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Abstract

The current paradigm of a 6 parameter ΛCDM cosmology with single field slow-roll
inflation predicts a perfectly Gaussian and isotropic distribution for the Cosmic Mi-
crowave Background (CMB) temperature field. However, several statistical anomalies
have been reported in the CMB, calling into question whether other models could more
accurately describe the statistical properties of the CMB.

In this thesis, we investigate a model proposed by Hansen et al. [1] reproducing the
aforementioned anomalies. We work in the basis of wavelets, Spherical Mexican Hat
Wavelets (SMHW) and spherical standard needlets, yielding several advantages over
the traditional spherical harmonics in the presence of incomplete sky coverage.

We simulate a large number of CMB maps, both Gaussian and non-Gaussian
realizations as per the model, and estimate the wavelet 4-point correlation function,
the trispectrum. The use of the trispectrum is motivated by the presence of scale-
dependent, non-Gaussian, gNL-like terms in the model.

We propose a blind test of non-Gaussianity, a χ2 statistic testing the Gaussian null
hypothesis on the simulated maps. We also propose a method for testing the model
hypothesis, an estimator α̂ quantifying the amount of contribution from a non-Gaussian
term in the CMB maps preferred by the data.

In addition, we compare our results with those of the Planck experiment, by ap-
plying the same framework to the 2015 Planck FFP8.1 Monte Carlo simulation data.
For the spherical standard needlets, the results are consistent with the Gaussian null
hypothesis. However, a detection is seen in the Spherical Mexican Hat Wavelets maps,
disfavoring the Gaussian null hypothesis at 0.63% significance.
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Chapter 1

(A brief) History of cosmology

1.1 From cave paintings to celestial mechanics

For as long as mankind has been able to look up at the twinkling stars in the night
sky, people have contemplated their place in the Universe and how it is all connected.
There are depictions of constellations, presumably to record dates, in cave paintings
from as early on as around 40 000 years ago [3], showing that even the early humans
observed the sky in an attempt to understand the world around them. There have
been many attempts to describe the Universe through the ages, often intertwined with
astrology or religion, with each model making a small step towards modern astronomy
as we know it today.

Modern astronomy took flight with the introduction of the heliocentric system,
sparking the Copernican Revolution, named after Nicolaus Copernicus who proposed
the model. The heliocentric system was later firmly cemented in theory by another
important figure, namely Isaac Newton. Newton provided us with a universal force of
gravitation, a relation between force and acceleration, among many other contributions.

Some problems, however, remained which could not be explained by Newtonian
gravity and mechanics, among them the perihelion precession of Mercury. Mercury’s
peculiar orbit did not seem to fit with the Newtonian model of the movement of the
stars and planets. Almost 200 years after Newton’s death, Mercury’s strange orbit
would be explained by arguably the most famous scientist of all time, Albert Einstein.

1.2 Modern cosmology

Cosmology is "the scientific study of the large scale properties of the Universe as a
whole." [4]. In other words, cosmology defines the study of the very, very large in
the Universe. A foundational principle for all modern cosmology is what we call "The
cosmological principle". This principle states that overall, wherever you look, the
Universe will be pretty much the same. It will look the same in every direction, a
property called isotropy, and it will look the same at every point, homogeneity. This
principle can not be proven per se but has enormous empirical backing, and we have no
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reason to doubt its validity. Subsequently, something differing based on the direction
can be called an anisotropy, or an inhomogeneity if it differs based on distance.

If one were to determine a point of origin for this modern branch of astronomy, many
would look to Albert Einstein and his theory of special [5] and general [6] relativity. In
the past, it was "common knowledge" that waves had to propagate through a medium,
and if space was empty, how could light move and gravity act? One proposed solution
was the Aether, a backdrop of the Universe on which everything propagated. Einstein,
however, introduced the concept of space-time. Space and time were intertwined in
a wobbly fabric, and gravity was no longer a classical force. Matter and light were
simply falling in straight lines "on" a curved space, and matter, or more generally
energy, would curve space. Much like marbles rolling in circles on a trampoline that
has a bowling ball in the center, although the analogy leaves us two dimensions short.
So while Einstein’s field equations may look complicated, this is the simple idea they
portray: energy content tells space how to curve, and the curvature of space tells matter
(or light) how to move.

1.2.1 Expansion and the ridicule that stuck

Einstein’s theory of relativity found tremendous experimental success and made him
world-famous overnight as his predictions were corroborated to a very high degree of
precision. There was now a theoretical framework in place for the start of modern
cosmology. And then another stunning observation was made, by Edwin P. Hubble.
Previously, one thought that our own Milky Way was an "island universe", and that
the so-called "spiral nebulae" observed through telescopes were within our own galaxy.
Hubble’s findings were formally published in 1926 [7] and 1929 [8], showing that one
such spiral nebula, our neighboring galaxy Andromeda, was indeed a galaxy in its own
right outside the boundaries of the Milky Way, among other discoveries.

Now, with the framework of Einstein’s theory of relativity, and the ability to observe
galaxies and other objects outside our own Milky Way, the stage was set for tackling
the biggest problem of them all: the evolutionary history of the Universe. And one such
solution, with an expanding universe, was proposed by a Belgian priest by the name of
George Lemaître. To explain the red-shift of the observed spiral nebulae, now known
as galaxies, he proposed the expanding universe solution and working backward to a
logical conclusion, the beginning of the Universe as a single point. He called this theory
the "Primeval Atom" [9]. One might think this seems perfectly reasonable, but at the
time, most people believed in an unchanging, eternal universe. In actuality, the term
"Big-Bang" was coined, arguably with derision, by Fred Hoyle, another astronomer
who starkly opposed the theory until his death.

The Big-Bang theory however was overwhelmingly supported by observational data,
especially from comprehensive observations by Hubble. The Universe was indeed ex-
panding, and should therefore have a beginning.
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1.2.2 Precision cosmology and the CMB

The nail in the coffin for the competing theory to the Big-Bang theory, the steady-
state theory to which aforementioned Fred Hoyle subscribed, was to come in the 1960s.
At Bell Laboratories in New Jersey, two American radio astronomers named Robert
Wilson and Arno Penzias were originally studying microwave signals from the Milky
Way, when they stumbled upon a faint background noise. They could not deduce the
origins of the signal, after exhausting nearly every possible source, including scrubbing
pigeon droppings off the antenna and relocating the pigeons that nested there. The
only remaining conclusion was that the observed signal was a real one. Concurrently, at
Princeton University, the three cosmologists Robert H. Dicke, Jim Peebles, and David
Wilkinson were theorizing that just such radiation should be detectable as a remnant
from the Big-Bang event. Wilson and Penzias learned of this fact and made contact.
They published their findings in two companion papers, Wilson and Penzias on the
discovery itself [10], and Dicke, Peebles, Wilkinson and Roll on the implications for
the history of the Universe [11]. Together, they had discovered Cosmic Microwave
Background (CMB) radiation, the most ancient light in the Universe and the key to
understanding the birth of the cosmos.

1.2.3 The birth certificate of the Universe

Why is the CMB important, you might ask? In the very early Universe, before the
CMB was released, the Universe was a "very hot and dense soup". Matter and radiation
were so tightly coupled that no light could travel very far, and the whole Universe was
opaque. Then, 380 000 years after the Big Bang, the matter and radiation decoupled,
an event we call "The surface of last scattering", as it was the last time this light
scattered off the matter in the hot, dense primordial plasma. And unlike many other
types of information, it has streamed towards us relatively unaltered since. Therefore,
the light that could start its journey towards us also traces the distribution of matter
at that time. Now, 380 000 years may seem like a long time, but if the Universe today
was an 80-year-old person, the CMB is a picture of an 18-hour-old baby. The infant
picture lets us deduce the anatomy of the baby.

1.2.4 Inflation

While the detection of the CMB fortified the Big-Bang theory as our best model of
the Universe, the new observations did not come without their own set of mysteries.
Especially two problems were concerning. First off, wherever you looked, the CMB
seemed to be pretty much the same. The Universe looked the same everywhere, in
every direction. But how could this be, if the Universe underwent superluminal, "faster
than light", expansion, such that distant regions could never "speak" to each other?
We say that the regions could not have been "causally connected" and the problem was
dubbed the "Horizon problem".

Secondly, the Universe seemed to be immensely flat; that is, the curvature of the
Universe was extremely small. This was concerning because it was a so-called fine-
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tuning problem: a small curvature at the beginning would only amplify over time,
such that if the Universe is extremely flat today, it must have been EXTREMELY flat
at the beginning. Cosmologists are rarely comfortable with relying on such unlikely
coincidences, and the problem was named the "Flatness problem". A solution was
needed and a solution was posed, called inflation [12]. Inflation theory postulates a
period of exponential expansion of space, around 10−34s after the Big Bang, ending
almost instantaneously. In that microscopic period of time, the Universe expanded
in size by at least 60 e-folds, meaning it increased by a factor of at least e60[13].
To fully grasp the staggering size of this number, it is a 10 with 25 trailing zeros, or
coincidentally about 10 times the upper estimate on the number of stars in the Universe
[14]. Then, causally connected patches could be in thermal equilibrium before inflation
and become causally disconnected and very, very distant to each other in an instant,
and the Universe would look very similar wherever you looked. Not unlike the fact that
one can find similarities in languages from different corners of the world because they
share a common origin, although to accurately portray the uniformity of the CMB, only
one word in a hundred thousand could differ. Inflation also solved the flatness problem,
as any initial curvature of space would be blown up to such a size as to appear flat.
Very much like the earth appearing flat when you stand on it, while really being curved
(REWRITE). The theory of inflation has been a hugely successful theory to this day.

1.2.5 From quantum seeds to galaxies

The theory of inflation was originally postulated as a way out of the Horizon and
Flatness Problems, among others, but it was soon revealed that the theory also bore
additional, unexpected fruit. While the Universe was very homogeneous, isotropic, and
flat in the grand scheme of things, there still obviously existed anisotropies; different
places in the sky had differing densities. We were, after all, living in such a place;
a galaxy whose density is far higher than the surrounding void. Inflation provides a
mechanism for the tiniest quantum fluctuations, in a field called the "Inflaton", to be
"stretched" into astronomical scales, laying the foundation for the formation of the
planets, stars, and galaxies we see today. These fluctuations are the primordial seeds of
structure in the Universe and give rise to the temperature fluctuations in the Cosmic
Microwave Background radiation.

1.2.6 The importance of measurement

It soon became apparent that quantifying the CMB radiation could provide us with
answers to major outstanding questions about the Universe. Different models of the
Universe predict specific power spectra of the temperature fluctuations in the CMB.
This spectrum, as measured by the Planck satellite, can be seen in figure 1.1, where
the data points are shown as red dots with error bars, the predicted spectrum from
the current best-fit model is the solid green line, and the shaded green area represents

2https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_Power_Spectrum#
.X4m9sRFiOSk.link

https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_Power_Spectrum#.X4m9sRFiOSk.link
https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_Power_Spectrum#.X4m9sRFiOSk.link
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Figure 1.1: The 2013 Planck CMB temperature angular power spectrum. Original
image credit [15], direct access from ESA2

the standard deviation. These spectra in turn depend on some important cosmological
parameters, and the current paradigm consists of a 6-parameter model [16]. For ex-
ample, the location of the first peak is highly sensitive to the curvature of the Universe,
and the measurement shows that the Universe is extremely flat. The ratio between the
first and the second peak gives us information about how much of the Universe is made
up of baryons, in the form of the parameter Ωb, while the other peaks contain inform-
ation about dark energy and dark matter. The tilt of the spectrum is governed by the
parameter ns, known as the spectral index, and the primordial amplitude As governs
the height, which tells us among other things about the optical depth to "reionization",
a period when the Universe became ionized again. From the power spectrum, one can
also measure the rate of expansion, the Hubble constant H0, in turn letting us estimate
the age of the Universe. Many more parameters can be derived from the original 6. In
short, the shape and size of the power spectrum contain a wealth of information about
the Universe.

1.2.7 Telescopes in space

It was clear that precise measurements had to be made of the CMB, and ground-based
observations were coming up short. We would need a telescope in space to rid the
results of interference from the atmosphere and other environmental factors. The first
of these endeavors would be the Cosmic Background Explorer or COBE.
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COBE

NASA took the first step towards precision measurements of the CMB, and COBE was
launched on November 18, 1989. COBE was a space-based telescope comprised of three
main instruments:

FIRAS (Far InfraRed Absolute Spectrophotometer), whose tasks were to measure
the spectrum of the electromagnetic radiation of the CMB and to observe dust and line
emission from the galaxy.

DIRBE (Diffuse InfraRed Background Explorer), whose main objective was to meas-
ure Cosmic Infrared Background (CIB) radiation as well as other sources of radiation
contributing to the received signal.

DMR (Differential Microwave Radiometer), which was searching for fluctuations in
the temperature in the CMB, the so-called anisotropies.

COBE mapped the spectrum and the anisotropies of the CMB at an angular res-
olution of 7 degrees, while the diffuse galactic emission was observed with a resolution
of 0.7 degrees [17]. After only two years of observation, the results from COBE had
already revealed the CMB as the most perfect blackbody radiation ever measured, with
a temperature of 2.726 ± 0.010 K [18]. The mission was a striking success, and the
Big-Bang theory was now firmly backed up by observations. During its total four years
of observation, COBE had yielded a veritable gold mine of cosmological information
and constraints on important parameters in cosmological models.

WMAP

The next step was to increase the precision of measurement even further, and in 1995
a new telescope was proposed; the Wilkinson Microwave Anisotropy Probe(WMAP).
WMAP’s mission, again led by NASA, was to improve on the measurements of COBE
and achieve high precision measurements of the temperature fluctuations in the CMB.
WMAP would improve tremendously on the resolution of its predecessor COBE, with
sensitivity and angular resolution improving by a factor of 45 and 33 respectively, now
boasting an angular resolution of around 0.2 degrees and a sensitivity to polarization
[19]. WMAP began observations in 2001, and the results were truly revolutionary.
During its 9 year period of observation it had, among many other results, derived the
age of the Universe to be 13.772 ± 0.059 billion years, determined the curvature to
be completely flat within 0.95 percent, and improved constraints on the standard 6
parameter cosmology by a factor of 68 000 [20]. WMAP truly brought us into the age
of precision cosmology.

Planck

Finally, the most ambitious CMB experiment to date was to take place. This time,
the European Space Agency (ESA) took the lead in creating a new telescope with
unprecedented precision. The telescope was named Planck, after the famous German
physicist. The Planck satellite launched on 14 May 2009, with the goal of surveying at
such high precision that the resulting images would only be limited by cosmic variance,
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Figure 1.2: The full CMB SMICA sky map, with 3% of the sky filled in. Original image
credit [22], direct access from ESA4

the most accurate measurement achievable. Planck contained two instruments, the Low
Frequency Instrument (LFI), whose detectors operated in the bandwidth 30-70 GHz,
and the High Frequency Instrument (HFI), with detectors in the range 100-857 GHz.
The Planck satellite was situated at the second Lagrange point, 1.5 million km from
Earth [21]. Planck remains one of the principal sources of cosmological information
today and provided us with the two famous pictures, the power spectrum previously
shown in figure 1.1, and the full-sky map of the anisotropies of the CMB shown in
figure 1.2.

1.3 Where we are now

All the information about the Universe in the following sections has been inferred
from the analysis of the CMB, and especially from the latest results from Planck [16,
23, 24, 25, 26]. The fact that the following is only a fraction of the cosmological
information contained in the CMB shows just how important this ancient radiation is
for our understanding of the Universe.

4https://www.esa.int/ESA_Multimedia/Images/2018/07/Planck_s_view_of_the_cosmic_
microwave_background#.X4m9yiXQx9w.link

6https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_history_of_Universe

https://www.esa.int/ESA_Multimedia/Images/2018/07/Planck_s_view_of_the_cosmic_microwave_background#.X4m9yiXQx9w.link
https://www.esa.int/ESA_Multimedia/Images/2018/07/Planck_s_view_of_the_cosmic_microwave_background#.X4m9yiXQx9w.link
https://www.esa.int/ESA_Multimedia/Images/2013/03/Planck_history_of_Universe
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Figure 1.3: The schematic evolution of the Universe. Image credit: ESA - C. Carreau6.

1.3.1 The stuff in the Universe

The current widely accepted model of the Universe, in accordance with the Big-Bang
theory (WITHIN THE FRAMEWORK OF?), is called ΛCDM. In the ΛCDM model,
the Universe is comprised of three components: Dark energy Λ (originally Einstein’s
"cosmological constant"), matter (Cold Dark Matter (CDM) and "normal" matter)
and radiation. The distribution of these three components is around 31.1% matter,
of which only around 4.9% is the visible matter familiar to us, which is somewhat
haphazardly referred to as baryons in cosmology. The remaining 26.2 % of matter is
what we call Dark Matter. Dark matter does not strongly interact electromagnetically,
so it is hard or maybe even impossible to observe directly. However, we can infer
its existence by observing its gravitational pull on its surroundings. The dominating
energy contribution in today’s universe is Dark energy, which contributes around 68.9
%. This is a mysterious energy component of the Universe we know very little about,
responsible for driving the accelerated expansion of the Universe. Observant readers
might by now have realized that this all adds up to 100% , so what about radiation?
This is due to the fact that radiation today contributes only a tiny amount to the total
energy content, below 0.001%.

