
Coalitional Game Theory for

Distributed Cooperation in

Next Generation Wireless

Networks

Walid Saad

DISSERTATION IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF PHILOSOPHIAE DOCTOR

Department of Informatics
Faculty of Mathematics and Natural Sciences

University of Oslo

Oslo 2010



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Walid Saad, 2010 
 
 
Series of dissertations submitted to the  
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 974 
 
ISSN 1501-7710 
 
 
All rights reserved. No part of this publication may be  
reproduced or transmitted, in any form or by any means, without permission.   
 
 
 
 
 
 
 
 
Cover: Inger Sandved Anfinsen. 
Printed in Norway: AiT e-dit AS.   
 
Produced in co-operation with Unipub.  
The thesis is produced by Unipub merely in connection with the  
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright  
holder or the unit which grants the doctorate.   



Preface

This dissertation has been submitted to the Faculty of Mathematics and
Natural Sciences at the University of Oslo in partial fulfillment of the re-
quirements for the degree Philosophiae Doctor (Ph.D.). The studies were
carried out over a period of three years, from August 2007 to June 2010.
During the first and third year the work was mainly done at UNIK- Uni-
versity Graduate Center, Kjeller, Norway, while in the second year my
workplace has been at the Coordinate Science Laboratory at the Univer-
sity of Illinois at Urbana-Champaign, USA. The research was funded by
the Research Council of Norway through the project 183311/S10 entitled
“Mobile-to-Mobile Communication Systems – M2M”. My supervisors have
been Prof. Are Hjørungnes, Prof. Zhu Han, Prof. Merouane Debbah, and
Prof. Nils Henrik Risebro.

The symbol usage may vary from one paper to another as the papers
included in this dissertation are not published/submitted/revised at the
same time.

Dedication

This dissertation is dedicated to my late father Emile.

Acknowledgments

I am ever grateful to the almighty God for his blessings and for having
made this work possible.

I would like to acknowledge many people and collaborators who helped
me during the course of this work. First and foremost, I am heartily thank-
ful to my advisor, Prof. Are Hjørungnes, whose guidance and support from
the initial to the final stage ensured the success of this work. I sincerely
thank him for giving me the opportunity to be part of his research group

i



and for his persistent support. Further, I owe my deepest gratitude to
Prof. Zhu Han for his tremendous efforts and his invaluable assistance
throughout the work done in this thesis. His truly scientific intuition has
made him a constant oasis of ideas and passions in engineering, which
helped exceptionally inspire and enrich my growth as a student and a re-
searcher. Without his guidance, broad technical expertise, and constant
encouragement this dissertation would not have been possible. I gratefully
acknowledge Prof. Merouane Debbah for his constant encouragement, his
constructive suggestions, and helpful comments on my thesis work. Prof.
Merouane Debbah is a great motivator and inspirer and I have immensely
benefited from his energy, vision, and knowledge.

My sincere appreciation is extended to Prof. Tamer Başar at the Univer-
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Abstract

Next generation wireless networks are bound to go beyond the classical
point-to-point or point-to-multipoint communication paradigms of tradi-
tional networks such as cellular networks. For instance, next generation
networks will witness a highly complex and dynamic environment whereby
the nodes can interact and cooperate for improving their performance. In
this context, cooperation has emerged as a novel communication paradigm
that can yield tremendous performance gains from the physical layer all
the way up to the application layer.

Consequently, a significant amount of research efforts has been dedi-
cated to studying cooperation in wireless networks. The main research in
this area has focused on examining the performance gains that coopera-
tion can entail, in different scenarios. For example, on one hand, it was
demonstrated that, by cooperating, a group of single-antenna nodes can
exploit the highly acclaimed performance gains of multiple-input-multiple-
output (MIMO) systems in terms of throughput and bit error rate. On the
other hand, it has been shown that, by forwarding each others packets,
the wireless nodes can increase their throughput and improve the connec-
tivity of the network. However, most of the cooperative systems proposed
so far are based on ideal cooperation, e.g., with no cost, and are mostly
concerned with studying the benefits from cooperation, while giving little
attention to the impact of cooperation on the network’s structure and the
users’ behavior. Hence, there is a need for well-designed cooperative al-
gorithms that can reap the numerous gains from cooperation while taking
into account the costs for cooperation as well as its impact on the overall
network structure and dynamics.

Designing such efficient cooperation algorithms faces numerous chal-
lenges. First, cooperation entails various costs, such as power, that can
limit its benefits or even impair the users’ performance. Second, wireless
network users tend to be selfish in nature. Therefore, deriving a fair and
practical cooperation algorithm where the decision to cooperate does not
degrade the performance of any of the cooperating users is a challenging
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task. Moreover, it is highly desirable that the nodes adopt distributed co-
operative strategies with little or no reliance on centralized entities such
as base stations. Thus, deriving distributed and fair cooperative strategies
is highly challenging and desirable in practice.

In this regard, coalitional game theory serves as a highly suited math-
ematical tool for modeling cooperation in wireless networks. Most of the
current research in the field is restricted to applying standard coalitional
game models and techniques to study very limited aspects of ideal co-
operation in networks. In this dissertation, first, we introduce a novel
application-oriented classification of coalitional games by grouping the
sparse literature into three distinct classes of games: Canonical coalitional
games, coalition formation games, and coalitional graph games. By doing
so, we provide a unified treatment of coalitional game theory tailored to
the demands of communications and network engineers and which fills an
important void in current wireless literature.

Further, we leverage the use of coalitional game theory to design novel
cooperation models and distributed algorithms that take into account the
tradeoff between the gains from cooperation and the costs for cooperation,
for various next generation wireless networks. In particular, we devise
coalitional game based models and algorithms for studying distributed co-
operation in the following areas: (i)- Distributed formation of virtual MIMO
systems, (ii)- Distributed collaborative spectrum sensing in cognitive ra-
dio networks, (iii)- Joint sensing and access in cognitive radio networks,
(iv)- Distributed task allocation in multi-agent wireless systems, (v)- Dis-
tributed cooperation for physical layer security improvement, and (vi)- Net-
work formation in wireless multi-hop networks.

In every area, we propose suited cooperation models that can capture
the different benefit-cost tradeoffs that exist in these networks. Using
novel concept from coalitional game theory, such as merge-and-split rules,
hedonic games, network formation games, and coalition formation in par-
tition form, we devise distributed cooperation algorithms that allow the
nodes to self-organize into a stable network partition and adapt this struc-
ture to environmental changes such as periodic mobility. We show differ-
ent properties of the resulting coalitional structures and we study their
characteristics. Finally, using thorough simulations and numerical re-
sults, we investigate various aspects of the proposed algorithms and we
analyze their performance.
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F. W. Saad, Z. Han, T. Başar, M. Debbah, and A. Hjørungnes, “Dis-
tributed Coalition Formation Games for Secure Wireless Transmission"
submitted to ACM/Springer Journal on Mobile Networks and Applica-

tions, October 2009.
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Introduction

In recent years, the nature of the mobile communications market wit-
nessed a radical change whereby the need for new resource demanding
wireless services has drastically increased. Meeting this demand is quite
challenging since wireless networks are subject to several constraints such
as complex and harsh fading channels, a scarce usable radio spectrum,
limitations on the power and size of hand-held terminals, among others.
For instance, classical cellular-like network architectures are unable to
efficiently overcome these challenges and cope with the stringent quality
of service requirements of emerging services. Thus, there is a need for
advanced communication techniques for allowing next generation wireless
networks to deliver resource demanding services to their subscribers.

In this context, cooperation among wireless devices has recently emerged
as a novel communications paradigm that can yield tremendous perfor-
mance gains and enable the efficient delivery of next generation wireless
services. It has been shown that cooperation can yield an enhanced qual-
ity of service in terms of throughput improvement, bit error rate reduction,
or energy savings, in many scenarios. Nonetheless, cooperation comes at a
cost which can hinder these gains and renders the implementation aspects
of cooperative networks quite challenging.

In this part of the dissertation, first, we motivate the concept of coop-
eration in wireless communication networks. Then, we introduce the an-
alytical framework of coalitional game theory. In this regards, we provide
an engineering-oriented description of coalitional game theory and we dis-
cuss its potential application in wireless networks. Further, we discuss the
basics and challenges of implementing cooperation in the following areas:
(i)- Cooperation for virtual MIMO formation, (ii)- Cooperation in cognitive
radio networks, (iii)- Distributed task allocation in multi-agent wireless
systems, (iv)- Cooperation for physical layer security improvement, and
(vii)- Cooperation in next generation wireless multi-hop networks.
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Following this, we discuss in details the main contributions of the in-
cluded papers as well as the key suggestions for future work.

1 Cooperation in Wireless Networks

The wireless industry is recently experiencing an unprecedented growth
in the number of services, subscribers, and applications that must be
supported by next generation mobile communication systems. The grow-
ing diffusion of new services such as mobile television and multimedia
communications emphasizes the need of advanced wireless networking
paradigms that can fundamentally increase the system performance. In
this context, cooperation between devices in wireless networks has been
identified as one of the key technology enablers required to facilitate next
generation wireless communication systems. Much of the research of the
past decade used to assume a point-to-point communication between a
terminal and a centralized access point or a point-to-multipoint commu-
nication between the central entity and the terminals. However, as per the
famous saying “The real egoistic behavior is to cooperate!” (K. Edwin), for
reasons of self-interest, the wireless users may engage in cooperative be-
havior, resulting in an improved overall network performance. Further, co-
operation among the devices can coexist with a centralized infrastructure,
e.g., in a cellular network, but is also of interest in ad hoc autonomous
networks.

The simplest example of cooperation in wireless networks is the relay
channel, first introduced in [1, 2]. Relaying implies that a given wireless
helper-node can assist other nodes in transmitting their data to their des-
tination. By doing so, it has been shown that the network and the nodes
can witness performance improvements at different levels such as cover-
age extension, bit error rate improvement, increased throughput, among
others [3]. Further, a number of single-antenna nodes can cooperate in
order to exploit the advantages of multiple-input-multiple-output (MIMO)
systems without the need for multiple antennas physically present on the
devices [4–6]. Beyond the physical layer, cooperative schemes have also
been studied at the upper layers such as the MAC and the network layer.
For example, by cooperating at the MAC layer, the access points in a wire-
less LAN can achieve higher throughput and a reduced interference [7, 8].
Also, it has been shown that, by cooperating in packet forwarding, the
nodes in an ad hoc wireless network can improve the connectivity of the
network through adequate cooperation decisions [9].
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Thus, cooperation has emerged as a novel networking paradigm that
will yield significant performance advantages in next generation networks.
In fact, due to the advantage of cooperation, numerous aspects of cooper-
ative communication are making their way into wireless standards such
as 3GPP’s long term evolution advanced (LTE-Advanced) [10], or the forth-
coming IEEE 802.16j WiMAX standard [11]. For studying cooperation in
next generation wireless networks, numerous questions need to be an-
swered such as “what are the gains and costs from cooperation?” or “who
should cooperate with whom and why?”. Thus, in order to efficiently an-
swer these questions, one must be able to characterize and overcome nu-
merous challenges such as (but not limited to): (i)- Modeling the benefit
and cost tradeoffs that exist in cooperation, (ii)- Providing fair rules for
cooperation, and (iii)- Designing distributed approaches for cooperation
among others.

Therefore, there is a strong need for an analytical framework that can
appropriately capture these challenges of cooperation and which can pro-
vide guidelines for deploying cooperative nodes in next generation net-
works. Hence, in the next section, we provide an introduction to coali-
tional game theory, which is a suited framework for modeling cooperative
behavior.

2 Coalitional Game Theory

2.1 Motivation

Game theory is a formal analytical framework with a set of mathematical
tools to study the complex interactions among independent rational play-
ers. Throughout the past decades, game theory has made a revolutionary
impact on a wide number of disciplines ranging from economics, politics,
philosophy, or even psychology [12]. The emergence of large-scale dis-
tributed wireless networks, as well as the recent interest in mobile flexible
network where the nodes are autonomous decision makers has brought to
surface many interesting game theoretic problems that arise from the com-
petitive and cooperative interplay of the different wireless entities. Further,
the need for self-organizing, self-configuring, and self-optimizing networks
eventually led to the use of many game theoretic concepts in wireless com-
munication networks [13, 14].

In a game theoretic framework, one can distinguish between two main
categories: Non-cooperative [15, 16] and cooperative game theory [12, 17].
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While non-cooperative game theory mainly deals with modeling competi-
tive behavior, cooperative game theory is dedicated to the study of coopera-
tion among a number of players. Cooperative game theory mainly includes
two branches: Nash bargaining and coalitional game theory. In this dis-
sertation, we restrict our attention to the latter, although the former can
also be quite useful in different scenarios (the interested reader is referred
to [12] for details on Nash bargaining solutions).

Coalitional game theory mainly deals with the formation of coopera-
tive groups, i.e., coalitions, that allow the cooperating player to strengthen
their positions in a given game. In consequence, the recent interest in
the cooperative paradigm in wireless networks, implied that the adoption
of coalitional games-based approaches is quite natural. In this context,
coalitional games prove to be a very powerful tool for designing fair, ro-
bust, practical, and efficient cooperation strategies in communication net-
works. However, most of the research in the wireless community has been
focusing on either non-cooperative games [13, 18–20] or on applying stan-
dard coalitional game theory models and techniques to study very limited
aspects of cooperation in networks such as stability under ideal cooper-
ation or fairness. This is mainly due to the sparse literature that tack-
les coalitional games as most pioneering game theoretical references such
as [12, 15–17] focus on non-cooperative games.

For this purpose, it is of strong interest to: (i)- Provide an engineering-
oriented introduction to coalitional game theory that can unify the various
aspects of coalitional games and (ii)- Propose advanced applications for
coalitional games in wireless networks. This dissertation will tackle both
points thoroughly as will be seen in the next sections. First, in the follow-
ing subsection, we describe the main concepts of coalitional games, and
we discuss an engineering-oriented classification based on the work done
in Paper A.

2.2 Basic Concepts

The main two components of a coalitional game are the players set, nor-
mally denoted by N = {1, . . . , N}, and the coalition value. The set N rep-
resents the players that interact in order to form cooperative groups, i.e.,
coalitions, in order to improve their position in the game. Thus, a coalition
S ⊆ N represents an agreement between the members of S to act as a sin-
gle entity in a given game. Forming coalitions or alliances is pervasive in
many disciplines such as politics, economics, and, more recently, wireless
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networks. Further, the coalition value, usually denoted as v, quantifies
the worth or utility of a coalition in a game. Depending on the definition
of the value, a coalitional game can have different properties. Nonethe-
less, independent of the definition of the value, any coalitional game can
be uniquely defined by the pair (N , v) 1.

In general, a coalition value can be in three different forms:

• Characteristic form.

• Partition form.

• Graph form.

The characteristic form is the most common in game theory literature,
and it was first introduced by Von Neuman and Morgenstern [21]. In char-

acteristic form, the worth or utility of any coalition S ⊆ N is independent

of the coalitions/structure formed among the players outside S, i.e., the
players in N \ S. Thus, a value of a coalition S in characteristic form de-
pends solely on the members of that coalition. In contrast, a game is in
partition form if, for any coalition S ⊆ N , the coalitional value depends both
on the members of S as well as on the coalitions formed by the members
in in N \S. The concept of the partition form was introduced by Thrall and
Lucas [22] with the characteristic form as a particular case. Further, in
many coalitional games, the connection between the players in the coali-
tion, i.e., “who is connected to whom”, strongly impacts the value of the
game. In such coalitional games, the interconnection between the players
is usually captured through a graph structure. Subsequently, for model-
ing such coalitional games, the value is considered in graph form, i.e., for
each graph structure, a different utility can be yielded. The idea of captur-
ing the interconnection graph within coalitions started with the pioneering
work of Myerson [23]. In [23], Myerson started with a game in charac-
teristic form, and layered on top of that a network structure, represented
by a graph that indicated which players can communicate. Consequently,
the value function became dependent on the communication graph which
led to the idea of a game in graph form (this work was further generalized
in [24]).

In any coalitional game (independent of its form), it is always important
to distinguish between two entities: the value of a coalition and the payoff
received by a player. The value of a coalition represents the amount of

1Since, for a given players’ set N , the value v completely describe the coalitional game,
some references refer to the value in a coalitional game as the game.
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utility that a coalition, as a whole, can obtain. In contrast, the payoff of a
player, represents the amount of utility that a player, member of a certain
coalition, will obtain. For instance, depending on how the value is mapped
into payoffs, the coalitional game can be either with transferable utility (TU)

or with non-transferable utility (NTU). A TU game implies that the total
utility received by any coalition S ⊆ N can be apportioned in any manner
between the members of S. A prominent example of TU type games is
when the value represents an amount of money, which can be distributed
in any way between coalition members. In particular, when considering
a TU game in characteristic form, the value is a function2 over the real
line defined as v : 2N → R. In such a setting, for every coalition, the value
function associates a real number which represents the overall utility or
worth of this coalition. Further, due to the TU property, this real number
can be divided in any manner (e.g., using some fairness rule), in order
to obtain each player’s payoff from the value received by any coalition S.
The amount of utility that a player i ∈ S receives from the division of v(S)
constitutes the user’s payoff and is denoted by xi hereafter. The vector
x ∈ RS with each element xi being the payoff of user i ∈ S constitutes a
payoff allocation.

Although TU models are quite popular and useful, many scenarios exist
where the coalition value cannot be assigned a single real number or rigid
restrictions exist on the division of the utility. These games are known as
coalitional games with non-transferable utility (NTU) and were first derived
using non-cooperative strategic games as a basis [12]. The idea is that, in a
NTU game, the payoff that each user in a coalition S receives is dependent
on the joint actions that the players of coalition S select3. Hence, in a NTU
game, the value of a coalition S is no longer a function over the real line
but a set of payoff vectors. For example, in an NTU game in characteristic
form, the value of a coalition S would be given by the set v(S) ⊆ RS, where
each element xi of a vector x ∈ v(S) represents a payoff that user i ∈ S can
obtain when acting within coalition S given a certain strategy. Moreover,
given this definition, a TU game can be seen as a particular case of the
NTU framework [12].

In general, the most well studied aspect of coalitional game theory is
that pertaining to games in characteristic form with TU or NTU which are
widely spread in game theory literature. Different properties and solution
concepts can be defined for these games, as will be also seen in the re-

2In these games, the value is commonly known as the characteristic function.
3The action space depends on the underlying non-cooperative game.
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mainder of this section. In particular, given a game in characteristic form
with TU, we define the following property:

Definition 1 A coalitional game (N , v), in characteristic form with trans-

ferable utility, is said to be superadditive if for any two disjoint coalitions

S1, S2 ⊂ N , S1 ∪ S2 = ∅, v(S1 ∪ S2) ≥ v(S1) + v(S2).

Superadditivity implies that, given any two disjoint coalitions S1 and S2, if
coalition S1 ∪ S2 forms, then it can give its members any allocations they
can achieve when acting in S1 and S2 separately. In other words, a game
is superadditive, if cooperation, i.e., the formation of a large coalition out
of disjoint coalitions, guarantees at least the value that is obtained by
the disjoint coalitions separately. The rationale behind the superadditivity
property is that within a coalition, the players can always revert back to
their non-cooperative behavior and, thus, achieving their non-cooperative
payoffs. Consequently, in a superadditive game, cooperation is always
beneficial. Note that, an analogous definition of a superadditive game also
exists in the NTU framework [12].

For superadditive games, it is to the joint benefit of the players to al-
ways form the grand coalition N , i.e, the coalitions of all the users in N ,
since the payoff received from v(N ) is at least as large as the amount re-
ceived by the players in any disjoint set of coalitions they could form. As
a result, determining whether a game is superadditive or not strongly im-
pacts the approach that must be used to solve the game.

Having laid out the basic concepts of coalitional game theory, in the
next subsection, using these properties and concepts, we provide a novel
engineering-oriented classification of coalitional game theory.

2.3 A Novel Classification of Coalitional Game Theory

For better identifying the potential wireless and communications applica-
tions of coalitional game theory, we propose a novel classification, as per
Paper A, which allows to group various types of games under one class
based on several game properties. We group coalitional games into three
distinct classes

1. Class I: Canonical coalitional games.
2. Class II: Coalition formation games.
3. Class III: Coalitional graph games.

The key features of these classes are summarized in Fig. 1.1.
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Figure 1.1: An illustration of the proposed classification of coalitional
games.

2.3.1 Canonical Coalitional Games

Canonical coalitional games refer to the most classical and well studied
type of coalitional game theory. In this regards, the canonical coalitional
game class can be used to model problems where:

1. The value is in characteristic form (or can be mapped to the charac-
teristic form through some assumptions).

2. The game is superadditive. As a result, cooperation is always bene-
ficial, i.e., including more players in a coalition does not decrease its
value.

3. There is a need to study how payoffs can be allocated in a fair manner
that stabilizes the grand coalition, i.e., coalition of all players.

Consequently, due to these properties, in canonical games4, the main em-
phasis is on studying the properties of the grand coalition such as stability
and fairness. One core objective is to propose a payoff allocation which
guarantees that no group of players have an incentive to leave the grand
coalition. Hence, the stability of the grand coalition under a certain payoff

division is a critical objective of canonical games. In addition, assessing

4In this dissertation, we use the term canonical games to refer to canonical coalitional
games.
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the gains that the grand coalition can achieve as well as the fairness crite-
ria that must be used for distributing these gains is another key objective
for this class of games.

For solving canonical coalitional games, game theory literature presents
a broad range of concepts [12, 17]. Most of these solutions fully exploit the
properties of canonical games as well as the key objectives that we iden-
tified. The main solution concepts used for solving a canonical game are:
The core, the Shapley value, and the nucleolus.

The Core

The core is the most used solution concept for coalitional games in general
and for canonical games in particular. In fact, most existing game theoret-
ical literature considers the core as the most important concept for solving
a canonical coalitional game.

In essence, the core of a canonical coalitional game is simply the set
of payoff allocations which guarantees that no group of players has an
incentive to leave the grand coalition N in order to form another coalition
S ⊂ N . The idea is, thus, to provide a payoff allocation that stabilize
the grand coalition (recall that, in a canonical game, the grand coalition
generates the most utility due to superadditivity). This main concept of
the core applies to both TU and NTU games, although the mathematical
definition of the core slightly differs between the two types.

For a TU game, prior to mathematically specifying the core, we first
define the following concepts:

Definition 2 Consider a coalitional game in characteristic form with TU de-

fined by the pair (N , v). Given the grand coalition N , a payoff vector x ∈ RN

(N = |N |) for dividing v(N ) is said to be group rational if
∑

i∈N xi = v(N ),

where xi is the ith component of x. A payoff vector x is said to be individ-
ually rational if every player can obtain a benefit no less than acting alone,

i.e. xi ≥ v({i}), ∀ i. An imputation is a payoff vector satisfying the above

two conditions.

Consequently, the core of a coalitional game (N , v) in characteristic
form with TU is defined as

CTU =

{
x :

∑
i∈N

xi = v(N ) and
∑
i∈S

xi ≥ v(S) ∀ S ⊆ N
}
. (1.1)
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In other words, the core is the set of imputations where no coalition S ⊆
N has an incentive to reject the proposed payoff allocation, deviate from
the grand coalition, and form coalition S instead. The core guarantees that
these deviations do not occur through the fact that any payoff allocation x

that is in the core guarantees at least an amount of utility equal to v(S) for
every S ⊂ N . Note that, for an NTU game, an analogous definition of the
core can be used (see [12] or Paper A).

As a result, whenever one is able to find a payoff allocation that lies in
the core, then the grand coalition is a stable and optimal solution for the
coalitional game. This highlights clearly the attractiveness of the core as
a solution concept. However, the core of a coalitional game suffers from
several drawbacks. On one hand, in many games, the core is empty, and,
thus, there does not exist an allocation that can stabilize the grand coali-
tion. On the other hand, even when it exists, the core might be a huge set
and selecting a fair allocation out of this set is a big challenge. Nonethe-
less, there exists numerous classes of canonical coalitional games where
the core is non-empty and where interesting properties can be derived.
Moreover, for a given game, several methods can be used to determine the
existence of the core as well as the allocations that lie in the core. A more
detailed exposition of these properties and methods is found in Paper A.

The Shapley Value

Due to the various drawbacks of the core previously mentioned, Shapley
provided an axiomatic approach for associating with every coalitional game
(N , v) a unique payoff vector known as the value of the game (which is
quite different from the value of a coalition). Shapley showed [12] that
there exists a unique mapping, the Shapley value φ(v), from the space of
all coalitional games to RN , that satisfies the following four axioms5 (φi is
the payoff given to player i by the Shapley value φ):

1. Efficiency Axiom:
∑

i∈N φi(v) = v(N ).

2. Symmetry Axiom: If player i and player j are such that v(S ∪ {i}) =

v(S ∪ {j}) for every coalition S not containing player i and player j,
then φi(v) = φj(v).

3. Dummy Axiom: If player i is such that v(S) = v(S ∪ {i}) for every
coalition S not containing i, then φi(v) = 0.

5In some references, the Shapley axioms are compressed into three by combining the
dummy and efficiency axioms.
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4. Additivity Axiom: If u and v are characteristic functions, then φ(u +

v) = φ(v + u) = φ(u) + φ(v).

Thus, for every game (N , v), the Shapley value φ assigns a unique payoff
allocation in RN which satisfies the four axioms. The efficiency axiom is in
fact group rationality. The symmetry axiom implies that, when two players
have the same contribution in a coalition, their assigned payoffs must be
equal. The dummy axiom assigns no payoff to players that do not improve
the value of any coalition. Finally, the additivity axiom links the value of
different games u and v, and asserts that φ is a unique mapping over the
space of all coalitional games.

The Shapley value also has an alternative interpretation which takes
into account the order in which the players join the grand coalition N . In
the event where the players join the grand coalition in a random order,
the payoff allotted by the Shapley value to a player i ∈ N is the expected
marginal contribution of player i when it joins the grand coalition. The
basis of this interpretation is that, given any canonical TU game (N , v), for
every player i ∈ N the Shapley value φ(v) assigns the payoff φi(v) given by

φi(v) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i})− v(S)]. (1.2)

In (1.2), it is clearly seen that the marginal contribution of every player
i in a coalition S is v(S ∪ {i}) − v(S). The weight that is used in front of
v(S ∪ {i}) − v(S) is the probability that player i faces the coalition S when
entering in a random order, i.e., the players in front of i are the ones
already in S. In this context, there are |S|! ways of positioning the play-
ers of S at the start of an ordering, and (N − |S| − 1)! ways of positioning
the remaining players except i at the end of an ordering. The probabil-
ity that such an ordering occurs (when all orderings are equally likely) is
therefore |S|!(N−|S|−1)!

N ! , consequently, the resulting payoff φi(v) is the ex-
pected marginal contribution, under random-order joining of the players
for forming the grand coalition.

The computation of the Shapley value is generally done using (1.2);
however, in games with a large number of players the computational com-
plexity of the Shapley value grows significantly. For computing the Shapley
value in reasonable time, several analytical techniques have been proposed
such as multi-linear extensions [17], and sampling methods for simple
games [25], among others. The Shapley value was essentially defined for
TU games; however, extensions to NTU games exist as seen in [12].
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The Nucleolus

In addition to the core and the Shapley value, an interesting solution con-
cept for canonical games is the nucleolus6 [17]. For a given (N , v) canonical
coalitional game, the nucleolus provides an allocation that minimizes the
dissatisfaction of the players from a given allocation. For a coalition S,
the measure of dissatisfaction from an allocation x ∈ RN is defined as the
excess e(x, S) = v(S) −∑

j∈S xj. Clearly, an allocation x which can ensure
that all excesses (or dissatisfactions) are minimized is of particular inter-
est as a solution7 and hence, constitutes the main motivation behind the
concept of the nucleolus. Let O(x) be the vector of all excesses in a canon-
ical game (N , v) arranged in non-increasing order (except the excess of the
grand coalition N ). A vector y = (y1, . . . , yk) is said to be lexographically
less than a vector z = (z1, . . . , zk) (denoted by y ≺lex z) if ∃l ∈ {1, . . . , k}
where y1 = z1, y2 = z2, . . . , yl−1 = zl−1, yl < zl. An imputation x is a nucleolus

if for every other imputation δ, O(x) ≺lex O(δ). Hence, the nucleolus is the
imputation x which minimizes the excesses in a non-increasing order. The
nucleolus of a canonical coalitional game exists and is unique. The nu-
cleolus is group and individually rational (since it is an imputation), and
satisfies the symmetry and dummy axioms of Shapley. If the core is not
empty, the nucleolus is in the core. Moreover, the nucleolus lies in the
kernel of the game, which is the set of all allocations x such that

max
S⊆N\{j},i∈S

e(x, S) = max
G⊆N\{i},j∈G

e(x, G). (1.3)

The kernel states that if players i and j are in the same coalition, then
the highest excess that i can make in a coalition without j is equal to the
highest excess that j can make in a coalition without i. As the nucleolus
lies in the kernel, it also verifies this property. Thus, the nucleolus is the
best allocation under a min-max criterion. The process for computing the
nucleolus is more complex than the Shapley value, and is described as
follows:

First, we start by finding the imputations that distribute the worth of
the grand coalition in such a way that the maximum excess (dissatisfac-
tion) is minimized. In the event where this minimization has a unique
solution, this solution is the nucleolus. Otherwise, we search for the im-

6The nucleolus is only applicable to games in characteristic form with TU [17].
7In particular, an imputation x lies in the core of (N, v), if and only if all its excesses are

negative or zero.
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putations which minimize the second largest excess. The procedure is re-
peated for all subsequent excesses, until finding a unique solution which
would be the nucleolus. These sequential minimizations are solved using
linear programming techniques such as the simplex method [26].

Thus, the nucleolus is an interesting concept, since it combines a num-
ber of fairness criteria with stability. However, the communications appli-
cations that utilized the nucleolus are still few, with one example being [9],
where it was used for allocating the utilities in the modeled game. The
main drawback of the nucleolus is its computational complexity in some
games. However, with appropriate models, the nucleolus can be an opti-
mal and fair solution to many applications.

Canonical Coalitional Games in Wireless Networks

By closely inspecting the characteristics of canonical coalitional games,
one can see that the main interest of these games is focused on the ideas
of stability and fairness. In wireless networks, the main usage model of
canonical coalitional games is to study the limits of cooperation, as well as
the possibility of maintaining cooperation, in a setting where no cost for
cooperation exists. In fact, when dealing with a wireless problem where
cooperation is ideal and the grand coalition forms, solution concepts such
as the core or the nucleolus can be of utter importance in order to assess
the stability of this grand coalition as well as whether any fair solution can
be obtained for maintaining cooperation among the users.

Numerous examples applying canonical coalitional games already exist
in the literature. For instance, the work in [27, 28] focused on devising
a cooperative model for rate improvement through ideal receivers cooper-
ation. Using canonical games and the concept of the core, the authors
in [27] showed that, for the receiver coalition game in a Gaussian inter-
ference channel, a stable grand coalition of all users can be formed if no
cost for cooperation is accounted for. In addition, using canonical games,
the fair allocation of rate for cooperating users in an interference channel
was studied in [29] for the transmitters. Under some assumptions on the
users’ behavior, the authors showed that a unique rate allocation exists
verifying certain well defined fairness axioms from canonical coalitional
games. At the network layer, the authors in [9] present a canonical coali-
tional game model for solving an inherent problem in packet forwarding
networks known as the curse of the boundary nodes. In this work, the
nodes at the boundary of the network would cooperate with those in the
backbone in order to forward their packets, and they reward these nodes
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by a reduced power consumption. Using the concepts of the core, the
Shapley value and the nucleolus, it was shown that a stable grand coali-
tion can exist.

In a nutshell, canonical coalitional game are a solid tool for studying
cooperation, fairness, and stability in a variety of application. In particu-
lar, applying these concepts in wireless networks can provide useful and
interesting insights on cooperative protocols.

2.3.2 Coalition Formation Games

In many cooperative scenarios, superadditivity can be quite a restrictive
concepts. For instance, it is quite natural to consider that any cooperation
is accompanied with an inherent cost that can limit the benefits of this
cooperation. In consequence, the formation of a grand coalition is seldom
guaranteed. In such cases, canonical coalitional games are not suited for
modeling the cooperative behavior of the players. In this regards, coalition
formation games encompass coalitional games where, unlike the canon-
ical class, network structure and cost for cooperation play a major role.
The characteristics of a coalition formation game can be summarized as
follows:

1. Forming a coalition brings gains to its members, but the gains are
limited by a cost for forming the coalition. Thus, the game is non-
superadditive and the formation of a grand coalition is not guaran-
teed.

2. The game can be in characteristic or partition form.

3. The objective is to study the network coalitional structure, i.e., an-
swering questions like which coalitions will form, what is the optimal
coalition size and how can we assess the structure’s characteristics,
and so on.

In many problems, forming a coalition requires a negotiation process or an
information exchange process which can incur a cost, thus, reducing the
gains from forming the coalition. Therefore, in such scenarios, coalition
formation games prove to be quite a solid tool. In contrast to canonical
games, where formal rules and analytical concepts exist, solving a coalition
formation game, is more difficult, and application-specific. In any coalition
formation game, the following definition is useful:
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Definition 3 Given a coalition formation game among a set of players N , a

collection of coalitions, denoted by S, is defined as the set S = {S1, . . . , Sl} of

mutually disjoint non-empty coalitions Si ⊂ N . In other words, a collection is

any arbitrary group of disjoint coalitions Si of N not necessarily spanning all

players of N . If the collection spans all the players of N ; that is
⋃l

j=1 Sj = N ,

the collection is a partition of N or a coalitional structure.

In the presence of a coalitional structure, the solution concepts dis-
cussed in the previous subsection need substantial changes in their defi-
nition for applying them in a coalition formation setting. Even by changing
the definition, finding these solutions is by no means straightforward and
can be cumbersome. In [30], it was shown that, in the presence of a
coalitional structure, the core and the nucleolus, as defined in canonical
coalitional games, are inapplicable and an alternative definition is provided
instead. In contrast, by a slight modification of its definition, the Shapley
value can be found by computing the Shapley value over each coalition
present in the partition [30]. Hence, finding optimal coalitional structure
and characterizing their formation is quite a challenging process, and, un-
like canonical coalitional games, no unified or formal solution concepts
exist. In fact, a majority of the literature dealing with coalition formation
games, such as [31–34] or others, usually re-defines the solution concepts
or presents alternatives that are specific to the game being studied.

For coalition formation games, the most important aspect is the forma-
tion of the coalitions, i.e., answering the question of “how to form a coali-
tional structure that is suitable to the studied game”. In practice, coalition
formation entails finding a coalitional structure which either maximizes
the total utility (social welfare) if the game is TU, or finding a structure
with Pareto optimal payoff distribution for the players if the game is NTU.
For achieving such a goal, a centralized approach can be used; however,
such an approach is generally NP-complete [31–34]. The reason is that,
finding an optimal partition in a general case, requires iterating over all the
partitions of the player set N . The number of partitions of a set N grows
exponentially with the number of players in N and is given by a value
known as the Bell number [31]. For example, for a game where N has only
10 elements, the number of partitions that a centralized approach must
go through is 115975 (computed through the Bell number). Hence, finding
an optimal partition from a centralized approach is, in general, compu-
tationally complex and impractical. In some cases, it may be possible to
explore the properties of the game, notably of the value v, for reducing the
centralized complexity. Nonetheless, in many practical applications, it is
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desirable that the coalition formation process takes place in a distributed
manner, whereby the players have an autonomy on the decision as to
whether or not they join a coalition. In fact, the complexity of the central-
ized approach as well as the need for distributed solutions have sparked
a huge growth in the coalition formation literature that aims to find low
complexity and distributed algorithms for forming coalitions [31–34].

The approaches used for distributed coalition formation are quite var-
ied and range from heuristic approaches [31], Markov chain-based meth-
ods [32], to set theory based methods [33] as well as approaches that use
bargaining theory or other negotiation techniques from economics [34].
Clearly, constructing coalition formation algorithms is application-specific,
however, some work, such as [33] provides generic rules that can be used
to derive coalition formation algorithms in different scenarios. In this re-
gards, the work in [33] does not provide an algorithm for coalition forma-
tion, but it presents a framework that can be tailored for developing such
an algorithm. The main ingredients presented in [33] that are presented
in [33] are the following:

1. Well-defined orders suitable to compare collections of coalitions.

2. Two simple operations for forming or breaking coalitions.

3. Stability notions that can be suited in a coalition formation context.

By using the guidelines in [33], one can devise different coalition formation
algorithms. Moreover, many of the algorithms in the literature can also be
tailored to new applications through adequate modifications.

Further, we note that coalition formation approaches can be either fully
reversible, partially reversible or irreversible [32]. An irreversible coalition
formation approach implies that, whenever a coalition forms, its members
are not allowed to leave it. In contrast, in a fully reversible approach, the
players can join and leave coalitions with no restrictions. On one hand, a
fully reversible approach is practical and flexible, however, deriving such
an approach can be complicated. On the other hand, although irreversible
approaches are easy to construct, their practicality is limited as the players
are bound to remain in a coalition they join with no possibility of break-
ing the agreement. For this purpose, partially reversible approaches have
been recently sought as they provide a balance between practicality and
complexity. In partially reversible coalition formation approaches, once
the players form a coalition, they can break that coalition under certain
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conditions. Under different applications, one can carefully select the most
practical and suited approach.

In summary, coalition formation games are diverse, and, in addition to
the previously mentioned approaches, numerous schemes and rules exist.
For example, a type of coalition formation games, known as hedonic coali-

tion formation games has been widely studied in game theory. Hedonic
games are interesting since they allow the formation of coalitions (whether
dynamic or static) based on the individual preferences of the players. Fur-
ther, hedonic games admit different stability concepts that are extensions
to well known concepts such as the core or the Nash equilibrium used in
a coalition formation setting [35]. In this regard, hedonic games constitute
a very useful analytical framework which has a very strong potential to be
adopted in modeling problems in wireless and communication networks
(only few contributions such as [36] used this framework in a communi-
cation/wireless model). Further, a multitude of algorithms and concepts
pertaining to coalition formation games can be found in [31–34] and many
others.

Coalition Formation Games in Wireless Networks

While canonical coalitional games have had several applications in wire-
less networks, surprisingly, coalition formation games applications are
still scarce (e.g., in [37, 38]). This is mainly due to the fact that, un-
like canonical coalitional games, no unified reference or formal rules exist
for solving coalition formation games. In addition, most existing tutorial or
references on coalitional game theory mainly focus on canonical coalitional
games, with little mention of coalition formation.

However, one can see that coalition formation games have a huge po-
tential of applications within wireless networks. For instance, in a wireless
or communications environment, cooperation always entails costs such as
energy, power, time, or others. In most wireless problems, cooperating,
i.e., forming a coalition, is preceded by a negotiation process or an infor-
mation exchange process which incurs costs that can significantly reduce
the gains from forming a coalition. Hence, in these scenarios, canonical
coalitional games are inapplicable and one must revert to formulating a
coalition formation approach. In addition, next generation wireless net-
works are large-scale, heterogeneous, and characterized by a dynamically
varying environment. In such a setting, it is restrictive to assume that a
grand coalition would form and it is imperative to study how the network
structure would be affected by the presence of cooperative nodes. Further,
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with the recent interest in cooperation as well as the need for next gener-
ation wireless users to learn and adapt to their environment (changes in
topology, technologies, service demands, application context, etc), coali-
tion formation game models are bound to be ubiquitous in future wireless
communication networks. In brief, any problem involving the study of co-
operative wireless nodes behavior when a cost is present, is a candidate
for modeling using coalition formation games. Thus, the potential applica-
tions of coalition formation games in wireless networks are numerous and
diverse.

In Section 8 of this dissertation, we provide numerous coalition forma-
tion models, algorithms and applications suited for wireless and commu-
nication networks.

2.3.3 Coalitional Graph Games

In canonical and coalition formation games, the utility or value of a coali-
tion does not depend on how the players are interconnected within the
coalition. In this sense, every coalition is simply seen as a subset of the
players set N . However, in many scenarios, the communication or in-
terconnection between the players of the game have a major impact on
the outcome and the characteristics of this game [23, 39]. This intercon-
nection can be captured by a graph representing the connectivity of the
players among each other, i.e., which player communicates with which
ones inside each and every coalition. In general, the main properties that
distinguish a coalitional graph game are as follows:

1. The coalitional game is in graph form, and can be TU or NTU. How-
ever, the value of a coalition may depend on the external network
structure.

2. The interconnection between the players within each coalition, i.e.,
who is connected to whom, strongly impacts the characteristics and
outcome of the game.

3. The main objectives are to derive low complexity distributed algo-
rithms for players that wish to build a network graph (directed or
undirected) as well as to study the properties (stability, efficiency,
etc) of the formed network graph.

4. In games where there is a hierarchy that governs the interactions
among the players, coalitional graph games are a suitable tool.
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Typically, in a coalitional graph game, there are two objectives. The
first and most important objective, is to provide low complexity algorithms
for building a network graph to connect the players. A second objective is
to study the properties and stability of the formed network graph. In some
scenarios, the network graph is given, and hence analyzing its stability
and efficiency is the only goal of the game.

The idea of coalitional graph games mainly started with the work done
by Myerson [23], through the graph function form for TU games. In this
work, starting with a TU canonical coalitional game (N , v) and given an
undirected graph G that interconnects the players in the game, Myerson
defined a fair solution, later known as the Myerson value. Based on this
work, the family of coalitional graph games evolved significantly with many
different approaches. One prominent branch of these games is the so
called network formation games.

In a network formation game, the main objective in these games is
to study the interactions among a group of players that wish to form a
graph. Network formation games can be thought of as a hybrid between
coalitional graph games and non-cooperative games. The reason is that,
for forming the network, non-cooperative game theory plays an important
role. In any network formation game two objectives are of interest: (i)-
Forming a network graph and (ii)- Studying the properties and stability of
this graph, through concepts analogous to those used in canonical coali-
tional games. For forming the graph, a broad range of approaches exist,
and are grouped into two types: Myopic and far sighted 8. The main dif-
ference between these two types is that, in myopic approaches, the play-
ers play their strategies given the current state of the network, while in
far sighted algorithms, the players adapt their strategy by learning, and
predicting future strategies of the other players. For both approaches,
well-known concepts from non-cooperative game theory can be used. The
most popular of such approaches is to consider the network formation as
a non-zero sum non-cooperative game, where the players’ strategies are
to select one or more links to form or break. One approach to solve the
game is to play myopic best response dynamics whereby each player se-
lects the strategy, i.e., the link(s) to form or break, that maximizes its util-
ity. Under certain conditions on the utilities, the best response dynamics
converge to a Nash equilibrium, which constitutes a Nash network. These
approaches are widespread in network formation games [41–43], and also,

8These approaches are sometimes referred to as dynamics of network formation (see
[40]).
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several refinements to the Nash equilibrium suitable for network forma-
tion are used [41–43]. The main drawback of aiming for a Nash network
is that, in many network formation games, the Nash networks are trivial
graphs such as the empty graph or can be inefficient. For these reasons,
a new type of network formation games has been developed, which uti-
lizes new concepts for stability such as pairwise stability and coalitional

stability [40]. The basic idea is to present stability notions that depend
on deviations by a group of players instead of the unilateral deviations
allowed by the Nash equilibrium. Independent of the stability concept, a
key design issue in network formation games is the tradeoff between sta-
bility and efficiency. It is desirable to devise algorithms for forming stable
networks that can also be efficient in terms of payoff distribution or to-
tal social welfare. Several approaches for devising such algorithms exist,
notably using stochastic processes, graph theoretical techniques or non-
cooperative games. A comprehensive survey of such algorithms can be
found in [40].

Beyond network formation games, other approaches, which are closely
tied to canonical games can be proposed for solving a coalitional graph
game. For example, the work in [39], proposes to formulate a canonical
game-like model for an NTU game, whereby the graph structure is taken
into account. In this work, the authors propose an extension to the core
called the balanced core which takes into account the graph structure.
Further, under certain conditions, analogous to the balanced conditions
of canonical games, the authors in [39] show that this balanced core is
non-empty. Hence, coalitional graph games constitute a rich and diverse
framework which can have interesting application scenarios.

Coalitional Graph Games in Wireless Networks

The presence of a network graph is prevalent in wireless applications.
For example, next generation networks will be characterized by multi-
hop communication which imposes a tree architecture on the network.
Moreover, in any routing application, different graph structures can inter-
connect the wireless nodes. For designing, understanding, and analyzing
such graphs, coalitional graph games are the accurate tool. Through the
various concepts pertaining to network formation, stability, fairness, or
others, one can model a diversity of problems.

In existing work, network formation games have been applied to study
many aspects of routing in wireless and communication networks. In [44],
a stochastic approach for network formation is provided. In the proposed
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model, a network of nodes that are interested in forming a graph for rout-
ing traffic among themselves is considered with each node aiming at mini-
mizing its cost function which reflects the various costs that routing traffic
can incur (routing cost, link maintenance cost, disconnection cost, etc.).
Using a myopic best respone algorithms, the authors in [44] show that
their proposed algorithm converges to a stable and Pareto efficient net-
work. The usage of network formation games in routing applications is
not solely restricted to forming the network, but also for studying proper-
ties of an existing network. For instance, in [45], the authors study the
stability and the flow of the traffic in a given directed graph. For deter-
mining the network flows, the work [45] uses non-cooperative game theory
while taking into account the stability of the network graph.

The applications of coalitional graph games are by no means limited
to routing problems. The main future potential of using this class of
games lies in problems beyond network routing. For instance, coalitional
graph games are suitable tools to analyze several problems in next gen-
eration networks pertaining to information trust management in wireless
networks, multi-hop cognitive radio, relay selection in cooperative commu-
nications, intrusion detection, peer-to-peer data transfer, multi-hop relay-
ing, packet forwarding in sensor networks, and many others. Certainly,
this rich framework is bound to be used thoroughly in the design of many
aspects of future communication networks with a broad range of applica-
tions.

In Section 8 of this introduction, we discuss how network formation
games can be used for studying the multi-hop network architecture in
next generation wireless networks.

2.4 Summary

Coalitional game theory presents a rich framework that can be used to
model various aspects of cooperative behavior in next generation wireless
networks. On one hand, for ideal cooperation, one can utilize the various
solution concepts of canonical coalitional games for studying the stability
and fairness of allocating utilities when all the users in the network coop-
erate. Although, in this dissertation, the applications of canonical coali-
tional games were not explored, however, their applications are numerous
and they are quite a suited analytical for studying the limits of cooperation
and the feasibility of providing incentives for the wireless users to maintain
a cooperative behavior, when cooperation is ideal.
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On the other hand, whenever there exists a benefit-cost tradeoff for
cooperation, one can revert to a class of coalitional games, known as coali-
tion formation games, for deriving models and algorithms that can help
in analyzing the cooperating groups that will emerge in a given wireless
network. For instance, coalition formation games can model a variety of
problems related to distributed cooperation in next generation wireless
networks. Further, for analyzing routing problems, network structure for-
mation, and graph interconnection, coalitional graph game provide several
algorithms and solutions, notably through the framework of network for-
mation games. In this context, one can design efficient and robust strate-
gies for forming the network structure that will govern the architecture of
wireless systems.

Hence, using different concepts from coalitional game theory, one can
study different problems in next generation networks such as (but not
limited to): (i)- Distributed formation of virtual MIMO systems, (ii)- Dis-
tributed collaborative spectrum sensing in cognitive radio networks, (iii)-
Joint sensing and access in cognitive radio networks, (iv)- Distributed task
allocation in multi-agent wireless systems, (v)- Distributed cooperation for
physical layer security improvement, and (vi)- Network formation in wire-
less multi-hop networks.

In the next sections, we introduce the basic challenges in each one
of these areas, and, then, we present the different contributions of this
dissertation in these fields.

3 Virtual MIMO Systems

In this section, we first introduce the basics of multiple antenna systems,
and, then, we identify the basic challenges of using cooperation for forming
virtual multiple antenna systems.

3.1 Basics of a MIMO System

Next generation wireless communication systems are bound to provide
higher data rates and an improved quality of service, in order to sup-
port several resource demanding applications such as video transmission
or mobile TV. In addition to conventional methods, such as introducing
higher modulation types or providing larger bandwidths, improving the
performance of wireless systems can be achieved by using multiple an-
tenna systems (multiple-input multiple-output - MIMO).
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Figure 1.2: Block diagram of a typical MIMO system.

Following the pioneering work in [46, 47], communications using MIMO
links has emerged as one of the most significant breakthroughs in modern
communication systems. It has been show that, by deploying multiple an-
tennas at the transmitters or the receivers of a wireless system, significant
performance gains, in terms of improved throughput, improved bit error
rate, or others can be achieved [46–49]. The key feature of MIMO systems
is the ability to turn multipath propagation, a traditional impairment of
the wireless channel, into a performance benefit. For example, MIMO sys-
tems can take advantage of random fading and, when possible, multipath
delay spread for increasing data rates.

A typical MIMO system consists of Mt transmitters and Mr receivers
that are communicating over a wireless channel. Let s ∈ CMt×1 denote the
Mt × 1 transmitted signal vector (each element is the signal transmitted
from the corresponding antenna), y ∈ CMr×1 denote the Mr × 1 received
signal vector, and H denote the Mr ×Mt channel matrix (each element hij
of the matrix represents the channel between transmitter j and receiver i).
A representation of this model is shown in Figure 1.2. The MIMO system
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model shown in Figure 1.2 can be written analytically as [49, p. 149]

y = Hs+ n (1.4)

where n is the additive noise vector with its elements typically considered
as independent, circularly symmetric complex Gaussian random variables,
n ∼ CN (0Mr×1, σ

2IMr) with zero mean and covariance matrix E[nn†] =

σ2IMr (n† is the conjugate transpose of n). In recent years, more advanced
MIMO techniques have been studied, by combining techniques such as
precoding, space-time codes, among others [48].

Information theoretic investigations in the past few years [46–49] have
shown that very high capacity gains can be obtained from deploying MIMO
systems. For example, when a block fading channel is considered, Gaus-
sian signaling is used, and the transmitter is constrained in its total power,
i.e., E [s†s] ≤ P̃ , the capacity of the MIMO system can be given by [46]

C = max
Q

I(s;y) = max
Q

(log det(IMr +H ·Q ·H†)), (1.5)

s.t. tr[Q] ≤ P̃ ,

where I(s;y) is the mutual information between s and y and Q = E [s · s†]
is the covariance of s. When the channel matrix H is perfectly known at
the transmitter and the receiver, the maximizing input signal covariance
is given by [46, 48]

Q = V DV †, (1.6)

where V is the Mt × Mt unitary matrix given by the singular value de-
composition of H = UΣV † and D is an Mt × Mt diagonal matrix given
by D = diag(D1, . . . , DK , 0, . . . , 0) where K ≤ min (Mr,Mt) is the number of
positive singular values of the channel H (eigenmodes) and each Di given
by

Di = (μ− λ−1
i )+, (1.7)

where a+ � max (a, 0) and μ is determined by water-filling to satisfy the
power constraint tr[Q] = tr[D] =

∑
iDi = P̃ , and λi is the ith eigenvalue of

H†H. Using [46], the resulting capacity for the MIMO system is

C =

K∑
i=1

(log (μλi))
+. (1.8)

As a result, it is demonstrated in [46–48] that, even with a block fading
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channel, the capacity in (1.8) can be significantly better than a traditional
single-antenna system. These gains can vary depending on different as-
pects such as channel fading, number of antennas, and so on. These
widely acknowledged advantages of MIMO systems, led to the standard-
ization of MIMO in many wireless systems [10, 11, 48].

Nonetheless, in order to reap the benefits of MIMO systems, numerous
practical challenges arise. Most importantly, the feasibility of deploying
multiple antennas on small devices, such as mobile phones, is question-
able. For this purpose, alternative techniques for benefiting from MIMO
gains, such as cooperation, need to be investigated. In the next subsec-
tion, we describe how cooperation can be used for providing MIMO gains
to single-antenna users in wireless networks.

3.2 Virtual MIMO through Cooperation

While the information theoretic studies corroborated the gains from MIMO
systems, the possibility of exploiting these gains in practice remains a
big challenge. In particular, in ad-hoc or distributed large scale wireless
networks, nodes are often constrained in hardware complexity and size,
which makes implementing multiple antenna systems highly impractical
for many applications. For this purpose, an alternative approach for ex-
ploiting the MIMO gains, through nodes cooperation, needs to be sought.

In fact, an important application for cooperation in next generation
wireless networks is the formation of virtual MIMO systems through co-
operation among single antenna devices. In this context, a number of
single antenna devices can form virtual multiple antenna transmitters or
receivers through cooperation, consequently, benefiting from the advan-
tages of MIMO systems without the extra burden of having multiple an-
tennas physically present on each transmitter or receiver. Thus, the basic
idea of virtual MIMO is to rely on cooperation among mobile devices for
benefiting from the widely acclaimed performance gains of MIMO systems.
In Figure 1.3, we show an illustrative example of cooperation for virtual
MIMO formation in a wireless network.

Similar to their single user MIMO counterparts discussed in the pre-
vious subsection, an intensive amount of research has been dedicated to
the information theoretic studies of virtual MIMO systems. For instance,
the authors in [50] showed the interesting gains in terms of outage capac-
ity resulting from the cooperation of two single antenna devices that are
transmitting to a far away receiver in a Rayleigh fading channel. Further,
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Figure 1.3: An illustrative example of a virtual MIMO system.

the work in [4, 5] considered cooperation among multiple single antenna
transmitters as well as receivers in a broadcast channel. Different coop-
erative scenarios were, thus, studied and the results showed the benefits
of cooperation from a sum-rate perspective. It is important to also note
that virtual MIMO gains are not only limited to rate gains. For example,
forming virtual MIMO clusters in sensor networks can yield gains in terms
of energy conservation [6].

Using a canonical coalitional game the work in [27, 28] studied fairness
and cooperation gains in virtual MIMO systems. The model considered
in [28] consists of a set of transmitter-receiver pairs, in a Gaussian inter-
ference channel. The authors study the cooperation between the receivers
under two coalitional game models: A TU model where the receivers com-
municate through noise-free channels and jointly decode the received sig-
nals, and an NTU model where the receivers cooperate by forming a linear
multiuser detector. Further, the authors study the transmitters cooper-
ation problem under perfect cooperation and partial decode and forward
cooperation, while considering that the receivers have formed the grand
coalition. The main interest was to study the properties of the grand coali-
tions for the receivers and the transmitters. In the joint decoding game, it
is shown that the game is superadditive and that the network can be seen
as a single-input multiple-output (SIMO) MAC channel (when the trans-
mitters do not cooperate). For this game, the authors in [27] show that
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the core is non-empty and it contains all the imputations which lie on the
SIMO-MAC capacity region. Further, it is proven that the Nash bargaining
solution, and in particular, a proportional fair rate allocation lie in the core,
and, hence, constitute suitable fair and stable allocations. For the linear
multiuser detector game, the model is similar to the joint decoding game,
with one major difference: Instead of jointly decoding the received signals,
the receivers form linear multiuser detectors (MUD). The MUD coalitional
game is inherently different from the joint decoding game since, in a MUD,
the SINR ratio achieved by a user i in coalition S cannot be shared with
the other users, and hence the game becomes an NTU game with the SINR
representing the payoff of each player. In this NTU setting, the value v(S)

of a coalition S becomes the set of SINR vectors that a coalition S can
achieve. For this NTU game, the grand coalition is proven to be stable and
sum-rate maximizing at high SINR regime using limiting conditions on the
SINR expression.

Further, the authors consider the transmitters cooperation along with
the receivers cooperation. In this case, the interference channel is mapped
unto a virtual MIMO MAC channel. For maintaining a characteristic form,
the authors consider a utility that captures the sum-rate under worst case
interference. Using this and other assumptions, the authors show that in
general the game has an empty core. Further, through [28, Th. 19], it is
shown that the grand coalition is the optimal partition, from a total utility
point of view. The authors conjecture that in some cases, the core can
also be non-empty depending on the power and channel gains. However,
no existence results for the core are provided in this game. Finally, the au-
thors in [28] provide a discussion on the grand coalition and its feasibility
when the transmitters employ a partial decode and forward cooperation. In
summary, the work in [27, 28] provides valuable insights and results per-
taining to fairness and to the cooperation gains when performing virtual
MIMO systems. However, this work does not consider any cost for virtual
MIMO formation (whether it be at the transmitters or receivers side) nor
does it propose any strategies for forming coalitions.

Although the gains from virtual MIMO are quite well studied and es-
tablished, implementing distributed cooperation algorithms that allow to
exploit these advantages in a practical wireless network is challenging and
desirable. In this regards, it is of interest to study a model for distributed
virtual MIMO formation which accounts for both benefits and costs for co-
operation. In particular, the key issues that need to be tackled in such a
scenario are (among many others)
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1. What are the benefits and costs from cooperation?

2. Given the benefit-cost tradeoff, which groups of users must cooper-
ate?

3. How can this cooperation be performed in a distributed manner?

4. How does the cooperative behavior of the users affect the network
structure?

5. Can the network structure adapt to environmental changes such as
slow mobility?

In order to answer these questions, and deploy distributed coopera-
tion for virtual MIMO formation in next generation wireless networks, one
needs to tackle and overcome many challenges. In this dissertation, we
study the problem of virtual MIMO formation among the transmitters in
the uplink of a wireless network using the analytical framework of coalition
formation games. The main contributions of this work are summarized in
Section 8 and the details are found in Paper B.

4 Spectrum Sensing in Cognitive Radio Networks

In this section, we introduce the basic concepts of cognitive radio networks
and, then, we identify the key challenges for spectrum sensing as well
as the design issues of performing joint spectrum sensing and access in
cognitive networks.

4.1 Basics of Cognitive Radio Networks

With the recent growth in wireless services, the demand for the radio spec-
trum has significantly increased. As the demand for wireless services be-
comes more and more ubiquitous, the wireless devices must find a way to
transmit within extremely constrained radio resources. In fact, the spec-
trum resources are scarce and most of them have been already licensed to
existing operators. Numerous studies, such as those done by the Federal
Communications Commission (FCC) in the United States, have shown that
the licensed spectrum remains unoccupied for large periods of time [51]. In
general, a large portion of the assigned spectrum is used sporadically and
geographical variations in the utilization of assigned spectrum ranges from
15% to 85% with a high variance in time [51]. As a result, under the current
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Figure 1.4: Illustration of a cognitive radio network.

fixed spectrum assignment policy, the utilization of the radio resources is
quite inefficient. This limited availability and inefficiency of the spectrum
usage necessitates a new communication paradigm to exploit the exist-
ing wireless spectrum opportunistically. This new networking paradigm is
referred to as cognitive radio networks [19, 52–54].

In cognitive radio networks, the wireless devices can change and tune
their transmission or reception parameters in order to achieve efficient
wireless communication without interfering with the licensed users. For
performing this parameter adaptation, cognitive devices can actively mon-
itor different several external and internal radio parameters, such as radio
frequency spectra, user behavior, and network states. By sensing and
monitoring the available spectrum, unlicensed cognitive radio users, or
secondary users (SUs), can intelligently adapt to the most suitable avail-
able communication links in the licensed bands, and, hence, by exploiting
the spectrum holes, they are able to share the spectrum with the licensed
primary users (PUs), operating whenever the PUs are idle.

The deployment of cognitive radio technology can bring a variety of ben-
efits for the different entities of the wireless networks. For a regulator,
cognitive radios can significantly increase spectrum availability for new
and existing applications. For a license holder, cognitive radios can re-
duce the complexity of frequency planning, increase system capacity, and
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reduce interference. For equipment manufacturers, cognitive radios can
increase demands for wireless devices. Finally, for an individual user, cog-
nitive radios can bring more capacity per user, enhance inter-operability
and bandwidth-on-demand, and provide ubiquitous mobility with a sin-
gle user device across disparate spectrum-access environments. Due to
the advantages of the cognitive radio networking paradigm, several of its
aspects have recently made their way into different standards such as
IEEE 802.11h (dynamic frequency selection and transmitter power control
for WLAN sharing), IEEE P1900 (standards for advanced spectrum man-
agement), IEEE 802.22 (WRANs in unused TV bands), IEEE 802.15 task
group 2 (coexistence of IEEE 802.11 and Bluetooth) [19]. An illustration
of a cognitive radio network is shown in Figure 1.4.

Nonetheless, implementing practical cognitive radio networks faces nu-
merous challenges at different levels such as: Spectrum sensing, spectrum
sharing or access, spectrum management, and spectrum mobility. Spec-
trum sensing mainly deals with the stage during which the SUs attempt to
learn their environment prior to the spectrum access (or spectrum shar-
ing) stage where the SUs actually transmit their data. Further, spectrum
management deals with allocating the spectrum between the different op-
erators as well as matching the available spectrum to the different users
and operators requirements. Finally, spectrum mobility attempts to study
how the cognitive users can maintain a seamless connection while fre-
quently changing over to better frequency bands.

These various aspects of cognitive radio have been exhaustively treated
in the literature, such as in [19, 52–54] and the references therein. In this
dissertation, we limit our attention to spectrum sensing, as well as the
possibility of performing, jointly, spectrum sensing and access.

4.2 Spectrum Sensing

One of the major challenges of cognitive radio networks is the development
of efficient spectrum sensing techniques for the SUs. Spectrum sensing
refers to the phase during which the SUs must sense the radio frequen-
cies in order to make a decision on whether to transmit or not, depending
on the state of the PUs. The main objective of spectrum sensing is the de-
sign of high quality spectrum sensing devices and algorithms for exchang-
ing spectrum sensing data between nodes to (i)- Reliably detect spectral
holes for use by the cognitive radio devices and (ii)- Reliably detect when
the primary transmitter becomes active. In order to achieve those goals,
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cross-layer design problems need to be addressed by exploiting advanced
digital signal processing techniques, introducing efficient detection and
estimation approaches as well as exploiting users’ cooperation.

By using local measurements and local observations, a secondary user
can detect the transmitted signal from a PU. The model for signal detection
at time t can be described as follows [19, 54]:

y(t) =

{
n(t), H0,

h · s(t) + n(t), H1,
(1.9)

where y(t) is the received signal at an SU, s(t) is the transmitted signal
of the licensed PU, n(t) is the additive white Gaussian noise (AWGN), and
h is the channel gain. In (1.9), H0 and H1 represent, respectively, the
hypotheses of having and not having a signal from a licensed PU in the
target frequency band. Consequently, the spectrum sensing phase boils
down to a decision between two hypotheses H0 or H1, depending on the
received signal at the SU. In order to detect the signal of the PU, different
methods can be used such as

1. Matched Filter Detection: Matched filter detection is generally used to
detect a signal by comparison between a known signal (i.e., template)
and the input signal. It is well known that the optimal method for
signal detection is through a matched filter [49], since it maximizes
the received signal-to-noise ratio. In addition, by using a matched
filter detector, the detection of the PU signal can take a small amount
of time [54] which is one of the main advantages of matched filter
detection. However, utilizing a matched filter in spectrum sensing
requires demodulation of a PU signal which implies that the cogni-
tive radio must have a priori knowledge of different PHY and MAC
characteristics of the PU signal such as pulse shaping, packet for-
mat, and so on. Further, in the event where this information is not
available or is incorrect, the performance of spectrum sensing de-
grades significantly [19, 54]. As a result, matched filter detection is
mainly useful whenever the PU can convey some information on its
signal using some sort of pilot channel, preambles, spreading codes,
or other techniques that can help the SUs to construct an estimate of
the signal.

2. Energy Detection: While the matched filter approach requires coher-
ent detection, a more simplified filtering approach is to perform non-
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coherent detection through energy detection. Whenever the informa-
tion on the PU signal is unavailable at the SUs, energy detection can
be quite a useful approach [19, 54]. For energy detection, the out-
put signal from a bandpass filter is squared and integrated over the
observation interval. Subsequently, a decision algorithm compares
the integrator output with a threshold to decide whether a licensed
user exists or not [19, 54]. Basically, for energy detection, the perfor-
mance deteriorates as the received SNR from the PU signal decreases.
Energy detection has been widely adopted in many spectrum sensing
scenarios [19]. Despite its practicality and appeal, energy detection
suffers from three main drawbacks. First, it is susceptible to the
uncertainty of noise. Second, energy detection can only detect the
presence of the signal without being able to differentiate the type of
the signal. As a result, energy detection can confuse signals result-
ing, for example, from other SUs with the PU signal. In addition, an
energy detectors do not work for spread spectrum signals, for which
more sophisticated signal processing algorithms need to be devised.

3. Cyclostationary Feature Detection: The transmitted signal from a li-
censed PU generally possesses a period pattern. Such signals are
commonly referred to as cyclostationary. By using this period pat-
tern one can detect the presence of a licensed PU [54]. A signal is
cyclostationary (in the wide sense) if the autocorrelation is a periodic
function. With this periodic pattern, the transmitted signal from a
licensed PU can be distinguished from noise which is a wide-sense
stationary signal without correlation. In general, cyclostationary de-
tection can provide a more accurate sensing result and it is robust to
variation in the noise power. However, these advantages come at the
expense of a higher complexity for implementation and the need for
long observation times. Different aspects of cyclostationary detectors
are found in [19, 54].

In addition to these methods, recent work has also investigated the use
of advanced detection techniques, such as wavelet detectors [19], for per-
forming spectrum sensing. Moreover, one can also integrate, in a single
secondary system, different detection methods. For example, energy de-
tection can be used to perform a fast scan of a wide range of spectrum
bands. Subsequently, the results from energy detection can be used to
eliminate the spectrum bands with high energy densities (e.g., due to the
transmission of PUs). Then, feature detection can be applied to a few can-
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didate bands with low energy densities to search for a unique feature of
signals pertaining to PUs.

For measuring the performance of spectrum sensing, three key metrics
are explored: The probability of correct detection, the probability of miss
and the probability of false alarm. The probability of correct detection is
defined as Pd = Prob{decision = H1|H1}, which is the probability of cor-
rectly detecting the transmission of the PU when this PU is active. Subse-
quently, the probability of miss is defined as Pm = Prob{decision = H0|H1}
which is the probability of not detecting the PUs transmission while this
PU is active, i.e., Pm = 1 − Pd. Finally, the probability of false alarm is de-
fined as Pf = Prob{decision = H1|H0} which is the probability of deciding
that the PU is transmitting while the PU is, in fact, idle.

The expressions for computing the different probabilities depend largely
on the detection method being employed as well as on the channel condi-
tions between the PUs and the SUs. As an example, when one considers
energy detection, the probability of false alarm can be given by

Pf =
Γ (m, λ2 )

Γ (m)
, (1.10)

where m is the time bandwidth product for energy detection, λ is the energy
detection threshold, Γ (·, ·) is the incomplete gamma function, and Γ (·) is
the gamma function. Furthermore, for SUs using energy detectors in a
Rayleigh fading environment, the average probability of detection can be
given by

Pd = e−
λ
2

m−2∑
n=0

1

n!

(
λ

2

)n

+

(
1 + γ̄

γ̄

)m−1
[
e
− λ

2(1+γ̄) − e−
λ
2

m−2∑
n=0

1

n!

(
λγ̄

2(1 + γ̄)

)n
]
,

(1.11)

where γ̄ is the average received SNR of the PU signal.
The performance of spectrum sensing is significantly affected by the

degradation of the PU signal due to path loss or shadowing. For example,
energy or feature detection might be quite affected by a low received SNR
from PU signal, due to fading for example. Added to the issue of low SNR is
the hidden terminal problem that arises because of shadowing. SUs may
be shadowed away from the PU’s transmitter but there may be primary
receivers close to the SUs that are not shadowed from the PU transmitter.
Thus, if the SU transmits, it may interfere with the primary receiver’s re-
ception. Consequently, advanced methods for improving spectrum sensing
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Figure 1.5: An illustration of collaborative spectrum sensing in cognitive
networks.

are being sought. In particular, it has been shown that, through coopera-
tion among the SUs, i.e., collaborative spectrum sensing (CSS), the effects
of this hidden terminal problem can be reduced and the probability of
detecting the PU can be improved [55–61].

The main idea of CSS is mainly composed of two steps. In the first
step, each SU perform its individual detection for spectrum sensing. Then,
the SUs would send their sensing bits to a fusion center which, using
adequate decision fusion rules, can combined the bits from the different
SUs and make a better decision on the presence or absence of the PU. An
illustration of a typical CSS approach is shown in Figure 1.5.

