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Abstract

The CO Mapping Array Project (COMAP) is a line intensity mapping experiment
currently in its Pathfinder phase, where it is targeting CO emissions at redshifts z =
2.4− 3.4. A main goal of the Pathfinder phase is to build a solid analysis and modeling
framework and achieve detection of CO at the current redshifts. Central to this effort
is the proper understanding and handling of different signal systematics.

In this thesis, we perform a comprehensive analysis of COMAP signal systematics and
suggest improved methods for two of the current filters in the low-level data analysis
pipeline, as well as the calibration. We claim that the currently employed frequency
filter, primarily meant to target gain fluctuations and temperature continuum sources,
is inadequate at handling the latter. We propose a new frequency filter, which performs
a joint maximum likelihood fit of both quantities. One of the most critical systematics
in the COMAP data is ground pickup by the far sidelobes of the telescope, currently
handled by the pointing template filter. We propose a new way of constructing pointing
templates, using ground pickup maps created from the COMAP data itself. Using a
destriper mapmaking model, we create examples of such ground maps, and perform a
preliminary analysis of the viability of introducing such a data-based pointing template
model. We complement this analysis with ground pickup maps from a simulated beam
profile.

We find that our new frequency filter outperforms the current filter at removing temper-
ature systematics in simulated data. The filter also significantly improves the removal
of continuum foregrounds. With Jupiter as a case-study, it reduces the mean squared
signal residual from 51σ to 1.5σ. Our destriper demonstrates the feasibility of pro-
ducing data-driven ground maps, which can be employed in a more refined pointing
template than the one currently employed, but also highlights several challenges which
must be overcome. Our simulated ground pickup qualitatively corresponds well to maps
produced by our destriper, but there are discrepancies, especially in the observational
range of CO2, which warrants further analysis. We find the simulated beam profile to
have a complicated frequency structure, which results in a ground profile that depends
non-trivially on both frequency and pointing. Finally, our calibration analysis concludes
that a calibration vane angle of 69◦ or below produces acceptable results, and we use
this analysis to implement a new and more robust scheme for hot load measurements.
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Preamble

Modern observational astronomy is pushing the dark frontiers of space ever farther
back, bringing light and knowledge to eras never before explored. COMAP, the CO
Mapping Array Project, is one new such experiment pursuing the distant past of our
universe. It is a Line Intensity Mapping (LIM) experiment, which itself is a relative
newcomer as far as observational paradigms go. LIM revolves around mapping the
3D density fluctuations of the universe using a chosen line emitter, and it excels both
at covering vasts areas of space in an effective manner, and reliably doing so at high
redshifts. COMAP uses carbon monoxide (CO) as a line emitter, the second most
abundant molecule in the universe, emitting photons at multiples of 115.27 GHz when
transitioning between quantized rotational states.

The ultimate goal of COMAP is to trace the distribution of star-forming galaxies at
the Epoch of Reionization, at redshifts z = 4.5 − 8. This is a future stage of the
experiment, which we call COMAP-EoR. In the current stage of the experiment, called
COMAP-Pathfinder, we target the Era of Galaxy Assembly at redshifts z = 2.4− 3.4.
We currently employ a single 10.4 m telescope, located at the Owens Valley Radio
Observatory in California. The purpose of the pathfinder stage is to prove the feasibility
of line intensity mapping with CO as a line emitter, and to lay a solid foundation of
relevant modeling and analysis efforts. These objectives are more easily obtained in the
pathfinder region, which is both closer, and better explored by other experiments.

COMAP started observing during the summer of 2019. Being in such an early stage,
we do not as of date have confirmed detection of CO luminosities. The CO signal is
incredibly weak, and we do not expect to have a clean detection until several more
years of observational time. In addition to increased observational time, a successful
detection will be conditioned upon the proper removal of noise and systematics in our
data. In COMAP, this is performed by the l2gen program, operated by the COMAP
group here at the University of Oslo, with the purpose of transforming raw telescope
data into data free of systematics, and suitable for mapmaking. This is done through a
series of filters, each aimed at dealing with specific systematics.

The purpose of this thesis is the improved understanding of a selection of these system-
atics, and concrete propositions of new and improved ways of dealing with these in the
l2gen program. We propose improved methods for two of the filters currently employed,
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namely the pointing template subtraction filter, and the polynomial filter. The pointing
filter deals with signal systematics correlated in the pointing coordinates of the tele-
scope, such as the atmosphere and the telescope sidelobe ground pickup. The current
filter fits and subtracts a linear function in azimuth and a 1/ sin(el) profile in elevation.
We introduce a more sophisticated model for dealing with the ground pickup, based
upon data-driven maps of the ground, created using a destriper mapmaking model.
The current polynomial filter is aimed at dealing with so-called gain fluctuations, as
well as any continuum temperature fluctuations in the data. While it is great at the
former, we explore its current inadequacies in dealing with the latter, where it fails to
take into account the system temperature frequency profile. We propose a new and
improved frequency filter, which is tailored to remove both types of fluctuations.

While these two new methods constitute the main contributions of this thesis, our work
also involves a broader analysis of COMAP data systematics. We explore the proper-
ties and impact of each individual filter in the pipeline, and the characteristics of the
systematics they target. The most important systematics for our work are temperature
fluctuations, especially in the form of ground pickup, which we perform a comprehensive
analysis of, both from a simulation and a data-driven perspective. We also perform an
analysis of the telescope hot load calibration and implement an alternative scheme for
calculating the calibration parameters more directly from the signal data.

The thesis is structured as follows. In Part I, we give the required background knowl-
edge to understand this thesis in the context of both COMAP and cosmology in general.
Chapter 1 gives a general overview of the field of modern cosmology, while chapter 2
gives a brief introduction to the field of line intensity mapping. Chapter 3 outlines
the COMAP experiment as a whole, with a special focus on the telescope and data
collection, which helps understand the sources of the different systematics in our signal.
In chapter 4, we introduce the current COMAP data analysis effort, with l2gen at the
center. We explain each of the filters in the program, and other relevant concepts to
COMAP data processing. In Part II, we present the contributions of this thesis, together
with relevant theory. Chapter 5 introduces mapmaking, first in general, and then tai-
lored towards our efforts of producing ground pickup maps with a destriper mapmaking
model. Chapter 6 presents the first of our main goals, namely a comprehensive analysis
of the telescope ground pickup, and a proposition for an improved pointing template
filter. In chapter 7 we analyze the COMAP calibration procedure and introduce a sim-
ple new scheme for performing it. In chapter 8 we analyze the noise properties of the
data at different stages of the l2gen pipeline. Finally, chapter 9 presents the second of
our main goals, namely the introduction of a new and improved frequency filter. We
implement and extensively test this filter on both simulated and real data.
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Chapter 1

Modern Cosmology

In this chapter, we give a very general introduction to the history and modern un-
derstanding of our universe, as well as modern cosmology as a scientific field. The
purpose of such an overview is mainly to provide some context as to why what we do
as astronomers is both important and interesting.

1.1 What is cosmology?

Cosmology is a branch of astronomy mostly concerned with the "big picture" of our
universe, studying how the very largest structures, as well as the universe as a whole,
change in space and time. Questions like how our universe was born, how it came
to look the way it does today, and if and how it will die. A few centuries ago, these
questions were left as much in the hands of philosophers as scientists. Today, the field
of modern cosmology has come far enough to put forward quantifiable and scientific
answers. Luckily for us, the answers have raised a lot of new and exciting questions,
many of them of equally abstract and absurd nature as the ones we started out with,
concerning dark energy, dark matter, black holes, and the like.1

Cosmology has had a golden age since the birth of what we call modern cosmology,
dated about a century ago. This field owes its huge success to the interplay between
two scientific advances:

• The emergence of a revolutionary theoretical framework for describing the universe
as a whole, starting with Einstein’s theory of General Relativity [1], and built upon
by numerous astrophysicists since then.

• The exponential increase in astronomical observations and available astronomical
data, together with the capability of storing and analyzing these vasts amounts
of data, through modern computing.

1Cosmology is still going through its teenage years where everything needs to be a bit dark and
edgy.
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6 CHAPTER 1. MODERN COSMOLOGY

The interplay between these two success stories has made modern cosmology enormously
potent at both presenting theories for how the universe works, and extensively and
quantitatively test and challenge these theoretical models through enormous amounts
of observational data.

1.2 History of the universe

The modern understanding of our universe is that it had some sort of beginning and
that it will have some sort of end. In other words, the universe is dynamic, its size
and properties changing over time. This view, although widely accepted today, was far
from common knowledge not that long ago. In fact, the assumption that the universe
was of a much more stationary nature was originally so strong that when Einstein
discovered that his equations could only explain a dynamic universe, not a static one,
he altered his equations by adding what we know as the cosmological constant. It was
later discovered [2] that the universe was not at all stationary, but was instead rapidly
expanding, strongly indicating that it had some sort of beginning. Einstein called the
alteration of his equations and thus failure to predict a dynamic universe "his biggest
blunder". Today, we are very confident that the universe (at least as we know it), began
sometime around 13.7 billion years ago [3], and that it since then has undergone a series
of wildly different epochs, finally evolving into the universe we know and love today.
We will in this section give a brief summary of some of the more important epochs in
the life of the universe.

1.2.1 The Big Bang and inflation

The earliest event in the modern understanding of the universe is the Big Bang, which
is just what we call the fact that the universe suddenly stopped being incredibly dense,
and started expanding. We do not really have any idea of why or how this hap-
pened, as our current theories break down in this regime.2 The Big Bang was followed
by a period called inflation [4], which is both quite descriptive and the understate-
ment of the century, where the universe abruptly expanded by a factor of at least
100,000,000,000,000,000,000,000,000, over a period of less than
0.00000000000000000000000000000000001 seconds [5, 6]. Prior to inflation, the universe
was unimaginably hot and dense, consisting of quantum fluctuations in thermal equi-
librium. These quantum fluctuations were suddenly blown up to span large stretches of
space. While the processes driving this extremely rapid expansion are not well under-
stood, inflation is still a vital part of modern cosmology, as the rapid expansion of these
local quantum fluctuations help explain several observations that would otherwise be
in direct conflict with established theory, such as the Horizon problem [7].

2The two most advanced theories in physics are General Relativity, which explains how massive
universe-sized systems works, and Quantum Mechanics, which explain how really small stuff works.
Physicists have been unable to unify the two theories, meaning that our understanding of the early
universe, where both theories are needed, is very limited.
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1.2.2 The primordial soup

After inflation dwindled out, the universe kept expanding, albeit at a much slower pace.
It was still incredibly dense and hot, too hot for the everyday particles we see around
us to exist, as elementary particles were coupled together in a dense plasma. During
this time, the average distance light could travel before bumping into something and
changing direction, the so-called mean free path, was short. The universe was, in other
words, opaque. As the universe kept expanding, it eventually cooled down to the point
where quarks could form protons and neutrons [8]. Not long after this, protons and
neutrons combined to form some of the lighter atomic nuclei, like helium and deuterium
in a process called Big Bang Nucleosynthesis. The abundance of these elements in
the universe today is believed to stem from this process, only minutes after the Big
Bang. The predicted abundances of these elements also match observed values to high
accuracy, making it one of the strongest pieces of observational evidence we have in
support of the Big Bang model [9].

In this early stage of the universe, and for some time still, the pressure in the universe
was far too large for gravity to pull ordinary matter together to form any sort of struc-
tures, and the universe was very uniform. It is however theorized that much of the
matter in our universe is so-called dark matter, which experiences little or no pressure.
Dark matter is believed to have collapsed into galaxy-like structures called dark matter
halos in the early stages of the universe [10]. These become important for structure
formation later in the universe.

1.2.3 Recombination and the cosmic microwave background radiation

The early universe was in thermal equilibrium of uniform temperature and pressure.
As the universe expanded, this pressure and temperature fell gradually, until the tem-
perature more or less simultaneously across the universe fell below the threshold where
electrons bind to protons to form hydrogen. This process is known as recombination [8],
and happened some 380,000 years after The Big Bang. The universe was now suddenly
transparent to photons, which had up until now been bouncing between the charged
electrons through Thomson scattering. Hydrogen is neutral and therefore does not par-
take in the sport of Thomson scattering. The photons which had been bouncing around
the plasma soup since the dawn of time suddenly found themselves traveling in lonely
straight lines, without bouncing into anything at all. Most of them have today yet to
meet a single other particle, over 13 billion years later. Some of them are lucky enough
to hit Earth (or even better, a space telescope), where they are given an especially warm
welcome. These photons are known to us today as the Cosmic Microwave Background
(CMB) radiation, and because they have traveled mostly unobstructed through space
since shortly after the Big Bang, they give us unique insight into the early workings
of the universe. I take some relief in knowing that, even though they are among the
loneliest particles in the universe, they are today thoroughly appreciated, having more
or less revolutionized modern cosmology, and enabled several Nobel Prizes in physics.
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Figure 1.1: A simple outline of some of the more important events in the history of our
universe. Figure credit: [14]

1.2.4 A universe of light

After recombination and the release of the CMB radiation, the universe went into a
period of a few hundred million years known as the dark ages, named so due to the lack
of light sources in the universe. The pressure in the universe had now fallen to a point
where gravity became able to attract ordinary matter (which was mainly hydrogen and
helium) into star-forming gas clouds. A few million years after the Big Bang, these
clouds formed the first stars in our universe, known as Population III stars [11]. These
stars usually formed in the gravitational wells of the dark matter halos created in the
earlier universe and became part of the first galaxies.

The first stars and galaxies brought with them a period known as reionization [12],
lasting from around 200 million to 1 billion years after the Big Bang. At this point,
the universe mostly consisted of neutral hydrogen, formed when electrons and protons
coupled during recombination. During the long period of reionization, the universe
would again become ionized, as radiation from early galaxies ripped electrons from
their atoms [13]. The end of the reionization era gives rise to what we call the modern
universe, which bears much resemblance to the universe we see today, around 13 billion
years later. Formation of stars and galaxies play an important role during this era.

1.3 The theoretical framework of astronomy

1.3.1 General relativity in a nutshell

The by far most important theoretical building block of cosmology is Einstein’s theory
of general relativity. General relativity is most importantly a theory about gravity,
and how stuff in the universe gravitationally moves and interacts. It can be thought
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of as a natural extension of Newton’s laws of motion, which, unlike general relativity,
completely breaks down if looking at something with high density or velocity. Very
simply, the central parts of general relativity can be summarized in two concepts.

Concept one: Space and time are actually part of a unified, dynamic space-
time, which can curve and bend. In general relativity, the three spatial dimensions
and the single time dimension are intertwined into a single concept called spacetime.
The most important property of this spacetime is that it can curve. The curvature of
spacetime causes the force we know as gravity. In general relativity, gravity is actually
not a force at all. Particles under the effect of gravity are moving along straight lines
known as geodesics. They appear to be under influence of some force simply because
spacetime itself bends, shaping the path of the particle. This does however not explain
where this curvature comes from, which brings us to the second concept.

Concept two: The curvature of spacetime tells stuff how to move, and stuff
tells spacetime how to curve. This interaction between spacetime and the content
of the universe is described by Einstein’s field equations,3

Gµν =
8πG

c4
Tµν , (1.1)

or, more intuitively,

[spacetime] = [some constants] · [content of the universe]. (1.2)

On the left-hand side of the equation, we have the Einstein tensor, Gµν , which represents
the shape and behavior of the spacetime. The energy-momentum tensor on the right,
Tµν , describes the content of the universe. The take-away message from this equation is
that the spacetime and content of the universe are neatly intertwined, and to understand
either we need to look at both.

1.4 The ΛCDM model

The ΛCDM model is sort of the poster child of modern cosmology, holding most of the
ingredients of what has become the accepted version of components and events in the
universe. Most efforts in cosmology today either directly or indirectly involve testing,
extending, or, if you are bold, disproving the ΛCDM model.

The ΛCDMmodel aims to explain a series of disagreements between theory and observa-
tions which have emerged in the last few decades [8] by introducing two new ingredients
to the universe. Without ΛCDM, the story goes something like this: We have a theory
for how the universe works (mainly general relativity); we put into it the ingredients
we believe our universe to consist of; and out pops a universe. Except it does not look

3If this looks like a single equation to you, and you wonder why I said "equations", this is because
Gµν and Tµν are mathematical objects called tensors, and this single equation does, in fact, hold 16
equations. The tensor notation makes it much prettier to look at.
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anything like our universe. Galaxies should not exist at all, the distribution of matter
is way off, and the expansion of the universe is all wrong. So what happened? Either
our theory is wrong, and Einstein’s general relativity is off, or we put in the wrong
ingredients and were wrong about what our universe consists of. ΛCDM postulates the
latter.

1.4.1 Theory

The ΛCDM model proposes that, in addition to the conventional components of the
universe (baryonic matter, photons, neutrinos, etc.), there exist two additional compo-
nents, known as dark matter and dark energy. The two are commonly confused but are
in fact very different phenomena. We could in theory be right about the existence of
one of them, but not the other. Both phenomena are introduced to explain a number
of observations that would otherwise be at odds with established theory, and they are
both therefore best understood in the context of why we need them to exists.

1.4.2 Dark matter

It is believed that about 85% of the matter in the universe is dark matter, which
differs from "ordinary" matter in that it does not interact electromagnetically with
other matter4. The lack of electromagnetic interaction means that dark matter does
not absorb or emit electromagnetic radiation, such as light (thereby the name), and
is therefore difficult to observe directly. Electromagnetism is also responsible for a lot
of other ways in which ordinary matter can interact, making dark matter completely
collisionless. It does, however, have mass, which is exactly the reason we believe it
exists, as it interacts gravitationally with other objects. If the Sun was made of dark
matter, Earth would keep its ordinary orbit, as if nothing was amiss, however, the Sun
would be completely invisible. This hints at why need dark matter to exists in the first
place: We observe that the amount of matter we can see in the universe is not sufficient
to explain the observed behavior of our universe, nor how it came to be as it is. Galaxy
formation in the early universe would not be possible, galaxies would have different
structure and rotation properties than we observe them to have, and light coming from
distant galaxies would not twist and bend as much due to gravitational lensing as we
observe it to do.

For all of these reasons, the astrophysical community is rather confident that some sort
of dark matter must exist. Fascinatingly enough, even though we are quickly narrowing
down on the properties dark matter must have in order to explain our universe, we have
rather little clue about what exactly it is. Potential candidates include sterile neutrinos,
Weakly Interacting Massive Particles (WIMPs), or even tiny black holes, as well as a
dozen others.

4Many theories also suggest that it does interact electromagnetically, but very weakly. In that case,
everything I am about to say is only true to a large extent.
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1.4.3 Dark energy

It was discovered in 1929 by Hubble [2] that the universe is not at all static, but instead
expands. This in itself could be explained by the fact that the universe was once much
smaller, inflation rapidly expanded it, and when inflation ended, everything was moving
away from everything else at some speed. The expansion would then gradually slow
down, as every object in the universe gravitationally pulled on everything else. However,
it has in later years been discovered that the expansion is not at all slowing down. In
fact, it is instead speeding up [15, 16]. This acceleration would require some sort of
force driving it. This unknown force is what we call dark energy.

Since the discovery of the acceleration of the universe, several other observations also
strongly support the existence of dark energy. As with dark matter, we do not really
know what dark energy is, but we are today rather confident that it exists. We also
know pretty well what it does. Dark energy acts sort of like a negative gravity, or a
negative pressure, evenly spread throughout the universe. It is believed to be a property
of vacuum itself. An important consequence of this is that, as the universe expands,
there will be more dark energy, as there is more empty space between everything. The
more dark energy, the faster the expansion will happen, and so on. In other words, any
two objects that are not gravitationally bound to each other (like two galaxies far away
from each other), will drift further and further away, faster and faster.

As an extra treat, it turns out that the modification you need to make to Einstein’s
equations to explain dark energy is to add a cosmological constant. You remember that
thing Einstein added to his equations in order to explain a static universe, and then
shamefully removing again? Turns out, he might have been right about that, just for
all the wrong reasons. In the ΛCDM model, the cosmological constant is now back in
his equations, as the term for dark energy.

1.4.4 Observations and alternatives

Since its gradual introduction throughout the 80s and 90s, the ΛCDM model has been
enormously successful and goes almost hand-in-hand with the success of modern cos-
mology itself. It has predicted numerous observables with astonishing accuracy [17],
and so far withstood all attempts at overthrowing the model.5

As hinted in the beginning of this section, one could go another way in explaining the
disagreements between theory and observations. Instead of introducing dark matter
and dark energy into the universe, some theories, like the theory of modified Newtonian
dynamics [18] try to explain observed phenomena by instead modifying or completely
replacing general relativity. These theories have generally been much less successful
than ΛCDM at explaining the vast set of observational phenomena we have available
today.

