PageThorneDisk::metric we will also need to remove the if-statement checking
the metric type and causing an error. This lets us use the Page-Thorne disk.

10.2 Running GYOTO

From the converter we now have a .d file with all the LORENE objects needed to
describe our spacetime. This means that we can ask GYOTO to use this file, possibly
together with some other astrophysical object, to ray trace. GYOTO makes this quite
easy. While it possible to make scripts for GYOTO using Python or Yorick, for us it
suffices to use GYOTO in the terminal. To run GYOTO from the terminal we use the
command

1 gyoto [xml file] [output file]

This takes an Extensible Markup Language (XML) file specifying the scene (this
will be discussed below), and an output file, normally in a .fits format. This output
file can then be read by, for example, the program SAOImageD9 [33].

10.3 The Anatomy of the XML File

All the important settings for how the ray tracing is done can be found in the XML file.
Here we will define the type of metric, integrator, camera and astrophysical objects will
be used. The two XML files used for my ray tracings can be found in appendix E.1.
We will now go through all the XML tags and setting used in the file that is used for
most of the results, the XML file for a fixed star.

First of all, everything inside the script can be found inside the tags

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>
2 <Scenery >
3 (...)
4 </Scenery >

This tells GYOTO that this is XML, and that everything inside these tags are the
scenery used for the ray tracing.

The next step is to set up the metric used for the ray tracing

1 <Metric kind = "NumericalMetricLorene">
2 <MapAf/>
3 <Horizon >0.51</Horizon >
4 <File>/home/dulte/Documents/Skole/Master/Gyoto_files/Metrics/</File>
5 <AxisymCirc/>
6 </Metric >

The property kind tells GYOTO what kind of metric we want to use. In this case we
have a numerical metric from LORENE1. In this case we will have to give the file where
the numerical metric can be found, the horizon where GYOTO will stop integrating
and whether or not to force symmetries in the integration. Note that there is a strange

1In the full script there is also an example showing how to use an analytical Kerr metric.

90 Adapting and Using GYOTO with Converted Data

convention with the file names of the numerical metric: The metric file(s) must be
inside a folder with the name Metrics which is located as given in the XML file. The
files inside this folder must have the name metric00001.d. If the number at the end of
the file name increases (e.g. metric00002.d) GYOTO will assume that this is the next
time step.

The next line should be
1 <Integ31/>

This indicates to GYOTO that we are using integration of the 3+1 quantities, instead
of using the 3+1 quantities to reconstruct the normal 4D objects used in GR.

We then need to set up the camera/screen
1 <Screen >
2 <Position >1000. 250. 1.483 0.</Position >
3 <Time unit="geometrical_time">1000.</Time>
4 <FieldOfView > 0.05 </FieldOfView >
5 <Resolution >30</Resolution >
6 </Screen >

The position here is given in the coordinate system (t, r, θ, φ). The time should be the
same as t in position. The field of view describes angle of the image. The resolution
is the number of pixels for the height/width. So a resolution of 30 will give a 30x30
image, meaning that 900 photons will have been ray traced.

The next part depends on the objects we want to look at in the ray tracing. Without
any objects the image will be black, since there are nothing for the photons to interact
with. To see an effect of the spacetime, and to be able to compare the converted result
with analytical results we need to have an object. We choose to use a fixed star. This
is simply a simple star placed in the center of the spacetime. Note that this will only
affect the intensity of the photons (see sec. 5.4.4), and not the geodesic. So even
though there is a star there, the spacetime will be Minkowski if nothing is given by the
numerical metric. The XML for this is

1 <Quantities >Intensity </Quantities >
2

3 <Astrobj kind = "FixedStar">
4 <Radius > 3.972 </Radius >
5 <Position > 0 0 0 </Position >
6 <Spectrum kind=" PowerLaw">
7 <Exponent > 0 </Exponent >
8 <Constant > 1. </Constant >
9 </Spectrum >

10 <OpticallyThin/>
11 <RMax >0.</RMax >
12 </Astrobj >

The tag at the top tell GYOTO that we want to look at the intensity. We see that
the kind property of the Astrobj tag tells us that we are looking at a fixed star. The
important tags inside here is radius and the position, which are self-explanatory, and
the RMax tag. This tag tells GYOTO when to start to check whether or not the photon
is inside the star. When the photon is inside this radius, the adaptive integration steps

10.4 Looking at Errors in the Raytracing 91

need to be shorter, so that the photon does not overshoot the start of the actual star.
This means that more time is needed for the integration. We therefore want to tell
GYOTO when to check for the star. Notice that RMax= 0 here. This is the same
as removing the star, but without having to comment the whole section of the XML
file out. Running GYOTO without the star is useful when looking at the errors (see
below). If you want to ray trace with the star, RMax= 20 is a good choice for this
radius. Since we have r = 3.972, we will also look at RMax= 5.

The last two lines are technical information we want to give to GYOTO

1 <MinimumTime > -1e4 </MinimumTime >
2 <NThreads > 1 </NThreads >

The minimum time is the smallest value the adaptive integration step can take. The
NThreads is the number of threads GYOTO is allowed to use. For numerical metric,
GYOTO can sadly not use more than one thread, so this line is technically redundant,
but is kept in so it can be used if someone wants to use this script for an analytical ray
tracing.

We will also use another XML file to create our last image of a Page-Thorne disk.
This XML file can be found in the appendix E.2.

10.4 Looking at Errors in the Raytracing

We want to be able to compare the results of our ray traced numerical metrics and
some proven results In our case a numerical metric from LORENE. As we have seen,
it is possible to make analytical metrics with GYOTO. The reason that we are using a
numerical metric from LORENE is to have the best case numerical metric to compare
with. If one looks compare the analytical metric from GYOTO with the numerical one
from LORENE, they will give very similar results. This is not added to this thesis to
save space.

We have made two methods for comparing the results to see how good the conversion
is. The first method we will use is to ray trace using an object in the path of the photons,
and look at the resulting images, i.e. the .fits files. The object is a fixed star and is
an object included with GYOTO. If all of our images are of the same metric, e.g.
Schwarzschild, with the same mass, then we know – from the no hair theorem and from
looking at the expression for the metric – the spacetimes should be identical, and thus
the images should be the same. The only difference should be from numerical error
coming from the conversion. Including using SAOImageD9 we can also use Astropy [5]
to read the data into Python. This lets us compare the the pixel values of the images
to look at the differences.

This method is a bit crude and does not give any help in finding where possible
errors come from. The next method is based on the fact that the norm of a photon
µ2 = gµνp

µpν = 0 should be constant along a null geodesic. Since GYOTO uses
numerical integration, this will not hold for a full integration. We can therefore plot
the norm and see how it differs from 0 along the geodesic. Numerical errors coming from
the conversion will impact the norm of the photons, so by looking at the norm of the

92 Adapting and Using GYOTO with Converted Data

converted metric compared with norm of the analytic metric and the metric simulated
in LORENE, we can see how much our results differ and where on the geodesics errors
occur. This lets us look at the effect of both the interpolation if the Einstein Toolkit
data and the domain size/resolution we used in LORENE.

These are the two methods we will be using to evaluate our ray traced metrics. We
will be using a LORENE metric simulated with the LORENE file kerr_QI.C. This is
written by the creators, and is included with LORENE. We will assume that the metric
we gets from this LORENE simulation is the best we can get from LORENE, and is
therefore the standard we want to compare our results with. This file can be found
with the other examples given by LORENE. Together with this C file a parameter file
is given. Here it is important to set the mass to 1 and the spin to 0. This will give us a
good comparison for the data simulated in Einstein Toolkit. We will use comparisons
of the fixed star image and the photon norm for this metrics and our converted metric,
either our analytical test metrics or the metric simulated in Einstein Toolkit, to evaluate
how good our results are. If we get results equal or similar to the LORENE metric we
can assume that we have succeeded in our goal of using a Einstein Toolkit metric in
GYOTO.

At the end we will make an image of a Page Thorn disk. This is mostly to have a
final showcase result.

10.5 Using Dumb Parallelization

GYOTO is normally fully integrated with MPI, and can parallelize the ray tracing with
a single parameter. Sadly this is not implemented for numerical metrics. This means
that the only way we can use parallelization is using a dumb parallelization. When
running GYOTO in the command line we can add the parameters --imin and --imax
to choose the minimum and maximum column of pixels that will be ray traced, and
--jmin and --jmax for the the minimum and maximum row. This means that one can
separate the whole screen into many subscreens. This way we can run one subscreen in
one terminal and another subscreen in another terminal. Since the pixels/photons are
completely independent, all the resulting images can be combined into an image of the
whole screen. In this way we can run the ray tracing on multiple cores without using
MPI.

Part III

Results

Chapter 11

Note on Units

All the important units in this section is normalized with respect to solar masses. The
reason for this is that the unit system used by Einstein Toolkit measures both mass
and length in solar masses. This means that no units are given in the plots nor the
text, and where either mass or length is seen, these should be taken as being measured
in solar masses. For the purpose of this thesis, the actual lengths are not important,
so no conversion of units are done.

This is made a bit more confusing by the contour plotting functions of LORENE,
where km is used. The conversion between the unitless units and km is just a factor
10. So where we have contour plots spanning from −200 to 200km, this will actually
show the simulated data from −20 to 20.

96 Note on Units

Chapter 12

Reading from Einstein Toolkit

The first part of the conversion is the reading of the Einstein Toolkit data. As we
have seen, most of the process is done by the Python library PostCactus, with a couple
of parameters given by the user. We will here look at the results of the reading and
interpolation of data. First we will look at how the different types of geometries affect
the data, finding the best type of geometry. Having the "best" type of geometry we
will look at how the grid size will affect the quality of the data. This will be done using
a single black hole, since this lets us compare the read data with analytical expressions.
We will then look at how the data for a binary black hole system is read.

12.1 Single Black Hole

We start by looking at a single black hole simulated in Einstein Toolkit using analyt-
ical initial conditions. These initial conditions are given by a isotropic Schwarzschild
metric(2.4), meaning we can compare the results with analytical expressions. For this
analytical metric we have only two non-zero quantities, the lapse function α and the
diagonal components of the spatial metric γxx = γyy = γzz. So α and γxx will be the
quantities used to compare the results

12.1.1 Effect of Different Types of Geometries

First we will look the different types of geometries used to read data from Einstein
Toolkit, as well as the different interpolation methods (spline or linear interpolation).
As mentioned in the method section the type of geometries we have are a single uniform
grid, multiple uniform grids with different resolutions and sizes, and a none-geometry
where PostCacus reads the geometry as given by Einstein Toolkit. The first two geo-
metries will have the possibility for a linear or a spline interpolation, while the third
will only allow for a linear interpolation.

In table 12.1 we see the results of the different geometries on the lapse function
created by Einstein Toolkit. The parameter file for this simulation can be found in the
appendix D.1. dx= 2 was for this test – see below for the discussion of effect of different

98 Reading from Einstein Toolkit

Type Geometry Details Mean Error Max Error Run
Time[Sec]

Multigrid
Spline

Radii: [10, 20, 100, 300]; Res-
olutions: [100, 100, 100, 100];
Limits: [5,10, 50,250]

9.04×10−5 8.87×10−3 37.59

Multigrid
Linear

Radii: [10, 20, 100, 300]; Res-
olutions: [100, 100, 100, 100];
Limits: [5,10, 50,250]

1.01×10−4 4.41×10−3 36.71

Single Grid
Spline

Radius: 300; Resolution: 300 0.023 0.54 25.68

Single Grid
Linear

Radius: 300; Resolution: 300 0.014 0.35 24.06

None - 6.13×10−6 2.85×10−5 1.01

Table 12.1: Here we can see the results of reading of the lapse function α from Einstein
Toolkit for different geometries. The parameter file can be found in the appendix D.1.
For this dx= 2 was used. The errors are the absolute error between the simulated and
analytical expression over a radius of 20. We can see that all the geometries gives quite
good results, with the none-geometry being the most accurate and fastest, with the
single grid being the worst when talking about the error.

values of dx on the error. We will look at bit on the error using this table and use this
to judge the usage of each type of geometry. Since this might seem a bit naive, we only
compare one example of each geometry, but as we will see a bit later, there are some
hidden obstacle which will make the choice of geometry simple, independently of the
grid sizes and resolutions used.

Note that all the times in the table 12.1 are meant to be a comparison between the
methods and will differ between different computers and different runs (and altitude,
humidity, moon phases, star alignments and all the other things that make computers
run at different running times...). All of these runs were made consecutively on the
beehive5 computer on Institute for Theoretical Astrophysics at UiO1.

The multigrid geometry uses four different uniform grids with radii 10, 20, 100 and
300, all of them with resolution 100. The reason for these parameters are trial and
error, with the most important radius being 300, which is the furthest radius simulated
by Einstein Toolkit using the mentioned parameter file. The limits are the limits at
which the converter switches from a finer grid to a coarser. It is important that this
limit is smaller than the radius of a grid. The errors are the absolute error between
the simulated and analytical expression over a radius of 20. We see that for the spline
interpolation the results are on order 10−3 to 10−5, which is good, but as we will
see later not nearly as good as we need to get good ray tracing results. The linear

1https://www.mn.uio.no/astro/english/services/it/help/basic-services/compute-resources.html

12.1 Single Black Hole 99

interpolation gives errors which are a bit higher for the mean error and a bit lower for
the max error.

The single grid uses, as is self explanatory, only a single grid. Here the radius of
the grid is the same as the one in the muligrid case. The resolution is one which is
fast and accurate. Higher resolution will lead to a small improvement in the error, but
will lead to much longer run time. We see here a small improvement in run time, but
it is still comparable to the multgrid case, which makes sense this the multigrid have
to interpolate four grids that are smaller. The results are sadly much worse, with the
error being of order 100 larger. This is the case for both the spline and the linear
interpolation, with the linear interpolation being a bit better.

Looking at the none-geometry we see much better result! Not only is the errors
10−100 times better, but the runtime is only a fraction of both the single grid and the
multigrid. This is most like since the none-geometry reads the data on a geometry as
they are given by Einstein Toolkit, which the other geometries first linearly interpolate
the data onto the uniform geometries. When the user now asks for a value at a point, the
none-geometry will do a simple linear interpolation, while the other geometries can do
either a linear or spline interpolation. To summarize this, going from Einstein Toolkit
data to output to the user only require one interpolation using the none-geometry and
two interpolations for the other geometries.

The above results for the interpolation of the lapse function indicates that the none-
geometry is the way to go. These results could give room for this to be discussed and
some use for the other geometries might have been found. We will now look at the
results for gxx, which will make all other geometries other than the none-geometry
obsolete.

In table 12.2 we can see the results for the reading of gxx. Now the results are com-
pletely different. We now can see that for both single grid and multigrid, independently
of the type of interpolation, give absolute errors of around 1060. One can argue that
this might happen close to the center, where gxx rapidly diverges, meaning that an ab-
solute error of this magnitude might be reasonable. Remember that if a diverging error
exists only close to the center, this will drive up the mean and max error, giving a false
impression that we have an erroneous result. As we will see shortly, this is indeed the
case for the none-geometry, but sadly not for the single grid and multigrid geometries.

In fig. 12.1 we see the absolute error for gxx plotted radially along y = z = 0(the
x-axis). The center of the spacetime, and in this case the black hole, is at radius= 0.
The radius indicates the distance from the spacetime/black hole center, with positive
being to the right and negative being to the left. While having a negative radius might
be strange, we will use radius or r as the measure of distance along the x-axis from the
center of the spacetime (which coincides with the center of the black hole for the single
black hole) for the error plots. We can see that for the single grid and multgrid, using
a linear interpolation, we have an error at 1060 for the whole plot, while the none-
geometry have an error at < 10−3 everywhere except from the center. This means that
we can point to this as the reason for the high mean and max error. The increase in
the center happens inside the event horizon rhorizon = 0.5, meaning that they won’t
impact the ray tracing.

100 Reading from Einstein Toolkit

((a)) Absolute error using four grids in a multigrid. We can see that
the error is of order 1060. The sudden decreases we can see is due
to change in which grid is used.

((b)) Absolute error using a single grid with radius and resolution
300. We can see that the error is of order 1060. The sudden decreases
we can see is due to the grids used for AMR in Einstein Toolkit.

((c)) Absolute error using a none-geometry. We see here that the
error is at a manageable level, except from the center. Due to this
increase happening inside the event horizon, it will not impact the
results. The sudden decreases we can see is due to the grids used for
AMR in Einstein Toolkit.

Figure 12.1: The absolute error for gxx for a single black hole with isotropic Schwarz-
schild metric, plotted against the distance/radius away from the black hole (at radius
r = 0). We see that using the single grid and multigrid geometries, with a linear inter-
polation, gives us errors at 1060 (fig. 12.1(b) and 12.1(a)), while the none-geomtery
gives us errors at levels we can accept (fig. 12.1(c)).

12.1 Single Black Hole 101

Type Geometry Details Mean Error Max Error Run
Time[Sec]

Multigrid
Spline

Radii: [10, 20, 100, 300]; Res-
olutions: [100, 100, 100, 100];
Limits: [5,10, 50,250]

2.40×1059 1.87×1061 40.12

Multigrid
Linear

Radii: [10, 20, 100, 300]; Res-
olutions: [100, 100, 100, 100];
Limits: [5,10, 50,250]

2.22×1059 2.20×1061 36.16

Single Grid
Spline

Radius: 300; Resolution: 300 3.57×1061 6.20×1062 25.50

Single Grid
Linear

Radius: 300; Resolution: 300 2.61×1061 5.87×1062 23.47

None - 0.64 63.47 0.77

Table 12.2: Here we can see the results of reading of gxx from Einstein Toolkit for
different geometries. The parameter file can be found in the appendix D.1. For this
dx= 2 was used. The errors are the absolute error between the simulated and analytical
expression over a radius of 12. We can see that we now get outlandish results, with the
errors at around 1060. This indicates that something is wrong. The none-geometry is
still the best, but still has more error than wanted.

The error for the single and multigrids means that these types of geometries are
unsuitable for actual use. What the reason for this error in reading and interpolating
the data is unknown, especially since the lapse function behaves well. We can also ask
whether this behaviour is always present. The answer seems to be no. In fig. 12.2 we
have plotted the same as in fig. 12.1, but an other parameter file has been used (this
can be found in the appendix D.3 or accompanying [36]). This parameter file generates
the same single black hole, but uses a two puncture method instead of analytical initial
conditions. We can see here that when we use a multigrid with a linear interpolation
(fig. 12.2(a)) we get results more akin to the one we got when using the none-geometry.
The metric is still not very usable, only reaching 10−1. We can also see that the error
increases quickly outside of the event horizon, meaning it would impact our results. In
fig. 12.2(b) we have the same plot, but with a spline interpolation. We still get areas
with a small error, but we still have spikes at around 1023, meaning that the data is
useless. The sudden drop in error corresponds well with the limits of the grids used,
pointing to the boundaries of the grids having a large impact.

The reasons for the difference when using these two parameter files is unknown.
The two main differences between the parameter files are the smaller amount of mesh
refinements and the use of a two puncture method in the latter parameter file. The
two puncture method method should not make the reading better, since they both give
values at the same points, and the analytical method also give a more precise value for
the metric. The smaller amount of mesh refinements might be to blame, but we can

102 Reading from Einstein Toolkit

((a)) Absolute error using four grids in a multigrid with a linear
interpolation. We see that contrary to fig. 12.1 we now have a low
error. We can also see that the error starts to increase outside the
event horizon.

((b)) Absolute error using four grids in a multigrid with a spline
interpolation. We see that compared to fig. 12.1 we now have a
lower error, but still we have extremely high spikes.

Figure 12.2: The absolute error for gxx for a single black hole with isotropic Schwarz-
schild metric created using a two puncture method. We have two multigrids, one with
a linear interpolation and one with a spline. We see that the linear interpolation gives
much lower error than fig. 12.1. For the spline we have much lower error, but we still
see spikes reaching 1023.

question whether throwing out the mesh refinement only to get a geometry inferior to
the none-geometry to work is a good idea.

All of this means that we can use the multigrid system in some cases, but in all cases
the none-geometry is superior, and the easiest to use. In fig. 12.3 we see a 2D intensity
plot of the error of gxx using the none-geometry. We can clearly see squares in the plot,
where these are a wave pattern corresponding to a drop in error. These squares are the
grids used by Einstein Toolkit when doing the adaptive mesh refinement. We can also
see these drops as sudden decreases in error in fig. 12.1(c).