1.3.2 A spanner in the works

While the ΛCDM model has been very successful, there is still debate over just how well
the observed CMB fits into the predicted picture of a perfectly isotropic, homogeneous
distribution. Several statistical anomalies in the fluctuations were detected, which will
be described in more detail later in this thesis. The anomalies were first detected by
WMAP, and later confirmed by Planck, thus eliminating instrumental properties as
the main cause. Significant effort has been put into analyzing these anomalies, and
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most anomalies appear similar at very different frequencies, which makes them hard
to explain in terms of foreground radiation. The question then remains, are these
anomalies a statistical fluke, or are they a manifestation of some unknown physics at
work? Do we need a new model of the Universe which more naturally explains the
departures from statistical isotropy in the CMB? The core of this thesis can thus be
summed up in the following question: What kind of non-standard model can reproduce
the anomalies currently seen in the CMB?
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Chapter 2

Theory

To properly connect trace the observed CMB fluctuations to a model of the cosmos,
one must first know the time evolution of the universe. The framework which enables
us to do this is Einstein’s general theory of relativity, which will be our starting point.
Unless otherwise stated, the information in this chapter is taken from the two books
"Spacetime and geometry" by Sean Carroll [27] and "Modern Cosmology" by Scott
Dodelson [28].

2.1 Einstein’s field equations

Einstein provided the tensor equations for the evolution of the universe, which read

Gµν + Λgµν = 8πGTµν , (2.1)

with the Einstein tensor Gµν given as

Gµν = Rµν −
1

2
Rgµν (2.2)

where Rµν is the Ricci tensor, R the Ricci scalar, Λ the cosmological constant, Tµν the
energy-momentum tensor, G is the gravitational constant and gµν is the metric tensor.

2.2 Solutions to Einstein’s field equations

Under the assumption of the cosmological principle, we obtain the Friedmann-Lemaître-
Robertson-Walker (FLRW) line-element

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (2.3)

where a(t) is the scale factor and κ is proportional to the curvature parameter k ∈
{−1, 0, 1} for open, flat or closed geometry respectively. Now under the assumption
that the energy-momentum tensor is given as a perfect fluid

Tµν = (p+ ρ)UµUν + pgµν , (2.4)
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we have analytical solutions. This is exactly what Alexander Friedmann did, and
solving for the 00-component along with the trace of the field equations gives us the
two Friedmann equations, in natural units ~ = c = 1 and ρtot = ρ+ ρΛ = ρ+ Λ

8πG :

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρtot −

κ

a2
(2.5)

and
ä

a
= −4πG

3
(ρtot + 3ptot) , (2.6)

where H is the Hubble function and a dot denotes a time derivative. Along with the
equation of state

w =
p

ρ
, (2.7)

this system is solvable for the time evolution of the universe, in the form of the scale
factor a and the critical densities Ω.

2.3 (Single-field) Inflation

One of the simplest solutions to the Horizon and Flatness problems is a single field
inflation model. An exponentially expanding solution to the Friedmann equations,
a ∝ eHt, is obtained through vacuum energy, with equation of state parameter w = −1.
As inflation needs a mechanism to start and end, we model this driving mechanism,
not as a cosmological constant, but a scalar field Φ, the Inflaton. Introduce a classical
Inflaton field with a Lagrangian

LΦ =
1

2
∂µΦ∂µΦ− V (Φ), (2.8)

and the energy momentum tensor is given as

Tµν =
δ

δgµν
(√
−gLΦ

)
. (2.9)

With a FLRW metric, we obtain

ρΦ = T 00 =
1

2
Φ̇2 + V (Φ) +

(∇Φ)2

2a2
(2.10)

pΦ =
1

3
T ii =

1

2
Φ̇2 − V (Φ)− (∇Φ)2

6a
(2.11)

where the last terms in each equation can be neglected due to homogeneity. Now if we
have 1

2 Φ̇2 � |V (Φ)|, we obtain ρΦ ≈ −pΦ, or w ≈ −1, as desired. This phase, where
the potential is much larger than the kinetic term of the Inflaton field, is called "slow
roll", shown in figure 2.1. This is analogous to a regular ball slowly rolling down a
hill, and eventually obtaining more kinetic energy than potential gravitational energy,
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V( )

CMB end

Reheating

Figure 2.1: The Inflaton field, "slowly rolling" down its potential. The start and end
of inflation are marked, the period where the quantum fluctuations responsible for the
CMB temperature fluctuations are blown up. Reheating is shown schematically, as the
Inflaton decays away at the bottom of the potential well.

hence the name. The slow-roll conditions are ε � 1 and |η| � 1, with the slow-roll
parameters given as

ε =
M2

PlV
2

Φ

2V 2
(2.12)

η =
M2

PlVΦΦ

V
, (2.13)

where MPl = 1√
8πG

is the reduced Planck mass, VΦ is the potential and the subscript
Φ denotes the first derivative (and ΦΦ the second derivative) with respect to Φ. The
CMB fluctuations are created by quantum fluctuations in the Inflaton field, which are
blown up during inflation until inflation ends when the slow-roll condition is violated.
The Inflaton decays into radiation during reheating, at the bottom of the potential well
[29].

2.4 From inflation to the CMB

According to quantum field theory, the Inflaton field will experience quantum fluctu-
ations during inflation. We can split the field into a zero-order homogeneous component
φ0 responsible for driving inflation, and perturbations around this value

φ(t) = φ0(t) + δφ(x, t). (2.14)
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Since the Inflaton field is the dominating energy content in the universe during inflation,
such a perturbation in the inflaton will result in perturbation in the energy-momentum
tensor, δTµν , and by Einstein’s equations a perturbation in the metric, δgµν . The
wavelengths of these perturbations will experience exponential growth during inflation
and may cross the Hubble horizon. The Hubble horizon differs from the concept of a
particle horizon in the way that while the particle horizon describes the limit outside
which two particles never could have or will be causally connected, the Hubble hori-
zon denotes the limit where two particles can not be causally connected in the future
(granted the Hubble horizon growth stays constant). If the perturbations do cross the
Hubble horizon, i.e. the wavelength of the perturbations are larger than the Hubble
horizon, they will be "frozen in", meaning the perturbation can not be affected by
causal physics and the amplitude of the perturbation is preserved as it was at the time
of crossing, thus the name "frozen". After the end of inflation, when the Hubble hori-
zon grows faster than the expansion of space again, the frozen fluctuations may enter
the Hubble horizon again, giving rise to primordial gravitational potential fluctuations,
ΦP . These fluctuations in the potential can be expanded in terms of a potential with
Gaussian distributed fluctuations, ΦG, plus higher order terms. For example, keeping
up to third order terms we can write

ΦP (x) = ΦG(x) + fNL
(
Φ2
G(x)− 〈Φ2

G(x)〉
)

+ gNLΦ3
G(x), (2.15)

(and higher order terms) where ΦG(x) is the linear Gaussian part of the primordial
gravitational potential [30, 31, 32, 33, 34]. A perturbation in the gravitational potential
will lead to perturbations in the matter density, through the Poisson equation

∇2Φ = 4πGρ. (2.16)

Furthermore, the perturbations in the gravitational potential will also create perturb-
ations Θ in the photon distribution. Through solving the Boltzmann equation for
photons with a perturbed metric, and using Line Of Sight (LOS) integration by Zel-
jak and Zaldarriaga [35], it can be shown that the harmonic transform of the photon
perturbation, Θl, can then be related to the CMB fluctuations via the angular power
spectrum,

Cl ∝
2

π

∫ ∞
0

dk P (k)Θl(k)2, (2.17)

where Cl is the angular power spectrum of the temperature fluctuations in the CMB,
P (k) is the primordial power spectrum of the temperature fluctuations, which is set up
by inflation, k is the Fourier wave number, and l is a multipole in a spherical harmonic
expansion. For a thorough derivation, see Dodelson [28].

2.5 The CMB

While the fluctuations in the CMB are an invaluable source of cosmological inform-
ation, one must first understand what steps we need to take in order to extract this
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information. In this section, I will outline the mathematical framework in which we
will analyze the CMB radiation.

2.5.1 Spherical decomposition

The available data we have is the temperature of the CMB, measured on the sky. The
temperature can be represented as a field

T (θ, φ) = TCMB(θ, φ) [1 + Θ(θ, φ)] , (2.18)

where θ and φ represents angles in the sky, in galactic co-latitude and longitude, and
Θ represents the anisotropy, I.E. deviation from the background value. The monopole
is usually subtracted from the measurements, leaving only a measure of anisotropy.

It is standard practice to decompose the temperature field on the sky to spherical
harmonics, such that an orthogonal basis is given by

alm =

∫
S2

dθdφsin (θ)T (θ, φ)Y ∗lm (θ, φ) , (2.19)

where then Y ∗lm is the spherical harmonic functions, and alm is the harmonic coefficients.
The multipoles l relate to the angular scale (in radians) on the sky via

θ =
π

l
. (2.20)

The two representations of the anisotropy, in the spatial domain or in spherical har-
monic space, is equivalent, and thus the temperature field can be recovered by the
inversion

T (θ, φ) =
∞∑
l=0

l∑
m=−l

almY
∗
lm. (2.21)

For a completely isotropic field, the alm coefficients are uncorrelated and obey the
relation

〈alma∗l′m′〉 = δll′δmm′Cl, (2.22)

where δ is the Kroenecker delta, Cl is the angular power spectrum and the angle brackets
denote the ensemble average.

2.5.2 The angular power spectrum

The angular power spectrum, Cl, is the harmonic analogue of the two-point correlation
function in real space. If the distribution of the fluctuations in the temperature field is
Gaussian, the distribution is statistically fully described by the angular power spectrum
with higher order moments, or correlation functions, being zero. In this way, the power
spectrum gives the variance of the harmonic coefficients alm in a zero-mean field or



16 Theory

equivalently is a measure of the strength of the fluctuations as a function of scale l.
From the relation shown in equation 2.22, it naturally follows that the optimal estimator
for the angular power spectrum Cl is

Ĉl = |alm|2 . (2.23)

In theory, this satisfies the relation 〈Ĉl〉 = Cl, that is that the ensemble average over the
estimator equals the true value, Cl. However, there is one problem: We can not obtain
the ensemble average over the estimator, as we only have one universe to measure.
To bypass this problem, the isotropic properties of the spherical harmonics come to
the rescue. Instead of averaging over an ensemble of universes, we can average over
azimuthal directions m, leaving us with the estimator

Ĉl =
1

2l + 1

l∑
m=−l

|alm|2 . (2.24)

This, however, comes with the caveat of Cosmic variance. At low multipoles, we have
fewer m-samples, thus the sample variance is high at these multipoles, an intrinsic effect
of the estimator we can not minimize. The higher the multipole, the smaller the effect
of cosmic variance.

2.6 Theoretical model

Several anomalies statistical anomalies have been reported in the CMB, which will be
discussed in more detail later in this thesis in chapter 4, but briefly they are: the small-
scale and large-scale hemispherical power asymmetry, the Cold Spot, the low power on
large angular scales, the quadrupole and octopole alignment and the parity asymmetry
on large angular scales. As a phenomenological model to reproduce these anomalies,
Hansen et al. [1] proposed a scale-dependent gNL-type model,

T (θ, φ) = TG(θ, φ) + γ
[
TG(θ, φ)T 2

F (θ, φ)
]Filtered

= TG(θ, φ) + γ
∑
lm

glYlm(θ, φ)

∫
dΩ′Y ∗lm(θ′, φ′) · TG(θ′, φ′)T 2

F (θ′, φ′),
(2.25)

where TG(θ, φ) is an isotropic Gaussian CMB temperature realization, and

TF (θ′, φ′) =
∑
lm

wlYlm(θ, φ)

∫
dΩ′Y ∗lm(θ′, φ′)TG(θ′, φ′). (2.26)

The filters wl and gl, and the amplitude γ, act as parameters that can be tuned
to reproduce the CMB anomalies. In particular, it’s easy to see that the parameter γ
serves as a measure of strength for the non-Gaussianity, and we use 0.43.

The w` filter can be seen in figure 2.2. The oscillations in the low multipoles
reproduce the parity asymmetry for the largest scales. The increments up to ` = 21



2.6 Theoretical model 17

5 10 15 20 25 30
Multipole 

5

0

5

10

15

20

w

Figure 2.2: The w` filter, in the multipole range l = [2, 30]. The zero-line, as well as
the cut-off at l = 27, is plotted for reference.

give rise to the large trough observed at this multipole in the observed power spectrum.
There is a cut-off at ` = 27, as the observed power spectrum is no longer abnormally
low compared to the best-fit model. The g` filter is shown in figure 2.3. For the lowest
multipoles, the filter is negative in order to suppress the power on large scales, and
non-zero for multipoles up to ` ∼ 1500 to reproduce the small scale hemispherical
asymmetry. The first value at ` = 2, −8.8, is cropped for readability but will establish
a small quadrupole in addition to creating correlations with the octopole, reproducing
the quadru-octopole alignment.

The process of reproducing the anomalies in the CMB can be summed up in the
following steps

1. Apply the first filter, wl, to a Gaussian map.

2. Square the resulting filtered map.

3. Modulate the original Gaussian map by the square filtered map to obtain a non-
Gaussian term.

4. Apply the second filter, gl, to the non-Gaussian term.

5. Add the non-Gaussian term to the original Gaussian map to obtain a non-
Gaussian map.

The process applied to a map from the Planck 2015 FFP8.1 MC simulations, illustrating
the steps, can be seen in figure 2.4. To further illustrate the effects, an exaggerated
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Figure 2.3: The g` filter. The filter is decreasing slowly towards zero at the higher
multipoles. The zero-line is plotted for reference.

comparison is shown in figure 2.5. Especially visible in both figure 2.4 and 2.5 is
the creation of strong hot and cold spots in the distribution. You can also see a
strong indication of hemispherical asymmetry, as the central hemisphere contains much
stronger fluctuations than the hemisphere at the edges of the map.
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K-250 250
(a) Original Planck MC map

K-250 250
(b) wl-filtered map

K20 3e+06
(c) Square filtered map
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(d) NG-term
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(e) gl-filtered normalized NG-term
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(f) Original + normalized NG-term

Figure 2.4: The entire proposed process of applying the filters to reproduce the 6
anomalies in a CMB map. Units are given in micro Kelvin.

K-250 250
(a) Original Planck MC map

K-250 250
(b) NG map with 2γ

Figure 2.5: Exaggerated Non-Gaussian map by doubling the strength parameter γ.
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Chapter 3

Data analysis and statistics

3.1 Pipeline

Before one can draw conclusions from the observational raw data from the CMB, the
data must first be processed through a relatively extensive data pipeline. The following
section will give a rough outline of the steps taken to go from raw data to fit a model
of the universe to the data.

3.1.1 Map making

The actual measurements from a satellite are raw data. This data is first pre-processed
into Time Ordered Data (TOD). The TOD can be described as

dt = st + nt = Atpsp + nt, (3.1)

where d denotes the total data stream, that is the temperature measured by the detector
at time t. The quantity s is the actual sky signal and n is a noise vector. The quantity
A is the pointing matrix, which contains weights for each pixel, dependent on where
the telescope has "been pointed" as a function of time. More weight is given to areas of
the sky which has been observed the most. The pointing matrix thus converts between
a time-dependent data stream and a spatially dependent data stream. The subscript p
denotes a pixel number.

To compress the TOD into a much smaller data set, it can be converted into sky-
maps, by the map-making equations

N−1
pp′ = ATtpN

−1
tt′ At′p′ (3.2)

zp = ATtpN
−1
tt′ dt′ (3.3)

dp = Npp′zp′ , (3.4)

where N is a matrix describing the noise spectrum, an exponent of −1 denotes matrix
inversion and t, t′ p, p′ are two different points in time and space respectively [36]. More
often than not, however, a different approach to map-making is taken, as solving these
equations is extremely computationally intensive.
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Figure 3.1: The foreground components in frequency. The grey shaded areas represent
the detectors of Planck. Image credit: Planck Collaboration [37].

3.1.2 Galactic foregrounds

The light we receive on earth is (luckily) not all CMB radiation. To get an accurate
measurement of the CMB radiation, one must first eliminate all sources of signal not
originating from the surface of last scattering, so-called foregrounds. One of the prin-
cipal sources of contamination in the CMB signal is the diffuse galactic emission. To
effectively separate the CMB signal from the galactic emission, one must first have an
understanding of which components make up the galactic foreground emission, and how
they contribute. An image of how the different components contribute to the overall
signal as a function of frequency is shown in figure 3.1.

Unless otherwise specified, the information in this section on galactic foregrounds
and the following section on extra-galactic foregrounds is taken from the Planck 2013,
2015 and 2018 papers, "Diffuse Component Separation" [22, 37, 25].

Synchrotron

Synchrotron radiation is a dominant source of contamination at low frequencies. In
the context of CMB observations, synchrotron radiation typically occurs when cosmic-
ray electrons are spiraling in the Galactic magnetic field, releasing radiation due to
the acceleration imposed on them by the field. Synchrotron radiation is empirically
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Figure 3.2: The planck 2015 synchrotron emission foreground map. Estimated from
the maximum posterior in a Bayesian component separation approach, plotted with a
non-linear high dynamic range colour scale. Image credit: Planck Collaboration [37].

modeled as a power law in frequency

TB,synch(ν) ∝ νβsynch , (3.5)

where TB is the brightness temperature, ν is the frequency, and the spectral index
βsynch is a parameter to be tuned. For the Planck frequency range, ν ∈ [30, 857] GHz,
βsynch lies in the range [−3.2,−2.8]. The planck synchrotron foreground template can
be seen in figure 3.2.

Free-free

Free-free radiation, or Brehmsstrahlung, occurs in the CMB signal as a result of
electron-electron or electron-ion scattering, where a free electron is accelerated and
converts kinetic energy to radiation. It can also be, in the simple case, modeled as a
power law in frequency

TB,ff(ν) ∝ νβff . (3.6)

For Planck frequencies, the spectral index for free-free radiation has a slightly less
steep slope than that of synchrotron radiation, lying in the range βff ∈ [−2.2, 2.1]. The
Planck free-free foreground template can be seen in figure 3.3. The Free-free radiation
that contaminates the CMB typically occurs in hot clouds of gas in the galactic plane.

