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Abstract 
Purpose: The range uncertainties in proton therapy is a problem in current treatment planning 
of cancer, and is largely due to limitations in estimating stopping power (S) from computed 
tomography (CT) images. With a dual energy CT (DECT) scanning, monochromatic images 
can be provided that can potentially reduce noise and lead to better S estimates. In the current 
work, DECT is employed to investigate the impact of varying x-ray energy in conversion 
from Hounsfield Unit (HU) to S and proton treatment plan quality.  

Methods and materials: We reconstructed monochromatic images from 40 keV to 140 keV 
at 10 keV increments from data acquired by DECT and a 120 kVp CT image for two 
phantoms (Gammex and Quasar). We estimated Hounsfield Units (HU) values of different 
media (HE blood40, HE blood70, HE brain, CT HE solid water, HE blood100, HE adipose, 
lung, dense bone, water equivalent, inner bone, and polyethylene) and calculated the contrast 
to noise ratio (CNR) in each monochromatic image. From these calculations we found the 
monochromatic image with HU values and noise closest to the 120 kVp single energy CT 
(SECT) image. We then simulated a CT scanner in python and found the HU value for 
different media (Soft tissue, Blood, Brain, Inflated lung, Cortical bone, Adipose, and 
polyethylene) for both a monochromatic x-ray beam and 120 kVp x-ray beam. Stopping 
power ratio (SPR) was calculated for corresponding media, which was used to see investigate 
how conversion from HU to SPR changes with energies and noise in an image. DECT and CT 
was also done for two anthropomorphic head phantoms. The HU values for three media (soft 
tissue, bone, air) were collected in four different locations inside the head. These values were 
used to find a standard deviation between the locations. The 120 kVp image was then used to 
make a proton treatment plan for two different targets. The dose plans were recalculated in the 
monochromatic images to see how this would affect the dose calculation. A new HU-SPR CT 
calibration from the two first phantoms were used to see how the dose plan changes with CT 
calibration.  

Results: Measured and simulated Hus corresponded quite well across the different phantoms 
and material inserts. SPR was shown to depend roughly linearly with HU, but the relation 
changed with x-ray energy. In the DECT images a change in HU with energy and material 
compositions was seen a best fit to the 120 kVp SECT image. Comparing the HU-SPR 
relations for 40 keV, 80 keV, 140 keV, and 120 kVp showed a straighter line for the 80 keV 
DECT image. Proton planning with the SECT image series and different DECT images gave 
some variations in proton plan quality. 

Conclusion: Monochromatic images from DECT gave variations in Hus, leading to 
differences in HU-SPR conversion. If not accounted for, this may result in deterioration in 
proton plan quality. Still, DECT may improve proton plan quality if appropriate procedures 
are undertaken.   
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Abbreviations 
Abbreviation Description 
BP Backprojection 
CNR 
CT 
CTDIvol 
CSDA 
CTV 

Contrast to noise ratio 
Computed tomography 
Computed Tomography Dose Index Volume 
Continuously Slowing Down 
Approximation 
Clinical target volume 

DECT 
DNA 

Dual Energy CT 
Deoxyribonucleic acid 

FOV Field of View 
GTV Gross target volume 
HLUT 
HU 

Heuristic look up table 
Hounsfield Unit 

IMPT 
IT 

Intensity modulated proton treatment 
Iterative reconstruction 

MFO Multi field optimisation 
NIST National Institute of Standards and 

Technology 
PBS 
PTV 

Pencil beam scanning 
Planning target volume 

OAR Organs at risk 
RT 
RBE 

Radiotherapy 
Relative biological effectiveness 

SECT 
SFOV 
SFUD 
S 
SOBP 
SPR 

Single energy CT 
Scan field of view 
Single field uniform dose 
Stopping power 
Spread out Bragg peak 
Stopping power ratio 
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1 Introduction	
 

Each year about 20 000 people get diagnosed with cancer in Norway. Surgery, chemotherapy, 
and/or radiation therapy are the three treatments available, whereas about 7000 of the patients 
are treated with radiation therapy as the main treatment or in combination with one of the 
other treatments [1]. 

Cancer cells are cells which proliferate uncontrolled. This genetic error makes it important to 
eradicate all cancer cells during treatment. Radiation therapy, also known as radiotherapy, is 
an important modality for cancer treatment. It attacks the tumour with ionising radiation to 
induce cell death by damaging the deoxyribonucleic acid (DNA) within the cancer cells [2]. 
The main aim of radiotherapy is to give a large dose of radiation to the tumour while sparing 
the normal tissue. Normal tissue includes organs at risk (OAR) and other healthy tissue.  

In radiotherapy (RT), Computed tomography (CT) images are used to image the anatomy of 
the patient in treatment position. With the CT images in treatment planning, it is possible to 
delineate the tumour and OAR as well as to conform the radiation beams so the tumour is 
irradiated while maintaining a low radiation dose to the normal tissue. The CT images are also 
used in calculations of the radiation dose to the patient by providing information about the 
material composition [3]. 

Today the radiotherapy in Norway consists of x-ray radiation (external radiation), 
brachytherapy (internal radiation), and electron therapy. Proton therapy is an upcoming 
treatment technique that may be preferably for many cancer sites due to highly localized 
energy deposition at the proton track end – “Bragg peak”. The coming proton treatment centre 
in Oslo will have a treatment capacity about 850 patients annually when the treatment rooms 
are in operation [4]. To be able to take full advantage of the benefits proton therapy gives, 
current uncertainties in proton range prediction from CT must be further minimized [5].  

The uncertainties in proton therapy are not the same as for photon-based RT. Specifically, this 
relates to the use of CT information to calculate the transport of protons in tissue. Key interest 
is the estimation of Stopping power ratio (SPR), which is a key factor in determining tissue 
radiation dose from charged particles. We have seen developments in CT technology leading 
to the concept of Dual Energy CT (DECT). With this new technology it could be possible to 
get a more accurate tissue characterization with might lead to a more precise conversion of 
Hounsfield Unit (HU; the radiodensity in a given voxel in a CT image) to SPR. The 
hypothesis is that the use of DECT for proton treatment planning would reduce some of the 
uncertainties in proton therapy.  

Today a heuristic conversion of HU into SPR is done by a universal heuristic look-up table 
(HLUT), an additional margin of about 3.5% of absolute range are used clinically to account 
for these uncertainties [5]. Studies have found a higher accuracy for DECT than CT for SPR 
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estimation [6]. DECT acquires two CT acquisitions with different energy (80/140kV) which 
gives the benefit of differentiating between energy-dependent image contrasts. The 
attenuation of x-ray through the material for the two energies will be different, and from 
analysing differences in attenuation it is possible to find the material composition. This 
information can be used to calculate monochromatic images. A monochromatic image is 
reconstructed CT images derived from DECT with different photon energies (keV).  

The main goal with DECT in proton therapy is to obtain a direct SPR calibration to minimize 
the range uncertainties, and by this achieve a more precise dose calculation. As a step on the 
way, clinical implementation of DECT and monochromatic images as the main image type for 
treatment planning is an important part. In this work, we investigated change in HU values for 
monochromatic CT images derived from DECT and 120 kVp CT images, and how the images 
impact the conversion from HU to SPR. Eleven reconstructed monochromatic DECT images 
were investigated. We performed treatment planning using the 120 kVp image basis and 
investigated how the plan changed when changing the CT image basis and HU-SPR 
conversion formulae.  
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2 	Theory	
2.1 Charged	particle	interactions	

Charged particle interactions are important in proton therapy and will be explained in the 
following chapter, which is based on Chapter 8 of Radiological physics and Radiation 
Dosimetry by Attix (2008)  [7]. 

This chapter will focus on the two charged particles; protons and electrons. Protons are 
positively charged particles while electrons are negatively charged particles, in addition the 
proton has a mass almost twice the size of the electron. Charged particles interact by the 
Coulomb force, and since the accelerated charged particles lose its energy almost 
continuously through interactions in the matter, it is possible to roughly characterise a 
pathlength.  

An energetic charged particle can interact in different ways depending on the distance 
between the particle and the atom it will interact with. In figure 2.1 a proton passing an atom 
with a distance b (i.e., the impact parameter), and the radius of the atom a is shown. The three 
dominant interactions are; if the particle passes the atom far outside the radius of the atom 
(! ≫ #), if the particle path is close to the atom radius (!	~#), and if the particle passes close 
to the nucleus (! ≪ #), they are called soft collision, hard collision, and Coulomb force 
interactions with the external nuclear field, respectively.  

   

 

Figure 2.1: Important parameters in charged particle collisions, a; is the classical atomic radius, b is the 
classical impact parameter. The atomic nucleus is the made of protons (in red) and neutrons (in yellow). [7] 
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2.1.1 Soft	Collisions	(! ≫ #)	

In the case of a soft collision, the particle passes the atom with a considerable distance 
compared to the radius, as seen in figure 2.1. The Coulomb force between the particle and 
atomic electrons causes an interaction. Consequentially, the whole atom will be affected. In a 
soft collision the particle will transfer a very small amount of its energy to the atom, with the 
likely outcome for the atom is a distortion, excitation, or ionization of an electron. Soft 
collision is an interaction that happens most frequently in matter, and which will stand for 
roughly half of the transferred energy to the absorbing medium. 

 

2.1.2 Hard	(“knock	–	on”)	Collisions	(!	~	#)	

When b in figure 2.1 is approximately the same as the radius of the atom, it is more likely that 
the particle will interact with a single atomic electron instead of the whole atom, this is called 
a hard collision. The single electron will be ionized from the atom and it will have a 
considerable amount of kinetic energy. This electron is commonly called “delta-ray” and is 
able to move a substantial distance and will have enough energy to experience Coulomb 
interaction on its own. The path of this delta-ray is called a “spur”. If the ejected electron 
originally was in the inner shell of the atom, characteristic x-ray (and/or Auger electrons) will 
also be emitted with the electron. Hard collision is not as common as the soft collision, but the 
total energy amount transferred to the medium will be approximately the same for the two 
collisions. This is due to the higher amount of transferred energy in a hard collision vs. a soft 
collision.  

 

2.1.3 Coulomb	force	interactions	with	the	external	nuclear	field	(! ≪ #)	

The probability of interaction between the proton and the nucleus is very small, and for this 
inelastic collision to take place the particle energy must be sufficiently high (~	100)*+). 
When the particle hits one or more nucleons (protons or neutrons), the latter might be ejected 
from the nucleus. The target nucleus may decay from its excited state by emission of particles 
and ,-rays.  
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2.1.4 Stopping	Power	

Stopping power (S) describes the energy loss for charged particles as they travers a medium. It 
is defined as the energy loss (of the charged particle) per unit length, see equation 2.1.  

 

- = 	− !"

!#
              Eq. 2.1 

 

The typical unit for the stopping power is  
$%&

'(
 . In Attix [7] the mass stopping power is given 

by the Bethe-Bloch formula:  
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Mass stopping power has unit  
$%&⋅'(#

<
 , which thus is independent of the density of the 

absorbing medium. Mass stopping power equation includes both soft and hard collisions. In 
table 2.1 the definition of the different variables used in equation 2.2 are listed. 
 

Table 2.1:Parameters and definitions in the Bethe-Bloch formula. 

Symbol Definition 

@  Mass density of the absorbing medium  

A.B
CD   Number of electrons per gram of the stopping medium 

I Mean excitation energy of the absorbing medium 

z Charge of the particle (proton) 

3%4+  Rest energy of the electron [0.511MeV] 

412*
+  A constant  

T Kinetic energy of the proton 

M0c2 Rest energy of the proton [938.28 MeV] 
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For the Stopping power we then get:  
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were @% = (,!-
.
⋅ @) is the electron density, i.e., the number of electrons per unit volume. 

Schneider’s [8] key article was used for understating how the stopping power was dependent 

on the electron density. But the article erroneously reported  
,!-
.

 as the electron density per 

volume.  

To calculate the pathlength or range of the proton, stopping power is used. Range straggling 
affects the pathlengths of the protons and is a result of stochastic variations in rates of energy 
loss. 

2.1.5 Range	

Definitions (p. 180 Attix) of the concept charged particle range: 

The range R of a charged particle of a given type and energy in a given medium is 
the expectation value of the pathlength p that it follows until it comes to rest.  

The Continuously Slowing Down Approximation (CSDA) range is used to calculate the range 
via the mass stopping power:  

T=>?. 	≡ 	V H
EW
@EG

J
32

	EW

7$

*

 

The pathlength is inversely proportional to the stopping power. Range straggling affects the 
pathlengths of the protons and is a result of stochastic variations in rates of energy loss. 
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2.2 Physics	of	x-ray	production		

To be able to understand the physics behind a CT scanner and simulate x-ray attenuation, the 
production of x-rays is an important step, and are elaborated here. It is based on Chapter 9 of 
Radiological Physics and Radiation Dosimetry by Attix (2008)  [7] and Chapter 4 of 
Handbook of Radiotherapy Physics (2007) [9]. 

2.2.1 Bremsstrahlung	X-rays	

X-rays used in a CT-unit is equivalent to bremsstrahlung produced in an x-ray tube. Inside the 
tube its vacuum, and by setting a voltage V across the tube an electron beam is accelerated 
and allowed to strike a metallic target (the anode). The electrons are generated with a hot 
cathode. The photon energy spectrum will depend on the kinetic energy of the electrons 
which is dependent on the tube voltage (kinetic energy = e x V). A fraction of the kinetic 
energy of the electron will be transformed into bremsstrahlung x-rays, and the rest will be 
degraded to heat in the target. To convert a larger fraction of energy into x-rays a target with 
high atomic number should be chosen, but at the same time the target needs a high melting 
point. A common choice for the target is Tungsten (Z=74). 
 

2.2.2 Kramer’s	spectrum	

Kramer’s spectrum is a simplification of the x-ray spectrum produced by bremsstrahlung and 
might be used in an x-ray spectrum simulation. As a criterion, the probability for an 
interaction is the same for all locations in figure 2.2. If the electron interacts close to the 
nucleus, as trajectory 1 in figure 2.2, its trajectory will be bent more than if it hit further out 
from the nucleus, trajectory 2 in figure 2.2. 

 

Figure 2.2: X-ray production from bremsstrahlung. An incoming electron will be bent due Coulomb forces, 
and an emission of photons takes place. Here two incoming electrons is illustrated with trajectory 1 and 2. 
The photon energy will be larger for ℎ"! than for ℎ"".  
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The location of the interaction give rise to the amount of energy transferred from the electron 
to bremsstrahlung x-ray, i.e., in the figure 2.2 ℎY2 > ℎY+. This gives the energy 
approximation:  

ℎY	~
1
2

 

 

were ℎY is the photon energy, and r is the distance from the nucleus. From this the ratio 
between x-ray energy in r1 and r2 becomes:   

 

ℎY2
ℎY+

=	
2+
22

 

 

Furthermore, the number of electrons N that will interact with a small annulus at radius r with 
thickness [2 is proportional to the area A of the annulus:  

 

C = 212	Δ2	
!	~	$	~	%		

 

The energy fluence of bremsstrahlung photons generated from electrons passing a distance r 
from the nucleus is: 

Ψ = A ⋅ ℎY	 ≈ A ⋅ ℎY 

Thus, the ratio of energy fluence at two distances is: 
 

Ψ2
Ψ,

= 82 ⋅ ℎ:2
8, ⋅ ℎ:,

= ,2
,,
⋅ ,,,2

= .;3<=#3= 
 

Thus, the x-ray energy fluence will be constant (i.e., the energy fluence spectrum is flat) when 
the electrons traverse an infinitely thin material. In a real situation, after the electrons have 
traversed the first layer of anode, the maximum kinetic energy of the electron will decreases, 
but the same procedure will repeat itself throughout the complete target. When adding up to 
the flat photon energy fluence spectrum for each layer of the anode, the total spectrum will 
thus take a linear form as in figure 2.3. This unfiltered spectrum is called Kramer’s spectrum 
(Kramers, 1923) and is given by:  

 

Ψ = _(ℎY(@# − ℎY)            Eq. 2.4 

 

The different variables in equation 2.4 are described in table 2.2. 
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Table 2.2: Parameters and definitions in Kramer’s spectrum.  

Symbol Definition 

Ψ Photon energy fluence  

ℎY(@# Maximum photon energy, corresponding to the x-ray tube voltage 

ℎY Energy of the photon 

K Constant 

 

 

Figure 2.3: Unfiltered energy spectrum produced by Kramer’s law. 
 

In a clinical setting the photon beam is often filtered, and this will modify the photon energy 
fluence spectrum. In this case, the lower energies will be absorbed in the filter. The filter 
often consists of a material with a relatively high atomic number, and the photoelectric effect 
will be the main interaction for low energy photons (this will be further explained in chapter 
2.3.2). 
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2.3 Photon	interactions	(uncharged	ionizing	radiation)	

To produce medical images which will be used in this thesis, photons with energies of 120 
kVp will be used. An introduction of photon interaction will be presented but due to low kVp 
energies pare production will not be mentioned. This chapter is based on Chapter 3 and 7 of 
Radilogical Pyhsics and Radiation Dosimetry by Attix [7], part A Chapter 4 of Handbook of 
radiotherapy physics by Mayles et al [9]. 

When an x-ray beam passes through a medium, an interaction between photons and a medium 
is possible, which results in energy transferred to the medium. The photons lose their total 
energy in relatively few large interactions. The probability of these interaction taking place is 
given by a concept called attenuation `, which is relevant primarily to these uncharged 
ionizing radiations. From the energy transfer between photons and medium an electron often 
is ejected, and the high-speed electron will transfer its energy by many ionizations and 
excitations of the atoms along its path. These ionizations and excitations may lead to 
detrimental effects if the medium is body tissue. The probability of interaction with a target 
entity is usually expressed in terms of the cross-section a. The photon interaction is of interest 
since a photon beam traversing a patient gives rise to a CT image.  

2.3.1 Attenuation	

To explain the concept of attenuation, imagine that a monoenergetic parallel beam consisting 
of N0 uncharged particles are incident perpendicularly on a flat plate of absorber with a 
thickness l. For an illustration see figure 2.4. At a fixed (long) distance on the opposite side of 
the absorber, a small detector is located. Only photons which have not interacted with the 
absorber (primary photons) are measured by the detector, the scattered photon will not reach 
the detector since the distance is long and the detector is small. Thus, if a photon interacts 
with the absorber it will either be absorbed or scattered away from the detector.  

 

Figure 2.4: Simple exponential attenuation through an absorber with thickness L. N0 is the number of 
uncharged particles with a trajectory into the absorber, and N is the number of uncharged particles who 
manage to traverse the abosrober. 

Let ` ⋅ 1 be the probability that an individual particle (photon) interacts in a unit thickness 
absorber traversed. Then `E8 will be the probability that it will interact in an infinitesimal 
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thickness E8. The reduction in number of photons (EA) is proportional to the number of 
incident photons (N) times the thickness of the absorber (E8), mathematically:  

 

EA ∝ 	A	E8            	

EA = 	−` ⋅ A	E8	                     Eq. 2.5  	

 

where ` is a constant of proportionality called attenuation coefficient, and has the unit cm-1 or 

m-1, and dl is correspondingly in cm or m. The minus sign indicates that the number of 

photons decreases as the absorber thickness increases. Equation 2.5 can be written as: 

!,

,
=	−`	E8       Eq. 2.6	

 

Equation 2.6 gives the fractional change in N due to the absorption and scattering of photons 

in dl. To solve this differential equation an integration over the depth x from 0 to L, and the 

integration over particle population from N0 to NL, it gives: 

 

V
EA
A

=	−V`E8	

A

*

,B,&

,B,$

													

lnAA − lnA* =	−`e	

*CD
,&

,$8 = *3EA	

,&
,$
= *3EA	           	

AA = A**3EA         Eq. 2.7 

This is the law of exponential attenuation. It is stressed that this only provides a measure of 
the number of primary (non-interacting) photons at a given depth.   

2.3.2 Photoelectric	effect	

When a photon is absorbed by an atom it results in one of the orbital electrons to be ejected, 
which is called the photoelectric effect and is illustrated in figure 2.5. When one of the orbital 
electrons are ejected there will be a vacancy in the shell, this vacancy will be filled with an 
electron from another shell. In this process the atom will emit either characteristic x-ray or 
auger electron, depending on which shell the vacancy is in. 
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Figure 2.5: Photon interaction with an atom, where the photon is absorbed and an electron is emitted. This 
interaction is called a photoelectric absorption and is mainly dominant for photons with low energy.   

 

When the photons interact with the atom via the photoelectric effect it will essentially transfer 
all of its energy to the atomic electron. The kinetic energy of the ejected electron is equal 
to	FF = ℎY − FG, where ℎY is the energy of the incident photon and EB is the binding energy 
of the electron. These types of interactions can take place with electrons in the K, L, M, or N 
shell. From Bohr’s atom model we know that the binding energy of the electron depends on 
which shell the electron is located, and also what type of medium the target is.  

For the photoelectric absorption the cross-section per atom, aHI,, depends strongly on the 

atomic number and photon energy, and it is approximately proportional as:  

aHI
@
∝ H

B
ℎY
J
K

	 

2.3.3 Compton	scattering	

In Compton scattering the photon interacts with a “free” atomic electron, in this case the 
binding energy of the electron will be much lower than the energy of the photon. The electron 
in this interaction will receive some energy from the photon and is emitted at an angle, while 
the photon will be scattered in another direction. See figure 2.6 for a schematic view of the 
interaction. 

Since the Compton scattering involves a free electron in the absorbing medium, it is 
independent of the atomic number Z for the cross-section per electron. This result in a 
proportional dependency for the cross-section per atom, a' ∝ B. From this it follows that the 

Compton mass attenuation coefficient (a= @D ) is independent of Z and only depends on the 

number of electrons per gram. The number of electrons per gram is approximately the same 
for most materials except hydrogen. 
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Figure 2.6: An illustration of Compton scattering. Here a photon interacts with a “free” electron, this results 
in both particles being scattered in different angle.  

 

2.3.4 Coherent	scattering	–	Rayleigh	scattering	

The incident beam of photons (electromagnetic wave) will, while passing close to the 
electron, set the electron into oscillation. The electron will oscillate at the same frequency as 
the electromagnetic wave and reradiate (emit) the energy in the same frequency as the original 
electromagnetic wave. This implies that no energy is changed into electronic motion and no 
energy is absorbed in the medium. The only result is the small angles of the scattered photons. 
Coherent scattering is most probable in high-atomic number materials and for photons of low 
energy. The mass attenuation for Rayleigh scattering is: 

aL
@
	∝

B
(ℎY)+

 

 

2.4 CT	

This chapter is based on Computed Tomography by Kalender [10] and Webb’s physics of 
medical imaging by Flower, M.A (2012)  [11] 

Computed tomography (CT) scanner is a medical device to acquire images with information 
about the anatomy inside of the patient. The CT scanner consist of a gantry shaped as a 
doughnut, housing the appliances used to acquire the image and is illustrated in figure 2.7. A 
tabletop moves the patient through the gantry while the appliances is continuously rotating 
inside the gantry. The most important appliance in the gantry is the x-ray tube and detector, 
which generates and detect the photons. The tube and detector are placed perpendicular and 
moves continuously in the gantry. The acquired images are often used in medical situations as 
radiation therapy, for delineation but also for dose calculation.  
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Figure 2.7: A schematic view of a CT scanner. The gantry houses both the x-ray tube and the detector, which 
can be continuously rotated inside the gantry. The x-ray tube produces a fan shaped beam. In the CT scanner 
a tabletop which can position the patient into the gantry is an important part.  
 

An important difference between CT scanners used in radiotherapy and diagnostic is the 
tabletop. In radiotherapy one has to be able to reconstruct the CT image when the patient lays 
on the tabletop to receive therapy, due to this the tabletop in a CT for radiotherapy has to be 
flat, and not curved as in figure 2.7.  

 

2.4.1 Basic	principles	of	CT	

When acquiring a CT image, the x-ray beam produces a range of photons with different 
energies to traverse through the patient. As the photon beam traverse the patient some of the 
photons might interact with the tissue and be absorbed, while other photons manage to 
traverse the patient without interaction. These photons, who has not interacted will be 
detected in the detector and contribute to a photon intensity. As the x-ray tube and detector is 
rotating the photon beam is continuously traversing the patient, as a result projections from 
each angle around the patient is obtained. The projections are used to reconstruct the 
attenuation coefficient, and to characterise what type of anatomical structure is in the patient. 

Photon intensity gives the probability of traversing the patient without interacting, and this 
probability is dependent upon the sum of x-ray attenuating properties of all the tissues along 
the trajectory of the x-rays.   

The basic principle behind a CT is measuring the spatial distribution of the attenuation 
properties from different directions and to compute superposition-free images from these data. 
In a CT the primary intensity N0 and the detected intensity N is known, from this the 
attenuation along the path. In chapter 2.3 attenuation was explained, and by rearranging 
equation 2.7 the equation for attenuation is given as:  
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` = 2

#
	 ⋅ 	 ln 5,$

,
6     Eq. 2.8 

 

for a simple homogeneous object, with monochromatic radiation and is called an attenuation 
profile. In an inhomogeneous object the attenuation will depend on the different materials in 
the path of the x-ray. The linear attenuation coefficient is also dependent on photon energy, 
which may be a source to problems such as beam hardening. But it is also an advantage for 
Dual Energy CT (DECT), where material-selective measurements are done.  

In the CT the projections are measured continuously and transferred to a data processing unit 
when the system is rotating around the patient. A CT scanner typically measure around 3500 
projections with 600 – 1200 data points per projection.  

From the projection data it is still unknown how the attenuation is distributed through the 
trajectory of the photon, and an inverse transformation has to be carried out to determine 
`(G, g). Both filtered (convolution) back projection and iterative method are used for this 
purpose. 

Filtered back projection use the obtained projections and add them to an empty image matrix 
along the angle which they were acquired to reconstruct the attenuation profile. While the 
main aim in iterative reconstruction is to adjust real time measurements into agreement with 
an image assumption made prehend.  

 

2.4.2 Hounsfield	Unit	

The CT measures and computes the spatial distribution of the linear attenuation coefficient 
`(G, g). But ` (physical parameter) is not very descriptive and is strongly dependent on the x-
ray energy used, making a direct comparison of images obtained on scanners with different 
voltages and filtration limited. Therefore, the computed attenuation coefficient is displayed as 
a so-called CT value relative to the attenuation of water. This so-called CT value is named 
after the inventor and is specified in Hounsfield units (HU). For an arbitrary material M with 
attenuation `$, the CT value is defined as:  

 

hW	i#8j* = E'3E()*"+
E()*"+

⋅ 1000	kl      Eq. 2.9 

 

From this equation water and air have the CT value 0 HU and -1000 HU respectively. These 
values are independent of the energy of the x-rays and therefore constitute the fixed points for 
the CT value scale. The Hounsfield scale do not have a lower limit, but for medical scanners 
it is normal to have -1024 HU and +3071 HU, respectively. If a digital bit resolution of 12 
bits is used, this results in 4096 (= 22+) different CT values. 
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2.4.3 Principles	of	sectional	imaging	

In a CT scanner the photon beam from the x-ray tube is shaped as a thin fan beam. This 
property of the beam makes it possible to acquire a CT image of a thin slice in the patient 
body. The photon beam will only pass in the direction that are contained within the plane of 
the slice, and at the same time no other part of the body outside the planar slice will be 
exposed by the primary photon beam. As a result of this a sectional image of the human 
anatomy with a spatial resolution of about 1 mm (chosen by the radiograph) and a density 
(linear attenuation coefficient) discrimination of better than 1% is made.  

The continuously rotation inside the gantry of both the x-ray tube and the detector is a third-
generation scanner, and is the only type of scanner that will be used in this thesis. The fan 
beam has a typically field of view of 50 cm, which the entire detector covers. Together with 
the moveable tabletop it is possible to continuously acquire CT images as the patient is 
translated through the scan plane. This is called a spiral mode, but also known as a helical 
mode due to the shape of the path around the patient.  

2.4.4 Image	quality	

A quantitative determination of the image quality will make the process of comparing images 
easier. In this thesis the following quantitative metrics will be discussed as they are the most 
important [12].  

Image noise is defined as fluctuation of CT numbers around a mean CT number in a CT 
image. This can be expressed with standard deviation a: 

Amno* ∝ a = 	p∑(#,3	#̅)#

P32
             Eq 2.10 

 

and the different variables are defined in table 2.3. 
 

Table 2.3: Defining the variables used in equation 2.10 

Symbol Definition 

GQ  CT number for a pixel i 

G̅  Mean CT number of the pixels 

n Total number of pixels  

 

This property is the magnitude of image noise, but do not describe the frequency content of 
the noise.  

Contrast to noise ratio (CNR) can be defined as the difference in CT number between the 
object G̅R, and the background G̅I, divided by the noise a: 
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hAT = 	 #̅-3	#̅.
S

      Eq. 2.11 

 

A parameter that affects the noise in a CT image is how many photons are traversing the 
medium, field of view (FOV). The number of photons traversing material increases with 
higher current [mA], and a higher number of photons will reduce the noise in the images. 
Also, the pitch contributes to the number of photons traversing the medium, for q < 1 the 
projections will overlap, which mean a higher number of photons will travers the medium 
than if q > 1. The pitch is defined as:  

r = 7

I
          Eq. 2.12 

As seen, it depends on both the table increment T and the slice thickness b.  

The photon beam traversing the patient will contribute to a dose delivery in the patient, this 
amount is much lower than the dose from the radiation therapy. From a clinical perspective 
this is not an important factor, but it will give some information about the quality of the CT 
image. The total dose to the volume is measured in Computed Tomography Dose Index 
Volume (CTDIvol) and will be given for the phantoms used in this thesis. 

 

hWsQTUV =
1
t
	H
1
3
hWsQ2**,' +

2
3
hWsQ2**,HJ	 

 

A CT image is a 512x512 image matrix with a voxel size depending on the field of view 
(FOV), matrix size and the slice thickness. A large voxel size reduces the noise but makes it 
harder to differentiate the details. Whereas a small voxel size will increase the noise but give 
a highly detailed image. The reason for the increased noise is the lower number of photons in 
each voxel. This gives that a larger FOV will give a higher voxel size since 
 

+mG*8o	onK* = 	
wx+

)#y2nG	onK*
 

 

2.5 Dual	Energy	Computed	Tomography	(DECT)	

This chapter is based on Spectral Computed Tomography by Heismann et al (2012) [13] and 
Dual energy CT in oncology by De Cecco et al (2015) [14]. 

In a dual energy CT (DECT) two acquisitions with different energy (kVp) is acquired, see 
figure 2.8 for a schematic illustration. The motivation behind DECT is that the two radiation 
beams are attenuated differently through the body, and by combining information from these 
two images, a reconstruction of other image types is possible. In this thesis the focus is on 
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monochromatic (keV) images since we want to see how the HU values changes for 
monochromatic images compared to the HU values in a conventional CT image.  

A conventional CT acquires an image of an area in a few seconds, meaning an image of linear 
attenuation throughout the structure. Today a 120 kVp CT image is the primary used dataset 
in treatment planning for radiotherapy. One of the challenges with CT is that it only reveals 
the patient´s morphology, but no information about the chemical composition which is 
important part of proton treatment plan.  

 

Figure 2.8: Schematic view of a DECT scanner. Two x-ray sources and two detectors perpendicular to each 
other, are rotating simultaneously inside the gantry. The patient is located in the centre of the gantry.  

 

2.5.1 Basic	

The x-ray attenuation through the material depends mainly on three different parameters, type 
of material, density, and x-ray spectrum. To obtain best possible spectral separation one 
should use spaced kVp settings, most commonly 80 kVp and 140 kVp is used since this 
typically will give best spectral separation and is available on most DECT machines. Today it 
is also possible to use 70 kVp on some scanners, and for an even better separation a tin filter 
is used on the high energies. For low energies the photoelectric absorption will be 



2.  Theory   

 

19 

predominant, but for higher energies the Compton scattering will be predominant. This results 
in an attenuation combined of these two interactions: 

 

`(F) = `=(F) + `HI(F) 

 

which can help characterise the material composition of the tissue. Moreover, two-material 
decomposition images can be obtained, which will be used to produce monochromatic 
images. The basic assumption of the two-material decomposition is that the mass attenuation 
E

)
 of all materials can be expressed with sufficient accuracy as a linear combination of the 

photoelectric and Compton attenuation coefficients. As a consequence,  
E

)
 of any material can 

be expressed as a linear combination of  
E

)
  of two basis materials, where both materials differ 

in their photoelectric and Compton characteristics. An appropriate selection of materials is 
recommended, to minimize noise amplification. Ideally, one material will have a strong 
dependence on the photoelectric effect (e.g., calcium or iodine) whereas other material has a 
strong dependence on the Compton scattering (e.g., water). The attenuation is energy 
dependent, and by use of different values of the x-ray tube voltage, the energy spectrum of the 
x-rays will be different. Also, the x-ray quanta will interact with matter in different ways. 

In CT, each ray (represented by the line integral L) from the x-ray source to the respective 
detector element can therefore be expressed as a linear combination:  

 

e(F) = 5E
)
6
2
(F) ⋅ @2 ⋅ y2 +	5

E

)
6
+
(F) ⋅ @+ ⋅ y+      Eq. 2.13 

 

Where 
E

)
  is the energy absorption coefficient, and @2 ⋅ y2 and  @+ ⋅ y+ are the product of 

density and thickness of materials 1 and 2, respectively. If one measures L at two different 
energies, the above equation can be solved, and information about density and thickness for 
each voxel or area of interest in the CT images can be extracted.  

 

2.5.2 Rapid	switching	of	the	x-ray	tube	voltage	during	the	scan	

In this thesis a GE revolution DECT scanner was used, and this machine offer DECT images 
by rapidly switching of the x-ray tube voltage, hence this is the method for DECT that will be 
explained.  

By rapidly switching of the x-ray tube voltage between consecutive projections of the same 
spiral scan, the DECT dataset is obtained. As the DECT scanner is continuously rotating, the 
voltage over the x-ray tube will be switched, this will result in every other projection will be 
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for low/high kVp. To restore two images interpolation between the acquired projections are 
used. With this type of DECT the data are acquired in the full scan field of view (SFOV) of 
typical 50 cm is used.  

Because of the nearly simultaneous acquisition of low and high energy, registration problems 
due to organ motion or contrast agent dynamics are small. However, the switching time 
between low and high kVp with the present x-ray tube technology is in the order of one-half 
millisecond. To avoid angular sampling artifact, one has to acquire a sufficient number of 
projections of both kVp settings (> 600 projections). Therefore, the fast kVp switching will be 
limited to a slower rotation time, about 0.3 – 0.8 s, even though the CT system may rotate 
faster in a non-dual-energy mode. As a result, rapidly moving organs, such as the heart, is 
challenging to scan with these systems.  

