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Abstract

The mystery of dark matter (DM) has intrigued scientists for many decades. The type
of DM particles that has been studied the most is Weakly Interacting Massive Particles
(WIMPs). These particles are assumed to have been in thermal equilibrium with the
visible sector heat bath at early times, and experienced freeze-out when the expansion
rate of the universe became bigger than the interaction rate. However, the null result
from DM searches and the shrinking parameter space for WIMP models have made it
crucial to look at other models. A fascinating model to study is one that includes a
Feebly Interacting Massive Particle (FIMP). These particles are assumed to never be in
thermal equilibrium with the visible sector heat bath and are produced by the freeze-
in mechanism. They naturally evade experimental constraints while explaining the
observed relic density. Since FIMPs are never in thermal equilibrium with the visible
sector, any thermal effect on the FIMP abundance will have to be accounted for. This
is the main goal of this thesis. I consider the thermal effects coming from electroweak
symmetry breaking (EWSB), thermal contribution to the masses and the QCD phase
transition in the early universe for the scalar singlet model, where I include both higher
order correction to the Standard Model (SM) couplings and quantum statistical effects.
These effects result in an important correction to the DM relic abundance when the
dominant contribution does not arise from Higgs boson decays, which happens when
decays into scalar singlets are kinetically forbidden or if the reheating temperature
after inflation is much smaller than the Higgs boson mass. Freeze-in has also been
implemented in the FORTRAN package DarkSUSY together with the thermal effects
for the scalar singlet model.
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Chapter 1

Introduction

One of the biggest mysteries in science is Dark Matter (DM), the matter component
that makes up most of the matter in our universe. The reason DM is difficult to study
is because the only observations we have are due to its gravitational nature. However,
due to the advancement of cosmology in the last couple of decades, the Lambda cold
dark matter model (ΛCDM) has exhibited great success and there is now scientific
consensus that the dark matter paradigm is correct. The non-gravitational nature of
DM is still a mystery, but we know its abundance is roughly a factor five the size of the
visible matter abundance [1]. Models where the visible sector and DM are assumed to
have been in thermal equilibrium in the early universe have been thoroughly studied in
the last decades. The most prominent model is one that features Weakly Interacting
Massive Particles (WIMPs) [2]. WIMPs will typically have masses and couplings to
the Standard Model (SM) reminiscent to that of the weak scale, and the fact that this
will give the observed relic abundance is the celebrated WIMP miracle [3]. WIMPs will
decouple from the heat bath when the expansion rate of the universe becomes bigger
than the interaction rate between the WIMPs and the visible sector heat bath [4]. This
is the so-called freeze-out mechanism. A lot of work has gone into searches for WIMPs.
In direct detection, scattering of DM with a nucleus here on earth is looked for. In
indirect detection experiments one looks for annihilation products from DM collisions,
and at collider searches one tries to observe DM production. However, the null result
from these searches have made many researchers look at other models and production
mechanisms. A promising class of DM candidates is the Feebly Interacting Massive
Particles (FIMPs) [5]. These particles never reach thermal equilibrium with the visible
sector, because their coupling to the visible sector is much smaller than the couplings
WIMPs have. This would naturally explain the null result from DM searches, while the
observed DM abundance can be produced by the freeze-in mechanism [5]. Since the
coupling to the visible sector is very small, the DM abundance will solely be due to the
annihilation or decay of visible sector particles into DM. The annihilation of DM will
be negligible due to the smallness of the coupling. The fact that WIMPs must be in
thermal equilibrium with the visible heat bath, means that any thermal effects before
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decoupling will be washed away. For FIMPs, this is no longer the case. This means
that one has to properly account for the thermal effects due to the plasma physics
and events in the early universe before the FIMPs freeze-in, e.g. thermal masses,
electroweak symmetry breaking and the QCD phase transition. The main goal of this
work is to include such effects and apply them to an attractive DM model, namely the
scalar singlet model [6]. This model is one of the simplest extensions of the SM. It
is simply a new real scalar coupled to the SM through a four-point interaction with
the complex Higgs doublet. I will explore the abundance coming from the freeze-in
mechanism, where higher order effects, quantum statistical effects and thermal events
such as the electroweak and the QCD phase transition will be included. The second
goal is to implement freeze-in in the FORTRAN package DarkSUSY [7]. This will
be done by rewriting the Boltzmann-equation for freeze-in on a form that is suitable
for numerical implementation. This implementation will then be used to study the
different effects on the scalar singlet model.

Thesis overview

This thesis is divided into four parts. In the first part I will go through the background
physics relevant for the thesis. I start in chapter 2 with a short introduction to
cosmology, while in chapter 3 I review how thermodynamics is applied to an expanding
universe. This includes an introduction to equilibrium thermodynamics and the
Boltzmann equation.

In the second part I will focus on dark matter. I start by giving the most compelling
evidence we have for the existence of DM and the constraints this sets on the DM
particle(s). I then introduce some of the most popular DM candidates and their
properties. The most popular detection methods are presented together with their
current limits. The standard treatment of freeze-out is reviewed and in chapter 5
the freeze-in mechanism is presented. I will start by explaining how the freeze-in
mechanism works before presenting a non-standard way of calculating the relic density,
one that is better for numerical implementation. I will also include both relativistic
and quantum statistical effects.

In the third part I will start by reviewing how thermal effects are included,
specifically the thermal effects on the effective Higgs potential and the Higgs mass,
together with a discussion about phase transitions. I will then look at how higher order
effects can be included for models where annihilations into SM final states proceed via
the so-called Higgs portal. This includes a new and effective way of avoiding unitarity
violation when higher order corrections are included.

In the last part I will introduce the scalar singlet model and apply the formalism
I have introduced in the previous parts to it. I will specifically look at the cases where
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we either have a high reheating temperature or a low reheating temperature. I will
then in section 8.4 give a summary and discuss my results. Finally, the conclusions are
presented in chapter 9.

I have implemented numerical solutions to the freeze-in Boltzmann equation
together with the temperature- and higher order dependence to the scalar singlet
model into the widely used FORTRAN package DarkSUSY [7]. An introduction to
DarkSUSY and the routines I have implemented is given in appendix A. In appendix
B I show that the special case when we have an s-channel resonance will in fact give
the same relic abundance as when we have on-shell decay when Maxwell-Boltzmann
(MB) distributions are used for the standard model particles. The main result in
this work will be in a manuscript currently being prepared for submission to the
Journal of Cosmology and Astroparticle Physics (JCAP), in collaboration with Torsten
Bringmann, Felix Kahlhoefer (RWTH Aachen) and Saniya Heeba (RWTH Aachen).
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Background Physics
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Chapter 2

Cosmology

2.1 Friedmann-Robertson-Walker universe

In this chapter I will give a short introduction to the aspects of cosmology needed in
this thesis, for a more thorough review covering the content in this chapter see chapter
8 of Sean Carroll’s book Spacetime and geometry [8] or chapter 2 of E. Kolb & M.
Turner’s The Early Universe [4].

The cornerstone of cosmology is the cosmological principle, which states that the
matter and radiation distribution of the universe is isotropic and homogeneous at scales
corresponding to the size of the observable universe. Isotropic simply means that at a
point, the distribution looks the same in all directions and homogeneous means that
the metric is the same at all points in our universe. The universe is obviously not
isotropic at smaller scales such as solar systems or galaxies, but at scales of order
100 Mpc or larger it is [4]. I want to stress that we cannot check if the universe is
homogeneous since we cannot travel to all places of the universe, but the observable
universe looks homogeneous from our vantage point. The fact that a 3D space is
isotropic and homogeneous is the same as saying that it is maximally symmetric. The
metric that describes a maximally symmetric space is the Friedman-Robertson-
Walker (FRW) metric

ds2 = dt2 − a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (2.1)

where a(t) is called the scale factor, while r, θ and φ are comoving coordinates and
dΩ2 = dθ2 + sin2 θdφ2. The factor k is chosen to be 0, 1 or -1, depending on whether
the space is flat, has constant positive or constant negative curvature, respectively.

The Planck 2018 [1] observations are consistent with a flat universe, i.e. k = 0.
The instantaneous physical distance dP , between us (r = 0) and some galaxy at a
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radial coordinate r, is then given by [8]

dP (t) = a(t)r . (2.2)

I will treat a(t) to be dimensionless, where the scale factor today t = t0 is a0 ≡ a(t0) =
1. From now on, if a parameter has subscript 0, it means the present value. Assuming
that the galaxy’s peculiar velocity is negligible (ṙ = 0), the instantaneous velocity is
then given by

vP = HdP , (2.3)

where I have used that ṙ ≡ dr
dt

and H ≡ ȧ
a
is the Hubble rate. It is important to note

that dP is not observable since all observations we do are of our past light cone. We can
use that a measurable distance to the object and the instantaneous physical distance
coincide within reasonable errors if the redshift of some stellar object is very small. An
example of a measurable distance is the luminosity distance, dL, which is defined
by

d2
L =

L

4πF
, (2.4)

where L is the object’s absolute luminosity and F is the flux measured by the observer.
Evaluating Eq.(2.3) today we get Hubble’s Law

vP = H0dP , (2.5)

where H0 ≡ H(t0) is the Hubble constant, which by today’s best measurements1 is
H0 = (67.27 ± 0.60) km s−1Mpc−1 [1]. This is an important parameter which usually
is defined in terms of the dimensionless parameter h, where

H0 = 100h km s−1Mpc−1 . (2.6)

Stress-energy tensor

The fact that space is homogeneous and isotropic poses constraints on which stress-
energy tensors we can use. I will use the stress-energy for a perfect fluid which is given
by two parameters, the energy density ρ(t) and the pressure p(t)

Tµν = (ρ+ p)UµUν − pgµν , (2.7)

where Uµ is the four-velocity to the reference frame with respect to the comoving
coordinates to the fluid. In the comoving frame the fluid is at rest. This is due to the
cosmological principle since the frame where the fluid is isotropic is the same frame
as the frame where the metric is isotropic. The four-velocity in the comoving frame is
thus given by

Uµ = (1, 0, 0, 0) , (2.8)
1This value is inferred from the cosmic microwave background. There is a non-zero discrepancy

between this value and the value of H0 found from local experiments using Eq.(2.5).
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which means that the stress-energy tensor in the comoving frame becomes

T µν = diag(−ρ, p, p, p) . (2.9)

An equation describing the relationship between ρ and p is called an equation of
state. I choose the relevant equation of state, which is

p = wρ , (2.10)

where w is constant in time. Since ∇µT
µν = 0, we get that

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (2.11)

which gives
ρ = ρ0a

−3(1+w) . (2.12)

The values w can take is dependent on which energy conditions one chooses the fluid
to abide. There are three values of w that are of particular interest, they correspond
to fluids describing dust (noninteracting and non-relativistic matter), radiation and
vacuum energy.

For dust there is no pressure, i.e. p = 0. This means that ρ = ρ0a
−3, which is

expected since a−3 is the factor for diluting the number density in three dimensions.
For radiation we know from kinetic gas theory that p = 1

3
ρ, thus from Eq.(2.12) we

get that ρ = ρ0a
−4, which also is expected since we get an extra factor of a due to red

shift coming from the expansion of the universe. For the vacuum energy we know that
the vacuum energy-momentum tensor is

T vacuum
µν = −Λgµν

8πG
, (2.13)

which means that p = −ρ = Λ
8πG

.

Friedmann equations

In order to find the time dependence of a(t), we need to apply the Einstein field
equations to the FRW-metric. These equations are the Friedmann equations(

ȧ

a

)2

=
8πG

3
ρ− k

a2
(2.14)

and
ä

a
= −4πG

3
(ρ+ 3p) . (2.15)

We can write the equations in a more convenient form by introducing the useful
parameter

Ω ≡ 8πG

3H2
ρ ≡ ρ

ρcrit
, (2.16)
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which is called the density parameter, where ρcrit is the critical density. Eq.(2.14)
will then be

Ω− 1 =
k

H2a2
≡ −Ωk

a2
. (2.17)

We can now do the following characterizations

ρ < ρcrit ⇔ Ω < 1 ⇔ k < 0 ⇔ Open
ρ = ρcrit ⇔ Ω = 1 ⇔ k = 0 ⇔ Flat
ρ > ρcrit ⇔ Ω > 1 ⇔ k > 0 ⇔ Closed

This means that if we experimentally determine the density parameter Ω, we can find
out which geometry our universe has. I have implicitly used that the energy density
ρ is the sum of all the energy density contributions in our universe, which there are
multiple of. From baryons we have the contribution Ωb, from cold dark matter (CDM)
we have the contribution Ωc, from the vacuum energy we have the contribution ΩΛ and
from the curvature we have the contribution ΩK . Summing over all of these energy
density contributions makes Eq.(2.14) take an even simpler form∑

i

Ωi = 1 . (2.18)

Using Eq.(2.12) we rewrite Eq.(2.18) using the currently observed energy densities

1 =
H2

0

H2

∑
i

Ωi(t0)

a3(1+wi)
. (2.19)

Using that our universe is more or less flat makes the time dependence of a(t) a lot
simpler to calculate. Assuming we have a dominant energy density contribution with
energy density ρ ∝ a−n, means we only have to look at the equation(

ȧ

a

)2

∝ a−n , (2.20)

which has the solution
a(t) ∝ t2/n . (2.21)

If ρ ∝ const, then the solution is

a(t) = eHt . (2.22)

2.2 The cosmological concordance model

The best model of our universe is the ΛCDM model. This model is composed of CDM,
baryons, radiation and a cosmological constant Λ. The Friedmann equation for ΛCDM
is therefore

H2

H2
0

= ΩΛ +
Ωc

a3
+

Ωb

a3
+

Ωr

a4
. (2.23)
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Table 2.1: Density parameters for ΛCDM model from Table 2 in Planck 2018 results.
VI. Cosmological parameters [1] at 68% confidence level.

Parameter Value

Ωbh
2 0.02237 ± 0.00015

Ωch
2 0.1200 ± 0.0012

ΩΛ 0.6847 ± 0.0073

ΩK −0.011+0.013
−0.012

The current values of the density parameters are found in Table 2.1. We see that today,
69% of the energy density in our universe is made up of the cosmological constant (often
referred to as dark energy), 26% is made up of CDM and 5% baryons, while curvature
and radiation is negligible. We can calculate the age of the universe using that

da

dt

1

a
= H ⇒ dt =

da

aH
=

da

aH0

√
ΩΛ + Ωc

a3 + Ωb
a3 + Ωr

a4

. (2.24)

Integrating from t = 0 to today and using the values in Table 2.1 gives us that the age
of the universe is

t0 =
1

H0

∫ 1

0

da
a√

ΩΛa4 + Ωma+ Ωr + ΩKa2
' 13.797± 0.023 Gyr, (2.25)

where the matter contribution (CDM and baryons) is Ωm = Ωc + Ωb.
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Chapter 3

Thermodynamics in an expanding
universe

In this chapter I will review the physics needed to describe particles in a thermal bath
which exists in an expanding universe. For a more comprehensive review of the topic I
will cover here, see chapter 3 and 5 of E. Kolb & M. Turner’s The Early Universe [4].
I will introduce concepts such as equilibrium number and energy densities, and I will
show their relativistic and non-relativistic limits. I will show how entropy is applied
to cosmology and lastly, I will introduce the Boltzmann equation.

3.1 Thermal equilibrium

For most of the universe’s early history, its constituents were in kinetic or local thermal
equilibrium. The phase-space distribution for such particle species is given by Fermi-
Dirac (FD) distribution if the species is fermionic; or Bose-Einstein (BE) distribution
if the species is bosonic

fi(~p) = [exp((Ei − µi)/T )± 1]−1 , (3.1)

where +1 gives the Fermi-Dirac distribution and −1 gives the Bose-Einstein
distribution. ~p is the three momentum, the energy is Ei =

√
~p2 +m2

i , where mi is
the mass of the species i, µi is the chemical-potential and T is the temperature. If
exp((Ei − µi)/T )� 1 we can use the Maxwell-Boltzmann distribution

fMB
i ≡ exp[−(Ei − µi)/T ] . (3.2)

It is worth noting that we are using physical momenta and that none of this section
takes into account the expansion of the universe, in fact all of this also holds in
Minkowski space. This is because we are considering local equilibrium. Given a
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distribution function we can, independently of thermal equilibrium, calculate the
number density n, energy density ρ and pressure p of a weakly interacting gas composed
of particles with gi internal degrees of freedom

ni = gi

∫
d3p

(2π)3
fi(~p) , (3.3)

ρi = gi

∫
d3p

(2π)3
Ei(~p)fi(~p) , (3.4)

pi = gi

∫
d3p

(2π)3

|~p|2
3Ei

fi(~p) . (3.5)

Furthermore, a species i, interacting with species j, k and l through the interaction

i+ j ↔ k + l , (3.6)

is in chemical equilibrium when

µi + µj = µk + µl . (3.7)

If we can describe the gas using the Maxwell-Boltzmann distribution, chemical
equilibrium means physically that the number densities hold the following equality

ninj
nknl

= const. (3.8)

Relativistic and non-relativistic limits

The relativistic and non-relativistic limits of the number density, energy density and
pressure are of particular interest, since more often than not, the species we will look
at is either relativistic or non-relativistic. We start by changing variable from p to E
using E2 = p2 +m2

n =
g

2π2

∫ ∞
m

dE
(E2 −m2)1/2

exp[(E − µ)/T ]± 1
E , (3.9)

ρ =
g

2π2

∫ ∞
m

dE
(E2 −m2)1/2

exp[(E − µ)/T ]± 1
E2 , (3.10)

p =
g

2π2

∫ ∞
m

dE
(E2 −m2)3/2

exp[(E − µ)/T ]± 1
. (3.11)

If T � m,µ, the species will be relativistic. Performing the integrals (3.9) - (3.11), as
done in [9], gives us

n =

{
(ζ(3)/π2)gT 3 Bosonic ,
(3/4)(ζ(3)/π2)gT 3 Fermionic ,

(3.12)
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ρ =

{
(π2/30)gT 4 Bosonic ,
(7/8)(π2/30)gT 4 Fermionic ,

(3.13)

p = ρ/3 , (3.14)

where ζ(3) ' 1.20206 is the Riemann zeta function evaluated at 3. The non-relativistic
limit (m� T ) gives us

n = g

(
mT

2π

)3/2

exp[−(m− µ)/T ] , (3.15)

ρ = mn , (3.16)

p = nT � ρ . (3.17)

We can see that the values for a non-relativistic species will be exponentially smaller
than those of a relativistic species. It is therefore convenient and a good approximation
to set the energy density of a collection of species to be

ρ(T ) =
π2

30
geffT

4 , (3.18)

where T is the temperature of the heat bath and geff is the total number of effective
relativistic degrees of freedom, defined by

geff =
∑

i=Bosons

gi

(
Ti
T

)4

+
7

8

∑
i=Fermions

gi

(
Ti
T

)4

, (3.19)

where we see the factor 7/8 comes from Eq.(3.13), which takes the difference between
Fermi-Dirac- and Bose-Einstein statistics into consideration. Ti is the temperature of
species i, which differ from T if the species has decoupled. The Hubble rate during
radiation dominated era can now be written in terms of the temperature of the heath
bath using the Friedmann equation, assuming we sum over all the particles species

H(T ) =
1

mP

√
8π

3
ρ(T ) =

1

mP

√
4

45
π3geffT

2 ' √geff
1.66T 2

mP

, (3.20)

where mP = 1.220× 1019 GeV is the Planck mass.

