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Abstract

Earthquake prediction is a highly important goal in geoscience. In
this study we present usage of machine learning to predict distance
to failure in rocks, a problem adjacent to earthquake prediction. We
use two machine learning techniques, XGBoost and Neural Networks,
to predict the strain distance to failure in 15 rock deformation
experiments. In these experiments on six different rock types, we use
the local strain components calculated with digital volume correlation
(DVC) to predict the normalized macroscopic axial strain, i.e., the
distance to failure. We use Shapley Additive Explanation (SHAP)
to quantify the impact of each feature on our models, and transfer
learning between rock types to constrain the generalizability of each
model. We combine data from multiple experiments to generate
models with increased generalizability. In this study, the importance
of dilation in predicting macroscopic failure is about double the
importance of the shear strain or contraction. We found that the
differences in failure mechanisms between rock types produces lower
transfer scores, and that brittle failure in rocks carry differences
even for rock types expected to deform with similar mechanisms.
The evolution of the strain components is critical to the model
performance: all models with systematic evolution towards failure
performed with strong or moderately strong correlation between the
predicted and observed values. Lastly, we highlight the increase
in model performance when the models use data from multiple
experiments, rather than individual experiments.
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CHAPTER 1

Introduction

Earthquake prediction is an elusive yet deeply important goal in geoscience.
In laboratory rock deformation experiments, dilatational strain is an
important precursor to macroscopic failure (e.g. Brace, Paulding Jr
and Scholz 1966; Brace 1978). From these observations, the dilatancy-
diffusion model was created to predict crustal earthquakes (e.g. Nur 1972;
Scholz, Sykes and Aggarwal 1973). However, natural earthquakes differ
from those reproduced in the laboratory in important ways that are not
entirely understood (Main et al. 2012). In recent triaxial rock deformation
experiments using X-ray tomography, direct observations of the internal
microscopic changes in rocks provide unprecedented new knowledge about
rock deformation leading to catastrophic failure, such as earthquakes (e.g.
Renard et al. 2018; McBeck et al. 2018).

In recent years, studies have begun using machine learning to predict
laboratory earthquakes (Rouet-Leduc et al. 2017; Corbi et al. 2019; Hulbert
et al. 2019). Rouet-Leduc et al. (2017) predicted the macroscopic shear stress
using acoustic emissions. In that study, the authors found that random
forests were able to predict the cyclic nature of stress from small changes
in the acoustic emission data. Corbi et al. (2019) predicted the timing and
size of earthquake analogues in an experiment with a gelatin wedge and
subducting plate. They used gradient boosted regression trees with features
derived from spatial correlation to predict analogue earthquake cycles of
varying magnitudes with relative success. Hulbert et al. (2019) predict
earthquakes in the lab using features extracted from acoustic emissions
produced in shear fault zone analogues within a biaxial deformation machine.
Using extreme gradient boosted regression trees, XGBoost, these authors
predicted timing and magnitude of laboratory earthquakes, and found
early signals that they correlated with the failure magnitude. In these
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1. Introduction

studies, laboratory earthquakes were used to train and test the models.
One advantage of earthquake analogues in the lab is the high quality, high
spatial and temporal resolution data that are more difficult to obtain in the
field. An advantage of utilizing machine learning techniques is the enhanced
ability to recognize patterns in data otherwise noisy to human eyes. Another
motivator for the usage of machine learning is the expectation that these
models might also be trained to recognize natural earthquakes in the future.
Because of this argument, model interpretability is highly important in
such machine learning analyses. It is therefore common to extract the most
important features in order to interpret the models.

Previously machine learning has been used to classify the proximity to
failure in the same rocks as presented in the present study (McBeck et al.
2020a). In addition, XGBoost regression models have been used to predict
the stress distance to failure from the fracture networks in rocks (McBeck
et al. 2020b). In these studies, features are derived from the 3D X-ray
tomography experiments that tie the internal state of rocks to macroscopic
failure (e.g., Renard et al. 2018; McBeck et al. 2018). In the present study,
our motivation is to explore the physical processes occurring in a rock during
deformation by using machine learning. We conduct this investigation by
training XGBoost and neural network regression models on data from digital
volume correlation (DVC) calculations on 3D X-ray tomography images of
six rock types. Using this data set, we explore if machine learning models
can predict the strain distance to failure from the evolutions of the local
strain components in rocks. We examine if such a model be able to generalize
and predict distance to failure across multiple rock types, and if not, can we
find ways to improve the model. In addition, by investigating the impact of
each feature and comparing the expected similarities in the mechanism of
failure in the rock types to the transfer scores of our models , we examine
what kind of information can we extract from our models.

This thesis is presented in the following sections: background, methods,
results, discussion and conclusions:

Chapter 2 We begin our background section by providing some information
central to the process of brittle failure in rocks. Because we utilize
data from experiments on multiple rock types, we discuss some of
the characteristics and details regarding the mechanisms of failure
for each rock type, and then compare them. For the last part of our
background section, we introduce the main ideas behind XGBoost,
neural networks and transfer learning.
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Chapter 3 For the next part of the study, we summarize the main methods
utilized, and begin by outlining the methods used in previous studies
to conduct the experiments and extract the features used as data in
the present study. After this section, we end our method section by
briefly summarizing the machine learning methods and providing an
overview of the models used during the study.

Chapter 4 We continue by presenting our results from the different machine
learning tests conducted, using individual experiments as training data,
and then using the experimental data sorted by rock types as training
data.

Chapter 5 We then discuss some results in the context of brittle failure
and failure mechanisms, and similarities between rock types that we
introduced in the background section. We also suggest possible future
research based on our evaluation of the current state of the models
generated and possible limitations in the present study.

Chapter 6 In the final section we present the main results and the conclusion
of our study.

Appendix A For the additional content of this study, we also structure an
appendix in three parts. The parts start off with the additional figures,
containing extended versions of other figures in this study

Appendix B supplementary information containing some details that were
considered to be less integral to this study.

Appendix B a section containing some of the code written for this study,
however the full code can be seen at (https://github.com/Anduron/
Strain_masters/blob/master/scripts).

3
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CHAPTER 2

Background

We split this background section into three parts. In these three parts we
discuss 1) brittle failure in rocks, 2) the experimental rock types and 3)
information on the machine learning methods used in this study. These
subjects will carry information to supplement the later sections (methods
3, results 4, discussion 5) and improve our understanding of the important
details informing the analysis in the present study.

2.1 Brittle failure in rocks
In this section, we discuss some central concepts of the macroscopic
failure of rocks. We begin by discussing some relevant information from
previous triaxial experiments and local strain components. We then describe
experimental and observational work on earthquake precursors. Lastly, we
define and discuss the dilatancy diffusion model, due to its relevance in
identifying the strain components most indicative of imminent failure.

2.1.1 Triaxial experiments

In a triaxial experiment, all three orthogonal axes are under stress. It is
common to call a deformation experiment triaxial if the stress is variable
along one axis, and there is a confining pressure or stress applied to two
of the three axes. In a “true triaxial” experiment, the stresses applied to
these two axes differ from each other. The data used in this study has
been extracted from several triaxial experiments. In these experiments,
we deformed sandstone, basalt, monzonite, granite, shale and limestone.
In these experiments, the stress was increased along one axis, while a
confining pressure was maintained along the two other axes. During
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2. Background

deformation of these rocks, 3D images were acquired at the European
Synchrotron and Radiation Facility (ESRF) at beamline ID19. Figure 2.1
shows the macroscopic deformation response to loading in three characteristic
experiments, as well as examples of the local 3D-strain fields early and late
in loading. The experimental deformations sandstone, shale and granite
along the left side of figure 2.1 end at the final X-ray scan before failure.
In these experiments we observe some typical characteristics for rocks in
triaxial compression conditions. These characteristics are seen in the shale
(within the first 3 DVC calculations) and granite (for the last two DVC
calculations) are the linear or quasilinear behavior preceding yielding and
then failure in rocks (Figure 2.1). After this the stress suddenly drops as is
characteristic of macroscopic failure.
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2.1. Brittle failure in rocks
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Figure 2.1: a) Macroscopic deformation of sandstone (left), and snapshots of
the 3D strain fields at low and high differential stress (right). b) Macroscopic
deformation of shale (left), and snapshots of the 3D strain fields at low and
high differential stress (right). Figures under c) macroscopic deformation
of granite (left), and snapshots of the 3D strain fields at low and high
differential stress (right). In the plots of the macroscopic deformation, red
lines are the increments of DVC calculation, and black dots show the values
when each X-ray scan was acquired. In the 3D strain field, the colored
dots show the high magnitudes (90th percentile) of the contractive strains
(left, dark blue), dilative strains (middle, light blue) and shear strains (right,
orange).
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2. Background

2.1.2 Local strain components

We build our machine learning models using local strain components as
the features and the macroscopic axial strain εMzz = εM , normalized by the
axial strain immediately preceding failure, as our target. The macroscopic
axial strain, which is parallel to the direction of the maximum principal
compression, σ1, is here parallel to the z-axis. The strain components in
the present study were calculated using the positive divergence for dilation,
negative divergence for contraction and the magnitude of the curl for shear
between each increment in the DVC. In practice, this means that the
contraction and dilation is calculated the same way as Renard et al. (2019)
and McBeck et al. (2018) while shear strains are calculated in a different
way from this previous work.

Volumetric changes in rocks involving the increase or decrease of the volume
are called dilation or compaction, respectively. The development of inelastic
volumetric deformation in rocks are commonly referred to as dilatancy, or
compactancy (negative dilatancy) as is more common for porous rocks.
These phenomena have been observed in multiple tests with both porous
and crystalline rocks under load, with dilatancy in the crystalline rocks
typically attributed to development of microcracks prior to brittle failure
(Paterson and Wong 2005) . Dilatancy has been observed in many different
experiments with rock deformation prior to macroscopic failure (Paterson
and Wong 2005). In crystalline rocks, dilatancy tends to arise due to the
growth and opening of microcracks in the rock. Increasing differential stress
promotes the growth in length and number of microfractures until they
coalesce into a propagating fault zone (e.g., Mjachkin et al. 1975). The
onset of dilatancy in crystalline rocks tends to start at stress levels between
one third and two thirds of the of the stress at macroscopic fracture (Brace
1978). Porous rocks undergo the onset of dilatancy later in loading than
in crystalline rocks. This may be because porous rocks tend to undergo
compaction due to pore collapse before the onset of dilatancy. The onset of
dilatancy is also considered to be the point at which microfractures begin to
propagate in the rock, with an orientation usually parallel to the maximum
compressive stress. Dilatancy and the propagation of microfractures will
then eventually lead to shear faulting or axial splitting at the macroscopic
level (Paterson and Wong 2005).

In porous rocks, we commonly observe compaction-related phenomena.
Under hydrostatic stress or in the early stages of deformation, we usually
observe pore collapse, resulting in an initial compaction. In addition, other
phenomena may be related to compaction; for instance, under deviatoric
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2.1. Brittle failure in rocks

stress after the aforementioned initial phase of compaction, one may observe
shear-enhanced compaction. Shear-enhanced compaction is a process in
which collapsing porosity counterbalances dilatancy in porous rocks at stress
levels beyond a critical stress where collapse of porosity accelerates more
than at hydrostatic stress (Paterson and Wong 2005; Baud, Vajdova and
Wong 2006). This does not mean that dilation cannot occur in a rock at the
same time as compaction, but measurements of the macroscopic deformation
of the sample will indicate the dominance of only one at a given stress
level. In porous rocks, it is not uncommon for dilatancy to occur after
compaction in later stages of deformation (close to failure). Both dilation
and compaction may localize during deformation in either dilation bands
or compaction bands. Figure (2.1: a) exemplifies localization of dilation
at higher differential stress levels in sandstone. Dilatancy and compaction
have also been observed in shear bands that form prior to macroscopic
failure (Paterson and Wong 2005). In experimental studies, like in the
high temperature (550 degrees Celsius) calcite deformation experiments of
Verberne et al. (2017), splitting along narrow shear bands was observed. The
findings of their study showed that dilatant velocity-weakening frictional slip,
with the capacity of nucleating earthquakes, can be triggered by changes in
shear strain rate in areas of the crust normally associated with ductile flow.

2.1.3 Precursors in natural earthquakes
The importance of phenomena that include dilatancy in the brittle curst
have long been discussed. Observations by Sibson (1985) of earthquake
ruptures along the San Andreas system reveal that these faults may be
impeded or terminated due to dilatational jogs. These are segments where
the frictional resistance is diminished, facilitating sliding and decreasing the
mean compressive stress. Observations of geophysical data preceding the
L’Aquila earthquake provide unique insights into earthquake precursors (e.g.,
Moro et al. 2017). In that study, they utilized InSAR data to investigate the
2009 MW 6.3 L’Aquila earthquake, and observed subsidence in the area after
2006, persisting until the earthquake. The pre-seismic subsidence reached
mean values of approximately 1.5 cm, and lowered the groundwater levels
in the Gran Sasso carbonate range. These phenomena were hypothesized to
result from dilatancy in the rocks. In the pre-seismic phase, shear stresses
in the rocks caused volumetric deformation due to the opening of fractures
and voids, leading to the migration of water diffusing into the local volume.
Dilatancy and diffusion towards the earthquake nucleation area was also
inferred from P and S-wave variations that began in 2008. InSAR data
was also used in Bignami et al. (2019) to describe precursory events to a
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MW 6.0 earthquake in central Italy (Amatrice-Norcia) in 2016. In their
study, they found significant subsidence on average about 24 cm, due to
hanging wall subsidence. The observed imbalance in volume indicated that
a dilated wedge had been generated during the interseismic period. This was
followed by the gravitational collapse of the hanging wall due to the loss of
strength, and subsequent closing of pre-existing microfractures in the dilated
wedge. Lastly, in boreholes located in Hafralækur Iceland, Skelton et al.
(2014) found chemical and isotopic changes in the groundwater preceding
two MW > 5 earthquakes in 2012. These changes were hypothesized to
either be due to the mixing of groundwater components, or exposure of
fresh rock surfaces to the groundwater. As reported in their study, both
changes can be explained by dilation in the rock, enhancing permeability.
These characteristics were observed prior to both earthquakes, meaning that
pre-seismic dilation was considered the most likely explanation behind both.

However, there are also reported cases where no precursory dilatational
phenomena were observed prior to earthquakes. A study by Bakun et al.
(2005) discussing the 2004 MW 6.0 Parkfield earthquake along the San
Andreas fault found only very small (nanoscale) changes in strain preceding
the earthquake. These small changes are reported as too uncertain to predict
the timing of the earthquake, but the possibility to predict earthquakes are
discussed as possible, though difficult, in the future. In some cases, later
studies using different methods have found more evidence of precursors like
dilatancy. We can see this contradiction between the work of Amoruso and
Crescentini (2010), which does not find sufficient evidence of precursory
changes before the 2009 L’Aquila earthquake, and the previously described
study by Moro et al. (2017) that found precursory changes at larger timescales
best explained by volumetric changes. Because of inconsistency in the search
for earthquake precursors, earthquake prediction may be possible but difficult
(e.g., Wyss and Booth 1997; Wyss 2001).