While the x-ray tube voltage is rapidly switched, it is technically difficult to switch the x-ray 
tube current simultaneously. As a result of the equal x-ray tube current, the x-ray flux will be 
lower at 80 kVp than at 140 kVp and the dose will be different for the two values. A way to 
achieve equal dose for both energies, is by asymmetrical sampling. If the sampling of each 80 
kVp projection is three times longer than the sampling time of the corresponding 140 kVp 
projection, or simply if about three consecutive projections are acquired at 80 kVp, while the 
next projection is acquired at 140 kVp. Then the x-ray flux is balanced, and no under- or 
overdose at either x-ray energy occurs.  

Under- and overshoots of the x-ray tube voltage during the switching processes are a potential 
drawback of fast kVp switching. The actual tube voltage may not follow the ideal rectangular 
switching curve, as indicated in figure 2.9, but may show over- and undershoots. 
Consequently, the spectral separation and hence the potential or material discrimination might 
be reduced.  

 

Figure 2.9: Schematic view of rapid kVp switching between 80 kVp and 140 kVp. Note that to balance the 
radiation dose two or more low kVp projections are acquired for each high kVp projection.  

 

kV
p 
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2.5.3 Monochromatic	images	

A monochromatic image, or a monoenergetic image is an image that is reconstructed to an 
arbitrary energy (keV). Monochromatic images can be derived using raw – data – based 
technique, this technique is based on the two-material decomposition (material specific 
image), where water and bone can be used as the basis material. Before actual processing of 
raw data can be performed, some prerequisite information must be made available, either by 
calculation from a model or from measurement. As a first step, for the two different spectra 
and different combinations of material thicknesses of the selected base materials, the 
respective line integrals L in equation 2.13 must be determined. As a second processing step, 
this information needs to be inverted so that information about the thickness of both materials 
is available. This must be done for each combination of line integrals measured at high and 
low voltages.  

With these prerequisites fulfilled, calculation of pseudo-monochromatic images from the 
acquired high- and low-kVp data can be performed. The measured line integrals values L1 and 
L2 (respectively for 80 and 140 kVp) are converted to thickness values (tb and tw) from a pair-
wise lookup table, as shown in figure 2.10. Then a line integral L can be synthesized from 
thickness values using attenuation of both materials for the desired pseudo-monochromatic 
energy. Attenuation values can be extracted from standard tabulated data. The reconstruction 
of L finally allows for generation of monochromatic images at the desired energy level.  

 

 

Figure 2.10: Schematic view of reconstruction of monochromatic images 

 

The most obvious benefit of monochromatic imaging is the intrinsic reduction of beam-
hardening artifacts and the elevated contrast for low energies, especially for examinations 
where iodine contrast is used.    
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2.6 Proton	therapy	treatment	planning	

This chapter is based on Proton therapy by Yeung D. and J. Polta (2013)  [15], Chapter 1 and 
2 of Target Volume Delineation and treatment planning for particle therapy by Lee N. Y. et 
al. (2018) [16], and  Proton beam Radiotherapy by Tsuboi and Gerelechuluun (2020) [17], 
otherwise referenced. 

 

2.6.1 The	Bragg	peak	and	Spread	out	Bragg	peak	(SOBP)	

Proton therapy uses high-energy proton beams of energies up to about 200-250 MeV to 
irradiate cancers, and it is an alternative to the conventional photon radiation therapy. The 
advantage of proton therapy over photon therapy is mainly related to dose deposition in 
tissue. As the proton traverses and interact with the tissue it will slow down, and as the 
protons slows down it will use more time interacting with the molecules which leads to larger 
dose deposition towards the end of their range (cf equation 2.2). Therefore, the stopping 
power will increase with the depth of penetration. In the end of the range, the stopping power 
rises sharply which results in maximum energy transfer and dose deposition, called the Bragg 
peak. As seen in figure 2.11 this will result in a depth dose curve with low dose at the 
entrance, and almost no dose after the Bragg peak. On the other hand, a photon beam deposit 
maximum dose at 2-3 cm depth with a slow dose fall off deeper in the patient. This is clearly 
an advantage with proton treatment. However, the Bragg peak will be too narrow to cover a 
typical lesion. To be able to uniformly cover the lesion a Spread Out Bragg Peak (SOBP) 
should be used. To create a SOBP proton beam, different kinetic energies and beam intensity 
are used. This will result in a uniform dose over a larger longitudinal section. To be able to 
cover the lateral area of the lesion, either passive scattering or a scanning beam technique is 
used.   

 

Figure 2.11: Dose deposition for photons (green) and protons creating a SOBP (blue). Altered [18]  
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2.6.2 Beam	generator	

To obtain a proton beam for clinical use the protons must be accelerated and either a 
synchrotron or a cyclotron is used for this purpose. The main difference between them is that 
the beam structure would be pulsed for the synchrotron and the output energy would be 
variable, but for the cyclotron the beam structure would be continuous and have a constant 
output energy. In this thesis only the principle of a cyclotron will be further described.  

The cyclotron consists of two D-shaped electrodes named “Dee”, which is faced away from 
each other. Low-energy protons are injected into the centre of the cyclotron. The classical 
cyclotrons accelerate a proton in an electromagnetic field (RF field) between the Dee’s using 
an oscillating potential with frequency. The Dees are placed between magnetic poles, which 
will create a magnetic field perpendicular on the trajectory of the protons, which will ensure a 
spiral trajectory of the proton. 

After acceleration the proton beam is guided through the beam transport system to the desired 
treatment room. It is common that one accelerator provides multiple rooms with protons. The 
transport system is a vacuum beam pipeline, which consists of a sequence of dipole magnets 
and quadruple magnets for steering and focusing of the proton beam.  

Immediately after extracting the proton beam from the accelerator a degrader is used to 
modify the beam energy [19]. The proton beam is then bent into a gantry, which often 
provides 360° rotation from treatment delivery. The final element is the nozzle, which is 
located in the treatment room. There are two main nozzle types depending on which treatment 
modality is used (passive scattering and pencil beam scanning; see below). It is the nozzle that 
delivers the beam to the patient, but also it monitors the beam quality, alignment, and the dose 
delivery during treatment. 

 

2.6.3 Treatment	delivery	

Proton treatment delivery is mainly divided into Passive scattering and Pencil beam scanning 
(PBS). Whereas passive scattering does not involve mechanical control during proton beam 
irradiation, pencil beam scattering uses a beam scanning method in which several devises are 
dynamically controlled during irradiation. 

In passive scattering, a scatterer is used to obtain a beam with a large field size to cover the 
total target. The broad beam will be shaped with collimators as in conventional radiotherapy. 
To modulate the range according to the extension of the target a patient specific compensator 
has to be used. For best coverage of the target and to assure a minimum dose to healthy tissue.  

The pencil beam scanning (PBS) method is a type of dynamic scanning and this is becoming 
the new standard technology in proton therapy [16]. The nozzle for a pencil beam scanning 
modality is illustrated in figure 2.12.  
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Figure 2.12:: Schematic view of components on a nozzle for pencil beam scanning. 

In PBS the proton beam is monoenergetic, and two pair of orthogonal dipole magnets are used 
to steer the pencil beam as illustrated in figure 2.13. The pencil beam is moved left-right and 
up-down by the bending magnets and they will direct the pencil beam into a predetermined 
position with the desired intensity. When using PBS, the deepest layer in the target is 
irradiated first. As a result, the layers in front also get an amount of irradiation. So, when 
irradiating the next-deepest layer the irradiation dose should be reduced relative to a single 
irradiation dose. To reduce the irradiation dose the proton beam energy is degraded. In this 
way the total dose distribution will conform to a SOBP and a homogeneous dose will be given 
to the tumour. The pencil beam can either be continuous or discrete, but total dose to the 
lesion is the superposition of each individual pencil beam. Each proton beam used for total 
dose is shown as spots, as seen in figure 2.13. 

 

Figure 2.13:  Schematic view of dose delivery with pencil beam scanning modality. Here each pencil beam 
spot in one energy layer is illustrated around the target volume.  
 

The broad beam gives the passive scattering an advantage when it comes to patient 
movements, and beam stability is high in passive scattering relative to that in dynamic 
scanning. Typical parameters that affect the dose accuracy are the spot position, spot shape, 
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and the number of protons in each spot. For the scanning beam, it is very important to have a 
reliable and rapid-response control system that could deliver each spot to the desired position 
with the correct number of protons.  

When a tumour is located close to the skin, an energy absorber can be used. This is because 
the lowest available energy from the accelerated proton beam may not be sufficiently low to 
guarantee target coverage. Sometimes it might be useful to use a collimating device for 
improved lateral beam penumbra [20].  

 

2.6.4 Dose	calculation	

When the photon beam is traversing the patient, it will continuously lose energy. In the 
treatment planning system RayStation energy loss is calculated for each voxel. To lose a 
given energy ΔW in the patient p and water w, the protons need to traverse different 
pathlengths [B and ΔB%W, respectively. Furthermore, the energy loss is given by:  

ΔW = -X ⋅ ΔB%W 

ΔW = -H ⋅ ΔB					   

where -H and  -X is the stopping power in the patient and water, respectively. From this it 

finds:  

ΔB%W ⋅ -X = ΔB ⋅ -H	

ΔB%W =
-H
-X

⋅ ΔB	
 

where 
>/
>(

  is the stopping power ratio (SPR). Summing up over all steps ΔB we find the 

pathlength in water, B%W, that is equivalent to the pathlength in tissue:  

 

B%W =	zΔB%W =	z
-H
-X
	ΔB 

 

For an infinitesimal small voxel size dK′	the sum becomes an integral over the total pathlength 
z:  

B%W =	V
-H
-X
	dK′

/

*

 

B%W is the equivalent depth in water at which a beam has lost the same amount of energy via 

electronic stopping as it has at the physical depth Z in the patient. In figure 2.14 the 
pathlength in water equivalent to the pathlength in a patient consisting of bone is illustrated.   
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Figure 2.14: a) A illustration of the wanted pathlength of a proton beam in a patient consisting of bone, b) the 
pathlength of the same beam but in water.  

As all dose measurements and calibrations of the dose calculations system is performed in 
water, this is the medium we want to relate all beam characteristics for. From a CT image of 
the patient, we know how to calculate the pathlength of the proton beam,but need to know 
what energy is needed to achieve B%Win water. When this is known the energy to reach the 

wanted pathlength in tissue is also known.    

To obtain the SPR a conversion from HU to SPR is done. A table called Heuristic Look Up 
Table (HLUT) contains both the HU and SPR values for the same material, and to fill in the 
gap between known HU and SPR an interpolation is done. If there are multiple HU values for 
one material the SPR will change although it’s the same material, this will lead to an error in 
calculation of the range dose. The table is not one straight linear fit, but a singularity is seen 
as shown in figure 2.15, which might increase the errors even more. The ultimate goal is 
independency from the HLUT, by instead sampling the electron density @%  and stopping 
number directly from the DECT image. 

 

Figure 2.15: Heuristic Look Up table (HLUT) for HU and SPR values.   
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The conversion of HU to SPR is called a CT calibration, and is a very important part of proton therapy.  

For a more accurate description of the passage of the beam spot in the patient, the spot is in 
the current treatment planning system RayStation, dived into 19 sub-spots, (figure 2.16). 
Along the true beam path through patient, pars of the spot may traverse e.g., bone or lung. 
The transport calculation system handles each sub-spot individually as a ‘pencil beam’, where 
each pencil beam has individual depth characteristics and broadening features. The total spot 
is then a superposition of all 19 spots [20]. 

 

Figure 2.16: Distribution of the 19 sub-spots (black, blue, and cyan) and the original spot (green) view from 
above [20].  

 

For the PBS two main approaches for dose delivery is mainly used. Single field optimization 
(SFO) or known as Single field uniform dose (SFUD), is a technique where each individual 
field uniformly cover a target. Multi field optimisation (MFO) or known as intensity 
modulated proton treatment (IMPT), where each individual fiend only partially covers a 
target, but the uniform target coverage is provided by the combination of al the fields included 
in the optimisation. 

In proton therapy the relative biological effectiveness (RBE) of the proton beam is used to 
calculate the dose to the patient. Today a mean RBE value of 1.1 is the current standard 
defined by ICRU report 78[21]. In this thesis an sLG" = 	1.1 ⋅ s has been used for 
calculations.   
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2.6.5 Plan	optimization	

Inverse planning is an optimization technique that can be used for IMPT. It is used to find the 
best treatment plan. A set of dosimetric criteria for the treatment plan are defined, and the 
optimiser finds the best solution to the problem. The objective function can be defined as:  

w(G) = 	z λY(sS − ES)+
>

SB2

 

sS = CS 	G,	  a = 1,… -; 				G ≥ 0, 
 

Where a defines the structure (i.e., target volume or an OAR), ÇS is a structure-specific 
weighting factor, sS is the calculated dose and ES is the prescribed dose, CS is the dose 
kernel matrix and x is the intensity of the beam [22]. The optimal result is to minimise the 
objective function by finding the global minimum.  

When defining the set of criteria as target volume or OAR, a weighting can be modified so the 
most important criteria, often target coverage, has highest weight. The number of iterations is 
either predetermined or set to run until the minimum is found. It is normal to have a large, 
predetermined value, so if the optimiser to not find a minimum value before this the 
optimisation is stopped and a final plan is constructed.  

RayStation has developed a worst-case scenario approach to take the uncertainties into 
account, also referred to as minimax optimisation. The minimax optimisation aims at 
minimising the worst-case scenario for the objective function fi, which gives a threshold for 
how much the treatment plan quality can deviate due to errors. Different types of errors may 
occur during treatment, they are divided into two main error sources, range, and setup 
uncertainties. If several errors are chosen, their weighted sum in the worst-case scenario will 
be considered. For the objective function fi, who is required to be robust over the scenarios in 
a set S, and which have a nonnegative importance weights wi, a formulation of the minimax 
optimisation problem can be:  

min
#∈[

max
#∈>

		záQ 	àQâ	E(G; o)ä

P

QB2

	

 

Where X is a set of feasible variables (spot weights for IMPT), and d(x;s) is the dose 
distribution as a function of the variables x and the scenario s.  

The information about the uncertainties and errors are incorporated into the optimisation and 
it enables the treatment planning system to determine where to deposit dose to achieve plans 
that are robust against setup error and range uncertainties. Hence, the worst-case approach 
determines the IMPT plan that is as good as possible for the worst error scenario [23].  
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2.6.6 Treatment	volumes	

As in conventional radiotherapy, definition of the tumour, adjacent organs at risk (OAR), and 
other anatomical structures is an essential part of the proton therapy planning process. For 
defining these areas different types of advanced imaging systems are used. CT is often used 
due to its widespread availability and the possibility to also use it for electron density and 
stopping power estimates.  

Gross tumour volume (GTV) is the tumour volume that is visible on the medical image. 
Cancer cells encompassing the GTV are not visible on the medical images, but an extent of 
the GTV called the clinical target volume (CTV) includes these cells. The CTV is usually 
obtained from an empirical margin added concentrically to the GTV, and it is imperative that 
the CTV receives the prescribed radiation dose. They are both delineated in figure 2.17. In the 
photon radiation an additional volume called planning target volume (PTV) is used to include 
for organ motion and uncertainties in the setup and treatment delivery. This margin is used 
mainly to ensure the prescribed dose to the CTV. But for proton treatment, robust planning is 
often used instead of the PT, and in this thesis a robust planning will be used instead of the 
PTV, which is also done in this thesis. These delineation are as defined by ICRU  report 50 
[24] and 62 [25]. 

 

Figure 2.17: View of gross tumour volume (GTV) and clinical target volume (CTV). A robust optimization is 
used to minimise the worst case of errors and the blue area around the GTV and CTV might be this robust 
area. 

It is not only the tumour within CTV that is important to delineate on the medical image, but 
also of great importance to delineate healthy and critical organs which is located close, or 
within the beam, referred to as OAR. For many of these organs tolerance dose levels have 
been established to avoid that its function will stop or weaken due to tissue damage.  



 

 

30 

3 Method	
In this chapter the methods and materials to investigate the various aspects in this thesis will 
be introduced. The work is divided into two parts, where part 1 covers theoretical aspects and 
CT scanning of phantoms with known mass density, among other, while part 2 CT scanning 
of an anthropomorphic phantom and proton therapy planning.  

 

Phantoms with known mass density 

 

 

Anthropomorphic phantom 

 
 

 

 

1
•SECT and DECT scanning of two phantoms containing inserts with various 
known electron densities. Analysing the HU values from these scans (referred 
to as measured values). The vendor of one of the phantoms also gives the 
expected HU value for the inserts (reffered to as theoretical values)

2
•Calculating the attenuation and HU values from objects with the same 
electron density as in 1)  in a simulated CT scanner (reffered to as simulated 
values)

3
•Calculating the SPR depending on the kinetic energy of the proton, mean 
exitation energy, and atomic numbe-of-mass.  

1
• SECT and DECT scanning of anthropomorphic phantom. Quantified 

the impact of this on two clinical plans. And see how HU changes with 
location in the image slize.
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3.1 Phantoms	with	known	density	

3.1.1 Phantoms	

Two phantoms were used in this thesis Gammex – Multi energy CT - phantom and Quasar 
body phantom [26, 27]. Both phantoms have inserts with different material composition.  

3.1.1.1 Quasar Body Phantom 

The Quasar body phantom is illustrated to the left in figure 3.1 and it consist of an acrylic 
component shaped as the area of the abdomen of a person, width is 30 cm, height 20 cm and 
length 12 cm. Inside the acrylic component there are three cylindrical cavities where different 
types of inserts with a radius of 8 cm can be placed.  

In the central cavity a cylinder with five inserts can be positioned. The five inserts have a 
radius of 3 cm and the thickness of 2 cm and are located as shown in the right panel of figure 
3.1. All of the inserts are made of known material, and a QA is found on their webpage [26] 

 

Figure 3.1: To the left the Quasar phantom with the five inserts is shown. On the left a close up image of the 5 
insert are shown. The red dot shows the ‘Lung Inhale’, the yellow shows the ‘Inner bone’, the blue dot shows 
the ‘Water Equivalent’, the green dot shows the ‘Dense bone’, the black shows the ‘Polyethylene’. In the right 
image the holder with the inserts is rotated 180°. 

The five different inserts are as follow:  

o Lung Inhale 

o Dense Bone 

o Water Equivalent 

o Inner bone 

o Polyethylene  

In table 3.1 the mass density @ of each insert are listed, the values are obtained from the 

Strålevernet (DSA) [28]. 



 

 

32 

Table 3.1: Mass densities for the five different inserts in the Quasar phantom. 

Material ã [g/cm3] 

Lung  0.28  

Dense bone 1.42 

Water Equivalent 1.03 

Inner bone 1.12 

Polyethylene 0.965 

 

 

3.1.1.2 Gammex – Multi-Energy CT – phantom  

The Gammex Multi-Energy CT Phantom (figure 3.2) is made of a water-equivalent base 
material and contains cavities that can be fitted with rods of specific materials of interest. The 
phantom is shaped as a body and is approximately 40x30 cm in-plane and 16.5 cm depth. The 
cavities radius is 2.85 cm. 

The phantom has 19 rods and from these this thesis will look at the Hounsfield Unit for six of 
them;  

o High-Equivalency (HE) blood 70, mass density @ = 1.07	ç/43K 

o High-Equivalency (HE) blood 40, mass density @ = 1.03	ç/43K 

o High-Equivalency (HE) brain, mass density @ = 1.02	ç/43K 

o CT High-Equivalency Solid Water, mass density @ = 1.00	ç/43K 

o High-Equivalency (HE) blood 100, mass density @ = 1.10	ç/43K 

o High-Equivalency (HE) adipose, mass density @ = 0.94		ç/43K 
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Figure 3.2: Gammex phantom where the cavities are filled with the rods. The rods that are circled around is 
the rods that is for HU analyses in this thesis. They are of material 1) HE Blood 40, 2) HE Blood 70, 3) CT 
HE Solid water, 4) HE Brain, 5) HE General Adipose, and 6) HE Blood 100. (HE: High-equivalency)  

From the manual [29] the Hounsfield Unit for the different material – and different mono 

chromatic DECT image – is obtained, see table 3.2.  

Table 3.2: Hounsfield Unit for the different materials in the rods at different energies inserted to the Gammex 
phantom. The values are obtained from the manual [29]. 

Energies 
[keV] 

HE 

blood70 

HE 

blood40 

HE 

brain 

Solid 

water 

HE 

blood100 

HE 

adipose 

40 90 65 49 -2 113 -140 

50 82 53 39 -3 109 -107 

60 76 45 32 -4 106 -90 

70 72 38 28 -5 104 -80 

80 71 36 26 -5 103 -73 

90 70 35 25 -5 102 -69 

100 69 35 24 -5 102 -66 

110 69 34 23 -5 101 -65 

120 68 33 23 -6 101 -63 

130 68 33 22 -6 101 -62 

140 67 33 22 -6 101 -62 

1 
2 

3 

4 

5 
6 
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3.1.2 CT	scan	of	the	phantoms	

3.1.2.1 Goal 

The goal of this part is to scan with a Dual Energy CT to produce monochromatic images 
with energies of 40 keV up to 140 keV (intervals of 10 keV) and convenctional CT images 
witch 120 kV voltage. This will be done for both phantoms. Another aim is to reconstruct the 
image with two different methods, filtered back projection and iterative reconstruction.  

 

3.1.2.2 CT acquisition settings 

In this thesis a GE Revolution CT was used to acquire both DECT and SECT images. In table 
3.3 the FOV, tube current, rotation time, and pitch used for the DECT are listed, resulting 
equal CTVIvol for the phantoms. In the DECT scan a voltage of 80 kVp and 140 kVp were 
used, and in the conventional single energy CT (SECT) a voltage of 120 kVp was used. 
 

Table 3.3: FOV, current, rotation time, pitch, and CTDIvol are values that were set in the DECT.  

Phantom FOV [cm] 
Current 
[mA] 

Rotation 
time [s] 

Pitch 
CTDIvol 
[mGy] 

Quasar 36 445 0.5 0.5 21.8 

Gammex 41 445 0.5 0.5 21.8 
 

For the SECT image the values had to be changed to reproduce an CTDIvol, see table 3.4. 

Table 3.4: FOV, current, rotation time, pith, CTDIvol, and Energy are values that were set in the conventional 
single energy CT (SECT). 

Phantom FOV [cm] 
Current 
[mA] 

Rotation 
time [s] 

Pitch 
CTDIvol 
[mGy] 

Energy 
[kVp] 

Quasar 36 330 0.5 0.5 21.9 120 

Gammex 41 330 0.5 0.5 21.9 120 
 

Spiral scanning was used to produce the images for this thesis.  

 

3.1.2.3 CT acquisition procedure 

First step for a DECT scan protocol was to choose “default setting” for the Abdomen, due to 
the resemblance between the phantoms and an abdomen. A protocol to produce the 
monochromatic images for energies 40 – 140 keV, with both iterative reconstruction and back 
projection reconstruction, were made. The GE Revolution used 80 kVp and 140 kVp to 
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reconstruct the monochromatic images, see chapter 2.5.3 for more information about 
monochromatic images.  

To be able to reconstruct the images with both back projection and iterative reconstruction 
there was an algorithm called ASiR-V that could be changed. For the back projection 
reconstruction ASiR-V equal to 0 % was chosen, and for iterative reconstruction ASiR-V 
equal to 50% was chosen.  

A slice thickness to 1.25 mm was used, because the typical slice thickness on the CT images 
used in radiation therapy is between 1.00 mm and 2.00 mm. 1.25 mm would give the best 
images on this CT.  

For these scans it was chosen to have the same rotation time (0.5s) and pitch (0.5). The field 
of view (FOV) was also kept constant for the different phantoms, Quasar (36 cm) and 
Gammex (41 cm). To be able to get a similar dose (CTDIvol) for both the DECT and SECT 
images, one had to alter the current from 445 mA for the DECT images to 330 mA for the 
SECT images.  

For the DECT scan of the Quasar phantom, it was placed with the front facing out of the 
scanner. The laser system installed in the CT was used to fix the phantom in the centre and 
made it possible to position the phantom in the middle of the CT before acquisition. In figure 
3.3 the laser system and positioning of the Quasar phantom is shown.  
 

 

Figure 3.3: An overview image from mounting the Quasar phantom in the gantry of the CT. The laser system 
was used to make sure the phantom was fixed in the centre of the gantry, and also to make sure the beginning 
of the phantom was in the middle.   
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Then the Gammex phantom was placed on the coach and the laser system was used as just 
described, figure 3.4 shows this phantom positioned in the CT.  
 

 

Figure 3.4: The Gammex phantom fixed in the gantry of the CT. The laser system was used to make sure that 
the phantom was located in the centre of the machine before start.  
 

After the DECT scans the SECT scans was acquired. Since the Gammex phantom was 
already located in the gantry of the CT it was the first phantom to be scanned with SECT. 
Afterwards the Quasar phantom had to be positioned on the coach once again and this might 
affect the position or length of the SECT scan.  

In these acquisitions spiral scanning with “feet first”-orientation was used, which would result 
in a mirrored image importing them into python or image J, viewer with the possibility to 
choose image-orientation will not have this problem. 

 

3.1.3 Find	HU	values		

3.1.3.1 Goal 

The main attempt with this code was to make two templates that mask predetermined regions 
of interest (ROI’s) on DICOM files. From this, the code would be able to extract the intensity 
in the pixels which are located inside the ROI’s, the intensity in the pixels gives information 
about the Hounsfield Unit.   
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3.1.3.2 Load DICOM files 

The DICOM files were sent to Sectra IDS7 Oslo university hospital to be able to download 
the data.  

The first important step was to upload the DICOM files into a python program. To do this 
pydicom and glob libraries had to be imported.  
 

The downloaded 3D image data was not organized by slice number, so the code had to be able 
to:  

1. Find the slice location (at what position in the image stack the image file was located). 
2. Use pydicom and numpy’s argsort to sort the image files from lowest to highest using 

the list of corresponding slice location.  
 

The DICOM files used were of size [512,512], number of pixels in the x- and y-dimension, 
the number of slices gave the z-dimension.  

The information from the pixels is not in HU at first, so one must convert by: 
 

xjytjy	j9nyo = 3 ⋅ -+ + ! 

the variables and definition are listed in table 3.5.  

Table 3.5: Variables and definition of the equation above. 

Symbol Definition 

Output units Hounsfield Unit 

m Rescale slope 

SV Stored image values 

b Rescale Intercept 
 

From the DICOM files, m = 1 and b = -1024. 

For a good estimation of the HU value of the ROI’s, it was preferred to take the mean HU 
over a volume, and not only one slice. Here it was chosen to take the mean HU over 5 slices, 
this will be approximately 1.25	33 ⋅ 5 = 6.25	33 thickness of the phantom and insert. To 
find a region of the phantom where the inserts were homogeneous, a function to show every 
seventh file was produced.  

80 def sample_stack(stack, rows=4, cols=4, start_with=1, show_every=7): 
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3.1.3.3 Template 

A template was made by masking the circular ROI´s for the two phantoms, the circular ROI´s 
were made by the output code below. To find the centre of the inserts in the phantoms both 
Image J and a preview of a DICOM slice with masked ROI was used.  
 

137    # create mask in a circular pattern around the centrum of a chosen index 
138  for i in range(-ra, ra+1): 
139         for j in range(-ra, ra+1): 
140             r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
141 
142             if r <= ra:  
143                  #fill the indexes that is a part of the circle with 1. (array)   
 144                 circle1[i + y1, j + x1] = 1 
 

With Image J it was possible to figure out where the middle of the inserts was located, this 
information was then used to put a circular mask over the insert in the DICOM file. To make 
sure that the ROI was correctly located one would make a preview of the file. After making 
sure of this, one would store the indexes inside the position of the ROI´s. This way a template 
was made, and ready to be used on the rest of the images. 

 

3.1.4 	CT	simulation	in	python	

3.1.4.1 Goal  

To calculate the simulated HU values and understand how the relation between HU and SPR 
appears, a code in python was developed. The code calculated the transmitted x-ray spectrum 
through an object containing different materials via the exponential law of attenuation. 
Thereafter, the code calculated the HU value. The program also calculated the mass stopping 
power for protons with different kinetic energy penetrating for various materials. Finally, the 
code provided the relationship between the calculated HU and the Stopping power (SP). The 
calculated HU values from the program were compared to experimental values from the 
clinical CT scans.  

 

3.1.4.2 CT simulation 

A CT scanner uses x-rays generated at rather low voltages (kVp) to acquire an image of an 
object. To simulate a photon beam from CT, Kramer’s spectrum was used. This provided a 
photon beam with energies from 10 keV up to a maximum energy (ℎY(@#) which was set to 
120 kVp. The production of a photon beam is described in chapter 2.2. Below a snippet from 
the code on how the beam was created, based on equation 2.4.  
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14 hv  = 10 + np.arange(kv - 9) 
… 
21 # Kramers spectrum, info about how the x-ray spectrum from bremsstrahlung 
22 psi_spec_CT = K * (hv_max - hv) 

 
  

3.1.4.3 Mean attenuation value  

When the simulated photon beam traversed a material (absorbing medium or filter) the law of 
exponential attenuation (equation 2.7) was used, it is described in chapter 2.3. National 
Institute of Standards and Technology (NIST) has a website that contains attenuation 
coefficients and densities for different materials for a range of photon energies, they are 
obtained from Table 4 [30]. By downloading the tables from their site, it was possible to 
extract the attenuation coefficient for specific photon energies. A Scipy interpolation was 
used to extract the attenuation for an arbitrary photon energy f, see the “snippet” for python 
command. The interpolate function took the energy x1 and attenuation coefficient x2 as input 
variables.  

114  f   = interpolate.interp1d(x1, y1, kind='linear')   # interpolation 
 

As in a real CT the photon beam in the simulation CT was sent through a filter before 
traversing the patient. This would give a beam hardening effect since most of the photons 
with lower energy was absorbed by the filter. By varying the filter (thickness and material) 
the attenuation would change. Since the photoelectric effect increases with atomic number Z, 
high Z-filters will be more efficient in filtering the beam. In this simulation an Aluminium 
filter with thickness 0.039 cm was used, which is the same as in the relevant CT scanner. 

The code was able to distinguish between a monochromatic beam ([keV]) and a regular x-ray 
beam (Kramer spectrum). This made it possible to calculate the HU value for both a 
convetional CT image and monochromatic images reconstructed from DECT.  

The function filtration was the main function in the code, here the mean attenuation through 
the absorbing medium for a given energy was calculated. As shown below, filtration was a 
function of the extracted attenuation, the type of filter used, the thickness of the filter, the 
energy of the photons (both in monochromatic and kVp), and what type of energy to expect 
(single energy or a range of energies), denoted interp_mu, filt, thickness, energy, and typ, 
respectievely. If typ is set to 0, an energy range is chosen, and for any other number a single 
energy is chosen.  

147 def filtration(interp_mu, filt, thickness, energy, typ):  
 

In this function, the total number of photons before and after penetrating the absorbing 
material is calculated. To do this the function pre_filtration is called on. In the pre_filtration 
function the energy range (Kramers law) or single energy is chosen and then filtered through 
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the Aluminium filter before both the filtered and non-filtered energy is returned to the main 
function.  

The program simulates beam traversing through the absorbing material for different energies, 
here the variable interp_mu was used to inform about material type and the precalculated 
attenuation coefficient. Afterwards the total number of photons before and after traversing the 
absorbing medium was calculated. To do this the numpy function sum is used (see output 
below), this was equivalent to integrating over the whole energy range.  

By using the information about the spectrum before and after traversing the absorbing 
material, it was possible to calculate the mean attenuation by using a form of the exponential 
law of attenuation (equation 2.7) 

 

`̅ =
ln H

í
í@\]%^
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Mean attenuation depended on the thickness of the absorbing material, x, and the number of 
photons before and after traversing the absorbing material. For more information about 
Kramer’s spectrum see section 2.2.1. In line 161 in the output from the code, this calculation 
is illustrated.  

158 psi_interp_tot   = np.sum(psi_interp[1]) 
159 psi_interp_filter_tot   = np.sum(psi_interp_filter) 
160 
161 mu_mean_interp = (np.log( psi_interp_tot / psi_interp_filter_tot )) / x 
 

This straightforward code would calculate the mean attenuation when a range of energy is 
used via Kramer’s spectrum. For the mean attenuation for a single energy a range from 10 – 
140 keV at 10 keV increments was used. In the output it is shown how the energy will vary 
between 40 – 140 keV, and how it was used to obtain the mean attenuation. The mean 
attenuation for a given energy is appended to a list, so it is possible to use the data later. 

250  for i in range(10,140,10): 
251   en = 10 + i 
252    fil_soft  = read_file(Soft_t_file, Soft_t_dens) 
253   inte_soft = interpolation(fil_soft, en) 
254   mu_soft = filtration(inte_soft, element(Al_file, Al_dens), x_filter, en, 1) 
255 
256    mu_soft_list.append(mu_soft[4]) 
 

When the mean attenuation value was calculated it was possible to calculate the HU value, 
equation 2.9. The data generated for both monochromatic beams and regular beams is later 
used to compare the simulation with a real CT scanner.   
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3.1.5 Calculate	Stopping	power	ratio	

3.1.5.1 Stopping power 

The function dedx based on equation 2.2 was used to calculate the mass stopping power in the 
same material as used in the CT simulation.  From a clinical point of view the kinetic energy 
of a proton is between 1 MeV – 250 MeV. The function takes T, I, and Z_A as variables 
representing the kinetic energy of the proton, mean excitation energy, and atomic number-to-
mass, respectively. The variables used in the function are found on NIST webpage [30]. The 
program could calculate the mass stopping power for wanted materials, later on it was 
converted into stopping power by a multiplying with the mass density of the absorbing 
medium, and in the end stopping power ratio by dividing the SP for a medium with the SP for 
water. The function beta calculates the : in the mass stopping power equation and returns it 
in the main function dedx. 

643 def beta(T): 
644  b = ( 1 - ( 1 / ( (T/M0_c) + 1  ) )**2 )**(1./2.) 
645 
646 return b 
… 
652 def dedx(T, I, Z_A): 
653  be = beta(T) 
654 
655 # Stopping power with units [MeV/(g/cm^2)] 
656   SP = 0.3071 * Z_A * z**2 * (1/be**2) * (13.8373 + np.log( be**2 / \ 
657    ( 1- be**2)) - be**2 - np.log(I) )) 
658 
659  return SP 
 

The data was used to convert HU values into SPR values. This would give an insight in how 
the SPR values might change as the HU values changes with energy, which could affect the 
dose calculation in proton therapy 
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3.2 Anthropomorphic	phantom	

3.2.1 CT	scan	

In order to further evaluate the clinical effect of applying DECT in proton therapy the 
Alderson radiation therapy phantom was used. The Alderson phantom is a human phantom 
which contains anatomical correct structures of a real human, a so the called anthropomorphic 
phantom. For the CT scan two different Alderson phantoms is used, one whole head and 
another in slabs. This was done to find out which of the two phantoms would be better to 
perform a proton dose plan on. Both are imaged so one later can choose which of them will 
give the best clinical information. The phantom contains the same anatomy as the human 
head, but it is missing the nasal cavities, and the eyes, and is also has a hole through the 
middle of the head. In figure 3.5 the phantom is displayed in a head holder. 