The interest in CSS has grown significantly in the past few years. Ex-
isting literature has, in fact, studied thoroughly the performance of CSS
in cognitive radio networks. For instance, in [55], the SUs perform CSS by
sharing their sensing decisions through a centralized fusion center which
combines the SUs’ sensing bits using the OR-rule for data fusion. A sim-
ilar approach is used in [56] using different decision-combining methods.
In [57], it is shown that, in CSS, soft decisions can have an almost com-
parable performance with hard decisions while reducing complexity. The
authors in [59] propose an evolutionary game model for CSS in order to
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inspect the strategies of the SUs and their contribution to the sensing pro-
cess. The effect of the sensing time on the access performance of the SUs
in a cognitive network is analyzed in [62]. For improving the performance
of CSS, spatial diversity techniques are presented in [58] as a means for
combatting the error probability due to fading on the reporting channel
between the SUs and the central fusion center. Other interesting perfor-
mance aspects of CSS are studied in [60, 61, 63–65].

Existing literature mainly focused on the performance assessment of
CSS in the presence of a centralized fusion center that combines all the
SUs bits in the network. In practice, the SUs can be at different locations
in the network, and, thus, prefer to form nearby groups for CSS without
relying on a centralized entity. Moreover, the SUs can belong to different
service providers and need to interact with each other for CSS, instead of
relaying their bits to a centralized fusion center (which may not even exist
in an ad hoc network of SUs). In addition, a centralized approach leads to a
significant overhead and increased complexity, notably in large networks.
Further, as the number of collaborating SUs increase, the improvement
in the probability of detection is accompanied by an increase in the false
alarm probability. As a result, given this probability of detection-false
alarm tradeoff each SU may only be willing to share their sensing bits with
a selected subset. In summary, there is a need for devising models and
algorithms that allow the SUs to autonomously interact for performing
collaborative spectrum sensing, in a distributed manner, with no need for
centralized fusion centers.

For this purpose, in this dissertation, using a coalition formation game
formulation, we study the problem of distributed cooperation among the
SUs in a cognitive network that seek to improve their sensing performance
through CSS. The main contributions and motivations of this work are
summarized in Section 8 and the details are found in Paper C.

4.3 Tradeoff between Spectrum Sensing and Spectrum Access

In general, for performing dynamic spectrum access in cognitive radio net-
works, the SUs must be able to perform efficient spectrum sensing and
access. While spectrum sensing is the first step in dynamic spectrum ac-
cess, the next step is the actual access of the channel, in the spectrum
access phase. In the spectrum sensing phase, the SUs are required to
decided on whether or not PUs are active as well as to discover which
channels are available. In the spectrum access phase, the SUs engage in
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deciding on how to access the spectrum, which channel to select, which
power level to use, what kind of MAC protocol to support, and so on.

As mentioned in the previous section, the technical challenges of spec-
trum sensing has been widely explored in the literature. Similarly, spec-
trum access has also received an increased attention [62, 66–76]. For
instance, using a partially observable Markov decision process (POMDP),
the authors in [66] devised a MAC protocol for spectrum access that max-
imizes the expected total number of transmitted bits over a certain dura-
tion under the constraint that the collision probability with the PU should
be maintained below a target level. Further, in [62], the authors pro-
pose a dynamic programming approach to maximize their channel access
time, given a penalty factor conceded when a collision with the PU oc-
curs. In [67], a channel selection scheme based on stochastic control
was derived. The work in [68] proposes a novel multiple access scheme
that takes into account the physical layer transmission in cognitive net-
works. In [69], the authors model the spectrum access problem as a non-
cooperative game, and propose learning algorithms to find the correlated
equilibria of the game. Non-cooperative solutions for dynamic spectrum
access are also proposed in [70] while taking into account changes in the
SUs’ environment such as the arrival of new PUs, among others. Addi-
tional challenges of spectrum access are tackled in [71–76].

One important aspect of dynamic spectrum access is to inspect the ef-
fect of the spectrum sensing phase on the spectrum access phase. In fact,
cognitive radio networks exhibit an inherent tradeoff between exploration
and exploitation. On one hand, spectrum exploration through sensing
is the process by which the cognitive users tend to probe more channels
to discover better channel opportunities. On the other hand, exploiting
the spectrum refers to the immediate benefit gained from accessing the
channel with the estimated highest reward or performance. While the SUs
have an incentive to explore the spectrum in the hope of finding their best
transmission opportunity, they are also bound to cease the transmission
opportunity as soon as possible before the PU occupies the channel. Fur-
ther, the time spent on exploring the spectrum can significantly affect the
performance of data transmission during the spectrum access phase.

In fact, this tradeoff between exploration (spectrum sensing) and ex-
ploitation (spectrum access) in cognitive networks arises from different as-
pects. Notably, it has been established [62] that, in practice, the sensing
time of cognitive radio networks is large and can significantly affect the
access performance of the SUs. Thus, although each SU has an incentive
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to sense as many PU channels as possible for locating access opportuni-
ties, this spectrum exploration may come at the expense of a smaller tra-
nsmission time, and, hence, a possibly smaller effective capacity for data
transmission. In summary, there exists an interesting tradeoff between
exploring and exploiting the spectrum in cognitive networks that needs
to be addressed. While this aspect has been addressed in some existing
work such as [66] or [77], most of this work is focused on non-cooperative
learning approaches for tackling the problem. As a result, it is of interest
to study how cooperation can be used to allows the SUs to improve their
performance while jointly considering the spectrum sensing and spectrum

access phases.
In this dissertation, we study and analyze the use of cooperation for

performing joint spectrum sensing and access in cognitive radio networks
using the analytical framework of coalition formation games. The main
contributions of this work are summarized in Section 8 and the details are
found in Paper D.

5 Multi-agent Systems

In this section, first, we provide an overview on multi-agent systems and
its disciplines, then we discuss the future of applying multi-agent concepts
in the context of wireless communication networks.

5.1 Overview

In many disciplines such as computer science or robotics, the concept of
an agent is ubiquitous. The birth of the term “agent” has its roots in com-
puter science, whereby an agent is, roughly, defined as an autonomous
computer program9. The notion of an agent is quite difficult to define.
Although numerous papers on the subject of agents and multi-agent sys-
tems have been written, a tremendous number of definitions exist. In
essence, an agent is an entity that has the capabilities of an intelligent
person or human being. Due to this characteristic, being able to find a
unified definition of an agent is quite tough.

Although the definition can vary from one discipline to the other, in gen-
eral, the main characteristics of an agent are its proactive and intelligent
ability to sense its environment, interact with it, and take autonomous de-
cisions. In some sense, the role of an agent is to mimic human behavior in

9This definition refers to the concept of computational agents in computer science.
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a given technical problem whether it be, for example, in computer science,
robotics or control systems. Thus, a multi-agent system is a system com-
posed of multiple interacting intelligent agents that can interact, collabo-
rate, and act together in order to solve different problems. For example,
multi-agent systems can be used to solve problems in online trading, soft-
ware engineering, disaster response, military applications, and modeling
social structures [78].

The main challenge in designing multi-agent systems is to be able to
allow the agents to somehow simulate the way humans act in their en-
vironment, interact with one another, cooperatively solve problems or act
on behalf of others, solve more and more complex problems by distribut-
ing tasks or enhance their problem solving performances by competition.
Clearly, the use of agents and multi-agent systems will be one of the land-
mark technology in many disciplines in years to come, as it will bring
extra conceptual power, new methods and techniques, and advanced de-
sign approaches. Consequently, this will essentially broaden the spectrum
of applications and expand it beyond the computer world into disciplines
such as wireless networks or communications theory.

Independent from its application, a general problem that is of strong
interest in multi-agent systems, is the distribution of tasks among the dif-
ferent agents. For instance, it is of importance to study how, a number of
agents, can autonomously and intelligently allocate different tasks among
each others using cooperative as well as non-cooperative approaches [78].
In a software system, the tasks can represent, for example, threads or
programs that need to be executed. In a control system, the tasks can
be points in time or space that the agents are required to attend to. For
example, in [79, 80], the problem of enabling a number of vehicle-agents
to move to randomly generated tasks is studied in a non-cooperative ap-
proach, while in [81, 82], the problem of task allocation in a software sy-
stem is studied using a heuristic coalition formation approach. Additional
approaches for agents task allocation in robotics and artificial intelligence
are found in [83–87].

In a nutshell, the use of agents in future technology applications will
be pervasive and centric. In consequence, there is a need to better un-
derstand the different behaviors, strategies, and usage models that these
agents can have in a multitude of applications.
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5.2 Deployment of Agents in Wireless Networks

Future wireless networks will present a highly complex and dynamic en-
vironment characterized by a large number of heterogeneous information
sources, and a variety of distributed network nodes. This is mainly due to
the recent emergence of large-scale, distributed, and heterogeneous com-
munication systems which are continuously increasing in size, traffic, ap-
plications, services, etc. For maintaining a satisfactory operation of such
networks, there is a constant need for dynamically optimizing their perfor-
mance, monitoring their operation and reconfiguring their topology. For
doing so, different autonomous nodes, that can be thought of as “agents”,
will be deployed in future wireless networks in order to service these net-
works at different levels such as data collection, monitoring, optimization,
management, maintenance, among others [14, 19, 88–93]. These nodes
belong to the authority maintaining the network, and must be able to sur-
vey large scale networks, and perform very specific tasks at different points
in time, in a distributed and autonomous manner, with very little reliance
on any centralized authority [14, 19, 88, 91–93].

Although most approaches pertaining to multi-agent systems and multi-
agent task allocation are oriented to robotics, control, software, or even
military applications as seen in the previous subsection, it is, thus, im-
portant to leverage these problems to applications in wireless and com-
munication networks. Some existing work has already studied the role of
agents in wireless networks, although the concept was rather implicit. One
prominent application of agents in wireless networks is the deployment of
unmanned aerial vehicles (UAVs). For instance, in [94], the authors study
how a number of UAVs, acting as agents, can self-deploy to improve the
connectivity of a wireless ad hoc network. In this work, the main focus is
on the optimal locations of the UAVs. In [95], a 2-level hierarchical net-
work structure is proposed, using UAVs as an embedded mobile backbone,
for improving the routing performance in ad hoc wireless networks such
as military networks. This idea of hierarchical routing using UAVs is fur-
ther investigated in [96]. Further, in [97], a novel MAC protocol suited for
communication between ground nodes and UAVs is proposed.

In addition to using UAVs as agents in wireless networks, there has
been also a recent emergence of self-deploying mobile nodes such as mo-
bile relay stations or mobile base stations. For instance, in [91], the con-
cept of autonomous mobile base stations is studied for improving the con-
nectivity of vehicular ad hoc networks, in roads where the traffic flow and
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vehicles’ speed hinders this connectivity. Further, in [93], the concept of
mobile base stations is used for improving the network lifetime of wireless
sensor networks. The idea of agents can also be mapped to the concept
of message ferrying, whereby a special node, called a message ferry, fa-
cilitates the connectivity in a mobile ad hoc network where the nodes are
sparsely deployed. The message ferry can be easily seen as an agent as it
has autonomy and intelligence to self-deploy and interact with the nodes to
improve connectivity. Different performance analysis of message ferrying
in ad hoc networks is studied in [92, 98] and the references therein.

In a nutshell, the deployment of agents in next generation wireless net-
works is imminent, as many of the current research has directly or indi-
rectly investigated the use of such nodes such as UAVs mobile base sta-
tions, or message ferries among others. One fundamental problem in this
regards that remains relatively unexplored is to study the task allocation
among agents in the context of wireless networks. While this problem has
been studied in other disciplines as mentioned in the previous subsection,
most of these existing models are unsuitable for task allocation problems
in the context of wireless networks due to various reasons such as: (i)-
The task allocation problems studied in the existing papers are mainly
tailored for military operations, computer systems, or software engineer-
ing and, thus, cannot be readily applied in models pertaining to wireless
networks, (ii)- The tasks are generally considered as static abstract enti-
ties with very simple characteristics and no intelligence (e.g. the tasks are
just points in a plane) which is a major limitation, and (iii)- The existing
models do not consider any aspects of wireless communication networks
such as the characteristics of the wireless channel, the presence of data
traffic, the need for wireless data transmission, or other wireless-specific
specifications.

In this dissertation, we introduce a novel model and we provide an al-
gorithm that allow a number of wireless agents to autonomously share a
group of arbitrarily located tasks among each other. The main contribu-
tions of this work are summarized in Section 8 and the details are found
in Paper E.

6 Physical Layer Security

In this section, first we discuss the main concepts of physical layer secu-
rity, then we present how cooperation can be used to improve the security
of wireless transmission.
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6.1 Basics of Physical Layer Security

Due to the broadcast nature of the wireless channel, any unauthorized re-
ceiver, i.e., eavesdropper, located within transmission range is capable of
observing the signals being communicated between the legitimate trans-
mitters. Moreover, the malicious node has the freedom to combine its own
observations with those of neighboring eavesdroppers for example, thus
improving its reception by means of cooperative inference. Although much
has been achieved in terms of securing the higher layers of the classi-
cal protocol stack, protecting the physical layer of wireless networks from
one or multiple eavesdroppers remains a challenging task. In fact, with
the emergence of large-scale heterogeneous wireless networks with little
infrastructure, applying higher-layer techniques such as encryption can
be quite complex and difficult. For this purpose, the implementation of
information-theoretically secure communications means over the wireless
channel has been receiving a recently increased attention. The main idea
is to exploit the wireless channel physical layer characteristics such as
fading or noise for improving the reliability of wireless transmission. This
reliability is quantified by the rate of secret information sent from a wire-
less node to its destination in the presence of eavesdroppers, i.e., the so
called secrecy rate. The maximal achievable secrecy rate is referred to as
the secrecy capacity.

The idea of implementing physical layer security over noisy channels,
which builds on the notion of perfect secrecy established by Shannon
in [99], has its foundation in the work done in [100]. For instance, in [100],
Wyner introduced the wiretap channel to model the degraded broadcast
channel where the eavesdropper observes a degraded version of the re-
ceiver’s signal. In his model, the confidentiality is measured by the equiv-
ocation rate, i.e., the mutual information between the confidential mes-
sage and the eavesdropper’s observation. For the discrete memoryless
degraded wiretap channel, Wyner characterized the capacity-equivocation
region and showed that a non-zero secrecy rate can be achieved [100]. The
most important operating point on the capacity-equivocation region is the
secrecy capacity, i.e., the largest reliable communication rate such that
the eavesdropper obtains no information about the confidential message
(the equivocation rate is as large as the message rate). The secrecy capac-
ity of the Gaussian wiretap channel was given in [101]. Csizar and Korner
considered a more general wiretap channel in which a common message
for both receivers is sent in addition to the confidential message [102].
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Figure 1.6: Illustration of a basic wireless transmission model in the pres-
ence of an eavesdropper.

Recently, there has been considerable efforts devoted to generalizing
these results into the wireless channel and multi-user scenarios [103–
110]. In [103], the secrecy capacity of the ergodic slow fading with perfect
channel state information at the transmitter (CSIT) was characterized and
the power/rate allocation under partial CSIT (the knowledge on the chan-
nel of the intended receiver only) was derived. The secrecy capacity of the
parallel fading channels was given [104, 105] where [105] considered the
model in [102] with a common message. The feasibility of traditional phys-
ical layer security approaches based on single antenna systems is ham-
pered by channel conditions: If the channel between the source and the
destination is worse than the channel between the source and an eaves-
dropper, the secrecy capacity is typical zero [100, 105]. For overcoming
this limitation, in [106, 108, 109], the use of multiple antennas for im-
proving the secrecy capacity was investigated. In summary, physical layer
security presents an interesting and challenging field which is currently
ongoing a significant growth, namely in the wireless community.

As previously mentioned, the main performance metric of interest in
physical layer security problems is the concept of secrecy capacity (as well
as the secrecy rate). The most basic model of transmission in the presence
of an eavesdropper is shown in Figure 1.6. In this figure, Cd denotes the
Shannon rate from the transmitter to its receiver while Ce represents the
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Shannon rate at the eavesdropper. Given this basic model, the secrecy
capacity Cs of the transmitter can be given by

Cs =
(
Cd − Ce

)+
. (1.12)

The fact that (1.12) represents the secrecy capacity and is achievable has
been shown in [108, 109]. In the presence of multiple eavesdroppers, char-
acterizing the secrecy capacity can be challenging [106–110]. However, it
has been shown that, by the use of Gaussian inputs, an achievable secrecy
rate Rs, in the presence of K > 1 eavesdroppers, can be given by [111]

Rs =

(
Cd − max

1≤k≤K
Ce
k

)+

, (1.13)

where Cd represents the Shannon rate of the transmitter and Ce
k is the

Shannon rate at eavesdropper k.
As demonstrated in [106, 108, 109], the use of multiple antennas can

significantly improve the secrecy rate both in the single eavesdropper case
of (1.12) as well as the multiple eavesdroppers case in (1.13). However, as
thoroughly discussed in Section 3, due to cost and size limitations, multi-
ple antennas may not be available at the wireless nodes and, under such
scenarios, cooperation is an effective way to enable single-antenna nodes
to enjoy the benefits of multiple-antenna systems. In the next subsection,
we discuss how different cooperation techniques can be used for improving
the physical layer security of wireless transmission.

6.2 Cooperation for Improving Physical Layer Security

As mentioned in the previous subsection, in many scenarios, the wireless
channel conditions can lead to a zero secrecy capacity for some users. In
this case, the users need to perform advanced communications techniques
to improve their secrecy capacity. It has been shown that the use of multi-
ple antennas can improve the secrecy capacity and overcome some of the
challenges of the wireless channel [106, 108, 109].

However, due to hardware limitation as well as costs, physically im-
plementing multiple antennas on wireless devices might not always be
feasible. As an alternative, a number of single antenna can cooperate in
order to improve their secrecy capacity. For instance, consider a source
node equipped with a single antenna seeking to cooperate a number of
single antenna relay nodes in its vicinity in order to transmit its data to
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Figure 1.7: Illustration of a cooperation for wireless transmission in the
presence of eavesdroppers.
a far away destination in the presence of one or more eavesdroppers. An
illustration of the model is given in Figure 1.7.

Different other cooperative schemes for improving the transmission in
the presence of eavesdroppers have been proposed in [107, 110, 112–117].
These approaches consider different roles for the relay such as helping the
source, or the eavesdropper, or both. Techniques such as jamming the
eavesdropper or nulling the signal at the eavesdropper are used to improve
the secrecy rate of the users in different scenarios. Most of this work is
mainly focused on performance assessment, analysis of the secrecy rate,
as well as the rate-achieving relaying strategy.

In order to illustrate how cooperation can improve the secrecy rate of
a source node such as in in Figure 1.7, one approach, as described in
[107, 110], is to allow the source and the relays to adopt a cooperative
protocol composed of two stages

• In the first stage, the source transmits its signal locally to the trusted
relays in its vicinity.

• In the second stage, the source and the relays transmit, coopera-
tively, the signal to the destination using a well suited cooperation
protocol.

Thus, the two-stage algorithm consists of an information exchange
stage and a transmission stage. In the transmission stage, various well
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known techniques for relaying can be used such as decode-and-forward
or amplify-and-forward. Using decode-and-forward and assuming that
the signal is transmitted in the first stage with enough power to allow
the relays to correctly decode it, the source as well as each relay (after
decoding the message) transmit a weighed signal of the original decoded
message. In contrast, using amplify-and-forward, in the second stage, the
source transmits a weighed version of its signal while the relays transmit
a weighed version of the noisy signal received during the first stage.

The weights used in the second stage can be optimized so that the se-
crecy rate of the source node is improved. Hereafter, it is assumed, as
is often the case in current physical layer security literature [107], that
the source and the relays have complete knowledge of the channels to
the destination and the eavesdroppers. The assumption that the users
have knowledge of the eavesdroppers channel is commonly used in most
physical layer security related literature (see [107, 110, 118] and refer-
ences therein), and as explained in [118] this channel information can be
obtained by the users through a constant monitoring of the behavior of
the eavesdroppers. Alternatively, the eavesdroppers can be considered as
location in space where the source suspects the presence of a malicious
node.

For the case of a single eavesdropper, the optimal weights can be found
as follows. By considering the decode-and-forward case, given a total
of N − 1 relays and a single eavesdropper, we let h = [h1, . . . , hN ]†, gk =

[g1,k, . . . , gN,k]
†, and w = [w1, . . . , wN ]† be the the N × 1 vectors representing,

respectively, the channels between the nodes (source and relays) and the
destination, the channels between the nodes (source and relays) and the
eavesdropper k channels, and the signal weights (note that, the first ele-
ment of each vector corresponds to the source). In this case, the secrecy
capacity of the source, as defined in (1.12), can be written as [107, Eq. (6)]

Cs =
1

2
log2

(
σ2 +w†Rhw

σ2 +w†Rk
gw

)
, (1.14)

where the scalar factor 1
2 is due to the fact that the algorithm requires two

stage for cooperation, σ2 is the variance of the Gaussian noise, Rh = hh†,
and Rk

g = gkg
†
k.

For the case of one eavesdropper, assuming that the total power that
the source and it relays can use to transmit is P̃ , and considering that the
power used in the first stage of cooperative transmission is negligible, the
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problem of maximizing the secrecy capacity can be written as

max
w

σ2 +w†Rhw

σ2 +w†Rk
gw

, (1.15)

s.t. w†w = P̃ .

The solution of this optimization problem, as found in [107, 108, 119],
is the scaled eigenvector corresponding to the largest eigenvalue of the
symmetric matrix (R̃

k
g)

−1R̃h where R̃
k
g � σ2

P̃
IN +Rk

g and R̃h � σ2

P̃
IN +Rh.

Unlike the single eavesdropper case, whenever there are K > 1 eaves-
droppers in the network, finding an optimal weight can be quite difficult
to find [107]. Alternatively, one approach is to weigh the signal in a way
to completely null out the signal at all the eavesdroppers. By doing so, the
secrecy rate of the source is certainly improved (although not maximized).
In this case, it is shown that, cooperatively and while nulling the signal
at the eavesdroppers’, the source’s secrecy rate, as per (1.13) would be-
come [107, Eq. (14)]

Rs =
1

2
log2 (1 +

(w∗)†Rhw
∗

σ2
), (1.16)

where w∗ is the weight vector that maximizes the secrecy rate while nulling
the signal at the eavesdropper and is given in [107, Eq.(20)] by

w∗ = βG†(GG†
S)

−1e (1.17)

with G = [h, g1, . . . , gK ]† a (K + 1)×N matrix, β =

√
P̃

e†(GG†)−1e
a scalar and

e = [1,01×K ]† a (K + 1)× 1 vector.

It is shown in [107] that, for a source node having a number of relays
in its vicinity, the secrecy rate as per (1.16) is improved significantly with
respect to the non-cooperative case, in the presence of multiple eaves-
droppers. Similar analysis can also be found in [110], for the amplify-and-
forward case. It is also shown [107, 110] that, for a given cluster of nearby
relays and a single source the decode-and-forward case performs better
than the amplify-and-forward case but at the expense of more complexity.

In brief, existing work has established that, by cooperation, gains in
terms of secrecy rate can be achieved when wireless transmission occurs
in the presence of eavesdroppers. However, as previously mentioned, most
of the existing work in [107, 110, 112–117] focuses on information theo-
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retic analysis of the secrecy rate, at a link level, with no cost for coopera-
tion.

Although the main concepts behind physical layer security are still
largely theoretical, it is of interest to study how the gains, in terms of
secrecy rate, stemming from cooperation can be achieved in a practical
network. In particular, it is important to study: (i)- What kind of tradeoff
exists between the cooperation gains and the information exchange costs,
(ii)- What kind of cooperative strategies the users can adopt to improve
their secrecy rate, and (iii)- The impact of physical layer security coopera-
tion on the network structure. In this dissertation, we attempt to answer
these questions by studying and analyzing the use of cooperation for phys-
ical layer security improvement using the analytical framework of coalition
formation games. The main contributions of this work are summarized in
Section 8 of this introduction and the details are found in Paper F.

7 Multi-hop Architectures in Next Generation Net-

works

In this section, first, we briefly introduce the main ideas behind multi-
hop communication, and, then, we discuss how the deployment of relay
stations in next generation wireless networks impacts the network archi-
tecture.

7.1 Introduction

The concept of multi-hop wireless networks dates back to the 1970s at
the time of the DARPA Packet Radio network [120]. The main idea is that,
whenever a node needs to send its data to a far destination, it can send its
data to neighboring node, which, in turn, send the data to other neighbors,
until the arrival of the data at the destination. Although the design of
multi-hop networks languished in the late 1980s partially due to the lack
of low cost CPUs and memory for performing such multi-hop routing, it
has been rekindled recently with the latest advances in device technology.

Multi-hop architectures are ubiquitous in both ad hoc wireless net-
works and infrastructure-based wireless networks (e.g., cellular networks).
For instance, ad hoc wireless multi-hop networks can be defined as com-
munication networks that consist entirely of wireless nodes, placed to-
gether in an ad hoc manner, i.e., with minimal prior planning. All the
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nodes possess routing capabilities, and can forward data packets for other
nodes in multi-hop fashion. Nodes can enter or leave the network at any
time, and may be mobile, so that the network topology continuously ex-
periences alterations during deployment. The challenges of ad hoc wire-
less networks have been thoroughly tackled in [121–125] and references
therein. Further, multi-hop communication can also take place among
the different mobile users in a network with infrastructure, e.g., a cellular
network as studied in [126–129] and the references therein.

Regardless of the network type, multi-hop communication can span the
different networking layer. At the network and transport layer, the main
interest is to study the efficient delivery of the packets through multi-
hop communication. Another important aspect at those layers is to study
routing protocols that can efficiently operate under multi-hop communi-
cation. At the physical and MAC layers, the recent interest in cooperative
transmission has also led to the emergence of important challenges for
multi-hop communication. For instance, the deployment of one or more
relays that can decode a signal and re-transmit it, cooperatively with a
source node, naturally leads to multi-hop communication. As the pres-
ence of relay nodes, that can act as helper nodes for other source nodes10,
becomes more and more pervasive in future wireless networks, multi-hop
communication is bound to become a pillar of next generation wireless
networks.

7.2 Relay Station Nodes in Next Generation Networks

It has been demonstrated that by deploying one or multiple relays that can
perform cooperative transmission in a wireless network [130–132] a sig-
nificant performance improvement can be witnessed in terms of through-
put, bit error rate, capacity, or other metrics. Consequently, due to this
performance gain that cooperation can yield in a wireless network, re-
cently, the incorporation of relaying into next generation wireless net-
works has been proposed. In this context, the deployment of relay sta-
tion (RS) nodes, dedicated for cooperative communications, is a key chal-
lenge in next generation networks such as 3GPP’s long term evolution
advanced (LTE-Advanced) [10] or the forthcoming IEEE 802.16j WiMAX
standard [11].

The deployment of RSs can have in general two usage models. First,

10A relay node can be either a dedicated node or another independent wireless node
which has an interest to relay data for one of its partner.
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Figure 1.8: A number of RSs deployed to improve cell coverage.

RSs can be deployed in order to improve the coverage range of a cell, as
shown in Figure 1.8. In this case, the communication between the users
and the base station occurs, in general, through one hop (one RS). Alter-
natively, RSs can be deployed in order to improve the capacity and per-
formance of the users. For such a scenario, a number of small RS cells
would appear in the network as shown in Figure 1.9, and multi-hop com-
munication becomes essential as every node can transmit its data through
one or more RSs to the base station. For this model, the use of advanced
communication techniques such as cooperative transmission can be quite
common.

Independent of the usage model, for an efficient deployment of RSs in
next generation networks, several key technical challenges need to be ad-
dressed at both the uplink and downlink levels. Recent literature has,
indeed, studied different aspects of the deployment of RSs, notably in the
context of LTE-Advanced and 802.16j networks. For instance, in [133], the
authors study the capacity gains and the resource utilization in a multi-
hop LTE network in the presence of RSs. Further, the performance of dif-
ferent relaying strategies in an LTE-Advanced network is studied in [134].
Furthermore, the authors in [135] study the possibility of coverage exten-
sion in an LTE-Advanced system, through the use of relaying. In [136],
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Figure 1.9: A number of RSs deployed to improve performance (e.g., ca-
pacity, bit error rate, etc.).

the communication possibilities between the RSs and the base station is
studied and a need-basis algorithm for associating the RSs to their serving
BS is proposed for LTE-Advanced networks. The possibilities for handover
in an LTE network in the presence of RSs are analyzed in [137].

From an 802.16j perspective, the work in [138] studies the optimal
placement of one RS in the downlink of 802.16j for the purpose of maxi-
mizing the total rate of transmission. In [139], the use of dual relaying is
studied in the context of 802.16j networks with multiple RSs. Resource
allocation and network planning techniques for 802.16j networks in the
presence of RSs are proposed in [140]. Other aspects of RS deployment in
next generation networks are also considered in [88, 141–144].

Clearly, the presence of RSs impacts the performance and network
structure of next generation networks. While existing literature mostly
focused on RS placement and performance assessment, one challenging
area which remains relatively unexplored is the formation of the multi-
hop architecture that can eventually connect a base station to the RSs in
its coverage area. For both the uplink and the downlink, this architecture
is certainly based on multi-hop communication and can include different
structures such as trees, forests, or other multi-hop architectures. The
network structure would depend on the communication techniques being
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used as well as on the performance metrics that the RSs and the wireless
users are interested in optimizing.

In this dissertation, using network formation games, we study and ana-
lyze the formation of the multi-hop tree architecture in the uplink of a wire-
less network, whenever the nodes are interested in optimizing the tradeoff
between improved bit error rate due to cooperative transmission and the
delay incurred by multi-hop communication. The main contributions of
this work are summarized in Section 8 of this introduction and the details
are found in Paper G.

8 Contribution of the Included Papers

This dissertation consists of seven papers numbered by letters (A-G). In
this section, we present a brief summary of these papers.

8.1 Paper A

W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and T. Başar, “Coalitional
Game Theory for Communication Networks,” IEEE Signal Processing Mag-

azine, Special Issue on Game Theory for Signal Processing and Communica-

tion, volume 26, issue 5, pages 77-97, September 2009.

Paper A presents a tutorial on the applications of coalitional game the-
ory within wireless and communication networks. In this paper, we focus
on providing an application-oriented analysis of coalitional game theory
that will enable wireless engineers to identify the suited tools for solving
different problems in wireless and communication networks.

For doing so, we provide a novel classification of coalitional game the-
ory, by compiling and dividing the sparse literature on the subject into
three distinct classes: (i)- canonical coalitional games, (ii)- coalition forma-
tion games, and (iii)- coalitional graph games. First, we provide the main
fundamental concepts that are applicable and common in all three classes.
Then, for each class of coalitional games, we present the fundamental com-
ponents, introduce the key properties, mathematical techniques, and so-
lution concepts, and describe the methodologies for applying these games
in several applications drawn from the state-of-the-art research in wireless
and communication networks.

Canonical coalitional games describe the situation where cooperation,
i.e., forming a coalition is always beneficial. The main issues to tackle in
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such games are the fairness and stability of the grand coalition, i.e., the
coalition of all users. After thoroughly describing the main ingredients and
solution concepts of canonical coalitional games, we present techniques
and methods for finding each one of these solutions. Further, we analyze
how canonical coalitional games can be used to solve different problems in
wireless and communication networks such as rate allocation in a multiple
access channel, as well as receivers and transmitters ideal cooperation,
i.e., with no cost, in a wireless network.

Unlike canonical coalitional games, coalition formation games consider
cooperation problems in the presence of both gains and costs from coop-
eration. This is quite a useful class of games since, in several problems,
forming a coalition requires a negotiation process or an information ex-
change process which can incur a cost, thus, reducing the gains from
forming the coalition. For coalition formation, we first describe the main
properties of these games as well as how the canonical coalitional game
solution concepts are affected by the presence of a coalitional structure.
Then, we provide guidelines on developing coalition formation algorithms
for practical applications. In addition, we analyze how coalition formation
games can be applied to solve different applications in wireless networks
such as transmitter cooperation with cost in a TDMA system as well as
collaborative spectrum sensing in cognitive radio networks.

In both canonical and coalition formation games, the utility or value
of a given coalition has no dependence on how the players inside (and
outside) the coalition communicate. Nonetheless, in certain scenarios,
the underlying communication structure, i.e., the graph that represents the
connectivity between the players in a coalitional game can have a major
impact on the utility and other characteristics of the game. In such sce-
narios, coalitional graph games constitute a strong tool for studying the
graph structures that can form in a coalitional game based on the coop-
erative incentives of the various players. For these games, we present the
main concepts for classifying a game as coalitional graph game, and we fo-
cus on an important subclass of these games, known as network formation
games. We present the main building blocks of network formation games
and we discuss how network formation algorithms can be built. After-
wards, we present how coalitional graph games can be applied within the
context of wireless communications by applying these games for forming
the network structure in an IEEE 802.16j network.

Further, for all three classes, we shed a light on their future poten-
tial as well as on possible future applications in next generation wireless
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networks.
In summary, Paper A fills an important void in current wireless liter-

ature by providing a unified engineering-oriented treatment of coalitional
game theory. With the ongoing growth of the cooperation paradigm in
wireless communications, the need for a tool such as coalitional game will
grow incessantly, and, such a tutorial is of high interest. To the best of
our knowledge, this paper constitutes the only such reference in existing
literature which highlights the timeliness and significance of its contribu-
tion.

8.2 Paper B

W. Saad, Z. Han, M. Debbah, and A. Hjørungnes, “A Distributed Coalition
Formation Framework for Fair User Cooperation in Wireless Networks,”
IEEE Transactions on Wireless Communications, volume 8, issue 9, pages
4580-4593, September 2009.

In this paper, we study the distributed formation of virtual MIMO systems
through transmitters cooperation in the uplink of a TDMA wireless net-
work. Given a number of single-antenna users seeking to transmit data in
the uplink to a central base station having multiple antennas, we provide
a cooperation model that takes into account both the gains from cooper-
ation, in terms of an improved sum-rate, as well as the costs, in terms of
the power used for information exchange.

The problem is modeled as a coalitional game with transferable util-
ity where the players are the transmitters and the value is the sum-rate
achieved by each coalition (over the slots owned by this coalition), which
can be seen as a single-user virtual MIMO system, given the costs for in-
formation exchange. We show that the game is non-superadditive and
that the core is, thus, empty. As a result the game is formulated as a
coalition formation game with a transferable utility. We also discuss the
effect of having various fairness rules for dividing the utility among each
coalition’s members such as: The egalitarian rule, the proportional fair
rule, the Shapley value, and the nucleolus (applied at the level of each
coalition).

Then, for forming coalitions, we derive a distributed coalition forma-
tion algorithm based on well-defined rules, referred to as the “merge” and
“split” rules. The basic idea of the merge rule is that a group of coalitions
would merge if at least one user improves its payoff without hurting any
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of the other involved user. The merge phase is seen as a binding agree-
ment between the transmitters to act as a single coalition. In contrast,
a coalition would break up into smaller coalitions, i.e., split, if, by doing
so, at least one user improves its payoff without hurting any of the other
involved user. Such a coalition formation algorithm is partially reversible.

We show how, using the proposed algorithm, the users can self-organize
into independent disjoint coalitions. Further, we characterize the result-
ing coalitional structure using the concept of defection functions. We show
that the proposed algorithm converges to a network partition that is Dhp-
stable, i.e., no user has an incentive to leave this partition through merge
or split. Depending on the location of the users, we discuss how the pro-
posed algorithm can also converge to a Pareto optimal (in terms of payoff
distribution) Dc-stable partition which is a unique outcome of any merge-
and-split iteration.

Exhaustive simulations are performed in order to assess the different
aspects of the proposed algorithm. Through simulations, we first show
how the network can self-organize into disjoint coalitions, and we discuss
how the network structure as well as the performance varies with the
different fairness rules for payoff division. Then, we show how, through
periodic runs of the merge-and-split algorithm, the transmitters can adapt
the network structure to mobility as different coalitions form or split de-
pending on the users’ time varying positions. Simulation results also show
that the proposed algorithm can improve the individual user’s payoff up
to 40.42% compared to the non-cooperative case, and, compared to a cen-
tralized optimal solution, the performance is only 1% below the optimal
solution for a network having 20 users.

8.3 Paper C

W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and T. Başar, “Coalitional
Games for Distributed Collaborative Spectrum Sensing in Cognitive Radio
Networks,” in Proceedings of the IEEE International Conference on Com-

puter Communications (INFOCOM), pages 2114 - 2122, Rio de Janeiro,
Brazil, April 2009.

In Paper C, we apply the framework of coalition formation games for per-
forming distributed collaborative spectrum sensing in a cognitive radio
network with a single primary user. Unlike existing work which focused
on the performance of centralized approaches for collaborative spectrum
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sensing, we propose a distributed approach and study the network in-
teractions among the secondary users seeking to improve their sensing
performance through cooperation.

We model the problem as a non-transferable utility coalitional game
where the secondary users are the players. Each secondary user’s payoff
function captures the inherent collaborative spectrum tradeoff that exists
between the gains, in terms of a reduced probability of miss and the costs,
in terms of an increased false alarm. Then, we propose an algorithm for
coalition formation, based on the merge and split rules, which captures
the incentives of the secondary users for cooperating to minimize their
probability of miss while maintaining a target false alarm level. Using
the proposed algorithm, the secondary users are able to self-organize into
disjoint independent coalitions while improving their sensing performance.
Within each coalition, a secondary user, chosen as coalition head, acts as
a fusion center which combines the bits from all the secondary users in
its coalition and makes a final decision on the presence or absence of the
primary user.

The proposed algorithm is composed of three phases: Local sensing
phase where each individual secondary user computes its own local pri-
mary user detection bit based on the received primary user signal, adap-
tive coalition formation phase where merge-and-split occurs, and, once
the network topology converges following merge-and-split, the last phase
is the coalition sensing phase where the secondary users that belong to
the same coalition report their local sensing bits to their local coalition
head who makes the final decision. Further, we characterized the network
structure resulting from the proposed algorithm, studied its stability and
showed that a maximum number of SUs per coalition exists for the pro-
posed utility model. This maximum is independent of the size of the net-
work and mainly depends on the non-cooperative and target false alarm
levels.

The performance and characteristics of the proposed algorithm are as-
sessed through adequate simulations. Simulation results show that the
proposed algorithm allows a reduction of up to 86.6% of the average miss-
ing probability per SU (probability of missing the detection of the PU) rel-
ative to the non-cooperative case, while maintaining a certain false alarm
level below a target of 10%. The simulations also show how the algorithm
can handle mobility through periodic decisions by the secondary users.
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8.4 Paper D

W. Saad, Z. Han, R. Zheng, A. Hjørungnes, and T. Başar, “Coalitional
Games in Partition Form for Joint Spectrum Sensing and Access in Cog-
nitive Radio Networks,” submitted to the IEEE Journal on Selected Areas

in Communications (JSAC), Special Issue on Advances on Cognitive Radio

Networking and Communications, December 2009.

In Paper D, we propose a novel cooperation protocol for allowing the sec-
ondary users in a multi-channel cognitive network to jointly improve their
spectrum sensing and access performance. Due to the fact that: (i)- dif-
ferent cognitive users can have different views of the channels and (ii)-
frequency-selective channels are different for different secondary users, it
is beneficial for the secondary users to cooperate and share their channel
knowledge in order to coordinate both their sensing.

From a sensing perspective, we propose a scheme through which the
secondary users cooperate in order to share their channel knowledge,
and, hence, improve their view of the spectrum, consequently, reducing
their sensing time. From an access perspective, the proposed coopera-
tion protocol allows the cognitive users to improve their access capacities
by: (i)- Learning from their cooperating partners the existence of alterna-
tive channels with better conditions, (ii)- Reducing the interference among
each other, and (iii)- Exploiting multiple channels simultaneously, when
possible (in a non-cooperative approach, due to hardware limitation, the
secondary user can only sense and access one channel at a time).

We model the problem as a coalitional game in partition form, and we
propose an algorithm for coalition formation. To the best of our knowledge,
this paper is among the first that applies the partition form in the design of
wireless protocols and systems. Further, we propose a coalition formation
algorithms that allows the secondary users to take distributed individual
decisions to join or leave a coalition, while maximizing their utility which
accounts for the average time needed to locate an unoccupied channel
(spectrum sensing) and the average capacity achieved when transmitting
the data (spectrum access). In this scheme, Thus, a secondary user can
decide to move from its current coalition and join a new coalition while
improving its payoff, given the approval and consent of the members of
this new coalition.

We show that, using the proposed algorithm, the secondary users can
self-organize into disjoint coalitions that constitute a Nash-stable network
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partition. Within every formed coalition, the secondary users act cooper-
atively by sharing their view of the spectrum, coordinating their sensing
order, and distributing their powers over the seized channels whenever
possible. Also, the proposed coalition formation algorithm allows the sec-
ondary users to adapt the topology to environmental changes such as the
changes in the availability of the PU channels or the slow mobility of the
secondary users.

We study and analyze the performance and characteristics of the pro-
posed algorithm through extensive simulations. Simulation results show
how the proposed algorithm allows the secondary users to self-organize
while yielding a performance improvement, in terms of the average sec-
ondary user payoff, up to 77.25% relative to the non-cooperative case for a
network with 20 secondary users. Further, simulation results also show
how the algorithm can handle environmental changes such as slow mobil-
ity or a change in the traffic of the primary users.

8.5 Paper E

W. Saad, Z. Han, T. Başar, M. Debbah and A. Hjørungnes, “Hedonic Coali-
tion Formation for Distributed Task Allocation among Wireless Agents,”
conditionally accepted for publication in IEEE Transactions on Mobile Com-

puting (subject to reviewers’ and editor’s final approval of the revised man-
uscript submitted 03-02-2010).

In Paper E, we introduce a new model for deploying wireless agents in
next generation networks. A “wireless agent” represents any node that
can operate autonomously and can perform wireless transmission. Ex-
amples of wireless agents are unmanned aerial vehicles, mobile base sta-
tions, cognitive wireless devices, or self-deploying mobile relay stations,
among others. Although the concept of agents has been ubiquitous in the
context of software engineering, computer science, robotics or military ap-
plications, this paper attempts to study the use of agents within wireless
networks. In this regards, we study the problem of spatial arrangement of
wireless agents that need to service arbitrarily located tasks in a wireless
communication network. The tasks are queues of packets generated by
some source of data. These tasks can represent, for example, a group of
mobile devices, such as sensors, video surveillance devices, or any other
static or dynamic wireless nodes that have limited power and are unable
to provide long-distance transmission These packets are collected by the
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agents and transmitted through a wireless channel to a central receiver.
While servicing tasks, an agent can act as either a collector that extracts
the data, and, thus, improves the throughput, or as a relay, that allows to
improve the probability of successful transmission. Each agent and task
receives a payoff which depends on the tradeoff between the net through-
put and delay in transmitting the packets. The ultimate goal is to obtain
spatial organization of agents corresponding to any given arrangement of
tasks that can improve the average player (agent or task) payoff.

To address the above objective, we model the problem as a hedonic
coalition formation game and we propose a distributed algorithm for form-
ing coalitions. A hedonic coalition formation game is a coalition formation
game where the payoff of a player depends solely on the members of its
coalition and the coalitions are built using preference relations. The pro-
posed algorithm leads to the formation of disjoint coalitions of players. In
each coalition, the tasks belonging to that coalition are served in a cyclic
order by the agents in the same coalition. For instance, each coalition
is shown to be a polling system with an exhaustive polling strategy and
deterministic non-zero switchover times (corresponding to the travel times
of the agents) consisting of a number of collectors which act as a sin-
gle server that moves continuously between the different tasks (queues)
present in the coalition, gathering and transmitting the collected packets
to a common receiver. We show that the set of coalitions resulting from the
proposed algorithm form a Nash-stable coalitional structure. Further, we
show that, for each coalition, a minimum number of collectors is needed.

The performance and characteristics of the proposed algorithm are
analyzed through simulations. First, the simulations highlight how the
agents and tasks can engage in the proposed algorithm for forming the
network structure. In addition, we show how this structure can evolve over
time when the environment is dynamic due to the arrival of new tasks, the
removal of existing tasks, or the mobility of the tasks. Simulation results
show that the proposed algorithm yields a performance improvement, in
terms of average player (agent or task) payoff, of at least 30.26% (for a net-
work of 5 agents with up to 25 tasks) relatively to a scheme that allocates
nearby tasks equally among the agents.

In a nutshell, by combining concepts from wireless networks, queue-
ing theory and novel concepts from coalitional game theory, this paper
introduces a new model for task allocation among autonomous agents in
communication networks which is well suited for many practical applica-
tions such as data collection, video surveillance in wireless networks, data
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transmission, autonomous relaying, operation of mobile base stations in
vehicular ad hoc networks and mobile ad hoc networks (the so called mes-

sage ferry operation), surveillance, autonomous deployment of unmanned
air vehicles in military ad hoc networks, wireless monitoring of randomly
located sites, or maintenance of failures in next generation wireless net-
works.

8.6 Paper F

W. Saad, Z. Han, T. Başar, M. Debbah and A. Hjørungnes, “Distributed
Coalition Formation Games for Secure Wireless Transmission," submitted
to ACM/Springer Journal on Mobile Networks and Applications, October
2009.

In this paper, we study network aspects of cooperation among wireless
devices seeking to improve their physical layer security, in the presence
of multiple eavesdroppers. While existing physical layer security literature
answered the question “what are the link-level secrecy rate gains from co-
operation?”, this paper seeks to answer the question of “how to achieve
those gains in a practical decentralized wireless network and in the pres-
ence of a cost for information exchange?”. Note that the results derived in
this paper build upon a preliminary version found in [145].

In this regards, given a TDMA network where a number of users are
transmitting their data in the uplink with the presence of eavesdroppers,
we study how the users can adopt decode-and-forward or amplify-and-
forward cooperation strategies, in order to improve their secrecy rate. The
problem is formulated as a non-transferable utility coalition formation
games where the players are the users and the payoff of each player is a
function of the cooperation gains, in terms of secrecy rate that this player
achieves, as well as the costs, in terms of secrecy rate losses during in-
formation exchange. For forming coalitions, we devise a distributed algo-
rithm, based on the rules of merge and split, that allows the users to form
or break coalitions, depending on the achieved payoff and the consent of
their cooperative partners. We show that, due to the cooperation costs, a
number of disjoint coalitions will emerge in the network. We highlight the
stability of the resulting coalitional structure using the defection function
concept.

Simulation results show that, when adopting amplify-and-forward stra-
tegies, only users with highly favorable conditions can cooperate, and,
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thus few coalitions appear in the network. This is mainly due to the
fact that the amplification of the noise resulting from beamforming using
amplify-and-forward relaying hinders the gains from cooperation relative
to the secrecy cost during the information exchange phase. As a result,
amplify-and-forward cooperation has an average performance comparable
to the non-cooperative case. In contrast, simulation results show that, by
coalition formation using decode-and-forward, the average secrecy rate per
user is increased of up to 25.3% and 24.4% relative to the non-cooperative
and amplify-and-forward cases, respectively. Finally, the results briefly
discuss how the users can self-organize and adapt the topology to mobil-
ity.

8.7 Paper G

W. Saad, Z. Han, T. Başar, M. Debbah, and A. Hjørungnes, “Network
Formation Games among the Relay Stations in Next Generation Wireless
Networks,” submitted to IEEE Transactions on Communications, January
2010.

This paper studies the problem of building the network tree structure that
connects a base station to the relay stations in its coverage area in next
generation wireless networks such as LTE-Advanced or WiMAX 802.16j.
In this context, given a number of relay stations that need to transmit,
through multi-hop communications to a base station, the data they re-
ceive from external mobile stations, we study how the relay stations can
interact to select their next hop to eventually form the network’s uplink
tree structure. In this model, the mobile stations, considered as external
data sources (queues with Poisson arrivals), connect to a serving relay sta-
tion and deposit their packets. Subsequently, the relay stations transmit
the data to the base station using cooperative transmission through the
multi-hop decode-and-forward relaying channel considered in [132]. As a
result, from the perspective of each relay station, there exists a tradeoff be-
tween the bit error rate reduction resulting from cooperative transmission
as well as the delay incurred by multi-hop transmission.

Consequently, we formulate a network formation game among the re-
lay stations where each relay station aims to optimize a cross-layer utility
function that captures the gains from cooperative transmission, in terms
of a reduced bit error rate and improved effective throughput, as well as
the costs incurred by multi-hop transmission in terms of delay. The pro-
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posed utility is based on the queueing concept of power, which is a suited
metric for evaluating the tradeoff between throughput and delay.

For building the tree structure, we propose a myopic best response-
based network formation algorithm using which the relay stations engage
in pairwise negotiations for selecting their next hop. In this algorithm, an
given relay station i suggests to form a link with another relay station j,
and, subsequently, relay station j has the opportunity to either accept or
reject the offer. As a result of this pairwise negotiation process, each relay
station ultimately selects the feasible strategy (i.e., strategy accepted by
both initiating and accepting relay stations) that maximizes its utility. We
show that, through the proposed algorithm, the relay stations are able to
self-organize into a Nash network tree structure rooted at the serving base
station. Moreover, we demonstrate how, by periodic runs of the algorithm,
the relay stations can take autonomous decisions to adapt the network
structure to environmental changes such as incoming traffic due to new
mobile stations being deployed as well as mobility.

Through simulations, we show that the proposed network formation al-
gorithm leads to a performance gain, in terms of average utility per mobile
station, of at least 21.5% compared to the case of direct transmission with
no relay station and up to 45.6% compared to a nearest neighbor algorithm.

Note that, base on this work, in [88, 144], we studied, respectively, the
tree formation in an 802.16j network as well as for networks with Voice
over IP services.

9 Summary of the Main Contributions of the Disser-

tation

The main contributions of this dissertation can be summarized as follows:

• Provided a novel classification of coalitional game theory suited for
wireless and communications networks.

• Proposed a unified reference on coalitional game theory suited for
engineering applications.

• Explored and analyzed the potential of applying coalitional game the-
ory in a wide range of disciplines such as virtual MIMO, cognitive ra-
dio networks, physical layer security, autonomous agents, and multi-
hop networks.
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• Proposed and analyzed a coalitional game based model for distributed
virtual MIMO formation which accounts for the tradeoff between the
gains of cooperation, in terms of improved sum-rate, and the costs in
terms of power for information exchange.

• Proposed and analyzed a distributed algorithm, based on coalition
formation games, for virtual MIMO formation through cooperation
among a number of single antenna transmitters in the uplink of a
wireless network.

• Proposed and analyzed a novel coalition formation game model for
distributed collaborative spectrum sensing among the secondary us-
ers in a cognitive radio network that captures the tradeoff between
the cooperation improvement, in terms of reduced probability of miss
and the costs in terms of an increased false alarm probability.

• Devised an algorithm for distributed coalition formation for improv-
ing the spectrum sensing performance of the secondary users in a
cognitive radio network

• Proposed a cooperation model, using coalitional games in partition
form, that allows the secondary users of a multi-channel cognitive
network to share their sensing results and jointly optimize their spec-
trum sensing and spectrum access performance.

• Proposed and analyzed an algorithm, based on coalition formation
games in partition form, that allows the secondary users in a multi-
channel cognitive network to reduce their sensing time, learn from
their cooperating partners the existence of alternative channels with
better conditions, reduce the interference among each other, and ex-
ploit multiple channels simultaneously.

• Introduced a novel model for deployment of autonomous agents in
wireless and communication networks that combines concepts from
coalitional game theory, queueing theory, polling systems, and wire-
less networks.

• Proposed and analyzed a coalition formation algorithm, based on he-
donic coalitional games, that enables a number of wireless agents
to autonomously self-organize and distribute a number of arbitrarily
located tasks among each others.
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• Proposed and analyzed a cooperation model, based on coalitional
game theory with non-transferable utility, that improves the security
of wireless transmission in the presence of eavesdroppers.

• Proposed and analyzed a distributed algorithm, using coalition for-
mation games, that allows the wireless users to cooperate while im-
proving their secrecy rate, given the costs in terms of secrecy rate
loss for information exchange prior to cooperation.

• Proposed and analyzed a network formation games model for building
the uplink tree structure connecting the relay station nodes and their
serving base station in next generation wireless networks such as
LTE-Advanced or WiMAX 802.16j.

• Proposed and analyzed a distributed myopic network formation al-
gorithm that allows the relay station to form the network structure
among each others while maximizing cross-layer utility function that
captures the gains from multi-hop cooperative transmission, in terms
of reduced bit error rate, and the costs, in terms of delay incurred by
multi-hop communication.

• For all algorithms, studied how coalition formation, through periodic
decisions, allows to adapt the users’ cooperative strategies to environ-
mental changes such as slow mobility, arrival or departure of nodes,
among others.

• For all approaches, analyzed and studied the properties, character-
istics, and stability of the resulting network structures through ade-
quate concepts from game theory.

• For all models and algorithms, performed extensive simulations that
highlighted the key aspects of the proposed models as well as the
performance and characteristics of the devised coalition formation or
network formation algorithms.

10 Suggestions for Future Research and Extensions

In this section, we discuss potential future directions for the different ap-
proaches proposed in this dissertation.

First, for virtual MIMO formation, while this dissertation focused mainly
on the uplink case and the transmitters cooperation, two important future
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extensions are: (i)- Studying the possibility of joint transmitters and re-
ceivers cooperation, in the presence of gains and costs for cooperation, and
(ii)- Proposing coalition formation models for cooperation in the downlink
of wireless networks (e.g., using dirty paper coding for example, or other
techniques). Further, while this dissertation investigated virtual MIMO
coalition formation in a multiple access TDMA channel, another important
future extension of this work is to consider the transmitters cooperation in
an interference channel. The main challenge in such an extension lies in
the need for the framework of coalitional game theory in partition form for
modeling the problem, due to the dependence of any defined utility on the
external structure of the users (due to the dependence of the interference
on the formed coalitions in that case).

For collaborative spectrum sensing, in this dissertation, it was as-
sumed that all the secondary users are trusted users. One important
future direction is to consider the case of coalition formation in the pres-
ence of malicious nodes. The presence of malicious nodes would strongly
impact the cooperative strategies of the cognitive users, as they would be
required to learn the trust value of each user prior to making a decision on
whether to cooperate or not. In this regards, it would be of interest, in such
a scenario, to combine the proposed coalition formation algorithm with a
learning algorithm that can help in identifying malicious nodes. Further
extensions of distributed collaborative spectrum sensing include studying
these approaches between secondary base stations, as well as combining
collaborative spectrum sensing through coalition formation with advanced
signal processing techniques such as transmit beamforming or interfer-
ence cancelation.

Further, in this dissertation, we proposed a coalitional game model in
partition form for joint spectrum sensing and access. In the proposed
model, for avoiding interference and distributing power over their seized
channels, the secondary users employ a heuristic sorting algorithm and
a basic social welfare maximizing optimization problem, respectively. For
future work, it is of interest to study: (i)- an optimal sorting algorithm for
interference avoidance within each coalition, and (ii)- advanced techniques
for power allocation through concepts such as non-cooperative Nash game
or Nash bargaining. Further, this dissertation did not consider the pos-
sibility of sensing errors, i.e., false alarm or probability of miss, in this
model. For the future, it is of interest to modify the utility in order to
account for the sensing errors. In addition, it would important to com-
bine this work with distributed collaborative spectrum sensing, in order to
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further improve the sensing performance of the cognitive users.

For the deployment of wireless agents in communication networks,
this dissertation introduced a generic model for task allocation among the
agents. An important future direction for this work is to consider specific
applications for the model, such as in ferry message passing applications,
sensor networks, video surveillance, or next generation wireless systems.
Further, in this dissertation, each coalition was modeled using basic con-
cepts from polling systems. As polling systems are receiving more and
more attention recently, it is of interest to improve the proposed utility and
model by using advanced queueing techniques from polling systems. An-
other extension for this work is to consider advanced relaying techniques,
e.g., cooperative transmission, for transmitting the data from the queue
(tasks) to the central receiver.

In this dissertation, we considered a cooperation model for improving
the physical layer security of the users which assumes that the users are
aware of the locations/channels of the eavesdroppers. A very important fu-
ture extension is to consider that the users are unaware of the eavesdrop-
pers’ location and are required to estimate these locations. For doing so,
one direction is to combined some concepts from Bayesian learning with
the proposed coalition formation algorithm. Further, in this dissertation,
it was assumed that the eavesdroppers are always non-cooperative. How-
ever, similar to the users, the eavesdroppers can also engage in coalition
formation, and collude to reduce the secrecy rate of the users and improve
the damage that they incur on these users. Thus, as a future direction,
it is of interest to: (i)- propose cooperative models among the eavesdrop-
pers, and (ii)- propose coalition formation models that occur jointly at the
users and eavesdroppers side. Finally, beyond transmit beamforming and
relaying, other cooperative protocols can be accommodated for improving
the secrecy rates of the users in a wireless network in the presence of
eavesdroppers.

For multi-hop networks, this dissertation proposed a network forma-
tion game formulation that allows the relay stations to communicate with
their serving base station using cooperative transmission while taking into
account the delay incurred by multi-hop transmission. The proposed
scheme considered myopic approaches for network formation where the
relay stations seek to optimize their short-term performance without ac-
counting for future evolution of the network. One important future ex-
tension in this regards is to consider far sighted network formation al-
gorithms for uplink tree formation. Moreover, in this work, the mobile
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stations were considered as external entities and their choice of relay sta-
tions was considered as fixed (each mobile selects the relay station that
maximizes its utility). For future work, it would be interesting to consider
two jointly related games consisting of the mobile station assignment game
and the network formation game among the relay stations. One approach
to solve such a model can be sought in the framework of multi-leader
multi-follower Stackleberg games where the leaders would be the mobile
stations and the followers would be the relay stations. Furthermore, in
game theory literature related to network formation games, there has been
a recent interest in studying stability notions such as pairwise stability or
strong stability. For this purpose, a future extension of this contribution
in network formation games is to propose algorithm that can yield pairwise
stable or strongly stable structures, which can be deemed more suitable
than the Nash networks sought in this dissertation. Additional extensions
of this work can also include considering jointly the uplink and downlink
tree structures as well as allowing the relay stations to use mixed strate-
gies.

Moreover, while this dissertation mainly focused on theoretical and al-
gorithmic approaches to coalition formation, corroborated by analytical
and numerical simulation results, an important and interesting future ex-
tension is to consider practical aspects of deploying these algorithms in
real-life wireless networks. For doing so, the use of test beds or advanced
simulators would be needed. Finally, beyond the applications of coali-
tional game theory presented in this dissertation, the framework can also
be explored in numerous potential future applications such as vehicular
networks, wireless sensor networks, advanced cognitive networks, social
networks, peer-to-peer networks, queueing systems, and many others.
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• W. Saad, Z. Han, T. Başar, M. Debbah, and A. Hjørungnes, “Coali-
tional Games for Distributed Eavesdroppers Cooperation in Wireless
Networks,” in Proceedings of the 3rd International Workshop on Game

Theory in Communication Networks (Gamecomm), Pisa, Italy, October,
2009.

• W. Saad, A. Hjørungnes, Z. Han, and T. Başar, “Network Formation
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Based Self-Organizing Uplink Tree for VoIP Services in IEEE 802.16j
Networks,” in Proceedings of the IEEE International Conference on

Communications (ICC), Wireless Networking Symposium, Dresden, Ger-
many , June 2009.

• W. Saad, Z. Han, M. Debbah, and A. Hjørungnes, “Network Forma-
tion Games for Distributed Uplink Tree Construction in IEEE 802.16j
Networks,” in Proceedings of the IEEE Global Communications Con-

ference (GLOBECOM), Wireless Networking Symposium, New Orleans,
USA, December 2008.

• W. Saad, Z. Han, M. Debbah, and A. Hjørungnes, “A Distributed
Merge and Split Algorithm for Fair Cooperation in Wireless Networks,”
in Proceedings of the IEEE International Conference on Communica-

tions (ICC), Workshop on Cooperative Communications and Network-

ing, Beijing, China, May 2008.

71





References

[1] E. van der Meulen, “Three-terminal communication channel,” Adv.

Appl. Prob., vol. 3, pp. 120–154, May 1971.

[2] T. Cover and A. Gamal, “Capacity theorems for the relay channel,”
IEEE Trans. Info. Theory, vol. 25, pp. 572–584, Sep. 1979.

[3] A. Nosratinia, T. Hunter, and A. Hedayat, “Cooperative communica-
tion in wireless networks,” IEEE Commun. Mag., vol. 42, no. 10, pp.
74 – 80, Oct. 2004.

[4] C. Ng and A. Goldsmith, “Transmitter cooperation in ad-hoc wire-
less networks: Does dirty-paper coding beat relaying?” in IEEE Int.

Symposium for Information Theory, Chicago, IL, USA, June 2004.

[5] M. Jindal, U. Mitra, and A. Goldsmith, “Capacity of ad-hoc networks
with node cooperation,” in Proc. Int. Symp. on Information Theory,
Chicago, IL, USA, June 2004, p. 271.

[6] A. Coso, S. Savazzi, U. Spagnolini, and C. Ibars, “Virtual MIMO
channels in cooperative multi-hop wireless sensor networks,” in
Proc. Conf. on Information Sciences and Systems, New Jersey, NY,
USA, Mar. 2006, pp. 75–80.

[7] P. L. Z. Tao and S. Panwar, “A cooperative MAC protocol for wireless
local area networks,” in Proc. Int. Conf. on Communications, Seoul,
South Korea, May 2005.

[8] P. Liu, Z. Tao, S. Narayan, T. Korakis, and S. Panwar, “CoopMAC: A
cooperative MAC for wireless LANs,” IEEE J. Select. Areas Commun.,
vol. 25, no. 2, pp. 340–354, Feb. 2007.

[9] Z. Han and V. Poor, “Coalition games with cooperative transmission:
A. cure for the curse of boundary nodes in selfish packet-forwarding

73



Introduction

wireless networks,” IEEE Trans. Comm., vol. 57, pp. 203–213, Jan.
2009.

[10] 3GPP TR 36. 814 Technical Specification Group Radio Access Net-
work, “Further advancements for E-UTRA, physical layer aspects,”
Tech. Rep.

[11] The Relay Task Group of IEEE 802.16, “The p802.16j baseline doc-
ument for draft standard for local and metropolitan area networks,”
802.16j-06/026r4, Tech. Rep., June 2007.

[12] R. B. Myerson, Game Theory, Analysis of Conflict. Cambridge, MA,
USA: Harvard University Press, Sept. 1991.

[13] A. MacKenzie, L. DaSilva, and W. Tranter, Game Theory for Wireless

Engineers. Morgan and Claypool Publishers, Mar. 2006.

[14] M. Debbah, “Mobile flexible networks: The challenges ahead,” in
Proc. International Conference on Advanced Technologies for Commu-

nications, Hanoi, Vietnam, Oct. 2008, pp. 3–7.
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control and channel allocation in cognitive radio networks,” in Proc.

ICST/ACM Gamecomm Workshop, Nantes, France, Oct. 2007.

[72] D. I. Kim, L. B. Le, and E. Hossain, “Joint rate and power allocation
for cognitive radios in dynamic spectrum access environment,” IEEE

Trans. Wireless Commun., vol. 7, no. 12, Dec. 2008.

[73] L. B. Le and E. Hossain, “OSA-MAC: a multi-channel MAC proto-
col for opportunistic spectrum access in cognitive radio networks,”
in Proc. IEEE Wireless Communications and Networking Conf., Las
Vegas, USA, Apr. 2008.

[74] C. Huang, Y. Lai, and K. Chen, “Network capacity of cognitive radio
relay network,” Elsevier Physical Communication, vol. 1, no. 2, pp.
112–120, June 2008.

79



Introduction

[75] J. Jia, Q. Zhang, and X. Shen, “HC-MAC: A hardware-constrained
cognitive MAC for efficient spectrum management,” IEEE J. Select.

Areas Commun., vol. 26, no. 1, pp. 106–117, Jan. 2008.

[76] H. Kim and K. Shin, “Efficient discovery of spectrum opportunities
with MAC-layer sensing in cognitive radio networks,” vol. 7, no. 5,
pp. 533–545, May 2008.

[77] L. Lai, H. E. Gamal, H. Jiang, and H. V. Poor, “Optimal medium ac-
cess protocols for cognitive radio networks,” in Proc. 6th Int. Symp.

on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Net-

works (WiOpt), Berlin, Germany, Apr. 2008, pp. 328–334.

[78] M. Wooldridge, An introduction to multiagent systems, 2nd edition.
Hoboken, NJ, USA: Wiley, July 2009.

[79] J. Enright, K. Savla, and E. Frazzoli, “Coverage control for nonholo-
nomic agents,” in Proc. IEEE Conf. on Decision and Control, Cancun,
Mexico, Dec. 2008.

[80] A. Arsie, K. Savla, and E. Frazzoli, “Efficient routing algorithms for
multiple vehicles with no explicit communications,” IEEE Trans. on

Automatic Control, vol. 54, no. 10, pp. 2302–2317, Oct. 2009.

[81] O. Shehory and S. Kraus, “Task allocation via coalition formation
among autonomous agents,” in Proc. of the Fourteenth International

Joint Conference on Artificial Intelligence, Aug. 1995, pp. 655–661.

[82] ——, “Methods for task allocation via agent coalition formation,” Ar-

tifical Intelligence Journal, vol. 101, no. 1, pp. 165–200, May 1998.

[83] B. Gerkey and M. J. Mataric, “A formal framework for the study
of task allocation in multi-robot systems,” International Journal of

Robotics Research, vol. 23, no. 9, pp. 939–954, Sept. 2004.

[84] M. Alighanbari and J. How, “Robust decentralized task assignment
for cooperative UAVs,” in Proc. of AIAA Guidance, Navigation, and

Control Conference, Colorado, USA, Aug. 2006.

[85] D. M. Stipanovic, P. F. Hokayem, M. W. Spong, and D. D. Siljak, “Co-
operative avoidance control for multi-agent systems,” ASME Journal

of Dynamic Systems, Measurement, and Control, vol. 129, no. 5, pp.
699–706, Sept. 2007.

80



REFERENCES

[86] J. Yang and Z. Luo, “Coalition formation mechanism in multi-
agent systems based on genetic algorithms,” Applied Soft Computing,
vol. 7, no. 2, pp. 561–568, Mar. 2007.

[87] Q. Chen, M. Hsu, U. Dayal, and M. Griss, “Multi-agent cooperation,
dynamic workflow and XML for e-commerce automation,” in Proc.

Int. Conf. on Autonomous agents, Catalonia, Spain, June 2000.

[88] W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and T. Başar, “A game-
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Abstract

Game theoretical techniques have recently become prevalent in many en-
gineering applications, notably in communications. With the emergence
of cooperation as a new communication paradigm, and the need for self-
organizing, decentralized, and autonomic networks, it has become impera-
tive to seek suitable game theoretical tools that allow to analyze and study
the behavior and interactions of the nodes in future communication net-
works. In this context, this tutorial introduces the concepts of cooperative
game theory, namely coalitional games, and their potential applications in
communication and wireless networks. For this purpose, we classify coali-
tional games into three categories: Canonical coalitional games, coalition
formation games, and coalitional graph games. This new classification
represents an application-oriented approach for understanding and ana-
lyzing coalitional games. For each class of coalitional games, we present
the fundamental components, introduce the key properties, mathemati-
cal techniques, and solution concepts, and describe the methodologies for
applying these games in several applications drawn from the state-of-the-
art research in communications. In a nutshell, this article constitutes a
unified treatment of coalitional game theory tailored to the demands of
communications and network engineers.
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Introduction and motivation

1 Introduction and motivation

Game theory provides a formal analytical framework with a set of math-
ematical tools to study the complex interactions among rational players.
Throughout the past decades, game theory has made revolutionary impact
on a large number of disciplines ranging from engineering, economics, po-
litical science, philosophy, or even psychology [1]. In recent years, there
has been a significant growth in research activities that use game the-
ory for analyzing communication networks. This is mainly due to: (i)- The
need for developing autonomous, distributed, and flexible mobile networks
where the network devices can make independent and rational strategic
decisions; and (ii)- the need for low complexity distributed algorithms that
can efficiently represent competitive or collaborative scenarios between
network entities.

In general, game theory can be divided into two branches: non-cooperative
[2] and cooperative game theory [1, 3]. Non-cooperative game theory stud-
ies the strategic choices resulting from the interactions among competing

players, where each player chooses its strategy independently for improv-
ing its own performance (utility) or reducing its losses (costs). For solving
non-cooperative games, several concepts exist such as the celebrated Nash
equilibrium [2]. The mainstream of existing research in communication
networks focused on using non-cooperative games in various applications
such as distributed resource allocation [4], congestion control [5], power
control [6], and spectrum sharing in cognitive radio, among others. This
need for non-cooperative games led to numerous tutorials and books out-
lining its concepts and usage in communication, e.g., [7], [8].