2.1.4 Dilatancy-diffusion model

There have been many approaches to describe failure in rocks. These include
the Mohr-Coulomb failure criterion, which is a macroscopic failure criterion
that uses the stress acting on a preexisting fault or hypothetical failure
plane, the shear strength, or cohesion and angle of internal friction of the
rock (e.g., Labuz and Zang 2012). There is also the Griffith theory of brittle
failure, which provides a tensile failure criterion for a brittle material where
cracks grow during loading (Griffith 1921). Without changes to the original
formulation, these models do not consider changes in volume, as a part

10
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of the failure criterion (e.g., McBeck, Ben-Zion and Renard 2020). More
relevant to the present work is the dilatancy-diffusion model because of its
inherent connection to dilation. In the present work, we will use dilation, as
well as the shear and contractive strains, to predict the distance to failure,
and thus compare the usefulness of each strain component in predicting the
timing of failure.

The dilatancy diffusion model is based on experimental observations where
dilatancy occurs in rocks prior to macroscopic failure, and earthquake
observations indicating that the opening of cracks due to dilatancy may
also be important in earthquakes (Nur 1972). This model hypothesizes that
dilatancy in rocks cause the opening of cracks in the rock, and then these
cracks fill with water (Stage 1). At some point in this process, the rock
may become undersaturated due to the rate of dilatancy being higher than
the rate of fluid flow into newly opened cracks. At this point the seismic
shear velocity νp/νs will drop (Stage 2). Because of the flow of water from
pre-existing cracks into newly formed cracks, the pore pressure drops and the
effective stress increases, leading to increased strength in the rock (dilatancy
hardening), perhaps inhibiting the increase in dilatancy. Because of the
inhibition of dilatancy, the rate of water flow into the cracks will now be
higher than dilatancy (Stage 3). The water flow will now compete against
the decrease in pore pressure until a point in time where the rock saturates,
increasing the pore pressure again. During the dilatant process, tectonic
stresses have increased, and the increase in pore pressure will trigger an
earthquake similar to how fluid injection would (e.g., Scholz, Sykes and
Aggarwal 1973). With this model, other precursory changes can also be
explained, such as radon emissions or uplift in large dilatant zones. In the
previous section (2.1.3), we discussed how dilatancy related phenomena
likely caused subsidence. In Moro et al. (2017) it is hypothesized that
water flowing into localized dilatant areas lowered the groundwater and in
turn caused subsidence on the surface due to elastic consolidation. Elastic
consolidation can be described as the reversible reduction in volume and
increase in effective stress arising from the dissipation of pore water pressure.
The dilatancy-diffusion model could then hypothetically predict the time of
an earthquake based on earthquake precursors or changes in seismic shear
velocity (e.g., Scholz, Sykes and Aggarwal 1973).

To exemplify some of the early data supporting the dilatancy-diffusion model,
certain precursors expected to be closely related to dilatancy have been
observed in Nur (1974). In that study, observations on the Japan, Matsushiro
earthquake swarm is detailed and related to qualitative changes predicted by
the dilatancy-diffusion model. Among the features they focused on during
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the earthquake swarm was large symmetrical vertical deformation associated
with volumetric expansion. In addition, the horizontal deformation was
asymmetric along the fault trace. After the volumetric expansion there
was an outflow of water, and then the ground subsided. The observed
gravitational variations near the dilatant regions were among the best
quantitative confirmations of the dilatancy-diffusion model at the time. In
more recent earthquake observations, additional geophysical features indicate
that precursory dilatancy related phenomena have occurred, as discussed in
section (2.1.3).

As discussed in section (2.1.3), observing unambiguous earthquake precursors
is difficult and has led to inconsistent results. Main et al. (2012) discuss some
limitations of the dilatancy-diffusion model when predicting earthquakes.
The lack of unambiguous observations of precursors and limitations in
laboratory experiments in replicating the conditions of rocks deeper in the
brittle crust seems to be an essential part of this problem. Many of the
limitations in the dilatancy-diffusion model are caused by problems when
scaling up features such as heterogeneities and fractures in rocks, coupled
with issues regarding reliable simulation of fluid flow through these fracture
networks. In addition, earthquakes tend to occur under lower strain rates
than feasible in the lab, which may heavily reduce the crack growth rate
in rocks, essentially suppressing dilatant strain in rocks (Brantut et al.
2013). This effect may be relevant as the dilatancy-diffusion model predicts
dilatancy hardening, which may be reduced by lower strain rates (Main
et al. 2012). In addition to these limitations, Main et al. (2012) discuss that
many crustal earthquakes are caused by the reactivation of pre-existing fault
structures in the crust. Fault structures tend to weaken these areas and are
especially important in cases where faults cut through load bearing regions
in the lithosphere (Holdsworth, Butler and Roberts 1997).

2.2 Rock types

In the present study we have 15 experiments on six different rock types.
Based on observed deformation mechanisms from previous work, we expect
pairs of rock types to deform in similar ways. These pairs are sandstone
and basalt, monzonite and granite, and shale and limestone. In this section,
we describe each rock type and how they deform, and briefly explain these
pairwise similarities.
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2.2.1 Fontainebleau sandstone
Fontainebleau sandstone is found in an Oligocene age sandstone outside
Paris. It is a relatively homogeneous quartz arenite composed of (>99%)
quartz. The grain size of sandstone is well sorted with an average size of
0.25mm, and remains relatively constant over a wide range of porosities
(3-30%) (Bourbie and Zinszner 1985).

The sandstone samples that were used in triaxial experiments prior to
the present study were found to have about (<1%) iron oxides (Renard
et al. 2019) . In accordance with the average grain size of sandstone found
previously, the average grain size in these samples were also 0.25 mm. In
those experiments, the porosity was measured as 6± 1% by weighting ten
dry samples before and after imbibition with water. The porosity was also
measured to be in the range 5.5%-7.5% using the three-dimensional data.
The pore space of Fontainebleau sandstone was here found to be almost fully
connected in 3D (Renard et al. 2019). This property of the pore space is
consistent with the findings of Fredrich, Greaves and Martin (1993) where it
was found that the pore spaces of sandstone above 5% were fully connected
in 3D, but the pore space of samples with <4% porosity had a permeability
of close to one order of magnitude lower, and thus was less connected.

In previous studies (e.g. Goodfellow et al. 2015), a true triaxial deformation
experiment with acoustic emission monitoring, Fontainebleau sandstone
was observed to undergo failure in three phases. The first phase was
characterized by initial compaction due to crack closure. In the second phase,
the macroscopic dilation of the sample increased, likely due to preexisting
microfractures opening in a direction perpendicular to the direction of the
minimum stress. The final phase was characterized by damage accumulating
until macroscopic failure.

The X-ray microtomography experiments conducted by Renard et al. (2019)
showed an acceleration of damage in the sandstone samples. This acceleration
of damage was at a slower rate than the rate of a power law damage
accumulation. This slower rate may be reasonable to expect for more
porous rocks (rather than crystalline rocks) due to diminishing local stress
concentration at the tip of microfractures as they reach pores in the rock.
Increases in dilatancy preceding macroscopic failure was observed at micro
and macroscales for all sandstone experiments. As the samples approached
macroscopic failure, they went through different stages, also characterized
in Renard et al. (2019). Initially, voids in the rock closed, leading to
a macroscopic compaction. This closure was followed by macroscopic
dilation due to microfractures developing and pores opening. As the samples
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approached macroscopic failure, the macroscopic axial strain was observed
to increase and transition from quasilinear at intermediate differential stress
values to deviate significantly as dilation in the rock increased. This deviation
was due to transgranular and intergranular propagation of fractures. Finally,
the rocks underwent macroscopic shear failure as microscopic fractures
coalesced.

2.2.2 Mount Etna basalt
The most common basalt from Mount Etna is a porphyritic intermediate
alkali basalt. This mineralogy means it is a volcanic rock with high alkali
contents, and a distinct difference in grain size of crystals. In Heap,
Vinciguerra and Meredith (2009) it is described that the Etna Basalt is
composed of groundmass ( 60%), crystals with feldspar (25%), pyroxene
(8.5%) and olivine (4%). The basalt we deformed was extracted from the
same quarry as the one described in Heap, Vinciguerra and Meredith (2009).
A common characteristic found in Etna Basalt is a pre-existing network of
microcracks isotopically distributed, due to rapid cooling (Vinciguerra et al.
2005). Isotopically distributed means that there is no preferred orientation
of the cracks and that they are relatively uniformly distributed. The porosity
of Etna Basalt may vary depending on the cooling rate and other thermal
conditions. The rock tends to have numerous micropores and macropores
(Zhu et al. 2016). The porosity of the two Mount Etna Basalt cores serving
as the basalt data in the present study was 3% (McBeck et al. 2019).

In a study with Mount Etna basalt Zhu et al. (2016) observed the
rock undergoing dilatancy and brittle faulting at low effective pressures.
Deformation of Etna basalt occurs from microcracks that originate at
macropores and propagate approximately parallel to the σ1 direction.
Eventually multiple cracks coalesce to develop a shear band that cuts
through the sample. While the cracks were transgranular, the cracks were
observed to avoid cutting through phenocrysts. In some of the samples of
Etna basalt that were tested, shear-enhanced compaction (also discussed in
section 2.1.2) was observed .

In the X-ray tomography experiments with Mount Etna basalt detailed in
McBeck et al. (2019) they observed deformation with localized volumetric and
shear strains. They observed that high dilative and shear strains localized in
the region that contained the largest fracture network preceding the onset of
macroscopic failure. In other parts of the sample, they observed localization
of contractive strains. The localization of contraction was observed as a
precursor to dilation and shear strain localization in the zone that hosted the
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largest fracture network. In accordance with the results of Zhu et al. (2016),
McBeck et al. (2019) observed thin fractures linking pores, and found that
pore emanated fractures were the dominant mechanism of brittle faulting
within Mount Etna basalt. However instead of the previously observed
subparallel cracks seen in Zhu et al. (2016) the samples in experiments
conducted by McBeck et al. (2019) were observed to lengthen 30-60 degrees
from σ1. Shear-enhanced compaction was not observed in these experiments.

2.2.3 Monzonite and Westerly granite
Quartz-Monzonite is a rock with similar mineral composition and structure
to other granitic rocks, such as Westerly granite. It consists of 17.9% quartz,
12.8% biotite, 57.6% plagioclase (38% anorthite) and 11.7% clinopyroxene in
addition to other minor minerals. The rock has a mean grain size of 450µm
and a low initial porosity (Aben et al. 2016) . The Quartz-Monzonite data
we use in the present study were attained from rock samples deformed in
experiments by Renard et al. (2018). These samples were found to have an
initial porosity of 0.78 ± 0.03%. The deformational mechanisms of these
rocks are expected to be representative of other crystalline rocks such as
granites.

In X-ray tomography experiments preceding the present study, Renard et al.
(2018) observed the deformation of monzonite to fail by shear faulting, with
many characteristics typical of the mechanical behavior of crystalline rock.
At low differential stress, preexisting microfractures in the rock began closing,
causing a non-linear strain-stress curve. As the axial load increased, the
curve became increasingly linear, indicating elastic deformation of the rock.
At the yield stress, the strain-stress relationship deviates from linearity, as
microfractures start nucleating and existing ones start growing in volume. At
the onset of macroscopic failure, the microfractures are all oriented parallel
to the maximum stress and begin coalescing until failure.

Westerly granite is a low porosity crystalline rock. It is described as a fine-
grained uniform and almost isotropic rock comprised mainly of quartz and
feldspar. The average grain size of the Westerly granite in the present study is
different to that of the monzonite. It is in the range of 100−200µm, compared
to the larger 450µm of the monzonite (McBeck et al. 2020a). There have been
many studies documenting the deformation, and the mechanisms of brittle
failure in Westerly granite and other granites. The general mechanisms
of failure in such crystalline rocks include the nucleation, growth, and
interaction, leading to the coalescence of microfractures (Tapponnier and
Brace 1976, Reches and Lockner 1994, Katz and Reches 2004).
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2.2.4 Green River shale

Green River shale is an organic carbon-rich shale with preexisting mechanical
weaknesses. These weaknesses include highly anisometric kerogen (parallel
to layering), lacustrine marl/silt sediments that form laminations causing
strength anisotropy, planar clay-grain fabrics produced by gravitational
compaction. These weaknesses in the rock control where fractures may
initiate, grow, and coalesce in the rocks (McBeck, Ben-Zion and Renard
2020, Lash and Engelder 2005).

The Green River shale data used in the present study is from an experiment
described in McBeck et al. (2018). McBeck et al. (2018) deformed low
porosity shale with a fine grain size. In these experiments, the laminations
of the shale were set parallel and perpendicular to the direction of the
maximum compressive stress. The macroscopic deformation of the shale was
observed to initially have a quasilinear stress-strain relationship. Then, a
non-linear phase occurred in which increases in differential stress produced
increasingly larger increases in axial strain. After this phase, the sample
experienced localization of strain onto larger fractures at the onset of a
prefailure phase, and then the rock underwent macroscopic failure. The
rocks underwent macroscopic axial compaction, however the local strain
components in the rocks showed large magnitudes of both dilatational
and contractive strains. This local strain accumulation contributed to
lamination-parallel compaction bands forming in the rocks with laminations
set perpendicular to the maximum compressive stress. In the present analysis,
we only analyze the shale experiments with laminations set parallel to the
maximum compressive stress.

2.2.5 Anstrude limestone

Anstrude limestone is a porous oolitic limestone. The size of the ooids in
Anstrude has been found to be in the range of 100−1000µm (Lion, Skoczylas
and Ledésert 2005). It is a carbonate rock with a near homogeneous
mineralogical composition of almost pure 98% calcite, or calcium carbonate.
The limestone cores deformed in the present study, deformed in the
experiments of (Renard et al. 2017) had an initial porosity ranging from
4-8% measured using the tomography data. In these porous rocks, brittle
failure due to contraction in the rock is often observed (Renard et al. 2017,
Huang et al. 2019) .

In an X-ray tomography experiment on porous (22%) Leitha limestone
from (Huang et al. 2019) localized compaction was observed in the rock.
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They observed a double yielding behavior: at the first onset of yielding,
the rock underwent pore collapse, and at the second onset, the samples
developed discrete compaction bands. Compaction and pore collapse were
also observed in Solnhofen limestone with porosity ranging from 2.7% to
3.3% in (Baud, Schubnel and Wong 2000). However, in these experiments,
at lower pressures (≤ 50MPa) dilatancy as a precursor to brittle faulting
was also observed. At higher pressures (≥ 350MPa) the samples failed
by cataclastic flow associated with shear-enhanced compaction and strain
hardening.

