University of Oslo
Department of Informatics

Policybased
networking in a
mobile,
multiconnected
environment

Master’s Thesis

Kjetil Myhre

4th May 2003

Abstract

In classic networking, sessions are ordered communication between two
fixed end-points. In this thesis we introduce the concept of session migration
where one of the end-points of the session can change without losing the in-
tegrity of the session. We examine if session migration can be used to increase
the user perceived quality of service in heterogeneous, mobile networks.

We introduce the concept of session migration into the research field of
service centric networking. In service centric networks, the services are loc-
ated using a discovery and lookup system which allows the application layer
to view the network as a collection of services rather than as a collection of
hosts.

All these services will have attributes describing them, and different ap-
plications will have different opinions of which attributes a service should
have to be well suited for the application. We propose to use a separate
policy language to allow applications to easily define what it considers a well
suited service.

In session migration enabled service centric networking systems, a service
user can start a session using one service provider and continue it on another.
In this manner, the service user can select the best suited service provider
when the session is initiated. If a better suited service provider becomes
available, the service user can migrate the session to the new service provider.

We propose an architecture called Embouchure which includes middle-
ware that provides support for policy controlled session migration.

We use Embouchure to show that policy controlled service migration is
one possible way to harness the heterogeneous mobile networks in the future.

Contents

Preface

1.1 Choice of English as the Thesis language
1.2 Choice of Embouchure as the name of the architecture.
1.3 Abbreviations
1.4 Acknowledgmentso oL

Introduction

2.1 Heterogeneous Networks

2.2 Service Centric Networking
2.2.1 Session migration oL

2.3 Adaptation

2.4 Research Goals and Methodology
24.1 Researchgoal
2.4.2 Methodology L.

2.5 Overview of the following chapters

Background Research
3.1 Thestorysofar
3.1.1 The world of telecom
3.1.2 Short-range wireless networks
3.1.3 The chaos of providers
3.2 The vision of tomorrowo
3.3 Heterogeneous Networks
3.4 Mobility
3.4.1 Classicmobility
3.4.2 Mobility in Heterogeneous Networks
3.5 Service Centric networking
3.6 Sessions and Session Migration
3.7 Adaptationo
3.8 Summary

i

4 Discussion of Design Possibilities for Embouchure
4.1 JINI and Service Centric Networking
4.1.1 Overview of JINT
4.1.2 The discovery and lookup of a service
4.2 Design Choices o
4.2.1 Multiple Network Interfaces
4.2.2 Mobility Management
4.2.3 Adaptation and application interaction
4.2.4 Resource Management

5 The Design of Embouchure
5.1 Overview of Embouchure
5.1.1 Overview of the Networked Resources
5.1.2 Overview of the Middleware of Embouchure
5.2 The entry definition and the policy language
5.2.1 The Entry Definition
5.2.2 The Policy Language
5.2.3 The Policy Module
5.3 TheProxies
5.3.1 The Core Proxy
5.3.2 The Service Proxy
5.4 The Service Manager
5.4.1 Summary of ServiceManager
5.5 The Session Management Module
5.5.1 The Session Manager
5.5.2 The Session Interface
5.5.3 The ServiceSession interface
5.5.4 Session migration Lo L
5.6 Example of usage of Embouchure
5.7 Summary L

6 Implementation of Embouchure
6.1 Overview of the implementation
6.1.1 The structure of Embouchure
6.2 The implementation of the Policy module.
6.2.1 The Policy Compiler
6.3 The implementation of the Session management module. . . .
6.4 The implementation of the Service Manager

il

30
30
31
31
32
32
34
36
38

39
39
40
42
44
44
45
46
48
48
90
o1
92
92
33
33
54
35
99
96

57
o7
98
98
98
60

7 Case study
7.1 Overview of IntegerStreamer
7.2 Type interface and service provider back-end
7.3 The RMI name service bindings
7.4 The downloaded classes
7.4.1 IntegerServiceProxy
7.4.2 IntegerServiceState
7.4.3 IntegerServiceSession
7.5 Asimpleuse-case
7.5.1 Step 1: Starting the service provider
7.5.2 Step 2: Starting the serviceuser
7.5.3 Step 3: Initiating the session
7.5.4 Step 4: Session migration

8 Testing and evaluation of Embouchure

8.1 Overhead evaluation
8.1.1 Temporal overhead
8.1.2 Bandwidth overhead
8.1.3 Power consumption overhead
8.1.4 Memory and CPU overhead
8.1.5 Overhead conclusions
8.2 Complexity of usage L.
8.2.1 The complexity of the application developer
8.2.2 The complexity for the service provider developer . . .
8.2.3 Conclusions on complexity
8.3 Fault tolerance

8.3.1 Error conditions resulting from loss of contact with the
service provider
8.3.2 Error handling during service migration.
84 Conclusions

9 Summary and conclusions
9.1 Summary of the thesis
9.2 Contributions
9.3 Deficiencies
9.4 Futurework

A Instructions for downloading the code and API documenta-
tion of Embouchure

Glossary

v

89

90

Chapter 1

Preface

This thesis is submitted to the Department of Computer Science at the Uni-
versity of Oslo in partial fulfillment of the Cand. Scient degree. The Cand.
Scient degree is a Norwegian degree approximately the same as the interna-
tional Master degree.

The work has been supervised by Tore Urnes at Telenor Research and De-
velopment and Stein Gjessing at Simula research laboratory and University
of Oslo.

1.1 Choice of English as the Thesis language

English was chosen as the language for this thesis for two main reasons:

e English is the accepted language in this field of research. By writing the
thesis in English it will be available to a much larger group of people.

e All the technical terms in Computer Science have English names. To
translate these names into Norwegian could confuse the reader and
make understanding harder. A possibility that was considered was
writing the thesis in Norwegian but use English technical terms. We
discarded this possibility, because the thesis then would be neither
Norwegian nor English but something of a hybrid.

1.2 Choice of Embouchure as the name of the
architecture.

Embouchure is a French word and translates to "lips" or "mouth". It is also
a musical term describing the muscles in and around the lips, and how these

1

muscles are used when playing a wind instrument. The first thing an aspiring
musician has to learn is how to use these muscles, and the embouchure of
a wind player is the foundation on which most of the performance is based.
In the same manner, Embouchure the software architecture strives to be a
foundation which software developers can build mobility aware applications
on.

1.3 Abbreviations

In mobile computing there are numerous abbreviations. When abbreviations
are encountered in this thesis, the full name will be used the first time with
the abbreviation in parenthesis. After the first time, only the abbreviation
will be used, e.g. Global System for Mobile Communication (GSM).

1.4 Acknowledgments

I would like to use this opportunity to thank all those who have helped me
produce this thesis. It would have been close to impossible to complete this
work without you.

In particular I would like to thank my supervisors for their unending op-
timism and skill at pointing me in the right direction when it all seemed
hopeless. Tore and Stein have both in their own way offered feedback and
motivation which have been to the point and very important for the comple-
tion of this thesis.

I would also like to single out my fellow students who have created a
friendly environment for me to work in. In particular the people at the
Multimedia Communication Laboratory (MMCL) have played an important
part in motivating me to work on the thesis.

Kjetil Myhre
Oslo, Norway
May 2nd, 2003

Chapter 2

Introduction

The wireless networks of the future will be diverse and dynamic. Networks
as wide-ranging as low-orbit satellite systems on one end and spontaneous
short-range network links between two nearby hand-held devices on the other
will seamlessly integrate to create a wireless distributed environment. The
wireless network links available to a device will change over time, as the
device moves in and out of the coverage of base stations and other wireless
devices.

We believe that in order to take advantage of this multitude of networks,
a mobile device needs more than one wireless network interface. This way it
can use the expensive satellite system when no other connection is available,
and seamlessly switch to a less expensive system when one becomes available.

Applications which use networked resources vary widely in their demand
for quality of service and the willingness to pay for it. Wireless networks
also show a great degree of diversity in quality and pricing. We believe that
it is impossible for a device to make optimal choices about which network
resource to use without allowing the applications running on the device to
influence this decision.

Every participant in this distributed environment may provide services for
others to use. One example could be file sharing like that implemented today
by GnuTella[20]. Other examples are access to CPU or hardware resources
like printers or displays. As the network links available to a device changes,
so do the services that are available to it.

In such a dynamic environment, many classic network applications fail.
There is no guarantee that the service provider you connect to will stay on-
line until the application is done using it. If the device the application is
running on or the service provider is moving around, it is even likely that the
host will become unavailable sometime during a long lasting session. Classic

mobility software like Mobile IP[26] can solve this problem through redir-
ecting the connection through another network, but what if another service
provider which is cheaper or better in some other way becomes available? It
may then be preferable to migrate the session to the new service provider.

Embouchure In this thesis, we introduce Embouchure. Embouchure is
a middleware software module which allows applications to set up sessions
with service types. The application informs Embouchure it wants a session
with, for example, a file sharing service and Embouchure locates the best
suited file sharing service available.

What is the best suited service will tend to vary widely from applica-
tion to application. Some applications may want to pay a high price to get
premium service, while other applications may want to use the cheapest ser-
vice available. An application using printer services could be interested in
how far away a printer is, an application using file sharing services could be
interested in the available bandwidth for downloading files.

Using the application’s concept of what constitutes a suited service, Embouchure selects
the best service provider and initiates a session with it.

If another service provider becomes available which is better suited to
provide the service, Embouchure could start using the new service instead.
The process of moving from one service provider to another is referred to as
sesston migration.

Session migration is not a trivial issue. When moving a session from one
service provider to another, the target service provider has to learn the state
of the session in order to able to take over. One also has to take steps to
ensure that no data is lost during migration.

Like selecting which service provider is the best in the first place, selecting
one to migrate to is complex. In this case, Embouchure have to consider the
cost of the migration itself when it decides if migration should be initiated
and to which service provider the session should be moved.

A classic problem for such middleware modules is the trade-off between
complexity of use and functionality. If the middleware allows the applica-
tion developer to tune every aspect of its inner workings, the application
developer will need detailed knowledge on how the middleware works. On
the other side, if the middleware hides too much complexity from the ap-
plication developer, it is likely that, in some cases, the middleware makes a
wrong choice of which service provider to use.

In Embouchure, we propose to use policies to allow application developers
to tune how the middleware selects which service provider to use. By us-
ing a separate policy language that allows application developers to guide

4

Embouchure in selecting which service providers, we separate the policies
used to select service providers from the design and implementation of how
it is done. Our aim is to hide the complexity of service selection and migra-
tion from the application developer, and instead allow him to define policies
governing how the choices should be made. The application developer could
provide policies for Embouchure if the application has special needs, or just
use a default policy if the application does not have special needs.

The rest of this chapter will go into a bit more depth about areas funda-
mental to this thesis: heterogeneous networks, service centric networking and
the need for applications to adapt to the ever changing network environment.
Following this, we present the research goals we hope to reach in this thesis
along with the methodology we have used to reach those goals. Finally, we
present an overview of the rest of the thesis.

2.1 Heterogeneous Networks

More and more companies install some sort of wireless networks to cover
their workspace. Telecom companies and ISPs are constantly installing new
hardware for 2nd Generation Mobile Systems (2G) and 2nd Second Gener-
ation Mobile Systems — Improved version (2.5G) systems like Global Sys-
tem for Mobile Communication (GSM)[21] and General Packet Radio Service
(GPRS)[8]. Some people believe that 3rd Generation Mobile Communication
(3G) systems like Universal Mobile Telecommunications System (UMTS)[1]
will be deployed soon.

In addition to the wireless networks offered by the telecom companies,
unlicensed wireless networks like Wireless Local Area Networks (WLAN) and
BlueTooth are getting more and more popular. Anyone can buy a WLAN
card and install his own wireless network.

The result is a heterogeneous bundle of different network technologies. All
these network technologies have different characteristics. Some are available
in a large area, but slow and expensive, others are only available in small cells
but fast and inexpensive, others still fill the gaps between these extremities.

Consider the scenario depicted in figure 2.1 . At the office, Hege has
access to a WLAN base-station as well as the docking station for her laptop.
When she is seated at her desk, she wants to use the wired network access
provided by her docking-station. At an internal sales department meeting in
the office meeting area, she wants her laptop to stay connected, now using
the WLAN network at the office. Later the same day, she brings her laptop
along with her on a meeting with a customer. This meeting takes place at
a coffee bar, and there is no WLAN or other fast wireless link available.

Coverage

PaVlaN

Figure 2.1: To be connected constantly at her workplace, Hege relies on
different types of networks. At her office desk(1) she uses a wired link, in the
close-by meeting room(2) she uses WLAN

Hege then opts to use the GSM network, inserting the GSM card phone into
her laptop.

This scenario shows a typical use of wireless networks today. It requires
the computer user to actively choose which network technology to use at
a given point in time. This very act of choosing which network to use re-
quires knowledge about the different networks available, and may prohibit
some people from taking advantage of the wireless resources. This becomes
even more true in the following scenario, depicting a possible use of wireless
resources in the future.

Consider the scenario in figure 2.2 . Sitting in the coffee bar with her
customer, Hege discovers that she has no access to a fast wireless network
base-station. Petter is seated at the cafeteria across the street working with
his laptop, and he is just barely within the range of a WLAN base-station
with access to the Internet. Petter has decided to share his Internet connec-

Petter's WLAN coverage

Base station WLAN coverage

Figure 2.2: Hege uses Petter’s connection to a base station WLAN instead
of the expensive UMTS connection

tion for a small fee. Hege and Petter are within the range of each other, and
therefore able to share resources on each other’s computers. Hege compares
the cost and quality of connecting to the Internet through the UMTS connec-
tion with the cost and quality of connecting via Petter’s laptop, and decides
that using Petter’s link is the better solution.

This kind of network usage is likely too complex for the average user
to understand. Also, no matter how technologically advanced the user is,
comparing and selecting which network or which service to use takes time.

2.2 Service Centric Networking

One of the most important developments in distributed systems over the past
several years is the arrival of service centric networking. This concept moves
the focus of distributed systems away from host names and IP addresses
and toward service types. Rather than connecting to the printer server with

7

the network address printer.somewhere.com, the user connects to the printer
that is currently most desirable, be it because it is close or of good quality.
Rather than focusing on the network address of the printer, the user focuses
on the concept of a printer itself. Prevalent among the research efforts in
this area are JINI[30], Home Audio Video interoperability (HAVi)[24]| and
Universal Plug and Play (UPnP)[50]. These software infrastructures provide
a platform where service providers can deploy and describe their services,
while service users can search among the deployed resources and select the
one that best suits their demand.

Consider the scenario depicted in figure 2.3 . Hege is a sales represent-

Floor 1 Floor 2

/

Printers

Figure 2.3: The floor plan of the office building of a customer where Hege is
visiting. Hege needs to print a document and her portable computer is able
to discover nearby printers that are made available as printer services.

ative for her company visiting a customer’s office. During the meeting, the
customer asks Hege for a printout of the sales contract. Hege simply opens
the contract on her laptop and hits the print button. The laptop samples
the local network, discovers the four printers, and selects the one closest to
Hege ’s location. It then displays a floor plan showing Hege where to pick

up the sales contract.

Here, Hege did not care about the network address of the printer nor
whether it was running Linux or Windows. The printer was providing a
service of the Printer type, and had registered itself with the local service
registry. Hege ’s laptop simply asked the registry for a listing of printers, and
then selected the most appropriate one. Hege had previously defined the best
fitting printer to always be the printer closest to her current location.

The drawback of this scenario is that Hege and the local network admin-
istrators have to agree on how the Printer service type is defined. However,
once the Printer service type has been agreed upon, anyone can write a
printer spooler which everyone can use, no matter what programming lan-
guage or operating system the spooler is based on. All that is required is
that the printer spooler adheres by the defined interface.

2.2.1 Session migration

Sometimes more than one service can provide the service needed by the
service user. The service user has to select which of the services it wishes
to use. After the service user has opened a session with the chosen service
provider, the environment might change. Other service provider may become
available, or the ones that are already available might change. As a result
of these changes, another service provider may have become better suited
to use than the currently active one. Maybe the mobile device moved away
from the WLAN base station the active service provider is reached through
causing the link to become unstable, or maybe a cheaper service provider has
become available.

At this point, the service user might want to migrate the session to an-
other service provider.

We believe that service centric networking will be important in the fu-
ture. When a service user wishes to use a service type, he will have several
service providers to choose from. These service providers may be located on
stationary hosts or they may be located on mobile devices.

In the section on heterogeneous networks we pointed out that using het-
erogeneous networks to the full extent of their performance requires a lot of
choices on which network link to use at a given point in time. When we in
addition to this have to choose among a volatile set of service providers, the
task of always getting maximum performance from the networked resources
grows even more complex.

To alleviate this complexity and utilize the potential of the service centric,
heterogeneous network environment, the mobile device has to be able to
adapt to the changing environment.

2.3 Adaptation

Another central point to be made about the network resources of the future
is the dynamic nature of the environment. What happens in the scenario of
figure 2.2 if Petter finishes his coffee and leaves while Hege is downloading
data through his laptop? Or what if Rune comes into range and offers a
much higher quality network link that Hege can use instead?

Traditional network thinking would suggest that the solution is to simply
treat the mobile device as a router with an outgoing line for each of its
network interfaces. However, we believe that different applications and users
will have different requirements and cost thresholds. For example: When
Hege is meeting with a customer through a video-chat, she is more inclined
to pay a high price for good quality networking than when she is downloading
her personal email. There is no point paying for an expensive network link
if another less expensive link is available that can provide sufficient quality
of service to the application.

An application using networked resources from a mobile host with mul-
tiple network interfaces can often benefit from changing which network inter-
face it uses as it moves around. Applications capable of detecting opportun-
ities for and performing such changes are called mobile aware. Mobile-aware
applications strive to adapt to the ever changing network and services.

This kind of adaptation is difficult to implement. The application has to
monitor the available networked resources and make decisions on whether to
change the one currently being used.

In order to simplify the task of adaptation, we propose using policies in
this thesis. Embouchure defines a separate policy language that the applic-
ation developers can use to define what that particular application deems a
good service. Using this information, Embouchure automatically selects the
most appropriate service provider. Additionally, Embouchure migrates the
session to another service provider if one appears that is better suited than
the one currently being used.