While non-cooperative game theory studies competitive scenarios, co-

operative game theory provides analytical tools to study the behavior of
rational players when they cooperate. The main branch of cooperative
games describes the formation of cooperating groups of players, referred
to as coalitions [1], that can strengthen the players’ positions in a game.
In this tutorial, we restrict our attention to coalitional game theory albeit
some other references can include other types of games, such as bargain-
ing, under the umbrella of cooperative games. Coalitional games have also
been widely explored in different disciplines such as economics or political
science. Recently, cooperation has emerged as a new networking paradigm
that has a dramatic effect of improving the performance from the physical
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Fig. A.1: A novel classification of coalitional games.

layer [9], [10] up to the networking layers [4]. However, implementing co-
operation in large scale communication networks faces several challenges
such as adequate modeling, efficiency, complexity, and fairness, among
others. Coalitional games prove to be a very powerful tool for designing
fair, robust, practical, and efficient cooperation strategies in communica-
tion networks. Most of the current research in the field is restricted to
applying standard coalitional game models and techniques to study very
limited aspects of cooperation in networks. This is mainly due to the spar-
sity of the literature that tackles coalitional games. In fact, most pioneer-
ing game theoretical references, such as [1–3], focus on non-cooperative
games; touching slightly on coalitional games within a few chapters.

In this article, we aim to provide a unified treatment of coalitional game
theory oriented towards engineering applications. Thus, the goal is to
gather the state-of-the-art research contributions, from game theory and
communications, that address the major opportunities and challenges in
applying coalitional games to the understanding and designing of modern
communication systems, with emphasis on both new analytical techniques
and novel application scenarios. With the incessant growth in research re-
volving around cooperation, self-organization and fairness in communica-
tion networks, this tutorial constitutes a comprehensive guide that enables
to fully exploit the potential of coalitional game theory. The tutorial starts
by laying out the main components of coalitional games in Section 2 while
in the following sections it zooms in on an in-depth study of these games
and their applications. Since the literature on coalitional games and their
communication applications is sparse, we introduce a novel classification
of coalitional games which allows grouping of various types of games under
one class based on several game properties. Hence, we group coalitional
games into three distinct classes:
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1. Class I: Canonical (coalitional) games11

2. Class II: Coalition formation games
3. Class III: Coalitional graph games

This novel classification is intended to provide an application-oriented
approach to coalitional games. The key features of these classes are sum-
marized in Fig. A.1 and an in-depth study of each class is provided in
Sections 3, 4, and 5.

2 Coalitional Game Theory: Preliminaries

In essence, coalitional games involve a set of players, denoted by N =

{1, . . . , N} who seek to form cooperative groups, i.e., coalitions, in order to
strengthen their positions in the game. Any coalition S ⊆ N represents an
agreement between the players in S to act as a single entity. The formation
of coalitions or alliances is ubiquitous in many applications. For example,
in political games, parties, or individuals can form coalitions for improving
their voting power. In addition to the player set N , the second fundamental
concept of a coalitional game is the coalition value. Mainly, the coalition
value, denoted by v, quantifies the worth of a coalition in a game. The
definition of the coalition value determines the form and type of the game.
Nonetheless, independent of the definition of the value, a coalitional game
is uniquely defined by the pair (N , v). It must be noted that the value v

is, in many instances, referred to as the game, since for every v a different
game may be defined.

The most common form of a coalitional game is the characteristic form,
whereby the value of a coalition S depends solely on the members of that
coalition, with no dependence on how the players in N \ S are structured.
The characteristic form was introduced, along with a category of coalitional
games known as games with transferable utility (TU), by Von Neuman and
Morgenstern [11]. The value of a game in characteristic form with TU is a
function over the real line defined as v : 2N → R (characteristic function).
This characteristic function associates with every coalition S ⊆ N a real
number quantifying the gains of S. The TU property implies that the to-
tal utility represented by this real number can be divided in any manner
between the coalition members. The values in TU games are thought of
as monetary values that the members in a coalition can distribute among
themselves using an appropriate fairness rule (one such rule being an

11We will use the terminologies “canonical coalitional games” and “canonical games” in-
terchangeably throughout this tutorial.
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equal distribution of the utility). The amount of utility that a player i ∈ S

receives from the division of v(S) constitutes the player’s payoff and is de-
noted by xi hereafter. The vector x ∈ R|S| (| · | represents the cardinality of
a set) with each element xi being the payoff of player i ∈ S constitutes a
payoff allocation (alternatively one can use the notation RS for represent-
ing the set of all real valued functions over the set S, i.e., the set of payoff
vectors achievable by the players in S). Although the TU characteristic
function can model a broad range of games, many scenarios exist where
the coalition value cannot be assigned a single real number, or rigid re-
strictions exist on the distribution of the utility. These games are known
as coalitional games with non-transferable utility (NTU) and were first intro-
duced by Aumann and Peleg using non-cooperative strategic games as a
basis [1, 12]. In an NTU game, the payoff that each player in a coalition
S receives is dependent on the joint actions that the players of coalition S

select12. The value of a coalition S in an NTU game, v(S), is no longer a
function over the real line, but a set of payoff vectors, v(S) ⊆ R|S|, where
each element xi of a vector x ∈ v(S) represents a payoff that player i ∈ S

can obtain within coalition S given a certain strategy selected by i while
being a member of S. Given this definition, a TU game can be seen as a
particular case of the NTU framework [1]. Coalitional games in character-
istic form with TU or NTU constitute one of the most important types of
games, and their solutions are explored in detail in the following sections.

Recently, there has been an increasing interest in coalitional games
where the value of a coalition depends on the partition of N that is in place
at any time during the game. In such games, unlike the characteristic
form, the value of a coalition S will have a strong dependence on how the
players in N \ S are structured. For this purpose, Thrall and Lucas [13]
introduced the concept of games in partition form. In these games, given
a coalitional structure B, defined as a partition of N , i.e., a collection of
coalitions B = {B1, . . . , Bl}, such that ∀ i �= j, Bi ∩ Bj = ∅, and ∪l

i=1Bi = N ,
the value of a coalition S ∈ B is defined as v(S,B). This definition imposes
a dependence on the coalitional structure when evaluating the value of
S. Coalitional games in partition form are inherently complex to solve;
however, the potential of these games is interesting and, thus, we will
provide insights on these games in the following sections.

As an example on the difference between characteristic and partition
forms, consider a 5-players game with N = {1, 2, 3, 4, 5} and let S1 = {1, 2, 3},

12The action space depends on the underlying non-cooperative game (see [12] for exam-
ples).
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Fig. A.2: (a) Coalitional games in characteristic form vs. partition form.
(b) Example of a coalitional game in graph form.

S2 = {4}, S3 = {5}, and S4 = {4, 5}. Given two partitions B1 = {S1, S2, S3} and
B2 = {S1, S4} of N , evaluating the value of coalition S1 depends on the form
of the game. If the game is in characteristic form, then v(S1,B1) = v(S1,B2) =

v(S1) while in partition form v(S1,B1) �= v(S1,B2) (the value here can be
either TU or NTU). The basic difference is that, unlike the characteristic
form, the value of S1 in partition form depends on whether players 4 and 5

cooperate or not. This is illustrated in Fig. A.2 (a).
In many coalitional games, the players are interconnected and com-

municate through pairwise links in a graph. In such scenarios, both the
characteristic form and the partition form may be unsuitable since, in
both forms, the value of a coalition S is independent of how the members
of S are connected. For modeling the interconnection graphs, coalitional
games in graph form were introduced by Myerson in [14] where connected

graphs were mapped into coalitions. This work was generalized in [15] by
making the value of each coalition S ⊆ N a function of the graph structure
connecting the members of S. Hence, given a coalitional game (N , v) and
a graph GS (directed or undirected) with vertices the members of a coali-
tion S ⊆ N , the value of S in graph form is given by v(GS). For games in
graph form, the value can also depend on the graph GN\S interconnecting
the players in N \ S. An example of a coalitional game in graph form is
given in Fig. A.2 (b). In this figure, given two graphs G1

S = {(1, 2), (2, 3)}
and G2

S = {(1, 2), (1, 3)} (a pair (i, j) is a link between two players i and j)
defined over coalition S = {1, 2, 3}, a coalitional game in graph form could
assign a different value for coalition S depending on the graph13. Hence,
in graph form, it is possible that v(G1

S) �= v(G2
S), while in characteristic or

13In this example we considered an undirected graph and a single link between every
pair of nodes. However, multiple links between pairs of nodes as well as directed graphs
can also be considered within the graph form of coalitional games.
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partition form, the presence of the graph does not affect the value. Having
introduced the fundamental concepts for coalitional games, the rest of this
tutorial provides an in-depth analysis of each class of games.

3 Class I: Canonical Coalitional Games

3.1 Main Properties of Canonical Coalitional Games

Under the class of canonical coalitional games, we group the most popular
category of games in coalitional game theory. Hence, this class pertains to
the coalitional games tools that have been widely understood, thoroughly
formalized, and have clear solution concepts. For classifying a game as
canonical, the main requirements are as follows:

1. The coalitional game is in characteristic form (TU or NTU).

2. Cooperation, i.e., the formation of large coalitions, is never detrimen-
tal to any of the involved players. Hence, in canonical games no group
of players can do worse by cooperating, i.e., by joining a coalition,
than by acting non-cooperatively. This pertains to the mathematical
property of superadditivity.

3. The main objectives of a canonical game are: (i)- To study the prop-
erties and stability of the grand coalition, i.e., the coalition of all the
players in the game, and (ii)- to study the gains resulting from coop-
eration with negligible or no cost, as well as the distribution of these
gains in a fair manner to the players.

The first two conditions for classifying a game as canonical pertain to
the mathematical properties of the game. First, any canonical game must
be in characteristic form. Second, the canonical game must be superaddi-
tive, which is defined as

v(S1 ∪ S2) ⊃ {x ∈ R|S1∪S2||(xi)i∈S1 ∈ v(S1), (xj)j∈S2 ∈ v(S2)}
∀S1 ⊂ N , S2 ⊂ N , s.t. S1 ∩ S2 = ∅, (A.1)

where x is a payoff allocation for coalition S1 ∪ S2. Superadditivity implies
that, given any two disjoint coalitions S1 and S2, if coalition S1 ∪ S2 forms,
then it can give its members any allocations they can achieve when acting
in S1 and S2 separately. The definition in (A.1) is used in an NTU case. For
a TU game, superadditivity reduces to [1]

v(S1 ∪ S2) ≥ v(S1) + v(S2) ∀S1 ⊂ N , S2 ⊂ N , s.t. S1 ∩ S2 = ∅. (A.2)
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From (A.2), the concept of a superadditive game is better grasped. Sim-
ply, a game is superadditive if cooperation, i.e., the formation of a large
coalition out of disjoint coalitions, guarantees at least the value that is
obtained by the disjoint coalitions separately. The rationale behind super-
additivity is that, within a coalition, the players can always revert back
to their non-cooperative behavior to obtain their non-cooperative payoffs.
Thus, in a superadditive game, cooperation is always beneficial. Due to
superadditvity in canonical games, it is to the joint benefit of the players
to always form the grand coalition N , i.e, the coalition of all the players,
since the payoff received from v(N ) is at least as large as the amount re-
ceived by the players in any disjoint set of coalitions they could form. The
formation of the grand coalition in canonical games implies that the main
emphasis is on studying the properties of this grand coalition. Two key
aspects are of importance in canonical games: (i)- Finding a payoff alloca-
tion which guarantees that no group of players have an incentive to leave
the grand coalition (having a stable grand coalition), and (ii)- assessing
the gains that the grand coalition can achieve as well as the fairness cri-
teria that must be used for distributing these gains (having a fair grand
coalition). For solving canonical coalitional games, the literature presents
a number of concepts [1, 3] that we will explore in detail in the following
sections.

3.2 The Core as a Solution for Canonical Coalitional Games

3.2.1 Definition

The most renowned solution concept for coalitional games, and for games
classified as canonical in particular, is the core [1, 3]. The core of a canoni-
cal game is directly related to the grand coalition’s stability. In a canonical
coalitional game (N , v), due to superadditvity, the players have an incen-
tive to form the grand coalition N . Thus, the core of a canonical game is
the set of payoff allocations which guarantees that no group of players has
an incentive to leave N in order to form another coalition S ⊂ N . For a
TU game, given the grand coalition N , a payoff vector x ∈ RN (N = |N |)
for dividing v(N ) is group rational if

∑
i∈N xi = v(N ). A payoff vector x is

individually rational if every player can obtain a benefit no less than acting
alone, i.e. xi ≥ v({i}), ∀ i ∈ N . An imputation is a payoff vector satisfy-
ing the above two conditions. Having defined an imputation, the core is
defined as
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CTU =

{
x :

∑
i∈N

xi = v(N ) and
∑
i∈S

xi ≥ v(S) ∀ S ⊆ N
}
. (A.3)

In other words, the core is the set of imputations where no coalition S ⊂
N has an incentive to reject the proposed payoff allocation, deviate from
the grand coalition and form coalition S instead. The core guarantees that
these deviations do not occur through the fact that any payoff allocation x

that is in the core guarantees at least an amount of utility equal to v(S) for
every S ⊂ N . Clearly, whenever one is able to find a payoff allocation that
lies in the core, then the grand coalition is a stable and optimal solution
for the coalitional game. For solving NTU games using the core, the value v

of the NTU game is often assumed to satisfy the following, for any coalition
S, [1]: (1)- The value v(S) of any coalition S must be a closed and convex
subset of R|S|, (2)- the value v(S) must be comprehensive, i.e., if x ∈ v(S)

and y ∈ R|S| are such that y ≤ x, then y ∈ v(S), and (3)- the set {x|x ∈
v(S) and xi ≥ zi, ∀i ∈ S} with zi = max {yi|y ∈ v({i})} < ∞ ∀i ∈ N must
be a bounded subset of R|S|. The comprehensive property implies that if
a certain payoff allocation x is achievable by the members of a coalition
S, then, by changing their strategies, the members of S can achieve any
allocation y where y ≤ x. The last property implies that, for a coalition S,
the set of vectors in v(S) in which each player in S receives no less than the
maximum that it can obtain non-cooperatively, i.e., zi, is a bounded set.
For a canonical NTU game (N , v) with v satisfying the above properties, the
core is defined as

CNTU = {x ∈ v(N )|∀S, �y ∈ v(S), s.t. yi > xi, ∀i ∈ S}. (A.4)

This definition for NTU also guarantees a stable grand coalition. The
basic idea is that any payoff allocation in the core of an NTU game guaran-
tees that no coalition S can leave the grand coalition and provide a better
allocation for all of its members. The difference from the TU case is that, in
the NTU core, the grand coalition’s stability is acquired over the elements
of the payoff vectors while in the TU game, it is acquired by the sum of the
payoff vectors’ elements.
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3.2.2 Properties and Existence

The cores of TU or NTU canonical games are not always guaranteed to ex-
ist. In fact, in many games, the core is empty and hence, the grand coali-
tion cannot be stabilized. In these cases, alternative solution concepts may
be used, as we will see in the following sections. However, coalitional game
theory provides several categories of games which fit under our canonical
game class, where the core is guaranteed to be non-empty. Before survey-
ing the existence results for the core, we provide a simple example of the
core in a TU canonical game:

Example 1 Consider a majority voting TU game (N , v) where N = {1, 2, 3}.
The players, on their own, have no voting power, hence v({1}) = v({2}) =

v({3}) = 0. Any 2-players coalition wins two thirds of the voting power,
and hence, v({1, 2}) = v({1, 3}) = v({2, 3}) = 2

3 . The grand coalition wins the
whole voting power, and thus v({1, 2, 3}) = 1. Clearly, this game is super-
additive and is in characteristic form and thus is classified as canonical.
By (A.3), solving the following inequalities yields the core and shows what
allocations stabilize the grand coalition.

x1 + x2 + x3 = v({1, 2, 3}) = 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 + x2 ≥ v({1, 2}) = 2

3
, x1 + x3 ≥ v({1, 3}) = 2

3
, x2 + x3 ≥ v({2, 3}) = 2

3
.

By manipulating these inequalities, the core of this game is found to be
the unique vector x = [13

1
3

1
3 ] which corresponds of an equal division of the

total utility of the grand coalition among all three players.

In general, given a TU coalitional game (N , v) and an imputation x ∈
RN , the core is found by a linear program (LP)

min
x

∑
i∈N

xi, s.t.
∑
i∈S

xi ≥ v(S), ∀S ⊆ N . (A.5)

The existence of the TU core is related to the feasibility of the LP in
(A.5). In general, finding whether the core is non-empty through this LP, is
NP-complete [16] due to the number of constraints growing exponentially
with the number of players N (this is also true for NTU games, see [1,
Ch. 9.7]). However, for determining the non-emptiness of the core as well
as finding the allocations that lie in the core several techniques exist and
are summarized in Table A.I.
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Table A.I: Approaches for finding the core of a canonical coalitional game
Game theoretical and mathematical approaches

(T1) - A graphical approach can be used for finding the core of TU games with up to 3 players.
(T2) - Using duality theory, a necessary and sufficient condition for the non-emptiness of the
core exists through the Bondareva-Shapley theorem (Theorem 1) for TU and NTU [1, 3] .
(T3) - A class of canonical games, known as convex coalitional games always has a non-empty
core.
(T4) - A necessary and sufficient condition for a non-empty core exists for a class of canonical
games known as simple games, i.e., games where v(S) ∈ {0, 1}, ∀S ⊆ N and v(N ) = 1.

Application-specific approaches

(T5) - In several applications, it suffices to find whether payoff distributions that are of interest
in a given game, e.g., fair distributions, lie in the core.
(T6)- In many games, exploiting game-specific features such as the value’s mathematical
definition or the underlying nature and properties of the game model, helps finding the
imputations that lie in the core.

The first technique in Table A.I deals with TU games with up to 3 play-
ers. In such games, the core can be found using an easy graphical ap-
proach. The main idea is to plot the constraints of (A.5) in the plane∑3

i=1 xi = v({1, 2, 3}). By doing so, the region containing the core alloca-
tion can be easily identified. Several examples on the graphical techniques
are found in [3] and the technique for solving them is straightforward. Al-
though the graphical method can provide a lot of intuition into the core of
a canonical game, its use is limited to TU games with up to 3 players.

The second technique in Table A.I utilizes the dual of the LP in (A.5)
to show that the core is non-empty. The main result is given through the
Bondareva-Shapley theorem [1, 3] which relies on the balanced property.
A TU game is balanced if and only if the inequality [1]∑

S⊆N
μ(S)v(S) ≤ v(N ), (A.6)

is satisfied for all non-negative weight collections μ = (μ(S))S⊆N (μ is a
collection of weights, i.e., numbers in [0, 1], associated with each coalition
S ⊆ N ) which satisfy

∑
S�i μ(S) = 1, ∀i ∈ N ; this set of non-negative weights

is known as a balanced set. This notion of a balanced game is interpreted
as follows. Each player i ∈ N possesses a single unit of time, which can
be distributed between all the coalitions that i can be a member of. Every
coalition S ⊆ N is active during a fraction of time μ(S) if all of its members
are active during that time, and this coalition achieves a payoff of μ(S)v(S).
In this context, the condition

∑
S�i μ(S) = 1, ∀i ∈ N is simply a feasibility

constraint on the players’ time allocation, and the game is balanced if there
is no feasible allocation of time which can yield a total payoff for the players
that exceeds the value of the grand coalition v(N ). For NTU canonical
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games, two different definitions for balancedness exist (one of which is
analogous to the TU case) and can be found in [1, 3]. The definitions for
NTU accommodate the fact that the value v in an NTU game is a set and
not a function. Subsequently, given a TU balanced canonical game, the
following result holds [1, 3].

Theorem 1 (Bondareva-Shapley) The core of a game is non-empty if and

only if the game is balanced. �
For NTU, the Bondareva-Shapley theorem is also true however in that

case the balanced condition presented is sufficient but not necessary as a
second definition for a balanced game also exists (see [1, 3]). Therefore, in
a given canonical game, one can always show that the core is non-empty
by proving that the game is balanced through (A.6) for TU games or its
counterparts for NTU [1, Ch. 9.7]. Proving the non-emptiness of the core
through the balanced property is a popular approach and several examples
on balanced games exist in the game theory literature [1, 3] as well as in
the literature on communication networks [17, 18].

The third technique in Table A.I pertains to convex games. A TU canon-
ical game is convex if

v(S1) + v(S2) ≤ v(S1 ∪ S2) + v(S1 ∩ S2) ∀ S1, S2 ⊆ N (A.7)

This convexity property implies that the value function, i.e., the game,
is supermodular. Alternatively, a convex coalitional game is defined as
any coalitional game that satisfies v(S1 ∪ {i}) − v(S1) ≤ v(S2 ∪ {i}) − v(S2),

whenever S1 ⊆ S2 ⊆ N \ {i}. This alternative definition implies that a game
is convex if and only if for each player i ∈ N the marginal contribution of
this player, i.e. the difference between the value of a coalition with and
without this player, is nondecreasing with respect to set inclusion. The
convexity property can also be extended to NTU in several ways, and the
reader is referred to [3, Ch. 9.9] for more details. For both TU and NTU
canonical games, a convex game is balanced and has a non-empty core,
but the converse is not always true [3]. Thus, convex games constitute an
important class of games where the core is non-empty. Examples of such
games are ubiquitous in both game theory [1, 3] and communications [17].

The fourth technique pertains to simple games which are an interesting
class of canonical games where the core can be shown to be non-empty.
A simple game is a coalitional game where the value are either 0 or 1,
i.e., v(S) ∈ {0, 1}, ∀S ⊆ N and the grand coalition has v(N ) = 1. These
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games model numerous scenarios, notably voting games. It is known that
a simple game which contains at least one veto player i ∈ N , i.e. a player i

such that v(N \{i}) = 0 has a non-empty core [3]. Moreover, in such simple
games, the core is fully characterized, and it consists of all non-negative
payoff profiles x ∈ RN such that xi = 0 for each player i that is a non-veto

player, and
∑

i∈N xi = v(N ) = 1

The first four techniques in Table A.I rely mainly on well-known game
theoretical properties. In many practical scenarios, notably in wireless
and communication networking applications, alternative techniques may
be needed to find the allocations in the core. These alternatives are inher-
ently application-specific, and depend on the nature of the defined game
and the properties of the defined value function. One of these alternatives,
the fifth technique in Table A.I, is to investigate whether well-known al-
location rules yield vectors that lie in the core. In many communication
applications (and even game theoretical settings), the objective is to assess
whether certain well-defined types of fair allocations such as equal fair-
ness or proportional fairness among others are in the core or not, without
finding all the allocations that are in the core. In such games, showing
the non-emptiness of the core is done by testing whether such well-known
allocations lie in the core or not, using the intrinsic properties of the con-
sidered game and using (A.3) for TU games or (A.4) for NTU games. A sim-
ple example of such a technique is Example 1, where one can check the
non-emptiness of the core by easily showing that the equal allocation lies
in the core. In many canonical games, the nature of the defined value for
the game can be explored for showing the non-emptiness of the core; this
is done in many applications such as in [10] where information theoretical
properties are used, in [19] where network properties are used, as well as
in [18, 20] where the value is given as a convex optimization, and through
duality, a set of allocations that lie in the core can be found. Hence, when-
ever techniques (T1)-(T4) are too complex or difficult to apply for solving a
canonical game, as per the sixth technique in Table A.I, one can explore
the properties of the considered game model such as in [10, 17–20].

In summary, the core is one of the most important solution concepts
in coalitional games, notably in our canonical games class. It must be
stressed that the existence of the core shows that the grand coalition N of
a given (N , v) canonical coalitional game is stable, optimal (from a payoff
perspective), and desirable.
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3.3 The Shapley Value

As a solution concept, the core suffers from three main drawbacks: (i) -
The core can be empty, (ii) - the core can be quite large, hence selecting
a suitable core allocation can be difficult, and (iii)- in many scenarios, the
allocations that lie in the core can be unfair to one or more players. These
drawbacks motivated the search for a solution concept which can asso-
ciate with every coalitional game (N , v) a unique payoff vector known as
the value of the game (which is quite different from the value of a coali-
tion). Shapley approached this problem axiomatically by defining a set of
desirable properties and he characterized a unique mapping φ that satis-
fies these axioms, later known as the Shapley value [1]. The Shapley value
was essentially defined for TU games; however, extensions to NTU games
exist. In this tutorial, we restrict our attention to the Shapley value for
TU canonical games, and refer the reader to [1, Ch. 9.9] for insights on
how the Shapley value is extended to NTU games. Shapley provided four
axioms14 as follows (φi is the payoff given to player i by the Shapley value
φ)

1. Efficiency Axiom:
∑

i∈N φi(v) = v(N ).

2. Symmetry Axiom: If player i and player j are such that v(S ∪ {i}) =

v(S ∪ {j}) for every coalition S not containing player i and player j,
then φi(v) = φj(v).

3. Dummy Axiom: If player i is such that v(S) = v(S ∪ {i}) for every
coalition S not containing i, then φi(v) = 0.

4. Additivity Axiom: If u and v are characteristic functions, then φ(u +

v) = φ(v + u) = φ(u) + φ(v).

Shapley showed that there exists a unique mapping, the Shapley value
φ(v), from the space of all coalitional games to RN , that satisfies these ax-
ioms. Hence, for every game (N , v), the Shapley value φ assigns a unique
payoff allocation in RN which satisfies the four axioms. The efficiency ax-
iom is in fact group rationality. The symmetry axiom implies that, when
two players have the same contribution in a coalition, their assigned pay-
offs must be equal. The dummy axiom assigns no payoff to players that
do not improve the value of any coalition. Finally, the additivity axiom

14In some references, the Shapley axioms are compressed into three by combining the
dummy and efficiency axioms.
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links the value of different games u and v and asserts that φ is a unique
mapping over the space of all coalitional games.

The Shapley value also has an alternative interpretation which takes
into account the order in which the players join the grand coalition N . In
the event where the players join the grand coalition in a random order,
the payoff allotted by the Shapley value to a player i ∈ N is the expected
marginal contribution of player i when it joins the grand coalition. The
basis of this interpretation is that, given any canonical TU game (N , v), for
every player i ∈ N the Shapley value φ(v) assigns the payoff φi(v) given by

φi(v) =
∑

S⊆N\{i}

|S|!(N − |S| − 1)!

N !
[v(S ∪ {i})− v(S)]. (A.8)

In (A.8), it is clearly seen that the marginal contribution of every player
i in a coalition S is v(S ∪ {i}) − v(S). The weight that is used in front of
v(S ∪ {i}) − v(S) is the probability that player i faces the coalition S when
entering in a random order, i.e., the players in front of i are the ones
already in S. In this context, there are |S|! ways of positioning the play-
ers of S at the start of an ordering, and (N − |S| − 1)! ways of positioning
the remaining players except i at the end of an ordering. The probability
that such an ordering occurs (when all orderings are equally probable) is
therefore |S|!(N−|S|−1)!

N ! , consequently, the resulting payoff φi(v) is the ex-
pected marginal contribution, under random-order joining of the players
for forming the grand coalition.

In general, the Shapley value is unrelated to the core. However, in some
applications, one can show that the Shapley value lies in the core. Such
a result is of interest, since if such an allocation is found, it combines
both the stability of the core as well as the axioms and fairness of the
Shapley value. In this regard, an interesting result from game theory is
that for convex games the Shapley value lies in the core [1, 3]. The Shap-
ley value presents an interesting solution concept for canonical games,
and has numerous applications in both game theory and communication
networks. For instance, in coalitional voting simple games, the Shapley
value of a player i represents its power in the game. In such games, the
Shapley value is used as a power index (known as the Shapley-Shubik in-
dex), and it has a large number of applications in many game theoretical
and political settings [3]. In communication networks, the Shapley value
presents a suitable fairness criteria for allocating resources or data rates
as in [9, 19, 21]. The computation of the Shapley value is generally done
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using (A.8); however, in games with a large number of players the computa-
tional complexity of the Shapley value grows significantly. For computing
the Shapley value in reasonable time, several analytical techniques have
been proposed such as multi-linear extensions [3], and sampling methods
for simple games [22], among others.

3.4 The Nucleolus

Another prominent and interesting solution concept for canonical games
is the nucleolus which was introduced mainly for TU games [3]. Extensions
of the nucleolus for NTU games are not yet formalized in game theory, and
hence this tutorial will only focus on the nucleolus for TU canonical games.
The basic motivation behind the nucleolus is that, instead of applying a
general fairness axiomatization for finding a unique payoff allocation, i.e.,
a value for the game, one can provide an allocation that minimizes the dis-
satisfaction of the players from the allocation they can receive in a given
(N , v) game. For a coalition S, the measure of dissatisfaction from an al-
location x ∈ RN is defined as the excess e(x, S) = v(S) −∑

j∈S xj. Clearly,
an allocation x which can ensure that all excesses (or dissatisfactions) are
minimized is of particular interest as a solution15 and hence, constitutes
the main motivation behind the concept of the nucleolus. Let O(x) be the
vector of all excesses in a canonical game (N , v) arranged in non-increasing
order (except the excess of the grand coalition N ). A vector y = (y1, . . . , yk)

is said to be lexographically less than a vector z = (z1, . . . , zk) (denoted by
y ≺lex z) if ∃l ∈ {1, . . . , k} where y1 = z1, y2 = z2, . . . , yl−1 = zl−1, yl < zl. An
imputation x is a nucleolus if for every other imputation δ, O(x) ≺lex O(δ).
Hence, the nucleolus is the imputation x which minimizes the excesses in
a non-increasing order. The nucleolus of a canonical coalitional game ex-
ists and is unique. The nucleolus is group and individually rational (since
it is an imputation), and satisfies the symmetry and dummy axioms of
Shapley. If the core is not empty, the nucleolus is in the core. Moreover,
the nucleolus lies in the kernel of the game, which is the set of all alloca-
tions x such that maxS⊆N\{j},i∈S e(x, S) = maxG⊆N\{i},j∈G e(x, G). The kernel
states that if players i and j are in the same coalition, then the highest
excess that i can make in a coalition without j is equal to the highest ex-
cess that j can make in a coalition without i. As the nucleolus lies in the
kernel, it also verifies this property. Thus, the nucleolus is the best allo-
cation under a min-max criterion. The process for computing the nucleo-

15In particular, an imputation x lies in the core of (N, v), if and only if all its excesses are
negative or zero.
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lus is more complex than the Shapley value, and is described as follows.
First, we start by finding the imputations that distribute the worth of the
grand coalition in such a way that the maximum excess (dissatisfaction)
is minimized. In the event where this minimization has a unique solution,
this solution is the nucleolus. Otherwise, we search for the imputations
which minimize the second largest excess. The procedure is repeated for
all subsequent excesses, until finding a unique solution which would be
the nucleolus. These sequential minimizations are solved using linear pro-
gramming techniques such as the simplex method [23]. The applications
of the nucleolus are numerous in game theory. One of the most promi-
nent examples is the marriage contract problem which first appeared in
the Babylonian Talmud (0-500 A.D).

Example 2 A man has three wives, and he is committed to a marriage
contract that specifies that they should receive 100, 200 and 300 units
respectively, after his death. This implies that, given a total amount of
α units left after the man’s death, the three wives can only claim 100, 200,
and 300, respectively, out of the α units. If after the man dies, the amount
of money left is not enough for this distribution, the Talmud recommends
the following:

• If α = 100 is available after the man dies, then each wife gets 100
3 .

• If α = 200 is available after the man dies, wife 1 gets 50, and the other
two get 75 each.

• If α = 300 is available after the man dies, wife 1 gets 50, wife 2 gets 100
and wife 3 gets 150.

Note that the Talmud does not specify the allocation for other values of
α but certainly, if α ≥ 600 each wife simply claims its full right. A key
question that puzzled mathematicians and researchers in game theory was
how this allocation was made and it turns out that the nucleolus is the
answer. Let us model the game as a coalitional game (N , v) where N is
the set of all three wives which constitute the players and v is the value
defined for any coalition S ⊆ N as v(S) = max (0, α−∑

i∈N\S ci), where
α ∈ {100, 200, 300} is the total units left after the death of the man and ci is
the claim that wife i must obtain (c1 = 100, c2 = 200, c3 = 300). It then turns
out that, with this formulation, the payoffs that were recommended by the
Talmud coincide with the nucleolus of the game! This result highlights the
importance of the nucleolus in allocating fair payoffs in a game.
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In summary, the nucleolus is quite an interesting concept, since it com-
bines a number of fairness criteria with stability. However, the commu-
nications applications that utilized the nucleolus are still few, with one
example being [19], where it was used for allocating the utilities in the
modeled game. The main drawback of the nucleolus is its computational
complexity in some games. However, with appropriate models, the nucle-
olus can be an optimal and fair solution to many applications.

3.5 Applications of Canonical Coalitional Games

3.5.1 Rate allocation in a multiple access channel

An elegant and interesting use of canonical games within communication
networks is presented in [9] for the study of rate allocation in multiple
access channels (MAC). The model in [9] tackles the problem of how to
fairly allocate the transmission rates between a number of users accessing
a wireless Gaussian MAC channel. In this model, the users are bargain-
ing for obtaining a fair allocation of the total transmission rate available.
Every user, or group of users (coalition), that does not obtain a fair al-
location of the rate can threaten to act on its own which can reduce the
rate available for the remaining users. Consequently, the game is modeled
as a coalitional game defined by (N , v) where N = {1, . . . , N} is the set of
players, i.e., the wireless network users that need to access the channel,
and v is the maximum sum-rate that a coalition S can achieve. In order
to have a characteristic function, [9] assumes that, when evaluating the
value of a coalition S ⊂ N , the users in Sc = N \ S known as jammers,
cooperate in order to jam the transmission of the users in S. The jamming
assumption is a neat way of maintaining the characteristic form of the
game, and it was previously used in game theory for deriving a character-
istic function from a strategic form non-cooperative game [1, 12]. Subse-
quently, when evaluating the sum-rate utility v(S) of any coalition S ⊆ N ,
the users in Sc form a single coalition to jam the transmission of S and
hence, the coalitional structure of Sc is always pre-determined yielding a
characteristic form. For a coalition S, the characteristic function in [9],
v(S), represents the capacity, i.e., the maximum sum-rate, that S achieves
under the jamming assumption. Hence, v(S) represents a rate that can
be apportioned in an arbitrary manner between the players in S, and thus
the game is a TU game. It is easily shown in [9] that the game is superad-
ditive since the sum of sum-rates achieved by two disjoint coalitions is no
less than the sum-rate achieved by the union of these two coalitions, since
the jammer in both cases is the same (due to the assumption of a sin-

109



Coalitional Game Theory for Communication Networks: A Tutorial

Table A.II: The main steps in solving the Gaussian MAC rate allocation
canonical game as per [9]

1- The player set is the set N of users in a Gaussian MAC channel.
2- For a coalition S ⊆ N , a superadditive value function in characteristic form with TU
is defined as the maximum sum-rate (capacity) that S achieves under the assumption
that the users in coalition Sc = N \ S attempt to jam the communication of S.
3- Through technique (T5) of Table A.I the core is shown to be non-empty and containing
all imputations in the capacity region of the grand coalition.
4- The Shapley value is discussed as a fairness rule for rate-allocation, but is shown
to be outside the core, hence, rendering the grand coalition unstable.
5- A new application-specific fairness rule, known as “envy-free” fairness, is shown to
lie in the core and is presented as a solution to the rate-allocation game in Gaussian MAC.

gle coalition of jammers). Consequently, the problem lies in allocating the
payoffs, i.e., the transmission rates, between the users in the grand coali-
tion N which forms in the network. The grand coalition N has a capacity
region C = {R ∈ RN |∑N

i=1Ri ≤ C(ΓS , σ
2), ∀S ⊆ N}, where ΓS captures the

power constraints on the users in S, σ2 is the Gaussian noise variance,
and hence, C(ΓS , σ

2) is the maximum sum-rate (capacity) that coalition S

can achieve. Based on these properties, the rate allocation game in [9] is
clearly a canonical coalitional game, and the key question that [9] seeks to
answer is “how to allocate the capacity of the grand coalition v(N ) among
the users in a fair way that stabilizes N ”. In answering this question, two
main concepts from canonical games are used: The core and the Shapley
value.

In this rate allocation game, it is shown that the core, which repre-
sents the set of rate allocations that stabilize the grand coalition, is non-

empty using technique (T5) from Table A.I. By considering the imputations

that lie in the capacity region C, i.e., the rate vectors R ∈ C such that∑N
i=1Ri = C(ΓN , σ2), it is shown that any such vector lies in the core.

Therefore, the grand coalition N of the Gaussian MAC canonical game can
be stabilized. However, the core of this game is big and contains a large
number of rate vectors. Thus, the authors in [9] sought to answer the next
question “how to select a single fair allocation which lies in the core?”.
For this purpose, the authors investigate the use of the Shapley value as
a fair solution for rate allocation which accounts for the random-order of
joining of the players in the grand coalition. In this setting, the Shap-
ley value simply implies that no rate is left unallocated (efficiency axiom),
dummy players receive no rate (dummy axiom), and the labeling of the
players does not affect the rate that they receive (symmetry axiom). How-
ever, the authors show that: (i)- The fourth Shapley axiom (additivity) is
not suitable for the proposed rate allocation game, and (ii)- the Shapley
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value does not lie in the core, and hence cannot stabilize the grand coali-
tion. Based on these results for the Shapley value, the authors propose a
new fairness criterion, named “envy-free” fairness. The envy-free fairness
criterion relies on the first three axioms of Shapley (without the additivity
axiom), and complements them with a fourth axiom, the envy free alloca-

tion axiom [9, Eq. (6)]. This axiom states that, given two players i and j,
with power constraints Γi > Γj, an envy-free allocation ψ gives a payoff
ψj(v) for user j in the game (N , v), equal to the payoff ψi(v

i,j) of user i in
the game (N , vi,j) where vi,j is the value of the game where user i utilizes
a power Γi = Γj. Mathematically, this axiom implies that ψj(v) = ψi(v

i,j).
With these axioms, it is shown that a unique allocation exists and this
allocation lies in the core. Thus, the envy-free allocation is presented as a
fair and suitable solution for the rate allocation game in [9]. Finally, the
approach used for solving the rate allocation canonical coalitional game
in [9] is summarized in Table A.II.

3.5.2 Canonical games for receivers and transmitters cooperation

In [10], canonical games are used for studying the cooperation possibili-
ties between single antenna receivers and transmitters in an interference
channel. The model considered in [10] consists of a set of transmitter-
receiver pairs, in a Gaussian interference channel. The authors study
the cooperation between the receivers under two coalitional game models:
A TU model where the receivers communicate through noise-free chan-
nels and jointly decode the received signals, and an NTU model where the
receivers cooperate by forming a linear multiuser detector (in this case
the interference channel is reduced to a MAC channel). Further, the au-
thors study the transmitters cooperation problem under perfect coopera-
tion and partial decode and forward cooperation, while considering that
the receivers have formed the grand coalition. Since all the considered
games are canonical (as we will see later), the main interest is in studying
the properties of the grand coalitions for the receivers and the transmit-
ters.

For receiver cooperation using joint decoding, the coalitional game model
is as follows: the player set N is the set of links (the players are the re-
ceivers of these links) and, assuming that the transmitters do not cooper-
ate, the value v(S) of a coalition S ⊆ N is the maximum sum-rate achieved
by the links whose receivers belong to S. Under this model, one can easily
see that the utility is transferable since it represents a sum-rate, hence the
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game is TU. The game is also in characteristic form, since, as the trans-
mitters are considered non-cooperative, the sum-rate achieved when the
receivers in S cooperate depends solely on the receivers in S while treat-
ing the signal from the links in N \ S as interference. In this game, the
cooperation channels between the receivers are considered noiseless and
hence, cooperation is always beneficial and the game is shown to be su-
peradditive. Hence, under our proposed classification, this game is clearly
a canonical game, and the interest is in studying the properties of the
grand coalition of receivers. Under this cooperation scheme, the network
can be seen as a single-input-multiple-output (SIMO) MAC channel, and
the proposed coalitional game is shown to have a non-empty core which
contains all the imputations which lie on the SIMO-MAC capacity region.
The technique used for this proof is similar to the game in [9] which selects
a particular set of rate vectors, those that are on the SIMO-MAC region,
and shows that they lie in the core as per (T5) from Table A.I. The core
of this game is very large, and for selecting fair allocations, it is proven
in [10] that the Nash bargaining solution, and in particular, a proportional
fair rate allocation lie in the core, and hence constitute suitable fair and
stable allocations. For the second receiver cooperation game, the model is
similar to the joint decoding game, with one major difference: Instead of
jointly decoding the received signals, the receivers form linear multiuser
detectors (MUD). The MUD coalitional game is inherently different from the
joint decoding game since, in a MUD, the SINR ratio achieved by a user i in
coalition S cannot be shared with the other users, and hence the game be-
comes an NTU game with the SINR representing the payoff of each player.
In this NTU setting, the value v(S) of a coalition S becomes the set of SINR
vectors that a coalition S can achieve. For this NTU game, the grand coali-
tion is proven to be stable and sum-rate maximizing at high SINR regime
using limiting conditions on the SINR expression, hence technique (T6) in
Table A.I.

For modeling the transmitters cooperation problem as a coalitional
game the authors make two assumptions: (i)- The receivers jointly decode
the signals, hence form a grand coalition, and (ii)- a jamming assumption
similar to [9] is made for the purpose of maintaining the characteristic
form. In the transmitters game, from the set of links N , the transmit-
ters are the players. When considering the transmitters cooperation along
with the receivers cooperation, the interference channel is mapped unto a
multiple-input-multiple-output (MIMO) MAC channel. For maintaining a
characteristic form, the authors assumed, in a manner analogous to [9],
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Table A.III: The main results for receivers and transmitters cooperation
coalitional games as per [10]

1- The coalitional game between the receivers, where cooperation entails joint decoding
of the received signal, is a canonical TU game which has a non-empty core. Hence, the grand
coalition is the stable and sum-rate maximizing coalition.
2- The coalitional game between the receivers, where cooperation entails forming linear
multiuser detectors, is a canonical NTU game which has a non-empty core. Hence, the
grand coalition is the stable and sum-rate maximizing coalition.
3- For transmitters cooperation, under jamming assumption, the coalitional game is not,
superadditive hence non-canonical. However, the grand coalition is shown to be the rate
maximizing partition.
4- For transmitters cooperation under jamming assumption, no results for the existence
of the core can be found due to mathematical intractability.

that whenever a coalition of transmitters S forms, the users in Sc = N \ S
form one coalition and aim to jam the transmission of coalition S. Without
this assumption, the maximum sum-rate that a coalition can obtain highly
depends on how the users in Sc structure themselves, and hence requires
a partition form that may be difficult to solve. With these assumptions,
the value of a coalition S is defined as the maximum sum-rate achieved
by S when the coalition Sc seeks to jam the transmission of S. Using
this transmitters with jamming coalitional game, the authors show that in
general the game has an empty core. This game is not totally canonical
since it does not satisfy the superadditivity property. However, by proving
through [10, Th. 19] that the grand coalition is the optimal partition, from
a total utility point of view, the grand coalition becomes the main candi-
date partition for the core. The authors conjecture that in some cases, the
core can also be non-empty depending on the power and channel gains.
However, no existence results for the core are provided in this game. Fi-
nally, the authors in [10] provide a discussion on the grand coalition and
its feasibility when the transmitters employ a partial decode and forward
cooperation. The main results are summarized in Table A.III.

3.5.3 Other applications for canonical games and future directions

Canonical coalitional games cover a broad range of communication and
networking applications and, indeed, most research activities in these ar-
eas utilize the tools that fall under the canonical coalitional games class.
In addition to the previous examples, numerous applications used models
that involve canonical games. For instance, in [19], canonical coalitional
games are used to solve an inherent problem in packet forwarding ad hoc
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networks. In such networks, the users that are located in the center of
the network, known as backbone nodes, have a mutual benefit to forward
each others’ packets. In contrast, users located at the boundary of the net-
work, known as boundary nodes, are not helped by the backbone nodes
due to the fact that the backbone nodes do not need the help of the bound-
ary nodes at any time. Hence, in such a setting, the boundary nodes end
up having no way of sending their packets to other nodes, and this is a
problem known as the curse of the boundary nodes. In [19], a canonical
coalitional game model is proposed between a player set N which includes
all boundary nodes and a single backbone node. In this model, forming
a coalition, entails the following benefits: (i)- By cooperating with a num-
ber of boundary nodes and using cooperative transmission, the backbone
node can reduce its power consumption, and (ii)- in return, the backbone
node agrees to forward the packets of the boundary nodes. For cooperative
transmission, in a coalition S, the boundary nodes act as relays while the
backbone node acts as a source. In this game, the core is shown to be
non-empty using the property that any group of boundary nodes receive
no utility if they break away from the grand coalition with the backbone
node, this classifies as a (T6) technique from Table A.I. Further, the au-
thors in [19] study the conditions under which a Shapley value and a nu-
cleolus are suitable for modeling the game. By using a canonical game, the
connectivity of the ad hoc network is significantly improved [19]. Beyond
packet forwarding, many other applications such as in [17, 18, 21] utilize
several of the techniques in Table A.I for studying the grand coalition in a
variety of communications applications.

In summary, canonical games are an important tool for studying co-
operation and fairness in communication networks, notably when coop-
eration is always beneficial. Future applications are numerous, such as
studying cooperative transmission capacity gains, distributed cooperative
source coding, cooperative relaying in cognitive radio and many other ap-
plications. In brief, whenever a cooperative scheme that yields significant
gains at any layer is devised, one can utilize canonical coalitional games
for assessing the stability of the grand coalition and identifying fairness
criteria in allocating the gains that result from cooperation. Finally, it has
to be noted that canonical games are not restricted to link-level analysis,
but also extend to network-level studies as demonstrated in [18, 19].
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4 Class II: Coalition Formation Games

4.1 Main Properties of Coalition Formation Games

Coalition formation games encompass coalitional games where, unlike the
canonical class, network structure and cost for cooperation play a major
role. Some of the main characteristics that make a game a coalition for-
mation game are as follows:

1. The game is in either characteristic form or partition form (TU or
NTU), and is generally not superadditive.

2. Forming a coalition brings gains to its members, but the gains are
limited by a cost for forming the coalition, hence the grand coalition
is seldom the optimal structure.

3. The objective is to study the network coalitional structure, i.e., an-
swering questions like which coalitions will form, what is the optimal
coalition size and how can we assess the structure’s characteristics,
and so on.

4. The coalitional game is subject to environmental changes such as a
variation in the number of players, a change in the strength of each
player or other factors which can affect the network’s topology.

5. A coalitional structure is imposed by an external factor on the game
(e.g., physical restrictions in the problem).

Unlike canonical games, a coalition formation game is generally not
superadditive and can support the partition form model. Another impor-
tant characteristic which classifies a game as a coalition formation game
is the presence of a cost for forming coalitions. In canonical games, as
well as in most of the literature, there is an implicit assumption that form-
ing a coalition is always beneficial (e.g. through superadditivity). In many
problems, forming a coalition requires a negotiation process or an infor-
mation exchange process which can incur a cost, thus, reducing the gains
from forming the coalition. In general, coalition formation games are of
two types: Static coalition formation games and dynamic coalition forma-

tion games. In the former, an external factor imposes a certain coalitional
structure, and the objective is to study this structure. The latter is a
more rich framework. In dynamic coalition formation games, the main
objectives are to analyze the formation of a coalitional structure, through
players’ interaction, as well as to study the properties of this structure and

115



Coalitional Game Theory for Communication Networks: A Tutorial

its adaptability to environmental variations or externalities. In contrast to
canonical games, where formal rules and analytical concepts exist, solving
a coalition formation game, notably dynamic coalition formation, is more
difficult, and application-specific. The rest of this section is devoted to
dissecting the key properties of coalition formation games.

4.2 Impact of a Coalitional Structure on Solution Concepts of

Canonical Coalitional Games

In canonical games, the solution concepts defined, such as the core, the
Shapley value and the nucleolus, assumed that the grand coalition would
form due to the superadditivity property. The presence of a coalitional
structure affects the definition and use of these concepts as was first
pointed out by Aumann and Drèze in [24] for a static coalition formation
game. In [24], a TU coalitional game is considered, in the presence of a
static coalitional structure B = {B1, . . . , Bl} (each Bi is a coalition), that is
imposed by some external factor. Hence, [24] defines a coalitional game
as the triplet (N , v,B) where v is a characteristic function. First, in the
presence of B , the concept of group rationality is substituted by relative

efficiency. Given an allocation vector x ∈ RN , relative efficiency implies
that, for each coalition Bk ∈ B,

∑
i∈Bk

xi = v(Bk) [24]. Hence, for every
present coalition Bk in B, the total value available for coalition Bk is di-
vided among its members unlike in canonical games where the value of
the grand coalition v(N ) is distributed among all players. With regards to
canonical solutions, we first turn our attention to the Shapley value. For
the game (N , v,B), the previously defined Shapley axioms remain in place,
except for the efficiency axiom which is replaced by a relative efficiency

axiom. With this modified axiom, [24] shows that the Shapley value of
(N , v,B), referred to as B-value, has the restriction property. The restric-
tion property implies that, for finding the B-value, one can consider the
restricted coalitional games (Bk, v|Bk), ∀Bk ∈ B where v|Bk is the value v of
the original game (N , v,B), defined over player set (coalition) Bk. As a re-
sult, for finding the B-value, we proceed in two steps, using the restriction
property: (1)- Consider the games (Bk, v|Bk), k = 1, . . . , l separately and for
each such game (Bk, v|Bk) find the Shapley value using the canonical defi-
nition (A.8), and (2)- the B-value of the game is the 1×N vector φ of payoffs
constructed by combining the resulting allocations of each restricted game
(Bk, v|Bk).

In the presence of a coalitional structure B, the canonical definitions
of the core and the nucleolus are also mainly modified by replacing group
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rationality with relative efficiency. However, unlike the Shapley value, it is
shown in [24] that the restriction property does not apply to the core, nor
the nucleolus. This can be easily deduced from the fact that both the core
and the nucleolus depend on all coalitions of N . Hence, in the presence
of B, the core and the nucleolus depend on the values of coalitions Bj ∈ B
as well as the values of coalitions that are not in B, that is coalitions
S ⊂ N , �Bk ∈ B s. t. Bk = S. Hence, the problem of finding the core and the
nucleolus of (N , v,B) is more complex than for the Shapley value. In [24],
an approach for finding these solutions for games where v({i}) = 0, ∀i ∈ N
is presented. The approach is based on finding a game equivalent to v

by redefining the value, and hence, the core and nucleolus can be found
for this equivalent game. For the detailed analysis, we refer the reader
to [24, Th. 4 and Th. 5].

Even though the analysis in [24] is restricted to static coalition forma-
tion games with TU and in characteristic form, it shows that finding solu-
tions for coalition formation games is not straightforward. The difficulty of
such solutions increases whenever an NTU game, a partition form game,
or a dynamic coalition formation game are considered, notably when the
objective is to compute the solution in a distributed manner. For example,
when considering a dynamic coalition formation game, one would need to
evaluate the payoff allocations jointly with the formation of the coalitional
structure, hence solution concepts become even more complex to find (al-
though the restriction property of the Shapley value makes things easier).
For this purpose, the literature dealing with coalition formation games,
notably dynamic coalition formation such as [25–28] or others, usually
re-defines the solution concepts or presents alternatives that are specific
to the game being studied. Hence, unlike canonical games where formal
solutions exist, the solution of a coalition formation game depends on the
model and the objectives that are being considered.

4.3 Dynamic Coalition Formation Algorithms

In general, in a coalition formation game, the most important aspect is
the formation of the coalitions in the game. In other words, one must
answer the question of “how to form a coalitional structure that is suit-
able to the studied game”. In addition, the evolution of this structure is
important, notably when changes to the game nature can occur due to
external or internal factors (e.g., what happens to the coalition structure
if one or more players leave the game). In many applications, coalition
formation entails finding a coalitional structure which either maximizes
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the total utility (social welfare) if the game is TU, or finding a structure
with Pareto optimal payoff distribution for the players if the game is NTU.
For achieving such a goal, a centralized approach can be used; however,
such an approach is generally NP-complete [25–28]. The reason is that,
finding an optimal partition, requires iterating over all the partitions of the
player set N . The number of partitions of a set N grows exponentially
with the number of players in N and is given by a value known as the
Bell number [25]. For example, for a game where N has only 10 elements,
the number of partitions that a centralized approach must go through is
115975 (easily computed through the Bell number). Hence, finding an op-
timal partition from a centralized approach is, in general, computationally
complex and impractical. In some cases, it may be possible to explore the
properties of the game, notably of the value v, for reducing the centralized
complexity. Nonetheless, in many practical applications, it is desirable
that the coalition formation process takes place in a distributed manner,
whereby the players have an autonomy on the decision as to whether or
not they join a coalition. In fact, the complexity of the centralized approach
as well as the need for distributed solutions have sparked a huge growth
in the coalition formation literature that aims to find low complexity and
distributed algorithms for forming coalitions [25–28].

The approaches used for distributed coalition formation are quite var-
ied and range from heuristic approaches [25], Markov chain-based meth-
ods [26], to set theory based methods [27] as well as approaches that use
bargaining theory or other negotiation techniques from economics [28].
Although there are no general rules for distributed coalition formation,
some work, such as [27] provides generic rules that can be used to de-
rive application-specific coalition formation algorithms. Although [27] does
not explicitly construct a coalition formation algorithm, the mathematical
framework presented can be used to develop such algorithms. The main
ingredients that are presented in [27] are three: (1)- Well-defined orders
suitable to compare collections of coalitions, (2)- two simple rules for form-
ing or breaking coalitions, and (3)- adequate notions for assessing the sta-
bility of a partition. For comparing collections of coalitions, a number of
orders are defined in [27], two of which are of noticeable importance. The
first order, known as the utilitarian order, states that, a group of players
prefers to organize themselves into a collection R = {R1, . . . , Rk} instead of
S = {S1, . . . , Sl}, if the total social welfare achieved in R is strictly greater
than in S, i.e.,

∑k
i=1 v(Ri) >

∑l
i=1 v(Si). This order is generally suitable for

TU games. Another important order is the Pareto order, which bases the
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preference on the individual payoffs of the players rather than the coali-
tion value. Given two allocations x and y that are allotted by R and S,
respectively, to the same players, R is preferred over S by Pareto order if
at least one player improves in R without hurting the other players, i.e.,
x ≥ y with at least one element xi of x such that xi > yi. The Pareto order
is suitable for both TU and NTU games.

Using such orders, [27] presents two main rules for forming or break-
ing coalitions, referred to as merge and split. The basic idea behind the
rules is that, given a set of players N , any collection of disjoint coalitions
{S1, . . . , Sl}, Si ⊂ N can agree to merge into a single coalition G = ∪l

i=1Si,
if this new coalition G is preferred by the players over the previous state
depending on the selected comparison order. Similarly, a coalition S splits

into smaller coalitions if the resulting collection {S1, . . . , Sl} is preferred
by the players over S. Independent of the selected order, any arbitrary se-
quence of these two rules is shown to converge to a final partition of N [27].
For assessing the stability of the final partition, the authors in [27] propose
the concept of a defection function, which is a function that associates with
every network partition, another partition, a group of other partitions, or
a group of collections in N . By defining various types of such a function,
one can assess whether, in a given partition T of N , there is an incentive
for the players to deviate and form other partitions or collections. A first
notion of stability, is a weak equilibrium-like stability, known as Dhp sta-
bility. A Dhp-stable partition simply implies that, in this partition, no group
of players has an interest in performing a merge or a split operation. This
type of stability can be thought of as merge-and-split proofness of a par-
tition, or a kind of equilibrium with respect to merge-and-split. The most
important type of stability inspected in [27] is Dc-stability. The existence
of a Dc-stable partition is not always guaranteed, and the two conditions
needed for its existence can be found in [27]. However, when it exists,
the Dc-stable partition has numerous attractive properties. First and fore-
most, a Dc-stable partition is a unique outcome of any arbitrary merge and
split iteration. Hence, starting from any given partition, one would always
reach the Dc-stable partition by merge-and-split. Based on the selected
order, the players prefer the Dc-stable partition over all other partitions.
On one hand, if the selected order is the utilitarian order, this implies that
the Dc-stable partition maximizes the social welfare (total utility), on the
other hand, if the selected order is the Pareto order, the Dc-stable partition
has a Pareto optimal payoff distribution for the players. Finally, no group
of players in a Dc-stable partition have an incentive to leave this partition
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for forming any other collection in N . Depending on the application being
investigated, one can possibly define other suitable defection functions, as
this concept is not limited to a particular problem.

Coalition formation games are diverse, and by no means limited to the
concepts in [27]. For example, a type of coalition formation games, known
as hedonic coalition formation games has been widely studied in game the-
ory. Hedonic games are quite interesting since they allow the formation of
coalitions (whether dynamic or static) based on the individual preferences
of the players. In addition, these games admit different stability concepts
that are extensions to well known concepts such as the core or the Nash
equilibrium used in a coalition formation setting [29]. In this regard, he-
donic games constitute a very useful analytical framework which has a
very strong potential to be adopted in modeling problems in wireless and
communication networks (only few contributions such as [30] used this
framework in a communication/wireless model). Furthermore, beyond
merge-and-split and hedonic games, dynamic coalition formation games
encompass a multitude of algorithms and concepts such as in [25–28] and
many others. Due to space limitations, this tutorial cannot provide an ex-
haustive survey of all such algorithms. Nonetheless, as will be seen in the
following sections, many coalition formation algorithms and concepts can
be tailored and adapted for communication applications.

4.4 Applications of Coalition Formation Games

4.4.1 Transmitter cooperation with cost in a TDMA system

The formation of virtual MIMO systems through distributed cooperation
has received an increasing attention recently (see [10, 31] and the refer-
ences therein). The problem involves a number of single antenna users
which cooperate and share their antennas in order to benefit from spatial
diversity or multiplexing, and hence form a virtual MIMO system. Most
literature that studied the problem is either devoted to analyzing the link-
level information theoretical gains from distributed cooperation, or focused
on assessing the stability of the grand coalition, for cooperation with no
cost, such as in the work of [10] previously described. However, there is
a lack of literature which studies how a network of users can interact to
form virtual MIMO systems, notably when there is a cost for cooperation.
Hence, a study of the network topology and dynamics that result from the
interaction of the users is needed and, for this purpose, coalition forma-
tion games are quite an appealing tool. These considerations motivated
our work in [31] where we considered a network of single antenna trans-
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Fig. A.3: The system model for the virtual MIMO formation game in [31].

mitters that send data in the uplink of a TDMA system to a receiver with
multiple antennas. In a non-cooperative approach, each single antenna
transmitter sends its data in an allotted slot. For improving their capacity,
the transmitters can interact for forming coalitions, whereby each coali-
tion S is seen as a single user MIMO that transmits in the slots that were
previously held by the users of S. After cooperation, the TDMA system
schedules one coalition per time slot. An illustration of the model is shown
in Fig. A.3. To cooperate, the transmitters must exchange their data, and
hence, this exchange of information incurs a cost in terms of power. The
presence of this cost, as per [31], renders the game non-superadditive due
to the fact that the information exchange incurs a cost in power which is
increasing with the distances inside the coalition as well as the coalition
size. For example, when two users are far away, information exchange can
consume the total power, and the utility for cooperation is smaller than
in the non-cooperative case. Similarly, adding more users to a coalition
does not always yield an increase in the utility; for instance, a coalition
consisting of a large number of users increases the cost for information
exchange, and thus superadditivity cannot be guaranteed. As a conse-
quence of this property, for the proposed game in [31] the grand coalition
seldom forms16 and the game is modeled as a dynamic coalition formation
game between the transmitters (identified by the set N ) that seek to form
cooperating coalitions. The dynamic aspect stems from the fact that many
environmental changes, such as the mobility of the transmitters or the de-
ployment of new users, may affect the coalitional structure that will form
and any algorithm must be able to cope with these changes accurately.

16In this game, the grand coalition only forms in extremely favorable cases, such as when
the network contains only two users and these users are very close by.
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For the proposed game, the value function represents the sum-rate,
or capacity, that the coalition can achieve, while taking into account the
power cost. Due to the TDMA nature of the problem, a power constraint P̃
per time slot, and hence per coalition, is considered. Whenever a coalition
forms, a fraction of P̃ is used for information exchange, hence constituting
a cost for cooperation, while the remaining fraction will be used for the
coalition to transmit its data, as a single user MIMO, to the receiver. For
a coalition S, the fraction used for information exchange is the sum of the
powers that each user i ∈ S needs to transmit its data to the user j ∈ S

that is farthest from i; due to the broadcast nature of the wireless channel
all other users in S can receive this data as well. This power cost scales
with the number of users in the coalition, as well as the distance between
these users. Hence, the sum-rate that a coalition can achieve is limited
by the fraction of power spent for information exchange. For instance,
if the power for information exchange for a coalition S is larger than P̃ ,
then v(S) = 0. Otherwise, v(S) represents the sum-rate achieved by the
coalition using the remaining fraction of power. Clearly, the sum-rate is a
transferable utility, and hence we deal with a TU game.

In this framework, a dynamic coalition formation algorithm based on
the merge-and-split rules previously described can be built. In [31], for
coalition formation, we start with a non-cooperative network, whereby
each user discovers its neighbors starting with the closest, and attempts
to merge based on the utilitarian order, i.e., if cooperating with a neigh-
bor improves the total sum-rate that the involved users can achieve, then
merging occurs (merge is done through pairwise interactions between a
user or coalition and the users or coalitions in the vicinity). Further, if a
formed coalition finds out that splitting into smaller coalitions improves
the total utility achieved by its users, then a split occurs. Starting from
the initial non-cooperative network, the coalition formation algorithm in-
volves sequential merge and split rules. The network’s coalition can au-
tonomously decide on whether to perform a merge or split based on the
utility evaluation. The convergence is guaranteed by virtue of the defini-
tion of merge-and-split. Further, if an optimal Dc-stable partition exists,
the proposed algorithm converges to it. The existence of the Dc-stable par-
tition in this model cannot always be guaranteed, as it depends on random
locations of the users; however, the convergence to it, when it exists, is
guaranteed.

The coalition formation algorithm proposed in [31] can handle any net-
work size, as the implementation is inherently distributed, whereby each
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coalition (or user) can detect the strength of the other users’ uplink signals
(using techniques as in ad hoc routing), and discover the nearby candidate
partners. Consequently, the distributed users can exchange the required
information and then assess what kind of merge or split decisions they can
make. The transmitters engage in merge-and-split periodically, and hence,
adapt the topology to any environmental change, such as mobility or the
joining/leaving of transmitters. In this regard, by adequate merge or split
decisions, the topology is always dynamically changing, through individ-
ual and distributed decisions by the network’s coalitions. As the proposed
model is TU, several rules for dividing the coalition’s value are used. These
rules range from well-known fairness criteria such as the proportional fair
division, to coalitional game-specific rules such as the Shapley value or the
nucleolus. Due to the distributed nature of the problem, the nucleolus or
the Shapley value are applied at the level of the coalitions that are forming
or splitting. Hence, although for the Shapley value this allocation coin-
cides with the Shapley value of the whole game as previously discussed,
for the nucleolus, the resulting allocations lie in the nucleolus of the re-
stricted games only. In this game, for any coalition S ⊆ N that forms
through merge-and-split, the Shapley value presents a division of the pay-
off that takes into account the random order of joining of the transmitter
in S when forming the coalition (this division is also efficient at the coali-
tion level and treats the players symmetrically within S). In contrast, the
division by the nucleolus at the level of every coalition S ⊆ N that forms
through merge-and-split ensures that the dissatisfaction of any transmit-
ter within S is minimized by minimizing the excesses inside S. Finally,
although in [31] we used a utilitarian order, in extensions to the work [32],
we reverted to the Pareto order, which allows every user of the coalition to
assess the improvement to its own payoff during merge or split, instead
of relying on the entire coalitional value. By doing so, the fairness criteria
chosen impacts the network structure and hence, for every fairness type
one can obtain a different topology.

4.4.2 Coalition formation for spectrum sensing in cognitive radio

networks

In cognitive radio networks, the unlicensed secondary users (SU) are re-
quired to sense the environment in order to detect the presence of the
licensed primary user (PU) and transmit during periods where the PU is
inactive. Collaborative spectrum sensing (CSS) has been proposed for im-
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proving the sensing performance of the SUs, in terms of reducing the
probability of missing the detection of the PU (probability of miss), and
hence decreasing the interference on the PU. Even though CSS decreases
the probability of miss, it also increases the false alarm probability, i.e.,
the probability of falsely detecting that the PU is transmitting. Hence,
CSS presents an inherent tradeoff between reducing the probability of
miss (reducing interference on the PU) and maintaining a good false alarm
probability, which corresponds to a good spectrum utilization. In [33], we
consider a network of SUs, that interact for improving their sensing per-
formance, while taking into account the false alarm cost. For performing
CSS, every group of SUs form a coalition, and within each coalition, an
SU, selected as coalition head will gather the sensing bit from the coali-
tion members. By using well-known decision fusion rules, the coalition
head can decide on the presence or the absence of the PU. Using this
CSS scheme, as shown in [33], each coalition reduces the probability of
miss of its SUs. However, this reduction is accompanied by an increase in
the false alarm probability. This tradeoff between the improvement of the
probability of miss and the false alarm, impacts the coalitional structure
that forms in the network.

Consequently, the CSS problem is modeled as a dynamic coalition for-
mation game between the SUs (N is the set of SUs in this game). The
utility v(S) of each coalition S is a decreasing function of the probability of
miss Qm,S within coalition S and a decreasing function of the false alarm
probability Qf,S. In the false alarm cost component, the proposed util-
ity in [33, Eq. (8)] imposes a maximum tolerable false alarm probability,
i.e., an upper bound constraint α on the false alarm, that cannot be ex-
ceeded by any SU. This utility represents probabilities, and hence, cannot
be transferred arbitrarily between the SUs. Hence, the coalition formation
game for CSS is an NTU game, whereby the payoff of an SU which is a
member of any coalition S is given by xi = v(S), ∀i ∈ S and reflects the
probabilities of miss and false alarm that any SU which is a member of S
achieves [33, Property 1] (here, the NTU value is a singleton set). In this
game, it is easily shown that the grand coalition seldom forms, due to the
false alarm constraint α and the fact that the false alarm for a coalition
increases with the coalition size and the distances between the coalition
members [33, Property 3].

For this purpose, a coalition formation algorithm is needed. The al-
gorithm proposed in [33] consists of three phases: In the first phase the
SUs perform their local sensing, in the second phase the SUs engage in an
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Fig. A.4: (a) Topology resulting from coalition formation in CSS for 10 SUs.
(b) Maximum and average coalition size vs. non-cooperative false alarm Pf

for the dynamic coalition formation game solution for a network of 30 SUs.

adaptive coalition formation algorithm based on the merge and split rules
of Section 4.3, and in the third phase, once the coalitions have formed,
each SU reports its sensing bit to the coalition head which makes a de-
cision on whether or not the PU is present. Due to the NTU nature of
the game, the adaptive coalition formation phase of the algorithm uses the
Pareto order for performing merge or split operations. The merge and split
decisions in the context of the CSS model can also be performed in a dis-
tributed manner by each coalition, or individual SU. The merge and split
phase converges to the Dc-stable partition which leads to a Pareto optimal
payoff allocation, whenever this partition exists. Periodically, the formed
coalitions engage in merge and split operations for adapting the topology
to environmental changes such as the mobility of the SUs or the PU, or the
deployment of more SUs. In Fig. A.4 (a), we show an example of a coali-
tional structure that the SUs form for CSS in a cognitive network of 10 SUs
with a false alarm constraint of α = 0.1. Clearly, the proposed algorithm al-
lows the SUs to structure themselves into disjoint independent coalitions
for the purpose of spectrum sensing. By forming such topologies, it is
shown in [33] that the SUs can significantly improve their performance,
in terms of probability of miss, reaching up to 86.6% per SU improvement
relative to the non-cooperative sensing case for a network of 30 SUs, while
maintaining the desired false alarm level of α = 0.1. In addition to the per-
formance improvement achieved by the proposed coalition formation algo-
rithm in [33], an interesting upper bound on the coalition size is derived
for the proposed utility. This upper bound is a function of only two quan-
tities: The false alarm constraint α and the non-cooperative false alarm
value Pf , i.e., the detection threshold. Hence, this upper bound does not
depend on the location of the SUs in the network nor on the actual num-
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ber of SUs in the network. Therefore, deploying more SUs or moving the
SUs in the network for a fixed α and Pf does not increase the upper bound
on coalition size. In Fig. A.4 (b), we show this upper bound in addition to
the average and maximum achieved coalition size for a network of 30 SUs
with a false alarm constraint of α = 0.1. The coalition size variations are
shown as a function of the non-cooperative false alarm Pf . The results
in Fig. A.4 (b) show that, in general, the network topology is composed of
a large number of small coalitions rather than a small number of large
coalitions, even when Pf is small relative to α and the collaboration pos-
sibilities are high (a smaller Pf implies the cost for cooperation, in terms
of false alarm increases more slowly with the coalition size). Also, when
Pf = α = 0.1, the network is non-cooperative, since cooperation would al-
ways violate the false alarm constraint α. In a nutshell, dynamic coalition
formation provides novel collaboration strategies for SUs in a cognitive
network which are seeking to improve their sensing performance, while
maintaining a desired spectrum utilization (false alarm level). The frame-
work of dynamic coalition formation games suitably models this problem,
yields a significant performance improvement, and allows to characterize
the network topology that will form.