Anomalous Microwave emission (AME)

In the first analyses attempting component separation on the CMB signal, detection of
residual emission was made in the frequency range below 40 GHz, not consistent with
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Figure 3.3: The planck 2015 free-free emission foreground map. Estimated from the
maximum posterior in a Bayesian component separation approach, plotted with a non-
linear high dynamic range colour scale. Image credit: Planck Collaboration [37].

the current foreground models for synchrotron and free-free radiation. This contam-
inant radiation was dubbed "Anomalous Microwave emission (AME)" in a paper by
Leitch et al [38]. AME was later attributed to spinning dust grains, especially apparent
below 70 GHz, in a paper by Draine, B. T. and Lazarian, A. [39]. This radiation has
a sharp cutoff in its contribution, as there is a limit to how fast these dust grains can
spin. The planck AME foreground template can be seen in figure 3.4.

Thermal dust emission

At frequencies above 100 GHz, the dominating contribution to the signal is emission
from thermal dust grains. Thermal dust emission has been modeled empirically as a
blackbody spectrum along with a power law component giving a two-parameter model
in dust temperature Td and spectral index for dust βd,

TB,dust (ν, Td) ∝ νβd+1 e
hν0
kBTd − 1

e
hν

kBTd − 1
, (3.7)

where TB,dust is the brightness temperature for dust, TD is the dust temperature and
ν is the frequency [37]. The Planck thermal dust foreground template can be seen in
figure 3.5.

CO rotational line emission

Discrete line emission from the J = 1 → 0, J = 2 → 1 and J = 3 → 2 rotational
transitions in the CO-molecule, at 115, 230 and 345 GHz respectively. The transition
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Figure 3.4: The planck 2015 spinning dust emission foreground map. Estimated from
the maximum posterior in a Bayesian component separation approach, plotted with a
non-linear high dynamic range colour scale. Image credit: Planck Collaboration [37].
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Figure 3.5: The planck 2015 thermal dust emission foreground map. Estimated from
the maximum posterior in a Bayesian component separation approach, plotted with a
non-linear high dynamic range colour scale. Image credit: Planck Collaboration [37].
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is well understood, so the contribution from CO-line can be modeled accurately.

3.1.3 Extra-galactic foregrounds

There is also the contribution from sources outside our own galaxy to consider. A few
of them are presented here.

Point sources

There is also a contribution from other compact, extragalactic radio sources. Many of
these have been detected and masked individually in sky template maps. However, a
residual contribution remains of unresolved sources. These are usually quasars, radio
galaxies or other objects in the sky which emanate in the radio frequency domain [40].
The contribution from these extra-galactic foregrounds is generally degenerate with
the emission of galactic origin and can be absorbed into the framework of galactic
component separation.

(Thermal) Sunyaev-Zeldovich effect

The thermal Sunyaev-Zeldovich (tSZ) effect is produced by the inverse Compton scat-
tering of CMB photons due to hot electrons along the line of sight, especially apparent
in galaxy clusters. Named after its discoverers Sunyaev and Zeldovich in 1972 [41],
it has been an important tool to study structure formation and galaxy clusters. The
template used in Planck, as a function of multipole l, is shown in figure 3.6.

3.1.4 Foreground removal

Once the foregrounds have been modeled adequately, they are removed from the maps
via a component separation technique (the modeling and creation of foreground-cleaned
maps can be one algorithm). Popular methods include Commander, NILC, SEVEM,
and SMICA, which are the ones used in the latest Planck release to extract the cleaned
CMB signal from the full sky-maps [25].

Commander [45, 46, 37] is a Bayesian approach, using Gibbs sampling to fit a
parametric model to the data.

NILC (Needlet Internal Linear Combination) [47, 48] is a method employing a need-
let basis, which will be described later in section 3.2.2, calculating a linear combination
of maps to minimize contamination from foregrounds and instrumental noise.

SEVEM [49, 50] is a template cleaning approach, typically creating difference maps
from neighboring frequency channels such that the CMB vanishes, and you are left with
a foreground template.

SMICA (Spectral Matching Independent Component Analysis) [51] is a method
using spherical harmonic coefficients, combined with a weight vector describing the
CMB emissivity, to freely match components through sky-maps of different frequencies.
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Figure 3.6: The power spectrum template of the SZ-effect used in Planck’s cosmological
parameter analysis. The red points are the NILC-MILCA F/L cross-power spectrum
after foreground subtraction, with F/L referring to First and Last halves of the data.
The black line shows the tSZ power spectrum used in the Planck cosmological analysis
[42, 43], while the cyan and orange dot are the power spectrum estimates from the
Atacama Cosmology Telescope and South Pole Telescope respectively. The grey region
shows the ±2σ confidence region. Image credit: [44].

3.1.5 Pixel window and beam

When we observe the CMB, we can not measure a continuous signal but a discrete
one, limited by the resolution of our instruments. The effect of the finite size of the
beam of a telescope, the fact that we can not restrict the pointing of our telescope
to an infinitely small point, is encapsulated in the beam function. Furthermore, the
map-making process introduces pixelation of the signal, when it is transformed from
time steps to pixels. This process is described by the pixel window function. The beam
function and pixel window function represents a convolution between the signal and
a smoothing function in real space but are by the convolution theorem simple linear
operators in harmonic space.

The pixel window function accounts for the pixelation of the continuous sky and
can be represented in harmonic space as a product

alm,pix = alm,contpl, (3.8)

where pl is the pixel window function. Similarly, the beam window function, bl, accounts
for the fact that a point of observation is smoothed by surrounding contamination and
can represented as the product

alm,smoothed = alm,contbl (3.9)

Sometimes, these two effects are gathered into a single window function, accounting for
the discrete representation of a continuous phenomenon.



28 Data analysis and statistics

In addition, the fact that we can not represent a sphere perfectly on a flat surface
will introduce additional error, making the choice of pixelation scheme important for
data analysis. As is common in CMB experiments, we will use the Hierarchical Equal
Area isoLatitude Pixelation (HEALPix) [2, 52] to represent the sphere, shown in figure
3.7.

01 23

45 67

89 1011

Figure 3.7: HEALPix pixellation scheme, RING ordering with NSIDE=1 showing the
12 base pixels.

In the HEALPix scheme, each pixel is of equal area, and the resolution is governed
by the parameter Nside, governing how many "equal cuts" are applied to the 12 base
pixels, such that each pixel will be divided into N2

side new ones, I.E. Nside = 2 will yield
a pixellated sphere with 48 pixels as per the formula

Npix = 12 ·N2
side. (3.10)

A visualization can be seen in figure 3.8.

3.1.6 Noise

We turn our attention to the noise term in equation 3.1. One possibility is to model
the noise simply as "white-noise", meaning it is independent of one measurement to
another. This, however, generally seems to be insufficient to properly model the noise
properties of most modern CMB experiments. A more fitting approach is to split the
noise into two components,

nt = ncorr
t + nwn

t (3.11)
2https://healpix.sourceforge.io/

https://healpix.sourceforge.io/
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Figure 3.8: HEALPix pixellation scheme, with Nside = 1, 2, 3, 4. Original image from
The Healpix Primer [52], direct access from HEALPix2.

where nwn
t is a white-noise component originating from thermal noise intrinsic to the

detectors and amplifiers, and ncorr
t is a correlated noise term. This correlated term is

often modeled as a "1/f -term", sometimes also known as "pink noise". It is called a
1/f -term because of the inverse proportionality with the frequency, i.e. the noise power
spectral density, Ppink(f), goes as

P (f) ∝ 1

fγ
, (3.12)

where γ is some constant. For the LFI instrument in the Planck mission, the noise was
modeled as

P (f) = P 2
0

[
1 +

(
f

fknee

)β]
, (3.13)

where P 2
0 is the white-noise spectrum estimated by averaging over frequency ranges

where the level of pink noise is assumed to be low. β and fknee are parameters governing
the pink noise component. In the Planck 2018 results, the slope β was estimated to lie
in the range β ∈ [−1.30,−0.92], depending on the frequency range and radiometer [53].
The 1/f -term is sourced by intrinsic instabilities in the detectors, amplifiers, and read-
out electronics, environmental effects, and for ground-based experiments, atmospheric
fluctuations. A recent analysis has shown that this approach works decently well for
many frequency ranges. However, some deviations were found where the "1/f -model"
was insufficient [54].
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3.1.7 Estimating the power spectrum

What we ultimately want to do, is to connect the observations of the fluctuations in
the CMB to a cosmological model, and estimate the cosmological parameters tied to
this model. With isotropic and Gaussian fluctuations, the cosmological information in
the full-sky map can be reduced to a few thousand numbers, in the form of the power
spectrum [36]. Then, connecting the power spectrum to a cosmological model and
estimating the cosmological parameters is a much simpler task. However, with real-
world data, the spherical harmonics are no longer orthogonal because of incomplete sky
coverage, and therefore we can not simply evaluate equation 2.24. So first, let us take
a look at the necessary steps towards achieving the goal of parameter estimation.

The likelihood function

To actually use the power spectrum for parameter estimation, we need to know the com-
plete likelihood function P (d|Cl(θ)), where d is the temperature data, Cl the angular
power spectrum and θ the vector containing all relevant cosmological parameters. For a
full-sky map, it is not computationally feasible to compute the full likelihood function,
therefore the estimation of the power spectrum and likelihood function is divided into
high-l and low-l codes. I will a common method for power spectrum estimation here,
the MASTER method.

High l: MASTER

In preparation for high-resolution data, it was clear that general maximum likelihood
methods of extracting the power and noise spectra from CMB maps were too com-
putationally prohibitive, with a scaling of ∼ N3

pix. WMAP observed the sky with a
maximum resolution of 3.15 million pixels [55], while Planck had a resolution of 1.16
billion pixels [26], creating a severe bottleneck if one were to solve with traditional
full matrix inversions, and a faster method was needed. In 2001, Hivon et al. intro-
duced the Monte Carlo Apodised Spherical Transform EstimatoR (MASTER) [56], as
a method for fast and accurate estimation of the angular power spectrum, achieving a
much faster computational scaling at ∼

√
NpixNpix. The following is an outline of the

method presented in their paper.
When we measure the power spectrum, we measure the pseudo-spectrum C̃l. The

pseudo-power-spectrum is a collection of multiple components, and can be modeled as,

〈C̃l〉 =
∑
l′

Mll′Fl′B
2
l′〈Cl′〉+ 〈Ñl〉, (3.14)

where Cl is the true full-sky angular spectrum of which we want an estimator, Mll′ is
a mode-coupling matrix accounting for the sky-cut, Fl′ is a transfer function describ-
ing the filtering applied during the map-making process, Bl′ is the window function
accounting for both the effect of the pixel size and beam as shown in equations 3.8 and
3.9 and 〈Ñl〉 is the average noise power spectrum. The algorithm for computing these
terms is as follows:
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1) Evaluate the coupling kernel Mll′ , using the equation

Ml1l2 =
2l2 + 1

4π

∑
l3

(2l3 + 1)Wl3

(
l1 l2 l3
0 0 0

)2

, (3.15)

where the brackets represent the Wigner-3j symbols. For more on the Wigner-3j sym-
bols, see appendix A.1. Wl is the power spectrum of a position-dependent window
function (a mask)

Wl =
1

2l + 1

∑
m

|wlm|2, (3.16)

in case the full sky is not observable. For example, if fsky represents the fraction of sky
that is non-zero, we have

fskywi =
1

4π

∫
4π
duW i(u), (3.17)

where W (u) is a position-dependent weighting scheme to reduce the effects of edges or
noisy pixels.

2) The transfer function Fl is estimated through producing a series of noise-free
Monte-Carlo simulations N (s)

MC, projecting them onto the sky and analyzing them with
a pseudo power spectrum estimator (HEALPix anafast). In our particular approach,
we omit the transfer function Fl.

3) Step 2 is repeated only now with pure noise MC simulations to estimate 〈Ñ〉,
the power spectrum of the noise.

4) Make a (masked) map and calculate its pseudo power spectrum C̃l.

5) Estimate a full-sky binned power spectrum, with the estimator Ĉb given as the
inverse of equation 3.14,

Ĉb = K−1
bb′ Pb′l

(
C̃l − 〈Ñl〉MC

)
, (3.18)

where Pb′l is the binning operator

Pb′l =

{
1

2π
l(l+1)

lb+1
low −l

b
low

2 ≤ lblow ≤ l ≤ l
b+1
low

0 otherwise
(3.19)

for a set of bins indexed by b with boundaries lblow < lbhigh < lb+1
low . The reciprocal

operator is then given as

Qlb =

{
2π

l(l+1) 2 ≤ lblow ≤ l ≤ l
b+1
low

0 otherwise
. (3.20)
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Then, Kbb′ is given as
Kbb′ = PblMll′Fl′B

2
l′Ql′b′ . (3.21)

6) Calculate the covariance matrix Cbb′ with the equation

Cbb′ =
〈(
Ĉb − 〈Ĉb〉MC

)(
Ĉb′ − 〈Ĉb′〉MC

)〉
MC

(3.22)

from all the N (s+n)
MC simulations, and the error bars on the binned spectrum are obtained

through the diagonals of the covariance matrix

∆Ĉb = C
1/2
bb . (3.23)

3.1.8 Parameter estimation

One of the most popular methods of estimating the cosmological parameters is through
Markov Chain Monte Carlo (MCMC) simulations [36]. The MCMC simulations per-
form random walks through parameter space, calculating the likelihood at each pro-
posed step, and adheres to an acceptance rule governing whether to take the next step
or not. This process of drawing random samples, calculating the likelihood, and either
moving forward a step or choosing a new point in parameter space is a class of algorithm
known as the Metropolis-Hastings algorithm.

3.2 Wavelet- and needlet analysis

The use of wavelet- and needlet analysis has increased greatly in the field of cosmo-
logy over the last decade. Wavelet analysis enjoys the benefit of double-localization
properties, making them excellent for analysis of the CMB due to foregrounds and
masking preventing orthogonality of the coefficients in the harmonic domain. The
double-localization property can be explained as follows:

Imagine you have a time-dependent signal, and a corresponding Fourier analysis,
like shown in figure 3.9. Now the Fourier transform gives you excellent information
about the frequency content in the signal, being very sharply peaked around frequencies
1000 and 1600 Hz. However, the Fourier transform gives you absolutely no information
about the time component of the signal. If your data set adheres to the mathematical
condition of "nice behavior", then of course the inverse Fourier transform is possible
to retrieve the information about the time component of the signal. However, what
you can not obtain is information in frequency and time simultaneously, i.e. which
frequencies occur when (or where in the case of CMB analysis).

Consider now instead a wavelet analysis. This approach would keep some inform-
ation about both time and frequency, with their respective resolutions parametrized.
The localization properties of both time and frequency, however, come at the cost of
one another, that is to say, the better the resolution in frequency space, the worse the
resolution in time. To visualize this, two wavelet transforms (of the signal shown in
figure 3.9), are shown as coherence plots with increasing frequency resolution in figures
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(a) Signal (b) Fourier transform

Figure 3.9: A time dependent signal, consisting of two main frequencies, along with
the corresponding Fourier transform of the signal.

Figure 3.10: Wavelet coherence plot with time-frequency resolution. The wavelet shows
a trade-off between resolution in time and frequency.



34 Data analysis and statistics

Figure 3.11: Wavelet coherence plot with time-frequency resolution. The localization
in frequency space is increased here in comparison to figure 3.10, at the cost of smearing
out the signal in time.

3.10 and 3.11. In the case of wavelet analysis on CMB, double-localization refers to
resolution in real space (position) and resolution in harmonic space (scale, defined by
multipole l). Two famous wavelets are shown in figure 3.12.

The idea behind wavelet analysis, in general, is that one constructs a "mother
wavelet" of a certain shape, and a set of scale-dependent wavelets are built with cor-
responding weights from this mother wavelet. When the signal is then convoluted with
the set of wavelets, we can quantify the response of the signal to the wavelet, giving
a measure of power dependent on both position and scale. This process is called a
wavelet transform, W , very similar to a Fourier or Gabor transform. A 2D continuous
wavelet transform is given by,

w(R,~b) =

∫
D
d~xf(~x)Ψ(R,~b; ~x), (3.24)

with

Ψ(R,~b; ~x) =
1

R
ψ

(
|~x−~b|
R

)
, (3.25)

where ψ is the mother wavelet, f(~x) is your function in position, w(R,~b) is the wavelet
coefficient of scale R and coordinates ~b and D is your domain on which the wavelets
are defined [57]. We can see schematically that Ψ(R,~b; ~x) plays the role of the kernel
in a general integral transform, just as a Fourier transform would have the kernel of
e−2πitν .
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Figure 3.12: Two famous mother wavelet shapes: On top the Haar wavelet, and on the
bottom the Mexican Hat wavelet. The dimension of the x-axis is arbitrary, but wavelet
transforms are often used in time or space.

We can transform back via

f(~x) =
1

Cψ

∫
dRd~b

1

R4
w(R,~b)ψ

(
|~x−~b|
R

)
, (3.26)

where Cψ = (2π)2 ∫ dkk−1ψ2(k), ψ(k) is the Fourier transform of ψ(x) and k is the
wave number.