Having looked at the different geometries we can conclude that the none-geometry is
the best geometry to use. Not only does it give the best results, but also the fastest read
time (see tab. 12.1 and 12.2). This geometry will have increased run time when a lot
of points are use, since it does the interpolation each time we need a point. The other
geometries will do the interpolation beforehand, and can even store the interpolation
object, making it much faster to read at a later time. The other geometries might work
in some cases, such as in fig. 12.2(a), but they are worse and less consistent than the
none-geometry, meaning that even though they might be much faster for larger and
repeated runs, we have to conclude that the none-geometry is the best and safest to
use.

For all the results below (except for when we try reading in a binary black hole
12.2) we will only be using the none-geometry!

The reason why the other geometries are so well developed and discussed even
though they are inferior to the none-geometry, is that the latter was throughout and

12.1 Single Black Hole 103

Figure 12.3: An intensity plot of the error of gxx for a single black hole using a none-
geometry. We can here clearly see the square grids used by Einstein Toolkit for the
mesh refinement. We see some wave patterns spanning the borders of the grids. The
reasons for these are unknown, but surprisingly these patterns has a lower error than
the surroundings.

implemented much later in the thesis, meaning that all of the conversion code was
developed with the single and multigrid geometries. All the test were done with the
two puncture single hole (fig. 12.2(a)), meaning that only later did the major problems
with these geometries become clear.

We can now look at how the lapse function and the diagonal metric coefficients will
look like using the none-geometry. These can be found in fig. 12.4. Here we can see
that the lapse function α starts close to zero at the center and gradually increases to
one at infinity. gxx is also one at infinity and will stay at this value until it get close to
the center, when it will diverge quickly, leaving almost no contours to be seen. These
results will be used to compare with when we look at the results after the conversion
to LORENE.

12.1.2 Effect of Different Grid Sizes

Having looked at the different geometries we can use to read the data from Einstein
Toolkit, we can now turn to the simulation done in Einstein Toolkit. When running
a simulation in Einstein Toolkit we can specify the size of the simulation as well as
the grid. Above we mentioned that we used a grid resolution of dx = dy = dz = 2
(from here on only called dx) for all the test. We will now try to see how the resolution
impacts the simulation time and the read data.

We will be using a simulation size of 300 for all the simulation and use of seven

104 Reading from Einstein Toolkit

((a)) An intensity map of α. ((b)) A contour plot of α

((c)) An intensity map of gxx ((d)) A contour plot of gxx

Figure 12.4: The results of the reading and interpolation of the Einstein Toolkit data
for a single black hole using a none-geometry. These will be the results we use as a
comparison to the data after conversion to LORENE

12.1 Single Black Hole 105

dx RAM [GByte] Could Run Mean Error Max Error
1 388.21 No - -
1.5 131.78 No - -
1.875 77.96 Yes 6.97×10−5 8.03×10−4

2 65.71 Yes 7.45×10−5 9.29×10−4

2.5 37.05 Yes 1.12×10−4 1.26×10−3

3 23.91 Yes 1.50×10−4 2.07×10−3

4 12.73 Yes 2.15×10−4 3.67×10−3

Table 12.3: Overview of the different grid resolution dx and memory requirements
used for each run. All of the simulation were run on the beehive5 node at ITA, so
I’ve indicated whether this node was able to run the simulation or not. We can also
see the mean and max absolute error for each dx. Here we have only taken the error
outside of the event horizon rhorizon = 0.5. The errors are calculated using gxx and a
none-geometry.

different values for dx. Out of these the two smallest needed more memory than the
computer we ran the simulation on had. This is to show that the required memory
grows exponential (or worse) with lower dx, meaning that we can not strive for smaller
and smaller dx’s.

In table 12.3 we see the results for the different resolutions dx. We can also see the
mean and max absolute error over the range plotted. We will look at these shortly.

In fig. 12.5 we see the different absolute errors for different dx. This is the same
single black hole simulation as discussed above (app. D.1) with a none-geometry. We
can see that when dx increases the plots becomes more erratic. This is most likely due
to more points having to be interpolated from points further apart, leading to numerical
error.

We don’t see much from these plots when it comes judging the improvement in the
absolute error. For this we have to go back to table 12.3, where we can see the mean and
maximum absolute errors. We saw previously that the error increase drastically inside
of the event horizon. These errors are therefore calculated using r > rhorizon = 0.5.

We can see both the errors increase as dx increases. This increase is in fact linear,
with a slope of 6.98× 10−5 for the mean error and 1.35× 10−3 for the maximum error.
This means that we don’t get much improvement for decreasing dx

To conclude, while the system requirement increases exponential with a decrease in
dx, the error only decreases linearly. This means that the choice of dx mostly comes
down to the computer one runs the simulation on. We will see later that we get an error
in the ray tracing more or less comparable to the numerical error from the reading of the
data, but as we have seen now we can not decrease this error much more by decreasing
dx. We will look more at this later.

For all the conversion and ray tracing below we will continue to use dx = 2.
We have thus found that the optimal geometry for reading a single black hole is

none-geometry, and that there is no reason to decrease dx of the Einstein Toolkit

106 Reading from Einstein Toolkit

((a)) dx = 1.875 ((b)) dx = 2

((c)) dx = 2.5 ((d)) dx = 3

((e)) dx = 4

Figure 12.5: The absolute error for gxx for a single black hole using a none-geometry.
Different grid resolutions dx are used to show how the error decrease with dx

12.2 Binary Black Holes 107

10 5 0 5 10
r

0

2

4

6

8

10

((a)) α with multi geometry.

10 5 0 5 10
r

0

2

4

6

8

10

g x
x

gxx

((b)) gxx with multi geometry.

10 5 0 5 10
r

0

2

4

6

8

10

((c)) α with none-geometry.

10 5 0 5 10
r

0

2

4

6

8

10
g x

x

gxx

((d)) gxx with none-geometry.

Figure 12.6: The results of the reading and interpolation of the Einstein Toolkit data
for a binary black hole system. Here the α and gxx are functions of r along the x-axis.
We see that they are more or less equal, meaning that the multigrid geometry worked
for this simulation.

simulation more than dx = 1.875. We will now move on to a binary black hole system.

12.2 Binary Black Holes

We can now look at a binary black hole system, and see how this fares when read into
the converter. This binary black holes is, as discussed in sec. 7, the parameter file
found in appendix D.2.

We concluded above that the none-geometry was by far the best geometry to use
when reading the data, followed by the multigrid and lastly the single grid geometry.
Since this simulation used a two puncture method for initial data, which we saw could
work with a multigrid geometry, we will try to read the data using both none-geometry
and a multigrid geometry. The multigrid geometry is the same as in table 12.1 and
12.2.

108 Reading from Einstein Toolkit

10 5 0 5 10
r

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Difference in
Difference
Puncture Center

((a)) α with multi geometry.

10 5 0 5 10
r

10 14

10 11

10 8

10 5

10 2

101

104

g x
x

Difference in gxx

Difference
Puncture Center

((b)) gxx with multi geometry.

Figure 12.7: The difference between the none-geometry and the multigrid geometry
for a simulated binary black hole system simulated in Einstein Toolkit. We see that
difference are quite small. There are sudden increases in the difference. They seem to
be associated with the grid sizes in the multigrid geometry.

In fig. 12.6 α and gxx are plotted as functions of r along the x-axis. In appendix
C the reader can find the intensity plots and contour plots for these results (fig. C.11
and C.6). We can see that the plots are more or less identical. From the reading of the
single black hole we expected the multigrid geometry to give results with values close
to 1060, while we don’t see this here at all.

Since we don’t have any analytical expressions to compare these results with, we
instead have to compare them against eachother. In fig. 12.7 we have plotted the
difference between the figures we looked at above. We see that there are very little
difference between the two types of geometries. The center of the black holes/location
of the punctures are marked with a red line. We see that the difference occurs near
where we have limits for the different grids used in the multigrid. We have the highest
amount of error close to the black holes. This is most likely due to the AMR having a
very fine refinement close to the punctures. This will most likely lead the none-geometry
to be much more precise than multigrid.

Contrary to the single black hole case, we found that the multigrid geometry also
works well with the binary case. Why this is the case is a bit of the mystery. Just
like in the single black hole simulated with two puncture, we might have a result which
looks good, but still is inferior to the none-geometry. We have no concrete method
of checking if the none-geometry is the best, so we will use what we learned from the
single black hole case: The multigrid geometry might work well, but we have seeded
enough doubt in it, and seeing that the none-geometry is superior in every other case,
we choose to use the none-geometry going forward with the binary black hole system
as well.

Chapter 13

Conversion to LORENE

We have now looked at the reading of the Einstein Toolkit data, as well as comparison
of the data of a single black hole metric with the isotropic Schwarzschild metric. We
can now move on to the next step in the process: Transforming the data to a spectral
representation with LORENE. We will first try out the conversion with the test metrics
we made (sec. 8.7). We will so look at the metric for the single black hole. This lets
us, once again, compare the results with the analytical expression for the isotropic
Schwarzschild metric(2.4). We will lastly look at the binary black hole metric, where
we will look at both how the resolution affects the results and what happens if we don’t
include the splitting function (sec. 6.1).

13.1 Conversion of Test Cases

The test cases (sec. 8.7) let us look at how the spectral transformation pipeline works
without having to worry about numerical errors from the reading of the data. If there is
something wrong with this pipeline, we should be able to iron this out before throwing
the real data on it.

The results for the Minkowski metric are just printouts of the constant coefficients
α = gxx = 1. Plots of the results can be found in fig. C.1, but due to the automatic
limits in the class used by LORENE to plot, the maximum and minimum of the plots
hide the results, so the plots are moved to the appendix C, but we have here α = 1 and
gxx = 1. Three domains were used in this conversion, with the limits [0.5, 8,∞] and
the resolution nr = 25, nθ = 7 and nφ = 4.

This result does not show us much, but if we instead look at the converted Schwar-
zschild metric in fig. 13.1 we see that we have successfully transformed some analytical
metric into a spectral representation. The transformation parameters are the same as
the Minkowski metric above. Since LORENE is used to plot the contour plots instead
of matplotlib, it is not trivial to compare 13.1(c) and 13.1(d) with 12.4(b) and 12.4(d),
but if we look at 13.1(a) and 13.1(b) we see plots which seems to have the same form
as we would expect from the expression for an isotropic Schwarzschild metric (2.4).
Note that 13.1(c) and 13.1(d) have multiple plots in them. These plots are values of

110 Conversion to LORENE

((a)) Plot of the lapse function α after the conver-
sion.

((b)) Plot of the spatial metric coefficient gxx after
the conversion.

((c)) Contour plot of the lapse function α after the
conversion.

((d)) Contour plot of the spatial metric coefficient
gxx after the conversion.

Figure 13.1: Here we can see plots of the lapse function α and the spatial metric
coefficient gxx for an analytical isotropic Schwarzschild metric after conversion. Three
domains where used in this conversion, with the limits [0.5, 8,∞] and the resolution
nr = 25, nθ = 7 and nφ = 4.

13.2 Single Black Hole 111

((a)) Plot of difference between the converted α
and the analytical expression.

((b)) Plot of difference between the converted gxx
and the analytical expression.

Figure 13.2: Here we can see plots of the difference between the lapse function α and
the spatial metric coefficient gxx for an analytical isotropic Schwarzschild metric after
conversion and the analytical expression found in (2.4). We can see that the difference is
around 10−11. Three domains where used in this conversion, with the limits [0.5, 8,∞]
and the resolution nr = 25, nθ = 7 and nφ = 4.

the functions radially for different values of θ and φ. Since the Schwarzschild metric is
spherical symmetric, all of these plots are the same. When we move on to the binary
system, we will see cases where this is not true.

To be sure we have successfully transformed the data we compare the converted
metric with the analytical expression. In fig. 13.2 we can see such a comparison. We
can see that for both the quantities we have a difference of around 10−11. This is so
close that we can in practise call them identical. We might be able to lower this a bit
if we are smart with domain limits and resolutions, but as we will see later, this error
will be overshadowed by other numerical errors.

We can therefore conclude that our pipeline for transforming data into a spectral
representation with the use of LORENE works. We can now safely on to Einstein
Toolkit data.

13.2 Single Black Hole

We can now try to convert our Einstein Toolkit simulation of a single black hole to a
spectral representation. We will look at five different case, all with different domain
limits and/or resolution. Table 13.1 shows the different cases we will look at.

We start by looking at fig. 13.3 we see the same plots as we saw for the analytical
case in fig. 13.1. Here case 5 from the table is used to see a best case scenario. We
see that the results are the same as we got with the analytical Schwarzschild metric,
meaning that we have successfully transformed the Einstein Toolkit data to LORENE!

112 Conversion to LORENE

((a)) Plot of the lapse function α after the conver-
sion.

((b)) Plot of the spatial metric coefficient gxx after
the conversion.

((c)) Contour plot of the lapse function α after the
conversion.

((d)) Contour plot of the spatial metric coefficient
gxx after the conversion.

Figure 13.3: Here we can see plots of the lapse function α and the spatial metric
coefficient gxx for a single black hole data from Einstein Toolkit, after conversion. The
green dashed lines indicates the domain limits. We have used Case 5 from table 13.1.

13.2 Single Black Hole 113

Case Domain Domain
Limits

Resolutions Time [Min]

1 3 [0.5,8, ∞] nr = 25, nθ = 7,nφ = 4 0.017
2 6 [0.5,1,4,16,32,

∞]
nr = 25, nθ = 7,nφ = 4 0.021

3 6 [0.5,1,4,16,32,
∞]

nr = 51, nθ = 15,nφ = 8 0.108

4 6 [0.5, 1, 2, 8,
32, ∞]

nr = 51, nθ = 15,nφ = 8 0.108

5 9 [0.5, 0.7, 1,
2, 4, 16, 64,
256, ∞]

nr =[51, 51, 51,51, 51, 51, 25,
25, 25], nθ =[15, 15, 15, 15,
15, 15, 11, 11, 11, 11],nφ = 8

0.093

Table 13.1: Table showing the parameters used when converting the single black hole
data. Note: For the resolution, when only a single number is given, this means that all
the domains have the same resolution.

This is a bold statement, especially when looking at 13.3(c) and 13.3(d), where we
see a lot of noise after a sudden radius. The noise is in the outer most domain, the
compacted domain going to infinity. This is will discussed more below.

To backup our claim that we have succeeded in the conversion we will need to look
at the converted data compared with the analytical metric. Fig. 13.4 show the differ-
ence between the converted Einstein Toolkit metric component gxx and the analytical
expression. The same plot but for the lapse can be found in the appendix C in fig.
C.12. Note that as we have done in most cases before, only the values outside the event
horizon r > rhorizon = 0.5 is plotted and discussed.

The first case 13.4(a) have the same parameters as we had in the text cases.This
means that we only have one finite domain(other than the domain near the center),
with boundaries 0.5 and 8 – this is the reason there are no green lines in the first plot.
We see that we here have a difference up to 8 × 10−4. This difference becomes less
and less the further we move away from the r = 0. In 13.4(b) and 13.4(c) three extra
domains have been added, and we are using first the same resolution and then doubling
– note that nr and nθ must be odd. Here we can actually see a increase in the difference
at the tallest spikes, but with a faster decrease in the difference after the first spike. It
seems that the domain at r = 1 is where the decrease happens, meaning that we "lock
in" the error in the first domain with this other domain. We can also see that between
the other domains the difference seems to decrease.

This is due to how LORENE does the transformation. Say that we have a set of
points and function values we are going to use Chebyshev polynomials to interpolate.
If some of the function values have some numerical error, then we are going to get
some error in the spectral coefficients, since we are trying to fit this numerical error
into the interpolation. This will lead to the errors we are looking at here. If we now
contain the numerical error in its own domain, this domain will have a larger error since

114 Conversion to LORENE

((a)) Difference between simulated and analytical
gxx for case 1.

((b)) Difference between simulated and analytical
gxx for case 2.

((c)) Difference between simulated and analytical
gxx for case 3.

((d)) Difference between simulated and analytical
gxx for case 4.

((e)) Difference between simulated and analytical
gxx for case 5

Figure 13.4: Here we can see the difference between the simulated and analytical gxx
after conversion. The domain parameters are taken from table 13.1. We can see that
the differences are around 10−4 and dependent on domain limit and resolution. The
green dashed lines indicates the domain limits.

13.2 Single Black Hole 115

((a)) α for distances outside the finite domains. ((b)) gxx for distances outside the finite domains.

Figure 13.5: We can here see α and gxx using case 5 for distances outside of the furthest
finite domain. We can see that the data here becomes unusable.

the numerical error takes up a larger part of the data. But the other domain will not
have this error, and therefore have a better fit. As we have seen, the error in the data
from Einstein Toolkit tends to get larger closer to the center, so we can contain this
numerical error by having multiple domains close to the center. We can not eliminate
the numerical error completely, but we can keep the error from affecting photons not
passing too close to the center.

In 13.4(d) we have done exactly this, by inserting more domains close to the center,
and as we can see we still have a high spike close to center, but we now have an even
faster decrease in the difference. This is taken even further in 13.4(e), where we also
have increased the resolution. We can now see that we have a spike close to the height
of the first case, but with the difference decreasing faster.

Before we conclude the single black hole case, we will look at what happens when
we go too far out from the center. We saw in 13.3(c) and 13.3(d) that we got some
strange noise far out from the center. We can also see this in fig. 13.5. In the last
domain, the one going to infinity, we suddenly have large oscillations. These happens
for a simple reason: As we have mentioned before, the interpolation of the Einstein
Toolkit data only works within the simulated domain. In other words, we have no
extrapolation with the none-geometry, except from a constant value. We therefore at
some point in the last domain go from a smooth function to some constant value. This
leads to a discontinuity in the data, meaning that when LORENE tries to interpolate
over this discontinuity we get large oscillations.

There are three solutions to this problem. The first is to use another interpolation
in the Python code. The linear interpolation for single grid and multigrid geometries
have a linear extrapolation, which can make the spectral transformation more smooth
(but not completely smooth). But as we have seen, we are not guaranteed a good
interpolation of the data if we use these geometries, and are instead better off using the

116 Conversion to LORENE

none-geometry. The second solution is to choose smart constant values after the last
finite domain, i.e. that of Minkowski space. This will lead to a smaller jump when this
constant value kicks in, but since the simulated metric won’t converge to a Minkowski
metric, we will still get a jump, only a bit smaller. The third solution is to ignore the
problem. If we only use the data which is within the last domain, then we do not have
to deal with this problem. The downs side of this is that we only can ray trace within
the simulated domain from Einstein Toolkit. We will use both the second and the third
method throughout the results.

We have now showed that we can convert the Einstein Toolkit data of a single black
hole to a spectral representation in LORENE. We still get some numerical error, but
by using smart domain limits and resolutions we can contain this error close to the
center. We have also seen that this error is more or less on the same range as the error
we got from reading the Einstein Toolkit data. This indicates that we might not be
able to decrease the error in LORENE much more. In fact adding a higher spectral
resolution to LORENE might actually increase the errors again, since we then overfit
the Chebyshev interpolation instead of smoothing them out due to the other ("more
correct") function values.

13.3 Binary Black Holes

We have now seen that we can make spectral representations in LORENE of data from
Einstein Toolkit. Until now we have only used data with the same spherical topology as
LORENE, meaning that we haven’t needed to do anything with the with the data from
Einstein Toolkit before trying convert it. This is not the case with the binary black
hole system. As we have discussed in the theory and method sections we no longer
have a spherical topology, and we need to apply the splitting function to the data to
make it into two spherical topological systems, one for each black hole – meaning that
if we have more objects, we will need to make more systems, as the conversion code is
capable of doing.

We will first look at two cases with the splitting function applied, but with different
resolutions. We will then look at the case with the best resolution, but without the
splitting function. This lets us see how both the resolution and the splitting function
affects the results.

13.3.1 Effect of Different Resolution

In fig. 13.6 we can find the contour plots after the conversion of a binary black hole
system. For all the plots we have the domain limits [0.5, 1.5, 4, 8, 20,∞], but for the
top plots the resolution is nr = 51, nθ = 21 and nφ = 40, while for the bottom
plots the resolution is nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31] and
nφ = [142, 142, 142, 122, 102, 62]. Note that all of these plots are from the perspective
of the black hole at x = +3. For the perspective of the other black hole, see fig. C.13
in appendix C. This means that we only have half of the picture, and we have combine
the two to get the full 3+1 quantities, which we will look at shortly.

13.3 Binary Black Holes 117

((a)) Contour plot of α for a converted binary black
hole system. The conversion with the lowest resol-
ution.