To be able to make a proton plan and also be able to give the head phantom proton treatment, 
lead pellets were used to be able to reconstruct the positioning in the CT scanner. For a head 
phantom a lead pellet is placed in the forehead, straight line from the nose and over the eyes, 
and two additional lead pellets are located on both sides of the head. The laser build in the CT 
machine is used to place the lead pellet see figure 3.5 for an illustration of the location of the 
lead pellets.  

 

Figure 3.5: Alderson phantom located in the DECT scanner. The arrows point on the lead pellets used for the 
treatment plan or if proton treatment were to be given to the phantom.   
 

For the Alderson phantom, head is set as the “default setting”, and mono chromatic images 
for 40-140 keV with both filtered back projection and iterative reconstruction was selected 

Lead pellets 
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from the DECT acquisition. Also, a CT scan with the same “default setting” with 120 kVp 
was used.  When making the protocol for the CT image, an equal dose for both image sets is 
desired. From table 3.6 and 3.7 the different parameters used for the two scans are tabulated.  

Table 3.6: Parameters set for the DECT scan of the Alderson phantom.  

Phantom FOV [cm] 
Current 
[mA] 

Rotation 
time [s] 

Pitch 
CTDIvol 

[mGy] 

Alderson  24.8 315 0.8 0.5 53.7 
 

Table 3.7: Parameters set for det CT scan of the Alderson phantom  

Phantom FOV [cm] 
Current 
[mA] 

Rotation 
time [s] 

Pitch 
CTDIvol 
[mGy] 

Energy 
[kV] 

Alderson 22 305 0.6 0.5 53.6 120 

 

3.2.2 Python	code	

The Hounsfield Unit may differ with location in a non-circular and unsymmetrical phantom. 
This python code will check if this is the case for these images for three different materials in 
the phantom. The three different materials chosen are bone, soft tissue, and air inside the 
head. The Hounsfield Unit will be check for four different locations inside the Alderson 
phantom, for all the mono chromatic images with both types of reconstruction algorithm.  

The code build on the second code, DICOM-files.py, to import the DICOM files and make a 
template for the 12 ROI’s we are interested in. Here two different templates were made; one 
for the whole Alderson phantom and another for the slab Alderson phantom.  

 

Figure 3.6: An illustration to show how the ROIs for the different materials are located in the whole Alderson 
phantom. Here it shows the four ROIs in bone, soft tissue, and air inside the head.  
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After importing and making a template with circular ROIs, the HU inside the ROIs is returned 
from the function. The HU value will only be extracted from one CT slice due to the rapid 
changes in anatomy in the brain from slice to slice. The ROIs have a considerable smaller size 
due to the width of the cranial bone. The mean HU value and the standard deviation within 
the ROIs was found by the code.  

 

3.2.3 Treatment	plan	in	RayStation	

In order to produce proton plans the CT images were imported into RayStation treatment 
planning system. The monochromatic images with energy 40, 60, 80, 90, 100, 120, and 140 
keV, as well as the conventional CT image with 120 kVp were imported. 

To mimic a clinical relevant situation with no access to DECT scanning, a main dose plan 
was calculated and optimised for the 120 kVp image. Thereafter, the dose plan was applied to 
the monochromatic images and the difference in clinically relevant parameters was quantified. 
A generic CT calibration called BrillianceBig B was chosen for the 120 kVp image set. To 
see how the dose changed with CT calibration, two different types of CT calibration was 
used. The other CT calibration was called Sandra and was based on the HU values from the 
Quasar and Gammex phantom with monochromatic 80 keV reconstruction. In Appendix C 
both CT calibrations are tabulated.  

For treatment planning a total dose of 68 Gy with 34 fractions was chosen, which corresponds 
to the recommendation from the DAHANCA and national program [31, 32].   

 

3.2.3.1 Delineation 

Two clinical situations were simulated. Two different target volumes were delineated in the 
Alderson phantom by looking at two anonymised cases available in RayStation. The lesions 
were located in nasopharynx and pharynx, named CTV_p and CTV_n2, respectively. Figure 
3.7 shows a 3D representation of the Alderson phantom with delineated areas. A set of OAR 
for the head and neck region are listed on the web-page for Oslo university hospital, this list 
was used and is tabulated in Appendix D. 

Since the Alderson phantom was lacking air cavities in the nasal area, they were added by 
delineation and the density was set to air. In table 3.10 all the different OAR which will be of 
interest for this two CTV for an ear, nose and head plan is tabulated.  
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Figure 3.7: 3D image of the Alderson phantom with delineation. The left image is of the CTV located in the 
pharynx area, and the image to the right is the CTV located in the nasopharynx area. 

 

3.2.3.2 Dose planning for the CTV_p 

For the CTV_p, a proton plan in RayStation was already made and this setup was used. 
Proton modality and Pencil Beam Scanning was the treatment technique used. In table 3.8 the 
variables for the two beams are listed.  

Table 3.8: Beam’s setup variables for the primary tumour. Range shifter or block was not used for this plan. 

Beam Isocenter 
Snout 
name 

Position 
Gantry 
[deg] 

Couch 
[deg] 

Spot 
tune ID 

MU/fx 

1 CTV_p_1 Snout10 12.58 250 0 3.0 61.01 

2 CTV_p_1 Snout10 13.96 280 90 3.0 116.19 

 

Before optimisation of the dose plan, a set of objectives/constraints was chosen, see table 3.9. 
These values were chosen from the target volumes and dose restriction, and are tabulated in 
Appendix D. 

Table 3.9: Constraints used for optimization of the dose plan. 

Function ROI Description Robust Weight 

Uniform 
dose 

CTV Uniform dose 68.00 Gy * 60.00 

Min dose CTV Min dose 63.60 Gy * 80.00 

Max dose CTV Max dose 71.40 Gy * 30.00 

Max dose Body Max dose 71.40 Gy * 30.00 

Dose fall-
off 

Body 
[H]64.60 Gy [L] 32.00 Gy, Low 
dose distance 1.00 cm 

 1.00 
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Dose fall-
off 

Body 
[H]64.60 Gy [L] 0.00 Gy, Low dose 
distance 5.00 cm 

 1.00 

Max dose 71.4p Max dose 70.00 Gy  10.00 

Max dose OpticNerveL Max dose 54.00 Gy  1.00 

Max dose OpticChiasm_PVR Max dose 60.00 Gy  1.00 

Max dose OpticChiasm Max dose 54.00 Gy  1.00 

Max dose OpticNerveL_PVR Max dose 60.00 Gy  1.00 

Max dose Brain Max dose 64.00 Gy  100.00 

Max dose Eye_L Max dose 30.00 Gy  1.00 

Max DVH Brain Max DVH 50.00 Gy to 30% V  1.00 

 

In the settings an optimisation tolerance was set to be 1.000E-7 and max number of iterations 
was 40. To make the robust optimalisation the patient position uncertainty was set to 0.2 cm 
in all six directions, and the range uncertainty [%] was 3.00. 

In plan evaluation the dose plan calculated on the 120 kVp image was recalculated on the 
monochromatic images, and for the two calibrations Brialliance Big B and Sandra. 

 

3.2.3.3 Dose plan on CTV_n2 

For the CTV_n2, a proton plan in RayStation was already made and the same setup was used. 
Proton modality and Pencil Beam Scanning was the treatment technique used. In table 3.10 
the variables for the three beams are listed. 
 

Table 3.10: Beam settings, couch rotation was set to 0, and no blocks where used. 

Beam Isocentre 
Snout 
name 

Position 
[cm] 

Gantry 
[deg] 

Range 
shifter 

Spot 
tune ID 

MU/fx 

1 CTV_n_new Snout10 16.63 230 RS7.5cm 3.0 83.89 

2 CTV_n_new Snout10 14.95 270 RS7.5cm 3.0 81.75 

3 CTV_n_new Snout10 16.18 310 RS7.5cm 3.0 163.89 

 

A new set of objectives/constraints was chosen for the optimisation, they are tabulated in 
table 3.11. 
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Table 3.11: Constraints used for optimisation of the dose plan. 

Function ROI Description Robust Weight 

Uniform dose CTVn2 Uniform dose 68.00 Gy * 60.00 

Min dose CTVn2 Min dose 65.00 Gy * 80.00 

Max dose CTVn2 Max dose 71.40 Gy * 30.00 

Max dose Body Max dose 71.40 Gy * 1.00 

Dose fall-off Body 
[H]64.60 Gy [L] 32.00 Gy, Low 
dose distance 1.00 cm 

 1.00 

Dose fall-off Body 
[H]64.60 Gy [L] 0.00 Gy, Low 
dose distance 5.00 cm 

 1.00 

Max dose 71.4 Max dose 70.00 Gy  100.00 

Max EUD Parotide_R 
Max EUD 24.00 Gy, Parameter 
A 1 

 1.00 

Max EUD SubmandGland_L 
Max EUD 34.99 Gy, Parameter 
A 1 

 1.00 

 

All other parameters were set exactly as for the CTV_p_1 dose plan.  

In plan evaluation the dose plan calculated on the 120 kVp image was recalculated on the 
monochromatic images, and for the two calibrations Brialliance Big B and Sandra. 
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4 Results	
4.1 Single	Energy	CT	(SECT)	

To check if the CT simulation tool in python produced a photon spectrum as expected, the 
photon energy fluence as a function of energy ℎY was plotted. The photon fluence without 
filtering (original), with aluminium filter, with body (phantom) filter, and both filters were 
plotted together to see how they differed. This is illustrated in figure 4.1. 

 

Figure 4.1: Photon fluence as a function of energy (ℎ") for different filtering. The Original (blue line) is the 
original Kramer spectrum without filtering, the orange line is with aluminium filter, red line with body 
filtering, and green line with both aluminium and body filtering. For a better representation of how the 
photon fluence is attenuated through both filters and body only, they are multiplied with a constant equal to 
150. The lines are stepped to illustrate that the photon energy fluence is discretizes in steps of 1 keV.  

 

In the result chapter the measured values will be for CT images that is reconstructed with the 
Backprojection (BP) algorithm as long nothing else is specified. To decide this the mean of 
the difference between HU values for BP and iterative reconstruction (IT) for all materials 
and all energies was calculated, which gave the results of 0.02 HU, which is neglectable small 
in a clinical setting.  
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SECT data was sampled from the Quasar and Gammex phantoms. Mean HU values from 
materials corresponding to materials in the CT simulation tool was sampled using a ROI of 10 
pixels and 5 image slices. The materials were: Inflated lung, Cortical bone (dense bone), 
Brain, Blood (Blood70), Polyethylene, and Adipose, and the data are tabulated in table 4.1. 
When performing the simulations, it was not fully clear what representative thickness that 
should be employed when estimating the HU. Thus, a 120 kVp filtered spectrum for three 
different phantom thicknesses was made, and the least square method was used to find the 
thickness which minimizes the sum of squared differences between simulated and measured 
HU. Results are presented in table 4.1.  

Table 4.1: Measured HU values for the Quasar and Gammex phantom and estimated HU values from the 
simulation for six materials: Inflated lung, Cortical bone (Dense bone), Brain, Blood (Blood70), 
Polyethylene, and Adipose. In the last column the sum of squared differences between measured and 
simulated values are tabulated.   

Material 
Inf. 
Lung 

Cort. 
bone 

Brain Blood Polyethylene Adipose 
z(kl(

− kl_)+ 

Measured 
HU 

-740 695 34 79 -72 -67  

Simulated 
30cm  

-731 606 36 53 -94 -76 9242 

Simulated 
20 cm 

-700 802 35 51 -109 -82 15492 

Simulated 
3 cm 

-744 1123 41 62 -150 -111 191389 

 

From the result of the least square method, a thickness of 30 cm was used throughout for the 
CT simulation. 

To see how well the HU values for measured and simulated 120 kVp correlates, both the 
correlation and linear regression coefficients are found, and the values are tabulated in table 
4.2. 
 

Table 4.2: Correlation and linear regression coefficients for measured and simulated HU at 120 kVp. 

 r2 a ± STD b ± STD 

120 kVp 0.99 0.93	 ± 0.04 −23.36	 ± 16.06 
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The correlation between the measured mean HU values and simulated HU values is also 
illustrated in figure 4.2, where also an identity line with a=1 and b=0 is drawn. As seen, 
although the correlation is high there is some systematic deviations between the measured and 
simulated values. 

 

Figure 4.2: Correlation between measured and simulated HU for 120 kVp. The blue circular points with a 
linear fit are the HU values, and the black stippled line is the linear fit through b=0.  

4.2 Dual	Energy	CT	(DECT)	

Here the simulated and measured HU values for monochromatic images derived from DECT 
are presented. In table 4.3 the simulated HU are tabulated, while both measured and simulated 
HU values for the same six materials as in chapter 4.1 are presented in figure 4.3. Six plots of 
how the HU values vary with energy are shown. HU values from both monochromatic and 
120 kVp images are represented, and in Appendix A and B the values are tabulated. 

Table 4.3 Overview of the simulated HU values from the CT simulation code made in python. These values are 
calculated based on attenuation and mass density data from NIST.   

Energy 
Soft 
Tissue 

Inf. 
Lung 

Cortical 
Bone 

Blood Brain Polyethylene Adipose 

40 62 -749 2522 47 73 -211 -152 

50 58 -750 1655 43 64 -146 -111 

60 54 -751 1171 39 59 -110 -89 

70 53 -751 960 38 57 -95 -80 

80 52 -752 723 37 54 -77 -69 
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90 52 -752 636 36 53 -71 -65 

100 51 -752 543 36 53 -63 -61 

110 51 -752 517 36 52 -61 -59 

120 51 -752 489 36 52 -59 -58 

130 51 -752 460 36 52 -60 -56 

140 51 -752 429 35 51 -55 -55 

 

 

Figure 4.3: Measured and simulated HU values versus energy from DECT monochromatic images and for 120 
kVp images for the materials polyethylene, adipose, brain, blood (blood70), inflated lung, and cortical bone 
(dense bone). The HU value for 120 kVp is presented to give a better illustration of how HU values for the 
monochromatic images changes compared to kVp. The blue line (with circular points) is the measured HU 
value with STD. The pink line (with circular points) is the simulated HU values. Grey continuous line is the 
simulated monochromatic HU values, and the black continuous line is the HU values for measured 120 kVp. 
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For the three materials in the Gammex phantom (Blood, Brain, and Adipose) a theoretical 
calculated HU value for monoenergetic energies is available. These values are taken from the 
Gammex manual and are tabulated in table 4.4. 

 

 

Table 4.4: Theoretical HU for chosen mediums taken form the Gammex phantom. 

HU 40 50 60 70 80 90 100 110 120 130 140 

Blood70 90 82 76 72 71 70 69 69 68 68 67 

Brain 49 39 32 28 26 25 24 23 23 22 22 

Adipose -140 -107 -90 -80 -73 -69 -66 -65 -63 -62 -62 

 

To find the monochromatic image with the best fit to 120 kVp image, least squared method 
was used on both the HU values and the noise in the image. The three best results are 
tabulated in table 4.5.  
 

Table 4.5: Result of the least square method for HUDECT (keV) and HUSECT (kV). Only the three best results 
are tabulated here. The least square method for NoiseDECT and NoiseSECT was also calculated and tabulated 
here. These values give an indication of which monochromatic image is most comparable to the 120 kV image.  

Energy [keV] 70 80 90 

z(kl?"=7 − kl>"=7)+ 5908 3211 19389 

z(Amno*?"=7 − Amno*>"=7)+ 70 18 100 

 

To get a better sense of how the measured and simulated data corresponds to each other, both 
correlation and linear regression coefficient were calculated. Linear regression for the 
different energies tells something about how good the data fits to a linear line y = ax + b, and 
the standard deviation for both a and b can be calculated. In figure 4.4 the correlation between 
measured and simulated HU values from monochromatic images are illustrated.   
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Figure 4.4:The correlation (r2) values between measured and simulated HU for the different monoenergetic 
energies are illustrated as black circular points on the graph.  

 

In table 4.6 these values are tabulated for 80 - 110 keV, which from figure 4.4 are the energies 
with the highest correlation.  
 

Table 4.6:Linear regression coefficients for 80, 90, 100, and 110 keV measured HU values. Energies chosen 
are the values with highest correlation between measured and simulated HU.  

Energy [keV] 80 90 100 110 

a ± STD 1.07	 ± 0.06 1.06	 ± 0.06 1.04	 ± 0.04 1.04	 ± 0.02 

b ± STD 4.74	 ± 23.64 3.91	 ± 23.12 −2.45	 ± 17.74 −0.23	 ± 18.98 

  

As seen from earlier plots in the result, it is interesting to see how the HU value differs 
between the measured and the simulated energy settings. For each material the difference 
between the measured and simulated HU values are calculated. Results are illustrated in 
figure 4.5. The plot only contains information about the difference between monoenergetic 
values.  
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Figure 4.5 :The difference in HU values (measured - simulated) plotted for each material for monochromatic 
(keV) values. The blue circular points are for inflated lung, the purple points are for polyethylene, the cyan 
circular points are for adipose, red circular points are for brain, green circular points are for blood, and 
pink circular points are for cortical bone (dense bone). 

 

4.3 Alderson	

To see how HU values might change with location in a CT image, a small circular ROI was 
set to contain only one material a time and the mean HU was sampled. With this ROI, a local 
mean HU was found in four different locations for three different types of material, soft tissue 
(ST), air (A), and bone (B). The stored values can be found in Appendix F. To see how the 
mean HU differs between the locations, a global mean HU with STD is calculated.  

In table 4.7 and 4.8 the mean HU for the four different spots called Global mean, and tree 
different material is listed, they are for the whole Alderson and slab Alderson phantom, 
respectively. The standard deviation of the four HU values is calculated and presented with 
the Global mean.  
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Table 4.7: In this table values from the whole Alderson phantom is listed. The Global mean is the mean HU 
from four different locations, and the standard aviation of the HU is presented after the global mean. Three 
different materials are listed here, Soft Tissue (ST), Bone (B), and Air (A). The HU is measured for 
monoenergetic energies, and here the values from 40-140 keV with a step size of 20 is listed.  

Energy 40 60 80 

Global mean ± STD [ST] 16	 ± 49  6	 ± 23 1.8	 ± 13.3 

Global mean ± STD [B] 3326	 ± 530 1785	 ± 223 1186	 ± 193 

Global mean ± STD [A] −1028	 ± 19 −999	 ± 8 −987	 ± 7 

Energy 100 120 140 

Global mean ± STD [ST] 0.3	 ± 8.9 −0.6	 ± 6.6 −1	 ± 5 

Global mean ± STD [B] 925	 ± 152 796	 ± 132 723	 ± 121 

Global mean ± STD [A] −982	 ± 8  −980	 ± 8 −978	 ± 8 
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Table 4.8: In this table values from the slab Alderson phantom is listed. The Global mean is the mean HU 
from four different locations, and the standard aviation of the HU is presented after the global mean. Three 
different materials are listed here, Soft Tissue (ST), Bone (B), and Air (A). The HU is measured for 
monoenergetic energies, and here the values from 40-140 keV with a step size of 20 is listed. 

Energy 40 60 80 

Global mean ± STD [ST] 34	 ± 4  9	 ± 2 −1	 ± 1 

Global mean ± STD [B] 3531	 ± 353 1875	 ± 199 1232	 ± 140 

Global mean ± STD [A] −1022	 ± 52 −996	 ± 6 −985	 ± 13 

Energy 100 120 140 

Global mean ± STD [ST] −6	 ± 1 −8	 ± 1 −9	 ± 1 

Global mean ± STD [B] 952 ± 114 813	 ± 101 735	 ± 94 

Global mean ± STD [A] −981	 ± 21 −979 ± 24 −977	 ± 27 

 

 

4.4 Image	quality	

Here the result of noise and CNR measurements from the Gammex and Quasar phantom will 
be presented. In table 4.9 the measured noise in the monochromatic images is shown for some 
of the materials. The noise was calculated with equation 2.10 directly as the values was 
sampled.  
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Table 4.9: Amount of noise in both the monochromatic DECT images and 120 kVp image. Every 20 keV and 
materials with different HU are chosen to be showed here.  

 40 keV 60 keV 80 keV 100 keV 120 keV 140 keV 
120 
kVp 

Infl. Lung 12.5 7.6 5.7 4.9 4.5 4.3 3.6 

Brain 67.3 37.3 25.7 20.6 18.2 16.8 27.9 

Polyethylene 12.0 6.3 4.3 3.5 3.1 2.9 4.2 

Dense bone 16.4 8.8 5.9 4.7 4.1 3.8 6.6 

 

The standard deviation of the noise is listed in table 4.10. 

Table 4.10: The change in standard deviation (STD) of the noise in the CT image of Quasar and Gammex 
phantom, with energy. Energies from 40 – 140 keV with step size of 20 keV is tabulated here. Also, the STD in 
noise for 120 kVp is listed here. 

Energy 40 keV 60 keV 80 keV 100 keV 120 keV 140 keV 120 kVp 

STD 25.9 14.3 9.8 7.9 6.9 6.4 10.5 

 

The CNR was calculated from equation 2.11. CNR for chosen materials and energies are 
presented in table 4.11. 

 

Table 4.11: CNR values for chosen materials and energies.  

 40 keV 60 keV 80 keV 100 keV 120 keV 140 keV 
120 
kVp 

Infl. Lung 18 29 39 45 49 51 84 

Brain 26 41 54 62 68 71 64 

Polyethylene 54 100 138 163 179 188 300 

Dense bone 184 214 239 255 265 271 548 

 

In figure 4.6 DECT and SECT image of the Quasar and Gammex phantom is shown. Here it 
is possible to see how the noise in the images changes with energy and between DECT and 
SECT. 
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Figure 4.6: These images show the different in noise depending on acquisition and reconstruction method. In the top row the images are of the Gammex phantom for a) 80 
keV monochromatic, b) 120 keV monochromatic, c) 140 keV monochromatic, and d) 120 kVp image. On the lower row the images are of the Quasar phantom, but only the 
plate with the inserts, for e) 80 keV monochromatic, f) 120 keV monochromatic, g) 140 keV monochromatic, and h) 120 kVp image.
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4.5 SPR	

The calculated SPR values are shown in table 4.12 for seven different tissues and materials. 
These values are used in all the figures in this sub-chapter.  

 

Table 4.12: SPR calculated in the python program for the mediums: Soft tissue, Inflated lung, Adipose, 
Polyethylene, Blood, Brain, and Cortical bone. 

 Soft tissue Inf. Lung Adipose Polyethylene Blood Brain 
Cortical 

bone 

SPR 1.05 0.25 0.99 0.97 1.05 1.04 1.25 

 

4.5.1 HU	to	SPR	conversion	from	simulated	HU	values	

From the simulated HU values (table 4.3) and calculated SPR values (table 4.12) a HU to SPR 
conversion can be plotted. Figure 4.7 shows such a plot for 120 kVp, simulating SECT, while 
figure 4.8 shows such a plot for 40 and 140 keV, simulating DECT, for different materials.  

 
Figure 4.7: Conversion from HU (simulated) to SPR (calculated) for different materials with 120 kVp SECT. 
Here the circular points represent a different material. Blue point is inflated lung, orange point is cortical 
bone (dense bone), green point is soft tissue (only for simulated CT), reed point is brain tissue, purple is 
blood, brown point is polyethylene, and the pink point is adipose.  
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Figure 4.8: Conversion from HU (simulated) to SPR (calculated) for the monoenergetic energies 40 keV and 
140 keV, it illustrates how the HU changes with energy. The red circular points tell the HU and SPR for a CT 
with 40 keV, and the yellow circular points tells the HU and SPR for a CT with 140 keV. The two lines shows 
how a Hounsfield Unit Lookup Table (HLUT) looks like for 40 and 140 keV.  

4.5.2 HU	to	SPR	conversion	for	measured	HU	values	

From table 4.5 it is known that the 80 keV image results in HU values closest to the 120 kVp 
image. In figure 4.9 the HU to SPR conversion for the measured HU is plotted for 120 kVp, 
40 keV, 80 keV, and 140 keV to illustrate the difference in a Heuristic Look Up table 
(HLUT).  

 

Figure 4.9: HU to SPR conversion curve for the 120 kVp, 40 keV, 80 keV, and 140 keV. The pink line with 
circular points is the measured 80 keV, the blue line with circular points is the measured 120 kVp, the pruple 
line with circular points is the measured 40 keV, and the red line with circular points is the 120 keV. The 
zoomed window illustrates what happens between -200 HU and 100 HU on a larger scale.  
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It seems like adipose and polyethylene have switched places for measured HU of 80 keV and 
140 keV.  

 

4.5.3 HU	to	SPR	conversion	for	simulated	vs	measured	values	

An illustration of both the simulated and measured HU vs SPR for 120 kVp is shown in figure 
4.10. From this figure it appears that the HU values are not the same but for many of the 
materials they are close to each other.  

 

Figure 4.10: Measured and simulated HU values at 120 kVp. The zoomed window reaches from -200 HU to 
100 HU and illustrates an enlarged view of the area. The blue line with triangular points is the measured 
values, while the pink line with circular points is the simulated values.  

 

4.6 Dose	plans	

An illustration of the dose plans based on the 120 kVp CT image set for CTV_p and CTV_n2 
are shown in figure 4.11 and 4.12, respectively. The objectives defined in chapter 3.2.3 were 
compared to different clinical goals during evaluation of the plans. These goals are tabulated 
in table 4.13 and 4.14 for the primary tumour and secondary tumour, respectively.  
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Figure 4.11: An optimised dose plan for the tumour in the nasopharynx region. The delineation in red is the 
GTV and the one in blue is the CTV. The dose percentages are illustrated in colours, where the gantry angle 
is indicated in orange coming in from the left side of the head (the second one is from above). The colour bar 
in the upper right corner of the image shows the dose percentages the area gets. For a 95% coverage a yellow 
colour is shown. In Appendix D the colour of the different OAR is tabulated. 
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Figure 4.12: An optimised dose plan for the tumour in the pharynx region. The delineation in orange is the 
GTV (inside the blue delineation) and the one in blue is the CTV. The dose percentages are illustrated in 
colours, where the gantry angle is indicated in orange and light blue, where one is coming in from the left 
side of the head (270 degree) and two with a 40 degree change from the one on the left side. The colour bar in 
the upper right corner of the image shows the dose percentages the area gets. For a 95% coverage a yellow 
colour is shown. In Appendix D the colour of the different OAR is tabulated. 
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Table 4.13: Clinical goals for the treatment plan made on the tumour in the nasopharynx region. 

ROI  Clinical goal Value Result 
Body At most 70.00 Gy dose at 0.00% volume 72.03 Gy  
Brain At most 30% volume at 50.00 Gy dose 0.40 %  
Brain At most 60.0 Gy dose at 0% volume 70.98 Gy  
CTV At least 98% volume at 64.60 Gy dose 100 %  
Eye_L At most 30.00 Gy dose at 0% volume 11.86 Gy  
Eye_L_PRV At most 35.00 Gy dose at 0% volume 16.22 Gy  
OpticChiasm At most 54.00 Gy dose at 0% volume 13.08 Gy  
OpticChiasm_PVR At most 60.00 Gy dose at 0% volume 41.59 Gy  
OpticNerveL At most 54.00 Gy dose at 0% volume 19.50 Gy  
OpticNerveL_PRV At most 60.00 Gy dose at 0% volume 24.48 Gy  

 

 

Table 4.14: Clinical goals for the treatment plan made on the tumour in the pharynx region. 

ROI  Clinical goal Value Result 

Body At most 71.40 Gy dose at 0% volume 76.74 Gy  

CTVn2 At least 98% volume at 64.60 Gy dose 99.53 %  
Mandible At most 72.00 Gy dose at 0% volume 70.07 Gy  
Parotide_R At most 26.00 Gy dose at 0% volume 12.24 Gy  
SpinalCord At most 50.00 Gy dose at 0% volume 1.18 Gy  
SubmandGland_R At most 35.00 Gy dose at 0% volume 41.48 Gy  

 

For both plans the clinical goal for the body was not reached. The clinical goal for the brain 
the nasopharynx plan was not reached, while in the pharynx plan the right submandibular glad 
received a higher dose compared to the clinical goal.  

To see how the treatment plan changed for recalculation on the chosen monochromatic 
images, and for a different CT calibration the D99 was sampled for the CTV and OAR. The 
D99 is given in percentages, and a negative percentage means that the monochromatic image 
or different CT calibration gets a lower dose then the original plan on the 120 kVp with CT 
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calibration Brilliance Big B and are tabulated in table 4.15 and 4.16 for the tumour in the 
nasopharynx and pharynx region, respectively.  

An optimised dose plan for head and neck cancer strives for a CTV dose of 95% of total dose. 
This will result in tumour control, and the treatment is “good”.  

 

Table 4.15: Change between dose coverage for the tumour in the nasopharynx region for different energies 
and different CT calibration, given in percentages. A negative percentage illustrates a lower recalculated 
dose than the original dose. The original dose was calculated on a 120 kV CT image, with BB as CT 
calibration. The keV settings informs which DECT image is used for recalculation of the dose. BB and Sandra 
is the two CT calibration used in this thesis.  

Primary BB 40 keV 
60 
keV 

80 
keV 

100 
keV 

120 
keV 

140 
keV 

 

CTV D99 -72  -0.4  0.1 -0.1 0.3  0.2  

Brain D99 0 0 0 0 0 0  

Eye_L D99 0 0 0 0 0 0  

OpticChiasm D99 -7 14 14 21 7 21  

OpticNerveL D99 -86 -21 7 7 14 21  

 Sandra 40 keV 
60 
keV 

80 
keV 

100 
keV 

120 
keV 

140 
keV 120 kVp 

CTV D99 -78 -0.5 -0.3 0 0.1 0.1 -0.1 

Brain D99 0 0 0 0 0 0 0 

Eye_L D99 0 0 0 0 0 0 0 

OpticChiasm D99 29 -7 0 14 29 14 -7 

OpticNerveL D99 -93 -7 -14 0 21 21 -21 
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Table 4.16: Change between dose coverage for the tumour in the pharynx region for different energies and 
different CT calibration, given in percentages. A negative percentage illustrates a lower recalculated dose 
than the original dose. The original dose was calculated on a 120 kV CT image, with BB as CT calibration. 
The keV settings informs which DECT image is used for recalculation of the dose. BB and Sandra is the two 
CT calibration used in this thesis. 

 BB 40 keV 
60 

keV 

80 

keV 

100 

keV 

120 

keV 

140 

keV 
 

CTV D99 -46 -0.7 0.3 0 0.5 0.8  

Mandible D99 0 0 0 0 0 0  

Parotide_R D99 0 0 0 0 0 0  

SpinalCord D99 0 0 0 0 0 1  

SubmandGland_R D99 0.2 0 0 0 0 0  

 Sandra 40 keV 60 
keV 

80 
keV 

100 
keV 

120 
keV 

140 
keV 

120 
kVp 

CTV D99 -46 -0.8 0.1 0.3 0.5 0.7 0.1 

Mandible D99 0 0 0 0 0 0 0 

Parotide_R D99 -0.1 0 0 0 0 0 0 

SpinalCord D99 1 0 0 1 1 1 0 

SubmandGland_R D99 0 0 0 0 0 0 0 
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5 	Discussion	
5.1 SECT	

In  Dual energy CT in Oncology (2015) [14] , a typical x-ray spectrum used in medical CT 
obtained after standard pre-filtration is illustrate. Comparing that graph with the simulated 
one after aluminium filtering in figure 4.1 a similar shape is seen. In Dual energy CT in 
Oncology the graph also has two peaks for a certain energy due to characteristic x-ray from 
the anode. The target in an x-ray tube is often tungsten, which has an atomic number of Z = 

74 so characteristic x-rays around 58 keV and 59 keV would be expected. The presence of 
these peaks might affect the simulated HU values for a 120 kVp CT simulation. Still, 
characteristic x-rays will contribute with only a few percent of the total energy fluence, and 
was not included in the simulated x-ray beam due to simplifications made in the program.  

The method of least squares was used to make a conclusion about what thickness the material 
in the CT simulation should have. A thickness of 30 cm gave simulated HU data for 120 kVp 
with best fit to the measured HU. 30 cm thickness is the same as the thickness of the Gammex 
phantom, so it is rather consistent. In a CT scanner the photon beam traverses through the 
whole phantom, not only the inserts, so it makes sense that the simulated photon beam also 
has to traverse the same distance to result in equal data. Another possibility would be to make 
the photon beam traverse a material that is the same as the phantom it is made of, before 
guiding it through the medium we are interested in and then evaluate the HU values.  

From figure 4.2 we can see that the correlation between 120 kVp measured and simulated is 
quite good; about 0.99. But the linear regression tells us that two regression coefficients a and 
b are significantly different from unity and zero, respectively. This means that even though 
the data are highly correlated, there a systematic difference. This was not totally unexpected, 
due to the many simplifications in making the x-ray spectrum in the CT simulation tool in 
python. All in all, the simulation is a good approximation of simplified CT scanner, and has 
helped us in understanding the impact of x-ray spectrum attenuation on HU value. 

 

5.2 	DECT	

For the monoenergetic energies HU was both measured and simulated. From theory we know 
that attenuation varies with energy due to energy-dependent photon interactions. For lower 
energies the photoelectric effect is the main interaction, but for higher energies the Compton 
scattering is the main interaction. Unlike the photoelectric effect, the probability of Compton 
scattering depends on the electron density and not on the atomic number of the scattering 
medium. The differences in electron density between different material are small. One would 
assume that for a material with a high atomic number, the change in HU with x-ray energy 
would be larger than for material with a low atomic number. This is because the photoelectric 
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effect is strongly dependent on atomic number and photon energy. Also Dual energy CT in 

Oncology [14] has shown this dependency for soft tissue and iodine. 

In figure 4.3 one can see that the HU value varies much more for cortical bone, which has a 
high atomic number, compared with all the other materials. For a material with an attenuation 
coefficient close to, or smaller than, that of water, equation 2.9 would lead us to the 
conclusion that we would see the opposite effect compared to materials with high atomic 
values. The decrease in HU for a given material compared to that in water would lead to a 
higher attenuation for higher energies, and we would see an increase in HU with energy. This 
is seen in figure 4.3 for polyethylene and adipose. Also, both polyethylene and adipose has a 
lower density than water.  

