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Abstract

Numerical modeling of neutron star cooling under full general relativity is treated with
a new numerical framework in Python, capable of describing both neutron star struc-
ture and cooling for a given equation of state (EoS). The framework is developed with a
heavy emphasis on flexibility and modular, simple code, facilitating both easy expand-
ability in a gradual and consistent fashion, and simple comparison of a wide range of
different models. The ease of using the framework to study and learn about neutron
stars, combined with the simple way of including new physics to the model in the lo-
gically structured code, probably makes the framework one of a kind. Multiple EoS
models are developed, and results obtained for both structure and cooling are in good
agreement with qualitative and quantitative comparisons to other detailed works. We’ve
also applied the most realistic models found to a cooling scenario including an excit-
ing temperature-independent heating mechanism driven by annihilation of dark matter
particles (WIMPs) in the interior, resulting in a stable minimum temperature plateau
for neutron stars that has cooled for timescales of t ∼ 107 yrs.
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Chapter 1

Introduction

1.1 What is Cosmology?

Cosmology, in my opinion, is the most awesome field of any of the natural sciences. I
mean that quite literally, as it by definition is the science of the entire Universe as a
whole. All of space, all of time. Cosmologists try to answer the really big questions,
like – how did the Universe begin? Will it ever end, and if so, how? And how did the
Universe evolve to be as beautiful, stunning, and interesting as we observe it to be?

I’m of course a bit biased in saying that, as I’ve spent several years trying to become
a cosmologist. What you are reading now is the culmination of seven years of studies
at the University of Oslo. To treat the entire Universe, we first have to take a step back
from the tiresome nitpicky details of everyday life and consider the bigger picture. In
the language of mathematics, that means we describe the contents we observe in the
Universe from a statistical perspective. The quantitative formulation of that perspective
is in turn based on how we know the Universe to behave on smaller scales here on earth,
for which we have empirical experimentation and evidence to support. Over the last
century, the fields of cosmology and astrophysics have developed into a precision science,
by combining the high degree of accuracy in observations using modern telescopes and
the raw computational power of modern computers. Through statistical analysis of
large amounts of observational data, cosmologists are able to quantitatively constrain
the uncertainty in the claims and consequences put forward by their theories, revealing
some strange components of our Universe we don’t fully understand, appearing to only
be noticeable when considering sufficiently large scales. And so, in our quest to answer
the really big questions there seems to be a rabbit hole around every corner. When we
think we are close to an answer, we are instead faced with new and quite often even
more interesting questions. To strengthen our understanding we then have to delve
back into the details in a search for more observable phenomena that might reveal or
clarify some aspects of the laws and properties of the Universe. Needless to say, to study
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the whole Universe, cosmologists have to apply a wide range of physics. In order to
understand the large scales, described by Einstein’s theory of general relativity, we also
have to understand the small scales of particle physics and quantum mechanics. And
that is where this thesis belongs, in an effort to conclude some behavior on the small
scales of neutron stars, which we can later apply on the larger scales of the Universe. In
the process we also wish to convey our fascination and intrigue for these objects, living
an extreme life on the edge of what the laws governing our Universe allow.

1.1.1 Why Neutron Stars?

The stars in the Universe age, evolving over time as their interior particle composition
is gradually transformed by fusion reactions made possible by the immense density and
temperature set up by the large gravitational forces in their cores. Stars a few times
larger than our Sun end their lives in spectacular supernovae, possibly outshining entire
galaxies. This gradual evolution and explosive finale will be left untouched in this thesis,
but if the initial star is not too massive, a neutron star is the final product after the
supernova.

Neutron stars are the most compact type of star we have observed in the Universe.
As we’ll get back to, they are so compressed as to be dangerously close to collapsing onto
themselves and turning into black holes. In addition, neutron stars are in fact «dead»
stars, in the sense that the mentioned fusion reactions of normals stars are no longer
maintained. Therefore they don’t have the same source of internal energy production
and are cooling over time. This is the main topic of this thesis, the study of neutron
star cooling.

By comparing simulated cooling curves, that is the time evolution of temperature,
to the observed temperature, age, mass, and radius of neutron stars out there in the
Universe, we may put constraints on - or even rule out - some of the theories used to
describe such dense systems. Thus, neutron stars serve as an excellent astronomical
laboratory for studying how the laws that govern our Universe cause matter to behave
under extreme densities and energies. Both on small scales regarding what types of
particle compositions we expect to find in neutron stars, and on slightly larger scales
regarding the stability of small gravitationally bound systems. And finally, as we’ll get
to in due time, we inspect how we might infer tests for on one of the most popular dark
matter particle candidates - physics originating from the large scale modern cosmology -
by comparing our resulting cooling curves to observations of old and cold neutron stars.
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1.2 The Scope of this Work

As the title of this thesis entails, our goal has been to develop a flexible and modular
framework for studying both neutron star structure and cooling, which also is easily ex-
pandable to include more and exciting physics in the future through logically structured
code, designed to compare and learn from the many intricate relationships encountered
in neutron stars. Here we summarize the overarching assumptions and approximations
defining how we model the system:

• Assume a spherical symmetric, non-rotating neutron star. Thus the entire star is
completely described by one-dimensional radial profiles, as illustrated in fig. 1.1.
Throughout the thesis we’ll only refer to these profiles, while imagining the rest
of the sphere in three dimensions.

• Assume a static interior, thus the balance of gravity and pressure is described in
hydrostatic equilibrium, with no internal velocity fields. That means also no heat
transfer by convection.

• As a basis for particle composition we initially assume a gas of pure neutrons,
thought to be a rough but relatively accurate approximation for a basic neutron
star. As we’ll see, the actual particle composition, and the behavior of these
particles under the immense pressure in neutron stars, are still uncertain. This is
one of the main reasons for the expandable nature of the code, as it’s the way we
model how the particles behave, and the types of particles present, that effectively
is the main variable of the calculations.

1.3 Organization of the Thesis

The problem at hand, how neutron stars cool over time, is threefold. To have any
actual stars we can study the cooling process of, we first of all need models describing
the one-dimensional structure profiles of neutron stars. This in turn is divided into
two distinct categories: the macroscopic, how distributions of matter in the Universe
behave and respond to gravity and motion on large scales; and the microscopic, how
individual components, or particles, of the said matter distribution contribute to local
thermodynamical properties like pressure and emissivity. Thus we can separate the
problem into three pieces, and this grouping by threes will be evident throughout.

The thesis is organized to reflect the process of the workflow, as close as possible.
Our general strategy may be summarized as follows: Start with a simplified description
of the eventual system we want to model, working as a basic test case for numerical
methods and comparison to later more realistic descriptions. Then gradually expand
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Figure 1.1: Schematic of spherical symmetry and one-dimensional radial profiles,
completely describing the neutron star and its interior. The profile may again be
described as many small homogenous volume cells where the physical quantities change
from the core to the surface. In the profile we see on the right, the size of the individual
cells is not to scale, but the actual shape of the continuous curve along the top is based
on results obtained with our framework, and the color gradient indicate decreasing
density. Figure credit: Renate Røsæg.

upon the simplified case, learning from the effects and changes of individual improve-
ments to the model. As such, the conventional format of most scientific papers is
intentionally avoided. Instead, we’ve tried to produce a more pedagogical structure. In
part I we lay out all the relevant equations needed to describe neutron stars and how
they cool, largely based on Shapiro and Teukolsky (1983). Each of the three mentioned
pieces of the puzzle has been devoted separate chapters, with a gradual build-up of com-
plexity. Hopefully, even with little background from physics, most readers will be able
to follow at least the opening sections of each chapter. In part II we describe how we’ve
implemented the theory in our modular numerical framework in Python, again divided
into the three distinct pieces, albeit with an additional fourth chapter describing some
general structure of the code. Here we wish to convey the rather intricate connections
between the different parts, and hopefully the amount of work that has been done in
order to make this framework as consistent, flexible, and expandable as possible. Fi-
nally, in part III, we include some results of the many possible neutron stars we are
able to simulate with our framework, and try to summarize some general conclusions
and learning outcomes, as well as future prospects and possibilities.

As a heads up if you’re easily spooked by a lot of equations . . . there’s gonna be quite
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a lot of equations. Therefore, we’ve included some of our produced figures and results as
a visual reference of the types of quantities we are discussing in each chapter. For this,
we’ve mostly used intermediate results from some of the simpler stages of development,
intended as pedagogical illustrative examples for the reader – just like they helped me
get a better grip of the various physics involved along the way.

All of the graphs we’ll encounter in this thesis are made with the accompanied
plotter functionality of the framework, mainly developed to compare and test the models
alongside the implementation. As such the legends describing the contents of each plot
is formatted automatically in the way it’s intended to be used on multiple models at
once, where the relevant parameters and model names are described using acronyms.
Some of the ones we’ll encounter the most are listed here.

TOV Tolman-Oppenheimer-Volkoff
Sch Schwarzschild scaling
EoS Equation of state
poly Polytropic EoS

QMC Quantum Monte Carlo
cgs-units Centimeter-gram-second unit system

RHS Right hand side (of an equation)
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Theoretical Foundation,
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Chapter 2

Crash Course in Stellar Structure
Theory

The life and death of stars are governed by gravity, and the balance between gravity and
pressure. Gravity is the cause of their initial formation from sparse clouds of gas into
energy-efficient fusion reactors illuminating the Universe, and is also the cause of their
eventual demise. For stars turning into neutron stars, gravity continues to dominate
their lives. Neutron stars are nature’s final defense against the crushing force of gravity,
and the most compact configuration matter in the Universe may be compressed into
before imploding, forming a black hole. To model stellar structure we need a thorough
understanding of the balance of gravity and pressure, starting with Newtonian gravity
in section 2.1. For the extreme gravitational fields in neutron stars we really have to
include relativistic effects from Einstein’s general theory of relativity, which modifies the
Newtonian description in section 2.2. Opposing gravity is the outwards force induced
by the pressure of matter and radiation. In this chapter we merely assert how the
equations for pressure must be to balance the force of gravity. The characteristics
of the corresponding matter distribution are left for chapter 3, where we explore our
limited understanding of how matter behaves when reaching these extreme densities.

Full treatment of stellar structure involves Euler’s fluid equations for conservation
of mass, energy and momentum in three dimensions, including magnetohydrodynamic
effects. As we are mainly investigating neutron star cooling, we simplify the structural
picture to be non-rotating, spherical symmetric, and without internal velocity fields.
Thus, we only need to consider hydrostatic physics and equations. As mentioned, our
goal for this chapter is to determine the equations needed to model the one-dimensional
structure profiles. Along the way, fig. 2.1 demonstrates the resulting profiles for New-
tonian neutron stars of four different core densities, solved with our framework.
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Figure 2.1: Demonstrative example of structure profiles for density, pressure, and
mass as functions of radius, solved with Newtonian gravity. The full profiles are shown
to the left, with cgs-units for pressure and density, and the mass measured in solar
masses. To the right are the appropriately normalized profiles. Four different values
for the core density are shown, illustrating the effect of varying core density – resulting
in neutron stars with rather different total mass and radius. These models employ the
polytropic equation of state [cf. sections 2.1.1 and 7.2 and chapter 3].
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2.1 Newtonian Stellar Structure

For a star to be stable against self-gravitating collapse, the massive inwards force of
gravity must be countered by an equal outwards pressure force. For models with static
interiors, such as ours, one can solve for the one-dimensional structure of the star at
any time by balancing these forces radially throughout the profile from the core to the
surface. As long as the net force acting in each volume element of the star is zero,
the star is in equilibrium. As a first cause of action, we brush up on our knowledge of
gravity as Newton formulated it.

Newton’s law of universal gravitation is the first approximation to quantitatively
describe the gravitational attraction between two bodies of mass m and M . In this
picture gravity is an ordinary force acting on both objects, described as

~F = −GmM
r2

r̂, (2.1)

where G is the familiar gravitational constant, r is the distance between the two bodies’
respective centers of mass, and r̂ is the unit vector pointing between the two bodies
describing the direction of the force. For our purposes it’s more useful to express the
gravitational effect the stars have on themselves through the gravitational potential,
φ = φ(r), given by Poisson’s equation for Newtonian gravity

∇2φ = 4πGρ, (2.2)

where ρ = ρ(r) is the mass density and ∇2 is the Laplace operator. The potential
fully describes the gravitational force acting throughout the profile of the star as a
scalar field, thus being more convenient to work with. For a spherical symmetric field
and using spherical polar coordinates, the only nonzero component of the gradient ∇φ
is the radial part, dφ/dr . As such we can fully express the Newtonian gravitational
potential as

dφ

dr
=
Gm

r2
, (2.3)

where m = m(r) is interpreted as «the cumulative mass inside radius r» and is given
by

dm

dr
= 4πr2ρ. (2.4)

Note the familiar result from Newtonian theory, that the gravitational field a distance
r from the center of a spherical distribution is solely determined by the mass interior
to that point. Equation (2.4) may be solved for the total mass, M = m(R), of a star
with radius R as

M =

∫ R

0
4πr2ρ dr . (2.5)

Now, for the star to be in equilibrium the gravitational force must be balanced by a
pressure force, or in other words a pressure gradient, at every point through the profile.
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Thus, we must have
dP

dr
= −ρdφ

dr
= −ρGm

r2
, (2.6)

where P = P (r) is the pressure. This way the inwards attraction due to the gravitational
potential is exactly balanced by the outwards pressure gradient, and the interior is in
equilibrium. We have now introduced all the fundamental variables we need to describe
the structure profile of our modeled neutron stars: mass, density, pressure, and radius.

2.1.1 Forming a Closed System

Equations (2.3), (2.4) and (2.6) forms the coupled equations governing the stellar struc-
ture in Newtonian hydrostatic equilibrium. They describe the mass and gravitational
potential, along with the counterbalancing pressure, all as a function of radial distance
from the core. However, as an observant reader may have noticed, we seemingly have
no equation for the actual density. With four fundamental variables, and only three
equations, the system is per definition open – there is no one unique solution to be
found. To close the system we need one more equation, a relation between the pressure
and density

P = P (ρ).

This is called the equation of state (EoS), describing the resulting pressure in a system
due to its density (or vice versa). This relation is of huge importance in close to all
branches of physics, used to determine the fundamental state of matter distributions in
a given configuration.

This is by far the most uncertain piece of the theory regarding neutron stars that is
relevant under our assumptions. Over the last century since Einstein (1915) published
his masterpiece, general relativity, the theory has been extensively tested and confirmed
by the rest of the scientific community. Attempts have been made, and are continu-
ously worked at, to disprove Einstein and give alternating explanations for some of the
uncomfortable consequences of applying his theory to the whole Universe, where we’ve
discovered the need for substances like dark matter and dark energy to explain the
reality we observe around us. So far these alternative theories have had little success
at describing as many of the different ways our universe behaves equally successfully as
Einstein’s theory does. As such, the theory described in this chapter, with emphasis on
the remaining relativistic version in section 2.2, is broadly accepted as correct among
most physicists today and based on Hobson et al. (2006); Shapiro and Teukolsky (1983).
Thus, when studying neutron stars, the main «variable» is in fact how we choose to
model the EoS, which we’ll come back to in chapter 3. First, let’s take a look at how we
must adjust the classical theory to account for relativity, and try to understand why.
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2.2 Relativistic Hydrostatic Equilibrium

Neutron stars are quite lightweight compared to black holes or other massive stars such
as giants or supergiants. Their suggested typical mass is within one or a few solar
masses M� [cf. table A.1]. What makes neutron stars stand out in a crowd is their
density. While the mass is comparable to our sun, the typical radii of neutron stars are
∼ 10 km, approximately 7× 10−4 times that of the solar radius R�. The relatively high
mass compressed into a sphere of such low radii generates so strong gravitational fields
that relativistic effects from Einstein’s theory of general relativity must be considered.
To put the so-called supernuclear densities of neutron stars in perspective, we can do
some rough estimates. Assuming the average weight of a human to be ∼ 70 kg, and the
number of people alive on earth today to be ∼ 7.9 billion

(
7.9× 109

)
,1 the total mass

of everyone combined is ∼ 5.5× 108 tons – that is 550 000 000 000 kg. But if we wanted
to squeeze every single human into a sphere of similar density to neutron stars ∼ ρnuc,
the radius of that sphere would only be about 0.8 cm.

2.2.1 Spherical Symmetric Gravitational Fields

In general relativity, gravity is treated as a geometric property of a manifold, the four-
dimensional spacetime, described by the metric tensor gµν . The matter and energy
contained in a region of spacetime bend and distort the temporal and spatial coordinates
of the manifold, forming a curved spacetime where time dilation and length contraction
are results of the intrinsic geometry. The line element, ds, then gives the proper interval
between events2 in spacetime, defined as

ds2 = gµν dx
µ dxν , (2.7)

following Einstein’s summation convention. In contrast to the metric tensor, the line
element is a scalar quantity. Equation (2.7) is nevertheless a tensor equation, meaning
it must hold in any reference frame – as long as we transform the tensors on the right-
hand side appropriately.3 Independent of reference frame, the contraction over the
component pairs µ and ν results in the same line element, thus ds is invariant under
any coordinate transformation. For a spherical symmetric gravitational field, we can
conveniently choose spherical polar coordinates as

x0 = ct, x1 = r, x2 = θ, x3 = φ,

1According to worldometers.info, last checked 14.06.2021.
2An event describes a single point in the four-dimensional manifold, by specifying three spatial

coordinates and one time coordinate.
3We are constraining the discussion here to the parts relevant for the eventual hydrostatic equi-

librium equations, that is the line element. Proper definitions of tensors and how they transform in
general relativity is not included, but we’ll like to point out the rather amusing qualitatively descriptive
definition often encountered when first learning of tensors: «A tensor is a mathematical object that
transforms and behaves like a tensor.». . . .

https://www.worldometers.info/world-population/
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where c is the speed of light, acting as a «bridge» connecting the spatial and temporal
coordinates. Then, the metric and the line element are completely described by the time
and radial coordinates, t and r. Distances along a sphere of the same radius at a given
time, angular distances, can be found through the combination dΩ2 ≡ dθ2 +sin2(θ) dφ2.
This is not as relevant in our case, as we model the star as a one-dimensional radial
profile, but we still include it here to showcase the general approach to working with
the line element.

The most general spherical symmetric metric gives, after some manipulation, a
general line element as

ds2 = −A(t, r) dt2 +B(t, r) dr2 + 2C(t, r) dt dr +D(t, r) dΩ2 , (2.8)

where the metric coefficients A, B, C and D are arbitrary functions of t and r. As
the line element is invariant, we know there exists a reference frame where the radial
coordinate is described as

r′
2

= D(t, r).

Assuming we perform this transformation we can eliminate the arbitrary coefficient for
the angular part. Renaming the new coordinate r′ → r without the prime we have

ds2 = −E(t, r) dt2 + F (t, r) dr2 + 2G(t, r) dt dr + r2 dΩ2 , (2.9)

where the new coefficients are functions of t and the new coordinate r, and are related to
the coefficients in eq. (2.8) through the reverse transformation. We can also eliminate
the G coefficient of the cross term dt dr by the same logic in, choosing a new time
coordinate defined through

dt′ = H(t, r)[E(t, r) dt−G(t, r) dr], (2.10)

where H(t, r) is some function such that eq. (2.10) is a perfect differential. By this
substitution we are left with only two metric coefficients

ds2 = − exp(2Φ) dt2 + exp(2λ) dr2 + r2 dΩ2 , (2.11)

where we again have dropped the prime, t′ → t, and written the coefficients on a more
convenient form. Here Φ and λ are called the metric functions, and are in general
functions of t and r.

The important result from Newtonian theory, that the gravitational field at any
point outside a spherical distribution of total mass M depends only on the distance
to the center of the distribution, is still valid in general relativity. It is then known as
Jebsen-Birkhoff’s Theorem, which states that the only spherical symmetric gravitational
field in a vacuum4 is static, and is called the Schwarzschild metric

ds2 = −
(

1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2 dΩ2 , (2.12)

4Hereby meaning an «empty» region of spacetime nearby a spherical symmetric gravitational source.
Or a region where if any matter present, the gravitational field produced by said matter is negligible
compared to the nearby source.
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where M is the mass of the spherical source, M = m(R). The Schwarzschild metric
applies everywhere outside to the spherical mass, i.e. star, outside its surface, r ≥ R.

The physical interpretation of the new coordinates is rather simple. At any radius
r there exists a 2-sphere, or a two-dimensional spherical surface centered around the
point r = 0, such that the proper circumference and area of the 2-sphere is 2πr and
4πr2 respectively. This can be shown, for example for the circumference of the 2-sphere,
by setting the time and radial component to constants so the line element becomes just
ds2 = r2 dΩ2. Integrating the line element at a fixed θ = π/2 around a closed path
gives the physical measured circumference

∮

θ=π/2
ds =

∫ 2π

0
r dφ = 2πr. (2.13)

Note however, that along the radial direction5, the proper distance between two points
r2 and r1 is ∫ r2

r1

ds =

∫ r2

r1

(
1− 2GM

c2r

)−1/2

dr 6= r2 − r1. (2.14)

The time component is less relevant, determined by eq. (2.10). However, we don’t
really need to assign a physical interpretation. The resulting field is invariant under the
transformation t → t + ∆t, emphasizing the stationary nature of the system. It’s also
normalized to be equal the Minkowski time coordinate in the weak field limit, r �M ,
where the whole metric reduces to the Minkowski geometry of special relativity. On the
other end, in the limit r → RS = 2GM

/
c2 , called the Schwarzschild radius for a body

with massM , the metric functions diverge, and the line element heads to infinity. If the
surface of a massive body falls behind or touches this radius, the body will collapse and
form a Schwarzschild black hole with an event horizon at RS. Taking a neutron star of
M = 1 M� and R = 10 km, the radius is only ∼ 3.4 times larger than its Schwarzschild
radius [cf. table A.2]. This is dangerously close to the limit of compactness our universe
allows before forming an event horizon, effectively creating a region of spacetime from
which we cannot extract information, a disjointed, one-way, dead-end for the exterior
reality. Fortunately, neutron stars are able to form equilibrium, allowing us to study
how matter in the Universe behaves when approaching the «edge of reality», albeit from
a considerable distance instead of in the lab.

5Set the time and angular components to constants, so ds2 =
(
1− 2GM

/
c2r

)−1
dr2.
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2.2.2 Adjustments from General Relativity

To accurately describe the gravitational potential throughout the profile of neutron
stars we have to solve for the metric functions in eq. (2.11), where eq. (2.12) defines
the required border values. By solving the full Einstein field equations for the metric
coefficients inside the star, one can find two differential equations with respect to radius
that must be satisfied by Φ and λ. For λ the equation takes the form

(
1− 1

exp(2λ)

)
+
r d exp(2λ)

dr

exp(2λ)2 =
8πG

c2
r2ρ, (2.15)

or equivalently
d

dr

(
r − r

exp(2λ)

)
=

8πG

c2
r2ρ. (2.16)

By integrating eq. (2.16) with respect to r, and using that the associated integration
constant must be zero demanded by eq. (2.15), we find the solution for the metric
function inside the interior given as

exp(2λ) =

(
1− 2Gm(r)

c2r

)−1

, (2.17)

now evaluated at r < R, where R is the radius of the star, and m(r) < M is the interior
cumulative mass instead of the total mass. As the interior is static we can neglect the
time dependency of the metric function.

For Φ the obtained differential equation must be solved numerically alongside the
mass and pressure [cf. eq. (2.26)], and must match smoothly onto the exterior Schwar-
zschild metric at the surface, giving it a natural boundary condition

Φ(r = R) =
1

2
ln

(
1− 2GM

c2R

)
. (2.18)

Following the convenient notation by Thorne (1977), rewritten to replicate the stel-
lar structure equations from Shapiro and Teukolsky (1983), the relevant relativistic
corrections to the Newtonian theory is expressed in terms of the following four dimen-
sionless variables

R(r) ≡ exp(Φ) (2.19)

V(r) ≡ exp(λ) =

(
1− 2Gm

c2r

)−1/2

(2.20)

G(r) ≡
(

1 +
4πr3P

c2m

)
(2.21)

H(r) ≡
(

1 +
P

ρc2

)
. (2.22)
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Figure 2.2: Demonstrative example of metric coefficients as functions of radius. The
left column showing the proper solutions, with the normalized version to the right. The
dot in the top row indicate the surface of the star where the metric match smoothly
onto the exterior, included as the dimmer line extending to higher radii.