Wavelets take advantage of the fact that low frequency components do not need
high resolution in time, as they change slowly over short time intervals. A schematic
overview of the idea is shown in figure 3.13, where a wavelet transform is applied over
a large interval, increasing the resolution with smaller and smaller wavelets. If one is
investigating, for example, a signal such as the one shown in figure 3.9, the upper panels
represent excellent time resolution, but missing frequency information, while the lower
panel represents excellent frequency resolution but missing time information.

3.2.1 Spherical Mexican Hat Wavelets

The traditional 2D Mexican Hat Wavelets has been widely used in a variety of different
disciplines. The mother wavelet ψ is given as

ψ(x) =
1

(2π)1/2

(
2− x2

)
e−x

2/2, x = |~x| (3.27)
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Figure 3.13: Applying the Mexican Hat Wavelet shown in figure 3.12, increasing time
resolution with smaller and smaller wavelets.

A derivation of the continuous wavelet transform on the sphere by Antoine & Vandergheynst
[58] gave way to adapting the Mexican Hat Wavelets for the sphere, as Spherical Mex-
ican Hat Wavelets (SMHW). The points x are projected on the sphere via polar co-
ordinates, ~x→ (θ, φ), as

x1 = 2tan

(
θ

2

)
cos(φ) , x2 = 2tan

(
θ

2

)
sin(φ), (3.28)

where (θ, φ) are polar coordinates on the sphere, and
(
y ≡ 2tan

(
θ
2

)
, φ
)
are polar co-

ordinates on the tangent plane at the north pole [59]. The idea is shown in figure 3.14.

The wavelet coefficients for the projected function f (θ, φ) is then given by

w(R) =

∫
S2

dΩf(θ, φ)ΨS2(θ;R), (3.29)

where the kernel on the sphere ΨS2 is given by

ΨS2(θ;R) = N
4

(1 + cosθ)2ψ
( x
R

)
= N

4

(1 + cosθ)2ψ

(
2

R
tan
( x
R

))
. (3.30)

The shape of the Spherical Mexican Hat wavelets can be seen in figure 3.15, and
the SMHW transformation on a map with a single non-zero pixel of arbitrary value can
be seen in figure 3.16. Comparing scale R = 600′ from figure 3.15 with figure 3.16, we
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Figure 3.14: Projection of the 2D Mexican Hat Wavelet onto the sphere. Image credit:
[59].

can see that the SMHW gives decent localization in real space, while still having the
majority of its amplitude over 20 multipoles in harmonic space, providing information
in both domains.

3.2.2 Needlets

Unless otherwise specified, this section relies heavily upon Scodeller et al. [60].
There is a class of wavelets, called needlets, first introduced in the literature by

Narcowich et al. [61, 62], while Baldi et al. first discussed their statistical properties
[63, 64].

The functional form of the mother needlet is given in real space as:

ψjk (x)
def
=
√
λjk
∑
l

bl (B, j)
l∑

m=−l
Ylm (ξjk)Ylm (x) , (3.31)

where {λjk} is the set of cubature weights for scale(frequency) j and cubature point
(pixel) ξjk, Ylm are the spherical harmonics, x is the position and B is a parameter
determining the properties of the needlet. The defining property determining the shape
of the needlet is captured in the weight function bl, and needlets are categorized in
relation to how this weight function is defined. The weight function b

(
l
Bj

)
is defined

under the conditions that

1.
∑∞

j=0 b
2
(
l
Bj

)
= 1, ∀l > B.

2. b
(
l
Bj

)
is non-zero in the domain [Bj−1, Bj+1].

3. b
(
l
Bj

)
is infinitely differentiable in (0,∞).
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Figure 3.15: The shape of the SMHW, shown for different scales R, over the multipole
range l = [0, 1000], and a close up of the largest scales. The scales of the SMHW are
given by R in units arcminutes.
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Figure 3.16: The SMHW transformation performed on a single non-zero pixel, with
scale R = 600′ [arcmin].

Standard needlets

The following outlines how to construct the weight function for the standard needlets.
For a function φ(ξ), we wish to obtain the weight functions b

(
l
Bj

)
. First, construct the

function

f(t) =

{
exp
(
− 1

1−t2

)
, −1 ≤ t ≤ 1

0 , otherwise
(3.32)

Then, construct

φ(u) =

∫ u
−1 f(t)dt∫ 1
−1 f(t)dt

. (3.33)

Now, construct

ϕ(t) =


1 , 0 ≤ t ≤ 1

B

φ
(

1− 2B
B−1

(
t− 1

B

))
, 1

B < t ≤ 1

0 , t > 1

(3.34)

And finally, we have

b2(ξ) = ϕ

(
ξ

B

)
− ϕ(ξ), (3.35)

and then b(ξ) is the positive root of b2. For more details on the properties of the weight
function for the standard needlets, see Marinucci et al. [65].

The standard needlets enjoy several useful properties:
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1. They are computationally simple and fit well with pixellation schemes such as
HEALPix.

2. They do not require a tangent plane approximation as the SMHW does.

3. They depend only on a finite number of multipoles.

4. They are quasi-exponentially localized in real space. This means their tails decay
faster than any polynomial.

5. They have have the property of uncorrelation; the coefficients are asymptotically
uncorrelated as the frequency increases, for a fixed angular distance. Under Gaus-
sianity, uncorrelation equals independence. Therefore, at very high frequencies,
the needlets can be taken as nearly independent.

The shape and localization properties of the standard needlets can be seen in figure
3.17, while the needlet transformation applied to a map with a single non-zero pixel
can be seen in figure 3.18. Looking at for example scale j = 4 from figure 3.17, we can
see that the majority of the harmonic response spans only about 10 multipoles, while
still giving information about real space localization, as seen for the same scale in figure
3.18.

The effect of the parameter B on the shape of the needlet in harmonic space can be
seen in figure 3.19. This parameter governs the localization properties in the harmonic
domain versus the spatial domain. Increasing B will give you worse localization in
harmonic space, smearing out the needlet over a larger range of multipoles `, but will
improve the localization in real space. The real space localization effect is shown in
figure 3.20, where we have used the same scale j = 4 as in figure 3.18, only now width
different values of B. We can see that the real space localization increases with higher
values of B. There is no significant difference between B = 1.5 and B = 2.0 for this
scale.

3.3 Polyspectra and statistics

Polyspectra are the equivalent of moments of a distribution, within the framework of
random spherical fields. They are very useful quantities when trying to determine
the statistical properties of the distribution. In this section, I will outline some basic
statistics relevant to the scope of this thesis.

3.3.1 One-dimensional statistics

For a single random variable, the moments of the distribution can provide us with
valuable information.
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Figure 3.17: The shape of the standard needlet, shown for different scales j, over the
multipole range l = [0, 1000], for B = 1.5.
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Figure 3.18: The standard needlet transformation performed on a single non-zero pixel,
with B = 1.5 and scale j = 4.
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Figure 3.19: Different values of the localization parameter B, here for needlet scale
j = 9.
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(a) B = 1.15 (b) B = 1.25 (c) B = 1.35

(d) B = 1.45 (e) B = 1.50 (f) B = 2.0

Figure 3.20: Increasing the localization parameter B in real space, for needlet scale
j = 4.

Mean and higher order central moments

For a random variable T, the mean is the expected value of T,

µ = 〈T 〉, (3.36)

while the sample mean for a discrete data set, also known as the arithmetic mean, is
given by

〈T 〉 =
1

N

N∑
i=1

Ti. (3.37)

The higher order sample central moments are given by

µn =
1

N − 1

N∑
i=1

(Ti − 〈T 〉)n . (3.38)

For n = 2 we obtain the variance, the expected value of the squared deviation from
the mean, while the standard deviation σ is given as the square root of the variance:

σ =
√

Var(T ) =
√
µ2. (3.39)

Skewness and kurtosis

The skewness is defined as the normalized third order central moment,

Skew[T ] = S =
µ3

σ3
. (3.40)

The skewness is a measure of the asymmetry about the mean, for a given distribution.
Examples of both positive and negative skewness is shown in figure 3.21, along with
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Figure 3.21: Three normal distributions with different skewness. A positive skewness,
shown in red, will lead to a shift of the distribution to the left of the mean, while a
negative skewness will lead to a shift of the distribution to the right of the mean.

a normal distribution with zero skewness for reference. We can see that a negative
skewness will shift the distribution towards the right, such that the maximum of the
distribution is to the right of the mean, while the opposite is true for a positive skewness.

The kurtosis K, is usually given as

Kurt (T ) = K =
µ4

σ4
− 3. (3.41)

The subtraction of 3 ensures that the kurtosis of a Gaussian random variable is zero,
as the fourth central moment of a Gaussian random variable always is µ4 = 3σ4. The
kurtosis measures the strength of the "tails" of the distribution. Examples of positive
and negative kurtosis, again with the normal distribution of zero kurtosis for reference,
are shown in figure 3.22. As per the definition, the "tailedness" of a normal distribution
is the reference value of zero kurtosis. Figure 3.22 shows that for example a uniform
distribution would result in a heavy negative kurtosis, as it has non-existant tails,
while a Laplace distribution would yield a strongly positive kurtosis as the tails are
much stronger than those of the normal distribution.

Transformed moments

The 1D moments for a harmonic or wavelet (needlet) decomposition are completely
analogous, Ti → alm or Ti → β, where β is the coefficients of the wavelet or needlet
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Figure 3.22: The laplace, normal and uniform (probability) distributions, along with
their respective kurtosis values.

basis. The sample variance, skewness and kurtosis can be obtained by

S =
1

σ3

1

N

N∑
i=1

(β − 〈β〉)3, (3.42)

K =
1

σ4

1

N

N∑
i=1

(β − 〈β〉)4 − 3, (3.43)

σ =

[
1

N

N∑
i=1

β2

]1/2

. (3.44)

Implementation-wise, we would have β dependent on a scale and position, β = β(θi, φi, R)
for wavelets, and β = β(θi, φi, j) for needlets. The summation variable i would form-
ally refer to cubature points, but in practice taken as pixel numbers in the HEALPix
scheme, with the sum going up to N = Npix.

3.3.2 The two-point correlation function or the power spectrum

In general, an n-point correlation function measures the correlation between n random
variables, in our case the temperature fluctuations in the CMB as a function of distance
x. The two-point correlation function is given as the ensemble average

C(|x1 − x2|) = 〈T (x1)T (x2)〉 =
∑
l1,l2

∑
m1,m2

〈
al1m1a

∗
l2m2

〉
Yl1m1(x)Y ∗l2m2

(x). (3.45)
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The harmonic transform of the two-point correlation function is the angular power
spectrum already discussed in section 2.5.2.

3.3.3 The three-point correlation function or the Bispectrum

If the primordial fluctuations are Gaussian distributed, the anisotropy is completely
described by the two-point correlation function, or the "Power spectrum", Cl, in har-
monic space. The reason for this is that a normal distribution is fully described by
the mean and variance, and the power spectrum represents the variance of the alm
coefficients with zero mean. However, if the fluctuations are non-Gaussian, there is ad-
ditional information contained in the higher order moments. The first of these higher
order moments is the three-point correlation function, or the Bispectrum Bl. The bis-
pectrum measures the strength, or correlation, of trilateral configurations, i.e. triangles
in scale-space. Analogous to how the power spectrum is the scale-dependent repres-
entation of the variance, the bispectrum is the scale-dependent representation of the
skewness. The skewness as introduced earlier in this chapter is the diagonal of the
bispectrum, "Bl1l1l1".

The bispectrum relates back to inflation through the coupling parameter fNL in
equation 2.15. The simplest single-field inflation models predict a value |fNL| < 1,
while the expected value for fNL varies in the more elaborate inflationary scenarios
[66]. Thus quantifying fNL is an excellent estimator for different types of inflation. We
can model the non-Gaussian alms to second order

alm = aGlm + fNLa
NG
lm , (3.46)

where the non-Gaussian term scales as aNGlm ∼
(
aGlm
)2. The coupling parameter fNL is

a measure of the strength of non-Gaussianity in the distribution, and the bispectrum
is the lowest order moment able to discern Gaussian from non-Gaussian models [66].
Planck’s 2018 release provided the constraints f local

NL = −0.9±5.1, f equilateral
NL = −26±47,

forthogonal
NL = −38 ± 24, with the names local, equilateral and orthogonal referring to
different configurations of the bispectrum [24].

The angular, normalized wavelet bispectrum is given by

Ij1j2j3 =
∑
k

βj1kβj2kβj3k
σj1kσj2kσj3k

=
∑
k

∑
l1l2l3

∑
m1m2m3

bl1
σj1k

bl2
σj2k

bl3
σj3k

al1m1al2m2al3m3

· Yl1m1(γ̂k)Yl2m2(γ̂k)Yl3m3(γ̂k),

(3.47)

where βjk are the wavelet coefficients for scale j and cubature point k, bl is the weight
function, in our case either for SMHW or standard needlets, σjk is the standard de-
viation Ylm, alm the spherical harmonics and their coefficients, and γ̂k is a directional
vector [67, 68].
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3.3.4 The four-point correlation function or the Trispectrum

The next higher order moment is the 4-point correlation function, or the Trispectrum Tl.
The trispectrum measures the strength, or correlation, of quadrilateral configurations,
i.e. quadrilaterals in scale-space. Again, the trispectrum represents a scale-dependent
measure of the kurtosis, with the diagonal Tl1l1l1l1 giving the traditional 1D kurtosis.

In the same way as the Bispectrum, it relates to the third order perturbations in
the primordial gravitational potential, through the coupling parameter gNL. We can
model the non-Gaussian alms to third order as

alm = aGlm + fNLa
NG
lm + gNLa

NG,2
lm , (3.48)

with superscript 2 referring to second order perturbation, not power. The second order
non-gaussianity term scales as aNG,2

lm ∼
(
aGlm
)3. Similarly to the bispectrum, the needlet

trispectrum is given by

Tj1j2j3j4 =
∑
k

βj1kβj2kβj3kβj4k
σj1kσj2kσj3kσj4k

=
∑
k

∑
l1l2l3l4

∑
m1m2m3m4

bl1
σj1k

bl2
σj2k

bl3
σj3k

bl4
σj4k

· al1m1al2m2al3m3al4m4 · Yl1m1(γ̂k)Yl2m2(γ̂k)Yl3m3(γ̂k)Yl4m4(γ̂k),

(3.49)

3.3.5 Scale-dependent coupling parameter fNL(k) and gNL(k)

The quantities fNL and gNL are often introduced as a constant, relating to the amp-
litude of the bi- and trispectrum. The simplest model of inflation, a single-field slow-roll
Inflaton field, with canonical kinetic energy and initial conditions, infer that the amp-
litude and scale-dependence of the higher order correlation functions are of the order
of the slow-roll parameters, meaning they are too small to observe at the present time.
However, several inflationary scenarios allow for a scale-dependent bi- and trispectrum,
such that the non-linearity parameters are no longer constants, but dependent on a
wave k in Fourier space. With this kind of scale-dependent non-Gaussianity, the re-
lations given in equations 3.46 and 3.48 no longer hold, as the connection of fNL and
gNL to the second and third order non-Gaussianity terms shown in equation 2.15 can
no longer be transferred linearly to the harmonic coefficients alm.

3.3.6 Motivation for the trispectrum

In this thesis, we will focus on the trispectrum, and not the bispectrum. The motivation
behind this is that, for our model as described in section 2.6, we expect the presence of
strong scale-dependent non-Gaussianity with gNL-like terms, and fNL ∼ 0. Therefore,
when considering the alm coefficients, we would have

alm ∼ aGlm + gNL

(
aGlm
)3
. (3.50)
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Now consider a schematic overview of the bispectrum under the assumption that fNL =
0,

〈almalmalm〉 ∼
〈
a3
lm + 3a2

lmgNL (alm)3 + 3alm(gNL)2 (alm)6 + (gNL)3 (alm)9
〉

=
〈
a3
lm + 3gNL (alm)5 + 3(gNL)2 (alm)7 + (gNL)3 (alm)9

〉 (3.51)

We can see that we only get odd moments for the alm coefficients, and for a Gaussian
distribution, the odd moments are zero. Thus we expect a zero bispectrum from our
model. However, consider instead the trispectrum

〈almalmalmalm〉 ∼
〈(

aGlm
)4

+ 4
(
aGlm
)3 (

gNL

(
aGlm
)3)

+ 6
(
aGlm
)2 (

gNL

(
aGlm
)3)2

+ 4
(
aGlm
) (
gNL

(
aGlm
)3)3

+
(
gNL

(
aGlm
)3)4

〉
=

〈(
aGlm
)4

+ 4gNL

(
aGlm
)6

+ 6 (gNL)2 (aGlm)8 + 4 (gNL)3 (aGlm)10

+ (gNL)4 (aGlm)12
〉
.

(3.52)

We obtain non-zero even moments, which is why we are interested in investigating the
trispectrum, and not the bispectrum.



Chapter 4

Anomalies in the CMB

Many statistical anomalies have been reported being present in the CMB, which calls
into question whether the CMB really is perfectly Gaussian and isotropically distrib-
uted. It is therefore interesting to investigate whether other types of models can repro-
duce these anomalies, and fit the observed data better than the traditional Gaussian
and isotropic hypothesis. To reiterate from section 2.6, the focus of this thesis is on
the following 6 anomalies present in the CMB:

1. The large-scale hemispherical power asymmetry as a dipolar modulation of an
isotropic sky.

2. The small-scale hemispherical power asymmetry.

3. The Cold Spot, giving rise to an excess kurtosis of wavelet coefficients for angular
scales around 10◦.

4. The low power on large angular scales.

5. The quadrupole and octopole alignment.

6. Parity asymmetry on the large angular scales.

The following sections seek to provide a short description of each anomaly, along with
evidence and methods for detection.