 

Best fit to of measured data 

From the vendor of the DECT scanner it is informed that a reconstructed monochromatic 
image of 74 keV is expected to give the same results as a 120 kVp CT image. The least 
squares method was used to identify which monochromatic image series from DECT fits best 
to the 120 kVp SECT in terms of HU values. The numbers in table 4.5 indicates that 80 keV 
monochromatic image has the smallest least square difference between HU and noise, and this 
gives that the two images are most similar. This is not as the vendor has expected, but is in 
line with Wohlfhart et al. [5]. From a similar setup as in this work they found that 
monochromatic image of 79 keV gives the best results. In the same publication they present 
measured HU values for various inserts with tissue equivalent material from SECT 120 kVp 
and DECT monochromatic 79 keV images. For the inserts Bone with 10% CaCO3 (! =
1.17	'/)*!) and Bone with 30% CaCO3 ( ! = 1.34	'/)*!) they found a difference of 11 
and 46 HU, respectively, between the two image sets. These figures correspond well to the 
difference seen in the present work for the inserts Inner bone (! = 1.12	'/)*!)  and Dense 

bone (! = 1.41	'/)*!). However, the measured HU values in Wohlfhart et al are all over a 
bit higher for corresponding insert (Brain and Adipose) compared to the measurement shown 
in figure 4.3. This illustrates the uncertainties in using HU for SPR calculation.  

 

Correlation between simulated and measured DECT 

A correlation between the simulated and measured monoenergetic energies gives an 
impression of how different the values are, but at the same time a linear regression would give 
more information about how the data are related to each other. The correlation was illustrated 
in figure 4.4 and the was between 0.986 and 0.99. The b value in the linear regression was not 
significantly different from 0 for any of the energies. For the energies above 60 keV also the a 
value in the linear regression was not significantly different from 1. This implies that CT 
simulation program were able to simulate monochromatic HU better than a range of energies 
with 120 kVp. It seems like the CT simulation works better for a monoenergetic beam than a 
regular one, which may be expected as the simulated Kramer spectrum is an approximation. 
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We have seen that the HU values for measured and simulated monochromatic images changes 
with energy. In figure 4.5 this change is well illustrated. It shows that for cortical bone (who 
has a high atomic number) the error between measured and simulated is much greater than for 
the other type of media used in this thesis. It also shows that the differences for adipose and 
inflated lung are the smallest.  

 

5.3 Alderson		

A variation in HU for different positions in the Alderson phantom is as expected; the HU 
number will be affected by the surroundings of the ROI. In table 4.7 and 4.8 the mean HU 
(global HU) over the four locations is tabulated with the standard deviation. The Alderson 
phantom used in this thesis is also of significant age and is made of real bones in the head. 
One would thus expect a gradual degrading of the skeleton and hence a larger variation in HU 
measurements. Moreover, due to the small and sometimes patchy bone areas in the head of 
the phantom a small ROI had to be chose, so the mean HU calculated will not be from a large 
stack of numbers and an uncertainty would rise.  

 

5.4 Image	Quality	

In [33],  an optimal energy of 78.5	 ± 5.0 keV was reported, where the result of image noise 
and CNR calculation was best. Also, [5] found a low image noise at 79 keV MonoCT derived 
from 80/140 kVp DECT scans. In this study the amount of noise seems to descend with 
energy for the monochromatic images, as seen in table 4.9  

From the least square result for measured HU, for both monochromatic and 120 kVp images, 
80 keV monochromatic reconstruction image has noise values closest to the 120 kVp. When 
we look at the amount of noise in table 4.5 it shows that the 80 keV monochromatic image 
has a lower noise for most of the tissues. This can impact the HLUT, if the noise is large. 

In table 4.10 the standard deviation in the image noise is tabulated. These numbers show that 
the error in the noise is minimized for higher energies. This is also seen for the CNR wich is 
tabulated in table 4.11. In [33], it was found that the image noise was decreasing until around 
80 keV before it increased a bit and got stabilized. This was also the result for CNR 
calculation. The reason for this different result might be due to the algorithms used for 
creating the monochromatic images, or what type of DECT scanner is used. These results 
indicates that the CNR is dependent on the noise, so image with lowest noise may determine 
the maximum CNR in the monochromatic images.  

In table 4.9 we also see that the Gammex phantom gives rise to more noise. The reason for 
this might be that the insert goes through the whole Gammex phantom, while in the Quasar 
phantom a plate with lower hight and width, is placed on the front of the phantom with the 
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inserts. And since we have set a dose and a current to the whole phantom, the smaller plate in 
the Quasar phantom will get the same photon fluence (and dose) as the rest of the phantom 
and a higher dose. Also, the amount of noise is highly dependent on scan modality and 
reconstruction parameters. 

 

5.5 SPR	

The SPR was calculated in the python program for seven different materials. In figure 4.9 a 
conversion of HU to SPR (HLUT) for both 40 keV, 80 keV, 140 keV and 120 kVp are 
illustrated together. This image illustrates the difference in the corresponding HLUTs. The 80 
keV and 120 kVp graphs are close in value for adipose and polyethylene have made the line 
between them straighter. This could be a better approach, as this would imply that 
interpolations between these HUs are more accurate. But still the graphs in 4.9 are quite 
similar, which mean we would expect a similar dose distribution in proton therapy planning.  

Unfortunately, it is difficult to compare figure 4.9 with the corresponding figure in Wohlfhart 
et al [5], since the various tissue inserts are not easily identified. However, it seems like the 
curves around the cortical bone for the SPR values correspond. Wholfhart et al included bone 
tissue material with much higher mass density (Bone with 50% CaCO3, ! = 1.56	'/)*!) 
and showed that the two curves deviated more for such material.  

 

5.6 Proton	treatment	planning	

A CTV located in the nasopharynx was planned with two beams. From table 4.13 it is seen 
that 100% of the CTV has received a dose of 64.60 Gy (95% of prescribed dose) or higher. 
This is also seen in figure 4.11 where the 95% isodose fully cover the CTV. The clinical goal 
that 0% of the whole body should receive at most 70 Gy was exceeded with 3%, which is 
considered not to have any clinical consequence. Also, the max dose to the brain is exceeded 
with 18 %. But we can see that the brain gets a 50.0 Gy dose to 0.4 % of the volume, which 
indicates that the max dose to the brain is in a very small area. In this treatment plan the right 
eye is intentionally not taken into consideration since the probability of saving it is small due 
to the location of the tumour.  

 

 

A CTV located in the pharynx was used to make a second proton therapy plan. Here as well it 
seems like the tumour gets a 95 % dose coverage of whole tumour, by looking into table 4.14 
it shows that the CTV got a 99.5% dose coverage with a 95 % dose. One of the two goals that 
were not reached was the maximum dose to the body, since it was exceeded with 8 %. The 
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clinical goal that 0% of the right submandibular gland should at most receive 70 Gy was also 
exceeded by 6.5 Gy.  

From these data we would say that both treatment plans have sufficient quality. The main aim 
with the treatment plan was to see how the dose distribution will change when the plans are 
copied to monochromatic images from a DECT scanner. Also, it was interesting to see how a 
change in CT calibration affected the dose calculations. To quantify the changes the D99 for 
the CTV and OAR were evaluated. In table 4.15 the variation of these parameters is tabulated, 
and the only monochromatic image that stands out is the 40 keV images. For this image a 
reduction in D99 was around 70 % for a CT calibration that is the same as the one used for 
120 kVp. When a CT calibration based on the HU values from the monochromatic 80 keV 
image is chosen, the dose to the CTV in D99 was around 75 %. Since the change in HU value, 
image noise, and CNR from a 120 kVp image to a monochromatic 40 keV image is quite 
large, this result was expected. And in a clinically perspective monochromatic 40 keV images 
will not be used for treatment planning. 

 

Implementation of monochromatic images clinically is an intermediated step towards making 
DECT the preferred scanner for use in radiotherapy. The goal with the monochromatic image 
is to get a DECT image who will give at least the same uncertainties a 120 kVp CT images 
has today with the use of a HLUT. Important factors in a clinically perspective to the HU is 
noise and CNR. With a lower noise the error in the HLUT will be lower, and with an 
increased CNR delineation of tumours as well as OAR might become easier to provide.  

Next step would be to receive information about the electron density and Stopping power 
number directly from the DECT image. For this the monochromatic image might not be of 
best use,but is to be further investigated. Ultimate goal is to directly calculate  
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6 	Conclusion	
 

We have gained an understanding of how uncertainties in HU will impact the HU-SPR 
conversion, i.e., the HLUT, which is of importance in dose calculations for proton therapy 
planning. A DECT scanner can contribute to monochromatic images. The monochromatic 
images illustrated the impact of CT x-ray energy on HU value, and we found a best 
approximation to a conventional 120 kVp SECT image with 80 keV monochromatic DECT 
image. It was seen that the 80 keV resulted in a straighter line in the HLUT, which will give 
more precise SPR values.  

The result of the proton treatment planning did not show any significant changes for the 
majority of the monochromatic images.  

Implementation of monochromatic images clinically is an intermediated step towards making 
DECT the preferred scanner for use in radiotherapy. The goal with the monochromatic image 
is to get a DECT image who will give at least the same uncertainties a 120 kVp CT images 
has today with the use of a HLUT. Important factors in a clinically perspective to the HU is 
noise and CNR. With a lower noise the error in the HLUT will be lower, and with an 
increased CNR delineation of tumours as well as OAR might become easier to provide.  

The ultimate goal would be to receive information about the electron density and Stopping 
power number directly from the DECT image. For this the monochromatic image might not 
be of best use, but is to be further investigated.  

Due to time limitations the mass density used in this thesis for SPR calculation was from 
NIST [30], a further investigation of SPR calculation for mass density corresponding to the 
material is a possibility.  
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Appendix A  
Measured values Gammex and Quasar phantoms 

A 1 HU 
Table A.1: HU from the monochromatic energies with the DECT scan, the algorithm used for reconstruction is 
backprojection. The values are from the Gammex phantom. 

Energy 
[keV] Blood70 Blood40 Brain Water Blood Adipose 

40 111 77 78 6 148 -125 
50 95 62 57 4 129 -99 
60 85 53 44 3 117 -84 
70 79 47 36 2 110 -74 
80 75 43 31 1 105 -68 
90 72 41 28 1 102 -64 
100 70 39 25 1 100 -61 
110 69 38 23 0 98 -59 
120 68 37 22 0 97 -57 
130 68 36 21 0 97 -56 
140 67 36 21 0 96 -55 

 

Table A.2: HU from the monochromatic energies with the DECT scan, the algorithm used for reconstruction is 
iterative reconstruction. The values are from the Gammex phantom. 

Energy 
[keV] Blood70 Blood40 Brain Water Blood Adipose 

40 111 77 78 6 148 -125 
50 95 62 57 4 129 -100 
60 85 53 44 3 117 -84 
70 79 47 36 2 110 -74 
80 75 43 31 1 105 -68 
90 72 41 28 1 102 -64 
100 71 39 25 0 100 -61 
110 69 38 23 0 98 -59 
120 68 37 22 0 97 -57 
130 68 36 21 0 96 -56 
140 67 36 21 0 96 -55 
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Table A.3:  HU from the monoenergetic energies with the DECT scan, the algorithm used for reconstruction is 
backprojection. The values are from the Quasar phantom. 

Energy 
[keV] 

Inflated 
lung 

Dense bone Water Inner bone Polyethylene 

40 -737 1717 60 640 -197 
50 -736 1238 50 444 -133 
60 -735 944 44 324 -93 
70 -735 761 40 249 -68 
80 -734 643 37 201 -52 
90 -734 566 36 169 -42 
100 -734 513 35 147 -35 
110 -734 474 34 132 -30 
120 -734 448 33 121 -26 
130 -734 427 33 112 -23 
140 -734 411 32 106 -21 

 

Table A.4: HU from the monoenergetic energies with the DECT scan, the algorithm used for reconstruction is 
iterative reconstruction. The values are from the Quasar phantom. 

Energy 
[keV] 

Inflated 
lung Dense bone Water Inner bone Polyethylene 

40 -737 1717 60 641 -197 
50 -736 1238 50 444 -133 
60 -735 943 44 324 -93 
70 -735 761 40 249 -68 
80 -734 643 37 201 -52 
90 -734 566 36 169 -42 
100 -734 512 35 147 -35 
110 -734 474 34 132 -30 
120 -734 448 33 121 -26 
130 -734 427 33 112 -23 
140 -734 411 32 106 -21 
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A 2 Noise 
Table A.5: Noise from the monoenergetic energies with the DECT scan, the algorithm used for reconstruction 
is backprojection. The values are from the Gammex phantom. 

Energy 
[keV] Blood70 Blood40 Brain Water Blood Adipose 

40 49.2 55.5 67.3 61.7 67.8 69.3 
50 35.6 40.1 48.7 44.3 48.9 50.2 
60 27.3 30.6 37.3 33.6 37.3 38.5 
70 22.1 24.8 30.2 27.1 30.2 31.2 
80 18.8 21.0 25.7 23.0 25.6 26.6 
90 16.7 18.6 22.7 20.4 22.7 23.5 
100 15.2 16.9 20.6 18.5 20.6 21.4 
110 14.2 15.7 19.2 17.3 19.2 19.9 
120 13.5 14.9 18.2 16.4 18.2 18.8 
130 12.9 14.2 17.4 15.8 17.4 18.1 
140 12.5 13.8 16.8 15.3 16.8 17.4 

 

Table A.6:  Noise from the monoenergetic energies with the DECT scan, the algorithm used for reconstruction 
is iterative reconstruction. The values are from the Gammex phantom. 

Energy 
[keV] Blood70 Blood40 Brain Water Blood Adipose 

40 30.0 34.6 40.9 39.2 42.0 42.0 
50 21.6 24.8 29.5 27.9 30.1 30.5 
60 16.5 18.9 22.5 21.1 22.9 23.4 
70 13.4 15.3 18.3 17.0 18.4 19.0 
80 11.4 13.0 15.5 14.4 15.6 16.2 
90 10.1 11.4 13.7 12.8 13.8 14.4 
100 9.3 10.4 12.5 11.7 12.5 13.1 
110 8.7 9.7 11.6 11.0 11.6 12.2 
120 8.3 9.2 11.0 10.5 11.0 11.6 
130 8.0 8.8 10.5 10.1 10.6 11.1 
140 7.7 8.5 10.2 9.8 10.2 10.7 
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Table A.7: STD from the monoenergetic energies with the DECT scan, the algorithm used for reconstruction 
is backprojection. The values are from the Quasar phantom. 

Energy 
[keV] 

Inflated 
lung 

Dense bone Water Inner bone Polyethylene 

40 12.5 16.3 12.5 14.5 12.0 
50 9.6 11.7 8.9 10.4 8.4 
60 7.6 8.8 6.8 7.9 6.3 
70 6.5 7.1 5.5 6.4 5.1 
80 5.7 5.9 4.7 5.4 4.3 
90 5.2 5.2 4.1 4.8 3.8 
100 4.9 4.7 3.7 4.3 3.5 
110 4.7 4.4 3.5 4.0 3.2 
120 4.5 4.1 3.3 3.8 3.1 
130 4.4 3.9 3.2 3.7 3.0 
140 4.3 3.8 3.1 3.5 2.9 

 

Table A.8: STD from the monoenergetic energies with the DECT scan, the algorithm used for reconstruction 
is iterative reconstruction. The values are from the Quasar phantom. 

Energy 
[keV] 

Inflated 
lung Dense bone Water Inner bone Polyethylene 

40 7.7 10.9 7.6 9.0 7.0 
50 5.9 7.8 5.4 6.5 5.0 
60 4.8 5.8 4.1 5.0 3.8 
70 4.1 4.6 3.3 4.0 3.1 
80 3.7 3.9 2.8 3.4 2.7 
90 3.4 3.4 2.5 3.1 2.4 
100 3.2 3.1 2.3 2.8 2.2 
110 3.1 2.9 2.1 2.6 2.0 
120 3.0 2.8 2.0 2.5 1.9 
130 2.9 2.6 1.9 2.4 1.9 
140 2.8 2.5 1.9 2.3 1.8 
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A 3 Theoretical values 
Table A.9: Theoretical HU for the monochromatic images. 

Energy 
[keV] Blood70 Blood40 Brain Water Blood100 Adipose 

40 90 65 49 -2 113 -140 
50 82 53 39 -3 109 -107 
60 76 45 32 -4 106 -90 
70 72 40 28 -5 104 -80 
80 71 38 26 -5 103 -73 
90 70 36 25 -5 102 -69 
100 69 35 24 -5 102 -66 
110 69 35 23 -5 101 -65 
120 68 34 23 -6 101 -63 
130 68 33 22 -6 101 -62 
140 67 33 22 -6 101 -62 

 

 

 

A 4 SECT 

 

Table A.4: SECT HU, Gammex phantom 120 kVp. 

Algorithm Blood70 Blood40 Brain Water Blood100 Adipose 

Back proj. 79 46 34 2 106 -67 
Iterative 79 46 34 3 106 -68 

 

 

Table A.5: Noise, Gammex phantom 120 kVp. 

Algorithm Blood70 Blood40 Brain Water Blood100 Adipose 

Back proj. 20.8 21.4 27.9 24.1 25.6 28.0 

Iterative 12.4 12.8 16.3 14.4 15.0 16.5 
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Table A.6: Mean HU for 120 kVp image of the Quasar phantom. 

Algorithm 
Inflated 
lung Dense bone Water Inner bone Polyethylene 

Back proj. -740 695 40 211 -72 
Iterative -740 695 40 211 -72 

 

 

Table A.7: Noise for 120 kVp image of the Quasar phantom. 

Algorithm Inflated 
lung Dense bone Water Inner bone Polyethylene 

Back proj. 3.5 6.6 4.8 6.0 4.2 
Iterative 2.5 5.3 3.1 3.9 2.5 
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Appendix B  
SIMULATION 

 

Table B.1: Simulated HU for 120 kVp for three different thickness.  

Thickness 
[cm] 

Soft 
tissue 

Inflated 
lung 

Cortical 
bone Brain Blood Polyethylene Adipose 

30 50 -731 606 36 53 -94 -76 

20 48 -700 802 35 51 -109 -82 

3 55 -744 1123 41 62 -150 -111 

 

 

Table B.2: HU values for monoenergetic energies for different material from the CT calibration, with a 
thickness of 30 cm.  

Energy 
[keV] 

Soft 
tissue 

Inflated 
lung 

Cortical 
bone Brain Blood Polyethylene Adipose 

40 62 -749 2522 47 73 -211 -152 
50 58 -750 1655 43 64 -146 -111 
60 54 -751 1171 39 59 -110 -89 
70 53 -751 960 38 57 -95 -80 
80 52 -752 723 37 54 -77 -69 
90 52 -752 636 36 53 -71 -65 
100 51 -752 543 36 53 -63 -61 
110 51 -752 517 36 52 -61 -59 
120 51 -752 489 36 52 -59 -58 
130 51 -752 460 36 52 -57 -56 
140 51 -752 429 35 51 -55 -55 

 

 

 

 



   

 

83 

Appendix C  
CT calibration 

 

Table C.3: CT calibration values for Brilliance Big B commissioned machine. 

Brilliance Big B         

HU -1000 -992 -976 -480 -96 48 128 528 

Mass density 0.00121 0.00121 0.00121 0.5 0.95 1.05 1.1 1.35 

         

HU 976 1488 1824 2224 2640 2832 2833 3096 

Mass density 1.6 1.85 2.1 2.4 2.7 2.83 7.87 7.87 
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Table C.4: CT calibration values for Sandra commissioned machine. 

Sandra         

HU -1000 -992 -976 -480 -68 -52.4 1.06 37.3 

Mass density 0.00121 0.00121 0.00121 0.5 0.94 0.965 1.021 1.03 

         

HU 43.16 74.83 153.08 528 643.46 976 1488 1824 

Mass density 1.06 1.095 1.1245 1.35 1.42 1.6 1.85 2.1 

         

HU 2224 2640 2832 2833 3096    

Mass density 2.4 2.7 2.83 7.87 7.87    
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Appendix D  
D 1  
Table D.1: Delineation of target volumes. Also, dose restriction for the volumes used in RayStation is 
mentioned here 

Volume Description Type Colour Dose calculation 

Brain  OAR Brown 
!30	%&	 ≤ 50	%	
*!"# 	≤ 68	%& 

Brainstem Delineate  OAR 
Red 
brown 

 

BrainstemCore 
Brainstem – 2 mm 
margin, except caudal 

OAR   

Brainstem_PRV Brainstem + 3mm OAR   

BrainstemSurface 
Brainstem – 
BrainstemCore 

OAR   

Eye_L/R  OAR Mangenta *!"# ≤ 30	%& 
Eye_L/R_PVR Eye_L/R + 3mm  OAR  *!"# ≤ 35	%& 
Hippocampus_L/R  OAR Green  
Lacrimalgland_L/R  OAR Brown  

Lacrimalgland_L/R_PRV 
Lacrimagland_L/R + 3 
mm 

OAR   

Lense_L/R  OAR Blue  

Mandible  OAR 
Light 
blue 

 

OpticChiasm  OAR 
Light 
blue 

*!"# ≤ 54	%& 

OpticChiasm_PRV OpticChiasm + 3mm OAR  *!"# ≤ 60	%& 

OpticNerve_L/R  OAR 
Dark 
green 

 

OpticNerve_L/R_PRV OpticNerve_L/R + 3mm OAR  *!"# ≤ 60	%& 
Parotide_L/R  OAR Orange *!$"% ≤ 26	%& 

SpinalCord Delineate OAR 
Light 
orange 

 

SpinalCord_PRV SpinalCord + 3mm OAR   

SubmandGland_L/R  OAR Blue *!$"% ≤ 35	%& 
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Appendix E  
Differenace between HU values. 

E 1 measured and simulate monochromatic HU values from DECT 
Table E.1: Correlation r 

Energy [keV] 40 50 60 70 80 90 100 110 120 130 140 

Correlation [r] 0.987 0.989 0.992 0.990 0.997 0.997 0.998 0.997 0.997 0.997 0.998 

 

 

 

 

 

 

 

 

 

 



   

 

87 

Appendix F  
HU and noise values in the Alderson phantoms 

F 1 HU values  

 

Table F.1:HU values for soft tissue in the whole Alderson. Backprojection.  

   Soft tissue   Bone    Air   
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 60 53 -4 -44 2725 3058 3636 3886 -1012 -1017 -1055 -1028 
50 39 33 -3 -30 1939 2180 2604 2764 -1002 -1004 -1028 -1005 
60 28 22 -3 -22 1456 1640 1969 2074 -996 -996 -1011 -992 
70 20 14 -2 -17 1156 1305 1576 1645 -993 -991 -1001 -983 
80 15 10 -3 -14 963 1090 1323 1370 -990 -988 -994 -977 
90 12 7 -3 -12 836 949 1156 1189 -990 -986 -990 -974 
100 10 5 -3 -11 748 850 1041 1063 -988 -984 -987 -971 
110 8 3 -3 -9 685 780 958 974 -987 -983 -983 -969 
120 7 2 -3 -9 641 731 901 911 -987 -982 -981 -968 
130 6 1 -3 -8 608 694 857 863 -986 -981 -980 -967 
140 5 0 -2 -8 581 664 822 825 -986 -981 -980 -967 
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Table F.2: HU values for soft tissue in the whole Alderson. Iterative reconstruction. 

  Soft tissue     Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 60 54 -4 -37 2725 3058 3636 3886 -1012 -1017 -1051 -1029 
50 40 34 -3 -26 1939 2180 2604 2764 -1002 -1004 -1026 -1006 
60 28 22 -3 -20 1456 1640 1969 2073 -996 -996 -1010 -992 
70 20 15 -2 -15 1156 1305 1576 1645 -994 -991 -1000 -984 
80 15 10 -3 -12 963 1090 1323 1370 -991 -988 -992 -977 
90 12 7 -3 -10 836 949 1156 1189 -989 -985 -988 -974 
100 9 5 -2 -9 748 850 1041 1063 -988 -984 -985 -972 
110 8 3 -2 -8 686 780 958 974 -987 -982 -983 -970 
120 7 2 -2 -7 642 731 901 911 -986 -982 -981 -969 
130 6 1 -2 -7 608 694 857 863 -986 -981 -980 -968 
140 5 1 -2 -6 581 664 822 825 -986 -980 -980 -967 
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Table F.3: HU values for soft tissue in the slab Alderson. Backprojection. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 46 47 17 26 3043 3505 3764 3812 -982 -978 -1084 -1045 
50 26 27 7 14 2150 2486 2668 2718 -988 -986 -1035 -1014 
60 12 16 1 6 1601 1859 1994 2046 -992 -991 -1004 -995 
70 4 8 -3 1 1260 1470 1576 1628 -994 -995 -985 -983 
80 -1 3 -5 -2 1041 1220 1308 1360 -996 -997 -973 -975 
90 -4 0 -7 -4 897 1056 1131 1184 -997 -998 -965 -970 
100 -6 -3 -8 -5 797 941 1008 1061 -998 -999 -960 -966 
110 -8 -5 -9 -6 726 860 921 974 -998 -1000 -956 -964 
120 -9 -5 -10 -7 677 803 860 913 -999 -1000 -953 -962 
130 -10 -6 -10 -7 638 760 813 866 -999 -1001 -951 -961 
140 -11 -7 -11 -7 608 725 776 829 -999 -1001 -949 -960 
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Table F.4: HU values for soft tissue in the slab Alderson. Iterative reconstruction. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 47 46 19 26 3043 3505 3764 3812 -981 -976 -1084 -1047 
50 26 27 8 14 2150 2486 2668 2718 -987 -985 -1034 -1015 
60 13 15 2 6 1601 1859 1995 2046 -992 -991 -1004 -995 
70 5 7 -2 1 1260 1470 1577 1628 -994 -994 -985 -983 
80 0 2 -5 -2 1041 1220 1308 1360 -996 -996 -973 -975 
90 -4 -1 -7 -4 898 1056 1131 1184 -996 -998 -965 -970 
100 -6 -3 -8 -5 797 941 1008 1061 -997 -999 -960 -967 
110 -8 -4 -9 -6 726 860 921 974 -998 -999 -956 -964 
120 -9 -5 -9 -7 676 803 859 913 -998 -1000 -953 -962 
130 -10 -6 -10 -7 638 760 812 866 -999 -1000 -951 -961 
140 -11 -7 -10 -7 608 725 775 829 -999 -1001 -949 -960 
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F 2 Noise 

 

Table F.5: Noise values for soft tissue in the whole Alderson. Backprojection. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 29.5 22.9 18.9 33.2 1028.5 954.7 510.6 119.5 22.6 21.3 42.3 45.3 
50 21.6 16.7 12.9 23.2 732.8 684.2 361.8 93.1 16.0 15.2 27.7 29.0 
60 17.0 13.6 9.6 17.9 550.8 517.9 270.6 76.9 12.1 11.6 18.7 19.3 
70 14.0 12.2 7.9 14.6 438.0 414.9 214.0 67.1 9.6 9.3 13.3 13.3 
80 11.6 10.4 7.7 12.7 365.7 348.6 178.0 60.7 8.4 7.4 10.0 9.9 
90 10.2 9.2 6.8 11.6 318.0 305,1 154.2 56.6 7.2 6.8 7.8 7.5 
100 9.3 8.4 6.4 10.9 285.0 274.7 137.9 53.6 6.8 6.1 6.5 6.2 
110 8.5 7.8 6.1 10.0 261.6 253.2 126.3 51.6 6.5 5.6 4.8 5.6 
120 8.0 7.2 5.7 9.4 245.1 238.3 118.2 50.2 6.1 5.4 4.1 5.1 
130 7.7 7.1 5.4 8.9 232.5 226.9 1119 49.1 6.0 5.1 3.8 4.8 
140 7.3 6.8 5.3 8.5 222.4 217.8 107.,0 48.2 5.9 4.9 3.5 4.8 
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Table F.6: Noise values for soft tissue in the whole Alderson. Iterative reconstruction. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 21.3 14.7 13.9 22.5 1028.5 954.8 510.7 119.0 14.8 15.0 36.9 39.9 
50 15.6 10.9 9.9 16.5 732.89 684.3 362.0 92.9 11.0 11.0 23.9 25.4 
60 11.7 9.0 7.5 13.4 551.0 517.9 270.6 76.8 8.6 8.2 16.1 16.9 
70 9.5 7.5 6.2 11.3 438.1 414.9 214.2 67.0 7.3 6.2 11.4 11.6 
80 8.1 6.6 5.8 9.7 365.7 348.8 177.9 60.6 6.6 5.6 7.8 8.6 
90 6.9 5.8 5.2 8.5 318.2 305.4 154.3 56.4 6.1 4.9 6.0 6.4 
100 6.3 5.3 4.7 7.6 285.0 275.1 137.8 53.6 5.9 4.4 4.8 5.4 
110 5.8 4.9 4.3 6.9 261.5 253.7 126.3 51.5 5.6 4.2 3.9 4.8 
120 5.4 4.7 4.0 6.6 244.8 238.5 118.1 50.2 5.4 3.9 3.4 4.5 
130 5.2 4.5 3.9 6.3 232.2 226.8 111.9 49.1 5.3 3.7 3.0 4.5 
140 5.0 4.3 3.8 5.9 222.3 217.9 107.0 48.2 5.1 3.6 2.9 4.4 
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Table F.7: Noise values for soft tissue in the slab Alderson. Backprojection. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 23.8 21.5 25.5 15.3 690.1 525.7 86.6 245.4 17.8 23.7 36.5 23.8 
50 17.1 15.4 17.7 11.4 491.8 374.2 62.2 176.7 13.0 17.3 25.0 15.7 
60 13.6 12.5 13.6 9.2 370.7 281.8 47.3 135.0 10.1 13.4 18.2 11.2 
70 11.8 10.1 11.2 7.9 296.1 224.9 38.2 109.6 8.3 11.0 14.1 8.8 
80 10.0 8.6 9.3 7.1 248.6 188.7 32.2 93.9 7.3 9.7 11.5 7.9 
90 9.0 7.9 8.1 6.8 217.8 165.3 28.2 83.6 6.4 8.5 10.0 7.3 
100 8.0 7.1 7.4 6.3 196.6 149.2 25.7 76.9 6.0 7.7 8.9 7.1 
110 7.5 6.5 6.7 6.0 182.0 137.7 23.7 72.0 5.7 7.3 8.3 7.2 
120 7.1 6.2 6.4 5.8 171.6 129.9 22.4 68.8 5.5 7.1 8.0 7.1 
130 6.76 5.9 6.1 5.5 163.7 123.9 21.3 66.3 5.3 6.8 7.6 7.0 
140 6.7 5.8 5.9 5.3 157.6 119.3 20.6 64.2 5.1 6.4 7.4 7.1 
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Table F.8: Noise values for soft tissue in the slab Alderson. Iterative reconstruction. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

40 16.6 15.7 17.6 9.8 689.9 525.5 86.2 245.3 11.3 17.2 30.2 17.8 
50 12.4 11.3 13.2 7.8 491.8 374.1 61.8 176.6 8.4 12.5 20.9 11.9 
60 10.0 8.7 10.0 6.7 370.8 281.7 47.1 134.8 6.7 10.0 15.3 8.7 
70 8.3 7.0 7.9 6.0 296.0 224.8 37.9 109.6 5.7 8.3 12.1 7.4 
80 7.1 6.1 6.8 5.1 248.5 188.7 32.0 93.9 5.1 7.4 10.2 6.9 
90 6.3 5.3 6.0 4.9 218.1 165.3 28.2 83.6 4.7 6.8 8.9 6.8 
100 5.8 4.7 5.4 4.5 196.9 149.2 25.5 76.8 4.5 6.2 8.2 6.8 
110 5.5 4.4 5.0 4.3 182.1 137.7 23.6 72.0 4.4 6.1 7.7 6.7 
120 5.1 4.3 4.6 4.1 171.5 129.9 22.3 68.8 4.3 5.7 7.5 6.8 
130 4.9 3.9 4.4 4.0 163.7 123.9 21.3 66.3 4.3 5.5 7.2 6.9 
140 4.7 3.9 4.2 3.7 157.6 119.3 20.5 64.3 4.1 5.3 7.0 7.0 
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F 3 SECT HU AND NOISE 
Table F.9: HU values for 120 kVp image of the whole phantom, backprojection and iterative. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

BP 19 23 24 28 1340 1399 1442 1521 -978 -994 -983 -966 
IT 18 22 24 27 1340 1399 1442 1521 -978 -994 -983 -967 

 

 

Table F.10: HU values for 120 kVp image of the slab phantom, backprojection and iterative reconstruction 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

BP 12 19 2 5 1263 1387 1480 1549 -982 -977 -972 -978 
IT 12 18 3 4 1263 1387 1480 1549 -982 -977 -972 -978 
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Table F.11: Noise values for 120 kVp image of the whole phantom, backprojection and iterative reconstruction. 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

BP 8.7 8.0 8.1 12.9 190.6 112.1 143.2 25.1 5.5 8.4 6.1 8.3 
IT 5.6 5.9 6.9 9.4 190.8 112.1 143.2 25.0 4.2 7.7 4.9 7.5 

 

 

Table F.12: Noise values for 120 kVp image of the slab phantom, backprojection and iterative reconstruction 

   Soft tissue    Bone    Air  
Energy 
[keV] ST – 1 ST – 2 ST – 3 ST – 4 B – 1 B – 2 B – 3 B – 4 A – 1 A – 2 A – 3 A – 4 

BP 8.2 9.0 10.7 8.7 201.1 178.6 47.8 44.3 5.9 4.8 7.5 11.9 
IT 6.0 6.2 7.3 6.0 201.1 178.7 47.6 44.2 5.0 4.0 7.2 10.2 
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Appendix G  
Proton treatment plan  

 

Table G.1: Brilliance Bib B CT 

  Nasopharynxx tumour Pharynx tumour  

  CTV OpticChiasm OpricNerve_L CTV Parotide_R SpinalCord SubmandGland 

Energy [kVp] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] 

120  65.71 0.14 0.14 65.11 0.38 0.01 3.97 
        

Energy [keV]        

40 18.29 0.13 0.02 35.17 0.35 0.01 4.58 
60 65.48 0.16 0.11 64.64 0.39 0.01 4.14 
80 65.78 0.16 0.15 65.28 0.37 0.01 3.98 
100 65.63 0.17 0.15 65.51 0.38 0.01 4.1 
120 65.90 0.15 0.16 65.41 0.38 0.01 4.03 
140 65.87 0.17 0.17 65.66 0.37 0.02 4.01 
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Table G.2: Sandra CT 

  Nasopharynx tumour Pharynx tumour  

  CTV OpticChiasm OpricNerve_L CTV Parotide_R SpinalCord SubmandGland 

Energy [kVp] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] D99 [Gy] 