In the limestone experiments prior to the present study, Renard et al. 2017
observed failure characteristic of highly porous rocks. At the onset of yield
in the rock, the damage at the microscale was controlled by two processes
opposing each other. The first process was the opening of microcracks,
producing dilatancy in the rock, however the second process was the closing
of pores, leading to compaction. While compaction bands typically arise
in compaction processes in limestone, this was not observed here. In most
of the limestone experiments, the mean of the dilation exceeded the mean
of the contraction at some point during deformation (Renard et al. 2017).
However, before failure the volume of the limestone sample was observed to
decrease due to the closing of pores and higher magnitudes of contraction
was observed at the microscales. These results are consistent with the
expected pore-collapse mechanism during brittle failure in limestone.

2.2.6 Rock type similarities
Because we use transfer learning in the present study it is important to
categorize the similarities in the deformation mechanisms of the rock types
we have discussed so far. With similar deformation mechanisms, we expect
higher transfer scores from our models. This may help us quantify both
similarities in these rocks and understand which information our models
learn from statistics on the local strain components of these rocks.

Fontainebleau sandstone and Mount Etna basalt are both porous rocks.
While mineralogically different, with sandstone being more homogeneous
and basalt being porphyritic, the same mechanisms of failure has been
observed in both rock types. It is often observed that fracture nucleation in
these rocks happens due to stress concentrations at the edges of pores and/or
grains (Renard et al. 2019; Zhu et al. 2016). McBeck et al. (2020a) found
quantifiable evidence of the similarities in the mechanisms governing failure
in these rocks. Using machine learning to classify distance to failure, and
transfer learning to test the models created, they found high transfer scores
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between sandstone and basalt. In addition to similarities with sandstone,
failure mechanisms in Mount Etna basalt has been compared those seen
in porous limestones (Zhu et al. 2016). Considering the results in both
studies we mainly expect similarities between basalt and sandstone, but also
consider the possibility of similarities between basalt and limestone.

Monzonite and Westerly granite are both crystalline rocks comprised of
quartz and feldspar in varying quantities (e.g. Kerrick 1969) . There are
similarities in the strain accumulation of granites, with some differences
between finer (Westerly granite) and coarser grained (Barre granite) granites
(Lockner 1998). The similarities between different granites leads us to
expect that there are corresponding similarities between Westerly granite
and Monzonite. However, results described in McBeck et al. (2020a) indicate
that Monzonite and Westerly granite do not have the expected similarities.
That study discusses the possibility that different confining stresses (table 1)
may have affected the result. In addition, the different grain sizes may lead
to fracture impedance in the grain boundaries of granite, which may cause
facture networks to become more distributed and strain localization to differ
in the two rock types. Because we focus on regression models instead of
classification models in the present work, we will still consider the possibility
that we may observe similarities in the strain accumulations of these two
rock types.

Green River shale and Anstrude limestone are both porous sedimentary
rocks associated with compactive failure mechanisms. Compaction due
to pore collapse was observed in the limestone experiments from (Renard
et al. 2017). Huang et al. (2019) observed this type of compaction as a
primary yielding mechanism. Another such mechanism is compaction band
development, which was observed in the shale experiments from McBeck
et al. (2018), and the limestone experiments of Renard et al. (2017) and
for Huang et al. (2019) as a secondary yielding mechanism. Both shale and
limestone may also undergo macroscopic dilation under triaxial compression
experiments (Baud, Schubnel and Wong 2000). The results described in
McBeck et al. (2020a) show that classification models that were created
with one of these rocks hosted higher transfer accuracies on either shale or
limestone. We additionally see somewhat higher transfer scores between
monzonite, shale and limestone. We may expect this trend to be present in
our own transfer scores.

One important consideration is the possibility that the transfer scores may
be lower when using transfer learning between the regression models in the
present study. In McBeck et al. (2020a) the transfer accuracy scores were
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lower when the number of classes increased from 2 to 4. The metrics used
in regression are different from those used in classification, so it will not be
possible to directly compare the trends in the transfer learning scores of the
present work and McBeck et al. (2020a).

2.3 Machine Learning Techniques
In this section, we present details regarding the main machine learning
methods used in the present study. First, we introduce machine learning,
and motivate our choice of models. We then present XGBoost where we
quickly mention some of the core optimizations in XGBoost but focus on
the main algorithmic details. We then investigate the general algorithm for
a dense neural network and the ADAM optimizer. Lastly, we present the
definition of transfer learning and its relation to our research.

2.3.1 Principles in supervised learning

In this section we will not present every principle of supervised learning, but
we will instead reserve our overview for a short introduction to terminology
more immediately related to the present study (we base ideas discussed in
this section on Hastie, Tibshirani and Friedman (2009)). In the perspective
of supervised learning, machine learning is about finding ways to predict an
output based on an input. A model takes input data consisting of features
or predictors, that can be used to predict the output called the target (also
called response). Because machine learning models need to train on data
before making predictions and need unseen data to be tested properly, we
can split our inputs (X) and outputs (Y ) into a training (Dtrain) and testing
dataset (Dtest):

D = {(X1, Y1) , (X2, Y2) , . . . , (Xn, Yn)}.

We generally split this task into two groups based on the target. When
the features are used to predict a qualitative response, we are using our
model to solve a classification problem. A classification could for instance
be separating images of dogs from images of cats. In this example we use
the images as our input values or features. When we instead train a model
to predict a quantitative or continuous target, we are attempting to solve a
regression problem. An example of a regression problem is predicting the
weight of a dog based on the amount of food it eats.
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When training a model, we want to improve its performance by minimizing
the error it makes. We quantify the error made by the model, using the loss
function. There are many different loss functions, but often it is convenient
to use convex functions as they have global minima. For regression a typical
loss function is the mean squared error MSE = 1

n
Σn
i=1

(
Yi − Ŷi

)2
, where Ŷi

is the model prediction.

When quantifying the performance of a model we use the training data
as it provides unseen data for the model to be tested on, instead of the
previously seen training data. When testing the model performance, we may
see many different issues with our models. Usually these include that the
model does not predict new data as well as seen data due to high variance,
or that the model is too general to really account for the patterns seen in
the data due to high bias. These phenomena are called overfitting, and
underfitting but belong to a bigger problem in machine learning, which is
the bias-variance tradeoff. The hypothesis is that there is an underlying
function f(x) that describes the target but using real world data leads to
this function being perturbed by some noise y = f (x) + ε. We desire a
model that can generalize well on new data and represent the underlying
mechanism since the noise will vary between the training and testing data,
but this will come at the cost of some of the model performance. This is
with moderation an acceptable tradeoff since we prefer that the model does
not represent the noise in our data, so long as the model still represents
the underlying function. Overfitting and attaining a model flexible enough
to represent underlying mechanisms in our data is what motivates the use
of regularization techniques when training our model. There are many
techniques and we will not be discussing them in detail apart from the ones
presented in the XGBoost section (2.3.2), but the general intention is to
inhibit the amount a model is allowed to learn just enough to avoid picking
up noise.

2.3.2 XGBoost

XGBoost or extreme gradient boosting is a tree boosting system that
has gained wide use for many machine learning problems. Much of this
section is based on the XGBoost paper by Chen and Guestrin (2016),
and supplemented by (XGBoost Documentation). Gradient boosting is a
technique where one additively combines weak learners into a single strong
learner. Gradient tree boosting generally uses an ensemble of decision trees,
referred to as classification and regression trees (CART), as the model (e.g.
Friedman, Hastie, Tibshirani et al. 2000). XGBoost is a highly optimized
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variant of gradient boosting that is scalable and has been used as a tool in
many machine learning applications (Chen and Guestrin 2016). XGBoost
has a regularized learning objective which consists of a convex loss function
l (ŷi, yi), for example the mean squared error, and a regularization term Ω
given by:

L (φ) = Σil (ŷi, yi) + ΣK
k Ω (fk) , (2.1)

where fk ∈ F is a function in the function space of the CART models.
To aid our understanding of the regularization in XGBoost we define the
function space as:

F = f (x) = wq(x)
(
q : Rm → T,w ∈ RT

)
,

where w is the vector of scores on leaves, q is a function assigning each
datapoint to the corresponding leaf and T is the number of leaves.

To understand how XGBoost works we need to define this function and
how the additive training works. The additive training starts with a naïve
model prediction at step k = 0 for example ŷ0

i = 0, then the prediction of
the model at step k, and at the i-th instance, is given by:

ŷ
(k)
i = Σ(k)

j fj (xi) = ŷ
(k−1)
i + fk (xi) .

This means that at each step we add a tree fk (xi) that minimizes our
objective given by:

L(k) (φ) = Σil
(
yi, ŷ

(k−1)
i + fk (xi)

)
+ Ω (fk) . (2.2)

To support loss functions other than the MSE, for example the log loss,
XGBoost now uses the Taylor expansion of the loss function up to the second
order instead of the first. This means that XGBoost can be viewed as a
newton tree boosting method, and the support for multiple loss functions
increases the adaptability of the method. The commonly used gradient
boosting uses the first order Taylor approximation to minimize the loss
function. Newton boosting similarly uses the Taylor approximation of the
loss function, but instead of using the first order expansion, it uses the
second order expansion. In some ways gradient boosting can be viewed as a
special case of Newton boosting , except that gradient boosting readjusts
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leaf weights after approximating tree structure . For the mean square error
loss function the approximations used for gradient boosting and Newton
boosting are equivalent to each other (Sigrist 2021). The Taylor expanded
loss function at the t-th iteration is given by:

L(t) ≈ Σn
i

[
l
(
yi, ŷ

(t−1)
i

)
+ gift (xi) + 1

2hif
2
t (xi)

]
+Ω (ft) + constant. (2.3)

Where the first and second gradient of the loss function here is defined by
gi = ∂

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
and hi = ∂2

ŷ
(t−1)
i

l
(
yi, ŷ

(t−1)
i

)
. We can now look at

the regularization term which will help penalize the complexity of the tree.
The term XGBoost uses as a measure for complexity is defined as:

Ω (f) = γT + 1
2λΣT

j=1w
2
j . (2.4)

With this we can remove the constant and look only at the objective of the
new tree we are generating at the t-th iteration:

L̃(t) = Σn
i=1

[
gift (xi) + 1

2hif
2
t (xi)

]
+ γT + 1

2λΣT
j=1w

2
j .

We can now use the definition of the function f(x) and define Ij = {i|q(xi) =
j} as the index set of datapoints assigned to the j-th leaf. In addition we
write Σi∈Ij

gi = Gj and Σi∈Ij
hi = Hj to rewrite this objective into:

L̃(t) = ΣT
j=1

[
Σi∈Ij

giwj + 1
2
(
Σi∈Ij

hi + λ
)
w2
j

]
+ γT,

L̃(t) = ΣT
j=1

[
Gjwj + 1

2 (Hj + λ)w2
j

]
+ γT.

With this we can find the optimal leaf weights by minimizing wj because
they are independent of each other for a set q(x) structure by setting the
derivative to 0. This will give us a ratio between the first and second
derivative, we interpret it as a step to minimize the loss function in the
direction of Gj scaled by Hj. Thus, the optimal value of the leaf weights
are given by:

w∗j = − Gj

Hj + λ
, (2.5)
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L∗(t) = −1
2Σ

T

j=1

[
G2
j

Hj + λ

]
+ γT.

This score is used to evaluate the quality of a tree structure q, and supports
different objective functions. We can now review how XGBoost finds splits
that optimize the loss reduction given that we can assign index sets IL, IR
and I = IL ∪ IR to the left and right split:

Lsplit = 1
2

[
(Σi∈IL

gi)2

Σi∈IL
hi + λ

+ (Σi∈IR
gi)2

Σi∈IR
hi + λ

− (Σi∈Igi)2

Σi∈Ihi + λ

]
− γ,

or

Lsplit = 1
2

[
G2
L

HL + λ
+ G2

R

HR + λ
− (GL +GR)2

HL +HR + λ

]
− γ. (2.6)

The last form is intuitive in the sense that we can directly see how XGBoost
will be able to prune splits that does not minimize the loss function.
Essentially we evaluate the score on the new leaf to the left, then do
the same to the one on the right and then we evaluate the score of the
original leaf, finally we regularize trees with low gain. The regularization γ
parameter is a cutoff value for pruning the trees. Given that the score is
negative we will prune the new leaves and leave the tree structure as it was
before the split. The best split is found by using the exact greedy algorithm
which enumerates over all the possible splits on all the features in sorted
order. A benefit to XGBoost over some gradient boosting methods are the
tree structure allowing for deeper trees which for some problems can increase
the flexibility of the method. However, since XGBoost also allow for shallow
trees or stumps the exact greedy algorithm combined with the regularization
γ is useful because we can find an optimal set of trees for our model and
prune the trees that are do not fill this criterion. The exact greedy algorithm
is computationally heavy, and sometimes not possible, so XGBoost also has
an a local and a global approximate algorithm. These algorithms generally
propose splits based on percentiles of feature distribution. The local and
global algorithm differ in when the proposal is given. The global algorithm
proposes splits initially and keeps using the same splits, whereas the local
algorithm makes new proposals after each split (Chen and Guestrin 2016).

To complete this overview of the XGBoost algorithm we present a short
overview of some of the last essential techniques. XGBoost has a shrinkage
factor (learning rate) η that scales the contribution of each tree and leaves
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more room for future trees to improve the model. In addition, XGBoost
has column subsampling which is a technique to allow each new tree to
only see a subset of the features. These two features help further regularize
XGBoost and reduce overfitting. XGBoost also has some key optimizations,
that improves scalability and time spent per tree. The algorithm is sparsity
aware, meaning that it can deal with missing data, frequent zero entries and
structures like one-hot encoded data. It can also handle data that is too
large for memory by splitting it into blocks and storing it on the main disc.
For the exact greedy algorithm everything is stored as one block but for
the approximate algorithm XGBoost can use multiple blocks. In addition,
finding splits for each column can be parallelized. With this we know some
of the most important details to the XGBoost algorithm. In the present
study we will among other reasons employ this method due to the success
in previous works by McBeck et al. (2020a).

2.3.3 Neural Networks
Neural networks are a class of machine learning methods with many
variations. Some popular variants of this include convolutional neural
networks (CNN), generally used for image analysis and recurrent neural
networks for tasks such as speech recognition. However, for the problem
presented in this work we use a densely connected feed forward neural
network for regression, a type of deep neural networks. Much of the work in
this section is supplemented by Nielsen (2015).