Entropy

A particle species will be in thermal equilibrium and thus a constituent of the heat
bath if the interaction rate of particles with the heat bath is sufficiently large (Γ & H).
If that is the case, we can apply the first- and second law of thermodynamics to a
comoving volume V = a3 to get

d(ρv) = TdS − pdV , (3.21)
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where ρ and p are the energy density and pressure of the heat bath in thermal
equilibrium. Using the fact that

∂2S

∂T∂V
=

∂2S

∂V ∂T
, (3.22)

we relate the energy density and the pressure by

dp =
ρ+ p

T
dT . (3.23)

Using Eq.(3.23) in Eq.(3.21) we get

dS = d

[
(ρ+ p)V

T
+ const

]
, (3.24)

which means that the entropy per comoving volume (up to an additive constant) is
given by

S =
(ρ+ p)a3

T
. (3.25)

This means that we can use Eq.(3.23) to get the rate at which the entropy changes

dS

dt
=

1

T

[(
d

dt
(a3ρ) + p

d

dt
a3

)
+
dp

dT
a3dT

dt
− ρ+ p

T
a3dT

dt

]
= 0 , (3.26)

since the term inside the first parenthesis is zero due to ∇µT
µν = 0. This means that

entropy per comoving volume is conserved in thermal equilibrium. The entropy density

s =
S

V
=
ρ+ p

T
, (3.27)

is a useful quantity. For T � m, where relativistic species dominate, this becomes

s(T ) =
2π2

45
heffT

3 , (3.28)

where

heff ≡
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑
i=fermions

gi

(
Ti
T

)3

, (3.29)

where we again see the factor 7/8 coming from Eq.(3.13) and Eq.(3.14). This can
be used to relate the temperature to the scale-factor when the universe expands
adiabatically, meaning the comoving entropy density is conserved in time

d

dt
(sa3) = 0⇒ S = heffT

3a3 = const. (3.30)

which means
T ∝ (heff)−1/3a−1 . (3.31)
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We can now relate the time to the temperature of the heath bath using Eq.(3.30)
(which amounts to ds/dt = −3Hs) and Eq.(3.28)

ds

dt
=
ds

dT

dT

dt
=

(
1

T
+

1

3heff

dheff

dT

)
3s
dT

dt
, (3.32)

which means
dT

dt
= −H(T )T , (3.33)

where
H(T ) ≡ H

1 + 1
3
T
heff

dheff

dT

. (3.34)

3.2 Boltzmann Equation

There have been multiple important events where some constituents of the visible
sector heat bath have departed from thermal equilibrium. Most notably, neutrino
decoupling, primordial nucleosynthesis and decoupling of the background radiation,
thereby creating the cosmic microwave background (CMB). There are also some
important hypothesized events such as inflation, baryogenesis and decoupling of dark
matter (DM). These events can be seen in the evolution of the number densities of
the particles in the heath bath. In order to study the evolution of a particle species
distribution function and thus its number density, I use the Boltzmann equation, which
in its most general form can be written as

L̂[f ] = C[f ] , (3.35)

where L̂ is the covariant Liouville operator and C is the collision operator. The
Liouville operator is simply given by the variation of f with respect to an affine
parameter λ along a geodesic

L̂[f ] =
dxi

dλ

∂f

∂xi
+
dpi

dλ

∂f

∂pi
= pi

∂f

∂xi
− Γiρσp

ρpσ
∂f

∂pi
, (3.36)

where I have chosen that the affine parameter is the eigentime in the last equality
(i.e. λ = τ). The sum is only over spatial momenta pi since particles are considered
on-shell, and thus p0 is not an independent variable. The sum is also only over spatial
coordinated xi because I will not consider a system where f has an explicit time-
dependence. For the FRW-metric, the Liouville operator becomes

L̂[f ] = E(~p) (∂t −H~p · ∇~p) f(~p) . (3.37)

In order to get the evolution of the number density one has to integrate over the
momentum space. This means that by use of integration by parts, the Boltzmann
equation for the number density can be written in the following form

ṅ+ 3Hn = g

∫
C[f ]

d3p

(2π)3E
. (3.38)
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Furthermore, it is useful to write the write the Boltzmann equation in terms of the
dimensionless variable

Y ≡ n

s
, (3.39)

which is the number density per comoving volume. By taking the derivative of Y with
respect to time, one finds that

Ẏ s = ṅ+ 3Hn . (3.40)

We can now see that the left hand side of Eq.(3.46) tells us about the rate at which
the comoving number density changes, since the term 3Hn is the contribution from
the expansion of the universe. The right-hand side tells us about the contribution to
the change of the comoving number density by creations and annihilations of ψ. It can
also be useful to use the dimensionless variable

x ≡ m

T
, (3.41)

as the independent variable since the interaction term will usually depend on the
temperature rather than time. This means that comoving number density changes
with respect to x as

dY

dx
=
dY

dt

dt

dT

dT

dx
=

1

H(T )

Ẏ

x
. (3.42)

Collision term

The collision term can be calculated using quantum field theory. For a general process
of incoming particles I = {a, b, ...} and outgoing particles O = {ψ, k, l, ...}, the collision
term for one of the particles species, let’s say ψ, is given by

gψ

∫
C[f ]

d3pψ
(2π)3Eψ

=

∫
dΠadΠb...dΠψdΠkdΠl... (3.43)

× [fafb...(1± fψ)(1± fk)...|M|2I→J
− fψfk...(1± fa)(1± fb)...|M|2J→I ]
× (2π)4δ4(

∑
i∈I

pi −
∑
j∈O

pj) ,

where the Lorentz invariant measure is

dΠi =
d3pi

(2π)32Ei
. (3.44)

The factors (1±fi) are quantum-statistical factors where (+) applies to bosons and are
called Bose-enhancement factors, while (-) applies to fermions and are called Fermi-
blocking factors. |M|2 is the matrix element squared summed (not averaged) over
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the initial and final internal degrees of freedom. CP invariance is often assumed, and
it implies that

|M|2I→J = |M|2J→I = |M|2 . (3.45)

In instances where quantum statistics are negligible, e.g. when the particles are non-
relativistic, one uses Maxwell-Boltzmann distribution, i.e. we can use Eq.(3.2) where
Ei is the energy in the rest frame of the gas and use that the Fermi-blocking/Bose-
enhancement factors equal unity 1 ± f ' 1. In the cases where quantum statistics
cannot be neglected, e.g. freeze-in, one has to use the Bose-Einstein distribution
for bosons and the Fermi-Dirac distribution for fermions, given by Eq.(3.1), as well
as including the Fermi-blocking/Bose-enhancement factors. The Boltzmann equation
takes the following form when we assume that the particles are described by Maxwell-
Boltzmann distributions

ṅψ + 3Hnψ =

∫
dΠadΠb...dΠψdΠkdΠl...[fafb...− fψfkfl...](2π)4δ4(

∑
i∈I

pi −
∑
j∈O

pj)|M|2 ,

(3.46)

which is absolutely crucial in DM calculations, as we will see in section 4.4. This form
of the Boltzmann equation will be used when discussing freeze-out since the Maxwell-
Boltzmann approximation holds when the particles are non-relativistic. In the case of
freeze-in, this is no longer always the case and as we will see in chapter 8, Eq.(3.46)
will not give the correct result. Instead we have to revert to including the quantum-
statistical factors and using the Fermi-Dirac and Bose-Einstein distributions. I will
come back to this in section 5.2 with a much more detailed discussion.
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Part II

Dark Matter
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Chapter 4

Dark matter: Evidence, detection and
Freeze-out

One of the biggest mysteries in modern physics is dark matter. The matter constituent
that accounts for roughly 85% of the known matter in the universe. However, the only
evidence we have of it is through its gravitational pull. The Planck collaboration has
through its study of the CMB found that the DM relic abundance is Ωch

2 = 0.12. We
know very little about its non-gravitational properties, but this does not mean that we
do not have any candidates or production mechanisms, in fact we have many.

This is what I will introduce in this chapter. I start with a brief review of the
evidence we have for DM and what constraints it sets on its particle(s). I will then in
section 4.2, give some examples of dark matter candidates that are well studied. In
section 4.3, I present the various detection methods used in the hunt for dark matter:
direct detection, indirect detection and collider searches, together with the present
constraints. I also present a brief review of the effects of self-interacting dark matter
and the small-scale problems of ΛCDM. Finally, in section 4.4, I present the most
popular dark matter production mechanism, namely the Freeze-out mechanism.

4.1 Evidence and constraints

We can infer the existence of DM on scales from Dwarf galaxies to cosmological scales,
but there is very limited knowledge about the properties of the dark matter particle(s).
The first observation of dark matter was in 1933 by Fritz Zwicky when he studied the
Coma Cluster. He found that the mass needed to explain the radial velocity dispersion
of stars was much more than the observed mass [10]. This led him to coin the excess
matter as dunkle Materie ("Dark Matter"). The same discrepancy was also found in
other clusters [11]. The dark matter paradigm has only been strengthened by evidence
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Figure 4.1: Schematic drawing of the expected rotation curve of a typical
spiral galaxy where A is the curve predicted from the observed matter, the
observed rotation curve is B which can be explained by DM. Image taken from
wikimedia.org/wiki/File:GalacticRotation2.svg.

coming from:

• Rotation curves of spiral galaxies: The work of Vera Rubin and Kent Ford,
which was done decades after Zwicky’s first observation, found one of the most
striking evidence of DM. They looked at the rotation curves for spiral galaxies
[12, 13]. This is the orbital velocities of stars as a function of their radial velocity.
The orbital velocity of a star at a distance r from the centre of a galaxy using
Newtonian gravity is given by

vc(r) =

√
GM(r)

r
, (4.1)

where M(r) is the enclosed mass. This means that at distances larger than
the galactic disc, which is where the majority of visible mass is, the orbital
velocity should fall as vc ∝ r−

1
2 . This is not what is observed, instead they

found that the velocity of the stars in the region outside of the galactic disc
stayed constant. This indicates that the mass must increase outside of the
galactic disc, which means that some other matter component is needed. This is
illustrated in figure 4.1. It is worth noting that modified theories of gravity can
also explain this [14]. However, modified models of gravity cannot explain all the
observation with a single number. This is one of the strengths of the ΛCDM.
Nowadays, rotation curves are considered more as historical evidence because the
cosmological evidence is much cleaner and more robust.
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Figure 4.2: CMB Power spectra as measured by Planck 2018 results.VI. Cosmological
parameters. Figure taken from [1].

• Anisotropies in the Cosmic microwave background (CMB): The CMB
was accidentally discovered by Arno Penzias and Robert Wilson in 1964 [15] as
they worked with the Holmdel Horn Antenna, which earned them the 1978 Nobel
prize in physics. The relic radiation is one of the most important observations in
cosmology, and an important source of evidence for dark matter. The structure
of the CMB power spectra, see figure 4.2, is dependent on the total matter
to radiation ratio: the pressure due to the photons pushes baryonic matter
out of gravitational wells, which erases anisotropies in the spectra, whereas
the gravitational effect from baryons and DM will increase the anisotropies.
This results in acoustic oscillations, where the oscillations are dependent on the
matter content of the universe, thus dependent on the DM density. It is these
anisotropies that the famous Wilkinson Microwave Anisotropy Probe (WMAP)
[16] and Planck observatory [1] studied. They confirmed that the universe has
a 26% content of dark matter, and the current quoted value for the DM relic
density is given by the Planck collaboration, which is Ωch

2 = 0.1200± 0.0012.

• Gravitational lensing: From general relativity we know that any matter
distribution bends light along its path. A distribution of matter which bends
the light coming from a distant source to an observer is called a gravitational
lens. When the distortion is easily visible, e.g. Einstein rings, we call the lensing
strong lensing. The lensing is much smaller in the case of dark matter, which
is why we call this lensing weak lensing. The only way this can be detected, is
by using statistical methods to analyse a large number of sources. The way the
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Figure 4.3: Composite image of the Bullet cluster where the background image
shows the visible spectrum of light stemming from the Magellan and Hubble Space
Telescope images. The pink overlay shows the X-ray emission of the colliding clusters,
which was recorded by the Chandra Telescope. The blue overlay shows the mass
distribution of the clusters calculated from gravitational lens effects. Image taken
from chandra.harvard.edu.

lensing shows up is in a coherent weak distortion pattern on the faint and distant
galaxies. A typical galaxy cluster usually has a virial region which covers 103

galaxies [17]. The intrinsic ellipticities of individual galaxies cannot be inferred,
but by looking at a few galaxies one should find that the intrinsic ellipticities
should average to zero. This means that the observed ellipticity is caused by the
gravitational lensing, which results in a shear that is used to reconstruct the mass
distribution, particularly the dark matter distribution. This has been done for
the Bullet cluster (1E0657-558) by D. Clowe et al. [18] which is shown in figure
4.3. This cluster was formed by the collision of two large clusters of galaxies. The
pink region shows hot gas which contains most of the baryonic matter, while the
blue region shows where one finds most matter due to gravitational lensing. From
this observation we can see that most of the matter in the cluster is dark. Another
observation from this is that dark matter cannot interact strongly with itself. The
baryonic matter is slowed down by drag; this we can see does not happen with
the DM since the blue areas are beyond the pink areas. Finally, this evidence
cannot be explained by modified theories of gravity if hot gas is assumed to be
the most massive component in the clusters; dark matter is required.

• Structure formation in the early universe: One of the strongest evidences
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for the existence of cold dark matter comes from the fact that large scale structure
formation has happened. Since dark matter only interacts through gravity, it
will collapse into complex networks of halos a lot earlier than ordinary matter
will. This is because the pressure from interactions delays structure formation
in ordinary matter, which means DM has to be non-baryonic. It is important
that dark matter is non-relativistic (cold), because if it was relativistic, such as
the case for neutrinos, they will not collapse into halos. If the dark matter halos
did not exist, we would have that the epoch of galaxy formation would occur
later than is observed [19]. Furthermore, N-body simulations using cold DM,
such as M. Boylan-Kolchin et al. with the Millennium-II [20], appear to agree
with observations. They find the well-known cosmic web of filaments and voids,
which is essential in the formation of galaxy groups, clusters, and superclusters.
However, they find a higher abundance of small halos than is observed, this is
the well-known missing satellite problem, which I will discuss in section 4.3.4.

Even though there is, as we have seen, a lot of evidence and knowledge about the
gravitational effects of DM, we still haven’t found any definite evidence coming from
detection experiments; this will be discussed in section 4.3. From the evidence we
have and from knowledge of cosmological processes we have some strong constraints
on its properties. We know it is some long lived non-baryonic matter component,
since if it was baryonic, it would not collapse into halos fast enough to describe the
observed structure of the universe. Its abundance is about five times as large as the
abundance of ordinary matter. The best measurement of the relic density was done
by the Planck collaboration, they found the abundance to the staggering accuracy
Ωch

2 = 0.1200±0.0012 [1]. We know that it cannot be luminous, which means that its
coupling to Uem and SU(3)c must be extremely small. It must also be cold to account
for structure formation in the early universe. There are many hypothesized particles
that have all these features, I will now outline some of them.

4.2 Dark matter candidates

Even though we have no knowledge about what particle(s) DM is, this has not stopped
physicists from theorising what the particle(s) can be. For a particle species to be
a good DM candidate, it has to fit the constraints set on the features of DM by
observations. A good way to check if a particle species is a good candidate is to apply
the 10-point test presented in Ref. [21], which tells us that a particle can be considered
a good DM candidate if it satisfies the following ten points:

1. It gives the appropriate relic density.

2. It is cold.
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3. It is neutral.

4. It is consistent with Big Bang nucleosynthesis (BBN).

5. It leaves stellar evolution unchanged.

6. It is compatible with constraints on self-interactions.

7. It is consistent with direct DM searches.

8. It is compatible with gamma-ray constraints.

9. It is compatible with other astrophysical bounds.

10. It can be probed experimentally.

I will now discuss some candidates that satisfy these ten points.

The Axion [22] is one of the prime candidates that satisfies these points. It was
hypothesized in 1977 to solve the strong CP problem in QCD, which it does by the
Peccei–Quinn mechanism. If its mass is above me/1011 where me is the electron mass,
then the misalignment mechanism can generate a population of cold axions which can
account for the observed dark matter [23, 24].

Another dark matter candidate is the sterile neutrino [25]. The SM neutrinos
are in principle a very natural DM candidate, but due to their low mass and coupling to
the other particles, they cannot account for the observed dark matter. Sterile neutrinos
on the other hand can [26]. They are also well motivated, by the fact that all other
fermions have been observed with both left and right handed chirality, and they would
provide a very simple explanation for the low masses of the SM neutrinos and the
neutrino oscillations via the seesaw mechanism.

Supersymmetric particles such as the neutralinos and the gravitino are also viable
DM candidates. The lightest neutralino as the lightest supersymmetric particle (LSP)
in the Minimal Supersymmetric Standard Model (MSSM) assuming R-parity, is one
of the most studied DM candidates; it is what is called a weakly interacting massive
particle (WIMP) [27]. I will explain further down how WIMPs are DM candidates.
The gravitino, which is the supersymmetric partner to the graviton in supergravity
theories, can also be a viable DM candidate if certain conditions hold, it is what
is called a Feebly Interacting Massive Particle (FIMP), which also will be explained
further down. For constraints on light gravitinos see Ref. [28] and for a minimal model
of gravitino DM see Ref. [29].

A viable DM candidate that is not some form of elementary particle is primordial
black holes. They may have been produced by various mechanisms during the early
universe. Due to Hawking radiation we know that they have to have been bigger than
1015 g. For a review of primordial black holes as dark matter see Ref. [30].
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WIMPs such as neutralinos, which are believed to have couplings and masses that
are reminiscent to that of the weak scale, have been by far the most popular DM
candidates. The fact that a WIMP with an electroweak mass and coupling gives the
correct relic abundance is the celebrated WIMP miracle. It is worth noting that by
increasing the mass and decreasing the coupling one can obtain the correct abundance
as well. It is believed that WIMPs have been thermally created in the early universe
and freeze out when they become non-relativistic, this mechanism will be explained in
section 4.4.

The last candidate I will discuss is FIMPs. They have such feeble couplings that,
unlike WIMPs, they were never in thermal equilibrium with the visible sector. The DM
abundance will then be generated by the freeze-in mechanism. This will be discussed
in section 5. Examples of other FIMP candidates are a scalar or a vector particle with
couplings in the range O(10−7) or less, depending on its mass [31], the gravitino and
sterile neutrinos, which have become a popular FIMP candidate since the Dodelson-
Widrow mechanism [32] has been ruled out as the production process [33, 34].

4.3 Detection methods

To test for non-gravitational properties of DM, we have to utilize different search
avenues. Some detection methods that are used are shown in figure 4.4. Direct
detection looks at, for instance, the scattering of DM with a nucleus here on earth.
Indirect detection looks at the decay/annihilation products coming from areas with
high density of DM. While collider searches, such as at the LHC, search for either
missing transverse energies or measure decay widths of particles that could couple
to DM. A rather recent addition to these search avenues is to look at the effects of
self-interactions [35]. I will outline these search avenues below.

4.3.1 Direct detection

The DM flux on the earth is of the order 105 (100 GeV/mχ) cm−2 s−1 [37], if the Milky
Way’s DM halo is composed of WIMPs. Even though the coupling between the SM and
WIMP is small, the size of the flux means that there will be a potentially measurable
number of WIMPs scattering off nuclei, which subsequently translates to detection of
light, charge, or heat, produced from the collision. The big problem one faces with
this method is the fact that the energies deposited at each collision and the interaction
rate will be very small. This means that one must be very wary of the background
radiation. Therefore, the experiments are conducted underground, usually in mines or
tunnels in mountains to shield from cosmic rays. What we want to measure is the rate
of nuclear recoil events, or rather the differential recoil rate which often is expressed in
units of events/(unit mass of detector)/(keV of recoil energy)/day, usually called the
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Figure 4.4: Schematic illustration of some of the detection methods used to look for
dark matter. Figure taken from [36].

differential rate unit (dru) [7]

dR

dER
=
∑
T

CT
ρ0
χ

mTmχ

∫
v>vmin

dσχT
dER

f(v, t)

v
d3v , (4.2)

where ER is the recoil energy. The sum runs over each target nuclide in the detector,
CT is the mass fraction of a nuclear species T in the detector, hence the number of
targets T per unit mass of the detector is CT/mT . v is the DM velocity relative
to the detector and v = |v|. The local DM density is ρχ0 , and f(v, t) is the three-
dimensional DM velocity distribution with respect to Earth. These quantities depend
on which dark halo model is used. vmin =

√
mTER/2µ2

χT is the minimum velocity
a DM particle must have in order to give to a target T a recoil energy ER, where
µχT = mχmT/(mχ+mT ) is the reduced DM–target mass. Lastly, dσχT

dER
is the differential

scattering cross section of a DM particle scattering of a target nucleus, this quantity is
highly model dependent. These discussions usually assume that the DM is a WIMP,
but as was shown in [38], direct detection can be a viable detection method for FIMPs
if the mediator between the visible sector and dark sector is of mass less than a few
MeV. This is because the elastic FIMP-nuclei collision will proceed through the t-
channel, which means that the FIMP-nuclei cross-section can be enhanced enough to
compensate for the low coupling. It is important to note that the small coupling of
FIMPs makes direct detection experiments extremely difficult unless the mediator is
light. Since WIMPs must be non-relativistic, the limit v → 0 applies when calculating
cross sections (unless the mediator is light, then the v dependence is important). The
WIMP-nucleus cross section can be decomposed into two contributions: the spin-
independent (SI) cross section, which dominates if the WIMP-nucleus interactions are
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Figure 4.5: Current and future limits of the direct detection SI cross section as a
function of the WIMP mass. The area faded in orange is the irreducible neutrino
background. For more info regarding the experiments in the plots, refer to [2] and the
articles therein.

scalar or vector, and spin-dependent (SD) cross section, which becomes important if
the interaction is pseudo-scalar or axial vector

dσχT
dER

=

(
dσχT
dER

)
SI

+

(
dσχT
dER

)
SD

. (4.3)

In practice this means σ0F
2(ER) ' σSIF 2

SI(ER)+σSDF 2
SD(ER), where σSI and σSD are

the cross sections given at zero momentum transfer. The spin-independent contribution
in enhanced by the square of the number of nucleons in the target nuclei (A2), while
the spin-dependent contribution is dependent on the nuclear angular momentum [37].
The momentum dependence is in the form factors FSI and FSD; they account for the
coherence loss, which for heavy nucleons or WIMPs leads to a suppression of the event
rate. The spin-independent form factor can qualitatively be understood to be the
Fourier transformation of the nucleon density [37]

F 2
SI(q) =

(
3j1(qR1)

qR1

)2

+ exp[−q2s2] , (4.4)

where q =
√

2mTER is the momentum transfer, jn is the spherical Bessel functions,
s ' 1 fm gives a measure of the nuclear skin thickness and R1 =

√
R2 − 5s2 where

R ' 1.2A1/2 fm. The form factor is normalized by F 2
SI(0) = 1. For the spin-dependent

contribution, the form factor is parameterised by parameters that are determined
experimentally. In general, one has to take into account both the spin-independent
and spin-dependent contributions, but in the case of heavy targets (A > 20) the spin-
independent contribution will dominate. Most experiments use heavy targets, but there
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exist experiments that are sensitive to the SD WIMP coupling as well, where they use
targets with a large nuclear angular momentum [37]. The results coming from direct
detection experiments have not been conclusive. A model independent experiment
which has reported a DM signal is the DAMA/LIBRA experiment [39]. They use
scintillating crystals to detect light signals from DM-nucleus scattering. However,
these results are in strong tension with the null results coming from XENON1T [40],
LUX [41] and the PandaX-II experiment [42]. In the low mass range detectors such as
superCDMS [43] and SENSEI [44] use arrays of semiconductors to search for electron
recoils produced by inelastic scattering of WIMPs. A plot of current and future limits
for the spin independent cross section as a function of the WIMP mass for direct
detection experiments are shown in figure 4.5. The null results coming from these
searches have made other DM paradigms garner more interest, and FIMPs naturally
explains the null result due to their small coupling.