The full equations for stellar structure in general relativity are derived in most
standard textbooks regarding the topic and are not included here. This notation em-
phasizes the correlation with Newtonian theory in a straightforward fashion. These
factors constitute the relativistic effects of respectively gravitational redshift due to
time dilation, volume correction due to length contraction, gravitational acceleration,
and enthalpy corrections. All of which reduces to unity in the Newtonian limit.6 Using
these variables eq. (2.11) is expressed as

ds2 = −R2c2 dt2 + V2 dr2 + r2 dΩ2 . (2.23)

We’ve included the resulting coefficients from one of our relativistic models in fig. 2.2,
6Note the subtle difference of Φ and φ following conventions from the field; φ is the standard

Newtonian gravitational potential from eq. (2.3) while Φ is the analogous part in general relativity,
which reduces to Φ→ φ

/
c2 in the Newtonian limit.
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to give some reference to the types of metric functions obtained at various densities.
The figure also shows how the temporal coefficient matches onto the exterior metric at
the surface of the star, indicated by the dot on the curves in the upper panels. The solid
line showing the interior metric, and the dimmer line showing the exterior analytical
metric.

We can then reproduce the relativistic stellar structure equations, often abbrevi-
ated to TOV (Tolman-Oppenheimer-Volkoff), by adding the appropriate factors to the
Newtonian system of equations

dm

dr
= 4πr2ρ (2.24)

dP

dr
= −Gmρ

r2
HGV2 (2.25)

dΦ

dr
= − 1

ρc2

dP

dr
H−1, (2.26)

where eq. (2.24) is unchanged from the Newtonian version, but with a subtle and im-
portant difference. For the mass density entering in eqs. (2.24) to (2.26) we have to
remember Einstein’s preceding theory of special relativity (Einstein, 1905), of which
general relativity was built upon. One of the groundbreaking results of special relativ-
ity is Einstein’s mass-energy equivalence – probably the most famous equation in all of
physics

E = mc2. (2.27)

This equation merely states that mass and energy are two sides of the same coin, again
linked by the fundamental constant for the speed of light, this time squared. However,
the beloved equation written on this form is only strictly valid to describe the energy
(or mass) of e.g. a particle in that particle’s own rest frame, meaning a reference frame
traveling along the path of the particle. Thus, the energy associated with the movement
of the particle is not considered, and eq. (2.27) actually gives the rest mass of the particle
(or equivalently the rest energy). The extension to describe the energy of particles in
motion, often called the energy-momentum relation, is given as

E =

√
(m0c2)2 + (pc)2, (2.28)

where p is the momentum of the particle and m0 is the mentioned rest mass. In the
case of zero momentum, eq. (2.28) reduces to the more familiar form. We can still use
eq. (2.27) to weigh composite systems’ mass, by summing up relevant present energy
contributions and dividing by c2.7 The density entering in eqs. (2.24) to (2.26) is there-
fore not only the rest mass density,8 but may include contributions from various forms
of energy through Einstein’s mass-energy equivalence. The density can be expressed

7Relevant here is intentionally vague. More precisely, all energy that is attributed the object, and
not the geometrical part of spacetime.

8The rest mass density takes the same role as the mass density did in the classical theory Newton
knew.
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as ρ = ρ0 + ρrel, where we use ρ0 to denote the rest mass density and ρrel is used to
denote the additional mass-energy contribution. More conventionally we write the mass
density as ρ = ε

/
c2 , where ε is the full energy density.

Equations (2.24) to (2.26), combined with a chosen equation of state, forms the
complete set of equations for spherical symmetric and static relativistic stellar structure.
Equation (2.5) still gives the observable total mass of the star which enters in the
Schwarzschild metric, provided we use the full mass density. This is not including the
negative contribution from gravitational binding energy, which is energy attributed to
the geometry of spacetime itself, not its content. This fact is somewhat hidden in the
relatively simple appearance of the TOV equations, as there are no volume adjustments
in eq. (2.24). To include the contribution from the negative gravitational energy, one
has to use the proper volume element

dV =

(
1− 2Gm

c2r

)−1/2

4πr2 dr (2.29)

instead of just 4πr2 dr.

We model the types of energies included through the choice of EoS, which we’ll
come back to in chapter 3. Without more details, we close out this chapter by hinting
at the solid and dashed curves in fig. 2.1 – distinct for the higher initial densities,
and restating that the relationship between mass and energy changes from classical to
relativistic theory.
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Chapter 3

Equation of State, The
Microphysics

An equation of state (EoS) in physics and thermodynamics is an equation describing
the state of matter under a given set of conditions. Expressed using this terminology
it might not make much sense right away, but more or less everyone has some intuitive
understanding of this rather complicated field – maybe even more than you know! First
of all, what is matter? We have used this term quite freely in chapter 2, just assuming
everyone is on par with its definition. In a nutshell, matter is everything made of «stuff»
that has a nonzero rest mass, and occupy some volume in spacetime. Like a bicycle
or a bird. Up close, stuff is molecules, atoms, and particles, like neutrons, protons,
and electrons. Simply put, most «stuff» is matter. Massless particles, like photons, are
usually not considered matter, but are rather categorized as radiation. As we’ll see a
particular example of in section 4.2.3, some types of matter are given special names
because of the way they behave.

So an EoS describes the state of a given distribution of matter. For example,
most people know that water is a liquid in temperatures between 0 ◦C and 100 ◦C. The
matter distribution, in this case a volume of water, is then described as being in a liquid
state and can be assigned an appropriate EoS. By changing the physical conditions, e.g.
cooling the water, the state of the matter will change according to its EoS. If cooled
sufficiently, the water turns into ice, changing its behavior quite dramatically. The
water is now no longer a liquid, but a solid, and the matter must be described by a new
EoS appropriate to the state of ice. When matter changes form like this, it’s called a
phase transition. Such transitions usually infer a discontinuous change in behavior, and
are often quite tricky to simulate. For the EoS we are looking at in this chapter, we
are not including possible phase transitions throughout the profile of our neutron stars.
We brought it up here as it’s a quick and simple example most are familiar with.



22 Equation of State, The Microphysics

Figure 3.1: Schematic of possible neutron star composition, showing the density and
radius of the different parts thought to make up a fully realistic neutron star. Note
however, that the inner core composition is accurately described as ’unknown’. Figure
credit: K.C. Gendreau et al. (2012), SPIE, 8443, 13

The interior particle composition of neutron stars is still uncertain, including the
possible states and phase transitions of said composition. As mentioned, this is the
main variable in studying neutron stars, and is the link between the structural part of
chapter 2 and cooling of chapter 4. In fig. 3.1 we see a schematic of a possible neutron
star interior, separated into regions of outer and inner crust, and outer and inner core
– as well as a thin atmosphere. Following the initial scope for the framework laid out
in section 1.2, we are for now modeling the neutron star to be of pure neutrons.1

3.1 Some Preliminaries

We started this chapter by mentioning thermodynamics, which as the name suggests,
is a theory considering temperature, energy, and change. Temperature is in fact our
macroscopic term to describe thermal energy in a system, which in turn is a result
of microscopic random motion of particles, making temperature a measure of average
internal kinetic energy. Combined with quantum mechanics, a statistical description
of the microscopic behavior of particles, the laws of thermodynamics can be used to
describe how such forms of internal energies affect macroscopic and measurable physical
properties of matter. We’ll come back to this in chapter 4, for now it’s sufficient to
understand that internal energy of matter is one of the deciding factors in an EoS.
This subject is highly theoretical in the case of extremely dense distributions, as it’s

1We’ll explore the addition of protons and electrons as well.
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hard to reproduce the environments needed to gather empirical evidence to support any
theories put forward. As mentioned in section 2.2.1, this is where neutron stars come
in handy, acting like astronomical laboratories. Note that none of the equations from
chapter 2 have been directly dependent on the temperature of the star, describing the
large scale properties of matter and its response to gravity. The thermodynamical state
of the matter is contained within the EoS. By measuring and placing upper (and lower)
limits on observable quantities of neutron stars, like their mass and radius, we can infer
constraints on the EoS appropriate under such dense conditions.

In kinetic theory, thermodynamical quantities are completely described by the num-
ber density of particles in phase space, a kind of six-dimensional volume with three
dimensions for position and three dimensions for momentum in each spatial direction.
This number density is written on infinitesimal form (to the left) as

dN

d3x d3p
=

g

h3
f(~x, ~p, t), (3.1)

where on the right-hand side we have defined the equivalent dimensionless distribution
function f describing the number of particles in a unit volume with average momenta
~p and position ~x. h3 is used for the volume element in phase space, where h is Planck’s
constant. What we usually think of as temperature, internal kinetic energy, is here
accounted for by the momentum ~p of particles. g is the statistical weight of the specific
particle type; for massive particles g = 2S + 1, where S is the quantum mechanical
spin. For neutrons, protons, and electrons, being fermions with half-integer spin, we
have g = 2.

Quantities like the physical number density, energy density, and pressure are all
given in general as integrals over all momenta in the phase space number density as
follows

n =

∫
N

d3x d3p
d3p (3.2)

ε =

∫
E

N

d3x d3p
d3p where E =

(
p2c2 +m2c4

)1/2 (3.3)

P =
1

3

∫
pv

N

d3x d3p
d3p where v =

pc2

E
. (3.4)

The last equation for the pressure on this form is only for an isotropic distribution
of momenta,2 and effectively states that the pressure is just a momentum flux. These
equations look rather complicated, requiring us to think in terms of this six-dimensional
phase space. By eq. (3.1) it’s easier to work with the distribution function.

2Thats why the factor 1/3 comes in.



24 Equation of State, The Microphysics

3.1.1 The Distribution Function

The distribution function is particularly useful when considering ideal gases in equilib-
rium, simplified gases composed of noninteracting particles. Ideal gases are first of all
pedagogical, but also successfully describes many ordinary gases we encounter in every-
day life. It then takes the following form, where the time, position, and momentum
dependency is incorporated into the average energy Ei for particle type i

fi(Ei) =
1

exp[(Ei − µi)/(kBT ) ]± 1
. (3.5)

The combination kBT is interchangeable with thermal energy, where T is the temperat-
ure of the system and kB is Boltzmann’s constant. The sign in the denominator is de-
termined by whether the particle species that make up the gas, call it i, are fermions(+)
or bosons(−). For our purposes, we may confine our discussion to fermions, such as
ordinary neutrons, protons, and electrons.3 Systems of fermions described by eq. (3.5)
are said to obey Fermi-Dirac statistics. The important quantity µi is the chemical po-
tential of species i, describing the change in energy for the system given a unit change in
number density for species i, while keeping the volume, entropy, and number densities
of other particle species constant.

As mentioned in chapter 2, it’s the internal pressure that is opposing the gravita-
tional potential in stars, preventing them from collapsing. When considering neutron
stars, the pressure normally associated with classical gases is no longer enough to coun-
teract gravity, and the constituent fermions are forced closer together in space, forming
a degenerate Fermi gas. In degenerate matter, some counterintuitive quantum mech-
anical behavior must be considered. According to quantum theory, particles confined
within a volume are only able to be in discrete quantifiable energy states, in contrast
to continuous energy. Additionally, we have Pauli’s exclusion principle, stating that
identical fermions cannot occupy the same quantum state in phase space simultan-
eously. As the fermions in neutron stars are forced together into a tiny volume, their
only option is to occupy higher and higher energies, i.e. momenta, in phase space. This
kinetic energy induced by degeneration is the source of the increased pressure, and we
may associate this additional kinetic energy to a Fermi temperature. In a system where
the Fermi temperature is comparable to the «normal physical» temperature, classical
thermal effects are comparable in strength to quantum effects. As an extension, systems
where the Fermi temperature is so large that classical thermal effects are negligible in
comparison, are called completely degenerate matter. For typical neutron star densities,
the Fermi temperature takes large values about 1011 ∼ 1012 K, considerably higher than
the estimated temperature in the inner core of the sun ∼ 1.5× 107 K. Taking eq. (3.5)

3We have here avoided too much unnecessary details and specific definitions encountered when
entering what is often called the particle zoo. In the models currently included in this framework, we
are only treating at most these three fermions and the neutrino lepton.
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in the limit of zero temperature4

T → 0 or
µF
kBT

→∞, (3.6)

the chemical potential at this temperature defines the Fermi energy, µF ≡ EF , and the
mentioned Fermi temperature TF = EF /kB . The distribution function then reduces to
the simple form, applicable to completely degenerate matter,

fi(Ei) =

{
1, Ei ≤ EF
0, Ei > EF .

(3.7)

As it turns out, it’s easier to understand the distribution function in this special case,
while it still describes the same phenomena: it quantifies the average occupation number
of a given state in phase space with energy E. We now have a quantitative definition
of completely degenerate matter – that is matter which is distributed according to
eq. (3.7). On average, every state below the Fermi energy is occupied, while non of
the states above are filled. This transition is referred to as the Fermi surface of species
i, which is at a constant energy as long as the number density of the involved species
don’t change in time. The number of available quantum states increases exponentially
with energy, and so the average particle in degenerate matter is actually relatively close
to this surface. The distribution function on this form greatly simplifies the general
integrals for the physical number density, pressure, and energy density in eqs. (3.2)
to (3.4).

In the dense interior of neutron stars the expected Fermi temperature is very high,
two or three orders of magnitude higher than the actual interior temperature. As such
we can treat neutron stars as being completely degenerate, and apply the limit of zero
temperature. Therefore, the common types of EoS applied to neutron stars are often
called cold equations of state, and in extension, neutron stars are often described as cold
compact objects. This statement may seem rather obscure in a paper mainly regarding
the cooling of neutron stars, but remember there definitely is some physical thermal
energy present. It’s just that the effect this thermal energy has on the equation of
state is negligible, with most of the particles in states at (or close to) the constant
Fermi surface distributed according to eq. (3.7) in phase space.5 As the Fermi energy
is constant, so follows a static EoS, in line with our assumptions from chapter 2. When
later studying the actual cooling process of neutron stars in chapter 4, we’ll just assign
an initial physical thermal temperature to the matter, and treat the interior as static.
As we’ll see, within reasonable physical limits, how we choose to assign this temperature
doesn’t really matter.

4We don’t know of any mechanism able to cool matter to true absolute zero temperature, but by
taking the limit we should be safe.

5At least to a good approximation. In regions closer to the surface, where gravity is the weakest,
there should exists non-degenerate components.
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With the Fermi energy established, we define the corresponding Fermi momentum,
pF,i, and dimensionless Fermi momentum, xi, for particle species i through

EF,i ≡
√

(mic2)2 + (pF,ic)
2 (3.8)

xi =
pF,i
mic

. (3.9)

The dimensionless Fermi momentum, or «relativity parameter» as we will call it, is
more convenient to work with mathematically than the dimensional Fermi energy or
momentum. We’ll thus use it for most of the mathematical representation in the thesis,
while qualitatively referring to either the Fermi energy or momentum in the text.

In sections 3.2 and 3.3 we present the theory behind the first and simplest equations
of state constructed by Chandrasekhar in his pioneering work on degenerate matter and
white dwarfs (Chandrasekhar, 1939; Shapiro and Teukolsky, 1983). These equations are
indeed rough approximations, and definitely incorrect in many ways. In our theoretical
description of the matter we have to guess for the relevant energy sources and particle
reactions taking place, as we have no experimental environment which can reach these
densities here on earth. The large uncertainty in different possible phases and states
the degenerate matter may occupy at different densities, combined with the wide range
of densities present from the core to the surface of neutron stars, make our theoretical
description an educated guess at best. As in chapter 2, we include fig. 3.2 to have some
visual representation of what we’re dealing with in these equations.

In the years since Chandrasekhar (1939), our understanding and numerical mod-
eling techniques have increased significantly, alongside new and increasingly accurate
observational data of neutron stars from pulsars and supernova remnant nebule. In
section 3.4 we present the parameterized EoS by Gandolfi (2012), resulting from more
recent and detailed many-body quantum simulations.

3.2 Ideal, Completely Degenerate Neutron Fermi Gas

The first and simplest neutron star particle composition is a spherical distribution of
noninteracting, degenerate, free neutrons. Using eqs. (3.1) and (3.2) with the distribu-
tion function from eq. (3.7) the number density of the neutrons are

nn =
2

h3

∫ pF,n

0
4πp2 dp =

8π

3h3
p3
F,n, (3.10)

with the statistical weight g = 2 for neutrons, and the integral now only going to pF
as that’s where the distribution function is non-zero. Using the relativity parameter
instead, we have

nn =
x3
n

3π2λ3
n

, (3.11)
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where λn = }/( mnc) is the neutron Compton wavelength [cf. table A.2]. From
eq. (3.11) we see that the number density for a completely degenerate ideal fermi gas is
only dependent on the relativity parameter, i.e. the «height» of the Fermi surface for
the specific particle. Thus, the Fermi energy of a given distribution of such gas is de-
termined solely by the number density, reflecting the effect of Pauli’s exclusion principle
briefly discussed in section 2.1. This is also true for the rest mass density ρ0, which is
simply the number density multiplied by the particle mass of neutrons

ρ0,n = nnmn. (3.12)

Similarly, the pressure is found from eq. (3.4) as

Pn =
1

3

2

h3

∫ pF,n

0

p2c2

(p2c2 +m2
nc

4)1/2
4πp2 dp

=
8πm4

nc
5

3h3

∫ xn

0

x4

(1 + x2)1/2
dx

=
mnc

2

λ3
n

Θ(xn), (3.13)

where Θ(x) =
1

8π2

[
x
√

1 + x2

(
2x2

3
− 1

)
+ ln

(
x+

√
1 + x2

)]
. (3.14)

The energy density, including rest mass energy, is given from eq. (3.3)

εn =
2

h3

∫ pF,n

0

(
p2c2 +m2

nc
4
)

4πp2 dp

=
mnc

2

λ3
n

χ(xn) (3.15)

where χ(x) =
1

8π2

[
x
√

1 + x2
(
1 + 2x2

)
− ln

(
x+

√
1 + x2

)]
. (3.16)

From eq. (3.15) the mass density is found simply as

ρn =
εn
c2
. (3.17)

Equations (3.13), (3.15) and (3.17) determines the EoS for ideal, degenerate, free neut-
rons and is sometimes referred to as the Chandrasekhar EoS. However, we will refer to
this as the Fermi n EoS.

Note that all the above equations presented for neutrons in this section are trivially
scaled to ideal distributions of other particle types, by interchanging the subscript n to
the appropriate particle; that is changing the particle mass mi and statistical weight gi.
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3.2.1 The Polytropic Formula

Equations (3.14) and (3.16) reduces through Taylor expansions to a polynomial form in
the non-relativistic (x� 1) and ultra-relativistic (x� 1) limit respectively

x� 1,





Θ(x)→ 1
15π2

(
x5 − 5

14x
7 + 5

24x
9 + . . .

)

χ(x)→ 1
3π2

(
x3 + 3

10x
5 − 3

56x
7 + . . .

) (3.18)

(3.19)

x� 1,





Θ(x)→ 1
12π2

(
x4 − x2 − 1

2 ln(2x) + . . .
)

χ(x)→ 1
4π2

(
x4 + x2 − 1

2 ln(2x) + . . .
)
.

(3.20)

Then, to first order, the equation of state can be written on polytropic form as a function
of the rest mass density ρ0

P (ρ0) = κρΓ
0 , (3.21)

where κ and Γ are constants given in the two limits as

x� 1, Θ(x)→ x5

15π2
, Γ =

5

3
, κ =

32/3π 4/3}2

5m
8/3
n

= 5.3802× 109 cgs (3.22)

x� 1, Θ(x)→ x4

12π2
, Γ =

4

3
, κ =

31/3π 2/3}c
4m

4/3
n

= 1.2293× 1015 cgs. (3.23)

The unit of κ is indicated just as cgs as conventional in the field, as the actual units
change between the two limits. This can be seen by a simple dimensional analysis of
eq. (3.21) using the two listed values for Γ. To be precise, the units of κ is cm4 g−2/3 s2

in the non-relativistic limit, and cm3 g−1/3 s2 in the ultra-relativistic.

The polytropic form for the EoS is easier to interpret, where the Fermi statistics
is encapsulated in the rest mass’ dependency on the Fermi energy,6 and the numerical
value of the constants. The equation is especially sensitive to the adiabatic index Γ,
referred to as the stiffness of the EoS; a stiff EoS corresponds to a high numerical value
for Γ, while a low Γ is referred to as a soft EoS. Keep in mind, it’s the combination of
the adiabatic index and the constant in front that determines the pressure for a given
density, the stiffness only describes the slope of the curve for increasing densities. When
referring to the effective stiffness, we mean the combined behavior fully describing the
pressure. In fig. 3.2 the resulting pressure as a function of rest mass density for the Fermi
gas models are compared. Here we see how the relativistic approximation overshoots
the full Fermi EoS at low densities due to the large value of κ, but fits well at high
densities as the slope (stiffness) of the curve is more moderate. The opposite is the case
for the non-relativistic approximation.

6Indirectly through eq. (3.11) and the relativity parameter.
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Figure 3.2: Demonstration of the polytropic and Fermi equations of state. The
pressure as function of increasing rest mass density are showcased. The non-relativistic
and ultra-relativistic polytropic EoS are seen to successfully approximate the Fermi
EoS, in the low and high density domain respectively. Note how indistinguishable the
two Fermi EoSs are in red and blue – there’s seemingly little change in the pressure
when including protons and electrons.

3.3 Ideal, Degenerate n-p-e Gas

A seemingly immediate improvement to the EoS is to assume a contribution from elec-
trons and protons to the particle composition. While the Fermi EoS for a distribution
of free neutrons is useful for establishing the theory, a distribution of pure free neutrons
is unlikely to appear in nature.7 Further, we know that free neutrons have a half-life
caused by β-decay

n→ p+ e− + ν̄e, (3.24)

where n, p and e− is the neutron, proton and electron respectively, and ν̄e is the electron
antineutrino. Thus, our assumptions for a pure ball of neutrons from section 3.2 seems
lacking.

However, this decay channel is blocked if the density is sufficiently high so the
electron Fermi surface is above the energy of the emitted electron. If so, all energy
levels the emitted electron could fill are already occupied. With reaction 3.24 blocked,
the inverse β-decay process

e− + p→ n+ νe (3.25)

7Considering that neutron stars are the supernova remnant of massive stars with a complex particle
composition and metallicity.
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efficiently transforms protons and electrons into neutrons instead. Reaction 3.25 is
possible in general if the initial electron acquires high enough energy to make up the
difference in mass between the proton and neutron

Qn,p = (mn −mp)c
2 ≈ 1.29 MeV. (3.26)

Free electrons normally don’t reach such high energies , but that’s no longer true in high
density degenerate matter where most of the electrons approach the Fermi momentum.

3.3.1 The n-p-e Equilibrium Solution

To characterize the properties of such a gas of free electrons, protons and neutrons we
can consider the ideal equilibrium solution. β-equilibrium is then defined by requiring
equality in the constituent’s chemical potential

µe + µp = µn, (3.27)

where the chemical potential of neutrinos is set to zero, as they are assumed to leave
the system once created.8 Taking the chemical potential equal to the Fermi energy and
using the relativity parameter for each particle,9 eq. (3.27) reduces to

me

√
1 + x2

e +mp

√
1 + x2

p = mn

√
1 + x2

n. (3.28)

Assuming charge neutrality implies a relation between the number density of negative
and positive charged particles, that is

ne = np (3.29)

x3
e

3π2λ3
e

=
x3
p

3π2λ3
p

(3.30)

⇒ mexe = mpxp, (3.31)

where we have used the equations from section 3.2 scaled to electrons and protons.
Thus, we have a 1 − 1 relationship between the number densities of the three species,
as well as for the relativity parameter.