5Although, as most models in astronomy, it is of course not without its smaller problems, and is not
a complete theory of the universe. It is, however, the closest we are to such a thing so far.
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1.5 Observational astronomy

We now move from the realm of theory and into the field of observational astronomy,
which is the field this thesis falls within. It is worth taking a step back and reflecting
on the premise of observational astronomy, which differs somewhat from a lot of other
scientific fields. First of all, an astronomer cannot really conduct experiments the way
a physicist can. The universe is our laboratory, and we are left observing whatever
experiments the universe feels like doing. Because of this, astronomers have to be clever
in finding observable phenomena which can test their theories. Secondly, the objects
we are interested in are, quite inconveniently, located very far away from Earth, often
halfway across the universe. This poses numerous problems, both in actually finding
phenomena that can test our theories, and then actually observing them properly. In
other words, what you (can) see is what you get.

1.5.1 Time travel and redshifts

While that might not sound too promising, there is a silver lining. The fact that much
of the universe is so far away means that light from distant objects takes millions or
billions of years to reach Earth. When looking at far-away objects, we are looking into
the distant past. In some cases, like with the CMB, almost all the way back to The
Big Bang. This is so important for our understanding of the universe because of how
dynamic the universe is. The universe of today is vastly different than it was long ago,
and having access to the state of the universe over different timescales is a huge help in
testing our theories.

Astronomers also got another ace up their sleeve, which helps us gauge how far away
something is, and by extension, how long ago it happened. Because of the expansion
of the universe (believed to be caused by dark energy), everything in the universe is
moving away from everything else, and the velocity is proportional to the distance. If
something is twice as far away from us as something else, it will move away from us
twice as fast. This is known as Hubble’s law: v = H0D. The law serves as a useful
approximation, but has two limitations. Galaxies usually have some random velocity not
related to the expansion of the universe, known as a peculiar velocity, which dominates
the velocity profile of closer galaxies. Additionally, the expansion of the universe is
believed to accelerate over time, and the Hubble constant H0 is only an approximation
of the time-dependent Hubble parameter H(t). Hubble’s law is therefore only accurate
up to a certain distance. Within these limitations, Hubble’s law allows us to easily
approximate the distance to most of the galaxies we can observe in our universe.

Calculating how fast something is moving away or towards us is done using something
called redshift. When an observer moves relative to a light source, that light will have its
wavelength either contracted or expanded when observed by the observer. The redshift
z of a photon is defined as

z =
λobs − λsource

λsource
, (1.3)
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where λsource and λobs are the wavelengths of the photon as it is sent from the source,
and observed by the observer, respectively.

In our case, every celestial object (except very close objects) is moving away from us,
and we simply talk about how much longer the wavelengths of the light becomes, e.g.
redshift.6 We know a lot about what kind of colors and light spectra different types of
celestial objects should have, by studying close-by objects. If we compare this to the
spectra we observe distant objects to have, we can cross-match them, and calculate how
much the light has been redshifted. This then allows us to calculate how fast the object
is moving, how far away it is, and then, finally, how long ago the light was emitted.

As astronomers do not directly measure how long ago some observed event took place,
redshift is often used as a measure of time in astronomy, as it is the quantity directly
observed. We use the variable z for redshift, and the redshift today is z = 0, while the
emission of the CMB is estimated to have happened at z = 1100. Ahead in the next
chapter, figure 2.2 shows the redshifts at certain important events in the universe.

1.5.2 The state of modern observational astronomy

As with any scientific discipline, the progression of astronomy is dependent on both
the development of new theories, as well as experimental data which can confirm or
challenge these theories. Just as there have been great strides in the theoretical fields
of astronomy, observational astronomy has also been entirely revolutionized in the past
century. The Earth is now filled with telescopes, satellites, and detectors collecting
data in amounts that were previously completely unfeasible. These data are analyzed
and processed with the help of modern computing, often with huge computational
requirements.

Until recently, photons were the only method of observing the universe (and until a bit
less recently, only photons on the visible light spectrum). Photons are still by far the
dominant source of information in astronomy, but they are today accompanied by a
few other sources, such as gravitational waves, neutrinos, and protons (in the form of
cosmic rays). The emergence of these new fields has been a huge success for astronomy,
both in probing phenomena for which photons are inadequate, and for cross-referencing
or improving existing results. While there exist a magnitude of different observational
fields and paradigms in astronomy, we will give a brief summary of two of the most
important ones; CMB experiments, and star and galaxy surveys. In the next chapter,
we go into more detail on line intensity mapping, the paradigm under which COMAP
falls.

6In our case, the redshift is not actually caused by the relative velocity of the object itself, but rather
the expansion of space, which stretches the light as it travels towards us. It is important to remember
that the objects are not moving away from us in a conventional manner, but rather because the space
itself between us and the object expands. However, it results in the same redshift as it would if the
object was moving away from us in a "conventional" manner.
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CMB experiments

The cosmic microwave background radiation was emitted only 380,000 years after The
Big Bang, and is one of our most important ways of understanding events in the early
universe. It was released from everywhere in the universe at once, and can therefore
be observed all the time by looking in any (relatively unobstructed) direction in space.
The CMB had a temperature of approximately 3000 K at emission,7 observed today
at a redshifted temperature of 2.725 K. This places it in the microwave range, and its
frequency distribution peaks at about 160 GHz. Several satellites have been dedicated
to observing the features of the CMB, like COBE (1989) [19], WMAP (2001) [20], and
Planck (2009) [21], each giving us access to a more accurate and sophisticated picture
of the early universe. The most important analysis of the CMB radiation is the study of
how different regions deviate from this temperature of 2.725 K, so-called anisotropies,
as this tells us a lot about astrophysical properties in the early universe. The deviation
from this average temperature, as observed by the Planck satellite, is shown in figure
1.2.

Star and galaxy surveys

Star and galaxy surveys are some of the most widely applied observational paradigms
in astronomy. They work by targeting, observing, and cataloging a large number of
stars or galaxies. Surveys can be classified as either photometric or spectroscopic.
Spectroscopic surveys aim at resolving the emitted frequency spectrum of the observed
object, which is useful for, e.g., resolving star abundances through absorption lines
in the spectrum. Photometric surveys trade the frequency resolution of spectroscopic
surveys for higher brightness sensitivity (or shorter integration time) by measuring only
the aggregate emission over a range of frequencies. Such surveys might instead focus
on time-correlated features, such as the periodic luminosity profile of Cepheids or RR
Lyrae, which was used to produce the cosmic distance ladder, and measure a value of
H0 [15]. Surveys can also be classified by the frequency range they target, as there
exist surveys targeting everything from radio waves to gamma rays. Some of the largest
surveys as of date are the Sloan Digital Sky Survey [22], a photometric survey targeting
galaxies and quasars, the Dark Energy Survey [23], a recent optical photometric survey,
and the Gaia mission, a satellite survey mainly targeting stars in the Milky Way [24],
just to mention a few.

7Most photon sources, like the CMB, emit photons at a range of different frequencies. Astronomers
therefore often find it more convenient to talk about the temperature of a photon source instead of the
frequency of the photons they emit. If the photon source is what we call a perfect black body (which the
CMB is), its temperature alone is enough to know everything about the frequency of emitted photons,
which follow a distribution known as a Planck spectrum.
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Figure 1.2: Temperature fluctuations in the CMB from the Planck 2015 results [21].
Figure credit: ESA and the Planck Collaboration
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Line Intensity Mapping

Line intensity mapping (LIM) is a relatively new but rapidly growing field in observa-
tional astronomy, aimed at mapping large volumes of space by measuring the integrated
emission of spectral lines, instead of trying to resolve individual galaxies or stars. This
is done using a chosen emission line—a specific photon frequency arising from some
phenomena. The most common such lines are Lyα, emitted when the hydrogen elec-
tron falls from the n = 2 to the n = 1 orbital, and the 21cm line, emitted when the
hydrogen electron flips from a parallel to anti-parallel state with the nucleus proton.
Other common examples are the [CII], OII, and CO lines [25]. By knowing the specific
frequency of the chosen emission line, the distance to the observed target can also be
calculated through redshift, which allows the mapping of a three-dimensional volume.

2.1 Why line intensity mapping?

As a newcomer to the stage of observational astronomy with few detections to date, line
intensity mapping needs convincing strengths to prove itself worthwhile the decades of
research and testing it takes to mature an entirely new observational paradigm. As of
today, the two largest observational paradigms in cosmology have been CMB and galaxy
surveys. In terms of observational goals, LIM has perhaps most in common with galaxy
surveys, as the main goal of LIM has long been fulfilled by galaxy surveys, namely, to
map large 3D volumes of space at different redshifts [26]. Discussing the strengths of
LIM as an observational paradigm is easiest done by comparing it to galaxy surveys.
In this regard, LIM has a handful of obvious advantages.

At low redshifts, one of the main strengths of LIM is its ability to probe huge patches
of the sky in a fast and cost-effective fashion [27]. Galaxy surveys are limited by their
ability to catalog a large and representative set of galaxies from the relevant patch of
sky. LIM can also combine emissions from other sources than galaxies and starts, such
as interstellar or intergalactic medium.

At higher redshifts, the fact that galaxy surveys need to distinguish individual galaxies

17
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is a glaring weakness that LIM does not possess. There will be a redshift threshold
where galaxy surveys are virtually incapable of gathering data, and even at moderate
redshifts they will have a clear bias towards brighter galaxies [28]. LIM possesses no
such weakness, as it merely integrates the luminosity contribution of all galaxies in the
observational range, even if they can’t be individually distinguished. Figure 2.1 illus-
trates this difference. LIM can therefore give new insight into the relatively unexplored
region between the regions already well explored by the CMB (z = 1100), and galaxy
surveys (z = 0-2), as illustrated by figure 2.2. One of the main scientific goals of line
intensity mapping is to probe into the Epoch of Reionization (z = 5-27) [25], something
galaxy surveys struggle to do.

Figure 2.1: Figure illustrating the observational advantage of LIM as opposed to galaxy
surveys. Left: Simulated galaxy assembly, with sources bright enough to be detected by
low-threshold galaxy survey marked in red. Right: Intensity map from corresponding LIM
survey. Figure credit: Patrick Breysse

Figure 2.2: LIM aims to cover a large period of time in between the regions already well
explored by galaxy surveys and the CMB. Figure credit: [27].
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2.2 Science goals

Epoch of Reionization

Line intensity mapping looks set to drastically improve our understanding of the Epoch
of Reionization (EoR) (z=5-27), a very important period in the formation of our uni-
verse, which so far has been challenging to probe. We expect to see a wide variety of
lines suited for LIM originating in this epoch, as illustrated by figure 2.3. The ability
to correlate different types of emission lines will be a considerable strength in future
efforts to better understand the EoR.

Figure 2.3: The 21cm line traces neutral intergalactic medium, while Lyα traces the ionized
bubbles around galaxies. The CO and CII lines originate from the galaxies themselves.
Figure credit: Patrick Breysse

Galaxy evolution and star formation

Many questions regarding galaxy evolution and star formation can be better answered
with the help of LIM. These include questions about star formation rates, properties
of active galactic nuclei, interstellar medium, and intergalactic medium. Non-LIM sur-
veys targeting these phenomena are often limited in the redshift range they can target
without bias, or the area they can span at lower redshift without suffering from cos-
mic variance [29]. LIM can also offer powerful cross-analysis data with other types of
surveys targeting the same phenomena.

Large scale structure and dark energy

Many astrophysical models can be constrained through large-scale low redshift sur-
veys, like ΛCDM parameters, dark energy models, and primordial non-Gaussianities.
Although wide-field galaxy surveys will fill this need to an adequate level, LIM look
poised to be a much cheaper and faster alternative. LIM can also probe baryonic acous-
tic oscillations over large continuous redshift ranges [27].
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2.3 Experimental landscape

The number of line intensity mapping experiments is quickly growing, and we will here
present some of the current experimental efforts in the field. An introduction to COMAP
as a LIM experiment will be given in the next chapter. Figure 2.4 gives an overview of
a large number of current and potential line intensity mapping efforts, illustrating the
large span of both angular scales and redshift ranges which LIM is able to target.

TIME

The Tompgraphic Ionized-carbon Mapping Experiment (TIME) [30] is an observational
array targeting the emission line of singly ionized carbon (the [CII] line) at redshifts
of z = 5.3 − 8.5, at the Epoch of Reionization. Being a LIM experiment, TIME will
among other things be sensitive to dwarf galaxies, which may have played a central role
in producing ionizing UV photons. The survey will also target rotational CO emissions
at redshifts of z = 0 − 2, which can be used to constrain the density of star-forming
molecular gasses.

COPSS

The COPSS I and II surveys [31, 32] target the same CO(1-0) transition as COMAP
does, at redshifts of z = 2.3− 3.3, using an array of 8 3.5 m antennas. The experiment
has a non-zero detection of CO of 3.1× 103 ± 1.3µK(h−1Mpc)3 at z = 3, which serves
as a ground for comparison for future COMAP detections.

HIRAX

The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) [33] is a planned
radio telescope array, that will measure the Baryon Acoustic Oscillation (BAO) from
the 21 cm line at redshifts z = 0.8−2.5. The array will consist of 1024 6 m telescopes at
the SKA site in South Africa. The experiment aims to use accurate BAO measurements
over a wide redshift range to constrain the dark energy equation of state.
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Figure 2.4: Overview of current and proposed LIM experiments by the redshift over which
they operate at the x-axis, and the upper and lower angular resolution of the experiments
on the y-axis. Figure credit: [25].
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Chapter 3

COMAP

The COMapping Array project (COMAP) is a line intensity mapping project, using CO
as a line emitter, ultimately aimed at tracing the distribution of star-forming galaxies at
the Epoch of Reionization (EoR) (z=6-8) [34]. The project is currently at a pathfinder
state, tracing CO at the Epoch of Galaxy Assembly (z=2.4-3.4), meant to provide both
a proof-of-concept and valuable experience, for moving to the EoR stage of the project.

The project is a collaboration between a series of universities and institutions [35],
including The California Institute of Technology, The University of Oslo, The University
of Manchester, Stanford University, The University of Maryland, Princeton University,
The University of Toronto, and UC Berkeley. The project currently employs a single
telescope, operated by the Owens Valley Radio Observatory (OVRO) of the California
Institute of Technology.

3.1 CO as a line emitter

As most of the previous section went into the aims and advantages of LIM in general,
it is worth taking a look into how CO distinguishes itself from other lines. Carbon
monoxide is the second most abundant molecule in the galaxy, after H2. However, unlike
H2, which is symmetric, CO has an electric dipole moment, giving it a quantized ladder
of allowed rotational energy levels [36], determined by the total angular momentum
quantum number J , as

Erot =
J(J + 1)h̄2

2I
, J = 0, 1, 2, ... (3.1)

where I = mCmO
mC+mO

r2 is the moment of inertia (see figure 3.1). The energy emitted from
allowed transitions of ∆J ± 1 then becomes

∆Erot =
h̄2J

I
, (3.2)
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which in the case of CO translates to line frequencies of

νJ→J−1 =
h̄J

2πI
≈ 115 GHz · J. (3.3)

The frequency of the emitted lines form a ladder-like structure, as multiples of the
lowest energy transition. This is an important argument for the use of CO. With a wide
enough observed frequency range, cross-correlation between these ladder steps gives a
powerful constraint on the CO brightness. This is an especially important property
for line intensity mapping because there often is a certain level of degeneracy between
CO and other so-called interloper lines. These are emission lines from other sources,
happening at redshifts such that they overlap with the CO frequencies we are looking
for. Interloper lines can be difficult to distinguish from CO signal, but an efficient way
of breaking the degeneracy is cross-correlation between different frequencies on the CO
emission ladder.

Figure 3.1: CO is a molecule consisting of a carbon and an oxygen atom. Due to being a
molecule, it has an angular momentum, which is quantized into a series of allowed energies.
Figure credit: [37].

This effect also works the other way around. CO lines from any narrow frequency band
will in reality contain contributions from several vastly different redshifts, with different
transitional lines on the ladder. This does of course introduce degeneracy which must
be broken by other means, but in theory, enables the probing of several entirely different
redshift ranges within a single narrow frequency band.

COMAP mainly considers the CO(1-0) transition at 115 GHz, with secondary consid-
erations for the CO(2-1) transition at 230 GHz. As COMAP Pathfinder is observing in
the 26-34 GHz range, it will pick up CO(1-0) signal at redshift z = 2.4− 3.4 and C(2-1)
at z = 5.8− 7.8, as demonstrated by figure 3.2.

3.2 Telescope details

The COMAP collaboration currently employs a single retrofitted telescope, originally
from the millimeter-wave array, and later used as a part of the CARMA project. It is a
10.4m Leighton telescope [38] situated in the Owens Valley Radio Observatory (OVRO)
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Figure 3.2: Left: Redshift-frequency ranges probed by the current COMAP Pathfinder
experiment, and the future COMAP-EoR, with the three first rotational CO line emissions
shown as solid black lines. Right: The H2 density constraint as function of redshift for
different surveys. Redshift ranges which COMAP has the potential to constrain are shown
as shaded regions. Figure credit: Kieran Cleary.

in California, and operated by the California Institute of Technology. Later phases of
the collaboration aim to add more telescopes of the same type to the array.

The telescope dish employs 84 honeycomb aluminum panels. Being a Cassegrain reflec-
tor telescope, the main dish which reflects signal onto the 1.1 m secondary reflector [39],
mounted over the main dish upon four support legs. The secondary reflector again re-
flects the signal onto the 20 pixels, or "feeds", each mounted in a feed horn at the center
of the main dish. The feeds, together with the rest of the signal processing equipment,
is placed in a cryostat, a section of the telescope cooled down to 10− 20 K, for minimal
thermal noise. The 20th feed is a "blind" feed, added to distinguish between internal
and external signals in the receivers, and this feed is excluded from all our analysis.

3.2.1 Signal processing

The signal is passed through a series of modules connected to each feed. First is po-
larization, where, as of writing, 15 of the 19 feeds have two circular polarizers, 2 feeds
have a single such polarizer, and 2 feeds have none. The polarizers separate the data
into one or two orthogonal circular polarized signals. A discovered disadvantage of the
double polarization has been the presence of standing waves in between the polarizers.

Each feed contains a total of five low-noise amplifiers (LNA) at different stages of the
signal processing. LNAs serve the purpose of amplifying the power of a signal, with as
small a degrading of the signal-to-noise ratio (SNR) as possible. Combined, the LNAs of
each feed boost the signal power by over 140 dB [40]. Part of the signal processing is also
two down-converter modules (DCMs), as well as an in-phase quadrature (IQ) mixer. The
DCMs and IQ-mixer convert the signal from the observed signal range of 26− 34 GHz
into four sidebands, which we refer to as A:LBS, A:USB, B:LSB, and B:USB ("LSB" and



26 CHAPTER 3. COMAP

"USB" referring to lower and upper sideband), with downconverted frequency ranges
of 2 − 4 GHz, 4 − 6 GHz, 6 − 8 GHz and 8 − 10 GHz, respectively. These frequency
ranges correspond to 2 GHz sections of the observed signal range of 26 − 34 GHz, in
the same increasing order. Finally, the signal passes through a spectrometer, which
splits each sideband into 1024 frequency channels, of frequency resolution ≈ 1.95 MHz.
An important point to keep in mind is that all these signal processing modules are
individual to each feed, and so are any individual biases or systematics introduced by
them.

3.2.2 Calibration vane

The telescope has a calibration vane mounted next to the feed array. This vane can be
rotated to fill the field of view of the entire feed array. The temperature of the vane is
accurately measured with a temperature sensor and is used together with the observed
power from the receivers to perform a gain calibration, which we will come back to in
detail later.

3.3 Fields

The current COMAP-Pathfinder focuses on three main observational fields, which we
have named CO2, CO6, and CO7. They have been chosen because of their high elevation
from the Galactic disk, low amount of astrophysical foregrounds, and overlap with the
HETDEX survey, which allows for useful cross-correlation. The location of the fields
compared to the Galactic plane is shown in figure 3.3, against a 30 GHz emission map
from the Planck survey. Figure 3.4 shows the fields as we observe them drifting across
the sky, from the perspective of the telescope.

The size of the fields in parallel direction (along the line of sight) can be approximated
for small observational frequency bin δνobs as [41]

δl|| ≈
c(z + 1)2

H(z)

δνobs

ν0
, (3.4)

where H(z) is the local Hubble parameter, ν0 = 115.27 GHz is the frequency of the
emitted CO1 → 0 signal, and δνobs is some small frequency range we observe the
signal. We observe redshifts around z ≈ 2.9, giving a local Hubble parameter of [8]

H(z = 2.9) ≈ H0

√
Ωm,0a−3 + ΩΛ,0

= 70 (km/s)/Mpc×
√

0.31(3.9)3 + 0.69

≈ 306 (km/s)/Mpc.

(3.5)

Our frequency bins are of size 1.95 MHz, which, together with the Hubble parameter,
gives a co-moving parallel distance of

δl|| ≈ 0.25 Mpc (3.6)
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Figure 3.3: The three main CO fields observed by the telescope overplotted as circles
of radius 2◦ on top of the Planck LFI 30 GHz full-mission map. Figure credit: Nils-Ole
Stutzer.

per frequency bin. In our finished maps, we combine 16 frequency channels in 31.25 Mhz
bins, instead giving a spatial resolution of 4 Mpc. Combining all 4096 high resolution
frequency bins, we observe a field of around 1 Gpc in the parallel direction.