4.1 Large-scale hemispherical asymmetry

In the WMAP first-year data, local estimates of the angular power spectrum indicated
an asymmetry in the distribution of power between two hemispheres in the sky. The
anomaly was first reported by Eriksen et al. [69], and further confirmation was received
from e.g. Hansen et. al [70]. A more recent study can also be seen in Akrami et al.
[71]. A model consisting of an isotropic CMB sky modulated by a dipole was proposed
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Figure 4.1: A dipole modulation of a map, resulting in large-scale hemispherical power
asymmetry. Units are given in µK.

by Gordon [72], parametrized by a preferred direction p̂ = (l, b) and a modulation
amplitude A. The modulated signal is then given by

T (n̂) = (1 +Ap̂ · n̂)B(n̂), (4.1)

where n̂ is the direction in the sky, A is the modulation amplitude, p̂ is the preferred
direction, and B is an isotropic temperature field. A toy example showing the effect of
dipole modulation can be seen in figure 4.1. From the figure, we can clearly see that
fluctuations are enhanced in one hemisphere, that is the hot spots get hotter and the
cold spots get colder. In the opposite hemisphere, fluctuations are suppressed smearing
out fluctuations towards zero (i.e. the mean temperature).

The dipolar modulation model was found to fit the data by Eriksen et al. [73],
reporting a dipole axis pointing towards galactic coordinates (l, b) = (225◦,−27◦), with
a best-fit modulation amplitude of 0.114. The analysis was extended up to multipoles
40 < l < 80 by Eriksen et al. [74], and showed that the data prefers a dipolar modula-
tion with amplitude A = 0.072±0.022 and preferred direction (l, b) = (224◦,−22◦)±24◦

detected at the 3.3σ level for l ≤ 64. The latest Planck release [23] reports a di-
pole direction of (l, b) = (221◦,−20◦), averaged over the 4 component separated maps
Commander, NILC, SEVEM and SMICA with the combined dataset of temperature,
polarization and the cross spectra (TT, EE, TE). The same averaging applied to the
amplitude gives the value of A = 0.0695. For more information, see table 24 in Planck
Collaboration VII [23].
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Figure 4.2: The 12 pixels used in analysis. Image credit: [76].

4.2 Small-scale hemispherical asymmetry

Similar to the hemispherical asymmetry on large scales, the asymmetry was found to
extend to smaller scales, meaning higher multipoles l, first reported by Hansen et al.
[75] in the WMAP 5 year-data, and later corroborated by Axelsson et al. [76] in the
WMAP 9 year data, and also by the official Planck release [77, 78]. The asymmetry is
not induced by a dipolar modulation as in the case for the largest scales; the modulation
amplitude is within the expected range of Gaussian simulations. However, the align-
ment of the dipolar power distribution between multipoles persists, with a preferred
direction close to what was found for the large-scale asymmetry.

Hansen et al. [75] performed power spectrum estimation on different sized disks of
diameter 180◦(hemispheres), 90◦, 45◦, 22.5◦, using the MASTER algorithm for binned
power spectra estimates. The analysis found a preferred direction (l, b) = (226◦,−17◦)
for multipole range l = 2− 600, finding that the asymmetric models were favored over
the isotropic models at 0.4% significance level.

The analysis was extended to parameter estimation by Axelsson et al. [76], finding
a similar preferred direction for asymmetry, (l, b) = (227◦,−27◦), at 3.4σ confidence
level. The sky was divided into 12 patches, centered on the 12 base HEALPix pixels
as shown in figure 4.2, where the value of each pixel was given by the binned power
spectra for a given l-range. The dipole direction and amplitude was estimated for 6
separate multipole bins of size 100, in the range l = [2 − 600]. For an isotropic map,
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Figure 4.3: The filled circles shows the preferred dipole direction for a multipole bin,
where the annotated number indicates the central multipole of this bin. The white
cross, green circle and black cross represent the dipole direction estimates from the full
range l = 2 − 600, the range l = 2 − 40 from WMAP 1 year data, and the full range
l = 2− 600 from the WMAP 5 year data respectively. NEP AND SEP represents the
North and South ecliptic poles. The white square represents the cosmological CMB
dipole. Dipole directions for the cosmological parameters are also shown as yellow
squares, but these are not relevant for this section. Image credit: [76].

one would expect an uncorrelated power spectrum between the multipole bins, and
thus randomly distributed dipole directions. However, their result shown in figure 4.3,
shows a clear grouping of dipole directions between multipole bins.

4.3 The Cold Spot

During a blind Gaussianity test using SMHW statistics, performed by Vielva et al.
on the WMAP first-year data, a significant positive excess of kurtosis was detected at
scales around 10◦. The excess kurtosis was attributed to a specific area in the southern
hemisphere, a very large and cold spot in the CMB sky centered at (b, l) = (−57◦, 209◦),
aptly named "The Cold Spot". The kurtosis was so anomalous that for wavelet scales
R = 250′ and R = 300′, it was outside the 1% acceptance interval, with a p-value of
p ≈ 4 · 10−3. The spot was also found to have a frequency dependence consistent with
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Figure 4.4: Positive deviation of the kurtosis at wavelet scales around R6 = 150′ to
R13 = 750′ in the WMAP data. The solid yellow shows the mean value obtained from
10000 Gaussian simulations, and the blue stars are the WMAP data points. The red,
green and magenta regions show the 32%, 5% and 1% acceptance intervals, respectively.
Image taken from [79].

the expected frequency behavior of the CMB [79]. Their detection of the positive excess
kurtosis is shown in figure 4.4, showing that for scale number 8 and 9, corresponding
to R = 250′ and R = 300′, the kurtosis is outside the magenta band representing 1%
acceptance interval. This indicates a non-zero 4-point correlation function, inconsistent
with Gaussianity. No significant deviation was found in the skewness. Later tests
included measuring the amplitude with a MAX-statistic, calculating the area of the
spot with Minkowski functionals, and a Higher Criticism (HC) test, all of which further
confirmed its anomalous nature [80]. The Cold Spot consists of several smaller spots,
none of which are very anomalous on their own in real space. The most notable single
spot has a temperature of . −350µK, and a size of about 1◦ [79]. The Cold Spot is
however very prominent at certain scales in wavelet space, shown in figure 4.5. We
can see from this figure, even by eye, that the cold spot is a prominent feature in the
wavelet map. Studies of the Spots morphology have shown it to be quite isotropic,
almost being circular [81]. The Cold Spot is surrounded by a hot ring [78], making it
very susceptible to being discovered through Spherical Mexican Hat Wavelets, as their
shape matches very well (i.e. an inverted SMHW version of the Mexican Hat Wavelet
shown in figure 3.12).
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(a) Real Space (b) Wavelet space

Figure 4.5: The cold spot is circled, shown in real space and in wavelet space at scale
R = 250′. Image credit [80].

4.4 Large-scale power deficit

One of the most debated anomalies in the CMB is the large-scale power deficit. The
data shows consistently lower values than predicted from most mainstream cosmological
models, at the largest angular scales. The quadrupole is especially low, originally
reported as being anomalous at the 1-in-143 level [82] in WMAP. Further analysis by
Tegmark et al. [83] argued that in a full-sky analysis, the significance dropped to a 1-in-
20 level. This could be a statistical fluke, taking into account the large cosmic variance
at low multipoles. There is also a possibility that the low quadrupole is connected with
the parity asymmetry anomaly [84, 85, 86], and not a unique anomaly in its own right.
The Planck team also reported the anomaly with a significance of 2.5−3σ, manifesting
as a general power deficit of 5−10% at multipoles l ≤ 40 compared to the Planck best-
fit ΛCDM model [15]. The very low value of the quadrupole can be seen, even by eye,
in the Planck TT-power spectrum presented in figure 1.1, while a statistic quantifying
the general power deficit on the large scales can be seen in figure 4.6. In this statistic,
the Planck and WMAP low-l likelihood was fitted to the Planck data, at different
ranges of 2 ≤ l ≤ lmax. If the low-l likelihood was a perfect fit, the expected amplitude
would be 1. However, figure 4.6 shows the low-l spectrum trending significantly below
the expected value of 1, indicating that the observed large scale power spectrum is
anomalously low, by a factor of ∼ 0.9 compared to the Planck best-fit model.

4.5 Quadrupole and octopole alignment

An apparent alignment between the quadrupole and octopole was found during a fore-
ground analysis on the WMAP data performed by Tegmark et al. [83]. They re-
ported a suppression of power along a common spatial axis, pointing towards (b, l) ∼
(60◦,−110◦). This alignment was (IS?) anomalous at the 1-in-60 level. Topological
analyses excluded "plain bagel" small universe models as an explanation [87], as well
as other twisted back-to-back models [88]. The alignment of the quadrupole and octo-
pole can be seen in figure 4.7, from the original cleaned map by Tegmark et al. [83].
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Figure 4.6: The relative amplitude of the low-l spectrum compared with the Planck
best fit model. The error bars represent 68 and 95% confidence regions. Image credit:
[15].

Figure 4.7 shows the alignment between the quadrupole and octopole (upper left and
middle left panels), seemingly having their power supressed along a common axis.

4.6 Parity asymmetry on large angular scales

The CMB temperature anisotropy in the sky can be expanded in a sum of parity-
symmetric T+(n̂) and parity-antisymmetric T−(n̂) functions, given by the relation

T±(n̂) =
1

2
[T (n̂)± T (−n̂)]. (4.2)

The parity transformation in spherical coordinates corresponds to going from a point
n̂ to the antipodal point −n̂:

r → r , θ → π − θ , φ→ φ+ π. (4.3)

In spherical harmonics, this then translates to

Ylm(θ, φ)→ Ylm(π − θ, φ+ π). (4.4)

From the definition of spherical harmonics,

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!︸ ︷︷ ︸
A

Plm(cos(θ))eimφ, (4.5)
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Figure 4.7: The quadrupole, octopole and hexadecapole is plotted from top to bottom
in the left panel. The right panel show the cosmic quadrupole (top) after correcting
for an estimate of the dynamic quadrupole (middle), resulting from our motion relative
to the CMB. The lower right map shows the resulting map of adding the left panel
quadrupole and octopole maps. Image credit: [83].
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where Plm is the associated Legendre polynomial, we then have

Ylm(π − θ, φ+ π) = APlm(cos(π − θ))eim(φ+π)

= APlm(− cos(θ))eim(φ)eiπm

Plm(−x) = (−1)l+mPlm(x)

= A(−1)l+mPlm(cos(θ))eimφ(−1)m

= (−1)lAPlm(cos(θ))eimφ(−1)2m

= (−1)lYlm(θ, φ)

or then equivalently
a

(P )
lm = (−1)lalm, (4.6)

where (P ) represents the parity transformation. Thus, the symmetric function T+(n̂)
is made up of only spherical harmonics with even l-modes, while the anti-symmetric
function T−(n̂) conversely only with odd l-modes.

Because of isotropy, we expect a similar amplitude for the angular power spectra of
the symmetric and anti-symmetric parts for 2 < l < 30, on the largest angular scales
[23]. However, a preference for the odd point-parity spectrum has been detected, at
the 2− 3σ significance level, in both WMAP data [89, 84, 90] and in Planck data [77,
78, 23]. Further studies [91] have also shown that this asymmetry can not be easily
explained by the presence of residual Galactic foreground emission.

One statistic investigated in the Planck 2018 release [23], as well as the previous
2015 Planck data release [78], is the ratio

RTT(lmax) =
CTT

+ (lmax)

CTT
− (lmax)

, (4.7)

where the temperature angular power spectra of the even and odd modes, CTT
+ and

CTT
− respectively, are given as

CTT
+,− =

1

l+,−tot

+,−∑
l=2,lmax

l(l + 1)

2π
CTTl , (4.8)

with l+,−tot as the total number of even and odd modes included in the sum to lmax [23].
The results of this statistic from the 2018 Planck data release can be seen in figure
4.8, where one can see that the statistic trends significantly below the expected value,
showing a clear preference for the power spectra of the odd multipoles, CTT

− .
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Figure 4.8: The statistic RTT(lmax) applied to the Planck 2018 data. Upper left panel:
the Black line along with the shaded areas are the expected distribution from SMICA
MonteCarlo realizations, with the 1,2 and 3 σ bands. The red, orange, green and cyan
lines are the ratios computed on maps with component separation Commander, NILC,
SEVEM, and SMICA respectively, after application of the common mask. The upper
right panel shows the same statistic, only with Lkl-Commander component-separated
map (magenta line). The lower left and right panels show the lower-tail probability as
a function of lmax and lmin respectively. Image credit: [23].



Chapter 5

Method

In this chapter, the methodology for investigating the non-Gaussian model presented
in section 2.6 is outlined. First, we presents central estimators, then we discuss how
noise is handled, before finally describing the technical algorithm for producing CMB
realizations.

5.1 A simple needlet trispectrum estimator

Estimating the trispectrum is of interest, because of the connection to the presence of
gNL-like terms as discussed in section 3.3.6. We want to estimate the trispectrum to
investigate whether it is a good estimator for detecting non-Gaussianity in our model,
that is to check if it can distinguish Gaussian and non-Gaussian simulations. Referring
back to equation 3.49, we wish to find an estimator for the (non-normalized) trispec-
trum,

Tj1j2j3j4 =

〈∑
k

βj1,kβj2,kβj3,kβj4,k

〉
, j1 ≤ j2 ≤ j3 ≤ j4, (5.1)

where βj is the needlet coefficient for scale j, the angle brackets refer to ensemble
average, and the sum goes over cubature points k. The HEALPix pixelation scheme
is very handy in that we can take the pixel centers to be the cubature points, and
therefore obtain the discrete estimator

T̂j1j2j3j4 =
1

Npix

Npix∑
k=1

βj1kβj2kβj3kβj4k, (5.2)

where k represents the pixels, to estimate the wavelet trispectrum as shown in equa-
tion 3.49. To ensure closed quadrilaterals in scale space (a quadrilateral must have 4
connected sides, or else it is only a line), we impose the quadrilateral condition

max(|j1 − j2 − j3|, |j2 − j1 − j3|, |j3 − j2 − j1|) ≤ j4 ≤ j1 + j2 + j3. (5.3)

Thus we can estimate the trispectrum for a single realization i, and obtain the estimated
mean trispectrum

T̄j1j2j3j4 = 〈T̂j1j2j3j4〉, (5.4)
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where the brackets denote the simulation average. Our initial choice of scales are

RSMHW = {13.7, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 600, 750, 900, 1050}, (5.5)

for the SMHW, which are given in arcminutes denoting how large the span of the
wavelet is on the sky. These are the scales used by Vielva et al. in their original
detection of the cold spot [79].

For the standard needlets, we use the scales

j = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}, (5.6)

which spans the multipole range of [Bjmin−1, Bjmax+1]. In our case, with B = 1.5, this
translates to l ∈ [1.5, 985]. Our choice of B = 1.5 is a trade-off where we feel we
get decent localization in both the harmonic and real space. With this choice of B
and values of j for the needlets, they will span about the same range as the SMHW.
Additionally, this is the range in which we expect the most detection of anomalies from
our non-Gaussian model, as explained in section 2.6.

5.1.1 The optimal needlet trispectrum estimator

Initial results were produced with the simple trispectrum estimator. However, we found
that this estimator produced distributions with a relatively large standard deviation,
which led to ambiguous results, as there was a significant overlap between the histo-
grams for the Gaussian and non-Gaussian distributions. We decided to search for and
implement a more robust estimator. An optimal needlet trispectrum estimator was
presented by Troja et al. [92],

Tj1j2j3j4 =
∑
k

βj1,kβj2,kβj3,kβj4,k + Cj1j2j3j4,k
σj1σj2σj3σj4

, j1 ≤ j2 ≤ j3 ≤ j4, (5.7)

where σj is the standard deviation for the needlet coefficients for scale j. The quantity
Cj1j2j3j4,k is a quadratic term that serves to minimize the variance, defined as

Cj1j2j3j4,k =− Γj1j2βj3,kβj4,k − Γj1j3βj2,kβj4,k − Γj1j4βj2,kβj3,k

− Γj2j3βj1,kβj4,k − Γj2j4βj1,kβj3,k − Γj3j4βj1,kβj2,k

+ Γj1j2Γj3j4 + Γj1j3Γj2j4 + Γj1j4Γj2j3 ,

(5.8)

with Γj1j2 = 〈
∑

k βj1,kβj2,k〉 is the simulation average from Gaussian simulations. Due
to both computational restraints, and the fact that we only have so many Planck
MC simulations available, we use Γj1j2 from our previous simulations with the sub-
optimal estimator. Although the sub-optimal estimator produced trispectra with a
larger standard deviation, sanity checks discussed later in section 6.1.1 still showed
good agreement, thus this choice should not lead to a bias.
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5.2 The chi-squared test

As a blind test for how well the trispectra are able to distinguish between the Gaussian
and non-Gaussian simulations, we employ a χ2-statistic,

χ2
sim =

∑
i

(
T sim
i −

〈
TG
〉

σi

)2

, (5.9)

where i refers to a scale combination j1j2j3j4, sim refers to a single simulation or
realization of a CMB map, and obs signifies the simulated trispectra, either Gaussian,
TG
i , or non-Gaussian, TNG

i . The standard deviation, σi, is the simulation average
standard deviation of the trispectrum, σT , for a given combination i. The χ2-test allows
us to test how significant the trispectrum is as an estimator for detecting deviations
from a Gaussian trispectrum in our simulated maps. A significant detection should
yield different χ2 distributions for the Gaussian and non-Gaussian cases.