4.3.2 Indirect detection

Indirect detection experiments look for DM annihilation or decay products, mainly
photons, electrons, positrons, antiprotons, and antideuterons. Out of all the
annihilation products, photons and neutrinos are the easiest to look for. This is because
they travel through space undisturbed, which gives clear spectral signatures. For γ-
rays, the differential DM-induced flux averaged over the opening angle ∆ψ of the
detector is given by [45]

dΦγ

dEγ
(Eγ, ψ) =

1

2

〈σv〉
4πm2

χ

∑
f

Brf
dN f

γ

dEγ︸ ︷︷ ︸
P

×
∫

∆ψ

dΩ

∆ψ

∫
l.o.s.

dl(ψ)ρ2(r)︸ ︷︷ ︸
J

, (4.5)

where N f
γ is the number of photons per annihilation for a channel f , ψ is the direction

of the gamma-ray flux and the ρ(r) is the DM distribution, which is integrated over
the line of sight (l.o.s.) l. We can see that the differential flux factorizes into a particle
physics factor P which is determined by the particle properties and an astrophysical
factor J which accounts for the dark matter distribution along the line of sight. A
striking signature coming from DM-annihilation into two-body final states containing a
photon, this would make monochromatic γ-ray lines. The problem with these processes
is that they are loop suppressed, which makes these lines very hard to look for, but
there are examples where a strong line exists [46]. The only products coming from
annihilation of WIMPs at three-level are pairs of quarks, leptons, gauge bosons, and
Higgs. This means that we have to measure secondary photons which comes from
further decays and hadronization. The resulting energy spectrum will be continuous
and can be calculated using programs such as Pythia [47]. These energy spectra can
then be used to look for new physics. For a comprehensive review see [48] or [49].
Photons coming from internal bremsstrahlung may add a very sharp cutoff in the
energy spectrum at Eγ = mχ or bump-like features at Eγ . mχ [45].

27



From Eq.(4.5) we see that the best places to look at are where the factor J is
big. The Milky Way Galactic Centre is therefore a good place to look at. Here
there is found an excess of gamma rays in the GeV energy range [50, 51]. Multiple
explanations have been put forwards, from astrophysical processes [52–54], to DM
annihilation’s, e.g. the data is consistent with a DM candidate of mass less than
100 GeV annihilating into quarks [49]. A popular explanation is that the excess is a
result of a population of faint, unresolved point sources. As with all photon detection
experiments background radiation is a challenge, which means that one has to have
good modelling of the background. Dwarf galaxies has a smaller J factor, but with
highly sensitive detectors they are also a good place to look. These searches strongly
constrain the DM explanation of the Galactic centre [55, 56]. Another important
observation is the 3.55 keV emission line from X-ray images taken by the XMM-Newton
telescope [57, 58] of 73 galaxy clusters [59]. Even though this line is highly controversial,
the DM interpretation is not ruled out.

As mentioned above, indirect detection experiments can also look for decay
products other than photons. The AMS-02 experiment aboard the international space
station reports an excess of the ratio of antiproton to proton fluxes [60]. This can be
explained by DM annihilations, see e.g. Ref. [61], but this data can also be accounted
for by systematic errors and secondary astrophysical processes [62]. Another important
observation is the excess of the high-energy positron abundance (energy range of 1.5-
100 GeV) found by the PAMELA experiment [63], and later confirmed by FERMI
[64] and AMS-02 [65]. Even though astrophysical explanations such as pulsars [66]
and supernovae remnants [67] can explain this observation, DM annihilations have not
been excluded and can be involved [68].

4.3.3 Collider searches

To get observable signatures at colliders, the SM and DM interaction strength has to
be sufficiently strong, which is why WIMPs are the DM candidates that have been
searched the most for. There are two main methods colliders search for DM: missing
transverse energy searches and precise measurement of specific SM branching ratios or
decay widths. Weakly interacting and neutral particles, such as neutrinos and DM,
escape from the collider detectors immediately without interacting. In order to infer
the presence of such particles, one must look at the resulting imbalance in the total
momentum. This is done by looking at the missing transverse energy, which is defined
as

/ET =

∣∣∣∣∣∑
f

~pT

∣∣∣∣∣ (4.6)

where ~pT is the transverse momentum, and the sum is over all visible final states, this
is shown in figure 4.6. The /E signal is then studied carefully, since the /E signal is
very sensitive to particle misidentification, particle momentum mismeasurements, and
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Figure 4.6: Schematic drawing of the transverse plane of the detector. Black arrows
represent visible particles and the red arrow represent the missing momentum due to
invisible particles. Figure taken from [36].

cosmic-ray particles, which can result in artificial /E [36, 69].

Another way of looking for DM in colliders is by precisely measuring the decay
widths of gauge bosons or the SM Higgs boson. If the DM mass is less than half of
the Z boson mass, then we can place limits on its mass and coupling from the Z boson
decay width. The same can be done with Higgs branching ratios if the DM mass is
less than half of the Higgs mass. There are multiple ways of looking for invisible Higgs
boson decays. One can directly search for them by looking at the production modes
shown in figure 4.7. i.e. Vector boson fusion (VBF) via qq → qqH, production in
association with a massive vector boson (qq → V H, where V = Z, W ) and gluon
fusion accompanied by jet from initial state radiation. Recently, a combination of
searches for invisible Higgs decays at the LHC have found that BR(h → inv) < 0.11
[70].

Using effective field theory is one way to get model independent constraints on DM
properties. An example would be a vector mediator with mass mV = Λ2/(gχgq) whose
low energy operator reduces to 1

Λ2 χ̄γ
µχq̄γµq, which couples q to χ with coupling gq and

gχ respectively. A problem with this method is that it assumes a large mediator mass,
there has therefore been a lot of focus on simplified models with mediators connecting
the dark sector to the SM. In these models it is important to consider the mediator
propagator, since this can affect kinematical characteristics of the interaction, unlike
the effective field theory method where the mediator is integrated out. The mediator
might also decay into final states other than two DM particles. Thirdly, the existence
of such a mediator can change the constraints set by colliders and/or cosmological
observations [31].
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Figure 4.7: Feynman diagrams for the three production processes targeted in searches
for invisible Higgs boson decays. (Upper left) Vector boson fusion: qq → qqH, (upper
right) VH: qq̄ → V H, and (bottom) gluon fusion: gg → gH [71].

4.3.4 Self-interacting dark matter

The study of self-interacting DM (SIDM) is a vast subject. I will only scratch the
surface of this topic in this section. For a more comprehensive review see Ref. [35].
The ΛCDM model which models DM as a cold collisionless fluid has been remarkably
successful at large scales [1], but at smaller scales the model is less tested and certain
inconsistencies exist [72]. A modification of ΛCDM that can fix these inconsistencies
is SIDM. There is no phenomenological reason as to why DM self-interactions cannot
become as strong as the interaction between nucleons [73], which along with the fact
that SIDM can have an impact on structure formation has increased the interest in
SIDM. The small-scale problems [72–74] of ΛCDM which are talked most about in
the literature are the "core-cusp" [75], "too big to fail" [76], "diversity" [77], and
the "missing satellite" [78] problems. The core-cusp problem is the fact that the
expected DM density profiles of dwarf galaxies coming from cosmological N -body
simulations follows a steep power-law-like behaviour in the inner part of the galaxy, i.e.,
cuspy profile, while a constant distribution is observed in some objects, called cores
[75, 79–81], see the right panel of figure 4.8. This means that the expected orbital
velocity close to the centre of the galaxy is less than is expected in the rotation curves
of dwarf galaxies, see the left panel of figure 4.8. The too big to fail problem is
that cosmological simulations of ΛCDM predicts that the majority of DM sub-halos
around the Milky Way are too dense to host its brightest satellites [76, 85, 86]. The
diversity problem comes from the observation that there is a big diversity in the shape
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Figure 4.8: Black data points show the observed rotation curve of dwarf galaxy DDO
154 [82], The Navarro–Frenk–White (NFW) profile is the dotted blue, and cored profile
is solid red. The stellar (gas) contributions are indicated by pink (dot-)dashed lines.
Right: The NFW profile versus the density profile generated using analytical SIDM
halo model developed in [83, 84]. Image taken from [74].

of rotation curves of dwarf galaxies, which is at odds with the rotation curves predicted
by ΛCDM [77, 87]. The missing satellite problem is, as mentioned earlier, the fact
that numerical simulations predict a bigger number of small Milky way satellites than is
observed [78, 88]. It has been proposed that carefully addressing for effects of baryonic
physics can solve these problems [89, 90], however they are unlikely to resolve these
problems with standard WIMPs. The next possibility is then that the ΛCDM must
be modified, such modifications include decaying [91], warm [92, 93] and SIDM [74].
In the case of SIDM, the fact that the mean free path for the DM particles is a lot
smaller will only alter the evolution where the density inhomogeneities are large. This
means that the large-scale features are unchanged. The small-scale problems, however,
can be alleviated if 0.1 . σ/m . 10 cm2/g [94, 95], where σ is the self-scattering cross
section and m is the DM particle mass. From looking at "bullet clusters collisions" one
gets the constraint σ/m < 1.25 cm2/g at 68% CL [96], while the most recent cluster
collision observations give the constraint σ/m < 0.47 cm2/g at 95% CL, although this
result has been questioned recently [97, 98]. The reason SIDM solves the "core-cusp"
and "too big to fail" problem is due to the heat transfer that happens because of the
self-scattering of DM particles. Such energy transport will lead to a core collapse for
the DM halo and it also changes the subhalo abundance [99]. The "missing satellite"
problem can also be alleviated by SIDM [100] and by including warm or decaying DM
[91–93].
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4.4 Freeze-out

I will now review the most studied DM production mechanism, freeze-out. It is worth
noting that it is not just WIMPs that freeze-out. The standard model neutrinos
experienced freeze-out when the temperature T & few MeV [4], but at this temperature
the neutrinos were still relativistic, which is why they are called a hot relic.

This mechanism is based on the assumption that DM reaches thermal equilibrium
with the visible sector at early times. I will look at the simplest case where there is
no asymmetry between particles and anti-particles. In this case one can solve for the
abundance by looking at the creation and annihilation processes between DM and SM.
I start by looking at the specific (2 → 2) channel χχ̄ ↔ XX̄ of a particle χ which
represents the DM particle, with a SM particle X. It will be clear why decay processes
(1→ 2) are negligible in later discussions. The assumptions we make are [101]

• Phase-space distributions are approximated by Maxwell-Boltzmann distribu-
tions, which is a good approximation for T . 3mχ. This means that quantum
statistical factors can be neglected.

• The WIMPs are in thermal equilibrium.

• The WIMPs remain in kinetic equilibrium after decoupling.

• The initial chemical potential is negligible.

Since χ is assumed to be in thermal equilibrium with X until it is non-relativistic,
we can approximate fχ by using the Maxwell-Boltzmann distribution. Due to energy
conservation and the principle of detailed balance, we can rewrite the Standard model
terms fXfX̄ in terms of the equilibrium terms of fχ and fχ̄

fXfX̄ = exp[−(EX + EX̄)/T ] = exp[−(Eχ + Eχ̄)/T ] = f eq
χ f

eq
χ̄ . (4.7)

The Bose-Enhancement and Fermi-blocking factors can be neglected when T � Ei,
meaning that 1± fX ∼ 1. Since we have only one channel, the right hand side of the
Boltzmann equation for the number density, Eq.(3.46), becomes

gχ

∫
C[fχ]

d3pχ
(2π)3

= −
∫

[fχfχ̄ − (f eq
χ )(f eq

χ̄ )]

(2π)4δ(pχ + pχ̄ − pX − pX̄)|M|2
d3pχ

(2π)32Eχ

d3pχ̄
(2π)32Eχ̄

d3pX
(2π)32EX

d3pX̄
(2π)32EX̄

, (4.8)

We should note that there should not appear additional factors of 1
2
in the case where

χ and χ̄ are identical: a factor 1
2
appears to avoid double counting but is cancelled
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due to the fact that two particles disappear in each annihilation. We only need the
integrated C[fχ], which is why I have not given expression for C[fχ]. We can now use
the usual definition of the cross section on the final state integrals [102, p.106]

4Fσχχ̄→XX̄ =

∫
|M|2(2π)4δ(pχ + pχ̄ − pX − pX̄)

d3pX
(2π)32EX

d3pX̄
(2π)32EX̄

, (4.9)

where F =
√

(pχ · pχ̄)2 −m2
χm

2
χ̄ and |M|2 denotes the usual spin-averaged matrix

element
|M|2 =

|M|2
gχgχ̄

. (4.10)

It is now clear how to include all channels; one replaces σχχ̄→XX̄ by

σ =
∑
allf

σχχ̄→f . (4.11)

This means that we get the following Boltzmann equation for the number density

ṅχ + 3Hnχ = −〈σvMøl〉(n2
χ − (neq

χ )2) , (4.12)

where we use the Maxwell-Boltzmann distribution [101]

neq
χ = gχm

2
χTK2(mχ/T )/(2π2) , (4.13)

where Ki is the modified Bessel function of the second kind of order i, defined by

Kn(z) =

√
π

(n− 1
2
)!

(
1

2
z

)n ∫ ∞
1

(x2 − 1)n−1/2e−xzdx . (4.14)

The thermally averaged cross section times velocity is

〈σvMøl〉 =

∫
σvMøle

−Eχ/T e−Eχ̄/Td3pχd
3pχ̄∫

e−Eχ/T e−Eχ̄/Td3pχd3pχ̄
, (4.15)

where the Møller velocity is vMøl ≡ F/EχEχ̄, Eχ and Eχ̄ are the energies of the colliding
particles in the cosmic rest frame. In the case where there are other particles close
in mass to χ, they will be present at the time when χ freeze-out and will contribute
to the abundance. This is called co-annihilations [103] and the Boltzmann-equation
will have the same form as Eq.(4.12), but with nχ → n = nχ +

∑
i ni where i is the

particle-species close in mass to χ that also freeze-out, such that mi < mj, when i < j.
This is the relevant quantity because the heavier particles will eventually decay into χ.

In order to find the expression for 〈σvMøl〉 I will be following the standard
treatment, as established by Gondolo & Gelmini [101]. Note that a similar approach
will be used for the full distributions in section 5.2. We begin by writing the
momentum-space volume element as

d3pχd
3pχ̄ = 4π| ~pχ|dEχ4π| ~pχ̄|dEχ̄

1

2
d cos θ , (4.16)
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where θ is the angle between ~pχ and ~pχ̄. Now we change variables from Eχ, Eχ̄, θ to
E+, E−, s given by

E+ = Eχ + Eχ̄ , E− = Eχ − Eχ̄ , s = 2m2
χ + 2Eχ .Eχ̄ − 2| ~pχ|| ~pχ̄| cos θ. (4.17)

The volume element becomes

d3pχd
3pχ̄ = 2π2EχEχ̄dE+dE−ds , (4.18)

with integration regions

|E−| ≤
√

1− 4m2
χ

s

√
E2

+ − s , E+ ≥
√
s , s ≥ 4m2

χ . (4.19)

We can now rewrite the numerator in Eq.(4.15) as follows∫
σvMøle

−Eχ/T e−Eχ̄/Td3pχd
3pχ̄ = 2π2

∫
dE+dE−ds σvMølEχEχ̄e

−E+/T

= 4π2

∫
ds σF

√
1− 4m2

χ

s

∫
dE+e

−E+/T
√
E2

+ − s

= 2π2T

∫
ds σ(s− 4m2

χ)
√
sK1(

√
s/T ) , (4.20)

where it is used that in the CMS frame σF = σvMølEχEχ̄ is solely a function of s, and
that F = 1

2

√
s(s− 4m2

χ). Similarly, we get the result∫
e−Eχ/T e−Eχ̄/Td3pχd

3pχ̄ =
[
4πm2

χTK2(mχ/T )
]2
. (4.21)

The thermal average is then cast in terms of only one integral which must be evaluated

〈σvMøl〉 =
1

8m4
χTK

2
2(mχ/T )

∫ ∞
4m2

χ

ds σ(s− 4m2
χ)
√
sK1(

√
s/T ) (4.22)

Recasting Eq.(4.12) in comoving coordinates using Eq.(3.42) gives

x

Y eq
χ

dYχ
dx

= − Γ

H

[(
Yχ
Y eq
χ

)2

− 1

]
, (4.23)

where Y eq
χ = neq

χ /s and Γ ≡ neq
χ 〈σvMøl〉 is the interaction rate between χ and X. The

DM relic abundance is then calculated to be1

Ωch
2 =

mχY
0
χ s0h

2

ρc
, (4.24)

where s0 is the entropy density today.
1If χ is not its own antiparticle, then Ωh2 =

ρχ+ρχ̄
ρc

. If the particle species has negligible chemical
potential then Ωh2 = 2Ωχh

2, since Yχ = Yχ̄.
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Figure 4.9: The solution of Eq.(4.23), with three different values of the thermally
averaged cross section: 〈σv〉 = 1× 10−15 GeV−2, 1× 10−12 GeV−2 and 1× 10−9 GeV−2

corresponding to the blue, purple and red curves. The brown line is the equilibrium
comoving number density, while the dashed line corresponds to the number density
giving Ωch

2 = 0.12.

In figure 4.9 the abundance Yχ is plotted as a function of x = mχ/T . We can see
that initially (small x) there is equilibrium between the WIMP and the particle species
X. At this time the interaction rate is dominated by the Hubble rate (Γ� H(T )). If
some DM particles are created (annihilated) at this time, we will see that Yχ increases
(decreases). This means that the value inside the parenthesis of Eq.(4.23) is positive
(negative), hence the number density follows the equilibrium number density, as is
expected when the hidden sector and the visible sector is in thermal equilibrium. As
the scale factor increases, the temperature decreases. When the temperature becomes
less than the WIMP mass, the equilibrium number density becomes exponentially
suppressed, neq ∝ exp(−x) for x � 1. When the interaction rate becomes less than
the Hubble rate (Γ ' H), WIMPs will not be able to annihilate anymore and freeze-
out, i.e., the comoving number density becomes constant, since when Γ→ 0, dY

dT
→ 0.

This can be seen to happen when x ∼ 10 − 30 in figure 4.9. We can also see that the
final comoving number density decreases with an increase of 〈σv〉. This is because a
larger value of 〈σv〉 means that the comoving number density follows the equilibrium
number density for a longer time and the Boltzmann suppression gives us a lower final
number density. Solving for the final relic abundance one finds that the thermally
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Figure 4.10: The value of constant thermally averaged cross section 〈σv〉 that gives the
correct relic density for a Majorana (blue) or Dirac (red) DM particles (shaded areas
in- dicate the effect of varying Ωch

2 within 3σ [1]). This plot and the plot in figure
4.11 were produced using DarkSUSY [7]; they reproduce what is shown in Ref. [104].

averaged cross section that corresponds to the observed relic abundance (Ωch
2 = 0.12)

is 〈σv〉 ∼ 10−26cm3s−1 [4].

For non-relativistic gases, the thermally averaged cross section can be expanded
in terms of powers of x−1. This can be done by noting that s = 4m2

χ + m2v2 and
expanding σv in terms of v2 [4]. Taking the thermal average gives [101]

〈σv〉 = 〈a+ bv2 + cv4 + ...〉 (4.25)

= a+
3

2
bx−1 +

16

8
cx−2 + ... (4.26)

For non-relativistic particles the higher order terms can be neglected. If we have a
s-wave annihilation, then a 6= 0, meaning that the thermally averaged cross section is
to first order given by 〈σv〉 = a. The 〈σv〉 that gives the correct relic abundance is
plotted in figure 4.10. In the case of p-wave annihilations then a = 0, meaning that to
first order σvMøl = bv2

Møl. The value of b that gives correct relic density is plotted in
figure 4.11. An important observation is that the thermally averaged cross section for
a typical weak scale cross section with weak scale mass can be roughly approximated
as

〈σv〉 ∼ α2

m2
χ

, (4.27)
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Figure 4.11: The value of b in the p-wave annihilation cross section σv2
lab that gives

the correct relic abundance.

where α ∼ 0.01 is a coupling of the order of the weak scale. The WIMP mass that gives
the correct relic density has to be a weak scale mass, mχ ∼ 250 GeV. This observation
is as mentioned before, the well-known WIMP miracle [3] and is one of the reasons why
the WIMP paradigm and thermal freeze-out is popular. A precise treatment has been
done by Ref. [105], which found that the correct relic density is given by the following
thermally averaged cross sections

〈σv〉 '
{

5 · 10−26 cm3s−1 (100 MeV . mχ . 5 GeV),

2.2 · 10−26 cm3s−1 (10 GeV . mχ . 10 TeV).
(4.28)

Even though this observation fits well with respect to naturalness and the hierarchy
problem, which indicates that there might be more new physics at the electroweak
scale. It is important to note that different masses and cross sections give correct 〈σv〉,
this means that the fact that a weak scale cross section and mass gives the correct relic
abundance might be by sheer coincidence. After decades of searches for WIMPs with
no convincing results, many are starting to look at other production mechanisms such
as freeze-in, which will be discussed in the next chapter.
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Chapter 5

Freeze-In

In Chapter 4, I discussed how the freeze-out mechanism can be used to explain
the production of WIMPs in the early universe. The null results from detection
experiments looking for WIMPs in the last decades have made other production
mechanisms, such as freeze-in, more popular. In this chapter I will start with a general
discussion about the Freeze-in mechanism which was introduced in [5]. I will then in
section 5.2, give expressions for the Boltzmann-equation for Freeze-in, where I deviate
from the approach that is usually taken. Instead of giving the collision operation in
terms of the creation cross section, I will give it in terms of the annihilation cross
section, which is a more suitable way of expressing the Boltzmann equation when
implementing freeze-in in a model-independent way. This has been implemented in
DarkSUSY which is introduced Appendix A.