Neural networks are structured in layers, the layers are structured into the
input layer, one or more hidden layers, the amount is generally selected by
the user, and an output layer. The hidden layers consist of “neurons”, in a
dense feed forward neural network a neuron in one layer is connected to all
neurons in the next layer. Each neuron has weights and biases that dictate
their influence on the neurons in the next layer. The biases restrict the
minimum weight needed for a neuron to influence the next layer.

Weights in one layer affect the next layer by going through that layer’s
activation function. Activation functions are often non-linear functions like
the commonly used sigmoid 1/ (1 + ex) activation function. When we let an
untrained network complete the first forward pass, we get an output which
usually will just be a random guess. For the network to start “learning” we
use gradient decent on the loss function of the network. With this information
we can adjust the weights and biases in the network through backward
propagation. Which lets us adjust the weights and biases in the network
based on information from the gradient decent. The process of feed forward,
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Input Layer ∈ ℝ¹² Hidden Layer ∈ ℝ� Hidden Layer ∈ ℝ� Output Layer ∈ ℝ¹

Figure 2.2: Schematic showing a densely connected neural network
architecture. Each row represents a layer in the network, each node represents
a neuron, and as visible, each neuron has a set of connections to the neurons
in the next layer. The first layer is the input layer, the middle two are the
hidden layers, and the last is the output layer (schematic from LeNail 2019).

finding the error and adjusting weights through backward propagation is
repeated under the assumption that we can iteratively minimize the loss
through each repetition.

The activation function in each layer takes a weighted sum (or linear
combination) z(l)

i of the neurons in the previous layer. The weighted sum is
given by z(0)

i = ΣM
j w

(0)
ij xj+b

(0)
j in the input layer and z(l)

i = ΣM
j w

(l)
ij a

(l−1)
j +b(l)

j

in layers after the input layer. Here (l) represents the layer, w represents
the weights and b represents the biases. The activation is here noted
as a(l)

j = f
(
z

(l)
j

)
where f is the activation function contributing to the

weighted sum in the layers after. Usually all neurons in one layer use the
same activation function but from layer to layer there may be different
activation functions. Using different activation functions can serve different
purposes, but generally we need specific activation functions for the output.
In a classification the activation function often used in the last hidden layer
is the cross-entropy activation function, but for regression we often just see
the identity function f(x) = x used. In the other hidden layers, we typically
see non-linear functions used. This is because neural networks with non-
linear activation functions have been proven to be universal approximators
(Hornik, Stinchcombe and White 1989).
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Computing the activation function of the weighted sum for each subsequent
layer is called a feed forward pass. A feed forward pass ends after we reach
the output layer and we can start quantifying the error made through the
loss function. After a feed forward pass, we use the result to get a correction
from our optimizer (gradient decent) algorithm, this correction represents a
step along the gradient of the loss function that we can use to improve the
model. For the network performance to improve we utilize the information
from our optimizer to adjust all weights and biases throughout the network.
This is called backwards propagation because we start with the correction to
the output layer and then compute the corrections layer by layer backwards
through the network. The correction in the output layer is computed by:

δ
(L)
j = f ′

(
z

(L)
j

) ∂L
∂a

(L)
j

,

where L is the loss function. For regression we use the identity function as
activation function, with the identity derivative being given by f

(
z

(L)
j

)
=

z
(L)
j and f ′

(
z

(L)
j

)
= 1. With the mean square error (divided by 2)

L
(
a

(L)
i

)
= 1

2nΣn
i=1 (yi − ŷi)2 as the loss function this derivative should be

∂L
(
a

(L)
i

)
∂a

(L)
i

= a
(L)
i − yi. With this we see that the error for the output layer for

the MSE loss function is given by:

δ
(L)
i = a

(L)
i − yi.

With this output error we can go through each layer in the neural network
backwards and compute the error and correction to the gradients. For the
layers l=L-1, L-2, ..., 1 we compute the corrections as:

δ
(l)
j = Σkδ

(l+1)
k w

(l+1)
kj f ′

(
z

(l)
j

)
.

And with these error corrections we update the weights according to the
Adam optimizer introduced in Kingma and Ba (2014). Adam estimates
updates using a running average of the first and second order momentum.
This optimizer is one of the more popular optimizers currently used, being
available in large scale machine learning applications such as tensorflow
and pytorch. In addition, it is also the default optimizer in scikit learn
(Pedregosa et al. 2011). In addition to being simple to implement, Adam
comes with some advantages. These advantages improve the convergence
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speed and increases robustness. One such advantage is momentum which
may increase the robustness against getting trapped in local minima. This
may improve the speed at which the optimizer converges. Another advantage
is that each step is scaled by the steepness of the gradient. This improves
convergence for loss functions with “flat” features, such as saddle points
(Kingma and Ba 2014). Adam’s parameter update is described by this set
of equations:

Algorithm 1 The Adam parameter update (Kingma and Ba 2014):
1: m0 ← 0;
2: v0 ← 0;
3: t← 0;
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θL(θt−1) (Gets gradients w.r.t. stochastic objective at

timestep t)
7: mt ← β1mt−1 + (1− β1) gt (Update biased first moment estimate)
8: vt ← β2vt−1 + (1− β2) g2

t (Update biased second raw moment
estimate)

9: m̂t = mt

1−β(t)
1

(Compute bias-corrected first moment estimate)
10: v̂t = vt

1−β(t)
2

(Compute bias-corrected second raw moment estimate)
11: θt ← θt−1 − αm̂t√

v̂t+ε
12: end while

Where β1 and β2 are decay factors, typically set to 0.9 and 0.999 respectively.
For the other parameters t is the training iteration, α is the learning rate and
ε is some small number to prevent zero division. Note that ∇θL = a

(l−1)
k δ

(l)
j

for the weights and ∇θL = δ
(l)
j for the biases (Kingma and Ba 2014).

With this we know the most important algorithmic details to understand
a dense feed forward neural network. To summarize we have a structure
consisting of neurons split into layers, each neuron can send signals to the
neurons in the next layer. Neural networks learn by quantifying the error
they make during training, with an optimizer like Adam. The weights
and biases of the neurons are then adjusted with backprop, based on the
correction found by the optimizer. Because of success in many machine
learning problems and the popularity of deep learning they are widely used.
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2.3.4 Transfer Learning

In machine learning it is common to split data into training and testing data
drawn from the same feature space with the same probability distribution.
However, problems like limited data has been a motivator to make models
that can adapt previously learned knowledge on new tasks. This is the idea
behind transfer learning, a technique where a model is taught information
in a domain different from the target domain with the aim to improve the
performance.

In machine learning it is common to split data into training and testing data
drawn from the same feature space with the same probability distribution.
However, problems like limited data has been a motivator to make models
that can adapt previously learned knowledge on new tasks. This is the idea
behind transfer learning, a technique where a model is taught information
in a domain different from the target domain with the aim to improve the
performance. More formally defined, as seen in Weiss, Khoshgoftaar and
Wang (2016) and (Pan and Yang 2009), we start by defining a domain D
in two parts, a feature space X and a marginal probability distribution
P (X), where X = {x1, . . . , xn} ∈ X . With this the domain is defined as
D = {X , P (X)}. To define the task T , we look at the components of
the task, the label space Y, which is the target, and a predictive function
f (·), which is learned from the feature vector and label pairs {yi, xi}, where
xi ∈ X and yi ∈ Y . Then the task is defined as T = {Y , f (·)}. To exemplify
in a way relevant for our study, f(x) is our model predicting the distance
to failure y given the features x. The last pieces to define before transfer
learning is the source domain with a corresponding source task, and a target
domain with a corresponding target task. The source domain data is defined
as DS = {(xS1, yS1) , . . . , (xSn, ySn)}, where xSi ∈ XS and ySi ∈ YS is the
i-th instance of the data and corresponding label of DS respectively. The
target domain data is defined as DT = {(xT1, yT1) , . . . , (xTn, yTn)}, where
xT i ∈ XT and yT i ∈ YT is the i-th instance of the data and corresponding
label of DT respectively. The source task is notated as TS , the target task is
notated as TT , the source predictive function and target predictive function
are noted as fS (·) and fT (·) respectively.

Definition 1 Given a source domain DS with a corresponding source task
TS, and a target domain DT with a corresponding target task TT , where
either DS 6= DT or TS 6= TT . Transfer learning is then defined as the
process of using the information in domain DS and TS with the aim to
improve the target predictive function fT (·) in DT .
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This definition comes with some implications, based on the criterion for
transfer learning. These implications are detailed in Weiss, Khoshgoftaar
and Wang (2016), Pan and Yang (2009) and Zhuang et al. (2020). This
criterion DS 6= DT may be true for either XS 6= XT or P (XS) 6= P (XT ),
or both at the same time. For the first part of the criterion, we have two
categories of transfer learning: 1) The case where the criterion is XS 6= XT , is
called heterogeneous transfer learning and 2) for the case where the criterion
is XS = XT , the feature spaces are the same and we have homogeneous
transfer learning. The second part of the criterion addresses situations where
the marginal probability distributions of the features are different. The
second criterion TS 6= TT also consist of two parts, and can be rewritten
as T = {Y , P (Y |X)}. The first part of this criterion it is possible that
YS 6= YT , means that there can be a mismatch between the class space of
the task. The second part of the task criterion means that it is possible
for P (YS|XS) 6= P (YT |XT ), meaning that a model trained in the source
domain performs differently on the source task and target task. This is
usually in the case where the data in the source and the target domains are
unbalanced.

The features in our own study are generated by digital volume correlation
and we have the same set of features for all the rock types. The numerical
values of those features are different from experiment to experiment and
even more so from rock type to rock type. This means that the transfer
learning conducted in our study is categorized as homogeneous, however the
domains of each experiment are still different because of different marginal
probability distributions. For the second criterion we have the same kind
of target space, since the target for all our models is to find the value of
the macroscopic axial strain, given a set of features. With this we have
the definition of transfer learning and some detail on how it relates to our
research. Transfer learning is an expansive topic, with many techniques,
some of which may help us improve the work presented in the present study,
in the future.
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CHAPTER 3

Methods

In this section we discuss the methods used in our research. In the initial
sections we provide a summary to the most important details on the methods
used in previous studies, directly related to the data, and methods used in
this study. We then provide an overview of the machine learning methods
that was central to this study, including XGBoost, neural networks and the
usage of SHAP and transfer learning. We finalize this section by providing
and overview of the models generated during the present study.

3.1 Experimental conditions

Data used in this analysis come from experiments conducted on rocks
in the HADES triaxial deformation apparatus. This X-ray transparent
deformation apparatus installed on the microtomography beamline ID19
at the European Synchrotron Radiation Facility was used to acquire 3D
tomograms, at intervals of 2 minutes, of rocks at in situ stress conditions of
the upper crust (Renard et al. 2016). We initially applied isotropic confining
pressure ranging from 5−35MPa (McBeck et al. 2020a) to the rock samples
inside the deformation apparatus. During the experiments, we increased the
axial stress incrementally until the rock underwent macroscopic failure. The
size of each stress step was dependent on both rock type and proximity to
failure, with the axial stress step size ranging from 0.5− 5MPa (McBeck
et al. 2020a). As the rock approached macroscopic failure, we decreased the
stress steps to more closely monitor the deformation of the rock. Poor scan
quality could indicate brittle deformation as the loading is held constant
(McBeck, Ben-Zion and Renard 2020). However, the high scan quality of
the tomograms used in this analysis indicates that the influence of brittle
creep and deformation during scan acquisition is negligible.
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Rock Type Experiment Code Confining
Stress (MPa)

Sample
Diameter (mm)

Number
of X-ray
Tomograms

Fontainebleau FBL01 20 5 184
Sandstone FBL02 10 5 47
Mount ETNA01 10 4 32
Etna Basalt ETNA02 10 4 36
Monzonite MONZ04 35 4 65

MONZ05 25 4 80
Westerly WG01 5 4 43
Granite WG02 5 4 30

WG04 10 4 66
Green River GRS02 20 5 60
Shale GRS03 20 5 61
Anstrude ANS02 20 5 41
Limestone ANS03 5 5 35

ANS04 20 5 26
ANS05 5 5 26

Table 3.1: The table show experiment codes, corresponding rock types,
sample diameter and number of X-ray tomograms of all 15 experiments,
on which we conduct our analysis, in this study. The experiments have
been documented by previous papers (McBeck et al. 2018, Renard et al.
2019, McBeck et al. 2019), and the X-ray tomograms are publicly available
(Renard 2017; Renard 2018c; Renard 2018a; Renard and McBeck 2018;
Renard 2018b).

3.2 Feature Extraction

We used the 3D tomograms from the experiments to extract features for
the machine learning analysis. This step was done using digital volume
correlation (DVC) with the code TomoWarp2 (Tudisco et al. 2017). This
code finds the local displacement vector in a set of subvolumes inside a
tomogram by maximizing the correlation between corresponding subvolumes
in sequential pairs of tomograms (Tudisco et al. 2017, Renard et al. 2018).
Thus, the DVC provides the incremental displacement done between each
sequential pair. In order to perform DVC, each experiment was separated
into about ten intervals of approximately equal increments of the cumulative
macroscopic axial strain (e.g., McBeck et al. 2018; Renard et al. 2018).

From these displacement fields, we calculate measurements of three local
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strain components: the contractive, dilatational and shear strains (McBeck
et al. 2020a). These three strain components are calculated using the
negative divergence, positive divergence and the magnitude of the curl of
the displacement field. To extract features of the strain field, we split
these strain fields into subvolumes with two spatial resolutions 0.5mm (i.e.,
low-resolution) and 0.2mm (high-resolution). The node spacing, and thus
spatial resolution, of the DVC fields is 20 voxels or 0.13mm. Thus, there
are about 43 measurements for each subvolume in the low resolution data
and (3/2)3 per subvolume for the high resolution data. To derive the
features, we also calculate nine statistics of the three strain populations
(dilation, contraction, shear) in each subvolume: the 90th, 75th, 50th, 25th
and 10th percentile, the mean, standard deviation, the sum of the strain
population and the number of measurements within a subvolume. The
number of values is the total number of measurements within a subvolume,
and does not change for the shear strain because each subvolume contains
the same number of measurements, and we do not consider the positive and
negative curl populations separately. For the contractive and dilatational
components, it tends to decrease and increase respectively close to failure
in these experiments (McBeck, Ben-Zion and Renard 2020). In addition,
it tends to accelerate as a sample approaches macroscopic failure (McBeck
et al. 2020a).

From the tomograms, we calculate the macroscopic axial, radial and
volumetric strain. In the tomograms, the distance between the two pistons,
at two points normal to the piston faces, was used to calculate macroscopic
axial strain, which is the target for our machine learning methods in the
present study.

