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Abstract

In this project, we study the computationally challenging task of estimating the Kullback-
Leibler divergence for high-dimensional probability distributions from particle physics.
Our approach is based on using a trained classifier (a boosted decision tree) as a tool
for dimensional reduction. As an interesting and challenging test case, we study simu-
lated kinematic distributions for the production of supersymmetric particles at the Large
Hadron Collider. We estimate the Kullback-Leibler divergence between kinematic distri-
butions simulated at leading order and at next-to-leading order in perturbation theory,
and find divergences of the order 10−2 bits for the studied examples.
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Introduction

Given two probability density functions (pdfs) defined on the same space, how different
are they from one another? A common way to quantify the difference between two pdfs
q(x) and p(x) is the Kullback-Leibler divergence (KL divergence),

DKL(p || q) =
∫

p(x) log

[
p(x)

q(x)

]
,

from information theory. The KL divergence is a functional that takes two pdfs as input
and essentially computes the integral over the ratio between p and q weighted with the
p-distribution. However, in physics we often do not know the complete, analytical pdfs for
the problem we are studying. If we can numerically generate samples from the pdfs, we can
create histograms to use as an approximation for the pdfs. The question of how different
the two pdfs are then becomes a question of the difference between two histograms.

Unfortunately, a problem arises when the pdfs are multi-dimensional – that is, when each
sample is described by multiple variables. Populating multi-dimensional histograms is a
computationally expensive task, and practically speaking not suitable for approximating
pdfs in three dimensions or more. Therefore this naive approach is also not suitable
for numerical evaluation of the pdf ratio p(x)/q(x) that appears in the KL divergence.
However, as shown in [1, sec. 2], it is possible to approximate a pdf ratio directly by using
a classifier trained to differentiate samples from the two pdfs. This circumvents the need
to populate two multi-dimensional histograms. With such a classifier at hand, we can
compute the KL-divergence simply through Monte-Carlo integration using the p-samples.

As an interesting physics application, we will consider kinematic distributions for collision
events at the Large Hadron Collider (LHC), when these distributions are simulated at
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leading order (LO) and next-to-leading order (LO+NLO) in perturbation theory. We
will focus on the difference in the shapes of the LO and LO+NLO distributions across
the kinematic space, and how these differences can be captured and mapped into a single
number for information loss, namely the KL-divergence. Being able to accurately quantify
the loss of information due to approximations is useful for LHC physics, in particular for
theory studies, where simulations based on LO kinematics are often used due to the
computational expense of NLO simulations. As a test case we will study a particular
process from the Minimal Supersymmetric Standard Model (MSSM), which has long been
a popular candidate theory for physics beyond the Standard Model of particle physics.

In the remainder of this thesis, we will in chapter 1 present how quantum field theory is
used to analyze scattering experiments, and briefly introduce the Standard Model along
with the MSSM. In chapter 2 we will discuss how to use information theory and statistical
classifiers to quantify the overall difference of two unknown probability densities. As an
application, we will consider the kinematic distributions at LO and at LO+NLO of an
electroweak dislepton production process from the MSSM. We dedicate chapters 3 and 4
to explain the implementation of a boosted decision tree and the use of an event generator
to construct appropriate kinematic datasets at LO and LO+NLO. The final results will
be presented and discussed in chapter 5, and we end with a brief summary and outlook
in chapter 6.
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Chapter 1

Physics Background

Quantum field theory (QFT) is the framework in which modern theories of particle physics
are formulated. It is constructed by combining the special theory of relativity with quan-
tum mechanics, allowing us to describe fundamental physics through interactions between
fields. These fields are known as quantum fields – operator-valued fields on spacetime. In
the perturbative approach to QFT, computing interaction rates in a given theory are in
principle done using perturbation theory on the free field solutions by adding an infinite
number of diminishing correction terms – expanded in a power series of the physical cou-
pling constants. However, the series must be truncated after a couple of terms due to the
increasing computational complexity, resulting in approximated solutions.

In this chapter we will summarize how we understand particle scattering in QFT. Further,
we will introduce the Standard Model of particle physics and discuss supersymmetry as
a possible framework for physics beyond the Standard Model. This chapter, including
conventions and notation for QFT, is based on [2, ch. 4] and [3, ch. 3].

1.1 Physics of Scattering Experiments

Scattering experiments have been key in the development of modern physics. From the
1911 discovery of the atomic nuclei by scattering alpha particles off a thin sheet of gold,
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to the 2012 discovery of the Higgs boson by proton-proton scattering in the LHC [4,
5], scattering experiments have been of key importance in our quest to understand the
constituent parts of matter and the fundamental interactions.

The central quantity of interest in any scattering experiment is usually the cross section
σ, which in a sense measures the effective size of scattering targets.

1.1.1 The Cross Section

Figure 1.1: A cartoon to depict a bunch of particles of type A (red) with particle density
ρA, and a bunch of particles of type B (blue) with particle density ρB. They are passing
each other inside an interaction volume V , where we have picked a frame of reference
where B is stationary and particles A are inbound with speed v.

In fig. 1.1 we can see a bunch of particles of type A with particle density ρA (number of
particles per unit volume), and a bunch of particles of type B with particle density ρB.
The two bunches will interact inside a volume V , referred to as an interaction volume. For
convenience, we have picked a frame of reference where the particles of type A are moving
with a speed v toward stationary particles of type B. Of course, any frame of reference
can be picked where the particles will interact and collide at a speed v = |vA − vB|.

It is reasonable to expect that the number of scattering events per unit time (any type
of event) is proportional to the rate of particles passing per unit area (incident flux)
computed as φA = ρAv, and proportional to the number of particles of type B within
the overlapping area (red area in fig. 1.1), computed as ρBV . The number of scattering
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events per unit time is therefore

Ṅ = σφAρBV = vρAρBσV, (1.1)

where the proportionality constant σ is what we call the cross section for this scattering
experiment. Note that this definition is symmetric in A and B, so σ would not change by
putting A at rest and let B move inbound with speed v. The cross section σ has units of
area, and classically it can be interpreted as an effective size of targets.

In reality, the number density in a beam of particles is typically not constant, where
particles are mostly concentrated near the center. To get the count rate of scattering
events in a real accelerator, simply integrate over the interaction volume V as

Ṅ = σ

∫
V

d3xφA(x)ρB(x) = σv

∫
V

d3x ρA(x)ρB(x). (1.2)

Moreover, detectors have deficiencies and a finite resolution which reduces the count rate
by a factor ε < 1 known as the detector efficiency. This is a highly important part of
collider physics and deserves its own discussion, but that is beyond the scope of this thesis.