In the perpendicular direction, a stretch on the sky of angular size δθ will translate to
a comoving length of [41]

δl⊥ = r(z)δθ = δθ

∫ z1

0
dz

c

H(z)
. (3.7)

Our maps are binned to pixels of 2× 2 arcmin2. Inserting for this as well as H(z) and
numerically integrating up to the mean redshift of z = 2.9, we get

δl⊥ ≈ 3.6 Mpc. (3.8)

An entire observational field is about 4 × 4 degrees, which corresponds to a size of
around 433 Mpc, in other words, about half the size of the parallel field direction.

3.4 Scanning strategies

The choice of scanning strategy is a major design decision in ground-based astronomy.
COMAP divides scanning periods into observations of typically 1 hour each. At the



28 CHAPTER 3. COMAP

50 0 50 100 150 200 250
Azimuth [degrees]

30

40

50

60

70

80

El
ev

at
io

n 
[d

eg
re

es
]

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

ob
se

rv
at

io
n 

fre
qu

en
cy

Figure 3.4: The three observational fields of COMAP, as we observe them from Earth.
CO2 on the right, CO6 as the inner circle on the left, and CO7 as the outer circle. The
relative frequency of observation is shown, to indicate where the fields are most often
observed.

beginning and end of each observation, the calibration vane is rotated across the feed
array, to perform a gain calibration. Each observation is again divided up into a series
of scans. A scan is a period where the telescope observes around a single point on the
sky for 5-10 minutes, until the observational field has drifted past the telescope field
of view, due to the rotation of the earth. The telescope then performs a repointing to
catch up with the field and starts a new scan.

COMAP has three main scanning strategies, namely circular scans, Lissajous scans,
and constant elevation scans (CES) [41]. Each type of scanning strategy has its benefits
and drawbacks. Circular scans were abandoned early in the experiment, and as of
late 2020, CES scans are employed full-time in favor of Lissajous scans. This decision
was made because the CES data was observed to give cleaner power spectra. It is,
however, not entirely unthinkable that this decision is reconsidered if we achieve a
better understanding of the Lissajous systematics, and become capable of effectively
counteract them.

Circular scans simply circulates the central scan point at some constant radius for the
duration of the scan. This type of scan is both easy to implement and perform, with
little strain on the telescope mechanics, due to constant velocity and acceleration during
the entire scan duration. It does, however, suffer from low coverage of the observational
field, and bad cross-linking (meaning that we always observe the same observational
patch from the same angle).

Constant elevation scans repoints the telescope back and forth in azimuth while
keeping the elevation of the telescope constant. This means that the telescope needs
to constantly accelerate and decelerate, and also gives much higher pointing velocities
in the middle of the field. CES makes up for these drawbacks by holding the same
elevation during an entire scan, which means a much more predictable atmosphere and
ground pickup in the signal. CES does, however, suffer from bad cross-linking, as it is
only motion is in the azimuth direction.
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Figure 3.5: Telescope pointing pattern for an observation employing Lissajous scans (top)
and another employing CES scans (bottom). For both observation, we see 15 individual
scans, with a repointing in between, to follow the observational field across the sky.

Lissajous scans perform circle-like harmonic motions across the field, described by

az = A sin(at+ φ), el = B sin(bt), (3.9)

where A and B are parameters decided by the size of the observational field, while a and
b are randomly generated parameters that decide the shape of the harmonic motion.
This harmonic motion of non-repeating patterns gives good cross-linking, often observ-
ing the same patch of sky from many different directions in a single scan. Lissajous
does, however, have a more complicated scanning pattern, and spends more time at the
edges of the observational field than the center.

The motion of the telescope for Lissajous and CES scans across the sky are illustrated
in figure 3.5.

3.5 Noise sources

One of the most central goals of this thesis is the improved understanding and handling
of different types of noise in the COMAP data. We will now summarize the most
important sources of this noise, and give a brief summary of their properties. We can
roughly divide the noise into three categories

• White noise - Completely random, uncorrelated noise. There is not really any-
thing we can do with this type of noise, and it will integrate down as ∼ 1/

√
t, as

we increase our observational time.

• Temporally correlated noise - Noise which has a non-flat power spectrum,
usually on a 1/f form, which we will get into more detail on later. This noise is
correlated in time, but not in telescope pointing. We can usually remove a lot of
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this noise due to its predictable frequency dependency, but it is also not especially
dangerous, and will simply increase our required observational time.

• Biased noise - Noise which is in some way correlated with the telescope pointing.
Since this type of noise is not independent between different observation, it will
not integrate down with increased observational time. Biased noise could be
interpreted as actual CO signal, and bias our results, making this type of noise
dangerous and important to deal with.

There exist many sources of all these noise types, and we will now summarize the most
important ones for the COMAP data.

Atmosphere and weather
Emission from the atmosphere is one of the largest contributions to the observed sig-
nal, and variations in the atmospheric thickness will result in varying signal strengths.
Additionally, weather effects such as clouds, wind, humidity, and temperature all affect
the signal behavior of the atmosphere. The atmospheric thickness follows a predictable
1/ sin(el) profile, which usually describes the signal strength well. However, weather
effects will deviate from this profile but will be heavily correlated across both feeds and
frequencies, which simplifies detection and removal.

Ground
The far sidelobes of the telescope will, for almost all elevations we observe, pick up
emission from the ground around the telescope. While the far sidelobes contain little
power compared to the main lobe, the ground has a brightness temperature of 300 K,
far more than any other signal source. The ground pickup is also correlated both in
telescope pointing and in time (assuming stationary mountains). This makes ground
pickup a dangerous systematic, which it is important to remove properly.

Astrophysical Foregrounds
There are a number of other astrophysical sources in the same frequency range as we
observe on. These are, obviously, completely correlated in both time and Galactic
coordinates. Luckily for us, most of these are not line emissions, but rather continuum
sources, which are well approximated as linear on short frequency ranges.

Standing waves
Wires and electronics in the telescope give rise to standing waves in the signal they
output. These are strongly correlated across frequencies and time. They often have
predictable frequency profiles and are correlated across feeds, which helps us to remove
them.

Gain fluctuations
The LNAs of each feed give rise to fluctuations in the gain of the telescope. These
fluctuations are observed to be constant across frequencies, and be correlated in time
with a 1/f power spectrum [42]. We will come back to this in great detail.



Chapter 4

The Oslo COMAP Data Analysis
Pipeline

Having given a general overview of the COMAP experiment, we will now go into more
detail on how we analyze and process COMAP data. We will focus mostly on noise
characterization and removal, which are performed by the l2gen program, and are very
central to this thesis.

4.1 Data files

As discussed in section 3.4, the telescope performs a series of observations, which
begin and end with a gain calibration measurement. These observations are divided
into scans of typically 5-10 minutes, with repointing of the telescope happening in
between the scans. Each observation is stored as a separate file in the hdf5 file format
[43], and transferred from OVRO to Oslo. We refer to these as level 1 files, and they
contain all information about the observation. The signal data itself we refer to as
TOD (Time Ordered Data).

The signal, as stored in the level 1 files, is sampled at an interval of 20 ms, which over a
typical observation of an hour gives a total of 180,000 samples. This is over 4 sidebands,
each containing 1024 frequency bins, for each of the 20 feeds, giving each TOD array
a shape of approximately [20, 4, 1024, 180000], for a total of ≈ 1.5× 1010 data values.
The TOD are stored as 32-bit floats, meaning that the total storage requirement per
level 1 file is approximately 60 GB. (Everything else in the level 1 files is of negligible
size.) This translates to about 500 TB per year of observation.

After passing through the low-level data processing code, known as l2gen and described
in detail below, the level 1 files are converted into what we call level 2 files. These
are files containing filtered and down-sampled TOD, which are deemed suitable for
mapmaking. They are separated on a per-scan basis instead of a per-observation basis.

31
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The total storage requirements of the level 2 files are much lower, as they have been
decimated by a factor of 16 in the frequency domain, down from 1024 channels per
sideband, to 64.

File type Contains Typical data shape File size Storage/
obs. year

Level 1 A single unprocessed
observation [20, 4, 1024, 180000] 60 GB 500 TB

Level 2 A single processed scan [20, 4, 64, 20000] 0.4 GB 30 TB

4.2 Data model

We will in this section outline the different components involved in the signal picked up
by our detectors. For a general introduction to radiometers, see [44]. The power response
of the detectors of a radiometer can be modeled by integrating over all frequencies as

P = kBG

∫ ∞
−∞

τ(ν)Tsys(ν) dν , (4.1)

where kB is the Boltzmann constant, Tsys(ν) is the system temperature, which is the
brightness temperature perceived by the detectors at a given frequency, and τ(t) is the
bandpass response of the detectors, which represents the sensitivity of the instrument
to different frequencies. The gain, G, is a unitless amplification of the signal by the
instrument. COMAP uses a spectrometer, meaning that it detects signal over a large
set of neighboring frequency bins. For each small frequency interval, ν1 < ν < ν2,
ν2− ν1 = ∆ν, the bandpass response can be approximated as a top-hat function on the
form

τ(ν) =

{
1 if ν1 < ν < ν2

0 if else.
(4.2)

or each such frequency interval, we then get the power response

P = kB∆νG(ν)Tsys(ν), (4.3)

where we have chosen to absorb the bandpass response into the gain, such that the gain
is now a frequency dependent parameter.

The system temperature is the temperature measured by the detectors, both from the
brightness temperature entering the telescope and from internal contributions, such as
the physical temperature of the detectors. The gain of the telescope represents the
conversion from temperature into the arbitrary power units recorded by the telescope,
decided by the inner workings of the telescope, like the LNAs. Both the gain and system
temperature fluctuate over time, and both are complicated functions of frequency. The
CO signal will enter the system temperature term, Tsys, which typically takes values of
40− 50 K. This is many orders of magnitude larger than the CO signal itself, which is
estimated to be around a few µK. The system temperature is mainly decided by the
physical temperature of the detectors, atmospheric thickness, weather, and the CMB
temperature.



4.3. SYSTEM TEMPERATURE CALIBRATION 33

4.3 System temperature calibration

An important aspect of our data analysis is the capability of separating the system
temperature and the gain, as the signal we wish to study is solely contained in the
system temperature. This separation is performed by a calibration, where the telescope
points at some source with a known brightness temperature, preferably much higher
than that of the ordinarily observed source. In the case of COMAP, we mainly perform
this calibration by placing a calibration vane of known temperature in front of the
telescope. This is referred to as a hot load, and we refer to its temperature as Thot, and
the observed power as Phot. We refer to a normal scan of the sky as a cold load, with
temperature Tcold and observed power as Pcold.

The observed signal of the telescope is modeled as1

P = GTsys. (4.4)

When observing the sky, i.e. a "cold load", we model the signal as

Pcold = GTcold = G[Trc + (1− e−τ )ηTatm + (1− η)Tgrd + e−τηTcmb]. (4.5)

where Trc, Tatm, Tgrd and Tcmb are the temperatures of the receiver and electronics, the
atmosphere, the ground, and the CMB, respectively. Additionally, τ is the optical depth
of the atmosphere, such that any signal moving through the atmosphere gets reduced
by a factor e−τ , as is the case for the CMB. Finally, η represents the fraction of signal
lost due to ground spillover, mostly due to signal hitting the support legs holding the
secondary reflector.

The first term in the brackets is simply the receiver temperature. The second term is
the atmosphere, which emits a signal of brightness temperature (1− e−τ )Tatm, and gets
multiplied by a factor η by the ground spill. The third term is the ground, which emits
a signal of system temperature Tgrd, but only the signal reflected into the telescope gets
observed, which is a factor of (1 − η). The last term is the CMB, which gets reduced
both by the atmospheric absorption, and the ground spill. The CO signal itself, as well
as other astrophysical foregrounds, can be included in the Tcmb term, although we often
neglect them in the calibration calculations, as they are small and/or unknown.

During the calibration measurement, a calibration vane is placed in front of the receiver,
blocking all sky signals. This is known as a "hot load", and we model its signal as

Phot = GThot = G[Trc + Tcal], (4.6)

where Tcal is the temperature of the calibration vane.

1We have, for simplicity’s sake, omitted kB and ∆ν. They can be included in the gain if desired.
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4.3.1 Tsys derivation

The purpose of the calibration is to separate the measured data into gain and tem-
perature. By default, the gain is an unknown quantity, and we cannot directly tell its
value from a cold load. However, using a calibration source of known temperature as a
reference, the decomposition becomes possible.

Combining equations 4.6 and 4.5, we get

Phot − Pcold = G[Thot − Tcold], (4.7)

G =
Phot − Pcold

Thot − Tcold
=

Phot − Pcold

Tcal − (1− e−τ )ηTatm − (1− η)Tgrd − e−τηTcmb
. (4.8)

We introduce the ambient temperature Tamb to be the approximate temperature at and
around the telescope, such that we can assume Tatm = Tgrd = Tcal = Tamb. Inserting
for this we get

G =
Phot − Pcold

e−τηTamb − e−τηTcmb
= eτη−1Phot − Pcold

Thot − Tcmb
. (4.9)

While Phot, Pcold, Tamb and Tcmb are all known quantities, we do not accurately know
what values η and e−τ take. This means that, while we do not have all required
quantities to calculate G, we do however have everything we need to calculate the
quantity e−τηG, which takes the form

e−τηG =
Phot − Pcold

Tamb − Tcmb
. (4.10)

This again allows us to calculate eτη−1Tsys, as

eτη−1Tsys =
Pcold

e−τηG
=

Tamb − Tcmb

Phot/Pcold − 1
. (4.11)

In summary, while we do not have a solution for Tsys and G without knowing τ and η,
we do have solutions for the related quantities

T ′sys = eτη−1Tsys and G′ = e−τηG. (4.12)

This new definition of the system temperature takes into account signal lost to both
the ground spill and the atmosphere. We have moved these contributions from the
temperature to the gain. While Tsys represents the observed brightness temperature of
the telescope, T ′sys represents the brightness temperature observed if we imagine that
the telescope was moved to the top of the atmosphere (under the assumption that all
observed brightness temperature originates from atop the atmosphere), and the ground
spill was removed.

Apart from actually being able to separate gain and system temperature, one advan-
tage of this rescaling is that a 1 K increase in the CO source temperature will directly
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Figure 4.1: Gain and system temperature of feed 1 as function of frequency, for a randomly
chosen observation.

translate to a 1 K increase in the system temperature T ′sys. This is not the case for Tsys,
where it would be scaled by both a factor of e−τ from the signal loss in the atmosphere
and a factor of η for the signal lost to ground spill. From now on, when speaking of
the system temperature Tsys, we will be referring to the rescaled "effective" system
temperature, T ′sys = eτη−1Tsys.

4.3.2 Calibration summary

The hot-load calibration is performed before and after each observation, where we can
precisely separate the telescope gain and system temperature, using equations 4.10 and
4.11. An example of a gain and system temperature profile in frequency is shown in
figure 4.1. Each feed has a unique (but similar) gain and system temperature profile.
As we see from the figure, some frequencies are prone to larger system temperature than
others. Typical values range from 40 K to 60 K. Another noticeable feature are what
we call the Tsys spikes, which are specific frequencies with much higher Tsys values than
neighboring frequencies. It is unknown exactly what causes these spikes, but they are
found at specific, unchanging frequency channels, and are found to be more susceptible
to some types of correlated noise, and therefore usually masked away in practice.
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Figure 4.2: Frequency averaged gain and system temperature of feed 1 as a function of
time, for nine days of observations around the 1st of November 2019.

Both the system temperature and gain fluctuate in overall amplitude over time, but they
mostly retain their overall frequency profile per feed. Figure 4.2 shows the mean gain
and system temperature for a series of observations over 9 days. The system temperature
varies substantially over the course of a day but follows a repeating pattern from day to
day. This is both because it is impacted by the outdoor temperature at the telescope
and because we perform the same observational patterns each day, and Tsys varies with
atmospheric thickness, which depends on elevation.

4.4 l2gen

The perhaps most central part of the Oslo data analysis pipeline is the program known as
l2gen, which translates level 1 files into level 2 files. The program filters and processes
the data with the intention of removing as much noise and systematics as possible.
The underlying structure of a level 2 file remains unchanged from that of a level 1 file,
with the exceptions of a decimation in the frequency domain and the addition of some
housekeeping data.

As mentioned earlier, each level 1 file contains a single observation, which consists of
a series of scans, with a calibration measurement at the beginning and end of the ob-
servation. l2gen is performed on every scan individually, completely agnostic to the
existence of other scans, except the values obtained from the previous and next calibra-
tion scans. Table 4.1 gives an overview of the four filters in the pipeline, summarizing
their most important properties.
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Filter name Fits over Works by Removes

Normalization time Fitting and dividing by a
running mean

Slow-running gain and
temperature fluctua-
tions.

Pointing
template time Fitting an subtracting an

az/el template

Atmosphere, ground,
and other pointing
systematics.

Polyfilter frequencies (single
sideband)

Fitting and subtracting a
polynomial in frequency
space for each timestep.

Correlated noise, leftover
atmosphere and ground,
continuum foregrounds.

PCA filter feeds, sidebands,
frequencies

Removing the first 4
principal components of
a PCA fit on the data.

Standing waves, leftover
weather and atmosphere
fluctuations.

Table 4.1: Overview of the filters in the l2gen pipeline, together with what dimension
they fit over, a summary of how they work, and what specific systematics they target.

4.4.1 Normalization

The first step in the pipeline is a normalization of the data. The purpose of this is
to remove the bandpass response, which we talked about in 4.2, and which we have
incorporated into the gain. Without this, it would be impossible to compare values
across frequencies, as they would be multiplied by some arbitrary factor. We also
want to remove slow-running fluctuations in the gain and system temperature. The
normalization applies a highpass filter to the data, which in practice is done by dividing
the data by their running mean, and subtracting one,

dnorm =
d

d̄
− 1. (4.13)

The running mean d̄ is obtained by applying a lowpass filter to the data. The filter is
applied by multiplying by a weight function in Fourier space, as

d̄ = F−1{W · F{d}}. (4.14)

where W is defined as

W =

[
1 +

(
f

fknee

)α]−1

. (4.15)

The filter has two parameters, fknee and α; fknee is the frequency above which signal
gets suppressed, while α is the slope of the suppression effect beyond this frequency,
defining how harsh the filter is. We use values of α = −4.0 and fknee = 0.01 Hz, meaning
that all modes below approximately 1.5 minutes get suppressed. We then divide the
data upon this running mean, such that, for the actual data, all modes longer than 1.5
minutes are suppressed. We are left with short-term fluctuations in the data. We expect
very little actual CO signal to be correlated on timescales anything close to this, as it
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takes seconds, not minutes, to cross an entire observational field once. The purpose of
the normalization is to make the data comparable for different frequencies by bringing
them to the same scale, as well as remove slow-running fluctuations in both system
temperature and gain.
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Figure 4.3: Visualization of normalization filter on the TOD for the 29.14 GHz frequency
channel of feed 1, as function of time. Left: TOD of a scan before normalization, with the
lowpass filtered version of the TOD overplotted in red. Right: TOD after normalization.
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Figure 4.4: Visualization of of normalization filter on the TOD for a randomly selected
timepoint of feed 1, as function of frequency. Left: TOD of a scan before normalization,
with the lowpass filtered version overplotted in red. The lowpass filtered TOD is virtually
indistinguishable from the TOD itself. Right: TOD after normalization.

4.4.2 Pointing template removal

The second part of the pipeline is the removal of pointing templates. The intention
behind this filter is to remove any systematic which is correlated to the pointing direction
of the telescope in Earth coordinates (elevation and azimuth). This will typically be
any signal originating from Earth, most notably from the atmosphere, and the ground
around the telescope.

For each frequency, a three-parameter pointing template dpoint is fitted to and subtracted
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from the scan, on the form

dout = d− dpoint, dpoint(t) =
τ0

sin el(t)
+ a az(t) + c, (4.16)

where az(t) and el(t) is the pointing direction of the telescope, and τ0, a and c are
parameters found with a maximum likelihood fit of the model to the data.

The first term in the pointing template accounts for the atmospheric thickness at dif-
ferent elevations, which approximately follows a 1/ sin(el) profile. τ0 is the atmospheric
optical depth at zenith. Apart from the atmosphere, the data might contain an un-
known number of other pointing-related systematics. Principal among these is sidelobe
ground contamination, where a telescope sidelobe picks up a signal from the nearby
mountain range. As the ground has a temperature that is orders of magnitude larger
than the sky signal, even small sidelobe contaminations might have a large impact. In
our current pointing model, we fit any remaining pointing systematic as a simple linear
function in azimuth, fitting a as a slope parameter. The reasons for not choosing a more
complicated model are mainly the unknown nature of the remaining systematics (most
importantly the ground pickup) and the fear of removing actual signal.
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Figure 4.5: Left: TOD of a scan before pointing template subtraction, with the pointing
template fit overplotted in red. Right: TOD after pointing template subtraction.