This allows the application to easily define what it considers a well suited
service. Rather than having to focus on the complex issues of monitoring
and migration, the application can focus on the concepts which describe
the service. These concepts could be the bandwidth available for a video
streaming service or the amount of money charged for the use of the service.

The application can define what is a good service without knowledge of
how this information is used to connect to a good service. The policy for
choosing services is separated from the complexity of the actual choosing and
migration.

10

2.4 Research Goals and Methodology

In this section we present the research goals we strive to reach in this thesis
and the methodology we use to attain those goals.

2.4.1 Research goal

We base our research on three assumptions:

1. The network of the future will be a heterogeneous mixture of service
providers, some located close to the service user, some far away. Some
service providers will be reachable only through a local network while
others will be globally addressable. The service providers that are
available to a mobile device will change over time as the network quality
or the service providers themselves change.

2. Applications which wish to fully utilize these service providers have
to adapt to their volatile nature. The application has to monitor the
available service providers and be able to migrate session from one
service provider to another if the environment dictates it.

3. How the application adapts to the changing environment is application
dependent. It is not possible to design an adaptation scheme which will
adapt perfectly for all applications without input from the application.

In this thesis we wish to examine if policy controlled service migration
can aid the development of distributed software for heterogeneous, mobile
networking.

Central to this goal is the complexity of use of such a system. In order
to aid the development of distributed software, policy controlled service mi-
gration has to made available without requiring the application developer to
handle additional complexity.

We want to examine if it is possible to introduce the added functionality
of policy controlled service migration without increasing the complexity to
use networked resources.

We also wish to examine if policy controlled service migration can be
introduced without causing a large overhead in resource and time usage.

2.4.2 Methodology

In order to reach our research goals we start out by examining research done
by others. We want to find out if someone else has proposed to use policies

11

and service migration. We also want to cover research in related areas. The
research covered here will later be the benchmarks to which we compare our
solution when we evaluate it. The background research will also cover several
technologies which we will use as foundation when designing Embouchure .

Following our coverage of related works and background research, we
provide the partial design and implementation of Embouchure . As previ-
ously mentioned in this chapter, Embouchure is an architecture which allows
service migration based on policies. We want to examine if Embouchure can
aid the development of distributed software.

In order to evaluate if Embouchure is successful in aiding the develop-
ment of distributed software, we provide a case study as a partial proof of
concept. We will not try to cover all the aspects of the system, but show
that Embouchure can be used in practice. In the case study we implement
a simple service provider and shows how a session can be migrated between
different instances of this service provider. Some parts of the system will be
simulated.

Following the case study we evaluate Embouchure and compare it to other
systems which offer some of the same functionality. We evaluate how complex
Embouchure is to use both for the service provider developers as well as
for the mobile application developer. We also consider some of the error
situations that might occur, and evaluate how these are handled.

Finally, we discuss how successful we have been in finding an answer to
our research goals.

2.5 Overview of the following chapters

The rest of the thesis is built up as follows:

In chapter three, we cover the related works and background material
required for the rest of the thesis. We consider how far existing technology
go in the areas of interest for the thesis, and we discuss the technologies that
are to lie at the foundation of Embouchure .

In chapter four we discuss the choices we made when developing the design
of Embouchure .

In chapter five we present an overall design of Embouchure , with partic-
ular focus on session migration and policy control of the middleware.

In chapter six we implement the parts of the system we have designed in
detail.

In chapter seven we present a case study which uses Embouchure as a
proof of concept.

12

In chapter eight we run tests and evaluate Embouchure . We also compare
Embouchure to other similar systems.

In chapter nine we summarize the thesis. We present the contributions we
have made, the deficiencies of Embouchure and some suggestions for future
work.

13

Chapter 3

Background Research

In this chapter we present related research work and background information.
We start out by examining the philosophical ideas that drive developments
in mobile systems and continue by covering the necessary technologies.

The area of next generation networks is currently undergoing research in
research-groups all over the world, and new projects and ideas are published
all the time. The volume of research is overwhelming; we limit ourselves to
works most relevant to this thesis.

3.1 The story so far

In this section we will give a brief account the research done in mobile systems
up the present.

3.1.1 The world of telecom

The telecom industry has long held a monopoly on providing mobile con-
nectivity to the roaming user. Classically the application provided was the
voice connection while on the move. Today’s second generation mobile stand-
ards(2G) (e.g. GSM|21]) are designed to support this voice connection. All
second generation systems are circuit switched. In the same manner as fixed
phone lines, a connection is established all the way through the net to provide
a channel for the voice data, regardless of whether the users are actually talk-
ing or not. Data transfers over these standards are limited to the data that
can be sent on voice channels. Generally this is around 10kbs of bandwidth.
In addition, data connections suffer from large connection time latency while
the cellular system generates and allocates a path through the phone system.

As demand for better bandwidth and latency figures on the mobile net

14

emerged, the standards evolved. People started talking about the third
generation of mobile communication. In 3G systems data rates should be
higher and access ubiquitous. On the path to third generation, mobile sys-
tems are seeing extensions to second generation standards. Because they
fall between second and third generation, these standards are sometimes re-
ferred to as 2.5G standards. The most commonly deployed 2.5G standards
are High Speed Circuit Switched Data (HSCSD), General Packet Radio Ser-
vice (GPRS)[8] and Enhanced Data Rates for GSM evolution (EDGE)[14].
HSCSD is particularly well suited for streaming data while GPRS and EDGE
both are better suited for asynchronous data, due to the bursty nature of
their performance. HSCSD and GPRS can be implemented with only small
changes to base station software while EDGE also requires changes in hard-
ware.

EDGE and GPRS provide users with always-on capability. The mobile
device is always connected to the Internet, and billing is based on the amount
of communication rather than the actual online time. This is achieved
through packet switching of the cellular channels. Rather than dividing the
channels into fixed channels for circuit switching, all the GPRS or EDGE
devices in a cell share the same channels. When a device has data to send, it
sends it as free packages to the base station. Likewise, when packages arrive
at the base station destined for the mobile device, they are sent as soon as
a channel is free. This approach allows much better use of the channels for
data transfer, but if everyone wants to send at the same time, it can get
congested.

The split of the community has lead to two major organizations working
on standardizing third generation mobile systems: 3G Partnership Project
for Wide-band CDMA standards based on backward compatibility with GSM
and IS-136(3GPP) and 3G Partnership Project for Wide-band c¢dma2000
standards based on backwards compatibility with IS-95(3GPP2).

Third generation mobile networks will be based on ubiquitous, high band-
width, always on technology. In other words: whenever a user needs the
network, it is instantly available. The bandwidth is sufficient for watching
movies or video-chatting with a friend or even a group of friends through
small handset screens. The network is equally available whether the user is
seated at his office desk, or traveling at 80 km/h in his car.

In Europe, the third generation standard is called Universal Mobile Tele-
communications System (UMTS)[1]. UMTS shows a sixfold increase in spec-
trum efficiency over GSM, and is designed to handle data and voice efficiently.
One of the central design issues in UMTS is the cell layout. UMTS has a
mixed cell layout. Some cells cover large areas, and other cover smaller ones.
A large cell will also typically have several smaller ones inside it. At any

15

time, a UMTS mobile device can be in range of several cells of different size.
Regular UMTS cells offer bandwidth og about 300 kb/s, and the smallest
cells in UMTS also called pico cells, offer up to 2 Mb/s. Adaptive software
in the UMTS device selects which of the available cells to use. This behavior
is similar to that of a wireless overlay network.(see section 3.3)

The mixed cell layout allows UMTS operators to provide services even
in very congested in-building environments. In-building coverage has been
a weak-point for all the cellular technologies so far. A buildings outer walls
blocks a lot of radio signals from propagating and the quality of the radio
link worsens. Because cells now can overlap, UMTS allows the possibility
to install UMTS base stations inside office buildings to allow for premium
service in-building.

Japan and Korea are currently leading the way in 3G deployment. Tele-
com companies in Italy and in the UK recently took on their first UMTS
subscriptions.

3.1.2 Short-range wireless networks

Recently, the deployment of short-range wireless networks have exploded.
More and more companies install wireless network access to office employees
and visitors. The most widely used technology is Wireless Local Area Net-
work (WLAN)[25]. This is a physical and link layer protocol defined by the
IEEE 802.11 standard. Communication in a WLAN network can either be
managed by base stations, or managed by the computers using it. In this lat-
ter mode, computers are able to communicate directly without resorting to
a base station at all. This sort of communication is often referred to as Peer-
to-Peer (P2P) networking. WLAN is a typical example of a short-ranged
high bandwidth wireless network. Currently, WLAN is offering bandwidth
up to 11 Mb/s, but future systems aim for 70 Mb/s. Another example of a
short-ranged wireless network technology is BlueTooth[6, 15|. BlueTooth is
a wireless technology design for low-cost communication up to 10 meters and
offers bandwidth in the area of 1 Mb/s. It is currently under standardization
at the IEEE with project number IEEE 802.15.1.

WLAN and BlueTooth both utilize an unlicensed band in the spectrum.
This means that anyone can buy a WLAN or BlueTooth network base station
or network card and plug it in, or even design their own wireless hardware
that utilizes this band. More and more networks in private homes and in
office areas are based on WLAN or BlueTooth technology.

16

3.1.3 The chaos of providers

Currently most users of wireless services use only one or maximum two differ-
ent technologies to access the Internet. In order to utilize fully the available
WLAN, BlueTooth and cellular systems, the user has to manually configure
the new network each time he wants to switch between technologies. Pro-
tocols like Dynamic Host Configuration Protocol(DHCP)[11] aid the user in
this configuration, but much is still left for the user to do. Developing hard-
ware and software which allows a mobile device to seamlessly switch between
network technologies is currently the focus of research all over the world, and
is also a core issue in this thesis.

3.2 The vision of tomorrow

In the near future virtually every company, store, gas station and home will
have their own wireless networks. Users will own and carry around computers
communicating wirelessly with each other. Telecom companies would like this
world to be dominated by UMTS or other third generation cellular systems,
but because anyone and everyone can install their own wireless network, the
wireless world of tomorrow is likely to heterogeneous. The grocer could have
a fairly old WLAN base station running, while the newly started coffee bar
on the corner has state of the art equipment. UMTS is likely to be expensive
to use, since telecom companies have paid enormous amounts of money to
gain access to the spectrum needed to implement UMTS. Enterprises like
coffee bars or gas stations can probably benefit from letting their customers
access the Internet cheaply or for free. Imagine the followin scenario.

"Darling, Ill swing by the gas station to download Turbonegro’s latest
album "
"Cool. While you are there, bring some sweats home, will you?"

In some areas, there will be no local grocery or gas station to provide access to
the net. In these areas, we fall back on second and third generation systems
such as GSM or UMTS to provide access to the network.

As a mobile device moves around, it is likely to encounter several different
kinds of networks. The UMTS link would always be there, but WLAN or
BlueTooth links may come and go as devices move around. It is a challenge
for the mobile systems of tomorrow to be able to at all times use the network
or networks that currently provide the best service.

This kind of heterogeneous network environment is sometimes referred to
as 4G, or fourth generation mobile networking. A lot of research is currently

17

being done to determine what direction mobile systems will take after third
generation systems. One of the most important research forums in the field
is Wireless World Research Forum (WWRF)[52]. WWREF is a collaboration
of industrial and academic partners on fourth generation networking. It
was founded jointly by Siemens, Alcatel, Nokia and Ericson, and now has
members from all over the world. WWRF issued a "Book of Visions"[17] in
2001 which includes many considerations and research efforts needed on the
path towards 4G.

WWREF refer to 4G technology as “The Wireless World”. They predict
that between two and five years from now, the number of users connected
to the Internet through wireless means will outnumber the ones connected
through wired connections. They base this claim on the fact that users are
getting more and more mobile. A user in the future will not be satisfied with
using network resources seated down at his desk, but he will want to use the
resources in the Internet all the time, no matter what else he is doing at the
moment. Additionally, in underdeveloped countries it is highly likely that
Internet access in new areas will be based on wireless technologies rather
than wired connections. It is much cheaper to install a UMTS base station,
than it is to draw a wire to each of the users in a town.

3.3 Heterogeneous Networks

As previously stated, the wireless network of tomorrow is likely to be a con-
glomeration of different network technologies. Among the first researchers to
state that a computer will benefit from seamlessly exploiting more than one
of these technologies were Katz and Brewer|[33, 7| at Berkeley in California,
USA. In 1996 they looked at the case of wireless overlay networks on a project
called BARWAN. This is a scenario where a computer has access to several
network interfaces. Some short-ranged like IR, others more wide-ranged like
cellular systems or even satellite based systems. Katz and Brewer organize
the wireless networks in levels based on spatial extension.

At the short range side they have room/building area networks, progress-
ively going through larger area networks to regional area networks at the top.
The main contribution of Katz and Brewers work is the concept of vertical
hand-over. Vertical hand-over is hand-over between different network tech-
nologies, for example from WLAN to GPRS. We believe that this is the first
attempt by a research group to develop automatic systems for vertical hand-
over. Horizontal hand-over, on the other side, is hand-over between cells in a
given mobile technology. For example hand-over between cells in GSM. The
solution proposed by Katz and Brewer involves extensions to almost every

18

layer in the protocol stack. Most of the new code is located at the network
layer.

In order for a device to be able to connect to more than one wireless
network, it obviously needs more than one network interface. Having more
than one network interface means having more than one network protocol
stack. A central design issue when designing network software for heterogen-
eous networks, is to determine on which layer the network stacks should be
joined. Katz and Brewer proposes to join the stacks at the network layer. In
order for the different network technologies to be able to do hand-off from
each other, Katz and Brewer believes that they all need to implement a new
network layer protocol. We believe that if all participating computers need a
new network layer, it will be hard if not impossible to implement BARWAN
on a large scale. The ideas presented in the BARWAN projects stand as a
foundation of newer research done in this field.

3.4 Mobility

Being able to be connected to the Internet with a mobile device when moving
around requirers some sort of mobility scheme. In this section we will cover
some of the technologies that allow this.

3.4.1 Classic mobility

Classic mobility handles mobility of a mobile device with up to one live net-
work link at a given point in time. A laptop using a wired connection while
docked and WLAN when undocked, or the same laptop moving from one
WLAN network to another are examples of classic mobility. Even a station-
ary computer that is carried from one office with a wired link to another can
be thought of as of classic mobility.

The most basic form of mobility handling is using domain name system(DNS)[37]
services. Whenever the computer is moved from one IP address to another,
the DNS registers concerning its host-name are updated, and packages are
henceforth forwarded to the new address. Due to the caching of DNS data
in the network, it typically takes up to 48 hours after an update to DNS is
mirrored in packages coming to the new location. This delay was acceptable
in the wired world, where moving a computer was a rare event. In the current
world, a mobility system with 48 hours of latency is clearly not satisfactory.

Mobile IP[26, 40] is the current standard as defined by Internet Engineer-
ing Task Force (IETF)[28] for handling mobility. It defines an extension to
IP[27] that allows computers to transparently move between points of access.

19

Other computers can always reach the mobile host without actually knowing
where it is located, or without even knowing that the mobile host is not a

stationary computer.
Home
Agent
Corr. \ . Mobile
Host) Host

Figure 3.1: Mobile IP triangular routing. Packages from the mobile host go
directly to the correspondent host, but packages from the correspondent host
travel via the home agent.

In the basic form of Mobile IP, the system consists of a Home Agent, a
Foreign Agent and the mobile host itself. When a mobile host enters into a
new network zone, it locates and registers with a resident foreign agent. The
mobile host uses multi-cast to discover a foreign agent. The foreign agent
assigns a care-of address for the mobile host. The care-of address is the IP
address the mobile host can be reached through in the new network zone.
The foreign agent sends this care-of address to the home agent. The home
agent is reachable through a fixed, global IP address that is associated with
the mobile host.Packages sent by correspondent hosts destined for the mobile
host are sent to the home agent. The home agent keeps track of the current
care-of address of the mobile host. When the home agent receives packages
destined for the mobile host, it forwards them to the current care-of address.

When the mobile host sends a package to a correspondent host, it puts
the TP address of the home agent in the from field of the IP header. To the
correspondent host it looks as if the IP package came from the home agent.
When the correspondent host wishes to reply to the package it sends packages
to the home agent, believing this is where the original package came from.
Packages arriving at the home agent are forwarded to the foreign agent, who
in turn forwards it to the mobile host. In other words, packages from the
mobile host to the correspondent host are sent directly, while packages from
the correspondent host to the mobile host are sent via the home and foreign
agent(see figure 3.1).

Much of the success of Mobile IP derives from the fact that only the
mobile host and the network the mobile host visits have to support it. The
correspondent host acts as if the mobile host was permanently attached to

20

the network at its home address. However, because all the packages have to
travel via the home agent to reach the mobile host, there is a potentially large
overhead associated with Mobile IP. Route optimizing[31] alleviates some of
this overhead. Route optimizing allows the correspondent host to cache the
current care-of address of the mobile host. Instead of sending packages via
the home agent, the correspondent host is able to send packages directly to
the mobile host. Should a packet bounce, the correspondent host may ask
the home agent what the current address of the mobile host is. This approach
puts more strain on the correspondent host, and an upgrade to the network
layer in the correspondent host is necessary.

In Internet Protocol version 6(IPv6)[10], the next generation of IP, mo-
bility as per mobile IP with route optimization is included. Here a corres-
pondent host or a router can cache the current address of the mobile host,
and forward packages directly rather than through the home agent. Imple-
menting route optimizing in IPv6 holds more merit than in IPv4(The current
version on IP, IPv4 is commonly just referred to as IP) because it can be in-
cluded in the standard right from the beginning. Deploying a brand new IP
version across the Internet is tedious, and it is currently an open question if
IPv6 ever gets widely deployed.

Improvements to DNS has been proposed by Snoeren and Balakrishnan[43]
which improves DNS for better mobility support. They claim that their ap-
proach outperforms Mobile IP and that performance is in the same order of
magnitude as Mobile IP with route optimization. They take advantage of
secure updates to DNS servers. This update method insures that no host
may cache data about the host associated with this particular DNS-address.
When the host changes IP address, the change message is propagated to all
the DNS servers. In addition, Snoeren and Balakrishnan add functionality
in TCP/IP to enable keeping transport session alive across IP changes.