More importantly, we will see how we can use QFT to obtain a kinematic distribution of
scattering events, which will be studied in more detail in what follows.

1.1.2 The Differential Cross Section and Kinematic Distribu-

tions

The count rate Ṅ from the previous section eq. (1.1) depends on the constant of propor-
tionality σ defined as the cross section for that experiment. While all the other parts of
eq. (1.1) describe the kinematic setup, σ is the quantity that captures the microscopic
physics which is to say the interactions between the particles. We know from quantum
mechanics that the microscopic physics in interactions are described as a superposition
of specific processes that yield the same scattering outcome, with some processes being
more likely than other. Thus, some scattering events will happen more often than other
giving a non-trivial distribution of scattering events.
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To formulate this properly, we can consider the cross section associated with a partic-
ular set of final state momenta, which will of course be infinitesimal. We write this as
d3Nσ/(d3p1 · · · d3pN), and it is simply the quantity that, when integrated over the small
volume d3p1 · · · d3pN , gives the cross section for scattering into that part of the momentum
space. Do note however that four of the final state momenta will be set by 4-momentum
conservation.

We now focus on a 2 → N process which is typical for collider physics. In this case, all
information about directional preference is captured in the differential cross section

d3Nσ =
1

2EA2EB|vA − vB|

(
N∏
i=1

d3pi
(2π)32Ei

)
× |M(pA, pB → {pf})|2(2π)4δ4(pA + pB −

∑
pf ). (1.3)

Here, pA, pB, EA and EB are the momenta and energies of the initial particle states moving
with relative speed |vA − vB|, and {pf} is the set of final state particle momenta with
energies Ef . The object in eq. (1.3) that captures the details of the particle interactions
in the scattering is M, known as the invariant matrix element. The delta function at the
end enforces 4-momentum conservation. This can be related to a particular set of global
symmetries, as will be discussed in section 1.1.4.

Considering the transformation properties of eq. (1.3), the only object that transforms
non-trivially under a Lorentz transformation is the prefactor

1

EAEB|vA − vB|
=

1

|EBpA − EApB|
=

1

|εµνxypµApνB|
,

which transforms exactly like a cross sectional surface area in the xy-plane being invariant
under boosts along the conventionally chosen collision axis: the z-axis. Everything else is
manifestly Lorentz invariant.

Phase Space of Final State Particles

To begin unraveling the rather intimidating eq. (1.3), we have to first understand its overall
structure. Notice that the only part that depends on the physics of the interactions is
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contained solely within the invariant matrix element M, while the other parts reflect
universal physical constraints. This is an interesting point by itself which deserves a bit
of attention – the distinction between kinematics and dynamics.

When a classical particle moves along some path xµ(τ) through spacetime, we want a full
description of the motion along the path, i.e., how the temporal x0 and spatial coordinates
xi (i=1, 2, 3) change. This is known as kinematics. For convenience, we typically param-
eterize the path using the particle’s proper time τ as the parameter since it is a Lorentz
scalar1. The important point here is that this description is universal and independent of
whatever caused the motion.

On the other hand, in physics we also attempt to understand and describe the causes
of motion, that is, the fundamental interactions that influence a physical system. We
refer to this as dynamics. This is where we attempt to quantify and understand the
fundamental interactions that are present, giving a certain effect on a physical system.
For a classical particle moving through spacetime, dynamics is concerned with how the
conjugate coordinates of xµ are affected by forces – that is, how the particle’s 4-momentum
pµ is affected by external forces.

However, particles in QFT are not classical particles. i.e., their state is not represented
as their spacetime position xµ and momentum pµ. Rather, free particles are represented
using quantum states. Their general state |φ〉 as a wavepacket can be written as a super
position of plane waves (momentum eigenstates) as

|φ〉 =
∫

d3k

(2π)3
1√
2Ek

φ(k) |k〉 , (1.4)

where φ(k) is the Fourier transform of the spatial wave function φ(x), and |k〉 =
√
2Ek |0〉

is the associated momentum state with a proper relativistic normalization. The normal-
ization 1/

√
2Ek ensures that 〈φ|φ〉 = 1 which is to say that all probabilities add up to

1.

Imagine now you have a 2 → N process with N final state particles. How many momen-
tum states are available in the range [pf ,pf + dpf ]? By introducing a fictive box with

1That is, τ is invariant under Lorentz transformations since it can be written as an integral of a
4-vector contraction. Note that τ can only be used for massive particles.
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side lengths a giving a volume V = a3, we can expand the wave packets from eq. (1.4) as
plane waves with their momenta being multiples of 2π/a. Thus, each accessible state in
momentum space occupies a tiny cube of size

d3p = dpxdpydpz =

(
2π

a

)3

=
(2π)3

V
. (1.5)

Keep in mind that the volume V will not show up in any physical calculations since it
is only used to parameterize the available states. In a physical calculation, the volume
dependence on the phase space element will cancel with the normalization of the wave
function within the box of volume V . Since it will not show up in the final answer, we
can simply put V = 1 to get rid off it. This will normalize the phase space volume to
have 1 particle state per unit volume resulting in

dΠ =
d3p

(2π)32E
(1.6)

number of available states within the infinitesimal volume d3pi. As explained in eq. (1.4),
the wave function comes with a conventional factor

√
2E which is compensated here by

dividing by 2E in the phase space element (intuitively, this compensates for the Lorentz
contraction 1/γ ∼ 1/E of the volume V after a boost). With N final state particles, the
number of states becomes

N∏
i=1

d3pi
(2π)32Ei

. (1.7)

However, how many degrees of freedom (dof) are there with N final state particles? With-
out any constraints, each particle represents 3 dof, which gives 3N dof overall. But con-
servation of 4-momentum introduces four constraints, leaving a total of 3N − 4 degrees
of freedom. By using a four-dimensional delta-function to account for the 4-momentum
conservation, the final Lorentz invariant phase space (LIPS) element for a 2 → N process
becomes

dΠN =

[
N∏
i=1

d3pi
(2π)32Ei

]
δ4

(
pA + pB −

N∑
i=1

pi

)
(2π)4. (1.8)