4.4.3 Polynomial filter

The polynomial filter is our strongest general purpose noise filter, aimed at removing
correlated noise and continuum sources. The filter works by fitting and subtracting a
polynomial in frequency across each sideband for every single timestep of the data. Our
pipeline currently uses a first order polynomial, on the form

dout = d− dpoly, dpoly = c0 + c1ν, (4.17)

with c0 and c1 fitted to each sideband and timestep in the TOD.

The polyfilter aims at removing a number of systematics correlated across frequency.
Most importantly, the filter removes correlated gain fluctuations, often referred to as
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1/f noise, as it has a power spectrum that is inversely proportional to the frequency to
some power. These gain fluctuations are mostly introduced by the low noise amplifiers
in the telescope. The polyfilter also removes temperature continuum sources, such
as astronomical continuum foregrounds (thermal dust, synchrotron radiation, free-free
emission, etc), as well as any leftovers of atmosphere and ground from the pointing
template removal.

Where actual CO signal is concerned, the polyfilter will only remove the very largest
structures, as it is fit to each sideband, which corresponds to physical sizes of ≈ 250 Mpc.
Any CO structure substantially smaller than this will be affected little by the filter. We
will come back to this when we look at the pipeline transfer function at the end of the
chapter.
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Figure 4.6: Left: TOD of a scan before the polynomial filter, with the polynomial fit
overplotted in red. Right: Filtered TOD.
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Figure 4.7: Visualization of polynomial filter on the TOD for a randomly chosen timepoint
of feed 1, as function of frequency. Left: TOD of a scan before the polynomial filter, with
the four polynomial fits on each sideband overplotted in red. Right: Filtered TOD.
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4.4.4 PCA filter

Principal component analysis (PCA) is a decomposition technique which, from a set of
n vectors of dimension p, finds an ordered basis spanning the vector space, known as the
principal components of the vectors. These principal components come in an ordered
fashion, with each component, in descending order, containing as much as possible of the
common features in the vectors. Another way of putting this is that the first component
points in the direction of the largest variance in the vector set, the second component in
the orthogonal direction of second-most variance, and so forth. PCA is often employed
as a dimensionality reduction technique, as a reduced vector set of size m where m < n
will still well explain much of the data, as long as m is not too small and the data not
too high in entropy. In practice, the principal components are found as the eigenvectors
of the covariance matrix of the vector set. It is the eigenvalues of these eigenvectors
which define how much of the vectors are contained in each principal component. If the
eigenvalues of subsequent components fall quickly, the set of vectors are easy to reduce
and low in entropy.

In the case of COMAP, the set of vectors are the TOD of each feed and frequency,
meaning we typically have a set of n = 19 · 4096 vectors, with dimension equal to the
number of timesteps in the scan, p. Contrary to typical usage of PCA, in l2gen we find
and subtract the first 4 principal components of the data. In other words, we remove the
largest cross-vector features in the TOD. This is because these are features correlated
across feeds and frequencies, corresponding predominantly to systematics.

Let D be a data matrix where the rows are the TOD of each feed and frequency, such
that

D =


dν1
dν2
...

dνn

 =


dν1,t1 dν1,t2 · · · dν1,tp

dν2,t1
. . .

...
dνn,t1 · · · dνn,tp

 . (4.18)

The covariance matrix of this vector set is

C = DTD =


C1,1 C1,2 · · · C1,n

C2,1
. . .

...
Cn,1 · · · Cn,n

 . (4.19)

Let w(i) be the set of eigenvectors of C, with corresponding eigenvalues λi. The l2gen
PCA filter works as follows

dout = d−
4∑
i=1

aiw(i), (4.20)
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where ai is the inner product of the data with the ith principal component (which
represents "how much" of that principal component is within that TOD),

ai = d ·w(i). (4.21)

The PCA filter is great at removing weather contaminations that slips past the polyfilter,
as these are strongly correlated across feeds. It also removes standing waves very well.
We do not expect CO signal to be correlated across frequencies or feeds to any large
extent, leaving the signal mostly intact. The PCA is in some ways a more conservative
filter than the polyfilter, as it looks for correlated features across both all feeds and
frequencies.
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Figure 4.8: Visualization of PCA filter on the TOD for 29.14 GHz frequency channel of
feed 1, as function of time. Left: The TOD before the PCA filter, with the sum of the four
leading PCA components overplotted in red. Right: The TOD after PCA filtering.
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Figure 4.9: Visualization of PCA filter on the TOD for a randomly chosen timepoint of
feed 1, as function of frequency. Left: The TOD before the PCA filter, with the sum of the
four leading PCA components overplotted in red. Right: The TOD after PCA filtering.
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4.4.5 Masking

After all filters have been applied to a scan, l2gen masks out badly behaving feeds
and frequency channels in the data. Masking simply means that we flag these feeds or
channels to be ignored in future analysis, such as decimation, maps, or power spectra.
The usual way of doing this is by setting the variance of the masked data to infinity
σ2 =∞, effectively weighting that data by 0 when e.g. creating a map.

A number of factors are considered when masking a frequency channel, but they mostly
have to do with cross-frequency correlation. Filtered TOD are expected to be almost
consistent with white noise, and uncorrelated across frequencies. The expected correla-
tion between two uncorrelated white noise timestreams of length N is 1/

√
N . A large

correlation excess above this is considered a sign of bad data. Entire sidebands can also
be masked out if the majority of frequency channels in them are masked.

The masks are calculated from the TOD after they have passed through the entire
pipeline. However, once the masks are decided, we apply them to the data before the
polyfilter and PCA filter, and then redo those filters with the masking. This is because,
once we have figured out which channels behave badly even after filtering, we do not
want these channels to impact the effectiveness of the filters. Since the polyfilter and
PCA filter take all frequencies into consideration, leaving out badly behaving frequencies
can improve the performance of the filters.

4.4.6 Calibration

After the scan has gone through all filtering and masking, we calibrate the TOD from
normalized units to temperature units. We do this by multiplying the TOD by the
system temperature, derived in section 4.3. The vane calibration, and thereby the
acquisition of Phot and Thot, is only performed at the beginning and end of each obser-
vation, while Tsys is calculated on a per-scan basis. This is done by linearly interpolating
Phot and Thot to the center of each scan, as

Phot(t) =
P 1

hot(t2 − t) + P 2
hot(t− t1)

t2 − t1
(4.22)

Thot(t) =
T 1

hot(t2 − t) + T 2
hot(t− t1)

t2 − t1
, (4.23)

where the 1 and 2 superscripts refer to the calibrations at the beginning and end of the
observation, respectively. Tsys is then calculated for each scan as

Tsys =
Thot − Tcmb

Phot/Pcold − 1
, (4.24)

where we for Pcold use the mean power of each scan. An illustration of the calculation
and interpolation of Phot between two calibrations is shown in figure 4.10. We get our
calibrated data by multiplying the TOD of each scan by the scan system temperature,

dcalib = d · Tsys. (4.25)
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Figure 4.10: Power profile of the TOD during two calibrations, at the beginning and
end of an hour long observation. The Phot values are calculated from the power peak, and
interpolated to the center of each scan within the observation, as shown by the red line.

4.4.7 Decimation

After calibration, the data are decimated down from 1024 frequency channels per side-
band to 64, weighted by the inverse variance of the TOD (or σ2 = ∞, in the case of
masked channels),

ddec =
1∑
j σ
−2
j

∑
j

dj
σ2
j

. (4.26)

This is done to prepare the signal for mapmaking, for which we do not need as high
resolution, and instead prefer the higher signal to noise ratio we get by decimating the
frequency channels.

4.4.8 Pipeline summary

The decimated data are finally written to disk as a level 2 file. The ultimate goal of
the pipeline is the removal of as much noise as possible while retaining as much of the
actual CO signal as possible. It is not trivial to predict the impact each filter has on any
potential CO signal, but we do have the means to simulate it. By adding a simulated
signal into a series of level 1 files, we can estimate the transfer function imposed by the
pipeline on the CO signal, defined as [45]

T pipeline (k) ≈

〈
P full
k − P noise

k

P signal
k

〉
, (4.27)

where P full
k , P noise

k and P signal
k are the power spectra of the full simulated data with

noise, the noise only, and the signal only, respectively.

Figure 4.11 shows this simulated transfer function for both the default pipeline setup
and a series of variations of the pipeline. Generally, all the transfer functions follow
the same trend, with the most power retained at scales of k = 2 − 10 Mpc−1. We also
see that none of the largest scales survive the pipeline, because of filters such as the
normalization and polynomial filter, which removes large-scale correlations in the signal
(in time and frequency, respectively).
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Figure 4.11: Transfer function of the pipeline for different configurations of the pipeline
parameters. The top plot shows the total transfer function, while the bottom plot shows
the absolute difference from the default parameter set, shown as a solid black line in the
top figure. Figure credit: Nils-Ole Stutzer.
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Part II

New developments
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Chapter 5

Mapmaking

A fundamental challenge in observational astronomy is how to transform a time-ordered
signal into some sort of map, consisting of magnitude values over a series of pixels. Many
receivers, including the one used by COMAP, employ a very limited set of observational
feeds, and instead rely on the telescope movement across the sky to cover the observa-
tional field. This means that each feed often covers a vast range of coordinates on the
sky in the span of a few minutes or seconds. This is in strong contrast to stationary
observers, like a camera, where each detector focuses on the same observational point
for the duration of the exposure.

The most trivial problem arising from this difference is figuring out which datapoint on
the TOD corresponds to which pixel on the map. We will start off by introducing the
easiest and most intuitive mapmaking scheme, which solves this problem only, namely
the naive binning scheme. We will then improve upon this by taking noise weighting
into consideration. The last scheme we will look into is destriping, a mapmaking tech-
nique capable of dealing with temporally correlated noise, and is the method we aim to
employ throughout the COMAP experiment. We end the chapter by looking at how we
can apply the destriping mapmaking scheme to produce maps of the telescope ground
pickup. This will be a central part of our efforts to produce an improved pointing
template model for our pipeline.

5.1 Setup

The premise of mapmaking is that we have TOD consisting of Ns datapoints, which we
want to transform into a map of Npx pixels. We will assume that the dimensionality of
the map does not matter and that the spatial arrangement of the pixels does not impact
the solution to any of our mapmaking schemes. We can then consider all maps to be
one-dimensional, where 2D or 3D maps are simply flattened. The spatial arrangement
of the pixels would matter if we imposed a power spectrum prior on the map itself, but
we will not cover map priors in this thesis.

49
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5.2 The binning scheme

Our simplest data model makes the assumption that the TOD are a combination of the
"true" map values, and uncorrelated white noise. In this model, we write the TOD y
as a function of the map m as

y = Pm + n, (5.1)

where n is the white noise, and P is the so-called pointing matrix. In general, the
pointing matrix contain all information about how the TOD picks up data from the
map, including the scanning pattern and telescope beam profile. In our model, we will
assume a simple beam profile where the telescope picks up only a single pixel of the
map in each TOD sample. The pointing matrix then takes a very simple form. The
matrix element Ptp contains a value of 1 if TOD sample t points at pixel number p, and
0 otherwise. Equation 5.2 shows an example pointing matrix for a TOD of 4 datapoints
and a 3 pixel map. Here, the telescope points first once at the first map pixel, then
twice at the second map pixel, and then once at the third map pixel, giving the pointing
matrix

P =


1 0 0
0 1 0
0 1 0
0 0 1

 . (5.2)

Under the assumption that the white noise level does not change throughout the TOD,
the maximum likelihood solution to the map m in equation 5.1 is

PTPm = PTy. (5.3)

Note thatPTP is a diagonal matrix, with the diagonal elements representing the number
of hits on each pixel. Diagonal matrices are trivial to invert, making the solution of m
explicit, as

m = (PTP)−1PTy. (5.4)

As the solution of m is explicit, we might as well write it out in component form. The
map pixel mp takes a value

mp =
1

Np

∑
j∈p

yj , (5.5)

where j ∈ p are all the indices of yj which hits pixel p, and Np are the number of hits
in this pixel.

5.2.1 Noise weighted mapmaking

If we have information about the noise level in different parts of the TOD, we can
incorporate this information into the solution by downweighing the contribution of data
with a higher noise level. The maximum likelihood solution to equation 5.1 then takes
the form [46]

PTC−1
n Pm = PTC−1

n y, (5.6)
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where Cn = 〈nnT 〉 is the noise covariance matrix. We can solve for m as

m = (PTC−1
n P)−1PTC−1

n y. (5.7)

If the noise is uncorrelated, i.e. white noise, the noise covariance matrix is diagonal,
and PTC−1

n P becomes trivial to invert. We can then write out the map solution in
component form as

mp =
1∑
j∈p

1
σ2
j

∑
j∈p

yj
σ2
j

(5.8)

where σ2
j is the estimated variance of yj , or Cn(i, j) = σ2

j δi,j

It is usually impossible to estimate the white noise level of each individual TOD point.
A reasonable approach is to estimate the white noise level on intervals. This will make
Cn piecewise stationary. We will in section 8.1.1 outline how the white noise level of
the TOD can be estimated. In COMAP, we usually estimate the white noise level on
scan-length sections, separately for each frequency channel.

5.3 Destriping

The destriping mapmaking scheme is an attempt to model not only uncorrelated noise
but also temporally correlated noise, which is common in telescope detectors. This is
the mapmaking scheme COMAP aims to employ in general and is also what we will use
to use to produce ground pickup maps later in this thesis. Let y be some TOD with
both correlated and uncorrelated noise, which we model as

y = Pm + ncorr + n, (5.9)

where ncorr is the correlated noise. The destriper works by dividing the TOD into
sections of b consecutive datapoints. For each of these sections, the correlated noise is
modeled by one or more base functions. The goal of the destriper is to find amplitudes
for these base functions which minimizes the variance of the datapoints hitting each
pixel. We can write this model as

y = Pm + Fa + n, (5.10)

where F is a known (chosen) matrix defining the shape of the baselines, and a is a vector
containing their unknown amplitudes. F has shape (Ns ×Nb) where Ns is the number
of TOD points, and Nb is the number of base functions. Fij represents the value of base
function number i at the TOD point j (which will be zero except for on the interval of y
where that specific base function belongs). The base functions may take any shape, and
come in any number per interval. We will here only consider a single base function per
interval, in the form of uniform baselines, which take the same value across the entire
interval. Such base functions have, despite their simplicity, been found to perform well
compared to more complicated base functions, such as Fourier components [46]. Each
column of F will then contain b consecutive 1’s, each column starting on the row after
the end of the former column.
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5.3.1 Maximum likelihood solution

Our signal model presented in equation 5.10 has two unknown quantities, namely the
map, m, and the amplitudes of the base functions, a. The idea is to solve first for the
base functions and subtract those from the data, hopefully removing as much correlated
noise as possible. We then solve for the map of the baseline-subtracted data using the
noise weighted binning scheme, as

m = (PTC−1
n P)−1PTC−1

n (y − Fa). (5.11)

First, however, we need to solve for the baseline amplitudes. The maximum likelihood
solution for a is [46]

(FTC−1
n ZF)a = FTC−1

n Zy, (5.12)

where
Z = Î−P(PTP)−1PT , (5.13)

and Î is the identity matrix.

Unlike for the map, the left-hand side matrix is not diagonal, and we cannot easily
invert it to solve for a. We will instead have to solve it as a matrix equation Ax = b
by other means, which we will get back to at the end of this chapter.

The solution presented assumed no prior knowledge of the behavior of a. If we wish to
put a prior on the power spectrum of a, we can add the covariance matrix of a to our
problem. In this case, the maximum likelihood solution of a takes the form [47]

(FTC−1
n ZF + C−1

a )a = FTC−1
n Zy, (5.14)

where Ca = 〈aaT 〉 is the covariance matrix of a. If the power spectrum properties of
the correlated noise can be estimated to high accuracy, the addition of a prior has been
shown to improve the correlated noise removal, especially for shorter baseline lengths
[47].

5.3.2 Some intuition

The destriper can be hard to get ones head around, so let us finish with some intuition.
The point of the destriper is to, for each interval of b datapoints (say a hundred) in
the TOD, fit some unknown constant ai to all 100 points. Now, what value should this
constant take? The hundred points will hit a number of pixels, and these pixels will
also be hit by a large number of other datapoints elsewhere in the TOD. The idea is to
look at all the other data hitting the same pixel, and ask if our interval of 100 points
would, on average, be more in line with the other data if we added or subtracted some
constant from it. If there is correlated noise in our data, this will manifest as raising
or lowering the data on stretches. Now we ask this same question, simply on a larger
scale: What set of values a, added to different stretches of the of the TOD, will produce
minimal variance in the datapoints hitting each pixel? These are the values a given by
our maximum likelihood solution.
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Figure 5.1: A cutout of a signal, and the baseline fits from performing a destriper map-
making on it. The signal is simulated correlated noise, together with pointing information
from a real scan. The destriper baselines are of length 100 points (2 seconds).

A demonstration of a simulated signal, overplotted with the fitted baselines is shown
in figure 5.1. We can see how the baselines trace the correlated noise in the TOD to a
large extent. Shorter baselines can also be employed to try and better fit the noise, and
will usually improve the correlated noise removal, down to a certain point. However,
decreasing the baseline size too far is both computationally expensive, and will at some
point make the basis functions more degenerate with the white noise, and we will lose
more of the actual signal, effectively getting a worse fit. This effect can be mitigated
by including an accurate prior, as we discussed at the end of the previous section.

5.4 Ground maps

One of the primary goals of this thesis is the creation of data-driven ground maps, to
accurately portray the telescope ground pickup as a function of pointing coordinates.
To achieve this, we will employ the destriper to create azimuth-elevation maps with as
much of our data as possible.

5.4.1 Dataset

To create a suitable dataset for mapmaking, we create a slightly altered version of the
l2gen pipeline. Our dataset on hand contains a total of 50,000 scans, distributed over
the three observational field of COMAP. To avoid our data being contaminated by other
sources, especially pointing-correlated sources, we perform two preliminary cuts on the
data. We keep only nighttime data, as to avoid any problems with the Sun hitting
our sidelobes, and we remove any scan suspected of being weather contaminated. This
leaves us with 17,000 scans. We then perform the following filtering steps on these
scans.
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Normalization

We perform per-frequency normalization of all scans, identical to the one performed by
l2gen, using a lowpass filter, as described in 4.4.1. This will get rid of a lot of correlated
noise, such as slow running gain and system temperature fluctuations.

Sideband average

To increase our signal-to-noise ratio, and reduce the computational requirements associ-
ated with our large dataset, we average our data over each sideband. This still leaves us
with some resolution in frequency (4 sidebands). We do a weighted average, to account
for some frequencies being noisier than others. From the radiometer equation (which we
will talk about in section 8.1.1), we know that the white noise variance of a frequency
is proportional to T 2

sys, such that the sideband averaged signal becomes

dsbavg =
1∑1024

i=1 Tsys
2
i

1024∑
i=1

di

Tsys
2
i

. (5.15)

Elevation template removal

We perform an elevation fit and subtraction to the sideband averaged data. This is
similar to the pointing template subtraction done in l2gen, except that we exclude the
linear azimuth term. The filtered TOD of each scan are now

dout = d− del, del =
τ0

sin el(t)
+ c, (5.16)

where τ0 and c are found by a maximum likelihood fit to the scan. The purpose of this
filter is to remove the atmosphere from the scan. However, because the atmosphere term
is virtually linear on a 1-degree elevation section, any linear elevation structure in the
ground will also be fitted and removed. There is not really anything we can do about
this, as linear ground structure and the atmosphere is virtually entirely degenerate. A
potential solution would be constraining τ0 with a strong prior around some reasonable
atmospheric optical depth. This could introduce other complications and biases, and
we have chosen to leave it be for the moment, and settle for losing linear elevation
structures in the ground.

Calibration

Finally, we calibrate the scans, to get them in temperature units. The calibration process
was described in section 4.4.6, and we use a new database of scan hot load measurements
we have created, which we will describe in chapter 7. The system temperature is
sideband averaged the same way as the data, before calculating the calibrated from the
normalized data as

dcalib = Tsysd. (5.17)
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We then write the filtered scans to file, ready to be made into ground maps. As we
have sideband averaged them, the storage requirements of the data are very reasonable
(∼ 1 TB). The pipeline itself spends around 10 minutes per scan per cpu core on an
AMD EPYC 7H12, most of it on file read and decompression, and on the normalization,
as it is performed before the sideband average.

5.4.2 Ground map destriper

We employ a standard destriper mapmaking method to create azimuth-elevation binned
maps from our scan dataset. After specifying an azimuth and elevation range for the
map, we select all scans which are entirely within that range. We prefer to avoid having
to cut up scans that partially cover a region, as it makes things complicated with the
baselines. The white noise correlation matrix Cn is created as a piecewise stationary
diagonal matrix, where we estimate σ2

0 per scan using equation 8.3. The pointing matrix
P is constructed from binning up azimuth and elevation pointing information from the
scan. We employ baselines of length 100 in our destriper setup. The matrix F has
columns of 100 consecutive 1s, each starting the row after the last one ended. We also
stop the baselines short upon a scan end.