((b)) Contour plot of gxx for a converted binary
black hole system. The conversion with the lowest
resolution.

((c)) Contour plot of α for a converted binary black
hole system. The conversion with the highest resol-
ution.

((d)) Contour plot of gxx for a converted binary
black hole system. The conversion with the highest
resolution.

Figure 13.6: Contour plots of α and gxx for a binary black hole system after con-
version. For all the plots we have the domain limits [0.5, 1.5, 4, 8, 20,∞], but for the
top plots the resolution is nr = 51, nθ = 21 and nφ = 40, while for the bottom
plots the resolution is nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31] and
nφ = [142, 142, 142, 122, 102, 62]. All the plots are of the black hole located at +3 at
the x-axis, the results for the other black hole is located in the appendix in fig. C.13.

118 Conversion to LORENE

((a)) gxx radially for different values of θ and φ for
the black hole at x=+3.

((b)) gxx radially for different values of θ and φ for
the black hole at x=-3.

Figure 13.7: gxx radially for different values of θ and φ for both of the black holes. All
the radial plots goes from left to right, so the splitting function is only visible for the
black hole at x = −3, since it is to the left of the other black hole. The resolution is
that of the highest resolution in 13.6.

We can see from these plots that for the lapse we have contours in the center which
looks like the lapse of the single black hole, and on the left side we have some other
region where the lapse decreases. This is the region where the splitting function is
applied and the lapse is decreasing smoothly to zero. For gxx we see no such thing.
This is because we here don’t ignore the center, and the increase in gxx near the center
makes the careful decrease of the smoothing function invisible.

The lapse in 13.6(b) is the lapse with the lowest resolution, which we can see from
the noise around the region of the splitting function. In C.13(b), where the resolution
is higher, the noise is less prevalent.

In fig. 13.7 we see gxx for both the black hole at x = +3 and that at x = −3. All
the radial plots goes from left to right, so the splitting function is only visible for the
black hole at x = −3, since it is to the left of the other black hole. We can therefore
see in 13.7(b) a dip in one of the radial plots, where it hits the region of the splitting
function. The rest of the rays will not this this region and will therefore all be the
same. Notice also that the function value converge to 0.5 instead of 1 as we expect
from Minkowski. This is also due to the splitting function, so that when we sum the
two function we retrieve Minkowski far away.

To get a read comparison between the two resolutions we need to add the quantities
from the two black holes. In fig. 13.8 we see the sums of the two black holes for the two
different resolutions. Here we can, for the lapse, see a clear difference, with the lapse
with the lowest resolution having a high amount of noise. The one with the highest
resolution seems to be very similar to the plots we found in fig. C.8.

While we don’t have a analytical expression to compare the results with, we can see

13.3 Binary Black Holes 119

((a)) Contour plot of the sums of the two α for a
converted binary black hole system. The conversion
with the lowest resolution.

((b)) Contour plot of the sums of the two gxx for a
converted binary black hole system. The conversion
with the lowest resolution.

((c)) Contour plot of the sums of the two α for a
converted binary black hole system. The conversion
with the highest resolution.

((d)) Contour plot of the sums of the two gxx for a
converted binary black hole system. The conversion
with the highest resolution.

Figure 13.8: Contour plots of the sums of the two α’s and two gxx’s for a binary
black hole system after conversion. For all the plots we have the domain limits
[0.5, 1.5, 4, 8, 20,∞], but for the top plots the resolution is nr = 51, nθ = 21 and
nφ = 40, while for the bottom plots the resolution is nr = [135, 135, 135, 135, 67, 57],
nθ = [51, 51, 51, 51, 51, 31] and nφ = [142, 142, 142, 122, 102, 62].

120 Conversion to LORENE

a clear trend that with higher resolution we get results more similar to the results before
the conversion. So why not crank the resolution to max? Well, if we look at the runtime
we have 1.55 min for the lower resolution and 24.78 min for the higher resolution. The
files produced are also of size 104,42MB and 1,65GB respectively, meaning that the
increase in resolution costs a lot when it comes to space and time (pun intended).

13.3.2 Effects of the Splitting Function

We can now look at how the splitting function affects the conversion of the binary black
holes system. We have seen that we can get good results with the splitting function,
but for all we know we can get a better result with a smaller resolution without the
splitting function. To test this we plot the result above for the higher resolution, but
without the splitting function.

In fig. 13.9 we see the results with out the splitting function. For gxx we can see
clear problems, with artifacts appearing in a sphere around the center. This leads some
of the same artifacts to appear in the sum also. For the lapse function the results
looks better. Even when only using the function centered at the black hole at x = +3
we get a result which look fine, even though one can see some artifacts in a sphere
passing though the second black hole. The sum looks more or less like the sum with
the splitting function.

To see the difference we zoom a bit in. In fig. 13.10 we see a zoomed in version
of the sum of the two lapses, with and without the splitting function. We can now
see that without the splitting function there is actually some artifacts present. We can
therefore conclude that we need the splitting function.

We have thus managed to convert a binary black hole system into a spectral rep-
resentation using LORENE. We saw that resolution makes the spectral representation
better, but that this is at the cost of both time and computer space. The size of the
final output file will also have a huge impact on the run time of GYOTO, and will
take hours to days for a 1.6GB file. We have also seen that the splitting function was
necessary. We expected this due to the spherical topology of LORENE, but we have
now seen the effect of not including it.

13.3 Binary Black Holes 121

((a)) Contour plot of α for a converted binary black
hole system without the splitting function.

((b)) Contour plot of gxx for a converted binary
black hole system without the splitting function.

((c)) Contour plot of the sums of the two α for
a converted binary black hole system without the
splitting function.

((d)) Contour plot of the sums of the two gxx for
a converted binary black hole system without the
splitting function.

Figure 13.9: Contour plots of α and gxx’s for a binary black hole system after conversion
without the splitting function. The the domain limits are [0.5, 1.5, 4, 8, 20,∞], and
the resolution is nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31] and nφ =
[142, 142, 142, 122, 102, 62]. The dashed lines are the domain limits.

122 Conversion to LORENE

((a)) Zoomed in contour plot of the sum of the two
α’s for a converted binary black hole system.

((b)) Zoomed in contour plot of the sum of the
two α’s for a converted binary black hole system
without the splitting function.

Figure 13.10: Zoomed in contour plots of the sum of the two α’s for a binary black
hole system after conversion with and without the splitting function. The the domain
limits are [0.5, 1.5, 4, 8, 20,∞], and the resolution is nr = [135, 135, 135, 135, 67, 57],
nθ = [51, 51, 51, 51, 51, 31] and nφ = [142, 142, 142, 122, 102, 62].

Chapter 14

GYOTO Results

We have now looked at how the data is read into the converter code and then given
to LORENE for the conversion to a spectral representation. The LORENE code will
finally make a file which we can give to GYOTO to do the actual ray tracing.

We will in this section first look at the results of ray tracing using a metric created
by LORENE alone (so no use of Einstein Toolkit or my conversion code). We will
then move on to the test cases, and finally the single black hole simulated in Einstein
Toolkit.

For all the results we will look at a fixedstar with different integration radii of
RMax=20 and RMax=5 (see sec. 10.4). Here we will look at the images which are
created, and how the differ. This star has a radius of R = 3.972. The camera is placed
at r = 250 from the center, and has a resolution of 30 × 30 pixels and field of view of
0.5. We will also look at the photon momentum norm for both of said cases, as well
as the case where we have no such star. For the photon momentum norm, any drift
away from 0 will be considered as error. The terms drift, norm and error will be used
interchangeably when talking about the photon norm in this chapter, but are the same
thing.

We will sadly not look at the binary black hole system, since we weren’t able to
implement the modifications to GYOTO needed to get the addition of multiple metric
to work. The represented results will instead show that the use of Einstein Toolkit
metrics with GYOTO is possible, and that only said modifications are needed to get
the binary black hole system to work in GYOTO.

14.1 Metric From LORENE

We will start by looking at the metric created by LORENE alone. Since this is made
without using our code or Einstein Toolkit, we will use this as a standard to compare
all the other results. The metric is simulated with the program kerr_QI.C, with mass
1, domain limits [0.51, 1, 2, 4, 8,∞] and resolution nr = 25, nθ = 7 and nφ = 4.

In fig. 14.1 we can see the results of the ray tracing of a fixed star. GYOTO has a
cutoff point where it doesn’t include the object in the integration. This radius is called

124 GYOTO Results

((a)) Image of a fixed star with RMax = 5. ((b)) Image of a fixed star with RMax = 20.

((c)) The difference in pixel values for the two values of RMax.

Figure 14.1: Plots showing the intensity of the fixed star. The value at which GYOTO
starts integrating with the star is given by RMax = 5 and RMax = 20. 14.1(c) shows
the difference in intensity. The metric used here is a Schwarzschild metric simulated in
LORENE with mass 1, domain limits [0.51, 1, 2, 4, 8,∞] and resolution nr = 25, nθ = 7
and nφ = 4. The parameters for the ray tracing can be found in sec. 10.3 or in the
appendix E.1.

14.1 Metric From LORENE 125

((a)) Scatter plot showing the drift of the photon momentum. Here
all the photons at all the time steps/radii are included.

((b)) Plot showing the drift of the photon momentum. Instead of
plotting all the radii here we have made bins of 0.1. We then take
the mean of all the values in side each bin.

Figure 14.2: The drift of the norm of the photon momenta from the initial value of 10−16

plotted as for different radii. This shows The metric used here is a Schwarzschild metric
simulated in LORENE with mass 1, domain limits [0.51, 1, 2, 4, 8,∞] and resolution
nr = 25, nθ = 7 and nφ = 4. The parameters for the ray tracing can be found in sec.
10.3 or in the appendix E.1.

RMax in the gyoto XML file, which can be found in sec. 10.3 or in the appendix E.1.
Here, as well as in all plots of of the fixed star, we will be looking at RMax = 5 and
RMax = 20. The plots of the different RMax’ can be seen in 14.1(a) and 14.1(b).
We see that we have successfully made a picture of a star. By them self, the stars
with different RMax don’t tell us so much. 14.1(c) shows the difference between the
intensities of the two images. We expect the difference to be zero, but it is in fact of
order 10−6 to 10−3.This tells us that RMax actually have something to say when it
comes to the integration of the photons, even though this value is well outside of the
star (meaning that we still are in a region were we should only have vacuum).

In fig. 14.2 we see drift of the norm of the photon momenta from the initial value
of 10−16 plotted as for different radii from the center of the black hole. The left plot
shows all the integration steps for all the photons, while in the right plot we have
placed all the values into bins along the r-axis with size 0.1 and taken the average of
each bin. Notice that we don’t have the drift alone, but instead normalized it with
the time derivative of the time component of the metric ṫ. This is done to correct for
divergent behaviour near the event horizon. We can here see that there is a drift in the
photon momentum. We expect the norm to stay constant as the photons move along
null geodesics, but this isn’t the case here. Near the event horizon we have a norm drift
of 10−6, and even some values of 0.1. We can take this drift to be a consequence of
numerical integration error.

We can also observe the effects of the adaptive integration steps GYOTO uses. All
the steps should be plotted here, so where there are no points in the plot, the integrator

126 GYOTO Results

((a)) The difference in pixel values for the two values of RMax. ((b)) The difference of a fixed star with RMax = 20 made using
the test case and one made using LORENE.

Figure 14.3: Plots showing the intensity of the fixed star. 14.3(a) shows the difference
in the intensity between RMax = 5 and RMax = 20, and 14.3(b) is the difference
between a fixed star with RMax = 20 made with the test case and the one we made
using the LORENE metric. The test case uses domain limits [0.51, 1, 2, 4, 8,∞] and
resolution nr = 25, nθ = 7 and nφ = 4. The parameters for the ray tracing can be
found in sec. 10.3 or in the appendix E.1.

never evaluates any photons.
If we look at fig. 14.2 we see a radius at which the three different ray tracings starts

to diverge from one another. This is easiest to see for the case with RMax = 5(orange)
and the one with RMax = 20(green). This radius is 20, in other words, where
GYOTO starts to take the star into consideration in RMax = 20. We see that for this
case(orange) the spread of the values of the drift of the norm becomes larger. We will
look at that later when we look at the single black hole simulated in Einstein Toolkit.

We have now successfully ray traced our first numerical metric, but one which is
made by the creators of GYOTO to be used in GYOTO. We can therefore use this as
a comparison for both our test case and our simulated black hole. This means that all
of the parameters for the fixed star and the type of plots will be the same for the other
cases below, making it simple to compare with this metric.

14.2 Test Case

We can now look at some of the same plots, but using the test case: the converted
analytical isotropic Schwarzschild metric we have been looking at before. As with the
results for the LORENE conversion, this lets us test the second half of the pipeline.

We will make a test case of a Schwarzschild metric with the same spectral parameters
as the LORENE metric above: mass 1, domain limits [0.51, 1, 2, 4, 8,∞] and resolution
nr = 25, nθ = 7 and nφ = 4. This lets us compare them directly.

In fig. 14.3(a) we can see one intensity plot comparing RMax = 5 and RMax = 20,

14.2 Test Case 127

((a)) Scatter plot showing the drift of the photon momentum. Here
all the photons at all the time steps/radii are included.

((b)) Plot showing the drift of the photon momentum. Instead of
plotting all the radii here we have made bins of 0.1. We then take
the mean of all the values in side each bin.

((c)) The norm drift for without a star using both the test case
and the LORENE metric

Figure 14.4: The drift of the norm of the photon momenta from the initial value of
10−16 plotted as for different radii.Here we have used the Schwarzschild test case with
mass 1, domain limits [0.51, 1, 2, 4, 8,∞] and resolution nr = 25, nθ = 7 and nφ = 4.
The parameters for the ray tracing can be found in sec. 10.3 or in the appendix E.1.

where we can see that we get a difference at the order 10−3 to 10−6, which is the same
as we did for the LORENE metric. In fig. 14.3(b) we see the difference between the
intensity for a fixed star with our test case and one made with the LORENE metric.
We expect them to be the same, and with a difference on the order of 10−6 we have a
very similar intensity. In table 14.1 we can see an overview of the absolute and relative
errors we get when summing over all the pixels in the image. The test case has only a
relative error of 1.6× 10−4 between the two types RMax’ and only a relative error of
1.34× 10−6 from the LORENE metric.

In fig. 14.4 we can see the norm drift for the test case. We see that 14.4(a) and
14.4(b) as very similar to the same plots made using LORENE. There are some outliers

128 GYOTO Results

which reach 1013 close to the horizon. When looking at the printout of the norm, these
will lie at or just passed the event horizon, meaning that they are included due to
numerical errors in the integration steps. They should not have any effects on the
results.

In fig. 14.4(c) we see norm drift without a star for the test case and the LORENE
metric. From this we can see that the results are more or less the same. There are
differences, especially at r = 250. But these are so small that we can conclude that we
have managed to do ray tracing on our test case with the same accuracy as our standard
(the LORENE metric). This means that the conversion to a spectral representation
using LORENE works as intended.

14.3 Single Black Hole

We have now seen that our test case, a converted analytical isotropic Schwarzschild
metric, gives results close to the LORENE metric. We can now move on to look at
effects of the reading of data from Einstein Toolkit on the ray tracing results, i.e. create
an actual ray tracing using Einstein Toolkit data.

We will start by looking at the same type of plots as we need for the test case, and
then we will look at some plots showing what happens to the norm when we have a
star.

14.3.1 Comparison with LORENE

We will look at three different cases of single black holes. The difference is the spec-
tral parameters. The parameters can be found in table 14.2. All the cases have the
resolution nr = [25, 25, 25, 25, 17, 7, 7, 7, 7], nθ = 11 and nφ = 8. As we have discussed
when we looked at what happens outside the simulated domain, there are two ways of
handling this: One is to have a cutoff at some r, where we instead enforce Minkowski,
and the other way is to ignore it, and have a finite domain covering further out than
we are ray tracing and just ignore everything outside this. Here we will look at both
cases. The first case will have the last final domain very close to the center, and at
r = 280 the conversion code will no longer use the Einstein Toolkit data to get the
function values, but instead enforce Minkowski. This will also be the case for case 2,
but the last finite domain is further out than the start of the ray tracing (this starts at
r = 250). The last case will have the same parameters, but without the cutoff. In this
case the none-geometry will just give a default constant value of 0.

In fig. 14.5 we can see the comparisons between ray tracings of a fixed star with
RMax = 20 using the three different cases and LORENE. We can see that they are
more or less the same, differing only by a factor 10−5. The results are not as good as
the test case. If we look at table 14.1 we can see that the relative error is more or less
a factor 100 worse than the difference we got using the test case.

We can also see that the results of both fig. 14.5 and table 14.1 are more or less
identical for case 2 and 3, meaning that since the last finite domain covers the start of
the ray tracing, then what happens afterwards is unimportant. We will not conclude

14.3 Single Black Hole 129

((a)) Difference in intensity between case 1 and LORENE. ((b)) Difference in intensity between case 2 and LORENE.

((c)) Difference in intensity between case 3 and LORENE.

Figure 14.5: The difference in intensity between fixed stars with RMax = 20 using
metrics simulated with Einstein Toolkit and a metric made by LORENE. The different
spectral parameters for the different cases are found in table. 14.2.

130 GYOTO Results

((a)) Scatter plot of drift in norm for different cases using no star. ((b)) Scatter plot of drift in norm for different cases using fixed
star with RMax = 20.

((c)) Binned plot of drift in norm for different cases using no star. ((d)) Binned plot of drift in norm for different cases using fixed
star with RMax = 20.

Figure 14.6: Photon norm drift for case 1 and 2 compared with LORENE, without a
star and with a fixed star with RMax = 20.

that this always is the case, but for these spectral parameters, this is the case. We will
therefore not compare these two results anymore, and instead focus on the difference
between case 1 and 2.

We now come to what could be taken as the most important result yet. Fig. 14.6
we see the drift in photon norm for case 1(blue) and 2(orange) together with that of our
LORENE metric(green). We can immediately see that there is huge difference between
some of the cases. Case 1 seems to follow the LORENE metric quite nicely until some
r, where it increases. If the plot uses a fixed star, this r is around 20, which should
not surprise us. Where no star is used, this r is instead around 16. As we will discuss
below, this makes sense.

If we look at the results for case 2, we have a larger error, and without the sudden
increase we saw with case 1. This can be explained by the fact that the error is already
larger for case 2 by the time it reaches the r at which the error of case 1 increased. This

14.3 Single Black Hole 131

means that the change in error is smaller than the already existing error. What we can
see is that when we have a fixed star at RMax = 20 we instead of an increase in error
at this points, we instead get a higher spread of error. We will look at the reason for
this below.

So what is the reason for the increase in error at certain r’s for case 1 and the all
around high error of case 2? When we are using case 1, the last finite domain ends at
r = 16. Meaning that the last, infinite, domain have only seven points to resolve r = 16
to r =∞. This isn’t that much of a trouble for LORENE, but what happens is instead
that all the small errors from the reading is ironed out by the small sampling, giving
us a result more or less the same as for the LORENE metric. When we hit r = 16 we
now have many more points to resolve the error, increasing the error rapidly. For case
2 we have finite domain all the way out, with enough points to resolve the error in all
the domains. The error will therefore have time to slowly build up.

We have seen that test case has more or less the same precision as the LORENE
metric. This means that the error we see here comes from either Einstein Toolkit or,
more likely, from the reading and interpolation of the data.

All this means that we are able to do ray tracing using Einstein Toolkit metrics(!),
but we have to expect some errors. If, as is the case with a single black hole, we can
use LORENE to iron out a lot of the error which comes from the reading of the data,
but when using metric where more precision is needed we have to be ware of this error.
The error does not in anyway invalidate the results, since we get an error from case 1
of, at most, 10−3 compared to 10−6 with LORENE.

There is most likely other spectral parameters which gives better results, and lies
between case 1 and two, but there are no magic rules for a set of parameters we can
give to achieve this, and instead the user must test different parameters to find some
that suits his or hers simulated metric.

14.3.2 Reasons for Larger Norm Drift for Fixed Star

We will here look only at case 1. As we saw in fig. 14.6 we saw that when the photons
cross r = RMax we get an increase and spread in the photon norm. The reason for
this is two-fold. The first reason is that when we are inside of RMax GYOTO will
use more integration steps. We can see this in fig. 14.7, where each integration point
for each photon is plotted for both case 1 and the LORENE metric. The difference
between the points representing case 1 and the LORENE metric is difficult to see, but
the important part is the total number of points. We see that at some r the number
of points increase. We can see from the two plots that we have r = RMax when this
begins to happen. Since we always have 30 × 30 = 900 photons, this means that it is
the number of integration steps that must increase. This is therefore the reason for
why we see more points in 14.6 when we have a fixed star.