Other approaches to mobility support also exists. Some approaches focus
on extending Mobile IP to further improve its performance[16][22].

Teraoka, Yokote and Tokoro focus on making routers in the net more
mobility aware. In their proposed design[19], routers can cache home address
care-of address pairs, and forward packages addressed to the home address
of a mobile host directly to the care-of address. This approach demands
changes to the network layer of all routers in the Internet.

Some focus on mobility on the transport layer[36] or application layer|23].
The advantage of moving mobility support higher up in the network stack is
to allow the higher level protocols to adapt to the changes in mobility. When
a hand-off is initiated, the properties of the network may well have changed
dramatically. There may be a wholly different bandwidth, and latency may
well have increased or decreased.

21

3.4.2 Mobility in Heterogeneous Networks

As the use of wireless technology expands, access to different kinds of wireless
networks will increase. A natural effect of this is the movement from cell-
based networks to overlay networks. In other words, where there used to
be only one base-station available at a single point, there will now be any
number of base stations covering the same turf. In order for wireless devices
to take advantage of this situation, it has been predicted that mobile devices
in the future will each carry multiple network interfaces[33|.

Motivation for Multiple Network Interfaces

There are a number of advantages to using multiple network interfaces:

1. Smoother Hand-offs
The initialization of a new network such as acquiring network address
and registering with entities needed for the mobility scheme used can
be done before any hand-off is initiated, thus reducing the hand-off
time. It is also possible to start using the new interface before shutting
down the old one. If properly programmed, this will further reduce the
latency of hand-offs.

2. Different Network Characteristics
The different networks a mobile host with multiple network interfaces
is connected to, can have widely varying characteristics. The quality of
service, the cost of use and the security schemes available are all things
that make these networks different. With access to several networks,
the mobile host can choose dynamically which one that best fits its
requirements.

3. Multiple Simultaneously Active Network Interfaces
When the mobile host is connected through several network interfaces,
it is possible to use them all at the same time. This obviously increases
the network quality as compared to only being able to use the best
network available. If the demand for network Quality-of-Service can’t
be met by any one of the networks the mobile host has available, it
may be met by combining two or more of the networks.

Heterogeneous network architecture presents a tremendous challenge to
mobility software. Not only does the network software have to keep track of
where the mobile host is, but it also has to make a decision on which of the
several network interfaces of the mobile host it should send data to. In the
same manner, software on the mobile host needs to make decisions on which
of its several network interfaces to use when it has data to send.

22

MosquitoNet

The Wireless Computing Group at Stanford University has developed a
mechanism that enables a mobile host to make use of multiple active network
interfaces at the same time[53|. They have based their research on an exten-
sion of Mobile IP(see section 3.4.1). This mechanism is a part of a network
architecture called MosquitoNet.

In MosquitoNet each mobile host is associated with several care-of ad-
dresses, one for each network interface it has currently connected to a net-
work. When the mobile host wants to open a connection to a correspondent
host, it selects one of the active interfaces. Using this interface, it sends
an update to its home agent requesting that all packages originating from
a specified port on the correspondent host be routed through the selected
interface.

When a package arrives at the home agent bound for the mobile host,
the home agent checks its routing tables and decides which care-of address
to direct the package to. If there is no entry for the correspondent host
address/port combination, the package is directed at the default care-of ad-
dress.

This scheme is not compatible with the route optimization for Mobile IP.
All packages from a correspondent host need to go through the home agent
to be routed to the appropriate care-of address. Routing thus have to be
either triangular, with the mobile host sending its packages directly to the
correspondent host, or bi-directionally tunneled, where traffic both to and
from the mobile host goes through the home agent.

3.5 Service Centric networking

Classic network applications work by opening a socket from a client to a
server. The application has to deal with the protocol on this socket itself.
Remote Procedure Call(RPC)[5], Remote Method Invocation(RMI)[47, 38|
and Simple Object Access Protocol (SOAP)[44] are software modules which
enables the possibility of remotely calling procedures in a server. Using these
technologies, a server application may export a method interface which clients
can use. Middleware in the client and server handles the actual sockets used
to move instructions to and from the server.

In time, software developers grew accustomed to thinking about a server
as a place to invoke methods rather than as a place to connect sockets. This
design pattern opened up multiple possibilities for the design of distributed
applications. Combined with object-oriented programming, an interface on

23

a remote server could be encapsulated into an object, which the application
could use as if it was a locally stored object. From the server-side it was a
single object that exported its interface to the outside world.

The next step on the evolutionary ladder is code mobility. In a system
with code mobility a server may send a fully functional object complete with
both data fields and code to the client. The client could then use this object
as if it was a local object in the client. This mobile object would typically
have a binding with the backbone object in the server. In some occasions it
might forward procedure calls to the server, other times the procedure could
be local to the object. Fuggetta et al.[3] gives a nice overview of the field
of mobile code. In the Java[46] programming language, serialization[49] and
reflection[48] may be used to enable mobile code.

It is popular to call an interface provided by a backbone object a service.
The server exporting the interface is referred to as a service provider. Service
centric networking is when a client wishes to use a service, but don’t mind
what actual computer the service is located on. No more is the IP or DNS
address important to the user, merely the type of service he wants to use
matter. Several research efforts have been taken to allow users to locate such
services as they are needed. The first approaches to the problem was the
naming services of RMI systems like CORBA|[38] and JavaRMI[47]. These
naming services allow a server which wishes to export a service to store a link
to the service along with a name that can be used to look it up. A client can
ask the naming service to find a service with a specific name. For example,
a printer service might export an interface called printer/queue in a naming
server. When a client asks the naming server for a service with the name
printer/queuve, the naming service returns a remote link to the service. The
client needs to know beforehand where to look for the naming service, and it
is only possible to search on service names, not service types. A client could
not ask the Java RMI naming server to return all the printer queue interfaces
it has stored.

To solve this problem, JINI[30] was introduced. JINI offers a service
directory called the lookup service. Using code mobility, a service provider
may send a proxy object to the lookup service. This proxy implements the
type of the service the service provider wishes to offer. A proxy object is an
object that can be used to access the service. This proxy object may either
handle all procedure calls all by itself, or it may communicate to the backbone
service object. The service provider may attach attributes to the proxy
describing various service characteristics and QoS issues. These attributes
are called entries.

When a client wish to find a service of a certain type, for example a
printer service, it asks the lookup service to return all the services whos

24

proxy implements the printer interface. It is also possible to limit the search
to proxies by dmanding that certain entries are attached to the proxy. The
client may also register in the lookup service and receive events each time
a service the client is interested in becomes available, becomes unavailable,
or otherwise changes state. Lookup services are discovered using multi-cast,
much like the way foreign agents are discovered by the mobile host in Mobile
IP (section 3.4.1). This means that whenever a client using JINI enters a
new network, it does a multi-cast and asks if there are any lookup services
available. If one is available, it responds to the client, and the client can now
lookup the services it needs. When a lookup service is initiated, it broadcasts
to the network that it is present and ready, and clients wishing to use it may
connect to it.

Other research groups have worked in the same direction of JINI. HAVi|24]
and UPnP|[50] are two other systems which offer support for service centric
networking.

3.6 Sessions and Session Migration

According to the ISO/TEC Session Layer Definition[29], a session is a durable,
ordered and long-time data connection between two computers. As commu-
nication increasingly is between objects rather than computers, a session
evolved to being durable, ordered and long-time data connection between
two objects. Rendering both these objects mobile increases the complexity
of a session. Keeping a session alive across end-point mobility is referred to
as session migration.

Snoeren proposes in his PhD thesis|2]| a system called Migrate which im-
plements this scheme. In Migrate, a session is a data connection between two
network end-points that is kept alive even across attachment changes of the
end-points. Migrate is built on top of TESLA[41], a framework which sup-
ports a flow-based abstraction on the session layer. The creators of TESLA
claim that it is able to provide easy-to-use programming paradigms for mul-
tiple session layer functionalities including encryption, application-controlled
routing, and flow migration. Migrate is a design of the flow-migration part of
TESLA. Migrate uses virtualization and rebinding to support migration. Vir-
tualization introduces an abstraction level on the session layer which tracks
mobility of the host and the correspondent host. Whenever there is a change
of attachment point, the software transparently takes down the old trans-
port connection and opens a new one. The session is then resumed using the
new connection. Rebinding with Migrate includes modifications to the TCP
protocol to support mobility on the transport layer.

25

Suspending a session and resuming it at a later point in time requires
some sort of resource management. When a session is suspended, the ser-
vice provider has to decide if it should keep the resource allotments for the
session, and if so, for how long. Snoeren proposes a scheme called session
continuations to store all the state information in the session itself. When
the service user at a later point in time locates and connects to the service
provider, the session object generates all the state necessary to continue the
session.

Session Migration is perhaps best know in enterprise servers. In the con-
text of enterprise servers, session migration occurs when the server cluster
moves a session from one server to another. This can be because the original
server crashes, or for load balancing reasons. Almost all applications servers
with enterprise Java beans support include this functionality, e.g. are BEA
Weblogic[4] and Oracle Application Server[39]. The definition for enterprise
Java beans servers can be found at: [13].

3.7 Adaptation

It is a widely accepted[12, 34, 17] that applications in a mobile environment
benefit from adapting to the changing environments. As stated earlier, the
network of tomorrow is likely to be heterogeneous. A mobile device will have
multiple network interfaces, and for popular services there will be several
service providers for the application to choose from. In addition, each of
the service providers may be reached through two or more of the network
interfaces. All these aspects add to the complexity of choosing which service
to use.

One approach is to gather as much information as possible and forward
it to the application layer. The application layer makes the choice on which
network resource to use and instructs lower layers to initiate the connection.
The information can for example be gathered with estimation and network
sampling, and the service providers may also contribute data. This scenario
can relatively easily be implemented using JINI or another service centric
software and some sort of estimation scheme[35].

A similar approach has been taken by Inouye, Binkley and Walpole[32].
They propose a system called Physical Media Independence (PMI). PMI
uses six general true/false characteristics to describe a network interface(See
table 3.1). All these characteristics have to be true for a network interface
to be available.

PMI introduces software into the protocol stack which monitors these
characteristics. Whenever there is a change to one of them, the system

26

Characteristic | Description
Present Both the hardware and the software device driver is present.
Connected There is an active link connection.
NetNamed The device is associated with an TP address
Powered The device has sufficient power to function properly.
Affordable The monetary cost of using the interface is within budget.
Enabled The user has enabled the device.

Table 3.1: Device characteristics in PMI

makes sure that all the layers adapt to the new resource situation. An event
propagates through the system and lets each layer in turn know that the
resource in question has changed. PMI leaves it to the application layer to
deal with issues like quality of service of the different network interfaces,
and merely keeps track of which interfaces are up and running. If combined
with other monitoring and estimation schemes to figure out the cost of use
of a network, the bandwidth available, the latency encountered etc., PMI
can assist the application developer in designing adaptive network software
that supports multiple network interfaces. However, as PMI requires great
changes to the link, network and transport layers in the network protocol
stack, the deployment of the system is likely to be slow.

As the device is moved around, the available service providers and networks
links will change — Some will get better, some worse, some will disappear,
and others will emerge. All this adds to the complexity of handling the
adaptation. Session migration may be used to move a session from one service
provider to another as done in EJB systems, but the actual decision on when
to do the migration still has to be taken. As the number of available service
providers grows, both from heterogeneous networks and from the growing
number of service providers, decisions about whether or not to switch to
another service provider has to be taken more and more often.

Policy languages

Policy languages are sometimes used to separate the policies which govern a
desicion from the code that implements it.

A policy is a rule that defines a choice in the behavior of a system[9].
Using policies, it is possible for users to define the behavior of a complex
system without detailed knowledge on how the system is implemented. It
is also possible to use a common policy language to harness the behavior of

27

differently implemented systems.

In [51] a research group from Berkeley shows a system that uses policies
to configure hand-offs across heterogeneous networks. They study the case of
a device which has network links to several different networks. They define
some policy parameters, as cost, power consumption and quality of service.
The user or application level software, is allowed to assign weights to each
parameter. The system uses these parameters to define which network is
the best to use, and guides an underlying Mobile IP system to hand-off to
this network. The research group from Berkeley postulates that the power
requirements of using more than one network at the same time are too large,
and focuses on the single active link paradigm.

Policy systems are used in a wide range of applications today. Most prom-
inent are the policy systems for security control and network management.
As networks grow more heterogeneous, policy systems will have growing im-
portance. Through policy systems, the task of determining the policies for
network usage can be separated from the task of implementing these policies.
You don’t have to know the details of how a specific router or base-station
works if you are a manager, you just define how the network should act using
some common policy language. The manufacturers of network entities have
to implement management schemes where the entity keeps itself updated on
the policies from some central or distributed policy repository.

The policy system as defined in [45] focuses on centralizing the storage
of rules rather than centralizing the implementation of these rules. Each
entity or group of entities in the distributed system can manage themselves
according to the rules laid down in the central repository. The manager only
needs to know the language used to define these rules.

This effectively separates the policy makers from the policy enforcers. As
shown in [42], this facilitates dynamic change of behavior of a distributed
system.

Observing the arrival of these and other policy systems, the IETF and
DMTF in tandem has developed a core information model for policies as
an extension to the Core Information Model called Policy Core Information
Model[18§].

3.8 Summary

Although many of the technologies presented in this chapter go a long way
towards providing flexibile support for mobility, service centric networking
and adaptability, no single system exists which supports policy controlled
service migration in a mobile setting. We therefore can not base our research

28

merely on available software packages.

Several of the technologies presented here provide us with a foundation on
which to build upon. In the following chapters we will present a design and
implementation of Embouchure which is introduced in this thesis to demon-
strate policy controlled session migration in highly dynamic, mobile environ-
ments.

29

Chapter 4

Discussion of Design Possibilities
for Embouchure

In this chapter, we will discuss various decisions made during the design of
Embouchure. We will present these in comparison with existing technology
which we presented in chapter 3 and argue why new software is needed. We
will also present JINI in more detail. Service centric networking stands at
the very core of Embouchure and is an absolute necessity for Embouchure to
work. Another service centric architecture could well be used in place on
JINI, but we choose to use JINI because it is the architecture we have had
most experience with.

We start this chapter with a presentation of JINI and service centric
networking in general. As all other software systems, choices had to be
made on how to design Embouchure and on how to organize the system. In
section 4.2 we cover these choices.

4.1 JINI and Service Centric Networking

As briefly covered in section 3.5, service centric networking moves the focus of
networking away from hosts and towards the service. Rather than focusing
on the host address to locate a resource, one instead focus on the service
required. For example, when you need to print a document you locate the
nearest printer and uses that instead of first finding the printer, then getting
its host address and then use that address to allow your computer to locate
the printer.

We believe that this manner of network usage will be the prevailing one
in the future, a future promising great diversity for mobile communication.
Today, anyone can start his own wireless network merely by inserting a

30

WLAN card into his computer. In the future we believe that new technology
will make this kind of networking even more accessible. We also believe that
the Internet as we know it today will prevail as a backbone for the emerging
wireless networks. For some services that are located at fixed points in the
Internet, it can be profitable to still think of them as attached to the net at
predetermined network addresses. However, we believe that many services
will be located either on mobile devices which constantly change connection
point or as mobile software migrating from fixed server to fixed server. The
old paradigm of finding services by using its IP address or DNS name will be
outdated. In its place, we believe service centric lookup will be important.

4.1.1 Overview of JINI

JINT is a general architecture which allows service providers to deploy services
which service users can locate through a lookup service. When entering a
new network, the service user uses multi-cast to locate a lookup service. This
lookup service can be queried by the service user to locate services the user
is interested in. The query is based on the type of the service and entries
which describe it.

JINT is written in Java. When a service provider wishes to deploy a
service, it generates a proxy object. This object is mobile and can be down-
loaded to the lookup service and from there to the service user. This object
may contain protocols for communication with the service provider, or it may
provide the whole service itself.

The proxy object thus becomes a local object in the service user which
acts as a stand-in for the service provider.

The service provider may attach entries to the proxy object before it is
shipped to the lookup service. These entries can contain any information the
service provider wishes to give about its service. The entries can be used by
the service user to limit the lookup search when it uses the lookup service to
locate suitable services.

4.1.2 The discovery and lookup of a service

When a service user enters a new network, it uses a JINI mechanism called
discovery to locate a lookup service. When a lookup service has been contac-
ted, the service user downloads the lookup service’s proxy object. Using the
proxy, the service user can use the lookup functionality in the lookup service
to find service proxies which match its needs. The service user has to tell the
lookup service which Java interfaces service proxies must implement. In ad-
dition, the service user may specify that certain entries should be present in

31

the proxy and possibly that the entries should have certain value. If service
proxies in the lookup service match these requirements, they are sent to the
service user. The service user may also instruct the lookup service to send
events should a service proxy matching the requirements appear at a later
point in time.

4.2 Design Choices

Embouchure aim to improve the end user’s perceived quality of service in a
mobile, heterogeneous network environment. This should be achieved with
a minimum of complexity for the application developer, but without hiding
functionality the application developer needs to use.

Embouchure uses service centric networking as a basis for the distributed
programming.

This aim presents several challenges. We group them into four sections:

1. How to design for multiple network interfaces.

2. How to design for maximum mobility of service providers and service
users.

3. How Embouchure should adapt to the changes in available resources,
and how the application layer should be involved in this adaptation.

4. How Embouchure may conserve the sparse resources of networking and
power on the mobile device.

4.2.1 Multiple Network Interfaces

In classic networking each computer has a single network stack. Going from
bottom to the top, each layer introduces new protocols and abstractions
and allows each layer to use the network without caring for the complexity
internal to the layers below it. The theoretical network stack has seven layers:
physical, link, network, transport, session, presentation and application. The
Internet as we know it today only uses the bottom four. The layers above
the transport layer are optional.