The primary goal of the destriper is solving the equation

(FTC−1
n ZF)a = FTC−1

n Zy (5.18)

for a. As we mentioned earlier, the left hand side of this equation is not trivial to invert,
and not really even feasible to calculate or store as a matrix. It is, however, very sparse,
and we solve it using a conjugate gradient method, an iterative solver which is excellent
for sparse Ax = b systems [48]. One of the advantages of such a method is that we
do not ever need to calculate or store the matrix A, which (while sparse) is large and
expensive to compute. We only need to be able to calculate the resulting vector from
applying A to some vector x, which is often, and in our case, much simpler to do.
For our conjugate gradient method, we additionally employ a preconditioner, which is
a matrix M which approximates A, and for which we can easily compute M−1A and
M−1x. Multiplying each side of the equation with a preconditioner is a common way of
helping the conjugate gradient converge faster. The equation we actually solve is then
M−1Ax = M−1b. We use the perhaps simplest imaginable preconditioner, which is
simply the diagonal of A. This is much easier to compute than the entirety of A, and
is trivial to invert. If A is diagonally dominant, which ours is, such a preconditioner is
a very cost-effective way of obtaining faster convergence.

Joint elevation template fit

We previously mentioned how performing the elevation template subtraction on our
data costs us potential linear elevation ground structures. It is possible to include the
elevation fit into the destriper model itself, instead of performing it ahead of time.
Remember that the baselines laid out in F are simply chosen sets of functions spread
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throughout the TOD. We can introduce a set of new baselines, each the length of
one scan, and with amplitudes 1

sin el(t) , were el(t) are the elevations of each individual
datapoint. These new baselines represent the elevation fit. They will overlap with
the original ones, and will not be constant. The vector a will then also contain the
τ0 amplitudes of each scan, which will be fitted the same way as the other baseline
amplitudes. This joint fit has a lot of theoretical appeal and was how we originally
designed our destriper model. The problem is, however, that the amplitude profile is
still entirely degenerate with any linear ground structure, and the conjugate gradient
method had huge problems with converging on a solution. This can be somewhat
mitigated by placing a strong prior on τ0, but we are then basically predetermining the
atmosphere subtraction, which defeats much of the purpose of a joint fit. We therefore
redesigned the destriper model to not include an elevation term, and instead presubtract
it.



Chapter 6

Ground Modeling

One of the dominating sources of systematics in the COMAP data is the ground around
the telescope, picked up by the telescope sidelobes. These ground systematics are
correlated with pointing, and dependent on both the complicated beam profile and the
mountain structure around the telescope, making them difficult to properly model and
remove. The goal of this chapter is two-fold. First, we perform an analysis of the
effect of the ground on the telescope signal, both relative to pointing and frequency.
Secondly, we lay the groundwork for a new and improved pointing template subtraction
filter, built on a data-driven model of the ground, to replace the existing filter. These
objectives are achieved by looking at both convolutions with a simulated telescope beam
profile, and by creating ground pickup maps from actual COMAP data using a destriper
mapmaking model.

6.1 Context and idea

6.1.1 Current ground model

Our current pipeline includes a filter for fitting and removing pointing correlated sys-
tematics. As we explored in section 4.4.2, this filter fits and subtracts a function on the
form

dpoint =
τ0

sin el(t)
+ a az(t) + c, (6.1)

where el(t) and az(t) are the telescope pointing coordinates, and τ0, a, and c are values
we fit for. This model has a few obvious flaws when it comes to dealing with ground
pickup. First of all, the ground is assumed to have a very simple model, with a linear
dependence on both elevation and azimuth.1 Exactly how poor this model is will be
explored in more detail, but it is natural to assume that the mountain profile around

1If you are wondering where the linear elevation term is, it is a part of the first term. The fields
have such a small elevation span that the 1/ sin el term is virtually linear, and the first term can be
used to fit both the atmosphere and linear ground pickup.
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the telescope does not perfectly follow a linear model. Secondly, the current model is
employed entirely independently for each frequency channel of the data. While this, in
theory, allows for the removal of complicated frequency profiles, it throws away signif-
icant constraining power, as it is likely that the ground systematics have a predictable
frequency profile, that we can use to constrain the fit. We will therefore also look into
the frequency dependence of the ground pickup in our analysis.

6.1.2 Improved ground model

The ultimate goal of this analysis is the implementation of an improved ground model,
based upon the az/el structure observed in actual COMAP data. Not only can this
improve the quality of our current data, it might also allow us to loosen the elevation cut
criteria of 35◦ < el < 65◦, giving us greater observational efficiency. As a replacement
for the model outlined in equation 6.1, we propose a more general model, on the form

dpoint =
τ0

sin el(t)
+ aA(az(t), el(t), ν) + c, (6.2)

where A(az(t), el(t), ν) is now some unknown function of pointing and frequency, rep-
resenting the pickup from the ground (or other az/el correlated systematics), which we
aim to create a data-driven model for. The ground is well approximated as a continuum
source, but may still have a non-trivial frequency profile which depends on the relevant
signal beam shape, which we will also look into.

6.2 Beam convolution map

We start our analysis by simulating the ground pickup. This is done by first considering
the beam profile of the telescope, which we have plotted in figure 6.1. The beam profile
consists of a main beam, at the very center of the pointing pattern. About 5 degrees
from the center are the near sidelobes. These can pose a problem if they e.g. hit the
sun, but are too close to the main beam to hit the ground at our observation elevations.
The ground pickup relevant to us is caused by the far sidelobes, which are the four
circles that peaks about 65◦ from the center. Note that the plot is logarithmic, so a lot
of the structure contributes very little to the signal pickup (although it is very pretty).
The far sidelobes are a problem because they both have significant power, and hit the
ground, due to being so far from the pointing center. As the ground has a brightness
temperature of ≈ 300 K, far more than e.g. the atmosphere, the signal contribution can
become significant.

We create a map of the mountain range around the telescope from [49], where we assume
that the mountains have a temperature of 300 K, and the sky of 0 K. We convolve the
beam profile with the mountain map to simulate the ground pickup of the telescope.
This is done as a 2D convolution of the sphere G, representing the mountain profile,
and the sphere B, representing the beam. We can formulate this convolution as [50]

G′(θ, φ) =

∫
dΩ R̂(θ, φ)B ·G, (6.3)
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Figure 6.1: Simulated beam profile of feed 1 of the telescope at 30 GHz. The values
represent the amount of signal the telescope will pick up at a given angle away from the
central pointing location. The beam simulations were performed by James Lamb.

where R̂(θ, φ) is a rotation operator, with the effect of rotating B to be centered at (θ, φ).
In practice, we represent both spheres as vectors in the 1D HEALPix [51] pixelization
scheme, and performing rotations of the beam using a healpy [52] function.

Figure 6.2 shows the result of such a convolution, for the entire sky. COMAP currently
only uses data from between 35◦ and 65◦ elevation, the reason for which is very clear
from the figure, as it is the elevation span with the least ground contamination. We
see that the regions close to the ground have very heavy pickup, as a result of the near
sidelobes. We also see an imprint of the mountain profile at 70◦ − 80◦ elevation, as a
result of the downward far sidelobe. A less prominent such imprint a few degrees lower
is also present, due to the slightly closer far sidelobe, although is virtually invisible
in this figure. Another interesting feature is the beams stretching up at around 340◦

(−20◦) and 130◦ azimuth. These are the result of the left and right far sidelobes hitting
the largest mountain, and are the most prominent features to cross the 35◦ elevation
line.

We will now look more closely at the regions covered by the COMAP fields. While
figure 6.2 illustrates the large-scale effects of the ground, there does not seem to be
much going on in the region relevant for COMAP. This is not the case and is because
the color scale covers a range of several Kelvin, which is a lot in our context. It is
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Figure 6.2: Predicted map of the ground pickup by pointing location, assuming a ground
temperature of 300 K. The ground profile itself is shown in grey. The currently used
scanning region, of 35◦ to 65◦ elevation, is shown as striped lines. The convolutions are
based on code written by Duncan Watts.

also important to keep in mind that it is the change in the ground pickup in a scan
that poses a problem. A constant addition to the signal will simply be removed by the
normalization, while a gradient in the ground will not. We will therefore now take a
look at the gradient of this map.

6.2.1 Gradient maps

We solve for the gradient of the map by applying a 5x5 Sobel kernel separately in
the elevation and azimuth direction. This means that we convolve the image with a
derivative kernel on the form

Dx =


−0.25 −0.2 0 0.2 0.25
−0.4 −0.5 0 0.5 0.4
−0.5 −1. 0 1. 0.5
−0.4 −0.5 0 0.5 0.4
−0.25 −0.2 0 0.2 0.25

 (6.4)

for the azimuth direction, and the corresponding kernel Dy = DT
x for the elevation

direction. The kernel size of 5x5 pixels corresponds roughly to half the size of an
observational field on the sky.

We will limit our analysis to the patches of the sky which we actually observe, which
we illustrated all the way back in figure 3.4. Figures 6.3 and 6.4 shows the ground
map derivative in the azimuth direction. To give some context to the maps, we have
overplotted the azimuth amplitude parameter from the pointing filter, averaged over all
available scans. As a reminder, this is the amplitude of the azimuth slope fit, such that
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Figure 6.3: Azimuth derivative (background) of the ground pickup convolution for the
area around the CO6 and CO7 fields. Overplotted are the mean amplitudes of the linear
azimuth fit performed by the pointing template subtraction filter in the pipeline.

a larger amplitude means that we consistently see an azimuth dependency in this area of
the sky. We have chosen to plot only the azimuth derivative of the ground convolution
here, exactly because we happen to have a corresponding pipeline parameter to plot
it against. If our ground convolution model is accurate, we expect to see a correlation
between the parameter and the map. Such a correlation is very visible in the CO6/CO7
map, where we see a large positive amplitude at both at 70◦ elevation, and towards both
lower ends of the field. An interesting disagreement between the map and the parameter
is that the parameter has high values further up than the ground convolution gradient
map does, both at 30◦ and 70◦ elevation. The values would have correlated better if the
map was shifted by a few degrees, perhaps indicating that some beam features might
be slightly off. A final interesting observation is that but parameter and map agree
to the lack of a horizontal ground derivative in the upper left region of the map. We
point this out because there is still a very noticeable transition in the vertical direction
(see figure 6.2), but both the simulations and the pipeline data agree that there is no
azimuth structure, which is a nice sanity check.

The CO2 map mainly shows azimuthal structure in the lower-left region. The azimuth
amplitude fits are also larger in this region, but we do not see a great small-scale
correlation between the two quantities. There are large negative azimuth amplitudes at
about 140◦ azimuth, which does not immediately correlate with the map, but would so
if the beam-line feature right below it was shifted up by a few degrees.
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Figure 6.4: Same as figure 6.3 for the CO2 field.

The second comparison we want to make is with another metric from the pipeline, called
ps_chi2. This value represents the χ2 statistic from performing a white noise goodness
of fit on the 3D power spectrum of the filtered data. If there are leftover systematics,
such as badly modeled ground pickup in our scans after all filtering has been performed,
this should show up as an excess in ps_chi2. Figure 6.5 shows this value overplotted on
the total gradient amplitude2 in both azimuth and elevation. As in the previous plots,
we see the same excess in the upper-right corner of CO7, where the far sidelobe crosses
the mountain horizon. CO6 meanwhile, has a more constant excess across its whole
high-elevation region, which is not present in CO7. This lends even further support
to our theory that the sidelobe mountain gradient, in reality, lies slightly higher than
the beam convolution predicts and that CO6, therefore, keeps crossing this boundary
during its high-elevation scans. While this explains some phenomena we observe, there
are others still unexplained. There is a ps_chi2 excess around 35◦ azimuth in CO6, with
no corresponding excess in close proximity for CO7. There are also larger excesses at the
bottom-left than bottom-right of both fields, while the beam convolution definitively
claims there are larger ground gradients on the right. The lack of a large ps_chi2
excess in some of these areas could also just mean that the ground in these areas are
well modeled as linear. There is virtually no ps_chi2 excess in the top-left part of CO7,
as it crosses the horizon. As we have already established, this ground pickup transition
is almost entirely in the elevation direction, with virtually no azimuth structure, which
could help explain this. One of the shortcomings of the current pointing template
subtraction model is that it fits for linear azimuth and elevation structures entirely
independently, which is an especially bad model in places with ground gradients in
both, such as the upper-right CO7 corner.

2There is no longer any reason to look only at the gradient in one direction, as badly fit ground in
both elevation and azimuth should show up in ps_chi2.
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Figure 6.6 shows a similar plot for the CO2 field. Interestingly, the 140◦ azimuth region
in which we saw huge azimuth fit values does not contain the largest ps_chi2 excess
in CO2 (although there is definitively something there). This could be explained if the
ground in this area, while substantial, is well modeled by our current filter. The most
noise-contaminated regions of CO2 seem to be the lower left and upper right regions.
The former makes a lot of sense, as it is the region of the largest predicted ground
gradients in the whole area. The latter, however, does not seem to be explainable from
the beam convolution.
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Figure 6.5: Gradient amplitude (background) of the ground pickup convolution for the
area around the CO6 and CO7 fields. Overplotted are the mean amplitudes of ps_chi2, a
noise residual metric from the pipeline.
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Figure 6.6: Same as figure 6.6 for the CO2 field.
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Figure 6.7: The same ground convolution simulation as seen in figure 6.2 (background).
Overplotted is the temperature profile of the destriper maps generated from actual COMAP
scans.

6.3 Destriped maps overview

We will now transition over to looking at maps created by applying the destriper on
the scan dataset we outlined in section 5.4. These maps are intended to form the basis
of a new and improved pointing template subtraction filter, and we will outline some of
the ideas and challenges involved in such a method.

Figure 6.7 shows a destriper-made map of all three observational fields across the entire
sky, overplotted on the beam convolution from the previous section. We see some clear
temperature gradients in places we recognize from the previous section, such as the
upper and lower regions of CO6 and CO7, and around 140◦ azimuth on CO2. We have
marked three regions of especially large gradients, which we will study in more detail
later. We show this full-field map mostly for illustrational purposes, as we do not entirely
trust the map to be well constrained on such large scales. Remember that each scan is
only ∼ 1◦× 1◦ across the sky, meaning we need several hundred such overlapping scans
to reach all the way across an entire observational field. The destriper might struggle
properly constraining the normalization of the scans on such large scales, and we will
from now only make destriped maps of considerably smaller regions. This is fine, as it
is the small-scale ground pickup gradients that impact our scans either way.

Before considering the implications of our data-driven maps, we want to take a short look
at them in the context of the destriper mapmaking model we are using. As it turns
out, for our use, the destriper does more than just remove correlated noise. Figure
6.8 shows two maps of the same upper-right region of CO7, created using the noise-
weighted binning mapmaker, and the destriper mapmaker. The difference between the
two is quite significant. First of all, we see that the striped features in the binned map
is entirely gone in the destriped map, which looks much cleaner. However, the perhaps
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Figure 6.8: Left: Noise weighted binned maps from all available scans, as outlined in
section 5.4.1, for the upper-right section of CO7. Right: Same map, created instead using
a destriper mapmaker.

most surprising difference is the much larger overall gradient in the destriped map, The
reason we do not see this gradient in the binned map is because we normalize each
scan (which we have to, as we cannot trust absolute signal temperature, only relative
temperature). This means that a scan in a lower signal region, e.g. the upper-left
corner of the figure, and a scan in a higher signal region, e.g. the lower right part of
the figure, will both be normalized to fluctuate around zero. We would need a scan to
cover the entire map range to accurately extract the gradient of the ground. Since our
scans are of size ∼ 1◦ × 1◦, only gradients on this scale will show up in a binned map,
and because we have many scans stacked beside each other, they will overlap and cancel
each other out. Looking more closely at the binned map, we see that the upper-right
arch is brighter, and the lower-right is dimmer. This is because the scans that cross the
heavy gradient in the middle of the map will be much brighter towards higher azimuth,
and dimmer towards lower azimuth. However, the part of the scan that overlaps with
lots of other scans, who themselves see no gradient, will be washed out. We therefore
only see hints of the gradient at the very edges of the binned map.

So how does the destriper retrieve the large-scale structure, which the binned scheme
lost due to normalization? The problem is that each scan should contain some overall
normalization factor, which is unknown to us. The whole point of the destriper is to
add a constant offset to intervals of the TOD, to minimize the total variance in data
hitting each pixel. This offset can very well be raised or lowered on entire scans. The
scan crossing back and forth between the bright and the dim regions in the middle of
the figure can now constrain the pixels on each side, insisting to all the scans on the
right that they are in fact very bright, and the scans to its left that they are dimmer.
This shows that, for producing maps from normalized scans, the destriper not only
helps us remove short and medium timescale correlated noise, in the form of the stripes
we see in the binned map, but also helps constrain the overall normalization of each
scan. The destriper of course relies on good cross-linking between scans, with scans
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covering different patches of the sky, and overlapping to varying degrees. This is very
much the case for our scans, which are centered around a range of different coordinates,
and contain both Lissajous and CES scans.

6.4 Data driven pointing filter

Let us now look at some destriped maps in the context of actual scans. We wish to
assess whether a ground map modeled pointing template might outperform the linear
ones we already employ. For this purpose, we will look at regions with strong, preferably
non-linear ground features. Let us start off with the same region we just explored, at the
top-right of the CO7 field. Figure 6.9 shows the destriped map for this region, together
with the average temperature as a function of azimuth only. The azimuth profile of the
map shows fairly constant ground profiles at az < 13◦ and az > 28◦ with an almost
linear region in between. However, in the transition between the constant and linear
regions, the profile would be badly approximated by a linear fit. We have overplotted
the pointing of two scans, specifically selected to fall within these regions.

The ultimate purpose of these ground maps is to serve as the function A(el, az) in a
better pointing template, as outlined by equation 6.2. In figure 6.10 we have plotted
the TOD for both scans from the map figure. The linear azimuth fit of the TOD is
also plotted, as well as the destriped map amplitude (normalized to 0) at the scan
pointing coordinates. The fact that the map amplitude is so similar to the azimuth fit
in both overall amplitude and shape is very encouraging, although the map amplitude
seems somewhat lower in scan 2. Note that the red fit in these plots is just the raw
map temperature at the pointing coordinates of the scan, not in any way fitted to the
relevant TOD. Apart from being similar in amplitude, the map fit shows clear deviations
from the linear azimuth fit, and is also not constrained to a repeating pattern, the way
the linear fit is. This is because the map can have an arbitrarily complicated azimuth
and elevation structure. It is important to remember, however, that it is still a one-
parameter model, just like the linear azimuth fit. This is a crucial advantage of the new
method, as increasing the number of free parameters in the model can introduce other
problems, like a larger loss of signal.
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Figure 6.9: Top: Destriped map of the upper-right region of CO7, with the pointing
pattern of two selected scans overplotted. Bottom: The azimuth temperature structure of
the destriped map, averaged over elevations.
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Figure 6.10: Sideband averaged TOD for scan 1 (top) and scan 2 (bottom) from figure
6.9. The temperature profile from the destriped ground map at the scan pointing pattern
is shown in red, and the best fit linear azimuth profile is shown in blue.
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Moving onto an area of even more interest, the 140◦ azimuth region on CO2. This is
the region within our observational cut of 35◦ to 65◦ elevation with the most significant
ground gradients. Figure 6.11 shows the destriped map of this region, also with two
selected scans. We see a strong gradient in the map, with a 0.1 K change in ground
pickup over a few degrees. This is in good agreement with what we saw from the
mean linear azimuth amplitudes from figure 6.4, and in less agreement with the ground
convolution map, in which this feature seemed lacking or displaced. This region of CO2
seems to be more linear in frequency than the region of CO7 we looked at did, as we
see from the bottom of figure 6.11. This could help explain why we saw no noticeable
ps_chi2 excess when studying the area back in figure 6.6, since the linear azimuth fit
would leave less excess systematics if the ground profile was well approximated as linear.

Figure 6.12 shows the two scans we overplotted on the CO2 field, together with the
best fit linear azimuth template, and the map amplitude. In scan 1, there is good
agreement between the linear azimuth fit and the destriped map amplitude. Scan 2
shows a potential pitfall of a data-driven pointing template model if the model were to
be wrong. Here, we see that the destriper map actually entirely disagrees with the scan
about which direction the ground varies in azimuth. The two profiles look, interestingly
enough, rather similar, but they are anti-symmetric. If we were to fit this as a function
A(az, el) to the scan, a negative amplitude would obviously tell us that something was
amiss. We would expect to see amplitudes around a value of 1, which could be used as
a sanity check to how effective the fit was.
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Figure 6.11: Top: Destriped map of the middle-left region of CO2, with the pointing
pattern of two selected scans overplotted. Bottom: The azimuth temperature structure of
the destriped map, averaged over elevations.
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Figure 6.12: Sideband averaged TOD for scan 1 (top) and scan 2 (bottom) from figure
6.9. The temperature profile from the destriped ground map at the scan pointing pattern
is shown in red, and the best fit linear azimuth profile is shown in blue.
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6.5 Frequency profile analysis

We will finish off our ground analysis by taking a look at the frequency dependence of
the ground pickup. The ground itself is more or less a blackbody, and has an approxi-
mately constant brightness temperature in frequency. We do, however, not observe the
ground directly, but rather from the far sidelobes, and these do have a frequency struc-
ture. In the current version of the pipeline, the frequency dependence of the ground
pickup is not very important, as we perform the pointing template fit independently
for each frequency. If we, however, want to leverage frequency information in a new
pointing template model, we need an understanding of how the far sidelobes behave in
frequency. We have the opportunity to compare both simulated and data-based maps
across frequencies. The beam profile has been simulated for 26, 30, and 34 GHz, which
represent the mean and outer edges of our frequency range. Our data-based destriper
maps use sideband averaged signal, meaning we have four maps in frequencies, at mean
frequencies of 27, 29, 31, and 33 GHz.