4.4.3 Future applications of coalition formation games

Potential applications of coalition formation games in communication net-
works are numerous and diverse. Beyond the applications presented above,
coalition formation games have already been applied in [34] to improve
the physical layer security of wireless nodes through cooperation among
the transmitters, while in [30] coalition formation among a number of au-
tonomous agents, such as unmanned aerial vehicles, is studied in the con-
text of data collection and transmission in wireless networks. Moreover,
recently, there has been a significant increase of interest in designing au-
tonomic communication systems. Autonomic systems are networks that
are self-configuring, self-organizing, self-optimizing, and self-protecting.
In such networks, the users should be able to learn and adapt to their
environment (changes in topology, technologies, service demands, appli-
cation context, etc), thus providing much needed flexibility and functional
scalability. Coalition formation games present an adequate framework for
the modeling and analysis of these self-organizing next generation com-
munication networks. Hence, potential applications of coalition formation
games encompass cooperative networks, wireless sensor networks, next
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generation IP networks, ad hoc self-configuring networks, and many oth-
ers. In general, whenever there is a need for distributed algorithms for au-
tonomic networks, coalition formation is a strong tool for modeling such
problems. Also, any problem involving the study of cooperative wireless
nodes behavior when a cost is present, is candidate for modeling using
coalition formation games.

Finally, although the main applications we described in this tutorial
required a characteristic form, coalition formation games in partition form
are of major interest and can have potential applications in communica-
tion networks. For instance, in [10], the transmitter cooperation problem
assumed that the players outside any coalition work as a single entity and
jam the communication of this coalition. This assumption is made in or-
der to have a characteristic form. For relaxing this assumption and taking
into account the actual interference that affects a coalition, a coalitional
game in partition form is needed. In the presence of a cooperative cost,
this partition form game falls in the class of coalition formation games.
Hence, coalition formation games in partition form are ripe for many fu-
ture applications.

5 Class III: Coalitional Graph Games

5.1 Main Properties of Coalitional Graph Games

In canonical and coalition formation games, the utility or value of a coali-
tion does not depend on how the players are interconnected within the
coalition. However, it has been shown that, in certain scenarios, the un-

derlying communication structure between the players in a coalitional game
can have a major impact on the utility and other characteristics of the
game [14, 35]. By the underlying communication structure, we mean the
graph representing the connectivity of the players among each other, i.e.,
which player communicates with which one inside each and every coali-
tion. We illustrated examples on such interconnections in Section 2 and
Fig. A.2 (b). In general, the main properties that distinguish a coalitional
graph game are as follows:

1. The coalitional game is in graph form, and can be TU or NTU. How-
ever, the value of a coalition may depend on the external network
structure as explained in Section 2.

2. The interconnection between the players within each coalition, i.e.,
who is connected to whom, strongly impacts the characteristics and
outcome of the game.
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3. The main objective is to derive low complexity distributed algorithms
for players that wish to build a network graph (directed or undi-
rected) and not just coalitional groups as in coalition formation games
(Class II). Another objective is to study the properties (stability, effi-
ciency, etc) of the formed network graph.

In coalitional graph games, the main theme is the presence of a graph for
communication between the players. Typically, there are two objectives
for coalitional graph games. The first and most important objective, is to
provide low complexity algorithms for building a network graph to connect
the players. A second objective is to study the properties and stability
of the formed network graph. In some scenarios, the network graph is
given, and hence analyzing its stability and efficiency is the only goal of
the game. The following sections provide an in-depth study of coalitional
graph games.

5.2 Coalitional Graph Games and Network Formation Games

The idea of having a value dependent on a graph of communication be-
tween the players was first introduced by Myerson in [14], through the
graph function for TU games. In this work, starting with a TU canonical
coalitional game (N , v) and given an undirected graph G that intercon-
nects the players in the game, Myerson attempts to find a fair solution.
For this purpose, a new value function u, which depends on the graph,
is defined. For evaluating the value u of a coalition S, this coalition is di-
vided into smaller coalitions depending on the players that are connected
through S. For example, given a 3-players coalition S = {1, 2, 3} and a
graph G = {(2, 3)} (only players 2 and 3 are connected by a link in G), the
value u(S,G) is equal to u(S,G) = v({2, 3}) + v({1}), where v is the original
value of the canonical game. Using the new value u, Myerson presents an
axiomatic approach, similar to the Shapley value, for solving the game in
graph function form. The work in [14] shows that, a fair solution of the
canonical game (N , v) in the presence of a graph structure, is the Shapley
value of the game (N , u) where u is the newly defined value. This solution
is known as the Myerson value. The drawback of the approach in [14] is
that the value u of a coalition depends only on the connected players in
the coalition with no dependence on the structure, e.g., for both graphs G1

S

and G2
S in Fig. A.2 (b), the values u are equal (although the payoffs received

by the players in G1
S and G2

S through the Myerson value allocation would
be different due to the different graphs).

Nevertheless, the work in [14] motivated future work, and in [15] the
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value was extended so as to depend on the graph structure, and not only
on the connected components. By doing so, coalitional graph games be-
came a richer framework, however, finding solutions became more com-
plex. While in [14], the objective was to find a solution, given a graph,
new research in the area sought algorithms for forming the graph. One
prominent tool in this area is non-cooperative game theory which was ex-
tensively used for forming the network graph. For instance, in [1, Ch. 9.5],
using the Myerson framework of [14], an extensive form game is proposed
for forming the network graph. However, the extensive form approach is
impractical in many situations, as it requires listing all possible links in
the graph, which is a complex combinatorial problem. Nonetheless, a new
breed of games started to appear following this work, and these games are
known as network formation games. The main objective in these games
is to study the interactions among a group of players that wish to form a
graph. Although in some references these games are decoupled from coali-
tional game theory, we place these games under coalitional graph games
due to several reasons: (i)- The basis of all network formation games is
the work on coalitional graph games that started in [14], (ii)- network for-
mation games share many objectives with coalitional graph games such as
the presence of a value and an allocation rule, the need for stability among
others, and (iii)- the solutions of network formation games are quite cor-
related with coalition formation games (in terms of forming the graph) and
canonical games (in terms of having stable allocations).

Network formation games can be thought of as a hybrid between coali-
tional graph games and non-cooperative games. The reason is that, for
forming the network, non-cooperative game theory plays a prominent role.
Hence, in network formation games there is a need to form a network
graph as well as to ensure the stability of this graph, through concepts
analogous to those used in canonical coalitional games. For forming the
graph, a broad range of approaches exist, and are grouped into two types:
myopic and far sighted 17. The main difference between these two types is
that, in myopic approaches, the players play their strategies given the cur-
rent state of the network, while in far sighted algorithms, the players adapt
their strategy by learning, and predicting future strategies of the other
players. For both approaches, well-known concepts from non-cooperative
game theory can be used. The most popular of such approaches is to
consider the network formation as a non-zero sum non-cooperative game,

17These approaches are sometimes referred to as dynamics of network formation (see
[36]).
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where the players’ strategies are to select one or more links to form or
break. One approach to solve the game is to play myopic best response

dynamics whereby each player selects the strategy, i.e. the link(s) to form
or break, that maximizes its utility. Under certain conditions on the util-
ities, the best response dynamics converge to a Nash equilibrium, which
constitutes a Nash network. These approaches are widespread in net-
work formation games [37–39], and also, several refinements to the Nash
equilibrium suitable for network formation are used [37–39]. The main
drawback of aiming for a Nash network is that, in many network forma-
tion games, the Nash networks are trivial graphs such as the empty graph
or can be inefficient. For these reasons, a new type of network forma-
tion games has been developed, which utilizes new concepts for stability
such as pairwise stability and coalitional stability [36]. The basic idea is to
present stability notions that depend on deviations by a group of players
instead of the unilateral deviations allowed by the Nash equilibrium. Inde-
pendent of the stability concept, a key design issue in network formation
games is the tradeoff between stability and efficiency. It is desirable to
devise algorithms for forming stable networks that can also be efficient in
terms of payoff distribution or total social welfare. Several approaches for
devising such algorithms exist, notably using stochastic processes, graph
theoretical techniques or non-cooperative games. For a comprehensive
survey on such algorithms, we refer the reader to [36].

Finally, the Myerson value and network formation games are not the
only approaches for solving coalitional graph games. Other approaches,
which are closely tied to canonical games can be proposed. For example,
the work in [35], proposes to formulate a canonical game-like model for
an NTU game, whereby the graph structure is taken into account. In this
work, the authors propose an extension to the core called the balanced

core which takes into account the graph structure. Further, under certain
conditions, analogous to the balanced conditions of canonical games, the
authors in [35] show that this balanced core is non-empty. Hence, coali-
tional graph games constitute quite a rich and diverse framework, with a
broad range of applications. In the rest of this section, we review sample
applications from communication networks.

5.3 Applications of Coalitional Graph Games

5.3.1 Distributed uplink tree formation in IEEE 802.16j

The most recent WiMAX standard, the IEEE 802.16j, introduced a new
node, the relay station (RS) for improving the network’s capacity and cov-
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erage. The introduction of the RS impacts the network architecture of
WiMAX networks as the mesh network is replaced by a tree architecture
which connects the base station (BS) to its subordinate RSs. An efficient
design of the tree topology is, thus, a challenging problem, notably because
the RSs can be nomadic or mobile. The IEEE 802.16j standard does not
provide any algorithm for the tree formation, however, it states that both
distributed and centralized approaches may be used. For tackling the de-
sign of the tree topology in 802.16j networks from a distributed approach,
coalitional graph games provide a suitable framework. In [40], we model
the problem of the uplink tree formation in 802.16j using coalitional graph
games, namely network formation games. In this model, the players are
the RSs who interact for forming a directed uplink tree structure (directed
towards the BS). Every RS i in the tree, acts as a source node, and trans-
mits the packets that it receives from external mobile stations (MSs) to the
BS, using multi-hop relaying. Hence, when RS i is transmitting its data
to the BS, all the RSs that are parents of i in the tree relay the data of i

using decode-and-forward relaying. Through multi-hop relaying, the prob-
ability of error is reduced, and consequently the packet success rate (PSR)
achieved by a RS can be improved. Essentially, the value function in this
game is NTU as each RS optimizes its own utility. The utility of a RS i is
an increasing function of the effective number of packets received by the
BS (effective throughput) while taking into account the PSR, as well as the
number of packets received from other RS (the more a RS receives packet,
the more it is rewarded by the network). The utility also reflects the cost
of maintaining a link, hence, each RS i has a maximum number of links
that it can support. As the number of links on a RS i increases, the re-
wards needed for accepting a link also increase, hence making it difficult
for other RSs to form a link with i. The strategy of each RS is two-fold:
(1)- Each RS can select another RS (or the BS) with whom to connect, and
(2)- Each RS can choose to break a number of links that are connected to
it. For forming a directed link (i, j) between RS i and RS j, the consent of
RS j is needed. In other words, if RS i bids to connect to RS j, RS j can
either accept this link as a new connection, accept this link by replacing
one or more other links, or reject the link. Using this formulation, the
network formation game is a non-cooperative non-zero sum game played
between the RSs, with the previously defined strategies. Hence, the dy-
namics of network formation are performed using an algorithm consisting
of two phases. In the first phase, the RSs are prioritized, and in the second
phase, proceeding sequentially by priority, each RS is allowed to play its
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Fig. A.5: Example of an 802.16j tree topology formed using a distributed
network formation game as per [40].

best response, i.e., the strategy that maximizes its utility. This algorithm
is myopic, since the best response of a RS is played given the current state
of the network graph. The end result is the formation of a Nash network
tree structure that links the RSs to the BS. This tree structure is shown
in [40] to yield an improvement in the overall PSR achieved by the MSs
in the network, compared to a static star topology or a network with no
relays. The proposed algorithm allows each RS to autonomously choose
whether to cooperate or not, and hence, it can easily be implemented in a
distributed manner.

In Fig. A.5, we show an example of a network topology formed by 10

RSs. In this figure, the solid arrows indicate the network topology that
formed before the deployment of any MSs (in the presence of keep-alive
packets only). The proposed network formation algorithm is, in fact, adap-
tive to environmental changes, such as the deployment of the external MSs
as well as mobility of the RSs or MSs. Hence, in Fig. A.5, we can see how
the RSs decide to break some of their link, replacing them with new links
(in dashed arrows) hence adapting the topology, following the deployment
of a number of MSs. In [41], the application of network formation games in
802.16j was extended and the algorithm was adapted to support the trade-
off between improving the effective throughput by relaying and the delay
incurred by multi-hop transmission, for voice over IP services in particu-
lar. Future work can tackle various aspects of this problem using the tools
of coalitional graph games. These aspects include devising a probabilis-
tic approach to the network formation, or utilizing coalition graph games
concepts such as the balanced core introduced in [35] among others.
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5.3.2 Other applications and future potential

The presence of a network graph is ubiquitous in many wireless and com-
munication applications. For designing, understanding, and analyzing
such graphs, coalitional graph games are the accurate tool. Through the
various concepts pertaining to network formation, stability, fairness, or
others, one can model a diversity of problems. For instance, network
formation games have been widely used in routing problems. For exam-
ple, in [42], a stochastic approach for network formation is provided. In
the proposed model, a network of nodes that are interested in forming a
graph for routing traffic among themselves is considered. Each node in
this model aims at minimizing its cost function which reflects the various
costs that routing traffic can incur (routing cost, link maintenance cost,
disconnection cost, etc.). For network formation, the work in [42] proposes
a myopic dynamic best response algorithm. Each round of this algorithm
begins by randomly selecting a pair of nodes i and j in the network. Once
a random pair of nodes is selected, the algorithm proceeds in two steps.
In the first step, if the link (i, j) is already formed in the network, node i

is allowed to break this link, while in the second step node i is allowed to
form a new link with a certain node k, if k accepts the formation of the link
(i, k). In the model of [42], the benefit from forming a link (i, j) can be seen
as some kind of cost sharing between nodes i and j. By using a stochastic
process approach, the work in [42] shows that the proposed myopic al-
gorithm always converges to a pairwise stable and efficient tree network.
Under a certain condition on the cost function, the stable and efficient tree
network is a simple star network. The efficiency is measured in terms of
Pareto optimality of the utilities as the proposed game is inherently NTU.
Although the network formation algorithm in [42] converges to a stable
and efficient network, it suffers from a major drawback which is the slow
convergence time, notably for large networks. The proposed algorithm is
mainly implemented for undirected graphs but the authors provide suffi-
cient insights on how this work can extend to directed graphs.

The usage of network formation games in routing applications is not
solely restricted to forming the network, but also for studying properties
of an existing network. For instance, in [43], the authors study the stabil-
ity and the flow of the traffic in a given directed graph. For this purpose,
several concepts from network formation games such as pairwise stability
are used. In addition, the work in [43] generalizes the concept of pairwise
stability making it more suitable for directed graphs. Finally, [43] uses
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non-cooperative game theory to determine the network flows at different
nodes while taking into account the stability of the network graph. The
applications of coalitional graph games are by no means limited to routing
problems. The main future potential of using this class of games lies in
problems beyond network routing. For instance, coalitional graph games
are suitable tools to analyze problems pertaining to information trust man-
agement in wireless networks, multi-hop cognitive radio, relay selection in
cooperative communications, intrusion detection, peer-to-peer data trans-
fer, multi-hop relaying, packet forwarding in sensor networks, and many
others. Certainly, this rich framework is bound to be used thoroughly in
the design of many aspects of future communication networks.

6 Conclusions

In this tutorial, we provided a comprehensive overview of coalitional game
theory, and its usage in wireless and communication networks. For this
purpose, we introduced a novel classification of coalitional games by group-
ing the sparse literature into three distinct classes of games: canonical
coalitional games, coalition formation games, and coalitional graph games.
For each class, we explained in details the fundamental properties, dis-
cussed the main solution concepts, and provided an in-depth analysis of
the methodologies and approaches for using these games in both game
theory and communication applications. The presented applications have
been carefully selected from a broad range of areas spanning a diverse
number of research problems. The tutorial also sheds light on future op-
portunities for using the strong analytical tool of coalitional games in a
number of applications. In a nutshell, this article fills a void in existing
communications literature, by providing a novel tutorial on applying coali-
tional game theory in communication networks through comprehensive
theory and technical details as well as through practical examples drawn
from both game theory and communication applications.
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[6] T. Alpçan, T. Başar, R. Srikant, and E. Altman, “CDMA uplink power
control as a noncooperative game,” Wireless Networks, vol. 8, pp.
659–670, 2002.

[7] A. MacKenzie, L. DaSilva, and W. Tranter, Game Theory for Wireless

Engineers. San Rafael, CA, USA: Morgan and Claypool Publishers,
Mar. 2006.
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Abstract

Cooperation in wireless networks allows single antenna devices to improve
their performance by forming virtual multiple antenna systems. However,
performing a distributed and fair cooperation constitutes a major chal-
lenge. In this work, we model cooperation in wireless networks through a
game theoretical algorithm derived from a novel concept from coalitional
game theory. A simple and distributed merge-and-split algorithm is con-
structed to form coalition groups among single antenna devices and to
allow them to maximize their utilities in terms of rate while accounting
for the cost of cooperation in terms of power. The proposed algorithm en-
ables the users to self-organize into independent disjoint coalitions and the
resulting clustered network structure is characterized through novel sta-
bility notions. In addition, we prove the convergence of the algorithm and
we investigate how the network structure changes when different fairness
criteria are chosen for apportioning the coalition worth among its mem-
bers. Simulation results show that the proposed algorithm can improve
the individual user’s payoff up to 40.42% as well as efficiently cope with the
mobility of the distributed users.
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Introduction

1 Introduction

The wireless network performance can be improved through cooperation
techniques. Cooperation allows wireless network users to benefit from var-
ious gains such as an increase in the achieved rate or an improvement in
the bit error rate. Designing an efficient cooperation algorithm faces nu-
merous challenges. First and foremost, cooperation entails various costs,
such as power, that can limit its benefits or even impair the users’ per-
formance. Second, wireless network users tend to be selfish in nature.
Therefore, deriving a fair and practical cooperation algorithm where the
decision to cooperate does not degrade the performance of any of the co-
operating users is a tedious task. Moreover, if a cooperation algorithm
depends on a centralized entity in the network such as a base station
(BS), an extra amount of communication overhead is required for informa-
tion exchange among the users. Such a centralized scheme will heavily
depend on the availability of resources at the centralized entity. Hence,
there is a strong need to design a cooperation algorithm that can reduce
this communication overhead by allowing the users to autonomously take
the decision for cooperation without relying on a centralized intelligence.
In summary, deriving a distributed and fair cooperative strategy is highly
challenging but desirable in practice.

An important application for cooperation is the formation of virtual
MIMO systems through cooperation among single antenna devices. In
this context, a number of single-antenna devices can form virtual multi-
ple antenna transmitters or receivers through cooperation, consequently,
benefiting from the advantages of MIMO systems without the extra bur-
den of having multiple antennas physically present on each transmitter
or receiver. The information theoretical aspects of virtual MIMO systems
were thoroughly exploited in [1], [2] and [3]. On one hand, the authors
in [1] showed the gains in terms of outage capacity resulting from the
cooperation of two single antenna devices that are transmitting to a far
away receiver in a Rayleigh fading channel. On the other hand, the work
in [2, 3] considered cooperation among multiple single antenna transmit-
ters as well as receivers in a broadcast channel. Different cooperative
scenarios were studied in the presence of a power cost for cooperation and
the results showed the benefits of cooperation from a sum-rate perspec-
tive. Virtual MIMO gains are not only limited to rate gains. For example,
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forming virtual MIMO clusters in sensor networks can yield gains in terms
of energy conservation [4].

Implementing distributed cooperation algorithms that allow the wire-
less network to reap these capacity or energy benefits requires an adequate
analytical tool. In this regard, game theory provides a highly appealing
mathematical tool for designing such distributed algorithms for coopera-
tion or competition scenarios in wireless networks [5]. For instance, us-
ing coalitional game theory, the work in [6] and [7] focused on devising a
distributed cooperative algorithm for rate improvement through receivers

cooperation. The authors showed that for the receiver coalition game in
a Gaussian interference channel and synchronous CDMA multiple access
channel (MAC), a stable grand coalition of all users can be formed if no
cost for cooperation is accounted for. Subsequently, two schemes were
provided for dividing the payoffs, in terms of rate, among the users: the
Nash Bargaining game solution and the proportional fair payoff division.
Furthermore, using game theory, this fair allocation of rate for cooperating
users in an interference channel was also studied in [8] for the transmit-
ters. The authors in [8] assumed that the users in a Gaussian multiaccess
channel will bargain for favorable rate allocation by threatening to coop-
erate and form coalitions of devices that will jam the channel. Based on
this jamming assumption, the authors showed that a unique rate alloca-
tion exists verifying certain well defined fairness axioms from coalitional
games.

Moreover, distributed cooperation through game theory is not restricted
to the virtual MIMO problem but it is also of interest at higher layers such
as the network and transport layers. Cooperation in routing protocols was
tackled in [9] and [10] to reduce energy cost. The system derived in these
papers encourages cooperation by rewarding service providers according
to their contribution. Another aspect of cooperative networks, resource
allocation, is discussed in [11]. Finally, cooperation in packet forwarding
was studied in [12] and [13] using cooperative game theory, repeated game
theory, and machine learning.

In summary, previous work on cooperation focused mainly on the in-
formation theoretical analysis of the cooperation gains, and characterized
these gains in the presence of no cost, namely in the virtual MIMO prob-
lem [1–3, 6–8]. The main objectives of this paper are two fold: (1)- inves-
tigate the limitation on the cooperation gains in a virtual MIMO system,
in the presence of a cost, and most importantly (2)- provide a distributed
algorithm that models the users behavior when they interact in order to
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benefit from the widely established gains virtual MIMO gains (in the pres-
ence of a cost). In fact, while existing literature answered the question of
“why to cooperate?”, we aim to answer questions such as when to cooper-
ate and with whom to cooperate, notably when cooperation incurs a cost as
well as a benefit. In this context, the main contributions of this paper are:
(1)- to design a distributed game theoretical framework that enables sin-
gle antenna transmitters to autonomously take decisions to cooperate and
form virtual MIMO coalitions while accounting for the inherent benefit-
cost trade off involved in this formation; (2) to study the topology and
dynamics of a wireless network where the users seek cooperation through
virtual MIMO, hence, assessing the possibility of achieving these gains
in practice, and; (3)- to provide fair rules for performance improvement
through cooperation. Thus, we construct a coalition formation algorithm
based on well-defined and distributed merge-and-split rules from coopera-
tive games suitable for tackling this transmitter cooperation problem. The
convergence of this merge-and-split transmitter cooperation algorithm is
discussed and the stability of the resulting coalition structure is charac-
terized through suitable stability notions. Finally, various fairness criteria
for allocating the extra benefits among coalition users are discussed and
their effect on the network structure is analyzed. Simulation results show
that our algorithm can improve the individual user’s payoff up to 40.42%

as well as efficiently handle the users’ mobility.
The rest of this paper is organized as follows: Section 2 presents the

transmitter cooperation system model. Section 3 presents the proposed
game theoretic algorithm while Section 4 discusses fairness criteria for
payoff division. Simulation results are analyzed in Section 5 and conclu-
sions are drawn in Section 6.

2 System Model

In this section, we present the transmitter cooperation coalitional game
model and discuss its properties.

2.1 Transmitter Cooperation Model

Consider a network having Mt single antenna transmitters (e.g. mobile
users) sending data in the uplink to a fixed receiver, e.g., a BS, with Mr

receive antennas (multiple access channel). Denote N = {1 . . .Mt} as the
set of all Mt users in the network, and let S ⊆ N be a coalition consisting
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Fig. B.1: User cooperation example coalitions and TDMA transmission.

of |S| users (| · | represents the cardinality of a set). We consider a TDMA
transmission in the network thus, in a non-cooperative manner, the Mt

users require a time scale of Mt slots to transmit as every user occupies
one time slot. When cooperating, the single antenna transmitters form
different disjoint coalitions (each coalition can be seen as a single user
MIMO device) and they will subsequently transmit in a TDMA manner,
which is one coalition per transmission. During the time scale Mt, each
coalition is able to transmit within all the time slots previously held by its

users. For a cooperating coalition S, we consider a block fading Mr × |S|
channel matrix HS with a path loss model between the users in S and
the BS with each element of the matrix hi,k = ejφi,k

√
κ/dαi,k with α the path

loss exponent, κ the path loss constant, φi,k the phase of the signal from
transmitter i to the BS receiver k, and di,k the distance between transmitter
i and the base BS’s receiver k. An illustration of the model is shown in
Fig. B.1 for Mt = 6.

As we are considering a TDMA system, we define a fixed transmit power
constraint per time slot, i.e., a power constraint per coalition P̃ as in [2, 3].
This average power constraint is applied to all the transmitters that are
part of the coalition active in the slot. In the non-cooperative scenario,
this same power constraint per slot is simply the power constraint per
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individual user active in the slot. In fact, due to ergodicity, for each time
slot, the average long term power constraint per individual user and the
power constraint per slot (i.e. constraining all transmitters of a coalition
active in a slot) are the same [2, 3]. In the considered TDMA system, each
coalition transmits in a slot, hence, perceiving no interference from other
coalitions during transmission. As a result, in a slot, the sum-rate capacity
of the virtual MIMO formed by a coalition S, under a power constraint PS

with Gaussian signaling is given by [14]

CS = max
QS

I(xS ;yS) = max
QS

(log det(IMr +HS ·QS ·H†
S)) (B.1)

s.t. tr[QS ] ≤ PS ,

where xS and yS are, respectively, the transmitted and received signal vec-
tors of coalition S of size |S|×1 and Mr×1, QS = E [xS · x†

S ] is the covariance
of xS and HS is the channel matrix with H†

S its conjugate transpose.

The considered channel matrix HS is assumed perfectly known at the
transmitter and receiver, thus, the maximizing input signal covariance
is given by QS = V SDSV

†
S ( [14, 15]) where V S is the unitary matrix

given by the singular value decomposition of HS = USΣSV
†
S and DS is

an |S| × |S| diagonal matrix given by DS = diag(D1, . . . , DK , 0, . . . , 0) where
K ≤ min (Mr, |S|) is the number of positive singular values of the chan-
nel HS (eigenmodes) and each Di given by Di = (μ − λ−1

i )+, where μ

is determined by water-filling to satisfy the coalition power constraint
tr[QS ] = tr[DS ] =

∑
iDi = PS, and λi is the ith eigenvalue of H†

SHS. Us-
ing [14], the resulting capacity, in a slot, for a coalition S is

CS =

K∑
i=1

(log (μλi))
+. (B.2)

For forming the considered virtual MIMO coalitions and benefiting from
the capacity gains, the users need to exchange their data information and
their channel (user-BS) information. For this purpose, we will consider a
cost for information exchange in terms of transmit power. This transmit
power cost mainly models the data exchange penalty. As we consider block
fading channels with a long coherence time, the additional power penalty
for exchanging the user-BS channel information can be deemed as neg-
ligible relatively to the data exchange cost, since the considered channel
varies slowly (for example, exchange of the channel information can be
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done only periodically). Consequently, the cost for information exchange
is taken as the sum of the powers required by each user in a coalition S

to broadcast to its corresponding farthest user inside S. Due to the broad-
cast nature of the wireless channel, once a coalition member broadcasts
its information to the farthest user, all the other members can also receive
this information simultaneously. The power needed for broadcast between
a user i ∈ S and its corresponding farthest user î ∈ S is

P̄i,̂i =
ν0 · σ2

g2
i,̂i

, (B.3)

where ν0 is a target average SNR for information exchange, σ2 is the noise
variance and gi,̂i =

√
κ/dα

i,̂i
is the path loss between users i and î with di,̂i

the distance between users i and î. In consequence, the total power cost
for a coalition S having |S| users is given by P̂S as follows

P̂S =

|S|∑
i=1

P̄i,̂i. (B.4)

It is interesting to note that the defined cost depends on the location of the
users and the size of the coalition; hence, a higher power cost is incurred
whenever the distance between the users increases or the coalition size
increases. Thus, the actual power constraint PS per coalition S with cost

is

PS = (P̃ − P̂S)
+, (B.5)

where P̃ is the average power constraint per coalition (per slot), P̂S the co-
operation power cost given in (B.4) and a+ � max (a, 0). In order to achieve
the capacity in (B.2), within a slot, each user of a coalition S adjusts its
power value based on the water-filling solution, taking into account the
available power constraint PS. Note that, since the power constraint P̃ ap-
plied over a coalition is the same as the maximum power constraint per
individual user in the coalition, the water-filling solution always yields a
power value per user that does not violate the user’s available power af-
ter deducing the cost for cooperation in (B.3) from its individual long term
power constraint.

The considered power cost does not take into account the interfer-
ence for exchange of information between users and can be considered
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as a lower bound of the penalty incurred by cooperation. In addition to
this power cost, a fraction of time may be required for the data exchange
between the users prior to cooperation. However, due to the fact that
the proposed power cost given in (B.4) depends on distance and coali-
tion size, the formed coalitions will typically consist of small clusters of
nearby close users (as will be verified through simulations), and thus the
users can exchange information at high rates rendering the time for data
exchange negligible relatively to the transmission time slot (typically, the
distance between the users of a coalition and the BS is larger than the
distance between the coalition users themselves). Furthermore, in prac-
tice, performing a cooperation for virtual MIMO formation can require a
synchronization at the carrier frequency between the nodes, yielding some
costs for practical implementation. In this work, we will not account for
these carrier synchronization costs similar to existing virtual MIMO liter-
ature [1, 3, 4], [6, 7]. The coalition formation results derived in this paper
could also be applied for other cost functions without loss of generality.
For example, the cost of power can be replaced by a cost of bandwidth
where one could quantify the use of an additional band for information
exchange, orthogonal to the band of transmission.

Based on the defined capacity benefit and power cost, over the TDMA
time scale of Mt, for every coalition S ⊆ N , we define the utility function
(or characteristic function in coalitional game theory terms [16]) as

v(S) =

{
|S| · CS , if PS > 0;

0, otherwise.
(B.6)

where PS is given by (B.5), CS is given by (B.2) and |S| is the number of
users in S. This utility represents the total capacity achieved by coalition
S during the time scale Mt while accounting for the cost through the power
constraint. A coalition of |S| users will transmit with capacity CS during
|S| time slots; thus achieving a total capacity of v(S) during the time scale
Mt (e.g. in Fig. B.1 during Mt = 6 coalition 2 consisting of 2 users achieves
C2 in slot 4 and C2 in slot 6; thus a total of 2 · C2 during Mt = 6 slots). The
second case in (B.6) implies that if the power for information exchange is
larger than (or equal to) the available power constraint the coalition cannot
be formed due to a utility of 0. The payoff of each user in a coalition S is
computed by a fair division of the utility v(S), through various criteria
explained in Section 4. This individual user payoff denoted φv

i represents
the total rate achieved by user i during the transmission time scale Mt.
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Thus, we have a coalitional game (N ,v) with a transferable utility (i.e. the
coalition value can be arbitrarily divided among its users) and we seek a
coalition structure that allows the users to maximize their utilities with
cost.

2.2 Transmitter Cooperation Game Properties

For modeling cooperation in wireless networks, existing work mainly sought
to prove that the grand coalition of all users can form and inspected its sta-
bility. In the proposed transmitter cooperation (N ,v) coalitional game, due
to the cooperation costs, the grand coalition will seldom form and, instead,
disjoint coalitions will form in the network.

Definition 4 A coalitional game (N, v) with transferable utility is said to

be superadditive if for any two disjoint coalitions S1, S2 ⊂ N , v(S1 ∪ S2) ≥
v(S1) + v(S2).

Theorem 1 The proposed transmitter (N ,v) coalitional game with cost is

non-superadditive.

Proof: Consider two disjoint coalitions S1 ⊂ N and S2 ⊂ N in the network

with their corresponding utilities v(S1) and v(S2) when they do not cooperate

with each other. Assume that the users of S1 ∪ S2 are located far enough to

yield a power cost per (B.4) P̂S1∪S1 ≥ P̃ . In this case, by (B.5) PS1∪S2 = 0

yielding v(S1 ∪ S2) = 0 < v(S1) + v(S2) (B.6); hence the game is not superad-

ditive. �

Definition 5 A payoff vector φv = (φv
1, . . . , φ

v
Mt

) for dividing the value v of

a coalition is said to be group rational or efficient if
∑Mt

i=1 φ
v
i = v(N). A

payoff vector φv is said to be individually rational if the player can obtain

the benefit no less than acting alone, i.e. φv
i ≥ v({i}), ∀ i. An imputation is a

payoff vector satisfying the above two conditions.

Definition 6 An imputation φv is said to be unstable through a coalition S if

v(S)>
∑

i∈S φv
i , i.e., the players have incentive to form coalition S and reject

the proposed φv. The set C of stable imputations is called the core, i.e.,

C =

{
φv :

∑
i∈N

φv
i = v(N) and

∑
i∈S

φv
i ≥ v(S) ∀ S ⊆ N

}
. (B.7)

A non-empty core means that the players have an incentive to form the grand

coalition.
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Remark 1 In general, the core of the (N ,v) transmitter cooperation game

with cost is empty.

In the proposed model, the costs for cooperation for a coalition S increase
as the number of users in a coalition increase as well as when the distance
between the users increase hence affecting the topology. In particular,
consider the grand coalition {N} of all Mt users in the network. This
coalition consists of a large number of users who are randomly located
at different distances. Hence, the grand coalition {N} will often have a
value of v({N}) = 0 due to the cooperation costs and several coalitions
S ⊂ N have an incentive to deviate from this grand coalition and form
independent disjoint coalitions. Consequently, an imputation that lies in
the core cannot be found, and, due to cost, the core of the the transmitter
cooperation (N ,v) game is generally empty. Briefly, as a result of the non-
superadditivity of the game as well as the emptiness of the core, the grand
coalition of all transmitters will not form. Instead, independent disjoint
coalitions will form. Hence, in the next section, we will devise an algorithm
for coalition formation that can characterize these disjoint coalitions.

3 Coalition Formation Algorithm

In this section, we construct a novel coalition formation algorithm and we
prove its key properties.

3.1 Coalition Formation Concepts

Coalition formation has been a topic of high interest in game theory [17–
21]. In [19], [20] and [21], an interesting approach for dynamic coalition
formation is derived. The mathematical tools presented in [20] and [21]
allow to build algorithms to dynamically form coalitions among players
through two simple merge-and-split rules, which can be applied in a dis-
tributed manner and, thus, deemed suitable for wireless network games.
Introducing this framework and applying it into wireless networks requires
several concepts to be defined as follows.

Definition 7 A collection of coalitions in the grand coalition N , denoted S,

is defined as the set S = {S1, . . . , Sl} of mutually disjoint coalitions Si of N .

In other words, a collection is any arbitrary group of disjoint coalitions Si of

N not necessarily spanning all players of N . If the collection spans all the
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players of N ; that is
⋃l

j=1 Sj = N , the collection is referred to as a partition
of N .

Definition 8 A preference operator or comparison relation � is defined for

comparing two collections R = {R1, . . . , Rl} and S = {S1, . . . , Sp} that are

partitions of the same subset A ⊆ N (i.e. same players in R and S). Thus,

R � S implies that the way R partitions A is preferred to the way S partitions

A.

Various well known orders can be used as comparison relations [20],
[21]. These orders are split into two categories: coalition value orders and
individual value orders. Coalition value orders compare two collections (or
partitions) using the value of the coalitions inside these collections such
as in the utilitarian order where R � S implies

∑l
i=1 v(Ri) >

∑p
i=1 v(Si). In-

dividual value orders perform the comparison using the individual payoffs
such as the Pareto order. For these orders, two collections R and S are
seen as sets of individual payoffs of the same length L (number of players)
resulting from a group rational division of the utilities of each coalition
Ri ∈ R and Si ∈ S. For a collection R = {R1, . . . , Rl}, the payoff of a player j

in a coalition Ri ∈ R is denoted by φv
j (R); and

∑l
i=1 v(Ri) =

∑L
j=1 φ

v
j (R). The

Pareto order is defined as

R � S ⇐⇒ {φv
j (R) ≥ φv

j (S) ∀ j ∈ R,S}
with at least one strict inequality (>) for a player k. (B.8)

The Pareto order implies that a collection R is preferred over S, if at
least one player is able to improve its payoff when the coalition structure
changes from S to R without decreasing other players’ payoffs.

3.2 Merge-and-Split Coalition Formation Algorithm

Using the coalition formation concepts prescribed in the previous section,
a coalition formation algorithm for self organization in wireless networks
can be generated. This algorithm will be based on simple rules of merge-
and-split that allow to modify a partition T of N as follows [20]:

• Merge Rule: Merge any set of coalitions {S1, . . . , Sl} where {⋃l
j=1 Sj} �

{S1, . . . , Sl}, therefore, {S1, . . . , Sl} → {⋃l
j=1 Sj}. (each Si denotes a

coalition).
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• Split Rule: Split any coalition
⋃l

j=1 Sj where {S1, . . . , Sl} � {⋃l
j=1 Sj},

thus, {⋃l
j=1 Sj} → {S1, . . . , Sl}. (each Si denotes a coalition).

In brief, multiple coalitions will merge (split) if merging (splitting) yields
a preferred collection based on a chosen �. In [20] and [21] it is shown that
any arbitrary iteration of merge-and-split operations terminates, therefore,
it will be suitable to devise a coalition formation algorithm by means of
merge-and-split. In the transmitter cooperation game, the Pareto order
given by (B.8) is highly appealing as a comparison relation � for the merge-
and-split rules. With the Pareto order, coalitions will merge only if at least
one user can enhance its individual payoff through this merge without de-
creasing the other users’ payoffs. Similarly, a coalition will split only if
at least one user in that coalition is able to strictly improve its individual
payoff through the split without hurting other users. A decision to merge
or split is, thus, tied to the fact that all users must benefit from merge
or split, thus, any merged (or split) form is reached only if it allows all
involved users to maintain their payoffs with at least one user improving.
In summary, the proposed algorithm is a coalition formation algorithm
with partially reversible agreements [18], where the users sign a binding
agreement to form a coalition through the merge operation (if all users
are able to improve their individual payoffs from the previous state) and
they can only split this coalition if splitting does not decrease the payoff
of any coalition member (partial reversibility). Having partial reversibility
through the split operation reduces the complexity of the coalition forma-
tion process relatively to a fully reversible process [18] but can impact the
coalition stability as further discussed in Section 3.3.

For the proposed virtual MIMO formation game, the self-organizing
algorithm consists of two phases: adaptive coalition formation and tra-
nsmission. In the adaptive coalition formation phase, an iteration of se-
quential merge-and-split rules is performed until the iteration terminates
yielding a final network partition composed of independent disjoint coali-
tions. In the transmission phase, the formed coalitions transmit in their
corresponding slots in a TDMA manner. The transmission phase may oc-
cur several times prior to the repetition of the coalition formation phase,
notably in low mobility environment where changes in the coalition struc-
ture due to mobility are seldom.

Although any arbitrary merge can be performed, we propose a dis-
tributed cost-based merge process allowing the coalitions (users) to per-
form a local search for partners. Consequently, the decision to merge
with neighboring coalitions is taken based on the Pareto order proceeding
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from the partner that provides the lowest cost. In order for coalition S1 to
merge with another coalition S2, the utility of the formed coalition through
merge must be positive; that is v(S1 ∪ S2) > 0 otherwise no benefits exist
for the merge. Thus, based on the defined power cost (B.4) and utility
(B.6); coalitions can only merge when the cost for cooperation is less than
P̃ . Otherwise, when the cost is greater than or equal P̃ , through (B.6) the
utility of the merged coalition will be 0 and there is no mutual benefit.
Thus, using (B.4) the merge is possible (non zero utility) for S1 with S2 if
P̂S1∪S2 < P̃ , that is

∑|S1∪S2|
i=1 P̄i,̂i < P̃ which, by (B.3), yields

|S1∪S2|∑
i=1

1

dα
i,̂i

<
P̃

ν0 · σ2 · κ. (B.9)

Thus, a coalition will only attempt to merge with other coalitions where
(B.9) can be verified.

Each stage of the proposed algorithm starts from an initial network
partition T = {T1, . . . , Tl} of N . In this partition, any random coalition
(user) can start with the merge process. For implementation purposes,
assume that the coalition Ti ∈ T which has the highest utility in the initial
partition T starts the merge by attempting to cooperate with the coalition
yielding the lowest cost. On one hand, if merging occurs, a new coalition
T̃i is formed and, in its turn, coalition T̃i will attempt to merge with the
lowest cost partner. On the other hand, if Ti was unable to merge with
the smallest cost coalition, it tries the next lowest cost partner, proceeding
sequentially through the coalitions verifying (B.9). The search ends by a
final merged coalition T final

i composed of Ti and one or several of coalitions
in its vicinity (or just Ti, if no merge occured). The algorithm is repeated
for the remaining Ti ∈ T until all the coalitions have made their local merge
decisions, resulting in a final partition W . The coalitions in the resulting
partition W are next subject to split operations, if any is possible. An
iteration consisting of multiple successive merge-and-split operations is
repeated until it terminates. Table B.I shows a summary of one stage of
the proposed algorithm.

3.3 Partition Stability

The result of the proposed algorithm in Table B.I is a network partition
composed of disjoint independent coalitions. The stability of this resulting
network structure can be investigated with respect to a novel concept of
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Table B.I: One stage of the proposed merge-and-split algorithm.
Initial State

The network is partitioned by T = {T1, . . . , Tk} (At the begin-
ning

of all time T = N = {1, . . . ,Mt} with non-cooperative users).
Proposed Coalition Formation Algorithm

Phase I - Adaptive Coalition Formation:

In this phase, coalition formation using merge-and-split
occurs.

repeat

a) Coalitions begin the local search merge operation
in Section 3.2:
W = Merge(T ).

b) Coalitions in W decide to split based on the Pareto
order.
T = Split(W ).

until merge-and-split iteration terminates.
Phase II - Virtual MIMO Transmission:

The coalitions transmit during the time scale Mt with 1

coalition per slot with each coalition occupying all the time
slots previously held by its members.

The proposed algorithm is repeated periodically, enabling

the users to autonomously self-organize and adapt the topol-

ogy to environmental changes such as mobility.

defection function D [19], [20].

Definition 9 A defection function D is a function which associates with

each partition T of N a family (group) of collections in N . A partition T =

{T1, . . . , Tl} of N is D-stable if no group of players is interested in leaving T

when the players who wish to leave can only form the collections allowed

by D.

Two important defection functions can be pinpointed [19], [20]. First,
the Dhp(T ) function (denoted Dhp) which associates with each partition T

of N the family of all partitions of N that can form by merging or split-
ting coalitions in T . This function allows any group of players to leave the
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partition T of N through merge-and-split operations to create another par-

tition in N . Second, the Dc(T ) function (denoted Dc) which associates with
each partition T of N the family of all collections in N . This function allows
any group of players to leave the partition T of N through any operation
and create an arbitrary collection in N . Two forms of stability stem from
these definitions: Dhp stability and a stronger Dc stability. A partition T is
Dhp-stable, if no players in T are interested in leaving T through merge-
and-split to form other partitions in N ; while a partition T is Dc-stable, if
no players in T are interested in leaving T to form other collections in N .

The D-stability of a partition depends on various properties of its coali-
tions. A partition T = {T1, . . . , Tl} is Dhp-stable, if the following two condi-
tions are met ( [19], [20]): (i)- For each i ∈ {1, . . . , p} and for each partition
{R1, . . . , Rp} of Ti we have {R1, . . . , Rp} � Ti, and (ii)- For each S ⊆ {1, . . . , l}
we have

⋃
i∈S Ti � {Ti|i ∈ S} ( � is the opposite rule of the preference oper-

ator �). By definition of Dhp stability, we have

Theorem 2 Every partition resulting from our proposed merge-and-split al-

gorithm is Dhp-stable.

Proof: As every iteration of merge-and-split terminates, a resulting par-

tition from such iterations cannot be subject to any further merge or split.

Therefore, the players in a partition T resulting from sequential merge-and-

split operations such as in the algorithm of Table B.I cannot leave this parti-

tion through merge or split. Assume T = {T1, . . . , Tl} is the partition resulting

from the proposed merge-and-split algorithm. If for any i ∈ {1, . . . , l} and

for any partition {S1, . . . , Sp} of Ti we assume that {S1, . . . , Sp} � Ti then the

partition T can still be modified through the application of the split rule on Ti

contradicting with the fact that T resulted from a termination of the merge-

and-split iteration; therefore {S1, . . . , Sp} � Ti (first Dhp stability condition

verified). A similar reasoning is applicable in order to prove that T verifies

the second condition; since otherwise a merge rule would still be applicable.

�

One drawback of Dhp-stable partitions is that coalitions within such
partitions may be prone to deviations due to the partial reversibility of the
merge-and-split algorithm. For instance, in a Dhp-stable partition, once a
group of users form a coalition S by Pareto order merge, some subset of
S may be able to deviate from this coalition but is not allowed to do so
unless the deviation does not decrease the payoff of the remaining users
in S (split only by Pareto order). The rationale behind this is that, once
an agreement is signed to form a coalition by Pareto order, the users can
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only deviate if they do not hurt the other coalition members. Coalitions
exhibiting such internal deviation incentives are referred to as coalitions
“prone to deviations”. For the proposed algorithm, the number of such
coalitions will generally be very small due to the usage of Pareto order for
merge and the presence of cooperation costs which limit the possible devi-
ations that are not captured by the split operation (generally, nearby users
merge into a coalition and splitting occurs when they distance themselves
due to mobility). Moreover, by imposing stringent fairness criteria for the
payoff division as will be seen in Section 5, the number of such coalitions
can be further reduced.

Due to the possibility of having coalitions prone to deviations in a Dhp-
stable partition, a stronger Dc-stable partition can be sought by the pro-
posed algorithm. For instance, the work in [20] showed that, if it exists, a
Dc-stable partition has the following properties:

1. If it exists, a Dc-stable partition is the unique outcome of any arbitrary

iteration of merge-and-split and is a unique Dhp-stable partition.

2. A Dc-stable partition T is a unique �-maximal partition, that is for all
partitions T ′ �= T of N , T � T ′. In the case where � represents the
Pareto order, this implies that the Dc-stable partition T is the partition
that presents a Pareto optimal payoff distribution for all the players.

3. A Dc-stable partition does not contain any coalitions prone to devia-
tions.

Clearly, a Dc-stable partition is an optimal partition that the wireless net-
work can seek as it provides a payoff distribution that is Pareto optimal
with for all users with respect to any other network partition. In addition,
this partition is a unique outcome of any arbitrary iteration of merge-and-
split rules. However, the existence of a Dc-stable partition is not always
guaranteed [20]. The Dc-stable partition T = {T1, . . . , Tl} of the whole space
N exists if a partition of N verifies two necessary and sufficient condi-
tions [20]:

A) For each i ∈ {1, . . . , l} and each pair of disjoint coalitions A and B such
that {A ∪ B} ⊆ Ti we have {A ∪ B} � {A,B} (referred to as cond. A)
hereafter).

B) For the partition T = {T1, . . . , Tl} a coalition G ⊂ N formed of players
belonging to different Ti ∈ T is T -incompatible if for no i ∈ {1, . . . , l} we
have G ⊂ Ti. Dc-stability requires that for all T -incompatible coalitions
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{G}[T ] � {G} where {G}[T ] = {G∩Ti ∀ i ∈ {1, . . . , l}} is the projection of
coalition G in partition T (referred to as cond. B) hereafter).

If no partition of N can satisfy these conditions, then no Dc-stable parti-
tions of N exists. Since the Dc-stable partition is a unique outcome of any
arbitrary merge-and-split iteration, we have

Lemma 1 For the proposed (N, v) transmitter cooperation coalitional game,

the merge-and-split algorithm of Table B.I converges to the optimal Dc-stable

partition, if such a partition exists. Otherwise, the proposed algorithm yields

a final network partition that is Dhp-stable.

In the transmitter cooperation game, the existence of a Dc-stable par-
tition depends on various factors. For instance, cond. A) states that, for
a Dc-stable partition T , every coalition Ti ∈ T must verify the Pareto or-
der not only at the level of the whole coalition Ti but also at the level of
all disjoint coalitions subsets of Ti. Verifying the Pareto order requires
that the utility of every union of any two disjoint coalitions subsets of
a coalition Ti must yield an extra utility over the disjoint case; that is
v(A ∪ B) > v(A) + v(B) ∀ A,B ⊂ Ti. In an ideal case with no cost, as the
number of transmit antennas is increased for a fixed power constraint,
the overall system’s diversity increases as the data passes through dif-
ferent channel values allowing, with adequate coding, the symbols to be
recovered without error at a higher rate [15]. In such a case, since A ∪ B

has a larger number of antennas than A and B, ∀ A,B ⊂ Ti and for each
Ti we have CA∪B > max (CA, CB) and thus,

|A ∪B| ·CA∪B>|A| ·max (CA, CB) + |B| ·max (CA, CB),

|A ∪B| · CA∪B>|A| · CA+|B| · CB ⇔ v(A ∪B)>v(A)+v(B), (B.10)

which is sufficient to verify cond. A) for Dc-stability when adequate payoff
divisions are done. However, due to the cost CA∪B, CA and CB can have
different power constraints and (B.10) may not be guaranteed ∀A,B ⊂ Ti.
Guaranteeing this condition is directly dependent on the cooperation cost
within the coalitions in T and, thus, on the users’ location. In practical
networks, verifying cond. A) for Dc-stability depends on the users’ random
locations.

Cond. B) for the existence of a Dc-stable partition T is that players
formed from different Ti ∈ T have no incentive to form a coalition G out-
side of T . In the transmitter cooperation game, cond. B is also dependent
on the location of the coalitions Ti ∈ T ; specifically on the distance between
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the users in different coalitions Ti ∈ T . Thus, cond. B) is verified whenever
two users belonging to different coalitions in a partition T are separated
by large distances. A sufficient condition for verifying this second require-
ment can be derived.

Theorem 3 For a network partition T = {T1, . . . , Tl} resulting from the pro-

posed algorithm; if the distance di,j between any two users i ∈ Ti and j ∈ Tj

with Ti �= Tj verifies di,j >
(

κ·P̃
2·ν0·σ2

) 1
α
= d̂0 then the second condition for Dc

stability, cond. B), is verified.

Proof: Since a Dc-stable partition is a unique outcome of any merge-and-

split iteration, we will consider the partition T = {T1, . . . , Tl} resulting from

any merge-and-split iteration in order to show when cond. B) can be satis-

fied. A T -incompatible coalition is a coalition formed from users belonging to

different Ti ∈ T . Consider the T -incompatible coalition {i, j} that can poten-

tially form between two users i ∈ Ti and j ∈ Tj with Ti �= Tj. The total power

cost for {i, j} is given by (B.3) as P̂{i,j} = P̄i,j+ P̄j,i = 2 · P̄i,j. In the case where

the total power cost is larger than the constraint, we have P̂{i,j} ≥ P̃ and thus

P̄i,j ≥ P̃
2 which yields the required condition on distance di,j ≥ ( κ·P̃

2·ν0·σ2 )
1
α = d̂0.

We will have by (B.6) v({i, j}) = 0, and, thus, φv
i ({i, j}) = φv

j ({i, j}) = 0. Or

we have that, {i, j}[T ] = {{i, j} ∩ Tk ∀ k ∈ {1, . . . , l}} = {{i}, {j}}, and, thus,

φv
i ({i, j}[T ]) = v({i}) > φv

i ({i, j}) = 0 and φv
j ({i, j}[T ]) = v({j}) > φv

j ({i, j}) = 0.

Consequently, {i, j}[T ] � {i, j} and cond. B) is verified for any T -incompatible

coalition formed of 2 users. Moreover, when any two users i ∈ Ti and j ∈ Tj

with Ti �= Tj are separated by d̂0, T -incompatible coalitions G with |G| > 2

will have a cost P̂G > P̂{i,j} ≥ P̃ and thus v(G) = 0; yielding G[T ] � G for

all T -incompatible coalitions G. Hence, when any two users in the network

partition T resulting from merge-and-split are separated by a distance larger

than d̂0, then cond. B) for Dc stability existence is verified. �

In summary, the existence of the Dc-stable partition is closely tied to
the users’ location; which is a random parameter in practical networks. A
partition resulting from our algorithm will be either Dc or Dhp-stable as per
Lemma 1.

3.4 Distributed Implementation of Merge-and-Split

The proposed algorithm in Table B.I can be implemented in a distributed
way. As the user can detect the strength of other users’ uplink signals
(through techniques similar to those used in the ad hoc routing discovery
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[22]), nearby coalitions can be discovered and the local merge algorithm
performed. Each coalition surveys neighboring coalitions satisfying (B.9)
and attempts to merge based on the Pareto order. The users in a coalition
need only to know the maximum distances with respect to the users in
neighboring coalitions. Moreover, each formed coalition internally decides
to split if its members find a split form by Pareto order. By using a control
channel, the distributed users can exchange some channel information
and then and then cooperate using our model (exchange data information
if needed, form coalition then transmit). Signaling for this handshaking
can be minimal.

The complexity of the algorithm in Table B.I lies in the complexity of
the merge-and-split operations. For a given network structure, one run
of the cost-based merge process detailed in Section 3.2 implies that each
coalition will try to merge with other coalitions where (B.9) is verified. The
most complex case for the merge occurs when the network partition con-
sists of Mt non-cooperative users that are located closely to verify (B.9)
but not close enough to merge. In such a scenario, every user attempts
to merge with all the others; but the merge is unsuccessful due to high
cost. The first user requires Mt − 1 attempts for merge, the second re-
quires Mt − 2 attempts and so on. The total number of merge attempts
will be

∑Mt−1
i=1 i = Mt(Mt−1)

2 . In practice, the merge process requires a sig-
nificantly lower number of attempts. For instance, after the first run of
the algorithm, the initial Mt non-cooperative users will self-organize into
larger coalitions. Subsequent runs of the algorithms will deal with a net-
work composed of a number of coalitions that is much smaller than Mt;
reducing the number of merge attempts per coalition. This complexity
is further reduced by the fact that, due to the cost, a coalition does not
need to attempt to merge with far away or large coalitions which violate
(B.9). Finally, once a group of coalitions merges into a larger coalition,
the number of merging possibilities for the remaining users will decrease.
In summary, although in worst case scenarios the merge process requires
around Mt·(Mt−1)

2 attempts, in practice, the process is far less complex.

At first glance, the split rule can be seen as a complex operation. For
instance, splitting can involve finding all the possible partitions of the set
formed by the users in a coalition In set theory, the number of all pos-
sible partitions of a set, i.e., a coalition in our case, is given by a value
known as the Bell number which grows exponentially with the number
of elements in the set, i.e., the number of users in the coalition [23]. In
practice, since the split operation is restricted to each formed coalition
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in the network, it will operate on relatively small sets. As per (B.4), the
size of each coalition is limited by the increasing cost as well as by the
users’ locations, thus, the coalitions formed in the proposed game are rel-
atively small. Consequently, the split complexity will be limited to finding
all possible partitions for small sets which can be affordable in terms of
complexity. This complexity is further reduced by the fact that a coalition
is not required to search for all the split forms. Typically, a coalition does
not need to go through all the possible partitions As soon as a coalition
finds a split form verifying the Pareto order, the users in this coalition will
split, and the search for further split forms is not required. Briefly, the
practical aspects dictated by the wireless network such as the increasing
cost, users’ locations and sequential search will significantly diminish the
split complexity. The reduction in the merge-and-split complexity will be
further corroborated through simulations in Section 5.

4 Fairness Criteria for Payoff Division within Coali-

tion

In this section, various fairness rules for dividing the utility v(S) among
the members of coalition S are inspected. A merge or a split operation by
Pareto order directly depends on the fairness criterion selected for payoff
division.

4.1 Egalitarian Fair (EF)

The most simple division method is to divide the extra utility equally

among users. In other words, the utility of user i among the coalition
S is

φi =
1

|S|

⎛
⎝v(S)−

∑
j∈S

v({j})

⎞
⎠+ v({i}), (B.11)

where v({i}) and v({j}) are the non-cooperative payoffs of users i and j.
EF does not imply dividing the whole utility equally but rather the extra

benefits equally while conserving individual rationality.

163



A Distributed Coalition Formation Framework for

Fair User Cooperation in Wireless Networks

4.2 Proportional Fairness (PF)

The EF is a very simple and strict fairness criterion. However, in practice,
the user experiencing a good channel might not be willing to cooperate with
a user under bad channel conditions, if the extra is divided equally. To
account for the channel differences, we use a criterion named proportional
fairness (PF) [24], in which the extra benefit is divided in weights according
to the users’ non-cooperative utilities. Thus,

φi = wi

⎛
⎝v(S)−

∑
j∈S

v({j})

⎞
⎠+ v({i}), (B.12)

where
∑

i∈S wi = 1 and within the coalition wi
wj

= v({i})
v({j}) . Thus, within the

coalition for PF, the users with good channel conditions deserve more extra
benefits than the users with bad channel conditions.

4.3 Shapley Value Fairness (SV)

Additional fairness criteria can be used while dividing the worth of a coali-
tion among its members. For instance, another measure of fairness is
given using the Shapley value (SV) [16].

Definition 10 A Shapley value φv is a function that assigns to each possi-

ble characteristic function v a vector of real numbers, i.e., φv = (φv
1, φ

v
2, . . . , φ

v
Mt

),

where φv
i represents the worth or value of user i in the game (N, v). There

are four Shapley axioms that φv must satisfy:

1. Efficiency Axiom:
∑

i∈N φv
i = v(N).

2. Symmetry Axiom: If user i and user j are s. t. v(S ∪ {i}) = v(S ∪ {j})
for every coalition S not containing user i and user j, then φv

i = φv
j .

3. Dummy Axiom: If user i is s. t. v(S) = v(S ∪ {i}) for every coalition S

not containing i, then φv
i = 0.

4. Additivity Axiom: If u and v are characteristic functions, then φu+v =

φv+u = φu + φv.

It is shown [16], [25] that there exists a unique function φ satisfying the

Shapley axioms given by

φv
i =

∑
S⊆N−{i}

(|S|)!(|N | − |S| − 1)!

(|N |)! [v(S ∪ {i})− v(S)]. (B.13)
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The SV provides a fair division which takes into account the random-
ordered joining of the users in the coalition. Under the assumption of
randomly-ordered joining, the Shapley function of each user is its expected
marginal contribution when it joins the coalition [16].

In our transmitter cooperation game, we are interested in dividing pay-
offs using SV among the users in any formed coalition G by merge or
split. Thus, the payoff division by SV occurs by applying (B.13) on each
restricted game (G, v) in the structure. In [26], they proved that, in a game
with coalitional structure, the SV of the whole game (N, v) is found by us-
ing the SV on the game restricted to each coalition G in the structure as in
our case. For a non-superadditive game, the SV might not be individually
rational, however, the proposed algorithm handles it with an appropriate
merge-and-split decision by Pareto order.

4.4 Maximin Fairness Using the Nucleolus (NU)

A stricter fairness rule for payoff division is given using the nucleolus (NU).
We introduce the concepts of excess, kernel, and nucleolus [16, 25, 27]. For
a given characteristic function v, an allocation x is found such that, for
each coalition S and its associated dissatisfaction, an optimal allocation is
calculated to minimize the maximum dissatisfaction. The dissatisfaction
is quantified as follows.

Definition 11 The measure of dissatisfaction of an allocation φv for a coali-

tion S is defined as the excess e(φv, S) = v(S)−∑
j∈S φv

j . A kernel of v is the

set of all allocations φv such that

max
S⊆N−{j},i∈S

e(φv, S) = max
G⊆N−{i},j∈G

e(φv, G). (B.14)

The kernel states that if players i and j are in the same coalition, then the

highest excess that i can make in a coalition without j is equal to the highest

excess that j can make in a coalition without i.

Definition 12 Define O(φv) as the vector of all excesses in a game (N, v)

arranged in non-increasing order (except the excess of the grand coalition

{N}). A vector y = (y1, . . . , yk) is said to be lexographically less than a vector

z = (z1, . . . , zk) (denoted by y ≺lex z) if ∃l ∈ {1, . . . , k} where y1 = z1, y2 =

z2, . . . , yl−1 = zl−1, yl < zl. A group rational allocation δv is a nucleolus (or

prenucleolus) if for every other φv, O(δv) ≺lex O(φv). Hence, the nucleolus

is the group rational allocation δv which minimizes the excesses in a non-

increasing order.
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The NU of a coalitional game exists and is unique. The NU is group
rational, lies in the kernel of the game and satisfies the symmetry and
dummy axioms. Moreover, if the core is not empty, the NU is in the core.
In other words, the NU is the best allocation under a min-max criterion.

Our main interest is to use the NU to find the allocation φv = (φv
1, . . . , φ

v
|G|)

for a coalition G ⊂ N that will potentially form by merge (or split); that is
the NU of the restricted game (G, v). Unlike the SV, the NU of a game
(N, v) with a coalition structure T is not the same as the NU of the re-
stricted games (G, v) with G ∈ T [26]. When the NU is considered over
the restricted game (G, v), it will not minimize the excesses pertaining to
coalitions formed by a combination of players belonging to G and players
outside G. A similar reasoning also applies to the kernel. However, finding
the NU of the whole game (N, v) requires a centralized intelligence which
can also find the excesses among the disjoint coalitions that are formed;
which contradicts with the goal of deriving a distributed clustering algo-
rithm. Thus, for distributed cooperation, it suffices to use the NU of the
restricted game (G, v) as it allows a payoff allocation which minimizes ex-
cesses inside G while having all the fairness properties of the NU restricted
over (G, v). If a game is non-superadditive the NU may not be individually
rational; however, this will simply be handled by adequate merge or split
decisions.

5 Simulation Results and Analysis

For simulations, a BS is placed at the origin with Mr = 3 equally spaced
antennas. Without loss of generality, at the receiver, we consider antennas
that are separated enough while φi,k = 0 ∀i, k. 18. Users are randomly
located within a square of 4km× 4km around the BS. The propagation loss
α = 3 and the path loss constant κ = 1. The power constraint per slot is
P̃ = 0.01 W, the cost SNR target for information exchange is ν0 = 10 dB and
noise level is −90 dBm. 10000 independent runs with randomly located
users are conducted for different network sizes.

Fig. B.2 shows the resulting network’s structure in terms of the average
number of coalitions for different fairness and networks sizes. Cooperation
organizes the network in clustered coalitions with the average number of
users per coalition seen through Fig. B.2 by dividing the network size with

18This choice provides a lower bound on the performance gain of our algorithm (i.e. the
gains mainly stemming from the transmitters cooperation which is the main objective of
the paper); considering different phases certainly yields an additional multiplexing gain
[14, 15] and it does not affect the analysis or the results hereafter.
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Fig. B.2: Resulting network structure shown through the average number
of coalitions formed for different network sizes.

the number of coalitions. The number of coalitions and the average num-
ber of users per coalition increase with the network size due to the avail-
ability of more partners for forming coalitions. Moreover, as per Fig. B.2,
in general, the network tends to self-organize into a large number of small
coalitions rather than a small number of large coalitions. The PF division
yields the largest average coalition size for all networks since it provides
cooperation incentives to users with better non-cooperative channels by
assigning them a larger weight. In contrast, the SV and NU division yield
smaller coalitions due to additional fairness constraints imposed on the
division (e.g. Shapley axioms and excess minimization for nucleolus). The
results in this figure also provide us with an insight on the complexity of
the merge-and-split operations as discussed in Section 3.4. For example,
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Fig. B.3: Cooperation gains in terms of the average individual user payoff
achieved by the proposed scheme during the whole transmission duration
compared to the non-cooperative case and the centralized optimal solution
for different network sizes and different fairness criteria.

for the merge operation, we note that one run of the proposed algorithm
transforms a network of Mt = 100 non-cooperative users into a network
consisting of at most an average of 38.63 coalitions (NU case). Thus, the
maximum number of merge attempts for future runs of the algorithm is
reduced by a factor of almost 2.5. In addition, because the network self-
organizes into a large number of small coalitions, the complexity of the
split operation is generally affordable as it will be restricted to small coali-
tions. For instance, for a network as large as Mt = 100 users, the maxi-
mum average coalition size (over which a split may be applicable) is only
2.6 users for PF.

168



Simulation Results and Analysis

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1

2

3

4

5

6

Distance in x (km)

D
is

ta
nc

e 
in

 y
 (k

m
)

Final network structure for different fairness criteria

Egalitarian Fair (EF)    { {3,6,1,4}, {2}, {5} }
Proportional Fair (PF) { {3,6,1,4,2}, {5} }
Shapley Value (SV)    { {3,6,2},{1,4}, {5} }
Nucleolus (NU)            { {3,6,1},{4,2}, {5} }

Fig. B.4: User positions and network structure for different fairness crite-
ria.

In Fig. B.3, we show the average total individual user payoff (rate) im-
provement achieved during the whole transmission time scale as a func-
tion of the network size. We compare the performance of the proposed al-
gorithm to that of the non-cooperative case as well as the optimal partition
found by a centralized entity through exhaustive search. For the cooper-
ative case, the average user’s payoff increases with the number of users
since the possibility of finding cooperating partners increases. In contrast,
the non-cooperative approach presents an almost constant performance
with different network sizes. Cooperation presents a significant advantage
over the non-cooperative case in terms of average individual utility for all
fairness types, and this advantage increases with the network size. The
PF division presents the best performance, as it allows an improvement of
up to 40.42% over the non-cooperative case at Mt = 100. This result also

169



A Distributed Coalition Formation Framework for

Fair User Cooperation in Wireless Networks

highlights the trade off between fairness and cooperation gains. For in-
stance, while the PF presents an advantage in terms of payoff gain, since
it allows larger coalitions to form (Fig. B.2), the SV and NU present lower
gains but more fairness in allocating payoffs (Section 4). Furthermore,
compared to the optimal solution, clearly the proposed merge and split al-
gorithm achieve a highly comparable performance with a performance loss
not exceeding 1% at Mt = 20 users. This clearly shows that, by using the
proposed distributed merge-and-split algorithm, the network can achieve
a performance that is very close to optimal. Note that, for more than 20

users, finding the optimal partition by exhaustive search is mathematically
and computationally untractable.

Depending on the chosen fairness criteria for payoff division, the result-
ing network topology changes as the merge-and-split through Pareto order
becomes different. For showing the fairness effect on the network struc-
ture, we show in Fig.B.4, for a random network of Mt = 6 users, the users’
positions and the final structure for each fairness type. Moreover, the pay-
offs of relevant coalitions in this network are shown in Table B.II. The
merge process starts with User 3 (best non-cooperative utility) which at-
tempts to merge with User 6 (closest user). Forming coalition {3, 6} allows
both users to improve their payoff, for all fairness. The PF gives a different
division than other fairness types as it assigns a higher weight to User 3
which has the best non-cooperative utility. Subsequently, for all fairness
types except the SV, coalition {3, 6} merges with User 1 to yield a 3-users
coalition. For the SV, since User 6 cannot improve its payoff through this
merge, coalition {3, 6, 1} does not form. In this case, coalition {3, 6} merges
successfully with User 2 (the next lowest cost) as shown in Table B.II.
Moreover, for the SV, coalition {3, 6, 2} tries to merge with User 1; but the
Pareto order cannot be verified and {3, 6, 2} cannot merge any further. For
the other fairness types, the newly formed coalition {3, 6, 1} tries to merge
with User 4. This merge is possible for EF and PF since all 4 users can
improve their payoff. However, for the NU coalition {3, 6, 1, 4} does not form
since the payoff of User 6 would decrease by the merge. For EF, coalition
{3, 6, 1, 4} cannot merge with User 2 since the payoffs of Users 3, 6, 1 and
4 will degrade. As a result, for EF, this coalition cannot merge any further
and the final network structure is T = {{3, 6, 1, 4}, {2}, {5}}. In contrast, for
PF, coalition {3, 6, 1, 4} is able to merge with User 2 but it can no longer
merge with the remaining User 5. However, the grand coalition cannot
form since the cost for cooperation would be 0.0939 W which is larger than
the total power constraint P̃ = 0.01 W yielding v({3, 6, 1, 4, 2, 5}) = 0. For the
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Table B.II: Dependence of the final network structure on the different fair-
ness criteria for payoff division among the coalition users for network of
Fig.B.4.