Inserting more than one network interface into a computer introduces
more than one access point at the link layer. Each network interface is asso-
ciated with its own physical layer technology and the link layer technology
used on that physical link. For example, a typical WLAN card uses wireless
transfer of data on the physical layer, and Ethernet as its link layer protocol.

32

In other words, when we have more than one network interface, we also
have more than one network protocol stack. In order for an application to
be able to use more than one network interface, these network stacks have
to be joined at some point.

How others do it Today, some computers already have more than one
network interface. The most commonly known of these are the hubs and
routers of the Internet. A hub is a device which joins multiple physical
connections on a single link layer connection. In other words, it joins the
network stacks on the link layer. A router joins the stacks on the network
layer. This way it uses network layer protocols and functionality to send the
packages out on the correct link connection. However, in a router there is no
transport layer, nor any other layer above the network layer. Network traffic
propagates through the physical and link layers up to the network layer,
where routing decisions are made before it propagates back into another
protocol stack’s link and physical layers.

As we covered in chapter 3, some technologies exists which make use of
multiple network interfaces. MosquitoNet(section 3.4.2) joins the protocol
stacks at the network layer. Being an extension to Mobile IP, MosquitoNet
hides the complexity of multiple network interfaces from the transport layer.
This allows regular transport layer protocols to act as if the connection was
on a classic network interface. However, the network interfaces can have
widely varying performance. Hiding the fact that hand-over between network
interfaces from the layers above result in a network connection which varies
widely in performance without prior notice. BARWAN((section 3.3) too joins
the protocol stacks at the network layer.

How we believe it should be done

Selecting which network interface to use is not a simple matter. It is not
enough to simply select the network interface with the best performance,
one also has to make sure it is affordable. The selected network interface
should not consume more power than the device can spare. These are just
a few of the considerations to make. In addition, different applications will
have different definitions of what is considered good performance, and they
will have different threshold on when a network connection gets too expensive
to use.

Should we select to do the protocol stack joining at the network layer,
as do BARWAN and MosquitoNet, the network layer would need to be up-
dated — only in the home agent and the mobile host in MosquitoNet, but
in every single router and participating computer in BARWAN. Updates to

33

the network layer is tedious, and generally means changes to IP. Changes to
IP require a large community to agree before it can be tried out at a large
scale. Using this approach would therefore cause deployment of the system
to be hard and slow.

Due to the service centric nature of Embouchure , decisions on which
service to use also need to be made. Some services may be reached through
multiple network connections, others may be reached only through a single
connection. The characteristics of the network connections should be taken
into account along with the information provided in the entries by the service
provider when selecting which service is the best suited to use.

Service centric architecture is generally implemented at the session layer.
This means that information about services will be available at the session
layer and not below it.

After taking all these facts into consideration, we have decided that the
session layer is the proper place to join the network protocol stacks.

Multiple network interfaces and its effect on service proxy objects

Some services may be accessible through more than one network interface.
Embouchure therefore has to decide both which service to use and which
network interface to reach it through.

One possibility would be to use a single proxy for a service and use options
to the method calls to determine which network interface to use.

Another possibility is to generate a separate proxy object for each ser-
vice/network interface pair. In this manner, if a service is reachable through
two different network interfaces, it is represented by two different proxy ob-
jects. This creates the illusion that there are two different services available.

We have chosen the latter variant. We believe that this variant is easier
to design and implement. JINI and the other service centric networking
systems are all based on single interface networking. If we use multiple
service proxies, each proxy only has to deal with a single network protocol
stack. Furtherservice arguments in favor of this approach are presented in
the adaptation section of this chapter.

4.2.2 Mobility Management

Classic mobility management deals with keeping a network connection alive
across changes in attachment point to the Internet. As we covered in sec-
tion 3.4, numerous schemes exists to tackle this problem.

However, by deciding to join the network stacks of a device with multiple
network interfaces at the session layer, we commit to solving the mobility

34

problem at the session layer or higher. A mobility system like Mobile IP,
which is a network layer mobility system, can be used in the network layer
of one of the stacks, but if mobility which allows moving a session from one
network interface to another should be supported, the mobility management
needs to be done on the session layer or higher.

In Embouchure the atomic network component is the service. We don’t
think about hosts or network layer addressing, we simply treat the network
as a means to access services. When the application layer wishes to use a
service to provide some functionality, we open a session with a service which
can provide this functionality.

One example of a service session is the video streamer. When the applic-
ation layer wishes to stream data from a video streamer, Embouchure locates
a service which can provide video streaming functionality, and opens a session
with that service.

If for some reason the service we are using to provide a session is lost,
Embouchure will try to continue the session on another service. This should
be done without the application layer even noticing it.

In other words, in Embouchure mobility is about session migration from
service to service. When one of the network interfaces of a device looses its
link, or the link quality deteriorates below a predetermined threshold, the
session should be migrated to another service.

Session Migration

In order to move a session from one service to another, there has to be a way
to transfer the state from one service to another. If a new video streamer
should be able to take over for a lost one, the new video streamer needs to
know which video to stream, and where to start in the video. There is no
point in starting all over again, because the user has already watched part
of the video.

The size and form of state variables are likely to vary widely from service
type to service type. For a video streamer, a mere number telling it at which
byte to continue streaming may be enough to resume the session. For a stock
trading service the requirements might be quite different. The service user
will need to be authenticated and go through a series of security procedures.

Because state transfer is so diverse, we have decided to require that ser-
vice proxies implement mechanisms for transferring state between service
providers. Sometimes state can be transfered directly from service provider
to service provider, other times the service user has to instruct a new service
provider of the state it is supposed to be in. Embouchure provides an inter-
face design of the proxy object which includes methods for session migration

35

from one service to another. The service providers need implement these
methods for the system to work.

4.2.3 Adaptation and application interaction

Two essential assumptions that lie at the core of Embouchure are:

1. Mobile applications have to adapt to the changing network environment
in order to fully utilize the available services.

2. Adaptation is application dependent. Session layer software needs ap-
plication input in order to adapt in the manner best suited for an
application.

As services are lost and new ones emerge, it may be profitable for the user
to change from one service to another. For example, consider a user who is
currently downloading his email using a service proxy which is connected
to his email service through a slow and expensive network. As he moves
into a fast and cheap network, he discovers that his email service is now also
reachable through the new network. It is then highly likely that it is profitable
for him to migrate the mail downloading session to the new network.

The second assumption comes from the fact that different applications
have different assessments of what constitutes a good service and what does
not. An application which wants to download and play music which has
been encoded at 128 kb/s, does not want to pay big bucks for a 10 mb/s
connection if a cheap 300 kb/s connection is available. On the other side, a
video chat application could be able to use all that bandwidth, and if it is
important enough, say for example a video chat with an important customer,
the application may be willing to pay the big bucks.

In conclusion, Embouchure should include software to adapt to changer
in the mobile network and service environment. Embouchure needs input
from the application layer on how this adaptation should be done.

Application layer interaction

Deciding how the application layer should access the functionality in Embouchure is
a central decision in the design. We strive to create an interface which is both

rich and simple at the same time. The “simple” application who do not need
customization should not have to specify how the adaptation is done, and

the “advanced” application who needs a highly customized solution should

be able to get that. This constitutes the classic trade-off between simplicity

and expressiveness.

36

There are several possible solutions to this problem. One is to provide
the application layer with a rich API which also includes default methods
that the “simple” application may use. This API could include methods to
allow the application to get events whenever there is a change in the available
services, and allow the application to make the choice on which service to use
by itself. There could be methods that allows the application to set rules for
how the selection process should be done. This interface would have to be
extended for each service type the application wishes to interact with. The
parameters which define how the selection between the service are made will
change drastically from service type to service type. When using a printer
service, the application could be interested in the location of the printer as
well as the resolution available. When using a video streaming service, the
location does not matter, but the available bandwidth is important.

We believe that an API based approach would be hard to implement and
extend for each service type. It would require the “advanced” application
wanting to do much customization to have detailed knowledge of the inner
workings of Embouchure .

Another approach is to allow the application developer to subclass the
class which defines how the service selection is done. The service selection
super class would define methods that are called when there are changes in
the available services, and the subclass would define how the service selection
is done. This approach has the same weaknesses as the API based one. It
requires the application developer to have extensive knowledge on the inner
workings of the service selection module.

The solution we believe is best suited to allow application layer interaction
in the service selection process is to employ service selection policies. By
using a separate policy language the application can define how it wants the
selection process to be done without considering how the actual process is
implemented. In this manner, the application layer could define how much
bandwidth it needs, and how much it is interested to pay for it. When a
new kind of service is introduced, the application layer can make policies
which take into account the entries used to describe this service without the
middleware having to know on beforehand what these entries are.

It would also be possible for service providers to bundle default policies
with their products. When they introduce a new entry, they could send a
policy on how this entry should be used to grade services to the service user,
who could decide to use it or not.

We believe that if policy language and entries are made as simple as

37

possible, the threshold for using them would be lower than the threshold for
using the other methods described here.

We propose to use a policy language to allow applications to define how
service selection is done. This allows us to offer a very simple interface to
the application layer. A single method can be used to initiate a session. This
method would return a session object which in turn can be used to access
the actual session. The session initiation method would take a policy as an
optional parameter. Application which wish to provide their own customized
policy would include one, application which are satisfied with the default
policy would simply call session initiation without any parameters.

Using the policy approach we have a single method interface between
application layer and Embouchure. We believe that this will make it easier
to make future upgrades to the system.

4.2.4 Resource Management

A mobile device will typically have less resources available to it than a fixed
computer. Two resources, power and network will be of particular interest
in this thesis. Other resources like CPU and memory could also be sparse,
but we assume here that we have enough of those.

Power is limited on a mobile device. One of the most power consuming
tasks of the mobile device is the use of a wireless network. A central point
in Embouchure is to use multiple wireless network interface simultaneously.
When we do this, the power requirements will obviously grow — Two active
interfaces use more power than one. We will not cover power saving schemes
in depth. We will limit power conservation in Embouchure by limiting the
amount of necessary network traffic.

When an application signals its interest in a particular service type, there
could be hundreds of service providers available which provide the service
needed. Only one of these will be used to initiate the session, so download-
ing a fully functional and specialized proxy from each and every one of the
available service providers is clearly a waste of power and network bandwidth.

To address this issue, we propose to use two kinds of proxies: One very
generalized one and one specific to the service type. In this manner, the
service user only have to download a small, generalized proxy from all the
possible service providers. This small proxy could then be used to download
the bigger service specific proxy of the service provider that is chosen to
provide the service.

We call the small proxy the Core Prozy and the service specific proxy the
Service Proxy.

38

Chapter 5

The Design of Embouchure

In this chapter we present the design of Embouchure. Embouchure is a sys-
tem for session migration in a mobile, heterogeneous network environment,
and it offers a simple yet rich interface to the application layer. We start this
chapter by presenting an overview of the whole Embouchure architecture.

5.1 Overview of Embouchure

Figure 5.1 shows a high-level overview of Embouchure . Embouchure consists

Application setPolicy
Policy
initSessionl TnOtify Modue
Middleware getPolicy

Resource specific protocols

y

Networked
Resources

Figure 5.1: A high-level overview of Embouchure
of two modules: a middleware module and a policy module. An application
uses the middleware module to start a session with a desired service type

through the initSession method call. The application may also define policies

39

for session migration and store these in the policy module using the setPolicy
method call. Default session migration policies will be used should the ap-
plication chose not to define its own. The middleware module obtains up to
date information about resources such as available services and network links
from lower-level middleware (depicted as the Networked Resources module in
figure 5.1). The middleware module constantly monitors changes in the avail-
able resources and based on policy rules may decide to initiate the migration
of sessions. The application can subscribe to events in the middleware. The
delivery of these events are depicted by the "notify" arrow in figure 5.1

A service type is represented by an object interface. An interface in this
context is a list of the public methods that are available in objects which
implement it.

After the application has told the middleware that it is interested in a
session, the middleware uses a service location scheme to locate all matching
services, and to build a list of possible services. The policy associated with
the session is now used to rank these services, and the best service is used to
initiate the session. If the application provided a policy, this one is used. If
the application did not provide a policy, a default policy is downloaded from
one of the matching services.

After the session has been initiated, the middleware continues to monitor
it. If changes occur in the available services, the middleware may choose to
migrate the session from one service to another. Typical changes would be
the arrival of a new service, the loss of an existing service or the change of an
existing service. The middleware uses the policy which the application layer
provided to determine whether or not to migrate the session.

The initSession method returns a Session object to the application layer.
This object includes functionality to change the policy associated with the
session, and it has a method the application layer uses to get the service
type specific session object. A service specific session object that is as-
sociated with printer services could have enqueue and dequeue methods,
while a video streamer session object would have getStream and, possibly,
setDataRate methods. The point being that each service type would provide
a different service specific session object to the application. These service
specific objects implement the service type the application specified when
initiating the session.

5.1.1 Overview of the Networked Resources

Figure 5.2 shows the middleware modules of Embouchure with the networked
resources box from figure 5.1lexpanded. The networked resources consists of
service providers that represents their offerings through proxy objects. These

40

Middleware

Proy Proxyy Proxy Proxy
of SP1 /_of SP2 of SP1 A\ _of SP2

; S

Network Network Network
Interface

Interface Interface

Service Location
Scheme

Service Location
Scheme

Service
Provider 3

Service
Provider 1

Service
Provider 2

Figure 5.2: Overview of the networked resources used by Embouchure . No-
tice how each service provider/network interface pair have its own proxy
associated with it.

proxy objects are made available to the middleware through a service location
module.Figure 5.2 shows a configuration of three service providers and two
service location modules that are access by the middleware modules through
three network interfaces.

Notice how service provider 2 is reachable through two of the network
interface of the mobile device. It is therefore represented by two different
proxies in the middleware. The proxy objects originate at the service provider
and travels through the service location systems and the individual network
interfaces to the middleware. The service provider attaches entries which
describe the service before it is sent. These entries can contain any sort
of information the service provider deems interesting for the service user.
Typical entries could describe the quality of the service provided and the
cost of the service.

As the proxy travels towards the middleware, other entities may add
entries to it. This could be a network firewall which adds an entry showing

41

that network usage through this firewall has a cost attached to it, it could
also be a software module in the mobile device which monitors the network
link the proxy arrives on. This monitoring module could attach entries which
describe the bandwidth and latency of that particular network interface, or
the power usage needed to transmit data using that network interface. When
the proxy arrives in the middleware, it has a number of entries attached to it
which describes the service provider represented by this proxy, the cost of its
use or other data the service provider or an entity on the path to the mobile
device thinks is interesting for making the choice of which service to use.

5.1.2 Overview of the Middleware of Embouchure

Figure 5.3 shows an overview of the Embouchure middleware module. The

A N createPolicy
Application Layer —]
getSession notify Policy
Module
Session Manager
getPolicy
register event

Service Manager

transport | |transport | [transport

network network network
link link link

physical physical physical

Figure 5.3: Protocol stack overview of Embouchure on the mobile device.

figure shows all parts of Embouchure that are located in the mobile device.
Note that figure 5.3 also contains expanded versions of the the network in-
terface boxes from figure 5.2 to illustrate how the ServiceManager and the
Session Manager fit into the overall network protocol stack.

42

This figure identifies two new software modules: The Session Manager
and the Service Manager. The Session Manager uses the Service Manager to
provide a list of all the services which match a certain service type. The Ser-
vice Manager provides a simple subscriber/publisher interface to the Session
Manager. Through this interface, the individual session in the Session Man-
ager register its interest in services of a certain kind. As long as at least one
session is interested in a service type, the Service Manager keeps updated on
which services of that type are available, and their current state. Whenever
there is a change to the list of available services or to the entries of one of the
available services, an event is sent to the sessions subscribing to this service
type.

We will not focus on the design of the Service Manager in this thesis
since it can be based on well-known service location systems such as Jini.
The focus will be on the Session Manager, the Session objects and the Policy
module. We will also discuss in some detail the design of the service proxy
object.

We will, however, give a brief overview of the interface the ServiceManager
offers to the rest of the system.

Overview of the Session Manager and the Session objects

The Session Manager is essentially a factory for Session objects. It receives
initSession method calls from the application layer and generates a session
object for each call. This session object registers in the Service Manager.
When the Service Manager has data about the service type associated with
this session, it sends events directly to the session object. The session object
also accesses the policy module to get the policies specified by the application.
Alternatively, if the application did not provide a policy, the session object
uses one of the service proxies returned by the Service Manager to get a
default policy.

The session object uses the policy module and the service manager to
gather as much information about the service providers as possible. Based on
this information, the Session object selects which service provider to initiate
the session with and which service provider to migrate to.

We will now present a more detailed view of the design of Embouchure .
The different classes will be described in the sections below. The entry defin-
itions and the policy language in section 5.2. These are highly intertwined,
as the policy language uses the entries attached to each service proxy to rank
the proxies. In this section we also present the design of the policy module of
Embouchure . In section 5.3 we define the proxies, in section 5.4 we describe
the interface of the service manager, and in section 5.5 we cover the session

43

management module.

5.2 The entry definition and the policy lan-
guage

As we discussed in the previous chapter, we have chosen XML to define both
policies and entries. We strive to keep the entry and policy language as simple
as possible. We are not trying to design a fully fletched policy language here,
we merely want to try out the concept of using policies to control adaptation
in the session layer.

5.2.1 The Entry Definition

An entry in Embouchure is a simple name/value pair. Both name and value
are strings, and the entry is written as a single XML tag:

<ENTRY NAME=<name> VALUE=<value> />

Additionally, the <ENTRYLIST> tag is used to denominate a list of entry
tags.

The service provider attaches a string containing all the entry information
to the core proxy of the service, and any entity on the path from service
provider to service user may add entries to this string. No-one may remove
entries from the string, however.

This approach has a severe security risk, as an intermediate entity could
add entries that are faulty or malignant. This security risk could be addressed
with future works projects of Embouchure . We choose to use this approach
here because it is very simple, and it illustrates a way of gathering information
along the connection path which is very important to assess the different
characteristics of heterogeneous networks. We simply assume that all parts
of the system behaves themselves for now.