One nice feature of eq. (1.8) is that it is manifestly Lorentz invariant by construction,
allowing us to compute the LIPS in any frame we like which is very convenient for practical
reasons.
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Combining eq. (1.8) and eq. (1.3) allows us to rewrite the differential cross section as

d3Nσ =
1

2EA2EB|vA − vB|
dΠN |M(pA, pB → p1, . . . , pN)|2. (1.9)

Writing it this way illuminates its structure more clearly: the differental cross section for
scattering to final states with momenta in the range [pf ,pf + dpf ] is proportional to the
number of available such states and the square of the amplitude for transition to these
states. As always in quantum mechanics, the probability to start in an initial state |i〉 and
end up in a final state |f〉 is simply given by the square of their “overlap”, i.e., their inner
product squared | 〈f |i〉 |2. Applying this to the two multi-particle states where |φA, φB〉 is
the initial state and |φ1, . . . , φN〉 is the final state, the transition probability is computed
as

P (pA,pB → p1, . . . ,pN) = | 〈φ1, . . . , φN |φA, φB〉 |2 ∝ | 〈p1, . . . ,pN |pA,pB〉 |2, (1.10)

which is the starting point to compute the invariant matrix element M(pA, pB → {pf})
and the full 2 → N differential cross section starting from eq. (1.1). The arguments up
until now are a big part of deriving eq. (1.3), but we will not complete the full derivation
here since it is a standard derivation found in many text books on QFT or particle physics.
For the full derivation, see for instance [2, sec. 4.5] or [3, sec. 3.4].

Example: General Two-Body Process

As an example on how to apply eq. (1.3), let us consider a special case where there are two
final state particles (2 → 2) and evaluate the differential cross section in the center-of-mass
(CM) frame, i.e., the frame where the total initial 3-momentum is pA + pB = 0.

Computing the differential cross section in eq. (1.3) involves computing the invariant
matrix element M which can be a complicated function of the final state momenta.
However, due to momentum conservation from all the delta functions, there are a couple
of simplification we can do by partially evaluating the integrals of the phase space element
from eq. (1.8). Labeling the final momenta as p1 and p2, we can immediately do the
integration over the three components of p2 using the three delta functions forcing p2 =

−p1, expected from 3-momentum conservation. The integral over the three remaining
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momentum coordinates d3p1 = d|p1| |p1|2dΩ of the phase space element dΠ2 reduces to∫
dΠ2 =

∫
d|p1| |p1|2dΩ
(2π)32E12E2

2πδ(ECM − E1 − E2), (1.11)

where E1 =
√

m2
1 + |p1|2, E2 =

√
m2

2 + |p1|2 and ECM = EA + EB is the total initial
energy. To compute the last integral over the final delta function where the argument is
a function of |p1|, we can use the identity

δ(g(x)) =
∑
i

1

|g′(xi)|
δ(x− xi) (1.12)

where the sum is over all the zeros xi of a differentiable function g, assuming g(xi) 6= 0

for all the zeros. Applying this identity to the delta function in eq. (1.11) with g(p) =

Ecom −
√
m2

1 + p2 −
√
m2

2 + p2, we see that the only zero is at p = |p1| with a derivative

dg

d|p1|

∣∣∣∣
p=|p1|

= −
(
|p1|
E1

+
|p1|
E2

)
(1.13)

which immediately simplifies the phase space integral to∫
dΠ2 =

∫
dΩ

|p1|2

16π2E1E2

(
|p1|
E1

+
|p1|
E2

)−1

=

∫
dΩ

1

16π2

|p1|
ECM

. (1.14)

If the reaction is symmetric about the collision axis (azimuthal symmetry), the integral
over φ is trivial giving an extra factor 2π, i.e.,∫

dΠ2 =

∫
d(cos θ)

1

8π

|p1|
ECM

. (1.15)

Having the two-body phase space at hand, the differential cross section eq. (1.3) simplifies
to (

dσ

dΩ

)
CM

=
1

EAEB|vA − vB|
|p1|

64π2ECM
|M(pA, pB → p1, p2)|2. (1.16)

In the case we can neglect the masses of the initial and final state particles, making
EA = EB = |p1| = ECM/2, the differential cross section simplifies even further to(

dσ

dΩ

)
CM

=
|M|2

64π2E2
CM

. (1.17)

This is quite a simplification starting from eq. (1.3), and a practical result used in many
situations.
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The total cross section σ is obtained by simply integrating over the remaining phase space
variables (like Ω), keeping in mind that if there are n identical particles in the final state, σ
has to be divided by n!. This is because identical quantum particles are indistinguishable
making eq. (1.3) overcount by a factor n! because there will be n! identical final states.

Kinematic Distributions

At last, we will introduce the kinematic distribution for a 2 → N process. This is defined
as the normalized differential cross section from eq. (1.9)

f(X) =
1

σ

d3Nσ

d3NX
, (1.18)

where X is a tuple of 3N kinematic variables, where we keep in mind that four of these
will be fully determined by 4-momentum conservation. Notice that this object integrates
to 1 by construction. It can be interpreted as the conditional probability distribution for
the N particles to scatter into the specific kinematic configuration X, given that a 2 → N

process is taking place. The kinematic distribution will be the main object of interest in
our study.

1.1.3 Perturbative Computation of Cross Sections

The perturbative approach to QFT gives us an elegant and systematic way to compute
the invariant matrix element M({pi} → {pf}) for particle processes. As demonstrated by
Feynman, the perturbative contributions to M can be represented as graphs (now known
as Feynman diagrams) consisting of simple edges connected by vertices. For every vertex
and edge, there is a rule (now known as Feynman rules) that tells us how to translate
that part of the diagram into a mathematical expression. See [2, sec. 4.4] for more details
and the motivation behind Feynman diagrams.