The EoS can now be constructed for a given particle composition in terms of one of
the particle’s relativity parameter, assuming each particle species behaves like an ideal
gas in the equilibrium solution. By specifying for example xp, eq. (3.31) gives xe and
eq. (3.28) gives xn. The total pressure, energy, and number density is then found as a

8We’ll come back to this in chapter 4.
9Equations (3.8) and (3.9)
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sum over the ideal contribution from each particle species

P =
mec

2

λ3
e

Θ(xe) +
mpc

2

λ3
p

Θ(xp) +
mnc

2

λ3
n

Θ(xn) (3.32)

ε =
mec

2

λ3
e

χ(xe) +
mpc

2

λ3
p

χ(xp) +
mnc

2

λ3
n

χ(xn) (3.33)

nB = nn + np =
x3
p

3π2λ3
p

+
x3
n

3π2λ3
n

. (3.34)

In eq. (3.34) we have defined the baryonic number density, which we will come
back to in chapter 4. This is often used instead of the total number density including
electrons. For example, when considering the rest mass density of the system, the
electrons’ contribution is negligible in a charge-neutral distribution

ρ0 =
∑

i

ρ0,i =
∑

i

nimi for i ∈
{
n, p, e−

}

= nnmn + np(mp +me) where np = ne

ρ0 ≈ nnmn + npmp. (3.35)

Note that the equations of this section are only applicable to describe equilibrium
when we assume a fixed charge, baryon number, and lepton number.10 Full treatment
of gravitational collapse with escaping neutrinos is not a closed system, and thermo-
dynamic equilibrium cannot be achieved. In a more detailed treatment the n-p-e com-
position should be determined by solving the reaction rate equations. In line with the
naming for the pure neutron gas, we adopt the label Fermi npe EoS for this model.

3.4 Interacting Quantum Many-Body Neutron Gas

To obtain a refined EoS we have to abandon the ideal gas approximation and allow
for continued interactions between the particles. Our presentation of the equations
here is brief by necessity, as the complete description requires the full apparatus of
many-body quantum theory. Among particle and nuclear physicist the importance of
the two- and three-body nuclear forces in dense systems are well known, and Gandolfi
(2012) employed the auxiliary field diffusion Monte Carlo method (Schmidt and Fan-
toni, 1999) to model these reactions in a pure neutron gas. They considered a nuclear
Hamiltonian containing the kinetic energy, the neutron-neutron (2n) interaction, and
the three-neutron (3n) interaction potentials.

10The lepton number is chosen to be zero here, nν = 0 (µν = 0).
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Table 3.1: Numerical values of fitting coefficients for the QMC EoS from Gandolfi
(2012) defined in eq. (3.36). The table includes varying models for the 3n potential and
symmetry energies, which we have given label names to distinguish. Note specifically
the rather large variance in the value for b.

3n Potential† Label Name∗ a [MeV] α b [MeV] β

none QMCnone 12.7 0.49 1.78 2.26

V PW
2π + V R

µ=150 QMC1 12.7 0.48 3.45 2.12

V PW
2π + V R

µ=300 QMC2 12.8 0.488 3.19 2.20

V3π + VR QMC3 13.0 0.49 3.21 2.47

V PW
2π + V R

µ=150 QMC4 12.6 0.475 5.16 2.12

V3π + VR QMC5 13.0 0.5 4.71 2.49

UIX QMCUIX 13.4 0.514 5.62 2.436

† These are the names used to describe the fitting coefficients for various 3n poten-
tial models as they are listed in Gandolfi (2012). We include them here to ease the
comparison to their article, but will only refer to the label names∗ we have given them.

Gandolfi (2012) presents the resulting parameterized EoS from the quantum Monte
Carlo (QMC) simulations in terms of energy per particle as a function of number density

E(n) = a

(
n

n0

)α
+ b

(
n

n0

)β
, (3.36)

where n0 = 1.6× 1038 cm−3 = 0.16 fm−3 is the nuclear saturation density. By con-
struction, the coefficients a and α are dominating in the low-density regime, while b
and β are sensitive to the high-density behavior, listed for seven different 3n models in
table 3.1. We have given these models some simple label names as we don’t go into
details regarding the 3n interactions. Comparing this representation to the polytropic
formula from section 3.2.1 we see how the QMC EoS more accurately can describe
a wider range of density values without abandoning the underlining assumptions, by
changing the effective stiffness above and below n0. The numerical values of most of the
coefficients vary slightly dependent on the model for 3n interaction potential, except for
b, which is consistent with the known uncertainty in the high-density regime.

Of all the available QMC models, we’ve chosen to show results for four of them
in this thesis, picked to emphasize their differences. In both ends of the extreme we
have the QMC none model with no 3n interaction energies, and the QMC UIX model
with a substantial contribution from the 3n interaction at high densities. The models
we have given number labels, increase in effective stiffness above saturation density
with increasing label number, which entail increased energy associated with the 3n
interaction. The most interesting of these intermediate stiff models are the QMC 3 and
4, which we’ll look at in addition to the none and UIX models in fig. 7.3 and chapter 10.



Chapter 4

Cooling of Neutron Stars

Here on earth, everyone knows that if you leave your coffee for too long it turns cold.
But why does it go cold, and more importantly, how? This turns out to be a com-
plicated question to answer, and physicists have spent years developing the theory of
thermodynamics . The initial state of the coffee, and the cup itself, at the point in time
when you leave it be, determine the outcome of how the collective coffee-cup system
cools over time. This is described by a swell of factors and dependencies, determined by
the complexity of the system in question and the relevant heat transport mechanisms
available. The initial temperature of the coffee and the cup is of course always relevant,
and is described as a result of the collective thermal energy of the particles that make
up the system. But also the ratio of water to coffee grains, and maybe sugar or milk,
the thickness, and material of the cup, all relevant in determining the exact density,
mass, particle composition, and thermal conductivity of the system. The coffee will
cool faster if you use a spoon to stir it with, accelerating the cooling process by indu-
cing convection, even more so if the spoon is cold! If you place the cup outside in the
wind, it will cool faster than inside, again caused by convection and conduction with
the surrounding relatively endless in size heat sink of the cool atmosphere. The list
goes on and on, all of this is what we try to describe and quantify in thermodynamics.
As an additional cooling effect, Max Planck discovered that all objects in the universe
shine, or radiate, dependent on the object’s temperature. This radiation may come
from many different types of sources, and on all the wavelengths of the electromagnetic
spectrum, and must be described as a quantum theory. The thermal radiation, usually
in the infrared here on earth, also contributes to the cooling process of the coffee-cup
system, albeit a relatively small part at everyday temperatures.

The same may be said for planets, moons, huge clouds of intergalactic gas, even
black holes, and finally the stars themselves! Left out in the Universe for too long
they will eventually cool down. But with the grim empty space as their surrounding
environment, the only available heat transport mechanism to remove energy from their
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system is through radiation out into the Universe.1 Much of the complexity behind
the coffee’s cooling process is determining the interactions with its environment. For
neutron stars in hydrostatic equilibrium, that interaction is relatively simple. Just
determine how much energy that leaves the star per unit time through radiation, called
the star’s luminosity, and how the temperature of the matter in the star change based
on the radiated thermal energy. This is dependent on the types of matter present in
the star. The matter, or coffee, in the above example, is mostly water with the added
flavor of coffee grains – analogous to fermions, specifically neutrons, in our neutron
stars. In this picture, including protons and electrons is kind of like adding milk and
sugar. The protons (liquid with milk flavor) being very similar to neutrons (liquid
with coffee flavor), but making up less of the total amount of matter, and the electrons
(sugar) dissolving freely into the mixture. Quantitatively describing the luminosity
and temperature change may be demanding, dependent on the model used to describe
the system. Following our structure of gradually building complexity, we lay out the
ground rules for homogeneous and isothermal objects in section 4.1. Then we look
at some relevant sources for cooling and heating in section 4.2, before introducing the
adjustments needed to model the more realistic inhomogeneous and isotropic objects in
section 4.3. Finally we’ll add the modifications from general relativity in section 4.3.1.

4.1 The Cooling Equation

When we usually think of stars, we don’t think of objects that start out hot and gradu-
ally cool down, but flaming oceans of plasma and energy. However, just like all other
objects, stars continuously cool through all the energy they release into the Universe by
radiation. But most of them also continuously fuse particles in energy-efficient fusion
driven by the crushing force of gravity in their cores. These particle reactions produce
all the star’s energy and radiation in the first place, and as discussed in chapter 2,
it’s the pressure of the matter and radiation from the cores that keeps the stars in
hydrostatic equilibrium. This means that even though the star is constantly «cooling»
by thermal radiation, it’s equally heated by the fusion reactions, and only excess heat
above the equilibrium energy is released. The result is a net zero change in the star’s
temperature.

We can quantify radiative cooling of a homogeneous, isothermal volume in an or-
dinary differential equation

dU

dt
= Cv

dT

dt
= −(Qc −Qh)

or
dT

dt
= −Qc −Qh

Cv
, (4.1)

1This is somewhat simplified to fit with the cooling mechanisms we are looking at here. Radiation
like we are including indeed accounts for the dominating and most common cooling process found in
most stars.
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where U is the total thermal energy, t is the time coordinate, T is the temperature, Cv
is the total heat capacity2 and Qc and Qh are the cooling and heating rate respectively.
For our purposes we will use the equation on the latter form, as we are not as interested
in the total thermal energy. As mentioned, for «normal» stars living in hydrostatic and
thermal equilibrium on the main sequence,3 the sum of thermal energy lost and gained
is zero, resulting in a constant temperature

Qc −Qh = 0

⇒ dT

dt
= 0. (4.2)

For neutron stars, this balance is no longer maintained. As the equilibrium pressure
preventing the star from collapsing is almost exclusively from degenerate fermions, not
from fusion reactions, there’s little contribution to the heating rate. Through particle
reactions, which we dive into in section 4.2, the cooling rate of the star remains relatively
high, at least compared to the heating rate which is significantly lower, or even zero.
The result is a negative temperature time derivative, cooling the neutron star over time

Qc −Qh > 0

⇒ dT

dt
∝ −(Qc −Qh) < 0.

The cooling rate describes energy loss per unit time through radiation. This is just the
sum of the different luminosities generated by the star through the mentioned reaction
rates. Excluding heating completely for now, we write the cooling rate simply as

Qc =
∑

i

Li for i ∈ {ν, γ, . . .} (4.3)

where Li is the total luminosity generated from each reaction or source i. We can then
write the cooling equation as

dT

dt
= −

∑
i Li
Cv

, (4.4)

describing the change in temperature during an infinitesimal time interval, in terms of
the two governing factors for radiational heat transfer:

The heat capacity: the energy required to change the temperature of matter. Cv
encapsulates the relevant micro-physics behind the amount of heat, i.e. energy, that is
required to change the temperature of matter with total massM in a constant volume V
by one kelvin, ∆T = 1 K. For the temperature to increase, Cv amounts of energy need
to enter V from outside, and for the temperature to decrease, Cv amounts of energy

2Note, not the specific heat capacity
3Main sequence stars are a group of «alive» stars, defined to the main sequence by the fact that

they still produce energy in their core through fusion of hydrogen.
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need to leave V . It’s as simple as that. Including the dominant Fermi energy as the
only relevant factor for degenerate non-interacting fermions in a homogeneous soup of
N particles with mass mi in a constant volume V , the total heat capacity as given by
Chandrasekhar (1939) is

Cv =
dU

dT

∣∣∣∣
N,V

=
π2
√
x2
i + 1

x2
i

NkB
kBT

mic2
(4.5)

where xi = pF /mc is the relativity parameter from eq. (3.9), which in this context can
be thought of as the dimensionless number density of species i – in phase space to be
precise.

The total luminosity: the sum of energy radiated away per unit time. This is a
sum over multiple reaction sources, and how we calculate the involved factors is highly
dependent on the complexity and detail desired, and the model used to describe the
environment. To quantify this we need insight into some of the particle reactions taking
place in an extreme environment such as the interior of neutron stars, how we model
these reactions, and the resulting emissivities, εi. Emissivity measures radiated energy
per unit time per unit volume, which we need to calculate the total luminosity of a
volume. The main goal of section 4.2 is to quantify these emissivities for different
reactions i. In the homogeneous and isothermal case, obtaining the total luminosity
resulting from reaction i is only a case of integrating a constant emissivity over the
volume of the system. The more realistic non-isothermal case is revisited in section 4.3.

4.2 Particle Reactions and Emissivity

As mentioned in chapter 3, the composition and state of neutron star interiors are still
uncertain. By combining observations of the mass and radius of neutron stars with
the time evolution of their effective surface temperature, we can infer constraints on
the mystery regarding their interior. Some of the most relevant reactions and cooling
mechanisms are the subject of this section.

Calculating the energy loss rate from nuclear interactions is a complicated field,
deserving of a couple of master theses on its own. The main factors involved are first
the rate of the reactions, how many of the relevant reactions that take place during a
unit time. The second factor is the actual energy released from each reaction, usually
easier to approximate than the rate, but highly dependent on the actual reaction in
question and how you model the nuclear forces and potentials. The reaction rate is
a numerical beast, dependent on the density and energy of the system, as well as the
reaction probability amplitude. Actually computing the elements of these matrices in-
volves solving complicated many-body Schrödinger equations including weak and strong
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nuclear interaction Hamiltonians. For our purpose we are mostly interested in how the
different reactions affect the cooling process, and trust in the work done by others. In
the following sections we will briefly discuss some of the reactions studied in connection
with neutron stars over the last century, with emphasis on the modified Urca process.

4.2.1 The Modified Urca Rate

We are interested in the long term period of neutrino cooling of the neutron star from a
temperature of a few 109 K. This is after the star has settled into hydrostatic equilibrium
and the initial cooling from around T & 1011 K at the formation of the proto-neutron
star is completed. Below 109 K it can be shown that the mean free path of an electron
neutrino is much larger than the assumed radii of common neutron stars, and thus
the star is transparent to neutrinos (Shapiro and Teukolsky, 1983). That is, once the
neutrinos are created, whatever the reaction, they can freely escape through and out
of the neutron star without interacting and transporting energy to other regions of the
star.

Most stars emit some amount of neutrinos. About 100 billion neutrinos originating
from the sun travel straight through your thumbnail every second.4 The types and
amounts of neutrinos created are heavily dependent on the temperature of the envir-
onment where the reactions take place. In the very high core temperatures of massive
stars, T & 1010 K, or during a supernova core collapse, the most dominating reaction
is the normal and inverse β-decay channels [cf. section 3.3]. These are called the Urca
reactions,

n→ p+ e− + ν̄e, p+ e− → n+ νe, (4.6)

where νe, n, p and e− are the electron-neutrino, neutron, proton and electron respect-
ively. These reactions are a perfect sink for the large amount of energy in the star, and
are the main mode for energy loss through neutrinos. They’re so efficient the name
Urca is actually in part inspired by the Urca casino in Rio de Janeiro;

. . . the Urca process results in a rapid disappearance of thermal energy from
the interior of a star, similar to the rapid disappearance of money from the
pockets of the gamblers on the Casino de Urca. (Gamow (1970))

However, for degenerate matter this process is heavily suppressed, such as in a
neutron star that has cooled to∼ 109 K. This can be demonstrated through conservation
of energy and momentum, which we describe for a system of ideal degenerate gas with
free electrons, protons, and neutrons in a similar fashion to section 3.3. Degenerate
interior matter in equilibrium must satisfy the β-equilibrium condition

µn = µp + µe, (4.7)
4According to Fermi National Accelerator Laboratory, neutrinos.fnal.gov/sources/solar-neutrinos/

last checked 15.01.2021.

https://neutrinos.fnal.gov/sources/solar-neutrinos/
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where µi is the chemical potential of the neutrons, protons, and electrons in the system.5

As mentioned, for the temperature range we are looking at the neutrinos are assumed to
leave the system once created, as the neutron star is transparent to neutrinos, so their
number density and hence chemical potential within the system are set to zero.6 The
energy associated with the reaction is thought to leave the system with the neutrino,
contributing to the cooling rate. The chemical potentials are to a good approximation
just the Fermi energies, which at nuclear densities such as in a neutron star is

EF,i ' mic
2 +

p2
F,i

2mi
for i ∈ {n, p}

EF,e ' pF,ec.

We also require charge neutrality in the system, which through eqs. (3.8) and (3.11)
can be written using the Fermi momentum as

pF,e = pF,p, (4.8)

requiring equal number density of electrons and protons. Inserting this into eq. (4.7)
we have

EF,n = EF,p + EF,e (4.9)

⇒
p2
F,n

2mn
' pF,ec

(
1 +

pF,p
2mpc

)
−Qn,p, (4.10)

where Qp,n is the rest mass difference of protons and neutrons from eq. (3.26), and is
comparably small to the other term in eq. (4.10). Using eqs. (3.9) and (4.8), and that
the proton mass dwarfs that of the electron me/mp ∼ 5.4× 10−4, we can write the first
term as

pF,ec

(
1 +

pF,p
2mpc

)
' pF,ec

(
1 +

�
�
�mexe

2mp

)
' pF,ec = EF,e.

And so the Fermi energy of the neutron (minus rest mass) turns out to be more or
less equal to that of the electron

E
′
F,n ≡

p2
F,n

2mn
' pF,ec = EF,e. (4.11)

Now, for energy and momentum to be conserved we see that the neutron’s Fermi mo-
mentum must be much larger than that of the electron, again due to the large value of

5Here we address the normal neutron decay reaction. The proceeding is similar for the reverse
reaction case.

6No µν term in the equilibrium condition.
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the neutron mass and the speed of light. Also, the proton’s Fermi energy must be much
smaller than the neutron’s for both eqs. (4.9) and (4.11) to be satisfied, so we have

pF,e = pF,p � pF,n (4.12)

E
′
F,p � E

′
F,n ≈ E

′
F,e. (4.13)

For the degenerate matter we are interested in, only neutrons with energy relatively
close to the Fermi surface are capable of decaying, say within one ∼ kBT . By energy
conservation, the final proton and electron must also be within ∼ kBT of their Fermi
surfaces, and likewise the energy of the escaping neutrino ∼ kBT (Shapiro and Teukol-
sky, 1983). Equation (4.12) requires the momenta of the emerging proton and electron
to be small relative to the neutron momentum, but this is impossible! The proton can’t
simultaneously have small momenta and small energy compared to the neutron, while
also conserving energy and momentum.

For the reaction to be possible, there needs to be something nearby to absorb and
conserve the momentum in the reaction. With the large soup of free neutrons in the
degenerate matter of neutron stars, a bystander neutron is likely to be available for the
reactions

n+ n→ p+ e− + ν̄e (4.14)
n+ p+ e− → n+ n+ νe. (4.15)

These are called the «modified» Urca reactions, suggested by Chiu and Salpeter (1964)
to be important for neutron star cooling. During the period dominated by neutrino
cooling, this reaction is the primary source for the electron neutrinos, and the main
focus for this thesis.The process also comes in muon- and tau-neutrino emitting form,
each requiring higher densities. As the rest mass of electrons is the smallest of the three
leptons, it’s the preferable process initially. The electron Fermi surface/energy is then
gradually increased as electrons are produced and their number density increase. Even-
tually, the electron chemical potential, which is equal the Fermi energy, exceeds the rest
mass energy of muons. Then it suddenly starts being energy efficient to produce muons
and muon-neutrinos instead of electrons. Newly created electrons can only occupy high
states in phase space above the current Fermi energy, while the as until now absent
muons can start to fill in the lowest energy states and only the rest mass is needed to
create the particles. The criteria for a reaction channel to open can be expressed as

µe ' EF,e > mic
2 for i ∈ {µ, τ}.

The density is not normally high enough in neutron stars to achieve these energies for
the tau neutrino7 while the muon-neutrino reactions opens at a more relevant density,
around ρ & 2.9ρnuc, where ρnuc is the typical nuclear density ρnuc = 2.8× 1014 g cm−3,
also listed in table A.2.

7With mτc
2 = 1776 MeV >> µe.
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As the modified Urca reactions involve an additional particle, the computation of
the reaction rate involves a few more terms. But the main takeaway is that the modified
Urca rate is slower than the normal. This is again due to the properties of the dense
degenerate gas, where the low-energy states in phase space on average are occupied.
Therefore, when computing the rate of these reactions, a so-called blocking factor is
included to reflect the restrictions caused by the reduced number of possible final states
for each particle species after the reaction. As the distribution function, fi, [cf. eq. (3.5)]
describes the average occupation number of a given state for particles species i, (1− fi)
is used as the mentioned blocking factor to represent the mean number of unoccupied
states.

To arrive at a meaningful neutrino emissivity we follow the original approach of
Bahcall and Wolf (1965), as outlined by Shapiro and Teukolsky (1983), describing the
reaction in eq. (4.14) for the electron antineutrino emissivity as

εν̄e =
(
6.1× 1019 erg cm−3 s−1

)( ρ

ρnuc

)2/3

T 8
9 , (4.16)

where T9 is the temperature in units of 109 K and ρnuc = 2.8× 1014 g cm−3 is the
mentioned typical nuclear density.

Then, by time-reversal invariance, the normal electron neutrino emissivity is equal
to the antineutrino emissivity, so for the total electron neutrino emissivity we need to
add a factor 2 to eq. (4.16).

We also need to account for possible muon-neutrinos. Effectively, the muon reac-
tions are identical to the electron-neutrino reaction, and only differ in the phase space
factor of the Hamiltonian as the electron and muon are of different masses. The contri-
bution from muon-neutrinos to the total neutrino emissivity can be included by adding
a factor (1 + F ) to eq. (4.16), where

F =





0, ρ . 2.9ρnuc√
1−

(
mµc2

EF,e

)
, ρ & 2.9ρnuc

(4.17)

is the ratio of muon- to electron-neutrino energy loss rate. Finally the full neutrino
emissivity from the modified Urca process is found as8

εUrca
ν =

(
7.4× 1020 erg cm−3 s−1

)( ρ

ρnuc

)2/3

T 8
9 (1 + F ). (4.18)

The total luminosity of a homogeneous body is then found by integrating the uniform
density over the whole volume

LUrca
ν =

(
5.3× 1039 erg s−1

) M
M�

(
ρnuc

ρ

)1/3

T 8
9 (1 + F ) (4.19)

8The numerical value differs slightly from the original by Bahcall and Wolf (1965) due to an updated
value used for the nuclear density ρnuc and the β-decay coupling constants.
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for a neutron star of total mass M .

4.2.2 Blackbody Photon Emission

Neutron stars don’t shine as bright as normal stars in the electromagnetic spectrum.
Photons are mainly created through excitation and de-excitation of bound electrons,
but this effect is also highly suppressed in degenerate matter. As all adjacent quantum
states are occupied for electrons below the Fermi surface this process is prohibited and
no photons are produced. Closer to the surface where the density drops to zero this is no
longer the case, and one should expect photons to be produced. Simulating this effect
computationally costly, so instead we model all photon emission through the neutron
star’s total blackbody radiation.

As mentioned, effectively all objects emit blackbody radiation determined solely by
its temperature following Planck’s law of blackbody radiation. Integrating the spectral
radiance over all frequencies and multiplying with the surface area of the star, the total
blackbody emission from the surface is defined as

Lγ = 4πR2σSBT
4
s (4.20)

where σSB is the Stefan-Boltzmann constant and R is the radius of the star. Ts is
the effective surface temperature, usually found through an envelope model of the thin
atmosphere of neutron stars. While the atmosphere is computationally expensive to
simulate alongside the rest of the profile, involving a gradual transition from degenerate
to non-degenerate matter, its effect on the resulting structure is minimal in most cases.
The thickness being of order 100 m or less, with low density compared to the interior,
the change in radius and total mass when including the atmosphere is negligible (Page
et al., 2004). Thus, the actual atmosphere is currently not included in the structural
part of our model, further justified in section 6.1. Instead, we’ll use a general so-called
Tb-Ts relationship, found by other detailed envelope model calculations.

An envelope model provides a relationship between the boundary temperature of the
star at the bottom of the atmosphere denoted Tb,9 to the effective surface temperature
– so that the luminosity of the envelope is equal the total surface luminosity of the star
from eq. (4.20). We denote this effective surface temperature as Ts. We include an
example of a simple envelope model as indicated by Tsuruta (1974, 1979)

Ts
Tb
∼ 10−2α for 0.1 . α . 1, (4.21)

roughly suggesting Ts ∝ 10−2Tb, with all structural model alterations incorporated
into the numerical constant α. For a more refined model we adopt the approximation

9That is where our structural computation ends.
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presented in Kouvaris (2008); Page et al. (2004), and references therein

Ts = 0.87× 106 K
( gs

1014 cm s−2

)1/4
(

Tb
108 K

)0.55

, (4.22)

where gs = GM
/
R2 is the surface gravity of the neutron star. From this model we

therefore have a rough Ts ∼ T 0.55
b relationship.10

We can write eq. (4.20) on a similar form to a conventional form to eq. (4.19)
to point out an important comparison. By scaling the radius to units of 10 km, and
temperature to units of 109 K, we write

Lγ =
(
7.13× 1044 erg s−1

)( R

10 km

)2( Ts

109 K

)4

. (4.23)

Assuming for clarity a homogenous neutron star, due to the heavy temperature depend-
ency of the modified Urca process, being proportional to T 8

9 , we expect at early times
when the temperature is high the neutrino emission to dominate the cooling process.
After the temperature has been driven down sufficiently the contribution from neutrinos
will be dampened, and photon emission will start dominating the cooling.