5.1 The mechanism

The freeze-out mechanism bases itself on the key assumption that the dark sector and
the visible sector initially were in thermal equilibrium. We know from the anisotropies
in the CMB that the visible sector was in thermal equilibrium [1], but this does
not necessarily encompass the dark sector particles. It is this fact that the freeze-
in mechanism exploits. It uses that if the coupling, λ, between the visible sector and
DM particles is very small then the dark sector and the visible sector never thermalise.
Another key assumption in freeze-in is that the initial DM abundance is negligible. This
can happen in cases when inflation happens to only thermalise the visual sector. This
means that the DM phase space distribution initially was fχ ∼ 0, which in turn means
that the initial DM abundance is negligible. The DM abundance is then produced by
decays or annihilations of visible sector bath particles [5]. These DM particles are,
as mention in the previous chapter, called Feebly Interacting Massive Particles. If
the FIMP χ abundance is produced from decays, then the production is active until
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giving Ωch
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the expansion of the universe overtakes the reaction rate, i.e. the number density for
the bath particles that contribute to the freeze-in yield becomes Boltzmann-suppressed
(similar to the freeze-out mechanism). If the abundance is produced from annihilations
of bath particles, it is the number density of high energy particles that can contribute to
the production that will become Boltzmann-suppressed (there will still be relativistic
bath particles, but they do not contribute to the production). The size of the coupling
determining if the visible and the dark sector thermalises is model dependent, but the
coupling λ will typically have to be of the order of magnitude λ ' O(10−7) or less.
For a scalar coupled to the visible sector by the term L ⊃ 1

4
λχ2h2, one finds that the

thermal equilibrium condition is [106]

Γhh→χχ
H

∼ λ21016GeV

T
> 1 , (5.1)

which means that for the DM particles and visible sector to not be in thermal
equilibrium before electroweak phase transition (T ' 163 GeV), the coupling has to be
smaller than λ < 10−7. The comoving number density for the FIMPs becomes constant
and is said to freeze-in. This can be seen in figure 5.1, where the FIMP abundance
is produced from 2 → 2 scatterings, where a four-point scalar interaction is assumed.
Initially we see that Yχ = 0, but FIMPs are constantly produced until x ∼ 5 when the
abundance freezes-in.

For a qualitative discussion I will for the rest of this section use an approximated
solution for the comoving number density. The full treatment using the Boltzmann
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equation will be done in section 5.2. For a renormalizable interaction which I will
assume is a quartic scalar interaction, the FIMP will be produced by decays or collisions
of bath particles at a rate proportional to λ2.

If we suppose that the abundance is produced from decays of a bath particle σ,
then the abundance at a temperature T can be approximated by multiplying the decay
rate Γσ→χχ with the time it takes to populate the FIMP abundance [5]

Yχ(T ) ∼ tΓσ→χχ ∼ λ2mP

T
. (5.2)

where the time it takes is a Hubble doubling time, which is the time it takes for the
universe to double its size. This is found from the time-temperature relation for a
radiation dominated universe H = 1

2t
' 1.66

mP

√
geffT

2, which means that t ∼ mP
T 2 . We

can see that this process is IR dominated, and since these processes are renormalizable,
the dominant production will always be IR dominated [31]. For temperatures below
the mass of the heaviest particle in the process (T < max[mχ,mSM], let us assume
the FIMP is heaviest) the process will be Boltzmann-suppressed. This means that the
FIMP abundance will be

Yχ ∼ λ2mP

mχ

, (5.3)

since the dominant contribution happens as T ∼ mχ. Using Eq.(4.24) we see that

Ωch
2 ∼ λ21027 , (5.4)

which means that in order to get the correct relic abundance, Ωch
2 = 0.12, the coupling

have to be λ ∼ 10−14, note that this is only a very rough estimate. We can see from
Eq.(5.3) that increasing the interaction rate in the freeze-in scenario will have the
opposite effect to that of the freeze-out scenario. Increasing the coupling will give a
larger final abundance, while in the freeze-out case the abundance will become smaller;
this can be seen in both figure 5.1 and figure 5.2. The features of figure 5.2 is worth
stressing, for very low couplings we see that we are in the freeze-in regime, where the
relic-abundance will increase with an increase in the coupling. When the coupling
increases enough that thermal equilibrium will be reached, the abundance will flatten
out because annihilations of DM particles in equilibrium takes place. Finally, when the
coupling is large enough, we can assume that thermal equilibrium was achieved long
before decoupling, meaning that we have entered the usual freeze-out regime. Even
though freeze-in and freeze-out have these opposite features, they still have similarities.
Both production methods can make predictions solely from some few parameters, such
as FIMP coupling(s) and mass(es). Both scenarios can have that the particle(s) that
are produced may not be the lightest particle in the dark sector, which means that
they may decay into the actual DM particles. As mentioned before, renormalizable
interactions will be IR dominated, which means that freeze-in won’t be sensitive to
the reheating temperature. This is not the case for non-renormalizable operators (this
is the so-called ultraviolet freeze-in [107]); they will on the other hand be sensitive
to the reheating temperature set by inflation. This is an important distinction from
freeze-out where all traces of initial conditions are erased due to thermal equilibrium.
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Figure 5.2: Schematic representation of the FIMP relic abundance as a function of the
coupling between DM and the visible sector. Image taken from [5].

5.2 Freeze-in Boltzmann Equation

In this section I will develop the Boltzmann equation for the freeze-in scenario, where
the dominant contribution of FIMPs comes from decay of an on-shell bath particle
(1 → 2) or from (2 → 2) annihilations of bath particles. Using Eq.(3.43) we get that
the most general form of the Boltzmann-equation for the process a+b+...↔ χ+k+l...
is

ṅχ + 3Hnχ =

∫
dΠadΠb...dΠχdΠkdΠl...× [fafb...(1± fχ)(1± fk)...|M|2I→J (5.5)

− fχfk...(1± fa)(1± fb)...|M|2J→I ]× (2π)4δ4(
∑
i∈I

pi −
∑
j∈O

pj) .

We can easily apply this to the freeze-in scenario, which is characterized by the
following two independent requirements on the DM distribution

• fχ � 1. Due to the small DM abundance, which means that 1± fχ ∼ 1.

• fχ � fi, where i is any visual sector bath particle. This is due to the fact that
the DM abundance stays sub-thermal. The effects of DM annihilations, which is
described by the second term in Eq.(5.5), is therefore negligible.

The Boltzmann-equation describing the freeze-in process a + b + ... → χ + k + l... is
therefore

ṅχ + 3Hnχ =

∫
dΠadΠb...dΠχdΠkdΠl...× [fafb...(1± fk)(1± fl)...|M|2I→J ] (5.6)

× (2π)4δ4(
∑
i∈I

pi −
∑
j∈O

pj) .
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The processes I am interested in is the 2 → 2 and 1 → 2 processes, which I will
solve for below. In order to keep the discussion in this section general, I allow for
the particles to have arbitrary mass and spin. I want to emphasise that I will express
the DM production of two FIMPs χ from two heat bath (SM) particles s, in terms
of the annihilation of a would-be thermal population of FIMPs. I will show that
this equivalence holds both when assuming Maxwell-Boltzmann distributions for the
thermal bath particles, as I did in the freeze-out case (see Eq.(4.7) and the discussion
above it), and when the quantum-statistical effects in the phase-space distributions of
the involved particles are included.

5.2.1 2→ 2 Processes

I will focus on the 2→ 2 processes in this thesis, mainly because the 2→ 2 process can
be seen to reduce to the 1→ 2 process when the mediator is on-shell (see Appendix B).
The process s+ s̄→ χ+ χ̄ has the following Boltzmann equation, seen from Eq.(5.6)

ṅχ + 3Hnχ =

∫
dΠadΠs̄dΠχdΠχ̄ fsfs̄|M|2ss̄→χχ̄(2π)4δ4(ps + ps̄ − pχ − pχ̄) . (5.7)

The conventional approach is to rewrite the equation in terms of σss̄→χχ̄ and get the
thermal average cross section by integrating over the phase space of the initial states
[5, 31, 108, 109]. This approach has the advantage of being very intuitive, but one has
to calculate the thermally averaged cross sections for all the processes and calculate
the number density for all the particles in the heat bath. I have therefore chosen to
take a different approach, one that is more similar to the one used in freeze-out. I use a
mathematical trick to rewrite the phase space distribution functions for s and s̄ in terms
of an equilibrium phase space distributions for χ and χ̄. We will see that for FIMPs, this
distribution will be the Maxwell-Boltzmann distribution. However, this has nothing to
do with the actual distribution function for the FIMPs. This trick was done for the case
of Maxwell-Boltzmann distributions in Eq.(4.7). The same trick can be used on both
Bose-Einstein distributions and Fermi-Dirac distributions, as I will show below. This
has the advantages of reducing to one thermally averaged cross section when Maxwell-
Boltzmann distributions are used, and we can use that the annihilation cross section
sometimes can be conveniently rewritten in terms the off-shell partial decay width of a
known SM particle, meaning that higher-order corrections can more easily be included.
For particles in thermal equilibrium one has to, as mentioned in section 3.2, use Bose-
Einstein distributions for bosons and Fermi-Dirac distributions for fermions when the
distribution cannot be approximated using the Maxwell-Boltzmann distribution, i.e.
when the inequality eEi/T � 1 does not hold. These are given in the rest frame of the
gas by Eq.(3.1). These distributions can be put in the Lorentz invariant form [110],
which for a particle species s is given by

fs(p) =
1

e
u·ps
T − εs

. (5.8)
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where εs = 1 for bosons, εs = −1 for fermions and εs = 0 gives the Maxwell-
Boltzmann distribution. uµ is the 4-velocity of our reference frame relative to the
gas reference frame (in the gas reference frame we have u = (1, 0, 0, 0)T , which returns
the usual representation of the distributions). I have used that µ = 0 since we have
full equilibrium. If we only have kinetic equilibrium, one has to substitute u · ps with
u · ps − µs. It is easily seen that

fs = (1 + εsfs)e
−u·ps

T . (5.9)

This means that for a 2→ 2 process a+ b→ c+ d we get

fafb(1 + εcfc)(1 + εdfd) = fcfd(1 + εafa)(1 + εbfb) , (5.10)

where we have used that pa + pb = pc + pd (if we only assume kinetic equilibrium
one gets a factor exp[µa+µb−µc−µd

T
] on the right-hand side). It is easily seen how this

generalises to arbitrary processes, but I will only use the 2 → 2 case. For FIMPs we
can use that by momentum conservation we get

fsfs̄ = fMB
χ fMB

χ̄ (1 + εsfs)(1 + εsfs̄) . (5.11)

where I introduce that
fMB
χ (pχ) ≡ e−

u·pχ
T . (5.12)

I want to stress that this result does not make any assumption of the actual phase
space distribution of the FIMPs, other than the already assumed assumption fχ � 1.
Finally, I use CP invariance on the scattering amplitude squared and summed over
both initial and final state degrees of freedom to get: |M|2 ≡ |Mss̄→χχ̄|2 = |Mχχ̄→ss̄|2.
The 2→ 2 Boltzmann-equation will then take the following form:

ṅχ + 3Hnχ =

∫
dΠsdΠs̄dΠχdΠχ̄ f

MB
χ fMB

χ̄ (1 + εsfs)(1 + εsfs̄)|M|2χχ̄→ss̄ (5.13)

× (2π)4δ4(ps + ps̄ − pχ − pχ̄) ,

which has the feature that the production term now takes the form the form of an
annihilation term with an auxiliary DM phase-space density described by a Maxwell-
Boltzmann distribution. This means that I can rewrite Eq.(5.7) to get

ṅχ + 3Hnχ = 〈σvMøl〉nMB
χ nMB

χ̄ , (5.14)

where nMB
χ is given by Eq.(4.13),

〈σvMøl〉χχ̄→ss̄ =

∫
d3pχd

3pχ̄σχχ̄→ss̄(pχ, pχ̄)vMølf
MB
χ fMB

χ̄∫
d3pχd3pχ̄fMB

χ fMB
χ̄

(5.15)

and σ(pχ, pχ̄) is the in-medium annihilation cross section in the cosmic rest frame, since
it takes into account the effect of quantum statistics of the final state defined by

σχχ̄→ss̄(pχ, pχ̄) ≡ 1

4F (pχ, pχ̄)

∫
dΠsdΠs̄|M|

2
(1+εsfs)(1+εsfs̄)(2π)4δ4(pχ+pχ̄−ps−ps̄) .

(5.16)
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Comparing Eq.(5.14) to Eq.(4.12) we see that the form of the DM production terms
are identical, but there are some important physical distinctions. In the freeze-out
case fMB

χ would describe the actual DM equilibrium distribution and as I mentioned
in section 4.4, we can neglect the quantum statistical factors, this is not the case
for freeze-in. However, the form of Eq.(5.14) is still very useful. The fact that it
takes the same form as the freeze-out case is beneficial both in terms of implementing
numerical solutions and when estimating higher-order corrections to the annihilation
cross sections. We can now easily include all the initial states, this is the same as
replacing σχχ̄→ss̄ with

σ(pχ, pχ̄) =
∑
i,j

σχχ̄→sis̄j . (5.17)

The present-day FIMP abundance is thus

Y2→2 =
g2
χm

4
χ

4π4

∫ TR

T0

dT

Hs(T )T
T 2
∑
i,j

〈σvMøl〉χχ̄→sis̄jK2(mχ/T )2 , (5.18)

where TR is the reheating temperature after inflation, T0 is the present-day temperature.
Note that if we can set ε = 0 for all species, then Eq.(5.15) becomes Eq.(4.22).
If the quantum effects of a particle s and/or s̄ are not negligible, then we have to
evaluate Eq.(5.16) and use it in Eq.(5.15). In order to do this, I will do follow what
Giorgio Arcadi et al. [111] has done for Bose-Einstein distributions in their relativistic
treatment of real scalar dark matter. I will include Fermi-Dirac distributions and use it
for the freeze-in scenario. Since the phase-space integrals in Eq.(5.15) are most easily
calculated in the centre-of-mass (CMS) frame, we will Lorentz transform the momenta
from the cosmic rest frame to the CMS frame. This has the additional feature that
the cross section has to be calculated in the CMS frame, which is the standard frame
cross sections are stated in, in particle physics. I introduce the useful 4-vectors

p =
pχ + pχ̄

2
, k =

pχ − pχ̄
2

, (5.19)

where p = (
√
s/2, 0, 0, 0) is in the CMS frame and

√
s is the CMS energy. Due to the

isotropy of space, we know that the relation to the cosmic rest frame must be possible
to state in terms of a single boost parameter, which we will see is the rapidity η or
the Lorentz factor γ. The 4-momentum p in the cosmic rest frame can be expressed in
terms of the CMS frame by the Lorentz transformation Λ(p)

p = Λ(p)


√
s/2
0
0
0

 . (5.20)
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By parameterising p in terms of the rapidity η and the angular coordinates θ, φ, we
find

p0 = E cosh η , (5.21)
p1 = E sinh η sin θ sinφ ,

p2 = E sinh η sin θ cosφ ,

p3 = E sinh η cos θ .

Using the convention p = (p0, p3, p2, p1)T , we find that Λ(p) and Λ−1(p) is

Λ(p) =


1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ




1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1




cosh η sinh η 0 0
sinh η cosh η 0 0

0 0 0 0
0 0 0 0

 ,

(5.22)

Λ−1(p) =


cosh η − sinh η 0 0
− sinh η cosh η 0 0

0 0 0 0
0 0 0 0




1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 cosφ sinφ
0 0 − sinφ cosφ

 .

(5.23)
Since the Lorentz invariant integration measure is

d3pχ
2Eχ

d3pχ̄
2Eχ̄

= d4pχd
4pχ̄δ(p

2
χ −m2

χ)δ(p2
χ̄ −m2

χ)θ(p0
χ)θ(p0

χ̄) , (5.24)

where I have used that mχ = mχ̄ and that θ(x) is the Heaviside step function. We can
change the measure to d4p and d4k easily since the Jacobian is 24 due to the fact that
the change of variable is simply a shift. Therefore

d4pχd
4pχ̄δ(p

2
χ −m2

χ)δ(p2
χ̄ −m2

χ) = 24d4pd4kδ((p+ k)2 −m2
χ)δ((p− k)2 −m2

χ) . (5.25)

Since the measure is Lorentz invariant, we can calculate it in any frame. From Eq.(5.21)
we find

d4p =
sinh2 η s

25
dη ds dΩp , (5.26)

where dΩp = d cos θ dφ are the angles in p-space. The k measure can be written as

d4k = |k|2dk0 d|k| dΩk , (5.27)

which we can integrate in the CMS frame to get∫
dk0 dk||k|2δ((p+ k)2 −m2

χ)δ((p− k)2 −m2
χ̄) =

√
s− 4m2

χ

8
√
s

, (5.28)

where the δ functions enforces k0 = 0 and |k| = 1
2

√
s− 4m2

χ. This means that for any
function g(pχ, pχ̄) we have∫

dΠχdΠχ̄g(pχ, pχ̄) =
1

16(2π)6

∫ ∞
4m2

χ

ds
√
s(s− 4m2

χ)

∫ ∞
0

dη sinh2 η

∫
dΩpdΩkg(pχ, pχ̄) .

(5.29)
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I change variable from the rapidity η to the Lorentz factor γ = cosh η, which means
that∫

dΠχdΠχ̄g(pχ, pχ̄) =
1

16(2π)6

∫ ∞
4m2

χ

ds
√
s(s− 4m2

χ)

∫ ∞
1

dγ
√
γ2 − 1

∫
dΩpdΩkg(pχ, pχ̄) .

(5.30)
In the different distribution functions we need u · pi in the CMS frame, this is

u · pi = p0
i cosh η + p3

i sinh η . (5.31)

The distributions for χ becomes

fMB
χ fMB

χ̄ = e−
√
s cosh η
T = e−

√
sγ
T . (5.32)

For the Bose-enhancement and Fermi-blocking factors we find

G(γ, s, cos θ) = (1 + εsfs(u · ps))(1 + εsfs̄(u · ps̄)) (5.33)

=

(
1 + ε2

se
−
√
s
T
γ − εs

(
e
− 1
T

[(√
ps

2+m2
s

)
γ+|ps| cos θ

√
γ2−1

]
+ e

− 1
T

[(√
s−
√

ps
2+m2

s

)
γ−|ps| cos θ

√
γ2−1

]))−1

,

where I have included the ε2
s factor, since letting εs → 0 gives G(γ, s, cos θ) = 1.

Putting everything together we get

〈σvMøl〉χχ̄→ss̄ =
1

8m4
χTK

2
2(mχ/T )

∫ ∞
4m2

χ

ds
√
s(s−4m2

χ)

√
s

T

∫ ∞
1

dγ
√
γ2 − 1e−

√
s
T
γσCM(s, γ) ,

(5.34)
with

σCM(s, γ) =
1

4F (pχ, pχ̄)

∫
dΠsdΠs̄(2π)4δ4(pχ + pχ̄ − ps − ps̄)|M|

2
G(s, γ, cos θ)

(5.35)

=
N−1
s

16πs

|ps|√
s− 4m2

χ

∫ 1

−1

d cos θCM|M|2(s, cos θCM)G(γ, s, cos θCM) ,

where θCM is the CMS angle and I have introduced the factor Ns = 2 (1) for self-
conjugate (not self-conjugate) SM particles s, since the integrals have been performed
over all possible momentum configurations. We can now easily see that by letting
εs → 0, we recover the well known Maxwell-Boltzmann case; since G(s, γ, cos θCM) = 1
Eq.(5.34) reduces to the result given by Eq.(4.22), which we now can appreciate is due
to the fact that the cross section σCM

ε→0 is only a function of s. For a general process
where both s-channel, t-channel and u-channel processes must be included, this is not
possible and Eq.(5.35) must be calculated in full. The exception is if the scattering
amplitude is only s-dependent: |M|2(s, t) = |M|2(s). If that is the case, we can use
that

σCM(s, γ) =
N−1
s

8πs

|ps|√
s− 4m2

χ

|M|2(s)

∫ 1

−1

d cos θCM
G(γ, s, cos θCM)

2
(5.36)

= σCM
εs→0(s)G(γ, s)
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where σCM(s) is the usual cross section calculated in the CMS frame and

G(s, γ) ≡
∫ 1

−1

d cos θCM
G(γ, s, cos θCM)

2
. (5.37)

This integral can be solved analytically by using that∫
dx(ea+bx ∓ 1)−1(ec−bx ∓ 1)−1 =

log(1∓ ea+bx)− log(ec ∓ ebx)
b(ea+c − 1)

+ C (5.38)

Using Eq.(5.31) on the expressions for fs(u · ps) and fs̄(u · ps̄), I find that

Ḡ =
exp[as + as̄]

b(exp[as + as̄]− 1)
log

[
1− εs exp[as + b]

1− εs exp[as − b]
· 1− εs exp[−(as̄ + b)]

1− εs exp[−(as̄ − b)]

]
(5.39)

where

as ≡
γ

2
√
sT

(s+m2
s −m2

s̄) , as̄ ≡
γ

2
√
sT

(s+m2
s̄ −m2

s) ,

b ≡ |ps|
√
γ2 − 1

T
=

√
γ2 − 1

T

√
s− (ms −ms̄)2

√
s− (ms +ms̄)2

2
√
s

. (5.40)

Eq(5.34) and Eq(5.33, 5.35, 5.36) are one of the central results which I will be
using. It is worth stressing that these results only use the requirements set by freeze-
in. The equations therefore hold independently of whether either of the particles are
self-conjugate or not. It does also not put any constraints on the masses, other than
mχ = mχ̄. It is worth noting that Eq.(5.33) becomes slightly simpler with ms = ms̄.
The in-medium effects due to quantum statistics reside in the G-factor introduced in
Eq.(5.33), setting G = 1 will make it such that the integral over γ in Eq.(5.34) can be
performed analytically, leading to the familiar result given by Eq.(4.22). The fact that
the Boltzmann-equation can be written on the form in Eq.(5.14) which stresses the
analogy to the production term for freeze-out, and at the same time takes into account
both relativistic effects and the quantum statistical factors, is clearly advantageous.
Both from a numerical implementation point of view, but also - as we will see in section
8 - allows for a treatment of DM production from the thermal heat bath through an
off-shell Higgs resonance, which more easily takes into account higher-order correction
than is achieved with the standard formulation.