5.3 The α-estimator

The model will produce a (simulation) averaged trispectrum, which can be considered
as a Gaussian trispectrum with non-Gaussian contribution,

T̄MOD
i (α) = T̄G

i + αT̄NG
i , (5.10)

where α serves as a parameter governing the strength of the non-Gaussian part, super-
script MOD refers to the model spectra, i refers to a scale combination j1j2j3j4, and the
bar signifies simulation average for ease of notation. The quantity αT̄NG

i requires some
explanation. Looking back at equation 2.25, taking care to notice that T (θ, φ) refers to
temperature and not the trispectrum, a model realization consists of a Gaussian term
added with a non-Gaussian term

T (θ, φ) = TG(θ, φ) + γ
[
TG(θ, φ)T 2

F (θ, φ)
]Filtered︸ ︷︷ ︸

NG part

. (5.11)

In this way, α is a measure of how large the contribution from the non-Gaussian term
in equation 5.11 should be. Now consider a χ2-statistic similar to the one in section
5.2, but testing the model hypothesis as a function of α,

χ2
sim =

∑
i

(
T sim
i − T̄MOD

i (α)

σi

)2

. (5.12)
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We can obtain an estimator for this strength parameter, α̂, by considering the derivative
of this χ2-statistic;

∂χ2

∂α
=

∂

∂α

∑
i

(
T sim −

(
T̄G
i + αT̄NG

i

)
σi

)2

= 2
∑
i

(
T sim −

(
T̄G
i + αT̄NG

i

)
σi

)(
− T̄

NG
i

σi

)

= 2
∑
i

(
−T sim

i T̄NG
i + T̄G

i T̄
NG
i + α

(
T̄NG
i

)2
σ2
i

)
.

Setting ∂χ2

∂α = 0, we get

∂χ2

∂α
= 2

∑
i

(
−T sim

i T̄NG
i + T̄G

i T̄
NG
i + α̂

(
T̄NG
i

)2
σ2
i

)
= 0

α̂
∑
i

(
T̄NG
i

)2
σ2
i

=
∑
i

T sim
i T̄NG

i − T̄G
i T̄

NG
i

σ2
i

α̂ =

∑
i
T sim
i T̄NG

i −T̄G
i T̄

NG
i

σ2
i∑

i
(T̄NG
i )

2

σ2
i

α̂ =

∑
i

T̄NG
i (T sim

i −T̄G
i )

σ2
i∑

i
(T̄NG
i )

2

σ2
i

(5.13)

Equation 5.13 then quantifies the preference for the non-Gaussian model, that is, if
α̂ = 1, the data prefers exactly the strength parameter γ = 0.43 in our model, if α̂ = 2
the data prefers γ = 0.86, and if α̂ = 0 the data prefers a completely Gaussian model
with no added non-Gaussian term.

5.4 Noise

In this section, we consider the effect of noise on our results, more specifically the effect
of an erroneous noise model. When noise is present, as it always will be in real-life
experiments, there will be a signal from the true CMB, and a noise signal

alm = aCMB
lm + anoise

lm . (5.14)

The use of half-mission maps, that is two maps from the first and second half of the
observation time, serves to minimize the noise as it allows for cross-spectra in which
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noise can be assumed uncorrelated. For the power spectrum, if we have two half-mission
maps with superscript 1 and 2,〈

a1
lma

2
lm

〉
=
〈(
aCMB,1
lm + anoise,1

lm

)(
aCMB,2
lm + anoise,2

lm

)〉
=
〈
aCMB,1
lm aCMB,2

lm + aCMB,1
lm anoise,2

lm + aCMB,2
lm anoise,1

lm + anoise,1
lm anoise,2

lm

〉
=
〈
aCMB,1
lm aCMB,2

lm

〉
,

as one can assume that neither the noise and the CMB, nor the noise from each half-
mission map, is correlated. The case with needlet coefficients is completely equivalent,

βj1 = βCMB
j1 + βnoise

j1 , (5.15)

and the same relation holds. However, when considering the (needlet) trispectrum, for
two half-mission maps 1 and 2 and with superscript n indicating noise terms, we have

Tj1j2j3j4 =
〈
β1
j1β

1
j2β

2
j3β

2
j4

〉
=
〈(
βCMB,1
j1

+ βn,1
j1

)(
βCMB,1
j2

+ βn,1
j2

)(
βCMB,2
j3

+ βn,2
j3

)(
βCMB,2
j4

+ βn,2
j4

)〉
=

〈
βCMB,1
j2

βCMB,2
j3

βCMB,2
j4

βn,1
j1

+ βCMB,1
j1

βCMB,2
j3

βCMB,2
j4

βn,1
j2

+ βCMB,2
j3

βCMB,2
j4

βn,1
j1
βn,1
j2

+ βCMB,1
j1

βCMB,1
j2

βCMB,2
j4

βn,2
j3

+ βCMB,1
j2

βCMB,2
j4

βn,1
j1
βn,2
j3

+ βCMB,1
j1

βCMB,2
j4

βn,1
j2
βn,2
j3

+ βCMB,2
j4

βn,1
j1
βn,1
j2
βn,2
j3

+ βCMB,1
j1

βCMB,1
j2

βCMB,2
j3

βn,2
j4

+ βCMB,1
j2

βCMB,2
j3

βn,1
j1
βn,2
j4

+ βCMB,1
j1

βCMB,2
j3

βn,1
j2
βn,2
j4

+ βCMB,2
j3

βn,1
j1
βn,1
j2
βn,2
j4

+ βCMB,1
j1

βCMB,1
j2

βn,2
j3
βn,2
j4

+ βCMB,1
j2

βn,1
j1
βn,2
j3
βn,2
j4

+ βCMB,1
j1

βn,1
j2
βn,2
j3
βn,2
j4

+ βCMB,1
j1

βCMB,1
j2

βCMB,2
j3

βCMB,2
j4

+ βn,1
j1
βn,1
j2
βn,2
j3
βn,2
j4

〉
.

(5.16)

There are several correlated terms in the above expression which do not vanish.
Not only will we obtain pure noise spectra of the type〈

βn,1
j1
βn,1
j2
βn,2
j3
βn,2
j4

〉
=
〈
βn,1
j1
βn,1
j2

〉〈
βn,2
j3
βn,2
j4

〉
, (5.17)

but we also obtain noise terms amplified by the CMB signal, such as〈
βCMB,1
j1

βCMB,1
j2

βn,2
j3
βn,2
j4

〉
=
〈
βCMB,1
j1

βCMB,1
j2

〉〈
βn,2
j3
βn,2
j4

〉
. (5.18)

These can be very hard to model if one does not fully know the noise properties of
the detector. To get around this problem, we take a more empirical approach and try to
estimate how well our noise model fits the data. To get an initial impression of how well
the fit is, we extract a map with simulated CMB and noise, apply a mask, and compute
the power spectrum Cl. The same procedure is done for the Planck data map. The



64 Method

0 250 500 750 1000 1250 1500 1750
Multipole 

0.6

0.8

1.0

1.2

1.4

C
si

m
/C

da
ta

Best fit, with slope = -5.08e-05

(a) SMHW

0 250 500 750 1000 1250 1500 1750
Multipole 

0.6

0.8

1.0

1.2

1.4

C
si

m
/C

da
ta

Best fit, with slope = -1.03e-04

(b) Standard needlets

Figure 5.1: The ratio of the power spectra, Csim
l

Cdata
l

, computed from a simulated map
with our noise model, and the Planck map, along with the best fit line and zero line
for reference. The best fit as calculated without the mono- and dipole, as these are set
to zero and the noise is not relevant.

ratio of the two power spectra is plotted in figure 5.1, for both SMHW and standard
needlets. Figure 5.1 shows that the disparity in the noise model is significant, especially
at the highest multipoles. For the SMHW, the mean disparity between the simulated
values and the data is 1.73% for the multipoles in the range l ∈ [2, 1000], and 5.61%
for the multipole range l ∈ [1001, 1700]. The corresponding numbers for the standard
needlets are 1.93% and 10.97%. While this disparity is high for the large multipoles,
l = 1000 and upwards is outside the range spanned by the wavelet coefficients discussed
in section 5.1, and this should lessen the effect of the erroneous noise model. However,
we still take precautions to minimize the effect of the noise, discussed in the following
section.

5.4.1 Minimizing noise using α

We make an effort to reduce the effect of the noise model disparity, by comparing the
effect on α̂. Since the highest scales are the most affected, a comparison was made
by excluding the smallest scales, corresponding to the highest multipoles. We take
a conservative approach and compare the noisy simulations to completely noise-free
simulations, that is we assume a model with no noise and test α̂ on simulations with
noise. This then represents the "worst-case scenario". Implementation-wise, we check
the effect of noise on α̂ given in equation 5.15, by comparing the distributions from two
cases:

1. T sim
i from noise-free simulations,

2. T sim
i from noisy simulations.

In both cases, the quantities T̄NG
i , T̄G

i and σi are estimated from noise-free simulations.
We perform this comparison while excluding more and more scales, that is disregard
the trispectrum combinations containing these scales.
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Figure 5.2: The input power spectrum and beam used to create CMB realizations.

5.5 Generation of CMB realizations

CMB maps are created from an input power spectrum, through HEALPix’ create_alm
which generates Gaussian distributed alm coefficients of zero mean from a power spec-
trum. Furthermore, the HEALPix function alm2map creates a HEALPix temperature
map with ring ordering pixel scheme, through a spherical harmonic transform. A win-
dow function, containing a Gaussian beam and pixel window function is added. Both
the input power spectrum and the window function are shown in figure 5.2.

The process of estimating the trispectrum can be summed up as follows;

1. Create random CMB realizations from a given power spectrum Cl. The first 2
3

simulations are Gaussian maps, used for comparison in statistical tests. The last
1
3 simulations are used for non-Gaussian simulations.

2. Apply the process described in section 2.6 to the latter third of the simulations,
for given values of the parameters γ and the filters w` and g`.

3. Perform a wavelet transformation on all the maps, to obtain the coefficients β.

4. Calculate the trispectrum Tj1j2j3j4 as in section 5.1, along with Γj1j2 as shown in
section 6.1.1.

5. Step 2-4 can be repeated for different parameter values in order to test several
models at once.

5.5.1 Masking the hot / cold spot

The process of creating the non-Gaussian maps will introduce a hot or cold spot into
our maps [1], and from here on, it will simply be referred to as "the spot". We are
interested in what effect the spot has on our results, and therefore the trispectrum is
also calculated from the maps after masking the spot. This is achieved in the wavelet
domain, where we search for the pixel with the largest SMHW coefficient in absolute
value, and all pixels in a disc of radius r = 5◦ centered on this pixel, are set to zero.
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This radius is the actual radius of the cold spot as reported by Vielva [80] among others.
For the standard needlets, this spot mask is then applied on a needlet map of the same
realization.

5.6 The Planck 2015 FFP8.1 simulations

After the estimators have been validated through the randomly generated CMB realiza-
tions from an input power spectrum, the next step is to compare with simulations from
the Planck experiment. We choose to use the Planck 2015 FFP8.1 simulation data,
available from NERSC1, to get a larger data set for better statistics as the 2018 release
only had 1000 full-sky maps available [93]. Out of the total 4000 available Planck 2015
FFP8.1 maps, to simulate half-mission maps, we use 1920 of them with the correspond-
ing 3840 noise maps, as our simulation code requires a simulation number divisible by
3.

5.7 Creation of a needlet mask

As wavelets and needlets are only semi-localized in space, they are susceptible to inter-
ference from masks, and the normal galactic and point source masks must be extended
into scale-dependent masks. Here we explain the procedure for needlets. A similar
procedure has been used to create the SMHW masks. We follow the approach presen-
ted by Scodeller et al. [60], using hyperbolic fits to deduce the critical angle θcrit with
which the mask must be extended. The extension angle θcrit is given as

θcrit =
β

l∗
, (5.19)

where l∗ is the multipole for which the needlet has its peak, l∗ ≈ Bj , and β is a
parameter to be fitted. For the standard needlets, β can be parametrized in terms of
an acceptance criterion, τ , and the parameter B previously discussed in section 3.2.2.
The acceptance criterion τ governs how much contamination from the mask is accepted.
For example, for our choice of τ = 0.1, 90% of the contamination from the mask is inside
the critical angle θcrit, and we thereby accept a 10% contamination from the mask in
our data.

The hyperbolic fit depends on whether you are extending a galactic mask or a point
source mask. For the galactic cut, we use

βgal = (−0.337B + 4.98) ·
(

0.059 · τ−0.36

(B − 0.89)2 + 0.44 · τ−0.32

)
, (5.20)

while for the point source mask, or more specifically a Planck hole mask, we use

βhole = (−0.337B + 4.98) ·

(
10f(τ)

(B − 0.57)2 + 0.18 · τ−0.30

)
, (5.21)

1https://crd.lbl.gov/departments/computational-science/c3/c3-research/
cosmic-microwave-background/cmb-data-at-nersc/

https://crd.lbl.gov/departments/computational-science/c3/c3-research/cosmic-microwave-background/cmb-data-at-nersc/
https://crd.lbl.gov/departments/computational-science/c3/c3-research/cosmic-microwave-background/cmb-data-at-nersc/
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with

f(τ) =
−0.0065√
|log10(τ)|

exp

(
1

2

(log10(τ) + 4.36)2

1.172

)
. (5.22)

For the lowest scale needlets, corresponding to the largest scales on the sky, only
the galactic mask is extended, as the point sources have very little impact on these
scales. For the largest scale needlets, corresponding to small scales on the sky, both the
galactic mask and the point source mask are extended, and then multiplied together to
create a compound mask. The point source mask is obtained by mo + (1−mg), where
mo is the original full mask and mg is the galaxy cut only. The "divide between the
largest and smallest needlet scales" is found from table 1 and table 4 in Scodeller et
al. [60]; The scales which have l∗ < 204 are unaffacted by holes, and we therefore only
extend the galactic mask, while for the scales with l∗ < 6, the extension of the galaxy
cut covers the whole sphere, i.e. the contamination from the galactic mask affects the
whole sphere for these scales. Thus, these scales are rendered unusable, and they will
be disregarded in the analysis. The scales with l∗ < 6 correspond to needlet scales
j ∈ {2, 3, 4}. A selection of the needlet masks created, with Nside = 512, along with
the original masks, can be seen in figure 5.3.
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(a) Original full mask (b) Original galaxy cut (c) Original hole mask

(d) Galactic, j=7 (e) Galactic, j=11 (f) Galactic, j=15

(g) Hole, j=14 (h) Hole, j=15 (i) Hole, j=16

(j) Compound, j=14 (k) Compound, j=15 (l) Compound, j=16

Figure 5.3: A selection of the extended masks for standard needlets, for Nside = 512.
For the low needlet scales, j < 5, the extension of the galaxy cut covers the whole
sphere, meaning these scales are unusable. The scales j ∈ {14, 15, 16} have l∗ > 204,
and therefore the hole mask is also extended for these scales.



Chapter 6

Results

In this chapter, the results from the tests outlined in chapter 5 are presented. First,
validation of the estimators are presented, before presenting the main results from the
SMHW and needlet maps, first for the simple trispectrum, and then for the optimal
trispectrum estimator.

6.1 Validation of estimators

6.1.1 Validation of the simple trispectrum estimator

It can be shown (see appendix A.2) that, for an isotropic field under isotropic noise,
the analytic expression for the correlation of needlet coefficients is given as

Γj1j2 = 〈βj1,kβj2,k〉 =
∑

shared l’s

b

(
l

Bj1

)
b

(
l

Bj2

)
2l + 1

4π
Cl (6.1)

When comparing with actual simulations or data, we must also take the beam and pixel
window into consideration. The convolution of these two functions are represented by
the window function wl, so the correlation of the needlet coefficients becomes

Γj1j2 = 〈βj1,kβj2,k〉 =
∑

shared l’s

b

(
l

Bj1

)
b

(
l

Bj2

)
2l + 1

4π
Clwl. (6.2)

The sum over "shared l’s" refers to the fact that each needlet of scale j spans the range
l ∈ [Bj−1, Bj+1], and is zero outside. Therefore, only the overlapping needlets are
correlated, when for two needlets with scale j1, j2, we have

` ∈ [Bj1−1, Bj1+1] ∪ [Bj2−1, Bj2+1]. (6.3)

A similar result can be obtained for wavelets, simply exchanging the shape of the
weights bl, and allowing the sum to go over the whole l-range, not simply the shared
l’s between j1 and j2. With the expression in equation 6.2, we can compare the sim-
ulated and analytic trispectrum mean values. For centered (of zero mean), Gaussian
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random variables we should have, by the Wick Theorem [94] or the Isserlis Theorem
[95] depending on the field, that

〈βj1βj2βj3βj4〉 = 〈βj1βj2〉 〈βj3βj4〉+ 〈βj1βj3〉 〈βj2βj4〉+ 〈βj1βj4〉 〈βj2βj3〉 . (6.4)

With our analytic expression for the quantity 〈βj1βj2〉, we can then perform the com-
parison of

〈βj1βj2βj3βj4〉sim − 〈βj1βj2βj3βj4〉analytic

σj1j2j3j4
(6.5)

for a given combination of j1j2j3j4, where the standard deviation of the trispectrum is
given as the square root of the variance, and the variance for a given scale combination
being

σ2
j1j2j3j4 =

1

N

∑
i

(
T ij1j2j3j4 − 〈Tj1j2j3j4〉

)2
, (6.6)

where i goes over all Gaussian simulations, and N is the total number of Gaussian
simulations. A plot of the test in equation 6.5 is shown in figure 6.1, for both SMHW
and standard needlets. For the SMHW, there seems to be a consistent bias in the
trispectrum, with the simulated values trending consistently below the analytic values.
This could indicate that the simple estimator underestimates the trispectrum. The
difference is however very small, at only about 0.02σ, which will be overshadowed by
cosmic variance. For the standard needlets. there is no observable bias, but the spread
around 0 indicates that the convergence is not perfect and could benefit from a larger
number of simulations.