As discussed in section 4.2.3, we assume that the proxies which are de-
livered from the service manager to the individual session objects have entries
attached to them which fully describe the quality of service and performance
associated with each proxy. In other words, the string containing the entries
of a proxy includes data from all the interesting points along the path from
service provider to service user.

A entry string associated with a printer service could look like this when
it reaches the service user:

<ENTRYLIST NAME="PService">

44

<ENTRY NAME="BW" VALUE="300"/>

<ENTRY NAME="LA" VALUE="50"/>

<ENTRY NAME="PService_ RES" VALUE="680%1024"/>

<ENTRY NAME="PService. COLOR" VALUE="TRUE" />
</ENTRYLIST>

This design could possibly be expanded to allow a service provider to
provide several quality of service choices to the service user. The printer
service could for example provide both color and monochrome printing at
two different prices.

5.2.2 The Policy Language

Like the entry definition, the policy language is extremely simple. We base
the language on simple boolean logic and a couple built in functions. The
XML file used to define a policy has only two tags:

<POLICY>
and

<DEF NAME=<name> IF=<float expression> VALUE=<float expression> />

The POLICY tag is used to encapsulate the whole policy file.

The DEF statement defines a variable NAME which is set to the value
defined by VALUE. Once defined, a variable may not change its value. If the
expression in the IF field is less than 0.5, the whole statement is discarded, if
its more than 0.5, the statement is executed. A value of exactly 0.5 is invalid.

A float expression has three possible atomic parts: The name of a pre-
viously defined variable, a floating point number or the name of a built-in
function, possibly with parameters which in turn are float expressions. The
atomic parts can be joined with the regular floating point operators, +, —,
* and /.

Every policy file has to define the variables POLICY VALUE and
MIGRATION THRESHOLD. POLICY VALUE is returned to the session
object as the desirability of this proxy. MIGRATION THRESHOLD de-
termines when migration from one service to another should be done. If the
POLICY_ VALUE of the new service proxy is more than

MIGRATION THRESHOLD * POLICY VALUE

of the old proxy, migration is initiated.
A sample policy definition could look like this:

45

<POLICY>
<DEF NAME="BW" IF="1" VALUE="minMazLinear(100,10000,ENTRY_BW)"/>
<DEF NAME="LA" I[F="1" VALUE="1 - minMazLinear(75,150,ENTRY LA)"/>
<DEF NAME="POLICY VALUE" IF="1" VALUE="LA * BW"/>
<DEF NAME="MIGRATION THRESHOLD" IF="1" VALUE="1.5"
</POLICY >

Note that all entry data has the ENTRY _ string added to the name of
the entry. This is to avoid having internal variable names which conflict with
entry names. A service provider or other entry-adding entity could at any
time decide to add a new entry to a proxy.

Policy values are limited to the range 0 to 1. 1 is the best, 0 is non-
acceptable. the minMaxLinear(min, max, val) built-in function normalizes
the data entered in the val field by returning 0 if val<min, 1 if val>=max
and (val — min)/(max — min) if min <= val < max. Essentially this is
a linear function of val for values between min and max. The result is a
number describing val that is between 0 and 1.

This approach enables us to easily compare widely varying data. In the
example above, we use the minMaxLinear function to normalize bandwidth
and latency in order to compare them. The first DEF statement generates a
variable, BW, which is 0 if the bandwidth is below 100kbs, 1 if the bandwidth
is above 10mbs and if the bandwidth is between the maximum and minimum,
BW is a linear function of the bandwidth.

The second DEF statement defines a variable, LA, which describes latency
on a scale from 0 to 1. If the latency is above 150ms, LA is 0, if it is below
50ms, LA is 1, and if the latency is between the maximum and minimum
values, LA is a linear function of the latency.

5.2.3 The Policy Module

Table 5.1 shows the UML class diagram representation of an Entry ob-
ject. An entry object is generated by providing the a string containing the
<ENTRY > tag to the constructor. Note the static method makeEntryArray.
This method takes a whole file of <ENTRY > tags and generates an array of
Entry objects to match. The Entry object is just a read-only structure for
holding the name and the value of an entry for use in the Embouchure system.

46

Entry

- name:String

- value:String

+ Entry(zmlString:String)

+ String getName()

+ String getValue()

+ static Entry[] makeEntryArray(xmlString:String)

Table 5.1: The UML Class Diagram of the Entry Class

The core of the Policy Module is the Policy object. The UML class diagram
representation of the interesting public variables of the Policy object is shown
in table 5.2.

Policy

+ Policy(XML _input:String)
+ eval(entries: Entry[])

Table 5.2: The UML Class Diagram of the Policy Class

Whenever a policy rule is specified to be used by a session, it is represented
as an XML stream. This XML stream can either be retrieved from a policy
storage as specified by the application calling the initSession method, or it
can be provided by a random core proxy object if the application layer does
not provide a policy to use.

When provided with an XML stream, the constructor parses the XML
data and generates code that is able to evaluate the policy value and return
the migration threshold. The policy object compiles the XML stream into
an object which can calculate policy values and return migration thresholds.

When the eval method is called with an array of Entry objects, a variable
in the policy module is created for each entry. The name used is the name of
the entry with "ENTRY " added at the front. The value stored is the one
specified in the entry description.

After the entries have been store in the policy module, the evaluation code
is executed. The result is returned as a PolicyValue object, which is nothing
more than a pairing of the POLICY _VALUE and MIGRATION THRESHOLD
variables.

The UML class diagram for the PolicyValue object is shown in table 5.3

47

PolicyValue

+ PolicyValue(val:float, mig thr:float)
+ float getValue()
+ float getMigration Threshold()

Table 5.3: The UML Class Diagram of the PolicyValue Class

5.3 The Proxies

Embouchure uses two kinds of proxies to allow communication between the
service providers and the service user:

e The Core Proxy
The core proxy is a stripped down version of a proxy. It contains
methods for accessing the entries associated with the service, for ac-
cessing the default policy for the service type and for accessing the
service proxy. The CoreProxy is bound to the service provider through
a remote object in the service provider. This remote object has to
implement the ServiceBackend interface.

e The Service Proxy
The service proxy contains methods to initiate and shutdown a ses-
sion, methods to support migration from one service to another, and a
method to access the service specific session object that is returned to
the application layer.

5.3.1 The Core Proxy

The Core Proxy is a stripped down proxy. The service provider developer is
supposed to use the CoreProxy object as it is defined here and not subclass
it. By doing this, the service user will never have to download the code for
the CoreProxy, thus saving bandwidth and time when a new service provider
is located.

The UML class diagram of the CoreProxy is shown in table 5.4. The
core proxy has only three major methods: getEntries, getServiceProxy and
getDefaultPolicy.

48

CoreProxy

+ CoreProzy(backend:Service Backend)
+ Entry[| getEntries()

+ ServiceProxy getServiceProzy()

+ inputStream getDefaultPolicy()

+ void poll()

Table 5.4: The UML Class Diagram of the CoreProxy Class

getEntries returns an stream of data containing the XML data for the
entries associated with that particular service. As previously covered, these
entries originate both from the service provider and from other entities along
the path from the service provider to the service user.

getDefaultPolicy returns a stream of data containing the XML data for
the default policy definition for this service type. The service provider decides
if he wants to ship this data with the core proxy, or if he prefers to have the
core proxy do a call-back to the service provider and get the data if needed.
Because the core proxy is supposed to have a minimal footprint, the latter
solution is probably the best choice.

getServiceProxy returns the service proxy of the service.

The poll method is used to check if that particular service is still avail-
able. If the method call returns without incident, the service provider is still
reachable, if an exception occurs, it probably is not available.

The CoreProxy is initialized in the service provider with a reference to
an object implementing the ServiceBackend interface. The ServiceBackend
object is a remote object in the service provider and used by the CoreProxy to
download the information the service user requires. The UML class diagram
of the ServiceBackend interface is shown in table 5.5

interface ServiceBackend

+ CoreProzxy(backend:ServiceBackend)
+ Entry[| getEntries()

+ ServiceProxy getServiceProxy()

+ inputStream getDefaultPolicy()

+ void poll()

Table 5.5: The UML Class Diagram of the ServiceBackend interface

49

5.3.2 The Service Proxy

ServiceProxy is an interface the service provider developer has to implement
when designing a service provider. The object implementing this interface
represents the backend in the service provider associated with a single session.
For example, for a streaming service the service offer would represent the
methods needed to access the stream and possible to shut it down or change
the data rate.

The methods defined in the ServiceProxy interface deals solely with ses-
sion initiation and migration. The implementation of ServiceProxy also has
to implement service specific methods that are needed to provide the service.
For a streamer service this could be methods like setDataRate or getStream.
The UML class diagram of the ServiceProxy interface is shown in table 5.6

Service Proxy

+ ServiceSession initSession()

+ ServiceState getState()

+ void setState(state:ServiceState)
+ shutdown()

Table 5.6: The UML Class Diagram of the ServiceProxy Class

ServiceProxy has four methods:

e initSession
initSession starts a new session with this service, and returns a Ser-
viceSession object. The service provider is supposed to subclass the
ServiceSession object to provide the functionality specific to the ser-
vice type. This object has to be of the same type as the service type
specified by the application layer when the session was initialized.

e getState
Returns the state of the session provided as a parameter. The state
is returned as a ServiceState object, which the service is supposed to
subclass to contain the relevant state variables for that particular type
of service. This method is generally only used by the target service to
get the state of the source service during service migration.

e setState
This method is called to set the state in the service provider represented
by this service proxy so that it can take over a session which is at that

50

state. When this method call returns the ServiceProxy is ready to
resume the responsibility for the session.

e shutdown
This method causes the ServiceSession to shutdown gracefully. It should
cause the service provider backend to also shutdown and release any
resources being used.

5.4 The Service Manager

The task of the service manager is to locate and monitor the service pro-
viders the session module is interested in. The UML class diagram shown
in table 5.7 shows the interface of the service manager towards the session
module.

interface ServiceManager

+ addServiceListener(listener:ServiceListener)
+ removeServiceListener(listener:ServiceListener)

Table 5.7: The UML Class Diagram of the ServiceManager interface

The Session object has to implement the ServiceListener interface. This
is a simple interface which allows the object to receive events from the service
manager. When there is a change in the list of available service, the service
manager generates a ServiceEvent and sends this to all the ServiceListeners
which have subscribed to this information. The UML class diagram for the
ServiceEvent class is shown in table 5.8.

ServiceEvent

ServiceOffer|] getServiceOffers()

Table 5.8: The UML Class Diagram of the ServiceEvent class

The service manager encapsulates information about one CoreProxy in
a ServiceOffer object. This object can store the entry information from
the CoreProxy to enable the Session object to retrieve the entries without
having to use the CoreProxy. Using the CoreProxy to get the entries causes

o1

the CoreProxy to call back to the service provider, and has much higher
overhead than simply returning a list of entries stored in a local object.
The ServiceOffer object can also be used by the Session object to store
policy information associated with this CoreProxy.
The UML class diagram representation for the ServiceOffer class is shown
in table 5.9.

ServiceOffer

+ Entry[| getEntries()

+ CoreProzxy getProxy()

+ PolicyValue getPolicyValue()
+ void setPolicyValue()

+ float getValue()

+ float getMigration Threshold()
+ int compareTo(o0:Object)

Table 5.9: The UML Class Diagram of the ServiceOffer class

The getEntries and getProxy methods are used to access the entries and
CoreProxy stored in the ServiceOffer. The rest of the methods are use by the
Session object to set and read policy information in the ServiceOffer object.

5.4.1 Summary of ServiceManager

To recapitulate the ServiceManager:

The service manager monitors the available service providers. Each ser-
vice provider is represented by a CoreProxy, and the service manager stores
these CoreProxy objects in ServiceOffer objects. When there is a change to
the available ServiceOffer objects, a ServiceEvent is sent to every Servicel-
istener that has requested information. The ServiceListener will typically be
a Session object.

5.5 The Session Management Module

The Session Management module of Embouchure is responsible for initiating
and keeping alive session that the application layer requires. The application
layer provides a service type to open the session to as well as a policy on how
to select the best service and when to migrate from one service to another.

92

The Session Management Module consists of the Session Manager, Session
objects and ServiceSession objects.

5.5.1 The Session Manager

Table shows the UML class diagram of the Session Manager. The Session
Manager is a factory for Session objects. It provides the application layer
interface of Embouchure . The Session Manager has a single method: initSes-
sion. An initSession method call always includes a service type parameter
and may as well include a reference to a data stream containing a policy
declaration.

SessionManager

+ Session initSession([policyRef:String,] type:Class)

Table 5.10: The UML Class Diagram of the ServiceManager interface

The service type parameter defines what kind of service the application
layer wishes to open a session with. This is a interface including all the
methods the application layer wishes that the required service implements.

5.5.2 The Session Interface

The UML class diagram of the Session interface is shown in table 5.11. Each
implementation of Embouchure has to provide an implementation of the Ses-
sion interface.

The Session interface has the following methods:

e getServiceSession
This method returns the ServiceSession object of the service that has
been chosen to provide the session. This object is obtained from the
ServiceProxy that is used to initiate the Session.

e addSessionListener /removeSessionListener
These methods allows the application to subscribe and unsubscribe to
events in the Session object. In future versions of Embouchure there
will probably be possible to subscribe to only the events the application
layer is interested in, but for now the application layer has to either get
them all or none at all.

93

e abort
This method aborts and shuts down the Session gracefully.

interface Session

+ ServiceSession getServiceSession()

+ void abort()

+ addSessionListener(listener:SessionListener)

+ removeSessionListener(listener:SessionListener)

Table 5.11: The UML Class Diagram of the Session interface

5.5.3 The ServiceSession interface

An object implementing the ServiceSession interface is returned to the ap-
plication layer when getServiceSession is called in the Session object. The
ServiceSession object uses a ServiceProxy to provide the actual service to the
application layer. The ServiceSession has to be able to stop using one Servi-
ceProxy and to continue the session using another ServiceProxy object. The
UML class diagram representation of the ServiceSession interface is shown
in table 5.12

tnterface ServiceSession

+ void suspend()
+ void resume()
+ woid setServiceProzxy(prozy:Service Proxy)

Table 5.12: The UML Class Diagram of the ServiceSession interface

The ServiceSession object is initiated by a ServiceProxy instantiation and
initially bound to the ServiceProxy that created it. When suspend() is called,
the ServiceSession object has to make sure the the ServiceProxy is stopped
by calling the shutdown() method in ServiceProxy. When the suspend()
method of the ServiceSession returns, the caller can be sure that both the
ServiceSession and the active ServiceProxy have been stabilized.

When suspended, the ServiceSession can receive a call to setService-
Proxy(). This call instructs the ServiceSession to henceforth use another
ServiceProxy to provide the service for the application layer.

54

When resume is called, the ServiceSession resumes the service to the
application layer using the new ServiceProxy.

5.5.4 Session migration

The implementation of the Session object uses all the information it has
gathered from the service manager and the policy module to determine when
session migration should be done. Exactly how session migration is imple-
mented is left to the implementation of the Session object. We provide one
possible implementation of the Session object in the implementation chapter
(6.3).

5.6 Example of usage of Embouchure

In this section we provide an example of usage of Embouchure .

An application decides that it wants to open a session with a service type.
It calls the initSession method in the SessionManager.

When the SessionManager receives this call, it creates a session object
and instantiates it with the policy and service type information. The Ses-
sionManager is now done with all its work on this session.

Upon being initialized, the Session object registers with the Service Man-
ager. It tells the Service Manager to start monitoring service of the type
required by the application layer. Hopefully after a while the Service Layer
sends a ServiceEvent object containing an array of ServiceOffers to the Ses-
sion object.

If the application layer provided a policy reference to use with this session,
this stream is used to initialize the Policy module, if not, a default policy is
downloaded from the CoreProxy object of one of the ServiceOffers.

Using the Policy.eval() method, each ServiceOffer is assigned a Policy-
Value object and ranked due to its policy value. The one with the highest
ranking is chosen, getProxy is used to get the CoreProxy object associated
with the ServiceOffer, and getServiceProxy is used on that core proxy. Using
the service proxy, the session is initiated.

The getServiceSession method in the Session object blocks until this
point, but now the initSession method in the service proxy object is used
to generate a ServiceSession object which in turn is returned to the applica-
tion layer.

The ServiceSession implements the original service type the application
layer defined when initiating the session. At this point, the application layer

35

can use these methods to initiate the actual session with the selected service
provider.

The Service Manager continues to provide the Session with information
about the different services. If at some point another ServiceOffer is ranked
higher than the rank of the one currently used times the migration threshold,
session migration is initiated.

The ServiceOffer which is now the best suited one is used to access the
CoreProxy associated with it. This CoreProxy is used to download the Ser-
viceSession. At this point, the policy values are compared again to make sure
that migration is still needed. If migration is still needed, the ServiceSession
is told to use the new ServiceProxy to provide the service for the application.

Exactly how session migration is done is left to the implementation of the
Session object.

5.7 Summary

In this chapter we have presented the design of Embouchure . We focus on
the session management and policy modules, but also provided a rudimentary
design of the service manager as well as some requirements of the service
provider backend.

In the next chapter we will provide a sample implementation of the
Embouchure middleware using the Java programming language. Following
that we will implement a sample service provider.

96

Chapter 6

Implementation of Embouchure

In this chapter we present a sample implementation of parts of Embouchure .
As in the design chapter, we focus on the service user software in general,
session and policy management in detail.

In order for the focus parts of the system to work, we implement a simpli-
fied version of the service manager. This service manager can then be used
to test the other parts of the system.

We start this chapter by giving an overview of the implementation. In
section 6.2 we describe the implementation of the policy module and in sec-
tion 6.3 we cover the implementation of the session management module.
Finally, in section 6.4 we provide the implementation of the simple service
manager.

The Java code for this implementation of Embouchure is aproximately
3500 lines long. Instructions for downloading code and API documentation
can be found in appendix A

6.1 Overview of the implementation

The implementation of Embouchure is done using the Java programming
language. We have chosen to use Java because it is well suited for distributed,
mobile systems. Java has support for strong code mobility, which means that
it is possible to move objects from computer to computer which both include
state variables and methods which operate on these variables. The effect
of this is that the target computer need not be aware of how a particular
method is implemented, only the interface of the method.