We can also from 14.7 clearly see that we have a bending of the photons, meaning
that we can conclude that we actually have successfully been able to ray trace!

The last question is now why we have a higher error when we have a fixed star.
Fig. 14.7 begins to give us a hint. Since all the other plots we have seen of the photon

132 GYOTO Results

Type Difference RMax [Absolute/Relative] Difference from LORENE [Absolute/Relative]
LORENE 5.47×10−5/1.6× 10−4 -
Test Case 5.39×10−5/1.6× 10−4 1.34×10−6/3.91× 10−6

Case 1 1.6×10−4/4.8× 10−4 1.1×10−4/3.3× 10−4

Case 2 7.31×10−5/2.1× 10−4 4.97×10−5/1.5× 10−4

Case 3 7.31×10−5/2.1× 10−4 4.97×10−5/1.5× 10−4

Table 14.1: An overview of the total absolute and relative differences between the
intensity for a fixed star with RMax = 5 and one with RMax = 20, and the difference
between the different cases and a metric from LORENE. For this, latter, difference a
fixed star with RMax = 20 is used.

Case Domain Limit Cutoff r
1 0.5, 1, 2, 3, 4, 6, 8, 16, ∞ Yes, at r = 280
2 0.5,1,2, 8, 16, 64, 128, 256, ∞ Yes, at r = 280
3 0.5,1,2, 8, 16, 64, 128, 256, ∞ No

Table 14.2: Different spectral parameters used to make the different data files used to
test the ray tracing on a single black hole simulated in Einstein Toolkit. All the cases
have the resolution nr = [25, 25, 25, 25, 17, 7, 7, 7, 7], nθ = 11 and nφ = 8.

((a)) Fixed star with RMax = 5. ((b)) Fixed star with RMax = 20.

Figure 14.7: Here the photon norm drift is plotted in a polar plot. Case 1 and the
LORENE metric are used. Each point is one integration step for one photon. So more
points, thus more integration steps. The color of the point is the norm drift.

14.3 Single Black Hole 133

((a)) Fixed star with RMax = 20. ((b)) The orange points are photons falling into the black hole,
and the blue are photons already having been close to the black
hole, and are now leaving.

Figure 14.8: Here we see two different plots showing how the norm of the photons are
affected by coming close to the center. Both are made with case 1 and RMax = 20.

norm are only dependent on r we do not know if they are falling into the black hole
or on their way away from the black hole. Our original thought was that the increase
in error is due to the photons having travelled close to the black hole, picked up a lot
of error and then moved away. When we have no star, GYOTO will not do any more
integration steps after passing the black hole, since there is nothing on the other side.
But when we have a star, GYOTO will continue to integrate the photons that have
passed the center but still are in the star. This also means that a large RMax will
lead to the photons being tracked longer. This is the reason we see an increase in error
at RMax: Not only are there more integration steps to pick up error, but we are also
seeing the photons travelling away from the center, but still have r < RMax.

In fig. 14.9 we see two different ways of looking at how the photons are affected
by getting close to the center. 14.8(a) is the normal norm drift plot we have looked
at before, but the points are colored according to closest point they have been to the
center. So for a photon falling in the current r is the same as the closest r, but for an
outgoing photon the current r is larger than the closest r. We can see from this plot
that from the infalling photons have a smaller norm, while the outgoing photons make
up most of the photons with a high norm. This is better from 14.8(b), where all the
infalling photons are colored orange and all the outgoing photons are colored blue. We
see that most of the spread we observed previously is due to the outgoing photons. The
increase in the norm of the infalling photons do actually not start to increase before
r = 16, which is the exact same behaviour as the ray tracing without any star.

We can thus conclude that the reason for the increase and the greater spread of the
photon norm drift when using a fixed star is due the photons travelling close to the
center, picking up a larger error and then moving away! If this effect is removed we are
left with the same norm pattern as for the ray tracing without the star.

134 GYOTO Results

((a)) Page-Thorne disk using a Einstein
Toolkit metric(case 3 in table 14.2).

((b)) Page-Thorne disk using the LORENE
metric.

Figure 14.9: Two 200×200 images of a Page-Thorne disk, using case 3 and the LORENE
metric. As we can see, they are almost identical. This proves that it is possible to ray
trace using a metric from Einstein Toolkit.

14.4 Summary and a Final Showcase Result: Page-Thorne
Disk

We have showed that we can get the same results using a Einstein Toolkit metric, as
we did with a standard metric simulated with LORENE. There will be some errors,
i.e. a photon norm drift away from zero, but they are small enough so that they don’t
get in the way of any physics. We have also seen that when using a fixed star the
error increases inside of the radius where GYOTO takes the star into consideration
when integrating. This error was demonstrated to be photons travelling away from the
center with the error they had picked up close to the center. This does not change the
images of the fixed stars we have been looking at, but if there were to be any objects
around the fixed star we want to look at, the results could be affected by the picked up
errors.

From the results of the photon norm drift and intensity of the fixed star we can
conclude that we have successfully managed to bring an Einstein Toolkit metric to
GYOTO and used it to do ray tracing!

Thus we have seen many diagnostic plots and boring stars with a low resolution.
To end the results we have made a larger image using case 3 and the LORENE metric.
This ray tracing is of a Page-Thorne Disk. We will not analyze the norm of the pixels of
this result, but instead study its beauty! This is also the final proof we have succeeded
in using an Einstein Toolkit metric in GYOTO!

Part IV

Conclusion

Chapter 15

Conclusion

15.1 Summary

Two types of metrics were considered: A single black hole and a binary black hole
system. The single black hole metric worked as a base metric, easy to compare to
analytical solution and therefore told us if the pipeline from Einstein Toolkit to GYOTO
worked, and if any numerical errors were introduced. Using the lessons learned from
this single black hole metric, we could use this pipeline on the binary black hole merger,
without having any analytical expressions to compare with.

The first step consisted of simulating the two metrics. The single black hole used an
analytic isotropic Schwarzschild metric to create the initial conditions. The binary black
hole system used a two puncture method to initialize the simulation. Both simulations
were then read into the conversion program using the library PostCactus. We had
to choose between multiple ways of reading and interpolating the data from Einstein
Toolkit. After rigorous testing comparing the single black hole metric to an analytic
expression after reading and interpolation, we found that the none-geometry, where the
reading is done only for the points using in the Einstein Toolkit simulation and a linear
interpolation is applied, gave superior runtime and results. For the other geometries,
where the result of the simulation is interpolated unto an uniform grid and a linear
or spline interpolation might have its uses, we showed that the behaviour of these
geometries were to volatile to be used.

The error of the interpolated single black hole data compared to the analytical
expression was around 10−6, meaning that some error would be carried from the reading
and interpolation of simulation data to the final ray tracing.

We then looked at the resolution of the Einstein Toolkit simulation. We found
that the numerical error after reading decreased linearly with an increase in the resolu-
tion. The computational resources did increase close to exponential with the resolution,
meaning that we settled on a suitably good resolution without trying to push to up to
get marginally better errors.

The next step was to use LORENE to do the spectral transformation. We ended
up using a C-code separate from the main Python code to give the collocation points

138 Conclusion

needed to do the transformation. This meant running the C-code using a subprocess
in the Python code, and then catching and formatting the output of the C-code. This
lets us find the values at the collocation points using the data we read and interpolated
from Einstein Toolkit in the Python code. Since the simulated data are finite and have
a symmetry for faster simulation, the Python code handled this. The binary black hole
metric broke the spherical topology of LORENE and GYOTO, meaning that we had
to introduce a splitting function to split the black hole into separate, pseudo-spherical
topologies to reduce error caused by the spectral transformation. The values of at the
collocation points could then be passed back to the C-code where calls to LORENE
could to the final transformation to a spectral transformation.

The results after the spectral transformation could once again be compared to
analytical expressions (at least for the single black hole). Here we found that the
results were highly dependent on the spectral parameters used (the domain limits and
resolution). For test cases here analytical metrics went through the transformation
process, we were able to keep the error down to 10−11. For the simulated single black
hole metric we were able to keep the error down to the level at which it was before
the transformation with the correct limits and resolutions. For the binary metric we
had to measure by eye the quality of the transformation. We found that the resolution
needed to get good results were significantly higher than for the single black hole. We
also saw that the splitting function was needed, and without that the results were had
artifacts in them. But we were able to create good results for the binary metric using
this splitting, and outputting one file per black hole, so that the final metric would be
a sum of the files.

The last step was the ray tracing. Since GYOTO lacks the final modifications
needed to use multiple files, all the ray tracings were done only for the single black
hole. Here we used a metric simulated in LORENE by the creators of GYOTO as a
standard to compare the results. Using the drift of the photon momentum norm, we
found that the analytical test case gave more or less the same results as our LORENE
metric, meaning that the spectral transformation itself worked. Using a ray traced
image of a fixed star as measures of error, we also found that the two metrics were close
enough that we concluded that the transformation was a success.

For the simulated single black hole metric we saw that, once again, the end results
were quite dependent on the spectral parameters. When using a transformation where
the last finite domain was close to the black hole and where we enforced Minkowski
after r = 280, we found that we got results close to the LORENE and test metrics,
with the errors starting to appear only after the photons entered the finite domains.
When the last finite domain ended after the start of the photons, r = 250, we saw that
the errors were larger throughout the ray tracing. We concluded that this was due to
the fact that when the last finite domain ended early, LORENE used few points to
interpolate r = 16 to ∞, smoothing out the errors, but when the entire path of the
photons were inside finite domain, there were more points for LORENE in interpolate
the errors. The errors were at an order 1000 higher than the errors from the LORENE
and test metrics, but still low in an absolute term (10−3 compared to 10−6), and we
therefore concluded that we were successful in ray tracing a metric of a single black

15.2 Conclusion 139

hole simulated in Einstein Toolkit.

15.2 Conclusion

The goal of the thesis was to be able to use spacetimes simulated in Einstein Toolkit to
do ray tracing on objects like black holes and black hole mergers using GYOTO. Since
GYOTO is built upon LORENE, this meant we would have to transform the spacetimes
from Einstein Toolkit from a finite difference system into a spectral representation.
What we ultimately wished to find out, was whether it would be possible to use a
binary black hole merger in the ray tracing, so that further studies of the gravitational
waves emitted by merger could look at the effects of the waves on the photons.

We showed that this was possible for a isotropic Schwarzschild metric created in
Einstein Toolkit. Reading the data from Einstein Toolkit resulted in some numerical
errors, which persisted all the way to the ray tracing. These errors were small enough
that they were comparable to the integration errors made by GYOTO. This leads us
to conclude that for a single back hole metric, it is possible to do ray tracing using
GYOTO, and to get physics about out of this, minding the errors created by the
reading, interpolation and transformation of the data.

As for the binary black hole system, we were able to read, interpolate and transform
the data. This required the splitting of the system into multiple systems with only one
black hole, which we demonstrated made the results after the spectral transformation
converge to the results before the transformation. We were not able to do the actual
ray tracing of the binary black hole system, since GYOTO still needs to implement a
way of using the sum of multiple files to create one single metric. This work is under
way, and will be continued after this thesis.

This means that we have to wait to look at the physics of ray tracing through
gravitational waves. We also saw that it takes a much greater resolution to remove
noise from the binary black hole system. This means that we are not ensured that we
will ever reach the same accuracy as with the single black hole, and how this affects
gravitational waves is unknown. The massive metric files created by this increased
resolution will also mean that the ray tracing will take much longer time. But this will
have to be looked into in the future.

All in all we weren’t able to be able to look at gravitational waves using a binary
black hole merger and GYOTO. But we laid down the ground work, and made a
pipeline connecting Einstein Toolkit and GYOTO – we even got at nice Page-Thorn
disk image from it. This is not a trivial results in of itself, and managing to get this
Einstein Toolkit simulation to GYOTO is a good result, and leaves the door open for
more simulations done in Einstein Toolkit to be used in GYOTO.

15.3 Future Work

The most obvious work to be done is the implementation of the use of multiple metric
files in GYOTO. As mentioned this work is in progress. I’m still working with the

140 Conclusion

creators of LORENE and GYOTO, Éric Gourgoulhon and Frederic Vincent, to get this
feature to work.

When we manage to get GYOTO to work with the binary black hole system, we
can finally begin to look the gravitational waves created by the merger.

The converter code runs on Python2.7 since PostCactus wasn’t ported to Python3
when this project started. Since then some other users have ported PostCactus to
Python3[46]. This means that the whole conversion code should be ported to Python3
as well.

A lot of the parameters used were made ad hoc and were found by trial and error,
making them quite difficult to use for future users. The hope is to get a better under-
standing of which parameters works best for the different situations, so that the user
only have to apply small changes depending on their specific spacetimes .

The use of the conversion code is as of now quite involved, with different parameters
found in either the Python or the C code. The parameters found in the C-code must also
be recompiled after changing them. The plan is to wrap everything in a user interface
which handles all the parameters using a parameter file, and dynamically gives them
to the C-code during runtime. A system for log files are also in the making, since too
many hours were spent during this thesis trying to remember which parameters were
used where. This wrapper is already in the process of being put together.

As stated earlier in the thesis, the code was ultimately meant to be made into a
Thorn for Einstein Toolkit. The fact that future user might have to use trial and
error when choosing parameters might make it difficult to have a tool that does the
conversion run time, so having a Python tool that can do post-processing instead might
be the way to go. This means that the Python tool might stay as a standalone tool.

All in all the goal is to publish the code as an open source research tool. This means
that we need to both understand the error and how minimize them, as well as making
the code easy to use. This work will continue after the thesis is done, and hopefully
this dream will become a reality.

Appendices

Appendix A

Installing Einstein Toolkit

The installation of Einstein Toolkit is quite easy and a good guide is found at their
web page[50]. We will here go through the steps quickly and then see how to add small
customizations to the installation.

1. Make and navigate to a folder where you want to install Einstein Toolkit

2. Run

1 curl -kLO https :// raw.githubusercontent.com/gridaphobe/CRL/
ET_2020_11/GetComponents

2 chmod a+x GetComponents
3

This will download a script for download the components of Einstein Toolkit,
or more precisely Cactus. Since the different components use different version
control solutions, like SVN and Git, this script will handle everything without
the user having to keep track of which component uses what. The download link
will change as new versions of Einstein Toolkit is released. The second line will
makes the script an executable.

3. Then run

1 ./ GetComponents --parallel https :// bitbucket.org/
einsteintoolkit/manifest/raw/ET_2020_11/einsteintoolkit.th

2

This runs the script which downloads all the components. The second argument
gives the so called thorn list. As we saw in sec. 4.2.5 Einstein Toolkit/Cactus
consists of a collection of thorns. We need different thorns to do different sim-
ulations, and can therefore give a list of thorns which are needed in the current
installation. The list given here is a general list, containing most of the thorns
used by the community. Many of the thorns are not necessary, but we will still
download them – it is easier and faster than going through the list and removing
the ones we don’t need. Note that this will also download the thorn list, since

144 Installing Einstein Toolkit

we need it when we are compiling. We can also choose not to compile all the
downloaded thorns if we change the thorn list.

4. We can then setup Cactus before compiling. We start by running

1 cd Cactus
2 ./ simfactory/bin/sim setup -silent
3

This will take us into the Cactus folder, where most of the simulations will hap-
pen. The next line make different config files for the compilation, guessing at the
type of machine the user is running and the different type of compilers. Most
of the config file will be correctly set up, but a file which is smart to change is
./simfactory/mdb/machines/<hostname >.ini. Here we can change the num-
ber of cores and threads the simulations can use, as well as where the output of
the simulations are stored. The output can be very large, so it is good to change
this to a disk with a lot of space.

5. To compile run

1 ./ simfactory/bin/sim build -j16 --thornlist ../ einsteintoolkit.
th

2

This will compile the thorns found in the thorn list. Here we use the same as
above, which will compile all the thorns. This will, in my experience, take about
20-60 minutes to compile, so just grab some coffee. The argument -j16 tells
the compilers to use 16 cores/threads. The larger this number is, the faster the
process should take.

6. Einstein Toolkit is now installed and ready for colliding black holes! Below we
will go through some examples how to run the simulation. Here I will show the
generic command to start the simulation

1 ./ simfactory/bin/sim create -run simulation_name --parfile
parameters.par

2

The first command tells Einstein Toolkit to create a simulation with the name
simulation_name and then run it. The second parameter tells Einstein Toolkit
how to setup the simulation and what thorns to use. More on that below. We
can also choose to just create the simulation by running this with create. We
can then later run the command

1 ./ simfactory/bin/sim submit simulation_name --cores=2 --num -
threads =1 --walltime =0:20:0

2

This is used to submit the simulation with a simulation script, if the user are run-
ning on a cluster or a supercomputer. The parameters cores and num-threads

145

are self-explanatory. walltime is the maximum runtime, which often is needed
to set when running on clusters or supercomputers. If we want to see how out
simulation are going, we can run

1 ./ simfactory/bin/sim list -simulations simulation_name
2

and
1 ./ simfactory/bin/sim show -output --follow simulation_name
2

The first will output the created simulation and their status (in most cases RUN-
NING or FINISHED). This will also give the PID of the simulation, so that
the user can stop it if wanted. The second command will output the simulation
output. This is very useful for monitoring how the simulation is going along.

We are now ready to run simulations. All the steps here are taken from the tutorial
found at [50]. Here you can also find out to run small test simulations like a TOV star.

146 Installing Einstein Toolkit

Appendix B

What Happens Inside the Code

We will here go through how to use the code, and a summery of what happens when
in the code. This is the same as described in the method section, but in a short and
chronological order, so that it is easier to understand what happens when. As we saw
in the method section, there are a lot of code which does a lot of things. This is for the
most part hidden from the user, so that they only have to run a couple of commands
to get the code to work. Note that everything described below (and the whole code
for that matter) depends on the simulation done by Einstein Toolkit being of n black
holes with the corresponding 3+1 quantities being given as 3d output. The simulation
must also give the position and horizon of the black holes. Other than this the user
will only have to do the following to do the conversion:

First they have to define the domains and resolution of the spectral transformation.
This is done in the C code. The user will then have to run the makefile to compile the
program.

The user can then move on to the Python code. Here the user will first have to
make an instance of the converter class. They can then use this class to make as
many geometries as they want, depending on the complexity of the metric they want
to convert. Thirdly they have to make an instance of the class which reads the Einstein
Toolkit data and makes the interpolation. The user will also have to make a list over
all the iterations that they want to convert. Lastly the user can call first instance to
do the actual conversion of the metric. This function will know the number of bodies
the spacetime holds, and will apply the splitting function accordingly. A typical use of
the conversion code will look something like

1 inter = ETInterpolater(sim_folder , number_sim_bodies)
2 g = inter.make_positive_geometry(corner , grid_points)
3

4 it = [0, 128 ,256] #etc
5

6 et_q = ReadQuantites(g, it , folder , pickle_folder=pickle_folder , pickle=
True)

7

8 inter.analyse_bbh(g, et_q , it, quantities=quantities , test=False ,
do_gyoto_converstion=False)

148 What Happens Inside the Code

Given initial
geometry and list of

iterations
Loop through

each 3+1 quantity

analyse_bbh
function

Call to read
quantity from

HDF5 file
File read by
Postcactus

Call to get
collocation points

Position of BHs
read from file

Python C

Call to LORENE
LORENE makes

the grid and returns
collocation points

Position
of BHs

Reads and cleans
the stream.

Returns a dict

Points
written to
outstream

Gets the function
values at the

points

Checks if the
collocation points
are out of bounds,

and fixes
symmetries

Applies the
splitting function

Saves the data as
a flat array

Calls LORENE to
do the spectral
transformation

Reads and
restructures the

flat array

New
Quantity

Tells user if
conversion was
successful, and

time of run

Creates tensorial
representations of

3+1 quantity

The Spectral
Transformation is
done. The base
triad is changed

to spherical

Spectral
representation of
quantity is saved
in Gyoto format

Figure B.1: Schematics over the flow of the converter. The left most column shows what
is done by the user; the center python column shows the main loop doing conversion;
and the right python column shows auxiliary python functions. The C column shows
the LORENE functionalities called by the C code.

149

We see here that do_gyoto_converstion is false. In this case the user will have
to run the line ./get_points x y z 1 nb_body it afterwards to get LORENE to do
the conversion. If do_gyoto_converstion is true, then the converter will do this by
itself.