3.3 Machine Learning Methods
In this analysis, we develop machine learning models to predict the
macroscopic axial strain, εM . Rather than predicting the proximity to
failure using classification (McBeck et al. 2020a), we predict this proximity
using regression: a more difficult problem than our previous analysis. We use
two different machine learning methods that are both used in a large variety
of problems: XGBoost (extreme gradient boosting) and neural networks.
XGBoost is a method that utilizes gradient tree boosting, an algorithm that
combines an ensemble of decision trees or "weak learners" into a single strong
learner. The decision trees are made sequentially and represents an iterative
step along the gradient of the loss function. We use the Mean Squared Error,
so the gradient of the loss function with respect to our ensemble would
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Feature Statistic Local Strain Component
Contraction Dilation Shear

90th percentile #1: dn_p90 #10: dp_p90 #19: cur_p90
75th percentile #2: dn_p75 #11: dp_p75 #20: cur_p75
50th percentile #3: dn_p50 #12: dp_p50 #21: cur_p50
mean #4: dn_mean #13: dp_mean #22: cur_mean
25th percentile #5: dn_p25 #14: dp_p25 #23: cur_p25
10th percentile #6: dn_p10 #15: dp_p10 #24: cur_p10
standard deviation #7: dn_std #16: dp_std #25: cur_std
number of values
within subvolume #8: dn_num #17: dp_num #26: cur_num

sum #9: dn_sum #18: dp_sum #27: cur_sum

Table 3.2: This table shows the feature number and the nametag of a feature
in the code input files. The nametag convention informs on statistic (e.g.
p50 being 50th percentile), and whether the strain component is found using
the negative divergence (dn), positive divergence (dp) or curl (cur). Note
that in the files columns are preceded by target data (the second column
“ep” is the strain data used for this analysis) and positional data, meaning
that the column number of a feature is the feature number in this table plus
seven for the preceding columns.

commonly be the residuals. XGBoost uses the second order expansion of
the loss function, and is also combined with regularization (and multiple
optimizations) to reduce overfitting and improve generalizability (Chen and
Guestrin 2016). To find the best set of hyperparameters for the XGBoost
models, we perform a grid search over our hyperparameter space.

Deep neural networks (DNNs) are a type of neural networks with multiple
layers between input and output. Neural networks learn by minimizing loss
using gradient decent and adjust weights and biases in each layer through
backwards propagation (backprop). For our analysis, we use the Scikit
learn implementation of neural networks. This implementation comes with
built in (L2) regularization to reduce overfitting. After testing activation
functions, we use the hyperbolic tangent function for the neural networks
because of improved results over ReLU (rectified linear unit) and sigmoid
function, which has been used in early neural networks. We use a fully
connected network with two hidden layers of 128 neurons for the first hidden
layer, and 64 neurons for the second.

Extracting the features from the DVC data provides datasets with 34 columns
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of data, including 27 features and seven measures of time, including the
macroscopic axial strain and differential stress. These features arise from
the statistics of our three different local strain components: contraction,
dilation and shear strain. In addition to these 27 features, the dataset
contains the macroscopic axial strain evolution, which is the measurement
of time that we develop the machine learning models to predict, i.e., target.
Because the DVC was split into around 10 intervals, we have this number
of unique axial strain values. We scale the features of our data using the
Scikit Learn built-in RobustScaler function. The target, εM , is normalized
so that each strain evolution starts at the normalized macroscopic axial
strain, ε̂M = 0 and ends at ε̂M = 1. Then, the data is split into 80% training
data and 20% testing data. The split of the data is random, but on average
we get sets of features and targets representing each DVC macroscopic
axial strain increment in both the training and testing data. To minimize
autocorrelation between datapoints when splitting into training and testing
data the train_test_split function in scikit learn splits the data row by
row to preserve the independence between rows. Each row is then shuffled
so that potential autocorrelation between sequential rows will on average
affect our models less. Finally, the testing data, is still shuffled to preserve
this effect while testing. When plotting the testing data, we use a sorting
algorithm allowed to look at the metadata of each row to reconstruct the
observed and predicted data into a sequential dataset. Even accounting for
these steps taken against autocorrelation, there may still be autocorrelation
between rows of data that affect our results. Therefore, our transfer learning
tests are very important in this study, because they provide tests without
this type of autocorrelation. Note that even though autocorrelation may
affect the results, lower transfer scores than train test scores within the same
individual experiment are not necessarily only because of autocorrelation.

3.3.1 Shapley Additive Explanation (SHAP)

Shapley Additive Explanation (SHAP) values measure the impact of
individual features on the model predictions. SHAP values are calculated
using a model with a feature S and comparing the result to multiple reference
models without the feature S. The resulting SHAP feature importance value
is calculated by averaging over all the possible orderings of models (Lundberg
and Lee 2017). For this analysis we report the average SHAP value across
all samples to get the average importance for each feature.

To examine trends in feature importance, we build a metric that considers
the model performance. We use the normalized, average SHAP value, and
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scale them by the model performance. This step provides 27 scaled SHAP
values, one value for each feature, for each of the models. Finally, we sum
these values for each model, thus I = ∑N

i=1 R
2
i

̂|SHAP |i for the importance
(where N is the number of models).

3.3.2 Generalization
Ideally, we desire to create a machine learning model that generalizes well on
multiple rocks of the same type, and different rock types (Table 3.3, Table
3.4). We consider a model to generalize well if it performs well on data that
it has not encountered during training. To test our generalizability, we use
transfer learning , a technique that involves training a model on one dataset
and testing it on another. We train models on a single dataset, and then
test each model on all the other datasets (Table 3.4). When using transfer
learning our models must make predictions on previously unseen data. We
expect that this step will tend to lower the performance of the model. To
improve the model performance and generalizability, we can train the model
on multiple experiments (Table 3.3). We have multiple experiments for
each rock type (Table 3.1). Thus, we couple experiments together by rock
type when we develop models with multiple datasets. The data from each
experiment is scaled individually before being coupled together. We train
our models on 80% of the data within one or two rock types and test the
model on all unseen data in each rock type.

3.3.3 Overview Over Models
The table below contains each model we developed. It contains the model
type, XGBoost or Neural Networks, resolution of the data set, training data
and a label, or code, for each model. The code indicates the model identifier
(a number) and whether the model we developed using single (S) or multiple
(M) datasets (experiments).
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Model Type Resolution Training Data Model code
XGBoost and Low and FBL01 S1
Neural Networks High FBL02 S2

ETNA01 S3
ETNA02 S4
MONZ04 S5
MONZ05 S6
WG01 S7
WG02 S8
WG04 S9
GRS02 S10
GRS03 S11
ANS02 S12
ANS03 S13
ANS04 S14
ANS05 S15

XGBoost Low Sandstone M16
Sandstone and Basalt M17
Sandstone and Monzonite M18
Sandstone and Granite M19
Sandstone and Shale M20
Sandstone and Limestone M21
Basalt and Monzonite M22
Basalt and Granite M23
Basalt and Shale M24
Basalt and Limestone M25
Monzonite M26
Monzonite and Granite M27
Monzonite and Shale M28
Monzonite and Limestone M29
Granite M30
Granite and Shale M31
Granite and Limestone M32
Shale M33
Shale and Limestone M34
Limestone M35

Table 3.3: This table shows each model we created with model type (XGBoost
or Neural Network) and the experiment and resolution we used. In cases
where we used multiple experiments, we write which rock type or types were
used. Lastly we give each model created a model code with an identifier (a
number) and whether the model was developed using a single (S) or multiple
(M) experiments. The experiment codes are explained (3.1). 37
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Model Code Test Data
S1 FBL01
S2 FBL02
S3 ETNA01
S4 ETNA02
S5 MONZ04
S6 MONZ05
S7 WG01
S8 WG02
S9 WG04
S10 GRS02
S11 GRS03
S12 ANS02
S13 ANS03
S14 ANS04
S15 ANS05
M16
M17
M18
M19 Sandstone (FBL01, FBL02)
M20
M21 Basalt (ETNA01, ETNA02)
M22
M23 Monzonite (MONZ04, MONZ05)
M24
M25 Granite (WG01, WG02, WG04)
M26
M27 Shale (GRS02, GRS03)
M28
M29 Limestone (ANS02, ANS03, ANS04, ANS05)
M30
M31
M32
M33
M34
M35

Table 3.4: This table shows which data was used to test each model. Models
are tested on all unseen data meaning models tested on 80% of the data in
one experiment will be tested on 20% of the data in the same experiment.
If a model has not been trained on data in an experiment, the model will
be tested on 100% of the data in that experiment. Model codes, signifying
which data was used to train the model, are explained in table 3.3.38



CHAPTER 4

Results

Our results are split into two main sections based on whether we used
individual experiments or combinations of multiple experiments to train and
test our models.

First, we compare model performance of XGBoost and Neural Networks at
low and high resolution, and the training time for these models. We then go
on to comparing input data and model prediction at low and high resolution
to investigate how resolution changes our results. After that we investigate
the model predictions in more detail, and continue by comparing them to
the local strain components and SHAP-importance values of the local strain
components. We finish the first section by looking at the transfer scores of
models trained on individual experiments.

In the second section we detail transfer scores on models trained and tested
on combinations of the experiments sorted by rock type. We continue by
detailing the SHAP values of the models trained on multiple experiment.
We finish this section by training models where we combine all experiments
in two rock types and test the models on all the rock types.

4.1 Individual Experiments

In this section we detail the results of training and testing models on
individual experiments. We go over non-transfer model performance,
compare local strain values to model prediction, review SHAP values, and
transfer performance.
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4. Results

4.1.1 Model Performance

First, we examine the non-transfer model scores for the low- and high-
resolution datasets of individual experiments (Figure 4.1). These non-
transfer model scores are derived from training a model on 80% of the data
in one experiment, and then testing it on the remaining 20% unseen data of
the same experiment. The split is random in time and space. Examining the
performance of the models at both spatial resolutions will indicate which
resolution and model type produce the highest model performance. The
sample points in the data are not independent in time and space, and so
autocorrelation may contribute to a larger R2 for the non-transfer tests.
Since XGBoost can be described as a self-evaluating algorithm (Chen and
Guestrin 2016) and the neural networks we used are not, we might expect
that the neural networks are affected by overfitting to a slightly larger degree
than our XGBoost models. In addition, while we apply regularization to
the neural networks in the present study, there are multiple techniques like
dropout that we do not employ.
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Figure 4.1: R2 scores of each experiment on low (a) and high (b) resolution
data. XGBoost scores (red) and Neural Network scores (blue) are sorted
into rock types and experiments are displayed with a symbol showing the
experiment number (upper legend).

For the low resolution data , XGBoost tends to perform better than the
neural networks (Figure 4.1). For high resolution data, the performance
is similar for both methods. However, the scores tend to be lower for
higher resolution data than the lower resolution data. This result may occur
because the higher resolution data appears to contain more noise than the
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4.1. Individual Experiments

Model Type Parallel Training Resolution Average time (s)
XGBoost No (Serial) Low 10.75s

High 219.57s
Neural Network No (Serial) Low 4.29s

High 19.05s
XGBoost Yes (Parallel 4 Cores) Low 10.24s

High 232.55s

Table 4.1: The average training time of our model types at different
resolutions and parallelism. Average time is calculated by averaging the
time spent training for one model type on each experiment. The number of
sample points for each experiment is similar, which also means time spent
training each model is similar (except for ANS04). We see that XGBoost is
considerably slower than Neural Networks, and parallelizing the XGBoost
algorithm does not improve times.

low resolution data (Figure 4.2). Intuitively, we could assume that machine
learning models would be able to learn more and perform better at higher
resolutions as they have access to more data points. However, our models
do not benefit from the increase in the number of data points. The standard
deviation of the local strain components shows that spatial resolution affects
both the data and the prediction in a similar way (Figure 4.2). The variance
in the model prediction increases as the standard deviation of the local
strain components increase.

While the model performance is very important, the required computation
time to train a machine learning model is also relevant to examine. For our
dataset, the computation time tends to vary by an order of magnitude from
the low to high resolution data (Table 4.1). Here, neural networks have the
lowest average time. The average time is calculated using a set parameter
space so that we do not include the time spent by other functions such
as GridSearch. We take the time spent training each model for individual
experiments at one resolution and average across the times for all the
experiments. Table 4.1 shows that XGBoost is slower than the neural
networks. Moreover, running the algorithm in parallel does not improve the
timing. Another method of reducing the computation time is to parallelize
the training loop so that we train multiple models at the same time.

Because the highest performance achieved was on the XGBoost models
developed with the low resolution data, we focus on these models for
the remainder of the analysis. First, we categorize some of the main
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Figure 4.2: Mean and standard deviation of the local strain components
in low (a, b) and high resolution data (c, d), and the corresponding model
prediction and observed macroscopic axial strain for FBL02. The mean
of the strain components is similar in both resolutions, but the standard
deviation increases at high resolution. The increase in the standard deviation
from low to high resolution correlates with a similar increase in the variance
of the model prediction.

characteristics that separate weakly (R2 < 0.5), moderately (0.5 < R2 < 0.7)
and strongly (R2 > 0.7) correlated models. Out of the 15 models produced
during training on individual experiments (Table 3.3, models S1-S15), we
examine the predictions of the model with the highest performance for each
rock type (Figure 4.3). Because the experiment includes discrete time steps,
when we compare the observed and predicted macroscopic axial strain, the
observed strain forms a function with discrete steps (i.e., stair steps) plotted
against the sample number (i.e., index of the row in the dataset). Note
that the sample number is the enumerated value, or index in the list, of
each unique value of the strain components. These indexes are ordered
by time so that multiple samples correspond to a single unique value of
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Figure 4.3: Predicted (blue) and observed (orange) axial strain in the test
dataset for the model with the highest R2 score (displayed in each subtitle)
of each rock type. Red lines show the mean of the model prediction for each
of the observed strain values.

macroscopic axial strain. Thus, because we have multiple values of the
strain components throughout the 3D rock core at each discrete time step,
the observed macroscopic strain forms a discrete, piecewise function with
stair steps.

With these plots of the predicted and observed normalized axial strain, ε̂, we
can highlight the strain values that the models predict with higher and lower
accuracy (Figure 4.3). As expected, the variance between the predicted
and observed values increases as R2 decreases. The models developed with
MONZ05, WG01 and ANS04 are more inaccurate early and late in the strain
evolution. However, the models developed with FBL02, ETNA01, WG01
and GRS03 produce predictions that closely match the “stair-step” pattern
of the observed data.
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4.1.2 Local strain values that control the model
performance
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Figure 4.4: Evolution of the local strain components (a, c, e) and predicted
and observed macroscopic strain (b, d, f). The mean strain magnitude
(y-axis, a, c, e) is the mean value of for each corresponding macroscopic
axial strain value (orange, b, d, f), scaled by the RobustScaler function. The
mean values reported here (and in similar plots) are not the exact same
values as the ones reported in the raw DVC dataset, but instead the scaled
data with which we train our model.