Non-Cooperative Payoffs

v({1}) = 8.2827, v({2}) = 6.5697, v({3}) = 13.5481,
v({4}) = 6.9005, v({5}) = 5.3854, v({6}) = 10.6611

Individual Payoffs for Relevant Coalitions

Egalitarian Fair

User 1 User 2 User 3 User 4 User 6
{3, 6} - - 19.1089 - 16.2219

{3, 6, 1} 15.4172 - 20.6826 - 17.7956
{3, 6, 2} - 12.7609 19.7393 - 16.8523

{3, 6, 1, 4} 15.6885 - 20.9539 14.3063 18.0669
{3, 6, 1, 4, 2} 15.1963 13.4833 20.4617 13.8141 17.5747

{1, 4} 9.4233 - - 8.0411 -
{4, 2} - 7.5588 - 7.8896 -

{3, 6, 2, 1} 15.1604 13.4475 20.4258 - 17.5388
Proportional Fair

User 1 User 2 User 3 User 4 User 6
{3, 6} - - 19.7720 - 15.5587

{3, 6, 1} 13.7388 - 22.4726 - 17.6839
{3, 6, 2} - 10.5342 21.7237 - 17.0946

{3, 6, 1, 4} 14.5114 - 23.7364 12.0897 18.6783
{3, 6, 1, 4, 2} 14.5121 11.5108 23.7376 12.0904 18.6793

{1, 4} 9.5271 - - 7.9372 -
{4, 2} - 7.5345 - 7.9139 -

{3, 6, 2, 1} 14.1162 11.1967 23.0900 - 18.1697
Shapley

User 1 User 2 User 3 User 4 User 6
{3, 6} - - 19.1089 - 16.2219

{3, 6, 1} 12.8630 - 25.1391 - 15.8931
{3, 6, 2} - 10.1499 22.9161 - 16.2865

{3, 6, 1, 4} 14.1229 - 26.8091 11.9101 16.1738
{3, 6, 1, 4, 2} 13.9112 10.9714 27.6011 11.8467 16.1999

{1, 4} 9.4233 - - 8.0411 -
{4, 2} - 7.5588 - 7.8896 -

{3, 6, 2, 1} 13.7479 11.0347 25.7791 - 16.0108
Nucleolus

User 1 User 2 User 3 User 4 User 6
{3, 6} - - 19.1089 - 16.2219

{3, 6, 1} 13.4236 - 24.0180 - 16.4536
{3, 6, 2} - 10.2958 22.6245 - 16.4323

{3, 6, 1, 4} 13.1070 - 28.9640 11.0105 15.9342
{3, 6, 1, 4, 2} 12.7567 9.0421 32.0028 10.7246 16.0041

{1, 4} 9.4233 - - 8.0411 -
{4, 2} - 7.5588 - 7.8896 -

{3, 6, 2, 1} 12.7514 9.6235 28.8135 - 15.3842

171



A Distributed Coalition Formation Framework for

Fair User Cooperation in Wireless Networks

Table B.III: Payoffs for coalition T2 = {7, 9, 10} of Figure B.5 and its sub-
coalitions (during Mt = 10 slots).

Egalitarian Fair Proportional Fair

User 7 User 9 User 10 User 7 User 9 User 10
{7} 3.1077 - - 3.1077 - -
{9} - 2.7173 - - 2.7173 -
{10} - - 2.7345 - - 2.7345
{7, 9} 3.9829 3.5925 - 4.0416 3.5338 -
{7, 10} 4.0075 - 4.4406 4.0648 - 3.5779
{9, 10} - 3.5996 3.6177 - 3.6206 3.5967
T2 = {7, 9, 10} 4.5175 4.1452 4.1271 4.6431 4.0869 4.0598

Shapley Nucleolus

User 7 User 9 User 10 User 7 User 9 User 10
{7} 3.1077 - - 3.1077 - -
{9} - 2.7173 - - 2.7173 -
{10} - - 2.7345 - - 2.7345
{7, 9} 3.9829 3.5925 - 3.9829 3.5925 -
{7, 10} 4.7863 - 4.4406 4.7863 - 4.4406
{9, 10} - 3.5996 3.6177 - 3.5996 3.6177
T2 = {7, 9, 10} 4.5210 4.1558 4.1131 4.5244 4.1663 4.0991

SV, User 1 will further merge with User 4 but coalition {1, 4} cannot merge
any further with User 5 since v({1, 4, 5}) = 0. For the NU, User 4 merges
with User 2 forming coalition {4, 2} which can no longer merge with User
5 as v({4, 2, 5}) = 0. Finally, for all 2-users coalitions the EF, SV and NU
division coincide as they obey the same equations in this case [16], [25].

Furthermore, a network with Mt = 10 users is generated where the
users are located in a way that a Dc-stable partition exists. Fig. B.5
shows that the proposed algorithm converges to the final Dc-stable net-
work partition T = {T1, . . . , T6} (valid for all fairness criteria). Cond. A) for
Dc-stability is easily verified for coalitions consisting of at most 2 users
since such coalitions do not form unless the Pareto order is internally ver-
ified (definition of the merge rule). For the 3-users coalition T2 = {7, 9, 10}
Table B.III shows the payoffs of the different sub-coalitions for the var-
ious fairness types. Table B.III shows that the Pareto order is inter-
nally verified for T2, that is ∀A,B ⊂ T2; {A ∪ B} � {A,B} for all fairness
cases. In addition, by inspecting Fig. B.5 it is clear that any two users
belonging to T -incompatible coalitions are separated by a distance larger
than the maximum distance, which is d̂0 = 0.793 km, computed using
Theorem 4 for the simulation parameters. Thus, Theorem 3 is satisfied
and cond. B) is verified. For example, for the T -incompatible coalition
G = {4, 7} equation (B.6) yields v(G) = 0 and thus φv

4(G) = φv
7(G) = 0 due

172



Simulation Results and Analysis

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

T1
4

8

T2
7

10
9

T3

6

5
T4

3

2

T5
1

Location in X (km)

Lo
ca

tio
n 

in
 Y

 (k
m

)

Base Station

Fig. B.5: Convergence of the algorithm to a final Dc-stable partition.

to the distance between Users 4 and 7. The projection of G in T is G[T ] =

{{4, 7}∩T1, {4, 7}∩T2, {4, 7}∩T3, {4, 7}∩T4, {4, 7}∩T5, {4, 7}∩T6} = {{4}, {7}}. In
G[T ], the payoffs of users 4 and 7 are respectively φv

4(G[T ]) = v({4}) = 7.6069

and φv
7(G[T ]) = v({7}) = 3.1077, by Pareto order φv

4(G[T ]) > φv
4(G) and

φv
7(G[T ]) > φv

7(G), thus, G[T ] � G.
In Fig. B.6, we plot the percentage of coalitions prone to deviations (av-

eraged over random starting positions of the users) in the final network
structure for different fairness criteria and different network sizes. First
and foremost, this figure shows that the percentage of coalitions prone to
deviation is generally small and does not exceed 10% for a relatively large
network with Mt = 100 users, for the PF fairness criteria. This corrobo-
rates the fact that, by using Pareto order merge and split, the number of
coalitions prone to deviations is generally small. Moreover, in this figure,
we can see that for stringent fairness criteria such as the SV and the NU,
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Fig. B.6: Average percentage of coalitions prone to deviations in the final
network structure vs. number of users Mt for different fairness criteria.

the final network partitions contain no coalitions prone to deviation even
if the partition is Dhp-stable. This is mainly due to two reasons. On one
hand, the SV and the NU have strict fairness requirements on the coali-
tions, hence yielding more cohesive and stable coalitions. On the other
hand, for such fairness criteria, the size of the coalitions is generally small
as previously shown. In contrast, the PF presents the largest percentage
due to the large size of the coalitions that form for PF division as well as
the fact that the PF can give incentives to deviate for coalition members
that have a good non-cooperative utility. Similarly, the EF presents a per-
centage of coalitions prone to deviation, due to the coalition sizes that are
generally smaller than PF, and to the fact that extra utility benefits are
equally distributed among the users, giving less incentive for users to de-
viate than in the PF. In a nutshell, Fig. B.6 summarizes the possible loss of
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stability that can occur when the final network partitions are Dhp-stable,
while highlighting an interesting fairness-stability trade off.

In Fig. B.7, we show how the merge-and-split algorithm handles mobil-
ity. The network setup is the same as in Fig. B.5 with User 7 moving along
the y-axis upwards for 1.4 km. The figure depicts the results for PF, as the
other division types yield similar curves and are omitted for space limita-
tion. When User 7 moves upwards, it becomes closer to the BS while the
cost in coalition {7, 9, 10} increases. As a result, its utility increases at first
while the utilities of Users 9 and 10 decrease, since the PF division gives a
higher weight to the user with the best non-cooperative utility, i.e., User 7.
When User 7 covers 0.3 km, the cost in coalition {7, 9, 10} increases signif-
icantly, and the utilities of all three users drop. Afterwards, at 0.4 km the
splitting step occurs as User 7 splits from coalition {7, 9, 10} and all three
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Fig. B.8: Frequency of merge-and-split operations per minute for different
speeds in a mobile network of Mt = 50 users.

users improve their utilities by Pareto order. User 7 continues to improve
its utility as it gets closer to the BS. Once User 7 moves about 1.3 km, it
will be beneficial to Users 7, 4 and 8 to form a 3-user coalition. The merge
algorithm allows User 7 to join the coalition of Users 4 and 8. Therefore,
the payoffs of Users 4, 7 and 8 start improving significantly. These results
show how merge-and-split algorithm operates in a wireless network.

The algorithm’s performance is further investigated in a mobile net-
work of Mt = 50 users (random walk mobility) for a period of 5 minutes.
For Mt = 50, each TDMA transmission requires 50 · θ seconds with θ the
slot duration, we let θ = 10 ms. The results in terms of frequency of merge-
and-split operations per minute are shown in Fig. B.8 for various speeds.
As the speed increases, for all fairness types, the number of merge-and-
split operations increases due to the changes in the network structure
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Fig. B.9: Network structure changes with time for Mt = 50 users, a con-
stant speed of 120 km/h and a proportional fair division.

incurred by mobility. Fairness types that yield large coalitions, incur a
higher frequency of merge-and-split since such coalitions require addi-
tional merge operations and are more prone to splitting due to mobility.
In this regard, the PF and EF record the highest frequencies notably at
high speeds. EF has the highest frequency since it yields coalitions with
size comparable to PF, but these coalitions are more prone to split at high
mobility since EF divides the extra benefit equally without accounting for
the users’ non-cooperative utilities like PF.

Fig. B.9 shows how the structure of a mobile network of Mt = 50 users
evolves with time for PF (other fairness are omitted for space limitation),
while the velocity of the users is constant equal to 120 km/h for a period of
5 minutes. As the users move, the structure of the network changes, with
new coalitions forming and others splitting. The network starts with a non-
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network having Mt = 100 users for the cooperative and non-cooperative
cases.

cooperative structure made up of 50 independent users. In the first step,
the network self-organizes in 20 coalitions with an average of 2.5 users per
coalition. With time the structure changes as new coalitions form or others
split. After the 5 minutes have elapsed the final coalition structure is made
up of 23 coalitions that is an average of 2.17 users per coalition. Finally,
the behavior and performance of the network for different cost SNRs ν0
is assessed. Fig. B.10 shows the average total user payoff achieved for
different cost SNRs for Mt = 100 users. This figure shows that cooperation
maintains utility gains at almost all costs; however, as the cost increases
these gains decrease converging towards the non-cooperative gains at high
cost since cooperation becomes difficult due to the cost. In fact, at ν0 =
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40 dB all fairness types yield an average number of coalitions of around
96, i.e., almost every user acts non-cooperatively, hence the performance
is close to that of the non-cooperative case.

6 Conclusions

In this paper, we constructed a novel game theoretical framework suitable
for modeling cooperation among wireless network nodes. The framework
is applied to the transmitter cooperation game with cost. Unlike existing
literature which sought algorithms to form the grand coalition of transmit-
ters, we inspected the possibility of forming disjoint independent coalitions
using a novel algorithm from coalitional game theory. We proposed a sim-
ple and distributed merge-and-split algorithm for forming coalitions and
benefiting from spatial gains. The proposed algorithm enables single an-
tenna transmitters to cooperate and self-organize. Moreover, the algorithm
can be implemented in a distributed way since the decision to merge or
split is individually taken by each user based on the Pareto order, implying
that at least one of the users is able to improve his payoff without hurting
the others. The stability of the network partitions is studied through the
novel concept of defection function D. The proposed algorithm converges
to a network partition that is Dhp-stable, i.e., no user has an incentive to
leave this partition through merge or split. Depending on the location of
the users, the proposed algorithm can also converge to a Pareto optimal (in
terms of payoff distribution) Dc-stable partition which is a unique outcome
of any merge-and-split iteration. The derived algorithm efficiently adapts
to mobility as the coalitions form or split depending on the users’ time
varying positions. Simulation results show how the proposed algorithm
allows the network to self-organize and improve the user payoff by 40.42%.
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Abstract

Collaborative spectrum sensing among secondary users (SUs) in cogni-
tive networks is shown to yield a significant performance improvement.
However, there exists an inherent trade off between the gains in terms of
probability of detection of the primary user (PU) and the costs in terms of
false alarm probability. In this paper, we study the impact of this trade off
on the topology and the dynamics of a network of SUs seeking to reduce
the interference on the PU through collaborative sensing. Moreover, while
existing literature mainly focused on centralized solutions for collabora-
tive sensing, we propose distributed collaboration strategies through game
theory. We model the problem as a non-transferable coalitional game,
and propose a distributed algorithm for coalition formation through sim-
ple merge and split rules. Through the proposed algorithm, SUs can au-
tonomously collaborate and self-organize into disjoint independent coali-
tions, while maximizing their detection probability taking into account the
cooperation costs (in terms of false alarm). We study the stability of the re-
sulting network structure, and show that a maximum number of SUs per
formed coalition exists for the proposed utility model. Simulation results
show that the proposed algorithm allows a reduction of up to 86.6% of the
average missing probability per SU (probability of missing the detection of
the PU) relative to the non-cooperative case, while maintaining a certain
false alarm level. In addition, through simulations, we compare the per-
formance of the proposed distributed solution with respect to an optimal
centralized solution that minimizes the average missing probability per SU.
Finally, the results also show how the proposed algorithm autonomously
adapts the network topology to environmental changes such as mobility.
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Introduction

1 Introduction

In recent years, there has been an increasing growth in wireless services,
yielding a huge demand on the radio spectrum. However, the spectrum
resources are scarce and most of them have been already licensed to ex-
isting operators. Recent studies showed that the actual licensed spectrum
remains unoccupied for large periods of time [1]. In order to efficiently
exploit these spectrum holes, cognitive radio (CR) has been proposed [2].
By monitoring and adapting to the environment, CRs (secondary users)
can share the spectrum with the licensed users (primary users), operating
whenever the primary user (PU) is not using the spectrum. Implement-
ing such flexible CRs faces several challenges [3]. For instance, CRs must
constantly sense the spectrum in order to detect the presence of the PU
and use the spectrum holes without causing harmful interference to the
PU. Hence, efficient spectrum sensing constitutes a major challenge in
cognitive networks.

For sensing the presence of the PU, the secondary users (SUs) must be
able to detect the signal of the PU. Various kinds of detectors can be used
for spectrum sensing such as matched filter detectors, energy detectors,
cyclostationary detectors or wavelet detectors [4]. However, the perfor-
mance of spectrum sensing is significantly affected by the degradation of
the PU signal due to path loss or shadowing (hidden terminal). It has been
shown that, through collaboration among SUs, the effects of this hidden
terminal problem can be reduced and the probability of detecting the PU
can be improved [5–7]. For instance, in [5] the SUs collaborate by sharing
their sensing decisions through a centralized fusion center in the network.
This centralized entity combines the sensing bits from the SUs using the
OR-rule for data fusion and makes a final PU detection decision. A simi-
lar centralized approach is used in [6] using different decision-combining
methods. The authors in [7] propose spatial diversity techniques for im-
proving the performance of collaborative spectrum sensing by combatting
the error probability due to fading on the reporting channel between the
SUs and the central fusion center. Existing literature mainly focused on
the performance assessment of collaborative spectrum sensing in the pres-
ence of a centralized fusion center. However, in practice, the SUs may be-
long to different service providers and they need to interact with each other
for collaboration without relying on a centralized fusion center. Moreover,
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a centralized approach can lead to a significant overhead and increased
complexity.

The main contribution of this paper is to devise distributed collabora-
tion strategies for SUs in a cognitive network. Another major contribution
is to study the impact on the network topology of the inherent trade off
that exists between the collaborative spectrum sensing gains in terms of
detection probability and the cooperation costs in terms of false alarm
probability. This trade off can be pictured as a trade off between reduc-
ing the interference on the PU (increasing the detection probability) while
maintaining a good spectrum utilization (reducing the false alarm prob-
ability). For distributed collaboration, we model the problem as a non-
transferable coalitional game and we propose a distributed algorithm for
coalition formation based on simple merge and split rules. Through the
proposed algorithm, each SU autonomously decides to form or break a
coalition for maximizing its utility in terms of detection probability while
accounting for a false alarm cost. We show that, due to the cost for coop-
eration, independent disjoint coalitions will form in the network. We study
the stability of the resulting coalition structure and show that a maximum
coalition size exists for the proposed utility model. Through simulations,
we assess the performance of the proposed algorithm relative to the non-
cooperative case, we compare it with a centralized solution and we show
how the proposed algorithm autonomously adapts the network topology to
environmental changes such as mobility.

The rest of this paper is organized as follows: Section 2 presents the
system model. In Section 3, we present the proposed coalitional game
and prove different properties while in Section 4 we devise a distributed
algorithm for coalition formation. Simulation results are presented and
analyzed in Section 5. Finally, conclusions are drawn in Section 6.

2 System Model

Consider a cognitive network consisting of N transmit-receive pairs of SUs
and a single PU. The SUs and the PU can be either stationary and mo-
bile. Since the focus is on spectrum sensing, we are only interested in
the transmitter part of each of the N SUs. The set of all SUs is denoted
N = {1, . . . , N}. In a non-cooperative approach, each of the N SUs con-
tinuously senses the spectrum in order to detect the presence of the PU.
For detecting the PU, we use energy detectors which are one of the main
practical signal detectors in cognitive radio networks [5–7]. In such a non-
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cooperative setting, assuming Rayleigh fading, the detection probability
and the false alarm probability of a SU i are, respectively, given by Pd,i and
Pf,i [5, Eqs. (2), (4)]

Pd,i = e−
λ
2

m−2∑
n=0

1

n!

(
λ

2

)n

+

(
1 + γ̄i,PU

γ̄i,PU

)m−1

×
[
e
− λ

2(1+γ̄i,PU) − e−
λ
2

m−2∑
n=0

1

n!

(
λγ̄i,PU

2(1 + γ̄i,PU )

)n
]
, (C.1)

Pf,i = Pf =
Γ (m, λ2 )

Γ (m)
, (C.2)

where m is the time bandwidth product, λ is the energy detection threshold
assumed the same for all SUs without loss of generality as in [5–7], Γ (·, ·) is
the incomplete gamma function and Γ (·) is the gamma function. Moreover,
γ̄i represents the average SNR of the received signal from the PU to SU
given by γ̄i,PU =

PPUhPU,i

σ2 with PPU the transmit power of the PU, σ2 the
Gaussian noise variance and hPU,i = κ/dμPU,i the path loss between the PU
and SU i; κ being the path loss constant, μ the path loss exponent and
dPU,i the distance between the PU and SU i. It is important to note that the
non-cooperative false alarm probability expression depends solely on the
detection threshold λ and does not depend on the SU’s location; hence we
dropped the subscript i in (C.2).

Moreover, an important metric that we will thoroughly use is the miss-
ing probability for a SU i, which is defined as the probability of missing
the detection of a PU and given by [5]

Pm,i = 1− Pd,i. (C.3)

For instance, reducing the missing probability directly maps to increasing
the probability of detection and, thus, reducing the interference on the PU.
In order to minimize their missing probabilities, the SUs will interact for
forming coalitions of collaborating SUs. Within each coalition S ⊆ N =

{1, . . . , N}, a SU, selected as coalition head, collects the sensing bits from
the coalition’s SUs and acts as a fusion center in order to make a coalition-
based decision on the presence or absence of the PU. This can be seen as
having the centralized collaborative sensing of [5], [7] applied at the level of
each coalition with the coalition head being the fusion center to which all
the coalition members report. For combining the sensing bits and making
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Fig. C.1: An illustrative example of coalition formation for collaborative
spectrum sensing among SUs.

the final detection decision, the coalition head will use the decision fusion
OR-rule. Within each coalition we take into account the probability of
error due to the fading on the reporting channel between the SUs of a
coalition and the coalition head [7]. Inside a coalition S, assuming BPSK
modulation in Rayleigh fading environments, the probability of reporting
error between a SU i ∈ S and the coalition head k ∈ S is given by [8]

Pe,i,k =
1

2

(
1−

√
γ̄i,k

1 + γ̄i,k

)
, (C.4)

where γ̄i,k =
Pihi,k

σ2 is the average SNR for bit reporting between SU i and
the coalition head k inside S with Pi the transmit power of SU i used for
reporting the sensing bit to k and hi,k = κ

dμi,k
the path loss between SU i

and coalition head k. Any SU can be chosen as a coalition head within a
coalition. However, for the remainder of this paper, we adopt the following
convention without loss of generality.

Convention 1 Within a coalition S, the SU k ∈ S having the lowest non-

cooperative missing probability Pm,k is chosen as coalition head. Hence, the

coalition head k of a coalition S is given by k = argmin
i∈S

Pm,i with Pm,i given

by (C.3).

The motivation behind Convention 1 is that the SU having the lowest miss-
ing probability (best detection probability) within a coalition should not
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risk sending his local sensing bit over the fading reporting channel; and
thus it will serve as a fusion center for the other SUs in the coalition. By
collaborative sensing, the missing and false alarm probabilities of a coali-
tion S having coalition head k are, respectively, given by [7]

Qm,S =
∏
i∈S

[Pm,i(1− Pe,i,k) + (1− Pm,i)Pe,i,k], (C.5)

Qf,S = 1−
∏
i∈S

[(1− Pf )(1− Pe,i,k) + PfPe,i,k], (C.6)

where Pf , Pm,i and Pe,i,k are respectively given by (C.2), (C.3) and (C.4) for
a SU i ∈ S and coalition head k ∈ S.

It is clear from (C.5) and (C.6) that as the number of SUs per coali-
tion increases, the missing probability will decrease while the probability
of false alarm will increase. This is a crucial trade off in collaborative spec-
trum sensing that can have a major impact on the collaboration strategies
of each SU. Thus, our objective is to derive distributed strategies allowing
the SUs to collaborate while accounting for this trade off. An example of
the sought network structure is shown in Fig. C.1.

3 Collaborative Spectrum Sensing As Coalitional Game

In this section, we model the problem of collaborative spectrum sensing as
a coalitional game. Then we prove and discuss its key properties.

3.1 Centralized Approach

A centralized approach can be used in order to find the optimal coalition
structure, such as in Fig.C.1, that allows the SUs to maximize their bene-
fits from collaborative spectrum sensing. For instance, we seek a central-
ized solution that minimizes the average missing probability (maximizes
the average detection probability) per SU subject to a false alarm probabil-
ity constraint per SU. In a centralized approach, we assume the existence
of a centralized entity in the network that is able to gather information on
the SUs such as their individual missing probabilities or their location. In
brief, the centralized entity must be able to know all the required param-
eters for computing the probabilities in (C.5) and (C.6) in order to find the
optimal structure. However, prior to deriving such an optimal centralized
solution, the following property must be pinpointed within each coalition.
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Property 1 The missing and false alarm probabilities of any SU i ∈ S are

given by the missing and false alarm probabilities of the coalition S in (C.5)

and (C.6), respectively.

Proof: Within each coalition S the SUs report their sensing bits to the

coalition head. In its turn the coalition head of S combines the sensing bits

using decision fusion and makes a final decision on the presence or absence

of the PU. Thus, SUs belonging to a coalition S will transmit or not based on

the final coalition head decision. Consequently, the missing and false alarm

probabilities of any SU i ∈ S are the missing and false alarm probabilities of

the coalition S to which i belongs as given by in (C.5) and (C.6), respectively.

�

As a consequence of Property 1 the required false alarm probability
constraint per SU directly maps to a false alarm probability constraint
per coalition. Therefore, denoting B as the set of all partitions of N , the
centralized approach seeks to solve the following optimization problem

min
P∈B

∑
S∈P |S| ·Qm,S

N
, (C.7)

s.t. Qf,S ≤ α ∀ S ∈ P,

where | · | represents the cardinality of a set operator and S is a coalition
belonging to the partition P. Clearly, the centralized optimization prob-
lem seeks to find the optimal partition P∗ ∈ B that minimizes the average
missing probability per SU, subject to a false alarm constraint per SU
(coalition).

However, it is shown in [9] that finding the optimal coalition structure
for solving an optimization problem such as in (C.7) is an NP-complete
problem. This is mainly due to the fact that the number of possible coali-
tion structures (partitions), given by the Bell number, grows exponentially
with the number of SUs N [9]. Moreover, the complexity increases further
due to the fact that the expressions of Qm,S and Qf,S given by (C.5) and
(C.6) depend on the optimization parameter P. For this purpose, deriv-
ing a distributed solution enabling the SUs to benefit from collaborative
spectrum sensing with a low complexity is desirable. The above formu-
lated centralized approach will be used as a benchmark for the distributed
solution in the simulations, for reasonably small networks.
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3.2 Game Formulation and Properties

For the purpose of deriving a distributed algorithm that can minimize the
missing probability per SU, we refer to cooperative game theory [10] which
provides a set of analytical tools suitable for such algorithms. For instance,
the proposed collaborative sensing problem can be modeled as a (N , v)

coalitional game [10] where N is the set of players (the SUs) and v is the
utility function or value of a coalition.

The value v(S) of a coalition S ⊆ N must capture the trade off between
the probability of detection and the probability of false alarm. For this
purpose, v(S) must be an increasing function of the detection probability
Qd,S = 1 − Qm,S within coalition S and a decreasing function of the false
alarm probability Qf,S. A suitable utility function is given by

v(S) = Qd,S − C(Qf,S) = (1−Qm,S)− C(Qf,S), (C.8)

where Qm,S is the missing probability of coalition S given by (C.5) and
C(Qf,S) is a cost function of the false alarm probability within coalition S

given by (C.6).
First of all, we provide the following definition from [10] and subse-

quently prove an interesting property pertaining to the proposed game
model.

Definition 13 A coalitional game (N , v) is said to have a transferable util-

ity if the value v(S) can be arbitrarily apportioned between the coalition’s

players. Otherwise, the coalitional game has a non-transferable utility and

each player will have its own utility within coalition S.

Property 2 In the proposed collaborative sensing game, the utility of a coali-

tion S is equal to the utility of each SU in the coalition, i.e., v(S) = φi(S), ∀ i ∈
S, where φi(S) denotes the utility of SU i when i belongs to a coalition

S. Consequently, the proposed (N , v) coalitional game model has a non-
transferable utility.

Proof: The coalition value in the proposed game is given by (C.8) and is

a function of Qm,S and Qf,S. As per Property 1, the missing probabilities for

each SU i ∈ S are also given by Qm,S and Qf,S and, thus, the utility of each

SU i ∈ S is φi(S) = v(S). Hence, the coalition value v(S) cannot be arbitrarily

apportioned among the users of a coalition; and the proposed coalitional

game has non-transferable utility. �
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In general, coalitional game based problems seek to characterize the
properties and stability of the grand coalition of all players since it is gen-
erally assumed that the grand coalition maximizes the utilities of the play-
ers [10]. In our case, although collaborative spectrum sensing improves
the detection probability for the SUs; the cost in terms of false alarm limits
this gain. Therefore, for the proposed (N , v) coalitional game we have the
following property.

Property 3 For the proposed (N , v) coalitional game, the grand coalition of

all the SUs does not always form due to the collaboration false alarm costs;

thus disjoint independent coalitions will form in the network.

Proof: By inspecting Qm,S in (C.5) and through the results shown in [7] it

is clear that as the number of SUs in a coalition increase Qm,S decreases and

the performance in terms of detection probability improves. Hence, when no

cost for collaboration exists, the grand coalition of all SUs is the optimal

structure for maximizing the detection probability. However, when the num-

ber of SUs in a coalition S increases, it is shown in [7] through (C.5) that the

false alarm probability increases. Therefore, for the proposed collaborative

spectrum sensing model with cost for collaboration, the grand coalition of

all SUs will, in general, not form due to the false alarm cost as taken into

consideration in (C.8). �

In a nutshell, we have a non-transferable (N , v) coalitional game and we
seek to derive a distributed algorithm for forming coalitions among SUs.
Before deriving such an algorithm, we will delve into the details of the cost
function in (C.8).

3.3 Cost Function

Any well designed cost function C(Qf,S) in (C.8) must satisfy several re-
quirements needed for adequately modeling the false alarm cost. On one
hand, C(Qf,S) must be an increasing function of Qf,S with the increase
slope becoming steeper as Qf,S increases. On the other hand, the cost
function C(Qf,S) must impose a maximum tolerable false alarm probabil-
ity, i.e. an upper bound constraint on the false alarm, that cannot be
exceeded by any SU in a manner similar to the centralized problem in
(C.7) (due to Property 1, imposing a false alarm constraint on the coalition
maps to a constraint per SU).

A well suited cost function satisfying the above requirements is the
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logarithmic barrier penalty function given by [11]

C(Qf,S) =

⎧⎨
⎩−α2 · log

(
1−

(
Qf,S

α

)2)
, if Qf,S < α,

+∞, if Qf,S ≥ α,

(C.9)

where log is the natural logarithm and α is a false alarm constraint per
coalition (per SU). The cost function in (C.9) allows to incur a penalty
which is increasing with the false alarm probability. Moreover, it imposes
a maximum false alarm probability per SU. In addition, as the false alarm
probability gets closer to α the cost for collaboration increases steeply, re-
quiring a significant improvement in detection probability if the SUs wish
to collaborate as per (C.8). Also, it is interesting to note that the proposed
cost function depends on both distance and the number of SUs in the
coalition, through the false alarm probability Qf,S (the distance lies within
the probability of error). Hence, the cost for collaboration increases with
the number of SUs in the coalition as well as when the distance between
the coalition’s SUs increases.

4 Distributed Coalition Formation Algorithm

In this section, we propose a distributed coalition formation algorithm and
we discuss its main properties.

4.1 Coalition Formation Concepts

Coalition formation has been a topic of high interest in game theory [9,
12–14]. The goal is to find algorithms for characterizing the coalitional
structures that form in a network where the grand coalition is not opti-
mal. For instance, a generic framework for coalition formation is presented
in [13–15] whereby coalitions form and break through two simple merge-
and-split rules. This framework can be used to construct a distributed
coalition formation algorithm for collaborative sensing, but first, we define
the following concepts [13, 14].

Definition 14 A collection of coalitions, denoted S, is defined as the set

S = {S1, . . . , Sl} of mutually disjoint coalitions Si ⊂ N . If the collection spans

all the players of N ; that is
⋃l

j=1 Sj = N , the collection is a partition of N .
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Definition 15 A preference operator or comparison relation � is defined

for comparing two collections R = {R1, . . . , Rl} and S = {S1, . . . , Sm} that are

partitions of the same subset A ⊆ N (same players in R and S). Thus, R � S
implies that the way R partitions A is preferred to the way S partitions A
based on a criterion to be defined next.

Various criteria (referred to as orders) can be used as comparison rela-
tions between collections or partitions [13], [14]. These orders are divided
into two main categories: coalition value orders and individual value or-
ders. Coalition value orders compare two collections (or partitions) using
the value of the coalitions inside these collections such as in the utilitarian
order where R � S implies

∑l
i=1 v(Ri) >

∑m
i=1 v(Si). Individual value orders

perform the comparison using the actual player utilities and not the coali-
tion value. For such orders, two collections R and S are seen as sets of
player utilities of the same length L (number of players). The players’ util-
ities are either the payoffs after division of the value of the coalitions in a
collection (transferable utility) or the actual utilities of the players belong-
ing to the coalitions in a collection (non-transferable utility). Due to the
non-transferable nature of the proposed (N , v) collaborative sensing game
(Property 2), an individual value order must be used as a comparison re-
lation �. An important example of individual value orders is the Pareto

order. Denote for a collection R = {R1, . . . , Rl}, the utility of a player j in a
coalition Rj ∈ R by φj(R) = φj(Rj) = v(Rj) (as per Property 2); hence, the
Pareto order is defined as follows

R � S ⇐⇒ {φj(R) ≥ φj(S) ∀ j ∈ R,S}, (C.10)

with at least one strict inequality (>) for a player k.

Due to the non-transferable nature of the proposed collaborative sensing
model, the Pareto order is an adequate preference relation. Having defined
the various concepts, we derive a distributed coalition formation algorithm
in the next subsection.

4.2 Coalition Formation Algorithm

For autonomous coalition formation in cognitive radio networks, we pro-
pose a distributed algorithm based on two simple rules denoted as “merge”
and “split” that allow to modify a partition T of the SUs set N as fol-
lows [13].
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Definition 16 Merge Rule - Merge any set of coalitions {S1, . . . , Sl} where

{⋃l
j=1 Sj} � {S1, . . . , Sl}, therefore, {S1, . . . , Sl} → {⋃l

j=1 Sj}, (each Si is a

coalition in T ).

Definition 17 Split Rule - Split any coalition
⋃l

j=1 Sj where {S1, . . . , Sl} �

{⋃l
j=1 Sj}, thus, {⋃l

j=1 Sj} → {S1, . . . , Sl}, (each Si is a coalition in T ).

Using the above rules, multiple coalitions can merge into a larger coali-
tion if merging yields a preferred collection based on the selected order
�. Similarly, a coalition would split into smaller coalitions if splitting
yields a preferred collection. When � is the Pareto order, coalitions will
merge (split) only if at least one SU is able to strictly improve its indi-
vidual utility through this merge (split) without decreasing the other SUs’
utilities. By using the merge-and-split rules combined with the Pareto
order, a distributed coalition formation algorithm suited for collaborative
spectrum sensing can be constructed. First and foremost, the appeal of
forming coalitions using merge-and-split stems from the fact that it has
been shown in [13] and [14] that any arbitrary iteration of merge-and-split
operations terminates. Moreover, each merge or split decision can be taken
in a distributed manner by each individual SU or by each already formed
coalition. Subsequently, a merge-and-split coalition algorithm can ade-
quately model the distributed interactions among the SUs of a cognitive
network that are seeking to collaborate in the sensing process.

In consequence, for the proposed collaborative sensing game, we con-
struct a coalition formation algorithm based on merge-and-split and di-
vided into three phases: local sensing, adaptive coalition formation, and
coalition sensing. In the local sensing phase, each individual SU com-
putes its own local PU detection bit based on the received PU signal. In
the adaptive coalition formation phase, the SUs (or existing coalitions of
SUs) interact in order to assess whether to share their sensing results with
nearby coalitions. For this purpose, an iteration of sequential merge-and-
split rules occurs in the network, whereby each coalition decides to merge
(or split) depending on the utility improvement that merging (or splitting)
yields. In the final coalition sensing phase, once the network topology
converges following merge-and-split, SUs that belong to the same coalition
report their local sensing bits to their local coalition head. The coalition
head subsequently uses decision fusion OR-rule to make a final decision
on the presence or the absence of the PU. This decision is then reported
by the coalition heads to all the SUs within their respective coalitions.
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Table C.I: One round of the proposed collaborative sensing algorithm
Initial State

The network is partitioned by T = {T1, . . . , Tk} (At the begin-
ning of all time T = N = {1, . . . , N} with non-cooperative SUs).

Three phases in each round of the coalition formation algo-

rithm

Phase 1 - Local Sensing:

Each individual SU computes its local PU signal sensing bit.
Phase 2 - Adaptive Coalition Formation:

In this phase, coalition formation using merge-and-split
occurs.

repeat

a) F = Merge(T ); coalitions in T decide to merge
based on the merge algorithm explained in Section 4.2.
b) T = Split(F ); coalitions in F decide to split based on
the Pareto order.

until merge-and-split terminates.
Phase 3 - Coalition Sensing:

a) Each SU reports its sensing bit to the coalition head.
b) The coalition head of each coalition makes a final decision
on the absence or presence of he PU using decision fusion
OR-rule.
c) The SUs in a coalition abide by the final decision made by
the coalition head.

The above phases are repeated throughout the network op-

eration. In Phase 2, through distributed and periodic merge-

and-split decisions, the SUs can autonomously adapt the

network topology to environmental changes such as mobil-

ity.

Each round of the three phases of the proposed algorithm starts from
an initial network partition T = {T1, . . . , Tl} of N . During the adaptive coali-
tion formation phase any random coalition (individual SU) can start with
the merge process. For implementation purposes, assume that the coali-
tion Ti ∈ T which has the highest utility in the initial partition T starts the
merge by attempting to collaborate with a nearby coalition. On one hand,
if merging occurs, a new coalition T̃i is formed and, in its turn, coalition
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T̃i will attempt to merge with a nearby SU that can improve its utility. On
the other hand, if Ti is unable to merge with the firstly discovered partner,
it tries to find other coalitions that have a mutual benefit in merging. The
search ends by a final merged coalition T final

i composed of Ti and one or
several of coalitions in its vicinity (T final

i = Ti, if no merge occurred). The
algorithm is repeated for the remaining Ti ∈ T until all the coalitions have
made their merge decisions, resulting in a final partition F . Following the
merge process, the coalitions in the resulting partition F are next subject
to split operations, if any is possible. An iteration consisting of multiple
successive merge-and-split operations is repeated until it terminates. It
must be stressed that the decisions to merge or split can be taken in a
distributed way without relying on any centralized entity as each SU or
coalition can make its own decision for merging or splitting. Table C.I
summarizes one round of the proposed algorithm.

For handling environmental changes such as mobility or the joining/lea-
ving of SUs, Phase 2 of the proposed algorithm in Table C.I is repeated
periodically. In Phase 2, periodically, as time evolves and SUs (or the PU)
move or join/leave, the SUs can autonomously self-organize and adapt the
network’s topology through new merge-and-split iterations with each coali-
tion taking the decision to merge (or split) subject to satisfying the merge
(or split) rule through Pareto order (C.10). In other words, every period of
time θ the SUs assess the possibility of splitting into smaller coalitions or
merging with new partners. The period θ is smaller in highly mobile envi-
ronments to allow a more adequate adaptation of the topology. Similarly,
every period θ, in the event where the current coalition head of a coalition
has moved or is turned off, the coalition members may select a new coali-
tion head if needed. The convergence of this merge-and-split adaptation
to environmental changes is always guaranteed, since, by definition of the
merge and split rules, any iteration of these rules certainly terminates.

For the proposed coalition formation algorithm, an upper bound on the
maximum coalition size is imposed by the proposed utility and cost models
in (C.8) and (C.9) as follows:

Theorem 1 For the proposed collaborative sensing model, any coalition struc-

ture resulting from the distributed coalition formation algorithm will have

coalitions limited in size to a maximum of Mmax = log (1−α)
log (1−Pf )

SUs.

Proof: For forming coalitions, the proposed algorithm requires an im-

provement in the utility of the SUs through Pareto order. However, the bene-

fit from collaboration is limited by the false alarm probability cost modeled
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by the barrier function (C.9). A minimum false alarm cost in a coalition S

with coalition head k ∈ S exists whenever the reporting channel is perfect,

i.e., exhibiting no error, hence Pe,i,k = 0 ∀i ∈ S. In this perfect case, the false

alarm probability in a perfect coalition Sp is given by

Qf,Sp = 1−
∏
i∈Sp

(1− Pf ) = 1− (1− Pf )
|Sp|, (C.11)

where |Sp| is the number of SUs in the perfect coalition Sp. A perfect coalition

Sp where the reporting channels inside are perfect (i.e. SUs are grouped very

close to each other) can accommodate the largest number of SUs relative to

other coalitions. Hence, we can use this perfect coalition to find an upper

bound on the maximum number of SUs per coalition. For instance, the log

barrier function in (C.9) tends to infinity whenever the false alarm probabil-

ity constraint per coalition is reached which implies an upper bound on the

maximum number of SUs per coalition if Qf,Sp ≥ α, yielding by (C.11)

|Sp| ≤
log (1− α)

log (1− Pf )
= Mmax . (C.12)

�

It is interesting to note that the maximum size of a coalition Mmax de-
pends mainly on two parameters: the false alarm constraint α and the non-
cooperative false alarm Pf . For instance, larger false alarm constraints al-
low larger coalitions, as the maximum tolerable cost limit for collaboration
is increased. Moreover, as the non-cooperative false alarm Pf decreases,
the possibilities for collaboration are better since the increase of the false
alarm due to coalition size becomes smaller as per (C.6). It must be noted
that the dependence of Mmax on Pf yields a direct dependence of Mmax on
the energy detection threshold λ as per (C.2). Finally, it is interesting to
see that the upper bound on the coalition size does not depend on the lo-
cation of the SUs in the network nor on the actual number of SUs in the
network. Therefore, deploying more SUs or moving the SUs in the network
for a fixed α and Pf does not increase the upper bound on coalition size.

4.3 Stability

The result of the proposed algorithm in Table C.I is a network partition
composed of disjoint independent coalitions of SUs. The stability of this
resulting network structure can be investigated using the concept of a
defection function D [13].
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Definition 18 A defection function D is a function which associates with

each partition T of N a group of collections in N . A partition T = {T1, . . . , Tl}
of N is D-stable if no group of players is interested in leaving T when the

players who leave can only form the collections allowed by D.

Two important defection functions must be characterized [13–15]. First,
the Dhp(T ) function (denoted Dhp) which associates with each partition T
of N the group of all partitions of N that the players can form through
merge-and-split operations applied to T . This function allows any group
of players to leave the partition T of N through merge-and-split operations
to create another partition in N . Second, the Dc(T ) function (denoted Dc)
which associates with each partition T of N the family of all collections in
N . This function allows any group of players to leave the partition T of N
through any operation and create an arbitrary collection in N . Two forms
of stability stem from these definitions: Dhp stability and a stronger Dc sta-
bility. A partition T is Dhp-stable, if no players in T are interested in leaving
T through merge-and-split to form other partitions in N ; while a partition
T is Dc-stable, if no players in T are interested in leaving T through any

operation (not necessary merge or split) to form other collections in N .
Characterizing any type of D-stability for a partition depends on various

properties of its coalitions. For instance, a partition T = {T1, . . . , Tl} is Dhp-
stable if, for the partition T , no coalition has an incentive to split or merge.
As an immediate result of the definition of Dhp-stability we have

Theorem 2 Every partition resulting from our proposed coalition formation

algorithm is Dhp-stable.

Briefly, a Dhp-stable can be thought of as a state of equilibrium where no
coalitions have an incentive to pursue coalition formation through merge
or split. With regards to Dc stability, the work in [13–15] proved that a
Dc-stable partition has the following properties:

1. If it exists, a Dc-stable partition is the unique outcome of any arbitrary

iteration of merge-and-split and is a Dhp-stable partition.

2. A Dc-stable partition T is a unique �-maximal partition, that is for
all partitions T ′ �= T of N , T � T ′. In the case where � represents
the Pareto order, this implies that the Dc-stable partition T is the
partition that presents a Pareto optimal utility distribution for all the
players.
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However, the existence of a Dc-stable partition is not always guaranteed
[13]. The Dc-stable partition T = {T1, . . . , Tl} of the whole space N exists
if a partition of N that verifies the following two necessary and sufficient
conditions exists [13]:

1. For each i ∈ {1, . . . , l} and each pair of disjoint coalitions S1 and S2

such that {S1 ∪ S2} ⊆ Ti we have {S1 ∪ S2} � {S1, S2}.

2. For the partition T = {T1, . . . , Tl} a coalition G ⊂ N formed of players
belonging to different Ti ∈ T is T -incompatible if for no i ∈ {1, . . . , l}
we have G ⊂ Ti. Dc-stability requires that for all T -incompatible coali-
tions {G}[T ] � {G} where {G}[T ] = {G ∩ Ti ∀ i ∈ {1, . . . , l}} is the
projection of coalition G on T .

If no partition of N can satisfy these conditions, then no Dc-stable parti-
tions of N exists. Nevertheless, we have

Lemma 1 For the proposed (N , v) collaborative sensing coalitional game,

the proposed algorithm of Table C.I converges to the optimal Dc-stable par-

tition, if such a partition exists. Otherwise, the proposed algorithm yields a

final network partition that is Dhp-stable.

Proof: The proof is an immediate consequence of Theorem 2 and the

fact that the Dc-stable partition is a unique outcome of any arbitrary merge-

and-split iteration which is the case with any partition resulting from our

algorithm. �

Moreover, for the proposed game, the existence of the Dc-stable par-
tition cannot be always guaranteed. For instance, for verifying the first
condition for existence of the Dc-stable partition, the SUs belonging to par-
titions of each coalitions must verify the Pareto order through their utility
given by (C.8). Similarly, for verifying the second condition of Dc stability,
SUs belonging to all T -incompatible coalitions in the network must verify
the Pareto order. Consequently, finding a geometrical closed-form condi-
tion for the existence of such a partition is not feasible as it depends on the
location of the SUs and the PU through the individual missing and false
alarm probabilities in the utility expression (C.8). Hence, the existence of
the Dc-stable partition is closely tied to the location of the SUs and the PU
which both can be random parameters in practical networks. However,
the proposed algorithm will always guarantee convergence to this optimal
Dc-stable partition when it exists as stated in Lemma 1. Whenever a Dc-
stable partition does not exist, the coalition structure resulting from the
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Fig. C.2: Average missing probabilities (average over locations of SUs and
non-cooperative false alarm range Pf ∈ (0, α) ) vs. number of SUs.
proposed algorithm will be Dhp-stable (no coalition or SU is able to merge
or split any further).

5 Simulation Results and Analysis

For simulations, the following network is set up: The PU is placed at the
origin of a 3 km ×3 km square with the SUs randomly deployed in the area
around the PU. We set the time bandwidth product m = 5 [5–7], the PU
transmit power PPU = 100 mW, the SU transmit power for reporting the
sensing bit Pi = 10 mW ∀i ∈ N and the noise level σ2 = −90 dBm. For path
loss, we set μ = 3 and κ = 1. The maximum false alarm constraint is set to
α = 0.1, as recommended by the IEEE 802.22 standard [16].

In Figs. C.2 and C.3 we show, respectively, the average missing proba-
bilities and the average false alarm probabilities achieved per SU for differ-

205



Coalitional Games for Distributed Collaborative Spectrum Sensing in

Cognitive Radio Networks

0 1 2 3 4 5 6 7 10 15 20 25 30
10−2

10−1

Number of SUs (N)

A
ve

ra
ge

 fa
ls

e 
al

ar
m

 p
ro

ba
bi

lit
y 

pe
r S

U

Non−cooperative sensing
Proposed distributed coalition formation
Centralized solution

The solution of the centralized approach
is mathematically untractable beyond
N = 7 SUs

Fig. C.3: Average false alarm probabilities (average over locations of SUs
and non-cooperative false alarm range Pf ∈ (0, α) ) vs. number of SUs.

ent network sizes. These probabilities are averaged over random locations
of the SUs as well as a range of energy detection thresholds λ that do not
violate the false alarm constraint; this in turn, maps into an average over
the non-cooperative false alarm range Pf ∈ (0, α) (obviously, for Pf > α no
cooperation is possible). In Fig. C.2, we show that the proposed algorithm
yields a significant improvement in the average missing probability reach-
ing up to 86.6% reduction (at N = 30) compared to the non-cooperative case.
This advantage is increasing with the network size N . However, there ex-
ists a gap in the performance of the proposed algorithm and that of the
optimal centralized solution. This gap stems mainly from the fact that the
log barrier function used in the distributed algorithm (C.9) increases the
cost drastically when the false alarm probability is in the vicinity of α. This
increased cost makes it harder for coalitions with false alarm levels close
to α to collaborate in the distributed approach as they require a large miss-
ing probability improvement to compensate the cost in their utility (C.8) so
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Fig. C.4: Average missing probabilities per SU vs. non-cooperative false
alarm Pf (or energy detection threshold λ) for N = 7 SUs.

that a Pareto order merge or split becomes possible. However, albeit the
proposed cost function yields a performance gap in terms of missing prob-
ability, it forces a false alarm for the distributed case smaller than that of
the centralized solution as seen in Fig. C.3.

For instance, Fig. C.3 shows that the achieved average false alarm by
the proposed distributed solution outperforms that of the centralized solu-
tion but is still outperformed by the non-cooperative case. Thus, while the
centralized solution achieves a better missing probability; the proposed
distributed algorithm compensates this performance gap through the av-
erage achieved false alarm. In summary, Figs. C.2 and C.3 clearly show
the performance trade off that exists between the gains achieved by col-
laborative spectrum sensing in terms of average missing probability and
the corresponding cost in terms of average false alarm probability.

In Fig. C.4, we show the average missing probabilities per SU for differ-
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Fig. C.5: Final coalition structure from both distributed (dashed line) and
centralized (solid line) collaborative spectrum sensing for N = 7 SUs.

ent energy detection thresholds λ expressed by the feasible range of non-
cooperative false alarm probabilities Pf ∈ (0, α) for N = 7. In this figure,
we show that as the non-cooperative Pf decreases the performance advan-
tage of collaborative spectrum sensing for both the centralized and dis-
tributed solutions increases (except for very small Pf where the advantage
in terms of missing probability reaches its maximum). The performance
gap between centralized and distributed is once again compensated by a
false alarm advantage for the distributed solution as already seen and ex-
plained in Fig. C.3 for N = 7. Finally, in this figure, it must be noted
that as Pf approaches α = 0.1, the advantage for collaborative spectrum
sensing diminishes drastically as the network converges towards the non-
cooperative case.

In Fig. C.5, we show a snapshot of the network structure resulting from
the proposed distributed algorithm (dashed line) as well as the centralized
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approach (solid line) for N = 7 randomly placed SUs and a non-cooperative
false alarm Pf = 0.01. We notice that the structures resulting from both
approaches are almost comparable, with nearby SUs forming collabora-
tive coalitions for improving their missing probabilities. However, for the
distributed solution, SU 4 is part of coalition S1 = {1, 2, 4, 6} while for the
centralized approach SU 4 is part of coalition {3, 4, 5}. This difference in
the network structure is due to the fact that, in the distributed case, SU 4
acts selfishly while aiming at improving its own utility. In fact, by merging
with {3, 5} SU 4 achieves a utility of φ4({3, 5}) = 0.9859 with a missing prob-
ability of 0.0024 whereas by merging with {1, 2, 6} SU 4 achieves a utility
of φ4({1, 2, 4, 6}) = 0.9957 with a missing probability of 0.00099. Thus, when
acting autonomously in a distributed manner, SU 4 prefers to merge with
{1, 2, 6} rather than with {3, 5} regardless of the optimal structure for the
network as a whole. In brief, Fig. C.5 shows how the cognitive network
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Fig. C.7: Maximum and average coalition size vs. non-cooperative false
alarm Pf (or energy detection threshold λ) for the distributed solution for
N = 30 SUs.

structures itself for both centralized and distributed approaches.

Furthermore, in Fig. C.6 we show how our distributed algorithm in Ta-
ble C.I handles mobility during Phase 2 (adaptive coalition formation). For
this purpose, after the network structure in Fig. C.5 has formed, we al-
low SU 1 to move horizontally along the positive x-axis while other SUs
are immobile. In Fig. C.6, at the beginning, the utilities of SUs {1, 2, 4, 6}
are similar since they belong to the same coalition. These utilities de-
crease as SU 1 distances itself from {2, 4, 6}. After moving 0.8 km SUs
{1, 6} split from coalition {1, 2, 4, 6} by Pareto order as φ1({1, 6}) = 0.9906 >

φ1({1, 2, 4, 6}) = 0.99, φ6({1, 6}) = 0.9906 > φ6({1, 2, 4, 6}) = 0.99, φ2({2, 4}) =

0.991 > φ2({1, 2, 4, 6}) = 0.99 and φ4({2, 4}) = 0.991 > φ4({1, 2, 4, 6} = 0.99)

(this small advantage from splitting increases as SU 1 moves further). As
SU 1 distances itself further from the PU, its utility and that of its partner
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SU 6 decrease. Subsequently, as SU 1 moves 1.4 km it finds it beneficial
to split from {1, 6} and merge with SU 7. Through this merge, SU 1 and
SU 7 improve their utilities. Meanwhile, SU 6 rejoins SUs {2, 4} forming a
3-SU coalition {2, 4, 6} while increasing the utilities of all three SUs. In a
nutshell, this figure illustrates how adaptive coalition formation through
merge and split operates in a mobile cognitive radio network. Similar re-
sults can be seen whenever all SUs are mobile or even the PU is mobile
but they are omitted for space limitation.

In Fig. C.7, for a network of N = 30 SUs, we evaluate the sizes of the
coalitions resulting from our distributed algorithm and compare them with
the the upper bound Mmax derived in Theorem 1. First and foremost, as
the non-cooperative Pf increases, both the maximum and the average size
of the formed coalitions decrease converging towards the non-cooperative
case as Pf reaches the constraint α = 0.1. Through this result, we can
clearly see the limitations that the detection-false alarm probabilities trade
off for collaborative sensing imposes on the coalition size and network
topology. Also, in Fig. C.7, we show that, albeit the upper bound on coali-
tion size Mmax increases drastically as Pf becomes smaller, the average
maximum coalition size achieved by the proposed algorithm does not ex-
ceed 4 SUs per coalition for the given network with N = 30. This result
shows that, in general, the network topology is composed of a large num-
ber of small coalitions rather than a small number of large coalitions, even
when Pf is small and the collaboration possibilities are high.

6 Conclusions

In this paper, we proposed a novel distributed algorithm for collaborative
spectrum sensing in cognitive radio networks. We modeled the collabo-
rative sensing problem as a coalitional game with non-transferable utility
and we derived a distributed algorithm for coalition formation. The pro-
posed coalition formation algorithm is based on two simple rules of merge-
and-split that enable SUs in a cognitive network to cooperate for improving
their detection probability while taking into account the cost in terms of
false alarm probability. We characterized the network structure result-
ing from the proposed algorithm, studied its stability and showed that
a maximum number of SUs per coalition exists for the proposed utility
model. Simulation results showed that the proposed distributed algorithm
reduces the average missing probability per SU up to 86.6% compared to
the non-cooperative case. The results also showed how, through the pro-
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posed algorithm, the SUs can autonomously adapt the network structure
to environmental changes such as mobility. Through simulations, we also
compared the performance of the proposed algorithm with that of an opti-
mal centralized solution.

212



References

[1] F. C. Commission, “Spectrum policy task force report,” Report ET

Docket no. 02-135, Nov. 2002.

[2] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios
more personal,” IEEE Pers. Commun., vol. 6, pp. 13–18, Aug. 1999.

[3] D. Niyato, E. Hossein, and Z. Han, Dynamic spectrum access in cogni-

tive radio networks. Cambridge, UK: Cambridge University Press, To
appear 2009.

[4] D. Cabric, M. S. Mishra, and R. W. Brodersen, “Implementation issues
in spectrum sensing for cognitive radios,” in Proc. Asilomar Conference

on Signals, Systems, and Computers, Pacific Grove, CA, USA, Nov.
2004, pp. 772–776.

[5] A. Ghasemi and E. S. Sousa, “Collaborative spectrum sensing for
opportunistic access in fading environments,” in IEEE Symp. New

Frontiers in Dynamic Spectrum Access Networks, Baltimore, USA, Nov.
2005, pp. 131–136.

[6] E. Visotsky, S. Kuffner, and R. Peterson, “On collaborative detection of
TV transmissions in support of dynamic spectrum sensing,” in IEEE

Symp. New Frontiers in Dynamic Spectrum Access Networks, Balti-
more, USA, Nov. 2005, pp. 338–356.

[7] W. Zhang and K. B. Letaief, “Cooperative spectrum sensing with
transmit and relay diversity in cognitive networks,” IEEE Trans. Wire-

less Commun., vol. 7, pp. 4761–4766, Dec. 2008.

[8] J. Proakis, Digital Communications, 4th edition. New York: McGraw-
Hill, 2001.

213



Coalitional Games for Distributed Collaborative Spectrum Sensing in

Cognitive Radio Networks

[9] T. Sandholm, K. Larson, M. Anderson, O. Shehory, and F. Tohme,
“Coalition structure generation with worst case guarantees,” Artifical

Intelligence, vol. 10, pp. 209–238, July 1999.

[10] R. B. Myerson, Game Theory, Analysis of Conflict. Cambridge, MA,
USA: Harvard University Press, Sept. 1991.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. New York, USA:
Cambridge University Press, Sept. 2004.

[12] G. Demange and M. Wooders, Group formation in economics: net-

works, clubs and coalitions. Cambridge, UK: Cambridge University
Press, Mar. 2005.

[13] K. Apt and A. Witzel, “A generic approach to coalition formation,” in
Proc. of the Int. Workshop on Computational Social Choice (COMSOC),
Amsterdam, the Netherlands, Dec. 2006.

[14] ——, “A generic approach to coalition formation (extended version),”
arXiv:0709.0435v1 [cs.GT], Sept. 2007.

[15] K. Apt and T. Radzik, “Stable partitions in coalitional games,”
arXiv:cs/0605132v1 [cs.GT], May 2006.

[16] IEEE 802.22, “Cognitive wireless regional area network - functional
requirements,” 802.22-06/0089r3, Tech. Rep., June 2006.

214



Paper D

Coalitional Games in Partition Form for
Joint Spectrum Sensing and Access in
Cognitive Radio Networks

W. Saad, Z. Han, R. Zheng, A. Hjørungnes, and T. Başar
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Abstract

Unlicensed secondary users (SUs) in cognitive radio networks are sub-
ject to an inherent tradeoff between spectrum sensing and spectrum ac-

cess. Although each SU has an incentive to sense the primary user (PU)
channels for locating spectrum holes, this exploration of the spectrum can
come at the expense of a shorter transmission time, and, hence, a possibly
smaller effective capacity for data transmission. In this paper, we investi-
gate the impact of this tradeoff on the cooperative strategies of a network
of SUs that seek to cooperate in order to improve their view of the spec-
trum (sensing), reduce the possibility of interference among each other,
and improve their transmission capacity (access). We model the problem
as a coalitional game in partition form and we propose an algorithm for
coalition formation. Through the proposed algorithm, the SUs can take
individual distributed decisions to join or leave a coalition while maximiz-
ing their utility that accounts for the average time spent for sensing as
well as the capacity achieved while accessing the spectrum. We show that,
by using the proposed algorithm, the SUs can self-organize into a Nash-
stable network partition composed of disjoint coalitions, with the members
of each coalition cooperating to jointly optimize their sensing and access
performance. Simulation results show that the proposed algorithm yields
a performance gain, in terms of the average payoff per SU per time slot
reaching up to 77.25% relative to the non-cooperative case for a network of
20 SUs. The results also show how the algorithm allows the SUs to self-
adapt to changes in the environment such as the change in the traffic of
the PUs, or slow mobility.
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Introduction

1 Introduction

With the ongoing growth in wireless services, the demand for the radio
spectrum has significantly increased. However, the spectrum resources
are scarce and most of them have been already licensed to existing op-
erators. Numerous studies done by agencies such as the Federal Com-
munications Commission (FCC) in the United States have shown that the
actual licensed spectrum remains unoccupied for large periods of time [1].
Thus, cognitive radio systems were proposed [2] in order to efficiently ex-
ploit these spectrum holes. Cognitive radios or secondary users (SUs) are
wireless devices that can intelligently monitor and adapt to their environ-
ment, hence, they are able to share the spectrum with the licensed primary
users (PUs), operating whenever the PUs are idle. Implementing cognitive
radio systems faces various challenges [3], notably, for spectrum sensing
and spectrum access. Spectrum sensing mainly deals with the stage dur-
ing which the SUs attempt to learn their environment prior to the spectrum
access stage where the SUs actually transmit their data.

Existing literature has tackled various aspects of spectrum sensing and
spectrum access, individually. In [4], the performance of spectrum sens-
ing, in terms of throughput, is investigated when the SUs share their
instantaneous knowledge of the channel. The work in [5] studies the
performance of different detectors for spectrum sensing while in [6], the
optimal sensing time which maximizes the achievable throughput of the
SUs, given the detection-false alarm tradeoff is derived. The authors in [7]
study the use of sounding signals to detect primary systems with power
control. Different cooperative techniques for improving spectrum sensing
performance are discussed in [8–13]. Further, spectrum access has also
received an increased attention [14–21]. In [14], a dynamic programming
approach is proposed to allow the SUs to maximize their channel access
time while taking into account a penalty factor from any collision with
the PU. The work in [14] (and the references therein) establish that, in
practice, the sensing time of CR networks is large and affects the access
performance of the SUs. The authors in [15] propose a novel multiple ac-
cess scheme that takes into account the physical layer transmission in
cognitive networks. In [16], the authors model the spectrum access prob-
lem as a non-cooperative game, and propose learning algorithms to find
the correlated equilibria of the game. Non-cooperative solutions for dy-
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namic spectrum access are also proposed in [17] while taking into account
changes in the SUs’ environment such as the arrival of new PUs, among
others. Additional challenges of spectrum access are tackled in [18–21].

Clearly, the spectrum sensing and spectrum access aspects of cognitive
networks have been widely investigated in the literature, independently.
However, a key challenge which remains relatively unexplored is to study
the tradeoff between spectrum sensing and spectrum access when the SUs
seek to improve both aspects, jointly. This tradeoff arises from the fact
that the sensing time for the SUs is non-negligible [14], and can reduce
their transmission performance. Thus, although each SU has an incentive
to sense as many PU channels as possible for locating access opportu-
nities, this spectrum exploration may come at the expense of a smaller
transmission time, and, hence, a possibly smaller effective capacity for
data transmission. Also, due to the limited capability of the cognitive de-
vices, each SU, on its own, may not be able to explore more than a limited
number of channels. As a result, the SUs can rely on cooperation for shar-
ing the spectrum knowledge with nearby cognitive radio. Therefore, it is
important to design cooperative strategies which allow the SUs to improve
their performance while taking into account both sensing and access met-
rics.

The main contribution of this paper is to devise a cooperative scheme
among the SUs in a multi-channel cognitive network, which enables them
to improve their performance jointly at the sensing and access levels. From
a sensing perspective, we propose a scheme through which the SUs coop-
erate in order to share their channel knowledge, and, hence, improve their
view of the spectrum, consequently, reducing their sensing time. From
an access perspective, the proposed cooperation protocol allows the SUs
to improve their access capacities by: (i)- Learning from their cooperating
partners the existence of alternative channels with better conditions, (ii)-
Reducing the interference among each other, and (iii)- Exploiting multi-
ple channels simultaneously, when possible. We model the problem as a
coalitional game in partition form, and we propose an algorithm for coali-
tion formation. Albeit coalitional games in partition form have been widely
used in game theory, to the best of our knowledge, no existing work has
utilized the partition form of coalitional game theory in the design of wire-
less protocols and systems. The proposed coalition formation algorithm
allows the SUs to take distributed decisions to join or leave a coalition,
while maximizing their utility which accounts for the average time needed
to locate an unoccupied channel (spectrum sensing) and the average ca-
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pacity achieved when transmitting the data (spectrum access). Thus, the
SUs self-organize into disjoint coalitions that constitute a Nash-stable net-
work partition. Within every formed coalition, the SUs act cooperatively
by sharing their view of the spectrum, coordinating their sensing order,
and distributing their powers over the seized channels whenever possible.
Also, the proposed coalition formation algorithm allows the SUs to adapt
the topology to environmental changes such as the changes in the avail-
ability of the PU channels or the slow mobility of the SUs. Simulation
results show that the proposed algorithm increases the average payoff of
the SUs up to 77.25% relatively to the non-cooperative case.

The rest of this paper is organized as follows: Section 2 presents the
non-cooperative spectrum sensing and access model. In Section 3, we
present the proposed cooperation model for joint spectrum access and
sensing while in Section 4, we model the problem using coalitional games
in partition form and we devise a distributed algorithm for coalition forma-
tion. Simulation results are presented and analyzed in Section 5. Finally,
conclusions are drawn in Section 6.

2 Non-cooperative Spectrum Sensing and Access

In this section, we present the non-cooperative procedure for spectrum
sensing and access in a cognitive network, prior to proposing, in the next
sections, cooperation strategies for improving the performance of the SUs
jointly for sensing and access.

Consider a cognitive radio network with N secondary users (SUs) en-
gaged in the sensing of K primary users’ (PUs) channels in order to access
the spectrum and transmit their data to a common base station (BS). Let
N and K denote the set of SUs and the set of PUs (channels), respectively.
Due to the random nature of the traffic of the PUs and to the dynamics
of the PUs, each channel k ∈ K is available for use by the SUs with a
probability of θk (which depends on PU traffic only and not on the SUs).
Although for very small K the SUs may be able to learn the statistics
(probabilities θk) of all K channels, we consider the generalized case where
each SU i ∈ N can only have accurate statistics regarding a subset Ki ⊆ K
of Ki ≤ K channels (e.g., via standard learning algorithms), during the
period of time the channels remain stationary. We consider a frequency
selective channel, whereby the channel gain gi,k of any SU i ∈ N perceived
at the BS when SU i transmits over channel k ∈ Ki is gi,k = ai,k · d−μ

i , with
di the distance between SU i and the BS, μ the path loss exponent, and
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ai,k a Rayleigh distributed fading amplitude for SU i on channel k with a
variance of 1. We consider a channel with slow fading which varies in-
dependently over the frequencies (quasi-static over the frequency band).
Note that other channel types can also be accommodated.

For transmitting its data, each SU i ∈ N is required to sense the chan-
nels in Ki persistently, one at a time, in order to locate a spectrum oppor-
tunity. We consider that each SU i ∈ N is opportunistic which implies that
SU i senses the channels in Ki in a certain order, sequentially, and once
it locates a spectrum hole it ends the sensing process and transmits over
the first channel found unoccupied (by a PU). For the purpose of finding a
preferred order for sensing, each SU i assigns a weight wi,k to every chan-
nel k ∈ Ki which will be used in sorting the channels. When assigning the
weights and ordering the channels, the SUs face a tradeoff between im-
proving their sensing time by giving a higher weight to channels that are
often available, and improving their access performance by giving a higher
weight to channels with a better condition. To capture this tradeoff, the
weight wi,k assigned by an SU i to a channel k ∈ Ki will be taken as

wi,k = θk · gi,k, (D.1)

where gi,k is the channel gain perceived by SU i over channel k and θk is
the probability that channel k is available. Clearly, the weight given in
(D.1) provides a balance between the need for quickly finding an available
channel and the need for good channel conditions. Given the channel
weights, each SU i ∈ N sorts its channels in a decreasing order of weights
and begins sensing these channels in an ordered manner. Hence, each
SU i senses the channels consecutively starting by the channel with the
highest weight until finding an unoccupied channel on which to transmit,
if any. The set of channels used by an SU i ∈ N ordered in decreasing
weights is denoted by Kord

i = {k1, . . . , kKi} where wi,k1 ≥ wi,k2 ≥ . . . ≥ wi,kKi
.

We consider a time-slotted spectrum sensing and access process whereby,
within each slot, each SU i ∈ N spends a certain fraction of the slot for
sensing the channels, and, once an available channel is found, the re-
mainder time of the slot is used for spectrum access. In this regard,
we consider that the channel available/busy time is comparable or larger
to the duration of a slot, which is a common assumption in the litera-
ture [4, 12, 14, 22]. Given the ordered set of channels Kord

i , the average
fraction of time τi spent by any SU i ∈ N for locating a free channel, i.e.,
the average sensing time, is given by (the duration of a slot is normalized
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to 1)

τi(Kord
i ) =

Ki∑
j=1

(
j · α · θkj

j−1∏
m=1

(1− θkm)

)
+

Ki∏
l=1

(1− θkl) (D.2)

where α < 1 is the fraction of time needed for sensing a single channel, and
θkj is the probability that channel kj ∈ Kord

i is unoccupied. The first term in
(D.2) represents the average time spent for locating an unoccupied channel
among the known channels in Kord

i , and the second term represents the
probability that no available channel is found (in this case, the SU remains
idle in the slot). Note that τi(Kord

i ) is function of Kord
i and, hence, depends

on the assigned weights and the ordering. For notational convenience, the
argument of τi is dropped hereafter since the dependence on the channel
ordering is clear from the context.

When the SUs are acting in a non-cooperative manner, given the or-
dered set of channels Kord

i , the average capacity achieved by an SU i ∈ N
is given by

Ci =

Ki∑
j=1

θkj

j−1∏
m=1

(1− θkm) · EIi,kj

[
Ci,kj

]
(D.3)

where θkj
∏j−1

m=1(1 − θkm) is the probability that SU i accesses channel kj ∈
Kord

i given the ordered set Kord
i , and EIi,kj

[
Ci,kj

]
is the expected value of the

capacity achieved by SU i over channel kj with the expectation taken over
the distribution of the total interference Ii,kj perceived on channel kj by SU
i from the SUs in N \ {i}.