To give an illustrative example, let us consider a classic process from the QFT of interac-
tions between fermions and the electromagnetic field, known as quantum electrodynamics
(QED).
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Pair annihilation of two electrons

e+e− → µ+µ− (1.19)

to lowest order in perturbation theory is given by the diagram below. This process
produces two final state particles, so there are 3 × 2 − 4 = 2 dof. To keep the focus on

p′

p

γ

k′

k

e+

e−

µ+

µ−

the kinematic distribution of this process we will not compute the diagram in detail like
it is done in [2, p. 131-136]. The square of the invariant matrix element M averaged over
the four possible initial state spin configurations is

1

4

∑
spins

|M|2 = 8e4

(p+ p′)4
[
(p · k)(p′ · k′ + (p · k′)(p′ · k) +m2

µ(p · p′))
]
, (1.20)

with mµ being the mass of the muon (electron masses are neglected) and e is the elemen-
tary charge unit. With the amplitude squared given, it is easy to evaluate the differential
cross section in the center of mass frame using eq. (1.16),

dσ

dΩ
=

d2σ

dφ d(cos θ)
=

α2

4s

√
1−

m2
µ

E2

[(
1 +

m2
µ

E2

)
+

(
1−

m2
µ

E2

)
cos2 θ

]
, (1.21)

where s = E2
CM = 4E2 with E being the energy of the initial electron e− (or e+) and

α = e2/4π is the QED coupling constant. Equation (1.21) does not depend on the
azimuthal angle φ, allowing us to immediately write down

dσ

d(cos θ)
= 2π

dσ

dΩ
. (1.22)

To end up with a kinematic distribution, we can simplify the analysis by considering the
cross section in the high energy limit E � mµ, i.e., ,

dσ

dΩ
=

α2

4s
(1 + cos2 θ). (1.23)
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It is now simple to compute the total cross section σ by integrating eq. (1.22) over cos θ

from −1 to 1, i.e., θ from 0 to π giving

σ =
4πα2

3s
. (1.24)

At last, combining the last two equations gives us the full two-dimensional kinematic
probability distribution of final state particles in the high energy limit as

f(φ, θ) =
1

σ

d2σ

dφ d(cos θ)
=

3

16π
(1 + cos2 θ), (1.25)

by using eq. (1.18) directly. For completeness, we can integrate out the trivial azimuthal
angle φ to give an extra factor 2π, resulting in the one-dimensional distribution

f(θ) =
1

σ

dσ

d(cos θ)
=

3

8
(1 + cos2 θ). (1.26)

This is our first result of a kinematic distribution – a perfectly valid probability distribu-
tion which will be an object of high interest in this project.

We have just seen what is known as a leading order (LO) computation of the cross section
of the QED process above. Keep in mind that, due to the perturbative approach to
compute the matrix element M, this is just an approximation of the “real” cross section.
In general, the matrix element M has an infinite number of correction terms, and it is
expanded as a power series in the coupling constant α as

M = MLO +MNLO +MNNLO + . . . , (1.27)

where MLO ∼ α, MNLO ∼ α2 called next-to-leading order, MNNLO ∼ α3 called next-to-
next-to-leading order and so forth. These higher orders are represented as more compli-
cated Feynman diagrams involving more particles. For instance, the diagram below is a
NLO correction proportional to α2 to the process above. This is known as a one-loop di-
agram where there is a quantum correction to the exchange photon from an intermediate
fermion/anti-fermion loop.

Since the coupling constant α is small for this process, the LO approximation of the cross
section in eq. (1.21) from a single diagram is a good approximation. Diagrams without
loops are often called tree-level diagrams.
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γ γ

e−

e+ µ+

µ−

In section 1.3.2, we will see the LO and NLO diagrams for the process we are studying in
this project, and also address some complications that always show up with higher order
corrections.

1.1.4 Symmetries and Conservation Laws

Many properties of physics and fundamental particles can be understood from certain
symmetries that are present in the universe. A symmetry operation on an object, broadly
speaking, is any type of transformation that leaves that object unchanged. In classical field
theory, we are interested in symmetries that leave either the Lagrangian or the associated
equations of motion unchanged.

As an example, consider the massless free scalar field Lagrangian

L =
1

2
∂µφ(x)∂

µφ(x) =
1

2
(∂µφ(x))

2 (1.28)

of a single kinetic term in φ. If we shift the spacetime position xµ by a small amount aµ,
that is to say we transform

xµ → xµ + aµ,

which induces a change in φ by an amount

∆φ(x) = φ(x+ a)− φ(x) = aµ∂µφ(x) +O
(
a2
)
. (1.29)

What is the change in the Lagrangian? In general, from the Taylor expansion of L we
have

L(x+ a) = L(x) + ∆φ
∂L
∂φ

+ (∂µ∆φ)
∂L

∂(∂µφ)
+O

(
∆φ2

)
, (1.30)
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where we can rewrite the third term using the product rule of differentiation

(∂µ∆φ)
∂L

∂(∂µφ)
= ∂µ

(
∆φ

∂L
∂(∂µφ)

)
− ∂µ

∂L
∂(∂µφ)

∆φ.

Inserting this back in to eq. (1.30) and using the Euler-Lagrange equations to cancel the
terms proportional with ∆φ, this allows us to write ∆L as

∆L(x) = L(x+ a)− L(x) = ∂µ

(
∆φ

∂L
∂(∂µφ)

)
+O

(
∆φ2

)
, (1.31)

saying that the change in the Lagrangian due to a small change in the field configuration
φ(x) can in general be written as a total derivative. Thus, the L will always transform as

L → L+ ∂µJ µ (1.32)

for some J µ. In the derivation of the equations of motion (Euler-Lagrange equations)
from varying the action, surface terms do not contribute assuming that the fields vanishes
at infinity. Since total derivatives can be written as surface terms evaluated at infinity
through Gauss’ divergence theorem, the equations of motion due to ∆L are left unchanged.

We can use J µ(x) to define a conserved current jµ(x) such that

∂µj
µ(x) = 0 for jµ(x) =

∂L
∂(∂µφ)

∆φ(x)− J µ(x). (1.33)

The zeroth component j0 is often called a charge density, while the other components
j1, j2 and j3 make up the current flux density. We can define the charge of a conserved
current as

Q(t) =

∫
d3x j0(t,x), (1.34)

and due to eq. (1.33), it follows that

dQ(t)

dt
=

d

dt

∫
d3x j0(t,x)

=

∫
d3x ∂0j

0(t,x)

= −
∫

d3x ∂ij
i(t,x)

= −
∮
∂S(∞)

d2x (n̂ · j(t,x)) (1.35)

where we have applied Gauss’ divergence theorem in the last line. The surface integral on
the last line vanishes since the fields vanishes at infinity. Thus, the charge Q(t) is conserved
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at any time in any enclosed volume in space, which is an example of a conservation law
derived from an associated conserved current jµ(x).