Next, we compare the evolution of the local strain components and the
model prediction of the macroscopic axial strain to investigate how trends
in the data influences the model performance. The correlations between
trends in local strain components and model prediction may reveal why
certain models are more accurate than others. We examine the evolution of
the mean of the local strain at each time step of macroscopic axial strain
(Figure 4.4).

The GRS03 experiment hosts a systematic evolution of distinct local strain
values that increase toward failure (Figure 4.4a). Correspondingly, the
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4.1. Individual Experiments

model has lower variance and higher R2 (b) than the other models. The
evolution of the shear and contraction in the ETNA01 experiment is less
systematic than those in the GRS03 experiment. Consequently, the model
has a higher variance, and a lower R2. The evolution of the local strain
values in the MONZ05 experiment is not systematic, and many of the values
are relatively similar to each other. In this case, the model performance is
significantly lower than the other models: the model tends to guess values
around ε̂ ≈ 0.6, producing a high variance. The model performs somewhat
better for the earlier parts of the strain evolution, in which the local strain
components systematically increase. After this early stage, the evolution
becomes less systematic . These trends suggest that higher performance and
quality in a model is connected to more systematic evolution of the local
strain components, and correspondingly less systematic evolution for lower
performing models.

The model SHAP values further help explain the predictive power of
the features in our models (Figure 4.5). Revealing trends in the feature
importance of our models may help indicate what each of our models has
learned about the physics of macroscopic failure. We also may identify
differences between the features with the most predictive power in models
with higher and lower performance. We examine feature importance using a
cumulative importance, which is calculated using the average |SHAP| value
of each feature. The values are normalized and weighted so that the score
of each model influences the degree to which that model affects the overall
importance. The equation for this importance metric is I = ∑ ̂|SHAP |R2.

Features that use statistics that quantify the extreme values (10th and
90th percentiles) rank lower than the feature statistics that quantify the
intermediate values (mean, 50th percentile) (Figure 4.5). Features that use
the dilatational strain provide more predictive power than the other strain
components. The models in which dilation is the most important strain
component also tend to have higher model scores. The most important
feature using this cumulative metric is the dilation mean, which is also the
most important feature for several individual models.

4.1.3 Transfer Learning Performance
Because we wish to assess how much our models have learned about the
underlying physics of macroscopic failure under triaxial compression, we
test (Table 3.4) them using transfer learning (Figure 4.6). Transfer learning
involves training models with data from one or several experiments, and
then testing the models on data from other experiments. Our transfer
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Figure 4.5: Cumulative SHAP value sorted by statistic (a ), strain component
(b) and top 9 features (c) for models trained on each experiment. This
cumulative importance is calculated using the average |SHAP | values of
each feature. The values are normalized and weighted so that the score of
each model influences the degree to which that model affects the overall
importance. The equation for this importance metric is I = ∑ ̂|SHAP |R2.
We also display every importance value color coded and corresponding to
each experiment used to train the XGBoost model.

scores have a large range of values (-1.01 to 0.82). The mean and standard
deviation of the transfer scores indicate weak or no correlations between the
predicted and observed values (0.04 ± 0.34). In contrast, the mean score
of our non-transfer models 0.61 ± 0.17. As described in the background
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sections, we expect transfer learning performance to be higher between 1)
sandstone and basalt, 2) monzonite and granite, and 3) shale and limestone.

As discussed previously, most of the non-transfer scores of this set of models
are reasonable, except MONZ04, ANS02 and ANS03, where the scores are
below R2 = 0.5 (Figure 4.6). The models developed with the limestone
(ANS) data have lower transfer scores than all the other rock types. Most of
the transfer learning scores for the other rock types are low (<0.5). However,
there are some exceptions to this trend, such as the FBL02 and GRS03
transfer learning scores. Thus, when we develop the models using data from
only one experiment, most of the models generalize poorly.

4.2 Combinations of experiments

In the previous section (4.1) we have trained models on one experiment and
tested them on a different experiment. In this section we review the results
of using combinations multiple experiments to train our models. With this
we expect to improve the generalizability seen in the previous transfer tests.

4.2.1 Transfer and non-transfer rock type model
performance

We now examine the model test scores when we combine the experimental
data by rock type (Table 3.3, models M16-M35). Examining these transfer
learning scores indicates that some of the higher transfer scores have
decreased slightly, while the lower transfer scores have improved moderately
(Figure 4.7). The mean and standard deviations of the non-transfer model
performance indicate moderate-strong correlations between the predicted
and observed axial strain (0.63± 0.13). The transfer scores indicate weak
correlation for most of the tests (0.20±0.26). Although these transfer scores
are not moderately correlated, this range is a significant increase from the
model scores of the individual experiment transfer learning scores. This
general trend does not apply for Anstrude Limestone, which still produces
lower transfer scores. The highest scores are achieved by models trained
on Green River Shale, Fontainebleau Sandstone and Mount Etna Basalt,
consistent with the individual experiment transfer learning scores (Figure
4.6). We still do not see the expected trends in transfer scores between rock
types.
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4.2.2 Local strain values that control the model
performance

Comparing the SHAP values of the models developed with individual
experiments to those developed with multiple experiments may help us
understand the slight improvement in generalization (Figure 4.8). When we
develop models from individual experiments, the most important feature
statistics include the mean, sum, 50th percentile, and number of strain values,
in that order (Figure 4.8). Similarly, when we develop models from groups
of experiments, the most important feature statistics include the number of
values, the 50th percentile, mean and sum, in that order (Figure 4.8). Note,
the number of strain measurements in a subvolume tends to increase for
dilation and decrease for contraction as we approach macroscopic failure. For
both types of models, developed with groups of experiments and individual
experiments, dilation is considerably more important than the other local
strain components . This tells us that while similar some differences occur
when using multiple experiments. These differences may help us understand
more about macroscopic failure in rocks, and why our performance increases.
For example, exchange in the number of values seems to be a general trait
in macroscopic failure.

4.2.3 Extending generalizability to multiple rock types

Comparing the mean of the transfer learning R2 scores of models developed
with individual experiments (0.04 ± 0.34) and multiple experiments
(0.20 ± 0.26) indicates that combining experimental data improves the
generalizability of the models. Thus, next, we combine two rock types
in order to increase the generalizability. In general, models developed
using sandstone, basalt and shale perform better than the other models.
Additionally, limestone models generally have a lower performance than
other models.

The model R2 scores improve overall from the transfer learning scores of the
models developed with one experiment, but most of the scores still indicate
weak or moderate correlation. The mean ± one standard deviation of the R2

transfer scores of these models is 0.23±0.25 , while this range of the transfer
scores of the single rock type models is 0.20 ± 0.26, and the mean of the
transfer scores of the individual experiment models is 0.04± 0.34. Thus, the
generalizability of our models has increased from scores indicating (almost)
no correlation, to scores indicating low correlation. For the non-transfer
scores, there is a small tradeoff in the scores achieved by the models trained
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on a single rock type (0.63± 0.13) and the models trained on multiple rock
types (0.58± 0.15), but the scores are still very close in performance . With
this we see the quantifiable success of increasing the generalization of our
models using multiple data.

It is difficult to precisely quantify what more our models learn by using data
from multiple experiments. We could intuitively think that since dilation is
highly important, our models will learn more about dilation when combining
data. Observing the SHAP value, we do not see any such effect, instead
we see that the overall importance of each SHAP value stays the same. A
difference between individual and multiple experiments is that the number
of values increases in importance. A possible reason for this is that the
number of values will generally vary between a lower number for dilation
and a higher number for contraction at lower differential stress, and higher
number for dilation, lower number for contraction at higher differential
stress. The variation of the number of values will increase when adding
more experiments, thereby also increasing its importance. We can also
attempt to explain the increase in generalizability considering the hypothesis
that inputting similar values in the local strain components should return
similar values for the macroscopic axial strain. This would help explain
the great increase in average performance at the cost of a slight increase
in model variance when combining data. This effect may occur because it
is more likely to predict the correct values when a model has seen more
possible relations between local strain components and macroscopic axial
strain. When exposed to unseen data our models may use information from
multiple other experiments to predict the distance to failure .
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Figure 4.6: Transfer learning scores for the XGBoost models trained on
the low resolution data for each experiment. Along the y-axis we see the
experiment code of the experiments used for training, and along the x-axis
we see the experiment code of the experiments used for testing. Along the
diagonal (marked red) are the non-transfer scores (training and testing on
the same experiment). The Purple squares show areas where we expect
transfer scores to be higher due rock types within each square.
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Figure 4.7: R2 scores for models developed with multiple experiments on
the same rock type. The score matrix shows the non-transfer (training and
testing on the same rock type) and transfer (testing on different rock types).
The squares colored red are non-transfer test scores, and the larger squares
colored purple are the squares where we expect higher transfer scores due
to expected similarities in the rock types.
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Figure 4.8: Cumulative SHAP value for models trained on rock types sorted
by statistic (a), strain component (b) and top 9 features (c). This importance
is calculated using the average |SHAP| values of each feature. The values
are normalized and weighted so that the score of each model influences the
degree to which that model affects the overall importance. Dilation is the
most important strain component (b), similar to the models trained on one
dataset. The main difference between these models and models developed
for individual experiments (Figure 4.5) is that the most important statistic
is the number of strain values, rather than the number, mean, and sum.
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Figure 4.9: XGBoost R2 scores of models found from combining two rock
types, then testing these models on each rock type. Models are created
using 80% of the data in each rock type combination, and tested using all
unseen data for each rock type. The rows show the training data and the
columns show the rock type used as testing data. The non-transfer scores
have been marked red.
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CHAPTER 5

Discussion

5.1 The individuality of rock deformation in
porous and crystalline rocks

When conducting experiments with transfer learning, on both the individual
experiments, and the experiments combined by rock type, we expected
transfer scores to increase between pairs of rock types that were assumed to
have similar strain accumulation. These pairs were 1) sandstone and basalt,
2) monzonite and granite, and 3) shale and limestone. As seen in figures 4.6,
4.7 and 4.9, the transfer scores between these three pairs of rock types are
not systematically higher than other transfer scores. This result contrasts
with the result of McBeck et al. (2020a) on the same experiments. In that
study they predicted the distance to failure as a classification problem, and
found that the transfer scores between sandstone and basalt, and shale and
limestone were higher than other rock type pairs. There may be multiple
reasons for the discrepancy between these results, including the differences
between classification and regression. First, we consider why the first pair
of rocks have lower transfer scores in this analysis. For the samples with
Fontainebleau sandstone and Mount Etna basalt, we expect failure to occur
due to microcracks developing at the edges of pores due to higher stress
concentrations. In previous studies, this failure mechanism was observed
in both rock types (Renard et al. 2019; Zhu et al. 2016). The porosity of
the Etna basalt in this study is lower than for the sandstone, by about
half, which may cause the buildup of stress concentration to be somewhat
different for the two rock types. In addition, Zhu et al. (2016) observed that
microcracks tend to avoid propagating across phenocrysts, such a mechanism
is not seen in sandstone due to it being more homogeneous in mineralogical
composition . Examining the mean local strain components, we see that
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5. Discussion

ETNA02 hosts a less systematic strain accumulation than the other rock
types (Figure A.1). In addition, the evolution of FBL01 is relatively flat.
The magnitudes of the dilatational strains are different for all experiments.
The overall scores between these rock types are somewhat more stable and
on average higher than scores seen for the other pairs. However, if we
take other rock types into consideration, we see that the transfer scores are
still not significantly higher than other transfer scores for these rocks . To
illustrate, the range of transfer scores between basalt and sandstone is 0.04
to 0.52, while for monzonite and granite they are -0.47 to 0.46 and lastly for
limestone and shale they are -0.85 to 0.79 (with most scores here being very
low). The other transfer scores of sandstone and basalt range from -0.83 to
0.82, but here all the negative scores are from limestone.

Next, we discuss the differences found in monzonite and Westerly granite, the
second pair of rock types. These rock types are both crystalline rocks, with
very similar mineralogical composition and low porosity. All the transfer
scores between these rocks indicate a low correlation, with some close to
moderate (MONZ04). As discussed in McBeck et al. 2020a, where similar
results between these rock types were seen, some possible reasons for this
include differences in confining stresses, and differences grain size. Section
2.2.6 describes these differences in more detail. Note that the scores of
models trained on MONZ04 and tested on WG01 and WG04 were among
the higher scores achieved by that model. The mean local strain component
curves (Figure A.1) of these rocks have more similar trends than between
for example MONZ05 and any of the other granite samples . This indicates
that similarities in the local strain components affect our transfer scores,
which we will discuss further by the end of this section.

The last pair of rocks are the Green River shale and Anstrude limestone,
where we expect deformation to occur with dominantly compactive failure
mechanisms. The main mechanisms are compaction bands and pore
collapse, however both rock types may also deform due to dilatancy.
In the experiments, shale deformed with compaction bands but higher
magnitudes of dilatational strains were also observed. In most of our
limestone experiments, compaction leading to pore collapse was the dominant
failure mechanism (Renard et al. 2017) . The SHAP values of the two rocks
shows that for the experiments with shale, the impact of dilation on our
models is highly important. However, we do not observe dilation to be as
important in the limestone experiments, instead contractive strains are more
important in these experiments. This result may be a quantifiable reason
behind the negative transfer scores we observe between shale and limestone.
One possible explanation of the differences in these experiments include the

56



5.1. The individuality of rock deformation in porous and crystalline rocks

low porosity of shale compared to limestone, as limestone failed due to pore
collapse in the rock. In addition, we did not observe compaction bands in
the limestone experiments, as opposed to the shale experiments.

When considering the individuality of rock deformation in the context of
machine learning, we may use transfer learning to aid our understanding.
We know that between two domains with the same types of features, there
may still be differences in their marginal probability distribution. Marginal
probability distributions are important to transfer performance: if these
are too dissimilar between two domains the performance will decrease
(Shimodaira 2000) . In the context of our results, these differences represent
the differences in input data, such as whether the experimental data
exhibits acceleration towards failure in both experiments. The concept
of similarities in marginal probability distributions should even extend to
whether acceleration towards failure is seen in the same features in both
experiments. We know from our results that systematic evolution of the
local strain components improves the performance of the model. We can
consider the possibility that to achieve good transfer performance we must
not only have a systematic evolution of the local strain components, but the
evolution must also have similarities in both experiments. This may partially
explain why transfer scores for the GRS03 experiment were particularly high.
This experiment may have had a domain that carried similarities to multiple
others. The domain or features in GRS03 had a systematic evolution in
multiple features. From the perspective of transfer learning this may help
explain some of the lower transfer scores and increase our understanding
regarding why rock types expected to have similar strain accumulation do not
have elevated transfer scores. In some cases, these scores may be improved
using domain adaptation techniques to closer match domains of different
rock types. In particular, techniques to reduce differences in either marginal
or conditional probability distributions, may improve transfer scores. Future
investigation into such techniques this may also prove useful in explaining
why the expected patterns to did not emerge.