120  65.71 0.13 0.11 65.14 0.37 0.01 4.00 
        

Energy [keV]        
40 14.42 0.18 0.01 35.36 0.35 0.02 4.06 
60 65.37 0.13 0.13 64.57 0.39 0.01 4.06 
80 65.51 0.14 0.12 65.17 0.39 0.01 4.02 
100 65.71 0.16 0.14 65.32 0.39 0.02 4.07 
120 65.79 0.18 0.17 65.45 0.38 0.02 4.06 
140 65.79 0.16 0.17 65.57 0.37 0.02 4.08 
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Appendix H 
Python code to simulate x-ray spectrum and find HU. Calculation of 
SPR. All plots are set to False as default. 
import numpy as np  
import matplotlib.pyplot as plt  
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes 
from mpl_toolkits.axes_grid1.inset_locator import mark_inset 
import matplotlib.lines as mlines 
from scipy import interpolate 
import xlrd 
 
'''A program to calculate the Hounsfield Unit that we get from an acquisition vs  
the stopping power ratio for a proton. ''' 
 
#Variables of the energy 
kv  = 120         # maximum energy [keV] 
hv  = 10 + np.arange(kv - 9)   # an array with energies up to max [keV] 
hv_max = kv        # set the max energy [keV] 
K  = 100         # a konstant in Kramers 
specter 
x  = 30        # thickness of the object 
[cm]  
 
# Constants for the filter  
x_filter  = 0.39       # thickness of the filter 
mu_pre_filt = 1       # filtering the first photon 
specter 
 
# Kramers specter, info about how the x-ray specter from brehmsstrahlung 
psi_spec_CT = K * (hv_max - hv) 
#psi_tot = np.sum(psi)      #area under the curve 
 
# Normally used: 2.5 mm Al or 0.1-0.9 mm Cu 
 
#Files containing energy and attenuation values  
Al_file  = 'aluminum-attenuation.txt'    
Cu_file  = 'copper-attenuation.txt'        
Water_file  = 'water-attenuation.txt' 
Lung_file  = 'lung-attenuation.txt' 
Soft_t_file = 'softtissue-attenuation.txt' 
Cort_file  = 'cortical-attenuation.txt' 
Brain_file  = 'brain-attenuation.txt' 
Blood_file  = 'blood-attenuation.txt' 
Poly_file  = 'polyethylene-attenuation.txt' 
Adip_file  = 'Adipose-attenuation.txt' 
 
# Densities with unit [g/cm³] 
Al_dens  = 2.7       # Alumnium  
Cu_dens  = 8.96       # Copper    
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Water_dens  = 1.00       # Water 
Lung_dens  = 0.25       # Lung 
Soft_t_dens = 1.060      # Soft tissue 
Cort_dens  = 1.420      # Cortical bone , have used 
1.609, NIST 1.920 
Brain_dens  = 1.040      # Brain 
Blood_dens  = 1.060      # Blood 
Poly_dens  = 9.30e-1      # Polyethylene 
Adip_dens  = 9.5e-1      # Adipose 
 
# A function to implement datasets from text files 
def read_file(textfile1, density): 
 hv_file  = []       # [MeV] 
 murho_file  = []        # mu/rho [cm^2/g] 
 
 
 #Read in the file soft_tissue.txt, first two lines 
 with open(textfile1) as myfile: #'soft_tissue.txt' 
  infile = myfile.readlines()    # read the values 
 
  for line in infile: 
 
   values = line.split()     # splits the values with ' ' 
   value_hv = float(values[0])   # the numbers at index 0 float 
   hv_file.append(value_hv)    # appends the first collum 
 
   value_murho = float(values[1])   # index 1 to float 
   murho_file.append(value_murho)  # appends the 2. collum 
 
 myfile.close 
  
 # Change from list to an array 
 hv_file = np.array(hv_file) * 1000.      # [keV] 
 mu_file = np.array(murho_file) * density     # [cm-1] 
 #print(density) 
 return hv_file, mu_file  
 
# A function to implement data from text file 
def element(textfile, density): 
 # Adipode tissue ICRU- 44 density: 9.500E-01 
 element_hv   = []         
 # [MeV] 
 element_murho  = []          
 # mu/rho [cm^2/g] 
 
 #Read in the file soft_tissue.txt, first two lines 
 with open(textfile) as myfile:  
  infile = myfile.readlines()       # read the 
values 
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  for line in infile: 
 
   values = line.split()     # splits the values with ' ' 
   value_hv = float(values[0])   # the numbers at index 0 float 
   element_hv.append(value_hv)   # appends the first collum 
 
   value_murho = float(values[1])   # index 1 to float 
   element_murho.append(value_murho) # appends the 2. collum 
 
 myfile.close 
 
 # Change from list to an array 
 element_hv = np.array(element_hv) * 1000.     # [keV] 
 element_mu = np.array(element_murho) *  density   # [cm^-1] 
 #print(density) 
 
 return element_hv, element_mu  
 
def interpolation(tissue, energy): 
 x1   = tissue[0]          
 # energy 
 y1   = tissue[1]          
 # attenuation 
 
 f   = interpolate.interp1d(x1, y1, kind='linear')   # interpolation 
 
 xnew = energy        # the energy spectra 
we want to use 
  
 # The interpolation gives us the attenuation values for the array  
 # with energy. It uses the attenuation and enegry from given data 
 interp_mu = f(xnew)      # what we want to interpolate 
 
 return interp_mu 
 # Kramer´s law tells us how the x-ray spectra is produced by an electron 
 # hitting a solid target. We want to use the whole spectra,  
 # not a monoenergetic value.  
 
def pre_filtration(thickness, filt, energy, typ): 
 mu   = interpolation(filt, energy) 
 x_filt  = thickness 
 
 if typ == 0: 
  # make a spectrum of the energy (original CT) 
  psi    = K * ( np.max(energy) - energy)  
  psi_prefilt  = psi * np.exp( - mu * x_filt )   
 else:  
  psi   = energy          
  psi_prefilt = psi * np.exp( - mu * x_filt )    
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 psi_prefilt_tot = np.sum(psi_prefilt) 
 psi_tot   = np.sum(psi) 
 
 
 # Returns both filtered and non-filtered psi 
 return psi, psi_prefilt 
 
def filtration(interp_mu, filt, thickness, energy, typ): 
 #psi_interp = psi_prefilt 
 psi_interp = pre_filtration(thickness, filt, energy, typ) 
 
 # we know that the specter will loose enegry with e^-mu*x 
 psi_interp_filter = psi_interp[1] * np.exp( - interp_mu * x)   
 psi_interp_nofilter = psi_interp[0] * np.exp( - interp_mu * x)  
 
 # To be able to calculate the mean attenuation we have to find all the 
 # photons before hitting the patient divided by all the photons hitting the 
 # detector.  
 psi_interp_tot    = np.sum(psi_interp[1]) 
 psi_interp_filter_tot  = np.sum(psi_interp_filter) 
 
 mu_mean_interp = (np.log( psi_interp_tot / psi_interp_filter_tot )) / x 
 
 return psi_interp[1], psi_interp_filter, \ 
 psi_interp_tot, psi_interp_filter_tot\ 
 , mu_mean_interp, psi_interp_nofilter 
 
def water_filtration(interp_mu, energy, typ): 
 
 #psi_interp = pre_filtration(thickness, filt) 
 # we know that the specter will loos enegry with e^-mu*x 
 if typ == 0: 
  # make a spectrum of the energy (original CT image) 
  psi      = K * (hv_max - energy) 
  psi_interp_filter   = psi * np.exp( - interp_mu * x) 
 else:  
  psi = energy 
  psi_interp_filter   = psi * np.exp( - interp_mu * x) 
 
 # To be able to calculate the mean attenuation we have to find all the 
 # photons before hitting the patient divided by all the photons hitting the 
 # detector.  
 #psi_interp_tot = np.sum(psi_interp[0]) 
 #psi_interp_filter_tot = np.sum(psi_interp_filter) 
 psi_interp_tot    = np.sum(psi) 
 psi_interp_filter_tot  = np.sum(psi_interp_filter) 
 
 mu_mean_interp = (np.log( psi_interp_tot / psi_interp_filter_tot )) / x 
 
 return psi_interp_filter, psi_interp_tot, psi_interp_filter_tot\ 
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 , mu_mean_interp 
 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
#####            
        ##### 
#####  FIND THE ATTENUATION VALUES FOR DIFFERENT MEDIUMS AND 
PLOT     ##### 
#####            
        ##### 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
 
###########################################################################
##### 
#####       W A T E R     
       ##### 
###########################################################################
##### 
water_calculation = True 
if water_calculation:  
 
 water_mu_inter = interpolation(element(Water_file, Water_dens), hv ) 
 mu_w = filtration(water_mu_inter, element(Al_file, Al_dens), x_filter,\ 
    hv, 0) 
 
 mu_water_list = [] 
 
 ## A for loop to run through the keV between 20-140, steps in 10 keV 
 for i in range(10,140,10): 
 
  en = i + 10 
  water_mu_inter_2 = interpolation(element(Water_file, Water_dens), en ) 
  mu_w_2 = filtration(water_mu_inter_2, element(Al_file, Al_dens), \ 
   x_filter, en, 1) 
 
  
  mu_water_list.append(mu_w_2[4]) 
   
 mu_water_list = np.array(mu_water_list) 
 
 print_w = False 
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 if print_w: 
  print(mu_water_list) 
 
###########################################################################
##### 
#####     S O F T  T I S S U E     
     ##### 
###########################################################################
##### 
 
soft_tissue_on = True 
if soft_tissue_on: 
  
 Aluminum_filter_soft = True 
 if Aluminum_filter_soft: 
  # Soft tissue with aluminum filter - Krisin: 3.99 mm ved 75kV 
  values_soft = filtration( interpolation( read_file(Soft_t_file, \ 
   Soft_t_dens), hv ), element(Al_file, Al_dens), x_filter, hv, 0) 
   
  mu_soft_list  = [] 
 
  for i in range(10,140,10): 
   en = 10 + i 
   fil_soft  = read_file(Soft_t_file, Soft_t_dens) 
   inte_soft = interpolation(fil_soft, en) 
   mu_soft = filtration(inte_soft, element(Al_file, Al_dens),\ 
     x_filter, en, 1) 
 
   mu_soft_list.append(mu_soft[4])  
 
  mu_soft_list = np.array(mu_soft_list) 
 
  plot_soft_t = False 
  if plot_soft_t:  
   plt.step(hv, psi_spec_CT, label='Original') 
   plt.plot(hv, psi_spec_CT,'-', color='grey', alpha=0.3) 
   plt.step(hv, values_soft[0], label='Aluminium filter') 
   plt.plot(hv, values_soft[0],'-', color='grey', alpha=0.3 ) 
   plt.step(hv, values_soft[1] * 150, label='Both filters * 150') 
   plt.plot(hv, values_soft[1] * 150, '-', color='grey', alpha=0.3) 
   plt.step(hv, values_soft[-1] * 150, label='Body only * 150') 
   plt.plot(hv, values_soft[-1] * 150, '-', color='grey', alpha=0.3) 
   plt.legend() 
   plt.title('Soft tissue') 
   plt.xlabel('h$ \\nu $ [keV]') 
   plt.ylabel('$ \psi $ (Photon fluence)') 
   plt.grid(True, color='gainsboro') 
   plt.show() 
   
  mu_mean_after   = values_soft[4] 
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  mu_mean   = mu_soft_list 
 
  # Now that we are able to find the attenuation through the body and filter 
  # we want to calculate the Hounsfield Unit  
  HU     = 1000 * ( ( mu_mean_after - mu_w[-2] ) / mu_w[-2] ) 
  HU_soft_2 = 1000 * ( ( mu_mean - mu_water_list ) / mu_water_list ) 
 
 print_s = False 
 if print_s: 
  print('The CT number is %.3f HU for Soft tissue.' % HU) 
  print(HU_soft_2) 
  print('The CT number is %.3f HU for Soft tissue 120 kV.' % HU) 
  print(HU) 
 
###########################################################################
##### 
#####        L U N G   
        ##### 
###########################################################################
##### 
 
Lung_on = True 
if Lung_on: 
 
 Lung_aluminum = True 
 if Lung_aluminum: 
  lung_t    = read_file(Lung_file, Lung_dens) 
  int_value = interpolation(lung_t, hv) 
  mu_lung = filtration(int_value, element(Al_file, Al_dens),\ 
   x_filter, hv, 0) 
 
 
  mu_lung_list  = [] 
 
  for i in range(10,140,10): 
   #en    = 10 + np.arange((i+10) - 9) 
   en = 10 + i 
   fil_lung  = read_file(Lung_file, Lung_dens) 
   inte_lung = interpolation(fil_lung, en) 
   mu_lung_2 = filtration(inte_lung, element(Al_file, Al_dens),\ 
    x_filter, en, 1) 
  
   mu_lung_list.append(mu_lung_2[4])  
 
  mu_lung_list = np.array(mu_lung_list) 
 
  plot_lung = False 
  if plot_lung: 
   plt.plot(hv, psi_spec_CT, label='Original') 
   plt.plot(hv, mu_lung[0], label='Aluminium filter') 
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   plt.plot(hv, mu_lung[1], label='Both filters') 
   plt.plot(hv, mu_lung[-1], label='Body') 
   plt.legend() 
   plt.title('Lung') 
   plt.xlabel('$h\\nu$ [keV]') 
   plt.ylabel('$ \psi $ (Number of photons)') 
   plt.show() 
   
  mu_mean_al_lung = mu_lung[4] 
  mu_mean_l    = mu_lung_list 
 
  HU_al_lung  = 1000 * ( ( mu_mean_al_lung - mu_w[-2] ) / mu_w[-2] ) 
  HU_lung  = 1000 * ( ( mu_mean_l - mu_water_list ) / mu_water_list ) 
 
 print_l = False 
 if print_l: 
  print('The CT number is %.3f HU for inflated lungs.' % HU_al_lung) 
  print(HU_lung) 
  print('The CT number is %.3f HU for inflated lungs at 120 kV.' % 
HU_al_lung) 
  print(HU_al_lung) 
 
 
###########################################################################
##### 
#####     C O R T I C A L  B O N E    
     ##### 
###########################################################################
##### 
 
Cortical_on = True 
if Cortical_on: 
 
 Cortical_aluminum = True 
 if Cortical_aluminum: 
  cortical_t  = read_file(Cort_file, Cort_dens) 
  int_value  = interpolation(cortical_t, hv) 
  mu_cortical = filtration(int_value, element(Al_file, Al_dens),\ 
   x_filter, hv, 0) 
 
  plot_cortical = False 
  if plot_cortical: 
   plt.plot(hv, psi, label='Original psi') 
   plt.plot(hv, mu_cortical[0], label='Filtered through Al') 
   plt.plot(hv, mu_cortical[1], label='Both filters') 
   plt.plot(hv, mu_cortical[-1], label='Only bodyfilter') 
   plt.legend() 
   plt.title('') 
   plt.xlabel('energy [hv]') 
   plt.ylabel('$ \psi $') 
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   plt.show() 
   
  mu_cort_list = [] 
 
  for i in range(10,140,10): 
   #en = 10 + np.arange((i+10) - 9) 
   en = 10 + i 
   fil_cort = read_file(Cort_file, Cort_dens) 
   inte_cort = interpolation(fil_cort, en) 
   mu_cort = filtration(inte_cort, element(Al_file, Al_dens),\ 
    x_filter, en, 1) 
 
   mu_cort_list.append(mu_cort[4])  
 
  mu_cort_list   = np.array(mu_cort_list) 
 
  mu_mean_cort   = mu_cort_list 
  mu_mean_cortical  = mu_cortical[4] 
 
  HU_cort_list  = 1000 * ( ( mu_mean_cort - mu_water_list ) /\ 
        mu_water_list ) 
  HU_cort   = 1000 * ( ( mu_mean_cortical - mu_w[-2] ) /\ 
        mu_w[-2] ) 
 
  #print(HU_cort_list) 
  print_c = False 
  if print_c: 
   print('The CT number is %.3f HU for cortical bone.' % HU_cort) 
   print(HU_cort_list) 
   print('The CT number is %.3f HU for cortical bone at 120 kV.' % 
HU_cort) 
   print(HU_cort) 
 
   # The CT do not use CT number above 1000 HU, here we will check 
since 
   # we know bone has a high attenuation 
   if HU_cort > 1000: 
    HU_cort = 1000 
    print('HU Cortial is larger than 1000 HU') 
 
  for i in range(len(HU_cort_list)): 
   if HU_cort_list[i] > 3071:  
    HU_cort_list[i] = 3071 
 
  #print(HU_cort_list) 
 
###########################################################################
##### 
#####        B R A I N   
       ##### 
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###########################################################################
##### 
 
Brain_on = True 
if Brain_on: 
 
 hv_mu_brain = read_file(Brain_file, Brain_dens) 
 
 int_value  = interpolation(hv_mu_brain, hv) 
 mu_brain_v  = filtration(int_value, element(Al_file, Al_dens),\ 
      x_filter, hv, 0) 
 
 mu_brain  = [] 
 
 for i in range(10, 140, 10):  
  #en = 10 + np.arange((i+10) - 9) 
  en = 10 + i 
  mu_interp_brain = interpolation(hv_mu_brain, en) 
  brain = filtration(mu_interp_brain, element(Al_file, Al_dens),\ 
    x_filter, en, 1) 
 
  mu_brain.append(brain[4]) 
 
 mu_brain  = np.array(mu_brain) 
 
 
 # Hounsfield unit 
 
 HU_brain_range  = 1000 * ((mu_brain - mu_water_list) / mu_water_list) 
 HU_brain   = 1000 * ((mu_brain_v[4] - mu_w[-2]) / mu_w[-2]) 
 
 print_br = False 
 if print_br: 
  print('The CT number is %.3f HU for brain.' % HU_brain) 
  print(HU_brain_range) 
  print('The CT number is %.3f HU for brain for 120 kV.' % HU_brain) 
  print(HU_brain) 
 
 plot_brain = False 
 if plot_brain: 
  plt.plot(hv, psi, label='Original psi') 
  plt.plot(hv, mu_brain_v[0], label='Filtered through Al') 
  plt.plot(hv, mu_brain_v[1], label='Both filters') 
  plt.plot(hv, mu_brain_v[-1], label='Only bodyfilter') 
  plt.legend() 
  plt.title('') 
  plt.xlabel('energy [hv]') 
  plt.ylabel('$ \psi $') 
  plt.show() 
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###########################################################################
##### 
#####       B L O O D    
       ##### 
###########################################################################
##### 
 
Blood_on = True 
if Blood_on: 
 
 hv_mu_blood = read_file(Blood_file, Blood_dens) 
 mu_blood  = [] 
 
 for i in range(10, 140, 10):  
  en = 10 + i 
  #en = 10 + np.arange((i+10) - 9) 
  mu_interp_blood = interpolation(hv_mu_blood, en) 
  blood = filtration(mu_interp_blood, element(Al_file, Al_dens),\ 
     x_filter, en, 1) 
 
  mu_blood.append(blood[4]) 
 
 mu_blood  = np.array(mu_blood) 
 
 int_value  = interpolation(hv_mu_blood, hv) 
 mu_blood_v  = filtration(int_value, element(Al_file, Al_dens),\ 
     x_filter, hv, 0) 
 
 # Hounsfield unit 
 
 HU_blood_range  = 1000 * ((mu_blood - mu_water_list) / mu_water_list) 
 HU_blood   = 1000 * ((mu_blood_v[4] - mu_w[-2]) / mu_w[-2]) 
 
 print_bl = False 
 if print_bl: 
  print('The CT number is %.3f HU for blood.' % HU_blood) 
  print(HU_blood_range) 
  print('The CT number is %.3f HU for blood for 120 kV.' % HU_blood) 
  print(HU_blood) 
 
 plot_blood = False 
 if plot_blood: 
  plt.plot(hv, psi, label='Original psi') 
  plt.plot(hv, mu_blood_v[0], label='Filtered through Al') 
  plt.plot(hv, mu_blood_v[1], label='Both filters') 
  plt.plot(hv, mu_blood_v[-1], label='Only bodyfilter') 
  plt.legend() 
  plt.title('sn - Al - blood') 
  plt.xlabel('energy [hv]') 
  plt.ylabel('$ \psi $') 
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  plt.show() 
 
###########################################################################
##### 
#####     P O L Y E T H Y L E N E    
      ##### 
###########################################################################
##### 
 
Poly_on = True 
if Poly_on: 
 
 hv_mu_poly  = read_file(Poly_file, Poly_dens) 
 mu_poly  = [] 
 
 for i in range(10, 140, 10):  
  en = 10 + i 
  #en = 10 + np.arange((i+10) - 9) 
  mu_interp_poly = interpolation(hv_mu_poly, en) 
  poly = filtration(mu_interp_poly, element(Al_file, Al_dens),\ 
     x_filter, en, 1) 
 
  mu_poly.append(poly[4]) 
 
 mu_poly  = np.array(mu_poly) 
 
 int_value  = interpolation(hv_mu_poly, hv) 
 mu_poly_v  = filtration(int_value, element(Al_file, Al_dens),\ 
     x_filter, hv, 0) 
 
 # Hounsfield unit 
 
 HU_poly_range  = 1000 * ((mu_poly - mu_water_list) / mu_water_list) 
 HU_poly   = 1000 * ((mu_poly_v[4] - mu_w[-2]) / mu_w[-2]) 
 
 print_p = False 
 if print_p: 
  print('The CT number is %.3f HU for polyethylene.' % HU_poly) 
  print(HU_poly_range) 
  print('The CT number is %.3f HU for polyethylene for 120 kV.' % HU_poly) 
  print(HU_poly) 
 
 plot_blood = False 
 if plot_blood: 
  plt.plot(hv, psi, label='Original psi') 
  plt.plot(hv, mu_poly_v[0], label='Filtered through Al') 
  plt.plot(hv, mu_poly_v[1], label='Both filters') 
  plt.plot(hv, mu_poly_v[-1], label='Only bodyfilter') 
  plt.legend() 
  plt.title('see Al - polyethylene') 
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  plt.xlabel('energy [hv]') 
  plt.ylabel('$ \psi $') 
  plt.show() 
 
###########################################################################
##### 
#####       A D I P O S E    
      ##### 
###########################################################################
##### 
 
Adip_on = True 
if Adip_on: 
 
 hv_mu_adip  = read_file(Adip_file, Adip_dens) 
 mu_adip  = [] 
 
 for i in range(10, 140, 10):  
  en = 10 + i 
  #en = 10 + np.arange((i+10) - 9) 
  mu_interp_adip = interpolation(hv_mu_adip, en) 
  adip = filtration(mu_interp_adip, element(Al_file, Al_dens),\ 
     x_filter, en, 1) 
 
  mu_adip.append(adip[4]) 
 
 mu_adip  = np.array(mu_adip) 
 
 int_value  = interpolation(hv_mu_adip, hv) 
 mu_adip_v  = filtration(int_value, element(Al_file, Al_dens),\ 
     x_filter, hv, 0) 
 
 # Hounsfield unit 
 HU_adip_range = 1000 * ((mu_adip - mu_water_list) / mu_water_list) 
 HU_adip = 1000 * ((mu_adip_v[4] - mu_w[-2]) / mu_w[-2]) 
 
 print_a = False 
 if print_a: 
  print('The CT number is %.3f HU for adipose.' % HU_adip) 
  print(HU_adip_range) 
  print('The CT number is %.3f HU for adipose for 120 kV.' % HU_adip) 
  print(HU_adip) 
 
 plot_blood = False 
 if plot_blood: 
  plt.plot(hv, psi, label='Original psi') 
  plt.plot(hv, mu_adip_v[0], label='Filtered through Al') 
  plt.plot(hv, mu_adip_v[1], label='Both filters') 
  plt.plot(hv, mu_adip_v[-1], label='Only bodyfilter') 
  plt.legend() 
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  plt.title('see how t - Al - adipose') 
  plt.xlabel('energy [hv]') 
  plt.ylabel('$ \psi $') 
  plt.show() 
 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
#####             
        ##### 
#####            
        ##### 
#####     IMPLEMENT THE STOPPING POWER RATIO   
        ##### 
#####            
        ##### 
#####            
        ##### 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
 
# Now I will implement the Stopping Power by using the Bethe Block equation  
# where I will find beta from the kinetic energy and by tabulated values for 
# Z/A and I. I will still look at soft tissue, lung and bone. I will set the  
# energy range frome 1 MeV to 250 MeV. s  
            
T_en = np.arange(1e3, 251e3, 1e3)      # Kinetic energy [keV] 
M0_c = 938.28 * 1e3         # Rest energy [keV] 
z   = 1            # 
Charge of proton 
 
# print(T_en) 
 
Z_A_cortical =  0.51478 
I_cortical   =  112.0 
Z_A_soft   =  0.54996 
I_soft    =  74.7 
Z_A_lung   =  0.55048 
I_lung    =  75.2 
Z_A_w    =  0.55508 
I_w    =  75.0 
Z_A_brain   =  0.55239 
I_brain   =  73.9 
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Z_A_blood   =  0.54999 
I_blood   =  75.2 
Z_A_poly   =  0.57033 
I_poly    =  57.4 
Z_A_adip   =  0.55579 
I_adip    =  64.8 
 
# A function to calculate the beta value, dependent on the kinetic energy (T) of 
# the proton. Thie reutrn will be unitless  
def beta(T): 
 b = ( 1 - ( 1 / ( (T/M0_c) + 1  ) )**2 )**(1./2.) 
 
 return b 
 
# A function to calculate the mass stopping power, takes the kinetic energy (T),  
# mean excitation energy (I) and atomic number-to-mass (Z/A) as input variables 
# the return will have the units [MeV/(g/cm^2)] 
# a function of proton energy for given material  
def dedx(T, I, Z_A): 
 be = beta(T) 
 
 # Stopping power with units [MeV/(g/cm^2)] 
 SP = 0.3071 * Z_A * z**2 * (1/be**2) * (13.8373 + np.log( be**2 / \ 
  ( 1- be**2)) - be**2 - np.log(I) ) 
 
 return SP 
 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
#####            
        ##### 
#####  FIND THE MASS STOPPING POWER FOR DIFFERENT MEDIUMS 
      ##### 
#####            
        ##### 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
 
# Want to calculate the different Mass stopping power 
SP_w = True 
if SP_w: 
 sp_w = dedx(T_en, I_w, Z_A_w) 
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SP_Cort = True 
if SP_Cort: 
 sp_cort = dedx(T_en, I_cortical, Z_A_cortical) 
 
SP_soft = True 
if SP_soft:  
 sp_soft = dedx(T_en, I_soft, Z_A_soft) 
 
SP_lung = True 
if SP_lung:  
 sp_lung = dedx(T_en, I_lung, Z_A_lung) 
 
SP_brain = True 
if SP_brain:  
 sp_brain = dedx(T_en, I_brain, Z_A_brain) 
 
SP_blood = True 
if SP_blood: 
 sp_blood = dedx(T_en, I_blood, Z_A_blood) 
 
SP_poly = True 
if SP_poly: 
 sp_poly = dedx(T_en, I_poly, Z_A_poly) 
 
SP_adip = True 
if SP_adip:  
 sp_adip = dedx(T_en, I_adip, Z_A_adip) 
 
###########################################################################
##### 
#####     P L O T  C H E C K (ATTIX)   
      ##### 
###########################################################################
##### 
 
attix_check_plot = False 
if attix_check_plot: 
 plt.plot(T_en/M0_c, sp_w,   label='Water') 
 plt.plot(T_en/M0_c, sp_lung,  label='Lung') 
 plt.plot(T_en/M0_c, sp_soft,  label='Soft tissue') 
 plt.plot(T_en/M0_c, sp_cort,  label='Cotrical bone') 
 plt.plot(T_en/M0_c, sp_brain,  label='Brain') 
 plt.plot(T_en/M0_c, sp_blood,  label='Blood') 
 plt.plot(T_en/M0_c, sp_poly,  label='Polyethylene') 
 plt.plot(T_en/M0_c, sp_adip,  label='Adipose') 
 plt.xscale('log') 
 plt.legend() 
 plt.title('Mass stopping power') 
 plt.xlabel('$T/M_0 c^2$') 
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 plt.ylabel('$ dT / \\rho dx $') 
 plt.show() 
 
# Check the Mass Stopping power ratio vs HU unit, single energy setting 
massSPR = False 
if massSPR:  
 
 # Find the  mean mass SP ratio 
 sp_lung_ratio  = np.mean(sp_lung  / sp_w) 
 sp_soft_ratio  = np.mean(sp_soft  / sp_w) 
 sp_cort_ratio  = np.mean(sp_cort  / sp_w) 
 sp_brain_ratio  = np.mean(sp_brain  / sp_w) 
 sp_blood_ratio  = np.mean(sp_blood  / sp_w) 
 sp_poly_ratio  = np.mean(sp_poly  / sp_w) 
 sp_adip_ratio  = np.mean(sp_adip  / sp_w) 
 
 # Make a 2d array with the Hounsfield unit (HU) and the mean mass SP ratio 
 Lung_uni_mass  = np.array((HU_al_lung, sp_lung_ratio)) 
 Cort_uni_mass  = np.array((HU_cort,  sp_cort_ratio)) 
 Soft_uni_mass  = np.array((HU,   sp_soft_ratio)) 
 Brain_uni_mass  = np.array((HU_brain,  sp_brain_ratio)) 
 Blood_uni_mass  = np.array((HU_blood,  sp_blood_ratio)) 
 Poly_uni_mass  = np.array((HU_poly,  sp_poly_ratio)) 
 Adip_uni_mass  = np.array((HU_adip,  sp_adip_ratio)) 
 
 #print(Lung_uni[:], Cort_uni[:], Soft_uni[:]) 
 
 # Makes a plot with HU vs massSPR 
 plott = False 
 if plott:  
  plt.plot(Lung_uni_mass[0], Lung_uni_mass[1],  'o', label='Lung') 
  plt.plot(Cort_uni_mass[0], Cort_uni_mass[1],  'o', label='Cortical bone') 
  plt.plot(Soft_uni_mass[0],  Soft_uni_mass[1],  'o', label='Soft Tissue') 
  plt.plot(Brain_uni_mass[0], Brain_uni_mass[1],  'o', label='Brain') 
  plt.plot(Blood_uni_mass[0], Blood_uni_mass[1],  'o', label='Blood') 
  plt.plot(Poly_uni_mass[0],  Poly_uni_mass[1],  'o', label='Polyethylene') 
  plt.plot(Adip_uni_mass[0],  Adip_uni_mass[1],  'o', label='Adipose') 
  plt.legend() 
  plt.title('Mass stopping power ratio vs HU') 
  plt.xlabel('HU') 
  plt.ylabel('Mass stopping power ratio') 
  plt.show() 
 
# Stopping power, not mass stopping power ratio, single energy setting 
# water is still in mass stopping power 
SPR = True 
if SPR:  
 
 # Calculate the mean SP ratio  
 sp_lung_r  = np.mean( ( sp_lung  * Lung_dens)   /(sp_w * Water_dens) ) 
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 sp_soft_r  = np.mean( ( sp_soft  * Soft_t_dens) /(sp_w * Water_dens) ) 
 sp_cort_r  = np.mean( ( sp_cort  * Cort_dens)   /(sp_w * Water_dens) ) 
 sp_brain_r  = np.mean( ( sp_brain * Brain_dens)  /(sp_w * Water_dens) ) 
 sp_blood_r  = np.mean( ( sp_blood * Blood_dens)  /(sp_w * Water_dens) ) 
 sp_poly_r  = np.mean( ( sp_poly  * Poly_dens)   /(sp_w * Water_dens) ) 
 sp_adip_r  = np.mean( ( sp_adip  * Adip_dens)   /(sp_w * Water_dens) ) 
 
 # Make a 2d array with HU and meanSPR 
 Lung_uni  = np.array((HU_al_lung, sp_lung_r)) 
 Cort_uni  = np.array((HU_cort,  sp_cort_r)) 
 Soft_uni  = np.array((HU,   sp_soft_r)) 
 Brain_uni  = np.array((HU_brain,  sp_brain_r)) 
 Blood_uni  = np.array((HU_blood,  sp_blood_r)) 
 Poly_uni  = np.array((HU_poly,  sp_poly_r)) 
 Adip_uni  = np.array((HU_adip,  sp_adip_r)) 
 
 # Make a plot with HU vs SPR 
 plott = False 
 if plott:  
  plt.plot(Lung_uni[0], Lung_uni[1], 'o', label='Lung') 
  plt.plot(Cort_uni[0], Cort_uni[1], 'o', label='Cortical bone') 
  plt.plot(Soft_uni[0], Soft_uni[1], 'o', label='Soft Tissue') 
  plt.plot(Brain_uni[0],Brain_uni[1],'o', label='Brain') 
  plt.plot(Blood_uni[0],Blood_uni[1],'o', label='Blood') 
  plt.plot(Poly_uni[0], Poly_uni[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni[0], Adip_uni[1], 'o', label='Adipose') 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('120 kV', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
 #print(Lung_uni_notmass[:], Cort_uni_notmass[:], Soft_uni_notmass[:]) 
 
# Energy spectra from 20keV to 140 keV for Stopping power ratio, not mass 
SPR_range = True 
if SPR_range:  
 
 # Array with zeros, make an array with the SP ratio 
 sp_lung_r_mono  = np.zeros(13) 
 sp_soft_r_mono  = np.zeros(13) 
 sp_cort_r_mono  = np.zeros(13) 
 sp_brain_r_mono = np.zeros(13) 
 sp_blood_r_mono = np.zeros(13) 
 sp_poly_r_mono  = np.zeros(13) 
 sp_adip_r_mono  = np.zeros(13) 
 
 # For loop to insert the mean SP ratio 
 for i in range(13): 
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  sp_lung_r_mono[i] = np.mean((sp_lung * Lung_dens)  /(sp_w * Water_dens)) 
  sp_soft_r_mono[i] = np.mean((sp_soft * Soft_t_dens)/(sp_w * Water_dens)) 
  sp_cort_r_mono[i] = np.mean((sp_cort * Cort_dens)  /(sp_w * Water_dens)) 
  sp_brain_r_mono[i]= np.mean((sp_brain* Brain_dens) /(sp_w * Water_dens)) 
  sp_blood_r_mono[i]= np.mean((sp_blood* Blood_dens) /(sp_w * 
Water_dens)) 
  sp_poly_r_mono[i] = np.mean((sp_poly * Poly_dens)  /(sp_w * Water_dens)) 
  sp_adip_r_mono[i] = np.mean((sp_adip * Adip_dens)  /(sp_w * Water_dens)) 
 
  print(sp_blood_r_mono) 
 