The free-field Lagrangian eq. (1.28) after transforming φ with eq. (1.29) using eq. (1.31)
can be simplified and rewritten into

L(x+ a) = L(x) + ∂µ

(
∆φ

∂L
∂(∂µφ)

)
= L(x) + aµ∂µL(x)

= L(x) + aν∂µ(δ
µ
νL(x)) (1.36)

which is exactly the form of eq. (1.32) with (J µ(x))ν = δµνL(x). This allows us to define
four conserved currents

(jµ)ν ≡ T µ
ν =

∂L
∂(∂µφ)

∂νφ− δµνL (1.37)

where T is an object known as the stress-energy tensor of the field φ. The four associated
conserved charges are

ν = 0 : H =

∫
d3xT 0

0 =

∫
d3x

[
π(t,x)φ̇(t,x)− L(t,x)

]
=

∫
d3xH(t,x)

ν = i : P i =

∫
d3xT 0i =

∫
d3xπ(t,x)∂iφ(t,x), (1.38)

where π(x) ≡ ∂L
/
∂φ̇ is the physical momentum density of the field φ and H is the

physical energy density. Thus, the momentum and energy associated with the field φ is
conserved in time, which establishes the well known conservation law of 4-momentum.

The original result, proved by Emmy Noether in 1915, states that there is a conservation
law associated with every continuous symmetry in the Lagrangian or in the associated
equations of motion. This result is known as Noether’s theorem, and it plays a fundamental
part in the description of fundamental physics through conservation laws.

1.2 The Standard Model

The Standard Model of particle physics (SM) is currently the most complete theory of
the fundamental particles, describing all visible matter. It gives a consistent and accurate
description of three of the four fundamental forces: the electromagnetic, the weak and
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the strong force. Gravity remains unaccounted for, but the predictive power of the SM
remains solid since the effects of gravity are expected to be negligible up to the Planck
scale (1019 GeV). Most recent high energy particle physics experiments have only achieved
energies on the order of 104 GeV.

The main ingredients of the SM as a QFT is the Dirac equation describing the properties
and dynamics of fermions. It also uses the gauge principle as a way to formulate and
understand the interactions, identifying each class of interactions with a local symmetry
of the SM Lagrangian. At last, non-zero particle masses, which would naively spoil
these local gauge symmetries in the theory, are explained via the Higgs mechanism of
spontaneous electroweak symmetry breaking. Here, the necessary mass terms in the
Lagrangian are dynamically generated from an underlying, gauge-invariant Lagrangian.
We discuss these ideas in some more detail below.

1.2.1 Fundamental Forces

The standard model is an example of a gauge theory which means that the Lagrangian is
postulated to respect additional symmetries above the standard Lorentzian symmetries.
These extra symmetries are stronger in the sense that they are defined locally, forcing the
quantum fields to transform in a particular way from point to point on spacetime. To
ensure this is the case, we are forced to introduce additional quantum fields giving rise to
spin-1 particle states, namely the force mediating gauge bosons. These bosons are often
refereed to as “force carriers” which mediate forces between the SM particles.

The gauge symmetry group of the SM is

SU(3)C × SU(2)L × U(1)Y . (1.39)

The subscripts indicate which fields have non-trivial transformations under the different
symmetries: The subscript C in SU(3)C indicates that SU(3)C transformations affect
fields with non-zero color charge; the L in SU(2)L means that these transformations
impact left-chiral fields; and the Y in U(1)Y associate U(1)Y transformations with fields
with non-zero weak hypercharge. The weak hypercharge Y is related to the electric charge
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Q through the third component of the isospin I3 by Y = 2(Q− I3).

While the electromagnetic force and the weak force are considered separately, they were
unified through the work of Salam, Glashow and Weinberg in the 1960s into a more
fundamental force known as the electroweak force. Described by the gauge group SU(2)L×
U(1)Y , this was one of the major steps towards the gauge group of the SM (eq. (1.39)),
predicting the existence of four massless gauge bosons W1, W2, W3 and B. The bosons
had to be exactly massless to respect the gauge symmetry, but experiments suggested
that three of the gauge bosons had to be massive to match the data. This forced the
theorists to introduce the concept of spontaneous symmetry breaking of the electroweak
symmetry (SU(2)L×U(1)Y → U(1)EW ), which allows W1, W2, W3 and B to mix and form
exactly three massive particle states and one massless state. Sure enough, these states are
the observed weak gauge bosons W± and Z, and the observed photon γ. The breaking
of electroweak symmetry was made possible by predicting the existence of a scalar field
with a vacuum state that does not necessarily respect this symmetry, with the effect of
creating massive gauge bosons. This scalar field is known as the Higgs field and gives rise
to a spin-0 boson known as the Higgs boson, which was discovered experimentally by the
ATLAS and CMS experiments at the LHC in 2012. The Higgs boson interacts with all
massive particles in the SM, including itself.

1.2.2 Matter Particles

The SM predicts a number of spin-1/2 particles (fermions) as the fundamental building
blocks of matter, interacting through the forces introduced above. There are two classes
of fermions, namely leptons and quarks. The leptons include the electron e± and its
associated electron neutrino followed by its two “heavier siblings” the muon µ± and the
tau τ± with their associated neutrinos. We refer to their charge as ± to also include
the associated anti-particles. Similarly, the quarks are arranged in three different classes
from lightest to heaviest, and together with the leptons they make up the three different
generations of the SM.

Particles are collected together in vectors under unitary representations of the gauge
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groups. If we consider SU(2)L for a moment, the fundamental representation of that
group is built up of three 2× 2-matrices which acts upon two-component vectors known
as doublets. For instance, the muon µ− and its neutrino νµ form a doublet under SU(2)L

on the form  µL

νµ,L

,

meaning that you can apply any combination of these three 2× 2-matrices on that dou-
blet without changing the SM Lagrangian. Since the representation of SU(2) is unitary,
doublets are simply rotated around inside this three-dimensional space implying that an
inner product of two doublets is left invariant. This also explains why the SM Lagrangian
is invariant because all the doublet terms are purely built up of inner products. The same
can be said about the two other gauge groups under their unitary representations.

1.3 Beyond the Standard Model

While SM has passed numerous experimental tests over several orders of magnitude in
energy, it has shortcomings that leave us with several open questions. Below we will high-
light two such important open questions, before we discuss supersymmetry as a framework
for going beyond the Standard Model, and introduce the specific scattering process we
will study. The theory discussions in this chapter are based on [6].