The machine learning methods that we use in the present study were sensitive
to differences in the feature spaces of different experiments. This means
that models made using individual experiments would not generalize as well
on unseen data from different experiments. Models made using multiple
rock types were able to learn patterns in most of the information of both
experiments, and perform well on tests with unseen data from experiments
they had trained on. However, models trained on multiple rock types
were also able to predict the distance to failure of rock types outside the
training data (in transfer learning), better than models trained on individual
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5. Discussion

experiments could predict the distance to failure on other experiments. This
suggests that models may learn more about rock deformation in general by
training on multiple rocks.

5.2 The importance of dilation in rock
deformation within the upper brittle crust

In this study , we used SHAP values to compare the importance of the
features in each set of input data (experiments, or rock types) (Figure
4.5, 4.8). In the previous section, we discussed the individuality of rock
deformation for each rock type. It is clear from our results that different rock
types accumulate strain with varying signatures, with some commonalities.
Figures 4.5 and 4.8 show that the dilatational strains are significantly
more important than the contractive and shear strains. For every model,
the dilatational features are considered the most impactful on the model
performance for every rock type apart from limestone, where contractive
strains are slightly more important. Contractive strains were expected
to be important in the deformation of shale, and while we observed high
magnitudes of contraction close to failure we also saw high magnitudes of
dilation and shear strains with the deformation being dominated by dilation.
The discrepancy in the importance of features between limestone and the
other rock types may help explain why transfer scores between limestone
and other rock types are generally the lowest.

While the transfer scores in this study differed from the earlier analysis
done in McBeck et al. (2020a), the results of the SHAP value analysis is
consistent with their findings. In both studies, the intermediate values
of the dilatational strains had a higher impact on the models than the
contractive and shear strains when predicting the distance to failure. In
addition, predicting distance to failure from the characteristics of fracture
networks also indicates that features associated with dilation (fracture
aperture, anisotropy, clustering) holds higher predictive power than the
other features (McBeck et al. 2020b).

Laboratory experiments show that volumetric strain plays an important role,
with accelerating dilatancy being a well-known precursor of macroscopic
failure in rocks (Paterson and Wong 2005). Our agreement with previous
results further confirms the importance of dilation in rock deformation
experiments and quantified its importance compared to contraction and
shear. Figures 4.5 and 4.8 show that dilation is close to being as important
as contraction and shear added together. This information, combined with

58
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cases of observed precursory dilatancy related phenomena, explained in
section (2.1.3), suggests that dilation should be highly important in the
breakage of rocks in conditions analogous to the upper brittle crust. This
observation supports the basis of the dilatancy-diffusion model: dilatancy
is expected to precede, and play a central role in, crustal earthquakes. In
a laboratory environments, this theory is highly successful, however based
on the lack of evidence supporting dilatancy as a precursor in natural
earthquakes, the model’s predictive power may be limited (e.g., Main et al.
2012).

To reconcile the differences between rock deformation experiments in
laboratory conditions and natural observations of earthquakes, we need
to account for effects that can dampen the predicted precursory dilatational
changes preceding earthquakes. Among the differences between natural
earthquakes and laboratory macroscopic failure, the scale is an obvious
factor to consider. Fracture networks, fluid flow and heterogeneities may
be difficult to properly scale up from laboratory to earthquake conditions.
With some spatial scaling effects accounted for, we should also consider
the confining pressures may be lower, and the strain rate higher in the
laboratory than in natural earthquakes. We know that decreased strain
rates may dampen the growth of fracture networks and therefore suppress
dilatant strain (Brantut et al. 2013). Lastly, many earthquakes are known
to occur due to the reactivation of pre-existing faults, which may be highly
important, especially in load bearing regions in the lithosphere (Holdsworth,
Butler and Roberts 1997). These effects may contribute to the difficulty in
finding precursory changes in strain before earthquakes.

5.3 Outlooks
With these models, we have gained much valuable information and observed
some interesting results. With our 15 models made using individual
experiments and 19 models made using multiple experiments with either one
or two rock types, we learned that multiple data provide an advantage for
attaining improved generalizability. It is however important to note that we
cannot assume that these models by themselves can reliably predict failure
in rocks during compression. One reason for this limitation is that these
models do not operate on raw data, but instead use derived features. In
addition, these features are all scaled, and predicting the distance to failure
on unscaled data may lower the performance. These two reasons, coupled
with the weakly correlated average transfer scores even seen in the best
models (R2 = 0.23± 0.25), leads us to keep this limitation in mind.
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5. Discussion

However, even when considering the limitations of our models, there may
be ways to further improve performance. We may accomplish this task
using transfer learning techniques, or we could make models that also take
3D-images into consideration. Eventually a future model based on similar or
adjacent techniques may provide the needed generalizability for predicting
failure in rocks, both after and during macroscopic failure. A more obvious
way to improve the generalizability of our models is to utilize additional
data, should it become available.

While additional data may improve model performance, the performance of
the models could also improve if we used different experimental conditions
in the lab to test for other earthquake mechanisms. One of the mechanisms
considered important in earthquakes is the previously discussed repeated
reactivation of existing faults (Holdsworth, Butler and Roberts 1997). The
importance of this mechanism suggests that conducting X-ray tomography
on rock samples with pre-existing fault structures could further improve
the search for a predictive model of earthquakes. Statistical analysis and
machine learning on such experiments may prove highly useful for furthering
the understanding of rock and earthquake physics.

When reviewing the application of neural networks in the present study we
can consider ways to better increase their strengths. We used a relatively
small network architecture as our models. We chose this architecture because
we observed a reduction in performance when we increased the complexity.
However, many of the more successful applications of neural networks are
for image analysis, and with more complex architectures (Ronneberger,
Fischer and Brox 2015). If we investigated utilizing convolutional neural
network type architectures in the future, we may find that the performance of
neural nets on the 3D-images exceed other models. In such a case they may
supplement predictions made by XGBoost from the local strain components.
Applying image analysis may even prove more beneficial when analyzing the
previously suggested experiments with preexisting faults.
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CHAPTER 6

Conclusions

To briefly summarize this study, we used machine learning techniques to
predict the distance to failure in rocks under triaxial compression. We
generated 79 different models on both individual experiments of rock
deformation, and a combination of experiments in either one or two different
rock types. Out of these models, we developed 30 neural network models
and 49 XGBoost models. The 30 models (15 DNN, 15 XGB) trained on the
high resolution data performed markedly worse than the ones trained on
the low resolution data, suggesting that they picked up more noise during
training. Here, we also reported that XGBoost performed with convincingly
better R2 scores than the neural networks at the cost of a bit more training
time. In addition to evaluating the model performance with the R2 metric,
we also evaluated the impact of each feature on our models using SHAP.
The most important results detailed in this study are listed below:

1. The evolution of the local strain components controls the performance
of our models; Less similar values of local strain components between each
DVC calculation increases performance. This trait is evident from the
experiments with a systematic evolution of local strain approaching failure,
which produce higher model performance.

2. Although models trained on individual experiments may perform with
moderate or high correlation on test sets, they perform with lower correlation
during transfer learning tests. While this decrease in performance was
expected, we here show that the lowest transfer scores are between rocks with
different SHAP importance values, and that higher transfer performance
is somewhat correlated to trends in the feature space of a deformation
experiment.

3. Even when the SHAP values are similar for two models, their transfer
scores may be low, especially when trends in their feature spaces are different.
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6. Conclusions

We do not see the expected patterns in scores between the pairs of rock types.
This result suggests that the local process of rock deformation is individual
to each rock type, and may also vary between individual experiments for
some rock types.

4. The dilatational strain components are highly important to predicting
rock deformation in laboratory conditions analogous to the upper brittle
crust. Both in models created with individual experiments and multiple
experiments, features that include dilation have close to double the
importance of either the contraction or shear strain.

5. We can increase the generalizability of our models by training them on
multiple experiments and multiple rock types. In the present study, we
were able to go from a mean and standard deviation of (R2 = 0.04± 0.34)
for models trained on individual experiments to (R2 = 0.20 ± 0.26) and
(R2 = 0.23± 0.25) for models trained on multiple experiments from one or
two rock types respectively.

The techniques used in this study did not yet result in models that are ready
for predicting the distance to failure in rocks during triaxial compression.
However, we conclude that the systems being used in this study may result
in something that could achieve this significant goal in the future, possibly
with other adjacent techniques incorporated. Finally, we suggest that there
may be merit in conducting more experiments with rocks under different
conditions such as using samples with pre-existing faults to find more possible
effects interacting during more complex systems such as natural earthquakes.
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APPENDIX A

Additional Figures

A.1 Figures
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Figure A.1: This figure shows the mean statistic of the local strain
components for each experiment reported in the present study at low
resolution. The squares show the mean value per DVC calculation for
each of these strain components.
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XGBoost Predicted Vs Observed Axial Strain in All Experiments

Figure A.2: This figure shows the XGBoost model prediction at low
resolution versus the observed axial strain for all experiments reported
in the present study. The blue lines are the raw model prediction, the orange
lines are the observed normalized axial strain and the red bars are the mean
and standard deviation of the model prediction (blue lines).
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A.1. Figures

Figure A.3: This figure shows the XGBoost model prediction at high
resolution versus the observed axial strain for all experiments reported
in the present study. The blue lines are the raw model prediction, the orange
lines are the observed normalized axial strain and the red bars are the mean
and standard deviation of the model prediction (blue lines).
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Neural Network Predicted Vs Observed Axial Strain in All Experiments

Figure A.4: This figure shows the Neural Network model prediction at low
resolution versus the observed axial strain for all experiments reported in
the present study. The blue lines are the raw model prediction, the orange
lines are the observed normalized axial strain and the red bars are the mean
and standard deviation of the model prediction (blue lines).
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A.1. Figures

Figure A.5: This figure shows the Neural Network model prediction at high
resolution versus the observed axial strain for all experiments reported in
the present study. The blue lines are the raw model prediction, the orange
lines are the observed normalized axial strain and the red bars are the mean
and standard deviation of the model prediction (blue lines).
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APPENDIX B

Supplementary Information

Here we define the stress and strain tensors because of the frequent usage of
these terms in the present study.

B.1 Stress
Stress is a product of the internal forces in a medium resulting from an
external force. The stress on a surface can be defined as the magnitude of
the external force applied to the surface, divided by the area of that surface
σ = F/A. The more general definition of stress is based on finding the state
of stress at a point in a material like a rock. This state is described by a
tensor composed of three orthogonal stress vectors.

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


The elements of this matrix are also often written with numeric labels.
The diagonal elements are called the normal stress components, and the
off-diagonal elements are called the shear stress components (sometimes
written with the letter τ). In the special case of a stable stress-state, and
the coordinate system is chosen so that the contribution of all off-diagonal
elements is zero, we get:

σ1 0 0
0 σ2 0
0 0 σ3
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B. Supplementary Information

The diagonal elements of this matrix are called the maximum, intermediate
and minimum principal stresses respectively. When discussing the differential
stress in experiments with rock deformation, we then refer to the difference
between the maximum and minimum principal stresses σD = σ1−σ3. We can
also define pressure as a state where there are no shear stress components,
and all normal stress components are equal σ1 = σ2 = σ3.

B.2 Strain
When a medium like a rock is under external forces, it may start deforming.
Deformation is the transition from one shape to a different shape. Strain is
a type of deformation called distortion, which is a non-rigid deformation.
In a rock ,the change in shape, regardless of change in volume, results in
particles changing their relative positions. A special case of strain is the
change in length (from L0 to L) of a rock sample along one axis (called L
in the equation below), which can be described as the change in length due
to deformation divided by the length prior to deformation:

εL = L− L0

L0

This is often referred to as the axial strain. In addition to this strain
component, we should also define the shear strain and the volumetric strain,
which refers to deformation that changes the volume of a rock. The shear
strain is defined by:

γ = tan (ψ)

Where ψ is the angular shear, which is the change in angle in a deformed
medium between two lines originally perpendicular. The volumetric strain
is defined as the change in volume divided by the original volume:

εV = V − V0

V0

In the present study, we consider that positive changes in volume are related
to dilation and negative changes are related to contraction. Similar to stress,
strain can also be written in tensor form where the components are split into
tensile and shear strains along the diagonal and off-diagonal respectively.
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B.3. Strain Invariants

B.3 Strain Invariants
Change in local strain components can be calculated by using the invariants
of the incremental strain tensor . The incremental strain tensor is calculated
from the displacements between two scans, found using DVC. The first
invariant I1 (∆ε) = εxx + εyy + εzz, characterizes the local volumetric
strain, which is negative for contractive strains and positive for dilatative
strains. As described in Renard et al. (2018) and McBeck et al. (2018),
we may find the local shear strains by relating the first invariant and
second invariant of the incremental strain tensor I2 (∆ε) = (εxy)2 + (εxz)2 +
(εyz)2− (εxxεyy + εxxεzz + εyyεzz) to the second invariant of the incremental
deviatoric strain: J2 (∆ε) = 1

3 (I1 (∆ε))2 − I2 (∆ε). Using this formulation,
the relation to the local shear strains is found using the von Mises yield
criterion equivalent strain (3J2 (ε))

1
2 . Instead of using these invariants to

calculate the contraction, dilation and shear strains, we use alternative
criteria (McBeck, Ben-Zion and Renard 2020) .

B.4 Quality of Data
During the research presented in present study we hypothesized that outliers
in the data may have affected the model performance. This was due to the
standard deviation of some of the datasets seeming high and the results
from 4.2 where we see that the higher standard deviation of the high-
resolution data correlates with lower model scores. To test this hypothesis,
we implemented a function that could remove the top percentage of points
for each DVC in a dataset. To outline how the function works:

1. Find all unique values of strain, store the start and end point of each
value of strain and store them in a list called counter.

2. For each feature we then go through the counter list and remove all values
that exceed the percentile where we define points to be outliers.

3. We make a new dataframe that only contains the kept points.

4. If verbose is true we check how many points were removed.

This works because we know that every unique value of strain is sequentially
increasing and because all non-unique values are sorted. Important to note
is that this function will not remove 3% of the datapoints in the dataset
when removing the top 3% percentile. We tested removing the top 5% (a),
the top 3% (b) and no outliers (c):
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B. Supplementary Information

a. When removing 5% of outliers our models had a score with a mean and
standard deviation of 0.54± 0.19 non-transfer, and 0.05± 0.30 transfer for
the individual experiments.

b. When removing 3% of outliers our models had a score with a mean and
standard deviation of 0.55± 0.19 non-transfer, and 0.05± 0.30 transfer for
the individual experiments.

c. With no removal of outliers our models had a score with a mean and
standard deviation of 0.63± 0.13 non-transfer, and 0.04± 0.34 transfer for
the individual experiments.