Using the terms of Embouchure , the service provider could upload a
proxy object to the service user which contains all the necessary code for
communication with the service provider. Java makes this possible through

57

its serialization and reflection packages.

6.1.1 The structure of Embouchure

We have divided the implementation of Embouchure into three Java pack-
ages:

e embouchure.servicelayer
This package includes all the code for the service manager.

¢ embouchure.sessionlayer
This package includes all the session management code.

e embouchure.policy
This package includes all the policy management code.

6.2 The implementation of the Policy module

The policy module has two main tasks: To compile the XML code used to
describe the policy into runnable code, and to use this code to generate the
PolicyValue object which is returned by the eval call to the Policy object.

The Policy class is at the core of both these tasks. It acts as the interface
with the other packages. An object of the Policy class is generated each
time a new policy stream or file is introduced. In other words, each time
a session is initiated by the application layer, or when the application layer
uses the methods in the Session object to change the policy associated with
that session.

We have chosen to simply use the UNIX file system as a policy repository.
When an application wishes to define a new policy, it generates a policy file
which is stored in the file system. Both initSession in the SessionManager
and changePolicy in the Session object requires a string describing the policy
as a parameter. In this implementation we merely use the path to the policy
file to describe the policy.

6.2.1 The Policy Compiler

The policy compiler parses the policy file and turns it into a StatementSet. A
StatementSet is an ordered collection of statements. Currently there is only
one kind of statement available in the policy language, the DefineStatement.
This statement is represented by the <DEF> tag. An example of a <DEF>

98

tag is shown below:
<DEF NAME="BW" IF="1" VALUE="minMazLinear(100,10000,ENTRY _BW)"/>
A DefineStatement has three parts:

1. NAME
The name of the variable the value is stored in.

2. IF
If this expression evaluates to >0, the statement is executed.

3. VALUE
The value that is stored if the expression is evaluated.

The expression

In Embouchure we have three types of atomic expressions:

1. A floating point number
A floating number, for example 5.

2. An variable
The name of a previously defined variable, for example ENTRY BW.
The value stored in this variable is substituted when the expression is
evaluated. Only floatin point variables are available in Embouchure .

3. A built-in method
A method call to a built-in method, for example minMaxLinear(100,10000,ENTRY BW).
The method call may in turn have parameters which are expressions.

In addition it is possible to join any two atomic expressions into a com-
posite expression by using the floating point operators: +, —, * and /.

The boolean operators <,> and = may also be used. They result in
a floating point expression where the result is 0 if the boolean expression
evaluates to false and 1 if it evaluates to true. Both these numbers are far
enough from the threshold value at 0.5 to insure proper functionality.

The expression in the IF or VALUE fields of the <DEF> tag can contain
either a single atomic expression, or two atomic expressions joined by an
operator.

If more elaborate expressions are needed, successive <DEF > statements
have to be used.

99

Evaluation of the policy

After the policy language has been compiled into a set of statements, it can
be evaluated. The eval() method of the Policy class is used for this. Here
a EntrySet is given as a parameter. The EntrySet object includes all the
entries provided to the Session by the ServiceManager.

The first task of the Policy object which receives an eval() call is to
propagate through the Entries and create Variables for each one.

In this implementation of Embouchure , only entries which has a floating
point number as its value will be considered.

Variables in Embouchure are stored in a Hashtable in the Policy object.
As the policy object gets a call to eval() with a list of entries, it propagates
through the entries and creates a Variable for each entry that has a numeric
value. In order to separate the entries from the internal variables specified in
the policy language, the string "Entry " is added to the front of each entry
name when stored in the variables Hashtable.

After the entries have been converted into variables, the first statement of
the policy is executed. If this is a <DEF> statement, and the IF expression
evaluates to >0, a variable is created with the name defined by the statement.
This variable is given the value returned from the VALUE expression, and
inserted into the variables Hashtable.

In turn, all the statements are executed.

After all the statements have been executed, the policy object retrieves
the values stored in the POLICY VALUE and MIGRATION THRESHOLD
variables, and uses them to generate the PolicyValue object which is returned
to the caller.

At this point, the policy object is ready to receive another call to the
eval() method.

The current implementation do not support the parallel evaluation of
multiple EntrySets associated with a single policy. The evaluations have to
be done in succession.

6.3 The implementation of the Session man-
agement module

The core of the session management module is the Session objects. These

objects implement the Session interface and are the application’s interface

to Embouchure . These objects subscribe to service information from the
service manager, and uses the policy module to rate the service offers it gets.

60

The application uses the Session objects to access the ServiceSession
objects which provide the methods the application uses to access the service.
We have provided a skelton implementation of the various interfaces.

The application viewpoint From the application layers point of the view,
the important classes are the SimpleSessionManager, the SimpleSession and
the ServiceSession.

The SimpleSessionManager is an implementation of the SessionManager
interface, and SimpleSession is an implementation of the Session interface.
Neither SimpleSessionManager nor SimpleSession have any public methods
that do not derive from their interfaces. The SessionManager interface can
be reviewed in table 5.10 and the Session interface in table 5.11.

The application uses the SimpleSessionManager to initate the session with
the initSession() method. The SimpleSessionManager creates a SimpleSes-
sion object and generates a new Thread for the new object. The new
SimpleSession object is the returned to the application layer.

The application layer may now decide to subscribe to events in the SimpleSes-
sion object by using the addSessionListener method.

When it is ready, the application uses the getServiceSession method
to start the interaction with the service. This methods blocks until the
SimpleSession object has chosen a service provider and initated the session
with it.

When the getServiceSession method returns a ServiceSession object, the
application uses this object until it is done with the service.

The SimpleSession object The SimpleSession object is at the core of the
session module. This object decides which service provider to use and when
to migrate to a new service provider.

The first thing a new SimpleSession object does when it is created, is
telling the ServiceManager which service types it is interested in. The SimpleSes-
sionManager tells the SimpleSession where to find the ServiceManager through
the contructor of the SimpleSession.

The next step is to parse the policy file provided by the application and
generate a Policy object to evaluate the service offers.

After some time, the service manager has hopefully returned some service
offers containing the core proxy and a list of entries associated with each
service provider. The Policy object previously created is now used to evaluate
these service offers. If one of the service offers is found to be satisfactory, its
core proxy is used to retrived its service proxy.

61

The service proxy is in turn used to generate a ServiceSession object.
This ServiceSession object is stored and returned to the application when
the application requests it using the getServiceSession method.

Selecting how long to wait before processing the service offers for the first
time is tricky. If the SimpleSession waits too long, the overhead of starting
a new session might get too large. If the SimpleSession do not wait long
enough, the best service offer might not have arrived yet. One possibility is
to include a tag in the policy language to allow the application to decide how
long the SimpleSession object should wait before starting the session.

Selecting when to migrate The SimpleSession object maintains a list
of all the available service offers. If at any time the best offer is better
than the one currently being used, service migration may be initated. The
SimpleSession object compares the policy value of the active service offer
with the best one. If the best suited service offer has a policy value which is
more than he active service offer times the migration threshold of the session,
migration is initiated. The actual migration is handled by the ServiceSession
object in consort with the service offers involved.

The migration process When the SimpleSession object decide its time
to migrate from one service offer to another, the following events occur:

1. The SimpleSession uses the CoreProxy in the target ServiceOffer to
download a new ServiceProxy.

2. The SimpleSession calls the suspend() method in the ServiceSession,
causing it to stop using the active ServiceProxy.

3. The SimpleSession calls the suspend() method in the active Service-
Proxy. This causes the ServiceProxy to stabilize its state so that a
future getState() method calls returns a deterministic result.

4. The SimpleSession object retrieves the state of the active ServiceProxy
with the getState method, and uses the setState method in the target
ServiceProxy to put it in the same state.

5. The SimpleSession calls teh setServiceProxy method of the ServiceSes-
sion with the target ServiceProxy as parameter.

6. The SimpleSession object calls the resume method in the ServiceSes-
sion.

7. The SimpleSession object calls the shutdown method of the old Servi-
ceProxy.

62

6.4 The implementation of the Service Man-
ager

We have designed and implemented a very simple service manager for use
in Embouchure . The service manager presented here uses Java RMI name
servers to locate the service providers. The service manager is told on startup
where to look for these name services and which service types correspond
whith which RMI name URLs. In this manner, when a session requests
information about a service type, the service manager looks up in its service
type to RMI name URL table and connects to the corresponding service
providers.

This approach is static and differs from the service Embouchure is meant
to provide, but it provides a foundation for implementation and testing of the
other parts of Embouchure . A new service manager which supports dynamic
service discovery and lookup, for example using JINI or UPnP is needed if
Embouchure is to be turned into a working piece of software.

Entry propagation In the fullscale design of Embouchure , any enitity on
the way from the service provider to the session object in the service user may
add entries as the core proxy passes through. In this manner, network service
providers could add a price tag to all proxies passing through, or monitoring
software could add information about network bandwidth or latency. In this
implementation of Embouchure the focus is on the session and policy control
and not on the entry propagation software. We have chosen to only allow the
service provider to enter entries for now. This is a simplified approach, but
in the same manner as the simplified service manager, it allows us to make
a foundation for testing the session and policy software.

63

Chapter 7

Case study

The focus of thesis is session migration and policy controlled adaptation.
In this chapter we implement a sample service provider to show that these
functionalities work in Embouchure .

We have chosen a simple stream service as our example. A stream service
streams data to the service user. This could be video or audio data, or other
kinds of real-time data streams. We have chosen to use a stream server which
streams incrementing integer numbers, because it will be easy to detect both
missing data and data that are received more than one time.

It is also very easy to make a state object for this service, all that is
needed is what integer was received last.

We have called the service the IntegerService.

We will implement the IntegerService using the implementation of Embouchure that
was presented in chapter 6. When we have presented the whole implement-
ation of the IntegerService, we will provide a simple use-case description of
all the method calls, threads and objects that are parts of a normal session
between a service user and a service provider. This use-case will also show
how session migration is done.

Appendix A contains information about where the source code and API
documentation of the case study can be downloaded.

7.1 Overview of IntegerStreamer

Implementing a service provider for Embouchure can be divided in four tasks:

1. Making the actual service provider back-end and the type in-
terface that is used to represent it to the application layer in
the service user.

64

For the IntegerService this means making software in the service pro-
vider which will generate the numbers and stream them through a
socket to the ServiceProxy. This is defined by the IntegerStreamer
interface, and implemented by the IntegerStreamerImpl class. In ad-
dition we have to define the IntegerService interface, which is the type
interface of the IntegerService.

2. Making the service lookup back-end system. In the simplified
version of Embouchure , this means making a ProxyHandle and binding
it in a RMI name service. For IntegerService we have to make sure that
this ProxyHandle returns a CoreProxy which is bound to the proper
ServiceBackend.

3. Making the back-end support for the CoreProxy: Implement-
ing the ServiceBackend interface.

4. Making the modules which will be downloaded to the service
user: Implementations of ServiceProxy, ServiceState and Ser-
viceSession.

In IntegerService this means defining the class: IntegerServiceProxy,
IntegerServiceState and IntegerServiceSession.

Remember that the service provider is not allowed to provide its own
CoreProxy, it has to use the standard one.

7.2 Type interface and service provider back-
end

We start out by defining the type interface that represents the IntegerService.
The UML code for this interface is shown in table 7.1

interface IntegerService

+ InputStream getStream()

Table 7.1: The UML Class Diagram of the IntegerService Interface

The IntegerService interface has a single method which allows the ap-
plication to gain access to the stream of data. The data is represented as a
InputStream.

65

The IntegerStreamer has to be able to generate data and stream these to
the service user through a IntegerServiceProxy. We have decided to stream
data on a regular socket, and to use Java RMI to allow the IntegerService-
Proxy to access IntegerStreamer.

IntegerStreamer is a remote interface, in other words, it extends java.rmi.Remote.
Any class which implements a Remote interface can be used as a remote ob-
ject. The easiest way to do this is to subclass java.rmi.server.UnicastRemoteObject,
and this is the way we have done it with IntegerStreamerImpl. Integer-
Streamer is the interface the IntegerServiceProxy uses to get access to the
socket containing the integers, while IntegerStreamerImpl is the actual class
which implements this functionality.

The IntegerStreamer interface’s UML definition is shown in table 7.2.

interface IntegerStreamer

void initSocket(startAt:int)
void shutdown

Table 7.2: The UML Class Diagram of the IntegerStreamer Interface

IntegerStreamer extends the java.rmi.Remote interface. java.rmi.Remote
has no methods, but merely acts as a marker interface to mark all classes
which implement it as remote classes.

The initSocket method is used by the IntegerServiceProxy to set the cor-
rect state in IntegerStreamer. This makes it possible to start streaming
integers using one service provider and switch to another who takes over
where the first one left off.

The shutdown method is used to gracefully shut the IntegerStreamer
down.

The UML class diagram of IntegerStreamerImpl is shown in table 7.2

IntegerStreamerImpl

void initSocket(startAt:int)
void shutdown

int getPort()

void run()

Table 7.3: The UML Class Diagram of the IntegerStreamerImpl Class

66

IntegerStreamerImpl implements IntegerStreamer, so it contains the init-
Socket and shutdown methods of IntegerStreamer. IntegerStreamerImpl is a
subclass of java.rmi.server.UnicastRemoteObject.

IntegerStreamerImpl also implements the java.lang.Runnable interface.

The getPort method is used to access the port number the IntegerStream-
erImpl is streaming data to.

Every IntegerStreamerImpl objects run in their own thread. This assures
that a single IntegerService service provider can provide service to several
service users at the same time. When constructed, the IntegerStreamerImpl
object selects a random port and tries to bind to it. If it is successful, it starts
to listen for connections to that port. If someone connects to the selected
port, IntegerStreamerImpl starts to stream integers through the resulting
socket.

Each IntegerStreamerImpl object is associated with a single IntegerSer-
viceProxy object. IntegerServiceBackend objects are responsible for creating
both IntegerServiceProxy objects as well as IntegerSTreamerImpl objects and
for binding each proxy/streamer pair together.

7.3 The RMI name service bindings

When talking of RMI it is constructive to talk of the server and the client.
The server allows clients to call methods in one of its objects. We call this
object the remote object. This remote object implements a predefined in-
terface which describes which methods that can be called remotely. After
the initial connections between the server and the client has been made, a
stand-in object has been created in the client. This stand-in object can then
be used by the client as if it where the remote object. This stand-in object
is often referred to as a stub. When a method call is made in the stub, the
call is propagated all the way back to the remote object in the server. Here
the method call is executed, and any return value is sent back to the stub
which in turn returns the value to the application.

When using RMI one of the main problems is how to locate the server
and the remote object in the first place. The simplest solution is to use an
application called rmiregistry. This is a service which allows applications
that want to export remote objects, that is applications that wish to be rmi
servers, to store a remote referense to their remote objects. In addition, each
referense thus stored is associated with a name.

When a client wish to use a remote object, it contacts a rmiregistry and
identifies the remote object it is interested in by the name. If a remote object
is stored in the rmiregistry using that name, the referense is returned to the

67

client. This referense is in turn used to download the stub object from the
server and to instantiate it so that method calls to it are redirected to the
correct remote object.

In IntegerService as in any service provider in the current version of
Embouchure , we have store an implementation of the ProxyHandle inter-
face in a rmiregistry for the service users to lookup. The purpose of the
ProxyHandle is to provide functionality for initializing a CoreProxy to be
able to communicate with the ServiceBackend of the service provider.

In IntegerService, the implementation of ProxyHandle is called Integer-
ProxyHandle.

As we covered in the design chapter, ProxyHandle has a single method.
The UML class diagram of ProxyHandle is shown in table 7.4.

interface ProxyHandle

CoreProzy getCoreProzy()

Table 7.4: The UML Class Diagram of the ProxyHandle Interface

After the initial lookup and initialization of the RMI connection with
the ProxyHandle remote object, the service user can use the getCoreProxy
method to download the CoreProxy object the is associated with the Proxy-
Handle. CoreProxy is a final class and known to the service user on before-
hand, so all that is actually downloaded is the content of the data fields in
the CoreProxy. These fields, however, bind the CoreProxy to a particular
instance of the ServiceBackend interface. In the case of IntegerService, this
is a IntegerServiceBackend object.

IntegerServiceBackend is also a remote object, but because the referense
is passed to the service user through a CoreProxy object, there is no need to
register the back-end object in a rmiregistry.

Recalling from the design chapter the UML code for a ServiceBackend is
shown in table 7.5

The IntegerServiceBackend implements these methods and provides two
additional methods. Table 7.6 shows the UML class diagram of IntegerSer-
viceBackend.

The IntegerServiceBackend is much the main administrator of the service
provider. The class has several tasks:

e It is responsible for acting as a service provider back-end for the Core-
Proxies that are associated with this IntegerService service provider.

68

interface ServiceBackend

void addRemoteServiceListener(rsl:RemoteServiceListener)
void removeRemoteServiceListener(rsl: RemoteServiceListener)
ServiceProzy getServiceProzy()

String getEntryString()

boolean poll();

Table 7.5: The UML Class Diagram of the ServiceBackend Interface

interface IntegerServiceBackend

void addRemoteServiceListener(rsl:RemoteServiceListener)
void removeRemoteServiceListener(rsl: RemoteServiceListener)
ServiceProzy getServiceProzy()

String getEntryString()

boolean poll()

JFrame getFrame()

void setEntries(entries:String)

Table 7.6: The UML Class Diagram of the IntegerServiceBackend Interface

69

e It is responsible for sending updates to all interested parties when there
are changes to the entries which describe the service provider. Inter-
ested parties register with the CoreProxy the have downloaded, and
this CoreProxy uses the addRemoteServiceListener method in the In-
tegerServiceBackend to register for events. When changes to the entries
are made, a RemoteServiceEvent is sent to everyone that has registered.

e It is responsible for creating and returning IntegerServiceProxy objects
when a service user calls the getServiceProxy method in the CoreProxy
associated with this IntegerServiceBackend. When a IntegerService-
Proxy is required, the IntegerServiceBackend object is also responsible
for creating a IntegerStreamer object that will act as remote object for
that particular IntegerServiceProxy.