4.2.3 An Exciting Possible Heating Mechanism – Dark Matter

There are a lot of internal heating mechanism suggested to be operating in neutron
stars, e.g. (Gonzalez and Reisenegger, 2010): decay of magnetic fields; cracking of the
star surface, so-called star quakes; friction from internal velocity fields, and superfluid
vortex creep; non-equilibrium reactions; and finally, what we are currently interested
in, dark matter accretion.11 As we touched upon in the introductory chapter, we don’t
know exactly what dark matter is. We call it matter because of the main observable
feature attributed to dark matter, the fact that it has a nonzero mass and seems to
interact mainly through gravity. With all the various observation techniques developed
over the last century we are able to «see» the entire matter content of the Universe
directly,12 by analyzing the light received in our telescopes. However, this is not the
case for dark matter. As the name suggests, it’s dark, meaning it doesn’t interact with
the electromagnetic force, and is therefore invisible – that is to direct observations. We
can still «see» the presence of dark matter indirectly, by e.g. observing the gravitational
effect it has on the environment and the luminous matter we actually can see around
it.13 This is in fact how we know something like dark matter must exist. Without it,

10We’ll use this rough approximation when we find analytical solutions in section 8.2.1. The full
eq. (4.22) is used in to code.

11However, as discussed, our framework is implemented in such a way to facilitate future expansions
to include more of these mechanisms in a straight forward way.

12Of course somewhat restrained by the distance to the source.
13Luminous matter is often used to describe the normal matter we are used to in everyday life, in

contrast to dark. Another conventional name is baryonic matter.
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the Universe we observe would not have had time to form any structures yet – there
would simply not be enough matter in the Universe for gravitational attraction to keep
anything together. In other words, there would be no galaxy clusters, or individual
galaxies for that matter. Hence no stars or planetary systems . . . no you and me.

In line with what we know regarding ordinary baryonic matter and particle physics,
one way to describe dark matter is as a type of exotic particle. We’ve come impressively
far in the endeavor of constraining some of the physical properties and attributes such
particles must possess, considering no one has ever seen a dark matter particle. This
might be discouraging, or even make you think that cosmologists are just trying to hide
some fundamental error in our theories. However, it’s important to note that no one has
ever actually seen e.g. an electron or proton directly either, but we’ve developed tools
in order for us to detect them in experiments. Over the years since the discovery of
the electron by Thompson (1897), we’ve improved and used these detection techniques
to develop the field of particle physics we know today. Most people tend to accept
that these minuscule particles collectively make up all the matter we see around us
in the world. When considering dark matter, or dark matter particle candidates, we
may draw an analogy to the time preceding Thompson (1897), we don’t know how
to detect them yet – that doesn’t mean dark matter isn’t something real, we just
don’t fully understand it.14 Many exotic particle candidates have been proposed, of
which WIMPs (Weakly Interacting Massive Particles) are one of the most popular and
promising (Jungman et al., 1996). There is no one complete definition of WIMPS, but
as the name suggests, they are thought to be particles of very large rest mass interacting
as usual through gravity, but also have an interaction with the weak nuclear force, which
opens opportunities for possible detections. The nuclear forces are limited to act on very
short length scales, and as such WIMP-WIMP interactions are thought to have a tiny
cross-section describing the probability of scattering and annihilation which explains
why such detections are so difficult to observe – but importantly not impossible.

Among the swell of independent observations strongly indicating the presence of
dark matter, we list some of the common examples: the rotational velocity profiles
of galaxies (Borriello and Salucci, 2001); gravitational lensing, light trajectories follow
geodesics in curved spacetime around strong gravitational fields (van Uitert et al., 2012);
the power spectrum of the cosmic microwave background, describing the statistical dis-
tribution of the size of fluctuations in the very early Universe (Planck Collaboration,
2016); large scale N-body simulations of dark matter formation and evolution on cos-
mological scales (Boylan-Kolchin et al., 2009); the velocity dispersion in galaxy clusters,
the original discovery that indicated an additional (large) mass requirement to explain
the observed velocity of individual galaxies in gravitational bound clusters (Zwicky,
1933).

14Some try to explain these observed effects by modified gravitational theories. As mentioned in
section 2.1.1, none of these are currently as successful as general relativity to describe the whole
Universe on large scales.



44 Cooling of Neutron Stars

From all of these independent clues, and many more observations and simulations,
cosmologists try to narrow down the large pool of possible physical properties of dark
matter. One of the main motivations for this thesis is to provide an additional possible
signature of WIMP particles, as they should contribute to the heating rate of neutron
stars, by accreting into their strong potential wells and annihilating by colliding with
each other. Our description here is largely based on Kouvaris (2008), although we
apply their results in a considerably more complex cooling model, within our flexible
and expandable framework for neutron star modeling. The relevant signature may
be evident in the cooling process of cold neutron stars at late times, as we’ll discuss
below. From simulations of structure formation with dark matter, one finds that all
the luminous matter we can see in galaxies are dwarfed by a much more massive dark
matter halo, an approximately spherical distribution, extending far beyond the radius
of the luminous part of the galaxy. The density of this halo may be described by a
relatively simple profile, decreasing with radial distance from the center of the galaxy
Navarro et al. (1996). Following calculations for the accretion and annihilation rate by
Kouvaris (2008), we may describe the effect of the annihilation of WIMP particles on
the heating of neutron stars with a single parameter. This provides a simple way to
eventually compare our results with observations in the future, by crosschecking the
temperature of a given observed cold neutron star with the estimated local dark matter
density at its radial distance to the center of the galaxy.

We’ll model the heating rate, or «heating emissivity» εh,15 associated with the
annihilation of WIMP particles as

εWIMP = AWIMP · 1.16× 104 erg cm−3 s−1, (4.24)

where AWIMP is the mentioned parameterization constant that describes the density
of the dark matter halo in a given local region, expressed in units of 0.3 GeV cm−3,
which is the estimated dark matter density around the earth. So an AWIMP = 10 would
describe a region where the density of WIMPs are 10 times higher than here on earth,
AWIMP = 100 would be 100 times higher, and so on. Integrating this constant emissivity
over a spherical volume, and scale the radius as before, we find

LWIMP =
(
1.46× 1022 erg s−1

)
AWIMP

(
R

10 km

)3

. (4.25)

Notice that there is no temperature dependency in this heating rate, in contrast
to the four powers of (surface) temperature in eq. (4.20) and eight(!) in eq. (4.18).
However, the amplitude of the contribution is considerably lower. Neglecting the tem-

15Emissivity is most commonly used to describe emitted energy, but we’ll use the term here attributed
to the heating rate – which neatly fits in the cooling equation for inhomogeneous objects.
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perature dependencies for now, we have

LUrca
ν ∼

(
5.3× 1039 erg s−1

)

Lγ ∼
(
7.13× 1044 erg s−1

)

LWIMP ∼ AWIMP

(
1.46× 1022 erg s−1

)

for a star of the same radius R. Thus, the heating should be negligible early on. But
the star is continuously cooling over time, and so the cooling process associated with
photons and neutrinos become less and less efficient as the temperature drops. After a
sufficiently long time, the heating should eventually dominate the process – and as this
heating is constant, the neutron star should settle in a final minimum temperature. As
we’ll see in part III, we find that this time is achieved within timescales of t ∼ 107 years,
slightly dependent on the EoS. As such we expect to find old and cold neutron stars
that might have reached this minimum temperature out there in the Universe.

4.3 Inhomogeneous Objects

A complication when dealing with more realistic systems is distribution inhomogeneity
in the volume. As we have seen in chapter 2, for our spherical symmetric non-rotating
star model we have a one-dimensional structural profile from the core through the
interior and to the surface. Prior to core collapse of the original star, we also know the
energy production was mainly in the core, and that the energy is gradually transported
outwards by various heat transport mechanisms. This suggests that there also should be
an initial temperature profile and gradient from the hot core to the cooler surface. These
effects are not reflected in eq. (4.4), which treats the cooling of a whole homogeneous
and isothermal body. The isotropic interior density and temperature profile, and how
they evolve, has to be considered. The equations presented in the following regarding
inhomogeneous cooling and energy balance in general relativity, or profiled cooling as
we’ll call it, are combined from Page et al. (2006, 2004); Thorne (1977).

As discussed in chapter 2, the structural equations don’t vary with the temperature,
so we can treat the interior structure as static. But the reaction emissivities depend
heavily on both the density and temperature, as well does the heat capacity. In total we
have 6 + 2N variable profiles: three fixed time-independent profiles for density, mass,
and gravitational potential; one time-dependent temperature profile; and lastly 2 + 2N
auxiliary profiles for the heat capacity and thermal conductivity, λth [cf. eq. (4.34)],
emissivity and luminosity (N is the number of included reactions), all 2+2N as functions
of the fundamental variables expressed through t and r.

T = T (t, r)

ρ = ρ(r)

m = m(r)

φ = φ(r)

⇒

εi = εi(t, r), i = 1, 2, . . . , N

Li = Li(t, r), i = 1, 2, . . . , N

Cv = Cv(t, r)

λth = λth(t, r)
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We can think of the one-dimensional profile as dividing the star into a lot of in-
finitesimal intervals of thickness dr, where each interval is homogeneous in density and
temperature. In three dimensions, each dr makes up the thickness of uniform spherical
shells at varying radii from the core to the surface. We can now treat the cooling of
each individual shell similar to that of the uniform simpler case, but we also have to
include energy transport between the shells. Whenever there is a temperature gradient,
there is energy transport through heat conduction16 following Fourier’s law

~F = −λth∇T, (4.26)

where ∇T is the temperature gradient. The heat flux, ~F, quantifies the energy trans-
portation as energy per unit area per unit time. As the temperature is radially isotropic,
and using that the luminosity is the surface integrated energy flux, we find the energy
transport equation at radial distance r from the core

∇T → dT

dr
⇒ ~F→ F (r)

F (r) =
L(r)

4πr2
= −λth

dT

dr
, (4.27)

where 4πr2 is the surface area of the shell at radius r.

As mentioned we have to consider the density profile in the emissivity when calcu-
lating the luminosity from each shell, but also the balance of energy between individual
shells. The energy from shell B a distance r from the core and with thickness dr is
then not only the integrated emissivity over the volume of that shell, but also has a
contribution from the preceding shell A starting at r − dr. This effect of course goes
both ways, so the energy from shell B enters into shell C starting a distance r+dr from
the core. Adding these contributing terms we find the luminosity in shell C

L(r + dr) = L(r)−
(
dU

dt
+ (εc − εh)

)∣∣∣∣
r+dr

· dV

or
dL

dr
= −4πr2

(
dU

dt
+ (εc − εh)

)
,

where in the last step we have differentiated with respect to r using the volume element
4πr2 dr to get a general differential equation. Again we can express the change in
internal thermal energy using heat capacity and the change in temperature [cf. eq. (4.1)],
so we have

dL

dr
= −4πr2

(
cv
dT

dt
+ (εc − εh)

)
, (4.28)

but instead of the total heat capacity we now must use the specific heat capacity valid
for each individual shell. This is found by replacing the number of particles N with the

16As long as the thermal conductivity is non-zero.
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number density n in eq. (4.5),

cv,i =
π
√
x2
i + 1

x2
i

nikB

(
kBT

mic2

)
, (4.29)

where subscript i indicates the relevant particle specie. The total cooling and heating
emissivity respectively is found as

εc =
∑

i

εi for each included cooling mechanism i (4.30)

εh =
∑

j

εj for each included heating mechanism j. (4.31)

Equation (4.28) can be solved for the change in temperature dT
dt as a function of

the luminosity gradient, and eq. (4.27) can be solved for the luminosity as a function of
the temperature gradient. The result is the coupled set of equations found as

L = −4πr2λth
dT

dr
(4.32)

dT

dt
= −

(
εc − εh −

1

4πr2

dL

dr

)
1

cv
, (4.33)

which can be solved numerically given an initial temperature profile, Ti = T (t = 0, r).
Written on this form we have to adjust the interpretation of luminosity slightly. Instead
of only describing a source’s emitted energy, it is now more appropriate to describe it as
the thermal energy entering or leaving a specified volume shell, i.e. and energy flux. As
the neutrino emissivity is highly dependent on temperature and density [cf. eq. (4.18)],
both decreasing radially from the center, we expect the cooling of the core to be much
more efficient than closer to the surface. Hence, early on in the cooling process when
the temperature is sufficiently high, the neutrino cooling timescale might be shorter
than the thermal conductivity timescale.17 This would result in a positive temperature
gradient in eq. (4.32), and a negative local luminosity. This is not actually unphysical,
but merely describes a state in which the inward radial transportation of energy through
conduction is larger than the locally emitted radiation energy.

The thermal conductivity is a complicated property of the micro-physics involved,
and describes a given material’s heat transport efficiency through thermal conduction.
In degenerate matter the thermal conductivity is very high,18 suggesting that neutron
stars are to a good approximation in fact isothermal.19 For now we use the results

17The time to reach local thermal equilibrium through conduction.
18Especially in degenerate electron gas, which is most likely always present in addition to the neutrons.
19Again, except in the atmosphere, where an appreciable temperature gradient is expected [cf. sec-

tion 4.2.2].
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from Flowers and Itoh (1981), which at least is a good approximation for a gas of pure
neutrons in the density region around ρnuc

λth =
(
2.8× 1023 erg cm−1 s−1 K−1

) ρ

ρnuc
T−1

8 , (4.34)

where T8 is the temperature measured in units of 108 K.

4.3.1 Adjustments from general relativity

In the previous sections we have taken energy conservation as a base assumption for
all our discussion. Energy conservation is a bit more complex in general relativity, as
one has to consider the relative reference frames of different observers. Energy should
always be conserved in inertial reference frames, but in general relativity there are no
such true inertial frames valid over sufficiently large volumes due to the curvature of
spacetime. Taking the reference frame of a long distance observer20 we can instead say
that gravitational redshifted energy is conserved.

For example, isothermal objects in the Newtonian picture implies that the thermal
energy, kBT , is constant in the whole object. In general relativity however, it’s the
redshifted temperature that is constant in an isothermal star

d(TR)

dr
= 0 ⇒ TR = constant. (4.35)

This means we have to make redshift adjustments to the energy transport from eq. (4.27),
as well as the volume adjustments we saw in section 2.2.2. The resulting energy trans-
port equation in general relativity is found as

d(TR)

dr
= − 1

λth

LR
4πr2V . (4.36)

When adjusting the energy balance from eq. (4.28) we have to remember that the
luminosity is energy per unit time. Thus the luminosity gradient must be redshifted
twice. Once to adjust for the redshifted energy as before, and once to account for time
running at different rates in each shell at increasing distance from the core. Similarly
the cooling and heating rate must also be redshifted twice. In addition, the internal
thermal energy must be redshifted once, and we have the usual volume adjustments. In
the end we have the relativistic energy balance equation

d
(
LR2

)

dr
= −4πr2V

(
cv
dT

dt
R+ (εc − εh)R2

)
. (4.37)

20That is an observer at such a distance that the local gravitational effects are negligible.
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To simplify the equations, we define redshifted functions for temperature and lu-
minosity as

T → T = TR, L→ L = LR2. (4.38)

We also define the baryon number a, the effective number of baryons in a volume,
through the number density of baryons and the relativistic volume element

da = nB dV = nB
(
4πr2V dr

)
. (4.39)

We can then write the transport and balance equations as follows

dL
da

= −
(
cv
dT
dt
− (εc − εh)R2

)
1

nB
(4.40)

dT
da

=
1

λth

L
(4πr2)2nBR

. (4.41)

Solving eqs. (4.40) and (4.41) for the relevant luminosity and temperature time deriv-
ative as before we finally have

L = −λth
(
4πr2

)2
nB

dT
da
R (4.42)

dT
dt

= −
(

(εc − εh)R2 − nB
dL
da

)
1

cv
. (4.43)

Again these can be solved numerically given an initial temperature profile. The proper
temperature and luminosity are reobtained post calculations, by applying the reverse
transformations defined through eq. (4.38).
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Part II

Numerical Methods,
Solving the Equations





Chapter 5

Brief Introduction to the Numerics

In part I we have laid out the relevant theory needed to solve for the cooling curves for
different models defined under our assumptions. In this part we’ll discuss some final
details we need to solve the equations presented in chapters 2 to 4 numerically. The
boundary and initial conditions employed are presented, as well as some numerical con-
siderations and methods used. When referring to different parts of the code structure,
monospaced font is used to make a clear distinction. The framework is written in a
way where the individual parts of the theory are first separated into template classes,
defining the minimum attributes required in each class for them to communicate. By ex-
panding upon these template classes, we are free to choose how each part is modeled, as
long as it meets these minimum requirements. Throughout the development, the main
goal has been a modular and flexible structure, utilizing well-established and tested
Python libraries where possible.

As usual in numerical work, the continuous differential equations defined in the
previous chapters are first discretized onto one-dimensional grids, before using inter-
polation methods to represent the solutions as continuous functions within the solution
interval.

Software

In this project we’ve made use of Astropy1, a community-developed core Python package
for Astronomy (Astropy Collaboration, 2013, 2018). As well as SciPy2, fundamental
algorithms for scientific computing in Python (Virtanen et al., 2020).

1www.astropy.org
2www.scipy.org

http://www.astropy.org
https://www.scipy.org
http://www.astropy.org
https://www.scipy.org
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5.1 The Modules Developed

As mentioned, each part of the theory are separated in to three modules with multiple
available classes:

1. ns_models – Classes defining the «right hand side» (RHS) of the structural dif-
ferential equations from chapter 2. These classes all inherits from a solver class,
solver_structure, which handles the common operations for all the different
classes.

2. eos_models – Classes defining the equation of state from chapter 3.

3. cooling_models – Classes defining the RHS of the cooling differential equa-
tions from chapter 4. Again, these classes inherits from a common solver class,
solver_cooling.

In addition there is a collection of utility classes, combined into the utils module. Of
the most important in regards to actual calculations, we have the Numbers class and
Scales class defining the numerical scaling used throughout the code, which we’ll come
back to in section 5.2.

Instead of conventional storing of results by writing list of numbers to files, we’ve
used the built-in Python module ’pickle’ (Van Rossum, 2020). Pickle includes binary
protocols for writing entire Python objects with the objects hierarchy, methods, and
stored attributes and variables. It also provides the reverse operation, allowing us to
read and write entire instances of our models to file – with all solutions intact, but also
the actual methods and relationships employed to obtain said solutions.

5.2 Numerical scaling

Common issues in numerical calculations involving a large range of different values are
the stability and convergence of integration methods, and floating point precision of
small numbers. As an example, we know the density profiles of neutrons stars possibly
reach orders of O

(
1016 ∼ 1017

)
at the core, while approaching zero at the surface.3 Also

there is the ever troublesome treatment of different unit conventions. To handle this
problem consistently for all possible combinations of models and future expansions, we
developed the Scales class defining numerical scales appropriate on a case by case basis.
This way the flexible behavior of the code is maintained, facilitating multiple convenient
scaling choices for each individual module, while future extensions and other user defined
scales are easily integrated into the code.

3Or at the top of the atmosphere to be precise.
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Scales is largely reliant on the Numbers class, extracting physical constants from the
Astropy collection, as well as converting them to cgs-units, to ensure a single collection
of consistently defined constants to be used by all modules. It’s for these classes the
Astropy library was used. In particular the underlying Constants and Units modules,
defining physical and astronomical constants and units according to various collections
and standards, and allow for conversion between units. By default on our system
installation, the physical constants are fetched from the CODATA 2018 collection, with
the relevant numerical values as we’ve used them listed in chapter A.4 However, to
optimize for calculation speed, none of the three main modules use any of the Astropy
functionality directly. Everything regarding units and unit conversions is done before
and after calculations, by utilizing Scales.

All the scaling is based on the same logic and strategy, and is described by relations
on the following form

Q = Q′Qo, (5.1)

where Q is the physical quantity with value and cgs-units, Q′ is the scaled or primed
quantity without units, andQo is the scaling coefficient between the physical and primed
quantities. For individual problems, e.g. the Newtonian stellar structure, a complete
set of Qo values for the problem’s constituent physical quantities and relevant equations
define the problem’s so-called scaling. For a scaling to be self-consistent, the different
Qos are dependent, and in most cases defined by choosing a base for one or two of
the involved quantities. During the development and experimentation of this project,
multiple different scales with different bases have been implemented. Here we’ll restrict
ourselves to the two types which we found most convenient in each case. The first
is the so-called cgs scaling, where all Qo coefficients are unity with only the relevant
units, which is equivalent to solving the system without numerical scaling.5 This type
of scaling is defined for all the three main modules and their subclasses, and is mainly
used as a set of scales to present figures in proper units. For the scaling employed in
the calculations, we have to look at each of the problems we are trying to solve.

4The Astropy library also facilitates changing the base collection for physical constants to updated
(as well as older) versions, from both the CODATA group and others. As we are fetching all our values
of physical constants from their definition in Astropy, our code is flexible in terms of the collection
versions defined in Astropy.

5Note however, cumbersome unit conversions and handling will be automatically dealt with by the
Scales class.
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Chapter 6

Solving for the Stellar Structure;
ns_models

The matter in the neutron star is highly degenerate and thus treated as static. This
simplifies the calculations considerably, by separating the one-dimensional structure
calculations into a closed time-independent problem. The solution of which to be used in
the cooling calculations, without having to recalculate the structure of the star between
each time step of the cooling. Therefore our first milestone of development was defining
the framework for solving the stellar structure; the mass m(r), pressure P (r), density
ρ(r) and metric functions Φ(r) and λ(r), all as functions of the radius r.

In the following we’ve limited the discussion to the general relativistic structure
equations (TOV), as the Newtonian case is not that relevant for neutron stars. How-
ever, here we meet our first example of the flexibility of our code and the way it’s
intended to be expandable. As mentioned, all common operations regarding initializa-
tion and scaling using the Scales class, the actual integration of a given set of equations,
verbose reports of the solver progress, storing and treating the results, and other useful
operations that is unchanging under the two gravitational theories, are combined into
an underlying solver class, the solver_structure. To implement the models defined
by the two sets of coupled equations from chapter 2, all we have to do is define a new
class inheriting all functionality of the solver class – only specifying the RHS of the
differential equations to be solved. The Newtonian case was therefore actually the first
to be implemented, used as a simple test of the «flow» of the framework. We later
just expanded the ns_models module, to also have classes for the TOV equations with
various bases for scaling.
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6.1 Boundary Conditions

Sources like Shapiro and Teukolsky (1983) and Thorne (1977) list the general relativistic
stellar model equations and their boundary conditions starting at zero radius r = 0. We
found that this immediately breaks down in a numerical treatment, clearly visible from
the equations in chapter 2. Illustrating examples of this are eq. (2.6) for the Newtonian
pressure gradient or eq. (2.20) for the relativistic volume correction, being undefined for
r = 0.

A similar surface boundary condition at zero pressure, P (rs) = 0, defining R = rs
as the surface radius, is also suggested in Shapiro and Teukolsky (1983). However, this
has multiple numerical and physical problems. Our assumptions of totally degenerate
matter must break down near the surface when the pressure and density go to zero, and
we’ll also encounter problems when calculating a surface luminosity [cf. chapter 8] if
the volume cells near the surface approach a zero particle number density. We are also
integrating from large initial values of pressure at the core, all the way down to zero
pressure, which is cumbersome numerically.1 To facilitate flexible and model dependent
boundary conditions2 we instead treated the system of differential equations as an initial
value problem, and integrated outwards throughout the radial profile of the star with
initial conditions defined at the core. The surface boundary conditions are then imposed
by a termination-event

ρ0(r) < ρ0,tol, (6.1)

that if satisfied ends the integration, where ρ0,tol is an input parameter in the code
defining a desired surface rest mass density. We chose the rest mast density for this
condition, as it’s the most consistently defined quantity for all the possible equations
of state. We found this choice of boundary determination to be favorable over other
methods for a handful of reasons. As we’ll see in the eventual results in part III, most
equations of state results in fairly uniform interior density and pressure profiles. Closer
to the surface a large gradient is found, thus the profiles going rapidly to zero. At
this point the actual observables stop increasing noticeably,3 and so the exact value we
chose for ρ0,tol is not that important as long as it is sufficiently low and consistent across
model types. We also saw an example of this in fig. 2.1, especially evident for higher core
densities. In addition, different particle compositions, like the n-p-e equilibrium gas of
section 3.3.1, turns out is only achievable above certain density limits, further advocating
for a flexible non-zero surface boundary condition. To complete the integration all the
way to zero density, it’s rather common to glue on an envelope model describing the
transition from the crust throughout the atmosphere of the neutron star, using the
endpoint of the interior as initial boundary conditions. As such, by ending all the interior
profiles at an input surface boundary density, we facilitate future implementations of

1Although this is somewhat dealt with through numerical scaling of the equations.
2Both for the models currently implemented, and possible future extensions.
3Observables being the radius and mass which are features of neutron stars we are actually able to

observe, in contrast to pressure and density.
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our own envelope models. For now, we are using the relationship between the boundary
temperature and effective temperature in eq. (4.22), and by specifying the same surface
density in all our structural profiles we obtained a better and more consistent foundation
for the surface luminosity, which will be discussed further in chapter 8.