6.1.2 Validation of the χ2 test

We validate the χ2-estimator on 4800 simulated maps, split into two sets of 1600 Gaus-
sian and 800 non-Gaussian simulations, one set for finding the average 〈TG〉 and stand-
ard deviation σT , and one for comparing the simulated values T sim. First and foremost,
we can see from figure 6.2 that the χ2 statistic is able to distinguish between the Gaus-
sian and non-Gaussian simulations, as there is a distinct shift in the bulk of the distri-
bution, as well as the mean. As the χ2 distribution is highly asymmetric, we will use
68.27%, 95.45% and 99.73% limits instead of standard deviation to quantify the separ-
ation. For the SMHW, 88.38%, 57.63%, and 21.5% of the non-Gaussian distribution lie
outside the 68.27%, 95.45% and 99.73% limits of the Gaussian distribution respectively.
For the standard needlets, the equivalent percentages are 65.00%, 12.25%, and 3.62%,
as the kurtosis is visibly smaller for the non-Gaussian standard needlet distribution,
and the overlap is larger compared to the SMHW.

As a secondary indication, looking at the Gaussian simulations only, a χ2 distribu-
tion where the degrees of freedom (D.O.F.), k, approaches infinity, k →∞, we should
have that the mean approaches the D.O.F.,

〈
χ2
〉
→ k, by the central limit theorem.

This is under the assumption that the distribution is made up of Gaussian random vari-
ables, that is to say, they will be Gaussian distributed. While we don’t expect every
trispectrum combination to be Gaussian distributed, many of them will, and thus the



6.1 Validation of estimators 71

0 100 200 300 400 500 600 700 800
j1j2j3j4

0.02

0.00

0.02

0.04

Tan
al

yt
ic

j 1
j 2

j 3
j 4

T j
1j

2j
3j

4

(a) SMHW

0 200 400 600 800 1000 1200 1400 1600
j1j2j3j4

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Tan
al

yt
ic

j 1
j 2

j 3
j 4

T j
1j

2j
3j

4

(b) Standard needlets

Figure 6.1: Difference between the mean of Gaussian simulations and analytic values,
over 1σ, with the mean estimated from 3600 simulations without noise and masking.
The best fit line is plotted in blue, while the zero line is plotted in black for reference.
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Figure 6.2: Validation of the χ2 estimator. The shaded green areas represent the
intervals which contains 68.27% and 95.45% of the Gaussian distribution. The dashed
line is the mean of the Gaussian distribution, while the dotted line is the mean of
the non-Gaussian distribution. For the SMHW, there are outliers in the non-Gaussian
distribution up to χ2 = 635109 not shown, while for the standard needlets, outliers
up to χ2 = 42643 are omitted. Validated on 3600 Gaussian and 1200 non-Gaussian
simulations, without noise and masking, for each of the wavelet shapes.
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mean of the χ2 distribution will be approximately equal to the D.O.F. The distribution
of a random selection of trispectrum combinations, for 3600 simulated Gaussian maps
without noise and mask, can be seen in figure 6.3. Typically, the larger needlet scales,
corresponding to the smaller angular scales on the sky, are approximately Gaussian
distributed, while the lower scales are not. This is confirmed by further testing not
shown in the figure. This is expected by the Central Limit Theorem, as the larger
needlet scales are localized at the high multipoles with a much larger sample size (the
same principle as cosmic variance discussed in section 2.5.2). So while each trispec-
trum combination is not a Gaussian random variable, they will approach a Gaussian
distribution given enough samples.

In our case, the degrees of freedom are the number of accepted trispectrum com-
binations minus one, that is kSMHW = 766 and kStandard = 1526. Our mean for the
Gaussian distribution is indeed close to these values, but keep in mind this is not an
exact test, and should only serve to complement other sanity checks.

6.1.3 Validation of α̂

A consistency check for our estimator α̂ is to check whether the estimator reproduces
a distribution of mean 0 and 1 when T sim

i is Gaussian and non-Gaussian simulated
trispectra respectively. This, of course, because

〈α̂G〉 =

〈∑
i

T̄NG
i (TG

i −T̄G
i )

σ2
i∑

i
(T̄NG
i )

2

σ2
i

〉
, 〈 ˆαNG〉 =

〈∑
i

T̄NG
i (TNG

i −T̄G
i )

σ2
i∑

i
(T̄NG
i )

2

σ2
i

〉
, (6.7)

And as
〈
TG
i

〉
= T̄G

i and
〈
TNG
i

〉
− T̄G

i = T̄NG
i , it’s easy to see that we should have

〈α̂G〉 = 0 and 〈 ˆαNG〉 = 1. Such a validation was done on 4800 simulations split into
two sets of 1600 Gaussian and 800 non-Gaussian simulations, one set for finding the
simulation averages T̄G

i and T̄NG
i , and one set for T sim

i , both for SMHW and standard
needlets. The results can be seen in figure 6.4 for the SMHW, and 6.5 for the standard
needlets, showing good agreement with the expected mean of 0 and 1.

6.1.4 The effect of noise on α̂

We return to results of the noise test presented in section 5.4.1. For the SMHW,
we find that the exclusion of the three smallest wavelet scales, R = {13.7, 25.0, 50.0}
corresponding to the smallest scales on the sky, provides an acceptable fit, that is the
histograms of the noise-free and noisy simulations are almost completely overlapping.
Excluding more scales does not improve the fit meaningfully, while simultaneously
giving worse statistics. The best-fit plot with the exclusion of the first three scales is
shown in figure 6.6. There is no sharp cut-off in the multipole range spanned by these
scales, as the SMHW are not sharply localized, but looking back at figure 3.15, this
will leave very little amplitude above ∼ l = 200.
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Figure 6.3: Histogram of a given trispectrum combinations for for 3600 Gaussian sim-
ulations. Fitted with a Gaussian curve (magenta line) of the same mean and standard
deviation. Shown here for the standard needlets, but similar results are obtained for
the SMHW.
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Figure 6.4: The normalized Gaussian and non-Gaussian distributions for α̂, with the
1,2,3,4 σ bands and mean plotted in for the SMHW. In the non-Gaussian distribution,
outliers up to α̂ = 26.32 have been omitted for readability. Validated on 3600 Gaussian
and 1200 non-Gaussian simulations, without noise and masking.



76 Results

0.6 0.4 0.2 0.0 0.2 0.4 0.6
, binwidth = 0.1

0.0

0.5

1.0

1.5

2.0

2.5

Si
m

ul
at

io
n 

co
un

t (
no

rm
al

ize
d)

G = -0.00289
Tsim

i = TG

G = 0.16568

(a) Gaussian (Standard needlets)

1 0 1 2 3 4 5
, binwidth = 0.1

0.25

0.50

0.75

1.00

1.25

Si
m

ul
at

io
n 

co
un

t (
no

rm
al

ize
d)

NG= 1.00136
Tsim

i = TNG

NG = 0.56230

(b) Non-Gaussian (Standard needlets)

Figure 6.5: The normalized Gaussian and non-Gaussian distributions for α̂, with the
1,2,3,4 σ bands and mean plotted in for the standard needlets. All bins are shown.
Validated on 3600 Gaussian and 1200 non-Gaussian simulations, without noise and
masking.
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Figure 6.6: The α̂-estimator for SMHW, shown for both noisy and noise-free simula-
tions, with the wavelet scales [13.7, 25.0, 50.0] excluded. In the non-Gaussian distribu-
tion, outliers of up to α̂ = 118 have been cropped for visibility.
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For the standard needlets, we deem that the exclusion of the four largest j-values,
j = {13, 14, 15, 16} corresponding to the smallest scales on the sky, provides an ac-
ceptable fit. With these choices of excluded scales for the SMHW and needlets, the
offset between the noise-free and noisy histograms are below 0.4σ for their respective
validated α̂ distributions, and keep in mind that this is a worst-case scenario. Our noise
model, while probably not perfect, is sure to yield a better fit to the noise in the Planck
data than no noise at all. This exclusion limits our multipole range at the upper end
to l = 194, still about the same range as the SMHW.

For comparison, the noise test with no scales excluded is shown in figure 6.8 for the
SMHW and standard needlets. A broader selection of excluded scales tested, can be
seen in appendix B.1 and B.2 for SMHW and standard needlets respectively.

6.1.5 Convergence with the Planck 2015 FFP8.1 simulations

For our 1920 simulated maps from the 2015 Planck data release, with mask and noise,
our initial choice is to proceed with our usual split of 1280 (2/3) Gaussian and 640
(1/3) non-Gaussian simulations. However, the initial result hinted at unsatisfactory
convergence in the non-Gaussian α̂ distribution, as the mean was either too low or
too high depending on which half of the data set, i.e. 1280/2 Gaussian and 640/2 non
Gaussian simulations, was used for T sim and which half was used to compute the means
T̄G and T̄NG. The two different cases are shown in figure 6.9 (only the non-Gaussian
distribution is plotted), with the mean of the non-Gaussian distribution being 0.51 or
1.59 depending on which half was used for T sim. In addition, the standard deviation
was especially large for the high mean of 1.59, at σNG = 11.7, rendering the results
insignificant.

To further investigate the convergence, we test the sensitivity of the mean to the
exclusion of the most extreme outliers, that is the values furthest away from the expec-
ted mean. This is motivated by the tendency of the non-Gaussian model to create a
few non-Gaussian maps with very prominent spots, causing extreme outliers. Thus, we
expect that these simulations will dominate the mean of the distribution if the number
of simulations is too low. The effect of excluding outliers on the mean, for the data-
split yielding a low mean of µNG ≈ 0.515, are shown in figure 6.10, indicating that the
mean of the non-Gaussian distribution without the spot masked is very sensitive to a
few values. This again implies that the non-Gaussian distribution has not converged
properly, while the rest of the simulations seems to be relatively robust to the removal
of statistical outliers.

Based on this, we make a decision to simulate 1920 non-Gaussian only maps reusing
the noise maps, as we only have the 4000 noise maps provided by the Planck FFP8.1
available. This should not pose an issue, as there is no reason to suspect any noise
correlation. All the results in the following section have been obtained from 1280
Gaussian and 1920 non-Gaussian maps from the Planck FFP8.1 MC simulation data,
with noise and masking.
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Figure 6.7: The α̂-estimator for standard needlets, shown for both noisy and noise-free
simulations, with the needlet scales j ∈ {13, 14, 15, 16} excluded. In the non-Gaussian
distributions, outliers up to α̂ = 20.54 have been omitted from the plot.
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Figure 6.8: The α̂-estimator for SMHW and standard needlets, shown for both noisy
and noise-free simulations, with no scales excluded.

6.2 The simple trispectrum estimator

We present the results for the main two estimators, χ2 and α̂, using the simple estimator
for the trispectrum shown in section 5.1.

6.2.1 Results for χ2

In figure 6.11, the χ2 distribution from SMHW is shown. Regarding separation of the
distributions, we have that 71.2%, 17.1% and 4.1% of the non-Gaussian distribution
lies outside the 68.24%, 95.45% and 99.73% limits of the Gaussian distribution. The
Planck data seems completely consistent with a Gaussian hypothesis, lying inside the
68.24% limit. More precisely, 32.08% of the Gaussian simulations achieved a higher χ2

value than χ2
data.

For the standard needlets, the χ2 distribution is shown in figure 6.12. We have that
58.39%, 17.52% and 3.96% of the non-Gaussian distribution lies outside the 68.24%, 95.45%
and 99.73% limits of the Gaussian distribution, not showing as good an ability as the
SMHW to distinguish the Gaussian and non-Gaussian simulations. As the case for the
SMHW, the needlets show a χ2-value for the data fully consistent with the Gaussian
null hypothesis.
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Figure 6.9: The α̂ estimator applied to the 640 non-Gaussian maps from the FFP8.1
Planck simulations with noise and mask. The mean, µ, is plotted in, with the subscripts
G and NG referring to Gaussian and non-Gaussian simulations respectively, although
only the non-Gaussian distribution is plotted. The blue band represents 1σ for the
non-Gaussian distribution, that has an expected mean of 1. Outliers up to α̂ = 33.8
and α̂ = 151.2 have been cut in panel (a) and (b) respectively.



82 Results

0 50 100 150 200 250 300
# of outliers excluded

0.5

0.0

0.5

1.0

(a) Effect on α̂

0 20 40 60 80 100
# of outliers excluded

1000

2000

3000

2

(b) Effect on χ2

Figure 6.10: The mean of χ2 and α̂, plotted against number of outliers removed from a
total of 640 Gaussian and 320 non-Gaussian simulations used for T sim. The green
color represents Gaussian simulations, while the blue represents the non-Gaussian.
The dashed lines represent the Gaussian and non-Gaussian simulations with the spot
masked, in green and blue respectively.
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Figure 6.11: The SMHW χ2 distribution for the simple trispectrum estimator. The
histogram is plotted in the range [0, 5000] for equispaced bins of width 50. The green
shaded areas represent the interval containing 68.27% and 95.45% of the Gaussian
distribution respectively. Outliers up to χ2 = 161283.4 are omitted for clarity. The
distributions are obtained from 1280 Gaussian and 1920 non-Gaussian maps, with noise
and masking.
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Figure 6.12: As in figure 6.11, only now with needlets. Plotted with equispaced bins
of width 10, in the range [50, 600]. Outliers up to χ2 = 58304.6 have been omitted for
visibility.

Masking the spot

The effect of masking the spot on the χ2 distribution can be seen in figure 6.13 for
the SMHW and figure 6.14 for the standard needlets. The percents lying outside the
previously defined 68.24%, 95.45% and 99.73% limits are 64.2%, 16.6% and 4.9% for
the SMHW and 58.81%, 16.48% and 3.96% for the standard needlets. For the SMHW,
figure 6.13 shows that masking the spot worsens the ability to differentiate Gaussian
and non-Gaussian simulations. A likely explanation is that the SMHW are excellent
at detecting spots in the non-Gaussian maps, and thus a major part of "their detected
non-Gaussian features" is removed. For the standard needlets, the effect of masking
the spot is negligible, implying that the needlets are not very sensitive to features such
as the spot. Masking the spot also has a large effect on the Planck data, χ2

data, in
the SMHW distribution. This can be understood as follows: if the data is already
approximately Gaussian distributed, such a spot represents a tail outlier in the wavelet
coefficient (temperature) distribution. Thus, removing a large part of the tail will skew
the distribution, introducing a signal of non-Gaussian features.

6.2.2 Results for α̂

The initial results for α̂ for the SMHW is shown in figure 6.15, in the range of ±5σG
from the Gaussian mean. We can see that the data falls on the left side of the Gaussian
mean, at α̂data = −0.77, with 71.51% of the Gaussian simulations achieving a higher
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Figure 6.13: This figure shows the same as figure 6.11, only now with the spot masked.
Plotted in the range [0, 2000], with outliers up to χ2 = 47374.6 cropped.
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Figure 6.14: The same result as in figure 6.12, only now with the spot masked, in the
range [50, 500]. Outliers up to χ2 = 133233.5 have been cropped.
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Figure 6.15: The initial results for α̂ for SMHW with the simple trispectrum estimator,
for equispaced bins of width 0.1, in the range ±5σG. The shaded green areas represent
1, 2, 3 and 4σ respectively. The standard deviation for the non-Gaussian distribution
is not plotted, but shown in the legend. Non-Gaussian outliers up to α̂ = 40.2 are
omitted. The distributions are obtained from 1280 Gaussian and 1920 non-Gaussian
maps, with noise and masking.

value for α̂. However, we must be careful in our interpretation of the negative value for
α̂data. This does not necessarily tell us that the data prefers the Gaussian hypothesis,
but that it prefers a negative value for the non-Gaussian strength parameter γ shown in
section 2.6. Anyhow, the Gaussian and non-Gaussian distributions have large standard
deviations at σG = 1.25 and σNG = 3.98 respectively, yielding results of low significance,
as α̂data falls within 1σ of both distributions. This is what ultimately led us to search
for a more robust estimator for the trispectrum.

For the standard needlets, the distribution of α̂ is shown in figure 6.16. This figure
tells much of the same story as for the SMHW, with the data falling within 1σ of
both distributions, albeit with much smaller standard deviation for the non-Gaussian
distribution. This indicates that there are fewer dominating outliers detected by the
needlets in the non-Gaussian distribution. 19.72% of the Gaussian simulations achieved
a higher value of α̂ than the data. For both cases, SMHW and standard needlets, we
still seem to have decent agreement with the expected means of the two distributions,
namely 〈µG〉 = 0 and 〈µNG〉 = 1, even with noise and masking.
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Figure 6.16: As in figure 6.15, only now with needlets. Outliers up to α̂ = 5.5 are not
shown.

Masking the spot

The effect of masking the spot on α̂ is shown in figure 6.17 for the SMHW maps.
We can clearly see that masking a region in the sky corresponding to a tail end of a
distribution has a strong effect on the data, probably due to skewing the distribution
as discussed in the section on χ2 results. The data is now even less aligned with the
Gaussian mean than our non-Gaussian model distribution is. The same situation, only
for needlets, are shown in figure 6.18. The effect is much smaller for the needlets than
the SMHW, again most likely because they are worse at detecting features such as the
spot.

6.3 The optimal trispectrum estimator

In this section, we present the χ2 and α̂ distributions, evaluated on the Planck FFP8.1
MC simulations with the optimal trispectrum estimator presented in section 5.1.1. We
start by presenting the SMHW results.