We will now go over what happens inside of the code In figure B.1 one can see a
schematic representation of the conversion code.

1. For all the geometries the 3+1 quantites given by the users are read. They are
then interpolated onto the grid points. From these values either a spline or a
linear interpolation is made by the ReadQuantites instance. If pickled version
of these interpolations are found, they will be used instead. This is given to the
conversion class

2. analyse_bbh is now called, and does the rest of the work.

3. The code will read the position and radius of the black holes1 from Einstein
Toolkit. The position will be used to calculate the splitting function (6.1).

4. For each iteration given by the user, the code will loop though all the 3+1 quant-
ities – the lapse function, and all the different indices of the shift vector, the
spatial metric and the extrinsic curvature. The below is what will happen for
each quantity at a given iteration.

5. Now a call is made to get the collocation points needed to do the spectral trans-
formation. A C code is called with the information about the origin of one of the
black holes – so that the grid can be centered correctly. The C code has defined
the different domains, and how many points it should use for each domain. Us-
ing this, and the origin given by the Python code, LORENE will calculate the
spectral grid and print it to outstream. The Python function then captures the
stream the C code makes, and reads and formats lists of collocation points. The
program now has the x, y and z coordinates of all the collocation points.

6. The code will now begin to calculate the function value on the collocation points.
This is done in the following steps

• The symmetries discussed above must be taken care of. For the most trivial
case, with positive x, y and z-values, all negative coordinates are simply
mirrored unto the positive side. For other symmetries, other measures are
taken.

• Care are taken at the bounds. The collocation points may be outside of the
simulated geometry, so points outside the geometry must be either given a
value from inside the geometry or extrapolated.

• The function values are calculated for the desymmeterized and bounded
values using a call to the instance of ReadQuantites.

1It might be other objects than black holes, but I will use black holes as an umbrella term here

150 What Happens Inside the Code

• The splitting function (6.1) is applied to the function values.

The end result is then returned as a flat array, with a mapping back to the format-
ting used by the collocation points. The mapping is d[l][k][j][i] = (

∑
0<=m<l nr[m]∗

nt[m] ∗ np[m]) + k ∗ nt[l] ∗ nr[l] + j ∗ nr[l] + i, with l being the domain, k being
the k’th φ-value, j being the j’th θ-value and i being the i’th r-value, and nr, nt
and np being the arrays of points in the different domains. This array is written
to file with a specific name.

7. Points 4 and 5 are done for the second black hole (if there are two black holes).

8. Points 3-6 are done for the next quantity, until all are processed.

9. Having all the collocation points filled with function values for each 3+1 quantity,
the C code is again called. This code will then

• The C code reads the files with the function values.

• All the 3+1 quantities are defined as tensorial objects, and their values are
read from the read arrays.

• LORENE is then asked to make a spectral transformation on the quantities.

• Since Einstein Toolkit is in Cartesian coordinates, the 3+1 quantities are
currently in Cartesian coordinates as well. Since GYOTO used spherical
coordinates, the base triads of the quantities are changed to spherical co-
ordinates.

• The quantities are then saved together with the map of the spectral grid to
a file readable by GYOTO.

The program is now done, and GYOTO can be run.

((a)) Plot of the lapse function α after the conver-
sion.

((b)) Plot of the spatial metric coefficient gxx after
the conversion.

Figure C.1: Here we can see plots of the lapse function α and the spatial metric
coefficient gxx for a Minkowski metric after conversion. Three domains where used
in this conversion, with the limits [0.5, 8,∞] and the resolution nr = 25, nθ = 7 and
nφ = 4. The results α = gxx = 1 are hidden but the automatic limits of the plotting
class.

Appendix C

Additional Plots

152 Additional Plots

10 5 0 5 10
x

10

5

0

5

10

y

Intesity Map of

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure C.2: An intensity map of α.

10 5 0 5 10
x

10

5

0

5

10

y

Contour of

Figure C.3: A contour plot of α

10 5 0 5 10
x

10

5

0

5

10

y

Intesity Map of gxx

500

1000

1500

2000

2500

3000

3500

4000

g x
x

Figure C.4: An intensity map of gxx

10 5 0 5 10
x

10

5

0

5

10

y

Contour of gxx

Figure C.5: A contour plot of gxx

Figure C.6: The results of the reading and interpolation of the Einstein Toolkit data
for a binary black hole system using a multigrid with a linear interpolation. We see
that compared to a single black hole, we do not seem to get the errors at 1060. These
will be the results we use as a comparison to the data after conversion to LORENE

153

10 5 0 5 10
x

10

5

0

5

10

y

Intesity Map of

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure C.7: An intensity map of α.

10 5 0 5 10
x

10

5

0

5

10

y

Contour of

Figure C.8: A contour plot of α

10 5 0 5 10
x

10

5

0

5

10

y

Intesity Map of gxx

500

1000

1500

2000

2500

3000

3500

4000

g x
x

Figure C.9: An intensity map of gxx

10 5 0 5 10
x

10

5

0

5

10

y

Contour of gxx

Figure C.10: A contour plot of gxx

Figure C.11: The results of the reading and interpolation of the Einstein Toolkit data
for a binary black hole system using a none-geometry. These will be the results we use
as a comparison to the data after conversion to LORENE

154 Additional Plots

((a)) Difference between simulated and analytical
α for case 1

((b)) Difference between simulated and analytical
α for case 2.

((c)) Difference between simulated and analytical
α for case 3.

((d)) Difference between simulated and analytical
α for case 4.

((e)) Difference between simulated and analytical
α for case 5.

Figure C.12: Here we can see the difference between the simulated and analytical α
after conversion. The domain parameters are taken from table 13.1. We can see that
the differences are around 10−5 and dependent on domain limit and resolution.

155

((a)) Contour plot of α for a converted binary black
hole system. The conversion with the lowest resol-
ution.

((b)) Contour plot of gxx for a converted binary
black hole system. The conversion with the lowest
resolution.

((c)) Contour plot of α for a converted binary black
hole system. The conversion with the highest resol-
ution.

((d)) Contour plot of gxx for a converted binary
black hole system. The conversion with the highest
resolution.

Figure C.13: Contour plots of α and gxx for a binary black hole system after con-
version. For all the plots we have the domain limits [0.5, 1.5, 4, 8, 20,∞], but for the
top plots the resolution is nr = 51, nθ = 21 and nφ = 40, while for the bottom
plots the resolution is nr = [135, 135, 135, 135, 67, 57], nθ = [51, 51, 51, 51, 51, 31] and
nφ = [142, 142, 142, 122, 102, 62]. All the plots are of the black hole located at −3 at
the x-axis, the results for the other black hole is located in fig. 13.6.

156 Additional Plots

Appendix D

Einstein Toolkit Parameter Files

D.1 Schwarzschild Black Hole

1 #AHFinderDirect
2 #NaNChecker
3 ActiveThorns = "
4 Boundary
5 CartGrid3D
6 CoordBase
7 IOUtil
8 InitBase
9 MoL

10 Time
11 SymBase
12

13 ADMBase
14 ADMCoupling
15 ADMMacros
16 CoordGauge
17 SpaceMask
18 StaticConformal
19

20

21 Carpet
22 CarpetIOASCII
23 CarpetIOBasic
24 CarpetIOScalar
25 CarpetLib
26 CarpetReduce
27 CarpetRegrid2
28 CarpetInterp
29 LoopControl
30

31 ReflectionSymmetry
32 RotatingSymmetry180
33

34 TwoPunctures
35 Formaline

158 Einstein Toolkit Parameter Files

36 GSL
37

38 Slab
39

40 GenericFD
41

42 ML_BSSN
43 ML_BSSN_Helper
44 SphericalSurface
45 TmunuBase
46 Dissipation
47

48 CarpetIOHDF5
49

50

51 AEILocalInterp LocalReduce
52

53 QuasiLocalMeasures
54

55 WeylScal4 MultiPole
56

57 NoExcision
58

59 IDAnalyticBH
60

61 StaticConformal
62 "
63 # NoExcision LocalInterp SummationByParts
64

65 # output
66

67 IO:: out_dir = $parfile
68

69 IOBasic :: outInfo_every = 1
70

71

72 Activethorns = "CarpetIOHDF5"
73

74 # 3D HDF5 Output
75 CarpetIOHDF5 :: out3D_every = 2048
76 carpetIOHDF5 :: out3D_vars = "
77 ADMBase ::lapse
78 ADMBase ::shift
79 ADMBase :: metric
80 ADMBase ::curv
81 "
82 ### Checkpointing
83

84 CarpetIOHDF5 :: checkpoint = no
85

86

87 #--- driver
88

89 Cactus :: cctk_itlast = 0

D.1 Schwarzschild Black Hole 159

90 Cactus :: terminate = iteration
91 Cactus :: cctk_final_time = 1
92 Carpet :: use_buffer_zones = yes
93 Carpet :: use_tapered_grids = yes
94

95 CarpetLib :: interleave_communications = yes
96 CarpetLib :: combine_sends = yes
97 CarpetLib :: print_memstats_every = 1024
98 #Carpet :: regrid_in_level_mode = no
99 Carpet :: output_timers_every = 1024

100 CarpetLib :: print_timestats_every = 1024
101 Carpet :: print_timestats_every = 1
102 #Carpet :: init_each_timelevel = yes
103 InitBase :: initial_data_setup_method =" init_all_levels"
104

105

106 carpet :: verbose = no
107 carpet :: veryverbose = no
108

109 #--- Carpet prolongation order settings
110

111 Carpet :: prolongation_order_space = 5
112 Carpet :: prolongation_order_time = 1
113

114

115 #--- grid and symmetries
116

117 driver :: ghost_size = 3
118 grid::type = "CoordBase"
119 CoordBase :: domainsize = "minmax"
120 CoordBase ::xmax = 300
121 CoordBase ::ymax = 300
122 CoordBase ::zmax = 300
123 CoordBase ::xmin = 0.000
124 CoordBase ::ymin =-300
125 CoordBase ::zmin = 0.000
126 CoordBase ::dx = 2.0
127 CoordBase ::dy = 2.0
128 CoordBase ::dz = 2.0
129

130

131 ReflectionSymmetry :: reflection_x = no
132 ReflectionSymmetry :: reflection_y = no
133 ReflectionSymmetry :: reflection_z = yes
134 ReflectionSymmetry :: avoid_origin_x = no
135 ReflectionSymmetry :: avoid_origin_y = no
136 ReflectionSymmetry :: avoid_origin_z = no
137 CarpetRegrid2 :: symmetry_rotating180 = yes
138

139 CoordBase :: boundary_shiftout_x_lower = 1
140 CoordBase :: boundary_shiftout_z_lower = 1
141

142 Carpet :: domain_from_coordbase = yes
143

160 Einstein Toolkit Parameter Files

144 CoordBase :: boundary_size_x_lower = 3
145 CoordBase :: boundary_size_y_lower = 3
146 CoordBase :: boundary_size_z_lower = 3
147 CoordBase :: boundary_size_x_upper = 3
148 CoordBase :: boundary_size_y_upper = 3
149 CoordBase :: boundary_size_z_upper = 3
150

151

152 carpet :: max_refinement_levels = 10
153 CarpetRegrid2 :: num_centres = 1
154 CarpetRegrid2 :: num_levels_1 = 10
155 CarpetRegrid2 :: position_x_1 = +0.0
156 CarpetRegrid2 :: radius_1 [1] = 128.0 # 1.536
157 CarpetRegrid2 :: radius_1 [2] = 64.0 # 0.768
158 CarpetRegrid2 :: radius_1 [3] = 16.0 # 0.384
159 CarpetRegrid2 :: radius_1 [4] = 8.0 # 0.192
160 CarpetRegrid2 :: radius_1 [5] = 4.0 # 0.096
161 CarpetRegrid2 :: radius_1 [6] = 2.0 # 0.048
162 CarpetRegrid2 :: radius_1 [7] = 1.0 # 0.048
163 CarpetRegrid2 :: radius_1 [8] = 0.7 # 0.024
164 CarpetRegrid2 :: radius_1 [9] = 0.5 # 0.024
165

166

167 #--- initial data
168 #admbase :: metric_type = "static conformal"
169 #admbase :: metric_type = "yes"
170 ADMBase :: initial_data = "schwarzschild"
171 ADMBase :: initial_lapse = "schwarz"
172 ADMBase :: initial_shift = "zero"
173 ADMBase :: initial_dtlapse = "zero"
174 ADMBase :: initial_dtshift = "zero"
175 ADMBase :: lapse_timelevels = 2
176 ADMBase :: shift_timelevels = 2
177 ADMBase :: metric_timelevels = 2
178 idanalyticbh ::mass = 1.0
179

180

181 ADMMacros :: spatial_order = 4

D.2 Binary Black Hole

1 Cactus :: cctk_run_title = "BBH"
2

3 Cactus :: cctk_full_warnings = yes
4 Cactus :: highlight_warning_messages = no
5

6 Cactus :: terminate = "time"
7 Cactus :: cctk_final_time = 4.0
8

9

10

11 ActiveThorns = "IOUtil"
12

D.2 Binary Black Hole 161

13 IO:: out_dir = $parfile
14

15

16

17 ActiveThorns = "AEILocalInterp"
18

19 #ActiveThorns = "BLAS LAPACK"
20

21 ActiveThorns = "Fortran"
22

23 ActiveThorns = "GSL"
24

25 ActiveThorns = "GenericFD"
26

27 ActiveThorns = "HDF5"
28

29 ActiveThorns = "LocalInterp"
30

31 ActiveThorns = "LoopControl"
32

33 ActiveThorns = "Slab"
34

35

36

37 ActiveThorns = "SummationByParts"
38

39 SummationByParts :: order = 4
40

41

42

43 ActiveThorns = "InitBase"
44

45

46

47 ActiveThorns = "Carpet CarpetLib CarpetInterp CarpetReduce CarpetSlab"
48

49 Carpet :: verbose = no
50 Carpet :: veryverbose = no
51 Carpet :: schedule_barriers = no
52 Carpet :: storage_verbose = no
53 #Carpet :: timers_verbose = no
54 CarpetLib :: output_bboxes = no
55

56 Carpet :: domain_from_coordbase = yes
57 Carpet :: max_refinement_levels = 7
58

59 driver :: ghost_size = 3
60 Carpet :: use_buffer_zones = yes
61

62 Carpet :: prolongation_order_space = 5
63 Carpet :: prolongation_order_time = 2
64

65 Carpet :: convergence_level = 0
66

162 Einstein Toolkit Parameter Files

67 Carpet :: init_fill_timelevels = yes
68 #Carpet :: init_3_timelevels = yes
69

70 Carpet :: poison_new_timelevels = yes
71 CarpetLib :: poison_new_memory = yes
72

73 Carpet :: output_timers_every = 640
74 CarpetLib :: print_timestats_every = 640
75 CarpetLib :: print_memstats_every = 640
76

77

78

79 ActiveThorns = "NaNChecker"
80

81 NaNChecker :: check_every = 1 # 64
82 #NaNChecker :: verbose = "all"
83 #NaNChecker :: action_if_found = "just warn"
84 NaNChecker :: action_if_found = "terminate"
85 NaNChecker :: check_vars = "
86 ML_BSSN :: ML_log_confac
87 ML_BSSN :: ML_metric
88 ML_BSSN :: ML_trace_curv
89 ML_BSSN :: ML_curv
90 ML_BSSN :: ML_Gamma
91 ML_BSSN :: ML_lapse
92 ML_BSSN :: ML_shift
93 ML_BSSN :: ML_dtlapse
94 ML_BSSN :: ML_dtshift
95 ADMBase :: metric
96 ADMBase ::curv
97 ADMBase ::lapse
98 ADMBase ::shift
99 ADMBase :: dtlapse

100 ADMBase :: dtshift
101 "
102

103

104

105 ActiveThorns = "Boundary CartGrid3D CoordBase ReflectionSymmetry
RotatingSymmetry180 SymBase"

106

107 CoordBase :: domainsize = "minmax"
108

109 CoordBase ::xmin = 0.00
110 CoordBase ::ymin = -120.00
111 CoordBase ::zmin = 0.00
112 CoordBase ::xmax = +120.00
113 CoordBase ::ymax = +120.00
114 CoordBase ::zmax = +120.00
115 CoordBase ::dx = 2.00
116 CoordBase ::dy = 2.00
117 CoordBase ::dz = 2.00
118

119 CoordBase :: boundary_size_x_lower = 3

D.2 Binary Black Hole 163

120 CoordBase :: boundary_size_y_lower = 3
121 CoordBase :: boundary_size_z_lower = 3
122 CoordBase :: boundary_size_x_upper = 3
123 CoordBase :: boundary_size_y_upper = 3
124 CoordBase :: boundary_size_z_upper = 3
125

126 CoordBase :: boundary_shiftout_x_lower = 1
127 CoordBase :: boundary_shiftout_z_lower = 1
128

129 CartGrid3D ::type = "coordbase"
130

131 ReflectionSymmetry :: reflection_z = yes
132 ReflectionSymmetry :: avoid_origin_z = no
133

134

135

136 ActiveThorns = "SphericalSurface"
137

138 SphericalSurface :: nsurfaces = 5
139 SphericalSurface :: maxntheta = 39
140 SphericalSurface :: maxnphi = 76
141

142 SphericalSurface :: ntheta [0] = 39
143 SphericalSurface ::nphi [0] = 76
144 SphericalSurface :: nghoststheta [0] = 2
145 SphericalSurface :: nghostsphi [0] = 2
146

147 SphericalSurface :: ntheta [1] = 39
148 SphericalSurface ::nphi [1] = 76
149 SphericalSurface :: nghoststheta [1] = 2
150 SphericalSurface :: nghostsphi [1] = 2
151

152 SphericalSurface :: ntheta [2] = 39
153 SphericalSurface ::nphi [2] = 76
154 SphericalSurface :: nghoststheta [2] = 2
155 SphericalSurface :: nghostsphi [2] = 2
156

157 SphericalSurface :: ntheta [3] = 39
158 SphericalSurface ::nphi [3] = 76
159 SphericalSurface :: nghoststheta [3] = 2
160 SphericalSurface :: nghostsphi [3] = 2
161

162 SphericalSurface :: ntheta [4] = 39
163 SphericalSurface ::nphi [4] = 76
164 SphericalSurface :: nghoststheta [4] = 2
165 SphericalSurface :: nghostsphi [4] = 2
166

167

168

169 ActiveThorns = "CarpetMask"
170

171 CarpetMask :: verbose = no
172

173 CarpetMask :: excluded_surface [0] = 3

164 Einstein Toolkit Parameter Files

174 CarpetMask :: excluded_surface_factor [0] = 1.0
175

176 CarpetMask :: excluded_surface [1] = 4
177 CarpetMask :: excluded_surface_factor [1] = 1.0
178

179

180

181 ActiveThorns = "ADMBase ADMCoupling ADMMacros CoordGauge SpaceMask
StaticConformal TmunuBase"

182 ActiveThorns = "CarpetRegrid2 PunctureTracker CarpetTracker"
183

184 CarpetTracker :: surface [0] = 0
185 CarpetTracker :: surface [1] = 1
186 PunctureTracker ::track [0] = yes
187 PunctureTracker :: initial_x [0] = 3.0
188 PunctureTracker :: which_surface_to_store_info [0] = 0
189 PunctureTracker ::track [1] = yes
190 PunctureTracker :: initial_x [1] = -3.0
191 PunctureTracker :: which_surface_to_store_info [1] = 1
192

193

194 CarpetRegrid2 :: regrid_every = 16
195 CarpetRegrid2 :: freeze_unaligned_levels = yes
196 CarpetRegrid2 :: symmetry_rotating180 = yes
197 CarpetRegrid2 :: verbose = yes
198

199 CarpetRegrid2 :: num_centres = 2
200

201 CarpetRegrid2 :: num_levels_1 = 7
202 CarpetRegrid2 :: position_x_1 = +3.0
203 CarpetRegrid2 :: radius_1[1] = 64.0
204 CarpetRegrid2 :: radius_1[2] = 16.0
205 CarpetRegrid2 :: radius_1[3] = 8.0
206 CarpetRegrid2 :: radius_1[4] = 4.0
207 CarpetRegrid2 :: radius_1[5] = 2.0
208 CarpetRegrid2 :: radius_1[6] = 1.0
209 CarpetRegrid2 :: movement_threshold_1 = 0.16
210