Guided by the logic outlined above we defined the initial and boundary conditions
in following fashion:

1. Define a fixed low value for the initial radius point, or the core radius. We chose
rc = 1× 10−4 cm.

2. Pick a value for the core density, ρ(rc) = ρc. The EoS then gives the core pressure,
P (rc) = P (ρc) = Pc.

3. Assume a small core of radius rc and constant density ρc. The cumulative mass
of the spherical volume limited by rc is then m(rc) = mc = ρc

4πr3c
3 .

4. The differential equation for the gravitational potential is linear in Φ, and is
restricted to join smoothly onto the Schwarzschild metric at the surface (r = R).
We therefore just chose an initial value at the core, and simply added a constant to
Φ throughout the profile of the star post calculations so that eq. (2.18) is satisfied.
We chose Φ(rc) = Φc = −0.5.

5. Pick a value for the desired surface density, ρ0,tol. The point where the density
reaches this desired value defines the surface values of pressure through the EoS,
and the observables total radius, R, and total mass, M . Following Page et al.
(2006) and Kouvaris (2008), with references therein, we chose ρ0,tol = 1010 g cm−3.

Thus the whole system is determined by the choice of EoS and the central and boundary
density. We therefore solved for a wide range of initial core density values to create
curves of total mass parameterized in terms of central density, for each available EoS.
By later specifying a desired mass, we can find the value required as input core density
to produce structural profiles corresponding to the specific mass. This is especially
useful to easily compare the cooling curves of neutron star models of varied sizes [cf.
chapter 8].

However, as we’ll see in part III, this total mass versus core density relationship
is a bit more complicated than the Newtonian theory make it seem to be in fig. 7.1.
Direct comparison of the two theories of gravity is not straightforward as so much of
the gravitational effects in general relativity is attributed to the temporal component
of spacetime, for which there are no analogous parts in Newtonian theory. Without
going into too much detail, when regarding compact objects such as neutron stars and
black holes, the effects of «gravity» is stronger in general relativity – which can be
inferred from looking at eq. (2.25), all the relativistic adjustments being ≥ 1. We’ll
briefly come back to this in section 9.2.1. For now we just point out that under general
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relativity we find a maximum achievable total mass at a specific core density, call it
ρc,max, and solutions with higher core densities turn out to be unstable. Therefore, only
the solutions resulting from the range of core densities equal to and below ρc,max is used
in the parameterization.

6.2 The Schwarzschild Scale

We found the most convenient scaling to be based on the solar mass and solar Schwar-
zschild radius

Mo = 1M� (6.2)

Ro = 1RS� =
2GM�
c2

. (6.3)

Neutron stars having typical mass ∼ 1M� and radius ∼ 10 km, this results in our primed
quantities for mass and radii being of order unity.4 Then the scaling of pressure and
density was found, based on the chosen coefficients for mass and radii, by demanding
that physical constants like G and c vanish from our equations. For this we used

ρo =
c6

32πG3[Mo]2
= 6.14× 1015 g cm−3 (6.4)

P 0 = ρoc2 = 5.52× 1036 Ba, (6.5)

where square brackets around primed quantities or scaling coefficients with exponents
are used to avoid confusing them with function variables. By inserting the mass, radius,
density, and pressure written on the form of eq. (5.1) in the equations for stellar structure
[cf. eqs. (2.24) to (2.26)], we solved for the primed quantities to obtain the dimensionless
equations

dm′

dr′
=
[
r′
]2
ρ′ (6.6)

dP ′

dr′
= − m

′ρ′

2[r′]2

(
1 +

P ′

ρ′

)(
1 +

[r′]3P ′

m′

)(
1− m′

r′

)−1

(6.7)

dφ′

dr′
= − 1

ρ′
dP ′

dr′

(
1 +

P ′

ρ′

)−1

. (6.8)

In the code the boundary conditions are given as input prior to scaling in cgs-units.
The primed boundary conditions are then found according to the Q′ = Q/Qo relations,
before the system of dimensionless equations is solved. Post calculation, the solved
physical quantities are reformed as Q = Q′Qo.

4Also, a lot of the GM
/
c2 factors from general relativity are easy to cancel out.



6.3 Integrating Through the Profile 61

6.3 Integrating Through the Profile

With the initial conditions defined we used solve_ivp, SciPy’s initial value problem
solver to integrate the set of dimensionless equations. The SciPy library offers faster,
more precise, and flexible solvers than we would have time to develop from scratch, being
highly customizable, with multiple rigorous and optimized integration methods built-
in. From among these, the ’DOP853’ method was applied, an explicit Runge-Kutta
method of order 8 with a 7-th order polynomial interpolation fit of the solver data to
create continuous functions. ’DOP853’ was chosen based on it’s recommendation in
the documentation5 of solve_ivp to solve with high precision. Instead of user-defined
radial infinitesimal step length, solve_ivp takes a relative- and absolute tolerance as
parameters. The local step length between each grid point i and i+ 1 is then optimized
through a finite differencing scheme according to the specified integration method while
requiring that the local error estimate in each step is less than

∆a + ∆r ·max |yi+1|. (6.9)

Here ∆a is the absolute tolerance, ∆r is the relative tolerance and max |yi+1| is the
absolute value of the largest solution quantity at step i + 1, obtained through finite
differencing. The optimal values of ∆a and ∆r for each specific case are hard to define.
Instead we experimented with multiple models at once, gradually increasing the toler-
ance values until we reached the first noticeable changes in any of the results. This way
we also got some insight into the numerical stability of different EoSs and numerical
scales. The tolerance values were then chosen to be equal, and two orders of magnitude
lower than the first value producing noticeable errors

∆a = ∆r = 1× 10−6. (6.10)

Both the integration method and tolerance values are possible input parameters to the
code, allowing user modifications.

Through explicit methods, values for the integrated quantities at some grid point
i+ 1 are obtained using the values from the previous grid point i. When implementing
eqs. (6.6) to (6.8) numerically it has to form a closed system dependent only on the
actual solver variables m′i, P

′
i and Φ′i. As discussed, to close the system the EoS is

also required, but it is actually needed on the form ρ′i = ρ′i(P
′
i ) to fit in the numerical

scheme. We’ll continue this discussion in chapter 7.

After integration, solve_ivp returns interpolated objects of the main solver vari-
ables which we can use to create arrays of the solution profiles with any number of grid
points within the interval of the interpolation. For the structural profiles we chose to
use 104 number of points to extract m′i, P

′
i , and Φ′i, which then is used to calculate

the corresponding arrays for rest mass and energy density profiles from the EoS. Here
5docs.scipy.org/scipy.integrate.solve_ivp

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivpdocs.scipy.org/scipy.integrate.solve_ivp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html#scipy.integrate.solve_ivpdocs.scipy.org/scipy.integrate.solve_ivp
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we found the termination-effect methods integrated into solve_ivp to be less precise
than desired. The density profile gradient is very steep at the boundary, evident in the
Newtonian example of fig. 2.1 but even more extreme in some of the results we’ll see
in part III. Therefore the last step of integration is prone to overshoot the given input
boundary density. Instead, we utilized the interpolated objects to define our own post
calculation smoothing of the endpoints to be used for each solution. As we have an
interpolation for P (r), we find the exact radius value that in turn gives a rest mass
density ρ0,tol through the EoS, which then defines the boundary radius rb we use as the
total radius of the star R. The part of the solutions overshooting the tolerance value
is just discarded. The metric function Φ′i is also treated following section 2.2.2. The
surface condition value defined by eq. (2.18) is found using the total mass and radius,
then the whole interior profile for Φ′ is adjusted as

Φ′ → Φ′ + ∆Φ′b, (6.11)

where ∆Φ′b is the difference between the boundary value required by the Schwarzschild
metric and the actual value obtained for the surface through integration. We also
evaluate the function for radii 20 % beyond the radius of the star, still using the mass
M = m(R), as a test to ensure that it’s continuous all the way from the core extending
out into empty space. Lastly, the λ metric function is found by eq. (2.17) using the full
mass and radius profiles. All of these arrays are stored, along with the interpolation
objects and other useful solver info in a dictionary inspired by the ’json’ format, one
such dictionary for each solution of different initial core densities.

The mentioned post calculation smoothing technique is also expandable and flexible.
We found the surface density tolerance to be favorable for the comparison we’ve done,
but as the framework is intended to study neutron stars under various conditions we
also facilitate simple implementation of other conditions used to define the boundary.
In addition to the mentioned method to ensure a consistent surface density across all
model types, we’ve experimented with a few other termination or tolerance events, but
will not mix in the results of using them in the thesis. Two of these defines the boundary
at the radius where the mass stop increasing significantly, or where the pressure stop
decrease significantly – both compared to tolerance values of the gradients.6

6This was developed to deal with problems we encountered when using the ultra-relativistic poly-
tropic formula [cf. section 9.2.1].



Chapter 7

Implementing the Equation of
State; eos_models

As in the ns_models module, eos_models is a collection of classes where each class is
defining the different equations of state from chapter 3. For each class implemented, and
future possibilities, there are two minimum behaviors that must be met. The P = P (ρ)
relation for the initial conditions [cf. section 6.1],1 but also the inverse ρ = ρ(P ) which
is needed in the TOV-equations [cf. section 6.3]. This was implemented using a similar
strategy for each model from chapter 3, with appropriate scaling and numerical details
outlined below. The strategy is simply put to precompute and tabulate monotonically
increasing quantities to create the inverse relations by interpolation.

7.1 Common Features

For coherency between different models, the template EoS class is constructed with one
method giving the pressure with rest mass density as input, and one method giving both
the rest mass density and full mass density with pressure as input.

The scaling is dependent on the scale in use for the structural equations, particularly
the scale for pressure and density. Hence, a scheme demanding all numerical constants
to vanish is unfeasible in general. Instead we aimed to group such eventual numerical
constants into precalculated dimensionless factors, reducing the number of floating point
operations (FLOPS) wherever possible [cf. eqs. (7.5) to (7.7)]. In each case, the scale
for pressure and density is continued from the accompanying structural scaling, as they

1In hindsight, we could have defined the core boundary values from an input pressure and only really
required the inverse relation. However, it is conventional to use the central density and the P = P (ρ)
form in most sources. For a general model, the reverse relations are obtained through solving and
tabulating the given P = P (ρ) relations, thus requiring its numerical implementation anyway.
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describe the same quantity. The energy density and number density is then conveniently
scaled as

εo = ρoc2 = 5.52× 1036 erg cm−3 (7.1)

no =
ρo

mn
= 3.67× 1039 cm−3 (7.2)

so that the primed mass and energy density are equal, ρ′ = ε′, and the primed number
and rest mass density, ρ′0,n = n′n, are equal for models including only neutrons. The
numerical values listed in this section assume the Schwarzschild scaling introduced in
section 6.2 has been chosen for ns_models. Possible other scales for the structural part
are treated automatically in the Scalesmodule, resulting in different obtained values for
the coefficients of energy and number density. For the rest of the dimensionless constants
we have to consider the remaining relevant equations for each model separately. In each
case we describe the process for implementing the desired equations while referring to
the full equations from chapter 3 for simplicity, but keep in mind that the scaling of
each model is determined at initialization – and all solving is done on the dimensionless
equations.

7.2 Contributions to the Mass

The equations of state presented in chapter 3 are all by construction including similar
contributions to the mass of the star [cf. section 2.2.2]. Of course, the rest mass
energy should always be included. The kinetic energy is incorporated in the definition
of energy density from eq. (3.3), so at least the two Fermi EoS provide the same types of
contributions. The simple polytropic formula indicates that only the rest mass energy
should contribute to the mass, from solving the algebraic equation for the rest mass
density. However, as discussed in section 2.2.2, it would be wrong to only allow rest
mass contributions to the total mass in relativistic theory. To account for this we
implemented the EoS in such a way that the rest mass resulting from solving eq. (3.21)
is in turn used to find the relativity parameter, and then the corresponding full energy
density using eq. (3.15).2 This is described in more detail in section 7.3. Thus, the
polytropic EoS is constructed to also include kinetic energy contributions. The last
and most realistic EoS, from Gandolfi (2012), includes the kinetic energy, but also the
energy associated with the 2n- and 3n-interactions as the ideal gas approximation is
abandoned.

To demonstrate the discrepancy in the resulting neutron star profiles when wrongly
using only rest mass energy in the TOV equations, the polytropic and QMC EoS classes

2We found during the research phase of this project that many authors seem to not recognize this
discrepancy, or at least makes it really hard to determine exactly what sort of density that is described in
different circumstances by using poor notation. That’s why we have gone out of our way to distinguish
between the rest mass density and mass density throughout this thesis.
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in eos_models are accompanied by simplified sibling-classes. These classes intentionally
only consider the rest mass density in both the two outputs of the ρ = ρ(P ) relationship.
In the case of the polytropic EoS this was trivial, as we only had to solve the algebraic
equation. For the QMC EoS, this was done by just not adding the kinetic and interaction
energies to the rest mass before returning them. The purpose of this was mainly to mend
our own sanity, after struggling to reproduce results found in similar papers and theses
during development – the authors of which not describing how they dealt with this issue
when using the polytropic approximation. Hence, reproducing and comparing to their
claimed results proved difficult.
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Figure 7.1: Demonstration of the contribution to total mass from the polytropic
EoS under Newtonian gravity. In blue and red are the non-relativistic polytropic
EoS, where the red curve is the rest mass only model. The dashed black line shows
the analytical Newtonian polytrope of the same adiabatic index. In the top panel the
parameterized total mass vs core density is shown, and the total mass vs corresponding
total radius is shown in the bottom panel.

By having the «rest mass only» version available, we can also easily solve the New-
tonian case without the added mass from relativistic theory, providing proper grounds
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for comparison between fully relativistic theory, relativistic theory with Newtonian grav-
ity, and pure classical theory. We have intentionally not mentioned this regarding the
demonstrative profile figure in section 2.1, as too many details were lacking.3 At this
point however, we are equipped to describe the two subtly different curves seen in
fig. 2.1. The mentioned parameterized total mass and radius obtained from a wide
range of core density values is shown in fig. 7.1, conveying the effect of including kinetic
contributions to the mass. The blue curve describes a Newtonian neutron star using
the proper polytropic EoS, with kinetic energy included in the energy density. The red
curve shows the other case, using the same polytropic EoS but only rest mass energy
contributions. As we can see, at low densities the two models are more or less equal,
as the relativistic energy of particles is small compared to their rest mass energy. At
higher densities however, the difference is substantial. There’s also a black dashed line
in fig. 7.1, barely visible under the red one, showing the analytical solution from a so-
called Newtonian polytrope. These are approximations can be solved analytically for the
total mass and radius as functions of central density, with a specified adiabatic index,
assuming only rest mass density in the cumulative mass. As we can see, the analytical
solutions are a good fit to our results from the pure classical theory. The analytical
expression we’ve used are taken from Shapiro and Teukolsky (1983), given as

R = (14.64 km)

(
ρ0,c

1015 g cm−3

)−1/6

(7.3)

M = (1.102 M�)

(
ρ0,c

1015 g cm−3

)1/2

(7.4)

7.3 The Polytropic EoS - Pure Neutron Gas

The polytropic formula lends itself easily to numerical implementation as a simple al-
gebraic expression between the pressure and rest mass density [cf. eq. (3.21)]. However,
it’s the full mass density that’s needed in accordance to the template class.4 Therefore,
the P = P (ρ0) relation [cf. eq. (3.21)] is tabulated before any structural calculations in
the initialization of the full neutron star model. The wide range of rest mass densities
and corresponding pressures are interpolated to create the «continuous» ρ0 = ρ0(P )
relation needed, spanning all achievable values during the calculations. The number
density is found from the rest mass density, and then the relativity parameter is found
by eq. (3.11). Finally, the relativity parameter is used to calculate the full energy density
using eq. (3.15), and a ρ0 = ρ0(ε) relation is established by interpolation. To optimize
the number of FLOPS, an ε = ε(x) interpolation is also created to avoid recalculating
eq. (3.16) in full many times.

3However, a deductive reader may have noticed the connection between rest mass and the label
«rest» in the legend of fig. 2.1, after the discussion in section 2.2.2.

4Remember that the template class is constructed to answer the demands of the numerical imple-
mentation of the TOV-equations.
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At initialization of the EoS, the relativistic or non-relativistic limit must be defined,
and by default, the non-relativistic approximation is chosen. This affects the stiffness
of the system, but also the numerical scaling and grouping of factors. Equations (7.5)
to (7.7) demonstrates the applied logic to find the mentioned eventual numerical factors,
with the values obtained listed in table 7.1.

P ′ =
κ[ρo]Γ

P o
·
[
ρ′
]Γ

= Ppoly ·
[
ρ′
]Γ (7.5)

ε′n =
mnc

2

λ3
nε
o
· χ(xn) = EFermi,n · χ(xn) (7.6)

ρ′0 =
mn

3π2ρoλ3
n

· x3
n = NFermi,n · x3 (7.7)

7.3.1 A Uniform Density Solution

For comparison to analytical cooling results of isotherm, uniform neutron stars [cf.
section 8.2], an additional EoS «model» was needed, providing a simple example of the
expandability of the code structure. We simply defined a new class in the eos_models
module, inherited all functionality of the normal polytropic EoS, but redefined the
method calculating the resulting density of a given pressure. Instead of applying the
inverse polytropic relation, the input core rest mass density and full mass density are
returned for any input value of pressure.

7.4 The Fermi EoS

7.4.1 The Pure Neutron Gas

The full Fermi EoS is of course very similar to the polytropic case, but without the
same simple algebraic expression to easily find the rest mass density and relativity
parameter. To obtain the reverse relations the EoS was tabulated at initialization
as before, but with a slightly different approach. As both the pressure and energy
density are monotonically increasing in xn, the tabulation is now based on a wide
range of possible neutron relativity parameter values. The reverse xn = xn(εn) and
xn = xn(Pn) relationships are obtained by solving eqs. (3.13) and (3.15). Then, by
eqs. (3.11) and (3.12), the rest mass density corresponding to the same range of xn
values was found to create εn = εn(ρ0,n). The methods required by the template class
is then achieved as

P ′n
(
ρ′0,n

)
= P ′n

(
xn
(
ε′n
(
ρ′0,n

)))
(7.8)

ε′n
(
P ′n
)

= ε′n
(
xn
(
P ′n
))

(7.9)
ρ′0,n

(
P ′n
)

= ρ′0,n
(
xn
(
P ′n
))
, (7.10)
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Table 7.1: Dimensionless factors obtained from scaling, following the logic outlined
in eq. (7.11), assuming the Schwarzschild scaling base applied for ns_models [cf. sec-
tion 6.2]. By using or defining another base scaling the Scales class would output
adjusted dimensionless factors.

Factor Composition Obtained numerical values

∗model: QMCnone QMC3 QMCUIX

EQMC,a n 0.063 0.064 0.071

EQMC,b n 2.248 7.825 12.32

PQMC,a n 0.031 0.031 0.037

PQMC,b n 5.080 19.33 30.00

†i: n p e−

EFermi,i n or npe 29.4 29.3 2.58× 10−12

NFermi,i n or npe 0.994 0.99 1.6× 10−10

‡limit: x� 1 x� 1

Ppoly n 0.201 0.251
∗We show three of the QMC EoS from table 3.1 using our label names.
† For pure n Fermi EoS, the values under p and e− are just not considered.
‡ For the non-relativistic (x� 1) and ultra-relativistic (x� 1) limits respectively.

with eqs. (3.11), (3.13) and (3.15) reduced to the dimensionless form

P ′n = EFermi,n ·Θ(xn)

ε′n = EFermi,n · χ(xn)

n′n = NFermi,n · x3
n.

(7.11)

Here the numerical factor for pressure and energy density are equal, again listed in
table 7.1.

7.4.2 The n-p-e Gas

The Fermi EoS for a pure neutron gas is actually a special case of the Fermi npe
EoS, only with a zero contribution from the electrons and protons. The actual class
implementing the EoS discussed above is in practice a subclass of the full Fermi EoS,
redefined to only include contributions from neutrons. Thus, the general approach
is already described for the pure neutron gas, but we have to consider some details.
Equations (3.32) to (3.34) are defined as sums over individual particle contributions,
each contribution determined by xi for particle species i. However, the beta equilibrium
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Figure 7.2: Relativity parameter, number density and proton-neutron fraction for
the Fermi npe. In the right panel the green and red horizontal dashed lines indicate
the theoretical limits of the proton-neutron fraction. For densities < 1.2× 107 g cm−3

the beta-equilibrium solution should no longer include neutrons (nn → 0), consistent
with our solution becoming slightly unstable for the lowest densities shown.

solution enforce a 1− 1 relation between the relativity parameters at any given density,
as discussed in section 3.3.1. By inserting eq. (3.31) into eq. (3.28), the proton to
neutron number density fraction is given as a function of xn

np
nn

(xn) ' 1

8

(
1 + 4Q/(mnx2n) + 4(Q2−m2

e)/(m2
nx

4
n)

1 + 1/x2n

)3/2

, (7.12)

where Q is the difference in mass between neutrons and protons [cf. eq. (3.26)], and
we have used that both me and Q are � mn (Shapiro and Teukolsky, 1983). We
therefore solved eq. (7.12) for the relevant range of xn values, to find the proton-neutron
ratio. The individual number densities are then easily obtained from the ratio, applying
charge neutrality to infer the electron density. Then the relativity parameters are found
by eq. (3.11), scaled appropriately to each species. Finally, the electron and proton
relativity parameters corresponding to the range of xn values were interpolated as before.
With these 1−1 relations at hand, we followed the same approach as for the pure neutron
case for finding the reverse EoS relations as functions of the neutron relativity parameter.
But instead of only neutrons contributing, the relativity parameter of electrons and
protons corresponding to the given xn are first found, before summed according to



70 Implementing the Equation of State; eos_models

eqs. (3.32) to (3.34) to give the total pressure and density. The baryon number density
was found by the neutron number density and the proton-neutron ratio. The resulting
xis, nis and proton-neutron fraction for increasing rest mass density is demonstrated in
fig. 7.2.

The numerical factors for each species are listed in table 7.1, following the logic
in eq. (7.11). The full quantities are then obtained by summing over each particle’s
contribution, e.g.

P ′tot(xn) = EFermi,n ·Θ(xn) + EFermi,p ·Θ(xp(xn)) + EFermi,e ·Θ(xe(xn)). (7.13)

7.5 The QMC EoS

The equation given in terms of non-rest mass energy per particle in Gandolfi (2012),
we find a set of equations on a form similar to that of sections 3.2 and 3.3 by writing
eq. (3.36) in terms of the energy density instead of energy per particle. For N neutrons
in a volume V , each with energy E, the total energy is simply Etot = NE(n) and the
associated energy density is ε = Etot/V = nE(n). The pressure is found from the
energy density through the identity

P ≡ n2∂(ε/n)

∂n
= n

∂ε

∂n
− ε.

Equation (3.36) only includes the energy associated with the interaction potentials and
the kinetic energy of each neutron, so to get the full energy density similar to before we
must add the rest mass energy density as well. We arrive at the EoS, now determined
in terms of eqs. (7.14) and (7.15)

ε(n) = a
nα+1

nα0
+ b

nβ+1

nβ0
+ ρ0(n)c2 (7.14)

P (n) = aα
nα+1

nα0
+ bβ

nβ+1

nβ0
, (7.15)

where the rest mass density ρ0, is given by eq. (3.12).