6.3.1 A possible detection in the SMHW maps

We report the results for the SMHW maps, with the optimal trispectrum estimator.
The χ2 test is plotted in figure 6.19, where a strong disfavoring of Gaussianity is
seen in the data. Only 4 out of 639 total Gaussian simulations, ∼ 0.63%, achieves
a similarly extreme result. The separation between the histograms is still relatively
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Figure 6.17: Shows α̂ as in figure 6.15, but with masking the spot. Non-Gaussian
outliers are cropped on the lower end, down to α̂ = −9.0
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Figure 6.18: As in figure 6.16, but showing the effect of masking the spot. Outliers up
to α̂ = 2.8 are not shown.
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Figure 6.19: The χ2 for SMHW, with the optimal trispectrum estimator. Plotted in
the range [0, 6000], with outliers up to χ2 = 56487.7 omitted. The distributions are
obtained from 1280 Gaussian and 1920 non-Gaussian maps, with noise and masking.

good, with 76.96%, 38.89% and 7.30% of the non-Gaussian simulations lying outside
the 68.24%, 95.45% and 99.73% limits of the Gaussian simulations.

The results for α̂, with the SMHW, are shown in figure 6.20. We can see that the
data strongly disfavors the Gaussian hypothesis, seemingly at a ∼ 3.35σ level. However,
after testing the tail of the distribution, we find that 4 out of 639 Gaussian simulations
achieve a similarly extreme α̂, indicating that the α̂-distribution is not fully Gaussian,
but slightly skewed. This lowers the significance of the detection to 0.63%. The data
prefers a non-Gaussian strength parameter ∼ 1.56 times as large as our current γ at
0.43, that is γ = 0.67. It is also worth noting that the optimal trispectrum estimator
lowers the standard deviation of the SMHW α̂ distribution to σG ≈ 0.46 and σNG ≈ 1.02
for the Gaussian and non-Gaussian distributions respectively, making this result much
more significant.

Both the results for χ2, and the results for α̂ are very robust to masking the spot,
shown in figure 6.21 and 6.22 respectively. The separation in the χ2 distribution remains
about the same, with 77.16%, 36.29% and 6.78% of the non-Gaussian simulations lying
outside the 68.24%, 95.45% and 99.73% Gaussian limits. Exactly the same number of
Gaussian simulations, 4 out of 639, achieves a similarly extreme result as χ2

data with
the cold spot masked. The results for α̂ tells much of the same story, with the data
disfavoring the Gaussian hypothesis. The significance of the detection is marginally
decreased as the standard deviation for the Gaussian α̂ is increased to σG ≈ 0.55.

While we deemed the exclusion of the three smallest SMHW scales and the 4 largest
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Figure 6.20: The distribution for α̂, for SMHW with the optimal trispectrum estimator.
Outliers up to α̂ = 5.6 are cut.
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Figure 6.21: As in figure 6.19, but with the spot masked. Outliers up to χ2 = 59908.5
have been omitted.
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Figure 6.22: As figure 6.20, but with the spot masked. Outliers up to α̂ = 6.5 are cut.

needlet scales the best fit in case of a large discrepancy in the noise modeling, we
can re-investigate the effects on the actual data. The effect of including more scale
combinations on α̂ is shown in figure 6.23. Including more scales does not drastically
change the result, however the data shows a less extreme result the more scales you
include, moving towards the Gaussian (and non-Gaussian) mean. One must take care
when interpreting the results of including more scales, as this could introduce a noise
bias in the result, which was the original reason for their exclusion. If there is a noise
bias in these scales, the trend is an underestimation of the trispectrum, as the foremost
effect is the lowering of α̂data. A "more traditional" histogram plot is provided in
appendix B.3 for the re-inclusion of scales.

6.3.2 The standard needlets

The χ2 test is plotted in figure 6.24, where we can see that we achieve a good separation
for the bulk of the distribution, with 87.59%, 33.16% and 1.25% of the non-Gaussian
histogram lying outside the 68.24%, 95.45% and 99.73% limits of the Gaussian one.
The data is more aligned with the bulk of the Gaussian distribution, lying inside the
68.24% limit, with 82.15% of the Gaussian simulations achieving a higher χ2 value.
The same consistency with Gaussianity can be seen from the distribution of α̂, shown
in figure 6.25, with the data lying within 1σ of the Gaussian distribution, and barely
outside the 1σ-limit for the non-Gaussian distribution.

The effect of masking the spot on χ2 is shown in figure 6.26. The effect seems to be
completely negligible, marginally changing the mean values. For the χ2 distribution,
we have we have very similar separation as with the spot included, with 87.70%, 34.20%
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Figure 6.23: α̂ shown for inclusion of the previously omitted scales as a boxplot, to
better illustrate the means of the distributions. The x-axis denotes which scales, R,
are excluded. The left box in each group is the Gaussian distribution, and the right is
the non-Gaussian. The box contains 50% of the distribution about the median. The
red lines are the mean of the respective distribution, while the blue lines with dots are
the Planck values α̂data. The whiskers show the full range of the distributions.
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Figure 6.24: The χ2 distribution for standard needlets, with the optimal trispectrum
estimator. Plotted in the range [50, 500], with outliers up to χ2 = 10183.1 cut. The
results are obtained from 1280 Gaussian and 1920 non-Gaussian simulations with mask
and noise.
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Figure 6.25: The α̂ distribution for standard needlets, with the optimal trispectrum
estimator. Plotted in the range ±5σG. Outliers up to α̂ = 4.0 are cut. The results are
obtained from 1280 Gaussian and 1920 non-Gaussian simulations with mask and noise.
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Figure 6.26: As in figure 6.24, only now with the spot masked. Plotted in the range
[50, 500]. Outliers up to χ2 = 9918.2 are cut.

and 1.25% of the non-Gaussian histogram lying outside the 68.24%, 95.45% and 99.73%
limits.

Especially interesting is the amount of non-Gaussian outliers detected outside the
99.73% limit, as a detection at this level is where the results start to be "interestingly
significant". For the needlets, only 1.25% of the non-Gaussian simulations lie outside
this limit, both with the spot included and masked. For the SMHW, the equivalent
percentages are 7.30% with the spot included, and 6.78% with the spot masked. This
indicates that the SMHW are much more apt at detecting the most extreme non-
Gaussian outliers. This is a possible explanation for why a detection is seen in the
SMHW maps, but not in the standard needlet maps.

The distribution of α̂ with the cold spot masked is shown in figure 6.27. This
tells much of the same story as with the spot included, that the data is consistent
with Gaussianity, lying within the 1σ band of the Gaussian distribution, preferring a
contribution from the non Gaussian term αTNG consistent with zero. The effect of
including previously omitted scales is shown in figure 6.28 for the standard needlets,
where no major effect is seen. The results seem relatively robust to the inclusion
of the possibly "wrongly-noisy" scales, only marginally changing the means of the
distributions, and slightly lowering α̂data. Still, the data remains within 1σ of the
Gaussian distribution for all cases. Again, a traditional histogram plot of the inclusion
of more scales is avaiable in appendix B.3.

We conclude that the optimal standard needlet trispectrum estimator shows no pref-
erence for the non-Gaussian model, and is consistent with the Gaussian null hypothesis.
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Figure 6.27: As in figure 6.25, only now with the spot masked, shown in the range
±5σG. Outliers up to α̂ = 4.7 are cut.

6.3.3 Further investigations of the detection

To investigate the localization of the detection in harmonic space, we implement the
test

TPlanck
j1j2j3j4

− 〈T sim
j1j2j3j4

〉
σj1j2j3j4

, (6.8)

where Tj1j2j3j4 is the trispctrum and σj1j2j3j4 is the standard deviation of the simu-
lated trispectrum. In this way, we can test if the anomaly is localized to certain scale
combinations. The result is shown in figure 6.29, telling us that this is systematic, not
localized to a few scales. Unfortunately, this is the extent to which we were able to
test the detection in the allotted time frame. Some steps that can be taken for further
investigation will be presented in the concluding remarks.
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Figure 6.28: α̂ as in figure 6.23, only now for standard needlets. As before, the x-axis
represents how many scales are excluded.
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(b) Spot masked

Figure 6.29: Difference plot of the Planck trispectrum and the simulation mean trispec-
trum, normalized by the standard deviation. Shown with cold spot included in panel
(a) and the cold spot masked in panel (b)
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Chapter 7

Conclusion and future prospects

In this thesis, we have presented the theoretical framework and the data pipeline in
which the CMB is analyzed, presenting concepts such as spherical decomposition of
the temperature field, foreground removal, and noise handling. We have also discussed
the use of wavelets and polyspectra in statistical tests, and why wavelets provide an
excellent alternative to the traditional spherical harmonics in the presence of incomplete
sky coverage.

We have focused on six anomalies reported in the CMB, namely the large- and
small-scale hemispherical asymmetry, The Cold Spot, the large-scale power deficit, the
alignment of the quadrupole and octopole, and the parity asymmetry on large angular
scales. Evidence and methods for detection have been presented for all six anomalies.

Furthermore, we have presented the theory for and investigated the statistical prop-
erties of a model presented by Hansen et al. [1], reproducing the aforementioned anom-
alies. The model is a phenomenological model with connections to gNL-like terms in the
primordial gravitational potential, producing strong scale-dependent non-Gaussianity
in CMB maps. The statistical properties of the model have been explored within the
framework of Spherical Mexican Hat Wavelets (SMHW), and spherical standard need-
lets.

We have also implemented two different estimators for the wavelet 4-point cor-
relation function, the trispectrum, the first of which was validated on 3200 Gaussian
simulations. The choice to explore the trispectrum was motivated by the connection
to the gNL-terms arising from the model.

We proposed and investigated a blind non-Gaussianity test, using a χ2 statistic on
the estimated trispectrum, testing the Gaussian null hypothesis. The χ2 distribution
quantifies how well the data fits with the assumption of Gaussianity.

We also presented and implemented a model-specific test, an estimator α̂ which
quantified the preferred contribution from the non-Gaussian term arising in the theor-
etical model, that is for a result of α̂ = 1 the data prefers exactly our model, and a
result of α̂ = 0 prefers no contribution at all from the non-Gaussian term in our model.
Both tests were validated on 3200 Gaussian simulations, pictured in figure 6.2, 6.4, and
6.5.
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As a logical next step, a comparison with the Planck data was made using the
2015 Planck FFP8.1 Monte Carlo simulations. We report the results from the optimal
trispectrum estimator. For the spherical standard needlets, the results were consistent
with the Gaussian null hypothesis, presented in figure 6.24 and 6.25. However, a very
interesting detection was made in the SMHW framework, disfavoring the Gaussian
null hypothesis at 0.63% significance, shown in figure 6.19 and 6.20. We argued that
the reason a detection was seen in the SMHW distributions and not for the standard
needlets is that the SMHW proved themselves much better at detecting non-Gaussian
statistical outliers. Unfortunately, due to time and computational constraints, we were
not able to fully test these results, and the detection warrants further investigation.

With such an "atypical result", it is important to fully scrutinize the result through
a host of tests. I will mention some of the most pressing tests here, which would have
been the next step in investigating the result.

The first step is to fully validate the optimal estimator used. The choice to search
for a more robust estimator was made late in the process of this thesis, and thus we
had just enough time to apply it to the Planck data. Additionally, the simple problem
of convergence is still present. Optimally, we would test all results with a simulation
number on the order of 104 or higher, not 103 as is the case for this thesis. For the
Planck data, this requires some tinkering, as there is no simulation data available of
this magnitude.

A possible source of error is the method of foreground subtraction. In this thesis,
we used the 4000 SMICA FFP maps. An immediate test should be to see if the result
is robust to changing the foreground subtraction method to the other three methods
NILC, SEVEM, and Commander. Unfortunately, there are only 1000 available maps
for each of these methods, which is on the low end for proper statistics. Still, it would
provide us with a reasonable sanity check.

When using half-mission maps, one must make a choice of what combination to use
when estimating the trispectrum, i.e. for half-mission maps with superscript 1 and 2,
β1
j1
β1
j2
β2
j4
β2
j4

as opposed to for example β1
j1
β2
j2
β1
j4
β2
j4
, where we used the former in this

thesis. By changing the ordering of the half-mission maps, we can introduce differences
in the noise error, to check whether this significantly changes the result. However, as
we took a conservative approach and excluded the noisiest scales, this effect is assumed
to be small.

Another interesting test is to investigate whether the anomalous trispectrum is loc-
alized on the sky. One could, for example, estimate trispectra in different hemispheres,
as a consistency check to see if the effect is a global one, or if the anomalies are localized
as expected in the model.

Furthermore, as the χ2 distribution is highly asymmetric, we can not use the stand-
ard deviation as a measure of significance. Therefore, to quantify just how extreme the
χ2 result for the data is, we would need to simulate a large number of Gaussian simu-
lations as a ground for comparison. As we do not have a large number of noise maps
available, we would first need to check if the χ2 distributions for Gaussian simulations
with a mask but without noise are a good fit to the simulations with both noise and
mask. If they are, we can then run Gaussian simulations without noise which would be



99

comparable to the noisy simulations.
An additional test is to check whether errors are introduced in the masking process.

One could extend the wavelet masks further, to check for anomalous boundary effects
due to insufficient extension of the wavelet masks.

Finally, it would be reasonable to test the results against the newest 2018 Planck
data. However, as there is a low number of available Monte Carlo simulations from
the latest Planck data release, this would be on the low end of what we could consider
proper statistics. Still, it would be a welcome sanity check.
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Appendix A

A.1 Wigner-3j and Gaunt integrals

The Wigner-3j symbols are a handy tool when working with spherical harmonics. They
relate to the integral of the product of three spherical harmonics by∫

Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ)sinθdθdφ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
.

(A.1)

The Wigner-3j symbols are zero unless the following selection rules are ALL satisified:

mi ∈ {−li, li + 1, ..., li} (A.2)
m1 +m2 +m3 = 0 (A.3)
|l1 − l2| ≤ l3 ≤ l1 + l2 (A.4)
(l1 + l2 + l3) is an integer. (A.5)

Even permutations of the columns in the Wigner-3j leaves the symbol invariant,(
l1 l2 l3
m1 m2 m3

)
=

(
l2 l3 l1
m2 m3 m1

)
=

(
l3 l1 l2
m3 m1 m2

)
, (A.6)

while odd permutations adds a phase factor(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l2 l1 l3
m2 m1 m3

)
= (−1)l1+l2+l3

(
l1 l3 l2
m1 m3 m2

)
= (−1)l1+l2+l3

(
l3 l2 l1
m3 m2 m1

) (A.7)

A similar phase factor occurs for a switch in signs in m:(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l1 l2 l3
−m1 −m2 −m3

)
(A.8)
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Another useful equation is the relation to Legendre polynomials, P (x),

1

2

∫
−

11Pl1(x)Pl2(x)Pl(x)dx =

(
l l1 l2
0 0 0

)2

. (A.9)

A.2 Derivation of the correlation between needlet coeffi-
cients

Γj1j2 = 〈βj1,kβj2,k〉

=

〈
Bj1+1∑
l=Bj1−1

l∑
m=−l

b

(
l

Bj1

)
almYlm(ξj1,k)

Bj2+1∑
l′=Bj2−1

l′∑
m′=−l′

b

(
l′

Bj2

)
al′m′Yl′m′(ξj2,k)

〉
al−m = (−1)ma∗lm , Y ∗lm(θ, φ) = (−1)mYl−m(θ, φ)

=

〈
Bj1+1∑
l=Bj1−1

b

(
l

Bj1

) Bj2+1∑
l′=Bj2−1

b

(
l′

Bj2

) l∑
m=−l

l′∑
m′=−l′

alm(−1)−m
′
a∗l′−m′Ylm(ξj1,k)(−1)−m

′
Y ∗l′−m′(ξj2,k)

〉

Sum is symmetric over m ∈ {−l,−l + 1, ..., 0, ..., l − 1, l}, i.e.
l∑

m=−l
Ylm =

l∑
m=−l

Yl−m

=

Bj1+1∑
l=Bj1−1
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Noise comparisons for α̂
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Figure B.1: Scales excluded: 13.7
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Figure B.2: Scales excluded: [13.7, 25.0]
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Figure B.3: Scales excluded: [13.7, 25.0, 50.0, 75.0]
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Figure B.4: Scales excluded: [13.7, 25.0, 50.0, 75.0, 100.0]
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Figure B.5: Scales excluded: [13.7, 25.0, 50.0, 75.0, 100.0, 150.0]
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Figure B.6: Scales excluded: [13.7, 25.0, 50.0, 75.0, 100.0, 150.0, 200.0]
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Figure B.7: Scales excluded: [13.7, 25.0, 50.0, 1050.0]
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Figure B.8: Scales excluded: [13.7, 25.0, 50.0, 900.0, 1050.0]
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Figure B.9: Scales excluded: [13.7, 25.0, 50.0, 750.0, 900.0, 1050.0]
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Figure B.10: Scales excluded: 16
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Figure B.11: Scales excluded: [15, 16]
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Figure B.12: Scales excluded: [14, 15, 16]
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Figure B.13: Scales excluded: [12, 13, 14, 15, 16]
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Figure B.14: Scales excluded: [11, 12, 13, 14, 15, 16]
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Figure B.15: Scales excluded: [10, 11, 12, 13, 14, 15, 16]
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Figure B.16: Scales excluded: [2, 13, 14, 15, 16]
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Figure B.17: Scales excluded: [2, 3, 13, 14, 15, 16]
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Figure B.18: Scales excluded: [2, 3, 4, 13, 14, 15, 16]
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B.3 Re-inclusion of scales for α̂
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Figure B.19: α̂ shown for inclusion of the previously omitted SMHW scales, with the
optimal trispectrum estimator.
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Figure B.20: α̂ shown for inclusion of the previously omitted needlet scales, with the
optimal trispectrum estimator.
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