For evaluating the capacity in (D.3), every SU i ∈ N must have perfect
knowledge of the channels that the other SUs are using, as well as the
order in which these channels are being sensed and accessed (to compute
the expectation) which is quite difficult in a practical network. To alle-
viate the information needed for finding the average capacity, some work
such as [23, 24] consider, in (D.3), the capacities under the worst case
interference, instead of the expectation over the interference. However,
applying this assumption in our case requires considering the capacities
under worst case interference on every channel for every SU i which is
quite restrictive. Thus, in our setting, as an alternative to the expectation
in (D.3), for any SU i ∈ N we consider the capacity C̄i,kj achieved over
channel kj ∈ Kord

i under the average interference perceived from the SUs
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in N \ {i}, given by

C̄i,kj = log2 (1 + Γi,kj ). (D.4)

Here, Γi,kj is the SINR achieved by SU i when using channel kj given an
average total interference Īi,kj perceived from the SUs in N \{i} and is given
by

Γi,kj =
gi,kj · Pi,kj

σ2 + Īi,kj
, (D.5)

where Pi,kj is the maximum transmit power of SU i used on channel kj, and
σ2 is the variance of the Gaussian noise. In the non-cooperative setting,
Pi,kj = P̃ where P̃ is the maximum transmit power of any SU ( P̃ is assumed
the same for all SUs with no loss of generality). In a practical cognitive
network, through measurements, any SU i ∈ N can obtain from its receiver
an estimate of the average total interference Īi,kj perceived on any channel
kj ∈ Kord

i [25], and, thus, SU i is able to evaluate the capacity in (D.4). By
using (D.4), we define the average capacity C̄i in a manner analogous to
(D.3) as follows

C̄i =

Ki∑
j=1

θkj

j−1∏
m=1

(1− θkm) · C̄i,kj . (D.6)

Clearly, given the measurement of the external interference, every SU i

can easily evaluate its capacity in (D.6). Due to reasons such as Jensen’s
inequality, (D.6) represents a lower bound of (D.3) but it provides a good
indicator of the access performance of the SUs. Hereafter, we solely deal
with capacities given the measured average interference.

Consequently, the non-cooperative utility achieved by any SU i ∈ N per
slot is given by

u({i},N ) = C̄i · (1− τi), (D.7)

where the dependence on N indicates the dependence of the utility on the
external interference when the SUs are non-cooperative, τi is the fraction
of time used for sensing given by (D.2), and C̄i the average capacity given by
(D.6). This utility captures the tradeoff between exploring the spectrum,
i.e., sensing time, and exploiting the best spectrum opportunities, i.e.,
capacity achieved during spectrum access.
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3 Joint Spectrum Sensing and Access Through Co-

operation

To improve their joint sensing and access performance, the SUs in the
cognitive network can cooperate. Hence, any group of SUs can cooperate
by forming a coalition S ⊆ N in order to: (i)- Improve their sensing time
and learn the presence of channels with better conditions by exchanging
information on the statistics of their known channels, (ii)- Jointly coor-
dinate the order in which the channels are accessed to reduce the inter-
ference on each other, and (iii)- Share their instantaneous sensing results
to improve their capacity by distributing their total power over multiple
channels, when possible.

First and foremost, whenever a coalition S of SUs forms, its members
exchange their knowledge on the channels and their statistics. Hence, the
set of channels that the coalition is aware of can be given by KS = ∪i∈SKi

with cardinality |KS | = KS. By sharing this information, each member of
S can explore a larger number of channels, and, thus, can improve its
sensing time by learning channels with better availability and by reducing
the second term in (D.2). Moreover, as a result of sharing the known
channels, some members of S may be able to access the spectrum with
better channel conditions, hence, possibly improving their capacities as
well.

Once the coalition members share their knowledge of the channels,
the SUs will jointly coordinate their order of access over the channels in
KS in order to minimize the probability of interfering on each other. In
this context, analogous to the non-cooperative case, the SUs in S proceed
by assigning different weights on the channels in KS using (D.1). Then,
the SUs in coalition S cooperatively sort their channels, in a manner to
reduce interference as much as possible. Thus, the SUs jointly rank their
channels on a rank scale from 1 (the first channel to sense) to KS (the last
channel to sense). For every SU i ∈ S, let Qi,r denote the set of channels
that SU i selected until and including rank r. Further, we denote by Rr

the set of SUs that selected a channel for rank r and by Kr,S the set of
channels that have been selected for rank r by members of S. Given this
notation, we propose the sorting procedure in Algorithm 1 for any coalition
S. The gist of Algorithm 1 is that every SU in the coalition starts by using
the non-cooperative weighing procedure over the set of channels KS. In the
event where a set of SUs G ⊆ S select the same channel for the same rank
r, SU j ∈ G with the highest weight is given this channel at rank r, and this
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Algorithm 1 Proposed sorting algorithm for any coalition S ⊆ N
Qi,0 ← ∅
for r = 1 to KS do {For rank r = 1 we find all the channels that SUs in S sense first, for
r = 2 the channels that they sense second, and so on.}
Qi,r ← Qi,r−1, Kr,S ← ∅, Rr ← ∅
For rank r, each SU i ∈ S proposes to select the channel kr

i in KS \Qi,r which has the
highest weight, i.e., kr

i = argmax
k∈KS\Qi,r

wi,k.

for all i ∈ S s. t. kr
i �= kr

j , ∀j ∈ S, i �= j do

SU i fixes its selection for this rank, and, hence:
Qi,r ← Qi,r ∪ kr

i , Kr,S ← Kr,S ∪ kr
i , Rr ← Rr ∪ {i}.

end for

for all G ⊆ S \ Rr, s. t. kr
i = kr

j = kr
G, ∀i, j ∈ G do

a) The SU j ∈ G which has the highest weight for kr
G, i.e., j = argmax

j∈G
wj,kr

G
, selects

channel kr
G for rank r.

b) Qj,r ← Qj,r ∪ kr
G, Kr,S ← Kr,S ∪ kr

G, Rr ← Rr ∪ {j}.
if Rr �= S then {SUs with unselected channels for r exist}

The SUs in S \ Rr repeat the previous procedure, but each SU i ∈ S \ Rr, can
only use the channels in KS \ Kr,S ∪ Qi,r. However, if for any SU i ∈ S \ Rr, we
have KS \ Kr,S ∪ Qi,r = ∅, then this SU will simply select the channel that will
maximize its weight from the set KS \ Qi,r, regardless of the other SUs selection.

end if

end for

end for

is repeated for all such sets G. After these channel selections are made at
rank r, if a number of SUs have still not made any selection, i.e., Rr �= S,
then these SUs repeat the procedure but can only use channels that their
partners have not selected at rank r. However, if for any SU i ∈ S \ Rr,
this is not possible, it is inevitable that this SU i interferes with some of
its partners at rank r, then SU i simply selects, at rank r, the channel in
KS \ Qi,r with the highest weight. As a result of the sorting process, each
SU i ∈ S will have an ordered set of channels KS

i of cardinality KS which
reflects the result of Algorithm 1.

Given this new ordering resulting from the sorting procedure of Algo-
rithm 1, for every SU i ∈ S, the total average sensing time τSi will still be
expressed by (D.2). However, the sensing time τSi is function of the channel
ordering based on the set KS

i which is ordered cooperatively, rather than
Kord

i which is the non-cooperative ordering.

Using Algorithm 1, the SUs that are members of the same coalition are
able to reduce the interference on each other, by minimizing the possi-
bility of selecting the same channel at the same rank (although they can
still select the same channel but at different ranks). However, as a result
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of this joint sorting, some SUs might need to give a high rank to some
channels with lower weights which can increase the sensing time of these
SUs. Hence, this cooperative sorting of the channels highlights the fact
that some SUs may trade off some gains in sensing performance (obtained
by sharing channel statistics) for obtaining access gains (by avoiding in-
terference through joint sorting). As we will see later in this section, in
addition to the interference reduction, some SUs in a coalition S can also
obtain access gains by using multiple channels simultaneously.

For every coalition S, we define BS = {b1, . . . , b|S|} as the multiset with
every element bi representing a channel in KS

i selected by SU i ∈ S. Denote
by BS as the family of all such multisets for coalition S which corresponds
to the family of all permutations, with repetition, for the SUs in S over
the channels in KS. Each multiset BS ∈ BS is chosen by SUs in S with a
certain probability pBS

given by

pBS
=

⎧⎨
⎩
∏

k∈∪|S|
i=1bi, bi∈BS

θk
∏

j∈∪|S|
i=1KS

i,bi

(1− θj), if ∪|S|
i=1 bi ∩ ∪|S|

i=1KS
i,bi

= ∅

0, otherwise.

(D.8)

where, for any SU i ∈ S, the set KS
i,bi

= {j ∈ KS
i | rank(j) < rank(bi)} repre-

sents the set of channels that need to be busy before SU i selects channel
bi ∈ BS, i.e., the set of channels ranked higher than bi (recall that the set
KS

i is ordered as a result of Algorithm 1). If ∪|S|
i=1bi ∩ ∪|S|

i=1KS
i,bi

�= ∅, it implies
that, for the selection BS, a channel needs to be available and busy at the
same time which is impossible, and, hence, the probability for selecting
any multiset BS ∈ BS having this property is 0. Due to this property, the
SUs of any coalition S ⊆ N , can only achieve a transmission capacity for
the multisets BS ∈ B̄S where B̄S is the family of all feasible multisets for
coalition S such that ∪|S|

i=1bi ∩ ∪|S|
i=1KS

i,bi
= ∅, which corresponds to the mul-

tisets which have a non-zero probability of occurrence as per (D.8). Note
that, the multiset corresponding to the case where no SU i ∈ S finds an
unoccupied channel has also a non-zero probability, but is omitted as its
corresponding capacity is 0 and, thus, it has no effect on the utility.

For every channel selection BS ∈ B̄S, one can partition coalition S into
a number of disjoint sets {S1, . . . , SL} with ∪L

l=1Sl = S such that, for a given
l ∈ {1, . . . , L}, the channels in BS selected by any i ∈ Sl are of the same
rank. Thus, the SUs belonging to any Sl access their selected channels
simultaneously and, for this reason, they can coordinate their channel ac-
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cess. In the event where |Sl| = 1, then the SU in Sl simply transmits using
its maximum power P̃ over its selected channel in BS. In contrast, for
any l ∈ {1, . . . , L} with |Sl| > 1, the SUs in Sl can share their sensing re-
sult (since they find their available channels simultaneously) and improve
their access performance by distributing their powers cooperatively over
the channels in the set KSl

that corresponds to the channels selected by
Sl given BS. For every SU i ∈ Sl, we associate a 1 × |KSl

| vector P BS
i where

each element PBS
i,k represents the power that SU i ∈ Sl will use on channel

k ∈ KSl
given the selection BS. Let P BS

KSl
= [P BS

1 . . . P BS

|Sl|]
T . Hence, for every

Sl, l ∈ {1, . . . , L} such that |Sl| > 1, the SUs can distribute their power to
maximize the total sum-rate that they achieve as a coalition, i.e., the social
welfare, by solving 19:

max
P

BS
KSl

∑
i∈Sl

∑
k∈KSl

Ci,k, (D.9)

s.t. PBS
i,k ≥ 0, ∀i ∈ Sl, k ∈ KSl

,
∑

k∈KSl

PBS
i,k = P̃ , ∀i ∈ Sl,

with P̃ the maximum transmit power and Ci,k the capacity achieved by SU
i ∈ Sl over channel k ∈ KSl

and is given by

Ci,k = log

⎛
⎝1 +

PBS
i,k · gi,k

σ2 + ISl
i,k + I

S\Sl

i,k + ĪS,k

⎞
⎠ (D.10)

where ISl
i,k =

∑
j∈Sl,j 
=i gj,kP

BS
j,k is the interference between SUs in Sl on chan-

nel k ∈ KSl
, and I

S\Sl

i,k =
∑

j∈S\Sl
gj,kP

BS
j,k is the interference from SUs in S \Sl

on channel k ∈ KSl
(if any). Further, ĪS,k represents the average interfer-

ence perceived by the members of coalition S, including SU i from the SUs
external to S, which, given a partition Π of N with S ∈ Π, corresponds to
the SUs in N \ S (which can also be organized into coalitions as per Π).
Similar to the non-cooperative case, this average external interference can
be estimated through measurements from the receiver (the receiver can
inform every SU in S of the interference it perceived, and then the SUs in
S can easily deduce the interference from the external sources).

19Other advanced optimization or game theoretical methods such as non-cooperative
Nash equilibrium or Nash bargaining can also be used for distributing the powers, but are
out of the scope of this paper and will be tackled separately in future work.
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Subsequently, given that, for any BS ∈ B̄S, S is partitioned into {S1, . . . , SL}
as previously described, the average capacity achieved, when acting coop-
eratively, by any SU i ∈ S, with i ∈ Sl, l ∈ {1, . . . , L} (for every BS ∈ B̄S),
is

C̄S
i =

∑
BS∈B̄S

pBS
· CBS

i , (D.11)

where pBS
is given by (D.8), and CBS

i is the total capacity achieved by SU
i ∈ Sl when the SUs in S select the channels in BS and is given by

CBS
i =

∑
k∈KSl

CBS
i,k , (D.12)

where KSl
⊆ KS is the set of channels available to Sl ⊆ S. Further, CBS

i,k is
the capacity achieved by SU i ∈ Sl on channel k ∈ KSl

given the channel
selection BS and is a direct result (upon computing the powers) of (D.9)
which is a standard constrained optimization problem that can be solved
using well known methods [26].

Hence, the utility of any SU i in coalition S is given by

vi(S,Π) = C̄S
i (1− τSi ) (D.13)

where Π is the network partition currently in place which determines the
external interference on coalition S, and τSi is given by (D.2) using the set
KS

i which is ordered by SU i, cooperatively with the SUs in S, using Algo-
rithm 1. Note that the utility in (D.13) reduces to (D.7) when the network is
non-cooperative. Finally, we remark that, although cooperation can ben-
efit the SUs both in the spectrum sensing and spectrum access levels, in
many scenarios forming a coalition may also entail costs. From a spec-
trum sensing perspective, due to the need for re-ordering the channels to
reduce the interference, the sensing time of some members of a coalition
may be longer than their non-cooperative counterparts. From a spectrum
access perspective, by sharing information, some SUs may become subject
to new interference on some channels (although reduced by the sorting al-
gorithm) which may degrade their capacities. Thus, there exists a number
of tradeoffs for cooperation, in different aspects for both sensing and ac-
cess. In this regard, clearly, the utility in (D.13) adequately captures these
tradeoffs through the gains (or costs) in sensing time (spectrum sensing),
and the gains (or costs) in capacity (spectrum access).
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Fig. D.1: An illustrative example of coalition formation for joint spectrum
sensing and access for N = 8 SUs and K = 10 channels.

In a nutshell, with these tradeoffs, for maximizing their utility in (D.13),
the SUs can cooperate to form coalitions, as illustrated in Fig. D.1 for a
network with N = 8 and K = 10. Subsequently, the next section provides
an analytical framework to form SUs’ coalitions such as in Fig. D.1.

4 Joint Spectrum Sensing and Access as a Coali-

tional Game in Partition Form

In this section, we cast the proposed joint spectrum sensing and access
cooperative model as a coalitional game in partition form and we devise an
algorithm for coalition formation.

4.1 Coalitional Games in Partition Form: Concepts

For the purpose of deriving an algorithm that allows the SUs to form coali-
tions such as in Fig. D.1, in a distributed manner, we use notions from
cooperative game theory [27]. In this regard, denoting by P the set of
all partitions of N , we formulate the joint spectrum sensing and access
model of the previous section as a coalitional game in partition form with
non-transferable utility which is defined as follows [27, 28]:
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Definition 19 A coalitional game in partition form with non-transferable
utility (NTU) is defined by a pair (N , V ) where N is the set of players and

V is a mapping such that for every partition Π ∈ P , and every coalition

S ⊆ N , S ∈ Π, V (S,Π) is a closed convex subset of RS that contains the

payoff vectors that players in S can achieve.

Hence, a coalitional game is in partition form if, for any coalition S ⊆
N , the payoff of every player in the coalition depends on the partition Π,
i.e., on the players in S as well as on the players in N \ S. Further, the
game has NTU if the utility received by S cannot be expressed by a single
value which can be arbitrarily divided among the coalition members, but
is rather expressed as a set of vectors representing the payoffs that each
member of S can achieve when acting within S.

For the proposed joint spectrum sensing and access problem, given a
partition Π of N and a coalition S ∈ Π, and denoting by xi(S,Π) the payoff
of SU i ∈ S received when acting in coalition S when Π is in place, we
define the coalitional value set, i.e., the mapping V as follows

V (S,Π) = {x(S,Π) ∈ RS |∀i ∈ S, xi(S,Π) = vi(S,Π)}, (D.14)

where vi(S,Π) is given by (D.13). Using (D.14), we note:

Remark 2 The proposed joint spectrum sensing and access game can be

modeled as a (N , V ) coalitional game in partition form with non-transferable

utility where the mapping V is a singleton set as given by (D.14), and, hence,

is a closed and convex subset of RS.

Coalitional games in partition form have, recently, attracted interest in
game theory [27–31]. Partition form games are characterized by the de-
pendence of the payoffs on externalities, i.e., on the way the network is
partitioned. Unlike coalitional games in characteristic form where the fo-
cus is on studying the stability of the grand coalition of all players [27],
games in partition form are a richer and more complex framework since
any coalitional structure can be optimal [28, 29]. In this regard, coali-
tional games in partition form are often classified as coalition formation

games [28]. Hence, traditional solution concepts for coalitional games,
such as the core or the Shapley value [27], are inapplicable to coalitional
games in partition form [27–29]. For instance, for coalition formation
games in partition form, there is a need for devising algorithms to form
the coalitional structure that can potentially emerge in the network. In
particular, for the proposed joint spectrum sensing and access coalitional
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game, due to the tradeoffs between the benefits and costs of cooperation
as captured by (D.13) and explained in Section 3, we remark the following:

Remark 3 In the proposed joint spectrum sensing and access (N , V ) coali-

tional game in partition form, due to the dependence on externalities and the

benefit-cost tradeoffs from cooperation as expressed in (D.13) and (D.14),

any coalitional structure may form in the network and the grand coalition

is seldom beneficial due to increased costs. Hence, the proposed joint sens-

ing and access game is classified as a coalition formation game in partition

form.

Most coalition formation algorithms in game theory literature [28, 29]
are built for games in characteristic form. Although some approaches for
the partition form are presented in [29], but most of these are targeted
at solving problems in economics with utilities quite different from the
one dealt with in this paper. In order to build a coalition formation algo-
rithm suitable for joint spectrum sensing and access, we borrow concepts
from [32], where the players build coalitions based on preferences (in a
characteristic form game), and extend them to accommodate the partition
form.

Definition 20 For any SU i ∈ N , a preference relation or order �i is de-

fined as a complete, reflexive, and transitive binary relation over the set

of all coalition/partition pairs that SU i can be a member of, i.e., the set

{(Sk, Π)|Sk ⊆ N , i ∈ Sk, Sk ∈ Π, Π ∈ P}.

Consequently, for any SU i ∈ N , given two coalitions and their respec-
tive partitions S1 ⊆ N , S1 ∈ Π and, S2 ⊆ N , S2 ∈ Π ′ such that i ∈ S1

and i ∈ S2, (S1, Π) �i (S2, Π
′) indicates that player i prefers to be part of

coalition S1 when Π is in place, over being part of coalition S2 when Π ′

is in place, or at least, i prefers both coalition/partition pairs equally.
Further, using the asymmetric counterpart of �i, denoted by �i, then
(S1, Π) �i (S2, Π

′), indicates that player i strictly prefers being a mem-
ber of S1 within Π over being a member of S2 with Π ′. We also note that
the preference relation can be used to compare two coalitions in the same
partition, or the same coalition in two different partitions.

For every application, an adequate preference relation �i can be de-
fined to allow the players to quantify their preferences depending on their
parameters of interest. In this paper, we propose the following preference
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relation for any SU i ∈ N

(S1, Π) �i (S2, Π
′) ⇔ φi(S1, Π) ≥ φi(S2, Π

′) (D.15)

where S1 ∈ Π, S2 ∈ Π ′, with Π,Π ′ ∈ P, are any two coalitions that contain
SU i, i.e., i ∈ S1 and i ∈ S2 and φi is a preference function defined for any
SU i ∈ N as follows (S is a coalition containing i)

φi(S,Π) =

{
xi(S,Π), if (xj(S,Π) ≥ xj(S \ {i}, Π), ∀j ∈ S \ {i} & S /∈ h(i)) or (|S| = 1)

0, otherwise,

(D.16)

where xi(S,Π) is given by (D.13) through (D.14) and it represents the payoff
received by SU i in coalition S when partition Π is in place and h(i) is the
history set of SU i which is a set that contains the coalitions of size larger
than 1 that SU i was member of (visited) in the past, and had parted.

The main rationale behind the preference function φi is that any SU i

assigns a preference equal to its achieved payoff for any coalition/partition
pair (S,Π) such that either: (i)- S is the singleton coalition, i.e., SU i is
acting non-cooperatively, or (ii)- The presence of SU i in coalition S is not
detrimental to any of the SUs in S \ {i}, and coalition S has not been
previously visited by SU i, i.e., is not in the history h(i). Otherwise, the SU
assigns a preference value of 0 to any coalition whose members’ payoffs
decrease due to the presence of i, since such a coalition would refuse to
have i join the coalition. Also, any SU i assigns a preference of 0 to to any
coalition which it already visited in the past and left since an SU i has no
incentive to revisit a coalition previously left.

Having defined the main ingredients of the proposed game, in the next
subsection, we devise an algorithm for coalition formation.

4.2 Coalition Formation Algorithm

In order to devise a coalition formation algorithm based on the SUs’ pref-
erences, we propose the following rule:

Definition 21 Switch Rule - Given a partition Π = {S1, . . . , SM} of the set

of SUs N , an SU i decides to leave its current coalition Sm, for some m ∈
{1, . . . ,M} and join another coalition Sk ∈ Π ∪ {∅}, Sk �= Sm, hence forming

Π ′ = {Π \{Sm, Sk}}∪{Sm \{i}, Sk∪{i}}, if and only if (Sk∪{i}, Π ′) �i (Sm, Π).

Hence, {Sm, Sk} → {Sm \ {i}, Sk ∪ {i}} and Π → Π ′.
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For any partition Π, the switch rule provides a mechanism whereby
any SU can leave its current coalition Sm and join another coalition Sk ∈ Π,
forming a new partition Π ′, given that the new pair (Sk ∪ {i}, Π ′) is strictly
preferred over (Sm, Π) through the preference relation defined by (D.15)
and (D.16). That is, an SU would switch to a new coalition if it can strictly
improve its payoff, without decreasing the payoff of any member of the
new coalition. Thus, the switch rule can be seen as an individual decision
made by an SU, to move from its current coalition to a new coalition while
improving its payoff, given the consent of the members of this new coalition
as per (D.15). Further, whenever an SU decides to switch from its current
coalition Sm ∈ Π to join a different coalition, coalition Sm is stored in its
history set h(i) (if |Sm| > 1).

Consequently, we propose a coalition formation algorithm composed
of three main phases: Neighbor discovery, coalition formation, and joint
spectrum sensing and access. In the first phase, the SUs explore neigh-
boring SUs (or coalitions) with whom they may cooperate. For discovering
their neighbors, neighbor discovery algorithms suited for cognitive radio
such as in [33, 34] may be used. Once neighbor discovery is complete,
the next phase of the algorithm is the coalition formation phase. First, the
SUs start by investigating the possibility of performing a switch operation
by engaging in pairwise negotiations with discovered SUs/coalitions. Once
an SU identifies a potential switch operation (satisfying (D.15) and (D.16)),
it can make a distributed decision to switch and join a new coalition. In
this phase, we consider that, the order in which the SUs make their switch
operations is random but sequential (dictated by who requests first to co-
operate). For any SU, a switch operation is easily performed as the SU
can leave its current coalition and join the new coalition whose members
already agree on the joining of this SU as per (D.15) and (D.16). The con-
vergence of the proposed coalition formation algorithm during this phase
is guaranteed as follows:

Theorem 1 Starting from any initial network partition Πinit, the coalition for-

mation phase of the proposed algorithm always converges to a final network

partition Πf composed of a number of disjoint coalitions of SUs.

Proof: Denote by Π l,i
nl,i as the partition formed at iteration l during the

time SU i ∈ N needs to act after the occurrence of nl,i switch operations by

one or more SUs up to the turn of SU i in iteration l. Consider that the SUs

act in ascending order, i.e., SU 1 acts first, then SU 2, and so on. Given

any initial starting partition Πinit = Π1,1
0 , the coalition formation phase of the
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proposed algorithm consists of a sequence of switch operations as follows

(as an example)

Π1,1
0 → Π1,2

1 → . . . → Π1,N
n1,N

. . . → Π l,N
nl,N

→ . . . , (D.17)

where the operator → indicates a switch operation. Based on (D.15), for any

two partitions Π l,i
nl,i and Πm,j

nm,j in (D.17), such that nl,i �= nm,j, i.e., Πm,j
nm,j is a

result of the transformation of Π l,i
nl,i (or vice versa) after a number of switch

operations, we have two cases: (C1)- Π l,i
nl,i �= Πm,j

nm,j , or (C2)- An SU revisited

its non-cooperative state, and thus Π l,i
nl,i = Πm,j

nm,j .

If (C1) is true for all i, k ∈ N for any two iterations l and m, and, since the

number of partitions of a set is finite (given by the Bell number [29]), then

the number of transformations in (D.17) is finite. Hence, in this case, the

sequence in (D.17) will always terminate after L iterations and converge to

a final partition Πf = ΠL,N
nL,N (without oscillation). If case (C2) also occurs

in (D.17), future switch operations (if any) for any SU that reverted to act

non-cooperatively will always result in a new partition as per (D.15). Thus,

even when (C2) occurs, the finite number of partitions guarantees the algo-

rithm’s convergence to some Πf . Hence, the coalition formation phase of the

proposed algorithm always converges to a final partition Πf . �

The stability of the partition Πf resulting from the convergence of the
proposed algorithm can be studied using the following stability concept
(modified from [32] to accommodate the partition form):

Definition 22 A partition Π = {S1, . . . , SM} is Nash-stable if ∀i ∈ N s. t. i ∈
Sm, Sm ∈ Π, (Sm, Π) �i (Sk ∪ {i}, Π ′) for all Sk ∈ Π ∪ {∅} with Π ′ = (Π \
{Sm, Sk} ∪ {Sm \ {i}, Sk ∪ {i}}).

Hence, a partition Π is Nash-stable, if no SU has an incentive to move
from its current coalition to another coalition in Π or to deviate and act
alone.

Proposition 1 Any partition Πf resulting from the coalition formation phase

of the proposed algorithm is Nash-stable.

Proof: If the partition Πf resulting from the proposed algorithm is not
Nash-stable then, there ∃i ∈ N with i ∈ Sm, Sm ∈ Πf , and a coalition Sk ∈ Πf

such that (Sk∪{i}, Π ′) �i (Sm, Π), hence, SU i can perform a switch operation

which contradicts with the fact that Πf is the result of the convergence of the

proposed algorithm (Theorem 1). Thus, any partition Πf resulting from the

coalition formation phase of the proposed algorithm is Nash-stable. �
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Algorithm 2 One round of the proposed coalition formation algorithm
Initial State

The network is partitioned by Πinitial = {S1, . . . , SM}. At the beginning of all time, the
network is non-cooperative, hence, Πinit = N .

Phase 1 - Neighbor Discovery:

Each SU in N surveys its neighborhood for existing coalitions,
in order to learn the partition Π in place using existing
neighbor discovery algorithms such as in [33, 34].

Phase 2 - Coalition Formation:

repeat

Each SU i ∈ N investigates potential switch operations using the preference in (D.15)
by engaging in pairwise negotiations with existing coalitions in partition Π (initially
Π = Πinit).

Once a switch operation is found:
a) SU i leaves its current coalition.
b) SU i updates its history h(i), if needed.
c) SU i joins the new coalition with the consent of its members.

until convergence to a Nash-stable partition
Phase 3 - Joint Spectrum Sensing and Access:

The formed coalitions perform joint cooperative spectrum
sensing and access as per Section 3.

By periodic runs of these phases, the algorithm allows the SUs to adapt the net-

work structure to environmental changes (see Section 4.2).

Following the convergence of the coalition formation phase to a Nash-
stable partition, the third and last phase of the algorithm entails the joint
spectrum sensing and access where the SUs operate using the model de-
scribed in Section 3 for locating unoccupied channels and transmitting
their data cooperatively. A summary of one round of the proposed al-
gorithm is given in Algorithm 2. The proposed algorithm can adapt the
coalitional structure to environmental changes such as a change in the
PU traffic or slow channel variations (e.g., due to slow mobility). For this
purpose, the first two phases of the algorithm shown in Algorithm 2 are
repeated periodically over time, allowing the SUs, in Phase 2, to take dis-
tributed decisions to adapt the network’s topology through new switch
operations (which would converge independent of the starting partition as
per Theorem 1). Thus, for time varying environments, every period of time
η the SUs assess whether it is possible to switch from their current coali-
tion. Note that the history set h(i) for any SU i ∈ N is also reset every
η.

The proposed algorithm can be implemented in a distributed way, since,
as already explained, the switch operation can be performed by the SUs
independently of any centralized entity. First, for neighbor discovery, the
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SUs can either utilize existing algorithms such as in [33, 34], or they can
rely on information from control channels such as the recently proposed
cognitive pilot channel (CPC) which provides frequency, location, and other
information for assisting the SUs in their operation [35, 36]. Following
neighbor discovery, the SUs engage in pairwise negotiations, over control
channels, with their neighbors. In this phase, given a present partition
Π, for every SU, the computational complexity of finding its next coali-
tion, i.e., locating a switch operation, is easily seen to be O(|Π|) in the
worst case, and the largest value of |Π| occurs when all the SUs are non-
cooperative, in that case |Π| = N . Clearly, as coalitions start to form,
the complexity of locating a potential switch operation becomes smaller.
Also, for performing a switch, each SU and coalition have to evaluate their
potential utility through (D.13), to determine whether a switch operation
is possible. For doing so, the SUs require to know the external interfer-
ence and to find all feasible permutations to compute their average ca-
pacity. Each SU in the network is made aware of the average external
interference it perceives through measurements fed back from the receiver
to the SU. As a result, for forming a coalition, the SUs compute the average
external interference on the coalition by combining their individual mea-
surements. Alternatively, for performing coalition formation, the SUs can
also rely on information from the CPC which can provide a suitable means
for gathering information on neighbors and their transmission schemes.
Moreover, although, at first glance, finding all feasible permutations may
appear complex, as per Section 3, the number of feasible permutations is
generally small with respect to the total number of permutations due to
the condition in (D.8). Further, as cooperation entails costs, the network
eventually deals with small coalitions (as will be seen in Section 5) where
finding these feasible permutations will be reasonable in complexity.

5 Simulation Results and Analysis

For simulations, the following network is set up: The BS is placed at the
origin of a 3km ×3km square area with the SUs randomly deployed in the
area around it. We set the maximum SU transmit power to P̃ = 10 mW,
the noise variance to σ2 = −90 dBm, and the path loss exponent to μ = 3.
Unless stated otherwise, we set the fraction of time for sensing a single
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Fig. D.2: A snapshot of a network partition resulting from the proposed
algorithm with N = 9 SUs and K = 14 channels.

channel to α = 0.05 and we consider networks with K = 14 channels20.
In addition, non-cooperatively, we consider that each SU can accurately
learn the statistics of Ki = 3 channels, ∀i ∈ N (for every SU i these non-
cooperative Ki channels are randomly picked among the available PUs21).

Fig. D.2 shows a snapshot of the network structure resulting from the
proposed coalition formation algorithm for a randomly deployed network
with N = 9 SUs and K = 14 channels. The probabilities that the channels

20As an example, this can map to the total channels in 802.11b, although the actual
used number varies by region (11 for US, 13 for parts of Europe, etc.) [37].

21This method of selection is considered as a general case, other methods for non-
cooperatively picking the PU channels can also be accommodated.
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Fig. D.3: Average payoff achieved per SU per slot (averaged over ran-
dom positions of the SUs and the random realizations of the probabilities
θk, ∀k ∈ K) for a network with K = 14 channels as the network size N varies.

are unoccupied are: θ1 = 0.98, θ2 = 0.22, θ3 = 0.64, θ4 = 0.81, θ5 = 0.058,
θ6 = 0.048, θ7 = 0.067, θ8 = 0.94, θ9 = 0.18, θ10 = 0.25, θ11 = 0.17, θ12 = 0.15,
θ13 = 0.23, θ14 = 0.36. In Fig. D.2, the SUs self-organize into 5 coali-
tions forming partition Πf = {S1, S2, S3, S4, S5}. For each coalition in Πf ,
Fig. D.2 shows the sorted (by Algorithm 1) set of channels used by the
SUs in the coalitions (note that channel 9 was not learned by any SU non-
cooperatively). By inspecting the channel sets used by S3, S4, and S5, we
note that, by using Algorithm 1 the SUs sort their channels in a way to
avoid selecting the same channel at the same rank, when possible. This is
true for all ranks of these coalitions with two exceptions: The last rank for
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coalition S3 where SUs 5 and 8 both rank channel 6 last since it is rarely
available as θ6 = 0.048, and, similarly, the last rank for coalition S5 where
SUs 1 and 2 both select channel 5 (ranked lowest by both SUs) since it is
also seldom available as θ5 = 0.058. The partition Πf in Fig. D.2 is Nash-
stable, as no SU has an incentive to change its coalition. For example, the
non-cooperative utility of SU 9 is x9({9}, Πf ) = 1.1, by joining with SU 6, this
utility drops to 0.38, also, the utility of SU 6 drops from x6({6}, Πf ) = 1.79

to 1.63. This result shows that cooperation can entail a cost, notably, due
to the fact that that both SUs 6 and 9 know, non-cooperatively, almost the
same channels (namely, 3 and 2), and hence, by cooperating they suffer a
loss in sensing time which is not compensated by the access gains. Due
to the cooperation tradeoffs, the utility of SU 9, drops to 0.797, 0.707, and
0.4624, if SU 9 joins coalitions S3, S4, or S5, respectively. Thus, SU 9 has no
incentive to switch its current coalition. This property can be verified for
all SUs in Fig D.2 by inspecting the variation of their utilities if they switch
their coalition, thus, partition Πf is Nash-stable.

In Fig. D.3, we show the average payoff achieved per SU per slot for
a network with K = 14 channels as the number of SUs, N , in the net-
work increases. The results are averaged over random positions of the
SUs and the random realizations of the probabilities θk, ∀k ∈ K. Fig. D.3
shows that, as the number of SUs N increases, the performance of both
cooperative and non-cooperative spectrum sensing and access decreases
due to the increased interference. However, at all network sizes, the pro-
posed coalition formation algorithm maintains a better performance com-
pared to the non-cooperative case. In fact, the proposed joint spectrum
sensing and access presents a significant performance advantage over the
non-cooperative case, increasing with N as the SUs are more likely (and
willing, due to increased interference) to find cooperating partners when
N increases. This performance advantage reaches up to 77.25% relative to
the non-cooperative case at N = 20 SUs.

In Fig. D.4, we show the average and average maximum coalition size
(averaged over the random positions of the SUs and the random realiza-
tions of the probabilities θk, ∀k ∈ K) resulting from the proposed algorithm
as the number of SUs, N , increases, for a network with K = 14 chan-
nels. Fig. D.4 shows that, as N increases, both the average and maximum
coalition size increase with the average having a slower increase slope.
Further, we note that the average and average maximum coalition size
reach around 2.5 and 5 at N = 20, respectively. Hence, Fig. D.4 demon-
strates that, although some large coalitions are emerging in the network,
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Fig. D.4: Average and average maximum coalition size (averaged over ran-
dom positions of the SUs and the random realizations of the probabilities
θk, ∀k ∈ K) for a network with K = 14 channels as the network size N varies.

in average, the size of the coalitions is relatively small. This result is due
to the fact that, as mentioned in Section 3, although cooperation is ben-
eficial, it is also accompanied by costs due to the needed re-ordering of
the channels, the occurrence of new interference due to channel sharing,
and so on. These costs limit the coalition size in average. Thus, Fig. D.4
shows that, when using coalition formation for joint spectrum sensing and
access, the resulting network is, in general, composed of a large number
of small coalitions rather than a small number of large coalitions. In brief,
Fig. D.4 provides an insight on the network structure when the SUs coop-
erative for joint spectrum sensing and access.

In Fig. D.5, we show the average payoff achieved per SU per slot for
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Fig. D.5: Average payoff achieved per SU per slot (averaged over ran-
dom positions of the SUs and the random realizations of the probabilities
θk, ∀k ∈ K) for a network with N = 10 SUs and K = 14 channels as the
fraction of time needed for sensing a single channel α varies.

a network with N = 10 SUs and K = 14 channels as the fraction of time
needed for sensing a single channel α increases. The results are averaged
over random positions of the SUs and the random realizations of the prob-
abilities θk, ∀k ∈ K. Fig. D.5 demonstrates that, as the amount of time α

dedicated for sensing a single channel increases, the time that can be allot-
ted for spectrum access is reduced, and, thus, the average payoff per SU
per slot for both cooperative and non-cooperative spectrum sensing and
access decreases. In this figure, we can see that, at all α, the proposed
joint spectrum sensing and access through coalition formation exhibits a
performance gain over the non-cooperative case. This advantage decreases
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as the network size N varies.

with α, but it does not go below an improvement of 54.7% relative to the
non-cooperative scheme at α = 0.5, i.e., when half of the slot is used for
sensing a single channel.

Fig. D.6 shows the average and average maximum number of channels
known per coalition (averaged over the random positions of the SUs and
the random realizations of the probabilities θk, ∀k ∈ K) as the number of
SUs, N , increases, for a network with K = 14 channels. Fig. D.6 demon-
strates that both the average and average maximum number of known
channels per coalition increase with the network size N . This increase is
due to the fact that, as more SUs are present in the network, the coopera-
tion possibilities increase and the number of channels that can be shared
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Fig. D.7: Average payoff achieved per SU per slot (averaged over ran-
dom positions of the SUs and the random realizations of the probabilities
θk, ∀k ∈ K) for a network with N = 10 SUs as the number of channels K
varies.

per coalition also increases. In this regard, the average number of known
channels ranges from around 4.75 for N = 4 to around 5.5 for N = 20,
while the average maximum goes from 6.4 at N = 4 to 9 at N = 20. This
result shows that the increase in the average number of known channels
is small while that of the maximum is more significant. This implies that,
due to the cooperation tradeoffs, in general, the SUs have an incentive to
share a relatively moderate number of channels with the emergence of few
coalitions sharing a large number of channels.

Fig. D.7 shows the average payoff achieved per SU per slot for a net-
work with N = 10 SUs as the number of PU channels, K, increases. The
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Fig. D.8: Network structure evolution with time for N = 10 SUs, as the
traffic of the PUs, i.e., θk∀k ∈ K varies over a period of 4 minutes.

results are averaged over random positions of the SUs and the random
realizations of the probabilities θk, ∀k ∈ K. In this figure, we can see that
as the number of channels K increases, the performance of both coop-
erative and non-cooperative spectrum sensing and access increases. For
the non-cooperative case, this increase is mainly due to the fact that, as
more channels become available, the possibility of interference due to the
non-cooperative channel selection is reduced. For the proposed coalition
formation algorithm, the increase in the performance is also due to the in-
creased amount of channels that the SUs can share as K increases. Fur-
thermore, Fig. D.7 demonstrates that the proposed joint spectrum sensing
and access presents a significant performance advantage over the non-
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cooperative case which is at least 63.5% for K = 20 and increases for net-
works with smaller channels. The increase in the performance advan-
tage highlights the ability of the SUs to reduce effectively the interference
among each others through the proposed coalition formation algorithm.

In Fig. D.8, we show, over a period of 4 minutes (after the initial network
formation), the evolution of a network of N = 10 SUs and K = 14 channels
over time when the PUs’ traffic, i.e., the probabilities θk, ∀k ∈ K vary, inde-
pendently, every 1 minute. As the channel occupancy probability varies,
the structure of the network changes, with new coalitions forming and oth-
ers breaking due to switch operations occurring. The network starts with
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Fig. D.10: Average coalition lifespan in seconds (averaged over random
positions of the SUs and the random realizations of the probabilities
θk, ∀k ∈ K) for different speeds in a network with K = 14 channels for
N = 10 SUs and N = 15 SUs.

a non-cooperative structure made up of 10 non-cooperative SUs. First, the
SUs self-organize in 3 coalitions upon the occurrence of 8 switch opera-
tions as per Fig. D.8 (at time 0). With time, the SUs can adapt the net-
work’s structure to the changes in the traffic of the PUs through adequate
switch operations. For example, after 1 minute has elapsed, the number
of coalitions increase from 3 to 4 as the SUs perform 5 switch operations.
After a total of 18 switch operations over the 4 minutes, the final partition
is made up of 4 coalitions that evolved from the initial 3 coalitions.

In Fig. D.9, we show the average total number of switch operations per
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minute (averaged over the random positions of the SUs and the random
realizations of the probabilities θk, ∀k ∈ K) for various speeds of the SUs
for networks with K = 14 channels and for the cases of N = 10 SUs and
N = 15 SUs. The SUs are moving using a random walk mobility model for
a period of 2.5 minutes with the direction changing every η = 30 seconds.
As the velocity increases, the average frequency of switch operations in-
creases for all network sizes due to the dynamic changes in the network
structure incurred by more mobility. These switch operations result from
that fact that, periodically, every η = 30 seconds, the SUs are able to reen-
gage in coalition formation through Algorithm 2, adapting the coalitional
structure to the changes due to mobility. The average total number of
switch operations per minute also increases with the number of SUs as the
possibility of finding new cooperation partners becomes higher for larger
N . For example, while for the case of N = 10 SUs the average frequency
of switch operations varies from 4.8 operations per minute at a speed of
18 km/h to 15.2 operations per minute at a speed of 72 km/h, for the case
of N = 15 SUs, the increase is much steeper and varies from 6.4 operations
per minute at 18 km/h to 26 operations per minute at 72 km/h.

The network’s adaptation to mobility is further assessed in Fig. D.10
where we show, over a period of 2.5 minutes, the average coalition lifes-
pan (in seconds) achieved for various velocities of the SUs in a cognitive
network with K = 14 channels and different number of SUs. The mobil-
ity model is similar to the one used in Fig. D.9 with η = 30 seconds. We
define the coalition lifespan as the time (in seconds) during which a coali-
tion operates in the network prior to accepting new SUs or breaking into
smaller coalitions (due to switch operations). Fig. D.10 shows that, as the
speed of the SUs increases, the average lifespan of a coalition decreases
due to the fact that, as mobility becomes higher, the likelihood of forming
new coalitions or splitting existing coalitions increases. For example, for
N = 15 SUs, the coalition lifespan drops from around 69.5 seconds for a
velocity of 18 km/h to around 53.5 seconds at 36 km/h, and down to about
26.4 seconds at 72 km/h. Furthermore, Fig. D.10 shows that as more
SUs are present in the network, the coalition lifespan decreases. For in-
stance, for any given velocity, the lifespan of a coalition for a network with
N = 10 SUs is larger than that of a coalition in a network with N = 15 SUs.
The main reason behind the decrease in coalition lifespan with N is that,
for a given speed, as N increases, the SUs are more apt able to finding new
partners to join with as they move. In a nutshell, Fig. D.10 provides an
interesting assessment of the topology adaptation aspect of the proposed
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coalition formation algorithm through switch operations.
Finally, we note that, in order to highlight solely the changes due to

mobility, the fading amplitude was considered constant in Fig. D.9 and
Fig. D.10. Similar results can be seen when the fading amplitude also
changes.

6 Conclusions

In this paper, we introduced a novel model for cooperation in cognitive ra-
dio networks, which accounts for both the spectrum sensing and spectrum
access aspects. We modeled the problem as a coalitional game in partition
form and we derived an algorithm which allows the SUs to take individual
decisions for joining or leaving a coalition, depending on their achieved
utility which accounts for the average time to find a unoccupied channel
(spectrum sensing) and the average achieved capacity (spectrum access).
We showed that, by using the proposed coalition formation algorithm, the
SUs can self-organize into a Nash-stable network partition, and adapt this
topology to environmental changes such as a change in the traffic of the
PUs or slow mobility. Simulation results showed that the proposed algo-
rithm yields gains, in terms of average payoff per SU per slot, reaching up
to 77.25% relative to the non-cooperative case for a network with 20 SUs.
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[17] S. Subranami, T. Başar, S. Armour, D. Kaleshi, and Z. Fan, “Non-
cooperative equilibrium solutions for spectrum access in distributed
cognitive radio networks,” in Proc. IEEE DySPAN, Chicago, IL, USA,
Oct. 2008.

[18] M. Bloem, T. Alpcan, and T. Başar, “A Stackelberg game for power
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Abstract

Autonomous wireless agents such as unmanned aerial vehicles, mobile
base stations, cognitive devices, or self-operating wireless nodes present a
great potential for deployment in next generation wireless networks. While
current literature has been mainly focused on the use of agents within
robotics or software engineering applications, this paper proposes a novel
usage model for self-organizing agents suited to wireless communication
networks. In the proposed model, a number of agents are required to
collect data from several arbitrarily located tasks. Each task represents
a queue of packets that require collection and subsequent wireless tra-
nsmission by the agents to a central receiver. The problem is modeled
as a hedonic coalition formation game between the agents and the tasks
that interact in order to form disjoint coalitions. Each formed coalition
is modeled as a polling system consisting of a number of agents, desig-
nated as collectors, which move between the different tasks present in the
coalition, collect and transmit the packets. Within each coalition, some
agents might also take the role of a relay for improving the packet suc-
cess rate of the transmission. The proposed hedonic coalition formation
algorithm allows the tasks and the agents to take distributed decisions to
join or leave a coalition, based on the achieved benefit in terms of effective
throughput, and the cost in terms of polling system delay. As a result of
these decisions, the agents and tasks structure themselves into indepen-
dent disjoint coalitions which constitute a Nash-stable network partition.
Moreover, the proposed coalition formation algorithm allows the agents
and tasks to adapt the topology to environmental changes such as the
arrival of new tasks, the removal of existing tasks, or the mobility of the
tasks. Simulation results show how the proposed algorithm allows the
agents and tasks to self-organize into independent coalitions, while im-
proving the performance, in terms of average player (agent or task) payoff,
of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively
to a scheme that allocates nearby tasks equally among agents.
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1 Introduction

Next generation wireless networks will present a highly complex and dy-
namic environment characterized by a large number of heterogeneous in-
formation sources, and a variety of distributed network nodes. This is
mainly due to the recent emergence of large-scale, distributed, and het-
erogeneous communication systems which are continuously increasing in
size, traffic, applications, services, etc. For maintaining a satisfactory op-
eration of such networks, there is a constant need for dynamically op-
timizing their performance, monitoring their operation and reconfiguring
their topology. Due to the ubiquitous nature of such wireless networks,
it is inherent to have self-organizing autonomous nodes (agents), that can
service these networks at different levels such as data collection, monitor-
ing, optimization, management, maintenance, among others [1–8]. These
nodes belong to the authority maintaining the network, and must be able
to survey large scale networks, and perform very specific tasks at different
points in time, in a distributed and autonomous manner, with very little
reliance on any centralized authority [1–3, 6–8].

While the use of such autonomous agents has been thoroughly inves-
tigated in robotics, computer systems or software engineering, research
models that tackle the use of such agents in wireless communication net-
works are few. However, recently, the need for such agents in wireless
networks has become of noticeable importance as many next generation
networks encompass several wireless node types, such as cognitive devices
or unmanned aerial vehicles, that are autonomous and self-adapting [1–8].
A key problem in this context is the problem of task allocation among a
group of agents that need to execute a number of tasks. This problem has
been already tackled in areas such as robotics control [9–11], or software
systems [12, 13]. However, most of these existing models are unsuitable for
task allocation problems in the context of wireless networks due to various
reasons: (i)- The task allocation problems studied in the existing papers
are mainly tailored for military operations, computer systems, or software
engineering and, thus, cannot be readily applied in models pertaining to
wireless networks, (ii)- the tasks are generally considered as static abstract
entities with very simple characteristics and no intelligence (e.g. the tasks
are just points in a plane) which is a major limitation, and (iii)- the existing
models do not consider any aspects of wireless communication networks
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such as the characteristics of the wireless channel, the presence of data
traffic, the need for wireless data transmission, or other wireless-specific
specifications. In this context, numerous applications in next generation
wireless networks require a number of agent-nodes to perform specific
wireless-related tasks that emerge over time and are not pre-assigned. One
example of these applications is the case where a number of wireless nodes
are required to monitor the operation of the network or perform relaying at
different times and locations [1, 2, 4–8]. In such applications, the objective
is to provide algorithms that allow the agents to autonomously share the
tasks among each other. The main existing contributions within wireless
networking in this area [14–18], are focused on deploying unmanned aerial
vehicles (UAVs) which can act as self-deploying autonomous agents that
can efficiently perform pre-assigned tasks in numerous applications such
as connectivity improvement in ad hoc network [15], routing [16, 17], and
medium access control [18]. However, these contributions focus on central-

ized solutions for specific problems such as finding the optimal locations
for the deployment of UAVs or devising efficient routing algorithms in ad
hoc networks in the presence of UAVs (one or more). Moreover, in these
papers, the tasks that the agents must accomplish are pre-assigned and

pre-determined. In contrast, as previously mentioned, many applications
in wireless networks require the agents to autonomously assign the tasks
among themselves. Hence, it is inherent to devise algorithms, in the con-
text of wireless networks, that allow an autonomous and distributed task
allocation process among a number of wireless agents22 with little reliance
on centralized entities.

The main contribution of this paper is to propose a novel wireless
communication-oriented model for the problem of task allocation among a
number of autonomous agents. The proposed model considers a number
of wireless agents that are required to collect data from arbitrarily located
tasks. Each task represents a source of data, i.e., a queue with a Poisson
arrival of packets, that the agents must collect and transmit via a wireless
link to a central receiver. This formulation is deemed suitable to model
several problems in next generation networks such as video surveillance
in wireless networks, self-deployment of mobile relays in IEEE 802.16j
networks [2], data collection in ad hoc and sensor networks [8], operation

22The term wireless agent refers to any node that can act autonomously and can perform
wireless transmission. Examples of wireless agents are unmanned aerial vehicles [15],
mobile base stations [6–8], cognitive wireless devices [3], or self-deploying mobile relay
stations [2].
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of mobile base stations in vehicular ad hoc networks [6] and mobile ad
hoc networks [7] (the so called message ferry operation), wireless monitor-
ing of randomly located sites, autonomous deployment of unmanned air
vehicles in military ad hoc networks, and many other applications. For al-
locating the tasks, we introduce a novel framework from coalitional game
theory, known as hedonic coalition formation. Albeit hedonic games have
been widely used in game theory, to the best of our knowledge, no exist-
ing work utilized this framework in a communication or wireless environ-
ment. Thus, we model the task allocation problem as a hedonic coalition
formation game between the agents and the tasks, and we introduce an
algorithm for forming coalitions. Each formed coalition is modeled as a
polling system consisting of a number of agents, designated as collectors,
which act as a single server that moves continuously between the different
tasks (queues) present in the coalition, gathering and transmitting the col-
lected packets to a common receiver. Further, within each coalition, some
agents can act as relays for improving the packet success rate during the
wireless transmission. For forming coalitions, the agents and tasks can
autonomously make a decision to join or leave a coalition based on well
defined individual preference relations. These preferences are based on
a coalitional value function that takes into account the benefits received
from servicing a task, in terms of effective throughput (data collected), as
well as the cost in terms of the polling system delay incurred from the
time needed for servicing all the tasks in a coalition. We study the prop-
erties of the proposed algorithm, and show that it always converges to a
Nash-stable network partition. Further, we investigate how the network
topology can self-adapt to environmental changes such as the deployment
of new tasks, the removal of existing tasks, and low mobility of the tasks.
Simulation results show how the proposed algorithm allows the network
to self-organize, while ensuring a significant performance improvement, in
terms of average player (task or agent) payoff, compared to a scheme that
assigns nearby tasks equally among the agents.

The remainder of this paper is organized as follows: Section 2 presents
and motivates the proposed system model. In Section 3, we model the task
allocation problem problem as a transferable utility coalitional game and
propose a suited utility function. In Section 4, we classify the task allo-
cation coalitional game as a hedonic coalition formation game, we discuss
its key properties and we introduce the algorithm for coalition formation.
Simulation results are presented, discussed, and analyzed in Section 5.
Finally, conclusions are drawn in Section 6.
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2 System Model

Consider a network consisting of M wireless agents that belong to a sin-
gle network operator and that are controlled by a central command center
(e.g., a central controller node or a satellite system). These agents are re-
quired to service T tasks that are arbitrarily located in a geographic area
having an associated central wireless receiver connected to the command
center. The tasks are entities that, in general, belong to one or more in-
dependent owners23. These tasks’ owners can be, for example, service
providers or third party operators. We denote the set of agents, and tasks
by M = {1, . . . ,M}, and T = {1, . . . , T}, respectively. In this paper, we con-
sider only the case where the number of tasks is larger than the number
of agents, hence, T > M . The main motivation behind this consideration is
that, for most networks, the number of agents assigned to a specific area is
generally small due to cost factors for example. Each task i ∈ T represents
an M/D/1 queueing system24, whereby packets of constant size B are gen-
erated using a Poisson arrival with an average arrival rate of λi. Hence, in
the proposed model, we consider different classes of tasks each having its
corresponding λi. The tasks we consider are sources of data that cannot
send their information to the central receiver (and, subsequently, to the
command center) without the help of an agent. These tasks can represent
a group of mobile devices, such as sensors, video surveillance devices, or
any other static or dynamic wireless nodes that have limited power and are
unable to provide long-distance transmission. Hence, these devices (tasks)
need to buffer their data locally and await to be serviced by an agent that
can collect the data. For example, an agent such as a mobile base station,
a mobile relay or a UAV can provide a line-of-sight link that can facilitate
the transmission from the tasks to the central receiver. The tasks can also
be mapped to any other source of packet data that require collection by an
agent for transmission25. For servicing a task, each agent is required to
move to the task location, collect the data, and transmit it using a wireless
link to the central receiver. The command center periodically downloads
this data from the receiver, e.g., through a backbone network. Each agent
i ∈ M offers a link transmission capacity of μi, in packets/second, with
which the agent can service the data from any task. Hence, the quantity 1

μi

23The scenario where all tasks and agents are owned by the same entity is a particular
case of this generic model.

24Other types of queues, e.g., M/M/1, can also be considered without loss of generality
in the coalition formation process proposed in this paper.

25The tasks can be moving with a periodic low mobility, as will be seen in later sections.
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would represent the well known service time for a single packet that is be-
ing serviced by agent i. The agent which is collecting the data from a task
is referred to as collector. In addition, each agent i ∈ M can transmit the
data to the receiver with a maximum transmit power of Pi = P̃ , assumed
the same for all agents 26.

The proposed model allows each task to be serviced by multiple agents,
and also, each agent (or group of agents) to service multiple tasks. When-
ever a task is serviced by multiple agents, each agent can act as either a
collector or a relay. Any group of agents that act together for data collec-
tion from the same task, can be seen as a single collector with improved
link transmission capacity. In this paper, we consider that the link tra-
nsmission capacity depends solely on the capabilities of the agents and
not on the nature of the tasks. In this context, given a group of agents
G ⊆ M that are acting as collectors for any task, the total link transmission
capacity with which tasks can be serviced with by G can be given by

μG =
∑
j∈G

μj . (E.1)

For forming a single collector, multiple agents can easily coordinate the
data extraction, and then transmission from every task, so as to allow a
larger link transmission capacity for the serviced task as per (E.1). More-
over, the transmission of the packets by the agents from a task i ∈ T to the
central receiver is subject to packet loss due to the fading on the wireless
channel. In this regard, in addition to acting as collectors, some agents
may act as relays for a task. These relay-agents would locate themselves at
equal distances from the task (given that the task is already being served
by at least one collector), and, hence, the collectors transmit the data to
the receiver through multi-hop agents, improving the probability of suc-
cessful transmission. In this context, in Rayleigh fading, the probability
of successful transmission of a packet of size B bits from the collectors
present at a task i ∈ T through a path of m agents, Qi = {i1, . . . , im}, where
i1 = i is the task being serviced, im is the central receiver (CR), and any
other ih ∈ Qi is a relay-agent, can be given by

Pri,CR =
m−1∏
h=1

PrBih,ih+1
, (E.2)

26Note that, different maximum transmit power values can be easily accommodated in
the coalition formation algorithm proposed in the next sections.

263



Hedonic Coalition Formation for Distributed Task Allocation among

Wireless Agents

Fig. E.1: An illustrative example of the proposed model for task allocation
in wireless networks (the agents are dynamic, i.e., they move from one task
to the other continuously).

where Prih,ih+1
is the the probability of successful transmission of a single

bit from agent ih to agent (or the central receiver) ih+1. This probability can
be given by the probability of maintaining the SNR at the receiver above a
target level ν0 as follows [19]

Pri,ih+1
= exp

(
−σ2ν0(Dih,ih+1

)α

κP̃

)
, (E.3)

where σ2 is the variance of the Gaussian noise, κ is a path loss constant,
α is the path loss exponent, Dih,ih+1

is the distance between nodes ih and
ih+1, and P̃ is the maximum transmit power of agent ih.

For servicing a number of tasks C ⊆ T , a group of agents G ⊆ M (col-
lectors and relays) can sequentially move from one task to the other in C

with a constant velocity η. The group G of agents, servicing the tasks in
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C, stop at each task, with the collectors collecting and transmitting the
packets using the relays (if any). The collectors would move from one task
to the other, only if all the packets in the queue at the current task have
been transmitted to the receiver (the process through which the agents
move from one task to the other for data collection is cyclic). Simulta-
neously with the collectors, the relays also move, positioning themselves
at equal distances on the line connecting the task being currently served
by the collectors, and the central receiver. With this proposed model, the
final network will consist of groups of tasks serviced by groups of agents,
continuously. An illustration of this model is shown in Figure E.1.

Consequently, given this proposed model, the main objective is to pro-
vide an algorithm for distributing the tasks between the agents, given the
operation of the agents previously described and shown in Figure E.1. In
other words, the main goal is to allow the agents and task to autonomously
form the coalitional structure in Figure E.1 and adapt it to environmen-
tal changes. For this purpose, the following sections formulate a game
theoretic approach for achieving this objective.

3 Coalitional Game Formulation

In this section, we model the proposed problem as a coalitional game with
transferable utility, and we propose a suitable utility function.

3.1 Game Formulation

By inspecting Figure E.1, one can clearly see that the task allocation prob-
lem among the agents can be mapped into the problem of the formation
of coalitions. In this regard, coalitional game theory [20, Ch. 9] provides
a suitable analytical tool for studying the formation of cooperative groups,
i.e., coalitions, among a number of players. For the proposed model, the
coalitional game is played between the agents and the tasks. Hence, the
players set for the proposed task allocation coalitional game is denoted by
N , and contains both agents and tasks, i.e., N = M∪T . In the remainder
of this paper, we use the term player to indicate either a task or an agent.

For any coalition S ⊆ N containing a number of agents and tasks, the
agents belonging to this coalition can structure themselves into collectors
and relays. Subsequently, as explained in the previous section, within
each coalition, the collector-agents will continuously move from one task
to the other, stopping at each task, and transmitting all the packets avail-
able in the queue to the central receiver, through the relay-agents (if any).
This proposed task servicing scheme can be mapped to a well-known con-
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cept that is ubiquitous in computer systems, which is the concept of a
polling system [21]. In a polling system, a single server moves between
multiple queues in order to extract the packets from each queue, in a se-
quential and cyclic manner. Models pertaining to polling systems have
been widely developed in various disciplines ranging from computer sys-
tems to communication networks, and different strategies for servicing the
queues exist [21–24]. In the proposed task allocation model, the collectors
of every coalition in our model are considered as a single server that is
servicing the tasks (queues) sequentially, in a cyclic manner, i.e., after
servicing the last task in a coalition S ⊆ N , the collectors of S return to
the first task in S that they previously visited hence repeating their route
continuously. Further, whenever the collectors stop at any task i ∈ S, they
collect and transmit the data present at this task until the queue is empty.
This method of allowing the server to service a queue until emptying the
queue is known as the exhaustive strategy for a polling system, which is
applied at the level of every coalition S ⊆ N in our model. Moreover, the
time for the server to move from one queue to the other is known as the
switchover time. Consequently, we highlight the following property:

Property 4 In the proposed task allocation model, every coalition S ⊆ N is

a polling system with an exhaustive polling strategy and deterministic non-

zero switchover times. In each such polling system S, the collector-agents

are seen as the polling system server, and the tasks are the queues that the

collector-agents must service.

Furthermore, for any coalition S, once the queue at a task i ∈ S is
emptied, the collectors and relays in a coalition move from task i to the
next task j ∈ S with a constant velocity η, hence, incurring a switchover
time θi,j. The switchover time in our model corresponds to the time it
takes for all the agents (collectors and relays) to move from one task to
the next, which, assuming all agents start their mobility at the same time,
maps to the time needed for the farthest agent to move from one task to
the next. Since we consider only straight line trajectories for collectors
and relays, and due to the fact that the relays always position themselves
at equal distances on the line connecting the tasks in a coalition to the
receiver, we have the following property (clearly seen through the geometry
of Figure E.1).

Property 5 Within any given coalition S, the switchover time between two

tasks corresponds to the constant time it takes for one of the collectors to

move from one of the tasks to the next.
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Having modeled every coalition S ⊆ N as a polling system, we investi-
gate the average delay incurred per coalition. In fact, for polling systems,
finding exact expressions for the delay at every queue is a highly compli-
cated task, and hence, no general closed-form expressions for the delay at
every queue in a polling system can be found [21, 22]27. In this regard, a
key criterion used for the analysis of the delay incurred by a polling system
is the pseudo-conservation law which provides closed-form expressions for
weighted sum of the means of the waiting times at the queues [21, 22]. For
providing the pseudo-conservation law for a coalition S ⊆ N composed of
a number of agents and a number of tasks, we make the following defini-
tions. First, within coalition S, a group of agents GS ⊆ S∩M are designated
as collectors. Second, for each task i ∈ S ∩ T with an average arrival rate
of λi, and served by a number of collectors |GS | with a link transmission
capacity of μGS (as given by (E.1)), we define the utilization factor of task
i ρi =

λi

μGS
. Further, we define ρS �

∑
i∈S∩T ρi. Given these definitions, for

a coalition S, the weighted sum of the means of the waiting times by the
agents at all the tasks in the coalition are given by the pseudo-conservation
law as follows [22, Section. VI-B] (taking into account that our switchover
and service times are deterministic)

∑
i∈S∩T

ρiW̄i = ρS

∑
i∈S∩T

ρi
μGS

2(1− ρS)
+ ρS

θ2S
2

+
θS

2(1− ρS)

[
ρ2S −

∑
i∈S∩T

ρ2i

]
, (E.4)

where W̄i is the mean waiting time at task i and θS =
∑|S∩T |

h=1 θih,ih+1
is the

sum of the switchover times given a path of tasks {i1, . . . , i|S∩T |} followed
by the agents, with ih ∈ S ∩ T , ∀ h ∈ {1, . . . , |S ∩ T |} and i|S∩T |+1 = i1. The
first term in the right hand side of (E.4) is the well known expression for
the average queueing delay for M/D/1 queues, weighed by ρS. The second
and third terms in the right hand side of (E.4) represent the average delay
increase incurred by the travel time required for the collectors to move
from one task to the other, i.e., the delay resulting from the switchover
period. Further, for any coalition S that must form in the system, the
following condition must hold:

ρS < 1. (E.5)

27Note that some approximations [22] exist for polling systems under heavy traffic or
large switchover times, but in our problem, they are not suitable as we require a more
general delay expression.
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This condition is a requirement for the stability of any polling system [21–
24] and, thus, must be satisfied for any coalition that will form in the
proposed model. In the event where this condition is violated, the system
is considered unstable and the delay is considered as infinite. In this
regard, the analysis presented in the remainder of this paper will take into
account this condition and its impact on the coalition formation process
(as demonstrated in the next sections, a coalition where ρS ≥ 1 will never
form).

3.2 Utility Function

In the proposed game, for every coalition S ⊆ N , the agents must deter-
mine the order in which the tasks in S are visited, i.e., the path {i1, . . . , i|S∩T |}
which is an ordering over the set of tasks in S given by S ∩ T . Naturally,
the agents must select the path that minimizes the total switchover time
for one round of data collection. This can be mapped to the following well-
known problem:

Property 6 The problem of finding the path that minimizes the total switchover

time for one round of data collection within a coalition S ⊆ N is mapped into

the traveling salesman problem [25], where a salesman, i.e., the agents

S ∩M, is required to minimize the time of visiting a series of cities, i.e., the

tasks S ∩ T .

It is widely known that the solution for the traveling salesman prob-
lem is NP-complete [25], and, hence, there has been numerous heuristic
algorithms for finding an acceptable near-optimal solution. One of the
simplest of such algorithms is the nearest neighbor algorithm (also known
as the greedy algorithm) [25]. In this algorithm, starting from a given city
the salesman chooses the closet city as his next visit. Using the nearest
neighbor algorithm, the ordering of the cities which minimizes the overall
route is selected. The nearest neighbor algorithm is sub-optimal, however,
it can quickly find a near-optimal solution (in most cases) and its com-
putational complexity is small (linear in the number of cities) [25], hence
making it suitable for complicated problems such as the task allocation
problem we are considering. Therefore, in the proposed model, for every
coalition S, the agents can easily work out the nearest neighbor route for
the tasks, and operate according to it.

Having modeled each coalition as a polling system, the pseudo-conservation
law in (E.4) allows to evaluate the cost, in terms of average waiting time
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(or delay), from forming a particular coalition. However, for every coali-
tion, there is a benefit, in terms of the average effective throughput that
the coalition is able to achieve. The average effective throughput for a
coalition S is given by

LS =
∑

i∈S∩T
λi · Pri,CR, (E.6)

with Pri,CR given by (E.2). By closely inspecting (E.1), one can see that
adding more collectors improves the transmission link capacity, and, thus,
reduces the service time that a certain task perceives. Based on this prop-
erty and by using (E.4) one can easily see that, adding more collectors,
i.e., improving the service time, reduces the overall delay in (E.4) [21–24].
Further, adding more relays would reduce the distance over which tra-
nsmission is occurring, thus, improving the probability of successful tra-
nsmission as per (E.2) [6, 19]. In consequence, using (E.6), one can see
that this improvement in the probability of successful transmission is
translated into an improvement in the effective throughput. Hence, each
agent role (collector or relay) possesses its own benefit for a coalition.

A suitable criterion for characterizing the utility in networks that ex-
hibit a tradeoff between the throughput and the delay is the concept of
system power which is defined as the ratio of some power of the through-
put and the delay (or a power of the delay) [26]. Hence, the concept of
power is an attractive notion that allows to capture the fundamental trade-
off between throughput and delay in the proposed task allocation model.
Power has been used thoroughly in the literature in applications that are
sensitive to throughput as well as delay [27–29]. Mainly, for the proposed
game, the utility of every coalition S is evaluated using a coalitional value
function based on the power concept from [29] as follows

v(S) =

⎧⎨
⎩δ

Lβ
S

(
∑

i∈S∩T ρiW̄i)(1−β) , if ρS < 1 and |S| > 1,

0, otherwise,
(E.7)

where β ∈ (0, 1) is a throughput-delay tradeoff parameter. In (E.7), the
term δ represents the price per unit power that the network offers to coali-
tion S. Hence, δ represents a generic control parameter that allows the
network operator to somehow monitor the behavior of the players. The
use of such control parameters is prevalent in game theory [30–34]. In
certain scenarios, δ would represent physical monetary values paid by the
operator to the different entities (agents and tasks). In such a case, on
one hand, for the tasks, the operator simply would pay the tasks’ owners
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for the amount of data (and its corresponding quality as per (E.7)) each
one of their tasks had generated. On the other hand, for the agents, the
payment would, for example, represent either a reward for the behavior of
the agents or the proportion of maintenance or servicing that each agent
would receiver from its operator. In this sense, the utility function in (E.7)
would, thus, represents the total revenue achieved by a coalition S, given
the network power that coalition S obtains. For coalitions that consist of a
single agent or a single task, i.e., coalitions of size 1, the utility assigned is
0 due to the fact that such coalitions generate no benefit for their member
(a single agent can collect no data unless it moves to task, while a single
task cannot transmit any of its generated data without an agent collecting
this data). Further, any coalition where condition (E.5) is not satisfied is
also given a zero utility, since, in this case, the polling system that the
coalition represents is unstable, and hence has an infinite delay.