The implementation of the QMC EoS followed closely the approach of the pure
neutron Fermi EoS, but with eqs. (7.14) and (7.15) being functions of number density,
the tabulation was now based on a wide range of nn values. The numerical factors are,
as for the polytropic case, dependent on the choice of model – i.e. choice of 3n-potential.
By specifying the desired label-name for the QMC EoS as described in table 3.1, the
fitting coefficients are determined, and the numerical factors follow as

ε′ − ρ′0 =
a[no]α+1

εonα0
·
[
n′
]α+1

+
b[no]β+1

εonβ0
·
[
n′
]β+1

= EQMC,a ·
[
n′
]α+1

+ EQMC,b ·
[
n′
]β+1

. (7.16)
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Figure 7.3: The resulting pressure as function of rest mass density for the three
different QMC EoS listed in table 7.1. Note how each model converges for low densities,
where the contribution from the 3n potential should be small. In the high density
regime, the effect of the poorly constrained 3n potentials causes the different models to
converge. We also see the transition above the saturation density, effectively stiffening
the EoS.

where the contribution from the rest mass density is dealt with separately, easily ob-
tained from the number density. Similarly for pressure the factors are determined as

P ′ =
aα[no]α+1

P onα0
·
[
n′
]α+1

+
bβ[no]β+1

P onβ0
·
[
n′
]β+1

= PQMC,a ·
[
n′
]α+1

+ PQMC,b ·
[
n′
]β+1

. (7.17)

The resulting P (ρ0) relationship we found for the four emphasized models are in-
cluded in fig. 7.3. Following the discussion in section 3.4, we find the QMC none and
UIX to be on each side of the extreme, differ roughly one order of magnitude in the
resulting pressure at high densities. The QMC 3 (red) and 4 (purple) are shown in the
middle. We showcase these two in particular as they have an interesting relationship
slightly above the saturation density n0 marked with the vertical dotted line. The QMC
3 model is constructed with a high value for β (steep slope above n0) and low value for
b (low pressure for low densities) compared to the QMC 4, constructed the other way
around. The behavior is evident in our results, especially clear at higher densities where
the QMC 3 model approaches the extreme UIX pressures while the QMC 4 is closer to
the soft QMC none model. It’s a bit harder to make out at low densities, but we see
the red line initially at a lower pressure than the purple, before they cross at densities
∼ 7× 1014 g cm−3.
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Chapter 8

Solving for the Cooling Curves;
cooling_models

With the time-independent neutron star profiles dealt with, the last remaining problem
is to solve for the cooling curves. As discussed in section 4.3, neutron stars may be ap-
proximated as isothermal due to the high thermal conductivity of the degenerate matter.
Thus, before developing the heavier numerical methods for cooling of inhomogeneous
profiled objects, we experimented with a basic model to solve for isothermal stars follow-
ing section 4.1. This proved beneficial, being a much simpler numerical implementation
to get running in the first place, and more importantly providing analytical approxim-
ations to test our solutions. Section 8.2 briefly summarize this simplified cooling model
for pure neutron compositions, before the full problem is treated in section 8.3. As men-
tioned, this module is implemented in the same type of structure as ns_models, where
all common operations are collected into the underlying solver_cooling class. Built
upon this are the individual models, defining the RHS of the cooling equation and heat
capacity, as well as the relevant cooling and heating mechanisms present by summing
the contribution from various emissivities. As we’ll try to point out along the way,
there are a few more «nobs» to tune and adjust in terms of parameters and accuracy
in the cooling calculations than in the structural part. As such we’ll lay out the scaling
in detail for the homogeneous problem, and avoid the clutter of scales involved in the
profiled cooling – found in a similar fashion.
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8.1 Common Features

The cooling models are implemented to require as input an instance of a neutron star
structure model, with at least one solution precomputed.1 Preferably the input instance
is already solved over a wide range of initial densities, having the total mass paramet-
erized in terms of core density as we discussed in section 6.1. To study the cooling
process of a neutron star with a specific mass, the core density corresponding to the
desired mass for the given structure model is found. This density is then used as input
to the structure solver to produce the actual structure profiles to be used in the cooling
calculation.

For scaling we found it most convenient to rebase each scaling coefficient from the
structural solution to better fit with the relevant equations for cooling, following the
normalization implied by the emissivity equations:

Mo = 1M�, Ro = 10 km

ρo = 1 ρnuc, T o = 109 K.
(8.1)

Working in a different scale than in the structural problem, we first extract the full
profiled quantities from the newly obtained solution with the desired mass, convert
them to cgs-units, before rescaling them according to 8.1. All of this of course is dealt
with in the Scales class.

As the cooling equation, in both the homogeneous and profiled case, are indeed
initial value problems,2 we just continued our use of SciPy’s solve_ivp. One import-
ant distinction between the cooling and structural problem is that the heat transport
equation is a diffusion equation – requiring an implicit integration method to be numer-
ically stable. Fortunately, solve_ivp offers three different implicit methods, of which
the ’BDF’ method was chosen; an implicit multi-step method of variable order from one
to five based on backward differentiation, with accuracy determined by the mentioned
absolute and relative error tolerances. Not yet optimized for speed, we found the same
set of tolerances as in the structural part to produce consistent results for all our models

∆a = ∆r = 1× 10−6, (8.2)

which also may be given as input parameters, as well as the integration method.

1Instance being a common phrase in object oriented programming, refers to one particular occurrence
of a class. The instance is initialized following specifications given by the type of class it is representing,
and can then be treated as a type of «object» within the context of the computer programming.

2The «value» being a collection of points in the inhomogeneous case, the whole temperature profile.



8.2 Isothermal Cooling 75

8.2 Isothermal Cooling

8.2.1 Analytical Approximations

To find some simplified analytic solutions to compare our eventual numerical results
against [cf. section 8.2 and fig. 8.1], we assume an canonical isothermal neutron star of
homogeneous density ρ̄ = ρnuc, mass M = 1M� and radius R = 10 km.3 We can then
write the total heat capacity and the luminosity for (Urca) neutrinos and photons on
approximate forms to emphasize the temperature dependencies as

Cv = CT, C ∼ 1030 erg K−2 (8.3)

Lν = νT 8, ν = 5.3× 10−33 erg K−8 s−1 (8.4)

Lγ = γT 4
s ≈ γT 2.2, γ = 7.13× 108 erg K−4 s−1, (8.5)

where we have grouped the non-temperature terms into constants, and used the rough
Ts ∼ T 0.55

b relationship. We can then find solutions to the cooling equation [cf. eq. (4.4)]
in the two regimes of the cooling process dominated by neutrinos and photons respect-
ively. First, at high temperatures, we can neglect Lγ , and find

dT

dt
= −Lν

Cv
= −νT

7

C
. (8.6)

We can solve this simple separable equation by integrating from an initial temperature
Ti to a final Tf , over the time period ∆t = tf − ti, giving

(
1

T 6
f

− 1

T 6
i

)
=

6ν

C
∆t. (8.7)

From here we have an equation giving us the time it takes to cool from Tf to Ti, which
we can test against our results [cf. fig. 8.1]. We can also approximate the slope of
temperature as a function of time, by assuming Tf � Ti and taking ti = 0, which gives

1

T 6
f

≈ 6ν

C
t ⇒ Tf ≈

(
C

6ν

)1/6

t−1/6 , (8.8)

suggesting a T ∝ t−1/6 power law.

With the same procedure one can find the approximate solution in the photon
dominated regime, albeit a bit more troublesome for the full Tb-Ts relationship we are
using in our code. Instead we’ve compared our results in this regime to those obtained
in other sources, which we’ll come back to in part III. However, it’s simple to find the

3The resulting expression would be the same whatever mass and radius we choose, as long as the
density is homogeneous.
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temperature where photon cooling should start to dominate, by equalling Lγ and Lν at
the temperature Teq

γT 2.2
eq = νT 8

eq (8.9)

⇒ Teq =
(γ
ν

) 1
5.8

& 107 K. (8.10)

8.2.2 Numerical Implementaion

To study isothermal cooling consistently, we found ourselves in need of a neutron star
model with constant density, easily implemented using the polytropic formula as de-
scribed in section 7.3. For a constant density interior, the luminosities and heat capacity
are given by eqs. (4.5), (4.19) and (4.20).

With the new base for scaling defined in 8.1, the rest of the scaling coefficients
are again determined to remove physical constants wherever possible. For the simple
isothermal cooling equation this was done as

Cov =
Mok2

BT
o

m2
nc

2
= 1.503× 1037 erg K−1 (8.11)

to =
CovT

o

Lo
= 2.836× 106 s (8.12)

gos =
GMo

[Ro]2
= 1.327× 1014 cm s−2 (8.13)

Lo = 5.3× 1039 erg s−1. (8.14)

Then, the dimensionless quantities are found as

LUrca
ν

′
= M ′

[
ρ′
]−1/3 [

T ′
]8 (8.15)

Lγ
′ =

4π[Ro]2σSB[T o]4

Lo
[
R′
]2[
T ′s
]4 (8.16)

= 1.345× 105 ·
[
R′
]2[
T ′s
]4 (8.17)

C ′v =
π2
√
x2
n + 1

x2
n

M ′T ′, (8.18)

with the dimensionless surface temperature as

T ′s =

(
0.87× 106 K

T o

)(
gos

1014 cm s−2

)1/4( T o

108 K

)0.55[
g′s
]1/4 [

T ′
]0.55

= 0.0033 ·
[
g′s
]1/4 [

T ′
]0.55

. (8.19)

With a constant mass density follows a constant number density and relativity
parameter, found by eqs. (3.11) and (3.12) using the rest mass density in cgs units. Given
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Figure 8.1: Demonstration of cooling curves for isothermal bodies. Three different
initial temperatures are shown, which all converge within the first year. The slope
of the curves follows relatively close to the analytic approximation of the cooling we
expect from the modified Urca rate, shown in the dotted black line. After t = 106 yr,
the contribution from photons start dominating the cooling.

an initial temperature, the cooling curves are found by integrating the dimensionless
cooling equation until some input end time is reached4

dT ′

dt′
= −L

Urca
ν

′
+ Lγ

′

C ′v
. (8.20)

In fig. 8.1 we see an example of three different obtained cooling curves for a uniform
neutron star, with three different initial temperatures between 109 and 1010 K. As we
can see, the assigned initial temperature becomes irrelevant within the first year of
integration as each curve converges to the equilibrium solution for the given model.
The analytical approximation from eq. (8.7) is included as the black dotted line in the
figure. As we can see, the numerical solution follows closely the slope suggested by
the analytical result. As we are also including photons, our solution is found to have
a slightly steeper slope, and when the temperature drops to a few 107 K the cooling
becomes dominated by photon cooling.

4Or until the temperature drops below an input tolerance value, similar to that of the input surface
density value for the structure.
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8.3 Full Profiled Cooling

As mentioned in section 8.1, the full profiled cooling is by far the most complicated
system we’ve modeled. Much of the theory describing the physics we are modeling
is based on Page et al. (2004), who also has written a similar code for calculating
cooling curves, which we have used as inspiration. By now we hope the techniques
employed for scaling have been made clear, and avoid overloading this section with scaled
equations. Instead we’ll refer to the full physical equations as listed in section 4.3.1, but
all the numerical solving is still done on the scaled equations. We’ll also just use the
terms temperature and luminosity, instead of explicitly specifying that the quantities are
redshifted throughout. To emphasize the difference between the boundary temperature
and the effective surface temperature, we’ll use the term boundary (subscript b) to
describe quantities as they are at the last point on our radial profiles, while surface
(subscript s) indicate quantities related to the envelope model. At initialization of the
model, three parameters may be given as input, which we’ll encounter in the following
sections.5 The first is the number of grid points to be used in the radial profile, N .
We’ll also need to specify an initial temperature profile «type» and boundary value.
The last is the local dark matter density AWIMP, determining the heating rate.

8.3.1 Descretization of the Radial Profile

The full profiled cooling may be described as a series of smaller, connected isothermal
objects, i.e. uniform shells, as described in section 4.3. From eq. (4.43) we can see
how the profiled cooling is a kind of generalization of the isothermal problem already
described above, using the volume-dependent emissivities and specific heat capacity in-
stead of the corresponding uniform quantities. In addition we have to account for the
conductive term, transporting energy between connected neighboring shells expressed
through the luminosity gradient. Remember, the gradients of temperature and lumin-
osity in this context are taken with respect to the baryon number density da, not the
radius dr. The luminosity and temperature are closely related by eqs. (4.42) and (4.43),
the luminosity determined by the temperature gradient, and the time evolution of the
temperature in turn determined by the luminosity gradient. Therefore, to model these
shells numerically, we discretized the radial profile of the star into a linearly spaced grid
of points j = [0, 1, 2, 3, . . . , N − 1]. That is N number of points, where N must be an
even number, and the boundary j = b is at N −1. N may be given as input to the cool-
ing model, acting as one of the «nobs» we can increase to improve accuracy.6 For the
results presented in this thesis we used N = 200. The individual shells are then defined
between the even-numbered j, with thickness equal the radial distance between these
points. The temperature is defined in the middle of each shell, on the odd-numbered
grid points, whereas the luminosity, being interpreted as an energy flux between shells,

5The parameters turn to default values if not provided
6However, also increase computation time significantly in the current implementation.
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is defined on the even-numbered points. Following the analogy to isothermal cooling,
the temperature can be thought of as the average temperature of the shell, with the
luminosity defined at the boundaries.

8.3.2 Setup from Structure

To define the initial conditions to be used for the cooling calculation we first need
some quantities from the structure model. As discussed in section 8.1, a new structure
solution is found with a desired total mass before the obtained profiles are extracted
to fit in the cooling grid.7 The desired mass, or «target» mass, is also one of the
possible input parameters to give the solver, making it easy to compare two cooling
curve solutions of the same model but with varied mass and radius. The extracted
quantities include the metric coefficients and surface gravity acceleration; the mass,
radius, pressure and density; and the baryon number density and relativity parameter.8

Then the infinitesimal baryon number daj is found following eq. (4.39), where dr =
rj − rj−1 is taken to be the radial equally spaced distance between grid points. All
these quantities are defined on every cooling grid point j.

8.3.3 Initial Conditions for Cooling

In chapter 4 we briefly mentioned that, within reasonable limits, we are free to choose
how the initial physical temperature profile is assigned. We’ll come back to this state-
ment in section 9.3, for now we describe how these profiles are determined. When
solving with an instance of the cooling model, not only the desired total mass of the
star may be given as input, but also a specific type of initial temperature profile and
initial boundary temperature Tb,init. The temperature profiles are constructed to have
precisely the given temperature at the boundary, with the interior shape determined
according to the specified profile type. These profiles have been given descriptive names,
and are defined as follows

• Isotherm – the simplest profile. As the name suggests, this profile is defined to
be isotherm from the start. This profile type may be useful if we’re only interested
in the cooling process after the neutron star has become isothermal.

• Quadratic – a profile designed to decrease roughly proportional to the inverse
square of the radial distance from the core, being equal Tb,init at the boundary.

7If the target total mass is higher than the achievable maximum mass of the model, the solver will
produce a warning message and default to use the solution corresponding to maximum mass.

8Extracting the baryon number density and relativity parameter is slightly more complicated in
the presence of multiple particle species. We’ll consider the pure neutron models here, which after
all includes the most realistic QMC EoS, and summarize the changes required to include protons and
electrons in section 8.3.5.
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This is thought to give one representation of a possible initial temperature profile
with a hot core and cooler surface, appropriate for the cooling process we are
looking at (T . 109 K). Specifically, a profile of N/2 equally spaced numbers
between 0 and 0.5, called it q, is used to give the initial temperature profile as
Ti = Tb,init ·

(
2.34 + 1

/(
q2 − 1

))
.

• Ideal gas-like – a profile inspired by the ideal gas law. The temperature pro-
file resulting from the profiles for pressure and number density is found as T =
P/(nkB) , and then adjusted to be equal Tb,init at the boundary by multiplying
the hole profile by a constant. Again thought to represent a profile with some
relevant physical reasoning behind it. Compared to the ’quadratic’ profile, this
one gives an exaggerated initial temperature gradient.

Again, from Page et al. (2004, 2006), we knew these profiles should not be too important
in the long term cooling process of neutron stars. And so the exact quantitative shape of
the profiles is found through simple experimentation. Alongside the initial temperature
profile, which is stored separately for later comparison, we initialize the arrays for the
temperature and luminosity as well as their gradients.

8.3.4 Integrating the Temperature Time Derivative

To follow the process of solving the coupled set of equations in eqs. (4.42) and (4.43),
we have to think along two discretized numerical grids. The first being the radial profile
of the star divided into shells, where the actual structure of the star is static, but we
assign the matter a physical temperature profile. This temperature profile is in turn
changing in time, making time the second «grid». With solve_ivp we are easily able
to treat the time evolution of the whole temperature profile, as long as we specify the
exact value of all the quantities in eq. (4.43) at each individual grid point. We therefore
used the same approach as for the homogeneous cooling, but we have to find the total
emissivity, the heat capacity, and the luminosity gradient at every grid point, for every
time step of integration. Naturally, this is the most demanding computational task of
the framework, and is a bottleneck for computation time.

As mentioned, the temperature and luminosity are only defined on alternating grid
points, even for the temperature and odd for luminosity. Thus, there are only N/2
grid points for each of these quantities. And so the part solving the time evolution
of the temperature in each shell is only treating the odd-numbered grid points. This
means, for every time step,9 we have to approximate the luminosity gradient at the odd-
numbered grid points. This is done by iterating over the even-numbered grid points
to approximate the temperature gradient giving the actual luminosity, which finally
gives the luminosity gradient at odd-numbered grid points. We do this in a single

9Following the implicit backwards differentiation scheme.
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iteration over j = [2, 4, . . . , N − 2], following the schematic order outlined below where
the subscripts indicate grid point number. The endpoints are treated with boundary
conditions following Thorne (1977); Page et al. (2004). To get the luminosity gradient
at the last temperature grid point, N − 1, we have to use the envelope model to find
the luminosity of the surface – not a part of the cooling grid. This is actually where the
whole photon contribution is treated, which only occurs at the surface as discussed in
section 4.2.2. Again note, in the code, everything is scaled to dimensionless equations,
with numerical factors grouped into single factors to reduce the number of FLOPS as
we did for the equations of state.

• for j = 0:
As we have no temperature defined interior this point we may set the core luminos-
ity to zero L0 = 0. An alternative is to use the total luminosity of a homogeneous
core, giving L0 = 4πr2

0σSBT 4
1 . We’ve implemented both to compare the effects,

and didn’t observe any difference in the resulting cooling curves between the two
choices. Note we have to use the temperature defined at j = 1.

• for j = [2, 4, ..., N-2]:
Approximate the temperature gradient and the average temperature, to find the
thermal conductivity [cf. eq. (4.34)] and luminosity [cf. eq. (4.42)] at j, before
approximating the luminosity gradient at j − 1:

dT
da

∣∣∣∣
j

=
Tj+1 − Tj−1

daj−1 + daj
(8.21)

T̄j =
(Tj+1 + Tj−1)

2
(8.22)

which gives λth,j = λth,j
(
T̄j
)

and Lj = Lj
(
dT
da

∣∣∣∣
j

, λth,j

)

then
dL
da

∣∣∣∣
j−1

=
Lj − Lj−2

daj−2 + daj−1
(8.23)

• for j = N-1:
To approximate the luminosity gradient at the boundary like 8.23, we need the sur-
face luminosity. The effective surface temperature Ts = Ts(Tb) is found using the
envelope [cf. eq. (4.22)], which gives the surface luminosity as Ls = 4πR2σSBT 4

s ,
where R = rb is the radius at the boundary. Then the luminosity gradient at the
boundary is found as

dL
da

∣∣∣∣
N−1

=
Ls − LN−2

daN−2 + daN−1
. (8.24)

We also get the specific heat capacity and emissivities on the odd-numbered grid
points using the proper temperature profile, found from the inverse transformation
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in eq. (4.38).10 Then, the time evolution of the temperature in each shell is determined
by solving cooling equation for odd numbered j

dT
dt

∣∣∣∣
j

= −
(

(εc − εh)jR2
j − nB,j

dL
da

∣∣∣∣
j

)
1

cv,j
. (8.25)

8.3.5 Including Additional Particle Species

So far in this section we’ve discussed the model assuming only neutrons are present in
the gas. To include other particles we have to account for a few adjustments to the
equations in the model, serving as a good example to demonstrate the ease of extending
the framework. Following the same logic and structure as for the ns_models module,
by either inheriting from another model class as we’ll demonstrate for the addition of
protons and electrons here, or by defining whole new classes inheriting the underlying
solver, all we have to do is define the new desired behavior.

The only change we are making to the model here is the addition of protons and
electrons. Thus, we need to change the specific heat capacity and include protons in the
baryon number density. The rest of the implementation stays the same, so we only need
to implement our new cooling class as a child of the already developed class we have
discussed so far regarding neutrons.11 Then include the number density and relativity
parameter of each particle, and overwrite the method that calculates the specific heat.
Following the arguments from sections 3.3 and 4.1, we find the total specific heat by
summing each particle’s contribution defined in eq. (4.29)

cv,tot =
∑

i=n,p,e

cv,i, (8.26)

in a similar fashion as sources like Page et al. (2004, 2006)

This same process of modifying and expanding upon the base cooling models we
have defined is easy to extend to more and exciting physics and particle species, varied
envelope models, and as many cooling and heating mechanisms we want – as long as
we can express the resulting specific heat, and (cooling and heating) emissivities along
the radial profile.

10The quantities are found with the temperature profile not redshifted, as the adjustments from
general relativity are dealt with in eq. (8.25).

11The new class profiled_npe is defined to inherit from the profiled_n class instead of the under-
lining solver-class – copying every method of the neutron only model including the emissivities.
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Chapter 9

Our Numerical Framework

Throughout part II we tried to explain the numerical methods and techniques applied
to solve the relevant equations describing each of the three pieces of the puzzle that is
neutron star structure and cooling. Along the way we’ve also argued for the stability,
clear structure, and conciseness of the implementation while facilitating flexibility for
future improvements and expansion, as well as the ease of using the framework. In
this chapter we try to justify this latter statement by giving an example of its use in
section 9.1. Here we showcase the actual code as it is used to produce some of the
first results and figures for structure and cooling, which we then discuss in sections 9.2
and 9.3 based on the theory presented in part I.

9.1 How Everything Works Together

As we’ve seen, the code consists of three main modules working together, one for every
subject in chapters 2 to 4. Each of these modules is a collection of classes where the
different desired behavior is defined, with common behavior inherited from underlying
solver-classes. Neutron star models are constructed by combining these modules, fol-
lowing the schematic in fig. 9.1. Here we’ve tried to emphasize the main objective of
each module, and how they are all connected through the various utility classes. The
three modules doing the heavy lifting all follow the same type of code structure and
connection to the utilities, to make it clear and easy to expand and work with. Es-
pecially the eos_models module are a candidate for future expansion to include more
exiting physics and particle species, as we discussed in chapters 3 and 7. This is also
true for the cooling_models, which we’ll get back to in section 11.1 when we discuss
some future prospects.

Figure 9.1 also mention the Plotter module as one of the included utilities. This
class is used to create all of the graphs in this thesis. The plotter was continuously
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eos_models
Input to the 
structure module. 
High potential for 
future expansion.

cooling_models

Solves for the 
cooling curves 
given a structure 
model.

ns_models
Solves for the 
structure profiles 
given an EoS.

Utilities

Collection of scales and 
physical constants, 
for communication 
between modules. 

Also the Plotter module 
creating figures of a 
given input model.

Figure 9.1: Code structure schematic of the framework, illustrating how the indi-
vidual modules are dependent on each other, interconnected with the utility classes.
Figure credit: Renate Røsæg.

developed alongside the gradual process of this project to consistently compare and test
the result of the different models while implementing them. It has served faithfully for
this purpose, but some customization has been done to produce the figures showcasing
individual special features. An honorable mention that did not make the cut,1 are
time evolution animations of the temperature and luminosity profiles, as well as their
gradients, who proved very useful for debugging the profiled cooling process.

To demonstrate the use of the framework, lets «build» some neutron stars! The
following are some of the actual lines of code used to produce the figures we’ll see in this
chapter, albeit a bit taken out of context for the sake of demonstration. As repeated
throughout part II, we are solving over a range of initial density values to create the
parameterized total mass and radius relations. We’ll come back to this in section 11.1,
but we’ve left out some technical syntax used to group all these models into dictionaries
to streamline the looping. Nevertheless, the code listed here is good to go, and would
produce one solution for each model. We’ve tried to emphasize the most important
input parameters that may be given to each part. Note however that there are more
possibilities provided, most of which have been described in part II.