 # Make a 2d arrat with HU and SP ratio 
 Lung_uni_m  = np.array((HU_lung,   sp_lung_r_mono)) 
 Cort_uni_m  = np.array((HU_cort_list,  sp_cort_r_mono)) 
 Soft_uni_m  = np.array((HU_soft_2,   sp_soft_r_mono)) 
 Brain_uni_m  = np.array((HU_brain_range, sp_brain_r_mono)) 
 Blood_uni_m  = np.array((HU_blood_range, sp_blood_r_mono)) 
 Poly_uni_m  = np.array((HU_poly_range,  sp_poly_r_mono)) 
 Adip_uni_m  = np.array((HU_adip_range,  sp_adip_r_mono)) 
 
 plot_spr_no_lines = False 
 if plot_spr_no_lines: 
  # Make a plot with the HU range and mass SP ratio range 
  plt.plot(Lung_uni_m[0],  Lung_uni_m[1], 'o', label='Lung') 
  plt.plot(Cort_uni_m[0],  Cort_uni_m[1], 'o', label='Cortical bone') 
  plt.plot(Soft_uni_m[0],  Soft_uni_m[1], 'o', label='Soft Tissue' ) 
  plt.plot(Brain_uni_m[0],  Brain_uni_m[1],'o', label='Brain') 
  plt.plot(Blood_uni_m[0],  Blood_uni_m[1],'o', label='Blood') 
  plt.plot(Poly_uni_m[0],  Poly_uni_m[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_m[0],  Adip_uni_m[1], 'o', label='Adipose') 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('Monoenergeitc', fontsize=14) 
  plt.xlabel('HU', fontsize = 12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
  
 # arrays filled with zeros 
 x_en = np.zeros((11,7)) 
 y_en = np.zeros((11,7)) 
 
 # fill the arrays with energy from 40 to 140 
 for i in range(11): 
  x_en[i] = np.array((Lung_uni_m[0][i+2], Poly_uni_m[0][i+2], \ 
    Adip_uni_m[0][i+2], Brain_uni_m[0][i+2], Soft_uni_m[0][i+2], 
\ 
    Blood_uni_m[0][i+2], Cort_uni_m[0][i+2])) 
 
  y_en[i] = np.array((Lung_uni_m[1][i+2],  Poly_uni_m[1][i+2], \ 
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    Adip_uni_m[1][i+2],  Brain_uni_m[1][i+2], 
Soft_uni_m[1][i+2],  \ 
    Blood_uni_m[1][i+2], Cort_uni_m[1][i+2])) 
 
 # make different types of plots 
 plot_spr_lines = False 
 if plot_spr_lines: 
  plott_Taran = True 
  if plott_Taran: 
   plt.plot(x_en[0], y_en[0],  '-o', label='40 keV', color = 'r') 
   #plt.plot(x_en[1], y_en[1],  '-o', label='50 keV', color ='c') 
   #plt.plot(x_en[2], y_en[2],  '-o', label='60 keV', color ='m') 
   #plt.plot(x_en[3], y_en[3],  '-o', label='70 keV', color = 'y') 
   #plt.plot(x_en[4], y_en[4],  '-o', label='80 keV', color = 'k') 
   #plt.plot(x_en[5], y_en[5],  '-o', label='90 keV', color = 'C0' ) 
   #plt.plot(x_en[6], y_en[6],'-o', label='100 keV', color = 'tab:pink') 
   #plt.plot(x_en[7], y_en[7],'-o', label='110 keV', color = 'tab:cyan') 
   #plt.plot(x_en[8], y_en[8], '-o', label='120 keV',color ='tab:olive') 
   #plt.plot(x_en[9], y_en[9], '-o', label='130 keV',color ='gray') 
   plt.plot(x_en[10], y_en[10], '-o',label='140 keV',color ='orange') 
   plt.legend(loc=4, prop={"size":10}) 
   plt.title('Monoenergeitc', fontsize=14) 
   plt.xlabel('HU', fontsize=12) 
   plt.ylabel('Stopping power ratio', fontsize=12) 
   plt.grid(True, color='gainsboro') 
   plt.show() 
 
  plott_Eirik = True 
  if plott_Eirik:  
   plt.plot(x_en[0], y_en[0],   label='40 keV',  color = 'r') 
   #plt.plot(x_en[1], y_en[1],   label='50 keV',  color = 'c') 
   #plt.plot(x_en[2], y_en[2],   label='60 keV',  color = 'm') 
   #plt.plot(x_en[3], y_en[3],   label='70 keV',  color = 'y') 
   #plt.plot(x_en[4], y_en[4],   label='80 keV',  color = 'k') 
   #plt.plot(x_en[5], y_en[5],   label='90 keV',  color = 'C0' ) 
   #plt.plot(x_en[6], y_en[6], label='100 keV',  color = 'tab:pink') 
   #plt.plot(x_en[7], y_en[7], label='110 keV',  color = 'tab:cyan') 
   #plt.plot(x_en[8], y_en[8], label='120 keV', color = 'tab:olive') 
   #plt.plot(x_en[9], y_en[9], label='130 keV', color = 'gray') 
   plt.plot(x_en[10], y_en[10], label='140 keV', color = 'orange') 
   plt.legend(loc=4, prop={"size":10}) 
   plt.title('Monoenergeitc', fontsize=14) 
   plt.xlabel('HU', fontsize=12) 
   plt.ylabel('Stopping power ratio', fontsize=12) 
   plt.grid(True, color='gainsboro') 
   plt.show() 
 
###########################################################################
##### 
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###########################################################################
##### 
###########################################################################
##### 
#####            
        ##### 
#####    I M P O R T  H U  F R O M  Q U A S A R  A N D  G A M M E X      ##### 
#####            
        ##### 
###########################################################################
##### 
###########################################################################
##### 
###########################################################################
##### 
 
import pandas as pd 
 
def import_HU(path, SECT): 
 # a function who take the path, and SECT = True or FALSE 
 
 # open and read the excel file 
 df = pd.read_excel(path) 
 
 SECT = SECT 
 if SECT: 
  # HU from CT images 
 
  #empty arrays 
  CT_HU_1 = np.zeros(1) 
  CT_HU_2 = np.zeros(1) 
  CT_HU_3 = np.zeros(1) 
 
  # append values to arrays 
  CT_HU_1 = df.iloc[-1,1] 
  CT_HU_2 = df.iloc[-1,2] 
  CT_HU_3 = df.iloc[-1,3] 
 
  #rename 
  HU_1 = CT_HU_1 
  HU_2 = CT_HU_2 
  HU_3 = CT_HU_3 
 
 else:  
  # HU from DECT images 
   
  # localise row and column 
  b = df.iloc[:,0] 
  N = len(b) - 1 
  #print(N) 
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  # arrays with zeros 
  HU_1 = np.zeros(N) 
  HU_2 = np.zeros(N) 
  HU_3 = np.zeros(N) 
 
  # arrays with zeros 
  for i in range(N): 
   HU_1[i] = df.iloc[i, 1] 
   HU_2[i] = df.iloc[i, 2] 
   HU_3[i] = df.iloc[i, 3] 
 
 return HU_1, HU_2, HU_3 
 
Impr_HU = True 
if Impr_HU: 
 # name of the wanted files 
 loc1 = ["mu_gammex1.xlsx", "mu_gammex2.xlsx"] 
 loc2 = ["mu_quasar1.xlsx", "mu_quasar2.xlsx"] 
 
 # arrays filled with zeros 
 Blood = np.zeros((2,11)) 
 Brain = np.zeros((2,11)) 
 Adipose = np.zeros((2,11)) 
 Lung = np.zeros((2,11)) 
 Bone = np.zeros((2,11)) 
 Poly = np.zeros((2,11)) 
 
 # arrays filled with zeros 
 Blood_120 = np.zeros((2,1)) 
 Brain_120 = np.zeros((2,1)) 
 Adipose_120 = np.zeros((2,1)) 
 Lung_120 = np.zeros((2,1)) 
 Bone_120 = np.zeros((2,1)) 
 Poly_120 = np.zeros((2,1)) 
 
 for i in range(2): 
  # Store the HU in different arrays  
  # The first row is filled with backprojection data 
  # and the second row is filled with the iterative data 
  # Data from DECT 
  Blood[i], Brain[i], Adipose[i] = import_HU(loc1[i], False) 
  Lung[i], Bone[i], Poly[i] = import_HU(loc2[i], False) 
 
  # Data from SECT 
  Blood_120[i], Brain_120[i], Adipose_120[i] = import_HU(loc1[i], True) 
  Lung_120[i], Bone_120[i], Poly_120[i] = import_HU(loc2[i], True) 
 
###########################################################################
##### 
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###########################################################################
##### 
###            
        ### 
###        H U (PHANTOM) -- S P R (PROGRAM)  
     ### 
###            
           ### 
###########################################################################
##### 
###########################################################################
##### 
 
#calculate the SPR for plot with implemented data 
# always set to True 
cal_SPR_DECT = True 
if cal_SPR_DECT: 
  
 # Array with zeros, make an array with the SP ratio 
 sp_lung_r_M  = np.zeros(11) 
 sp_cort_r_M  = np.zeros(11) 
 sp_brain_r_M  = np.zeros(11) 
 sp_blood_r_M  = np.zeros(11) 
 sp_poly_r_M  = np.zeros(11) 
 sp_adip_r_M  = np.zeros(11) 
 
 # For loop to insert the mean SP ratio 
 for i in range(11): 
  sp_lung_r_M[i] = np.mean((sp_lung * Lung_dens)  /(sp_w * Water_dens)) 
  sp_cort_r_M[i] = np.mean((sp_cort * Cort_dens)  /(sp_w * Water_dens)) 
  sp_brain_r_M[i]= np.mean((sp_brain * Brain_dens)/(sp_w * Water_dens)) 
  sp_blood_r_M[i]= np.mean((sp_blood * Blood_dens)/(sp_w * Water_dens)) 
  sp_poly_r_M[i] = np.mean((sp_poly * Poly_dens)  /(sp_w * Water_dens)) 
  sp_adip_r_M[i] = np.mean((sp_adip * Adip_dens)  /(sp_w * Water_dens)) 
 
 # Make a 2d arrat with HU and SP ratio 
 Lung_uni_Mb  = np.array((Lung[0],  sp_lung_r_M)) 
 Cort_uni_Mb  = np.array((Bone[0],  sp_cort_r_M)) 
 Brain_uni_Mb  = np.array((Brain[0],  sp_brain_r_M)) 
 Blood_uni_Mb  = np.array((Blood[0],  sp_blood_r_M)) 
 Poly_uni_Mb  = np.array((Poly[0],  sp_poly_r_M)) 
 Adip_uni_Mb  = np.array((Adipose[0], sp_adip_r_M)) 
 
# stopping power ratio, HU from phantoms 
# for DECT image - monoenergetic images 
SPR_range_imp_back = True 
if SPR_range_imp_back:  
 
 # Make a 2d arrat with HU and SP ratio 
 Lung_uni_Mb  = np.array((Lung[0],  sp_lung_r_M)) 
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 Cort_uni_Mb  = np.array((Bone[0],  sp_cort_r_M)) 
 Brain_uni_Mb  = np.array((Brain[0],  sp_brain_r_M)) 
 Blood_uni_Mb  = np.array((Blood[0],  sp_blood_r_M)) 
 Poly_uni_Mb  = np.array((Poly[0],  sp_poly_r_M)) 
 Adip_uni_Mb  = np.array((Adipose[0], sp_adip_r_M)) 
 
 plot_spr_no_lines = False 
 if plot_spr_no_lines: 
  # Make a plot with the HU range and mass SP ratio range 
  plt.plot(Lung_uni_Mb[0], Lung_uni_Mb[1], 'o', label='Lung') 
  plt.plot(Cort_uni_Mb[0], Cort_uni_Mb[1], 'o', label='Cortical bone') 
  plt.plot(Brain_uni_Mb[0],Brain_uni_Mb[1],'o', label='Brain') 
  plt.plot(Blood_uni_Mb[0],Blood_uni_Mb[1],'o', label='Blood') 
  plt.plot(Poly_uni_Mb[0], Poly_uni_Mb[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_Mb[0], Adip_uni_Mb[1], 'o', label='Adipose') 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('DECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
  
 x_en_b = np.zeros((11,6)) 
 y_en_b = np.zeros((11,6)) 
 
 for i in range(11): 
  x_en_b[i] = np.array((Lung_uni_Mb[0][i], Poly_uni_Mb[0][i], \ 
    Adip_uni_Mb[0][i], Brain_uni_Mb[0][i], \ 
    Blood_uni_Mb[0][i], Cort_uni_Mb[0][i])) 
 
  y_en_b[i] = np.array((Lung_uni_Mb[1][i], Poly_uni_Mb[1][i], \ 
    Adip_uni_Mb[1][i],  Brain_uni_Mb[1][i],  \ 
    Blood_uni_Mb[1][i], Cort_uni_Mb[1][i])) 
 
 plot_spr_lines = False 
 if plot_spr_lines: 
  plott_Taran = True 
  if plott_Taran: 
   plt.plot(x_en_b[0], y_en_b[0],  '-o', label='40 keV', color = 'r') 
   plt.plot(x_en_b[1], y_en_b[1],  '-o', label='50 keV', color ='c') 
   plt.plot(x_en_b[2], y_en_b[2],  '-o', label='60 keV', color ='m') 
   plt.plot(x_en_b[3], y_en_b[3],  '-o', label='70 keV', color = 'y') 
   plt.plot(x_en_b[4], y_en_b[4],  '-o', label='80 keV', color = 'k') 
   plt.plot(x_en_b[5], y_en_b[5],  '-o', label='90 keV', color = 'C0' ) 
   plt.plot(x_en_b[6], y_en_b[6],'-o', label='100 keV', color = 'tab:pink') 
   plt.plot(x_en_b[7], y_en_b[7],'-o', label='110 keV', color = 'tab:cyan') 
   plt.plot(x_en_b[8], y_en_b[8], '-o', label='120 keV',color ='tab:olive') 
   plt.plot(x_en_b[9], y_en_b[9], '-o', label='130 keV',color ='gray') 
   plt.plot(x_en_b[10], y_en_b[10], '-o',label='140 keV',color ='orange') 
   plt.legend(loc=4, prop={"size":10}) 
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   plt.title('DECT', fontsize=14) 
   plt.xlabel('HU', fontsize=12) 
   plt.ylabel('Stopping power ratio', fontsize=12) 
   plt.grid(True, color='gainsboro') 
   plt.show() 
 
  plott_Eirik = True 
  if plott_Eirik:  
   plt.plot(x_en_b[0], y_en_b[0],   label='40 keV',  color = 'r') 
   plt.plot(x_en_b[1], y_en_b[1],   label='50 keV',  color = 'c') 
   plt.plot(x_en_b[2], y_en_b[2],   label='60 keV',  color = 'm') 
   plt.plot(x_en_b[3], y_en_b[3],   label='70 keV',  color = 'y') 
   plt.plot(x_en_b[4], y_en_b[4],   label='80 keV',  color = 'k') 
   plt.plot(x_en_b[5], y_en_b[5],   label='90 keV',  color = 'C0' ) 
   plt.plot(x_en_b[6], y_en_b[6], label='100 keV',  color = 'tab:pink') 
   plt.plot(x_en_b[7], y_en_b[7], label='110 keV',  color = 'tab:cyan') 
   plt.plot(x_en_b[8], y_en_b[8], label='120 keV', color = 'tab:olive') 
   plt.plot(x_en_b[9], y_en_b[9], label='130 keV', color = 'gray') 
   plt.plot(x_en_b[10], y_en_b[10], label='140 keV', color = 'orange') 
   plt.legend(loc=4, prop={"size":10}) 
   plt.title('DECT', fontsize=14) 
   plt.xlabel('HU', fontsize=12) 
   plt.ylabel('Stopping power ratio', fontsize=12) 
   plt.grid(True, color='gainsboro') 
   plt.show() 
 
  plot_greier = False 
  if plot_greier:  
   plt.plot(x_40kev[1:5], y_40kev[1:5], '-o', label = '40 keV') 
   plt.title('DECT') 
   plt.xlabel('HU') 
   plt.ylabel('Stopping power ratio') 
   plt.show() 
 
SPR_range_imp_ite = True 
if SPR_range_imp_ite:  
 
 # Make a 2d arrat with HU and SP ratio 
 Lung_uni_Mi  = np.array((Lung[1],  sp_lung_r_M)) 
 Cort_uni_Mi  = np.array((Bone[1],  sp_cort_r_M)) 
 Brain_uni_Mi  = np.array((Brain[1],  sp_brain_r_M)) 
 Blood_uni_Mi  = np.array((Blood[1],  sp_blood_r_M)) 
 Poly_uni_Mi  = np.array((Poly[1],  sp_poly_r_M)) 
 Adip_uni_Mi  = np.array((Adipose[1], sp_adip_r_M)) 
 
 plot_spr_no_lines = False 
 if plot_spr_no_lines: 
  # Make a plot with the HU range and mass SP ratio range 
  plt.plot(Lung_uni_Mi[0], Lung_uni_Mi[1], 'o', label='Lung') 
  plt.plot(Cort_uni_Mi[0], Cort_uni_Mi[1], 'o', label='Cortical bone') 
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  plt.plot(Brain_uni_Mi[0],Brain_uni_Mi[1],'o', label='Brain') 
  plt.plot(Blood_uni_Mi[0],Blood_uni_Mi[1],'o', label='Blood') 
  plt.plot(Poly_uni_Mi[0], Poly_uni_Mi[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_Mi[0], Adip_uni_Mi[1], 'o', label='Adipose') 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('DECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
  
 x_en_i = np.zeros((11,6)) 
 y_en_i = np.zeros((11,6)) 
 
 for i in range(11): 
  x_en_i[i] = np.array((Lung_uni_Mi[0][i], Poly_uni_Mi[0][i], \ 
    Adip_uni_Mi[0][i], Brain_uni_Mi[0][i], \ 
    Blood_uni_Mi[0][i], Cort_uni_Mi[0][i])) 
 
  y_en_i[i] = np.array((Lung_uni_Mi[1][i], Poly_uni_Mi[1][i], \ 
    Adip_uni_Mi[1][i],  Brain_uni_Mi[1][i],  \ 
    Blood_uni_Mi[1][i], Cort_uni_Mi[1][i])) 
 
 plot_spr_lines = False 
 if plot_spr_lines: 
  plott_Taran = True 
  if plott_Taran: 
   plt.plot(x_en_i[0], y_en_i[0],  '-o', label='40 keV', color = 'r') 
   plt.plot(x_en_i[1], y_en_i[1],  '-o', label='50 keV', color ='c') 
   plt.plot(x_en_i[2], y_en_i[2],  '-o', label='60 keV', color ='m') 
   plt.plot(x_en_i[3], y_en_i[3],  '-o', label='70 keV', color = 'y') 
   plt.plot(x_en_i[4], y_en_i[4],  '-o', label='80 keV', color = 'k') 
   plt.plot(x_en_i[5], y_en_i[5],  '-o', label='90 keV', color = 'C0' ) 
   plt.plot(x_en_i[6], y_en_i[6],'-o', label='100 keV', color = 'tab:pink') 
   plt.plot(x_en_i[7], y_en_i[7],'-o', label='110 keV', color = 'tab:cyan') 
   plt.plot(x_en_i[8], y_en_i[8], '-o', label='120 keV',color ='tab:olive') 
   plt.plot(x_en_i[9], y_en_i[9], '-o', label='130 keV',color ='gray') 
   plt.plot(x_en_i[10], y_en_i[10], '-o',label='140 keV',color ='orange') 
   plt.legend(loc=4, prop={"size":10}) 
   plt.title('DECT', fontsize=14) 
   plt.xlabel('HU', fontsize=12) 
   plt.ylabel('Stopping power ratio', fontsize=12) 
   plt.grid(True, color='gainsboro') 
   plt.show() 
 
  plott_Eirik = True 
  if plott_Eirik:  
   plt.plot(x_en_i[0], y_en_i[0],   label='40 keV',  color = 'r') 
   plt.plot(x_en_i[1], y_en_i[1],   label='50 keV',  color = 'c') 
   plt.plot(x_en_i[2], y_en_i[2],   label='60 keV',  color = 'm') 
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   plt.plot(x_en_i[3], y_en_i[3],   label='70 keV',  color = 'y') 
   plt.plot(x_en_i[4], y_en_i[4],   label='80 keV',  color = 'k') 
   plt.plot(x_en_i[5], y_en_i[5],   label='90 keV',  color = 'C0' ) 
   plt.plot(x_en_i[6], y_en_i[6], label='100 keV',  color = 'tab:pink') 
   plt.plot(x_en_i[7], y_en_i[7], label='110 keV',  color = 'tab:cyan') 
   plt.plot(x_en_i[8], y_en_i[8], label='120 keV', color = 'tab:olive') 
   plt.plot(x_en_i[9], y_en_i[9], label='130 keV', color = 'gray') 
   plt.plot(x_en_i[10], y_en_i[10], label='140 keV', color = 'orange') 
   plt.legend(loc=4, prop={"size":10}) 
   plt.title('DECT', fontsize=14) 
   plt.xlabel('HU', fontsize=12) 
   plt.ylabel('Stopping power ratio', fontsize=12) 
   plt.grid(True, color='gainsboro') 
   plt.show() 
 
  plot_greier = False 
  if plot_greier:  
   plt.plot(x_40kev[1:5], y_40kev[1:5], '-o', label = '40 keV') 
   plt.title('DECT') 
   plt.xlabel('HU') 
   plt.ylabel('Stopping power ratio') 
   plt.show() 
 
 
#Calculates the spr for use in plot for implemented data 
# always True since it have to be used 
cal_SPR_SECT = True 
if cal_SPR_SECT: 
 
 sp_lung_r_CT  = np.zeros(1) 
 sp_cort_r_CT  = np.zeros(1) 
 sp_brain_r_CT  = np.zeros(1) 
 sp_blood_r_CT  = np.zeros(1) 
 sp_poly_r_CT  = np.zeros(1) 
 sp_adip_r_CT  = np.zeros(1) 
 
 # Calculate the mean SP ratio  
 sp_lung_r_CT[0]  = np.mean(( sp_lung  * Lung_dens) / (sp_w * Water_dens)) 
 sp_cort_r_CT[0]  = np.mean(( sp_cort  * Cort_dens) / (sp_w * Water_dens)) 
 sp_brain_r_CT[0]  = np.mean(( sp_brain * Brain_dens)/ (sp_w * Water_dens)) 
 sp_blood_r_CT[0]  = np.mean(( sp_blood * Blood_dens)/ (sp_w * Water_dens)) 
 sp_poly_r_CT[0]  = np.mean(( sp_poly  * Poly_dens) / (sp_w * Water_dens)) 
 sp_adip_r_CT[0]  = np.mean(( sp_adip  * Adip_dens) / (sp_w * Water_dens)) 
 
# stopping power ratio vs HU for the implemented HU values 
# for CT image 
SPR_phantom_back = True 
if SPR_phantom_back:  
 
 # Make a 2d array with HU and meanSPR 
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 Lung_uni_CT  = np.array((Lung_120[0],   sp_lung_r_CT)) 
 Cort_uni_CT  = np.array((Bone_120[0],   sp_cort_r_CT)) 
 Brain_uni_CT  = np.array((Brain_120[0],   sp_brain_r_CT)) 
 Blood_uni_CT  = np.array((Blood_120[0],   sp_blood_r_CT)) 
 Poly_uni_CT  = np.array((Poly_120[0],   sp_poly_r_CT)) 
 Adip_uni_CT  = np.array((Adipose_120[0],  sp_adip_r_CT)) 
 
 # Make a plot with HU vs SPR 
 plott = False 
 if plott:  
  plt.plot(Lung_uni_CT[0],  Lung_uni_CT[1], 'o', label='Lung') 
  plt.plot(Cort_uni_CT[0],  Cort_uni_CT[1], 'o', label='Cortical bone') 
  plt.plot(Brain_uni_CT[0], Brain_uni_CT[1],'o', label='Brain') 
  plt.plot(Blood_uni_CT[0], Blood_uni_CT[1],'o', label='Blood') 
  plt.plot(Poly_uni_CT[0],  Poly_uni_CT[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_CT[0],  Adip_uni_CT[1], 'o', label='Adipose') 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('SECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
# SPR vs HU for CT image with iterative reconstruction  
# implemented data  
SPR_phantom_it = True 
if SPR_phantom_it:  
 
 # Make a 2d array with HU and meanSPR 
 Lung_uni_CT_i  = np.array((Lung_120[1],   sp_lung_r_CT)) 
 Cort_uni_CT_i  = np.array((Bone_120[1],   sp_cort_r_CT)) 
 Brain_uni_CT_i  = np.array((Brain_120[1],   sp_brain_r_CT)) 
 Blood_uni_CT_i  = np.array((Blood_120[1],   sp_blood_r_CT)) 
 Poly_uni_CT_i  = np.array((Poly_120[1],   sp_poly_r_CT)) 
 Adip_uni_CT_i  = np.array((Adipose_120[1],  sp_adip_r_CT)) 
 
 # Make a plot with HU vs SPR 
 plott = False 
 if plott:  
  plt.plot(Lung_uni_CT_i[0],  Lung_uni_CT_i[1], 'o', label='Lung') 
  plt.plot(Cort_uni_CT_i[0],  Cort_uni_CT_i[1], 'o', label='Cortical bone') 
  plt.plot(Brain_uni_CT_i[0], Brain_uni_CT_i[1],'o', label='Brain') 
  plt.plot(Blood_uni_CT_i[0], Blood_uni_CT_i[1],'o', label='Blood') 
  plt.plot(Poly_uni_CT_i[0],  Poly_uni_CT_i[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_CT_i[0],  Adip_uni_CT_i[1], 'o', label='Adipose') 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('SECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
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  plt.show() 
 
SECT_combined = True 
if SECT_combined: 
 plott = False 
 if plott: 
  plt.plot(Lung_uni_CT_i[0],  Lung_uni_CT_i[1], 'o', label='Lung') 
  plt.plot(Cort_uni_CT_i[0],  Cort_uni_CT_i[1], 'o', label='Cortical bone') 
  plt.plot(Brain_uni_CT_i[0], Brain_uni_CT_i[1],'o', label='Brain') 
  plt.plot(Blood_uni_CT_i[0], Blood_uni_CT_i[1],'o', label='Blood') 
  plt.plot(Poly_uni_CT_i[0],  Poly_uni_CT_i[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_CT_i[0],  Adip_uni_CT_i[1], 'o', label='Adipose') 
  plt.plot(Lung_uni_CT[0],  Lung_uni_CT[1], '*') 
  plt.plot(Cort_uni_CT[0],  Cort_uni_CT[1], '*') 
  plt.plot(Brain_uni_CT[0], Brain_uni_CT[1],'*') 
  plt.plot(Blood_uni_CT[0], Blood_uni_CT[1],'*') 
  plt.plot(Poly_uni_CT[0],  Poly_uni_CT[1], '*') 
  plt.plot(Adip_uni_CT[0],  Adip_uni_CT[1], '*') 
  blue_line = mlines.Line2D([], [], marker='*',\ 
                          markersize=9, label='Backprojection') 
  grey_line = mlines.Line2D([], [], marker='o',\ 
                          markersize=9, label='Iterative') 
  plt.legend(handles=[blue_line, grey_line]) 
  plt.title('SECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
 
DECT_combined = True 
if DECT_combined: 
 plott = False 
 if plott: 
  plt.plot(Cort_uni_Mi[0], Cort_uni_Mi[1], 'o', label='Cortical bone') 
  plt.plot(Brain_uni_Mi[0],Brain_uni_Mi[1],'o', label='Brain') 
  plt.plot(Blood_uni_Mi[0],Blood_uni_Mi[1],'o', label='Blood') 
  plt.plot(Poly_uni_Mi[0], Poly_uni_Mi[1], 'o', label='Polyethylene') 
  plt.plot(Adip_uni_Mi[0], Adip_uni_Mi[1], 'o', label='Adipose') 
  plt.plot(Lung_uni_Mb[0], Lung_uni_Mb[1], '*', label='Lung') 
  plt.plot(Cort_uni_Mb[0], Cort_uni_Mb[1], '*', label='Cortical bone') 
  plt.plot(Brain_uni_Mb[0],Brain_uni_Mb[1],'*', label='Brain') 
  plt.plot(Blood_uni_Mb[0],Blood_uni_Mb[1],'*', label='Blood') 
  plt.plot(Poly_uni_Mb[0], Poly_uni_Mb[1], '*', label='Polyethylene') 
  plt.plot(Adip_uni_Mb[0], Adip_uni_Mb[1], '*', label='Adipose') 
  plt.plot(Lung_uni_Mi[0], Lung_uni_Mi[1], 'o', label='Lung') 
  blue_line = mlines.Line2D([], [], marker='*',\ 
                          markersize=9, label='Backprojection') 
  grey_line = mlines.Line2D([], [], marker='o',\ 
                          markersize=9, label='Iterative') 
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  plt.legend(handles=[blue_line, grey_line]) 
  plt.title('DECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
 
combined_mono_back = True 
if combined_mono_back:  
 plott = False 
 if plott:  
  plt.plot(x_en_b[0],  y_en_b[0],  'o', label='40 keV M') 
  plt.plot(x_en[2],   y_en[2],   'o', label='40 keV S') 
  plt.plot(x_en_b[4], y_en_b[4], 'o', label='80 keV M') 
  plt.plot(x_en[6],   y_en[6],   'o', label='80 keV S') 
  plt.plot(x_en_b[-1], y_en_b[-1], 'o', label='140 keV M') 
  plt.plot(x_en[-1],   y_en[-1],   'o', label='140 keV S') 
  plt.plot(Brain_uni_CT[0], Brain_uni_CT[1], 'o', label='CT_Brain' ) 
  plt.plot(Blood_uni_CT[0], Blood_uni_CT[1], 'o', label='CT_Blood' ) 
  plt.plot(Adip_uni_CT[0], Adip_uni_CT[1], 'o', label='CT_Adip' ) 
  plt.plot(Poly_uni_CT[0], Poly_uni_CT[1], 'o', label='CT_Poly' ) 
  plt.legend(loc=4, prop={"size":10}) 
  plt.title('Combined', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
 plott_zoom = False 
 if plott_zoom: 
  fig, ax = plt.subplots() 
  
  ax.plot(x_en_b[0],  y_en_b[0],  'o', label='40 keV M') 
  ax.plot(x_en[2],   y_en[2],   'o', label='40 keV S') 
  ax.plot(x_en_b[4], y_en_b[4], 'o', label='80 keV M') 
  ax.plot(x_en[6],   y_en[6],   'o', label='80 keV S') 
  ax.plot(x_en_b[-1], y_en_b[-1], 'o', label='140 keV M') 
  ax.plot(x_en[-1],   y_en[-1],   'o', label='140 keV S') 
  ax.plot(Brain_uni_CT[0], Brain_uni_CT[1], 'o', label='CT_Brain' ) 
  ax.plot(Blood_uni_CT[0], Blood_uni_CT[1], 'o', label='CT_Blood' ) 
  ax.plot(Adip_uni_CT[0], Adip_uni_CT[1], 'o', label='CT_Adip' ) 
  ax.plot(Poly_uni_CT[0], Poly_uni_CT[1], 'o', label='CT_Poly' ) 
  ax.grid(True, color='gainsboro') 
  ax.legend(loc=4) 
 
  axins = zoomed_inset_axes(ax, 5, loc=8) # zoom = 5 
   
  axins.plot(x_en_b[0],  y_en_b[0], 'o') 
  axins.plot(x_en[2],   y_en[2], 'o') 
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  axins.plot(x_en_b[4], y_en_b[4], 'o') 
  axins.plot(x_en[6],   y_en[6], 'o') 
  axins.plot(x_en_b[-1], y_en_b[-1], 'o') 
  axins.plot(x_en[-1],   y_en[-1], 'o') 
  axins.set_xlim(-250, 120) # Limit the region for zoom 
  axins.set_ylim(0.95, 1.07) 
  axins.grid(True, color='gainsboro') 
 
  plt.xticks(visible=False)  # Not present ticks 
  plt.yticks(visible=False) 
   
  ## draw a bbox of the region of the inset axes in the parent axes and 
  ## connecting lines between the bbox and the inset axes area 
  mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") 
 
  plt.draw() 
  ax.set_title('Combined') 
  ax.set_xlabel('HU') 
  ax.set_ylabel('Stopping power ratio') 
  plt.show() 
 
kV_combined = False 
if kV_combined: 
 plott = True 
 if plott: 
  plt.plot(Lung_uni[0], Lung_uni[1], 'o', color='tab:blue') 
  plt.plot(Cort_uni[0], Cort_uni[1], 'o', color='tab:pink') 
  plt.plot(Brain_uni[0],Brain_uni[1],'o', color='tab:red') 
  plt.plot(Blood_uni[0],Blood_uni[1],'o', color='tab:green') 
  plt.plot(Poly_uni[0], Poly_uni[1], 'o', color='tab:purple') 
  plt.plot(Adip_uni[0], Adip_uni[1], 'o', color='tab:cyan') 
  plt.plot(Lung_uni_CT[0],  Lung_uni_CT[1], '*', color='tab:blue') 
  plt.plot(Cort_uni_CT[0],  Cort_uni_CT[1], '*', color='tab:pink') 
  plt.plot(Brain_uni_CT[0], Brain_uni_CT[1],'*', color='tab:red') 
  plt.plot(Blood_uni_CT[0], Blood_uni_CT[1],'*', color='tab:green') 
  plt.plot(Poly_uni_CT[0],  Poly_uni_CT[1], '*', color='tab:purple') 
  plt.plot(Adip_uni_CT[0],  Adip_uni_CT[1], '*', color='tab:cyan') 
  blue_line = mlines.Line2D([], [], marker='*',\ 
                          markersize=9, label='Measured') 
  grey_line = mlines.Line2D([], [], marker='o',\ 
                          markersize=9, label='Simulated') 
  plt.legend(handles=[blue_line, grey_line]) 
  plt.title('SECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
# make a plot where simulated and measured values are combined 
# kV values 



 

 

130 

combined_m_s = True 
if combined_m_s: 
 #reorganize the values into x and y for simulated values 
 x_120kv_s = np.array((Lung_uni[0], Poly_uni[0], Adip_uni[0],\ 
     Brain_uni[0], Blood_uni[0], Cort_uni[0]  )) 
 y_120kv_s = np.array((Lung_uni[1], Poly_uni[1], Adip_uni[1],\ 
     Brain_uni[1], Blood_uni[1], Cort_uni[1]  )) 
 
 #reorganize the values into x and y for simulated values  
 x_120kv_m = np.array((Lung_uni_CT[0], Poly_uni_CT[0], Adip_uni_CT[0],\ 
     Brain_uni_CT[0], Blood_uni_CT[0], Cort_uni_CT[0]  )) 
 y_120kv_m = np.array((Lung_uni_CT[1], Poly_uni_CT[1], Adip_uni_CT[1],\ 
     Brain_uni_CT[1], Blood_uni_CT[1], Cort_uni_CT[1]  )) 
 plott = False 
 if plott: 
 