Consequently, given the set of players N , and the value function given
in (E.7), we define a coalitional game (N , v) with transferable utility (TU).
The utility in (E.7) represents the amount of money or revenue received
by a coalition, and, hence, this amount can be arbitrarily apportioned be-
tween the coalition members, which justifies the TU nature of the game.
For dividing this utility between the players, we adopt the equal fair allo-
cation rule, whereby the payoff of any player i ∈ S, denoted by xSi is given
by

xSi =
v(S)

|S| . (E.8)

The payoff xSi represents the amount of revenue that player i ∈ S re-
ceives from the total revenue v(S) that coalition S generates. The main
motivation behind adopting the equal fair allocation rule is in order to
highlight the fact that the agents and the tasks value each others equally.
As seen in (E.7), the presence of an agent in a coalition is crucial in or-
der for the tasks to obtain any payoff, and, vice versa, the presence of a
task in a coalition is required for the agent to be able to obtain any kind
of utility. Nonetheless, the proposed model and algorithm can accommo-
date any other type of payoff allocation rule. For instance, although in
traditional coalitional games, the allocation rule may have a strong impact
on the game’s solution, for the proposed game, other allocation rules can
be used with little impact on the analysis that is presented in the rest
of the paper. This is mainly due to the nature and class of the proposed
game which is quite different from traditional coalitional games. In fact, as
clearly seen from (E.4) and (E.7), whenever the number of tasks in a coali-
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tion increases, the total delay increases, hence, reducing the utility from
forming a coalition. Further, in a coalition where the number of tasks is
large, the condition of stability for the polling system, as given by (E.5),
can be easily violated due to heavy traffic incoming from a large number of
tasks, thus, yielding a zero utility as per (E.7). Hence, forming coalitions
between the tasks and the agents entails a cost that can limit the size of a
coalition. In this regard, traditional solution concepts for TU games, such
as the core [20], may not be applicable. In fact, in order for the core to
exist, as a solution concept, a TU coalitional game must ensure that the
grand coalition, i.e., the coalition of all players will form. However, as seen
in Figure E.1 and corroborated by the utility in (E.7), in general, due to
the cost for coalition formation, the grand coalition will not form. Instead,
independent and disjoint coalitions appear in the network as a result of
the task allocation process. In this regard, the proposed game is classified
as a coalition formation game [30–34], and the objective is to find an algo-
rithm that allows to form the coalition structure, instead of finding only
a solution concept, such as the core, which aims mainly at stabilizing a
grand coalition of all players.

4 Task Allocation as a Hedonic Coalition Formation

Game

In this section, we map the proposed task allocation problem to a hedonic
coalition formation game with an underlying transferable utility, and we
propose a distributed algorithm for forming the coalitions using concepts
from hedonic games.

4.1 Hedonic Coalition Formation: Concepts and Model

As already mentioned, the proposed task allocation model entails the for-
mation of disjoint coalitions, and, hence, the proposed game is classified
as a coalition formation game. In fact, coalition formation has been a
topic of high interest in game theory [30–34]. Notably, in [32–34], a class
of coalition formation games known as hedonic coalition formation games

is investigated. This class of games entails several interesting properties
that can be applied, not only in economics such as in [32–34], but also
in wireless networks as we will demonstrate in this paper. The two key
requirements for classifying a coalitional game as a hedonic game are as
follows [32]:
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Condition 1 - (Hedonic Conditions) - A coalition formation game is classi-

fied as hedonic if

1. The payoff of any player depends solely on the members of the coalition

to which the player belongs.

2. The coalitions form as a result of the preferences of the players over

their possible coalitions’ set.

These two conditions characterize the framework of hedonic games.
Mainly, the term hedonic pertains to the first condition above, whereby
the payoff of any player i, in a hedonic game, must depend only on the
identity of the players in the coalition to which player i belongs, with no
dependence on the other players. For the second condition, in the re-
mainder of this section, we will formally define how the preferences of the
players over the coalitions can be used for the formation process.

Prior to investigating the application of hedonic games in the proposed
model, we introduce some definitions, taken from [32].

Definition 23 A coalition structure or a coalition partition is defined as

the set Π = {S1, . . . , Sl} which partitions the players set N , i.e., ∀ k , Sk ⊆ N
are disjoint coalitions such that ∪l

k=1Sk = N (an example of a partition Π is

shown in Figure E.1).

Definition 24 Given a partition Π of N , for every player i ∈ N we denote by

SΠ(i), the coalition to which player i belongs, i.e., coalition SΠ(i) = Sk ∈ Π,

such that i ∈ Sk.

In a hedonic game setting, each player must build preferences over its
own set of possible coalitions. In other words, each player must be able
to compare the coalitions, and order them based on which coalition the
player prefers being a member of. For evaluating these preferences of the
players over the coalitions, we define the concept of a preference relation
or order as follows [32]:

Definition 25 For any player i ∈ N , a preference relation or order �i is

defined as a complete, reflexive, and transitive binary relation over the set

of all coalitions that player i can possibly form, i.e., the set {Sk ⊆ N : i ∈ Sk}.

Consequently, for a player i ∈ N , given two coalitions S1 ⊆ N and,
S2 ⊆ N such that i ∈ S1 and i ∈ S2, S1 �i S2 indicates that player i prefers
to be part of coalition S1, over being part of coalition S2, or at least, i
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prefers both coalitions equally. Further, using the asymmetric counterpart
of �i, denoted by �i, then S1 �i S2, indicates that player i strictly prefers
being a member of S1 over being a member of S2. For every application,
an adequate preference relation �i can be defined to allow the players to
quantify their preferences. The preference relation can be a function of
many parameters, such as the payoffs that the players receive from each
coalition, the weight each player gives to other players, and so on. Given
the set of players N , and a preference relation �i for every player i ∈ N , a
hedonic coalition formation game is formally defined as follows [32]:

Definition 26 A hedonic coalition formation game is a coalitional game that

satisfies the two hedonic conditions previously prescribed, and is defined by

the pair (N ,�) where N is the set of players (|N | = N ), and � is a profile of
preferences, i.e., preference relations, (�1, . . . ,�N ) defined for every player

in N .

Having laid out and defined the main components of hedonic coalition
formation games, we utilize this framework in order to provide a suitable
solution for the task allocation problem proposed in Section 2. For in-
stance, the proposed task allocation problem is easily modeled as a (N ,�)

hedonic game, where N is the set of agents and tasks previously defined,
and � is a profile of preferences that we will shortly define. First and
foremost, for the proposed game model, given a network partition Π of N ,
the payoff of any player i, depends only on the identity of the members of
the coalition to which i belongs. In other words, the payoff of any player
i depends solely on the players in the coalition in which player i belongs
SΠ(i) (easily seen through the formulation of Section 3). Hence, our game
verifies the first hedonic condition.

Furthermore, for modeling the task allocation problem as a hedonic
coalition formation game, the preference relations of the players must be
clearly defined. In this regard, we define two types of preference relations,
a first type suited for indicating the preferences of the agents, and a second
type suited for the tasks. Subsequently, for evaluating the preferences of
any agent i ∈ M, we define the following operation (this preference relation
is common for all agents, hence we denote it by �i = �M, ∀i ∈ M)

S2 �M S1 ⇔ u(S2) ≥ u(S1), (E.9)

where S1 ⊆ N and S2 ⊆ N are any two coalitions that contain agent i, i.e.,
i ∈ S1 and i ∈ S2 and u : 2N → R is a preference function defined as follows
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u(S) =

⎧⎪⎪⎨
⎪⎪⎩
∞, if S = SΠ(i) & S \ {i} ⊆ T ,

0, if S ∈ h(i),

xSi . otherwise,

(E.10)

where Π is the current coalition partition which is in place in the game, xSi
is the payoff received by player i from any division of the value function
among the players in coalition S such as the equal fair division given in
(E.8), and h(i) is the history set of player i. At any point in time, the history
set h(i) is a set that contains the coalitions that player i was a part of in
the past, prior to the formation of the current partition Π. Note that, by
using the defined preference relation, the players can compare any two
coalitions S1 and S2 independently of whether these two coalitions belong
to Π or not.

The main rationale behind the preference function u in (E.10) is as
follows. In this model, the agents, being entities owned by the operator,
seek out to achieve two conflicting objectives: (i)- Service all tasks in the
network for the benefit of the operator, and (ii)- Maximize the quality of
service, in terms of power as per (E.7), for extracting the data from the
tasks. The preference function u must be able to allow the agents to make
coalition formation decisions that can capture this tradeoff between ser-
vicing all tasks (at the benefit of the operator) and achieving a good quality
of service (at the benefit of both agents and operator). For this purpose, as
per (E.10), any agent i that is the sole agent servicing tasks in its current
coalition S = SΠ(i) such that SΠ(i)∩M = {i}, assigns an infinite preference
value to S. Hence, in order to service all tasks, the agent always assigns
a maximum preference to its current coalition, if this current coalition is
composed of only tasks and does not contain other agents. This case of
the preference function u forbids the agent from leaving a group of tasks,
already assigned to it, unattended by other agents. In this context, this
condition pertains to the fist objective (objective (i) previously mentioned)
of the agents and it implies that, whenever there is a risk of leaving tasks
without service, the agent do not act selfishly, in contrast, they act in the
benefit of the operator and remain with these tasks, independent of the
payoff generated by these tasks. Such a decision allows an agent to avoid
making a decision that can incur a risk of ultimately having tasks with
no service in the network, in which case, the network operator would lose
revenue from these unattended tasks and it may, for example, decide to
replace the agent that led to the presence of such a group of tasks with no
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service. Otherwise, the agents’ preference relation u would highlight the
second objective of the agent, i.e., maximize its own payoff which maps
into the revenue generated from the quality of service, i.e., the power as
per (E.7). with which the tasks are being serviced. In this case, the pref-
erence relation is easily generated by the agents by comparing the value
of the payoffs they receive from the two coalitions S1 and S2. Further, we
note that no agent has any incentive to revisit a coalition that it had left
previously, and hence, the agents assign a preference value of 0 for any
coalition in their history (this can be seen as a basic learning process). In
summary, taking into account the conflicting goals of the agents, between
two coalitions S1 and S2, an agent i prefers the coalition that gives the
better payoff, given that the agent is not alone in its current coalition, and
the coalition with a better payoff is not in the history of agent i.

For the preferences of the tasks, an analogous approach can be taken.
Formally, for evaluating the preferences of any task j ∈ T , we define the
following operation (this preference relation is common for all tasks, hence,
we denote it by �j = �T , ∀j ∈ T )

S2 �T S1 ⇔ w(S2) ≥ w(S1), (E.11)

with the tasks’ preference function w defined as follows.

w(S) =

{
0, if S ∈ h(j),

xSj , otherwise.
(E.12)

The preferences of the tasks are easily captured using the function w.
The preference function of the tasks is different from that of the agents
since the tasks are, in general, independent entities that act solely in their
own interest. Thus, based on (E.12), each task prefers the coalition that
provides the larger payoff xSj unless this coalition was already visited pre-
viously and left. In that case, the preference function of the tasks assigns
a preference value of 0 for any coalition that the task had already visited in
the past (and left to join another coalition). Using this preference relation,
every task can evaluate its preferences over the possible coalitions that the
task can form.

Consequently, the proposed task allocation model verifies both hedonic
conditions, and, hence, we have the following:

Property 7 The proposed task allocation problem among the agents is mod-

eled as a (N ,�) hedonic coalition formation game, with the preference rela-
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tions given by (E.9) and (E.11).

Note that the preference relations in (E.9) and (E.11) are also dependent
on the underlying TU coalitional game described in Section 3. Having
formulated the problem as a hedonic game, the final task is to provide a
distributed algorithm, based on the defined preferences, for forming the
coalitions.

Prior to deriving the algorithm for coalition formation, we highlight the
following proposition of the proposed hedonic coalition formation model as
a result of the polling system stability indicated in (E.5)

Proposition 1 For the proposed hedonic coalition formation model for task

allocation, assuming that all collector-agents have an equal link transmission

capacity μi = μ, ∀i ∈ M, any coalition S ⊆ N with |S∩M| agents, must have

at least |GS |min collector-agents (GS ⊆ S ∩M) as follows

|GS | > |GS |min =

∑
i∈S∩T λi

μ
. (E.13)

Further, when all the tasks in S belong to the same class, we have

|GS |min =
|S ∩ T | · λ

μ
, (E.14)

which constitutes an upper bound on the number of collector-agents as a

function of the number of tasks |S ∩ T | for a given coalition S.

Proof: As per the defined preference relations in (E.10) and (E.12), any

coalition that will form in the proposed model must be stable since no agent

or task has an incentive to join an unstable coalition, hence, we have, for

every coalition S ⊆ N having |GS | collectors with GS ⊆ S ∩M, we have from

(E.5) ρS < 1, and thus ∑
i∈S∩T

λi

μGS
< 1,

which, given the assumption that μi = μ, ∀i ∈ M yields

1

|GS | · μ
·
∑

i∈S∩T
λi < 1,

which yields

|GS | > |GS |min =

∑
i∈S∩T λi

μ
. (E.15)
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Further, if we assume that all the tasks belong to the same class, hence,

λi = λ, ∀i ∈ S ∩ T , we immediately get, from (E.15)

|GS |min =
|S ∩ T | · λ

μ
. (E.16)

�

Consequently, for any proposed coalition formation algorithm, the bounds
on the number of collector-agents in any coalition S as given by Proposi-
tion 1 will always be satisfied.

4.2 Hedonic Coalition Formation: Algorithm

In the previous subsection, we modeled the task allocation problem as
a hedonic coalition formation game. Having laid out the main building
blocks, the remaining objective is to devise an algorithm for forming the
coalitions. While literature that studies the characteristics of existing par-
titions in hedonic games, such as in [32–34], is abundant, the problem
of forming the coalitions both in the hedonic and non-hedonic setting is
a challenging problem [30]. In this paper, we introduce an algorithm for
coalition formation that allows the players to make selfish decisions as to
which coalitions they decide to join at any point in time. The proposed
algorithm will exploit the concepts of the hedonic game model formulated
in the previous subsection.

In this regard, for forming coalitions between the tasks and the agents,
we propose the following rule for coalition formation:

Definition 27 Switch Rule - Given a partition Π = {S1, . . . , Sl} of the set of

players (agents and tasks) N , a Player i decides to leave its current coalition

SΠ(i) = Sm, for some m ∈ {1, . . . , l} and join another coalition Sk ∈ Π ∪
{∅}, Sk �= SΠ(i), if and only if Sk ∪ {i} �i SΠ(i). Hence, {Sm, Sk} → {Sm \
{i}, Sk ∪ {i}}.

Through a single switch rule made by any player i, any current partition
Π of N is transformed into Π ′ = (Π \ {Sm, Sk}) ∪ {Sm \ {i}, Sk ∪ {i}}. In
simple terms, for every partition Π, the switch rule provides a mechanism
through which any task or agent, can leave its current coalition SΠ(i),
and join another coalition Sk ∈ Π, given that the new coalition Sk ∪ {i}
is strictly preferred over SΠ(i) through any preference relation that i is
using (in particular using the preference relations defined in (E.9) and
(E.11)). Independent of the preference relations selected, the switch rule
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can be seen as a selfish decision made by a player, to move from its current
coalition to a new coalition, regardless of the effect of this move on the
other players. Furthermore, we consider that, whenever a player decides
to switch from one coalition to another, the player updates its history set
h(i). Hence, given a partition Π, whenever a player i decides to leave
coalition Sm ∈ Π to join a different coalition, coalition Sm is automatically
stored by player i in its history set h(i).

Consequently, we propose a coalition formation algorithm composed
of three main phases: Task discovery, hedonic coalition formation, and
data collection. In the first phase, the central command receives informa-
tion about the existence of tasks that require servicing and informs the
agents of the locations and characteristics of the tasks (e.g., the arrival
rates). Hence, the agents start by having full knowledge of the initial par-
tition Πinitial. Once the agents are aware of the tasks, they broadcast their
own presence to the tasks. Consequently, the players can interact with
each other, for performing coalition formation. Hence, the second phase
of the algorithm is the hedonic coalition formation phase. In this phase,
all the players (tasks and agents) investigate the possibility of perform-
ing a switch operation. For identifying potential switch operations, given
complete knowledge about the network (which can be gathered in different
methods as will be discussed in Subsection 4.3)), each agent investigates
its top preference, and decides to perform a switch operation, if possible
through (E.9). As one can easily see through (E.7), in the proposed model,
no coalition composed of tasks-only would ever form since such a coalition
would always generate a 0 utility. As a direct result of this property, the
tasks are only interested in switching to coalitions that contain at least
a single agent. Hence, from a tasks’ perspective, for determining its pre-
ferred switch operation, each task needs only to negotiate with existing
agents in order to enquire on the amount of utility it can obtain by joining
with this agent. By doing so, each task can determine the switch operation
it is interested in making at a given time. We consider that, the players
make sequential switch decisions28. For any agent, a switch operation is
easily performed as the agent can leave its current coalition and join the
new coalition, if (E.9) is satisfied. For the tasks, any task that finds out
a possibility to switch, can autonomously request, over a control channel
with the concerned agent, to be added to the coalition of interest (which
would always contain at least one agent with whom the task previously
negotiated). The convergence of the proposed hedonic coalition formation

28This order of switch operations is referred to as the order of play hereafter.

278



Task Allocation as a Hedonic Coalition Formation Game

algorithm during this phase is guaranteed as follows:

Theorem 1 Starting from any initial network partition Πinitial, the proposed

hedonic coalition formation phase of the proposed algorithm always con-

verges to a final network partition Πf composed of a number of disjoint

coalitions.

Proof: For the purpose of this proof, we denote Πk
nk

as the partition

formed during the time k when player i ∈ N decides to act after nk switch

operations have previously occurred (the index nk denotes the number of

switch operations performed by one or more players up to time k). Given any

initial starting partition Πinitial = Π1
0 , the hedonic coalition formation phase

of the proposed algorithm consists of a sequence of switch operations. As

per Definition 27, every switch operation transforms the current partition Π

into another partition Π ′, hence, the hedonic coalition formation is composed

of a sequence of switch operations, yielding the following transformations

(as an example)

Π1
0 = Π2

0 → Π3
1 → . . . → ΠL

nL
. . . → . . . → ΠT

nT
, (E.17)

where the operator → indicate the occurrence of a switch operation. In other

words, Πk
nk

→ Πk+1
nk+1

, implies that during turn k, a certain player i made

a single switch operation which yielded a new partition Πk+1
nk+1

at the turn

k + 1. By inspecting the preference relations defined in (E.9) and (E.11), it

can be seen that every single switch operation leads to a partition that has

not yet been visited (new partition). Hence, for any two partitions Πk
nk

and

Π l
nl

in the transformations of (E.17), such that nk �= nl, i.e., Π l
nl

is a result of

the transformation of Πk
nk

(or vice versa) after a number of switch operations

|nl − nk|, we have that Πk
nk

�= Π l
nl

for any two turns k and l.

Given this property and the well known fact that the number of partitions

of a set is finite and given by the Bell number [30], the number of transfor-

mations in (E.17) is finite, and, hence, the sequence in (E.17) will always

terminate and converge to a final partition Πf = ΠT
nT

. Hence, the hedonic

coalition formation phase of the proposed algorithm always converges to a

final network partition Πf composed of a number of disjoint coalitions con-

sisting of agents and tasks, which completes the proof. �

The stability of the final partition Πf resulting from the convergence of
the proposed algorithm can be studied using the following stability concept
from hedonic games [32]:

Definition 28 A partition Π = {S1, . . . , Sl} is Nash-stable if ∀i ∈ N , SΠ(i) �i
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Sk ∪ {i} for all Sk ∈ Π ∪ {∅} (for agents �i=�M, ∀i ∈ N ∩ M and for tasks

�i=�T , ∀i ∈ N ∩ T ).

In other words, a coalition partition Π is Nash-stable, if no player has an
incentive to move from its current coalition to another coalition in Π or
to deviate and act alone. Furthermore, a Nash-stable partition Π implies
that there does not exist any coalition Sk ∈ N such that a player i strictly
prefers to be part of Sk over being part of its current coalitions, while all
players of Sk do not get hurt by forming Sk ∪ {i}. This is the concept of
individual stability, which is formally defined as follows [32]:

Definition 29 A partition Π = {S1, . . . , Sl} is individually stable if there do

not exist i ∈ N , and a coalition Sk ∈ Π ∪ {∅} such that Sk ∪ {i} �i SΠ(i) and

Sk ∪ {i} �j Sk for all j ∈ Sk (for agents �i=�M, ∀i ∈ N ∩ M and for tasks

�i=�T , ∀i ∈ N ∩ T for tasks).

As already noted, a Nash-stable partition is individually stable [32]. For
the proposed hedonic coalition formation phase of the proposed algorithm,
we have the following:

Proposition 2 Any partition Πf resulting from the hedonic coalition forma-

tion phase of the proposed algorithm is Nash-stable, and, hence, individu-

ally stable.

Proof: First and foremost, for any partition Π, no player (agent or task)

i ∈ N has an incentive to leave its current coalition, and act alone as per

the utility function in (E.7). Assume that the partition Πf resulting from the

proposed algorithm is not Nash-stable. Consequently, there exists a player

i ∈ N , and a coalition Sk ∈ Πf such that Sk ∪ {i} �i SΠf
(i), hence, player

i can perform a switch operation which contradicts with the fact that Πf is

the result of the convergence of the proposed algorithm (Theorem 1). Con-

sequently, any partition Πf resulting from the hedonic coalition formation

phase of the proposed algorithm is Nash-stable, and, hence, by [32], this

resulting partition is also individually stable. �

Following the formation of the coalitions and the convergence of the he-
donic coalition formation phase to a Nash-stable partition, the last phase
of the algorithm entails the actual data collection by the agents. In this
phase, the agents move from one task to the other, in their respective coali-
tions, collecting the data and transmitting it to the central receiver, similar
to a polling system, as explained in Sections 2 and 3. A summary of the
proposed algorithm is shown in Table E.I.
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Table E.I: The proposed hedonic coalition formation algorithm for task
allocation in wireless networks.

Initial State

The network is partitioned by Πinitial = {S1, . . . , Sk}. At the beginning of all time Πinitial = N = M∪T
with no tasks being serviced by any agent.

Three Phases for the Proposed Hedonic Coalition Formation Algorithm

Phase I - Task Discovery:

a) The command center is informed by one or multiple owners about the existence and character-
istics

of new tasks.
b) The central command center conveys the information on the initial network partition Πinitial by
entering the information in appropriate databases such as those used for example, in cognitive
radio networks for primary user information distribution [35], or in unmanned aerial vehicles
operation [36, 37].

Phase II - Hedonic Coalition Formation:

In this phase, hedonic coalition formation occurs as follows:
repeat

For every player i ∈ N , given a current partition Πcurrent (in the first round Πcurrent = Πinitial).

a) Player i investigates possible switch operations using the preferences given, respectively,
by (E.9) and (E.11) for the agents and tasks.
b) Player i performs the switch operation that maximizes its payoff as follows:

b.1) Player i updates its history h(i) by adding coalition SΠcurrent (i), before leaving it.
b.2) Player i leaves its current coalition SΠcurrent (i).
b.3) Player i joins the new coalition that maximizes its payoff.

until convergence to a final Nash-stable partition Πf .
Phase III - Data Collection

a) The network is partitioned using Πfinal.
b) The agents in each coalition Sk ∈ Πfinal continuously perform the following operations, i.e., act
as a polling system with exhaustive strategy and switchover times:

b.1) Visit a first task in their respective coalitions.
b.2) The collector-agents collect the data from the task that is being visited.
b.3) The collector-agents transmit the data using wireless links to the central receiver either
directly, or through other relay-agents.
b.4) Once the queue of the current is empty, visit the next task.

The order in which the tasks are visited is determined by the nearest neighbor solution to the
traveling salesman problem (Section 3, Property 6). This third phase is continuously repeated
and performed by all the agents in Πf for a fixed period of time Ψ (for static environments Ψ = ∞).

Adaptation to environmental changes (periodic process)

a) In the presence of environmental changes, such as the deployment of new tasks, the removal of
existing tasks, or periodic low mobility of the tasks, the third phase of the algorithm is performed
continuously only for a fixed period of time Ψ .
b) After Ψ elapses, the first two phases are repeated to allow the players to self-organize and adapt
the topology to these environmental changes.
c) This process is repeated periodically for networks where environmental changes may occur.

The proposed algorithm, as highlighted in Table E.I, can adapt the net-
work topology to environmental changes such as the deployment of new
tasks, the removal of a number of existing tasks, or a periodic low mobility
of the tasks (in the case where the tasks represent mobile sensor devices
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for example). For this purpose, the first two phases of the algorithm shown
in Table E.I are repeated periodically over time, to adapt to any changes
that occurred in the environment. With regards to mobility, we only con-
sider the cases where the tasks are mobile for a fixed period of time with a
velocity that is smaller than that of the agents η. In the presence of such a
mobile environment, the central command center, through Phase I of the
algorithm in Table E.I informs the agents of the new tasks locations (peri-
odically) and, thus, during Phase II of the proposed algorithm, both agents
and tasks can react to the environment changes, and modify the existing
topology. As per Theorem 1 and Proposition 2, regardless of the starting
position, the players will always self-organize into a Nash-stable partition,
even after mobility, the deployment of new tasks or the removal of existing
tasks. In summary, in a changing environment, the first two phases of the
algorithm in Table E.I are repeated periodically, after a certain fixed period
of time Ψ has elapsed during which the players were involved in Phase III
and the actual data collection and transmission occurred. Finally, when-
ever a changing environment is considered, the players are also allowed to
periodically clear their history, so as to allow them to explore all the new
possibilities that the changes in the environment may have yielded.

4.3 Distributed Implementation Possibilities

For implementation, first and foremost, in the proposed model, as shown
in Figure E.1, we clearly distinguish between two inherently different enti-
ties: The command center, which is the intelligence that has some control
over the agents and the central receiver which is a node in the network
that is connected to the command center and which would receive the
data transmitted by the agents (this distinction can be, for example, anal-
ogous to the distinction between a radio network controller and a base
station in cellular networks). In practice, the central command can be,
for example, a node that owns a number of agents and controls a large
area which is divided into smaller areas with each area represented by the
illustration of Figure E.1. Hence, each such small area is a region having
its own central receiver and where a subset of agents needs to operate and
perform coalition formation using our model. In other scenarios, the com-
mand center can also be a satellite system that controls groups of agents
with each group deployed in a different area (notably when the agents are
unmanned aerial vehicles for example). In contrast, the central receiver is
simply a wireless node that receives the data from the agents and, subse-
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quently, the command center can obtain this data from all receivers in its
controlled area (e.g., through a backbone network)29.

For performing coalition formation, the agents and tasks are required
to know different information. From the agents perspective, in order to
perform a switch operation, each agent is required to obtain data on the
location of the tasks (hence, consequently deducing the hop distance Dij

between any two tasks i and j) as well as on the arrival rates λi, i ∈ T
of these tasks. As a first step, whenever a tasks’ owner (e.g., a ser-
vice provider or a third party) requires that its tasks be serviced, it will
give the details and characteristics of these tasks to the network operator
(through service-level agreements for example) which would enter these
details into the command center. Subsequently, the command center can
insert this information into appropriate databases that the agents can ac-
cess through, for example, an Internet connection. Such a transfer of
information through active databases has been recently utilized in many
communication architectures, for example, in cognitive radio network for
primary user information distribution [35], or in unmanned aerial vehicles
operation [36, 37]. In cases where the command center controls only a
single set of agents and a single area, this information can be, instead,
broadcast directly to the agents. Further, the agents are also required to
know the capabilities of each others, notably, the link transmission capac-
ity μi, ∀i ∈ M and the velocity (which can be used to deduce the switchover
times). As the agents are all owned by a single operator, this information
can be easily fed to the agents at the beginning of all time prior to their
deployment, and, thus, does not require any additional communication
during coalition formation.

From the tasks perspective, the amount of information that needs to be
known is much less than that of the agents, notably since the tasks are,
in general, resource-limited entities. For instance, as mentioned in the
previous section, for performing coalition formation, the tasks do not need
to know about the existence or the characteristics of each others. The main
information that needs to be known by the tasks is the actual presence of
agents. The agents can initially announce/broadcast their presence to the
tasks as soon as they enter into the network. Subsequently, the tasks
need only to be able to enquire, over a control channel, about the potential
utility they would receive from joining the coalition of a particular agent
(which can contain other tasks or agents but this is transparent from the

29This model can easily accommodate the particular case where the command center
and the central receiver coincide, e.g., in a small single-area network.
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perspective of the tasks). The main reason for this is that the tasks have
no benefit in forming coalitions that have no agents since such coalitions
generate 0 utility for the tasks. Hence, from the point of view of the tasks,
they would see every agent as a black box which can provide a certain
payoff (communicated over a control channel during negotiation phase),
and, based on this, they decide to join the coalition one or another agent
(if multiple agents are in the same coalition then they would offer the same
benefit from the tasks perspective).

Consequently, given the information that needs to be known by each
player, the proposed algorithm can be implemented in a distributed way
since the switch operation can be performed by the tasks or the agents
independently of any centralized entity. In this regards, given a partition
Π, in order to determine its preferred switch operation, an agent would
assess the payoff it would obtain by joining with any coalition in Π, ex-
cept for singleton coalitions composed of agents only. For the tasks, given
Π, each task negotiates with only the agents (and the coalition to which
they belong) in the network in order to evaluate its payoff and decide on
a switch operation. By adopting a distributed implementation, one would
reduce the overhead and computational load on the command center, no-
tably when this command center is controlling numerous areas with dif-
ferent groups of agents (each such area is represented by the model of
Figure E.1). Further, the distributed approach allows to decentralize the
intelligence, and, thus, reduces the detrimental effects on the network and
the tasks’ owners that can be caused by failures or malicious behavior at
the command center level. It is also important to note that the distributed
approach complies better with the nature of both the agents and the tasks.
On one hand, the agents are inherently autonomous nodes (partially con-
trolled by the command center) that need to operate on their own and,
thus, make distributed decisions [1–3, 6–8]. On the other hand, the tasks
are independent entities that belong to different owners. Consequently,
the tasks are apt to make their own decisions regarding coalition forma-
tion and are, generally, unwilling to accept a coalitional structure imposed
by an external entity such as the command center. Nonetheless, we note
that a centralized approach can also be adopted for the proposed algo-
rithm notably in small networks where, for example, the command center
coincides with the central receiver and owns all the tasks.

Regarding complexity, the main complexity lies in the switch operation,
the solution to the traveling salesman problem, i.e., determining the order
in which the tasks are visited within a coalition in order to evaluate the
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utility function, and the assignment of agents as either collectors or relays.
For instance, given a present coalitional structure Π where each coalition
in Π has at least one task, for every agent, the computational complexity of
finding its next coalition, i.e., performing a switch operation, is easily seen
to be O(|Π|), and the worst case scenario is when all the tasks act alone,
in that case |Π| = T . In contrast, for the tasks, the worst case complexity
is O(M) since, in order to make a switch operation, the tasks need only
to negotiate with agents. With regards to the traveling salesman solution,
the complexity of the used nearest neighbor solution is well known to be
linear in the number of cities, i.e., tasks [25], hence, for a coalition Sk ∈ Π,
the complexity of finding the traveling salesman solution is simply O(|Sk|).
It must be noted that, in static environments, finding the solution of the
traveling salesman problem is done only once, which reduces the com-
plexity. Additionally, for determining whether a agent acts as a collector
or relay within any coalition, we consider that the players would com-
pute this configuration by inspecting all combinations and selecting the
one that maximizes the utility in (E.7). This computation is done during
coalition formation for evaluating the potential utility, and, upon conver-
gence, is maintained during network operation. As the number of agents
in a single coalition is generally small, this computation is straightforward,
and has reasonable complexity. Finally, in dynamic environments, as the
algorithm is repeated periodically and since we consider only periodic low
mobility, the complexity of the coalition formation algorithm is comparable
to the one in the static environment, but with more runs of the algorithm.

5 Simulation Results and Analysis

For simulations, the following network is set up: A central receiver is
placed at the origin of a 4 km ×4 km square area with the tasks appear-
ing in the area around it. The path loss parameters are set to α = 3 and
κ = 1, the target SNR is set to ν0 = 10 dB, the pricing factor is set to δ = 1,
and the noise variance σ2 = −120 dBm. All packets are considered of size
256 bits which is a typical IP packet size. The agents are considered as hav-
ing a constant velocity of η = 60 km/h, a transmit power of P̃ = 100 mW,
and a transmission link capacity of μ = 768 kbps (assumed the same for
all agents). Further, we consider two classes of tasks in the network. A
first class that can be mapped to voice services having an arrival rate of
32 kbps, and a second class that can be mapped to video services, such
as the widely known Quarter Common Intermediate Format (QCIF) [38],
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Fig. E.2: A snapshot of a final coalition structure resulting from the pro-
posed hedonic coalition formation algorithm for a network of M = 5 agents
and T = 10 tasks. In every coalition, the agents (collectors and relays) visit
the tasks continuously in the shown order.

having an arrival rate 128 kbps. Tasks belonging to each class are gener-
ated with equal probability in the simulations. Unless stated otherwise,
the throughput-delay tradeoff parameter β is set to 0.7, to indicate services
that are reasonably delay tolerant.

In Figure E.2, we show a snapshot of the final network partition reached
through the proposed hedonic coalition formation algorithm for a network
consisting of M = 5 agents and T = 10 arbitrarily located tasks. In this
figure, Tasks 1, 3, and 8 belong to the QCIF video class with an arrival rate
of 128 kbps, while the remaining tasks belong to the voice class with an
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arrival rate of 32 kbps. In Figure E.2, we can easily see how the agents
and tasks can agree on a partition whereby a number of agents service a
group of nearby tasks for data collection and transmission. For the net-
work of Figure E.2, the tasks are distributed into three coalitions, two of
which (coalitions S1 and S3) are served by a single collector-agent. In con-
trast, coalition S2 is served by two collectors and one relay. The agents
in coalition 2 distributed their roles (relay or collector) depending on the
achieved utility. For instance, for coalition S2, having two collectors and
one relay provides a utility of v(S2) = 52.25 while having three collectors
yields a utility of v(S2) = 10.59 , and having one collector and two relays
yields a utility of v(S2) = 45.19. As a result, the case of two collectors
and one relay maximizes the utility and is agreed upon between the play-
ers. Further, the coalitions in Figure E.2 are dynamic, in the sense that,
within each coalition, the agents move from one task to the other, collect-
ing and transmitting data to the receiver continuously. The order in which
the agents visit the tasks, as indicated in Figure E.2, is generated using
a nearest neighbor solution for the traveling salesman problem as given
by Property 6. For example, consider coalition S2 in Figure E.2. In this
coalition, agents 3 an 5 act as a single collector and move from task 1, to
task 3, to task 10, and then back to task 1 repeating these visits in a cyclic
manner. Concurrently with the collectors movement, agent 2 of coalition
S2, moves and positions itself at the middle of the line connecting the task
being serviced by agents 3 and 5 to the central receiver. In other words,
when the collectors are servicing task 1 agent 2 is at the middle of the line
connecting task 1 to the central receiver, subsequently when the collec-
tors are servicing task 3 agent 2 takes position at the middle of the line
connecting task 3 to the central receiver and so on. Finally, note that, for
all the coalitions in Figure E.2 one can verify that the minimum number
of collectors, as per Proposition 1 is approximately 1, (e.g., for coalition
S2, we have |GS2 |min = 9

24 thus 1 collector is a minimum), and, hence, this
condition is easily satisfied by the coalition formation process.

In Figure E.3, we assess the performance of the proposed hedonic coali-
tion formation algorithm, in terms of the payoff (revenue) per player (agent
or task) for a network having M = 5 agents, as the number of tasks in-
creases. The figure shows the statistics (averaged over the random po-
sitions of the tasks), in terms of maximum, average, and minimum over
the random order of play. In this figure, we compare the performance
with an algorithm that assigns the tasks equally among the agents (i.e.,
an equal group of neighboring tasks are assigned for every agent). Fig-
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Fig. E.3: Performance statistics, in terms of maximum, average and mini-
mum (over the order of play) player payoff (revenue), of the proposed hedo-
nic coalition formation algorithm compared to an algorithm that allocates
the neighboring tasks equally among the agents as the number of tasks
increases for M = 5 agents. All the statistics are also averaged over the
random positions of the tasks.

ure E.3 shows that the performance of both algorithms is bound to de-
crease as the number of tasks increases. This is mainly due to the fact
that, for networks having a larger number of tasks, the delay incurred per
coalition, and, thus, per user increases. This increase in the delay is not
only due to the increase in the number of tasks, but also to the increase
in the distance that the agents need to travel within their correspond-
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ing coalitions (increase in switchover times). In Figure E.3, we note that
the minimum payoff achieved by the proposed algorithm is comparable to
that of the equal allocation. Hence, the performance of the proposed algo-
rithm is clearly lower bounded by the equal allocation algorithm. However,
Figure E.3 shows that the average and maximum payoff resulting by the
proposed algorithm is significantly better than the equal allocation at all
network sizes up to T = 25 tasks. Albeit this performance improvement
decreases with the increase in the number of tasks, the performance, in
terms of average payoff per player, yielded by the proposed algorithm is no
less than 30.26% better than the equal allocation for up to T = 25 tasks.
Beyond T = 25 tasks, Figure E.3 shows that the average and maximum
performance of the proposed algorithm is comparable to that of the equal
allocation, notably at T = 40 tasks. The reduction in the performance gap
between the two algorithms for large networks stems from the fact that, as
more tasks exist in the network, for a fixed number of agents, the possi-
bility of forming large coalitions, through the proposed hedonic coalition
formation algorithm is reduced, and, hence, the structure becomes closer
to equal allocation.

In Figure E.4, we show the statistics (averaged over the random posi-
tions of the tasks), in terms of maximum, average, and minimum (over the
random order of play) payoff per player for a network with T = 20 tasks as
the number of agents M increases. The performance is once again com-
pared with an algorithm that assigns the tasks equally among the agents
(i.e., an equal group of neighboring tasks are assigned for every agent). Fig-
ure E.4 shows that the performance of both algorithms increases as the
number of agents increases. This is mainly due to the fact that when more
agents are deployed, the tasks can be better serviced as the delay incurred
per coalition decreases and the probability of successful transmission im-
proves. For instance, as more agents enter the network, they can act
as either collectors (for improving the delay) or relays (for improving the
success probability). We note that, at M = 3, the performance statis-
tics of the proposed algorithm converge to the equal allocation algorithm
since, for a small number of agents, the flexibility of forming coalitions
is quite restricted and equal allocation is the most straightforward coali-
tional structure. Nonetheless, Figure E.4 shows that, as M increases, the
performance of the proposed algorithm, in terms of maximum and aver-
age payoff achieved, becomes significantly larger than that of the equal
allocation algorithm, and this performance advantage increases as more
agents are deployed. Finally, Figure E.4 also shows that the minimum
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Fig. E.4: Performance statistics, in terms of maximum, average and mini-
mum (over the order of play) player payoff (revenue), of the proposed hedo-
nic coalition formation algorithm compared to an algorithm that allocates
the neighboring tasks equally among the agents as the number of agents
increases for T = 20 tasks. All the statistics are also averaged over the
random positions of the tasks.

performance of the proposed algorithm is comparable to the equal allo-
cation algorithm for network with a small number of agents, but as the
number of agents increases, the minimum performance of hedonic coali-
tion formation is 29% better than the equal allocation case at M = 7, and
this advantage increases further with M .

In Figure E.5, we show the average and maximum (over the random
order of play) coalition size resulting from the proposed algorithm as the
number of tasks T increases, for a network of M = 5 agents and arbitrarily
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Fig. E.5: Average and maximum (over order of play) coalition size yielded
by the proposed hedonic coalition formation algorithm and an algorithm
that allocates the neighboring tasks equally among the agents, as a func-
tion of the number of tasks T for a network of M = 5 agents. These statis-
tics are also averaged over random positions of the tasks.

deployed tasks. These results are averaged over the random positions of
the tasks and are compared with the equal allocation algorithm. In this
figure, we note that, as the number of tasks increases, the average coali-
tion size for both algorithms increases. For the proposed algorithm, the
maximum coalition size also increases with the number of tasks. This is
an immediate result of the fact that, as the number of tasks increases, the
probability of forming larger coalitions is higher and, hence, our proposed
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algorithm yields larger coalitions. Further, at all network sizes, the pro-
posed algorithm yields coalitions that are relatively larger than the equal
allocation algorithm. This result implies that, by allowing the players
(agents and tasks) to selfishly select their coalitions, through the proposed
algorithm, the players have an incentive to structure themselves in coali-
tions with average size lower bounded by the equal allocation. In a nut-
shell, through hedonic coalition formation, the resulting topology mainly
consists of networks composed of a large number of small coalitions as
demonstrated by the average coalition size. However, in a limited number
of cases, the network topology can also be composed of a small number
of large coalitions as highlighted by the maximum coalition size shown in
Figure E.5.

In Figure E.6, we show, over a period of 5 minutes, the frequency in
terms of average switch operations per minute per player (agent or task)
achieved for various velocities of the tasks in a mobile wireless network
with M = 5 agents and different number of tasks. As the velocity of the
tasks increases, the frequency of the switch operations increases for both
T = 10 and T = 20 due to the changes in the positions of the various
tasks incurred by mobility. Figure E.6 shows that the case of T = 20 tasks
yields a frequency of switch operations significantly higher than the case
of T = 10 tasks. This result is interpreted by the fact that, as the number of
tasks increases, the possibility of finding new partners as the tasks move
increases significantly, hence yielding an increase in the topology variation
as reflected by the number of switch operations. In summary, this figure
shows that the proposed hedonic coalition formation algorithm allows the
agents and the tasks to self-organize and adapt their topology to mobility,
through adequate switch operations.

The network’s adaptation to mobility is further assessed in Figure E.7,
where we show, over a period of 5 minutes, the average coalition lifespan
(in seconds) achieved for various velocities of the tasks in a mobile wireless
network with M = 5 agents and different number of tasks. The coalition
lifespan is defined as the time (in seconds) during which a coalition is
present in the mobile network prior to accepting new members or break-
ing into smaller coalitions (due to switch operations). In this figure, we
can see that, as the velocity of the tasks increases, the average lifespan of
a coalition decreases. This is due to the fact that, as mobility increases,
the possibility of forming new coalitions or splitting existing coalitions in-
creases significantly. For example, for T = 20, the coalition lifespan drops
from around 124 seconds for a tasks’ velocity of 10 km/h to just under a
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Fig. E.6: Frequency of switch operations per minute per player (agent or
task) achieved over a period of 5 minutes for different tasks’ velocities in
wireless network having M = 5 agents and different number of mobile
tasks.

minute as of 30 km/h, and down to around 42 seconds at 50 km/h. Fur-
thermore, Figure E.7 shows that as more tasks are present in the network,
the coalition lifespan decreases. For instance, for any given velocity, the
lifespan of a coalition for a network with T = 10 tasks is significantly larger
than that of a coalition in a network with T = 20 tasks. This is a direct
result of the fact that, for a given tasks’ velocity, as more tasks are present
in the network, the players are able to find more partners to join with, and
hence the lifespan of the coalitions becomes shorter. In brief, Figure E.7
provides an interesting assessment of the topology adaptation aspect of
the proposed algorithm through the process of forming new coalitions or
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Fig. E.7: Average coalition lifespan (in seconds) achieved over a period
of 5 minutes for different tasks’ velocities in wireless network having
M = 5 agents and different number of mobile tasks. The coalition lifes-
pan indicates the time during which a coalition is present in the network
before accepting new partners or breaking into smaller coalitions (due to
switch operations).

breaking existing coalitions.
Moreover, for further analysis of the self-adapting aspect of the pro-

posed hedonic coalition formation algorithm, we study the variations of
the coalitional structure over time for a network where tasks are entering
and leaving the network. For this purpose, in Figure E.8, we show the
variations of the average (over the random positions of the tasks) number
of players per coalition, i.e., the average coalition size, over a period of 10
minutes, as new tasks join the network and/or existing tasks leave the
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Fig. E.8: Topology variation over time as new tasks join the network
and existing tasks leave the network with different rates of tasks ar-
rival/departure for a network starting with T = 15 tasks and having
M = 5 agents.

network. The considered network in Figure E.8 possesses M = 5 agents
and starts with T = 15 tasks. The results are shown for different rates of
change which is defined as the number of tasks that have either entered
the network or left the network per minute. For example, a rate of change
of 2 tasks per minute indicates that either 2 tasks enter the network ev-
ery minute, 2 tasks leave the network every minute, or 1 tasks enters the
network and another tasks leaves the network every minute (these cases
may occur with equal probability). In this figure, we can see that, as
time evolves, the structure of the network is changing, with new coalitions
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Fig. E.9: Performance statistics, in terms of maximum, average and mini-
mum (over the order of play) player payoff (revenue), of the proposed hedo-
nic coalition formation algorithm compared to an algorithm that allocates
the neighboring tasks equally among the agents as the throughput-delay
tradeoff parameter β increases for M = 5 agents and T = 20 tasks. All the
statistics are also averaged over the random positions of the tasks.

forming and other breaking as reflected by the change in coalitions size.
Furthermore, we note that, as the rate of change increases, the changes
in the topology increase. For instance, it is seen in Figure E.8 that for a
rate of change of 5 tasks per minute, the variations in the coalition size
are much larger than for the case of 2 tasks per minute (which is almost
constant for many periods of time). In summary, Figure E.8 shows the
network topology variations as tasks enter or leave the network. Note that,
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after the 10 minutes have elapsed, the network re-enters in the Phase III
of the algorithm where data collection and transmission occurs.

In Figure E.9, we assess the performance of the proposed hedonic coali-
tion formation algorithm, in terms of the payoff (revenue) per player (agent
or task) for a network having M = 5 agents and T = 20 tasks, as the
throughput-delay tradeoff parameter β increases. The figure shows the
statistics, in terms of maximum, average, and minimum over the random
order of play between the players. In this figure, we can see that, for
small β, the performance of the proposed algorithm is comparable to the
equal allocation algorithm and the payoffs are generally small. This result
is due to the fact that, for small β, the tasks are highly delay sensitive,
and the delay component of the utility governs the performance. Hence,
for such tasks, the proposed algorithm yields a performance similar to
equal allocation. However, as the tradeoff parameter β increases, the max-
imum and average utility yielded by our proposed algorithm outperforms
the equal allocation algorithm significantly. For instance, as of β = 0.5, he-
donic coalition formation is highly desirable, and presents a performance
improvement in terms of average payoff of around 19.56% relative to the
equal allocation algorithm (at β = 0.55, the proposed algorithm has an av-
erage payoff of 0.55 while equal allocation has an average payoff of 0.46).
This advantage increases with β. Note that, for all tradeoff parameters, the
performance of the proposed algorithm, in terms of minimum (over order
of play) payoff gained by a player is lower bounded by the equal allocation
algorithm and, in average, outperforms the equal allocation algorithm.

6 Conclusions

In this paper, we introduced a novel model for task allocation among a
number of autonomous agents in a wireless communication network. In
the introduced model, a number of wireless agents are required to service
several tasks, arbitrarily located in a given area. Each task represents
a queue of packets that require collection and wireless transmission to a
centralized receiver by the agents. The task allocation problem is modeled
as a hedonic coalition formation game between the agents and the tasks
that interact in order to form disjoint coalitions. Each formed coalition is
mapped to a polling system which consists of a number of agents contin-
uously collecting packets from a number of tasks. Within a coalition, the
agents can act either as collectors that move between the different tasks
present in the coalition for collecting the packet data, or relays for improv-
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ing the wireless transmission of the data packets. For forming the coali-
tions, we introduce an algorithm that allows the players (tasks or agents)
to join or leave the coalitions based on their preferences which capture
the tradeoff between the effective throughput and the delay achieved by
the coalition. We study the properties and characteristics of the proposed
model, we show that the proposed hedonic coalition formation algorithm
always converges to a Nash-stable partition, and we study how the pro-
posed algorithm allows the agents and tasks to take distributed decisions
for adapting the network topology to environmental changes such as the
deployment of new tasks, the removal of existing tasks or the mobility of
the tasks. Simulation results show how the proposed algorithm allows the
agents and tasks to self-organize into independent coalitions, while im-
proving the performance, in terms of average player (agent or task) payoff,
of at least 30.26% (for a network of 5 agents with up to 25 tasks) relatively
to a scheme that allocates nearby tasks equally among the agents. In a
nutshell, by combining concepts from wireless networks, queueing theory
and novel concepts from coalitional game theory, we proposed a new model
for task allocation among autonomous agents in communication networks
which is well suited for many practical applications such as data collec-
tion, data transmission, autonomous relaying, operation of message ferry
(mobile base stations), surveillance, monitoring, or maintenance in next
generation wireless networks.
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Abstract

Cooperation among wireless nodes has been recently proposed for im-
proving the physical layer (PHY) security of wireless transmission in the
presence of multiple eavesdroppers. While existing PHY security liter-
ature answered the question “what are the link-level secrecy rate gains
from cooperation?”, this paper attempts to answer the question of “how to
achieve those gains in a practical decentralized wireless network and in
the presence of a cost for information exchange?”. For this purpose, we
model the PHY security cooperation problem as a coalitional game with
non-transferable utility and propose a distributed algorithm for coalition
formation. Through the proposed algorithm, the wireless users can co-
operate and self-organize into disjoint independent coalitions, while max-
imizing their secrecy rate taking into account the security costs during
information exchange. We analyze the resulting coalitional structures for
both decode-and-forward and amplify-and-forward cooperation and study
how the users can adapt the network topology to environmental changes
such as mobility. Through simulations, we assess the performance of the
proposed algorithm and show that, by coalition formation using decode-
and-forward, the average secrecy rate per user is increased of up to 25.3%

and 24.4% (for a network with 45 users) relative to the non-cooperative and
amplify-and-forward cases, respectively.
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Introduction

1 Introduction

With the recent emergence of ad hoc and decentralized networks, higher-
layer security techniques such as encryption have become hard to imple-
ment. This led to an increased attention on studying the ability of the
physical layer (PHY) to provide secure wireless communication. The main
idea is to exploit the wireless channel PHY characteristics such as fading
or noise for improving the reliability of wireless transmission. This relia-
bility is quantified by the rate of secret information sent from a wireless
node to its destination in the presence of eavesdroppers, i.e., the so called
secrecy rate. The maximal achievable secrecy rate is referred to as the se-

crecy capacity. The study of this security aspect began with the pioneering
work of Wyner over the wire-tap channel [1] and was followed up in [2, 3]
for the scalar Gaussian wire-tap channel and the broadcast channel, re-
spectively.

Recently, there has been a growing interest in carrying out these stud-
ies unto the wireless and the multi-user channels [4–10]. For instance,
in [4] and [5], the authors study the secrecy capacity region for both the
Gaussian and the fading broadcast channels and propose optimal power
allocation strategies. In [6], the secrecy level in multiple access channels
from a link-level perspective is studied. Further, multiple antenna sys-
tems have been proposed in [8] for ensuring a non-zero secrecy capacity.
The work in [9, 10] presents a performance analysis for using coopera-
tive beamforming (with no cost for cooperation), with decode-and-forward
and amplify-and-forward relaying, to improve the secrecy rate of a single
cluster consisting of one source node and a number of relays. Briefly, the
majority of the existing literature is devoted to the information theoretic
analysis of link-level performance gains of secure communications with
no information exchange cost, notably when a source node cooperate with
some relays as in [9, 10]. While this literature studied the performance
of some cooperative schemes, no work seems to have investigated how a
number of users, each with its own data, can interact and cooperate at
network-wide level to improve their secrecy rate.

The main contribution of this work is to propose distributed coopera-
tion strategies, through coalitional game theory [11], which allow to study
the interactions between a network of users that seek to secure their com-
munication in the presence of multiple eavesdroppers. Another major con-
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tribution is to study the impact on the network topology and dynamics
of the inherent tradeoff that exists between the PHY security cooperation
gains in terms of secrecy rate and the information exchange costs. In other
words, while the earlier work answered the question “what are the secrecy
rate gains from cooperation?”, here, we seek to answer the question of
“how to achieve those gains in a practical decentralized wireless network
and in the presence of a cost for information exchange?”. We model the
problem as a non-transferable coalitional game and propose a distributed
algorithm for autonomous coalition formation based on well suited con-
cepts from cooperative games. Through the proposed algorithm, each user
autonomously decides to form or break a coalition for maximizing its utility
in terms of secrecy rate while accounting for the loss of secrecy rate during
information exchange. We show that independent disjoint coalitions form
in the network, due to the cooperation cost, and we study their proper-
ties for both the decode-and-forward and amplify-and-forward cooperation
models.Simulation results show that, by coalition formation using decode-
and-forward, the average secrecy rate per user is increased of up to 25.3%

and 24.4% relative to the non-cooperative and amplify-and-forward cases,
respectively. Further, the results show how the users can self-organize
and adapt the topology to mobility.

The rest of this paper is organized as follows: Section 2 presents the
system model. Section 3 presents the game formulation and properties. In
Section 4 we devise the coalition formation algorithm. Simulation results
are presented and analyzed in Section 5. Finally, conclusions are drawn
in Section 6.

2 System Model

Consider a network having N transmitters (e.g. mobile users) sending data
to M receivers (destinations) in the presence of K eavesdroppers that seek
to tap into the transmission of the users. Users, receivers and eavesdrop-
pers are unidirectional-single-antenna nodes. We define N = {1, . . . , N},
M = {1, . . . ,M} and K = {1, . . . ,K} as the sets of users, destinations, and
eavesdroppers, respectively. In this work, we consider only the case of
multiple eavesdroppers, hence, we have K > 1. Furthermore, let hi,mi

denote the complex baseband channel gain between user i ∈ N and its
destination mi ∈ M and gi,k denote the channel gain between user i ∈ N
and eavesdropper k ∈ K. We consider a line of sight channel model with
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Fig. F.1: System model for physical layer security coalitional game.

hi,mi = d
−μ

2
i,mi

ejφi,mi with di,mi the distance between user i and its destination
mi, μ the pathloss exponent, and φi,mi the phase offset. A similar model is
used for the user-eavesdropper channel. Note that other channel models
can also be accommodated.

Further, we consider a TDMA transmission, whereby, in a non-cooperative
manner, each user occupies a single time slot. Within a single slot, the
amount of reliable information transmitted from the user i occupying the
slot to its destination mi is quantified through the secrecy rate Ci,mi defined
as follows [4]:

Ci,mi =

(
Cd
i,mi

− max
1≤k≤K

Ce
i,k

)+

, (F.1)

where Cd
i,mi

is the capacity for the transmission between user i and its
destination mi ∈ M, Ce

i,k is the capacity of user i at the eavesdropper
k ∈ K, and a+ � max (a, 0). Note that the secrecy rate in (F.1) is shown to
be achievable in [12] using Gaussian inputs.

In a non-cooperative approach, due to the broadcast nature of the wire-
less channel, the transmission of the users can be overheard by the eaves-
droppers which reduces their secrecy rate as clearly expressed in (F.1). For
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improving their performance and increasing their secrecy rate, the users
can collaborate by forming coalitions. Within every coalition, the users can
utilize collaborative beamforming techniques for improving their secrecy
rates. In this context, every user i member of a coalition S can cooperate
with its partners in S by dividing its slot into two durations:

1. In the first duration, user i broadcasts its data to the other members
of coalition S.

2. In the second duration, coalition S performs collaborative beamform-
ing. Thus, all the members of coalition S relay a weighted version of
user i’s signal to its destination.

Although finding an optimal cooperation scheme that maximizes the se-
crecy rate is quite complex [9], one approach for cooperation is to null the
signal at the eavesdroppers, i.e., impose Ce

i,k = 0, ∀k ∈ K, hence, improv-
ing their secrecy rate as compared to the non-cooperative rate in (F.1) [9].
Each coalition S ⊆ N that forms in the network is able to transmit within
all the time slots previously held by its users. Thus, in the presence of
cooperating coalitions, the TDMA system schedules one coalition per time
slot. During a given slot, the coalition acts as a single entity for transmit-
ting the data of the user that owns the slot. Fig. F.1 shows an illustration
of this model for N = 9 users, M = 2 destinations, and K = 2 eavesdrop-
pers.

Furthermore, we define a fixed transmit power per time slot P̃ which
constrains all the users that are transmitting within a given slot. In a
non-cooperative manner, this power constraint applies to the single user
occupying the slot, while in a cooperative manner this same power con-
straint applies to the entire coalition occupying the slot. Such a power
assumption is typical in TDMA systems comprising mobile users and is a
direct result of ergodicity and the time varying user locations [13–15]. For
every coalition S, during the time slot owned by user i ∈ S, user i utilizes
a portion of the available power P̃ for information exchange (first stage)
while the remaining portion PS

i is used by the coalition S to transmit the
actual data to the destination mi of user i (second stage). For information
exchange, user i ∈ S can broadcast its information to the farthest user
î ∈ S, by doing so all the other members of S can also obtain the informa-
tion due to the broadcast nature of the wireless channel. This information
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exchange incurs a power cost P̄i,̂i given by

P̄i,̂i =
ν0 · σ2

|qi,̂i|2
, (F.2)

where ν0 is a target average signal-to-noise ratio (SNR) for information ex-
change, σ2 is the noise variance and qi,̂i is the channel gain between users
i and î. The remaining power that coalition S utilizes for the transmission
of the data of user i during the remaining time of this user’s slot is

PS
i = (P̃ − P̄i,̂i)

+. (F.3)

For every coalition S, during the transmission of the data of user i to
its destination, the coalition members can cooperate, using either decode-
and-forward (DF) or amplify-and-forward (AF), and, hence, weigh their sig-
nals in a way to completely null the signal at the eavesdroppers. In DF,
the coalition members that are acting as relays decode the received signal
in the information exchange phase, then re-encode it before performing
beamforming. In contrast, for AF, coalition members that are acting as
relays perform beamforming by weighing the noisy version of the received
signal in the information exchange phase. For any coalition S the signal
weights and the “user-destination” channels are represented by the |S| × 1

vectors wS = [wi1 , . . . , wi|S| ]
H and hS = [hi1,m1 , . . . , hi|S|,m|S| ]

H , respectively.
By nulling the signals at the eavesdropper through DF cooperation within
coalition S, the secrecy rate achieved by user i ∈ S at its destination mi

during user i’s time slot becomes [9, Eq. (14)]

CS,DF
i,mi

=
1

2
log2

(
1 +

(w∗,DF
S )HRSw

∗,DF
S

σ2

)
, (F.4)

where RS = hSh
H
S , σ2 is the noise variance, and w∗,DF

S is the weight vector
that maximizes the secrecy rate while nulling the signal at the eavesdrop-
per with DF cooperation and can be found using [9, Eq. (20)]. In (F.4), the
factor 1

2 accounts for the fact that half of the slot of user i is reserved for
information exchange.

For AF, we define, during the transmission slot of a user i ∈ S member
of a coalition S, the |S|×1 vector ai

S with every element aiS,j =
√

P̄i,̂iqi,jhj,mj , ∀j �=
i (qi,j is the channel between users i and j and P̄i,̂i is the power used by user

i for information exchange as per (F.2)) and aiS,i =
√

P̄i,̂ihi,mi and the |S|×|S|
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diagonal matrix U i
S with every diagonal element uiS,j,j = |hj,mj |2 ∀j �= i

and uiS,i,i = 0. Given these definitions and by nulling the signals at the
eavesdropper through AF cooperation within coalition S, the secrecy rate
achieved by user i ∈ S at its destination mi during user i’s time slot be-
comes [10, Eq. (3)]

CS,AF
i,mi

=
1

2
log2

(
1 +

(w∗,AF
S )HRaw

∗,AF
S

(w∗,AF
S )HU i

Sw
∗,AF
S + 1)σ2

)
, (F.5)

where Ra = ai
S(a

i
S)

H , and w∗,AF
S is the weight vector that maximizes the

secrecy rate while nulling the signal at the eavesdropper with AF coopera-
tion and can be found using [10, Eqs.(14)-(15)]. Note that for AF, as seen
in (F.5) there is a stronger dependence on the channels (through the ma-
trix Ra) between the cooperating users in both the first and second phase
of cooperation, unlike in DF, where this dependence is solely through the
power in (F.2) during the information exchange phase. Further, for AF, as
the cooperating users amplify a noisy version of the signal, the noise is
also amplified, which can reduce the cooperation gains, as seen through
the term (w∗,AF

S )HU i
Sw

∗,AF
S .

Further, it must be stressed that, although the models for AF and DF
cooperation in (F.4) and (F.5) are inspired from [9, 10], our work and con-
tribution differ significantly from [9, 10]. While the work in [9, 10] is solely
dedicated to finding the optimal weights in (F.4) and (F.5), and presenting
a link-level performance analysis for a single cluster of neighboring nodes
with no cost for cooperation, our work seeks to perform a network-level
analysis by modeling the interactions among a network of users that seek
to cooperate, in order to improve their performance, using either the DF
or AF protocols in the presence of costs for information exchange. Hence,
the main focus of this paper is modeling the user’s behavior, studying the
network dynamics and topology, and analyzing the network-level aspects
of cooperation in PHY security problems. In this regard, the remainder of
this paper is devoted to investigate how a network of users can cooperate,
through the protocols described in this section, and improve the security
of their wireless transmission, i.e., their secrecy rate.

Finally, note that, in this paper, we assume that the users have perfect
knowledge of the channels to the eavesdroppers which is an assumption
commonly used in most PHY security related literature, and as explained
in [16] this channel information can be obtained by the users through
a constant monitoring of the behavior of the eavesdroppers. Alterna-
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tively, the eavesdroppers in this work can also be seen as areas where
the transmitters suspect the presence of malicious eavesdropping nodes
and, hence, need to secure these locations. Hence, our current analysis
can serve as an upper bound for future work where the analysis pertaining
to the case where the eavesdroppers and their locations are not known will
be tackled (in that case although the cooperation model needs to be mod-
ified, the PHY security coalitional game model presented in the following
sections can be readily applied).

3 Physical Layer Security as A Coalitional Game

The proposed PHY security problem can be modeled as a (N , V ) coalitional
game with a non-transferable utility [11, 17] where V is a mapping such
that for every coalition S ⊆ N , V (S) is a closed convex subset of R|S| that
contains the payoff vectors that players in S can achieve. Thus, given a
coalition S and denoting by φi(S) the payoff of user i ∈ S during its time
slot, we define the coalitional value set, i.e., the mapping V as follows

V (S) = {φ(S) ∈ R|S|| ∀i ∈ S φi(S) = (vi(S)− ci(S))
+

if PS
i > 0, and φi(S) = −∞ otherwise.}, (F.6)

where vi(S) = CS
i,mi

is the gain in terms of secrecy rate for user i ∈ S given
by (F.4) while taking into account the available power PS

i in (F.3) and ci(S)

is a secrecy cost function that captures the loss for user i ∈ S, in terms of
secrecy rate, that occurs during information exchange. Note that, when all

the power is spent for information exchange, the payoff φi(S) of user i is set
to −∞ since, in this case, the user has clearly no interest in cooperating.

With regard to the secrecy cost function ci(S), when a user i ∈ S

sends its information to the farthest user î ∈ S using a power level P̄i,̂i,
the eavesdroppers can overhear the transmission. This security loss is
quantified by the capacity at the eavesdroppers resulting from the infor-
mation exchange and which, for a particular eavedropper k ∈ K, is given

by Ĉe
i,k = 1

2 log (1 +
P̄i,̂i·|gi,k|2

σ2 ) and the cost function c(S) can be defined as

ci(S) = max (Ĉe
i,1, . . . , Ĉ

e
i,K). (F.7)

In general, coalitional game based problems seek to characterize the
properties and stability of the grand coalition of all players since it is gen-
erally assumed that the grand coalition maximizes the utilities of the play-
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ers [17]. In our case, although cooperation improves the secrecy rate as
per (F.6) for the users in the TDMA network; the utility in (F.6) also ac-
counts for two types of cooperation costs:(i)- The fraction of power spent
for information exchange as per (F.3) and, (ii) the secrecy loss during in-
formation exchange as per (F.7) which can strongly limit the cooperation
gains. Therefore, for the proposed (N , v) coalitional game we have:

Proposition 1 For the proposed (N , V ) coalitional game, the grand coali-

tion of all the users seldom forms due to the various costs for information

exchange. Instead, disjoint independent coalitions will form in the network.

Proof: The proof is found in [18, Property 2]. �

Due to this property, traditional solution concepts for coalitional games,
such as the core [17], may not be applicable [11]. In fact, in order for the
core to exist, as a solution concept, a coalitional game must ensure that
the grand coalition, i.e., the coalition of all players will form. However, as
seen in Figure F.1 and corroborated by Property 1, in general, due to the
cost for coalition formation, the grand coalition will not form. Instead, in-
dependent and disjoint coalitions appear in the network as a result of the
collaborative beamforming process. In this regard, the proposed game is
classified as a coalition formation game [11], and the objective is to find the
coalitional structure that will form in the network, instead of finding only
a solution concept, such as the core, which aims mainly at stabilizing the
grand coalition.

Furthermore, for the proposed (N , V ) coalition formation game, a con-
straint on the coalition size, imposed by the nature of the cooperation
protocol exists as follows:

Remark 4 For the proposed (N , V ) coalition formation game, the size of any

coalition S ⊆ N that will form in the network must satisfy |S| > K for both

DF and AF cooperation.

This is a direct result of the fact that, for nulling K eavesdroppers, at
least K+1 users must cooperate, otherwise, no weight vector can be found
to maximize the secrecy rate while nulling the signal at the eavesdroppers.

4 Distributed Coalition Formation Algorithm

4.1 Coalition Formation Algorithm

Coalition formation has recently attracted increased attention in game the-
ory [11, 19, 20]. The goal of coalition formation games is to find algorithms

316



Distributed Coalition Formation Algorithm

for characterizing the coalitional structures that form in a network where
the grand coalition is not optimal. For constructing a coalition formation
process suitable to the proposed (N , V ) PHY security cooperative game, we
require the following definitions [11, 20]

Definition 30 A collection of coalitions, denoted by S, is defined as the set

S = {S1, . . . , Sl} of mutually disjoint coalitions Si ⊂ N . In other words, a

collection is any arbitrary group of disjoint coalitions Si of N not necessarily

spanning all players of N . If the collection spans all the players of N ; that

is
⋃l

j=1 Sj = N , the collection is a partition of N .

Definition 31 A preference operator or comparison relation � is an order

defined for comparing two collections R = {R1, . . . , Rl} and S = {S1, . . . , Sp}
that are partitions of the same subset A ⊆ N (i.e. same players in R and S).

Therefore, R � S implies that the way R partitions A is preferred to the way

S partitions A.

For the proposed PHY security coalition formation game, an individual
value order, i.e. an order which compares the individual payoffs of the
users, is needed due to the non-transferable utility of the game. For this
purpose, for the proposed game, we utilize the following order for defining
the preferences of the users

Definition 32 Consider two collections R = {R1, . . . , Rl} and S = {S1, . . . , Sm}
that are partitions of the same subset A ⊆ N (same players in R and S). For

a collection R = {R1, . . . , Rl}, let the utility of a player j in a coalition Rj ∈ R
be denoted by Φj(R) = φj(Rj) ∈ V (Rj). R is preferred over S by Pareto
order, written as R � S, iff

R � S ⇐⇒ {Φj(R) ≥ Φj(S) ∀ j ∈ R,S},
with at least one strict inequality (>) for a player k.

In other words, a collection is preferred by the players over another
collection, if at least one player is able to improve its payoff without hurt-
ing the other players. Subsequently, for performing autonomous coali-
tion formation between the users in the proposed PHY security game, we
construct a distributed algorithm based on two simple rules denoted as
“merge” and “split” [11, 20] defined as follows.
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Table F.I: One round of the proposed PHY security coalition formation al-
gorithm
Initial State

The network is partitioned by T = {T1, . . . , Tk} (At the beginning
of all time T = N = {1, . . . , N} with non-cooperative users).

Three phases in each round of the coalition formation algorithm

Phase 1 - Neighbor Discovery:

a) Each coalition surveys its neighborhood for candidate partners.
b) For every coalition Ti, the candidate partners lie in the area
represented by the intersection of |Ti| circles with centers j ∈ Ti

and radii determined by the distance where the power for
information exchange does not exceed P̃ for any user
(easily computed through (F.2)).

Phase 2 - Adaptive Coalition Formation:

In this phase, coalition formation using merge-and-split occurs.
repeat

a) F = Merge(T ); coalitions in T decide to merge based on
the algorithm of Section 4.1.
b) T = Split(F ); coalitions in F decide to split based on
the Pareto order.

until merge-and-split terminates.
Phase 3 - Secure Transmission:

Each coalition’s users exchange their information and transmit
their data within their allotted slots.