5.2.2 1→ 2 Processes

For completeness I will also include the case where heavy thermal sector bath particles
decay into FIMPs, i.e. the process a→ χχ̄, where a is the thermal sector bath particle.
This process is seen to correspond to the 2→ 2 process where the particle a is an almost
on-shell mediator, see appendix B. Even though the process has been accounted for

47



in the discussion above, I will show explicitly what the abundance for such a process
is. I begin by looking at the Boltzmann equation describing the process, which from
Eq.(5.6) is seen to be

ṅχ + 3Hnχ =

∫
dΠadΠχdΠχ̄fa|M|2a→χχ̄(2π)4δ4(pa − pχ − pχ̄) . (5.41)

We can use that the decay rate for a is

Γa→χχ̄ =
N−1
χ

2ma

∫
|Ma→χχ|

2
(2π)4δ4(pa − pχ − pχ̄)dΠχdΠχ , (5.42)

where Nχ = 1 if χ 6= χ̄ and Nχ = 2 if χ = χ̄. I want to note that I have not used
inverse-decays in this section, although that would also give the correct result just as
it does for the 2→ 2 case. The Boltzmann equation now becomes

ṅχ + 3Hnχ = 2magaNχΓa→χχ̄

∫
dΠafa . (5.43)

We can perform this integral in the same manner as we did in the 2 → 2 case. We
have

d3p

2Ea
= δ2(E2 −m2

a) sinh2 η E3
a dEa dη dΩ , (5.44)

we find

ṅχ + 3Hnχ =
m3
agaNχ

2π
Γa→χχ̄

∫ ∞
1

dx

√
x2 − 1

e
ma
T
x − εa

. (5.45)

For the Maxwell-Boltzmann case (εa = 0), we see that we get the known result [5]

ṅχ + 3Hnχ =
m2
aTgaNχ

2π
Γa→χχ̄K1(ma/T ) . (5.46)

Which means that the 1→ 2 abundance is given by

Y1→2 =
ga

2π2
m2
aNχΓa→χχ̄

∫ TR

T0

dT

Hs(T )
K1(ma/T ) . (5.47)

We see that we can easily include the quantum effects for Y , i.e. using Fermi-Dirac or
Bose-Einstein distribution for Y , by doing the replacement

K1(ma/T )→ ma

T

∫ ∞
1

dx

√
x2 − 1

e
ma
T − εa

. (5.48)

The fact that the 1 → 2 matches the 2 → 2 process when the Narrow-Width
approximation is used on the mediator when quantum statistics is neglected is discussed
in appendix B. There is no need to use the trick used in the previous section, since
Eq.(5.45) is simple enough to solve numerically and the same higher-order correction
calculations have to be calculated in both methods.
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To summarize, since the 1 → 2 process corresponds to the 2 → 2 process in the
special case where we have an s-channel resonance, I will use the abundance calculated
using the 2 → 2 process going forward. The 2 → 2 process is fully described by the
Boltzmann equation given by Eq.(5.14), including in-medium effects, which will be
very beneficial when I will apply it to the scalar-singlet model in section 8. I will now
introduce finite temperature effects and how this affects phase transitions.
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Part III

Thermal and Higher Order Effects
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Chapter 6

Finite Temperature Effects

One of the attractive features with freeze-out is that for renormalisable couplings,
freeze-out generally occurs when mχ/T ' 10, ..., 30, see figure 4.9. This means that for
a WIMP mass mχ ∼ 200GeV, freeze-out happens when T ' 20...7GeV. This is well
after electroweak symmetry breaking (EWSB) which occurs when T = TEW ≈ 163GeV.
Since the visible sector and DM were in thermal equilibrium until it decouples, the
abundance is independent of the thermal history of the early universe and the effect
from the electroweak phase transition (EWPT) on the abundance is thus erased.
This is why freeze-out calculations only use cross sections calculated assuming broken
electroweak (EW) symmetry, unless multi-TeV DM masses are assumed. For freeze-
in, the yield produced via a Yukawa interaction is usually dominated in the epoch
m/T ∼ 2−5, where m is the relevant mass scale in the DM production process [5], see
figure 5.1. For freeze-it it is no longer the case that the abundance is independent of the
thermal history of the early universe since the visible sector and DM is not in thermal
equilibrium. For a freeze-in mass scale of m ∼ 200GeV, this gives the corresponding
freeze-in temperature T ∼ 100...40GeV, which is why we want to include the fact that
electroweak symmetry is unbroken when T & 163GeV and the contribution to the
DM abundance coming from thermal effects before EWSB. This will be seen to have
a significant effect on the relic abundance.

In this section I will give a review on how to include finite temperature effects in
field theory. The application of these effects will be discussed in section 8. For a more
thorough review see Ref. [112]. I will start by going through the zero-temperature
description, with an emphasis on applying it to the SM and the calculation of the
effective Higgs potential. I will then in section 6.2, show how the thermal contributions
are added and how they modify the effective Higgs potential. Finally, I will show
how this affects phase transitions, mainly focusing on the electroweak phase transition
(EWPT), but I will also describe the QCD phase transition.
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6.1 Zero-Temperature Description

When we want to look at phase transitions in quantum field theories, it is the effective
potential Veff we have to study. The effective potential for a theory with a scalar field φ
is defined in terms of the effective action. To define the effective action, I have to briefly
review generating functionals. A theory described by the Lagrangian density L{φ(x)}
have the following generating functional (using the path integral representation)

Z[j] ≡
∫
dφ exp(i(S[φ] + φj)) (6.1)

where S[φ] =
∫
d4xL{φ(x)} is the usual action and φj ≡

∫
d4xφ(x)j(x). The connected

generating functional W [j] is then defined by

Z[j] ≡ exp(iW [j]) . (6.2)

We can now define the effective action by Legendre transforming W [j] in terms of

φ̄(x) ≡ δW [j]

δj(x)
(6.3)

which is
Γ[φ̄] = W [j]−

∫
d4xφ̄(x)j(x) . (6.4)

The effective action can be expanded in terms of powers of φ̄

Γ[φ̄] =
∞∑
n=0

1

n!

∫
d4x1...d

4xn ¯φ(x1)... ¯φ(xn)Γ(n)(x1, ..., xn) . (6.5)

where iΓ(n) are the one-particle irreducible (1PI) Green’s functions

iΓ(n)(x1, ..., xn) ≡ iδnΓ[φ̄]

δφ̄(x1)...δφ̄(xn)
= 〈φ(x1)...φ(xn)〉1PI (6.6)

For a transnational invariant theory, we can use that

φ̄ = φc (6.7)

since φ̄ is constant. φc is now seen as the classical background field. The effective
potential can now be defined

Γ[φc] = −
∫
d4xVeff(φc) , (6.8)

which can be written in terms of the 1PI Green’s functions

Veff(φc) = −
∞∑
n=0

1

n!
φncΓ(n)(pi = 0) (6.9)
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where Γ(n)(p1, ..., pn) is the Fourier transformed Γ(n)(x). For more details regarding
Γ[φc] and φc refer to Ref. [102, p. 364] or Ref. [113, p. 733].

I want to find the effective potential for the SM of electroweak interactions. This
will be found by using the spin-zero SU(2) doublet of the SM, which is

Φ =

(
χ1 + iχ2
φc+h+iχ3√

2
,

)
(6.10)

where h is the real Higgs field, φc is the real constant background and χa (a = 1, 2, 3)
are the three Goldstone bosons. The potential for the SM is

V0 = −m2Φ†Φ + |Φ†Φ|2 (6.11)

which in terms of the background field is

V0(φc) = −m
2

2
φ2
c +

λ

4
φ4
c . (6.12)

The vacuum expectation value (vev) is found by minimizing V0

v2
0 =

m2

λ
, (6.13)

where both λ and m2 are positive. The mass of the Higgs at tree-level is thus

m2
h(φc) =

d2V0(φc)

dφ2
c

= 3λφ2
c −m2 , (6.14)

which corresponds to the well-known result m2
h(v) = 2λv2 = 2m2. The other particles

contributing to the one-loop effective potential are the W± and Z gauge bosons, the
Goldstone bosons, and the top quark (the contribution from the leptons and the other
quarks is negligible due to their small Yukawa couplings). Their tree-level masses are

m2
W (φc) =

g2

4
φ2
c , (6.15)

m2
Z(φc) =

g2 + g′2

4
φ2
c ,

m2
χ(φc) = λφc −m2 ,

m2
t (φc) =

y2
t

2
φ2
c ,

where g and g′ are the SU(2) and U(1)Y couplings, respectively, and yt is the Yukawa
coupling for the top quark. The one-loop contribution to the tree-level potential is the
sum of all the 1PI diagrams with one loop and zero external momenta. This have to
be calculated for both the scalar (real and complex), fermion and gauge boson case. I
will give the argument for the one-loop contribution coming from real scalars, but the
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arguments for the fermion and gauge boson case are very similar and I refer the reader
to see Ref. [112] for these calculations.

The potential for a model with one self-interacting real scalar field is given by

V0(φ) =
m2

2
φ2 +

λ

4!
φ4 . (6.16)

The Lagrangian describing this model is then just L = ∂µφ∂µφ−V0(φ). Since we have
no three-scalar interactions all the diagrams contributing to the one-loop correction
to V0 will contain one loop with n vertices on the loop, each vertex will contribute
two external legs. n goes from 1 to ∞ and all the diagrams must be summed. For
the diagram with n vertices, we will have n propagators between the vertices, which
contribute the factor in

(p2−m2+iε)n
. We need the factor φ2n

c due to the 2n external lines
and for each vertex we need the factor −iλ/2, where the 1/2 factor is due to the fact
that exchanging the external lines gives the same diagram. The last part we need is
symmetry factors, we get a factor 1/n because of the discrete rotational symmetry (Zn)
and a factor 1/2 because of the Z2 reflection symmetry. Finally, we put everything
together and integrate over the loop momentum:

V1(φc) = i
∞∑
n=1

∫
d4p

(2π)4

1

2n

[
λφ2

c/2

p2 −m2 + iε

]n
(6.17)

= − i
2

∫
d4p

(2π)4
log

[
1− λφ2

c/2

p2 −m2 + iε

]
where the factor i comes from Eq.(6.6). Wick rotating gives

V1(φc) =
1

2

∫
d4pE
(2π)4

log

[
1− λφ2

c/2

p2
E +m2 + iε

]
. (6.18)

Using that the shifted mass is

m2(φc) ≡
d2V0(φc)

dφ2
c

= m2 +
λ

2
φ2
c (6.19)

means that the one-loop correction to the effective potential is

V1(φc) =
1

2

∫
d4p

(2π)4
log[p2 +m2(φc)] , (6.20)

where I have dropped the term that is independent of φc and dropped the index E on
the Euclidean momentum.

The calculation done above is quite easily done for complex scalars, fermions, and
gauge bosons. Applying the result to the SM, we find that the one-loop correction to
the effective potential can be written as [112]

V1(φc) =
∑

i=W,Z,h,χ,t

εini
1

2

∫
d4pi

(2π)4
log[p2

i +m2
i (φc)] , (6.21)
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where we are working in the Landau gauge, εi = 1 (−1) if i is a boson (fermion) and
ni correspond to the total degrees of freedom for a particle species (nW = 6, nZ = 3,
nh = 1, nχ = 1 and nt = 12). Using cut-off regularization to regularise the integrals
together with the renormalization conditions which impose that the minimum of the
potential is at φc = v and that the Higgs mass is given by its tree-level value, gives the
effective potential1 [114]

V1(φc) =
1

64π2

∑
i=W,Z,t

εini

[
m4
i (φc)

(
log

m2
i (φc)

m2
i (v0)

− 3

2

)
+ 2m2

i (v0)m2
i (φc)

]
(6.22)

plus, terms that are independent of φc. We have now the expression for the effective
potential at zero temperature to one-loop order

Veff(φc) = V0(φc) + V1(φc) . (6.23)

6.2 Thermal Contributions

I will now include the finite temperature effects in the effective potential. This is done
by computing the Feynman diagrams using thermal quantum field theory, for a review
see Ref. [112, Sec. 2]. The effective potential at tree-level becomes the same as for the
zero-temperature case, while the one-loop correction has a temperature dependence.
Calculating the thermal one-loop correction to Veff for the real-scalar example means
that we have to use the Feynman-rules from finite temperature field theory. In the
imaginary time formalism, we have that the scalar propagator is given by i(p2 −m2)
where pµ = [iωn, ~p] and ωn ≡ 2nπT are the Matsubara frequencies for bosons. For loops
one has to use iT

∑∞
n=−∞

∫
d3p

(2π)3 (for all the Feynman-rules, see Eq.(147) in Ref. [112]).
This means that Eq(6.20) turns into

V T
1 (φc) =

T

2

∞∑
n=−∞

∫
d3p

(2π)3
log(ω2

n + ω2) (6.24)

where ω2 = ~p2 + m2(φc). The sum over n is divergent, but the divergent part is
independent of φc. By discarding the ω independent terms one finds that the φc
dependent part of the one-loop correction to the potential

V T
1 (φc) =

∫
d3p

(2π)3

[ω
2

+ T log(1− e− ωT )
]
. (6.25)

1The divergence that would have occurred in Eq.(6.22) due to the Goldstone bosons (which is seen
by setting mχ(v) = 0), comes from the fact that Goldstone contribution gives an infinite running of
the Higgs mass between zero Euclidean momentum and p2 = m2

h. We can neglect this contribution
and the Higgs contribution because the Higgs boson self-coupling is small [114].
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The one-loop corrections to the SM effective potential is found by calculating the
one-loop correction for fermions and bosons as well, this can be found in section 3 in
Ref. [112]. Applying it to Eq.(6.21) gives us

V T
1 (φc) =

∑
i=W,Z,t

εini

∫
d3pi

(2π)3

[ωi
2

+ T log(1− εie−
ωi
T )
]
, (6.26)

where ω2
i = ~pi

2 +m2(φc). Using the identity2

1

2

∫
d3p

(2π)3
ω =

1

2

∫
d4pE
(2π)4

log[p2
E +m2(φc)] , (6.27)

we can rewrite Eq.(6.26) to get

V T
1 (φc) = V0(φc) + ∆V (φc, T ) , (6.28)

where V0(φc) is the zero-temperature one-loop correction given by Eq.(6.22) and the
temperature dependent part is

∆V (φc, T ) = T
∑

i=W,Z,t

εini

∫
d3pi

(2π)3
log
[
1− εie−

ωi
T

]
(6.29)

=
T 4

2π2

∑
i=W,Z,t

εini

∫ ∞
0

dx x2 log

[
1− εie−

√
x2+m2

T2

]
=

T 4

2π2

∑
i=W,Z

εiniJB(m2
i /T

2)− T 4

2π2
ntJF (m2

t/T
2), (6.30)

where the thermal function for bosons is

JB(m2/T 2) =

∫ ∞
0

dx x2 log

[
1− e−

√
x2+m2

T2

]
, (6.31)

and the thermal function for fermions is

JF (m2/T 2) =

∫ ∞
0

dx x2 log

[
1 + e−

√
x2+m2

T2

]
. (6.32)

The effective potential including finite temperature corrections is thus given by

Veff = V0(φc) + V1(φc) + ∆V (φc, T ) (6.33)

For m/T � 1, JB has the expansion:

JB(m2/T 2) =− π4

45
+
π2

12

m2

T 2
− π

6

(
m2

T 2

)3/2

− 1

32

m4

T 4
log

m2

abT 2
(6.34)

− 2π7/2

∞∑
`=1

(−1)`
ζ(2`+ 1)

(`+ 1)!
Γ

(
`+

1

2

)(
m2

4π2T 2

)`+2

,

2Found by Wick rotating and taking the derivative with respect to ω. Then integrating over p0 and
closing the integration interval (−∞,∞) in the complex plane picks up the pole at p0 = −

√
ω2 − iε,

which gives the residue 1/2ω.
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where ab = 16π2 exp(3/2−2γE), γE is the Euler–Mascheroni constant, ζ is the Riemann
ζ-function and Γ is the Gamma function. The corresponding high-temperature
expansion for JF is:

JF (m2/T 2) =
7π4

360
− π2

24

m2

T 2
− 1

32

m4

T 4
log

m2

afT 2
(6.35)

− π7/2

4

∞∑
`=1

(−1)`
ζ(2`+ 1)

(`+ 1)!
(1− 2−2`−1)Γ

(
`+

1

2

)(
m2

π2T 2

)`+2

,

where af = π2 exp(3/2 − 2γE). Using these expansions, we can rewrite the effective
potential at high temperatures to one-loop order using Eq.(6.33):

V High−T
eff (φc, T ) = D(T 2 − T 2

0 )φ2
c − ETφ3

c +
λ(T )

4
φ4
c , (6.36)

with the coefficients

D =
2m2

W +m2
Z + 2m2

t

8v2
0

' 1.7× 10−1 , (6.37)

E =
2m3

W +m3
Z

4πv3
0

' 9.4× 10−3 , (6.38)

B =
3

64π2v4
0

(2m4
W +m4

Z − 4m4
t ) ' −4.5× 10−4 , (6.39)

T 2
0 =

m2
h − 8Bv2

0

4D
⇒ T0 ' 163GeV , (6.40)

λ(T ) = λ− 3

16π2v4
0

(
2m4

W log
m2
W

ABT 2
+m4

Z log
m2
Z

ABT 2
− 4m4

t log
m2
t

AFT 2

)
, (6.41)

where logAB = log ab − 3/2, logAF = log af − 3/2 and all the masses are at zero-
temperature. The minimum of V High−T

eff at high temperatures is given by φc = 0, since
T 2 > T 2

0 . This means that the complex Higgs has a thermal mass given by

m2
H(T ) =

d2V High−T
eff

dφ2
c

∣∣∣∣
φc=0

= 2D(T 2 − T 2
0 ) , (6.42)

which will be important to use for temperatures higher than the EWPT temperature.
In the next section I will discuss the effect of low temperatures on the effective potential
and use Eq.(6.36) to discuss the EWPT.

6.3 Phase transitions

In cosmology, phase transitions are essential. The temperature effects of the
electroweak phase transition, which were first realized by Kirzhnits [115], but also
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studied by various others [116–122], can be essential in describing the baryon
asymmetry of the Universe3, which can be generated by a strong first-order phase
transition [124]. It can also, as I will show in chapter 8, be important for the DM
abundance when it is generated by the freeze-in mechanism. At zero-temperature we
know that the potential is minimized when 〈φ〉 = v, where v ∼ 246GeV. However, the
universe has not always been cold or empty, many models of reheating after inflation
predict temperatures high enough to restore electroweak symmetry. This can be seen in
Eq.(6.36) when the minimum is given by φc = 0; this phenomenon is called symmetry
restoration at high temperatures. As the universe cools down the minimum will
change from φc = 0 to φc 6= 0. This happens at the critical temperature Tc = TEW, and
due to the fact that E 6= 0 given by Eq.(6.38), the strength of the phase transition is
[112]

φc
Tc

=
2E

λ
∼ 2000( GeV2)

m2
h

. (6.43)

With a Higgs mass of 125GeV, one finds that the SM has a very weak first order
phase transition since φc/TEW ∼ 0.1. Baryon asymmetry needs a strong first-order
phase transition, a lot of work has therefore gone into looking at models that boost
the strength of the electroweak phase transition, see e.g. Ref. [125] and Ref. [124].

After the phase transition we would like to have expressions for the thermal mass
and vev. The numerical and analytical high temperature expansion value for the Higgs
mass is shown in figure 6.1. It is natural to try setting the mass mh(T )2 = −2mH(T )2,
this is displayed by the red line. This however can be seen to predict a wrong zero-
temperature Higgs mass; this is because the high-energy expansion no longer works
at these temperatures, which can be seen from λ(T ) given by Eq.(6.41). λ(T ) diverge
logarithmically as T < mt. This problem can also be seen for the thermal vev, which
can be seen as a function of T in figure 6.2 together with a plot of the effective potential
for various temperatures. The breaking down of the high-temperature expansion of the
effective potential is seen to give a vev that is too small. In order to get the correct
result, I therefore settled on calculating the Higgs mass and the thermal vev numerically
by minimising the effective potential and calculating:

m2
h(T ) =

d2Veff

dφ2
c

∣∣∣∣
φc=v(T )

.

This is the blue line in figure 6.1. I then tabulated the results and I will use these
for the rest of this thesis. From the numerical calculations we find that the critical
temperature for the SM is TEW ' 163.2GeV. We will see in chapter 8 that these
thermal effects can have an important effect when the DM abundance is produced by
the freeze-in mechanism.