  #make a regular plot 
  plt.plot(x_120kv_s, y_120kv_s, '-o', label='Simulated', color='tab:pink') 
  plt.plot(x_120kv_m, y_120kv_m, '-v', label='Measured', color='tab:blue') 
  plt.legend(loc=4) 
  plt.title('SECT', fontsize=14) 
  plt.xlabel('HU', fontsize=12) 
  plt.ylabel('Stopping power ratio', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
  # make a plot with zoomed area 
  fig, ax = plt.subplots() 
 
  ax.plot(x_120kv_s, y_120kv_s, '-o', color='tab:pink') 
  ax.plot(x_120kv_m, y_120kv_m, '-v', color='tab:blue') 
 
  blue_line = mlines.Line2D([], [], marker='v',\ 
                          markersize=9, label='Measured', color='tab:blue') 
  grey_line = mlines.Line2D([], [], marker='o',\ 
                          markersize=9, label='Simulated', color='tab:pink') 
  ax.legend(handles=[blue_line, grey_line]) 
 
  axins = zoomed_inset_axes(ax, 4, loc=4, borderpad = 2) # zoom = 5 
  axins.plot(x_120kv_s, y_120kv_s, '-o', color='tab:pink') 
  axins.plot(x_120kv_m, y_120kv_m, '-v', color='tab:blue') 
 
  axins.set_xlim(-200, 120) # Limit the region for zoom 
  axins.set_ylim(0.95, 1.07) 
  axins.grid(True, color='gainsboro') 
 
  plt.xticks(visible=True)  # Not present ticks 
  plt.yticks(visible=True) 
   
  ## draw a bbox of the region of the inset axes in the parent axes and 
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  ## connecting lines between the bbox and the inset axes area 
  mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") 
 
  plt.draw() 
  ax.set_title('Combined kV', fontsize = 14) 
  ax.set_xlabel('HU', fontsize=12) 
  ax.set_ylabel('Stopping power ratio', fontsize=12) 
  ax.grid(True, color='gainsboro') 
  plt.show() 
 
# monoenergetic difference between measured and simulated 
difference_m_s_mono = False 
if difference_m_s_mono: 
 
 HU_diff_infl  = np.zeros(11) 
 HU_diff_poly  = np.zeros(11) 
 HU_diff_adip  = np.zeros(11) 
 HU_diff_brain = np.zeros(11) 
 HU_diff_blood = np.zeros(11) 
 HU_diff_cort  = np.zeros(11) 
 
 medium = ['Inf. lung','Polyethylene', 'Adipose',  'Brain', 'Blood', 'Cort. bone'] 
 
 # remove soft tissue values 
 x_en_ny = np.delete(x_en, np.s_[4], axis=1) 
 
 # Caluculate the difference between measured and simulated HU 
 for i in range(11): 
  # interested in difference, not size 
  HU_diff_infl[i]  = abs(x_en_b[i][0] - x_en_ny[i][0]) 
  HU_diff_poly[i]  = abs(x_en_b[i][1] - x_en_ny[i][1]) 
  HU_diff_adip[i]  = abs(x_en_b[i][2] - x_en_ny[i][2]) 
  HU_diff_brain[i] = abs(x_en_b[i][3] - x_en_ny[i][3]) 
  HU_diff_blood[i] = abs(x_en_b[i][4] - x_en_ny[i][4]) 
  HU_diff_cort[i]  = abs(x_en_b[i][5] - x_en_ny[i][5]) 
 
 #fig,axes = plt.subplots() 
 plott = True 
 if plott: 
  x_ny = np.array([1,2,3,4,5,6]) 
  fig, ax = plt.subplots() 
  for i in range(11): 
   #make a plot with the differences 
   plt.plot(1, HU_diff_infl[i],  'o', color='tab:blue') 
   plt.plot(2, HU_diff_poly[i],  'o', color='tab:purple') 
   plt.plot(3, HU_diff_adip[i],  'o', color='tab:cyan') 
   plt.plot(4, HU_diff_brain[i], 'o', color='tab:red') 
   plt.plot(5, HU_diff_blood[i], 'o', color='tab:green') 
   plt.plot(6, HU_diff_cort[i],  'o', color='tab:pink') 
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  plt.xticks(x_ny, medium) 
  plt.title('') 
  plt.xlabel('Medium', fontsize='12') 
  plt.ylabel('HU difference [$HU_m - HU_s]$', fontsize=12) 
  plt.grid(True, color='gainsboro') 
  plt.show() 
 
# SPRV vs HU for 120 kV and 80 keV  
# both measured 
close_HU_combined = False 
if close_HU_combined: 
 
 x_80keV = x_en_b[4] 
 y_80keV = y_en_b[4] 
 
  # restore after increasing HU 
 x_80keV = np.sort(x_80keV) 
 y_80keV = np.sort(y_80keV) 
 plott = False 
 if plott: 
 
  # new array with only 80 keV measured values 
  x_80keV = x_en_b[4] 
  y_80keV = y_en_b[4] 
 
  # restore after increasing HU 
  x_80keV = np.sort(x_80keV) 
  y_80keV = np.sort(y_80keV) 
 
  print(x_80keV[1]) 
  print(x_120kv_m[2]) 
 
  plott = False 
  if plott: 
   fig, ax = plt.subplots() 
 
   ax.plot(x_80keV, y_80keV,   '-o', label='80 keV', color='tab:pink') 
   ax.plot(x_120kv_m, y_120kv_m,'-o', label='120 kV', color='tab:blue') 
   ax.legend() 
 
   ax.grid(True, color='gainsboro') 
    
   axins = zoomed_inset_axes(ax, 4, loc=4, borderpad=2) # zoom = 4 
 
   axins.plot(x_80keV, y_80keV,   '-o', color='tab:pink') 
   axins.plot(x_120kv_m, y_120kv_m, '-o', color='tab:blue') 
   axins.set_xlim(-100, 120) # Limit the region for zoom 
   axins.set_ylim(0.95, 1.07) 
   axins.grid(True, color='gainsboro') 
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   #axins.yaxis.get_major_locator().set_params(nbins=7) 
   #axins.xaxis.get_major_locator().set_params(nbins=7) 
   plt.xticks(visible=True)  # Not present ticks 
   plt.yticks(visible=True) 
    
   ## draw a bbox of the region of the inset axes in the parent axes and 
   ## connecting lines between the bbox and the inset axes area 
   mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") 
 
   plt.draw() 
   ax.set_title('') 
   ax.set_xlabel('HU', fontsize=12) 
   ax.set_ylabel('Stopping power ratio', fontsize=12) 
   plt.show() 
 
close_HU_combined_more = True 
if close_HU_combined_more: 
 
 x_40keV = x_en_b[0] 
 y_40keV = y_en_b[0] 
 x_80keV = x_en_b[4] 
 y_80keV = y_en_b[4] 
 x_120keV = x_en_b[8] 
 y_120keV = y_en_b[8] 
 x_140keV = x_en_b[-1] 
 y_140keV = y_en_b[-1] 
 
 
 
 # restore after increasing HU 
 x_80keV = np.sort(x_80keV) 
 y_80keV = np.sort(y_80keV) 
 x_120keV = np.sort(x_120keV) 
 y_120keV = np.sort(y_120keV) 
 x_140keV = np.sort(x_140keV) 
 y_140keV = np.sort(y_140keV) 
 
  
 plt.plot(x_120kv_m, y_120kv_m, '-o', label='120 kVp', color='tab:blue') 
 plt.legend() 
 
 #plt.xticks(x_ny, medium) 
 plt.title('') 
 plt.xlabel('HU', fontsize='12') 
 plt.ylabel('Stopping Power Ratio', fontsize=12) 
 plt.grid(True, color='gainsboro') 
 plt.show() 
 
 plott = False 
 if plott: 
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  plott = True 
  if plott: 
   fig, ax = plt.subplots() 
 
   ax.plot(x_80keV, y_80keV,   '-o', label='80 keV', color='tab:pink') 
   ax.plot(x_120kv_m, y_120kv_m,'-o', label='120 kV', color='tab:blue') 
   ax.plot(x_40keV, y_40keV, '-o', label='40 keV', color='tab:purple') 
   ax.plot(x_140keV, y_140keV, '-o', label='140 keV', color='tab:red') 
   ax.legend() 
   #ax.title('SECT', fontsize=14) 
   #ax.xlabel('HU', fontsize=12) 
   #ax.ylabel('Stopping power ratio', fontsize=12) 
   ax.grid(True, color='gainsboro') 
    
   axins = zoomed_inset_axes(ax, 4, loc=4, borderpad=2) # zoom = 4 
 
   axins.plot(x_80keV, y_80keV,   '-o', color='tab:pink') 
   axins.plot(x_120kv_m, y_120kv_m, '-o', color='tab:blue') 
   axins.plot(x_40keV, y_40keV, '-o',  color='tab:purple') 
   axins.plot(x_140keV, y_140keV, '-o', color='tab:red') 
   axins.set_xlim(-205, 120) # Limit the region for zoom 
   axins.set_ylim(0.95, 1.07) 
   axins.grid(True, color='gainsboro') 
 
   #axins.yaxis.get_major_locator().set_params(nbins=7) 
   #axins.xaxis.get_major_locator().set_params(nbins=7) 
   plt.xticks(visible=True)  # Not present ticks 
   plt.yticks(visible=True) 
   # 
   ## draw a bbox of the region of the inset axes in the parent axes and 
   ## connecting lines between the bbox and the inset axes area 
   mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") 
 
   plt.draw() 
   ax.set_title('') 
   ax.set_xlabel('HU', fontsize=12) 
   ax.set_ylabel('Stopping power ratio', fontsize=12) 
   plt.show() 
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Python code creating a tablet for extracting HU values from Quasar and Gammex phantom. 
Every calculation is set to False as default.  
 
import pydicom as dcm 
import numpy as np 
import matplotlib.pyplot as plt 
import glob 
from openpyxl import Workbook 
#import scipy as sp 
#import scipy.interpolate 
 
# a function to read the DICOM files, and sort them in correct order 
def load_scans(path):  
 files = glob.glob(path+"*") #Søker etter CT-filer i katalog. Evt bruk "*" 
 
 zdim = len(files) # Antall filer = antall snitt 
 
 test = dcm.dcmread(files[0]).pixel_array #leser ut et vilkårlig bilde, xog 
 xdim = len(test[0]) # antall x = antall pixler i x  
 ydim = len(test[1]) # antall y = antall pixler i y 
 #print(test.shape) 
   
 images = np.empty([xdim, ydim, zdim]) 
 sli_loc = np.empty([zdim]) 
 for z in range(zdim): 
     sli_loc[z] = dcm.dcmread(files[z]).SliceLocation 
 # Leste inn slice location, ikke riktig rekkefølge 
 
 index_sort = np.argsort(sli_loc) 
   
 for z in range(zdim): 
     index = index_sort[z] # Leser inn bildene sortert etter slice location 
     image = dcm.dcmread(files[index]).pixel_array 
     images[:, :, z]= image 
 
     #images = images.astype(np.int16) 
 
 #print(images) 
 return images 
 
 
# The DICOM images have an Rescale intercept of -1024, and a Rescale Slope of 1,  
# so to find the Hounsfield Unit in the DICOM image we have to use:  
# U = m * SV + b 
# where U = HU, m = Rescale Slope, SV = given value in the voxel, and  
# b = Rescale intercept  
def get_pixels_hu(scans): 
    ima = scans 
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    ima += np.int16(-1024) 
     
    return np.array(ima, dtype=np.int16)  
 
''' 
# Make a histogram to check the HU  
plt.hist(imgs_to_process.flatten(), bins=50, color='c') 
plt.xlabel("Hounsfield Units (HU)") 
plt.ylabel("Frequency") 
plt.show() 
''' 
 
# Show every 7th DICOM file, to figure out which slize we want to use 
def sample_stack(stack, rows=4, cols=4, start_with=1, show_every=7): 
    fig,ax = plt.subplots(rows,cols,figsize=[10,10]) 
    for i in range(rows*cols): 
        ind = start_with + i*show_every 
        ax[int(i/rows),int(i % rows)].set_title('slice %d' % ind) 
        ax[int(i/rows),int(i % rows)].imshow(stack[:,:, ind], cmap=plt.cm.bone) 
        ax[int(i/rows),int(i % rows)].axis('off') 
    plt.show() 
 
# A template for the circular ROI's in the GAMMEX phantom, returns the indexes  
# where the ciruclar ROI's are located. This template is for the GAMMEX phantom 
def template_gammex(): 
 
    # number of pixels in the radius 
    ra = 10  
 
    # choose which slize we want to use for the template 
    dummy = patient_pixel[:,:, 92] 
 
    '''     
    circ = np.empty([512, 512]) 
 
    x0 = 435 
    y0 = 252 
 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                circ[i  + y0, j  + x0] = 12 
 
    ind_cir = np.where( circ == 12) 
    #print(ind_cir) 
 
    #for i in range() 
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    dummy = patient_dicom[:,:, 92] 
 
    dummy[ind_cir] = 0 
 
    plt.figure() 
    plt.imshow(dummy) 
    plt.show() 
 
    print(np.mean(dummy[ind_cir])) 
    print(np.std(dummy[ind_cir])) 
    ''' 
    ############################################################### 
 
    # find the index for the first circle 
    x1 = 133 #122  
    y1 = 131 #122 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle1 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 1. (array)   
                circle1[i + y1, j + x1] = 1 
     
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle1 = np.where( circle1 == 1) 
 
    ################################################################# 
 
    # find the index for the secound circle 
    x2 = 380 #372 
    y2 = 129 #118 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle2 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 2.  (array) 
                circle2[i + y2, j + x2] = 2 
    # collect the indexes where the array is 1 (our wanted circle) 
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    ind_circle2 = np.where( circle2 == 2) 
 
    ################################################################# 
     
    # find the index for the third circle 
    x3 = 189 #179 
    y3 = 190 #179 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle3 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 3. (array) 
                circle3[i + y3, j + x3] = 3 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle3 = np.where( circle3 == 3) 
 
    ################################################################# 
     
    # find the index for the fourth circle 
    x4 = 255  
    y4 = 160  
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle4 = np.zeros([512,512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 4 (array) 
                circle4[i + y4, j + x4] = 4 
 
    ind_circle4 = np.where( circle4 == 4) 
 
    ################################################################# 
     
    # find the index for the fifth circle 
    x5 = 83 #74 
    y5 = 256 #246 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle5 = np.zeros([512, 512]) 
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    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 5 (array) 
                circle5[i + y5, j + x5] = 5 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle5 = np.where( circle5 == 5) 
 
    ################################################################# 
     
    # find the index for the sixth circle 
    x6 = 353 #343 
    y6 = 250 #240 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle6 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 6 (array) 
                circle6[i + y6, j + x6] = 6 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle6 = np.where( circle6 == 6) 
 
    ################################################################# 
     
    # find the index for the seventh circle 
    x7 = 194 #184 
    y7 = 321 #312 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle7 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 7. (array) 
                circle7[i + y7, j + x7] = 7 
    # collect the indexes where the array is 1 (our wanted circle) 
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    ind_circle7 = np.where( circle7 == 7) 
 
    ################################################################# 
     
    # find the index for the eight circle 
    x8 = 247 #184 
    y8 = 47 #312 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle8 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 8. (array) 
                circle8[i + y8, j + x8] = 8 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle8 = np.where( circle8 == 8) 
 
 
    # test to check that the circle is in the right spot. 
    # Set to 'True' if you want to plot the image  
    test_spot = False 
    if test_spot:  
        dummy[ind_circle8] = 1200 
 
        plt.figure() 
        plt.imshow(dummy, cmap=plt.cm.bone) 
        plt.show() 
 
        #print(np.mean(dummy[ind_circle1])) # can only be used if dummy = -1200 
        #print(np.std(dummy[ind_circle1])) # can only be used if dummy = -1200 
 
    return ind_circle1, ind_circle2, ind_circle3, ind_circle4, ind_circle5,\ 
     ind_circle6, ind_circle7, ind_circle8 
 
# A template for the circular ROI's in the QUASAR phantom, returns the indexes  
# where the ciruclar ROI's are located. This template is for the GAMMEX phantom  
def template_quasar(): 
    # number of pixels in the radius (same for both phantoms) 
    ra = 10  
 
    # choose what slize we want to use as the template 
    dummy = patient_pixel_q[:,:, 106] 
 
    '''    
    circ = np.empty([512, 512]) 
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    x0 = 257 
    y0 = 252 
 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                circ[i  + y0, j  + x0] = 12 
 
    ind_cir = np.where( circ == 12) 
    #print(ind_cir) 
    ''' 
 
    
###########################################################################
# 
 
    # find the index for the first circle 
    x1 = 257  
    y1 = 204 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle1 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 1. (array) 
                circle1[i + y1, j + x1] = 1 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle1 = np.where( circle1 == 1) 
 
    
###########################################################################
# 
    # find the index for the secound circle 
    x2 = 305  
    y2 = 252 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle2 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
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            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 2. (array) 
                circle2[i + y2, j + x2] = 2 
    # collect the indexes where the array is 2 (our wanted circle) 
    ind_circle2 = np.where( circle2 == 2) 
 
    
###########################################################################
# 
    # find the index for the third circle 
    x3 = 257  
    y3 = 300 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle3 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra: 
                #fill the indexes that is a part of the circle with 3. (array)  
                circle3[i + y3, j + x3] = 3 
    # collect the indexes where the array is 3 (our wanted circle) 
    ind_circle3 = np.where( circle3 == 3) 
 
    
###########################################################################
# 
    # find the index for the fourth circle 
    x4 = 210  
    y4 = 252 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle4 = np.zeros([512,512]) 
  
    # creat mask in a circular pathern around the centrum of a choosen index    
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 4. (array) 
                circle4[i + y4, j + x4] = 4 
     
    # collect the indexes where the array is 4 (our wanted circle) 
    ind_circle4 = np.where( circle4 == 4) 
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###########################################################################
# 
    # find the index for the fifth circle 
    x5 = 257  
    y5 = 252 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle5 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 5. (array) 
                circle5[i + y5, j + x5] = 5 
 
    # collect the indexes where the array is 5 (our wanted circle) 
    ind_circle5 = np.where( circle5 == 5) 
 
    
###########################################################################
# 
 
    # find the index for the sixth circle 
    x6 = 257  
    y6 = 160 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle6 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 1. (array) 
                circle6[i + y6, j + x6] = 6 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle6 = np.where( circle6 == 6) 
 
    # test to check that the circle is in the right spot. 
    # Set to 'True' if you want to plot the image 
    check_temp = True 
    if check_temp: 
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        dummy = patient_pixel_q[:,:, 106] 
 
        dummy[ind_circle6] = 1200 
 
        plt.figure(1) 
        plt.imshow(dummy) 
        plt.show() 
 
    #print(np.mean(dummy[ind_cir])) 
    #print(np.std(dummy[ind_cir])) 
 
    return ind_circle1, ind_circle2, ind_circle3, ind_circle4, ind_circle5,\ 
     ind_circle6 
   
# Able to save the data to a excel file 
book = Workbook() 
 
# Activate a sheet in the Workbook, able to write into it 
spreadsheet = book.active 
 
# Load the scans for the template 
###########################################################################
##### 
#####                   G A M M E X   P H A N T O M                        ##### 
###########################################################################
##### 
 
# path1 is a path to a Gammex phantom 
path1="//Users/Sandra/Documents/UIO/Master/Masteroppgave/Method/CT-GE/\ 
PixPadZero/00000A7D Gammex single energi 120 kV AV50//"  
# Katalog der CT-bildene ligger (NB ingen andre filer bør ligge der) 
 
# start with the gammex phantom, loading the DICOM images from the map 
patient_dicom = load_scans(path1) 
# correctiong the pixel value to HU 
patient_pixel = get_pixels_hu(patient_dicom) 
 
# Check the stack, to find an image we can center around 
imgs_to_process = patient_pixel 
 
check_stack = False 
if check_stack: 
    sample_stack(imgs_to_process) 
 
# Find the index for the ROI location for the different materials.  
# A template to use on the DICOM images.  
# Set as global variables 
ind_blood70, ind_blood40, ind_brain, ind_water, ind_blood, ind_adipose, \ 
ind_air, ind_cont_g = template_gammex() 
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# From the stack image we know that the gammex has nice images around slize 92.  
# Will use 5 slizes around number 92 
 
###########################################################################
##### 
#####                   Q U A S A R   P H A N T O M                        ##### 
###########################################################################
##### 
 
#path2 is a path to a quasar phantom 
Path2 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000AD20 70 keV AV50 Quasar//" 
#Path3 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//\ 
#CT-GE//PixPadZero//0000ECE8 Quasar single energi 120 kV AV50//" 
 
# Start by loading the DICOM images from path2 
patient_dicom_q = load_scans(Path2) 
patient_pixel_q = get_pixels_hu(patient_dicom_q) 
 
# Check the stack, to find an image we can center around 
check_stack_q = False 
if check_stack_q: 
    sample_stack(patient_pixel_q) 
 
# From stack check the interesting inserts looks best around slize 106.  
# Will use 5 slizes around number 106 
# Can alsow see that for the SECT we have to choose around slize 99 not 106 
# But the location of the ROI's is still the same 
 
# Find the index for the ROI location for the different materials.  
# A template to use on the DICOM images. 
# set as global variables 
ind_lung, ind_dbone, ind_w, ind_inbone, ind_poly, ind_cont_q = template_quasar() 
 
###########################################################################
##### 
###########################################################################
##### 
#####                                                                      ##### 
#####                   FIND THE MEAN HU AND STD IN THE ROIS               ##### 
#####                                                                      ##### 
###########################################################################
##### 
###########################################################################
##### 
 
def Gammex_DECT_HU_SD(path): 
    '''A function to calculate the Hounsfield Unit and the standard daviation in 
    ROI's. This function will be used for the Gammex phantom only.''' 
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    # Call the DICOM images 
    patient_dicom = load_scans(path) 
    # Correct the pixel value 
    patient_pixel = get_pixels_hu(patient_dicom) 
 
    # Number of coloums needed in the array   
    len_slize = len(patient_pixel[ind_blood70]) 
 
    # Arrays filled with zeros 
    blood70      =  np.zeros((5,len_slize)) 
    blood40      =  np.zeros((5,len_slize)) 
    brain        =  np.zeros((5,len_slize)) 
    water        =  np.zeros((5,len_slize)) 
    blood        =  np.zeros((5,len_slize)) 
    adipose      =  np.zeros((5,len_slize)) 
    air          =  np.zeros((5,len_slize)) 
    contr_g      =  np.zeros((5,len_slize)) 
 
    # Only want to use 5 slizes around z = 92 
    for i in range(-2, 2+1): 
        z = 92 + i 
        image_slize = patient_pixel[:,:,z] 
 
        # Store all the values in an 2d array, find the SD of the whole array 
        blood70[i + 2, :]     =  image_slize[ind_blood70] 
        blood40[i + 2, :]     =  image_slize[ind_blood40] 
        brain[i   + 2, :]     =  image_slize[ind_brain] 
        water[i   + 2, :]     =  image_slize[ind_water] 
        blood[i   + 2, :]     =  image_slize[ind_blood] 
        adipose[i + 2, :]     =  image_slize[ind_adipose] 
        air[i     + 2, :]     =  image_slize[ind_air] 
        contr_g[i   + 2, :]   =  image_slize[ind_cont_g] 
 
    # Calculate the mean HU for different material 
    mean_blood70 = np.mean(blood70) 
    mean_blood40 = np.mean(blood40) 
    mean_brain   = np.mean(brain) 
    mean_blood   = np.mean(blood) 
    mean_water   = np.mean(water) 
    mean_adipose = np.mean(adipose) 
    mean_air     = np.mean(air) 
    mean_cont_g  = np.mean(contr_g) 
 
    # Caclculate the standard daviation for the different material  
    sd_blood70  = np.std(blood70, ddof=1) 
    sd_blood40  = np.std(blood40, ddof=1) 
    sd_brain    = np.std(brain, ddof=1) 
    sd_blood    = np.std(blood, ddof=1) 
    sd_water    = np.std(water, ddof=1) 
    sd_adipose  = np.std(adipose, ddof=1) 
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    sd_air      = np.std(air, ddof=1) 
    sd_cont_g   = np.std(contr_g, ddof=1) 
 
    return mean_blood70, mean_blood40, mean_brain, mean_water, mean_blood, \ 
    mean_adipose, mean_air, sd_blood70, sd_blood40, sd_brain, sd_blood, sd_water, 
sd_adipose, \ 
     sd_air, mean_cont_g, sd_cont_g 
 
 
def QUASAR_DECT_HU_SD(path, CT): 
    '''A function to calculate the Hounsfield Unit and the standard daviation in 
    ROI's. This function will be used for the QUASAR phantom only.''' 
 
    # Call the DICOM images 
    patient_dicom = load_scans(path) 
    # Convert the pixel value  
    patient_pixel = get_pixels_hu(patient_dicom) 
 
    # Number of coloums needed in the array   
    len_slize = len(patient_pixel[ind_lung]) 
 
    # Arrays filled with zeros 
    lung     =  np.zeros((5,len_slize)) 
    dbone    =  np.zeros((5,len_slize)) 
    water    =  np.zeros((5,len_slize)) 
    inbone   =  np.zeros((5,len_slize)) 
    poly     =  np.zeros((5,len_slize)) 
    cont_q   =  np.zeros((5,len_slize)) 
 
    # Only want to use 5 slizes around z = 105 or z = 99 if we are analysing  
    # the SECT images. If CT == 2 we have a DECT image, and we will set z = 106,  
    # but if not we have a SECT image and we set z = 98 
    for i in range(-2, 2+1): 
        if CT == 2:  
            z = 105 + i 
        else:  
            z = 98 + i 
        image_slize = patient_pixel[:,:,z] 
 
        # Store all the values in an 2d array, find the SD of the whole array 
        lung[i   + 2, :] =  image_slize[ind_lung] 
        dbone[i  + 2, :] =  image_slize[ind_dbone] 
        water[i  + 2, :] =  image_slize[ind_w] 
        inbone[i + 2, :] =  image_slize[ind_inbone] 
        poly[i   + 2, :] =  image_slize[ind_poly] 
        cont_q[i + 2, :] =  image_slize[ind_cont_q] 
 
    # Calculate the mean HU for different material 
    mean_lung   = np.mean(lung) 
    mean_dbone  = np.mean(dbone) 
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    mean_water  = np.mean(water) 
    mean_inbone = np.mean(inbone) 
    mean_poly   = np.mean(poly) 
    mean_cont_q = np.mean(cont_q) 
 
    # Caclculate the standard daviation for the different material  
    sd_lung   = np.std(lung, ddof=1) 
    sd_dbone  = np.std(dbone, ddof=1) 
    sd_water  = np.std(water, ddof=1) 
    sd_inbone = np.std(inbone, ddof=1) 
    sd_poly   = np.std(poly, ddof=1) 
    sd_cont_q = np.std(cont_q, ddof=1) 
 
    return mean_lung, mean_dbone, mean_water, mean_inbone, mean_poly,\ 
     sd_lung, sd_dbone, sd_water, sd_inbone, sd_poly, mean_cont_q, sd_cont_q 
 
###########################################################################
##### 
#####            Get the mean HU and SD for the Gammex phantom             ##### 
###########################################################################
##### 
 
name_G = ['Blood70', 'Blood40', 'Brain', 'Water', 'Blood', 'Adipose', 'Air'] 
name_Q = ['Inf. Lung', 'Dense bone', 'Water eq.', 'Inner bone', 'Polyethylene'] 
 
# DECT images reconstructed with backprojection  
# Set to 'True' if you want to collect the information about the CT images  
#reconstructed with backprojection for the Gammex phantom 
DECT_images_G = False 
if DECT_images_G:  
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000C8BE 40keV Gammex//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000ADE7 50 keV Gammex//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000971B 60 keV Gammex//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00001DF5 Gammex C4 serienr 6//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00007896 80 keV Gammex//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000116F 90 keV Gammex//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00001BF3 100 keV Gammex//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00009BA3 110 keV Gammex//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000217F 120 keV Gammex//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000F5A2 130 keV Gammex//" 
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    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000317B 140 keV Gammex//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
            path_8, path_9, path_10, path_11] 
 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
    tesg =np.zeros((11, 7)) 
    contrast_g = [[],[]] 
 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = Gammex_DECT_HU_SD(path) 
        store_values[0].append(sd_and_HU[0:7]) 
        store_values[1].append(sd_and_HU[7:14]) 
 
        contrast_g[0].append(sd_and_HU[14]) 
        contrast_g[1].append(sd_and_HU[15]) 
 
 
    # Set the name at a given position      
    spreadsheet['A1'] = ('Gammex, DECT, Backprojection') 
    spreadsheet['A2'] = ('Mean HU') 
    spreadsheet.append(name_G) 
    j = 0 
    # append the data calculated into the ecxel sheet 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    spreadsheet['A16'] = ('Standard daviation') 
    spreadsheet.append(name_G) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
 
 
    # Set to 'True' if you want to print the HU for the DECT of the Gammex 
    # phantom. If not, keep 'False'  
    print_HU = False 
    if print_HU: 
        print('The mean HU for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[0]) 
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    # Set to 'True' if you want to print the std for the DECT of the Gammex 
    # phantom. If not, keep 'False'  
    print_sd = False 
    if print_sd:  
        print('The std for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_g[0]) 
        print('The STD') 
        print(contrast_g[1]) 
 
 
# DECT images reconstructed with iterative method 
# Set to 'True' if you want to collect the information about the CT images  
#reconstructed with iterative method for the Gammex phantom 
DECT_images_AV_G = False 
if DECT_images_AV_G:  
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000537 40 keV AV50 Gammex//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000B825 50 keV AV50 Gammex//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000098E1 60 keV AV50 Gammex//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000850F 70 keV AV50 Gammex//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000EA20 80 keV AV50 Gammex//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000095F4 90 keV AV50 Gammex//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00002D91 100 keV AV50 Gammex//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00001FCA 110 keV AV50 Gammex//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000024A5 120 keV AV50 Gammex//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00004869 130 keV AV50 Gammex//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00005E50 140 keV AV50 Gammex//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
    path_8, path_9, path_10, path_11] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
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    contrast_g = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = Gammex_DECT_HU_SD(path) 
        store_values[0].append(sd_and_HU[0:7]) 
        store_values[1].append(sd_and_HU[7:14]) 
 
        contrast_g[0].append(sd_and_HU[14]) 
        contrast_g[1].append(sd_and_HU[15]) 
 
    tesg =np.zeros((11, 7)) 
 
    spreadsheet['A30'] = ('Gammex, DECT, Iterative reconstruction') 
    spreadsheet['A31'] = ('Mean HU') 
    spreadsheet.append(name_G) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A45'] = ('Standard daviation') 
    spreadsheet.append(name_G) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Set to 'True' if you want to print the HU for the DECT with iterative \ 
    #reconstruction 
    # of the Gammex phantom. If not, keep 'False'  
    print_HU = False 
    if print_HU: 
        print('The mean HU for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT with iterative  
    # reconstruction of the Gammex phantom. If not, keep 'False 
    print_sd = False 
    if print_sd:  
        print('The std for blood70, blood40, brain, water, blood, adipose and air') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_g[0]) 
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        print('The STD') 
        print(contrast_g[1]) 
 
###########################################################################
##### 
#####            Get the mean HU and SD for the Quasar phantom             ##### 
###########################################################################
##### 
 
# DECT images reconstructed with backprojections 
# Set to 'True' if you want to collect the information about the CT images  
# reconstructed with backprojection for the Quasar phantom 
QUASAR_DECT_IM = False 
if QUASAR_DECT_IM: 
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000DA64 40 keV Quasar//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000E2E 50keV Quasar//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000050D 60 keV Quasar//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00009AE1 70 keV Quasar//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000025D7 80 keV Quasar//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000B368 90 keV Quasar//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00002A4A 100 keV Quasar//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000E963 110 keV Quasar//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000CE3F 120keV Quasar//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00005843 130 keV Quasar//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000D02A 140 keV Quasar//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
    path_8, path_9, path_10, path_11] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
    contrast_q   = [[],[]]  
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = QUASAR_DECT_HU_SD(path, 2) 
        store_values[0].append(sd_and_HU[0:5]) 
        store_values[1].append(sd_and_HU[5:10]) 
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        contrast_q[0].append(sd_and_HU[10]) 
        contrast_q[1].append(sd_and_HU[11]) 
 
    tesg =np.zeros((11, 5)) 
 
    spreadsheet['A59'] = ('Quasar, DECT, Backprojection') 
    spreadsheet['A60'] = ('Mean HU') 
    spreadsheet.append(name_Q) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A74'] = ('Standard daviation') 
    spreadsheet.append(name_Q) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Set to 'True' if you want to print the mean HU for the DECT of the Quasar 
    # phantom. If not, keep 'False'  
    print_HU = False 
    if print_HU: 
        print('The mean HU for inflated lung, dense bone, water , inner bone, \ 
            and polyethylene') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT of the Quasar 
    # phantom. If not, keep 'False'  
    print_sd = False 
    if print_sd:  
        print('The std for lung, dense bone, water, inner bone, and \ 
            polyethylene') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_q[0]) 
        print('The STD') 
        print(contrast_q[1]) 
 
# DECT images reconstructed with iterative method 
# Set to 'True' if you want to collect the information about the CT images  
# reconstructed with iterative method for the Quasar phantom 
QUASAR_DECT_IM_AV = False 
if QUASAR_DECT_IM_AV: 
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    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000158B 40 keV AV50 Quasar//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//000045BF 50 keV AV50 Quasar//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000012BB 60 keV AV50 Quasar//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000AD20 70 keV AV50 Quasar//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00007C7C 80 keVAV50 Quasar//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000991D 90 keV AV50 Quasar//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000D16 100 keV AV50 Quasar//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000012B1 110 keV AV50 Quasar//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00009128 120keV AV50 Quasar//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00007803 130 keV AV50 Quasar//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000B800 140 keV AV50 Quasar//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
    path_8, path_9, path_10, path_11] 
 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
    contrast_q   = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = QUASAR_DECT_HU_SD(path, 2) 
        store_values[0].append(sd_and_HU[0:5]) 
        store_values[1].append(sd_and_HU[5:10]) 
 
        contrast_q[0].append(sd_and_HU[10]) 
        contrast_q[1].append(sd_and_HU[11]) 
 
    tesg =np.zeros((11, 5)) 
 
    spreadsheet['A90'] = ('Quasar, DECT, Iterative reconstruction') 
    spreadsheet['A91'] = ('Mean HU') 
    spreadsheet.append(name_Q) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
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    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A105'] = ('Standard daviation') 
    spreadsheet.append(name_Q) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
 