In the case of the main beam, higher frequencies produce a sharper beam profile, which
is higher in amplitude at the center and falls off quicker from the beam center. This
relation is described by the diffraction limit, which (among other things) states that
the size of the main beam is inversely proportional to the frequency of the signal. For
the rest of the beam profile, things get a bit more complicated. Figure 6.13 shows the
simulated beam power, sliced vertically down from the main beam, for three different
frequencies. There are some important both differences and similarities between these
profiles. First of all, the sidelobe peaks are all in the exact same locations for all
frequencies. They are, however, varying in amplitude. Especially the most important
sidelobe for ground pickup at −65◦ elevation, is about 5 dB higher in the 34 GHz band
than the 26 GHz, while the 30 GHz band falls in the middle. While this peak itself seems
like it might follow some simple frequency trend, the rest of the beam power shows an
incredibly complex and unpredictable profile. In some regions, it is even the middle
30 GHz frequency band that holds the most power. There is little reason to suspect
that the resulting frequency profile from convolving this sort of profile over a mountain
range will be simple. This graph alone also gives far from the whole picture, as we are
only looking at a vertical slice of the beam profile.

Figure 6.14 shows the difference between the power in the simulated 34 and 26 GHz
beams for the entire beam profile. We see an extremely complicated frequency depen-
dence in the power, which could be very complicated to accurately model, with different
portions of this beam structure passing in and out of the mountain profile. The center
of the far sidelobes has a positive frequency derivative, but there are several nearby
points where it is negative. This is also just the average derivative between the two
outermost points of our beam, and as we saw from the inclusion of the 30 GHz profile
in figure 6.13, the structure within those two outermost points does not always appear
to be simple or linear.
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Figure 6.13: Relative power of the telescope beam as function of elevation, vertically
down from the beam center, simulated at frequencies of 26 GHz, 30 GHz, and 34 GHz.

Figure 6.15 shows the simulated frequency map derivative (in the background) and the
frequency derivative of destriped maps, for two of the regions we previously looked
at. Let us start off by looking at the simulated ground convolution. At the very top,
we have an area with a negative frequency derivative of −0.05 K/GHz, where only
the outermost parts of the beam contribute. As the far sidelobes hit the mountain,
the derivative sharply shifts to being approximately zero. This confirms what we saw
in figure 6.13, namely that the far sidelobe is stronger for higher frequencies. In the
intermediate elevation region, where most of our observations happen, there are much
more modest features, but some small fluctuations can be seen. Around 20◦ above the
mountain range, the inner, low-frequency dominated features of the beam (see figure
6.14) move into the mountains, and see a strong negative derivative. As we hit the
mountain range itself, this shifts entirely to be dominated by higher frequencies, as
more of the power is concentrated around the main beam in higher frequencies.

We have also overplotted two frequency derivative destriper maps, one for the upper-
right region of CO7, and one for the center-left part of CO2. In the CO7 plot, we
see the same transition from negative to positive gradient as the far sidelobe moves
into the mountain range. This is another useful sanity check for both our simulations
and data-based maps, although there are some differences. The destriped map shows
a change in gradient by about 0.01 K/GHz across the transition, while this value is
around 0.05 K/GHz for the simulated map, quite a bit stronger. As a reminder, there
is no absolute temperature information in the destriped map, and all maps have been
normalized to zero-mean, so it only makes sense to compare relative values on the map.
We, therefore, compare only how much the temperature frequency gradient changes over
certain areas. Secondly, the transition happens at a couple of degrees higher elevation
and lower azimuth than the convolution map predicts. This actually conforms well with
the discrepancies we previously saw from these maps, where the data also seemed to
suggest that the far sidelobe transition should have happened at higher elevation (figure
6.5).
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Figure 6.14: Power difference between the simulated 34 GHz and 26 GHz beam profiles.

The CO2 plot also predicts a sharp change in the temperature frequency derivative
across the simulated map. This change is in no way predicted by the simulated convo-
lution map, which has no noticeable features at that exact location. There is, however,
a feature 5-10 degrees below it, which seems to show a similarly sharp transition. We
know from our previous analysis that the observed features of this region of CO2 were
hard to explain with the convolution map, and it, therefore, comes as no huge surprise
that the frequency profile also looks different in this area. Note that we have only
looked at the signal frequency derivative over a substantial frequency range, and there
are probably more complicated small-scale fluctuations, as figure 6.13 hints to.

6.6 Ground pickup summary and discussion

In this chapter, we have laid the groundwork for a new and improved ground template
model, based on a data-driven destriped map. We will now quickly summarize the
findings, and foreseen challenges in such a model.

The ground maps we have produced employ all available feeds, and use sideband aver-
aged maps, for maximum signal to noise. In the future, we want to perform an analysis
of to what degree the ground pickup depends on feed position, and whether it is feasible
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Figure 6.15: Frequency derivative, as calculated by the difference between the simulated
34 GHz and 26 GHz convolution maps (background). Overplotted are frequency derivative
maps calculated from the difference between the last and first sideband of the data-driven
destriper maps, for two selected regions of CO2 and CO7. Zoomed versions of the regions
of the relevant maps are shown above.

to use the same ground map for all feeds. In the ground convolution analysis at the
beginning of the chapter, we used the simulated beam profile specifically of feed 1, which
is the center feed of the feed array.3 The far sidelobe features of the beam depend on the
physical placement of each feed. It is unknown if this effect is large enough to constitute
an entirely independent ground pickup map for each individual feed, and to what degree
this discrepancy will need to be taken into account when producing the ground maps.
Producing individual ground maps for each feed would reduce the available number of
scans by a factor of 19, in theory reducing the signal to noise by a factor of

√
19 ≈ 4.4.

It could also impact the level of cross-linking in the maps.

Producing individual frequency maps would reduce the signal to noise by a factor of√
1024 = 32. As we saw from the analysis of section 6.5, the complicated frequency

structure of the beam profile again produces an even more complicated frequency struc-
ture in the actual maps. Our findings suggest that the ground pickup may have struc-
tures in both frequency and pointing within a single scan-sized patch of the sky. This
poses a problem, as a single-parameter sideband averaged template would not be suffi-
cient to model variances in both pointing and frequency within the same scan, without
intimate knowledge of the frequency structure.

3Figure 7.1 in the next chapter shows the physical arrangement of the feeds in the feed array.
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Chapter 7

Calibration

In this chapter, we present an analysis of the calibration phase of an observation, where
a calibration vane covers the feeds of the telescope to measure a reference hot load
power and temperature. We study how the angle of this vane relates to the power of
the different feeds, and look at what angles provide acceptable calibration results. Ad-
ditionally, we outline a new method for extracting the hot load power and temperature
from a calibration, as the current method sometimes fails.

7.1 Calibration properties

During a calibration observation, a vane of known temperature is placed in the field
of view of all telescope feeds, blocking other incoming signals. The purpose of this
calibration is for each feed to measure a hot load power Phot and temperature Thot, as
we outlined in section 4.3. Being of approximate outdoor temperature, the brightness
temperature of the vane is usually an order of magnitude brighter than the sky, meaning
that we see a sharp power increase in the feeds as the vane covers them. The position
of the calibration vane is denoted by an angle, which is around 215 degrees when fully
disengaged, and lowers to around 65 degrees when fully covering the feeds. The feeds
physical arrangement in the cryostat is shown in figure 7.1, and there is a 26 cm spacing
between completely opposite feeds. This means that the vane will cover some feeds
before others when moving. Figure 7.2 illustrates this relation, where we see the power
response of the feeds as a function of the vane angle. Some feeds are fully covered by the
vane already at 120 degrees, while feed 8 does not reach 99% power until 68.9 degrees.
This is very close to the lowest angle state of the vane, which we have observed to vary
anywhere from 65.5 to 66.8 degrees from calibration to calibration. With this, we can
conclude that hot load measurements can safely be taken at an angle of 69 degrees, with
less than 1% signal loss.

75
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Figure 7.1: Physical arrangement of the telescope feeds. The calibration vane enters the
feeds field of view from the lower-left corner of this image. Figure credit: James Lamb.
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Figure 7.2: Relation between the observed power of each feed and the angle of the cali-
bration vane. The values are an average of over 7000 calibrations. The angle at which the
first feed loses 0.5%, 1%, and 2% power is shown as striped lines, and happen at 68.1, 68.9
and 69.6 degrees, respectively.
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7.2 A new calibration technique

We have traditionally calculated values for Phot and Thot averaging the TOD over a
section marked out by a flag in the level 1 files. The flag indicates that the calibration
vane fully covers the observational array, and the hot load measurements can safely
take place. This flag has turned out to be somewhat unreliable, often not triggering,
probably because the calibration vane did not move to an angle deemed acceptable.
However, in many such cases, the calibration data is still fully usable. For this reason,
we have implemented an alternative technique for calculating Phot and Thot, ignoring the
flag and instead looking at the data itself to figure out when a calibration is underway.

Figure 7.3 shows an example of the power response for a handful of feeds over a single
calibration, together with the vane angle. As we have already seen, the different feeds
increase in power at very different angles, with some requiring the vane to be almost
completely descended. We have also marked the interval flagged for hot load measure-
ments in the level 1 file. As we can see, it is a relatively short interval of 0.6 seconds.
This is not much of a problem, as the hot load power is very stable in time, but it does
not hurt to use more datapoints in the calibration if we can. As mentioned, sometimes
the flag does not trigger, even if the calibration was otherwise successful.

We, therefore, propose a simple alternative scheme for performing the hot load mea-
surements in the absence of this flag, which can be summarized as follows.

• Identify the part of the TOD marked for calibration. The level 1 files have a sepa-
rate flag for indicating that a calibration is underway, which we use to approximate
the location of the calibration.

• Find the point of highest power within this regime.

• From this point of highest power, move outwards in both directions until the
power has dropped by 5%. Add a 1-second safety margin to this, and mark those
points as the beginning and end of the calibration measurements.

• Calculate Phot and Thot by averaging over this range.

We then perform a couple of sanity checks to confirm that the calibration was indeed
successful, as all of these steps could very well have been performed on nonsensical
data. First of all, we check that the vane reached an angle of less than 69 degrees,
which we found to be a natural limit in the previous section, and that this happened
during the region we marked for calibration. Secondly, we check that the calculated
Phot value is more than twice the power of the scan mean power, and the interval used
for calculating these values exceed 1 second. This ensures that we actually observe a
consistent power increase in the data, regardless of what the vane angle and flag claims.
If these tests are not all successful, the calibration is discarded. Note that each feed will
now have individual calibration durations, as the power falls off differently in each feed.
In theory, the uncertainty in both Phot and Thot will be lower, as it is calculated from
the maximum available number of points. The uncertainties were, however, already
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very low.

Figure 7.4 demonstrates this new scheme, where we show both the measured power, the
vane temperature, and their averages. We have also marked the interval over which we
average the measurements and their resulting values.

This new calibration scheme was run on all available level 1 files and collected in a
database for later usage. l2gen now features an option to employ these calibration
values instead of the original calculation. We have also employed this database in
the calibration of the scans we prepared for the destriper ground pickup maps, as we
described in section 5.4.1.
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Figure 7.3: Power curves of the TOD from four selected feeds during a calibration. The
angle of the calibration vane is shown as black dots, while the striped black lines shows the
interval in which we calculate the hot load power.
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Figure 7.4: Demonstration of new hot load calculations on feed 2. The vertical black lines
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Chapter 8

Noise Characterization

The effective removal of systematics in our data requires a thorough understanding
of how they behave and effective ways of measuring their presence or absence. The
distinction between different types of systematics, and their respective risk to our ex-
periment is also important. In this chapter, we present an analysis of the COMAP data
as they move through the pipeline, with a special focus on noise characterization. The
CO signal itself is too weak to have any meaningful impact on the characteristics of
the TOD on a single scan. The filtered scans will also not be meaningfully correlated
across feeds, or on larger frequency or timescales, because these modes are suppressed
by the filtering process. This means that we desire our filtered signal to be as consistent
with white noise as possible, and as uncorrelated across time, feeds, and frequencies as
possible. Before we look at the COMAP data, we present a short analysis of common
noise characteristics.

8.1 Noise theory

We gave a brief summary of the different noise sources in the COMAP data back in
section 3.5, and will now quickly revisit this topic, after having been more thoroughly
introduced to the COMAP data and analysis pipeline.

8.1.1 White noise

The simplest and most fundamental noise in any experiment is white noise, which is
uncorrelated noise sampled from a Gaussian distribution. An example of white noise,
and its temporal power spectrum (which is flat) is shown in the top panels of figure 8.1.
Even under perfect observational conditions, white noise poses a theoretical limit on
the sensitivity of a radio receiver. This limitation is given by the Radiometer Equation,
which states that the standard deviation in the observed signal due to temperature
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white noise is [53]

σ0 =
Tsys√
∆ντ

, (8.1)

where Tsys is the system temperature of the receiver, ∆ν is the frequency range over
which we observe, and τ is the observation time. The COMAP data is currently sampled
at intervals of τ = 20 ms, with frequency bins of size ν = 1.953 MHz. The radiometer
equation predicts a white noise level in our raw data of σ0 = 0.00506Tsys, or σ0 = 0.228 K
for Tsys = 45 K.

We can also turn this equation on its head, and ask what sort of observational time we
would require to detect a CO signal. In our analysis data, we use decimated frequency
bins of ∆ν = 31.25 MHz. If we require a white noise level on the same order of magnitude
as the expected CO signal brightness [34] σ0 = 1µK, we get an observational time of

τ =

(
Tsys

σ0

)2 1

∆ν
= 6.48× 107 s ≈ 2 yrs. (8.2)

The radiometer equation provides a nice theoretical basis for our expected white noise
level, but we also desire a way of calculating this direction from a TOD. We cannot
simply look at the standard deviation of the data itself, since that will contain a con-
tribution from temporally correlated noise as well. However, if we only look at the
standard deviation between neighboring points in the TOD, there will be no contribu-
tion from the correlated noise. We calculate the white noise level in our data as [34]

σ0 =

√
Var(di − di−1)

2
. (8.3)

8.1.2 1/f noise

One of the most common types of temporally correlated noise is so-called 1/f noise.
This is noise which has a power spectrum proportional to 1/fα, where f is the temporal
frequency, and α is some positive value. 1/f noise has been shown to occur naturally in
everything from music [54] to sea tides [55], but most importantly for us, it occurs in
semiconductor electronics [42] such as the low noise amplifiers employed by the telescope.
This means a substantial amount of our temporally correlated noise can be modeled as
1/f noise. The power spectrum of 1/f noise can be written as

P (f) = σ2
0

[
1 +

(
f

fknee

)α]
(8.4)

where σ0 is the white noise level, and fknee is the knee frequency, which represents the
transition point between correlated noise and uncorrelated noise dominated regimes,
and α is the correlated noise slope. Figure 8.1 shows an example of simulated 1/f noise,
with a white noise term.

Some signals are completely dominated by the correlated noise, such that the power
spectrum never really flattens out. In such cases, we neglect the white noise contribution
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Figure 8.1: Figure showing the TOD (left) and power spectrum (right) of a generated 1/f
noise dataset, with σ0 = 0.01, fknee = 0.5 Hz and α = −2.0. The top plot shows the white
noise part of the 1/f spectra only, while the middle plot shows the sloped part only. The
bottom plot shows the combined signal.

and write the 1/f power spectrum simply as

P (f) = σ2
0

(
f

fknee

)α
(8.5)

It might not always be obvious which of these two models is being applied when simply
referring to 1/f noise. We will here try to refer to these as 1/f noise with and without
a white noise term, respectively.

When doing a best-fit of the 1/f PS parameters, we can either fit for the white noise
level σ0 together with the two other parameters, or fix it beforehand using either the
radiometer equation 8.1 or equation 8.3. We usually prefer to fix σ0, to reduce the
number of free parameters. α and fknee are then found by doing a least squared fit to
the power spectrum. In the case of a 1/f spectrum on the form 8.5, the white noise can
not be calculated this way, but it is also completely degenerate with fknee, so we can
simply fix σ0 to something reasonable, e.g. using the radiometer equation.
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Figure 8.2: Power spectrum of a TOD at different stages of the l2gen pipeline. The
respective 1/f best fit power spectra are overplotted in striped lines.

8.2 Data power spectrum and noise level

For ideal white noise-dominated data, the output power spectrum should be flat, as this
is the shape of a white noise power spectrum. Figure 8.2 shows the power spectrum of
the TOD for a typical Lissajous scan after each filter in the l2gen pipeline, together
with best-fit 1/f spectra to each. Each filter has a clear effect on the power spectrum.
The normalization heavily suppresses low-frequency modes. The pointing template
subtraction knocks out the excess around ∼ 0.1 Hz, due to the periodic pointing in
elevation. The polynomial filter heavily suppresses the 1/f spectrum over the whole
frequency spectrum. Finally, the PCA filter further suppresses it. Two important
takeaways from this figure are that 1: Apart from specific, known deviations, the power
spectrum is well approximated by a 1/f fit at every step of the pipeline, and 2: By the
end of the pipeline, the power spectrum is very flat, meaning it is close to white noise.

A quantitative way of testing the removal of correlated noise is through a χ2 goodness-
of-fit test. For each scan, we define a χ2 statistic on the form

χ2 =

∑N
i=0

(
di
σ0

)2
−N

√
2N

, (8.6)

where di are the N datapoints of the filtered TOD of a the scan, and σ0 is the white
noise level, set by the radiometer equation 8.1. Under the hypothesis that the data

are pure white noise,
∑N

i=0

(
di
σ0

)2
is the sum of squared standard Gaussian random

variables, meaning it follows a χ2
N distribution. For large N , a χ2

N distribution becomes
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Figure 8.3: Distribution of χ2 metrics as defined in equation 8.6 for level 2 data of our
three observational fields. A standard normal distribution is plotted for comparison, which
corresponds to pure white noise in line with the radiometer equation.

a Gaussian distribution, with µ = N and σ =
√

2N . Therefore, the χ2 metric described
in equation 8.6 is expected to be a standard Gaussian χ2 ∼ N (µ = 0, σ = 1).

We combine all frequency channels from each sideband in calculating a single χ2 value,
such that N = nsamp · nfreq, where nfreq = 64, and nsamp is typically ∼ 20, 000. Figure
8.3 shows the distribution of these χ2 values for each available scan. We have divided the
metrics up by observational field, where each field contains ∼ 15, 000 scans. Although
we see a clear positive bias in all three fields, it is well within 1σ, which for a white
noise χ2 test with N ≈ 106 datapoints puts us very close to white noise. The CO6
and CO7 fields have near-identical distributions, while the CO2 field outperforms them
somewhat. This is likely due to CO6 and CO7 being observed at very similar pointing
coordinates, while the CO2 field is somewhere else entirely on the sky. Perhaps most
importantly, CO2 is observed at a much lower (and more consistent) elevation than
CO6 and CO7, as we saw all the way back in figure 3.4.

8.3 Polyfilter coefficients

The dominating correlated noise component in our data are the gain fluctuations coming
from the LNAs attached to each feed in the COMAP telescope. These gain fluctuations
are believed to have a constant frequency profile (for normalized data), and they are
individual to each feed, as each feed has its separate LNA. The main purpose of the
polynomial filter, where we fit and subtract a linear function in frequency in each side-
band, is to suppress these gain fluctuations. The polynomial coefficients of this filter,
therefore, provide valuable insight into the behavior of these fluctuations. They also
provide a good starting point for proposing a new frequency filter.
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Figure 8.4: The 1/f best fit parameters of the constant term in the polyfilter, for the
four sidebands of each of the 19 feeds. The figure shows the median, and 1σ upper and
lower deviation of the c0 parameter, obtained from best-fit of a 1/f power spectrum on
each available scan.

The gain fluctuations are well modeled by a 1/f power spectrum. This is evident from
looking at the power spectrum of the data before the polynomial filter, which clearly
follows a 1/f spectrum, as we saw in figure 8.2. While we cannot prove from this figure
that what we are removing are gain fluctuations, it is at least evident that whatever we
are removing follows a 1/f spectrum. Under the assumption that the gain fluctuations
do indeed follow a 1/f spectrum, a convenient way of studying their behavior is simply
looking at the 1/f best-fit parameters.

For each scan, l2gen performs a power spectrum best fit of the c0 and c1 polyfilter
parameters (see equation 4.17), and stores the values of this fit. In figure 8.4, we show
the mean and standard deviation of these across feeds and sidebands. The reason for
separating the values by feed is, as already discussed, the fact that each feed has its
own LNA, and the noise properties induced by the LNA are therefore expected to differ
by feed. We have also chosen to show the parameters for each sideband separately, to
see if the gain behaves notably different between sidebands.