211 CarpetRegrid2 :: num_levels_2 = 7
212 CarpetRegrid2 :: position_x_2 = -3.0
213 CarpetRegrid2 :: radius_2[1] = 64.0
214 CarpetRegrid2 :: radius_2[2] = 16.0
215 CarpetRegrid2 :: radius_2[3] = 8.0
216 CarpetRegrid2 :: radius_2[4] = 4.0
217 CarpetRegrid2 :: radius_2[5] = 2.0
218 CarpetRegrid2 :: radius_2[6] = 1.0
219 CarpetRegrid2 :: movement_threshold_2 = 0.16
220

221

222 ActiveThorns = "MoL Time"
223

224 MoL:: ODE_Method = "RK4"
225 MoL:: MoL_Intermediate_Steps = 4
226 MoL:: MoL_Num_Scratch_Levels = 1

D.2 Binary Black Hole 165

227

228 Carpet :: time_refinement_factors = "[1, 1, 2, 4, 8, 16, 32, 64, 128,
256]"

229

230 Time::dtfac = 0.25
231

232

233 ADMMacros :: spatial_order = 4
234

235

236

237 ActiveThorns = "TwoPunctures"
238

239 ADMBase :: metric_type = "physical"
240

241 ADMBase :: initial_data = "twopunctures"
242 ADMBase :: initial_lapse = "twopunctures -averaged"
243 ADMBase :: initial_shift = "zero"
244 ADMBase :: initial_dtlapse = "zero"
245 ADMBase :: initial_dtshift = "zero"
246

247 TwoPunctures :: par_b = 3.0
248 TwoPunctures :: par_m_plus = 0.47656
249 TwoPunctures :: par_m_minus = 0.47656
250 TwoPunctures :: par_P_plus [1] = +0.13808
251 TwoPunctures :: par_P_minus [1] = -0.13808
252

253 #TODO# TwoPunctures :: grid_setup_method = "evaluation"
254

255 TwoPunctures :: TP_epsilon = 1.0e-6
256 TwoPunctures :: TP_Tiny = 1.0e-2
257

258 TwoPunctures :: verbose = yes
259

260

261

262 ActiveThorns = "ML_BSSN ML_BSSN_Helper NewRad"
263

264 ADMBase :: evolution_method = "ML_BSSN"
265 ADMBase :: lapse_evolution_method = "ML_BSSN"
266 ADMBase :: shift_evolution_method = "ML_BSSN"
267 ADMBase :: dtlapse_evolution_method = "ML_BSSN"
268 ADMBase :: dtshift_evolution_method = "ML_BSSN"
269

270 ML_BSSN :: harmonicN = 1 # 1+log
271 ML_BSSN :: harmonicF = 2.0 # 1+log
272 ML_BSSN :: ShiftGammaCoeff = 0.75
273 ML_BSSN :: BetaDriver = 1.0
274 ML_BSSN :: LapseAdvectionCoeff = 1.0
275 ML_BSSN :: ShiftAdvectionCoeff = 1.0
276

277 ML_BSSN :: MinimumLapse = 1.0e-8
278

279 ML_BSSN :: my_initial_boundary_condition = "extrapolate -gammas"

166 Einstein Toolkit Parameter Files

280 ML_BSSN :: my_rhs_boundary_condition = "NewRad"
281 Boundary :: radpower = 2
282

283 ML_BSSN :: ML_log_confac_bound = "none"
284 ML_BSSN :: ML_metric_bound = "none"
285 ML_BSSN :: ML_Gamma_bound = "none"
286 ML_BSSN :: ML_trace_curv_bound = "none"
287 ML_BSSN :: ML_curv_bound = "none"
288 ML_BSSN :: ML_lapse_bound = "none"
289 ML_BSSN :: ML_dtlapse_bound = "none"
290 ML_BSSN :: ML_shift_bound = "none"
291 ML_BSSN :: ML_dtshift_bound = "none"
292

293

294

295 ActiveThorns = "Dissipation"
296

297 Dissipation :: order = 5
298 Dissipation ::vars = "
299 ML_BSSN :: ML_log_confac
300 ML_BSSN :: ML_metric
301 ML_BSSN :: ML_trace_curv
302 ML_BSSN :: ML_curv
303 ML_BSSN :: ML_Gamma
304 ML_BSSN :: ML_lapse
305 ML_BSSN :: ML_shift
306 ML_BSSN :: ML_dtlapse
307 ML_BSSN :: ML_dtshift
308 "
309

310

311

312 ActiveThorns = "ML_ADMConstraints"
313

314

315

316 ActiveThorns = "AHFinderDirect"
317

318 AHFinderDirect :: find_every = 16
319

320 AHFinderDirect :: run_at_CCTK_ANALYSIS = yes
321 AHFinderDirect :: run_at_CCTK_POSTSTEP = false
322

323 AHFinderDirect :: move_origins = yes
324

325 AHFinderDirect :: geometry_interpolator_name = "Lagrange polynomial
interpolation"

326 AHFinderDirect :: geometry_interpolator_pars = "order =4"
327 AHFinderDirect :: surface_interpolator_name = "Lagrange polynomial

interpolation"
328 AHFinderDirect :: surface_interpolator_pars = "order =4"
329

330 AHFinderDirect :: output_h_every = 0
331

D.2 Binary Black Hole 167

332 AHFinderDirect :: N_horizons = 3
333

334 AHFinderDirect :: origin_x [1] = +3.0
335 AHFinderDirect :: initial_guess__coord_sphere__x_center [1] = +3.0
336 AHFinderDirect :: initial_guess__coord_sphere__radius [1] = 0.25
337 AHFinderDirect :: which_surface_to_store_info [1] = 2
338 AHFinderDirect :: set_mask_for_individual_horizon [1] = no
339 AHFinderDirect :: reset_horizon_after_not_finding [1] = no
340 AHFinderDirect :: track_origin_from_grid_scalar [1] = yes
341 AHFinderDirect :: track_origin_source_x [1] = "

PunctureTracker :: pt_loc_x [0]"
342 AHFinderDirect :: track_origin_source_y [1] = "

PunctureTracker :: pt_loc_y [0]"
343 AHFinderDirect :: track_origin_source_z [1] = "

PunctureTracker :: pt_loc_z [0]"
344 AHFinderDirect :: max_allowable_horizon_radius [1] = 3
345

346 AHFinderDirect :: origin_x [2] = -3.0
347 AHFinderDirect :: initial_guess__coord_sphere__x_center [2] = -3.0
348 AHFinderDirect :: initial_guess__coord_sphere__radius [2] = 0.25
349 AHFinderDirect :: which_surface_to_store_info [2] = 3
350 AHFinderDirect :: set_mask_for_individual_horizon [2] = no
351 AHFinderDirect :: reset_horizon_after_not_finding [2] = no
352 AHFinderDirect :: track_origin_from_grid_scalar [2] = yes
353 AHFinderDirect :: track_origin_source_x [2] = "

PunctureTracker :: pt_loc_x [1]"
354 AHFinderDirect :: track_origin_source_y [2] = "

PunctureTracker :: pt_loc_y [1]"
355 AHFinderDirect :: track_origin_source_z [2] = "

PunctureTracker :: pt_loc_z [1]"
356 AHFinderDirect :: max_allowable_horizon_radius [2] = 3
357

358 AHFinderDirect :: origin_x [3] = 0
359 AHFinderDirect :: find_after_individual_time [3] = 100.0
360 AHFinderDirect :: initial_guess__coord_sphere__x_center [3] = 0
361 AHFinderDirect :: initial_guess__coord_sphere__radius [3] = 1.0
362 AHFinderDirect :: which_surface_to_store_info [3] = 4
363 AHFinderDirect :: reset_horizon_after_not_finding [3] = no
364 AHFinderDirect :: max_allowable_horizon_radius [3] = 6
365

366

367 ActiveThorns = "WeylScal4 Multipole"
368

369 Multipole :: nradii = 4
370 Multipole :: radius [0] = 30
371 Multipole :: radius [1] = 40
372 Multipole :: radius [2] = 50
373 Multipole :: radius [3] = 60
374 Multipole :: ntheta = 60
375 Multipole ::nphi = 120
376 Multipole :: variables = "WeylScal4 :: Psi4r{sw=-2 cmplx=’WeylScal4 ::

Psi4i ’ name=’psi4 ’}"
377 Multipole :: out_every = 4
378 Multipole ::l_max = 8

168 Einstein Toolkit Parameter Files

379

380

381 ActiveThorns = "CarpetIOBasic"
382

383 IOBasic :: outInfo_every = 1
384 IOBasic :: outInfo_reductions = "norm2"
385 IOBasic :: outInfo_vars = "
386 Carpet :: physical_time_per_hour
387 ML_BSSN :: ML_trace_curv
388 "
389

390

391

392 ActiveThorns = "CarpetIOScalar"
393

394 IOScalar :: one_file_per_group = yes
395

396 IOScalar :: outScalar_every = 16
397 IOScalar :: outScalar_vars = "
398 CarpetReduce :: weight
399 ADMBase :: metric
400 ADMBase ::curv
401 ADMBase ::lapse
402 ADMBase ::shift
403 ADMBase :: dtlapse
404 ADMBase :: dtshift
405 ML_ADMConstraints :: ML_Ham
406 ML_ADMConstraints :: ML_mom
407 SphericalSurface :: sf_radius
408 "
409

410

411

412 ActiveThorns = "CarpetIOASCII"
413

414 IOASCII :: one_file_per_group = yes
415

416 IOASCII :: output_symmetry_points = no
417 IOASCII :: out3D_ghosts = no
418

419 IOASCII :: out0D_every = 16
420 IOASCII :: out0D_vars = "
421 Carpet :: timing
422 CarpetReduce :: weight
423 ADMBase :: metric
424 ADMBase ::curv
425 ADMBase ::lapse
426 ADMBase ::shift
427 ADMBase :: dtlapse
428 ADMBase :: dtshift
429 ML_ADMConstraints :: ML_Ham
430 ML_ADMConstraints :: ML_mom
431 SphericalSurface :: sf_active
432 SphericalSurface :: sf_valid

D.2 Binary Black Hole 169

433 SphericalSurface :: sf_info
434 SphericalSurface :: sf_radius
435 SphericalSurface :: sf_origin
436 SphericalSurface :: sf_coordinate_descriptors
437 PunctureTracker :: pt_loc
438 "
439

440 IOASCII :: out1D_every = 16
441 IOASCII :: out1D_vars = "
442 CarpetReduce :: weight
443 ADMBase :: metric
444 ADMBase ::curv
445 ADMBase ::lapse
446 ADMBase ::shift
447 ADMBase :: dtlapse
448 ADMBase :: dtshift
449 ML_ADMConstraints :: ML_Ham
450 ML_ADMConstraints :: ML_mom
451 SphericalSurface :: sf_radius
452 "
453

454 IOASCII :: out2D_every = 16
455 IOASCII :: out2D_vars = "
456 SphericalSurface :: sf_radius
457 "
458

459

460

461 Activethorns = "CarpetIOHDF5"
462

463 # 3D HDF5 Output
464 CarpetIOHDF5 :: out3D_every = 2048
465 carpetIOHDF5 :: out3D_vars = "
466 ADMBase ::lapse
467 ADMBase ::shift
468 ADMBase :: metric
469 ADMBase ::curv
470 "
471

472

473 #IOHDF5 :: out_every = 64
474 #IOHDF5 :: one_file_per_group = yes
475 #IOHDF5 :: output_symmetry_points = no
476 #IOHDF5 :: out3D_ghosts = no
477 #IOHDF5 :: compression_level = 1
478 #IOHDF5 :: use_checksums = yes
479 #IOHDF5 :: out_vars = "
480 # CarpetReduce :: weight
481 # ADMBase :: metric
482 # ADMBase ::curv
483 # ADMBase ::lapse
484 # ADMBase ::shift
485 # ML_ADMConstraints :: ML_Ham
486 # ML_ADMConstraints :: ML_mom

170 Einstein Toolkit Parameter Files

487 # WeylScal4 ::Psi4r
488 # WeylScal4 ::Psi4i
489 #"
490

491 IOHDF5 :: checkpoint = yes
492 IO:: checkpoint_dir = $parfile
493 IO:: checkpoint_ID = yes
494 IO:: checkpoint_every_walltime_hours = 6.0
495 IO:: checkpoint_on_terminate = yes
496

497 IO:: recover = "autoprobe"
498 IO:: recover_dir = $parfile
499

500

501

502 ActiveThorns = "Formaline"
503

504

505

506 ActiveThorns = "TimerReport"
507

508 TimerReport :: out_every = 640
509 TimerReport :: out_filename = "TimerReport"
510 TimerReport :: output_all_timers_together = yes
511 TimerReport :: output_all_timers_readable = yes
512 TimerReport :: n_top_timers = 20

D.3 Single Black Hole Two Puncture

1 ActiveThorns = "
2 Boundary
3 CartGrid3D
4 CoordBase
5 IOUtil
6 InitBase
7 MoL
8 Time
9 SymBase

10

11 ADMBase
12 ADMCoupling
13 ADMMacros
14 CoordGauge
15 SpaceMask
16 StaticConformal
17

18 NaNChecker
19

20 Carpet
21 CarpetIOASCII
22 CarpetIOBasic
23 CarpetIOScalar
24 CarpetLib

D.3 Single Black Hole Two Puncture 171

25 CarpetReduce
26 CarpetRegrid2
27 CarpetInterp
28 LoopControl
29

30 ReflectionSymmetry
31 RotatingSymmetry180
32

33 TwoPunctures
34 Formaline
35 GSL
36

37 Slab
38

39 GenericFD
40

41 ML_BSSN
42 ML_BSSN_Helper
43 SphericalSurface
44 TmunuBase
45 Dissipation
46

47 CarpetIOHDF5
48

49 AHFinderDirect
50

51 AEILocalInterp LocalReduce
52

53 QuasiLocalMeasures
54

55 WeylScal4 MultiPole
56 "
57 # NoExcision LocalInterp SummationByParts
58

59 # output
60

61 IO:: out_dir = $parfile
62

63 IOBasic :: outInfo_every = 1
64 IOBasic :: outInfo_vars = "
65 ML_BSSN ::H
66 ML_BSSN ::trK
67 "
68

69 IOScalar :: one_file_per_group = yes
70 IOScalar :: outScalar_every = 64
71 IOScalar :: outScalar_vars = "
72 ML_BSSN :: ML_Ham
73 ML_BSSN :: ML_mom
74 ML_BSSN :: ML_cons_detg
75 ML_BSSN :: ML_cons_Gamma
76 ML_BSSN :: ML_cons_traceA
77 "
78

172 Einstein Toolkit Parameter Files

79 IOASCII :: one_file_per_group = yes
80 IOASCII :: out0D_every = 60
81 IOASCII :: out0D_vars = "
82 QuasiLocalMeasures :: qlm_scalars
83 QuasiLocalMeasures :: qlm_multipole_moments
84 "
85

86 IOASCII :: out1D_every = 64
87 IOASCII :: out1D_vars = "
88 ADMBase :: metric
89 ADMBase ::curv
90 ADMBase ::lapse
91 ADMBase ::shift
92 ML_BSSN :: ML_log_confac
93 ML_BSSN :: ML_metric
94 ML_BSSN :: ML_trace_curv
95 ML_BSSN :: ML_curv
96 ML_BSSN :: ML_Gamma
97 ML_BSSN :: ML_lapse
98 ML_BSSN :: ML_shift
99 ML_BSSN :: ML_Ham

100 ML_BSSN :: ML_mom
101 ML_BSSN :: ML_cons_detg
102 ML_BSSN :: ML_cons_Gamma
103 ML_BSSN :: ML_cons_traceA
104 "
105 Activethorns = "CarpetIOHDF5"
106

107 # 3D HDF5 Output
108 CarpetIOHDF5 :: out3D_every = 2048
109 carpetIOHDF5 :: out3D_vars = "
110 ADMBase ::lapse
111 ADMBase ::shift
112 ADMBase :: metric
113 ADMBase ::curv
114 "
115 ### Checkpointing
116

117 CarpetIOHDF5 :: checkpoint = yes
118 IO:: checkpoint_ID = no
119 IO:: recover = "autoprobe"
120 IO:: checkpoint_every = 512
121 IO:: out_proc_every = 1
122 IO:: checkpoint_keep = 2
123 IO:: checkpoint_dir = $parfile
124 IO:: recover_dir = $parfile
125 Carpet :: regrid_during_recovery = no
126 CarpetIOHDF5 :: use_grid_structure_from_checkpoint = yes
127

128 #--- driver
129

130 Cactus :: cctk_itlast = 0
131 Cactus :: terminate = time
132 Cactus :: cctk_final_time = 1

D.3 Single Black Hole Two Puncture 173

133 Carpet :: use_buffer_zones = yes
134 Carpet :: use_tapered_grids = yes
135

136 CarpetLib :: interleave_communications = yes
137 CarpetLib :: combine_sends = yes
138 CarpetLib :: print_memstats_every = 1024
139 #Carpet :: regrid_in_level_mode = no
140 Carpet :: output_timers_every = 1024
141 CarpetLib :: print_timestats_every = 1024
142 Carpet :: print_timestats_every = 1
143 #Carpet :: init_each_timelevel = yes
144

145

146 carpet :: verbose = no
147 carpet :: veryverbose = no
148

149 #--- Carpet prolongation order settings
150

151 Carpet :: prolongation_order_space = 5
152 Carpet :: prolongation_order_time = 1
153

154

155 # MoL time integration
156

157 MoL:: ODE_Method = RK4
158 Carpet :: num_integrator_substeps = 4
159 MoL:: MoL_Intermediate_Steps = 4
160 MoL:: MoL_Num_Scratch_Levels = 1
161 time::dtfac = 0.25
162

163 #--- grid and symmetries
164

165 driver :: ghost_size = 3
166 grid::type = "CoordBase"
167 CoordBase :: domainsize = "minmax"
168 CoordBase ::xmax = 258.048
169 CoordBase ::ymax = 258.048
170 CoordBase ::zmax = 258.048
171 CoordBase ::xmin = 0.000
172 CoordBase ::ymin = -258.048
173 CoordBase ::zmin = 0.000
174 CoordBase ::dx = 3.072
175 CoordBase ::dy = 3.072
176 CoordBase ::dz = 3.072
177

178

179 ReflectionSymmetry :: reflection_x = no
180 ReflectionSymmetry :: reflection_y = no
181 ReflectionSymmetry :: reflection_z = yes
182 ReflectionSymmetry :: avoid_origin_x = no
183 ReflectionSymmetry :: avoid_origin_y = no
184 ReflectionSymmetry :: avoid_origin_z = no
185 CarpetRegrid2 :: symmetry_rotating180 = yes
186

174 Einstein Toolkit Parameter Files

187 CoordBase :: boundary_shiftout_x_lower = 1
188 CoordBase :: boundary_shiftout_z_lower = 1
189

190 Carpet :: domain_from_coordbase = yes
191

192 CoordBase :: boundary_size_x_lower = 3
193 CoordBase :: boundary_size_y_lower = 3
194 CoordBase :: boundary_size_z_lower = 3
195 CoordBase :: boundary_size_x_upper = 3
196 CoordBase :: boundary_size_y_upper = 3
197 CoordBase :: boundary_size_z_upper = 3
198

199

200 carpet :: max_refinement_levels = 8
201 CarpetRegrid2 :: num_centres = 1
202 CarpetRegrid2 :: num_levels_1 = 8
203 CarpetRegrid2 :: position_x_1 = +0.0
204 CarpetRegrid2 :: radius_1 [1] = 128.0 # 1.536
205 CarpetRegrid2 :: radius_1 [2] = 64.0 # 0.768
206 CarpetRegrid2 :: radius_1 [3] = 16.0 # 0.384
207 CarpetRegrid2 :: radius_1 [4] = 8.0 # 0.192
208 CarpetRegrid2 :: radius_1 [5] = 4.0 # 0.096
209 CarpetRegrid2 :: radius_1 [6] = 2.0 # 0.048
210 CarpetRegrid2 :: radius_1 [7] = 1.0 # 0.024
211