Another phase transition we are interested in is the QCD phase transition, which
occurs when the universe has cooled to a temperature of roughly 154MeV [126]. The

3This does not apply to the SM. It requires a very light Higgs boson (<42GeV) and more CP
violation than is observed [123].
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Figure 6.1: The Higgs mass as a function of temperature solved numerically solved
(blue) and analytically using mh =

√
4(T 2

0 − T 2) (red). The black dash-dotted line
shows the correct zero temperature Higgs mass and the grey solid line shows then
T = TEW ' 163GeV.

running of the strong coupling constant gs, implies that at high temperatures gs is
small enough to treat the system, which is a quark-gluon plasma, perturbatively.
However, as the temperature drops, gs increases in strength and quarks and gluons
will experience colour-confinement and hadronise, which means that the perturbative
description will no longer work. In order to describe the non-perturbative effects, lattice
QCD is often used. An alternative method is to use chiral perturbation theory (ChPT),
which is successful in describing hadron interactions in the non-perturbative regime of
the strong interaction. ChPT is an effective field theory that uses the approximate
chiral symmetry of QCD (and CP -symmetry) in order to construct a Lagrangian that
allows one to study the low-energy behaviour in QCD, e.g. interactions between pions,
nucleons, kaons and other mesons. I will in the next chapter use results from ChPT
for the off-shell decay width of the SM Higgs boson, in order to use the decay width
into mesons when the QCD phase transition has happened.
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Figure 6.2: Top panel: The Higgs vev as a function of temperature. The red line
shows the approximation in the high-temperature limit given by Eq.(6.36). The blue
line shows the numerical solution to Eq.(6.33). The black dash-dotted line shows the
correct zero temperature vev and the grey line marks T = TEW. Bottom panel: The
effective potential given by Eq.(6.33) is plotted for the four temperatures T = 0GeV
(blue), 50GeV (orange), 150GeV (green) and 300GeV (red).
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Chapter 7

Off-shell Higgs decays

In this thesis I will consider a model where we add to the SM a new real singlet
scalar S which is stabilised by a Z2 symmetry. This is the so-called scalar singlet
model (a.k.a. the Silveira-Zee[6] model). This model will be introduced in chapter
8. However, in this chapter I will look at a broader class of DM models which the
singlet scalar model is a part of. Specifically, models where annihilations into SM final
states proceed via a SM Higgs boson in the s-channel, i.e. via an off-shell Higgs boson
that can decay into the various SM fermions and gauge bosons. The total annihilation
cross section is then proportional to the off-shell Higgs width Γh∗(

√
s) ≡ Γh(mh =

√
s),

where
√
s denotes the centre-of-mass energy. It therefore becomes essential to have

an accurate calculation of this off-shell width for arbitrary values of
√
s and for finite

temperatures. I will therefore begin with a discussion of the relevant decay modes and
their implementation for 2 GeV .

√
s . 1 TeV at zero temperature. I then consider

in section 7.2 the case where
√
s � v(T ) and how to avoid unitarity violation in this

limit. Finally, I will in section 7.4 consider the case when
√
s < 2 GeV and how to

include the QCD phase transition.

7.1 Relevant decay modes

In the mass range 2 GeV .
√
s . 1 TeV the off-shell Higgs decay width can be

calculated perturbatively. The 1TeV limit comes from the fact that the Higgs mass
in the SM must be lower than 1TeV in order to maintain perturbative unitarity [127],
while the 2GeV limit will be explained further down. Since the Higgs couplings to
the SM particles are proportional to their masses, the relevant particles for decay and
production processes are the gauge bosons W and Z, the top- and bottom quarks, the
τ lepton and gluons, because of the top-contribution in the loop. The tree-level decay
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widths into fermions are given by [128–130]

Γ(h∗ → ff̄) =
Ncm

2
f

√
s

8πv2

(
1−

4m2
f

s

)3/2

, (7.1)

where Nc = 1 (3) for leptons (quarks). For decays into two gauge bosons V = W,Z
one finds1

Γ(h∗ → V V ) =

√
s

3

32v2π
δV
√

1− 4x(1− 4x+ 12x2) (7.2)

with δW = 2, δZ = 1 and x = m2
V /s. The leading-order decay width into gluons is

given by [129, 130]

Γ(h∗ → gg) =
α2
s(
√
s)
√
s

3

72v2 π3

∣∣∣3
4

∑
q

Ah1/2(τq)
∣∣∣2 , (7.3)

where αs(
√
s) denotes the running strong coupling, τq = s/(4m2

q) and

Ah1/2(τ) = 2(τ + (τ − 1)f(τ))τ−2 , (7.4)

with

f(τ) =

arcsin2√τ τ ≤ 1

−1
4

(
log 1+

√
1−τ−1

1−
√

1−τ−1 − iπ
)2

τ > 1 ,
(7.5)

where Ah1/2(τ) approaches unity for quark masses sufficiently above half the Higgs boson
mass. The decay width into photons can be written in an analogous way but gives a
negligible contribution to the total decay width, since Γ(h∗ → γγ) is proportional to
the weak coupling α(

√
s), not αs(

√
s). The QCD loop-corrections have been studied

thoroughly. They are known up to NLO including the dependence on all the quark
masses [129], while for the heavy quarks they are known up to N3LO [131–133].

In practice, higher order corrections are non-negligible. This is particularly true
for the case that

√
s � v such that the decay into gauge bosons dominates and large

NLO EW corrections arise from the real emission of additional gauge bosons [130]. To
capture these and other effects, we use the tabulated decay widths from HDECAY [134]
with a number of modifications as discussed below.

7.2 Unitarization

The off-shell decay width can, as mentioned in the previous section, not be calculated
perturbatively for

√
s� 1 TeV. This means that the width given by HDECAY becomes

1This expression does not play a role for an on-shell SM Higgs mass of 125GeV, but it does for
off-shell Higgs bosons splitting into on-shell W- or Z-boson pairs.
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unphysical. In order to demonstrate this, I will consider a simple model where the SM
Higgs boson is coupled to a real scalar singlet via

L ⊃ λhs
2
|H|2S2 . (7.6)

This is the same interaction as in the scalar singlet model which will be discussed in the
next chapter. The annihilation cross section into two SM Higgs bosons is for

√
s� v

given at tree-level by [135]

σSS→hhvlab =
λ2
hs

32πs
, (7.7)

where I use that vlab =
√
s(s− 4m2

S)/(s − 2m2
S). The summed annihilation cross

section into all the other SM particles X is given by [128]

σSS→XXvlab =
λ2
hsv

2
0√
s
|Dh(s)|2 Γh∗(

√
s) ., (7.8)

where
|Dh(s)|2 ≡

1

(s−m2
h)

2 +m2
hΓ

2
h

. (7.9)

An important remark is that Eq.(7.8) is valid to leading order in λhs, but the higher
order corrections to the SM couplings are fully encapsulated in Γh∗(

√
s). This becomes

an important effect when
√
s ∼ 2 TeV, see the dotted line in figure 7.1. However, as√

s → ∞ unitarity is broken because any cross section has to fall at least as fast as
1/s and thus Γh∗ cannot grow faster than s3/2. The tree-level widths given in Eq.(7.1),
Eq.(7.2) and Eq.(7.3) does therefore not break unitarity. Using these expressions,
one finds the expected result due to the Goldstone boson equivalence theorem, i.e.
at
√
s � mH the amplitude for the longitudinal vector-boson scattering becomes

equal to the amplitude for the scattering of the Goldstone bosons. The cross section
in the

√
s → ∞ limit after spontaneous electroweak symmetry breaking is given by

Eq.(7.7), which agrees with the cross section obtained when the electroweak symmetry
is restored. This is simply the cross section between S and the complex Higgs, which
is given by

σSS→HHvcm =
λ2
hs

4πs

√
1− 4mH(T )2

s
, (7.10)

where vcm =
√

1− 4mH(T )2

s
and mH is the complex Higgs mass given by Eq.(6.42).

The NLO EW corrections implemented in HDECAY will however make Γh∗ grow too
rapidly, which just means that the higher order corrections become more important to
include for large

√
s in order to restore unitarity. Instead of doing these calculations,

I choose a phenomenological approach to ensure that my numerical implementation
never violates unitarity. I follow the approach from Ref. [136], which ensures unitarity
by replacing the on-shell Higgs decay width in the propagator by the off-shell Higgs
decay width

|Dh(s)|2 ≡
1

(s−m2
h)

2 +m2
hΓh∗(

√
s)2

. (7.11)
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Figure 7.1: Annihilation cross section for the toy model introduced in eq. (7.6) for
λhs = 0.1.

However, in the limit
√
s → ∞ the cross section resulting from this description

decreases faster than 1/s, see the dash-dotted line in figure 7.1, which means that we
do not get the same result as for the unbroken theory at large

√
s. The solution I

implement is thus to combine the two in the following way

σtotal
SS→XX = max

[
σtree
SS→XX , σ

unitary
SS→XX

]
. (7.12)

I believe that this description is as good as it gets without having to use the full NLO
result for T > TEW. The NLO results is non-trivial to calculate and beyond the scope
of this thesis. I expect the same scaling for high energies as we have seen for the
broken electroweak symmetry. However, the effects I am able to include is the NLO
EW corrections for

√
s . 2 TeV, there is no violation of unitarity for

√
s & 2 TeV and

lastly, the tree-level result in the unbroken theory is recovered in the limit
√
s→∞.

7.3 Finite-temperature corrections

The temperature dependence for the off-shell Higgs decay width is rather easily found.
First I want to note that for temperatures above the QCD phase transition, the only
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dimensionful quantity in the Standard Model is the Higgs vev, since all the masses
mf,V ∝ v. It then follows immediately by dimensional analysis that the partial Higgs
decay rate can be written as

Γh∗(
√
s) = vf(

√
s/v) (7.13)

where f(
√
s/v) is just the appropriate function depending on the dimensionless ratio√

s/v. We can thus rescale the zero-temperature partial off-shell Higgs decay width

Γh∗(T,
√
s) = Γh∗

(√
s
v0

v(T )

)
v(T )

v0

. (7.14)

We can again note that a large value of T , can give the same result as the zero
temperature width with a large value of

√
s, this is due to the Goldstone boson

equivalence theorem as discussed before. This means that even though the decay
h → V V is not allowed before EWSB, it will have important effects coming from
higher order corrections in the epoch right after EWSB, because the factor

√
sv0/v(T )

diverges as v(T ) → 0. This means that the modification of the off-shell Higgs decay
width described in the previous section is important to ensure unitarity close to the
EWPT.

7.4 Chiral symmetry breaking

The last thermal effect I want to include is the QCD phase transition. I will use that
the off-shell Higgs decay width calculated using HDECAY is no longer applicable when√
s < TQCD. I take that the temperature for the phase transition is TQCD ≈ 154MeV,

which was found with Lattice QCD in Ref. [126]. For T & TQCD Higgs boson decays
into free quarks and gluons, but this is no longer the case when T < TQCD, unless√
s & 2 GeV. I follow Ref. [137] and [138], and assume that the perturbative description

breaks down when
√
s < 2 GeV. Once this happens, we can use chiral perturbation

theory to calculate the off-shell decay width into QCD bound states. In essence, what
is done is one uses the 3-flavor chiral Lagrangian in order to find the lowest order in
the chiral expansion, while form factors that can be obtained from dispersion relations
are used for higher order corrections. For a thorough review on how this is done I refer
to Ref. [137]. The result of using ChPT for T < TQCD and

√
s < 2 GeV can be seen

in figure 7.2. In the left panel the partial decay width of an off-shell SM Higgs boson
into different final states is showed as a function of its mass at zero temperature below
the bb̄ threshold. For the mass above 2 GeV HDECAY is used to give the partial decay
width to free quarks and gluons, while the tree-level result is given below

√
s = 2GeV.

The contributing quarks will be the charm- and strange quarks since we are below the
bb̄ threshold. These are showed by the orange and purple lines, while the red line shows
the gg contribution. The green line shows the decay rate to ττ . As the mass becomes
smaller than 2 GeV we enter the chiral perturbation theory regime if T < TQCD. Above
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TQCD the Higgs still decays to free quarks and gluons, these partial decay widths are
displayed as the dashed lines. The big jump in the dashed lines is because I switch
to using tree-level results at 2 GeV, because there are a lot of uncertainties at these
energies. The brown line indicates the total decay rate into hadrons given by the
digitization of the result found in Ref. [137]. The dominant contribution until the
resonance is coming from decay into pions (ππ), while above the resonance it is the
Kaon (KK) contribution that dominates. The effect by including decays to hadrons
for T < TQCD and

√
s < 2 GeV can be seen in the thermally averaged cross section

displayed in the right panel of figure 7.2. The solid lines show 〈σv〉 when off-shell
Higgs decays into hadrons for T < TQCD and

√
s < 2 GeV, while the dashed lines

show the result from assuming decays into free quarks and gluons. The grey line
indicates the QCD phase transition, i.e. T = TQCD. The inclusion of the QCD phase
transition can therefore be seen to give a smaller thermally averaged cross section
for small temperatures than one would get if Higgs decays to free quarks and gluons
were to be assumed. This is because for small T , we have that the decay width into
hadrons drop to zero for

√
s ∼ 100 MeV. This means that the annihilation channel

would only have a non-zero contribution from the particles with energies larger than
100MeV which would be in the tail of the distribution. Quarks and gluons will on the
other hand not be Boltzmann suppressed until temperatures are much smaller, which
explains the difference between the dotted and solid lines in the right-hand panel in
figure 7.2. The discontinuity is not surprising since the total decay width before and
after the QCD phase transition is completely independent so there is no reason that
it should match at any

√
s, and it is conceivable that such a discontinuity can happen

due to a first-order phase transition.
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Figure 7.2: Left panel. Partial decay widths of an off-shell SM Higgs boson as a
function of the off-shell mass, with final states as stated in the legend. For

√
s > 2GeV

I use the results from HDECAY [134] (based on the assumption of free quarks and
gluons). In the chiral perturbation theory regime (

√
s < 2TeV and T < TQCD) the

solid brown line indicate the total decay rate into hadrons (mostly pions and kaons)
where I use the digitized results from Ref. [137] which have used chiral perturbation
theory. Above 2GeV the lines indicates the sum of the partial decay rates into gluons
and all kinematically accessible quarks. The dotted lines show the tree-level decay
rates into quarks and gluons which is used if T > TQCD, which is the reason for the
big jump. Right panel. Thermally averaged annihilation cross section as a function of
temperature for the DM masses indicated in the legend. Solid lines display the result
when the off-shell partial Higgs decay width into hadrons is used for

√
s < 2GeV and

T < TQCD. The dashed lines are the result from assuming decay into free quarks even
below the QCD phase transition (indicated by the vertical line).
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Freeze-in of a Scalar Singlet
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Chapter 8

Freeze-in in the scalar singlet model

The formalism I have outlined in the previous chapters have been largely model
independent. In Chapter 5 I outlined what the freeze-in mechanism is and how we
can calculate the relic abundance for any model where freeze-in occurs. The finite-
temperature methods introduced in chapter 6 can be applied to a variety of models,
and it is easily extended to include more particles. Finally, in chapter 7 I outlined
how beneficial it can be to use the off-shell Higgs decay width and how to implement
it. I will now combine all these aspects and apply them to an attractive dark matter
candidate, namely a scalar singlet coupled to the SM. This is one of the simplest
extensions of the SM that can account for dark matter and it is called the scalar
singlet model of Silveira and Zee [6]. I will start by introducing the model and its
parameters. I will then in section 8.2 look at the case where the reheating temperature
after inflation is a lot larger than the Higgs and scalar mass. I will show that the
inclusion of higher order and thermal corrections in fact contribute to enhance and
suppress the DM production, respectively. In section 8.3 I look at the case where the
reheating temperature is smaller than the Higgs mass, which results in the abundance
being produced by off-shell Higgs decays. I will here show that including the QCD
phase transition and the fact that the Higgs decays into hadrons and not free quarks,
in fact suppresses the DM production. I will then in section 8.4 discuss the results I
have found.

8.1 The model

The scalar singlet model [6, 135, 139, 140] adds a new gauge-singlet real scalar field
S to the Standard Model, which is stabilised by a Z2 symmetry. The most general
renormalizable Lagrangian that describes this model is

L = LSM +
1

2
∂µS∂

µS − 1

2
µ2
SS

2 − 1

2
λhsS

2|H|2 − 1

4
λsS

4 , (8.1)
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where H is the Standard Model Higgs doublet. The quartic self-coupling λs is largely
irrelevant for phenomenology and will be irrelevant for my discussions. Most of the
discussions regarding the scalar singlet model have assumed that the scalar is a WIMP,
e.g. Ref. [135, 141, 142]. I will instead be interested in the case where λhs is small
enough such that the scalar singlet never enters thermal equilibrium and its relic
abundance is determined by the freeze-in mechanism.

After electroweak symmetry breaking, we can use that in unitary gauge
√

2H† =
(h, 0), where h is the real scalar Higgs. This means that the scalar potential takes the
form [135]

V =
µS
2
S2 +

λhs
4
S2h2 +

λs
4
S4 +

λh
4

(h2 − v(T )2)2 , (8.2)

where the real Higgs field is shifted by its vev. Since the potential must be bounded
from below, we are provided with the following conditions

λs, λh ≥ 0. (8.3)

The desired symmetry breaking mechanism has that the electroweak gauge group is
spontaneously broken, 〈h〉 6= 0, while the Z2 symmetry is not broken, i.e. 〈S〉 = 0, since
this ensures the longevity of S. This is found to be the case if and only if µ2

s+
1
2
λhsv

2 > 0.
The part of the potential that is dependent on S takes the form (where I have used
that h→ h+ v(T ))

V =
1

2

(
µ2
S +

1

2
λhsv(T )2

)
S2 +

λhs
2
v(T )S2h+

λhs
4
S2h2 , (8.4)

which means that the S-mass is given by

ms(T ) =

√
µ2
S +

1

2
λhsv(T )2 . (8.5)

The processes that contribute to the freeze-in yield are fundamentally different
before and after the EWPT. In the former case, the only process that leads to the
production of scalar singlets is HH → SS. This regime is straight forward to solve for.
The only relevant annihilation cross section is (in the CMS frame) given by Eq.(7.10).

After EWSB a multitude of SM states can contribute via processes like XY →
h∗ → SS. Since these processes are mediated exclusively by Higgs exchange in the
s-channel, we can write the annihilation cross section as [128]

σSS→XY vlab =
2λ2

hsv(T )2

√
s

|Dh(s)|2 Γh∗→XY (
√
s) . (8.6)

where |Dh(s)| is given by Eq.(7.9). Here Γh∗→XY (
√
s) is the partial decay width of a

Higgs with a mass
√
s which was introduced in the previous chapter. This has as we

know, the advantage of including higher order corrections for the SM couplings when
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tables produced with HDECAY [134] as included in DarkSUSY [7] are used. The Higgs
width Γh must include all Standard Model channels and h → SS if ms < mh/2. The
contribution to the invisible Higgs decay width due to the scalar singlet is the channel
h→ SS [128]

Γinv =
λ2
hsv(T )2

32πmh

√
1− 4m2

S

m2
h

. (8.7)

If the SS → hh channel is open, i.e.mS > mh, then we need to include the cross section
σSS→hh. In this case, one has to sum over the Higgs-mediated s-channel, S−mediated
t-channel and u-channel, and the contact SShh diagrams, which gives [7]

σSS→hhvlab =
λ2
hsvH

32π(s− 2m2
S)

[
a2
R + a2

I +
8y2

1− x2
− 2y(aR − y)

x
log

(
1 + x

1− x

)2
]

(8.8)

where

aR ≡ 1 + 3m2
h(s−m2

h) |Dh(s)|2 , aI ≡ 3m2
h

√
s |Dh(s)|2 , (8.9)

y ≡ λhsv(T )2

s− 2m2
h

, x ≡ 2vSvH
1 + v2

H

, (8.10)

vS ≡
√

1− 4mS

s
, vH ≡

√
1− 4mH

s
. (8.11)

Before EWSB we have v(T ) = 0 and thus the only process happening isHH → SS.
When the coupling λhs is small S never reaches thermal equilibrium with the thermal
bath, e.g. if TR = 1016 the scalar will not reach equilibrium if λhs < 10−7 [106].
This should be noted to be dependent on the reheating temperature, if TR is small
the interaction rate is suppressed, which means that the freeze-in formalism can be
used for rather large portal couplings. The differential equation that determines the
yield YS produced from freeze-in is given by Eq.(5.14) (and Eq.(3.42)). It has to be
solved separately for T > TEW and T < TEW, with the continuity of YS imposed
as the boundary condition between the two regimes. For mS < mh/2 one finds
that the dominant contribution to the scalar singlet yield stems from temperatures
T ∼ mh/2 and can be interpreted as equilibrium decays of SM Higgs bosons into pairs
of scalar singlets (see appendix B for the discussion of the correspondence between
1→ 2 and 2→ 2 processes in the case of an s-channel resonance). The resulting relic
abundance of scalar singlets is straight-forward to calculate and the corrections from
finite-temperature and quantum effects is small.

I will therefore focus on the more interesting case that the dominant contribution
does not arise from Higgs decays. This happens either if ms > mh/2, where on-shell
Higgs boson decays into scalar singlets are kinematically forbidden or if ms, TR � mh,
such that the density of Higgs bosons in the thermal plasma are exponentially
suppressed for all relevant temperatures. In the latter case, the processes relevant for
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the freeze-in production of scalar singlets can be written as an effective dimension-5
operator of the form

L ⊃ 1

Λf

f̄fS2 , (8.12)

where Λf = m2
h/(λhsmf ). As a result, we will see that the freeze-in yield becomes

sensitive to the reheating temperature. I will therefore structure the discussion below
according to whether TR � mh (such that the freeze-in yield is independent of TR)
and TR � mh.