The above three phases are repeated periodically during the net-

work operation, allowing a topology that is adaptive to environ-

mental changes such as mobility.

Definition 33 Merge Rule - Merge any set of coalitions {S1, . . . , Sl} when-

ever the merged form is preferred by the players, i.e., where {⋃l
j=1 Sj} �

{S1, . . . , Sl}, therefore, {S1, . . . , Sl} → {⋃l
j=1 Sj}.

Definition 34 Split Rule - Split any coalition
⋃l

j=1 Sj whenever a split

form is preferred by the players, i.e., where {S1, . . . , Sl} � {⋃l
j=1 Sj}, thus,

{⋃l
j=1 Sj} → {S1, . . . , Sl}.
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Using the above rules, multiple coalitions can merge into a larger coali-
tion if merging yields a preferred collection based on the Pareto order. This
implies that a group of users can agree to form a larger coalition, if at least
one of the users improves its payoff without decreasing the utilities of any
of the other users. Similarly, an existing coalition can decide to split into
smaller coalitions if splitting yields a preferred collection by Pareto order.
The rationale behind these rules is that, once the users agree to sign a
merge agreement, this agreement can only be broken if all the users ap-
prove. This is a family of coalition formation games known as coalition
formation games with partially reversible agreements [19]. Using the rules
of merge and split is highly suitable for the proposed PHY security game
due to many reasons. For instance, each merge or split decision can be
taken in a distributed manner by each individual user or by each already
formed coalition. Further, it is shown in [20] that any arbitrary iteration of
merge and split rules terminates, hence, these rules can be used as build-
ing blocks in a coalition formation process for the PHY security game.

Accordingly, for the proposed PHY security game, we construct a coali-
tion formation algorithm based on merge-and-split and divided into three
phases: Neighbor discovery, adaptive coalition formation, and transmission.
In the neighbor discovery phase (Phase 1), each coalition (or user) surveys
its environment in order to find possible cooperation candidates. For a
coalition Sk the area that is surveyed for discovery is the intersection of
|Sk| circles, centered at the coalition members with each circle’s radius
given by the maximum distance r̄i (for the circle centered at i ∈ Sk) within
which the power cost for user i as given by (F.2) does not exceed the total
available power P̃ . This area is determined by the fact that, if a number
of coalitions {S1, . . . , Sm} attempt to merge into a new coalition G = ∪m

i=1Si

which contains a member i ∈ G such that the power for information ex-
change needed by i exceeds P̃ , then the payoff of i goes to −∞ as per (F.6)
and the Pareto order can never be verified. Clearly, as the number of users
in a coalition increases, the number of circles increases, reducing the area
where possible cooperation partners can be found. This implies that, as
the size of a coalition grows, the possibility of adding new users decreases,
and, hence, the complexity of performing merge also decreases.

Following Phase 1, the adaptive coalition formation phase (Phase 2) be-
gins, whereby the users interact for assessing whether to form new coali-
tions with their neighbors or whether to break their current coalition. For
this purpose, an iteration of sequential merge-and-split rules occurs in the
network, whereby each coalition decides to merge (or split) depending on
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the utility improvement that merging (or splitting) yields. Starting from an
initial network partition T = {T1, . . . , Tl} of N , any random coalition (indi-
vidual user) can start with the merge process. The coalition Ti ∈ T which
debuts the merge process starts by enumerating, sequentially, the possi-
ble coalitions, of size greater than K (Remark 1), that it can form with the
neighbors that were discovered in Phase 1. On one hand, if a new coalition
T̃i which is preferred by the users through Pareto order is identified, this
coalition will form by a merge agreement of all its members. Hence, the
merge ends by a final merged coalition T final

i composed of Ti and one or sev-
eral of coalitions in its vicinity. On the other hand, if Ti is unable to merge
with any of the discovered partners, it ends its search and T final

i = Ti.

The algorithm is repeated for the remaining Ti ∈ T until all the coali-
tions have made their merge decisions, resulting in a final partition F .
Following the merge process, the coalitions in the resulting partition F are
next subject to split operations, if any is possible. In the proposed PHY
security problem, the coalitions are only interested in splitting into struc-
tures that include either singleton users or coalitions of size larger than K

or both (Remark 1). Similar to merge, the split is a local decision to each
coalition. An iteration consisting of multiple successive merge-and-split
operations is repeated until it terminates. The termination of an iteration
of merge and split rules is guaranteed as shown in [20]. It must be stressed
that the merge or split decisions can be taken in a distributed way by the
users/coalitions without relying on any centralized entity.

In the final transmission phase (Phase 3), the coalitions exchange their
information and begin their secure transmission towards their correspond-
ing destinations, in a TDMA manner, one coalition per slot. Every slot
is owned by a user who transmits its data with the help of its coalition
partners, if that user belongs to a coalition. Hence, in this phase, the
user perform the actual beamforming, while transmitting the data of every
user within its corresponding slot. Each run of the proposed algorithm
consists of these three phases, and is summarized in Table F.I. As time
evolves and the users, eavesdroppers and destinations move (or new users
or eavesdroppers enter/leave the network), the users can autonomously
self-organize and adapt the network’s topology through appropriate merge-
and-split decisions during Phase 2. This adaptation to environmental
changes is ensured by enabling the users to run the adaptive coalition
formation phase periodically in the network.

The proposed algorithm in Table F.I can be implemented in a dis-
tributed manner. As the user can detect the strength of other users’ uplink
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signals (through techniques similar to those used in the ad hoc routing dis-
covery) [21], nearby coalitions can be discovered in Phase 1 for potential
cooperation. In fact, during Phase 1, each coalition in the network can
easily work out the area within which candidates for merge can be found,
as previously explained in this section. Once the neighbors are discovered,
the coalitions can perform merge operations based on the Pareto order in
Phase 2. The complexity of the merge operation can grow exponentially
with the number of candidates with whom a user i is able to merge (the
number of coalitions in the neighboring area which is in general signifi-
cantly smaller than N ). As more coalitions form, the area within which
candidates are found is smaller, and, hence, the merge complexity re-
duces. In addition, whenever a coalition finds a candidate to merge with,
it automatically goes through with the merge operation, hence, avoiding
the need for finding all possible merge forms and reducing further the
complexity. Further, each formed coalition can also internally decides to
split if its members find a split form by Pareto order. By using a control
channel, the distributed users can coordinate and then cooperate using
our model.

4.2 Partition Stability

The result of the proposed algorithm in Table F.I is a network partition
composed of disjoint independent coalitions. The stability of this network
partition can be investigated using the concept of a defection function [20].

Definition 35 A defection function D is a function which associates with

each partition T of N a group of collections in N . A partition T = {T1, . . . , Tl}
of N is D-stable if no group of players is interested in leaving T when the

players who leave can only form the collections allowed by D.

We are interested in two defection functions [11, 20]. First, the Dhp

function which associates with each partition T of N the group of all par-
titions of N that can form through merge or split and the Dc function
which associates with each partition T of N the group of all collections
in N . This function allows any group of players to leave the partition T
of N through any operation and create an arbitrary collection in N . Two
forms of stability stem from these definitions: Dhp stability and a stronger
Dc stability. A partition T is Dhp-stable, if no player in T is interested in
leaving T through merge-and-split to form other partitions in N ; while a
partition T is Dc-stable, if no player in T is interested in leaving T through
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any operation (not necessarily merge or split) to form other collections in
N .

Hence, a partition is Dhp-stable if no coalition has an incentive to split
or merge. For instance, a partition T = {T1, . . . , Tl} is Dhp-stable, if the
following two necessary and sufficient conditions are met [11, 20] (� is the
non-preference operator, opposite of �): (i)- For each i ∈ {1, . . . ,m} and for
each partition {R1, . . . , Rm} of Ti ∈ T we have {R1, . . . , Rm} � Ti, and (ii)-
For each S ⊆ {1, . . . , l} we have

⋃
i∈S Ti � {Ti|i ∈ S}. Using this definition of

Dhp stability, we have

Theorem 1 Every partition resulting from our proposed coalition formation

algorithm is Dhp-stable.

Proof: The proof is given in [18, Theorem 1]. �

Furthermore, a Dc-stable partition T is characterized by being a strongly
stable partition, which satisfies the following properties: (i)- A Dc-stable
partition is Dhp-stable, (ii)- A Dc-stable partition is a unique outcome of any
iteration of merge-and-split and, (iii)- A Dc-stable partition T is a unique
�-maximal partition, that is for all partitions T ′ �= T of N , T � T ′. In the
case where � represents the Pareto order, this implies that the Dc-stable
partition T is the partition that presents a Pareto optimal utility distribu-
tion for all the players.

Clearly, it is desirable that the network self-organizes unto a Dc-stable
partition. However, the existence of a Dc-stable partition is not always
guaranteed [20]. The Dc-stable partition T = {T1, . . . , Tl} of the whole space
N exists if a partition of N that verifies the following two necessary and
sufficient conditions exists [20]:

1. For each i ∈ {1, . . . , l} and each pair of disjoint coalitions S1 and S2

such that {S1 ∪ S2} ⊆ Ti we have {S1 ∪ S2} � {S1, S2}.

2. For the partition T = {T1, . . . , Tl} a coalition G ⊂ N formed of players
belonging to different Ti ∈ T is T -incompatible if for no i ∈ {1, . . . , l}
we have G ⊂ Ti.

In summary, Dc-stability requires that for all T -incompatible coalitions
{G}[T ] � {G} where {G}[T ] = {G ∩ Ti ∀ i ∈ {1, . . . , l}} is the projection of
coalition G on T . If no partition of N can satisfy these conditions, then no
Dc-stable partition of N exists. Nevertheless, we have

Lemma 1 For the proposed (N , v) PHY security coalitional game, the pro-

posed algorithm of Table F.I converges to the optimal Dc-stable partition, if

such a partition exists. Otherwise, the final network partition is Dhp-stable.
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Proof: The proof is a consequence of Theorem 1 and the fact that the

Dc-stable partition is a unique outcome of any merge-and-split iteration [20]

which is the case with any partition resulting from our algorithm. �

Moreover, for the proposed game, the existence of the Dc-stable par-
tition cannot be always guaranteed. For instance, for verifying the first
condition for existence of the Dc-stable partition, the users that are mem-
bers of each coalitions must verify the Pareto order through their utility
given by (F.6). Similarly, for verifying the second condition of Dc stabil-
ity, users belonging to all T -incompatible coalitions in the network must
verify the Pareto order. Consequently, the existence of such a Dc-stable
partition is strongly dependent on the location of the users and eaves-
droppers through the individual utilities (secrecy capacities). Hence, the
existence of the Dc-stable partition is closely tied to the location of the
users and the eavesdroppers, which, in a practical ad hoc wireless net-
work are generally random. However, the proposed algorithm will always
guarantee convergence to this optimal Dc-stable partition when it exists
as stated in Lemma 1. Whenever a Dc-stable partition does not exist, the
coalition structure resulting from the proposed algorithm will be Dhp-stable
(no coalition or individual user is able to merge or split any further).

5 Simulation Results and analysis

For simulations, a square network of 2.5 km × 2.5 km is set up with
the users, eavesdroppers, and destinations randomly deployed within this
area30. In this network, the users are always assigned to the closest des-
tination, although other user-destination assignments can be used with-
out any loss of generality. For all simulations, the number of destina-
tions is taken as M = 2. Further, the power constraint per slot is set to
P̃ = 10 mW, the noise level is −90 dBm, and the SNR for information ex-
change is ν0 = 10 dB which implies a neighbor discovery circle radius of
1 km per user. For the channel model, the propagation loss is set to μ = 3.
All statistical results are averaged over the random positions of the users,
eavesdroppers and destinations.

In Fig. F.2, we show a snapshot of the network structure resulting from
the proposed coalition formation algorithm for a randomly deployed net-
work with N = 15 users and K = 2 eavesdroppers for both DF (dashed

30This general network setting simulates a broad range of network types ranging from
ad hoc networks, to sensor networks, WLAN networks as well as broadband or cellular
networks.
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Fig. F.2: A snapshot of a coalitional structure resulting from our proposed
coalition formation algorithm for a network with N = 15 users, M = 2 des-
tinations and K = 2 eavesdroppers for DF (dashed lines) and AF (solid
lines).

lines) and AF (solid lines) protocols. For DF, the users self-organized
into 6 coalitions with the size of each coalition strictly larger than K or
equal to 1. For example, Users 4 and 15, having no suitable partners
for forming a coalition of size larger than 2, do not cooperate. The coali-
tion formation process is a result of Pareto order agreements for merge
(or split) between the users. For example, in DF, coalition {5, 8, 10, 13}
formed since all the users agree on its formation due to the fact that
V ({5, 8, 10, 13}) = {φ({5, 8, 10, 13}) = [0.356 0.8952 1.7235 0.6213]} which is a
clear improvement on the non-cooperative utility which was 0 for all four
users (due to proximity to eavesdropper 2). For AF, Fig. F.2 shows that
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Fig. F.3: Self-adaptation of the network’s topology to mobility as User 12
in Fig. F.2 moves horizontally on the negative x-axis (for DF).

only users {5, 8, 13} and users {1, 6, 7, 10} cooperate while all others remain
non-cooperative. The main reason is that, in AF, the users need to amplify
a noisy version of the signal using the beamforming weights. As a conse-
quence, the noise can be highly amplified, and, for AF, cooperation is only
beneficial in very favorable conditions. For example, coalitions {5, 8, 13}
and {1, 6, 7, 10} have formed for AF due to being far from the eavesdrop-
pers (relatively to the other users), hence, having a small cost for infor-
mation exchange. In contrast, for coalitions such as {3, 11, 12}, the benefit
from cooperation using AF is small compared to the cost, and, thus, these
coalitions do not form.

In Fig. F.3 we show how the algorithm handles mobility through appro-
priate coalition formation decisions. For this purpose, the network setup
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of Fig. F.2 is considered for the DF case while User 12 is moving horizon-
tally for 1.1 km in the direction of the negative x-axis. First of all, User 12

starts getting closer to its receiver (destination 2), and, hence, it improves
its utility. In the meantime, the utilities of User 12’s partners (Users 3 and
11) drop due to the increasing cost. As long as the distance covered by
User 12 is less than 0.2 km, the coalition of Users 3, 11 and 12 can still
bring mutual benefits to all three users. After that, splitting occurs by a
mutual agreement and all three users transmit independently. When User
12 moves about 0.8 km, it begins to distance itself from its receiver and its
utility begins to decrease. When the distance covered by User 12 reaches
about 1 km, it will be beneficial to Users 12, 4, and 15 to form a 3-user
coalition through the merge rule since they improve their utilities from
φ4({4}) = 0.2577, φ12({12}) = 0.7638, and φ15({15}) = 0 in a non-cooperative
manner to V ({4, 12, 15}) = {φ({4, 12, 15}) = [1.7618 1.0169 0.6227]}.

In Fig. F.4 we show the performance, in terms of average utility (se-
crecy rate) per user, as a function of the network size N for both the DF
and AF cases for a network with K = 2 eavesdroppers. First, we note that
the performance of coalition formation with DF is increasing with the size
of the network, while the non-cooperative and the AF case present an al-
most constant performance. For instance, for the DF case, Fig. F.4 shows
that, by forming coalitions, the average individual utility (secrecy rate) per
user is increased at all network sizes with the performance advantage of
DF increasing with the network size and reaching up to 25.3% and 24.4%

improvement over the non-cooperative and the AF cases, respectively, at
N = 45. This is interpreted by the fact that, as the number of users N

increases, the probability of finding candidate partners to form coalitions
with, using DF, increases for every user. Moreover, Fig. F.4 shows that the
performance of AF cooperation is comparable to the non-cooperative case.
Hence, although AF relaying can improve the secrecy rate of large clusters
of nearby cooperating users when no cost is accounted for such as in [10],
in a practical wireless network and in the presence of a cooperation cost,
the possibility of cooperation using AF for secrecy rate improvement is rare
as demonstrated in Fig. F.4. This is mainly due to the strong dependence
of the secrecy rate for AF cooperation on the channel between the users as
per (F.5), as well as the fact that, for AF, unless highly favorable conditions
exist (e.g. for coalitions such as {1, 6, 7, 10} in Fig. F.2) , the amplification
of the noise resulting from beamforming using AF relaying hinders the
gains from cooperation relative to the secrecy cost during the information
exchange phase.
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Fig. F.4: Performance in terms of the average individual user utility (se-
crecy rate) as a function of the network size N for M = 2 destinations and
K = 2 eavesdroppers.

In Fig. F.5, we show the performance, in terms of average utility (se-
crecy rate) per user, as the number of eavesdroppers K increases for both
the DF and AF cases for a network with N = 45 users. Fig. F.5 shows
that, for DF, AF and the non-cooperative case, the average secrecy rate
per user decreases as more eavesdroppers are present in the area. More-
over, for DF, the proposed coalition formation algorithm presents a per-
formance advantage over both the non-cooperative case and the AF case
at all K. Nonetheless, as shown by Fig.F.5, as the number of eavesdrop-
pers increases, it becomes quite difficult for the users to improve their
secrecy rate through coalition formation; consequently, at K = 8, all three
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Fig. F.5: Performance in terms of the average individual user utility (se-
crecy rate) as a function of the number of eavesdroppers K for N = 45 users
and M = 2 destinations.

schemes exhibit a similar performance. Finally, similar to the results of
Fig. C.2, coalition formation using the AF cooperation protocol has a com-
parable performance with that of the non-cooperative case at all K as seen
in Fig. F.5.

In Fig. F.6, for DF cooperation, we show the average and average max-
imum coalition size resulting from the proposed algorithm as the number
of users, N , increases, for a network with K = 2 eavesdroppers. Fig. F.6
shows that both the average and average maximum coalition size increase
with the number of users. This is mainly due to the fact that as N in-
creases, the number of candidate cooperating partners increases. Further,
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Fig. F.6: Average and average maximum coalition size as the network size
N varies for M = 2 destinations and K = 2 eavesdroppers and DF cooper-
ation.

through Fig. F.6 we note that the formed coalitions have a small average
size and a relatively large maximum size reaching up to around 2 and 6,
respectively, at N = 45. Since the average coalition size is below the mini-
mum of 3 (as per Remark 1 due to having 2 eavesdroppers) and the average
maximum coalition size is relatively large, the network structure is thus
composed of a number of large coalitions with a few non-cooperative users.

In Fig. F.7, the performance, in terms of average utility (secrecy rate)
per user, of the network for different cooperation costs, i.e., target average
SNRs ν0 is assessed. Fig. F.7 shows that cooperation through coalition
formation with DF maintains gains, in terms of average secrecy rate per
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Fig. F.7: Average individual user utility as a function of the target SNR ν0
for information exchange for a network with N = 45 users, K = 2 eaves-
droppers and M = 2 destinations for DF.

user, at almost all costs (all SNR values). However, as the cost increases
and the required target SNR becomes more stringent these gains decrease
converging further towards the non-cooperative gains at high cost since
cooperation becomes difficult due to the cost. As seen in Fig. F.7, the se-
crecy rate gains resulting from the proposed coalition formation algorithm
range from 8.1% at ν0 = 20 dB to around 34.9% at ν0 = 5 dB improvement
relative to the non-cooperative case.

The proposed algorithm’s performance is further investigated in net-
works with N = 20 and N = 45 mobile users (random walk mobility) for
a period of 5 minutes in the presence of K = 2 stationary eavesdroppers.
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Fig. F.8: Frequency of merge and split operations per minute vs. speed
of the users for different network sizes and K = 2 eavesdroppers with DF
cooperation.

During this period, the proposed algorithm is run periodically every 30

seconds. The results in terms of the frequency of merge and split opera-
tions per minute are shown in Fig. F.8 for various speeds. As the speed
increases, the frequency of both merge and split operations per minute
increases due to the changes in the network structure incurred by the
increased mobility. These frequencies reach up to around 19 merge opera-
tions per minute and 9 split operations per minute for N = 45 at a speed of
72 km/h. Finally, Fig. F.8 demonstrates that the frequency of merge and
split operations increases with the network size N as the users become
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Fig. F.9: Evolution over time for a network with N = 45 users, M = 2 des-
tinations, and K = 2 eavesdroppers with DF cooperation when the eaves-
droppers are moving with a speed of 50 km/h.

more apt to finding new cooperation partners when moving which results
in an increased coalition formation activity.

Fig. F.9 shows, for DF, how the structure of the wireless network with
N = 45 users and K = 2 mobile eavesdroppers evolves and self-adapts over
time (a period of 5 minutes), while both eavesdroppers are mobile with a
constant velocity of 50 km/h. The proposed coalition formation algorithm
is repeated periodically by the users every 30 seconds, in order to provide
self-adaptation to mobility. First, the users self-organize into 22 coalitions
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after the occurrence of 10 merge and split operations at time t = 0. As
time evolves, through adequate merge and split operations the network
structure is adapted to the mobility of eavesdroppers. For example, at time
t = 1 minute, through a total of 6 operations constituted of 5 merge and 1

split, the network structure changes from a partition of 26 coalitions back
to a partition of 22 coalitions. Further, at t = 3 minutes, no merge or split
operations occur, and, thus, the network structure remain unchanged.
In summary, Fig. F.9 illustrates how the users can take adequate merge
or split decisions to adapt the network structure to the mobility of the
eavesdroppers.

6 Conclusions

In this paper, we have studied the user behavior, topology, and dynam-
ics of a network of users that interact in order to improve their secrecy
rate through both decode-and-forward and amplify-and-forward coopera-
tion. We formulated the problem as a non-transferable coalitional game,
and proposed a distributed and adaptive coalition formation algorithm.
Through the proposed algorithm, the mobile users are able to take a
distributed decision to form or break cooperative coalitions through well
suited rules from cooperative games while maximizing their secrecy rate
taking into account various costs for information exchange. We have char-
acterized the network structure resulting from the proposed algorithm,
studied its stability, and analyzed the self-adaptation of the topology to
environmental changes such as mobility. Simulation results have shown
that, for decode-and-forward, the proposed algorithm allowed the users to
self-organize while improving the average secrecy rate per user up to 25.3%

and 24.4% (for a network with 45 users) relative to the non-cooperative and
amplify-and-forward cases, respectively.
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[18] W. Saad, Z. Han, T. Başar, M. Debbah, and A. Hjørungnes, “Physical
layer security: Coalitional games for distributed cooperation,” in Proc.

7th Int. Symp. on Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks (WiOpt), Seoul, South Korea, June 2009.

[19] D. Ray, A Game-Theoretic Perspective on Coalition Formation. New
York, USA: Oxford University Press, Jan. 2007.

336



REFERENCES

[20] K. Apt and A. Witzel, “A generic approach to coalition formation,” in
Proc. of the Int. Workshop on Computational Social Choice (COMSOC),
Amsterdam, the Netherlands, Dec. 2006.

[21] Z. Han and K. J. R. Liu, Resource Allocation for Wireless Networks:

Basics, Techniques, and Applications. Cambridge University Press,
2008.

337





Paper G

Network Formation Games among the Re-
lay Stations in Next Generation Wireless
Networks
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Abstract

The introduction of relay station (RS) nodes is a key feature in next genera-
tion wireless networks such as 3GPP’s long term evolution advanced (LTE-
Advanced), or the forthcoming IEEE 802.16j WiMAX standard. This paper
presents, using game theory, a novel approach for the formation of the tree
architecture that connects the RSs and their serving base station in the
uplink of the next generation wireless multi-hop systems. Unlike existing
literature which mainly focused on performance analysis, we propose a
distributed algorithm for studying the structure and dynamics of the net-
work. We formulate a network formation game among the RSs whereby
each RS aims to maximize a cross-layer utility function that takes into
account the benefit from cooperative transmission, in terms of reduced
bit error rate, and the costs in terms of the delay due to multi-hop tra-
nsmission. For forming the tree structure, a distributed myopic algorithm
is devised. Using the proposed algorithm, each RS can individually select
the path that connects it to the BS through other RSs while optimizing
its utility. We show the convergence of the algorithm into a Nash tree
network, and we study how the RSs can adapt the network’s topology to
environmental changes such as mobility or the deployment of new mobile
stations. Simulation results show that the proposed algorithm presents
significant gains in terms of average utility per mobile station which is at
least 21.5% better relatively to the case with no RSs and reaches up to
45.6% improvement compared to a nearest neighbor algorithm (for a net-
work with 10 RSs). The results also show that the average number of hops
does not exceed 3 even for a network with up to 25 RSs.
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Introduction

1 Introduction

Cooperation has recently emerged as a novel networking paradigm that
can improve the performance of wireless communication networks at dif-
ferent levels. For instance, in order to mitigate the fading effects of the
wireless channel, several nodes or relays can cooperate with a given source
node in the transmission of its data to a far away destination, thereby,
providing spatial diversity gains for the source node without the burden of
having several antennas physically present on the node. This class of coop-
eration is commonly referred to as cooperative communications [1]. It has
been demonstrated that by deploying one or multiple relays [1–3] a signif-
icant performance improvement can be witnessed in terms of throughput,
bit error rate, capacity, or other metrics. In this regard, existing literature
studied various aspects of cooperative transmission such as resource allo-
cation [4], or link-level performance assessment [1–3]. Consequently, due
to this performance gain that cooperative communications can yield in a
wireless network, recently, the incorporation of relaying into next genera-
tion wireless networks has been proposed. In this context, the deployment
of relay station (RS) nodes, dedicated for cooperative communications, is
a key challenge in next generation networks such as 3GPP’s long term
evolution advanced (LTE-Advanced) [5] or the forthcoming IEEE 802.16j
WiMAX standard [6].

For an efficient deployment of RSs in next generation networks, sev-
eral key technical challenges need to be addressed at both the uplink and
downlink levels. For the downlink of 802.16j networks, in [7], the authors
study the optimal placement of one RS which maximizes the total rate of
transmission. In [8], the authors study the capacity gains and the resource
utilization in a multi-hop LTE network in the presence of RSs. Further, the
performance of different relaying strategies in an LTE-Advanced network
is studied in [9]. In [10], the use of dual relaying is studied in the context
of 802.16j networks with multiple RSs. Resource allocation and network
planning techniques for 802.16j networks in the presence of RSs are pro-
posed in [11]. Furthermore, the authors in [12] study the possibility of
coverage extension in an LTE-Advanced system, through the use of re-
laying. In [13], the communication possibilities between the RSs and the
base station is studied and a need-basis algorithm for associating the RSs
to their serving BS is proposed for LTE-Advanced networks. The possibil-
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ities for handover in an LTE network in the presence of RSs are analyzed
in [14]. Other aspects of RS deployment in next generation networks are
also considered in [15–19].

Although the performance assessment and operational aspects of RS
deployment in next generation multi-hop networks such as LTE-Advanced
or 802.16j has been thoroughly studied, one challenging area which re-
mains relatively unexplored is the formation of the tree architecture con-
necting the BS to the RSs in its coverage area. One contribution toward
tackling this problem in 802.16j networks has been made in [17] through
a centralized approach. However, the work in [17] does not provide a
clear algorithm for the tree formation nor does it consider cooperative tra-
nsmission or multi-hop delay. In addition, a centralized approach can
yield some significant overhead and complexity, namely in networks with a
rapidly changing environment due to RS mobility or incoming traffic load.
In our previous work [18, 19], we proposed game theoretical approaches
to tackle the formation of a tree structure in an 802.16j network. How-
ever, the model in [18] does not account for the costs in terms of the delay
incurred by multi-hop transmission while [19] is limited to delay tolerant
VoIP networks and does not account for the effective throughput of the
nodes. In order to take into account both the effective throughput and the
delays in the network due to the traffic flow (queueing and transmission
delay) for generic services, new models and algorithms, inherently different
from [18, 19], are required.

The main contribution of this paper is to study the distributed for-
mation of the network architecture connecting the RSs to their serving
base station in next generation wireless systems such as LTE-Advanced
or WiMAX 802.16j. Another key contribution is to propose a cross-layer
utility function that captures the gains from cooperative transmission, in
terms of a reduced bit error rate and improved effective throughput, as
well as the costs incurred by multi-hop transmission in terms of delay.
For this purpose, we formulate a network formation game among the RSs
in next generation networks, and we build a myopic algorithm in which
each RS selects the strategy that maximizes its utility. We show that,
through the proposed algorithm, the RSs are able to self-organize into a
Nash network tree structure rooted at the serving base station. Moreover,
we demonstrate how, by periodic runs of the algorithm, the RSs can take
autonomous decisions to adapt the network structure to environmental
changes such as incoming traffic due to new mobile stations being de-
ployed as well as mobility. Through simulations, we show that the pro-
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posed algorithm leads to a performance gain, in terms of average utility
per mobile station, of at least 21.5% compared to the case with no RSs and
up to 45.6% compared to a nearest neighbor algorithm.

The rest of this paper is organized as follows: Section 2 presents the
system model and the game formulation. In Section 3, we introduce the
cross-layer utility model and present the proposed network formation algo-
rithm. Simulation results are presented and analyzed in Section 4. Finally,
conclusions are drawn in Section 5.

2 System Model and Game Formulation

Consider a network of M RSs that can be either fixed, mobile, or nomadic.
The RSs transmit their data in the uplink to a central base station (BS)
through multi-hop links, and, therefore, a tree architecture needs to form,
in the uplink, between the RSs and their serving BS. Once the uplink
network structure forms, mobile stations (MSs) can hook to the network by
selecting a serving RS or directly connecting to the BS. In this context, we
consider that the MSs deposit their data packets to the serving RSs using
direct transmission. Subsequently, the RSs in the network that received
the data from the external MSs, can act as source nodes transmitting the
received MS packets to the BS through one or more hops in the formed
tree, using cooperative transmission. The considered direct transmission
between an MS and its serving RS enables us to consider a tree formation
algorithm that can be easily incorporated in a new or existing wireless
networks without the need of coordination with external entities such as
the MSs.

To perform cooperative transmission between the RSs and the BS, we
consider a decoded relaying multi-hop diversity channel, such as the one
in [3]. In this relaying scheme, each intermediate node on the path be-
tween a transmitting RS and the BS combines, encodes, and re-encodes
the received signal from all preceding terminals before relaying (decode-
and-forward). Formally, every MS k in the network constitutes a source
of data traffic which follows a Poisson distribution with an average arrival
rate λk. With such Poisson streams at the entry points of the network (the
MSs), for every RS, the incoming packets are stored and transmitted in a
first-in first-out (FIFO) fashion and we consider that we have the Kleinrock
independence approximation [20, Chap. 3] with each RS being an M/D/1
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Fig. G.1: A prototype of the uplink tree model.

queueing system31. With this approximation, the total traffic that an RS i

receives from the MSs that it is serving is a Poisson process with an aver-
age total arrival rate of Λi =

∑
l∈Li

λl where Li is the set of MSs served by an
RS i of cardinality |Li| = Li. Moreover, RS i also receives packets from RSs
that are connected to it with a total average rate Δi. For these Δi packets
(received from other RSs), the sole role of RS i is to relay them to the next
hop. In addition, any RS i that has no assigned MSs and no connected RSs
(Li = ∅, Λi = 0, and Δi = 0), transmits “HELLO” packets, generated with
a Poisson arrival rate of η0 in order to maintain its link to the BS active
during periods of no actual traffic in the network. An illustrative example
of this model is shown in Fig. G.1.

Given this network, the main objective is to provide a formulation that
can adequately model the interactions between the RSs that seek to form

31Any other queueing model, e.g., M/M/1, can also be accommodated.
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the uplink multi-hop tree architecture. For this purpose, we refer to the
analytical framework of network formation games [21–24]. Network for-
mation games constitute a subclass of problems which involve a number
of independent decisions makers (players) that interact in order to form a
suited graph that connects them. The final network graph G that results
from a given network formation game is highly dependent on the goals,
objectives, and incentives of every player in the game. Consequently, we
model the proposed uplink tree formation problem as a network formation
game among the RSs where the result of the interactions among the RSs
is a directed graph G(V, E) with V = {1, . . . ,M + 1} denoting the set of all
vertices (M RSs and the BS) that will be present in the graph and E de-
noting the set of all edges (links) that connect different pairs of RSs. Each
directed link between two RSs i and j, denoted (i, j) ∈ E, corresponds to
an uplink traffic flow from RS i to RS j. We define the following notion of a
path:

Definition 36 Given any network graph G(V, E), a path between two nodes

i ∈ V and j ∈ V is defined as a sequence of nodes i1, . . . , iK (in V) such that

i1 = i, iK = j and each directed link (ik, ik+1) ∈ G for each k ∈ {1, . . . ,K − 1}.

In this paper, we consider solely multi-hop tree (or forest, if some parts
of the graph are disconnected) architectures, since such architectures are
ubiquitous in next generation networks [6, 8, 9]. In this regard, through-
out the paper we adopt the following convention:

Convention 2 Each RS i is connected to the BS through at most one path,

and, thus, we denote by qi the path between any RS i and the BS whenever

this path exists.

Finally, we delineate the possible actions or strategies that each RS can
take in the proposed network formation game. In this regard, for each RS
i, the action space consists of the RSs (or the BS) that RS i wants to use
as its next hop. Therefore, the strategy of an RS i is to select the link that
it wants to form from its available action space. We note that, an RS i

cannot connect to an RS j which is already connected to i, in the sense
that if (j, i) ∈ G, then (i, j) /∈ G. Hence, for a given graph G that governs
the current network architecture, we let Ai = {j ∈ V \ {i}|(j, i) ∈ G} denote
the set of RSs from which RS i accepted a link (j, i), and Si = {(i, j)|j ∈
V \ ({i}⋃Ai)} denote the set of links corresponding to the nodes (RSs or
the BS) with whom i wants to connect (note that i cannot connect to RSs
that are already connected to it, i.e., RSs in Ai). Accordingly, the strategy of
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an RS i is to select the link si ∈ Si that it wants to form, i.e., choose the RS
that it will connect to. Based on Convention 1, an RS can be connected to
at most one other node in our game so selecting to form a link si implicitly
implies that RS i will replace its previously connected link (if any) with the
new link si. Further, to each selection si by an RS i corresponds a path
qi to the BS (if si = ∅, then the RS chooses to be disconnected from the
network).

3 Network Formation Game: Utility Function and

Algorithm

3.1 Cross-layer Utility Function
Given the proposed network formation game model, the next step is to de-
fine a utility function that can capture the incentives of the RSs to connect
to each others. In this context, we propose a cross-layer utility function
that takes into account the performance measures in terms of the packet
success rate (PSR) as well as the delay induced by multi-hop transmission.
Hence, considering any tree network graph G, each RS in the network will
be given a positive utility for every packet that is transmitted/relayed suc-
cessfully to the BS out of all the packets that this RS has received from
the external MSs. In this regard, every packet transmitted by any RS is
subject to a bit error rate (BER) due to the communication over the wire-
less channel using one or more hops. For any data transmission between
an RS V1 ∈ V to the BS, denoted by Vn+1, going through n − 1 intermedi-
ate RSs {V2, . . . , Vn} ⊂ V, let Nr be the set of all receiving terminals, i.e.,
Nr = {V2 . . . Vn+1} and Nr(i) be the set of terminals that transmit a signal
received by a node Vi. Hence, for an RS Vi on the path from the source
V1 to the destination Vn+1, we have Nr(i) = {V1, . . . , Vi−1}. Therefore, given
this notation, the BER achieved at the BS Vn+1 between a source RS V1 ∈ V
that is sending its data to the BS along a path qV1 = {V1, . . . , Vn+1} can be
calculated through the tight upper bound given in [3, Eq. (10)] for the de-
coded relaying multi-hop diversity channel with Rayleigh fading and BPSK
modulation32 as follows

P e
qV1

≤
∑

Ni∈Nr

1

2

⎛
⎜⎜⎜⎝

∑
Nk∈Nr(i)

⎡
⎢⎢⎢⎣

∏
Nj∈Nr(i)
Nj �=Nk

γk,i
γk,i − γj,i

(
1−

√
γk,i

γk,i + 1

)⎤⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ . (G.1)

32The approach in this paper is not restricted to this channel and BPSK signal constella-
tion since the algorithm proposed in the following section can be tailored to accommodate
other types of relay channels as well as other modulation techniques.
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Here, γi,j =
Pi·hi,j

σ2 is the average received SNR at node j from node i where
Pi is the transmit power of node i, σ2 the noise variance and hi,j = 1

dμi,j
is

the path loss with di,j the distance between i and j and μ the path loss
exponent. Finally, for RS i which is connected to the BS through a direct

transmission path qdi with no intermediate hops, the BER can be given

by P e
qdi

= 1
2

(
1−

√
γi,BS

1+γi,BS

)
[2], [3]; where γi,BS is the average received SNR

at the BS from RS i. Using the BER expression in (G.1) and by having
no channel coding, the PSR ρi,qi perceived by an RS i over any path qi is
defined as follows

ρi,qi(G) = (1− P e
qi)

B, (G.2)

where B is the number of bits per packet. The PSR is a function of the
network graph G as the path qi varies depending on how RS i is connected
to the BS in the formed network tree structure.

Communication over multi-hop wireless links yields a significant delay
due to multi-hop transmission as well as buffering. Therefore, we let τi,qi
denote the average delay over the path qi = {i1, . . . , ik} from an RS i1 = i to
the BS. Finding the exact average delay over a path of consecutive queues
is a challenging problem in queueing systems [20]. One possible approach
for measuring the average delay along a path qi in a network with Poisson
arrivals at the entry points is to consider the Kleinrock approximation as
mentioned in the previous section. In this context, the average delay over
any path qi can be given by [20, Chap. 3, Eqs. (3.42), (3.45), and (3.93)]

τi,qi(G)=
∑

(ik,ik+1)∈qi

(
Ψik,ik+1

2μik,ik+1
(μik,ik+1

− Ψik,ik+1
)
+

1

μik,ik+1

)
. (G.3)

where Ψik,ik+1
= Λik + Δik is the total traffic (packets/s) traversing link

(ik, ik+1) ∈ qi between RS ik and RS ik+1 and originating from the Lik MSs
in the set Lik of MSs connected to RS ik (Λik =

∑
i∈Lik

λi) and from all RSs

that are connected to ik (Δik =
∑

j∈Aik
Λj). The ratio 1

μik,ik+1
represents

the average transmission time (service time) on link (ik, ik+1) ∈ qi with
μik,ik+1

being the service rate on link (ik, ik+1). This service rate is given

by μik,ik+1
=

Cik,ik+1

B with Cik,ik+1
= W log (1 + νik,ik+1

) the capacity of the di-

rect transmission between RS ik and RS ik+1, where νik,ik+1
=

Pik
hik,ik+1

σ2 is
the received SNR from RS ik at RS ik+1, and W is the bandwidth available
for RS ik which is assumed the same for all RSs in the set of vertices V,
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without loss of generality. Similar to the PSR, the delay depends on the
paths from the RSs to the BS, and, hence, it is a function of the network
graph G.

A suitable criterion for characterizing the utility in networks where the
users’ quality of service is sensitive to throughput as well as to delay is the
concept of system power. In this context, power is defined as the ratio of
some power of the throughput and the delay [25]. Hence, the concept of
power is an attractive notion that allows one to capture the fundamental
tradeoff between throughput and delay in the proposed network formation
game. In fact, the concept of power has been used thoroughly in the litera-
ture to model applications where there exists a tradeoff between through-
put and delay [26–29]. Consequently, given the delay and the PSR, we
define the utility of an RS i with Li connected MSs, as the power achieved
by i which is given by

ui(G) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(Λi · ρi,qi(G))β

τi,qi(G)(1−β)
, if Li > 0,

(η0 · ρi,qi(G))β

τi,qi(G)(1−β)
, if Li = 0,

(G.4)

where τi,qi(G) is the delay given by (G.3), Λi · ρi,qi(G) represents the effec-
tive throughput of RS i and β ∈ (0, 1) is a tradeoff parameter. The utility
in (G.4) can model a general class of services, with each class of service
having a different β. As β increases, the service becomes more delay toler-
ant and more throughput demanding. Note that, unless stated otherwise,
throughout the rest of the paper the term “power” will refer to the ratio
of throughput to delay and not to the transmit power of the RSs or MSs
unless clearly stated as “transmit power”.

Once the RSs form the tree topology, one needs to assess the perfor-
mance of the MSs in terms of the power achieved by these MSs (considered
as MS utility). In order to compute the utility of the MSs, the PSR as well
as the delay over the whole transmission from MS to BS must be taken
into account. Hence, given the proposed network model in Section 2, for
each MS i ∈ Lj served by an RS j, the PSR is given by

ζi,j(G) = ρi,(i,j) · ρj,qj (G), (G.5)

where ρi,(i,j) is the PSR on the direct transmission between MS i and RS
j (which does not depend on the existing network graph G between the
RSs) and ρj,qj (G) is the PSR from RS j to the BS along path qj given by
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(G.2) (the path qj can be either a multi-hop path or a direct transmission
depending on how RS j is connected in the graph G that governs the RSs’
network). Furthermore, for any MS i ∈ Lj connected to an RS j, the delay
for transmitting the data to the BS is given by (G.3) by taking into account,
in addition to the delay on the RS’s path qj, the data traffic on the link (i, j)

between the MS and the RS, i.e., the buffering and transmission delay at
the MS level. Having the PSR given by (G.5) and the delay, the utility of a
MS i connected to RS j is given by

vi(G) =
(λi · ζi,j(G))β

τi,qj (G)(1−β)
. (G.6)

Consequently, throughout the paper (unless stated otherwise) we con-
sider that whenever an MS enters the network, it will connect to the RS
which maximizes its utility in (G.6) given the current network topology G.
This MS assignment is considered fixed as long as the RSs’ network does
not change, otherwise, the MSs can re-assess their utilities and change
their assignment once to adapt to the changes in the RSs’ network. Al-
though more advanced techniques such as a non-cooperative Nash game
can be used for assigning the MSs to the RS, these techniques are out of
the scope of this paper and will be the subject of future work.

3.2 Network Formation Algorithm

Given the devised utility functions in the previous subsection, the next
step in the proposed RSs’ network formation game is to find an algorithm
that can model the interactions among the RSs that seek to form the net-
work tree structure. First, we show that, for any network formation al-
gorithm, the resulting graph in the proposed game is a connected tree
structure as follows:

Property 8 The network graph resulting from any network formation al-

gorithm for the proposed RSs game is a connected directed tree structure

rooted at the BS.

Proof: Consider an RSs network graph G whereby an RS i is discon-

nected from the BS, i.e., no path of transmission (direct or multi-hop) exists

between i and the BS. In this case, one can see that, the delay for all the

packets at the disconnected RS i is infinite, i.e., τi,qi(G) = ∞, and, thus, the

corresponding power is 0 as per the utility function in (G.4). As a result,

there is no incentive for any RS in the network to disconnect from the BS
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since such a disconnection will drastically decrease its utility. Hence, any

network graph G formed using the proposed RSs network formation game

is a connected graph and due to Convention 1, this graph is a tree rooted at

the BS. �

A direct result of this property is that, if any RS is unable to connect
to another suitable RSs for forming a link, this RS will connect to the BS
using direct transmission. In this regards, we consider that the initial
starting point for our network formation game is a star topology whereby
all the RSs are connected directly to the BS, prior to interacting for further
network formation decisions.

Whenever an RS i plays a strategy si ∈ Si while all the remaining RSs
maintain a vector of strategies s−i, we let Gsi,s−i denote the resulting net-
work graph. By inspecting the RS utility in (G.4), one can clearly notice
that, whenever an RS j accepts a link, due to the increased traffic that it
receives, its utility may decrease as the delay increases. In this context,
although each RS i ∈ N can play any strategy from its strategy space Si,
there might exist some link si = (i, j) ∈ Si where the receiving RS, i.e., RS
j, does not accept the formation of si, if this leads to a significant decrease
in its utility. In this regard, denoting by G + si as the graph G modified
by adding link si = (i, j), we define the concept of a feasible strategy as
follows:

Definition 37 A strategy si ∈ Si is a feasible strategy for an RS i ∈ V if and

only if usi(Gsi,s−i + si) ≥ usi(Gsi,s−i) − ε where ε is a small positive number.

For any RS i ∈ V, the set of all feasible strategies is denoted by Ŝi ⊆ Si.

In a nutshell, given a network graph G, a feasible strategy for any RS
i ∈ V is to select an RS among all the RSs that are willing to accept a
connection from RS i, i.e., a feasible path, which maximizes its utility.
On the other hand, any RS j ∈ V is willing to accept a connection from
any other RS i ∈ V as long as the formation of the link (i, j) does not
decrease the utility of j by more than ε. The main motivation for having
ε > 0 (sufficiently small) is that, in many cases, e.g., when the network has
only HELLO packets circulating (no MS traffic), RS j might be willing to
accept the formation of a link which can slightly decrease its utility at a
given moment, but, as more traffic is generated in the network, this link
can entail potential future benefits for RS j stemming from an increased
effective throughput (recall that the utility in (G.4) captures the tradeoff
between effective throughput and delay).
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For any RS i ∈ V, given the set of feasible strategies Ŝi, we define the
best response for RS i as follows [23].

Definition 38 A strategy s∗i ∈ Ŝi is a best response for an RS i ∈ V if

ui(Gs∗i ,s−i
) ≥ ui(Gsi,s−i), ∀si ∈ Ŝi. Thus, the best response for RS i is to select

the feasible link that maximizes its utility given that the other RSs maintain

their vector of feasible strategies s−i.

Subsequently, given the various properties of the RS network formation
game, we devise a network formation algorithm based on the feasible best
responses of the RSs. For this purpose, first, we consider that the RSs
are myopic, such that each RS aims at improving its utility given only
the current state of the network without taking into account the future
evolution of the network. Developing an optimal myopic network formation
algorithm is highly complex since there exists no formal rules for network
formation in the literature [21]. For instance, depending on the model,
utilities, and incentives of the players, different network formation rules
can be applied. In this context, the game theoretical literature on network
formation games presents various myopic algorithms for different game
models with directed and undirected graphs [21–23]. For the network
formation game among the RSs, we build a myopic algorithm for network
formation inspired from those in [21] and [23]. In this regard, we define
an algorithm where each round is mainly composed of three phases: a
fair prioritization phase, a myopic network formation phase, and a multi-
hop transmission phase. Hence, the proposed algorithm starts with a
fair prioritization phase where each RS is given a priority depending on
different criteria. For the purpose of exposition, in this paper, we consider
a priority scheme that depends on the BER of the RSs as follows: RSs with
a higher BER are assigned a higher priority. The main rationale behind
this selection of priority is in order to fairly allow RSs that are perceiving
a bad channel to possess an advantage in selecting their partners, for the
purpose of improving their BER. By giving a priority advantage to RSs with
high BER, these RSs can have a larger space of strategies out of which
they can select a partner during the myopic network formation phase.
Other priority functions can also be used, and in a general case, a random
priority function can be defined.

The second phase of the proposed algorithm is the myopic network
formation phase. During myopic network formation, the RSs engage in
pairwise interactions, sequentially by order of priority, in order to make
their network formation decisions. In this phase, each RS i can select a
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certain feasible strategy which allows it to improve its payoff. An iteration

consists of a single sequence of plays during which all M RSs have made
their strategy choice to myopically react to the choices of the other RSs.
The myopic network formation phase can consist of one or more iteration.
For every iteration t, we define the set Gt of all graphs that were reached
at the end of all the iterations up to t, i.e., the set of all graphs that were
formed at the end of iterations 1 till t− 1 (at the beginning of all time, i.e.,
at t = 0, G0 = ∅). In every iteration t, during its turn, each RS i chooses
to play its best response s∗i ∈ Ŝi \ SGt in order to maximize its utility at
each round given the current network graph resulting from the strategies
of the other RSs. The set SGt represents the set of all strategies that RS i

can take and which will yield a graph in Gt. The main motivation behind
excluding all the strategies that yield a graph in Gt is that, an RS i has
no incentive to revisit a graph that was already left in the past. This can
be seen as a basic learning scheme that the RSs can implement with low
complexity (each RS can be made aware of the graph reached at the end of
any iteration t by the BS or neighboring RSs). The best response of each
RS can be seen as a replace operation, whereby the RS will replace its
current link to the BS with another link that maximizes its utility (if such
a link is available). Multiple iterations will be run until convergence to the
final tree structure GT where the RSs can no longer improve their utility
through best responses. The convergence of the myopic network formation
phase of the proposed algorithm is given by the following Theorem:

Theorem 1 Given any initial network graph G0, the myopic network forma-

tion phase of the proposed algorithm converges to a final network graph GT

after T iterations.

Proof: Every iteration t of the myopic network formation phase of the

proposed algorithm can be seen as a sequence of best responses played by

the RSs. In this regard, denoting by Gt the graph reached at the end of any

iteration t, the myopic network formation phase consists of a sequence such

as the following (as an example)

G0 → G1 → G2 → · · · → Gt → · · ·

At any iteration t, each RS i selects its best response out of the strategy

space Ŝi \ SGt , hence, if any RS i plays a best response at iteration t, then

surely Gt �= Gl, ∀l < t. This process continues until finding an iteration

where no RS can find any strategy to play. Given this property and the fact

that the number of spanning trees for any graph is finite, then the sequence
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in (3.2) will always converge to a final graph GT after T iterations. Hence,

the myopic network formation phase of our proposed algorithm always con-

verges. �

After the convergence of the network formation phase of the algorithm,
the RSs are connected through a tree structure GT and the third phase of
the algorithm begins. This phase represents the actual data transmission
phase, whereby the multi-hop network operation occurs as the RSs trans-
mit the data over the existing tree architecture GT . A summary of the
proposed algorithm is given in Table G.I.

To study the stability of any graph GT resulting from the proposed
network formation algorithm, we utilize the concept of Nash equilibrium
applied to network formation games as follows [23]:

Definition 39 At an iteration T , a network graph GT (V, E) in which no node

i can improve its utility by a unilateral change in its strategy si ∈ Si \ GT is a

Nash network in the strategy space Si \ GT , ∀i ∈ V.

Therefore, in our proposed game, a Nash network is a network where
no RS can improve its utility given the current strategies of all other RSs.
For the proposed algorithm, we have the following property:

Lemma 1 The final tree structure GT resulting from the proposed algorithm

is a Nash network in the strategy space Si \ GT , ∀i ∈ V.

Proof: This lemma is a direct consequence of Theorem 1. Since the my-

opic network formation phase of the proposed algorithm is based on the best

responses of the RSs at each iteration t in their strategy spaces Si\Gt, ∀i ∈ V,

then the convergence of the algorithm, as guaranteed by Theorem 1 reaches

a Nash network (the convergence of a best response algorithm reaches a

Nash equilibrium [30]) where no RS can unilaterally deviate from its strat-

egy. �

Furthermore, as the RSs can engage in the myopic network formation
phase prior to any MS deployment, we consider the following convention
throughout the rest of this paper:

Convention 3 At the beginning of all time, once the operator deploys the

network, the RSs engage in the network formation game by taking into ac-

count their utilities in terms of HELLO packets, prior to any mobility or pres-

ence of MSs.

The main motivation behind Convention 3 is that the RSs can form an
initial tree structure which shall be used by any MSs that will be deployed
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Table G.I: Proposed network formation algorithm.
Initial State

The starting network is a graph where the RSs are directly con-
nected to the BS (star network).
The proposed algorithm consists of three phases

Phase 1 - Fair Prioritization:

Each RS is given a priority depending on different criteria.
One example priority is to prioritize the RSs based on their BER
(a lower BER implies a higher priority).

Phase 2 - Myopic Network Formation:

repeat

By order of priority, the RSs engage in a network formation
game.
a) In every iteration t of Phase 2, each RS i plays its feasible

best response s∗i ∈ Ŝi \ SGt (with Gt being the set of all graphs
visited at the end of iterations 1 till t− 1), maximizing its utility.
b) The best response s∗i of each RS is a replace operation
through which an RS i splits from its current parent RS and
replaces it with a new RS that maximizes its utility, given that
this new RS accepts the formation of the link.

until convergence to a final Nash tree GT after T iterations.
Phase 3 - Multi-hop Transmission:

During this phase, data transmission from the MSs occurs
using the formed network tree structure GT .

For changing environments (e.g. due to mobility or the deploy-

ment of new MSs), multiple rounds of this algorithm are run pe-
riodically every time period θ, allowing the RSs to adapt the net-

work topology.

in the network. If any adaptation to this structure is needed, periodic runs
of the proposed algorithm can occur as discussed further in this section.

The proposed algorithm can be implemented in a distributed way within
any next generation wireless multi-hop network, with a little reliance on
the BS. For instance, the role of the BS in the proposed network formation
algorithm is two-fold: (i)- to inform the RSs of their priorities during the pri-
oritization phase, and (ii)- to inform the RSs of the graphs reached during
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past iterations. For both cases, the BS can simply send this information
through a control channel. Due to the fact that the number of RSs within
the area of a single BS is relatively small, the signalling and overhead for
this information exchange between the BS and the RSs is minimal. With
regards to the priorities, if the environment is invariant (e.g. the RSs are
static), then the BS can inform the RSs of their priorities at the beginning
of all time without any need to resend this information. Beyond this, the
algorithm relies on distributed decisions taken by the RSs. Within every
iteration t, during its turn, each RS can engage in pairwise negotiations
with the surrounding RSs in order to find its best response, among the
set of feasible strategies and given the graphs that were reached in pre-
vious iterations. In this regard, the worst case complexity of finding a
suited partner for any RS i is O(M) where M is the total number of RSs.
In practice, the complexity is much smaller as the RSs do not negotiate
with the RSs that are connected to them, nor with the RSs that can lead
to a graph visited at previous iterations. In order to evaluate its utility
while searching for the best response, each RS can easily acquire the BER
and an estimate of the delay that each neighbor can provide. As a result,
each RS i can take an individual decision to select the link s∗i that can
maximize its utility. The signaling required for gathering this information
can be minimal as each RS can measure its current channel towards the
BS as well as the flowing traffic and feed this information back to any RS
that requests it during the pairwise negotiations. In dynamically chang-
ing environments, following the formation of the initial tree structure as
per Convention 3, the network formation process is repeated periodically
every θ allowing the RSs to take autonomous decisions to update the topol-
ogy adapting it to any environmental changes that occurred during θ such
as the deployment of MSs, mobility of the RSs and/or MSs, among oth-
ers. In fact, engaging in the network formation game periodically rather
than continuously reduces the signalling in the network, while allowing
the topology to adapt itself to environmental changes. As the period θ is
chosen to be smaller, the network formation game is played more often,
allowing a better adaptation to networks with rapidly changing environ-
ments at the expense of extra signalling and overhead. Note that, when
the RSs are mobile, and/or when new MSs are entering and leaving the
network, the MSs can also, periodically, change their serving RS, to adapt
to this change in the network.

357



Network Formation Games Among Relay Stations in Next Generation

Wireless Networks

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

RS 1, 4 MSs

RS 2, 5 MSs

RS 3, 3 MSs 

RS 4, 5 MSs

RS 5, 0 MSs

RS 6, 1 MS

RS 7, 0 MS

RS 8, 7 MSs

RS 9, 1 MS

RS 10, 4 MSs

Position in x (km)

P
os

iti
on

 in
 y

 (k
m

)

Base Station

Fig. G.2: Snapshot of a tree topology formed using the proposed network
algorithm with M = 10 RSs before (solid line) and after (dashed line) the
random deployment of 30 MSs (the positions of the MSs are not shown for
clarity of the figure).

4 Simulation Results and Analysis

For simulations, we consider a square area of 3 km × 3 km with the BS at
the center. We deploy the RSs and the MSs within this area. The transmit
power is set to 50 mW for all RSs and MSs, the noise level is −100 dBm,
and the bandwidth per RS is set to W = 100 kHz. For path loss, we set
the propagation loss to μ = 3. We consider a traffic of 64 kbps, divided into
packets of length B = 256 bits with an arrival rate of 250 packets/s. For
the HELLO packets, we set η0 = 1 packet/s with the same packet length
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of B = 256 bits. Unless stated otherwise, the tradeoff parameter is set
to β = 0.7 to imply services that are slightly delay tolerant. Further, the
parameter ε is selected to be equal to 1% of any RS’s current utility, i.e., an
RS accepts the formation of a link if its utility does not decrease by more
than 1% of its current value.

In Fig. G.2, we randomly deploy M = 10 RSs within the area of the
BS. The network starts with an initial star topology with all the RSs con-
nected directly to the BS. Prior to the deployment of MSs (in the presence
of HELLO packets only), the RSs engage in the proposed network forma-
tion algorithm and converge to the final Nash network structure shown by
the solid lines in Fig. G.2. Clearly, the figure shows that through their
distributed decisions the RSs select their preferred nearby partners, form-
ing the multi-hop tree structure. Furthermore, we deploy 30 randomly
located MSs in the area, and show how the RSs self-organize and adapt
the network’s topology to the incoming traffic through the dashed lines in
Fig. G.2. For instance, RS 9 improves its utility from 266.74 to 268.5 by dis-
connecting from RS 8 and connecting to RS 6 instead. This improvement
stems from the fact that, although connecting to RS 8 provides a better
BER for RS 9, in the presence of the MSs, choosing a shorter path, i.e.
through RS 6, the delay perceived by the traffic of RS 9 is reduced, hence,
improving the overall utility. Moreover, due to the delay generated from the
traffic received by RS 5 from the MSs connected to RS 4, RS 10 improves
its utility from 189.57 to 259.36 by disconnecting from RS 5 and connecting
directly to the BS. Similarly, in order to send its HELLO packet, RS 7 finds
it beneficial to replace its current link with the congested RS 1 with a direct
link to the BS. In brief, Fig. G.2 summarizes the operation of the proposed
adaptive network formation algorithm with and without the presence of
external traffic from MSs.

In Fig. G.3, we assess the effect of mobility on the network structure.
For this purpose, we consider the network of Fig. G.2 prior to the deploy-

ment of the MSs and we consider that RS 9 is moving horizontally in the
direction of the negative x-axis while the other RSs remain static. The vari-
ation in the utilities of the main concerned RSs during the mobility of RS 9

are shown in Fig. G.3. Once RS 9 starts its movement, its utility increases
since its distance to its serving RS, RS 8, decreases. Similarly, the utility
of RS 2, served by RS 9 also increases. As RS 9 moves around 0.2 km, it
finds it beneficial to replace its current link with RS 8 and connect to RS 6

instead. In this context, RS 6 would accept the incoming connection from
RS 9 since this acceptance does not affect its utility negatively as shown
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Fig. G.3: Adaptation of the network’s tree structure to mobility of the RSs
shown through the changes in the utility of RS 9 of Fig. G.2 as it moves on
the x-axis in the negative direction prior to any MS presence.

in Fig. G.3 at 0.2 km. As RS 9 pursues its mobility, its utility improves as
it gets closer to RS 6 while the utility of RS 2 decreases since RS 9 is dis-
tancing itself from it. After moving for a distance of 0.5 km, RS 9 becomes
quite close to the BS, and, thus, it maximizes its utility by disconnecting
from RS 6 and connecting directly to the BS. This action taken by RS 9

at 0.5 km also improves the utility of RS 2. Meanwhile, RS 9 continues its
movement and its utility as well as that of RS 2 start to drop as RS 9 dis-
tances itself from the BS. As soon as RS 9 moves for a total of 1.3 km, RS 2

decides to disconnect from RS 9 and connect directly to the BS since the
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Fig. G.4: Performance assessment of the proposed network formation algo-
rithm, in terms of average utility per MS, for a network having M = 10 RSs
as the number of MSs varies (average over random positions of MSs and
RSs).

direct transmission can provide a better utility at this point. In a nutshell,
by inspecting the results of Fig. G.3, we clearly illustrate how the RSs can
take distributed decisions that allow them to self-organize and adapt the
topology to mobility.

Fig. G.4 shows the average achieved utility per MS for a network with
M = 10 RSs as the number of MSs in the network increases. The re-
sults are averaged over random positions of the MSs and the RSs in the
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network. The performance of the proposed network formation algorithm
is compared against the direct transmission performance, i.e., the case
where no RSs exist in the network, as well as a nearest neighbor algo-
rithm whereby each node selects the closest partner to connect to. In this
figure, we can see that, as the number of MSs in the network increase,
the performance of both the proposed algorithm as well as that of the
nearest neighbor algorithm decrease. This result is due to the fact that,
as more MSs are present in the network, the delay from multi-hop tra-
nsmission due to the additional traffic increases, and, thus, the average
payoff per MS decreases. In contrast, in the case of no RSs, the perfor-
mance is unaffected by the increase in the number of MSs since no delay
exists in the network. We also note that, due to the increased traffic, the
performance of the nearest neighbor algorithm drops below that of the di-
rect transmission at around 20 MSs. Further, Fig. G.4 shows that, at all
network sizes, the proposed network formation algorithm presents a sig-
nificant advantage over both the nearest neighbor algorithm and the direct
transmission case. This performance advantage is of at least 21.5% com-
pared to the direct transmission case (for 50 MSs) and it reaches up to
45.6% improvement relative to the nearest neighbor algorithm at 50 MSs.

The performance of the proposed network formation algorithm is fur-
ther assessed in Fig. G.5, where we show the average utility per MS as
the number of RSs M in the network varies, for a network with 40 MSs.
Fig. G.5 shows that, as M increases, the performance of the proposed al-
gorithm as well as that of the nearest neighbor algorithm increase. This
is due to the fact that, as the number of RSs increase, the possibilities
of benefiting from cooperative transmission gains increase, and, thus, the
average utility per MS increase. In contrast, for the direct transmission
scheme, the performance is constant as M varies, since this scheme does
not depend on the number of RSs. Fig. G.5 demonstrates that, at all net-
work sizes, the proposed network formation algorithm presents a signifi-
cant performance gain reaching, respectively, up to 57.1% and 42.4% rela-
tive to the nearest neighbor algorithm and the direct transmission case.

In Fig. G.6, we show the average and the average maximum number of
hops in the resulting network structure as the number of RSs M in the
network increases for a network with 40 MSs (results are averaged over
random positions of MSs and RSs). The number of hops shown in this
figure represents the hops connecting RSs or the RSs to the BS, without
accounting for the MS-RS hop. Fig. G.6 shows that, as the number of RSs
M increases, both the average and the average maximum number of hops
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Fig. G.5: Performance assessment of the proposed network formation al-
gorithm, in terms of average utility per MS, for a network having 40 MSs
as the number of RSs M varies (average over random positions of MSs and
RSs).

in the tree structure increase. The average and the average maximum
number of hops vary, respectively, from 1.81 and 2.43 at M = 5 RSs, up
to around 3 and 4.75 at M = 25. Consequently, as per Fig. G.6, due to
the delay cost for multi-hop transmission, both the average and average
maximum number of hops increase very slowly with the network size M .
For instance, one can notice that, up to 20 additional RSs are needed in
order to increase the average number of hops of around 1 hops and the

363



Network Formation Games Among Relay Stations in Next Generation

Wireless Networks

5 10 15 20 25
1.5

2

2.5

3

3.5

4

4.5

5

Number of RSs (M)

N
um

be
r o

f h
op

s

Average maximum number of hops
Average number of hops

Fig. G.6: Average and average maximum number of hops in the final tree
structure for a network with 40 MSs vs. number of RSs M in the network
(average over random positions of MSs and RSs).

average maximum number of hops of only around 2 hops.

Fig. G.7 shows the average and the maximum number of iterations
needed till convergence of the algorithm to the initial network structure
prior to the deployment of any MSs, as the size of the network M increases.
This figure shows that, as the number of RSs increase, the total number
of iterations required for the convergence of the algorithm increases. This
result is due to the fact that, as M increases, the cooperation options
for every RS increase, and, thus, more actions are required prior to con-
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Fig. G.7: Average and maximum number of iterations till convergence vs.
number of RSs M in the network (average over random positions of RSs).

vergence. Fig. G.7 shows that the average and the maximum number of
iterations vary, respectively, from 1.05 and 2 at M = 5 RSs up to 2.82 and 10

at M = 25 RSs. Hence, this result demonstrates that, in average, the speed
of convergence of the proposed algorithm is quite reasonable even for rel-
atively large networks. Similar results can be seen for the convergence of
the algorithm when MSs are deployed or when the RSs are moving.

In Fig. G.8, we show the average and the average maximum number of
hops for a network with M = 10 RSs and 40 MSs as the tradeoff parameter
β varies (results are averaged over random positions of MSs and RSs).
Fig. G.8 shows that, as the tradeoff parameter increases, both the average
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Fig. G.8: Average and average maximum number of hops in the final tree
structure for a network with 10 RSs and 40 MSs as the tradeoff parameter
β varies (average over random positions of MSs and RSs).

and the average maximum number of hops in the tree structure increase.
For instance, the average and the average maximum number of hops vary,
respectively, from 1.14 and 1.75 at β = 0.1, up to around 2.8 and around 4 at
β = 0.9. The increase in the number of hops with β is due to the fact that,
as the network becomes more delay tolerant (larger β) the possibilities for
using multi-hop transmission among the RSs increases. In contrast, as
the network becomes more delay sensitive, i.e., for small β, the RSs tend
to self-organize into a tree structure with very small number of hops. For
instance, at β = 0.1, the average number of hops is quite close to 1, which
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Fig. G.9: Average total number of actions (taken by all RSs) per minute for
different RS speeds in networks with different sizes with 40 MSs.

implies that, for highly delay sensitive services, direct transmission from
the RSs to the BS, i.e., the star topology, provides, on the average, the best
architecture for communication.

In Fig. G.9, we show, over a period of 5 minutes, the average total num-
ber of actions taken by all RSs for various velocities of the RSs in a wireless
network with 40 MSs and different number of RSs. The proposed network
formation algorithm is repeated by the RSs, periodically, every θ = 30 sec-
onds, in order to provide self-adaptation to mobility. As the speed of the
RSs increases, the average total number of actions per minute increases
for both M = 10 RSs and M = 20 RSs. This result corroborates the fact
that, as more mobility occurs in the network, the chances of changes in the
network structure increase, and, thus, the RSs take more actions. Also,
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Fig. G.10: Evolution of the network tree structure over time as the RSs are
moving with a speed of 72 km/h over a period of 5 minutes for a network
with M = 10 RSs and 40 MSs.

Fig. G.9 shows that the case of M = 20 RSs yields an average total number
of actions significantly higher than the case of M = 10 RSs. The reason of
this difference is that, as the number of RSs M increases, the possibility
of finding new partners when the RSs move increases significantly, hence
yielding an increase in the topology variation as reflected by the average
total number of actions. In this regard, for M = 20 RSs, the average total
number of actions per minute varies from around 5.7 at 9 km/h to around
41 at 72 km/h while for M = 10 RSs, this variation is from 1.3 at 9 km/h to
around 12 at 72 km/h. In summary, Fig. G.9 demonstrates how, through
periodic runs of the proposed network formation algorithm, the RSs can
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adapt the topology through appropriate decisions.
Fig. G.10 shows how the tree structure in a network with M = 10 RSs,

moving at a speed of 72 km/h, evolves and self-adapts over time for a
period of 5 minutes. The proposed network formation algorithm is repeated
by the RSs, periodically, every θ = 30 seconds, in order to provide self-
adaptation to mobility. Fig. G.10 shows that, after 19 actions taken by the
RSs, the network starts with a tree structure with an average number of
2.6 hops in the tree at time t = 0. As time evolves, the RSs engage in the
proposed network formation algorithm, and, through adequate actions,
the tree structure is adapted to this environment change. For example,
after 2.5 minutes have elapsed, the tree structure has an average number
of 1.71 hops (after having 2.33 hops at 2 minutes), due to the occurrence of
a total of 7 actions by the RSs. Once all the 5 minutes have passed, the
network tree structure is finally made up of an average of 1.57 hops after a
total of 90 actions played by the RSs during the whole 5 minutes duration.

5 Conclusions

In this paper, we have introduced a novel approach for forming the tree
architecture that governs the uplink network structure of next generation
wireless systems such as LTE-Advanced or WiMAX 802.16j. For this pur-
pose, we formulated a network formation game among the RSs and we
introduced a cross-layer utility function that takes into account the gains
from cooperative transmission in terms of improved effective throughput
as well as the delay costs incurred by multi-hop transmission. To form the
tree structure, we devised a distributed myopic algorithm. Using the pro-
posed network formation algorithm, each RS can take an individual deci-
sion to optimize its utility by selecting a suited next-hop partner, given the
approval of this partner. We showed the convergence of the algorithm to a
Nash network structure and we discussed how, through periodic runs of
the algorithm, the RSs can adapt this structure to environmental changes
such as mobility or incoming traffic. Simulation results demonstrated that
the algorithm presents significant gains in terms of average achieved mo-
bile station utility which is at least 21.5% better than the case with no RSs
and reaches up to 45.6% improvement compared to a nearest neighbor al-
gorithm. The results also show that the average number of hops in the
tree does not exceed 3 even for a network with up to 25 RSs.
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