The Hierarchy Problem

The hierarchy problem stands as one of the most peculiar problems of the SM. Here the
general question is why there seems to be a fine tuning of the model parameters. For
instance, let us consider the physical mass of the Higgs boson. Theoretically, the Higgs
mass is related to its bare mass2 as

m2
H = (m0

H)
2 +∆m2

H , (1.40)
2That is, the mass parameter obtained before renormalizing it to its real physical value.
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where m0
H is the bare mass and ∆mH represents the one-loop corrections (or quantum

corrections) to the mass from all the loop diagrams with massive fermions, bosons and
even itself.

The one-loop correction to m2
H due to a massive fermion f with a momentum cut off at

a scale Λ takes the form
(∆m2

H)f = −|λf |2

8π2
Λ2 + . . . , (1.41)

where λf is the Yukawa coupling of the fermion f with the Higgs. Since this coupling is
proportional to the fermion mass, the largest contribution would be from the top quark,
being the heaviest of all the SM particles.

The one-loop corrections with the same cut off Λ to the squared Higgs mass m2
H from a

scalar particle S takes the form

(∆m2
H)S =

λS

16π2
Λ2 + . . . , (1.42)

where λS is the coupling of the scalar to the Higgs.

The Λ parameter can be interpreted as the scale where new physics will probably be
important, which, if the Standard Model is a complete description of non-gravitational
quantum physics, can be as large as the Planck scale, 1019 GeV. Since the correction to the
Higgs mass squared goes as the square of the momentum scale, it is rather surprising that
the Higgs mass is as low as it is when we expect huge quantum corrections. That is, within
the Standard Model we would theoretically expect the Higgs mass to be comparable with
some very high scale of new physics, but from experiment we know that it is around
125 GeV. From eq. (1.40), the only way this can happen within the Standard Model is
if the bare mass (m0

H)
2 is extremely fine tuned to a particular value, causing a massive

cancellation with the loop corrections ∆m2
H .

Another hierarchy problem in the SM is related to why gravity is so much weaker than
the weak force, differing by 24 orders of magnitude in their respective coupling strength.
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Dark Matter

According to astrophysical observations, there are large amounts of weakly-interacting
matter in the universe known as dark matter. The evidence for dark matter includes
anomalous rotational curves in all galaxies3 and gravitational lensing effects in a seemingly
void of space suggesting a presence of invisible mass. The only possible candidates from
the SM are the neutrinos, and despite being the most abundant class of particles in
our universe, they are too light to fit the observational data. This has led astronomers
and cosmologists to suggest that there might exist particles beyond the SM, often called
non-baryonic matter.

1.3.1 Supersymmetry

In light of the problems above and others, search for physics beyond the SM has been
going on for decades without any luck so far. Nevertheless, numerous theories have
been suggested, and among the most popular ones are theories based on the idea of
supersymmetry (SUSY).

The massive cancellation of the Higgs mass corrections discussed in the hierarchy problem
in eq. (1.40) suggests a more appealing solution – that there is an underlying symmetry
unaccounted for in the SM. Notice the relative minus sign between the scalar one-loop
correction eq. (1.42) compared to the one-loop fermion correction eq. (1.41). Imagine
now for the sake of argument that there is a new symmetry relating bosons and fermions.
If we were to introduce two new scalars for every fermion in the SM, with λS = |λf |2,
notice now how all the loop corrections would perfectly cancel. This cancellation of the
Higgs mass corrections, consistent with the measured value, is one appealing reason to
postulate the existence of this fermion-boson symmetry – known as supersymmetry. This
symmetry transforms bosons into fermions and vice versa, and it is regarded as a non-
trivial extension of the spacetime symmetries. We will briefly discuss this extension below
to give some more insight.

3Large discrepancies with theoretical predictions of the tangential speed of stars in a galaxy as a
function of distance from the center.
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All transformations that leave the spacetime interval (x − y)2 unchanged form a group
known as the Poincaré group. It is the group of all transformations on the form

xµ → Λµ
νx

ν + aµ, (1.43)

where aµ is a constant displacement in spacetime, and Λµ
ν are the components of the

Lorentz transformations. These transformations are known as the spacetime symmetries.
The generators of Lorentz transformations, Mµν , and the generators for translation, P µ,
satisfy the so called Poincaré algebra summarized by

[P µ, P ν ] = 0, (1.44)

[Mµν , P σ] = i(gνσP µ − gµσP ν) (1.45)

[Mµν ,Mρσ] = i(gνρMµσ + gµσM νρ − gνσMµρ − gµρMνσ). (1.46)

If we want to extend the spacetime symmetries in a non-trivial way, i.e., what other
generators can possibly exist that do not trivially commute with Mµν and P µ? It turns
out, due to the work of Coleman and Mandula [7], that the only possibility is to introduce
a pair of anti-commuting operators, Qα and its adjoint Q†

α̇, where α, α̇ = 1, 2 are two
distinct indices. These operators are fermionic by nature (anti-commuting), and they
can be represented as two-component spinors4 acting on Dirac spinors. The fundamental
commutation relations with the spacetime generators above are shown in [6, sec. 3.1].

Nevertheless, the effect of applying Q and Q† to particle states (bosons or fermions) is to
change the spin quantum number by ±1/2 – effectively mapping fermions to bosons and
vice versa. Qualitatively, the action of these SUSY operators can be summarized by

Q |fermion〉 = |boson〉 and Q |boson〉 = |fermion〉 . (1.47)

However, SUSY can not be an exact symmetry of nature, as this would require the new
“superpartner” particles predicted by SUSY to have the same masses as their correspond-
ing SM particles. Clearly we have not observed any such particles, implying that, if they
exist, they must be heavier. However, there are good reasons to expect that they are not
much heavier than their SM partners. The reason is that the heavier the SUSY particles
are, the less successful the cancellations between bosons and fermions in the hierarchy
problem become.

4Also known as Weyl spinors from the Weyl representation of the Poincaré group.
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1.3.2 The Minimal Supersymmetric Standard Model

We will now discuss a minimal SUSY-extension of the SM, based on extending the
Poincaré group from eq. (1.43) with one SUSY generator Q and its conjugate, Q̄. Both
the spacetime symmetry generators and the SUSY generators commute with the gauge
symmetry generators of the SM, allowing us to use the SM gauge symmetry group as it
is for this theory. Since SUSY is a broken symmetry (not an exact symmetry of nature),
a viable Lagrangian consists of a SUSY-invariant part (LSUSY) and a part with SUSY
breaking terms (Lsoft),

L = LSUSY + Lsoft. (1.48)

This theory is known as the Minimal Supersymmetric Standard Model (MSSM), and it
predicts a whole set of new particles due to the effect of eq. (1.47). This is because there
are obviously no SM particles that differ in spin by ±1/2 while keeping all other quantum
numbers the same. This implies that there must be other particles with these properties
if the MSSM is a correct theory of nature.