8.2 High reheating temperature

The case where the reheating temperature is large has been extensively studied in the
freeze-out scenario [6, 128, 135, 139] and it is the most studied case for the freeze-in
scenario as well [143]. However, thermal effects have been neglected and quantum
statistical factors are usually also neglected (Ref. [144] calculated the relic abundance
using the quantum statistical factors). I am most interested in the case where the
dominant DM contribution does not arise from on-shell Higgs decays. I will thus
compare the results obtained for DM masses above and below mh/2. The freeze-in
production is IR-dominated when TR � ms,mh, meaning that the resulting abundance
is independent of the reheating temperature. This follows from the observation that
before the EWPT and for T � ms the DM production cross section (found by using
unitarity on Eq.(7.10) to get HH → SS) is proportional to 1/s, such that the DM
production rate is proportional to T , since ΓHH→SS = 〈σv〉neq and since all particles
are relativistic neq ∝ T 3 and 〈σv〉 ∝ 1/T 2, which means that it becomes negligible
compared to the Hubble expansion rate at high enough temperatures.

In figure 8.1 I show in the left panel the thermally averaged DM annihilation
cross section for the scalar masses mS = 10GeV (orange) and mS = 300GeV (blue)
which is given by Eq.(5.34) when quantum statistics are included, displayed by the
solid lines, and by Eq.(4.22) when they are ignored, displayed by dashed lines. In
the right panel the resulting change in the DM yield dYS/dx found by Eq.(5.14) and
Eq.(3.42), as a function of inverse temperature is shown. I include the result obtained
by neglecting quantum statistical factors and using Maxwell-Boltzmann distribution
in order to highlight the quantum statistical effects. From the behaviour of dYS/dx
we can see that the scalars are created until some temperature which is dependent on
the FIMP mass. As the temperature decreases the interaction rate Γ = 〈σv〉neq will
decrease and when Γ < H the FIMP abundance freezes-in, i.e. dYS/dx→ 0. There is
as expected qualitatively different behaviour for DM masses above and below mh/2.
For ms = 10 GeV production is dominated by processes involving the exchange of
an on-shell Higgs boson, which can be seen from the rapid increase in dYs/dx for the
orange lines at the Higgs resonance in the right panel of figure 8.1. When T < mh/2 the
yield decreases rapidly, this is because the production rate decreases once the typical
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Figure 8.1: Left panel. Thermally averaged cross section formS = 10 GeV (orange) and
mS = 300 GeV (blue). Dashed lines show when quantum statistical effects are ignored,
i.e. Maxwell-Boltzmann distributions are assumed, and Bose-enhancement/Fermi-
blocking factors are ignored. The grey dashed line shows T = TEW ≈ 163GeV. Right
panel. dYχ

dx
for mS = 10 and mS = 300 GeV. The colours and styles represent the same

as for the other plot.

centre-of-mass energy in the thermal bath becomes insufficient to produce on-shell
Higgs bosons, i.e. when T ∼ mh/2 ≈ 62.5 GeV. When the temperature drops below
mS there will be an exponential suppression in neq which means Γ < H. Note that for
mS = 10GeV there is a decrease in dYS/dx both because production of on-shell Higgs
becomes suppressed and because neq. The dominant contribution comes as expected
from the Higgs resonance T ≈ mh/2. When T � mh/2 the cross section is proportional
to 1/s which means that 〈σv〉 ∝ 1/T 2. Since I use the thermally averaged annihilation
cross section in the Boltzmann-equation given by Eq.(5.14) there is no exponential
suppression in 〈σv〉 as T → 0, instead we will have the same feature as we have seen
in section 4.4. 〈σv〉 can be an expanded in terms of powers of x−1 for non-relativistic
gases, which we can assume as T → 0. this means that 〈σv〉 becomes constant for
small temperatures, which is what we see in figure 8.1. The suppression we see in
dYS/dx comes from the distribution functions T < mS. For ms = 300 GeV, the
virtual Higgs boson must always be off-shell and hence the temperature dependence of
the annihilation cross section becomes more trivial since the exponential suppression
happens before the Higgs resonance. The relevant contributions to the DM abundance
arise from both before and after the EWPT (indicated by the dashed vertical line).
Finally, the quantum statistical factors can be seen to have a noticeable contribution
for dYS/dx in figure 8.1. For T > mh/2 GeV, we can see that the Bose-Enhancement
factors coming from the production from W ’s, Z’s, h’s, and H’s give a sizable increase
in the contribution to the yield dYS/dx. This will result in an increase in the relic
abundance for mS > mh/2. However, if mS < mh/2 then the main contribution to
the relic abundance will come from Higgs decays and the 2 → 2 process producing
the on-shell Higgs is coming from bb̄, which explains the difference between the orange
solid- and dashed lines at the Higgs-resonance in figure 8.1).
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Figure 8.2: Left panel: Thermally averaged cross section for mS = 10 GeV as a
function of T−1. The case when thermal effects are included, i.e. thermal masses
and EWSB, is plotted i blue. The orange lines ignore these effects. The dashed
lines show when quantum statistical effects are ignored. The grey dashed line shows
T = TEW ≈ 163GeV. Right panel: Same plot as above, but with mS = 300 GeV.

The thermal effects are included by using the formalism from chapter 6 and chapter
7. The thermal complex Higgs mass is given by Eq.(6.42) which has to be used for
T > TEW ≈ 163 GeV. As the temperature falls below TEW I use the numerical solution
for v(T ) and mh(T ). The off-shell Higgs decay width that is used is given by Eq.(7.14).
These effects can be seen for masses mS both above and below mh/2. In order to
highlight the thermal effects I show in figure 8.2 the thermally averaged cross section
formS = 10 GeV and formS = 300 GeV for both the case where we include the thermal
effects, displayed by the blue lines, and when we ignore them, displayed by the orange
lines. The EWPT is very noticeable for ms = 10 GeV, but its contribution to the
relic density is small due to the Higgs resonance. When T � TEW we see that the
thermally averaged cross sections agree, this is as expected since v(T � TEW) = v0. As
T → TEW the thermally averaged cross section including thermal effects will become
suppressed since for T ∼ TEW we have v(T ) < v0 and thus all the SM masses become
smaller than their zero temperature masses. The fact that we include thermal masses
for both the Higgs and for all SM particles below T < TEW ensures that there is no
discontinuity at T = TEW. The only process when T > TEW is HH → SS and thus
the only cross section we need is given by Eq.(7.10). If we do not include the thermal
mass for the complex Higgs (i.e. mH(T ) = 0) we would find that for T � TEW the
thermally averaged cross sections would agree. This is because of the Goldstone boson
equivalence theorem. But since the thermal mass for the complex Higgs is included,
we get that there is a ∼ 47% difference between the thermally averaged cross sections
(i.e. the difference between the blue- and red dotted lines at T ∼ 104 GeV). Finally, the
inclusion of thermal effects can be seen in figure 8.2 to make the quantum statistical
effects less important. This is because the thermal mass makes the complex Higgs
less relativistic, which means that the quantum statistical factors will give a smaller
contribution. This can be seen by comparing the difference between the solid lines and
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Figure 8.3: Relic abundance produced by freeze-in for three different couplings:
λhs = 6 × 10−11 (red),λhs = 2 × 10−11 (blue) and λhs = 6 × 10−11 (black). Maxwell-
Boltzmann distribution is assumed for all the particles and Bose-enhancement/Fermi-
blocking factors are ignored. No thermal effects are included either.

the difference between the dashed lines in figure 8.2.

The observed relic density Ωc for given values of λhs andmS is found by integrating
over the right panel of figure 8.1 and using Eq.(4.24). In figure 8.3 I display the
observed relic abundance Ωch

2 as a function of mS for three different values of λhs.
For simplicity I have assumed Maxwell-Boltzmann distributions for all particles, the
result by including the full distribution will be discussed later. We see the expected
result that the abundance is proportional to λ2

hs, since 〈σv〉MB ∝ λ2
hs in the singlet

scalar model, the λ3
hs and λ4

hs terms coming from the t- and u-channel in the SS → hh
cross section is negligible since the coupling for freeze-in is O(10−11). We can again see
that there is qualitatively different behaviour for DM masses above and below mh/2,
most noticeable is the sharp drop at the Higgs resonance mh/2. The fact that the
relic density for mS slightly above mh/2 is significantly lower than the relic density
for mS slightly below mh/2 is because in the former case, DM is solely produced by
2 → 2 scatterings, while in the latter case it is produced by Higgs decays. When the
abundance is produced from Higgs decays we have the expected behaviour that the
relic abundance is proportional to the DM mass, since the DM abundance freeze-in
then T ∼ mh/2 and YS is thus independent of mS. On the other hand, the relic
abundance is roughly independent of the DM mass when it is larger than mh/2. This
is because the abundance freezes-in when T ∼ mS, which means that YS ∝ m−1

S .
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Figure 8.4: Relic density as a function of mS. Solid lines include quantum statistical
effects, dashed lines neglect these effects. The red line is the digitization of the results
from Ref. [144]. In this figure I use that λhs = 2× 10−11 and TR = 106 GeV.

In figure 8.4 I display in the DM relic density Ωch
2 as a function of mS for

λhs = 2 × 10−11 for the case when we include and ignore EWSB. For comparison,
I show the corresponding curves obtained without quantum statistics (dashed) and the
digitized result from Ref. [144] which has used micrOMEGAs. Since the production is
dominated by Higgs decays for mS < mh/2 we get that there is little effect of including
thermal and/or quantum statistical effects. This is because the dominant production
happens when T ∼ mh/2, where both thermal and quantum statistical effects are
small. The story is different for mS > mh/2. Including quantum statistical effects is
seen to increase the relic abundance significantly. In fact, when thermal effects are
neglected, there is almost a factor 2 difference between when we include the quantum
statistical factors and when we do not. This effect is combated by the thermal effects in
the early universe. This is as mentioned because of the Bose-enhancement factors for
the W ’s, Z’s, h’s, and H’s. When thermal effects are included, the quantum statistical
effects increase the abundance merely by a factor ∼ 1.5. This is due to the fact that
including the thermal masses for the complex H will make it less relativistic and hence
its quantum statistical factors will reduce. This is also a reason why the abundance is
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Figure 8.5: Relic density as a function of mS, where the solid lines shows the inclusion
of higher order effects using tables produced by HDECAY to get the off-shell Higgs
decay widths, while the dotted line does not include NLO-corrections. The red lines
include thermal effects, while the blue lines ignore these effects.

smaller when thermal effects are included, compared to when they are not, since the
annihilation cross section will be smaller due to the thermal mass.

The final effect I have included for high reheating temperatures are higher order
corrections to the SM couplings. This is included by using the Γh∗(

√
s) tabulated

using HDECAY [134] which includes NLO-corrections. In order to not break unitarity
I have used the cross section calculated using Eq.(7.12). There is a mild correction
for mS < mh/2 since the dominant contribution to the abundance comes from the
Higgs resonance. On the other hand, for mh/2 < mS < 1.5 TeV the effect can be
important. The effect of the NLO-correction can be seen in figure 7.1, i.e. they start
to become important as

√
s ∼ 1.5 TeV when thermal effects are neglected. The higher

order effects on the abundance can be seen in figure 8.5 when thermal effects are
both included and neglected. There is as expected an increase in the abundance due
to these corrections when thermal effects are neglected. Since

√
s is integrated from

2mS in the thermally averaged cross section, the effect should become important until
σ(SS → XX)unitary < σ(SS → XX)tree due to unitarization. This happens when√
s ∼ 3 TeV which is seen in figure 7.1. This explains the increase in the abundance

until mS ∼ 1 TeV, and the magnitude is expected since EWSB is neglected, which
means that the s-channel Higgs exchange is used up to arbitrarily large

√
s. When

mS > 1 TeV the effect will start to decrease since the energies where the NLO-
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Figure 8.6: Left panel: The observed relic abundance Ωch
2 produced by 2 → 2

scatterings, with the reheating temperatures TR = 5 MeV (orange), TR = 20 MeV
(blue) and TR = 100 MeV (red), where the coupling is λhs = 2× 10−4. The solid lines
show the off-shell Higgs decays into leptons and bosons, while the dashed lines have
off-shell Higgs decays into free quarks, gluons, and leptons. The dotted lines show the
leptonic and bosonic contribution to the relic density. Right panel: The coupling λhs
needed to give the correct relic density (Ωch

2 = 0.12) as a function of mS.

corrections are important start to become kinetically forbidden. Finally, asmS becomes
large enough (mS > 1.5 TeV), the NLO-corrections are no longer kinetically available
and the result is given by the tree-level result, explaining the fact that the solid and
dotted lines converge. Including thermal effects is seen to make the effect of including
higher order corrections a lot smaller. This is because for T > TEW, the tree-level
result is used for HH → SS, which means that the higher-order corrections are not
fully encapsulated. The reason why the red lines converge faster than the blue lines is
because the solid red line uses the temperature dependent vev, which means that for a
vev smaller than the zero temperature vev, we will have that unitarity will be broken
at an energy that is a factor v0/v(T ) lower than the zero temperature energy, this can
be seen from Eq.(7.14).

8.3 Low reheating temperature

The last scenario I will look at is when TR � mh. this means that the relic abundance
cannot be produced by on-shell Higgs decays. The lower bound on the reheating
temperature coming from the Planck data is 4.7 MeV when the neutrino masses are
allowed to vary [145]. I will therefore look at reheating temperatures from 5 MeV to
100 MeV. From figure 7.2 I expect that we will see effects coming from the QCD phase
transition when the off-shell Higgs decay width into hadrons is negligible compared to
the decay width into free quarks and gluons. In figure 8.6 I display in the left panel
the observed relic density Ωch

2 produced by 2→ 2 scatterings with the three reheating
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temperatures TR = 5 MeV, TR = 20 MeV and TR = 100 MeV, where the coupling is
λhs = 2 × 10−4. In the right panel the coupling that gives the observer relic density
as a function of mS. The fact that large portal couplings should cause the dark sector
to thermalize with the SM, is only true for large reheating temperatures. For small
temperatures, the interaction rate is proportional to T 2v2/m4

h � 1, which means that
one can consistently apply freeze-in for rather large couplings. The relic density for all
three reheating temperatures becomes exponentially suppressed when mS � TR. This
comes from the thermally averaged cross section given by Eq.(5.34), since the only
particles with enough energy to produce the scalars lie on the Boltzmann-tail. From
the plot of the thermally averaged cross section in figure 7.2 the abundance is seen to
be dependent on the reheating temperature. This is because the scalars freeze-in when
T ∼ TR , which means that this process is UV dominated and the relic abundance will
be constant with respect to the mass (as long as mS < TR). The relic density will thus
be proportional to m−1

S . The dashed lines show the relic density found by assuming
that the off-shell Higgs decays only into free-quarks, gluons and leptons, i.e. ignoring
the effect coming from the QCD phase transition. From the right panel in figure 7.2 we
expected to see that the effect of including decays to hadrons would start to become
important when T . 100 MeV, since that is the temperature where the dotted and solid
lines start to deviate. For large scalar masses we expect to see that the effect becomes
less important. For TR = 100 MeV we see that the correction to the relic density is
small. This is as expected since the dominant abundance comes from T ∼ TR, since
dYS/dx decreases quickly from T ∼ TR. This can be seen from figure 8.7 where dYS/dx
is plotted for TR = 100MeV and mS = 100MeV in the left panel and TR = 20MeV and
mS = 20MeV in the right panel. It can also be seen in the right panel of figure 7.2,
since the effect is small for T = 100 MeV and the Hadronic contribution and the quark
contribution are both close in magnitude. For TR = 20 MeV, the density set by using
the Higgs decay width to free quarks, is a factor ∼ 38 larger than the abundance set
by using the width to hadrons. This can be understood from the right panel in figure
8.7 since the hadronic contribution has become suppressed while the quark and gluon
contribution is not. The reason to why dYS/dx is not constant for large T , as was
the case for large reheating temperatures, is because the dominant contribution comes
from channels that already are exponentially suppressed, e.g. µµ for TR = 20MeV,
which would not be exponentially suppressed for higher temperatures. The effect of
using hadrons is further enhanced for TR = 5 MeV where the factor is ∼ 128, since
the hadronic contribution is negligible at these temperatures. This is to be expected
from the difference between the dashed and solid lines in figure 7.2. The fact that the
effect of accounting for abundance coming from hadrons instead of quarks and gluons,
becomes smaller for higher scalar masses - see the red and purple lines in figure 7.2 -
can also be seen in figure 8.6 since the difference between the dotted and solid lines
decreases as mS becomes large. The dotted lines in figure 8.6 show the leptonic and
bosonic contribution to the abundance, the remaining contribution comes thus from
hadrons (or free quarks and gluons for the dashed lines). For TR = 5 MeV there is no
contribution from hadrons, which is because for such a small reheating temperature
the energies accessible do not give a contribution using Γh∗→hadrons. On the other hand,
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Figure 8.7: Left panel: dYS
dx

as a function of 1/T for TR = 100MeV and mS = 100MeV.
The different yields are explained in the legends. Right panel: Same as left plot, but
for TR = 20MeV and mS = 20MeV.

when TR = 20 MeV and TR = 100 MeV, the energies will give a sizable contribution
from Γh∗→hadrons. For TR = 100 MeV the contribution from hadrons is seen to dominate,
which is to be expected from the left panel in figure 8.7 since the hadronic contribution
dominate when T ∼ TR. For TR = 20 MeV, the contribution from hadrons and leptons
and bosons are about equal. This is a numerical coincidence since increasing TR will
make the hadronic contribution more important, this can be understood from the right
panel in figure 8.7.

8.4 Summary and Discussion

In the previous sections I have applied the formalism I outlined in sections 5 to 7 to
the scalar singlet model. An important part of this work has been to implement
this formalism as well as the freeze-in Boltzmann equation derived in section 5.2
to the FORTRAN package DarkSUSY [7], for a short introduction see appendix A.
Comparing the results from micrOMEGAs [144] to my results, we can see in figure 8.4
that the Boltzmann equation given by Eq.(5.7) gives as expected the same result as
the standard treatment. The difference between the two descriptions is that Eq.(5.7)
has been written in terms of the annihilation cross section instead of the creation
cross section, as well as using momentum conservation to rewrite the distribution
functions in terms of terms that look like MB distribution functions for the scalars,
together with Fermi-blocking/Bose-enhancement factors for the SM states. This has
two important benefits, it makes for a better numerical implementation and as was
discussed in section 7, higher order effects to SM couplings are easier to implement.
It is important to note that the MB distribution terms for the FIMPs are in fact
not the actual distribution functions, they merely follow from Eq.(5.9) and by using
momentum conservation. Another distinction from the standard treatment where the
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production cross section is used, is the fact that the thermally averaged cross section has
become dependent on quantum statistics, while in the standard treatment, thermally
averaged cross sections are independent of quantum statistics. Instead they appear in
the distribution functions. This new implementation works well when working with
the scalar singlet model, but it remains to implement the possibility of a dark sector
with multiple FIMPs and the possibility of self-interactions in this sector.

The fact that FIMPs have such small couplings to the visible sector makes the
Boltzmann equation a lot easier to solve than for freeze-out. The Boltzmann equation
for freeze-out is non-linear, while for freeze-in one simply needs to make one change of
variables in order to get the solution by directly integrating the equation. However,
FIMPs are never in thermal equilibrium with the visible sector heat bath, which means
that the thermal effects that would be negligible for freeze-out, turn out to have a
lasting impact on the relic abundance for freeze-in. The thermal effects I included
are the electroweak phase transition, thermal masses coming from plasma effects and
the QCD phase transition. For high reheating temperatures it is EWSB and thermal
masses that are important. This was the first case I looked at (TR � mh). I found
that for scalar masses below the Higgs resonance (mS < mh/2), the relic abundance is
independent of the scalar mass, which means that the relic density is proportional to
the scalar mass. This is expected because the abundance is dominantly produced when
T ∼ mh/2. For mS > mh/2 the abundance freezes-in when T ∼ mS which means that
the relic abundance is proportional to mS, and we thus get that the relic abundance
is independent of the scalar mass. This is also as expected since the exponential
suppression begins as T > 2mS, which can be seen from Eq.(5.34). Another observation
is the fact that the relic abundance is proportional to λ2

hs, this is because 〈σv〉 ∝ λ2
hs

for the scalar singlet model, and since λhs is of the order 10−9− 10−12 any λ3
hs and λ4

hs

terms coming from the t- and u-channel in the hh→ SS process are simply negligible.

A new effect included in this work is thermal effects. For temperatures well above
EWSB (T � TEW) the thermally averaged cross section calculated when thermal effects
are included is smaller than the one obtained when thermal masses are neglected. This
is expected from looking at Eq.(7.10), since increasing mH(T ) will decrease the cross
section. When the temperature decreases towards TEW the only channel contributing
to the scalar abundance is the HH → SS channel. For the case where EWSB is
neglected, other channels will start to contribute, which is why the lines starts deviating
in the left panel in figure 8.1. After EWSB v(T ) goes from zero to v0, this ensures
that there is no discontinuity at T = TEW and we will get the usual prescription
as T → 0. The most important aspect of the thermal effects comes when quantum
statistical effects are included. FormS < mh/2 neither thermal nor quantum statistical
effects are important, but for mS > mh/2, they are. The quantum statistical effects
will increase the abundance by nearly a factor 2 when thermal effects are neglected.
This is expected because the WW → SS, ZZ → SS and hh → SS will have Bose-
enhancement factors that increase the yield. Thermal effects will on the other hand
have the opposite effect. The inclusion of thermal effects will decrease the thermally
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averaged cross section for high temperatures, as can be seen in figure 8.2. This fact will
as expected only become stronger when quantum statistical effects are included. This
is because the thermal mass for the complex Higgs makes it less relativistic leading
to smaller quantum statistical factors. The fact that the quantum statistical effect
is inherently linked to thermal effects means that it is essential to include them in
dark matter relic density calculations. The final effect I looked at for high reheating
temperatures was higher order corrections to the SM couplings. This is an important
effect if thermal effects are neglected. For mS < mh/2 this effect is negligible because
the dominant contribution comes from the Higgs resonance. On the other hand, for
mh/2 < mS < 1.5 TeV the effect is important to include, since decay into gauge
bosons dominates when

√
s � v and large NLO EW corrections arise from the real

emission of additional gauge bosons. The NLO-corrections are seen in figure 7.1 to
be extra important when

√
s ' 1.5 TeV. Since s is integrated from 4m2

S to ∞ in
〈σv〉 given by Eq.(5.34) the NLO-corrections will become kinetically unavailable as
ms > 1.5 TeV. This corresponds to

√
s > 3 TeV, which is expected from figure 7.1.