212

213 #--- initial data
214

215 ADMBase :: initial_data = "twopunctures"
216 ADMBase :: initial_lapse = "twopunctures -averaged"
217 ADMBase :: initial_shift = "zero"
218 ADMBase :: initial_dtlapse = "zero"
219 ADMBase :: initial_dtshift = "zero"
220 ADMBase :: lapse_timelevels = 2
221 ADMBase :: shift_timelevels = 2
222 ADMBase :: metric_timelevels = 2
223 InitBase :: initial_data_setup_method = init_some_levels
224 TwoPunctures :: par_b = 1.0
225 TwoPunctures :: center_offset [0] = -1.0
226 TwoPunctures :: par_m_plus = 0.75174408
227 TwoPunctures :: par_m_minus = 0.0
228 TwoPunctures :: par_S_plus [2] = 0.7
229 TwoPunctures :: TP_epsilon = 1e-6
230 TwoPunctures :: grid_setup_method = evaluation
231 TwoPunctures :: verbose = yes
232 TwoPunctures :: do_residuum_debug_output = yes
233 TwoPunctures :: do_initial_debug_output = yes
234 TwoPunctures :: npoints_A = 40
235 TwoPunctures :: npoints_B = 40
236 TwoPunctures :: npoints_phi = 16
237 #Carpet :: init_each_timelevel = yes
238 #Carpet :: init_3_timelevels = yes
239 Carpet :: init_fill_timelevels = yes
240

D.3 Single Black Hole Two Puncture 175

241

242

243 ##--- NoExcision
244 #
245 #NoExcision :: num_regions = 1
246 #NoExcision :: method = new
247 #NoExcision :: smooth_regions = yes
248 #NoExcision :: use_user_regions = yes
249 #NoExcision :: centre_x [0] = +0.0
250 #NoExcision :: radius [0] = 0.001
251 #
252 #NoExcision :: smoothing_order = 6
253 #NoExcision :: smoothing_eps = 1e-5
254 #NoExcision :: verbose = yes
255

256 #--- ML_BSSN
257

258 ADMBase :: evolution_method = "ML_BSSN"
259 ADMBase :: lapse_evolution_method = "ML_BSSN"
260 ADMBase :: shift_evolution_method = "ML_BSSN"
261

262 ML_BSSN :: timelevels = 2
263

264 ML_BSSN :: harmonicN = 1 # 1+log
265 ML_BSSN :: harmonicF = 2.0 # 1+log
266 ML_BSSN :: ShiftGammaCoeff = 0.75
267 ML_BSSN :: BetaDriver = 1.0
268 ML_BSSN :: LapseAdvectionCoeff = 1.0
269 ML_BSSN :: ShiftAdvectionCoeff = 1.0
270

271 #ML_BSSN :: ML_log_confac_bound = "radiative"
272 #ML_BSSN :: ML_metric_bound = "radiative"
273 #ML_BSSN :: ML_Gamma_bound = "radiative"
274 #ML_BSSN :: ML_trace_curv_bound = "radiative"
275 #ML_BSSN :: ML_curv_bound = "radiative"
276 #ML_BSSN :: ML_lapse_bound = "radiative"
277 #ML_BSSN :: ML_dtlapse_bound = "radiative"
278 #ML_BSSN :: ML_shift_bound = "radiative"
279 #ML_BSSN :: ML_dtshift_bound = "radiative"
280

281 ML_BSSN :: my_boundary_condition = "Minkowski"
282

283 ML_BSSN :: ML_log_confac_bound = "none"
284 ML_BSSN :: ML_metric_bound = "none"
285 ML_BSSN :: ML_Gamma_bound = "none"
286 ML_BSSN :: ML_trace_curv_bound = "none"
287 ML_BSSN :: ML_curv_bound = "none"
288 ML_BSSN :: ML_lapse_bound = "none"
289 ML_BSSN :: ML_dtlapse_bound = "none"
290 ML_BSSN :: ML_shift_bound = "none"
291 ML_BSSN :: ML_dtshift_bound = "none"
292

293 ADMMacros :: spatial_order = 4
294

176 Einstein Toolkit Parameter Files

295 #--- Dissipation
296

297 Dissipation ::vars = "
298 ML_BSSN :: ML_Gamma
299 ML_BSSN :: ML_lapse
300 ML_BSSN :: ML_shift
301 ML_BSSN :: ML_log_confac
302 ML_BSSN :: ML_metric
303 ML_BSSN :: ML_trace_curv
304 ML_BSSN :: ML_curv
305 "
306 Dissipation :: order = 5
307

308 ### Horizons
309

310 AHFinderDirect :: N_horizons = 1
311 AHFinderDirect :: find_every = 12
312 AHFinderDirect :: output_h_every = 0
313 AHFinderDirect :: max_Newton_iterations__initial = 50
314 AHFinderDirect :: max_Newton_iterations__subsequent = 50
315 AHFinderDirect :: max_allowable_Theta_growth_iterations = 10
316 AHFinderDirect :: max_allowable_Theta_nonshrink_iterations = 10
317 #AHFinderDirect :: max_N_zones_per_right_angle = 36
318 #AHFinderDirect :: N_zones_per_right_angle [1] = 36
319 AHFinderDirect :: geometry_interpolator_name = "Lagrange

polynomial interpolation"
320 AHFinderDirect :: geometry_interpolator_pars = "order =4"
321 AHFinderDirect :: surface_interpolator_name = "Lagrange

polynomial interpolation"
322 AHFinderDirect :: surface_interpolator_pars = "order =4"
323 #AHFinderDirect :: verbose_level = "physics

details"
324 AHFinderDirect :: verbose_level = "algorithm

highlights"
325 AHFinderDirect :: Jacobian_store_solve_method = "row -oriented

sparse matrix/ILUCG"
326 AHFinderDirect :: move_origins = yes
327

328 AHFinderDirect :: origin_x [1] = 0.0
329 AHFinderDirect :: initial_guess__coord_sphere__x_center [1] = 0.0
330 AHFinderDirect :: initial_guess__coord_sphere__radius [1] = 0.5
331 AHFinderDirect :: which_surface_to_store_info [1] = 0
332 AHFinderDirect :: set_mask_for_individual_horizon [1] = no
333 AHFinderDirect :: reset_horizon_after_not_finding [1] = no
334 #AHFinderDirect :: dont_find_after_individual [1] = 3328
335

336

337 # Horizon surfaces
338

339 SphericalSurface :: nsurfaces = 1
340 SphericalSurface :: maxntheta = 73
341 SphericalSurface :: maxnphi = 144
342

343 SphericalSurface :: ntheta [0] = 73

D.3 Single Black Hole Two Puncture 177

344 SphericalSurface ::nphi [0] = 144
345 SphericalSurface :: nghoststheta [0] = 2
346 SphericalSurface :: nghostsphi [0] = 2
347

348 WeylScal4 :: fd_order = "4th"
349

350 Multipole :: integration_method = "Simpson"
351 Multipole :: interpolator_name = "Lagrange polynomial interpolation"
352 Multipole :: interpolator_pars = "order =4 boundary_off_centering_tolerance

={0.0 0.0 0.0 0.0 0.0 0.0} boundary_extrapolation_tolerance ={0.0 0.0
0.0 0.0 0.0 0.0}"

353 Multipole :: nradii = 4
354 Multipole :: radius [0] = 30
355 Multipole :: radius [1] = 40
356 Multipole :: radius [2] = 50
357 Multipole :: radius [3] = 60
358 Multipole :: ntheta = 72
359 Multipole ::nphi = 144
360 Multipole :: variables = "WeylScal4 :: Psi4r{sw=-2 cmplx=’WeylScal4 ::

Psi4i ’ name=’psi4 ’}"
361 Multipole :: out_every = 64
362 Multipole ::l_max = 8
363

364

365 ### QuasiLocalMeasures
366

367 QuasiLocalMeasures :: verbose = yes
368 #IsolatedHorizon :: veryverbose = no
369 QuasiLocalMeasures :: interpolator = "Lagrange polynomial

interpolation"
370 QuasiLocalMeasures :: interpolator_options = "order =4"
371 QuasiLocalMeasures :: spatial_order = 4
372 QuasiLocalMeasures :: num_surfaces = 1
373 QuasiLocalMeasures :: surface_index [0] = 0
374

375 #--- Analysis
376

377 nanchecker :: check_every = 1
378 nanchecker :: check_vars = "
379 ML_BSSN :: ML_Gamma
380 ML_BSSN :: ML_lapse
381 ML_BSSN :: ML_shift
382 ML_BSSN :: ML_log_confac
383 ML_BSSN :: ML_metric
384 ML_BSSN :: ML_trace_curv
385 ML_BSSN :: ML_curv
386 "
387 nanchecker :: action_if_found = "terminate"

178 Einstein Toolkit Parameter Files

Appendix E

GYOTO Scripts

E.1 Fixed Star

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>
2 <Scenery >
3

4 <Metric kind = "NumericalMetricLorene">
5 <MapAf/>
6 <Horizon >0.51</Horizon >
7 <File>/home/dulte/Documents/Skole/Master/Gyoto_files/Metrics/</File>
8 <AxisymCirc/>
9 </Metric >

10

11

12 <!-- Uncomment this if you want to use an analytical Kerr metric -->
13 <!-- <Metric kind = "KerrBL"> -->
14 <!-- <Spin>0.</Spin> -->
15 <!-- </Metric > -->
16

17 <Integ31/>
18

19 <Screen >
20 <Position >1000. 250. 1.483 0.</Position >
21 <Time unit="geometrical_time">1000.</Time>
22 <FieldOfView > 0.05 </FieldOfView >
23 <Resolution >30</Resolution >
24 </Screen >
25

26 <Quantities >Intensity </Quantities >
27

28 <Astrobj kind = "FixedStar">
29 <Radius > 3.972 </Radius > 10. 8.972
30 <Position > 0 0 0 </Position >
31 <Spectrum kind="PowerLaw">
32 <Exponent > 0 </Exponent >
33 <Constant > 1. </Constant >
34 </Spectrum >
35 <OpticallyThin/>

180 GYOTO Scripts

36 <RMax>0.</RMax>
37 </Astrobj >
38

39 <MinimumTime > -1e4 </MinimumTime >
40 <NThreads > 1 </NThreads >
41

42 </Scenery >

E.2 Page-Thorne Disk

1 <?xml version="1.0" encoding="UTF -8" standalone="no"?>
2 <Scenery >
3 <Metric kind = "NumericalMetricLorene">
4 <MapAf/>
5 <Horizon >0.51</Horizon >
6 <File>/home/dulte/Documents/Skole/Master/Gyoto_files/Metrics/</File>
7 <!--<File>/data/fvincent/BinData/Kerr/Metric/</File>-->
8 <!--<AxisymCirc/>-->
9 <BosonStarCircular/>

10 </Metric >
11

12

13

14 <Screen >
15 <Position >1000. 100. 1.483 0.</Position >
16 <Time unit="geometrical_time">1000.</Time>
17 <FieldOfView >
18 0.314159265358979323846264338327950288419716
19 </FieldOfView >
20 <Resolution >
21 200
22 </Resolution >
23 </Screen >
24

25

26

27 <Astrobj kind = "PageThorneDisk">
28 <Bolometric/>
29 </Astrobj >
30 <MinimumTime > -1000. </MinimumTime >
31 <!--Quantities > User4 </Quantities -->
32 Bolometric emission , this is the default (and only intensity) for
33 PageThorneDisk.
34 </Scenery >

Appendix F

Metric for Use in GYOTO with
no Spherical Symmetry

Using Lorene data with Gyoto
1 Metric coefficients in quasi-isotropic coordinates

in a circular spacetime
Lorene is using quasi-isotropic spherical coordinates (t, r, θ, ϕ) in a circular

spacetime. This means that we assume (1) gtr = gtθ = gϕr = gϕθ = 0 and (2)
grθ = 0 as well as gθθ = r2grr. The line element is then

ds2 = −N2dt2 + A2
(
dr2 + r2dθ2

)
+B2r2 sin2 θ (dϕ+ βϕdt)2 (1)

where N is the lapse, A, B and ω = −gtϕ/gϕϕ are scalar functions of r and θ. The
shift vector is

β = (0, 0,−ω). (2)

The 4D metric and inverse metric are

gαβ =

−N2 + ω2B2r2sin2θ 0 0 −ωB2r2sin2θ
0 A2 0 0
0 0 A2r2 0

−ωB2r2sin2θ 0 0 B2r2sin2θ

 (3)

gαβ =

−N−2 0 0 −ω/N2

0 A−2 0 0
0 0 A−2r−2 0

−ω/N2 0 0 −ω2/N2 + (Br sin θ)−2

 (4)

and the induced 3-metric reads

γij = diag(A2,A2r2,B2r2sin2θ), (5)

γij = diag(
1

A2
,

1

A2r2
,

1

B2r2sin2θ
)

with thus gij = γij but g33 6= γ33. These expressions are valid in the "Gyoto basis",
(∂r,∂θ,∂ϕ). The corresponding expressions in the "Lorene basis" (er, eθ, eϕ) are
given later.

A note on dimensions here. We have ds2 = gµνdx
µdxν which is sufficient to

determine the dimensions of gµν and thus of the 3+1 metric quantities. For ins-
tance, from Eq. 1, L2 ≈ N2c2dt2, where c is used here explicitly and L is a length
dimension. Thus N is dimensionless. We also have L2 ≈ B2r2 (βϕ)2 c2dt2 which

1

makes sense if B is dimensionless (just as A) and if βϕ is homogeneous to L−1

(actually to an inverse time, which is the same as L−1 in c = 1 units). To recap

N ≈ A ≈ B ≈ 1, (6)
βϕ ≈ length−1

so βϕ should be given in units of M−1.
Due to the symmetries only two components of the extrinsic curvature are

non-zero, Krϕ and Kθϕ.
The 4D Christoffels are, for a general 3+1 spacetime

4Γ0
00 =

1

N

(
∂N

∂t
+ βj∂jN −Kjkβ

jβk
)

(7)

4Γ0
0j =

1

N

(
∂jN −Kjkβ

k
)

4Γ0
jk = − 1

N
Kjk

4Γi 00 = Nγij∂jN − 2NKi
jβ

j +
βi

N

(
Kjkβ

jβk − ∂N

∂t
− βj∂jN

)
+
∂βi

∂t
+ βjDjβ

i

4Γi 0j = Djβ
i −NKi

j +
βi

N

(
Kjkβ

k − ∂jN
)

4Γi jk = 3Γi jk +
βi

N
Kjk

where
3Γi jk =

1

2
γis (γsk,j + γsj,k − γjk,s) (8)

and
Djβ

i = ∂jβ
i + 3Γi jkβ

k. (9)

2

For a circular spacetime the non-zero Christoffels are

4Γt tt =
1

N

∂N

∂t
(10)

4Γt tr =
1

N
(∂rN −Krϕβ

ϕ)

4Γt tθ =
1

N
(∂θN −Kθϕβ

ϕ)

4Γt rϕ = − 1

N
Krϕ

4Γt θϕ = − 1

N
Kθϕ

4Γr tt = Nγrr

(
∂rN − 2Krϕβ

ϕ − (βϕ)2

2N
∂rγϕϕ

)

4Γθ tt = Nγθθ

(
∂θN − 2Kθϕβ

ϕ − (βϕ)2

2N
∂θγϕϕ

)

4Γϕtt = −β
ϕ

N

∂N

∂t
+
∂βϕ

∂t

4Γr tϕ = −γrr
(
NKrϕ +

1

2
βϕ∂rγϕϕ

)

4Γθ tϕ = −γθθ
(
NKθϕ +

1

2
βϕ∂θγϕϕ

)

4Γϕtr = ∂rβ
ϕ +

1

2
γϕϕ∂rγϕϕβ

ϕ −NγϕϕKrϕ +
βϕ

N
(Krϕβ

ϕ − ∂rN)

4Γϕtθ = ∂θβ
ϕ +

1

2
γϕϕ∂θγϕϕβ

ϕ −NγϕϕKθϕ +
βϕ

N
(Kθϕβ

ϕ − ∂θN)

4Γr rr =
1

2
γrr∂rγrr

4Γr rθ =
1

2
γrr∂θγrr

4Γr θθ = −1

2
γrr∂rγθθ

4Γr ϕϕ = −1

2
γrr∂rγϕϕ

4Γθ rr = −1

2
γθθ∂θγrr

4Γθ rθ =
1

2
γθθ∂rγθθ

4Γθ θθ =
1

2
γθθ∂θγθθ

4Γθϕϕ = −1

2
γθθ∂θγϕϕ

4Γϕϕr =
1

2
γϕϕ∂rγϕϕ +

βϕ

N
Krϕ

4Γϕϕθ =
1

2
γϕϕ∂θγϕϕ +

βϕ

N
Kθϕ

3

Bibliography

[1] James W. York Jr. “Kinematics and Dynamics of General Relativity”. In: Pro-
ceedings, Sources of Gravitational Radiation: Seattle, WA, USA, July 24 - August
4, 1978, pp. 83–126.

[2] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary Black
Hole Merger”. In: Physical Review Letters 116.6 (Feb. 2016). issn: 1079-7114.
doi: 10.1103/physrevlett.116.061102. url: http://dx.doi.org/10.1103/
PhysRevLett.116.061102.

[3] Miguel Alcubierre. “Introduction to 3+1 Numerical Relativity”. In: Introduc-
tion to 3+1 Numerical Relativity (Apr. 2006). doi: 10 . 1093 / acprof : oso /
9780199205677.001.0001.

[4] Marcus Ansorg, Bernd Brügmann and Wolfgang Tichy. “Single-domain spectral
method for black hole puncture data”. In: Physical Review D 70.6 (Sept. 2004).
issn: 1550-2368. doi: 10.1103/physrevd.70.064011. url: http://dx.doi.
org/10.1103/PhysRevD.70.064011.

[5] Astropy Collaboration et al. “The Astropy Project: Building an Open-science
Project and Status of the v2.0 Core Package”. In: 156.3, 123 (Sept. 2018), p. 123.
doi: 10.3847/1538-3881/aabc4f. arXiv: 1801.02634 [astro-ph.IM].

[6] Thomas W. Baumgarte and Stuart L. Shapiro. Numerical Relativity: Solving
Einstein’s Equations on the Computer. Cambridge University Press, 2010. doi:
10.1017/CBO9781139193344.

[7] Thomas W. Baumgarte and Stuart L. Shapiro. Numerical Relativity: Starting
from Scratch. Cambridge University Press, 2021. doi: 10.1017/9781108933445.

[8] Marsha J Berger and Joseph Oliger. “Adaptive mesh refinement for hyperbolic
partial differential equations”. In: Journal of Computational Physics 53.3 (1984),
pp. 484–512. issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(84)
90073- 1. url: https://www.sciencedirect.com/science/article/pii/
0021999184900731.

[9] Luc Blanchet and Jerome Novak. Testing MOND in the Solar System. 2011.
arXiv: 1105.5815 [astro-ph.CO].

https://doi.org/10.1103/physrevlett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1093/acprof:oso/9780199205677.001.0001
https://doi.org/10.1093/acprof:oso/9780199205677.001.0001
https://doi.org/10.1103/physrevd.70.064011
http://dx.doi.org/10.1103/PhysRevD.70.064011
http://dx.doi.org/10.1103/PhysRevD.70.064011
https://doi.org/10.3847/1538-3881/aabc4f
https://arxiv.org/abs/1801.02634
https://doi.org/10.1017/CBO9781139193344
https://doi.org/10.1017/9781108933445
https://doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
https://doi.org/https://doi.org/10.1016/0021-9991(84)90073-1
https://www.sciencedirect.com/science/article/pii/0021999184900731
https://www.sciencedirect.com/science/article/pii/0021999184900731
https://arxiv.org/abs/1105.5815

186 BIBLIOGRAPHY

[10] C. Bona et al. “General-covariant evolution formalism for numerical relativity”. In:
Physical Review D 67.10 (May 2003). issn: 1089-4918. doi: 10.1103/physrevd.
67.104005. url: http://dx.doi.org/10.1103/PhysRevD.67.104005.

[11] Silvano Bonazzola, Eric Gourgoulhon and Jean-Alain Marck. “Numerical ap-
proach for high precision 3D relativistic star models”. In: Phys. Rev. D 58 (10
Oct. 1998), p. 104020. doi: 10.1103/PhysRevD.58.104020. url: https://link.
aps.org/doi/10.1103/PhysRevD.58.104020.

[12] S. Bowyer et al. “Cosmic X-ray Sources”. In: Science 147.3656 (Jan. 1965), pp. 394–
398. doi: 10.1126/science.147.3656.394.

[13] John Boyd, To Marilyn and Paraphrasing Eliot. “Chebyshev and Fourier Spectral
Methods”. In: (Oct. 2000).

[14] Avery E. Broderick, Abraham Loeb and Ramesh Narayan. “THE EVENT HORI-
ZON OF SAGITTARIUS A*”. In: The Astrophysical Journal 701.2 (July 2009),
pp. 1357–1366. issn: 1538-4357. doi: 10.1088/0004-637x/701/2/1357. url:
http://dx.doi.org/10.1088/0004-637X/701/2/1357.