Field Content

In this thesis, we will restrict ourselves to two classes of SUSY particles (or sparticles)
predicted by the MSSM. New scalar particles are named by prepending an “s” to the SM
particle name, while new fermion states are given names with an “ino” ending. Their
symbols are equipped with a “tilde” character like in ẽ+.

The first class of particles are the charged sleptons l̃: selectrons ẽ, smuons µ̃ and staus τ̃ .
These are the scalar SUSY partners of the corresponding charged leptons in the SM. At
the end of this chapter, we will consider a hypothetical LHC process where we produce a
pair of selectrons: ẽ+ẽ−.

The second class of particles are the so-called neutralinos: a special class of sparticles
predicted to exist due to the symmetry breaking associated with the massive electroweak
SM gauge bosons. The SUSY partners of the electroweak SM gauge bosons (W1, W2, W3

and B) are the fermion states W̃1, W̃2, W̃3 (winos) and B̃ (bino), known as the gauginos.
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In addition, there are in the MSSM a total of eight scalar degrees of freedom in the Higgs
sector, which gives rise to four fermionic SUSY partners known as higgisinos. The four
gauginos and the four higgsinos mix to form eight different mass eigenstates, namely the
neutralinos χ̃0

i (i = 1, 2, 3, 4) and the charginos χ̃±
i (i = 1, 2), indexed with ascending

mass. Among all the four neutralinos, χ̃0
1 is the lightest one, and it will be a sparticle of

particular interest for this project.

R-parity

In Standard Model processes, both the baryon number (B) and lepton number (L) are
conserved. This is due to the fact that there are no renormalizable terms in the SM
Lagrangian that violates these conservation laws. In the MSSM, B and L are not naturally
conserved due to some terms in LSUSY that violates these conservation laws. However, this
is solved by introducing a new fundamental symmetry of the MSSM which automatically
throws away SUSY-terms violating B and L conservation. This symmetry is called R-
parity (or matter-parity), and it is defined for a given particle with spin s as

PR = (−1)3(B−L)+2s. (1.49)

For processes in the MSSM, PR is a mutliplicatively conserved quantum number from
vertex to vertex in the associated Feynman diagrams. The definition of PR assigns PR =

+1 to all the SM particles and the additional Higgs bosons predicted by the MSSM, while
the sleptons, neutralinos and all other SUSY partners get PR = −1.

By adding this discrete R-parity symmetry to the MSSM, there are a couple of important
phenomenological consequences for the search of new physics as described by the MSSM:

1. Sparticles can only be produced in even numbers (typically two) in collider experi-
ments.

2. There exists a lightest supersymmetric particle (LSP) with PR = −1 which is abso-
lutely stable.

3. A sparticle decay will eventually lead to a final state with an odd number of LSPs
(typically just one).
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The first point above comes from the fact that in any collider experiment we collide SM
particles. Since all the SM particles have PR = +1, the R-parity at the final state also
has to be +1 which can only be obtained by an even number of sparticles in any vertex.
The second point is interesting, since it suggests the LSP as a possible candidate for dark
matter, given that it is neutral and very weakly interacting. The third point is analogous
to the first point, but starting with PR = −1.

Example: Hadronic Slepton Production

In this project we will consider hadronic slepton production of the form

pp → l̃+l̃− → l+l−χ̃0
1χ̃

0
1, (1.50)

at LO and at LO+NLO. Each produced slepton decays into a lepton and the lightest
neutralino, which in this case is the stable LSP. As a Feynman diagram, the process can
be visualized as shown in fig. 1.2. We limit our study to the production of first-generation
sleptons, i.e., selectrons, through s-channel electroweak exchange (γ or Z). We can write
it as

As an explicit example of eq. (1.50), we will very briefly discuss the Feynman diagrams
that contribute to production of the first generation of sleptons: selectrons. We can write
it as

pp → ẽ+ẽ−, (1.51)

where we have omitted the final state leptons and neutralinos as they are not relevant
for this discussion. In fig. 1.3 we can see the tree-level contribution to eq. (1.51) from an
electroweak exchange. By summing these two diagrams, squaring the amplitude, summing
over the three color states of the initial quarks and average over spins, you get the LO
cross section for eq. (1.51). The result can be found in [8, eq. 50.68, Cross-section formula
for specific processes].

Similarly, two next-to-leading (NLO) order contributions are shown in fig. 1.4. It is not
obvious at first why a diagram with a final state gluon has to be considered for eq. (1.51)
without any gluons, but it will become clear shortly.
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χ̃0
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χ̃0
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Figure 1.2: The general process we are considering in this thesis: hadronic production
of sleptons l̃± that decay to charged leptons l± and lightest neutralinos χ̃0

1 (LSPs). Note
that even though the sleptons show up as propagators here, they are treated as on-shell
real particles.

γ, Z

q

q

ẽ+

ẽ−

Figure 1.3: Electroweak tree-level contribution to ?? with annihilation of quarks to selec-
trons through a γ or Z.

It is quite common in QFT that single perturbative contributions to the invariant matrix
element M diverges. This may sound like a problem at first, because predictions of any
physical viable theory have to remain finite. However, we should remind ourselves what
physical theories actually predict, namely observable quantities. Are single Feynman
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Figure 1.4: Examples of next-to-leading order diagrams contributing to eq. (1.51). The
diagram to the left is an example of a one-loop contribution. In the diagram to the right,
there is a gluon radiated off from the initial state quark. These diagrams diverges in the
limit where the gluon is soft (momentum → 0), known as an infrared (IR) divergence.

diagrams observable? No, it is the cross section σ which we can measure in reality. The
cross section is, using the perturbative approach, computed as an infinite sum of Feynman
diagrams – implying that it is the sum of diagrams that is observable.