The getFrame method returns a window which can be used to change the
entries associated with the service provider. This window is used later when
we run tests on the system.

The setEntries method can be used to change the entries associated with
the service provider.

7.4 The downloaded classes

Finally we will cover the classes that the service user do not know on be-
forehand. The code contained in these classes will have to be downloaded
to the service user or retained in other ways. This code will not necessarily
be present in the service user before the session with the IntegerService is
initiated.
These classes are IntegerServiceSession, IntegerServiceState and IntegerSer-

viceProxy. In addition, IntegerServiceSession has a embedded class called
IntegerStream.

7.4.1 IntegerServiceProxy

We start out by examining the IntegerServiceProxy. As we have described
earlier in this chapter, IntegerServiceProxy objects are generated by the In-
tegerServiceBackend object when the service user calls getServiceProxy in
the CoreProxy of a service provider. The IntegerServiceProxy implements
the ServiceProxy interface. Recalling from the design chapter the UML class
diagram of the ServiceSession interface is shown in table 7.7.

These methods provide functionality needed to support session migra-
tion. In addition to this functionality, IntegerServiceProxy needs a method

70

interface ServiceProxy

ServiceState getState()
void setState()

ServiceSession initSession()
void shutdown()

Table 7.7: The UML Class Diagram of the ServiceProxy Interface

to access the stream of data which is originating from the IntegerStreamer
that is associated with this IntegerServiceProxy.

IntegerServiceProxy has to keep track of which integers have been passed
through it, and for this reason we have decided that the access method for
the data is a simple:

int read()

The read method returns an integer containing the next value that is sent
from the IntegerStreamer.

Initiating a new session

When a IntegerServiceProxy is used to initiate a new session, the initSes-
sion method is used to generate a IntegerServiceSession. If the IntegerSer-
viceProxy is used to migrate a session, either setState or getState is used
depending on whether it is the target or source of the migration.

Migration of an existing session

getState should only be called after shutdown has been used to stop the
proxy. This is to avid race conditions, where the state may or may not
include the last integers that have been read.

When setState is called on a IntegerServiceProxy, it tries to tell the In-
tegerStreamer that is associated with the proxy which integer it should start
at. If setState returns without incident, the IntegerServiceProxy is ready to
provide data through its read() method.

7.4.2 IntegerServiceState

This class is just a holder class which contains the last integer that was
received.

71

7.4.3 IntegerServiceSession

The IntegerServiceSession has to implement both the ServiceSession interface
and the IntegerService interface. An object of this class is what is returned
when the application calls the getServiceSession method in Session object
that resulted from the initial initSession call to the SessionManager.

The IntegerService interface

Through the IntegerService interface the IntegerServiceSession has to provide
an InputStream through the getStream method. To provide this stream
is can only use the read method in the IntegerServiceProxy it is currently
using. In order to make an InputStream from this, the IntegerServiceSession
uses an embedded class called IntegerInputStream which is a subclass of
InputStream. IntegerInputStream overrides the read method of InputStream
and returns the data it gets from the IntegerServiceProxy.

The ServiceSession interface and migration

Recalling from the design chapter, the UML class diagram of the ServiceSes-
sion interface is shown in table 7.8

tnterface ServiceSession

void suspend()
void resume()
void setServiceProxy(serviceProxy:ServiceProzy)

Table 7.8: The UML Class Diagram of the ServiceSession Interface

These three methods are used when the IntegerServiceSession should start
to use another IntegerServiceProxy as the source of the data that is sent to the
application layer. When suspend() is called, the IntegerServiceSession sus-
pends its actions. If the application layer tries to read data from the Integer-
InputStream when the IntegerServiceSession is suspend, the read operation
will block. After setting its own state to suspended, IntegerServiceSession
sends a shutdown message to the currently active IntegerServiceProxy.

At some later point in time, the setServiceProxy is called to assign a new
IntegerServiceProxy the IntegerServiceSession can use to access the data it
wants to send to the application layer. At this point, any referense to the
old IntegerServiceProxy is discarded, and the new one placed in its stead.

72

When resume is called, operation resumes. If a read call to the IntegerIn-
putStream from the application layer had been blocked, it is now unblocked
and the stream of data to the application layer resumes.

7.5 A simple use-case

We will now provide a walk-through description of all method calls, objects
generated and threads executed which are used to generate a session between
the service user and a service provider. We will then follow that description
with a step-by-step description of what happens when session migration is
done.

7.5.1 Step 1: Starting the service provider

The first step in this use-case is to start the service provider. This is done
via the IntegerServiceStarter class. This class starts out by generating an In-
tegerServiceBackend object. Following this a CoreProxy object is generated
and bound to the IntegerServiceBackend object.

Now a IntegerProxyHandler object is generated and given a reference to
the CoreProxy previously initiated. This IntegerProxyHandle is bound in
the RMI registry server using the name "integerservice".

The service provider is now ready to receive calls from the service user.

7.5.2 Step 2: Starting the service user

The second step in the use-case is starting the service user. The SimpleSer-
viceManager has to be told where it should look for service providers at
startup, and it tries to download the CoreProxy objects associated with each
of the RMI registry lookup strings it has gotten.

In this example, the SimpleServiceManager has only gotten the lookup
string of a single service provider.

The SimpleServiceManagaer generates a RMIServiceWrapper object which
is responsible for monitoring the service provider and to generate events to
the SimpleServiceManager whenever there is a change in the service provider
it monitors.

At this point, the RMIServiceWrapper tries to download a ProxyHandle
from the RMI registry. After it has downloaded this proxy handle, it uses
the handle to download the CoreProxy that is associated with it. After the
CoreProxy has been downloaded, the RMIServiceWrapper uses it to access
the entries associated with it, and to subscribe to events which occur if the

73

entries in the service provider changes. Using the CoreProxy and the entries
it has retrieved from the service provider, RMIServiceWrapper generates a
ServiceOffer object and sends it to the SimpleServiceWrapper inside a Wrap-
perServiceEvent.

Whenever there is a change in the service provider this RMIServiceWrap-
per monitors, it sends a WrapperServiceEvent to the SimpleServiceWrapper
informing it of the change.

The SimpleServiceWrapper stores the ServiceOffer and awaits calls from
the session module.

7.5.3 Step 3: Initiating the session

The third step of this use-case starts when an application in the service user
calls the initSession() in the SessionManager. At this point, a SimpleSession
object is generated to handle the session. This object uses the policy file
provided by the initSession call to make a Policy object which is later used
to rate the ServiceOffers it receives.

As we discussed in the implementation chapter, the SimpleSession object
runs a separate thread. This is the thread which does migration and service
selection. Additionally SimpleSession has a method that is called asynchron-
ously. This is the method used by the SimpleServiceManager to inform the
SimpleSession that there are ServiceOffers available, the serviceChanged()
method.

The SimpleSession registers with the SimpleServiceManager, and starts
to receive information about available ServiceOffers.

After the initial delay time has passed, SimpleSession uses the Policy
object it has created to assign each of the ServiceOffers a policy value and
a migration threshold value. If the ServiceOffer with the best policy value
has a value that is larger than the one defined in MIN VALUE; it is used
to initiate a session.

The first step in initiating the session is to retrieve the CoreProxy from
the ServiceOffer. The CoreProxy object has already been downloaded to
the service user, so this is only a local call. Following this, the CoreProxy
is used to download the IntegerServiceProxy object. Should something go
wrong when downloading this object, the ServiceOffer is discarded and the
selection process in done again. If the IntegerServiceProxy object is success-
fully downloaded, initSession is called on it. This method call generates a
IntegerServiceSession object.

This IntegerServiceSession object can now be returned to the application
layer when getServiceSession is called and the application can start to stream
data from the service provider.

74

7.5.4 Step 4: Session migration

Before session migration can be undertaken, another service provider will
have to be started. This is done by doing step 1 over again. At this point we
have to assume that during step 2 we provided the SimpleServiceManager
with two lookup names to use to locate the IntegerProxyHandle objects.
That would result in two RMIServiceWrapper objects being created, each
monitoring one of the service providers.

When we now start the second service provider, the RMIServiceWrapper
object associated with it will make a ServiceOffer object and send it to the
SimpleServiceManager encapsulated in a WrapperServiceEvent object. This
will in turn cause the SimpleServiceManager object to send a ServiceEvent to
the SimpleSession object containing both ServiceOffers. These service offers
will be stored in the SimpleSession object, and the next time the SimpleSes-
sion evaluates its service offers, there will be two service offers to consider.

At this point three things might occur:

1. The ServiceOffer that is currently being used to provide the service is
still the best one. No action need to be taken.

2. The ServiceOffer that is not being used is a little better than the cur-
rently active one, but not more than the product of the active Servi-
ceOffer’s policy value and the migration threshold. No actions need to
be taken.

3. The ServiceOffer that is not being used is much better than the cur-
rently active one. "Much better" means that the policy value is more
than the product of the active service offer and the migration threshold.
In this case, migration to the second service offer has to be done.

In the design chapter we presented a seven point list to describe the
migration process. SimpleSession now goes through this list. If it goes all
the way through the list without any errors occurring, the session is resumed
using the new service provider.

A lot of errors can perceivably occur during session migration. We will
cover these in the next chapter.

75

Chapter 8

Testing and evaluation of
Embouchure

In this chapter we present an evaluation of Embouchure. We evaluate
Embouchure based on the overhead it introduces when compared to other
middleware solutions, the complexity of use for both service user and service
provider and the correctness of the design. Finally, we draw some conclusions
to the general performance and applicability of Embouchure .

8.1 Overhead evaluation

In this section we examine if Embouchure causes overhead in the use of net-
worked resources, and if so, how that overhead compares to existing techno-
logies. We have not done any empirical studies of the overhead caused by
Embouchure because the service manager is only partially implemented, but
we will provide a number of arguments here to what kind of overhead one
could expect Embouchure to show.

We define overhead to be the amount of resources that are used on an
action beyond the minimum required for that task. The resources we will
cover are time, network bandwidth, power consumption, memory usage and
CPU usage.

8.1.1 Temporal overhead

In this section we will examine the overhead in Embouchure which causes
actions to take longer time than they should.

76

Setup delay

The main cause for concern in Embouchure is the setup time of a new session.
As we discussed in section 6.3, the session object has to wait until it has
gotten a list of available service offers from the service manager. This waiting
time is a direct setup overhead. In order to keep this overhead as small as
possible, the session object should choose a service offer to initiate the session
as soon as it has one that is acceptable. If the session object makes this choice
too soon, the possibility that a better suited service offer may arrive shortly
could be great. This in turn increases the possibility of a session migration.
This session migration could in turn cause temporal overhead.

In the current version of Embouchure there is no definition of what policy
value a service offer should have in order to be good enough.4However, since
1 is the highest possible policy value a service offer can have, as soon as a
service offer with policy value 1 is returned from the service manager, it can
safely be selected as good enough.

This suggests that an application which is dependent on a small setup
temporal overhead should provide a policy which is more likely to return a
policy value on 1. This, however, deprives the application from the possibility
of distinguishing between service offers effectively.

One solution that could be used to amend this problem, would be to allow
another predefined value to the policy language called STARTUP THRESHOLD.
This value could contain the policy value which the application deems good
enough to initiate the session.

When compared to single interface mobility enabling systems like mobile
IP or mobility in IPv6, Embouchure is likely to show a greater setup delay.
Both the mentioned technologies show little or no setup delay beyond that
which is shown by systems without mobility capabilities.

Migration delay

The second area where there might be temporal overhead is during the migra-
tion from one service provider to the other. The way Embouchure is designed
at the moment, the ServiceSession has to be suspended, the ServiceProxy has
to be suspended, then the state is transferred from the old ServiceProxy to
the new one, who in turn sets the state in the service provider it is associated
with, and when all that is done, the ServiceSession is resumed.

A lot of the functionality here is in the service provider implemented
objects of ServiceSession and ServiceProxy. If the suspend, resume, setState
and getState methods are badly implemented, the migration delay might get
significant. In any case, there is likely to be a delay. The requirement of

7

having both ServiceSession and ServiceProxy suspended before the state is
transferred between the service providers is there to protect the integrity of
the session. This might be a stringent requirement, and for some session
types it might be unnecessary. Making it possible for the application to
choose a less stringent approach to session migration could possibly help to
reduce the migration delay.

Compared to mobile IP and IPv6 we believe that Embouchure is likely to
exhibit less migration delay. In single interface mobility, the term describing
migration delay is hand-over delay. Most of the hand-over delay in mobile
IP stems from the fact that the network interface that is migrated has to
register itself with the new network. The interface could use protocols like
DHCP to get the network address and so forth. Mobile IP also needs to
register with the resident foreign agent and wait until it has updated the
home agent. Additionally, packages arriving at its last point of attachment
might need to be sent again.

Embouchure does all this before the core proxy is even downloaded and
compared for migration. At the expense of downloading core proxies which
will not be used, Embouchure removes the delay in migration which origin-
ates from initializing the network layer of the protocol stack. As we saw in
the example with the StreamService service specific migration delay is likely
in a lot of the services that could be accessed through Embouchure .

8.1.2 Bandwidth overhead

Embouchure wastes a lot of bandwidth downloading core proxies of services
which will not be used. The whole matter of downloading both core proxies
and service proxies is in itself overhead. If the service user knew beforehand
where the service provider was and how to access it, perhaps using sockets
instead of RMI calls, there would be a much traffic on the network to provide
the same service.

In the design chapter we made sure that the core proxy is as small as
possible in order to minimize this overhead.

If the mobile device only has access to slow network links, this bandwidth
overhead could be crippling. The whole design is based on the possibility of
wasting a lot of bandwidth in favor of simplicity of development.

Compared with mobile IP or mobility in IPv6, the bandwidth overhead
in Embouchure is likely to be far greater. Mobile IP wastes bandwidth in the
Internet by having all the packages sent through its home agent, but route
optimization alleviates this problem to a great degree. In IPv6 this problem
is solved because route optimization is embedded in the protocol.

78

8.1.3 Power consumption overhead

One of the sparse resources on a mobile hand-held device is its battery life-
time. Reducing the power spent on network usage is therefore important.
The action of keeping more than one network interface alive at the same
time is a considerable drain on power. This is the very reason why [33]
argues that multiple simultaneously active network links is unfeasable.

We decided early on to ignore this in Embouchure , and consider the
possibilities of multiple simultaneously active network links. Also, most new
mobile phones and personal digital assistants (PDAs) aimed at advanced
users do offer multiple network interfaces (GSM/GPRS, WLAN, Bluetooth
and IR), though operating systems may not yet support simultaneous oper-
ation of all interfaces.

The power problem remains a large obstacle for the deployment of Embouchure .

8.1.4 Memory and CPU overhead

For each core proxy the service manager downloads there has to be allocated
memory to contain the references to the host where the proxy originated and
various other references and data. As we stated previously, Embouchure is
likely to download many core proxies which will never be used, and this
constitutes a waste of memory.

For each core proxy downloaded there will be an accompanying service
offer which will have to be processed to yield a policy value. This process
uses CPU resources, and like bandwidth and memory CPU is likely to suffer
because of all the unnecessarily downloaded core proxies.

The service manager and session manager along with the session objects
and all the other parts of Embouchure also on their own constitute memory
and CPU overheads. As for the other overhead issues mentioned, the over-
head could be less if the application knew where to find and how to use the
networked resources on beforehand.

8.1.5 Overhead conclusions

We have showed that Embouchure is likely to incur serious overheads when
compared to other mobility enabling systems, but that it also alleviates some
of the overhead issues of those system.

The unnecessary downloading of core proxies is the main source of over-
head and reducing it to a minimum will be important. One way of doing this
is to employ the good enough paradigm introduced in the temporal section
above. If the service manager could get information that a core proxy is good

79

enough it could cease to monitor all the other available ones until it is no
longer good enough. This could allow the service manager to turn off network
interfaces which are not being used and to keep unnecessary network traffic
at a minimum. It would also increase the migration delay, because the net-
work interfaces would have to be brought online before migration could take
place.

We believe that the overheads discussed here provide a foundation for
future work on Embouchure , but that none of these overheads gives us reason
to immediately discard Embouchure as unusable or less than useful.

8.2 Complexity of usage

In this section we will look at the complexity of using Embouchure . We
will cover the application developer’s angle as well as the service provider
developer’s angle on the issue.

8.2.1 The complexity of the application developer

One of the aims of Embouchure is to provide a foundation on which applica-
tion developers may use the power of multiple simultaneously network links
without having to cope with the complexity.

At first glance, the interface offered by the session manager appears to
be simple and straightforward to use. The design, however, requires that the
application developer learns how to use the policy language if he wants his
application to behave intelligently when adapting to the changing network
environment.

In order to be able to use a certain kind of service, the application de-
veloper needs to know the interface of that service. This means that he
has to find out what interface the service providers use to access their ser-
vice. Additionally, he has to know what entries are used. If one service
provider had one entry call PRICE _PER_ MINUTE and another used the
entry DOLLAR PER_SECOND, it would be hard to write a policy which
can compare them. However, compared to the complexity of manually find-
ing services and managing migration, we feel that Embouchure has succeeded
in offering a simple environment for application developers.

8.2.2 The complexity for the service provider developer

If the service provider was writing a service that would be accessed through
JINI, he would have to provide a service proxy and a means for that proxy

80

to contact its backend objects if required.

In order to develop a service provider for Embouchure , the developer
would have to tackle complex issues like state and migration code. This is
much more complex than the old case, and shows that Embouchure induces
more complexity on the service provider developer than other existing sys-
tems do.

We believe that is should be possible to write software packages which
alleviates this problem. If the service provider developer could use off-shelf
software packages to handle migration and state control, much of the com-
plexity would be removed.

8.2.3 Conclusions on complexity

The main complexity problem remains the standardization of service types
and entry names. Before Embouchure can be widely used, everyone who
wants to provide a printer service should agree on what interface that de-
scribes a printer service. The same holds for entries describing common
features like pricing or quality of service. Some sort of standardization body
would be needed. However, the problem of standardizing interfaces and
entries of services is a problem shared by all service-centric computing infra-
structure.