[15] J. David Brown et al. “Turduckening black holes: an analytical and computational
study”. In: Phys. Rev. D 79 (2009), p. 044023. doi: 10.1103/PhysRevD.79.
044023. eprint: arXiv:0809.3533[gr-qc].

[16] Vitor Cardoso and Paolo Pani. “Testing the nature of dark compact objects: a
status report”. In: Living Reviews in Relativity 22.1 (July 2019). issn: 1433-8351.
doi: 10.1007/s41114- 019- 0020- 4. url: http://dx.doi.org/10.1007/
s41114-019-0020-4.

[17] Carpet: Adaptive Mesh Refinement for the Cactus Framework. url: https://
bitbucket.org/eschnett/carpet.git.

[18] Sean M. Carroll. Spacetime and Geometry: An Introduction to General Relativity.
Cambridge University Press, 2019.

[19] Gregory B. Cook. “Initial Data for Numerical Relativity”. In: Living Reviews in
Relativity 3.1 (Nov. 2000). issn: 1433-8351. doi: 10.12942/lrr-2000-5. url:
http://dx.doi.org/10.12942/lrr-2000-5.

[20] Thibault Damour and Gilles Esposito-Farèse. “Light deflection by gravitational
waves from localized sources”. In: Physical Review D 58.4 (June 1998). issn: 1089-
4918. doi: 10.1103/physrevd.58.044003. url: http://dx.doi.org/10.1103/
PhysRevD.58.044003.

[21] “Dynamical Structure and Definition of Energy in General Relativity”. en. In:
Physical Review 116.5 (Dec. 1959), pp. 1322–1330. issn: 0031-899X. doi: 10.
1103 / PhysRev . 116 . 1322. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRev.116.1322 (visited on 21/02/2020).

[22] Albert Einstein. “The Foundation of the General Theory of Relativity”. In: An-
nalen Phys. 49.7 (1916). [Annalen Phys.14,517(2005); ,65(1916); Annalen Phys.354,no.7,769(1916)],
pp. 769–822. doi: 10.1002/andp.200590044,10.1002/andp.19163540702.

https://doi.org/10.1103/physrevd.67.104005
https://doi.org/10.1103/physrevd.67.104005
http://dx.doi.org/10.1103/PhysRevD.67.104005
https://doi.org/10.1103/PhysRevD.58.104020
https://link.aps.org/doi/10.1103/PhysRevD.58.104020
https://link.aps.org/doi/10.1103/PhysRevD.58.104020
https://doi.org/10.1126/science.147.3656.394
https://doi.org/10.1088/0004-637x/701/2/1357
http://dx.doi.org/10.1088/0004-637X/701/2/1357
https://doi.org/10.1103/PhysRevD.79.044023
https://doi.org/10.1103/PhysRevD.79.044023
arXiv:0809.3533 [gr-qc]
https://doi.org/10.1007/s41114-019-0020-4
http://dx.doi.org/10.1007/s41114-019-0020-4
http://dx.doi.org/10.1007/s41114-019-0020-4
https://bitbucket.org/eschnett/carpet.git
https://bitbucket.org/eschnett/carpet.git
https://doi.org/10.12942/lrr-2000-5
http://dx.doi.org/10.12942/lrr-2000-5
https://doi.org/10.1103/physrevd.58.044003
http://dx.doi.org/10.1103/PhysRevD.58.044003
http://dx.doi.org/10.1103/PhysRevD.58.044003
https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1103/PhysRev.116.1322
https://link.aps.org/doi/10.1103/PhysRev.116.1322
https://link.aps.org/doi/10.1103/PhysRev.116.1322
https://doi.org/10.1002/andp.200590044, 10.1002/andp.19163540702

BIBLIOGRAPHY 187

[23] Albert Einstein and N. Rosen. “On Gravitational waves”. In: J. Franklin Inst. 223
(1937), pp. 43–54. doi: 10.1016/S0016-0032(37)90583-0.

[24] D. Gondek-Rosińska, E. Gourgoulhon and P. Haensel. “Are rotating strange quark
stars good sources of gravitational waves?” In: Astronomy Astrophysics 412.3
(Dec. 2003), pp. 777–790. issn: 1432-0746. doi: 10.1051/0004-6361:20031431.
url: http://dx.doi.org/10.1051/0004-6361:20031431.

[25] Tom Goodale et al. “The Cactus Framework and Toolkit: Design and Applic-
ations”. In: Vector and Parallel Processing – VECPAR’2002, 5th International
Conference, Lecture Notes in Computer Science. Berlin: Springer, 2003. url:
http://edoc.mpg.de/3341.

[26] Gourgoulhon, E and Grandclément, P and Marck, J and Novak, J and Taniguchi,
K. LORENE. [Online; accessed 10-May-2021]. url: https://lorene.obspm.fr.

[27] Eric Gourgoulhon. 31 Formalism in General Relativity. Springer Berlin Heidel-
berg, 2012. doi: 10.1007/978-3-642-24525-1. url: https://doi.org/10.
1007%2F978-3-642-24525-1.

[28] Eric Gourgoulhon, Philippe Grandclement and Silvano Bonazzola. “Binary black
holes in circular orbits. I. A global spacetime approach”. In: Phys. Rev. D 65
(2002), p. 044020. doi: 10.1103/PhysRevD.65.044020. eprint: arXiv:gr-
qc/0106015.

[29] Eric Gourgoulhon et al. “Quasiequilibrium sequences of synchronized and irrota-
tional binary neutron stars in general relativity. I. Method and tests”. In: Phys.
Rev. D 63 (2001), p. 064029. doi: 10.1103/PhysRevD.63.064029. eprint: arXiv:
gr-qc/0007028.

[30] Philippe Grandclement, Eric Gourgoulhon and Silvano Bonazzola. “Binary black
holes in circular orbits. II. Numerical methods and first results”. In: Phys. Rev.
D 65 (2002), p. 044021. doi: 10.1103/PhysRevD.65.044021. eprint: arXiv:gr-
qc/0106016.

[31] Philippe Grandclément and Jérôme Novak. “Spectral Methods for Numerical Re-
lativity”. In: Living Reviews in Relativity 12.1 (Jan. 2009). issn: 1433-8351. doi:
10.12942/lrr-2009-1. url: http://dx.doi.org/10.12942/lrr-2009-1.

[32] Roland Haas et al. The Einstein Toolkit. Version The "DeWitt-Morette" release,
ET_2020_11. To find out more, visit http://einsteintoolkit.org. Nov. 2020. doi:
10.5281/zenodo.4298887. url: https://doi.org/10.5281/zenodo.4298887.

[33] W. A. Joye and E. Mandel. “New Features of SAOImage DS9”. In: Astronomical
Data Analysis Software and Systems XII. Ed. by H. E. Payne, R. I. Jedrzejewski
and R. N. Hook. Vol. 295. Astronomical Society of the Pacific Conference Series.
Jan. 2003, p. 489.

[34] Wolfgang Kastaun. PostCacuts/PyCactusET. url: https://github.com/wokast/
PyCactus/tree/master/PostCactus.

https://doi.org/10.1016/S0016-0032(37)90583-0
https://doi.org/10.1051/0004-6361:20031431
http://dx.doi.org/10.1051/0004-6361:20031431
http://edoc.mpg.de/3341
https://lorene.obspm.fr
https://doi.org/10.1007/978-3-642-24525-1
https://doi.org/10.1007%2F978-3-642-24525-1
https://doi.org/10.1007%2F978-3-642-24525-1
https://doi.org/10.1103/PhysRevD.65.044020
arXiv:gr-qc/0106015
arXiv:gr-qc/0106015
https://doi.org/10.1103/PhysRevD.63.064029
arXiv:gr-qc/0007028
arXiv:gr-qc/0007028
https://doi.org/10.1103/PhysRevD.65.044021
arXiv:gr-qc/0106016
arXiv:gr-qc/0106016
https://doi.org/10.12942/lrr-2009-1
http://dx.doi.org/10.12942/lrr-2009-1
https://doi.org/10.5281/zenodo.4298887
https://doi.org/10.5281/zenodo.4298887
https://github.com/wokast/PyCactus/tree/master/PostCactus
https://github.com/wokast/PyCactus/tree/master/PostCactus

188 BIBLIOGRAPHY

[35] Janna Levin and Gabe Perez-Giz. “A periodic table for black hole orbits”. In:
Physical Review D 77.10 (May 2008). issn: 1550-2368. doi: 10.1103/physrevd.
77.103005. url: http://dx.doi.org/10.1103/PhysRevD.77.103005.

[36] Frank Löffler et al. “The Einstein Toolkit: A Community Computational In-
frastructure for Relativistic Astrophysics”. In: Classical and Quantum Gravity
- CLASS QUANTUM GRAVITY 29 (Nov. 2011). doi: 10.1088/0264-9381/
29/11/115001.

[37] Michele Maggiore. Gravitational Waves. Vol. 1: Theory and Experiments. Oxford
Master Series in Physics. Oxford University Press, 2007. isbn: 978-0-19-857074-5,
978-0-19-852074-0.

[38] Michele Maggiore. Gravitational Waves. Vol. 2: Astrophysics and Cosmology. Ox-
ford University Press, Mar. 2018. isbn: 978-0-19-857089-9.

[39] McLachlan, a Public BSSN Code. url: http://www.cct.lsu.edu/~eschnett/
McLachlan/.

[40] Charles W. Misner, K. S. Thorne and J. A. Wheeler. Gravitation. San Francisco:
W. H. Freeman, 1973. isbn: 9780716703440, 9780691177793.

[41] Yen Chin Ong. “Space–time singularities and cosmic censorship conjecture: A
Review with some thoughts”. In: International Journal of Modern Physics A 35.14
(May 2020), p. 2030007. issn: 1793-656X. doi: 10.1142/s0217751x20300070.
url: http://dx.doi.org/10.1142/S0217751X20300070.

[42] Don N. Page and Kip S. Thorne. “Disk-Accretion onto a Black Hole. Time-
Averaged Structure of Accretion Disk”. In: 191 (July 1974), pp. 499–506. doi:
10.1086/152990.

[43] Denis Pollney. Using IDAnalyticBH. url: https : / / einsteintoolkit . org /
thornguide/EinsteinInitialData/IDAnalyticBH/documentation.html (vis-
ited on 05/05/2021).

[44] Dennis Pollney. Lectures on Numerical modelling of gravitational wave sources.
Jan. 2020. url: http://www.chrisengelbrecht2020.com/lecture_notes.
html.

[45] Frans Pretorius. “Evolution of Binary Black-Hole Spacetimes”. In: Phys. Rev.
Lett. 95 (12 Sept. 2005), p. 121101. doi: 10.1103/PhysRevLett.95.121101.
url: https://link.aps.org/doi/10.1103/PhysRevLett.95.121101.

[46] Sbozzolo. kuibit. url: https://github.com/Sbozzolo/kuibit/.

[47] H. L. Shipman. “The Implausible History of Triple Star Models for Cygnus X-1:
Evidence for a Black Hole”. In: 16 (Feb. 1975), p. 9.

[48] O. Straub et al. “Modelling the black hole silhouette in Sagittarius A* with ion
tori”. In: Astronomy Astrophysics 543 (July 2012), A83. issn: 1432-0746. doi:
10.1051/0004-6361/201219209. url: http://dx.doi.org/10.1051/0004-
6361/201219209.

https://doi.org/10.1103/physrevd.77.103005
https://doi.org/10.1103/physrevd.77.103005
http://dx.doi.org/10.1103/PhysRevD.77.103005
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
http://www.cct.lsu.edu/~eschnett/McLachlan/
http://www.cct.lsu.edu/~eschnett/McLachlan/
https://doi.org/10.1142/s0217751x20300070
http://dx.doi.org/10.1142/S0217751X20300070
https://doi.org/10.1086/152990
https://einsteintoolkit.org/thornguide/EinsteinInitialData/IDAnalyticBH/documentation.html
https://einsteintoolkit.org/thornguide/EinsteinInitialData/IDAnalyticBH/documentation.html
http://www.chrisengelbrecht2020.com/lecture_notes.html
http://www.chrisengelbrecht2020.com/lecture_notes.html
https://doi.org/10.1103/PhysRevLett.95.121101
https://link.aps.org/doi/10.1103/PhysRevLett.95.121101
https://github.com/Sbozzolo/kuibit/
https://doi.org/10.1051/0004-6361/201219209
http://dx.doi.org/10.1051/0004-6361/201219209
http://dx.doi.org/10.1051/0004-6361/201219209

BIBLIOGRAPHY 189

[49] Jonathan Thornburg. “A Fast Apparent-Horizon Finder for 3-Dimensional Cartesian
Grids in Numerical Relativity”. In: Class. Quantum Grav. 21 (2004), pp. 743–766.
doi: 10.1088/0264-9381/21/2/026. eprint: arXiv:gr-qc/0306056.

[50] Einstein Toolkit. Einstein Toolkit Installation Guide. url: https://nbviewer.
jupyter.org/github/nds-org/jupyter-et/blob/master/CactusTutorial.
ipynb.

[51] A. Tveito and R. Winther. “Introduction to Partial Differential Equations: A
Computational Approach”. In: 1998.

[52] F H Vincent, E Gourgoulhon and J Novak. “3+1 geodesic equation and images
in numerical spacetimes”. In: Classical and Quantum Gravity 29.24 (Nov. 2012),
p. 245005. issn: 1361-6382. doi: 10.1088/0264- 9381/29/24/245005. url:
http://dx.doi.org/10.1088/0264-9381/29/24/245005.

[53] F H Vincent et al. “GYOTO: a new general relativistic ray-tracing code”. In:
Classical and Quantum Gravity 28.22 (Oct. 2011), p. 225011. issn: 1361-6382.
doi: 10.1088/0264-9381/28/22/225011. url: http://dx.doi.org/10.1088/
0264-9381/28/22/225011.

[54] Frederic H. Vincent et al. “Accurate Ray-tracing of Realistic Neutron Star Atmo-
spheres for Constraining Their Parameters”. In: The Astrophysical Journal 855.2
(Mar. 2018), p. 116. issn: 1538-4357. doi: 10.3847/1538-4357/aab0a3. url:
http://dx.doi.org/10.3847/1538-4357/aab0a3.

[55] Wikipedia contributors. Albrecht Dürer — Wikipedia, The Free Encyclopedia.
[Online; accessed 18-March-2021]. 2021. url: https://en.wikipedia.org/w/
index.php?title=Albrecht_D%C3%BCrer&oldid=1011812958.

[56] Wikipedia contributors. Ray tracing (graphics) — Wikipedia, The Free Encyc-
lopedia. [Online; accessed 18-March-2021]. 2021. url: https://en.wikipedia.
org/w/index.php?title=Ray_tracing_(graphics)&oldid=1011256911.

[57] MIGUEL ZILHÃO and FRANK LÖFFLER. “AN INTRODUCTION TO THE
EINSTEIN TOOLKIT”. In: International Journal of Modern Physics A 28.22n23
(Sept. 2013), p. 1340014. issn: 1793-656X. doi: 10.1142/s0217751x13400149.
url: http://dx.doi.org/10.1142/S0217751X13400149.

https://doi.org/10.1088/0264-9381/21/2/026
arXiv:gr-qc/0306056
https://nbviewer.jupyter.org/github/nds-org/jupyter-et/blob/master/CactusTutorial.ipynb
https://nbviewer.jupyter.org/github/nds-org/jupyter-et/blob/master/CactusTutorial.ipynb
https://nbviewer.jupyter.org/github/nds-org/jupyter-et/blob/master/CactusTutorial.ipynb
https://doi.org/10.1088/0264-9381/29/24/245005
http://dx.doi.org/10.1088/0264-9381/29/24/245005
https://doi.org/10.1088/0264-9381/28/22/225011
http://dx.doi.org/10.1088/0264-9381/28/22/225011
http://dx.doi.org/10.1088/0264-9381/28/22/225011
https://doi.org/10.3847/1538-4357/aab0a3
http://dx.doi.org/10.3847/1538-4357/aab0a3
https://en.wikipedia.org/w/index.php?title=Albrecht_D%C3%BCrer&oldid=1011812958
https://en.wikipedia.org/w/index.php?title=Albrecht_D%C3%BCrer&oldid=1011812958
https://en.wikipedia.org/w/index.php?title=Ray_tracing_(graphics)&oldid=1011256911
https://en.wikipedia.org/w/index.php?title=Ray_tracing_(graphics)&oldid=1011256911
https://doi.org/10.1142/s0217751x13400149
http://dx.doi.org/10.1142/S0217751X13400149

	List of Figures
	Introduction
	Overview of Thesis

	I Theory
	Worlds Shortest Primer on General Relativity
	Empty Space and Black Holes
	Two Black Holes

	Numerical Relativity and the 3+1 formulation
	Why a New Formalism?
	The 3+1 Formalism
	The New Quantities of the 3+1 Formalism, and the First Evolution Equation
	The Constraint Equations and the Second Evolution Equation

	The BSSN Formulation
	The Lapse Function and the Shift Vector
	Geodesic Slicing
	Harmonic Slicing and the 1+log Slicing

	Initial Condition and Black Hole Mergers
	Apparent Horizons
	Gravitational Waves

	Numerical Relativity Frameworks
	Why Use Numerical Relativity Frameworks
	Why Einstein Toolkit?
	Why GYOTO and LORENE?
	Need for the Conversion

	Einstein Toolkit
	Introduction
	Cactus
	Grid Functions
	Carpet and Adaptive Mesh Refinement
	Thorns
	Black Holes, Mergers and Gravitational Waves
	Simulation Factory

	Spectral Methods
	Theory
	Expanding In the Test Function
	Solving Differential Equations
	Using the Spectral Representation without Solving Differential Equations

	LORENE
	Multi-domain Spectral Methods
	Usage
	GYOTO and Ray Tracing in Numerical spacetimes

	Ray Tracing
	Introduction
	Doing Ray Tracing
	Ray Tracing in General Relativity and GYOTO
	GYOTO
	Ray Tracing in an Analytic Metric
	Numerical Metrics
	How the Ray Tracing is Done and Why a Spectral Method
	Astrophysical Objects

	Splitting the Black Hole Binary
	Splitting the Grids and the Splitting Function

	II Methods
	Simulating a Black Hole Merger with Einstein Toolkit
	Single Schwarzschild Black Hole
	Binary Black Hole Merger

	Conversion of the Data
	Introduction and Overview
	Reading Data From Einstein Toolkit and Making Interpolations
	Reading the Data
	The Simulated Domain
	Creating an Interpolation
	The None Geometry
	Geometries Used Later
	Pickling the Interpolation

	LORENE and the Spectral Transformation
	Finding the Collocation Points
	Retrieving and Formatting the Collocation Points from LORENE

	Getting the Values at the Collocation Points
	Handling the Boundary
	Handling the Symmetries
	Applying the Splitting Function
	Flattening the Results

	The Final GYOTO Formatting with LORENE
	Running the Last Conversion
	What Happens Inside the C Code

	Parallelization
	Test Cases
	Parameters Used in the Conversion
	Parameters found in the Python Code
	Parameters found in the C Code
	Future Plans

	A Closer Look at the Conversion Code
	Structure of the Conversion Code
	Using the Code

	Adapting and Using GYOTO with Converted Data
	Changes Made to GYOTO
	Using GYOTO without Spherical Symmetries
	Using Two Metrics in GYOTO
	Additions to the Source Code of LORENE and GYOTO

	Running GYOTO
	The Anatomy of the XML File
	Looking at Errors in the Raytracing
	Using Dumb Parallelization

	III Results
	Note on Units
	Reading from Einstein Toolkit
	Single Black Hole
	Effect of Different Types of Geometries
	Effect of Different Grid Sizes

	Binary Black Holes

	Conversion to LORENE
	Conversion of Test Cases
	Single Black Hole
	Binary Black Holes
	Effect of Different Resolution
	Effects of the Splitting Function

	GYOTO Results
	Metric From LORENE
	Test Case
	Single Black Hole
	Comparison with LORENE
	Reasons for Larger Norm Drift for Fixed Star

	Summary and a Final Showcase Result: Page-Thorne Disk

	IV Conclusion
	Conclusion
	Summary
	Conclusion
	Future Work
	Appendicies
	Installing Einstein Toolkit
	What Happens Inside the Code
	Additional Plots
	Einstein Toolkit Parameter Files
	Schwarzschild Black Hole
	Binary Black Hole
	Single Black Hole Two Puncture

	GYOTO Scripts
	Fixed Star
	Page-Thorne Disk

	Metric for Use in GYOTO with no Spherical Symmetry
	Bibliography