We see a large spread in the white noise levels σ0 across feeds, with some at above
twice the value of others. The values are, however, very consistent within each feed,
with the error bars barely visible, meaning that each LNA has a very consistent white
noise profile. Across the sidebands of each feed, we also see some variation, although
much smaller than between different feeds. Among most of the feeds, there seems
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Figure 8.5: The 1/f best fit parameters of the linear slope term in the polyfilter, for the
four sidebands of each of the 19 feeds. The figure shows the median, and 1σ upper and
lower deviation of the c1 parameter, obtained from best-fit of a 1/f power spectrum on
each available scan.

to be a slight linear decrease in the white noise level towards the higher frequency
sidebands, although there are some exceptions to this, like feed 13 and 15. The presence
of structure across the sidebands of each feed hints at some frequency dependence in
these fluctuations (although the sideband-sideband structure does not necessarily imply
inter-sideband structures). The gain fluctuations are primarily believed to be constant in
frequency, and these structures could perhaps be attributed to some temperature source,
like the atmosphere. (We will come back to this in great detail when discussing the new
frequency filter.) We are already using a linear polyfilter model in our polynomial filter,
and the linear structure of most of these noise levels seems to lend some support to
this choice. For the knee frequency and slope, fknee and α, the story is similar but less
pronounced. The differences between different feeds still noticeable, but are smaller, as
are the differences between different sidebands of each feed. However, the variations
between scans are much larger, as seen from the error bars. Note that there is a strong
correlation between the parameters within each feed (or across all feeds), which the
error bars do not convey.

Figure 8.5 shows corresponding plots for the linear term in the polynomial filter. This
term is generally much smaller, and as we can see, behaves more erratic. There is much
less consistent structure across sidebands and feeds in these parameters. However, the
errorbars, especially on σ0, are on many sidebands very small, meaning that the 1/f
profile is consistent within the sideband.
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Chapter 9

A New Frequency Filter

In this chapter, we propose a new frequency filter for the COMAP pipeline, to replace the
current polynomial filter. The polynomial filter is built primarily to handle fluctuations
in the telescope gain, which is known to be the largest correlated noise term in our
data. However, we believe it may be inadequate at handling systematic fluctuations in
the system temperature, which, while being of much smaller amplitude than the gain,
can build up as a systematic bias in the data over time. The new frequency filter is
meant to better handle such temperature contaminations in the data, by performing a
joint maximum likelihood fit of the signal into system temperature and gain, on short
timescales. While the separation between gain and system temperature on observation-
length timescales are resolved to high accuracy by the telescope calibration every hour,
these values are simply interpolated to the center of each scan, offering no real separation
between the two on shorter timescales.

We first set up a new and more realistic data model for our signal, and find a maximum
likelihood solution to the joint fit of gain and temperature. We then present our findings
from testing the new filter on both real and simulated data. We first apply the filter
to a couple of chosen scans in the COMAP dataset, and then move on to working on
simulated data, as this allows us to better study the amount of temperature fluctuations
left in the output signal. The impact of different priors on the gain fluctuations will
also be considered. We finish the chapter by taking a look at how well the filter removes
astronomical continuum foregrounds, with Jupiter as a case study, and discuss whether
the new filter could have applications in continuum science as well.

9.1 Theoretical foundation

The observed power of the telescope can be modeled as1

dνt = Tνtgνt (9.1)
1Again, we have left out the terms of ∆νkB , which can be included in the gain.
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where Tνt is the system temperature, and gνt is the gain, both of which are unknown
functions of frequency and time. We chose to model these as Tνt = T̄ν + δTνt and
gνt = ḡνt(1 + δgνt), where T̄ν and ḡν are the constant (or very slow-running) system
temperature and gain, and δTνt and δgνt are the fluctuations around these means. The
reason for the gain and temperature fluctuation taking different shapes is that the gain
fluctuations are observed to follow the frequency profile of the mean gain. However,
a temperature increase of 1 K from a continuum source would raise the observed tem-
perature by 1 K for all frequencies, and it would not increase more for frequencies with
higher average system temperatures. Inserting these quantities in equation 9.1, we get
the very general data model

dνt = T̄ν ḡν(1 + δgνt)

[
1 +

δTνt
T̄ν

]
(1 + nνt), (9.2)

where we have also included a white noise term nνt.

In the most general case, δTνt and δgνt could be any function of time and frequency. This
would, however, make them completely degenerate with both each other and the white
noise, and there are physical justifications for assuming they are simple functions of
frequency. In the simplest case, we assume that both are constant across frequency, but
make no assumptions about their time-dependence, such that δTνt = δTt and δgνt = δgt,
giving the signal model

dνt = T̄ν ḡν(1 + δgt)

[
1 +

δTt
T̄ν

]
(1 + nνt). (9.3)

The next natural step in model complexity is to allow the fluctuations to depend linearly
on frequency. Most temperature contaminations in our signal are continuum sources,
like ground, atmosphere, weather, and astronomical foregrounds. Continuum sources
are well approximated as linear on smaller frequency ranges, like the 2 GHz sidebands
of the COMAP data. We, therefore, have a lot of physical justification for wanting to
expand our temperature model to include a linear term. With this added, our model
now reads

dνt = T̄ν ḡν(1 + δgt)

[
1 +

δTt
T̄ν

+ α
δTt
T̄ν

(ν − ν̄)

]
(1 + nνt), (9.4)

where ν̄ is the frequency mean, and we have introduced the temperature frequency slope
α. We could expand the gain with a similar linear term, but in our experience, the gain
is well modeled without it. The reason our current polynomial filter model includes
a linear term is exactly to account for continuum temperature systematics, which we
are now dealing with in a more adequate way. We, therefore, propose this as our final
model.

The frequency filter is performed after the normalization and pointing template removal,
where the signal is left with only the small and short-term fluctuations. We model the
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normalized data as

yνt = dνt/(T̄ν ḡν)− 1, (9.5)

= (1 + δgt)

[
1 +

δTt
T̄ν

+ α
δTt
T̄ν

(ν − ν̄)

]
(1 + nνt)− 1, (9.6)

≈ δgt +
δTt
T̄ν

+ α
δTt
T̄ν

(ν − ν̄) + nνt, (9.7)

where we have assumed that all perturbation terms are small, such that any product
between them is negligible. To clean this up a bit, we introduce α′ = αδTt and ν ′ =
(ν − ν̄)/T̄ν , such that our model can be written as

yνt = δgt +
δTt
T̄ν

+ α′tν
′
ν + nνt. (9.8)

9.1.1 Maximum likelihood solution

This section introduces the maximum likelihood solutions of δg, δT and α′t from equation
9.8. We can write this equation as a matrix equation, on the form

Y = Pm + Fa + N (9.9)

written out as
y1,1 y1,2 · · · y1,n

y2,1
. . .

...
ym,1 ym,n

 =


T̄−1

1 ν ′1
T̄−1

2 ν ′2
...

T̄−1
m ν ′m


(
δT1 δT2 · · · δTn
α′1 α′2 · · · α′n

)

+


1
1
...
1

(δg1 δg2 · · · δgn
)

+


n1,1 n1,2 · · · n1,n

n2,1
. . .

...
nm,1 nm,n

 .

(9.10)

The equation is now on a similar form to that of the destriper signal equation, except
with the dimensionality of some values a bit off. If you want some intuition on how this
equation relates to the destriper setup, and where the pixels are, we have written out
the equation on a less compact and more destriper-like form in appendix A. What is
most important is that we are familiar with the maximum likelihood solutions to such
an equation.

The maximum likelihood solutions for a and m, assuming a diagonal correlation matrix
Cn, we know from section 5.3.1 to be

(FTC−1
n ZF)a = FTC−1

n Zy, (9.11)
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and
m = (PTC−1

n P)−1PTC−1
n (y − Fa), (9.12)

where Z = I−P(PTC−1
n P)−1PTC−1

n .

As we explored in section 5.3.1, this solution can easily be extended with some prior on
a, by including its correlation matrix. Since we have a good understanding of the power
spectrum characteristics of the gain fluctuations, represented by a, this is a natural
extension. The maximum likelihood solution for a now takes the form

(FTC−1
n ZF + C−1

a )a = FTC−1
n Zy. (9.13)

On shorter timescales, for a single detector, a common assumption is that the white
noise level is stationary in time. Under this assumption, the white noise covariance is a
uniform diagonal matrix, Cn = σ2

0 Î. Additionally, for our specific setup, the quantity
z = FTZF is actually a scalar. This means that the only non-diagonal quantity on the
left hand side of our equation is the covariance matrix Ca, without which the solution
for a would be explicit. This matrix is, however, diagonal in the Fourier domain. We
therefore rewrite the solution for a as

z

σ2
0

a + F−1[F [a]/Cf ] =
1

σ2
0

FTZy, (9.14)

where Cf = F [Ca] is the Fourier representation of Ca.

Doing a Fourier transformation of each side of the equation, the solution for a becomes
explicit, as

z

σ2
0

F [a] + F [a]/Cf =
1

σ2
0

F
[
FTZy

]
, (9.15)

F [a] =
F
[
FTZy

]
z + σ2

0/Cf
. (9.16)

We know that the power spectrum of the gain fluctuations are very well approximated
by a 1/f function, a claim we will explore in more detail later. The prior we wish to
place on a therefore takes the form

Cf = F [Ca] = σ2
0

(
f

fknee

)α
, (9.17)

where fknee and α has to be decided, and σ0 is the white noise level.

Masking

In the COMAP data, some frequencies are always masked out due to their poor per-
formance and large systematics. This is simple to implement in our model, by simply
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setting the corresponding rows in y, P, and F to zero. An example of this, with the
second frequency channel masked, can be written as

y1,1 y1,2 · · · y1,n

0 0
. . . 0

...
ym,1 ym,n

 =


T̄−1

1 ν ′1
0 0
...

T̄−1
m ν ′m


(
δT1 δT2 · · · δTn
α′1 α′2 · · · α′n

)

+


1
0
...
1

(δg1 δg2 · · · δgn
)

+


n1,1 n1,2 · · · n1,n

0 0
. . . 0

...
nm,1 nm,n

 .

(9.18)

9.1.2 Comparison to polynomial filter

Before moving on to our results, we try building some intuition on why we believe that
the new frequency filter is an improvement on the existing polynomial filter, and what
implications this will have on our data. The currently used polynomial filter works by
fitting and subtracting a linear function in frequency from every timestep, across each
sideband of each feed. This essentially assumes that the normalized data can be well
approximated as

yνt = c0 + c1(ν − ν̄) + nνt. (9.19)

This fits our profile of the gain fluctuations, which are assumed to be constant. How-
ever, the temperature fluctuations become modulated by the mean system temperature
frequency profile, which we know is not linear (see figure 4.1). The reason the current
polynomial filter works well enough is twofold. First, the gain fluctuations completely
dominate the correlated noise profile. We do not know exactly how much temperature
contaminations an ordinary scan contains, but it is far less than the gain. Secondly,
although the system temperature frequency profile is not linear, it is not too bad of an
approximation. The most obvious problem is the system temperature spikes. These are
often masked away at some point in the pipeline, and therefore not considered too great
a problem.

Even though the temperature fluctuations are assumed to be small, they pose a larger
problem to the COMAP data than immediately obvious. Most sources of these contam-
inations are, unlike the gain, correlated in galactic coordinates or telescope pointing.
This is a huge problem, as such systematics do not integrate down in time, and could be
interpreted as actual CO signal. Any astrophysical foreground is directly correlated in
galactic coordinates. Additionally, ground, atmosphere, and weather are all correlated
with telescope pointing (azimuth/elevation). While this is not completely degenerate
with galactic coordinates, as the fields drift across the sky, it is still a lot worse than
the completely uncorrelated gain fluctuations. In summary, we have very good reasons
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to worry more about the temperature fluctuations compared to the gain fluctuations,
even if their amplitudes are small within a single scan.

9.2 Proof of concept - Real scans

This section presents a qualitative analysis of the results obtained from applying the
new frequency filter to a few real scans. Figure 9.1 demonstrates the difference between
the old polynomial filter and the new frequency filter for an ordinary scan. The more
complicated, non-linear structure of the new filter can be seen, especially around the
system temperature spikes. Since the temperature fluctuations are very small compared
to the overall noise level, we do not expect to clearly see which fit is better by eye, but
the new fit should in theory be able to better model the systematics. The frequency
correlation across the first sideband is shown in figure 9.3, where, again, no real difference
between the two methods can be observed.

Figure 9.2 shows the same fit on another scan, which was picked specifically because
of the presence of heavy weather contaminations, which is a temperature systematic.
Here, the merit of the new fit is very clear, with the old fit being very inadequate at
modeling the frequency profile of the data. A scan such as this is contaminated beyond
recovery, and would never be used in actual analysis, but serves as a good proof-of-
concept for our new filter. Figure 9.4, showing the frequency correlation of the first
sideband, tells the same story. The old polynomial filter results in heavy correlation
across all frequencies, while the new filter reduces the correlation almost down to the
level of the well-behaved scan.
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Figure 9.1: Comparison between the previous linear polynomial fit (green), to the new
frequency filter fit (red) on an "ordinary" scan without obvious weather contaminations.
The new fit has a non-linear profile containing an imprint of the system temperature profile,
but it is not immediately clear if the new fit better models the data.

A problem in testing new filtering methods with real data is that we have no universal
metric for determining the quality of output data. While we could test how consistent
with white noise our signal is, tests like these fail to distinguish between systematics
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Figure 9.2: Comparison between the previous linear polynomial fit (green), to the new
frequency filter fit (red) on a "bad" scan with obvious weather contaminations. It is very
obvious that the data contains structures which are not adequately modeled by the poly-
nomial fit, while the new frequency fit fares much better.

which will bias our data and not, which is a very important distinction. In general, we
wish to see as little correlated noise as possible in our output TOD, but some correlated
noise is far worse than others. Noise that is correlated in either Galactic coordinates
or signal frequency is of most serious concern, as it could be interpreted as actual
signal. Any noise not correlated in such a way will simply be integrated down when
we produce maps. Temperature contaminations are often of the former variant, such as
those from ground, atmosphere, or astrophysical foregrounds. Gain fluctuations on the
other hand, while being our dominant source of correlated noise, are only temporally
correlated. It therefore mainly increases our integration time, and do not bias our data
the way temperature contaminations may. We will therefore now transition to looking
at simulated signal, where we have better control over the different types of systematics.

Figure 9.3: Frequency channel correlations across A:LSB of feed 1 for scan 000717302.
This scan contains no obvious weather contaminations, and the correlation plots are similar.
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Figure 9.4: Frequency channel correlations across A:LSB of feed 1 for scan 001244402.
This scan contains heavy weather contaminations, and a lot of the correlated noise passes
through the old polynomial filter. The new filter also shows some large excess correlation
at certain frequencies.

9.3 Proof of concept - Simulated data

In this section, we study the effect of the new frequency filter on simulated data, with
similar noise properties as a real scan. As we explored in the last section, the new fre-
quency filter is a significant improvement in scans with large excess temperature, and
while this demonstrates the theoretical potency of the filter, these scans are usually un-
usable anyway. When applied to a scan with cleaner data, the temperature fluctuations
were too small to see an obvious improvement from the single scan alone. This poses
a problem, as we are worried that the temperature fluctuation might introduce a bias
in our data over time, yet we are unable to confirm that the new filter is adequately
removing these contaminations from a single scan. With simulated data, we know the
solution to how the signal decomposes into gain and system temperature, and can more
accurately explore how well the filter removes them.

9.3.1 Data generation

We generate our data using the data model we introduced in section 9.1, where the
TOD takes the form

dνt = T̄ν ḡν

[
δgt +

δTt
T̄ν

+ α
δTt
T̄ν

(ν − ν̄) + nνt

]
. (9.20)

We use a setup close to that of a typical scan, with 20,000 timesteps, over 19 feeds,
with 4 sidebands of 1024 frequency bins each. We adopt the mean gain and system
temperature, ḡν and T̄ν , from a randomly selected scan. The white noise nνt is generated
as an uncorrelated Gaussian signal with standard deviation taken from the radiometer
equation, which we have found to conform well with our data. The gain and system
temperature fluctuations, δgt and δTt, are generated as correlated signals with a 1/f
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power spectrum without the white noise term. For the gain, we use 1/f parameters
based upon those of the polynomial parameter c0 we analyzed in section 8.2. We
average these parameters across feeds and sidebands, and use the values σδg0 = 0.00073,
f δgknee = 7.78 Hz, and αδg = −1. For the system temperature fluctuations, we simply do
not have accurate measurements of its 1/f behavior. We will experiment with a range
of values, but as a baseline, we give it a white noise amplitude a factor 16 lower than
that of the gain (a factor we will simply refer to as "the σ0 factor", for simplicity), at
σδT0 = 0.000024, and a slope of αδT = −1.4. We always keep f δTknee = f δgknee.

Now that we have several meanings to certain quantities, we will refer to the maximum
likelihood fits as δgout and δT out, to clearly distinguish them from the "true" simulated
data, δg and δT . Similarly, the filtered data will be referred to as dout, while d refers
to the simulated input TOD.

9.3.2 Correlation

To quantify the presence (or absence) of temperature fluctuations, we will look at the
correlation between the temperature fluctuations δTt, which we randomly generate, and
the filtered output TOD. The correlation between two timeseries a and b is defined as

Corr(a, b) =
E[(a− ā)(b− b̄)]

σaσb
=

∑N
i=1(ai − ā)(bi − b̄)

σaσb
(9.21)

where ā and b̄ are the mean values of the timeseries, and σa and σb are their standard
deviations. The correlation is always a number between −1 and 1; it is 1 if the two are
identical (up to a factor), and −1 if they are anti-symmetric (up to a factor).

Unless the timeseries are of infinite length, the correlation will always be non-zero
even for uncorrelated data. The correlation between two timeseries of N independent
gaussian random variables follow a normal distribution2 N (0, 1/

√
N). However, the

quantities we will be comparing, like δT and dout, are not independent Gaussian random
variables, but instead correlated in time. Two timeseries with temporal correlation have
larger expected correlation between each other than two independent Gaussian time
series do. The correlation distribution is also non-trivial. To establish the expected
correlation distribution between two completely uncorrelated timeseries of, for example,
δT and dout, we simulate a large number of δT timeseries, which are independent of the
relevant TOD, and calculate the correlation distribution between these and the TOD.
This serves as the uncorrelated baseline we compare our results to.

To further simplify the analysis of these correlations, we introduce a metric to quantify
this correlation. Let dout

j be the jth of M filtered TODs, and δTj be the corresponding
simulated temperature fluctuations. Additionally, let δT rnd

j be an independent realiza-
tion of δTj , with the same statistical properties. We then introduce the mean squared

2This is an approximation which holds for N � 1, which will always be the case for us, as we are
looking at thousands or tens of thousands of datapoints.
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correlation excess between the two timeseries, as

MSCE(dout, δT ) =

∑M
j=1

[
Corr(dout

j , δTj)
]2

∑M
j=1

[
Corr(dout

j , δT rnd
j )

]2 . (9.22)

This quantity can be interpreted as the mean squared error above the expected corre-
lation of dout and δT , if they were completely uncorrelated. It will take a value of 1 if
they are completely uncorrelated, and higher values the more correlated they are.

9.3.3 Temperature correlation results

Figure 9.5 shows the distribution of correlations between dout and δT for a simulated
scan with the default parameters we outlined in section 9.3.1. The new frequency filter
shows a distribution very much in line with the randomly sampled correlations, while
the old polynomial filter produces a slightly broader distribution. In figure 9.6, we have
split this distribution up into frequencies with system temperatures above and below
60 K. Here we clearly see that the polynomial filter has a negative correlation bias for
high temperatures and a slight positive bias for low temperatures. This is because,
as figure 9.2 demonstrates, when there are temperature systematics in the data, the
polynomial filter underestimates the amplitude of the signal for most frequencies, while
overestimating it for the system temperature spikes. In an ordinary scan, this effect will
be small but will build up a bias in the filtered signal over time.

As the amplitude and 1/f behavior of the temperature fluctuations in an ordinary scan
are not known to us, we have simulated data with a range of parameters and calculated
their correlations. For some intuition on the magnitudes of the different signals involved,
we have plotted the power spectra of the gain, white noise, and temperature fluctuations
in figure 9.7. We also show the effect of halving σδT0 , as well as changing αδT from -1.4
to -1.6, to give some intuition for what these changes represent.
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Figure 9.5: Distribution of correlations between filtered signal and temperature fluctua-
tions for simulations of a scan with 4096 frequency channels and 19 feeds. Both the old
polynomial filter and the new frequency filter, are shown. As a reference, the correlation
distribution between two independent realizations of signal and temperature is shown in
black, as described in section 9.3.2. The default 1/f parameters outlined in section 9.3.1
was used.