This explains the increase and decrease in the abundance in figure 8.5. Including the
thermal effects changes this importance, at least when higher order corrections to the
process HH → SS are neglected. However, the thermal effects will anyway make the
higher order effects less important since a finite temperature vev is smaller than the
zero temperature vev which lowers the energy where unitarity is broken by a factor
v0/v(T ) as expected from Eq.(7.14). Including higher order corrections to the process
HH → SS remains to be done, which is expected to also increase the abundance when
thermal effects are included.

The other interesting case I looked at was when the reheating temperature is less
than the Higgs mass, resulting in the abundance being produced from 2→ 2 scatterings
via an off-shell Higgs mediator. The range of reheating temperatures I found interesting
was 5− 100 MeV, since the lowest possible reheating temperature is 4.7MeV [145] and
at 100MeV the effects from including the QCD phase transition is starting to become
small. We can see that the inclusion of the QCD phase transition - the fact that
free quarks no longer exist for T < TQCD and

√
s < 2 GeV, and instead we have to

use chiral perturbation theory to describe interactions with hadrons - was important.
This effect is seen to become more and more important as the reheating temperature
is decreased. This is because there is a very clear Boltzmann suppression since all
the masses are bigger than TQCD. When TR ' 100 MeV, the contribution coming
from hadrons is seen to have changed the abundance slightly compared to when the
contributions come from free quarks. This is because the hadronic contribution will
give slightly larger contribution when T ∼ TR which can be seen in the left panel of
figure 8.7. On the other hand, when TR = 20 MeV and TR = 5 MeV, the effect has
become extremely important to include, due to the very clear Boltzmann suppression
of hadrons. This suppression is seen for TR = 20 MeV in the right-hand panel of
figure 8.7 and I get that there is a factor ∼ 38 difference, while for TR = 5 MeV the
factor is nearly ∼ 128. The Boltzmann suppression means that the energies achievable
will give a Higgs decay width into hadrons that is a lot smaller than the decay width
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into quarks and gluons, resulting in a much smaller scalar abundance. The decay
width into hadrons that is implemented now is the digitization of the results from
Ref. [137], which means it remains to implement the analytical results for the partial
Higgs decay widths into hadrons. The fact that the correct abundance for TR = 5 MeV
is given when the coupling is of the order of magnitude λ ∼ O(10−2), means that for
sufficiently large couplings, laboratory searches for scalar singlets, in particular at the
LHC where the centre-of-mass energy is sufficient to produce on-shell Higgs bosons will
be feasible. The strategy that is the most promising to probe sub-GeV scalar singlets is
invisible Higgs decays searches. The invisible partial decay width is given by Eq.(8.7)
from which the invisible branching ration can be calculated as BRh→inv = Γinv/Γtot.
Recently, a combination of searches for invisible Higgs decays at the LHC have found
that BRh→inv < 0.11 [70], which corresponds to λhs < 0.01. In other words, for the
small reheating temperatures considered in this analysis, some of the couplings required
by the freeze-in mechanism is already excluded.

These results show that it is generally important to include thermal effects when
the dominant DM contribution for freeze-in does not arise from on-shell decays.
Without these effects, quantum statistical effects can give a too large contribution
to the abundance, since the thermal mass will make the particles less relativistic and
thus reduce this contribution. If the reheating temperature is small, then effects from
the QCD phase transition will be important to include since the free quark and gluon
contribution will give a too large contribution to the DM abundance. The routines
used to study the scalar singlet model is explained in appendix A, and they are easily
applied to other models that include a FIMP where self-interactions are negligible.
The thermal effects are however model dependent and must be found for the specific
model, but the formalism introduced in section 6 is easily extended to include more
particles.
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Chapter 9

Conclusions

For the past decades DM research has mainly focused on the WIMP paradigm. This
paradigm centres around WIMPs, and if they exist, they would have been in thermal
equilibrium with the visible sector heat bath in the early universe. As the temperature
of the universe cooled down, WIMPs experience thermal freeze-out. The WIMP
miracle and its naturalness has made WIMPs attractive DM candidates. However, the
null results coming from detection experiments and the further shrinking parameter
space have made it imperative to look at other DM production mechanisms. The
freeze-in mechanism is a natural DM production mechanism to look at. For freeze-
in to happen, the couplings have to be magnitudes smaller than for WIMPs because
freeze-in requires that there is no thermal equilibrium between the dark and visible
sector. This naturally explains the absence of any clear DM signal, while at the same
time FIMP models can still explain the observed relic abundance and in some special
cases, be detectable with upcoming high-sensitivity experiments.

In this work, I started by showing that the freeze-in Boltzmann-equation can be
written in a form that is more suitable for numerical implementation and for including
higher order corrections for the SM couplings. By using a mathematical trick, I rewrote
the distribution functions in terms of an auxiliary distribution for the FIMPs, and
instead of using the production cross section, I used the annihilation cross section.
This means that in contrast to the standard treatment, where one has to calculate the
number density for all the particles in the heat bath and the corresponding thermally
averaged annihilation cross section, I only had to use the auxiliary FIMP distribution
and the corresponding thermally averaged cross section. Importantly, this formalism
provides an accurate prescription of the freeze-in mechanism, even though we have
no actual knowledge about the actual FIMP distribution function, other than that
it initially is zero and is negligible compared to the distribution functions for the
bath particles. This description is analogous to the production term in the freeze-
out scenario with Maxwell-Boltzmann distributions for all the bath particles. This,
however, cannot always be assumed for DM particles that are created relativistically,
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which is why I included the relativistic description using the full distribution functions
and included quantum statistics. This description also has the added benefit that
when the FIMP is produced through a Higgs portal, higher order corrections to the
SM couplings can easily be included.

The fact that FIMPs never reach thermal equilibrium with the heat bath means
that thermal events and effects from the early universe will leave a lasting impact on
the DM relic abundance. Events such as the electroweak and QCD phase transitions
were therefore important to include when doing freeze-in calculations. The model
where I studied these effects was the scalar singlet model. This is one of the simplest
extensions of the SM, it simply adds a new gauge-singlet real scalar field. Even though
the model is simple, the effects I include made it a good model to look at. I looked
at two cases; the first case was when the reheating temperature was much higher
than the Higgs mass. this means that the abundance set by freeze-in will be IR-
dominated, i.e. for mS < mh/2, the abundance freezes-in when T ∼ mh/2, because
the dominating abundance comes from decays of on-shell Higgs bosons. This means
that the relic abundance is independent of the scalar mass and thus the relic density
scales as Ωch

2 ∝ λ2
hsmS. I showed that the quantum statistical and thermal effects are

mild, which is due to the fact that the abundance is predominantly produced when
T ∼ mh/2 at which the quantum statistical and the thermal effects are mild. When
mS > mh/2, on-shell h→ SS is kinetically forbidden which means that the abundance
is set by 2 → 2 scatterings and freeze-in when T ∼ mS. The relic abundance is thus
YS ∝ mS, which means that the relic density is independent of the scalar mass. Since
freeze-in happens when T ∼ mS > mh/2, quantum statistical and thermal effects will
be important because bothW ’s, Z’s, h’s, and H’s contribute to the abundance and will
be more relativistic due to the high temperature. I showed that thermal effects also
play an important role since the abundance is predominately produced when T & TEW

and since it is only the HH → SS channel that contributes to the abundance, it
will be smaller than if EWSB is neglected. The thermal effects will counteract the
quantum statistical effects because the thermal Higgs mass makes it less relativistic
and thus reduces the size of the quantum statistical factors. Higher order effects are
also seen to give a contribution when 2 → 2 scatterings dominate. When the scalar
abundance is produced from on-shell Higgs decays, higher order effects are also mild
since the dominant contribution to the abundance comes from the Higgs resonance.
When thermal effects are neglected, I find that the effect becomes negligible when
ms > 1.5 TeV due to unitarization, since the tree-level result is used for

√
s > 3 TeV.

This happens earlier if thermal effects are included because the mass scale that enters
is a factor v0/v(T ) smaller. The abundance is also smaller because tree-level result
is used for the process HH → SS, including higher order effects for this process is
expected to increase the abundance as is seen for the case when thermal effects are
neglected.

The second case I looked at was a reheating temperature much smaller than the
Higgs resonance (TR � mh/2). In this case the resulting abundance is produced
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from 2 → 2 scatterings and is dependent on the reheating temperature, since it
is predominantly produced when T ' TR. Thermal effects can also be seen to
be important when the reheating temperature is low enough such that decays from
hadrons are negligible. This is because if the QCD phase transition is not included,
decays from quarks will give a contribution that gives an abundance that can be a
factor ∼ 128 wrong. An important feature is that for low reheating temperature large
coupling is needed to give the correct relic density required by the freeze-in mechanism,
which means that some of the couplings considered in this analysis are already excluded.

The detailed study of this simple model shows how important it is to include
thermal effects when studying DM abundances that are produced by the freeze-in
mechanism. The main routines that facilitate what has been studied in this work
will with be available with the next release of DarkSUSY. A lot of other models have
particles that can be produced by the freeze-in mechanism. Including thermal effects for
these models and studying the intricacies these effects will have on the DM abundance
would be an interesting future project. Another interesting aspect to study is the
intermediate region between freeze-in and freeze-out, i.e. the region between where
the abundance is increasing and decreasing in figure 5.2. In this region the DM will
thermalise, but too slowly to calculate the abundance assuming that the particle is a
WIMP. However, this cannot yet be done with the existing routines in DarkSUSY, as
it is not covered by the formalism introduced in section 5. Finally, if one includes that
DM can self-interact, there are more effects such as dark freeze-out and reannihilation
that would be interesting to study in terms of thermal effects and phase transitions.

86



Appendix A

Implementation in DarkSUSY

DarkSUSY [7] is a widely used FORTRAN package which is used to calculate properties
of a variety of dark matter particles numerically. In 2018 DarkSUSY 6 [7] was released,
which is a revamped version that focuses on modularity and no longer focuses solely on
supersymmetric neutralino DM. By modularity I mean that the previously hard-coded
Minimal Supersymmetric Standard Model (MSSM) routines are now independent of
the particle physics model that is looked at and improved to look at WIMP-like
particles in the early universe, DarkSUSY is thus one of the go-to packages to use for DM
calculations. I have expanded DarkSUSY to also include a FIMP-like particle, whose
routines will be described below. I start by a review of the structure of DarkSUSY, I
will then outline the new routines and how to use them. For a more thorough review
of DarkSUSY’s functionalities, see Ref. [7].

DarkSUSY Structure

The structure of DarkSUSY is based on a set of routines contained in the library
ds_core which is without any reference to a specific particle physics model, while
all the particle physics information is contained in separate modules. This structure
is very useful because this means that DarkSUSY can use the same routines on a
variety of models. A key ingredient each particle physics module has to supply are
so-called interface functions, which have pre-defined signatures and functionalities. If
a main program that makes use of a routine in ds_core that has to use an interface
function that is not provided by the particle physics module, then those routines will
not compile, and an error will be displayed. Note that not all interface functions have
to be provided by a particle physics module. The ones needed are determined when
the user links the main program to these libraries, e.g. if a main program wished to
calculate the relic density, Ωch

2, of a WIMP, which is done by the routine dsrdomega
found in /src/rd. The particle physics module has to provide the interface functions
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Figure A.1: Illustration of how DarkSUSY is used. Image taken from Ref. [7].

dsanwx and dsrdparticles which provides the effective invariant rate and the masses
and internal degrees of freedom of the coannihilating particles and the location of
possible resonances or thresholds in the effective invariant rate. Another key feature
is the concept of user replaceable functions, which as the name indicates, are functions
which the user can provide in order to replace any function in DarkSUSY. A conceptual
illustration of how DarkSUSY is used is displayed in figure A.1.

I will now provide a short example on how this works in practice. Suppose you want
to calculate the relic density for the scalar in the scalar singlet model where we suppose
the scalar is a WIMP with the massmS and coupling λhs. When you compile your main
program, you have to link it to the core library src/libds_core.a, this is represented
by the black line between the box Main program and DarkSUSY core library in
figure A.1. Linking our main program to the Silveira-Zee module is done by linking to
src/libds_silveira_zee.a, this is represented by the green line in figure A.1. For an
example on a make file that does this, see examples/makefile. If you would like to use
any user replaceable, one would have to remember to include them as well at the linking
stage. The main program must first include a call to the subroutine dsinit in order
to initiate DarkSUSY. Then you would call the routine dsgivemodel_silveira_zee
with λhs and mS as parameters in order to initialize the scalar singlet model with
coupling λhs and mass mS. You would then call dsmodelsetup, which returns error
flags if something went wrong with the initialization. We would now call the routine
dsrdomega provided by ds_core to calculate the relic density. The routine would
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then use dsanwx and dsrdparticles provided by the Silveira-Zee module (this is
represented by the black arrows in figure A.1), or a user replaced function if linked.
Compiling and running the program would now calculate the relic density. If we instead
wanted to calculate the relic density one would get if the scalar was a FIMP we would
have to use the routine dsfi2to2oh2 which I will now introduce together with the
other freeze-in routines.

The Freeze-in module

Most of the new routines for freeze-in calculations I have created for DarkSUSY reside
in the folder src/fi and I have listed the routines used for relic density and abundance
calculations in table A.1. The main routines I provide are the dsfi2to2ab and
dsfi2to2oh2 routines, which calculate the relic abundance resulting from 2 → 2
processes, Y 2→2

χ given by Eq.(5.18) and its resulting relic density Ωch
2, respectively.

These only need three inputs, Tmin which is the lowest temperature assumed, TR
which is the reheating temperature and statistis which have to be set to 0 (1)
to use Maxwell-Boltzmann distributions (Fermi-Dirac or Bose-Einstein distributions)
for the SM particles, which is communicated by the particle physics module. All
other parameters are given by using dsrdparticles. Both the statistics = 0 and
statistical = 1 routine uses modified versions of dsrdthav which calculates 〈σv〉
and resides in src/rd. statistics = 0 uses the function dsrdthav_fi which simply
is the usual dsrdthav given by Eq.(4.22), but it will also integrate up to much higher
momenta than one has to do when studying freeze-out. The statistics = 1 case
uses the function dsrdthav_plasma which calculates Eq.(5.34). Numerically it is very
similar to dsrdthav_fi, but it takes as input dsanwx_plasma instead of dsanwx, which
uses that the cross section with no quantum statistical factors is replaced by the cross
section with quantum statistical factors given by Eq.(5.35). The routines dsfidecab
and dsfidecoh2 calculate the relic abundance Y 1→2

χ and relic density Ωch
2 coming

from a 1 → 2 process, involving a particle s with mass ms decaying with the width
Γs. The routines takes as input Tmin, TR and statistics which is the same as for the
2→ 2 process, but it also has to get the inputs ms, Γs and εs. Future implementations
will either include a routine to find s-channel resonances (thus using 1→ 2) or let the
particle physics modules give this information. The 1 → 2 routines use Eq.(5.47) if
statistics = 0 and the replacement given in Eq.(5.48) if statistics = 1. Finally,
the function dsfi2to2dYdx calculates the value for dY 2→2

χ

dx
and its input is x = mχ/T

and statistics.

For the scalar singlet model, found in the folder src_models/silveira_zee,
I created and added various needed functions and effects. The expression for
dsanwx_plasma has been added by using Eq.(5.36). I made the function dsanGbar
which returns the value for Ḡ given by Eq.(5.39) and it is used in dsanwx_plasma.
The temperatures effects described and used in chapter 6 and 8 has been implemented
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Routine Description
dsfi2to2ab Calculates the relic abundance Y 2→2

χ for a FIMP
produced from 2→ 2 processes, using Eq.(5.18).

dsfi2to2oh2 Calculates Ωch
2 for 2→ 2 processes using Eq.(4.24)

and dsfi2to2ab to provide Y 2→2
χ

dsfidecab Calculates the relic abundance Y 1→2
χ for a FIMP

produced from 1 → 2 processes, using Eq.(5.47)
when Maxwell-Boltzmann is assumed and uses the
replacement given by Eq(5.48) when Fermi-Dirac-
or Bose-Einstein distribution is used.

dsfidecoh2 Calculates Ωch
2 for 1→ 2 processes using Eq.(4.24)

and dsfidecab to provide Y 1→2
χ .

dsfi2to2dYdx Calculates dY 2→2
χ

dx
as a function of x.

Table A.1: Freeze-in routines located in the folder src/fi that are used to calculate
the relic- abundance and density for 1→ 2 and 2→ 2 processes, as well as dY/dx.

in the functions dsanwx and dsanwx_plasma. In order to include the thermal effects,
one has to change the value of phase_par whose default is 1, to phase_par = 2. It is
found in ini/dsinit_module. In order to let the model know what the temperature
is, one has to call the subroutine dsgivemodel_temp. If the temperature T > Tc = 163
GeV, then EWSB has not yet happened and the only process we have is HH → SS.
The thermal mass for the Higgs given by Eq.(6.42) is then used and the cross section
for SS → HH is given by Eq.(7.10). If Tc > T > TQCD we use the broken theory
with the thermal vev and thermal Higgs mass calculated numerically and tabulated,
these tabulations can be found in the folder /data with the names vev_temp.dat
and mh_temp.dat. When T < TQCD it is used that Higgs decays to free quarks
no longer happen and decays to hadrons are used instead. This decay width is
given by the function dssmgammah_hadron_tab, which uses the tabulated result found
in Ref. [137]. Finally, the unitarization procedure outlined in section 7.2 has been
implemented and can be turned on by setting the value of unitar to 2, this is also
found in ini/dsinit_module. All of these functions have been used to make the plots
displayed in chapter 8. The numerical stability has been well tested for the mass ranges
and temperatures displayed in 8, and provides physically sensible results, as discussed
in the main body of the thesis. However, this implementation is only preliminary, and
the routines will form the basis of new capability of DarkSUSY to perform freeze-in
calculations, to be released as DarkSUSY 6.3.
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Appendix B

On-shell Higgs decay

In this appendix I will show that when the freeze-in relic abundance is calculated using
2→ 2 scatterings and we have an s-channel resonance, we will have that Y χ

1→2 = Y χ
2→2

if Maxwell-Boltzmann distributions are assumed. The relic abundance for 2 → 2
scatterings are given by Eq.(5.18) and the thermally averaged cross section is given by
Eq.(4.22). Since the 1 → 2 abundance is produced from decay of on-shell particles, I
believe that setting the mediator almost on-shell will give the same result. I will use
the narrow width approximation (NWA), which for the process χχ̄→ Y → 1, 2 is (see
further down for proof):

σNWA(s) =
gY
g2
χ

16π2m2
Y√

s(s− 4m2
χ)
NχΓY→χχ̄Br(Y → 1, 2)δ(s−m2

Y ) . (B.1)

Rewriting Eq.(5.18) using Eq.(4.22) gives us (for the process 1, 2→ χ):

Y2→2 =
g2
χ

32π4

∫ TR

T0

∫ ∞
4m2

χ

dTds

Hs(T )
σχχ̄→1,2(s− 4m2

χ)
√
sK1(

√
s/T ) . (B.2)

Using Eq.(B.1) to rewrite the cross-section gives us:

Y2→2 on-shell =
gY
2π2

m2
YNχΓY→χχ̄Br(Y → 1, 2)

∫ TR

T0

dT

Hs(T )
K1(mY /T ) . (B.3)

Summing over all the channels will result in summing all the branching ratios, which
gives us:

Y2→2 on-shell =
gYNχ

2π2
m2
Y ΓY→χχ̄

∫ TR

T0

dT

Hs(T )
K1(mY /T ) , (B.4)

which is Eq.(5.47). Hence, the 1 → 2 abundance and the 2 → 2 abundance with an
almost on-shell mediator will give the same result, which is why I have used the 2→ 2
result in the main body of this thesis. This argument relies however crucially on the
MB distribution. Including quantum statistics would mean that finite temperature
field theory has to be used, which is beyond the scope of this thesis.
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B.1 Proof for NWA

Using that the mediator is on-shell, I use the usual Breit-Wigner distribution. This
means that the propagator squared becomes∣∣∣∣ i

s−m2
Y + imY Γtot

∣∣∣∣2 =
1

(s−m2
Y )2 +m2

Y Γ2
tot
≈ π

mY Γtot
δ(s−m2

Y ) , (B.5)

where in the last step the limit Γtot/MY → 0 is used. This means that the cross section
becomes

4Fg2
χσ(χχ̄→ Y → 1, 2) =

2π

Γtot

∑
spin

|Mχχ̄→Y |
2
gY ΓY→1,2δ(s−m2

Y ) , (B.6)

where F is the Møller flux factor and g2
χ comes from averaging over spins. N−1

12 is a
symmetry factor taking into account if particle 1 and 2 are self-conjugate (N12 = 1) or
not (N12 = 2). Now I use that

ΓY→χχ̄ = N−1
χ

∑
spin

1
gY
|Mχχ̄→Y |2

8πm2
Y

|p| ⇒
∑
spin

|Mχχ̄→Y |2 =
8πgχNχΓY→χχ̄m

2
Y

|p| , (B.7)

thus continuing, using that |pχχ̄| = 1
2

√
s− 4m2

χ, we get:

σNWA(s) =
gY
g2
χ

16π2m2
YNχΓY→χχ̄√

s(s− 4m2
χ)

Br(Y → 1, 2)δ(s−m2
Y ) . (B.8)

This result enters in Eq.(B.3).
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