As we can see the effect of removing the outliers was to the detriment of our
model performance. And while the mean of the transfer score does increase
by 0.01 when removing outliers, the standard deviation decreases and many
of the higher scores are significantly lower. This suggests that outliers in
our data carry important information and noise in our data is probably
in the form of some small irreducible noise. We conclude that the early
hypothesis was inaccurate and that the quality of the data is not affected
by large perturbations of noise.
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APPENDIX C

Functions and Code

In this appendix we will show parts of the code explicitly, for the full code
visit https://github.com/Anduron/Strain_masters/blob/master/scripts/
Strain_work.ipynb. The code created during this thesis uses a set of python
functions to create simple training and testing loops for many experiments at
once. The code is not set up as a package, but is instead a jupyter notebook
containing all machine learning experiments conducted during the present
study. Possible improvements to the code include making things easier to
generalize or abstract, by for instance object orienting. Using functions have
made things simple enough to extend, test and work with for our purposes
and might, depending on the observer, be easier to interpret. Note that
many of the longer lines of codes has here been cut in half due to the format
of the document.
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C. Functions and Code

To import our data we create a python function that can import a dataset
and create a scaled dataframe, we also want to be able to concatinate
multiple datasets. For this purpose, we use the following python function:

def get_experiment_data(folder, filename, features, target, scale=True,
indices=False):

"""
IMPORTS STRAIN DATASET FOR THE ROCK EXPERIMENTS FROM FOLDER AND
CREATES DATAFRAME WITH FORMAT BASED ON TYPE OF TESTING.

folder: The folder of the data
filename: string with full name of file or list with string filenames
features: Dataset features contained within the file
target: String indicating which feature to predict
scale: Determines if time array should be rescaled
indices: if true return indices that splits test sets for multiple rock types
"""

if indices == True:
flag = False #A suboptimal solution
for i in range(0,len(filename)):

if filename[i-1][13] != filename[i][13]:
flag = True

if flag == False:
indices = False

if isinstance(filename,str):
DF = pd.read_csv(folder+filename, delim_whitespace=True)
DF = DF.dropna()

elif isinstance(filename,list):
DF = pd.read_csv(folder+filename[0], delim_whitespace=True)
DF = DF.dropna()

scaler = RobustScaler()
DF[features] = scaler.fit_transform(DF[features].values)
times = DF[target].values
times = (times-min(times))/(max(times)-min(times))
DF[target] = times

for i in range(1,len(filename)):
df = pd.read_csv(folder+filename[i], delim_whitespace=True)
df = df.dropna()

df[features] = scaler.fit_transform(df[features].values)
times = df[target].values
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times = (times-min(times))/(max(times)-min(times))
df[target] = times

if indices == True:
#print(filename[i-1][13])
if filename[i-1][13] != filename[i][13]:

index_1 = len(DF) #Quick fix, not optimal!

DF = DF.append(df, ignore_index=True)#DF = DF.append(df)

else:
print("filename variable must be valid type, string or list of strings")

scaler = RobustScaler()# works better with outliers
DF[features] = scaler.fit_transform(DF[features].values)

if scale == True:
times = DF[target].values
times = (times-min(times))/(max(times)-min(times))
DF[target] = times

if indices == True:
return DF, times, index_1

else:
return DF, times

else:
times = DF[target].values

if indices == True:
return DF, times, index_1

else:
return DF, times

We then create a function for calling and training the XGBoost library, and
training a set of models to find the optimal parameters in a GridSearch:
def train_xgb_model(dataframe, target, features, config):

"""
TRAINS AN XGBOOST MODEL ON A (PORTION OF) DATAFRAME
dataframe: The data to train on
target: String indicating which feature to predict
features: Dataset features for the model to train on
config: Dictionary that contains parameters, test_size and objective
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"""
xgb_model = xgb.XGBRegressor(objective=config[’model_details’][’objective’])

#regression
grid_search = GridSearchCV(estimator=xgb_model,

param_grid=config[’parameters’], cv=10, n_jobs=-1)

grid_search.fit(dataframe[features], dataframe[target])

final_model = grid_search.best_estimator_

return final_model

We create a function for training a neural network, this one does not use
GridSearch:
def train_nn_model(dataframe, target, features):

"""
TRAINS A NEURAL NETWORK ON A DATAFRAME
dataframe: The data to train on
target: String indicating which feature to predict
features: Dataset features for the model to train on
#no config for this function because no grid search
"""

NN_model = MLPRegressor(hidden_layer_sizes=(128,64,),
max_iter=1500, activation=’tanh’, alpha=0.0005)

#regression

final_model = NN_model.fit(dataframe[features], dataframe[target])

return final_model

To test any of our models, we utilize this python function:
def test_regression_model(model, features, target, dataset):

"""
FUNCTION TESTS MODEL ON TEST SET
model: Trained model to test on test set
features: Features/Predictors in the dataset
target: String indicating which feature to predict
dataset: The data to test on (can send in either train, test or different set)
"""

predicts = model.predict(dataset[features])
rmse = np.sqrt(mean_squared_error(dataset[target], predicts))
r2 = r2_score(dataset[target], predicts)

scores = [len(dataset[target]), rmse, r2]
return scores
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And lastly we define a python function to plot the model prediction vs the
observed values of strain to evaluate our model:
def plot_feature_vs_prediction(DataFrame, feature, prediction, plot_strings):

"""
PLOTS THE GIVEN FEATURE AGAINST THE NUMBER OF DATAPOINTS OF THE FEATURE
DataFrame: The dataframe
feature: list of features
prediction: The model prediction
plot_strings: name of title and/or axes
"""
x = np.linspace(0,len(DataFrame)-1,len(DataFrame))
y = DataFrame[feature]

plt.plot(x, prediction, ’r’)
plt.plot(x, y,’b’) #plt.plot(x , y, ’ro’)

plt.legend([’prediction’,feature])
plt.ylabel(plot_strings[2])
plt.xlabel(plot_strings[1])
plt.title(plot_strings[0])
plt.show()
return

Note again that not all plotting functions are shown here, for instance the
score matrices created using seaborn (Waskom 2021). After defining our
experiments, features and targets we can now use all our functions together
in this training loop where we train multiple models, print their scores and
our progress, plot different metrics (not all functions shown here), save our
model using pickle and save important information such as test scores:
print(f"\nTraining xgb models on {num_exps} experiments, testing on same dataset.

\nStoring models for later transfer learning:\n")

for i in range(num_exps):

print("Current experiment: %s, Completion: %d%%" %(filenames[i],(100*(i+1)/num_exps)))

dataframe, timespan = get_experiment_data(folder, filenames[i], features, target)
#dataframe = remove_outliers(dataframe, dataframe[’ep’],

[’dn_p50’, ’dp_p50’, ’cur_p50’], threshold = 0.91, verbose=True)
dataframe.to_csv(scaled_data_folder+’scaled_’+

filenames[i],sep=’ ’, index=False)

df_train, df_test = train_test_split(dataframe,
test_size=conf[’model_details’][’test_size’])

plot_data_time_evolutions(dataframe, [features[2],features[11],features[20]],
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[’Evolution of ’+features[2]+’, ’+features[11]+’,
’+features[20],’Sample’,’feature’])

plot_data_errorbars(dataframe, dataframe[’ep’],
[features[2],features[11],features[20]],
[’Evolution of ’+features[2]+’, ’+features[11]+’,
’+features[20],’ep’,’feature’])

train_time = time.time()
model = train_xgb_model(df_train, target, features, conf)
#other_model(df_train,target,features)
models.append(model)

train_time = time.time() - train_time

with open(saved_models[i], ’wb’) as file:
pickle.dump(model,file)

train_scores = test_regression_model(model,features,target,df_train)
test_scores = test_regression_model(model,features,target,df_test)

save_test_data(model, features, target, df_test, result_folder,
"TEST_prediction_xgb_"+experiments[i]+"_g"+rad+"0.txt")

r2_train_vector[i] = train_scores[-1]
r2_test_matrix[i,i] = test_scores[-1]

print(f"Train: {train_scores}", f"\nTest: {test_scores}")

plot_observed_vs_predicted(df_test, target, model, features,
[’Testing’,’Observed’,’Predicted’])

shap_vals = represent_model_results(model,df_train,features,target,
’Feature impact on model ’+experiments[i]+ ’ g’+rad+’0’,
result_folder+’Shap_vals_xgb_’+experiments[i]+’_g’+rad+’0’)

plot_feature_vs_prediction(dataframe, ’ep’, model.predict(dataframe[features]),
[’Evolution of ’+’ep’+’ vs prediction’,’Sample’,’prediction vs observed ep’])

score_str+=(experiments[i]+" "+str(test_scores[1])+
" "+str(test_scores[2]))+" "+str(train_time)+"\n"

pred_vs_observed = np.column_stack((
model.predict(dataframe[features]),dataframe[’ep’]))

np.savetxt(result_folder+model_preds[i],pred_vs_observed)

save_data_by_name(score_str,result_folder,model_scores)
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Lastly we use our stored models to run transfer tests:
print("\nPerforming transfer learning, reprinting r2 scores

\nand plotting score martix:\n")

print(len(models),num_exps)
for i in range(len(models)):

for j in range(num_exps):
if j != i:

dataframe, timespan =
get_experiment_data(folder, filenames[j], features, target)

scores =
test_regression_model(models[i], features, target,dataframe)

r2_test_matrix[i,j] = scores[-1]

if abs(r2_test_matrix[i,j]) > 0.7:
print(f"training data: {experiments[i]},
testing data: {experiments[j]}, score: {r2_test_matrix[i,j]}")
plot_feature_vs_prediction(dataframe, ’ep’,
models[i].predict(dataframe[features]),
[’Evolution of ’+’ep’+’ vs prediction’,
’Sample’,’prediction vs observed ep’])

print(f"Train score on experiment {experiments[i]}:
r2 = {r2_train_vector[i]}\nTest score: r2 = {r2_test_matrix[i,i]}")

plot_sns_score_matrix(r2_test_matrix,experiments,experiments,
["XGB Test R2 Score g50", "Testing Data", "Training Data"],
savename=’../Figures1/strain_single_transfer_xgb_g50’)

np.savetxt(result_folder+model_score_matrix,r2_test_matrix)

The transfer testing loop is fairly similar for the transfer learning where we
use multiple data sorted by rock types. However the training loop is much
more complicated, so we will show it here:
num_models = 0

r2_train_vector = np.zeros(len(rock_list))

comb_len = sum([len(rock_list)-i for i in range(len(rock_list))])
r2_rock_matrix = np.zeros((comb_len,len(rock_list)))

print(f"\nTraining xgb models on {comb_len} combinations of rocktypes,
testing on each dataset. \nStoring models for later transfer learning:\n")

for i in range(len(rock_list)):
for j in range(i,len(rock_list)):

#print(i,j)
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if j == i:
#train the model on single rock type and store test score
print(f"Training on and testing on single rock type: {rock_names[i]}")

filenames = [’strains_curr_’+experiment+’_g’+rad+’0.txt’
for experiment in rock_list[i]]

print(filenames)

dataframe, timespan =
get_experiment_data(folder, filenames, features, target)

combined_names.append(rock_names[i])

else:
#train the model on multiple rock types and store test score
print(f"Combining experiment: {rock_names[i]} and {rock_names[j]}")

filenames1 = [’strains_curr_’+experiment+’_g’+rad+’0.txt’
for experiment in rock_list[i]]

filenames2 = [’strains_curr_’+experiment+’_g’+rad+’0.txt’
for experiment in rock_list[j]]

print(filenames1+filenames2)

dataframe, timespan, index_1 = get_experiment_data(
folder, filenames1+filenames2, features, target, indices=True)

rock_str = rock_names[i] + " and " + rock_names[j]
combined_names.append(rock_str)

df_train, df_test = train_test_split(dataframe,
test_size=conf[’model_details’][’test_size’])

plot_data_time_evolutions(dataframe, [features[2],features[11],features[20]],
[’Evolution of ’+features[2]+’, ’+features[11]+’, ’
+features[20],’Sample’,’feature’])

train_time = time.time()
model = train_xgb_model(df_train, target, features, conf)
#other_model(df_train,target,features)
model_permutations.append(model)
train_time = time.time() - train_time

#with open(saved_models[i], ’wb’) as file:
# pickle.dump(model,file)
if j == i:

shap_vals = represent_model_results(model,df_train,features,target,
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’Feature impact on ’+rock_names[i]+
’ xgb model g’+rad+’0’, result_folder+
’rock_type_transfer_shap_vals_xgb_’+rock_names[i]+’_g’+rad+’0’)

train_scores = test_regression_model(model,features,target,df_train)
r2_train_vector[i] = train_scores[-1]

if j == i:
test_scores = test_regression_model(model,features,target,df_test)
r2_rock_matrix[num_models,i] = test_scores[-1]
print(f"Train on {rock_names[i]} with training

score: {r2_train_vector[i]}", f"\nTest on {rock_names[i]}
with score: {r2_rock_matrix[num_models,i]}")

else:
ind_list1 = []
ind_list2 = []
for ind in df_test.index: #store index array which splits the test points

if ind < index_1:
#print(ind)
ind_list1.append(ind)

else:
ind_list2.append(ind)

print("Checking train test split:", f"Points in {rock_names[i]}:
{len(ind_list1)},", f"Points in {rock_names[j]}: {len(ind_list2)},",
f"\nSplit at 20%, Proportion of points:
{(len(ind_list1)+len(ind_list2))/len(dataframe)}" )

df_test1 = df_test.loc[ind_list1]
df_test2 = df_test.loc[ind_list2]

test_scores1 = test_regression_model(model,features,target,df_test1)
test_scores2 = test_regression_model(model,features,target,df_test2)

r2_rock_matrix[num_models,i] = test_scores1[-1]
r2_rock_matrix[num_models,j] = test_scores2[-1]

print(f"Train on {rock_names[i]} and {rock_names[j]} with score:
{r2_train_vector[i]}", f"\nTest on {rock_names[i]}:
{r2_rock_matrix[num_models,i]}", f"\nTest on {rock_names[j]}:
{r2_rock_matrix[num_models,j]}")

num_models += 1

plot_feature_vs_prediction(dataframe, ’ep’, model.predict(dataframe[features]),
[’Evolution of ’+’ep’+’ vs prediction’,’Sample’,’prediction vs observed ep’])
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