0.015 0.010 0.005 0.000 0.005 0.010 0.015
Correlation

0

20

40

60

80

100

Pr
ob

ab
ilit

y 
De

ns
ity

Tsys > 60

0.015 0.010 0.005 0.000 0.005 0.010 0.015
Correlation

Tsys < 60
new freq filter
polynomial filter
random

Figure 9.6: The same correlation distribution as shown in figure 9.5, split into frequencies
above and below 60 K in system temperature.

In figure 9.8 we have plotted the MSCE (as defined in equation 9.22) between dout and
δT for both the old polynomial filter and the new frequency filter, with αδT values
ranging from −1 to −1.8, and σ0 factors from 4 to 64. For some reference on the
MSCE values, remember that a histogram of correlations for the default configuration of
σ0 factor = 16, α = −1.4, with a MSCE value of 1.111, is plotted in figure 9.5. For every
single configuration, the frequency filter shows less correlation with temperature than
the polynomial filter. The polynomial filter has a large excess of correlation for all but
the left-uppermost values, which represent the smallest temperature amplitudes. There
is no noticeable excess in the frequency filter for any configuration. With this, we can
conclude that the new filter will always be better at removing temperature systematics
in our data, but how much better comes down to how much such systematics are present
in the first place.
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Figure 9.7: Power spectra used for the simulated data. We fix the gain and white noise
power spectra from values from analysis of actual data, as outlined in section 9.3.1. The
temperature fluctuations is by default set to αδT = −1.4, with fδTknee = fδgknee, and a σδT0 =
1
16σ

δg
0 , as shown by the solid line. The striped and dotted lines show the effect of halving

σδT0 , and changing αδT from −1.4 to −1.6 in the temperature power spectrum.
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old polynomial filter (left) and the new frequency filter (right). The values as plotted as
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Filter type Corr(δgout, δT out) MSCE(dout, δg) MSCE(dout, δT )
Polyfilter n/a 1.004 1.107
Freqfilter fpriorknee = 0.1fδgknee 0.3002 2.543 1.005
Freqfilter fpriorknee = fδgknee 0.0005 1.583 1.005
Freqfilter fpriorknee =∞ -0.7522 1.003 1.005

Table 9.1: Correlation and mean squared correlation excess between different parameters
for the polynomial filter, and three prior configurations of the frequency filter.

9.3.4 Noise level and gain fluctuation priors

We have now established that the new frequency filter succeeds in its primary purpose of
removing temperature fluctuations from a range of realistic data configurations. With
that settled, we will now explore differences between the old and new models in regard
to the gain fluctuations and the overall noise level in the filtered data. It should be
stressed that this is a secondary concern, and we would gladly offer a slight increase
in the overall noise profile (within reasonable limits) in order to get rid of potential
temperature fluctuations in our data. This section will also explore the impact of the
prior we have placed on the gain fluctuations, which was left out of the previous analysis
because it did not meaningfully influence the temperature correlation results.

We return to looking at simulated data with the default parameters outlined in section
9.3.1. Figure 9.9 together with table 9.1 summarizes the results of this simulation
with different prior configurations. Looking at the figure we see that the choice of
prior configuration has, unsurprisingly, the biggest impact on δgout, but δT out is also
somewhat influenced. Reducing the fprior

knee by a factor of 10 gives δgout both a lower
amplitude and less short timescale fluctuations, as the high-frequency modes of the
power spectrum is suppressed. In this configuration, we see that δT out takes on a
slightly higher amplitude than the default prior, probably in an attempt to model the
gain. Additionally, the two quantities looks to be somewhat correlated. This is backed
up by the table, which shows a positive correlation of 0.3. Again, this is probably
because δT out attempts to model the gain fluctuations, as δgout itself is suppressed by
the prior. The temperature also takes on a larger amplitude than the gain, which we
know is a rather unrealistic fit.

In the default prior configuration, the two quantities show a correlation of only 0.0005,
which is rather negligible. Here we also see from the power spectrum that the gain
manages to fit the prior structure very well. The fact that this correlation vanishes
with the use of a correct prior is very useful information to bring into a real data setup.
Remember that both δgout and δT out are known quantities in a real data scenario, and
we can use this fact to pinpoint the correct prior on δg.

In the configuration without a prior altogether, there is a much larger amplitude of
both gain and temperature. This is because the two quantities are almost completely
anti-correlated, with a correlation of −0.750, such that their total signal contribution is
much smaller than their respective amplitudes. This is very non-physical, as we do not
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Figure 9.9: Best fit δgout and δT out on simulated data. The figures show three fits with
different priors on δg. The middle column has a prior with the correct knee frequency, the
left column has the knee frequency of the prior reduced by a factor of 10, and the right
column has no prior, which is equivalent to an infinite knee frequency. The top row shows
the entire TOD fits, the middle row shows a short section of the TOD, and the bottom row
shows the power spectra of the fits, together with the priors on the gain.

expect any correlation between δg and δT at all. The power spectrum is similar to that
of the priors, with the exception that both quantities, but especially the gain, take on
a much larger amplitude in the high-frequency modes. This is not behavior we expect
from the gain, and neither did we model the gain this way in the input simulation. This
shows that putting the correct prior on the gain helps to break degeneracy with the
temperature, by using the fact that δg is correlated in time. The anti-correlation be-
tween δg and δT is exactly what happens when we run a destriper mapmaking model on
badly constrained data with little crosslinking, which results in anti-correlation between
a and m. If we look at our model as a destriper, as we do in appendix A, we will see
that we have absolutely no crosslinking. We therefore rely on the prior to constrain the
model when the signal-to-noise ratio is low. The prior also makes the filter less harsh,
since we no longer fit and subtract δg independently for each timestep. This means we
could potentially lose less data, which we will come back to later.

Note also that the last column of the table supports our claim that the choice of prior
does not impact the removal of the temperature fluctuations3. This means that, even for

3These values are from a different simulation than the one which the data in figure 9.8 was based



9.3. PROOF OF CONCEPT - SIMULATED DATA 101

the very unrealistic case of the large amplitude anti-correlated fits we got from removing
the prior on the gain, we do not bias our data with our fit, which is the absolutely most
important point.

The middle column of the table shows the correlation level between the output signal and
the input gain fluctuations. We see that the polynomial filter, as well as the priorless
frequency filter, removes the gain very well. The stronger the prior we place on the
gain, the more residual gain is left in the filtered signal. This is because a strong prior
will make us under-fit the gain fluctuations. A moderate residual in the gain is not
necessarily in itself a large problem, as it is an unbiased noise. The correlation levels
we see in the table are also relatively small, as the MSCE metric is extremely sensitive.

9.3.5 χ2 goodness of fit

We have yet to assess how good the new model is at lowering the overall noise level in
our data. Back in section 8.2 we introduced a χ2 test of data consistency with white
noise. We perform a similar test on the simulated data after having been filtered by
both the old polynomial filter and the new frequency filter with different priors. Figure
9.10 shows the χ2 distribution of the white noise goodness of fit, against a standard
normal distribution. The distributions appear almost indistinguishable, meaning there
is little difference in the overall noise level after any of the filtering variations.

It might seem surprising that the distributions are shifted to the left of the standard
normal distribution. This does in fact mean that the noise level in the output data
is lower than the white noise level of the simulated data. This happens because some
of the white noise is fitted and removed by the models. This means that we would
also lose actual signal to these filters. We already know this to be the case for the
polynomial filter, which we saw negatively impact the signal transfer function back in
figure 4.11. The different models look almost entirely overlapping in figure 9.10, but
there are subtle differences. The mean values of the distribution, in the order they are
shown in the label, are −0.248, −0.221, −0.271, and −0.346. It is, unsurprisingly, the
priorless frequency filter that removes most of the white noise, and therefore probably
also most data in an actual scan. We also see that the stronger prior lies closer to zero
than the correct prior, even closer than the old polynomial filter does. This brings us
to one of the strongest arguments for using a prior in the first place. We saw that the
models constrained by a prior on the gain were worse at removing gain fluctuations,
but they also remove less CO signal.

In the future, we will perform a proper transfer function analysis, where we include CO
data in the simulations. We would also like to experiment with a prior on δT . We will
then be presented with the same dilemma, where a prior will probably somewhat reduce
the amount of temperature fluctuations we are capable of removing. It will, however,
also remove less of the CO signal.

upon, explaining why these values do not exactly correspond to the values of 1.003 and 1.111 shown in
that figure. The values are pretty close though, which is a nice sanity check.
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Figure 9.10: Distribution of χ2 metrics defined in equation 8.6 for the filtered data of
both the polynomial filter, and several prior configurations of the frequency filter. A normal
distribution is plotted for comparison, which corresponds to a pure white noise distribution
in line with the radiometer equation.

9.4 Continuum foregrounds and applications to continuum
science

We will finish up our frequency filter chapter with a quick look at the removal of contin-
uum foregrounds. Astrophysical foregrounds are one of the most important systematics
to remove properly, as they are completely correlated with galactic coordinates, and will
therefore in no way integrate down in time. Figure 9.11 shows the Planck LFI 30 GHz
foregrounds at and around the three observational fields. We see that the foregrounds
take values of the order of 100µK or more. Since the CO signal is expected to have
amplitudes of only a few µK, we need to suppress the foreground by at least two orders
of magnitude for clean detections.

For this analysis, we use Jupiter as a case study, as it is a bright continuum source,
and COMAP frequently does Jupiter scans for the purpose of calibration. The new
frequency filter should in theory be very capable of removing such continuum sources.
We will also take a quick detour and talk about how our frequency filter could have
potential applications in continuum science. As COMAP is a line emission survey, we
treat temperature continuum sources as contaminations and aim to remove them. For
our purposes, the motivation for an accurate fit of continuum temperature sources is
simply to remove them more accurately. However, in the field of continuum science,
the aim is to map such continuum sources, while treating individual line emissions as
contaminations.

For the purpose of studying to what degree we can remove Jupiter from our data, we
put a single Jupiter scan through the new frequency filter and identified all points on
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Figure 9.11: The approximate area of each of the three observational fields, overplotted
on the Planck LFI 30 GHz full-mission map [56], showing the foreground levels at each field.
Figure credit: Nils-Ole Stutzer.

the TOD which hit Jupiter. The temperature distribution of these points before and
after the frequency filtering averaged over each sideband, is shown in figure 9.12. While
it is not entirely evident from these plots how much of the remaining temperature is
from Jupiter, and how much is white noise, we see that we have suppressed the power
of Jupiter by at least 2 or 3 orders of magnitude. Figure 9.13 shows the binned maps
of the different components of the frequency filter fit. Here, we also see that it is
impossible to identify Jupiter by eye in the best-fit noise map, which corresponds to
the TOD with gain and temperature fluctuations subtracted. Figure 9.14 shows the
frequency profile of the central Jupiter pixels, before and after the frequency filter,
where we clearly see that it has suppressed to fluctuations around zero, with no signs
of bias. We have also included the same frequency profile when the same subtraction
is done using the old polynomial filter. This filter is obviously inadequate at removing
continuum foregrounds. Calculating the mean squared error of both methods from zero
temperature, across frequencies, we get errors of 0.21 K and 0.03 K for the new and old
filter, respectively. This corresponds to excesses of 56σ and 1.5σ above the expected
value from the radiometer equation, a very significant reduction.

If we look at figure 9.13 from the perspective of a continuum scientist, the temperature
fluctuation map is what we would actually be interested in. We could use the frequency
filter to separate the gain from the temperature, and treat the upper-right plot in the
figure as our result. We see that this plot looks cleaner than the merely binned map
does.4 In a situation such as this, with the desire to remove gain fluctuations from
a continuum science map, we could also have employed a destriper mapmaker, which
could also serve the purpose of removing gain fluctuations. The two techniques could
perhaps also both be employed, in succession. A detailed study of this is outside the
scope of this thesis.

4The gain plot shows a slight anti-correlation with the temperature plot in the center of Jupiter.
This suggests that we might have placed a slightly too weak prior on the gain, as we would in such a
case expect anti-correlation between δg and δT , like we saw from table 9.1.
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Figure 9.13: Frequency averaged binned maps of the Jupiter scan, as well as the individual
parameters in the frequency filter fit.
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Figure 9.14: Temperature as function of frequency for the central Jupiter pixel of the
different maps. The blue line shows the unfiltered TOD, corresponding to the upper-left
corner of the previous figure. The orange line shows the frequency filtered map, corre-
sponding to the lower-right corner of the previous figure. The black line shows the result
of instead applying the old polynomial filter to the data. y = 0 K is overplotted for clarity.
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Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this thesis, we have performed an analysis of the COMAP noise characteristics and
put forward improved models for two of the currently employed pipeline filters. By
analyzing the data as they move through the pipeline, we are able to confirm that
our filtered data are almost entirely consistent with white noise, meaning that we have
successfully suppressed all signal systematics to below white noise. We find that the
correlated noise in our data are well approximated as 1/f power spectra and that they
are strongly feed-dependent. We also study the power response of the feeds as functions
of the angle of the calibration vane, and find that all feeds have reached acceptable power
as the vane reaches 69◦. Based on this, we developed a new and more robust scheme
for calculating the calibration measurement values, and store them in a database.

We have implemented a more sophisticated frequency filter to replace the existing poly-
nomial filter, as the current filter was found to be inadequate at dealing with continuum
temperature fluctuations in our data. Most temperature systematics are a big threat
to our data modeling, as they are often correlated in telescope pointing or Galactic
coordinates, and will therefore bias our results. However, since the gain fluctuations
dominate the correlated noise structure, we struggle to measure the level of temperature
fluctuations present in our data. We therefore tested the new frequency filter primarily
on simulated data, which allowed us total control over the data and noise composition.
For all simulated configurations, the new filter removed all temperature fluctuations,
whereas the polynomial filter left a large excess correlation with the input temperature
in almost all simulation configurations. We further explored the impact of putting a
prior on the gain fluctuation fit. We found indications that using a correct prior on
the gain removes less CO signal from the data than using no prior does and that an
even stricter prior further amplified this, at the cost of a worse gain fit. The new filter
was also found to be excellent at removing astrophysical continuum foregrounds. Using
Jupiter as a case study, the filter was able to suppress the Jupiter signal by at least 2 or
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3 orders of magnitude and produced a mean squared signal residual only 1.5σ from the
level expected by the radiometer equation, compared to 56σ for the polynomial filter.

This thesis also lays the groundwork for a new and improved pointing template, based
upon data-driven ground maps produced by a destriper mapmaking model. As the cur-
rent pointing template fits only linear functions separately in azimuth and elevation, it
will not accurately be able to fit and subtract more complicated sidelobe ground pickup
structures. We produced ground maps both from convolving the simulated telescope
beam over the mountain profile around the telescope and from employing a destriper on
a large set of scans from the COMAP dataset. We found that the current observational
region of 35◦ < el < 65◦ avoids most, but not all, of the of the larger ground pickup
features. Most notably, we discovered a region around 140◦ azimuth of the CO2 ob-
servational field, with significant ground pickup, that was not entirely consistent with
the simulated ground maps. The simulated maps overall proved moderately consistent
with different metrics from the l2gen pipeline, but we suspect that certain of the sim-
ulated beam features might not be entirely accurate. The data-driven destriper maps
were also largely in agreement with previous findings, picking up large ground excess at
high and low elevations, as well as the noticeable excess in the CO2 field. Comparing
the destriper maps to a few real scans, we demonstrate the potential advantages of a
data-based pointing template, which may take on a lot more complicated structures in
both azimuth and elevation than the linear azimuth fit may. It does this while still
being a one-parameter model, and should therefore not increase the CO signal loss of
the filter. We also explored some of the challenges of producing an accurate new point-
ing template model, including degeneracy between atmosphere and ground elevation
profiles, and the feed- and frequency-dependency of the maps. We find that the beam
has a complicated, non-linear frequency structure, that varies strongly with the distance
to the main beam. This produces ground pickup maps with unpredictable frequency
structures. We supplement this analysis with frequency derivative maps from the de-
striper model, where we confirm that the frequency dependence of the ground has a
pointing-dependent structure.

10.2 Future work

An overarching goal of the low-level comap analysis is the tighter integration of the
filtering steps, into larger filters, which perform join fits on several systematics at once.
We have attempted to take a small step in this direction, by including a joint fit of
temperature fluctuations in the frequency filter. In the future, we would like to merge
the pointing template filter and frequency filter into a joint maximum likelihood fit and
keep moving in this direction with the rest of the filters.

We will soon study the impact the new frequency filter has on our data more qualita-
tively. We have already implemented the filter into the l2gen program, but have not yet
had the opportunity to test it on the entire COMAP dataset. We will also experiment
with the effects of placing a prior on δT , just like we did with δg. This could further
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reduce the amount of signal we remove, at the expense of some ability to remove δT ,
which will hopefully be small. On a related note, we plan on sending simulated CO
signal through the pipeline with the new frequency filter, to assess whether the new
filter negatively impacts the CO signal transfer function.

Our ground pickup work simply laid the groundwork for future efforts, and there is a lot
of future work to be done, hopefully ultimately leading to the implementation of a new
pointing template filter. While we were able to demonstrate the potential advantages
of a data-based approach, we also saw a case of the map predicting a gradient in the
opposite direction of a chosen scan. We somehow need an improved mapmaking model,
to produce even more accurate ground maps. One approach is to include a prior on the
correlated noise, as done in [47], which can substantially improve the map quality. We
have a good understanding of the correlated noise power spectrum properties from our
work with the frequency filter and can use this to produce an accurate prior. Further,
we need to more quantitatively assess the impact of feed- and frequency-dependence of
the ground pickup. If our destriper model is good enough, we might be able to produce
ground maps for each individual feed. Another important future goal of the destriper
is finding a way of better breaking the degeneracy between elevation structures in the
ground and the atmospheric elevation profile. In the future, COMAP aims to employ
a sensor at the telescope with the sole purpose of measuring τ0 accurately at every
instance. It will then become possible to properly break this degeneracy.

10.3 The outlook of COMAP

COMAP is still in an early stage of its Pathfinder mission, yet to achieve a detection of
CO at the targeted redshifts of z = 2.4−3.4. The successful detection of CO will depend
not only on increased observational time but also on proper handling of systematics in
our data, as we have demonstrated throughout this thesis. COMAP is already quickly
integrating down the noise power spectrum, taking us closer to a future detection of
cosmological CO. Figure 10.1 shows the CO power spectrum upper bounds for the first
observational year of COMAP data, as well as the optimistic and pessimistic five-year
predictions. We have already ruled out several of the more optimistic theoretical models
[57, 58], and are in some tension with the COPSS results [59].

In the coming decade, we hope to enter the EoR phase of the COMAP experiment,
including an array expansion to include more of the telescopes currently stationed at
OVRO. In this phase, COMAP will actively target the C(1-0) emissions at redshifts
of z = 4.5− 8, which can be cross-correlated with C(2-1) emissions from the currently
observed redshift range (see figure 3.2). With the Epoch of Reionization being a rela-
tively unexplored epoch of our universe, COMAP-EoR is set to bring new and exciting
observations into the field of cosmology. A long-term goal of the COMAP collaboration
is a dedicated CO mapping satellite, which can probe emissions even further back into
the depths of our universe. It truly is an exciting time to be a cosmologist.
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Figure 10.1: Left: The current (purple) and five-year pessimistic forecast (pink) up-
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Appendix A

Frequency Filter Destriper Setup

Assume a signal model on the form

yνt = δgt +
δTt
T̄ν

+ nνt. (A.1)

We have neglected the linear slope term, as to not make the equations too overwhelming,
but the equations can easily be extended to account for it. If we flatten the frequency
and time dimension, such that y becomes a one dimensional vector, we get a matrix
equation on the destriper form, as

y = Pm + Fa + n. (A.2)

Written out, this looks like

y1,1

y2,1
...
y1,2

y2,2
...

ym−1,n

ym,n


=



T̄−1
1 0 · · · 0

T̄−1
2 0 · · · 0
...

... · · ·
...

0 T̄−1
1 · · · 0

0 T̄−1
2 · · · 0

...
... · · ·

...
0 0 · · · T̄−1

m−1

0 0 · · · T̄−1
m




δT1

δT2
...

δTn−1

δTn



+



1 0 · · · 0
1 0 · · · 0
...

... · · ·
0 1 · · · 0
0 1 · · · 0
...

... · · ·
...

0 0 · · · 1
0 0 · · · 1




δg1

δg2
...

δgn−1

δgn

+



n1,1

n2,1
...

n1,2

n2,2
...

nm−1,n

nm,n.



(A.3)
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It is now much clearer how this translates into the intuition of the destriper setup. The
map we are trying to solve for is the temperature fluctuations δT , while the baselines
are the correlated noise δg. Each separate point in time is represented by one pixel,
and we hit each pixel 1024 times in a row, for each frequency channel in a sideband.
We also only visit each pixel once, over the duration of those 1024 points, which is also
the exact length of the baselines. This means that each pixel is resolved completely
separately, meaning that the solutions to the destriper equations become explicit. The
mechanism we have for breaking the degeneracy between the correlated noise δg and
the map δT is instead that the pointing matrix contains a sort of "beam profile", in
the form of the system temperature frequency profile. Placing a prior on the correlated
noise, which we do, actually brings back some dependency between the pixels.
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