In summary, Embouchure provides the application developer with a simple
programming interface at the cost of requiring the service provider developer
to tackle a more complex situation.

8.3 Fault tolerance

Several error conditions might occur in Embouchure . In this section we list
those conditions and determine if the conditions are handled in a consistent
manner.

Much of the software in Embouchure is left for the developers of the
service providers to write. We will particularly focus on what rules and
restrictions apply to those sofware objects.

We look at error conditions that erupt as a result of faulty network con-
nections or service providers and we cover error conditions that might occur
during session migration.

81

8.3.1 Error conditions resulting from loss of contact with
the service provider

This section covers the errors that occur when the service provider can no
longer be reached because the service provider itself has failed or because the
network link connecting the service user and the service provider has been
lost.

We assume for now that the loss of connection occurred outside a migra-
tion process.

When the connection is lost two things might happen. The use of the
service proxy to get data from the service provider could block or it could
result in an IOException. In both these cases the ServiceProxy or the Ser-
viceSession have to handle the exception. These are both classes which are
implemented by the service provider developers and leaving them to handle
this critical error situation may not be the best solution.

In the IntegerService example, the ServiceSession catches the IOExcep-
tion. When the exception is intercepted, the ServiceOffer that is associated
with this session is reset to a policy value of 0. Next time the SimpleSes-
sion object invokes evalMigration, the session is migrated to another service
provider if a satisfactory service provider is available.

IntegerService does not handle the case where the read call to the Ser-
viceProxy simply blocks. It has no way of knowing if it has been blocked
because the network is faulty or if it is because the IntegerService service
provider does not send data at the moment.

One could perhaps add a time out counter to step in if the read method
blocks for too long.

8.3.2 Error handling during service migration.

Migration from one ServiceProxy to another requires the Session object to
suspend the ServiceSession before the state is extracted from the old Servi-
ceProxy. Following this the state is inserted into the new ServiceProxy and
the ServiceSession is resumed.

The Session object would typically be running in its own thread. The
ServiceSession will operate on the thread of the application which made the
initial initSession call to the ServiceManager. When these threads interact
there is the possibility of deadlock.

82

Deadlock

It is up to the service provider developer to design and implement the Ser-
viceSession object. The code in this object which handles suspension and
resumption of the ServiceSession has to be well thought out to avoid any
possibility of deadlock. Suspend is supposed to block before it returns to
avoid race conditions when reading the state from the active ServiceProxy.
In IntegerService, if the read() method in IntegerServiceSession blocks while
downloading data from the IntegerServiceProxy, the suspend method will
never return and we have deadlock.

It is very hard to make some general assessments on the chances for
deadlock in a general service provider. Deadlock prevention has to be one of
the issues a service provider developer has to deal with.

Partial failure

Another possible scenario for errors while executing the session migration is
that the service provider associated with the target ServiceProxy becomes
unavailable after the old ServiceProxy has been shut down.

In SimpleSession this merely causes a big more temporal overhead during
session migration. If an exception is reported before the state has been
successfully transferred to the new service provider, the old ServiceProxy is
still the "active" ServiceProxy.

Another session migration can now be initiated. Central to making this
possible is the fact that the state of the session at all times is available from
the ServiceProxy. The ServiceProxy has to keep the state internally and be
able to deliver the state without having to contact its service provider.

8.4 Conclusions

Embouchure offers a simple and easy-to-understand interface to the applic-
ation developer but gives the service provider developer more complexity to
handle. It incurs overhead in many areas that can possibly be crippling to the
system, but it also shows some promise of alleviating the overheads shown
by existing mobility systems.

Embouchure demonstrates that session migration is a possibility for the
future, and shows that adapting to the changing network environment is a
complex issue.

We have shown that the current design and implementation of Embouchure has
some faults, but we believe that Embouchure also contributes new ideas to

83

the area of mobile distributed computing, which is perhaps the main purpose
of this thesis.

84

Chapter 9

Summary and conclusions

In this chapter we summarize our work in this thesis. We cover the contribu-
tions we have made to the research field and the deficiencies of our solution.
We finish with a list of suggested issues for further research.

9.1 Summary of the thesis

We set out to discover if policy controlled service migration has merit in de-
veloping application for the future wireless networks. We wanted to examine
if it is possible to create an architecture which makes it easy and effective
to fully utilize the heterogeneous and volatile collection of service providers
that are available to a mobile device.

Our research into works done by others showed that there is no available
technology that can be used to confirm or reject this possibility. We found
that several research efforts exists that go part of the way towards service
migration and policy control of adaptation to changing envioronments, but
that no system or collection of systems could be used directly.

We found that parts of the research done by others could be used to
validate the research area. It seemed that there was many reasons to be
interested in service migration and that research into service migration could
bring the state of research for distributed systems forward.

We presented Embouchure as an example design and implementation to
show that policy controlled service migration is possible to develop and use.
We believe that we are among the first to use policies to control service
migration in this way.

A central goal was to reduce the complexity for the application developer,
and we feel that this goal has been accomplished. The complexity of using
a policy language to describe what is a good service provider is very low

85

compared to the user perceived quality of service that Embouchure can show.

While we solved some of the problems associated with using networked
resources in a heterogenous mobile environment, we created new ones. We
have the feeling, however, that some ideas have been presented in this thesis
which might add to the pool of knowledge about distributed programming.

9.2 Contributions

In this section we try to summarize what new ideas and concepts we have
contributed to the research field. We have not had any major breakthroughs,
but we believe that we have contributed to the research on network usage in
heterogenous mobile networks in two areas:

We have showed that session migration is a possible way to improve the
user perceived quality of service in heterogenous mobile network environ-
ments. In a future world which is dominated by mobile devices which host
service providers, the ability to migrate a session from one service provider
to another is useful. In this manner the user of the mobile device will per-
ceive the quality of service to be better than if the whole session had to be
restarted when a service provider became unsatisfactory because the network
link detoriated or for other reasons.

We have showed that using a policy language can be useful to allow the
application to govern in detail how the service providers should be selected
in a simple manner. We have also shown that policy control of the session
migration scales well both for the application that wishes full transparency
and for the application which wishes to have detailed control on how the
service migration is done

In conclusion:

The service migration adds new possibilities that can be exploited, the
policy control allows the application to use service migration without having
to deal with the complex issues that is associated with it.

9.3 Deficiencies

The current version of Embouchure has several deficiencies. Some of these
have been discussed in previous chapters, but we will summarize all of them
here:

e Complexity for the service provider developer
While Embouchure offers a very simple interface to the application
layer in the service user, this is at the cost of added complexity for

86

the service provider developer. The service provider developer have
to implement many interfaces and create proxies and session objects.
When creating these objects, the service provider developers have to
take great care to not make mistakes, because the whole system might
crash if some of this code fails.

e Service type and entry naming standardization
In order for a service centric architecture to fully work, the participants
all have to agree on type names and entry definitions. This is a trouble
of all service centric systems and not merely Embouchure . It is very
hard to locate a printer if the service provider providing the printer
service and the service user do not agree on the service type interface.

e Overhead
As we discussed in the evaluation chapter, Embouchure has several
overhead issues. The most serious of these is probably the bandwidth
and power overheads. Embouchure uses a lot of bandwidth to discover
service provider and keep updated on the state these service provider
are in.

e Simplifications
The design and implementation of Embouchure that is presented in this
thesis is a very simplified policy controlled service migration system.
It is hard to use the policy language to induce complex behavior, and
the implementations of the Session and ServiceManager interface in
particular do not provide the flexibility that is needed.

9.4 Future work

In this section we present a number of issues that can be the subject of future
work on Embouchure . These issues are based on the deficiencies presented
in the above section.

e Complexity for the service provider developer
The complexity of the service provider developer stems from the fact
that he has to develop from scratch a number of classes to support
Embouchure . It should be possible to generate general purpose classes
which can be used by a variety of service providers. It should also
be possible to develop development environments which simplifies the
service provider development. A comparison to think about is the
Enterprise Java Beans(EJB) development environments. In order for

87

a service provider to provide EJB services, he has to implement some
pretty complex interfaces and write a lot of code. To simplify this task,
several development environments have been developed.

Overhead

One of the worst overheads in Embouchure stems from the fact the the
mobile device is using multiple wireless network interfaces at the same
time. Development of better antennas and protocols to use on wireless
links could reduce this overhead. If the wireless network interfaces
could cooperate and use the same antenna further reductions in the
power overhead could be made.

Simplifications

In order to reduce the simplification and provide added flexibility to
the application developer we have to expand the policy language and
the support for this language in the Session object. One crucial ex-
pansion of the policy language would be to add the possibility of other
than the application to enter policies. It should be possible for the
computer administrator to set policies which apply to all the applica-
tion on that computer. The human user of the computer should also
be able to set policies which apply to all the application he has control
over. The policy language should also be expanded with functionality
to allow administrators, human users and application to influence how
the discovery and monitoring of the service providers are done. Pos-
sibly, the policy language should be expanded so that the service user
can influence the service providers to negotiate a service which is even
better suited for the application.

88

Appendix A

Instructions for downloading the
code and API documentation of
Embouchure

The Java code of Embouchure and the sample service provider IntegerService
can be downloaded from http://www.stud.ifi.uio.no/ kjetim/hf/

The API documentation which has been created using Javadoc can also
be downloaded from this website.

89

(Glossary

2

2nd Generation Mobile Systems (2G) The first generation of digital cel-
lular systems. This is the generation most of world is using at
present date., p. 5.

2nd Second Generation Mobile Systems — Improved version (2.5G)
Improvements to the 2G systems used today are sometimes re-
ferred to as 2.5G system. They are thought of as improvements
on the way to 3G., p. 5.

3

3rd Generation Mobile Communication (3G) The next generation of di-
gital cellular systems. UMTS is an example of a technology which
belongs in 3G. 3G is currently being deployed., p. 5.

E

Enhanced Data Rates for GSM evolution (EDGE) Further upgrade of
the GPRS standard., p. 15.

F

Fourth Generation Mobile Networking (4G) The new generation of mo-
bile networking that is expected to supersede third generation. It
is based on heterogeneous networks and multiple providers rather
than the monolithic homogeneous networks know from previous
generations., p. 17.

90

G

General Packet Radio Service (GPRS) A 2.5G technology for mobile com-
munication, p. 5.

Global System for Mobile Communication (GSM) The 2G standard for
mobile communication that is most widely deployed in Europe,

p- 2.

H

High Speed Circuit Switched Data (HSCSD) A 2.5G technology for mo
bile communications, p. 15.

I

Internet Engineering Task Force (IETF) The Internet Engineering Task
Force (IETF) is a large open international community of network
designers, operators, vendors, and researchers concerned with the
evolution of the Internet architecture and the smooth operation
of the Internet., p. 19.

P

Peer-to-Peer (P2P) Mode of network usage where communication is between
equal partners and not between a client and a server., p. 16.

Physical Media Independence (PMI) A system which enables dynamic
network reconfiguration using monitors., p. 26.

S

Simple Object Access Protocol (SOAP) XML-based protocol for simple
remote method calls., p. 23.

T

Third Generation Partnership Project One (3GPP) 3G Partnership Pro-
ject for Wide-band CDMA standards based on backward compat-
ibility with GSM and IS-136, p. 15.

91

Third Generation Partnership Project Two (3GPP2) 3G Partnership Pro-
ject for Wide-band ¢cdma2000 standards based on backwards com-
patibility with IS-95(3GPP2)., p. 15.

U

Universal Mobile Telecommunications System (UMTS) A 3G cellular
system., p. 5.

\%\%

Wireless Local Area Networks (WLAN) Technology which enables any-
one to setup a wireless network., p. 5.

Wireless World Research Forum (WWRF) A collaboration of academia
and industry founded by Nokia, Siemens, Ericsson and Alcatel.
Works on research leading towards 4G., p. 18.

92

Bibliography

[1] 3rd Generation Partnership Project. Technical Specification Group Ra-
dio Access Network, Multiplexing and channel coding, 3gpp ts 25.212,
v3.4.0 edition, Sept. 2000.

[2] Snoeren. A.C. A session-Based Architecture for Internet Mobility. PhD
thesis, Massachusetts Institute of Technology, Dec. 2002.

[3] G. Vigna A. Fuggetta, G.P. Picco. Understanding code mobility. IEEE
Transactions on Software Engineering, 24(5):342-361, May 1998.

[4] BEA WebLogic. http://e-docs.bea.com/platform/docs70/index.html.

[6] Andrew D. Birrel and Bruce Jay Nelson. Implementing remote proced-
ure calls. ACM Transactions on Computer Systems, 2(1):39-59, Febru-
ary 1984.

[6] Bluetooth. http://www.bluetooth.com.

[7] et al Brewer, Katz. A network architecture for heterogeneous mobile
computing. IEEE Personal Communications Magazine, Oct. 1998.

[8] Goodman Cain. General packet radio service in gsm. IEEE Communic-
ation Magazine, pages 122-133, October 1997.

[9] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.
The ponder policy specification language. In POLICY, pages 18-38,
2001.

[10] Stephen E. Deering and Robert M. Hinden. Internet Protocol version 6
(IPv6) specification. Internet Engineering Task Force, December 1998.

[11] DHCP - Dynamic Host Configuration Protocol. http://www.dhcp.org/.

[12] D. Duchamp. Issues in wireless mobile computing. In Proceedings of the
Third Workshop on Workstation Operating Systems, pages 2-10, Key
Biscayne, FL, USA, April 1992.

93

[13] Java 2 Enterprise Edition 1.4 Documentation.
http://java.sun.com/j2ee/1.4/docs/.

[14] Ericsson. http://www.ericsson.com/technology /EDGE.shtml.

[15] J. Haartsen et al. Bluetooth: Vision, goals, and architecture. In ACM
Mobile Computing and Communications Review, pages 2(4): 38-47, Oct.
1998.

[16] Subir Das et al. Telemip: Telecommunication-enhanced mobile ip archi-
tecture for fast intradomain mobility. IEEE Personal Communications,
pages 7(4):50-58, August 2000.

[17] Wireless World Research Forum. Book of visions 2001. December 2001.

[18] I. Framework and W. Group. Policy core information model specification
rfe, 2001.

[19] Y. Yokore F. Teraoka and M. Tokoro. A network architecture providing
host migration transparency. In Proc. ACM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Commu-
nications (SIGCOMM), pages 209-220, Ziirich, Switzerland, September
1991.

[20] Gnutella. http://www.gnutella.com.
[21] Global system for mobile communication. http://www.gsm.org.

[22] S. Gupta and A.L.N. Reddy. A client oriented, ip level redirection mech-
anism. In Proc. IEEFE Infocom, pages 1461-1469, New York, March 1999.

[23] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. Rfc 2543:
Sip: Session initiation protocol, 1999.

[24] The HAVi Specification, beta 1.0 edition, November 1998.

[25] IEEE Computer Society LAN MAN Standards Committee. Wireless
LAN medium access control and physical layer specifications, IEEE
Standard 802.11-1997.

[26] IETF - RFC 2002, http://www.ietf.org/internet-drafts/draft-ietf-
mobileip-rfc2002-bis-08.txt. Mobile IP.

[27] IETF, http://www.ietf.org/rfc/rfc0791.txt. Internet Protocol.

[28] The Internet Engineering Task Force, http://www.ietf.org. IETF.

94

[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]
[43]

ISO/IEC 8326:1994, Session Layer Definition (OSI).
The JINI Community, http://www.jini.org. Jini Network Technology.

D. Johnson, C. Perkins, R. in, m IP, and I. Draft. Internet engineering
task force, 1996.

J. Binkley J. Inouye and J. Walpole. Dynamic network reconfiguration
for mobile computers. In 3rd ACM/IEEE International Conference on
Mobile Computing and Networking (MobiCom ’97), Budapest, Hungary,
1997.

Randy H. Katz and Eric A. Brewer. The case for wireless overlay net-
works. In Tomasz Imielinski and Henry F. Korth, editors, Mobile Com-
puting, pages 621-650. Kluwer Academic Publishers, Computer Science
Division, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, 1996.

R.H. Katz. Adaptation and mobility in wireless information systems.
IEEE Personal Communications, 1(1):pp. 6-17, 1994.

Minkyong Kim and Brian Noble. Mobile network estimation. In ACM
Conferance on Mobile Computing and Networking, pages 298-309, 2001.

David A. Maltz and Pravin Bhagwat. MSOCKS: An architecture for
transport layer mobility. In INFOCOM (3), pages 1037-1045, 1998.

Network Working Group. Domain Name Service RFC 1034 among oth-
ers, November 1987.

Object Management Group(OMG), http://www.omg.org/corba/. Com-
mon Object Request Broker Architecture (CORBA).

Oracle Application Server. http://www.oracle.com/ip/deploy /ias/.

Charles E. Perkins. Mobile networking through mobile ip. IEEFE Internet
Computing, pages 58—-69, January/February 1998.

Jonathan Michael Salz. Tesla: A transparent, extensible session-layer
framework for end-to-end network services.

M. Sloman. Policy driven management for distributed systems, 1994.

Snoeren and Balakrishnan. An end-to-end approach to host mobility.
In 6th ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom ’00), Boston, MA, USA, 2000.

95

[44] Simple object access protocol. http://www.w3.org/TR/SOAP/.

[45] M. Stevens and P. Framework. et draft, draft-ietf-policy-framework,
1999.

[46] Sun Microsystems, Inc, http://java.sun.com/jdk/. JavaTM 2 Platform.

[47] Sun Microsystems, http://java.sun.com/products/jdk/rmi/. Java Re-
mote Method Invocation.

[48] Sun Microsystems, http://java.sun.com/j2se/1.3/docs/guide/reflection/.
Reflection in Java.

[49] Sun Microsystems, http://java.sun.com/j2se/1.4/docs/guide/serialization/.

Serialization in Java.
[50] Universal plug and play (upnp). http://www.upnp.org.

[61] Helen J. Wang. Policy-enabled handoffs across heterogeneous wireless
networks. Technical Report CSD-98-1027, Computer Science Division,
Berkeley, 23, 1998.

[62] Wireless world research forum. http://www.wireless-world-
research.org/.

[63] X. Zhao, C. Castelluccia, and M. Baker. Flexible network support for
mobility.

96