1Animations being kind of boring on paper, we didn’t prioritize making them informative for an
«outside observer» . . . i.e. someone unfamiliar with the process.
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First of all, let’s import the modules and initialize three neutron star instances. To
showcase the use, we create one star with the Fermi npe EoS (the one in the following
figures), and one with the QMC4 EoS [cf. chapter 10], both with the TOV equations
under Schwarzschild scaling. In addition we create a Newtonian neutron star with the
polytropic EoS in the non-relativistic limit, again for demonstration purposes. Each
model in ns_models takes as input a class (uninitialized) of the desired EoS along with
accompanied keyword parameters, to initialize the structural part with the assigned
EoS at the same time, connected through the Scales class:

import ns_models , eos_models , cooling_models , utils

NS_npe = ns_models.TOV_Sch(eos_models.Fermi_npe)
NS_QMC4 = ns_models.TOV_Sch(eos_models.QMC , hamiltonian=4)
NS_Newt = ns_models.Newton_Sch(eos_models.Polytropic , rel=False)

We can then «set the boundary conditions», following section 6.1, by giving the
rest mass density ρ0,c = 1015 in units of g cm−3 as input, and solve each model until
the desired outer boundary rest mass density is reached, following section 6.3:

NS_npe.set_boundary_conditions(rho_core=1e15)
NS_npe.solve(rho_tol=1e10)

This syntax is the same for every class in ns_models, and we therefore skip the
lines regarding the other two models. As mentioned, all unit handling and scaling are
done prior and post calculations by Scales. Handling of the solutions is done at the
end of the solve method, as described at the end of section 6.3.

With the structure models precomputed, given we’ve done the above solving over a
range of density values,2 we are ready to cool them down. For this, we’ll demonstrate the
use of the profiled cooling models developed for a pure neutron gas, and the one including
protons and electrons, appropriate for the QMC4 and Fermi npe EoS respectively. Here
we are free to give the number of radial cooling grid points and the type of initial
temperature profile as input,3 as well as specifying the desired density of dark matter
particles AWIMP determining the heating rate. Giving AWIMP = 0 will turn off the effect
of heating entirely. The only required input is the actual structure model to be used in
each case, the other parameters taking default values if not specified.

Cool_npe = cooling_models.Profiled_cooling_npe(NS_npe ,A_WIMP=0,\
T_init_profile="quadratic")

Cool_QMC4 = cooling_models.Profiled_cooling(NS_QMC4 ,A_WIMP=10 ,\
T_init_profile="ideal gas -like")

2If this is not the case, and we only have the one solution found with the input density from above,
the cooling model will just use the one solution it finds available and produce a warning message.

3To avoid over cluttering the code listing, we neglect to specify the number of grid points which
then defaults to 200.



88 Our Numerical Framework

The boundary temperature value and target mass may be given as input to the
solve method of the cooling models for each solution. We’re also free to adjust some
other parameters like integration accuracy and the desired end time. However, if the
temperature drops below 103 K we end the integration early. As we have not included
any heating in the npe model, the temperature should reach this tolerance value and end
the integration at some point, so we just set a high end time value. As we’ll see in fig. 9.2,
neutron stars with the Fermi npe EoS are not able to reach very high total masses.
For demonstration purposes we’ll therefore ask the cooling model to find a structural
solution with an unobtainable target mass, let’s say 5M�, which will print a warning
message to the terminal and inform of the maximum total mass it defaulted to use
instead [cf. section 8.3.2]. We’ll also specify a boundary initial temperature of Tb,init =
1010 in units of K, resulting in a core initial temperature of Tc,init = 1.34× 1010 K using
the quadratic temperature profile. For the model with the QMC4 EoS we give a more
reasonable target mass, and a lower initial temperature. We expect the heating rate
to stabilize the temperature at around t ∼ 107 years, making integrating much further
than this uninteresting, so we end the integration at t = 108 yr.4

Cool_npe.solve(T_surface=1e10 , t_end_yr=1e9 , target_tol_mass=5)
Cool_QMC4.solve(T_surface=1e9 , t_end_yr=1e8 , target_tol_mass=1.4)

The last step of the process is to produce figures of our newfound solutions, for which
we use an instance of the Plotter class briefly introduced earlier.5 As mentioned, in
creating the figures included in this thesis we did some minor adjustments to each plot
to better display the relevant details. To showcase how the plotter is intended to be
used to compare different models at once, we instead show the simplest way to produce
each type of figure available with both the QMC4 and npe solutions plotted in each
figure, with model-specific details included in the legends. To do this the plotter takes
as input a list of model instances appropriate to each type of plot: one full figure of all
main structure variables, as well as a figure of the metric coefficients similar to figs. 2.1
and 2.2; one figure for the parameterized total mass and radius like in fig. 7.1; and
finally one figure of the cooling curves like in fig. 8.1.

plotter = utils.Plotter ()
plotter.plot_1D_multi_models([NS_npe ,NS_QMC4])
plotter.plot_max_mass_multi_models([NS_npe ,NS_QMC4])
plotter.plot_cooling_fig([Cool_npe ,Cool_QMC4])

4We’ll see examples of this in chapter 10, albeit for other QMC models.
5The plotter does take some input like data paths and filenames for saving of figures. We’ll skip

that for this demonstration.
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Computation Time

As mentioned, solving for the cooling curves is the bottleneck for computation time,
although it’s not too bad. This entire project has been run on a standard MacBook
Pro from 2017, with a dual-core i5 processor and 8 GB of ram. We’ll discuss some
possibilities for optimizing run time in section 11.1, but solve_ivp is heavily optimized
already and we expect the code to scale rather well to more powerful computers.

We’ll report on the involved time for a complete solution of the most demanding
model regarding computation time, the Fermi npe EoS with npe profiled cooling. Solv-
ing for 100 core densities logarithmically spaced from 1013 to 1016 g cm−3 is done in
about 11 seconds. That includes the time for all initialization, scaling, solving, storing
the full profiles, create the parameterized total mass curves, and then solving one more
time to obtain a solution with profiles corresponding to a specific total mass.6 From
there, the cooling calculation time is dependent on the input of AWIMP as described
for the two examples above. The choice of temperature profile and initial boundary
temperature affects the required step length at early times, increasing the computation
time slightly.7 For a quadratic temperature profile and Tb,init = 1010 K as in the ex-
ample, the integration is terminated by reaching the tolerance at T ' 103 K after about
55 seconds of integration, that is at end time t ' 108 yr.

9.2 First Structure Results

With our framework at hand, there are a swell of possible results to inspect – some
of which we have already seen throughout parts I and II. These have been somewhat
intermediate results, in the sense that we have looked at some simplified approximations
and partial results we’ve found during the development of the whole framework, and
aimed to provide a visual guide to the reader. Here we try to summarize the results from
these various approximations, and what we’ve learned from studying them. We’ll neglect
the Newtonian models for now, as they fall short to properly describe the gravitational
effects in neutron stars.

In this chapter we’ve chosen to highlight and discuss the results obtained from
the different types of equations of state from sections 3.2 and 3.3, the Fermi equations
of state, for which we have laid out all the theory required to discuss them properly.
We find all of the results to be consistent with theory and figures from Shapiro and
Teukolsky (1983), although the source is outdated in some regards. It should not
matter too much for the results from the Fermi EoS, as most of the basic theory for
completely degenerate matter has remained unchanged since Chandrasekhar (1939).
However, some of the numerical values for physical constants and particle masses have

6So technically, we have 101 solutions!
7Using the isothermal initial temperature speeds up the computation at early times!
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Figure 9.2: Parameterized total mass and radius for the Fermi EoS (n and npe) and
the non-relativistic polytropic EoS. Maximum mass, with corresponding radius and
core rest mass density in vertical dashed lines.

been updated since 1983, and there are some significant jumps in the theory and results
presented in Shapiro and Teukolsky, both of which are not described. As such, we have
to fill in some missing connections in the comparison.

In fig. 9.2 is the resulting total mass and radius parameterized in terms of the
input core rest mass density. As this initial condition is the only variable in determ-
ining the structure profiles, we can produce this simple figure to convey most of the
relevant results from these models.8 The dashed vertical lines indicate the maximum
mass achievable with each EoS. The actual values for max mass with corresponding
radius and density are included in the legend. The purple dashed field in the lower
figure encapsulates configurations that are forbidden following Buchdahl’s theorem for
the maximum compactness of objects in general relativity. That is objects where the
proportion of total mass to radius is (M/R ) ≤ 4/9 (Shapiro and Teukolsky, 1983).

8Note the dramatic difference from the Newtonian picture in fig. 7.1, with no maximum in sight.



9.2 First Structure Results 91

Table 9.1: Max mass solutions with the Fermi EoS, including the non-relativistic
polytropic approximation and the original result of OV.

EoS Max Mass Radius Core Density

Polytropic 0.82 M� 8.69 km 4.19× 1015 g cm−3

Fermi n 0.71 M� 9.15 km 3.55× 1015 g cm−3

Fermi npe 0.70 M� 9.21 km 3.49× 1015 g cm−3

†(OV) Fermi n 0.7 M� 9.6 km 5× 1015 g cm−3

†(OV) Fermi npe 0.72 M� 8.8 km 5.8× 1015 g cm−3

† The original values of Oppenheimer and Volkoff (Shapiro and Teukolsky, 1983).

The dot at the end of each curve points out the lowest density solution, to indicate
the reversed relation with density in the lower panel – models with higher initial densities
generally results in a lower radius. As we saw in fig. 7.1, the Newtonian structure
seemingly has no maximum.9 The mass just increased while the radius decreased, with
increasing initial density. In general relativity this is no longer the case, there exists
a maximum at a finite value of core density. The exact finite value depends on the
equation of state, thought to be at a density where neutrons in the star are becoming
relativistic, but not ultra-relativistic.

We see the two models with the full Fermi EoS being very similar, only a slight
difference near the maximum mass. The values we found for the max mass and cor-
responding radius and core density are very similar to those originally obtained by
Oppenheimer and Volkoff (OV), in the first numerical treatment of neutron star struc-
tures ever done in 1939. There is some confusion regarding the boundary conditions and
precise definition and implementation of the EoS employed by OV, which makes further
comparison of the discrepancies difficult. Our results for maximum mass along those of
OV are listed for comparison in table 9.1. In our case, contrary to OV, the addition of
protons and electrons resulted in a slightly lower maximum mass, at a slightly larger
radius.

The structure profiles of the two cases are, for the most part, indistinguishable.
This is not unexpected, as the contribution to the general structure due to protons
and electrons in a β-equilibrium is quite small. As we saw in fig. 7.2, the proton to
neutron ratio is relatively low in the density range we are looking at. At the highest,
the ratio approaches 1/8 , just as the analytic solution of eq. (7.12) in the high density
limit (xn → ∞). We also find the same minimum value as the analytic solution at
the minimum as given by Shapiro and Teukolsky (1983), occurring at the same mass

9By solving the briefly mentioned Newtonian polytropes, one can show there should exist a maximum
at M = 5.73 M� in the limit ρc →∞ (Shapiro and Teukolsky, 1983).
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density ρ0 ∼ 7× 1011 g cm−3,

(
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)
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≡
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√
Q2 −m2

e

mn

]3/2

= 1.357× 10−4, (9.1)

further confirming our implementation. Thus, for all relevant densities (ρ0 ≥ 1010 g cm−3)
the number of protons and electrons is low compared to the number of neutrons. This
is also consistent with why only neutrons are considered in the QMC EoS, following
arguments further justified in Gandolfi (2012). Our found numerical values for the min-
imum differ slightly from Shapiro and Teukolsky (1983), found with the same analytic
expressions, indicating that the values for some physical constants have been updated.
This is not surprising, but we have not been able to locate the exact numerical values
used by Shapiro and Teukolsky, as they have neglected to list them.

For comparison to the polytropic approximation, we’ve included the non-relativistic
limit (non-rel), applicable for core densities � 6× 1015 g cm−3. When comparing dif-
ferent equations of state, it’s conventional to describe them in terms of the effective
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stiffness [cf. section 3.2.1]. We can see how the non-rel approximation accurately fits
the Fermi results in the low end of the interval, separating more for higher densities, as
expected from fig. 3.2. The polytropic index changes in the two limits, to a lower value
in the ultra-relativistic limit (ultra-rel, or just rel). We therefore expect the non-rel
polytropic EoS in the high density domain to be too stiff to accurately describe the
relationship between pressure and density, giving a higher pressure for a given density.

The maximum mass found for the non-relativistic polytropic EoS is achieved at
core rest mass density ρ0 = 4.19× 1015 g cm−3, and is about 15 % higher than those
of the Fermi EoS. This is consistent with the polytropic EoS being too stiff. Following
Shapiro and Teukolsky (1983), one of the general features observed in simulations is
that models constructed with stiffer equations of state tend to have larger maximum
mass and radius. We can see why in fig. 9.3, where we compare the density and mass
profiles of the polytropic approximation (dashed line) to that of the pure neutron Fermi
gas. For lower core densities, the red and blue curves, the cumulative mass at any
radius is lower in the polytropic approximation than in the Fermi EoS. As such the
gravitational potential is not as steep [cf. fig. 2.2], and hence an equally steep pressure
and density gradient. Therefore, the boundary is reached at a moderately higher radius.
This higher radius, combined with the density taking slightly higher values throughout
the profile, results in a higher total mass, despite the lower accumulation rate.

Above the non-relativistic limit, the purple and green curve in fig. 9.3, the approx-
imation is strictly no longer applicable. For these densities the particles are becoming
relativistic, meaning their kinetic energy is comparable to, or even exceed, their rest
mass. The Fermi EoS should account for this properly near the core, by relaxing the
effective stiffness of the EoS to be more comparable to the polytropic EoS as it is in
the relativistic limit. When the density drops further out in the profile, the effective
stiffness increases, and the appropriate pressure gradient is maintained to define the
surface. We know the polytropic formula doesn’t include such a varying stiffness, which
is evident in the resulting density profiles crossing below the Fermi gas profiles in this
inner softer region. To better approximate the high density end of the interval, we have
to account for increased relativity in the EoS. We’ll look into this, and some encountered
problems, in section 9.2.1.

9.2.1 Ultra-Relativistic Problems

Figure 9.4 display the parameterized mass and radius found for a wide range of core
densities, now for both the ultra-relativistic and non-relativistic limit (rel poly and poly
respectively). The Fermi n solution is also displayed, to show the very high density
behavior. Here we see quite dramatically different results obtained from using the ultra-
relativistic polytropic equation of state. As we saw in fig. 3.2, the rel poly approximation
accurately fits the Fermi EoS at high densities, so what goes wrong here? The found
maximum mass Mmax = 2.03 M� at the core density ρ0 = 2.11× 1017 g cm−3 is well
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Figure 9.4: Parameterized total mass and radius for high densities comparing the
polytropic formula and Fermi n EoS. Maximum mass, with corresponding radius and
core rest mass density in vertical dashed lines.

within the limit for the ultra-relativistic approximation (ρ0 � 6× 1015 g cm−3). Note
the interesting swirls in the M(R) curves for high densities, present in each of the
equations of state shown. The results are compared against schematic diagrams of
similar curves in (Shapiro and Teukolsky, 1983, Figure 6.2 and 6.3), found to be in
reasonable agreement. By studying the changes of sign in both dM/dρc and dR/dρc
simultaneously, one can define restrictions on the stability of a system configuration.
This is done by perturbing different oscillation modes around the minimum energy
solution, i.e. equilibrium, and solving using a variational calculus principle. This is
beyond the scope of this thesis, although the main takeaway is that dM/dρc > 0 is
required for stable equilibrium solutions for most cold EoS under general relativity.
Therefore, we should not treat solutions found using core densities higher than the
density corresponding to the maximum mass of each model as realistic to be observed
in nature, and they are not dealt with by the cooling models as discussed in sections 6.1
and 8.3.2. This is also true at the low density end displayed for the ultra-relativistic
approximation, where dM/dρc < 0, indicating unstable solutions.
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Figure 9.5: Mass and density profiles for comparison of the ultra-relativistic poly-
tropic approximation (dashed) to the Fermi n EoS.Two high core densities are included
to showcased the high density behavior, with the normalized profiles emphasizing the
first 10 kms.

The max mass solution is also found to have an unusually large radius of R =
92.05 km. As mentioned, stiffer equations of state tend to produce stars with higher
mass and radius, which is not what we observe comparing the two polytropic versions.
Again, we can understand this in terms of the issues already discussed for the non-
relativistic limit, only reversed. Now, the polytropic formula accurately describes the
behavior at the large densities close to the core, but fails dramatically when the density
drops through the profile. We’ve highlighted this behavior in fig. 9.5, comparing the
relativistic approximation to the Fermi EoS, where the right column is confined to only
show the first 10 kms of the radius. Here we see the two equations of state following each
other closely at the highest densities, but as mentioned, the polytropic version being too
soft to produce a sufficient gradient near the surface. Thus, the solution requires a large
radius to reach the desired surface density. We also suspect this problem of stability
to be related to the Chandrasekhar limit of white dwarfs, where electron degeneracy is
the source of the balancing pressure. By comparing the total internal and gravitational
binding energies one finds that only for Γ > 4/3 are the system stable, and Γ = 4/3
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marks the onset of unstable configurations as the EoS is too soft to equate the large
gravitational potential.

9.3 First Cooling Results

In this first collection of results, we’ll focus on two main features we’ve found regarding
cooling. First, we’ll argue for our previously mentioned, relatively bold statement –
the way we initialize the assigned temperature profile of the star doesn’t really matter.
We’ve tried to visualize this in fig. 9.6, showing the profiled redshifted cooling curves of
the maximum mass solution using the Fermi EoS for pure neutrons. In all of the follow-
ing profiled cooling figures, we’ve used solid lines for the boundary temperature,10 and
so-called dashed-dotted lines for the core temperature. We include the quadratic profile
in blue and the ideal gas-like profile in red, both with two initial boundary temperatures
of Tb,init = 109 and 1010 K. Note how the exaggerated initial core temperature of the
ideal gas-like profile is quickly cooled down to more reasonable values, caused by the
high temperature dependency in the modified Urca emissivity. The integration is ended
by the end time t = 106 yr to highlight the initial phase before the solutions converge.

Keep in mind, the initial temperature profiles are constructed to have the same
given input boundary temperature, and so the solid lines of fig. 9.6 appearing as purple
is the result of the blue and red lines plotted on top of each other. They only differ
in the interior temperature profiles, and with two profile types and two boundary tem-
peratures, there are four different core temperatures in total. We are plotting both the
core and boundary temperature, giving eight different curves in fig. 9.6. We therefore
include the cooling curves normalized by initial temperature in the lower panel to show
the relative behavior of each curve. Hopefully the message we are trying to convey is
clear: all the mess at early times considered, arising from how we choose to initialize
the temperature profile, have more or less disappeared within the first year of cooling.
As we are interested in cooling curves on timescales of million years or so, this initial
behavior is not that relevant. There’s no change in the boundary temperature before
the interior has cooled to Tc < Tb, when the boundary quickly catches up to the interior
forming an isothermal star. We’ve chosen to use the redshifted temperature in this
figure, to emphasize how the neutron star quickly finds an isothermal configuration.
All the mentioned effects are similar for the proper temperature, but we would see a
difference between the core and the boundary, separated by the constant value due to
the redshifted transformation eq. (2.19). This is evident in all the remaining cooling
figures, where we show the proper temperature.

The full cooling curves for the npe and n Fermi EoS is shown in fig. 9.7, with
the quadratic initial temperature profile and boundary temperature of 1010 K. The

10Note, not the effective surface temperature. We’ll show the effective surface temperature in the
cooling figures of chapter 10 instead.
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Figure 9.6: Demonstration of the convergence of different initial boundary temperat-
ures and profiles for the Fermi n model with zero heating. The redshifted temperature
is shown to emphasize the eventual isothermal profile. The ’ideal gas-like’ profile in
red, and the ’quadratic’ in blue. Dashed lines indicate the core temperature. The line
appearing as purple is the red and blue line overplotted.

results are consistent with (Shapiro and Teukolsky, 1983, Figure 11.2) in both the
modified Urca- and photon dominated regime. Also in good agreement with (Page
et al., 2006, Figure 15), where the photon dominated regime is reached after t ∼ 106 yr
for Tc . 108 K, as we have in our results. We see the same sort of behavior for both
models, but with the neutron-only solution cooling more rapidly than the full npe gas.

This difference is most likely caused by the specific heat capacity being higher for
the full npe-gas. Thus, more energy has to leave the star for it to cool, resulting in a less
efficient cooling process. To quantify this discrepancy we list the specific heat averaged
over the radial profile at T = 1010 K in table 9.2, for the two models in fig. 9.7 of mass
and radius listed in table 9.1.
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Table 9.2: Specific heat capacity averaged over the radial profile comparing the pure
neutron gas to the npe solution at T = 1010 K. Note the almost one order of magnitude
higher value for total specific heat capacity. The contribution from protons are ∼ 20 %
of the total, consistent with rough estimates by Yakovlev and Pethick (2004). The
electron contribution is a bit low at ∼ 1 % compared to the ∼ 5 % reported in the same
source. All values in cgs-units

[
erg cm−3 K−1

]
.

Model c̄v,tot c̄v,n c̄v,p c̄v,e

Fermi npe 1.94× 1022 1.37× 1022 3.66× 1021 2.02× 1021

Fermi n 3.63× 1021 3.63× 1021 - -
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Figure 9.7: Cooling curves of the n (blue) and npe (red) Fermi EoS with quadratic
initial temperature profile and Tb,init = 1010 K. Solid lines for the boundary temperat-
ure, dashed for the core temperature. The photon dominated cooling regime is found
to begin at t ∼ 106 yr for Tc . 108 K.



Chapter 10

Most Noteworthy Results

We’ve chosen to gather the most interesting and realistic result obtained with the QMC
EoS into this chapter. From the parameterized equation and fitting coefficients alone
we are only able to scrape the surface of the intricate physics involved to discuss the
equation of state when considering 2n and 3n interactions. A more detailed description
of the 2n and 3n interaction energies is left for the nuclear particle physicists (Gan-
dolfi, 2012), as we have focused more to provide a consistent framework for studying
the cooling process of neutron stars. Full analysis of models under various realistic
equations of state, the stability of the resulting neutron stars, and finally comparison to
observations, are all subjects beyond the scope of this thesis. We’ll come back to that
in chapter 11, where we summarize some future prospects.

In this chapter we’ll explore the same types of figures we saw in the first results in
sections 9.2 and 9.3, all created with the Plotter class. For our purposes the general
trends and behavior of the physical quantities, and how they affect each other, can
be explained in a similar fashion as we did in chapter 9 in terms of the stiffness of the
equation of state. As such we’ll not spend too much time repeating the same arguments,
but focus on the new and exciting results we find when including the heating rate due
to WIMP annihilation.

10.1 Structure

Following section 3.4, the QMC EoS properly accounts for rest mass-, kinetic- and 2n
interaction energy over the whole density interval we are looking at, but with varying
contribution from the 3n potential between the different QMC models. We can again
describe this in terms of the effective stiffness of the EoS. However, to compare the
stiffness of the QMC EoS to that of the polytropic, we can’t just look at the numerical
value of α and β to that of Γ. Rather, the combined behavior of both terms in the
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Table 10.1: Max mass solutions found for the QMC EoS plotted in fig. 10.1, in good
agreement with Gandolfi (2012), and realistic equations of state described in (Shapiro
and Teukolsky, 1983, Figure 9.2, 9.3 and table 9.1)

EoS Max Mass Radius Core Density

QMC none 1.76 M� 8.16 km 2.88× 1015 g cm−3

QMC 3 2.22 M� 9.94 km 1.89× 1015 g cm−3

QMC 4 2.08 M� 9.77 km 2.04× 1015 g cm−3

QMC UIX 2.46 M� 11.03 km 1.54× 1015 g cm−3
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TOV Sch QMCnone

M : 1.76, R : 8.16, ρ0 : 2.88× 1015

TOV Sch QMC3

M : 2.22, R : 9.94, ρ0 : 1.89× 1015

TOV Sch QMC4

M : 2.08, R : 9.77, ρ0 : 2.04× 1015

TOV Sch QMCUIX

M : 2.46, R : 11.03, ρ0 : 1.54× 1015

Figure 10.1: Parameterized max mass and radius found for the four QMC equations
of state we showcase. The QMC none model with no 3n interaction, is in contrast to
the QMC UIX model with the largest 3n contribution. In the middle of the two are the
QMC 3 and QMC 4, having an interesting transition around ρ0,core = 7× 1014 g cm−3.
The vertical lines mark the max mass solution, also listed in table 10.1.
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QMC EoS must be considered, with the added effect of a and b. We summarized this
effect when discussing the implementation and fig. 7.3. The main takeaway being, in
contrast to the Fermi EoS, the QMC EoS is adjusted to be stiffer for higher densities.
This is not surprising, as the EoS now includes not only the kinetic energy but also
the interaction energies, both increasing with density. From chapter 9 we expect stiffer
EoS to result in higher maximum masses achieved, as we see in table 10.1 and fig. 10.1.
These results are in good agreement with Gandolfi (2012), and also comparable to other
realistic equations of state we have yet to include described in (Shapiro and Teukolsky,
1983, Figure 9.2, 9.3 and table 9.1).