 
    # Set to 'True' if you want to print the mean HU for the DECT with iterative  
    # reconstruction of the Quasar phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The mean HU for inflated lung, dense bone, water , inner bone, \ 
            and polyethylene') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT with iterative  
    # reconstruction of the Quasar phantom. If not, keep 'False' 
    print_sd = False 
    if print_sd:  
        print('The std for lung, dense bone, water, inner bone, and \ 
            polyethylene') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_q[0]) 
        print('The STD') 
        print(contrast_q[1]) 
 
###########################################################################
##### 
#####            Get the mean HU and SD for the SECT images                ##### 
###########################################################################
##### 
 
# SECT images reconstructed with both methods 
# Set to 'True' if you want to collect the information about the CT images  
# for the Gammex phantom 
SECT_IMAGE_GAMMEX = False 
if SECT_IMAGE_GAMMEX: 
    # Backprojection 
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000C99D Gammex single energi 120kV//" 
    # Iterative method 



 

 

156 

    path_2 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000A7D Gammex single energi 120 kV AV50//" 
 
    paths = [path_1, path_2] 
 
 
    # First list is the mean HU and the second in the standard daviation  
    # for both reconstruction algorithms with SECT 120 kV 
    store_values = [[],[]] 
    contrast_g   = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = Gammex_DECT_HU_SD(path) 
        store_values[0].append(sd_and_HU[0:7]) 
        store_values[1].append(sd_and_HU[7:14]) 
 
        contrast_g[0].append(sd_and_HU[14]) 
        contrast_g[1].append(sd_and_HU[15]) 
 
    tesg =np.zeros((2, 7)) 
 
    spreadsheet['A119'] = ('Gammex, SECT, first backprojection then iterative') 
    spreadsheet['A120'] = ('Mean HU') 
    spreadsheet.append(name_G) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A125'] = ('Standard daviation') 
    spreadsheet.append(name_G) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
  
 
    # Set to 'True' if you want to print the mean HU for the SECT   
    # of the Gammex phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The mean HU for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the standard daviation for the SECT   
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    # of the Gammex phantom. If not, keep 'False' 
    print_STD = False 
    if print_STD: 
        print('The std for blood70, blood40, brain, water, blood, adipose and air') 
        print(store_values[1]) 
 
    print_cont = True 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_g[0]) 
        print('The STD') 
        print(contrast_g[1]) 
 
# SECT images reconstructed with both methods 
# Set to 'True' if you want to collect the information about the CT images  
# for the Quasar phantom 
SECT_IMAGE_QUASAR = False 
if SECT_IMAGE_QUASAR: 
    # bacprojection 
    path_1 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000C5F3 Quasar single energi 120kV C10//" 
    # iterative method 
    path_2 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000ECE8 Quasar single energi 120 kV AV50//" 
 
    paths = [path_1, path_2] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for both reconstruction algorithms with SECT 120 kV 
    store_values = [[],[]] 
    contrast_q   = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = QUASAR_DECT_HU_SD(path, 0) 
        store_values[0].append(sd_and_HU[0:5]) 
        store_values[1].append(sd_and_HU[5:10]) 
 
        contrast_q[0].append(sd_and_HU[10]) 
        contrast_q[1].append(sd_and_HU[11]) 
 
    tesg =np.zeros((2, 5)) 
 
    spreadsheet['A130'] = ('Quasar, SECT, First bacprojection then iterative.') 
    spreadsheet['A131'] = ('Mean HU') 
    spreadsheet.append(name_Q) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
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    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A136'] = ('Standard daviation') 
    spreadsheet.append(name_Q) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Save the data in a file in the same folder as the program is located  
    book.save('data_from_DICOM.xlsx') 
 
    # Set to 'True' if you want to print the mean HU for the SECT   
    # of the Quasar phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The mean HU for inflated lung, dense bone, water , inner bone,\ 
         and polyethylene') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the standard daviation for the SECT   
    # of the Quasar phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The std for inflated lung, dense bone, water , inner bone, \ 
            and polyethylene') 
        print(store_values[1]) 
 
    print_cont = True 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_q[0]) 
        print('The STD') 
        print(contrast_q[1]) 
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Python code creating a tablet for extracting HU values from the anthropomorphic phantom. 
Every calculation is set to False as default.  
 
import pydicom as dcm 
import numpy as np 
import matplotlib.pyplot as plt 
import glob 
from openpyxl import Workbook 
#import scipy as sp 
#import scipy.interpolate 
 
# a function to read the DICOM files, and sort them in correct order 
def load_scans(path):  
 files = glob.glob(path+"*") #Søker etter CT-filer i katalog. Evt bruk "*" 
 
 zdim = len(files) # Antall filer = antall snitt 
 
 test = dcm.dcmread(files[0]).pixel_array #leser ut et vilkårlig bilde, xog 
 xdim = len(test[0]) # antall x = antall pixler i x  
 ydim = len(test[1]) # antall y = antall pixler i y 
 #print(test.shape) 
   
 images = np.empty([xdim, ydim, zdim]) 
 sli_loc = np.empty([zdim]) 
 for z in range(zdim): 
     sli_loc[z] = dcm.dcmread(files[z]).SliceLocation 
 # Leste inn slice location, ikke riktig rekkefølge 
 
 index_sort = np.argsort(sli_loc) 
   
 for z in range(zdim): 
     index = index_sort[z] # Leser inn bildene sortert etter slice location 
     image = dcm.dcmread(files[index]).pixel_array 
     images[:, :, z]= image 
 
     #images = images.astype(np.int16) 
 
 #print(images) 
 return images 
 
# The DICOM images have an Rescale intercept of -1024, and a Rescale Slope of 1,  
# so to find the Hounsfield Unit in the DICOM image we have to use:  
# U = m * SV + b 
# where U = HU, m = Rescale Slope, SV = given value in the voxel, and  
# b = Rescale intercept  
def get_pixels_hu(scans): 
    ima = scans 
 
         
    ima += np.int16(-1024) 
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    return np.array(ima, dtype=np.int16)  
 
# Show every 7th DICOM file, to figure out which slize we want to use 
def sample_stack(stack, rows=4, cols=4, start_with=1, show_every=7): 
    fig,ax = plt.subplots(rows,cols,figsize=[10,10]) 
    for i in range(rows*cols): 
        ind = start_with + i*show_every 
        ax[int(i/rows),int(i % rows)].set_title('slice %d' % ind) 
        ax[int(i/rows),int(i % rows)].imshow(stack[:,:, ind], cmap=plt.cm.bone) 
        ax[int(i/rows),int(i % rows)].axis('off') 
    plt.show() 
 
# A template for the circular ROI's in the GAMMEX phantom, returns the indexes  
# where the ciruclar ROI's are located. This template is for the GAMMEX phantom 
def template_gammex(): 
 
    # number of pixels in the radius 
    ra = 10  
 
    # choose which slize we want to use for the template 
    dummy = patient_pixel[:,:, 92] 
 
    '''     
    circ = np.empty([512, 512]) 
 
    x0 = 435 
    y0 = 252 
 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                circ[i  + y0, j  + x0] = 12 
 
    ind_cir = np.where( circ == 12) 
    #print(ind_cir) 
 
    #for i in range() 
 
    dummy = patient_dicom[:,:, 92] 
 
    dummy[ind_cir] = 0 
 
    plt.figure() 
    plt.imshow(dummy) 
    plt.show() 
 
    print(np.mean(dummy[ind_cir])) 
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    print(np.std(dummy[ind_cir])) 
    ''' 
    ############################################################### 
 
    # find the index for the first circle 
    x1 = 133 #122  
    y1 = 131 #122 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle1 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 1. (array)   
                circle1[i + y1, j + x1] = 1 
     
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle1 = np.where( circle1 == 1) 
 
    ################################################################# 
 
    # find the index for the secound circle 
    x2 = 380 #372 
    y2 = 129 #118 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle2 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 2.  (array) 
                circle2[i + y2, j + x2] = 2 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle2 = np.where( circle2 == 2) 
 
    ################################################################# 
     
    # find the index for the third circle 
    x3 = 189 #179 
    y3 = 190 #179 
 
    # make a two dimentional array with size 512x512 filled with zeros 
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    circle3 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 3. (array) 
                circle3[i + y3, j + x3] = 3 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle3 = np.where( circle3 == 3) 
 
    ################################################################# 
     
    # find the index for the fourth circle 
    x4 = 255  
    y4 = 160  
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle4 = np.zeros([512,512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 4 (array) 
                circle4[i + y4, j + x4] = 4 
 
    ind_circle4 = np.where( circle4 == 4) 
 
    ################################################################# 
     
    # find the index for the fifth circle 
    x5 = 83 #74 
    y5 = 256 #246 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle5 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 5 (array) 
                circle5[i + y5, j + x5] = 5 
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    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle5 = np.where( circle5 == 5) 
 
    ################################################################# 
     
    # find the index for the sixth circle 
    x6 = 353 #343 
    y6 = 250 #240 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle6 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 6 (array) 
                circle6[i + y6, j + x6] = 6 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle6 = np.where( circle6 == 6) 
 
    ################################################################# 
     
    # find the index for the seventh circle 
    x7 = 194 #184 
    y7 = 321 #312 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle7 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 7. (array) 
                circle7[i + y7, j + x7] = 7 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle7 = np.where( circle7 == 7) 
 
    ################################################################# 
     
    # find the index for the eight circle 
    x8 = 247 #184 
    y8 = 47 #312 
 
    # make a two dimentional array with size 512x512 filled with zeros 
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    circle8 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 8. (array) 
                circle8[i + y8, j + x8] = 8 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle8 = np.where( circle8 == 8) 
 
 
    # test to check that the circle is in the right spot. 
    # Set to 'True' if you want to plot the image  
    test_spot = False 
    if test_spot:  
        dummy[ind_circle8] = 1200 
 
        plt.figure() 
        plt.imshow(dummy, cmap=plt.cm.bone) 
        plt.show() 
 
        #print(np.mean(dummy[ind_circle1])) # can only be used if dummy = -1200 
        #print(np.std(dummy[ind_circle1])) # can only be used if dummy = -1200 
 
    return ind_circle1, ind_circle2, ind_circle3, ind_circle4, ind_circle5,\ 
     ind_circle6, ind_circle7, ind_circle8 
 
# A template for the circular ROI's in the QUASAR phantom, returns the indexes  
# where the ciruclar ROI's are located. This template is for the GAMMEX phantom  
def template_quasar(): 
    # number of pixels in the radius (same for both phantoms) 
    ra = 10  
 
    # choose what slize we want to use as the template 
    dummy = patient_pixel_q[:,:, 106] 
 
    '''    
    circ = np.empty([512, 512]) 
 
    x0 = 257 
    y0 = 252 
 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
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                circ[i  + y0, j  + x0] = 12 
 
    ind_cir = np.where( circ == 12) 
    #print(ind_cir) 
    ''' 
 
    
###########################################################################
# 
 
    # find the index for the first circle 
    x1 = 257  
    y1 = 204 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle1 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 1. (array) 
                circle1[i + y1, j + x1] = 1 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle1 = np.where( circle1 == 1) 
 
    
###########################################################################
# 
    # find the index for the secound circle 
    x2 = 305  
    y2 = 252 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle2 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 2. (array) 
                circle2[i + y2, j + x2] = 2 
    # collect the indexes where the array is 2 (our wanted circle) 
    ind_circle2 = np.where( circle2 == 2) 
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###########################################################################
# 
    # find the index for the third circle 
    x3 = 257  
    y3 = 300 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle3 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra: 
                #fill the indexes that is a part of the circle with 3. (array)  
                circle3[i + y3, j + x3] = 3 
    # collect the indexes where the array is 3 (our wanted circle) 
    ind_circle3 = np.where( circle3 == 3) 
 
    
###########################################################################
# 
    # find the index for the fourth circle 
    x4 = 210  
    y4 = 252 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle4 = np.zeros([512,512]) 
  
    # creat mask in a circular pathern around the centrum of a choosen index    
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 4. (array) 
                circle4[i + y4, j + x4] = 4 
     
    # collect the indexes where the array is 4 (our wanted circle) 
    ind_circle4 = np.where( circle4 == 4) 
 
 
    
###########################################################################
# 
    # find the index for the fifth circle 
    x5 = 257  
    y5 = 252 
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    # make a two dimentional array with size 512x512 filled with zeros 
    circle5 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 5. (array) 
                circle5[i + y5, j + x5] = 5 
 
    # collect the indexes where the array is 5 (our wanted circle) 
    ind_circle5 = np.where( circle5 == 5) 
 
    
###########################################################################
# 
 
    # find the index for the sixth circle 
    x6 = 257  
    y6 = 160 
 
    # make a two dimentional array with size 512x512 filled with zeros 
    circle6 = np.zeros([512, 512]) 
 
    # creat mask in a circular pathern around the centrum of a choosen index 
    for i in range(-ra, ra+1): 
        for j in range(-ra, ra+1): 
            r = np.sqrt( (i**2.0 ) + (j**2.0) ) 
 
            if r <= ra:  
                #fill the indexes that is a part of the circle with 1. (array) 
                circle6[i + y6, j + x6] = 6 
    # collect the indexes where the array is 1 (our wanted circle) 
    ind_circle6 = np.where( circle6 == 6) 
 
    # test to check that the circle is in the right spot. 
    # Set to 'True' if you want to plot the image 
    check_temp = True 
    if check_temp: 
        dummy = patient_pixel_q[:,:, 106] 
 
        dummy[ind_circle6] = 1200 
 
        plt.figure(1) 
        plt.imshow(dummy) 
        plt.show() 
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    #print(np.mean(dummy[ind_cir])) 
    #print(np.std(dummy[ind_cir])) 
 
    return ind_circle1, ind_circle2, ind_circle3, ind_circle4, ind_circle5,\ 
     ind_circle6 
   
# Able to save the data to a excel file 
book = Workbook() 
 
# Activate a sheet in the Workbook, able to write into it 
spreadsheet = book.active 
 
# Load the scans for the template 
###########################################################################
##### 
#####                   G A M M E X   P H A N T O M                        ##### 
###########################################################################
##### 
 
# path1 is a path to a Gammex phantom 
path1="//Users/Sandra/Documents/UIO/Master/Masteroppgave/Method/CT-GE/\ 
PixPadZero/00000A7D Gammex single energi 120 kV AV50//"  
# Katalog der CT-bildene ligger (NB ingen andre filer bør ligge der) 
 
# start with the gammex phantom, loading the DICOM images from the map 
patient_dicom = load_scans(path1) 
# correctiong the pixel value to HU 
patient_pixel = get_pixels_hu(patient_dicom) 
 
# Check the stack, to find an image we can center around 
imgs_to_process = patient_pixel 
 
check_stack = False 
if check_stack: 
    sample_stack(imgs_to_process) 
 
# Find the index for the ROI location for the different materials.  
# A template to use on the DICOM images.  
# Set as global variables 
ind_blood70, ind_blood40, ind_brain, ind_water, ind_blood, ind_adipose, \ 
ind_air, ind_cont_g = template_gammex() 
 
# From the stack image we know that the gammex has nice images around slize 92.  
# Will use 5 slizes around number 92 
 
###########################################################################
##### 
#####                   Q U A S A R   P H A N T O M                        ##### 
###########################################################################
##### 
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#path2 is a path to a quasar phantom 
Path2 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000AD20 70 keV AV50 Quasar//" 
#Path3 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//\ 
#CT-GE//PixPadZero//0000ECE8 Quasar single energi 120 kV AV50//" 
 
# Start by loading the DICOM images from path2 
patient_dicom_q = load_scans(Path2) 
patient_pixel_q = get_pixels_hu(patient_dicom_q) 
 
# Check the stack, to find an image we can center around 
check_stack_q = False 
if check_stack_q: 
    sample_stack(patient_pixel_q) 
 
# From stack check the interesting inserts looks best around slize 106.  
# Will use 5 slizes around number 106 
# Can alsow see that for the SECT we have to choose around slize 99 not 106 
# But the location of the ROI's is still the same 
 
# Find the index for the ROI location for the different materials.  
# A template to use on the DICOM images. 
# set as global variables 
ind_lung, ind_dbone, ind_w, ind_inbone, ind_poly, ind_cont_q = template_quasar() 
 
###########################################################################
##### 
###########################################################################
##### 
#####                                                                      ##### 
#####                   FIND THE MEAN HU AND STD IN THE ROIS               ##### 
#####                                                                      ##### 
###########################################################################
##### 
###########################################################################
##### 
 
def Gammex_DECT_HU_SD(path): 
    '''A function to calculate the Hounsfield Unit and the standard daviation in 
    ROI's. This function will be used for the Gammex phantom only.''' 
 
    # Call the DICOM images 
    patient_dicom = load_scans(path) 
    # Correct the pixel value 
    patient_pixel = get_pixels_hu(patient_dicom) 
 
    # Number of coloums needed in the array   
    len_slize = len(patient_pixel[ind_blood70]) 
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    # Arrays filled with zeros 
    blood70      =  np.zeros((5,len_slize)) 
    blood40      =  np.zeros((5,len_slize)) 
    brain        =  np.zeros((5,len_slize)) 
    water        =  np.zeros((5,len_slize)) 
    blood        =  np.zeros((5,len_slize)) 
    adipose      =  np.zeros((5,len_slize)) 
    air          =  np.zeros((5,len_slize)) 
    contr_g      =  np.zeros((5,len_slize)) 
 
    # Only want to use 5 slizes around z = 92 
    for i in range(-2, 2+1): 
        z = 92 + i 
        image_slize = patient_pixel[:,:,z] 
 
        # Store all the values in an 2d array, find the SD of the whole array 
        blood70[i + 2, :]     =  image_slize[ind_blood70] 
        blood40[i + 2, :]     =  image_slize[ind_blood40] 
        brain[i   + 2, :]     =  image_slize[ind_brain] 
        water[i   + 2, :]     =  image_slize[ind_water] 
        blood[i   + 2, :]     =  image_slize[ind_blood] 
        adipose[i + 2, :]     =  image_slize[ind_adipose] 
        air[i     + 2, :]     =  image_slize[ind_air] 
        contr_g[i   + 2, :]   =  image_slize[ind_cont_g] 
 
    # Calculate the mean HU for different material 
    mean_blood70 = np.mean(blood70) 
    mean_blood40 = np.mean(blood40) 
    mean_brain   = np.mean(brain) 
    mean_blood   = np.mean(blood) 
    mean_water   = np.mean(water) 
    mean_adipose = np.mean(adipose) 
    mean_air     = np.mean(air) 
    mean_cont_g  = np.mean(contr_g) 
 
    # Caclculate the standard daviation for the different material  
    sd_blood70  = np.std(blood70, ddof=1) 
    sd_blood40  = np.std(blood40, ddof=1) 
    sd_brain    = np.std(brain, ddof=1) 
    sd_blood    = np.std(blood, ddof=1) 
    sd_water    = np.std(water, ddof=1) 
    sd_adipose  = np.std(adipose, ddof=1) 
    sd_air      = np.std(air, ddof=1) 
    sd_cont_g   = np.std(contr_g, ddof=1) 
 
    return mean_blood70, mean_blood40, mean_brain, mean_water, mean_blood, \ 
    mean_adipose, mean_air, sd_blood70, sd_blood40, sd_brain, sd_blood, sd_water, 
sd_adipose, \ 
     sd_air, mean_cont_g, sd_cont_g 
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def QUASAR_DECT_HU_SD(path, CT): 
    '''A function to calculate the Hounsfield Unit and the standard daviation in 
    ROI's. This function will be used for the QUASAR phantom only.''' 
 
    # Call the DICOM images 
    patient_dicom = load_scans(path) 
    # Convert the pixel value  
    patient_pixel = get_pixels_hu(patient_dicom) 
 
    # Number of coloums needed in the array   
    len_slize = len(patient_pixel[ind_lung]) 
 
    # Arrays filled with zeros 
    lung     =  np.zeros((5,len_slize)) 
    dbone    =  np.zeros((5,len_slize)) 
    water    =  np.zeros((5,len_slize)) 
    inbone   =  np.zeros((5,len_slize)) 
    poly     =  np.zeros((5,len_slize)) 
    cont_q   =  np.zeros((5,len_slize)) 
 
    # Only want to use 5 slizes around z = 105 or z = 99 if we are analysing  
    # the SECT images. If CT == 2 we have a DECT image, and we will set z = 106,  
    # but if not we have a SECT image and we set z = 98 
    for i in range(-2, 2+1): 
        if CT == 2:  
            z = 105 + i 
        else:  
            z = 98 + i 
        image_slize = patient_pixel[:,:,z] 
 
        # Store all the values in an 2d array, find the SD of the whole array 
        lung[i   + 2, :] =  image_slize[ind_lung] 
        dbone[i  + 2, :] =  image_slize[ind_dbone] 
        water[i  + 2, :] =  image_slize[ind_w] 
        inbone[i + 2, :] =  image_slize[ind_inbone] 
        poly[i   + 2, :] =  image_slize[ind_poly] 
        cont_q[i + 2, :] =  image_slize[ind_cont_q] 
 
    # Calculate the mean HU for different material 
    mean_lung   = np.mean(lung) 
    mean_dbone  = np.mean(dbone) 
    mean_water  = np.mean(water) 
    mean_inbone = np.mean(inbone) 
    mean_poly   = np.mean(poly) 
    mean_cont_q = np.mean(cont_q) 
 
    # Caclculate the standard daviation for the different material  
    sd_lung   = np.std(lung, ddof=1) 
    sd_dbone  = np.std(dbone, ddof=1) 
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    sd_water  = np.std(water, ddof=1) 
    sd_inbone = np.std(inbone, ddof=1) 
    sd_poly   = np.std(poly, ddof=1) 
    sd_cont_q = np.std(cont_q, ddof=1) 
 
    return mean_lung, mean_dbone, mean_water, mean_inbone, mean_poly,\ 
     sd_lung, sd_dbone, sd_water, sd_inbone, sd_poly, mean_cont_q, sd_cont_q 
 
###########################################################################
##### 
#####            Get the mean HU and SD for the Gammex phantom             ##### 
###########################################################################
##### 
 
name_G = ['Blood70', 'Blood40', 'Brain', 'Water', 'Blood', 'Adipose', 'Air'] 
name_Q = ['Inf. Lung', 'Dense bone', 'Water eq.', 'Inner bone', 'Polyethylene'] 
 
# DECT images reconstructed with backprojection  
# Set to 'True' if you want to collect the information about the CT images  
#reconstructed with backprojection for the Gammex phantom 
DECT_images_G = False 
if DECT_images_G:  
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000C8BE 40keV Gammex//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000ADE7 50 keV Gammex//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000971B 60 keV Gammex//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00001DF5 Gammex C4 serienr 6//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00007896 80 keV Gammex//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000116F 90 keV Gammex//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00001BF3 100 keV Gammex//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00009BA3 110 keV Gammex//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000217F 120 keV Gammex//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000F5A2 130 keV Gammex//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000317B 140 keV Gammex//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
            path_8, path_9, path_10, path_11] 
 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
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    store_values = [[],[]] 
    tesg =np.zeros((11, 7)) 
    contrast_g = [[],[]] 
 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = Gammex_DECT_HU_SD(path) 
        store_values[0].append(sd_and_HU[0:7]) 
        store_values[1].append(sd_and_HU[7:14]) 
 
        contrast_g[0].append(sd_and_HU[14]) 
        contrast_g[1].append(sd_and_HU[15]) 
 
 
    # Set the name at a given position      
    spreadsheet['A1'] = ('Gammex, DECT, Backprojection') 
    spreadsheet['A2'] = ('Mean HU') 
    spreadsheet.append(name_G) 
    j = 0 
    # append the data calculated into the ecxel sheet 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    spreadsheet['A16'] = ('Standard daviation') 
    spreadsheet.append(name_G) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
 
 
    # Set to 'True' if you want to print the HU for the DECT of the Gammex 
    # phantom. If not, keep 'False'  
    print_HU = False 
    if print_HU: 
        print('The mean HU for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT of the Gammex 
    # phantom. If not, keep 'False'  
    print_sd = False 
    if print_sd:  
        print('The std for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[1]) 
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    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_g[0]) 
        print('The STD') 
        print(contrast_g[1]) 
 
 
# DECT images reconstructed with iterative method 
# Set to 'True' if you want to collect the information about the CT images  
#reconstructed with iterative method for the Gammex phantom 
DECT_images_AV_G = False 
if DECT_images_AV_G:  
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000537 40 keV AV50 Gammex//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000B825 50 keV AV50 Gammex//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000098E1 60 keV AV50 Gammex//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000850F 70 keV AV50 Gammex//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000EA20 80 keV AV50 Gammex//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000095F4 90 keV AV50 Gammex//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00002D91 100 keV AV50 Gammex//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00001FCA 110 keV AV50 Gammex//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000024A5 120 keV AV50 Gammex//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00004869 130 keV AV50 Gammex//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00005E50 140 keV AV50 Gammex//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
    path_8, path_9, path_10, path_11] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
    contrast_g = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = Gammex_DECT_HU_SD(path) 
        store_values[0].append(sd_and_HU[0:7]) 
        store_values[1].append(sd_and_HU[7:14]) 
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        contrast_g[0].append(sd_and_HU[14]) 
        contrast_g[1].append(sd_and_HU[15]) 
 
    tesg =np.zeros((11, 7)) 
 
    spreadsheet['A30'] = ('Gammex, DECT, Iterative reconstruction') 
    spreadsheet['A31'] = ('Mean HU') 
    spreadsheet.append(name_G) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A45'] = ('Standard daviation') 
    spreadsheet.append(name_G) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Set to 'True' if you want to print the HU for the DECT with iterative \ 
    #reconstruction 
    # of the Gammex phantom. If not, keep 'False'  
    print_HU = False 
    if print_HU: 
        print('The mean HU for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT with iterative  
    # reconstruction of the Gammex phantom. If not, keep 'False 
    print_sd = False 
    if print_sd:  
        print('The std for blood70, blood40, brain, water, blood, adipose and air') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_g[0]) 
        print('The STD') 
        print(contrast_g[1]) 
 
###########################################################################
##### 
#####            Get the mean HU and SD for the Quasar phantom             ##### 
###########################################################################
##### 
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# DECT images reconstructed with backprojections 
# Set to 'True' if you want to collect the information about the CT images  
# reconstructed with backprojection for the Quasar phantom 
QUASAR_DECT_IM = False 
if QUASAR_DECT_IM: 
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000DA64 40 keV Quasar//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000E2E 50keV Quasar//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000050D 60 keV Quasar//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00009AE1 70 keV Quasar//" 
    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000025D7 80 keV Quasar//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000B368 90 keV Quasar//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00002A4A 100 keV Quasar//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000E963 110 keV Quasar//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000CE3F 120keV Quasar//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00005843 130 keV Quasar//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000D02A 140 keV Quasar//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
    path_8, path_9, path_10, path_11] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
    contrast_q   = [[],[]]  
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = QUASAR_DECT_HU_SD(path, 2) 
        store_values[0].append(sd_and_HU[0:5]) 
        store_values[1].append(sd_and_HU[5:10]) 
 
        contrast_q[0].append(sd_and_HU[10]) 
        contrast_q[1].append(sd_and_HU[11]) 
 
    tesg =np.zeros((11, 5)) 
 
    spreadsheet['A59'] = ('Quasar, DECT, Backprojection') 
    spreadsheet['A60'] = ('Mean HU') 
    spreadsheet.append(name_Q) 
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    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A74'] = ('Standard daviation') 
    spreadsheet.append(name_Q) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Set to 'True' if you want to print the mean HU for the DECT of the Quasar 
    # phantom. If not, keep 'False'  
    print_HU = False 
    if print_HU: 
        print('The mean HU for inflated lung, dense bone, water , inner bone, \ 
            and polyethylene') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT of the Quasar 
    # phantom. If not, keep 'False'  
    print_sd = False 
    if print_sd:  
        print('The std for lung, dense bone, water, inner bone, and \ 
            polyethylene') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_q[0]) 
        print('The STD') 
        print(contrast_q[1]) 
 
# DECT images reconstructed with iterative method 
# Set to 'True' if you want to collect the information about the CT images  
# reconstructed with iterative method for the Quasar phantom 
QUASAR_DECT_IM_AV = False 
if QUASAR_DECT_IM_AV: 
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000158B 40 keV AV50 Quasar//" 
    path_2 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//000045BF 50 keV AV50 Quasar//" 
    path_3 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000012BB 60 keV AV50 Quasar//" 
    path_4 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000AD20 70 keV AV50 Quasar//" 
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    path_5 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00007C7C 80 keVAV50 Quasar//" 
    path_6 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000991D 90 keV AV50 Quasar//" 
    path_7 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000D16 100 keV AV50 Quasar//" 
    path_8 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//000012B1 110 keV AV50 Quasar//" 
    path_9 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00009128 120keV AV50 Quasar//" 
    path_10 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00007803 130 keV AV50 Quasar//" 
    path_11 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000B800 140 keV AV50 Quasar//" 
    paths = [path_1, path_2, path_3, path_4, path_5, path_6, path_7, \ 
    path_8, path_9, path_10, path_11] 
 
 
    # First list is the mean HU and the second in the standard daviation  
    # for all the energies (40 keV - 140 keV) 
    store_values = [[],[]] 
    contrast_q   = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = QUASAR_DECT_HU_SD(path, 2) 
        store_values[0].append(sd_and_HU[0:5]) 
        store_values[1].append(sd_and_HU[5:10]) 
 
        contrast_q[0].append(sd_and_HU[10]) 
        contrast_q[1].append(sd_and_HU[11]) 
 
    tesg =np.zeros((11, 5)) 
 
    spreadsheet['A90'] = ('Quasar, DECT, Iterative reconstruction') 
    spreadsheet['A91'] = ('Mean HU') 
    spreadsheet.append(name_Q) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A105'] = ('Standard daviation') 
    spreadsheet.append(name_Q) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
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    # Set to 'True' if you want to print the mean HU for the DECT with iterative  
    # reconstruction of the Quasar phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The mean HU for inflated lung, dense bone, water , inner bone, \ 
            and polyethylene') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the std for the DECT with iterative  
    # reconstruction of the Quasar phantom. If not, keep 'False' 
    print_sd = False 
    if print_sd:  
        print('The std for lung, dense bone, water, inner bone, and \ 
            polyethylene') 
        print(store_values[1]) 
 
    print_cont = False 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_q[0]) 
        print('The STD') 
        print(contrast_q[1]) 
 
###########################################################################
##### 
#####            Get the mean HU and SD for the SECT images                ##### 
###########################################################################
##### 
 
# SECT images reconstructed with both methods 
# Set to 'True' if you want to collect the information about the CT images  
# for the Gammex phantom 
SECT_IMAGE_GAMMEX = False 
if SECT_IMAGE_GAMMEX: 
    # Backprojection 
    path_1 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000C99D Gammex single energi 120kV//" 
    # Iterative method 
    path_2 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//00000A7D Gammex single energi 120 kV AV50//" 
 
    paths = [path_1, path_2] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for both reconstruction algorithms with SECT 120 kV 
    store_values = [[],[]] 
    contrast_g   = [[],[]] 
 
    # Run through the different paths, and store the data 
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    for path in paths: 
        sd_and_HU = Gammex_DECT_HU_SD(path) 
        store_values[0].append(sd_and_HU[0:7]) 
        store_values[1].append(sd_and_HU[7:14]) 
 
        contrast_g[0].append(sd_and_HU[14]) 
        contrast_g[1].append(sd_and_HU[15]) 
 
    tesg =np.zeros((2, 7)) 
 
    spreadsheet['A119'] = ('Gammex, SECT, first backprojection then iterative') 
    spreadsheet['A120'] = ('Mean HU') 
    spreadsheet.append(name_G) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A125'] = ('Standard daviation') 
    spreadsheet.append(name_G) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Set to 'True' if you want to print the mean HU for the SECT   
    # of the Gammex phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The mean HU for blood70, blood40, brain, water, blood, \ 
            adipose and air') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the standard daviation for the SECT   
    # of the Gammex phantom. If not, keep 'False' 
    print_STD = False 
    if print_STD: 
        print('The std for blood70, blood40, brain, water, blood, adipose and air') 
        print(store_values[1]) 
 
    print_cont = True 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_g[0]) 
        print('The STD') 
        print(contrast_g[1]) 
 
# SECT images reconstructed with both methods 
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# Set to 'True' if you want to collect the information about the CT images  
# for the Quasar phantom 
SECT_IMAGE_QUASAR = False 
if SECT_IMAGE_QUASAR: 
    # bacprojection 
    path_1 = "//Users//Sandra//Documents//UIO/Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000C5F3 Quasar single energi 120kV C10//" 
    # iterative method 
    path_2 = "//Users//Sandra//Documents//UIO//Master//Masteroppgave//Method//CT-
GE//PixPadZero//0000ECE8 Quasar single energi 120 kV AV50//" 
 
    paths = [path_1, path_2] 
 
    # First list is the mean HU and the second in the standard daviation  
    # for both reconstruction algorithms with SECT 120 kV 
    store_values = [[],[]] 
    contrast_q   = [[],[]] 
 
    # Run through the different paths, and store the data 
    for path in paths: 
        sd_and_HU = QUASAR_DECT_HU_SD(path, 0) 
        store_values[0].append(sd_and_HU[0:5]) 
        store_values[1].append(sd_and_HU[5:10]) 
 
        contrast_q[0].append(sd_and_HU[10]) 
        contrast_q[1].append(sd_and_HU[11]) 
 
    tesg =np.zeros((2, 5)) 
 
    spreadsheet['A130'] = ('Quasar, SECT, First bacprojection then iterative.') 
    spreadsheet['A131'] = ('Mean HU') 
    spreadsheet.append(name_Q) 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[0][j] ) 
        j += 1 
 
    #spreadsheet.insert_rows(idx=14, amount=1) 
    spreadsheet['A136'] = ('Standard daviation') 
    spreadsheet.append(name_Q) 
 
    j = 0 
    for row in tesg: 
        spreadsheet.append( store_values[1][j] ) 
        j += 1 
 
    # Save the data in a file in the same folder as the program is located  
    book.save('data_from_DICOM.xlsx') 
 
    # Set to 'True' if you want to print the mean HU for the SECT   
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    # of the Quasar phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The mean HU for inflated lung, dense bone, water , inner bone,\ 
         and polyethylene') 
        print(store_values[0]) 
 
    # Set to 'True' if you want to print the standard daviation for the SECT   
    # of the Quasar phantom. If not, keep 'False' 
    print_HU = False 
    if print_HU: 
        print('The std for inflated lung, dense bone, water , inner bone, \ 
            and polyethylene') 
        print(store_values[1]) 
 
    print_cont = True 
    if print_cont: 
        print('The mean HU of contrast') 
        print(contrast_q[0]) 
        print('The STD') 
        print(contrast_q[1]) 
 
 
 