Here we’ve showcased the four models of the 3n potential we deem best to convey the
general trend in all the different models, highlighting the most interesting differences, as
discussed in section 3.4. The specific label names for different models in the particular
order seen in table 3.1 reflects the effective stiffness of each model, starting with QMC
none without any 3n interaction, followed by the numbered versions from 1 to 5, ending
with QMC UIX. That is except for the QMC 3 and QMC 4 models, having an interesting
transition around ρ0,core ∼ 7× 1014 g cm−3 where QMC 3 start resulting in neutron stars
with higher mass and radii compared to QMC 4 above this density. The structural
profiles for for these two models are shown in fig. 10.2, where the transition is evident
from the blue (ρ0,core < 7× 1014 g cm−3) to the red (ρ0,core > 7× 1014 g cm−3) curve.
The really high densities shown in purple and green are very similar except really close
to the core, where the highest density solution has a very dense core with a steep density
and pressure gradient. Note however that these solutions are of core densities above the
maximum mass solution, and should be further analyzed for stability.

We get additional insight when combining the proper profiles with the normalized
columns, where again in contrast to Fermi Eos we see much more variety in the profiles
for different densities. The normalization is done with respect to the initial density
of each solution so we can see the relative behavior from the maximum to minimum
of each curve throughout the profile, allowing us to compare the gradients and how
the cumulative mass is distributed between neutron stars of different mass and radius.
Restricting the discussion to the interesting transition at low densities, we see the same
sort of behavior as we did when comparing the non-relativistic polytropic approximation
to the full Fermi EoS in fig. 9.3. For ρ0,core = 1014 g cm−3, the QMC 4 model is the
stiffest of the two, and thus we see the density to take higher values throughout the
profile. This in turn causes the cumulative mass to increase more rapidly, and the density
profile near the boundary to be steeper, resulting in a lower radius. The opposite is
the case for the red curve, where ρ0,core = 1015 g cm−3 is above the transition taking
place in the effective stiffness between QMC 3 and 4. This density is just below the
one corresponding to maximum mass, which interestingly has a quite different shape
for the profiles. Here we see the interior density being close to homogeneous before a
substantial gradient is found and the boundary is reached. As such, the cumulative
mass is distributed more evenly, which we can see from the normalized profiles.
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Figure 10.2: Structure profiles for the QMC3 and QMC4 EoS to accompany fig. 10.1,
chosen to emphasize their differences at low and high densities.

10.2 Cooling to a Minimum Temperature

The cooling curves found with the QMC EoS share many similar features to the Fermi
n solutions in regards to the shape, slope, and evolution of the temperature. We intro-
duced this chapter claiming to focus on the new and exciting results we’ve found when
including heating due to WIMP annihilation. Without further hesitation, we present
the results in fig. 10.3. Here the boundary temperature is shown in the upper panel,
and the observable effective surface temperature below, for a M = 1.4M� neutron star
constructed with the QMC none EoS in solid lines and the UIX in dashed. Both models
are shown without any heating and for three different values of the local dark matter
density. That is AWIMP ∈ [0, 10, 100, 1000], where AWIMP = 1 = 0.3 GeV cm−3 is the
estimated density of the dark matter halo here on earth. The three nonzero values for
AWIMP results in three plateaus of varied minimal temperature, listed in table 10.2 for
both boundary and effective surface temperature.

In our search for cooling curves obtained by other numerical works to compare our
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Table 10.2: Minimum temperature achieved when including WIMP heating in varied
local dark matter densities for QMC none and UIX models, plotted in fig. 10.3.

QMCnone QMCUIX

AWIMP Ts, [K] Tb, [K] Ts, [K] Tb, [K]

10 7.07× 103 1.13× 104 6.68× 103 1.32× 104

100 1.25× 104 3.21× 104 1.18× 104 3.76× 104

1000 2.24× 104 9.13× 104 2.11× 104 1.07× 105
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Figure 10.3: Cooling curves for M = 1.4M� neutron stars with the QMC none
(solid) and UIX EoS (dashed), quadratic initial temperature profile and boundary
temperature of T = 1010 K. The obtained solution without heating shown in blue
crossing over the time axis approaching zero before the integration is ended. Three
solutions with increasing dark matter halo densities, i.e. different radial distances from
the center of the galaxy, are also included in red, purple and green.
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profiled cooling results against we’ve mostly encountered much too simplified models, i.e.
homogeneous cooling, or equally extensive profiled cooling models but with more physics
included in the EoS and cooling mechanisms. As such we have no direct comparisons
of the exact same configurations, we are mostly able to make qualitative comparisons.
Disregarding the minimum temperature plateaus for now, the general trends and shape
of our results seem to be in good agreement with several other sources with sophisticated
cooling codes. For the first 10 million years the heating does not affect the temperature,
we only see the other colored lines when the curves diverge at t > 107 yr, as they are
«hidden» behind the green line. During the first ∼ 2× 105 yr the process is dominated
by neutrino emission from the modified Urca reaction, before photon emission from
the surface takes over. We’ve already mentioned and compared the cooling curves for
the Fermi EoS with those of Page et al. (2004, 2006), and the results from the QMC
models are equally comparable, if not better as we now are looking at neutron stars
able to achieve the same mass. Similarly, we find our effective surface temperature
to follow closely with theoretical and observational results for non-superfluid neutron
models presented in Yakovlev and Pethick (2004); Yakovlev et al. (2008).

The most exciting feature we see in fig. 10.3 is how both models settle into similar
minimum temperature plateaus. Remember, these are the results we found to emphas-
ize the difference between the models. From fig. 10.1 we know a neutron star of the
same mass constructed with the QMC none and QMC UIX models to have rather dif-
ferent radii, which in turn results in the largest discrepancy in the cooling process, also
pointed out by Gandolfi (2012). That difference is only evident during times dominated
by photon cooling, but before the point where the heating due to WIMP annihilation
equates the cooling effect. By the time t ∼ 2× 107 yr, both models find similar con-
stant minimum temperatures. The resulting plateaus are consistent with the simple
homogeneous cooling calculation performed by Kouvaris (2008), and comparable to the
figures they present for both effective surface temperature and the boundary.

Lastly, we compared the results of the same EoS for two different total masses, both
to test that they differ in the case of no cooling and if they are equal with heating. This
is shown in fig. 10.4 for the QMC 4 model of mass M = 1 M� and M = 1.6 M�, with
no heating in the red lines and AWIMP = 10 in the blue lines. From fig. 10.1 we know
the QMC 4 model to have the most exaggerated differences in radii As expected, the
result with no heating are found with different cooling efficiency, but the stable minimum
temperature is equal for both models, suggesting that the specific temperature equating
heating and cooling is insensitive to the total mass.
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Figure 10.4: Cooling curves for the QMC UIX EoS of M = 1.1 M� and M =
1.5 M� with the quadratic initial temperature profile and boundary temperature of
T = 1010 K. We see the expected difference in long time cooling without heating for
various mass and radius (Gandolfi, 2012). However, the minimum temperature seems
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Chapter 11

Conclusion

We consider our goal of establishing an elegant framework designed to study neutron
star structure and cooling as reached. As we’ve tried to emphasize throughout the
thesis, the framework is probably one of a kind in terms of a closed system of logically
structured and expandable modular code, treating the whole process of neutron star
structure and cooling, with a variety of equations of state to chose from. Starting with
determining the structural profiles by solving the TOV equations combined with the
choice of EoS, and ending with a rather detailed profiled cooling of the newly obtained
structure solutions – all in full general relativistic theory. Flexible and consistent utility
functionality automatically handles the communication and plotting across the differ-
ent modules, with multiple choices for numerical scaling bases and future expandability.
The framework is intended as a tool to study the main features of neutron stars, produ-
cing results in good agreement with what we expect from qualitative and quantitative
comparisons to other similar and sophisticated cooling codes. In our streamlined and
simple code structure, the addition of further exotic equations of state considering ad-
ditional particle- types, states, and phase transitions, is a simple case of finding sources
defining the EoS through some sort of pressure-density relationship or parameteriza-
tion. Again easily extended to the cooling scenario due to the interconnected nature of
the modules in the framework, and the modular approach to the cooling and heating
mechanisms.

During the time we’ve had to work on this project we’ve gathered experience from
experimenting with the framework regarding some of the fundamental theory and phys-
ics thought to describe neutron stars. Starting with the equations governing the mac-
roscopic structure in chapters 2 and 6, we learned how the relatively high mass and
very low radius of neutron stars cause the fabric of our Universe to bend and distort in
such a strong fashion that general relativistic adjustments to the classical Newtonian
gravity must be considered. Gravitational effects are stronger in general relativity, ex-
pressed both through the spatial and temporal component of the metric describing the
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geometry of spacetime, and so the required pressure to balance the crushing gravity is
increased. This in turn causes neutron stars to have a maximum possible total mass
achieved at a finite core density, solely determined by the choice of EoS. In chapters 3
and 7 we’ve laid out a brief introduction to the rather uncertain interior of neutron
stars, and how we may describe properties of matter using equations of state of varied
effective stiffness. The EoS eventually determines the resulting structure profiles and
how the different fundamental variables are related throughout the radial profile, in turn
dictating the achievable maximum mass and radius, as well as the radial distribution
of particle number densities.

The last step of the process has been to consistently calculate the cooling curves of
any given structural model, i.e. choice of EoS. This is concentrated into chapters 4 and 8
where we’ve learned how the number density of the involved particle species greatly af-
fects the cooling process through the specific heat capacity and neutrino emissivity, and
how the cooling can be separated into individual regimes dominated by a specific cooling
mechanism. Early on, for high interior temperatures, we’ve seen how the modified Urca
process is dominating and solely determines the temperature time evolution. And as the
temperature drops, the efficiency of photon emission from the surface starts to exceed
the neutrino cooling, eventually dominating the cooling process. Using our smoothed
boundary definition we have a consistent foundation for the Ts-Tb relationships of any
envelope model and how that relationships affects the surface luminosity. As such we
are able to properly compare the cooling efficiency in the photon dominated regime for
neutron stars of varied size - that is varied total mass and radius - constructed with
both the same and different equations of state.

Lastly, we expanded the cooling module to include possible heating from dark mat-
ter, effectively testing the flexibility of the framework.1 The implementation of the
new heating mechanisms in the modular code proved to be very simple, and we found
the resulting cooling curves to settle into stable minimum temperature plateaus when
the heating effect equates the energy emitted by photons. Excitingly we found these
plateaus to be relatively insensitive to the structure model both in terms of the EoS
and total mass, possibly providing a measurable test versus observations of old and cold
neutron stars.

11.1 Future Prospects

Although the models discussed in this thesis are by no means trivial, they are far
from complete to describe a fully realistic neutron star with all its exotic properties.
Some probable features of most neutron stars, like powerful magnetic fields strengths
of ∼ 1012 Gs = 108 T at the surface,2 or rapid rotation periods of typically ∼ 0.5 s,3

1We also discussed this flexibility considering the inclusion of protons and electrons [cf. section 8.3.5].
2Wheaton et al. (1979); Truemper et al. (1978).
3Much shorter periods are also observed, like the 1.558 ms period of PSR 1937+214 (Backer et al.,

1982).
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are needed to model exciting observed properties of pulsars. For a master project
such as this one, designed to be a foundation for further expansion in terms of the
uncertain nature of the theory, the list of future prospects and possibilities are only
limited by the imagination. Here we summarize some of the most interesting and
promising new physics we intend to include in the models, as well as some improvements
to the framework regarding optimization and user-friendliness.

Firstly, the implementations of the coupled structural equations using TOV or New-
ton under our assumptions are by no means the limit of the model. As long as the fun-
damental physical quantities in the RHS may be expressed in terms of one-dimensional
profiles, there are no constraints on the models we can define in ns_models. To study
more exotic neutron star interiors, we can easily extend the collection of available equa-
tions of state and cooling scenarios in eos_models and cooling_models to include:
additional states and phase transitions for the particles types already implemented,
including neutron and proton superfluid configurations; additional particle species, in-
cluding molecules near the surface, and possibly quark matter and other particles in the
inner core; better estimates of the thermal conductivity across a wide range of densit-
ies, currently a lacking feature for the npe cooling model; as well as additional cooling
processes such as fast and slow neutrino cooling by different types of Urca reactions.

In terms of improving the framework functionality, there are still some possible
optimizations with respect to calculation times, mainly in the cooling calculations. Some
of the first improvement that comes to mind is the discretization of the cooling grid.
Instead of a linearly spaced grid, which we employed to ensure consistent calculation
of the infinitesimal baryon number across possibly wildly different neutron star masses
and metric functions, we could use a grid optimized to be denser in regions where most
accuracy is required. To speed up the process of running many cooling calculations at
once, we may scale the framework to run parallel on computers with more available
cores, although the solve_ivp integration methods already spread the workload across
multiple cores, expected to scale well. Another promising improvement is to wrap the
demanding method looping the radial profile during cooling in a faster low level language
like C using e.g. ’ctypes’. The plotter may also be extended to create more types of
figures and accept additional customization options as input. One of the most interesting
figures we would like to add is the specific heat contribution from each particle species
throughout the radial profile. This brings us to the last improvement we mention
here, which is to create a proper python package containing our framework available
as a conventional python library, with a user-friendly API (Application Programming
Interface). Some of the functionality intended in such an API is already ready, but
separated over various scripts we’ve developed for our own use, and not at all error-
proof for an uninitiated user. Hopefully, we’ll get to all of these improvements in due
time, allowing us to study the structure of neutron stars and how they cool in ever
greater detail.
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Appendix A

Tables of constants and values

As we have experience some troubles when trying to reproduce results of other works
as they are not specifying their numerical values used for various physical constants, we
have concentrated all the constants as used in the code with numerical value and units
in tables A.1 and A.2.

Table A.1: Numerical values of natural constants in cgs-units as used in the frame-
work. These values are determined using the Astropy package CODATA 2018 collection
(Astropy Collaboration, 2013, 2018).

Natural Constant Interpretation Used Numerical Value†

G Gravitational constant 6.674 30× 10−8 cm3 g−1 s−2

c Speed of light 2.997 92× 1010 cm s−1

} Reduced Planck constant 1.054 57× 10−27 erg s

mn Neutron mass 1.674 93× 10−24 g

mp Proton mass 1.672 62× 10−24 g

me Electron mass 9.109 38× 10−28 g

mu Muon mass 1.883 53× 10−25 g

kB Boltzmann’s constant 1.380 65× 10−16 erg K−1

σSB
Stefan-Boltzmann’s
constant 5.670 37× 10−5 erg cm−2 K−2 s−1

† To be precise, these values are as defined by the Astropy package, not meant to reflect
the fundamental definition of the constants, such as e.g. the speed of light.
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Table A.2: Auxiliary constants, intepretation and values in cgs-units. Combined
quantities, e.g. λn, are found using the numerical value from table A.1. The solar mass
and radius is found directly from the CODATA 2018 collection.

Auxiliary Constant Interpretation Used Numerical Value
†ρnuc Typical nuclear density 2.800 00× 1014 g cm−3

‡n0
Nuclear saturation
QMC 1.600 00× 1038 cm−3

M� Solar mass 1.988 41× 1033 g

R� Solar radius 6.957 00× 1010 cm

RS� = 2GM�
c2

Schwarzschild radius for
one solar mass 2.953 25× 105 cm

λn = }
mnc

Neutron compton
wavelength 2.100 19× 10−14 cm

λp
Proton compton
wavelength 2.103 09× 10−14 cm

λe
Electron compton
wavelength 3.861 59× 10−11 cm

† Shapiro and Teukolsky (1983)
‡ Gandolfi (2012)



Bibliography

Astropy Collaboration
2013. Astropy: A community Python package for astronomy. A&A, 558:A33.

Astropy Collaboration
2018. The Astropy Project: Building an Open-science Project and Status of the v2.0
Core Package. AJ, 156(3):123.

Backer, D. C., S. R. Kulkarni, C. Heiles, M. M. Davis, and W. M. Goss
1982. A millisecond pulsar. Nature, 300(5893):615–618.

Bahcall, J. N. and R. A. Wolf
1965. Neutron Stars. II. Neutrino-Cooling and Observability. Physical Review,
140(5B):1452–1466.

Borriello, A. and P. Salucci
2001. The dark matter distribution in disc galaxies. MNRAS, 323(2):285–292.

Boylan-Kolchin, M., V. Springel, S. D. M. White, A. Jenkins, and G. Lemson
2009. Resolving cosmic structure formation with the Millennium-II Simulation.
MNRAS, 398(3):1150–1164.

Chandrasekhar, S.
1939. An Introduction to the Study of Stellar Structure. Chicago, Illinois: University
of Chicago Press.

Chiu, H.-Y. and E. E. Salpeter
1964. Surface X-Ray Emission from Neutron Stars. Phys. Rev. Lett., 12(15):413–415.

Einstein, A.
1905. Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of
moving bodies]. 322(10):891–921.

Einstein, A.
1915. Die Feldgleichungen der Gravitation. (German) [The field equations of gravit-
ation]. Pp. 844–847.



116 BIBLIOGRAPHY

Flowers, E. and N. Itoh
1981. Transport properties of dense matter. III - Analytic formulae for thermal
conductivity. ApJ, 250:750–752.

Gamow, G.
1970. My world line: An informal autobiography.

Gandolfi, S.
2012. Maximum mass and radius of neutron stars, and the nuclear symmetry energy.
Physical Review C, 85(3).

Gonzalez, D. and A. Reisenegger
2010. Internal heating of old neutron stars: contrasting different mechanisms. A&A,
522:A16.

Hobson, M. P., G. P. Efstathiou, and A. N. Lasenby
2006. General Relativity: An Introduction for Physicists. Cambridge University Press.

Jungman, G., M. Kamionkowski, and K. Griest
1996. Supersymmetric dark matter. Phys. Rep., 267:195–373.

Kouvaris, C.
2008. WIMP annihilation and cooling of neutron stars. Phys. Rev. D, 77(2):023006.

Navarro, J. F., C. S. Frenk, and S. D. M. White
1996. The Structure of Cold Dark Matter Halos. ApJ, 462:563.

Page, D., U. Geppert, and F. Weber
2006. The cooling of compact stars. Nucl. Phys. A, 777:497–530.

Page, D., J. M. Lattimer, M. Prakash, and A. W. Steiner
2004. Minimal Cooling of Neutron Stars: A New Paradigm. ApJS, 155(2):623–650.

Planck Collaboration
2016. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13.

Schmidt, K. and S. Fantoni
1999. A quantum monte carlo method for nucleon systems. Physics Letters B,
446(2):99–103.

Shapiro, S. L. and S. A. Teukolsky
1983. Black Holes, White Dwarfs, and Neutron Stars. The Physics of Compact Ob-
jects, 1 edition. Wiley-VCH.

Thompson, S. P.
1897. Cathode Rays and Some Analogous Rays. Philosophical Transactions of the
Royal Society of London Series A, 190:471–490.



BIBLIOGRAPHY 117

Thorne, K. S.
1977. The relativistic equations of stellar structure and evolution. ApJ, 212:825–831.

Truemper, J., W. Pietsch, C. Reppin, W. Voges, R. Staubert, and E. Kendziorra
1978. Evidence for strong cyclotron line emission in the hard X-ray spectrum of
Hercules X-1. ApJ, 219:L105–L110.

Tsuruta, S.
1974. Cooling of Dense Stars. In Physics of Dense Matter, C. J. Hansen, ed.,
volume 53, P. 209.

Tsuruta, S.
1979. Thermal properties and detectability of neutron stars. I. Cooling and heating
of neutron stars. Phys. Rep., 56:237–277.

Van Rossum, G.
2020. The Python Library Reference, release 3.8.2. Python Software Foundation.

van Uitert, E., H. Hoekstra, T. Schrabback, D. G. Gilbank, M. D. Gladders, and H. K. C.
Yee
2012. Constraints on the shapes of galaxy dark matter haloes from weak gravitational
lensing. A&A, 545:A71.

Virtanen, P., R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors
2020. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272.

Wheaton, W. A., J. P. Doty, F. A. Primini, B. A. Cooke, C. A. Dobson, A. Goldman,
M. Hecht, S. K. Howe, J. A. Hoffman, A. Scheepmaker, E. Y. Tsiang, W. H. G. Lewin,
J. L. Matteson, D. E. Gruber, W. A. Baity, R. Rotschild, F. K. Knight, P. Nolang,
and L. E. Peterson
1979. An absorption feature in the spectrum of the pulsed hard X-ray flux from
4U0115 + 63. Nature, 282(5736):240–243.

Yakovlev, D. G., O. Y. Gnedin, A. D. Kaminker, and A. Y. Potekhin
2008. Theory of cooling neutron stars versus observations. In 40 Years of Pulsars:
Millisecond Pulsars, Magnetars and More, C. Bassa, Z. Wang, A. Cumming, and
V. M. Kaspi, eds., volume 983 of American Institute of Physics Conference Series,
Pp. 379–387.

Yakovlev, D. G. and C. J. Pethick
2004. Neutron Star Cooling. ARA&A, 42(1):169–210.



118 BIBLIOGRAPHY

Zwicky, F.
1933. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta,
6:110–127.


	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	What is Cosmology?
	Why Neutron Stars?

	The Scope of this Work
	Organization of the Thesis

	I Theoretical Foundation, How We Describe Neutron Stars
	Crash Course in Stellar Structure Theory
	Newtonian Stellar Structure
	Forming a Closed System

	Relativistic Hydrostatic Equilibrium
	Spherical Symmetric Gravitational Fields
	Adjustments from General Relativity


	Equation of State, The Microphysics
	Some Preliminaries
	The Distribution Function

	Ideal, Completely Degenerate Neutron Fermi Gas
	The Polytropic Formula

	Ideal, Degenerate n-p-e Gas
	The n-p-e Equilibrium Solution

	Interacting Quantum Many-Body Neutron Gas

	Cooling of Neutron Stars
	The Cooling Equation
	Particle Reactions and Emissivity
	The Modified Urca Rate
	Blackbody Photon Emission
	An Exciting Possible Heating Mechanism – Dark Matter

	Inhomogeneous Objects
	Adjustments from general relativity



	II Numerical Methods, Solving the Equations
	Brief Introduction to the Numerics
	The Modules Developed
	Numerical scaling

	Solving for the Stellar Structure; ns_models
	Boundary Conditions
	The Schwarzschild Scale
	Integrating Through the Profile

	Implementing the Equation of State; eos_models
	Common Features
	Contributions to the Mass
	The Polytropic EoS - Pure Neutron Gas
	A Uniform Density Solution

	The Fermi EoS
	The Pure Neutron Gas
	The n-p-e Gas

	The QMC EoS

	Solving for the Cooling Curves; cooling_models
	Common Features
	Isothermal Cooling
	Analytical Approximations
	Numerical Implementaion

	Full Profiled Cooling
	Descretization of the Radial Profile
	Setup from Structure
	Initial Conditions for Cooling
	Integrating the Temperature Time Derivative
	Including Additional Particle Species



	III Results and Conclusion, A Modular Neutron Star Calculator
	Our Numerical Framework
	How Everything Works Together
	First Structure Results
	Ultra-Relativistic Problems

	First Cooling Results

	Most Noteworthy Results
	Structure
	Cooling to a Minimum Temperature

	Conclusion
	Future Prospects


	Appendicies
	Appendices
	Tables of constants and values
	Bibliography