Looking at the loop diagram in fig. 1.4, it is not obvious what is problematic with that
diagram by itself. We can first notice that there is an undetermined “momentum” in the
loop, which can be picked arbitrary. However, the Feynman rule of a loop instructs us to
integrate over this undetermined momentum, and by writing down this expression, it is
not hard to see that this integral diverges. While there are two divergences associated with
this diagram, we will only consider one of them which is closely related to the divergence
in the right diagram with a radiated gluon.

The reason why the diagram with the radiated gluon has to be included has to do with
a rather subtle detail. Considering this diagram alone, it describes a seemingly different
process (2 → 3) with the radiation of a gluon from the initial state. If you write down the
amplitude of this diagram and compute the corresponding cross section, you will see that
the cross section actually diverges in the limit where the gluon momentum k → 0. See [2,
ch. 6] for a analogous detailed discussion. This is called soft radiation, and it introduces
what we call infrared divergences (IR divergences) in QFT. To avoid letting this diagram
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diverge, we can parameterize it by giving the gluon a fictive mass µ which is put to 0 at
the end.

Rather surprisingly, the IR divergence from the loop diagram and the IR divergence from
the radiative diagram are identical, but with a relative sign. Thus, if we sum the cross
section contribution from each diagram, these divergences cancel exactly leaving us with
a finite cross section which we can compare with experiments. It makes sense to add this
diagram to our process eq. (1.51) because in the limit of a vanishing gluon momentum,
the radiative diagram becomes indistinguishable from our original 2 → 2 process.

It will always be the case that these infinities “cancel” each other if we are dealing with
a physically good theory, formally known as a renormalizable theory. The reason is that
when your theory is renormalizable, you only need a finite number of “counter” diagrams
to cancel all the emerging infinities.
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Chapter 2

Information Content in Probability
Density Functions

The applications of probability theory and statistics are virtually endless. From forecast-
ing the weather, teaching computers to tell hot dogs from hamburgers and evaluating
the significance of certain signals above a background noise, it is hard to overstate its
relevance.

In this chapter we will present some core ideas from probability and information theory,
and how that can be used to restate the task of this master project – quantifying the
overall difference between two complicated mathematical objects using the concept of
information. This chapter is based on [9, ch. 1] regarding probability theory, [10, ch. 4]
for information theory and entropy and [1] for density ratio approximations.

2.1 Probability Density Functions

Prior to defining information, it can be helpful to remind ourselves some basics from
probability theory. A probability density function (pdf), probability distribution or density,
is any integrable function f : Ω → [0,∞) of a continuous random variable X satisfying
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the normalization condition ∫
Ω

f(x)dx = 1, (2.1)

where Ω is known as the sample space – the set of possible outcomes for X. Currently, Ω
can be any measurable continuous space depending on the application, but we are going
to restrict ourselves to the set of real n-tuples of Rn, which will become clear shortly.

2.1.1 Single-variable Densities

The idea behind eq. (2.1) and the probability for different values of X can be understood by
considering a density f defined on single reals from R. The probability that X ∈ I = [a, b]

is computed as an integral of f over the interval I, and it is written as

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx. (2.2)

The probability for finding X ∈ [x, x + dx] is simply f(x)dx, which is the probability
density at x times a tiny one-dimensional volume dx. Thus, f(x)dx can be thought of as
the “probability mass” at the point x. Clearly, if we sum up all these small probabilities
across the whole line of real numbers we get the total summed probability to find X

somewhere on that line, which has to be 1 consistent with eq. (2.1).

Another commonly used function derived from eq. (2.2) is the cumulative probability
function

F (x) ≡ P (−∞ < X ≤ x) =

∫ x

−∞
f(t)dt

which simply is the probability to find X ≤ x for some x ∈ R. A property of F is that it
will approach 1 from below as x → ∞, and F is a non-decreasing function of x since f is
non negative. Moreover, it is easy to see that F is bounded between 0 and 1.

An alternative, but equivalent definition commonly seen in the literature [9, p. 9], is to
simply define the probability density as the derivative of F with respect to x, i.e.,

f(x) =
dF

dx

∣∣∣∣
X=x

.
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Note that F is now the fundamental object in the theory over continuous random variables
defined with the properties above with the additional requirement that F has to be
differentiable almost everywhere on its domain R.

2.1.2 Multi-variable Densities

With single-variable densities at hand, it is easy to generalize to multiple variables. We
say that for continuous random variables X1, X2, . . . , Xn = X ∈ Rn we can define a joint
probability density function or multi-variable density fX : Rn → [0,∞) which computes
the probability for X to be inside a domain A ⊆ Rn as

P (X ∈ A) =

∫
A

fXd
nx ≡

∫
· · ·
∫
A

fX(x1, x2, . . . , xn)dx1dx2 · · · dxn. (2.3)

As in the single variable case, the intuition behind this is that the probability for X ∈ A

is simply a sum of tiny “probability masses” fXdx1dx2 · · · dxn over the domain to obtain
its total mass, and this sum will be again 1 if the integration is performed over all of space
A = Rn, as eq. (2.1) requires.

Together with eq. (2.3) it is common to define what is known as a marginal density
function obtained by integrating over all but a subset χ = {Xi, . . . , Xj} ⊂ {X1, . . . , Xn}
of the variables, i.e.,

fχ(xi, . . . , xj) =

∏
Xk /∈χ

∫
dxk

fX(x1, x2, . . . , xn).

The marginal density can be thought of as the probability distribution of {Xi, . . . , Xj} ir-
respective of what values the other variables acquire. Formally, we say that fχ is marginal-
ized.

The normalized differential cross section discussed in chapter 1 is an example of a multi-
variable density. Using the QED annihilation example from eq. (1.19) in chapter 1, the
normalized differential cross section in eq. (1.25) represents the density over the two
physical degrees of freedom, while eq. (1.26) is the marginalized density with φ integrated
out.
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2.1.3 Expectation and Variance

The expectation value E [g(X)] of a function g of a random variable X distributed ac-
cording to the density f(x) is defined as

E [g(X)] =

∫ ∞

−∞
g(x)f(x)dx. (2.4)

It is sometimes called the mean of g(X), and it can be interpreted as the average value
of g(X) in a population of x-values distributed as f(x).

The variance Var [g(X)] can be defined using the expectation value as

Var [g(X)] = E [(g(X)− E[g(X)])2] =

∫ ∞

−∞
(g(x)− E[g(X)])2f(x)dx, (2.5)

which is a measure of the spread of g(X) around its mean. By using the linearity of
E [g(X)] we can rewrite eq. (2.5) as

E [(g(X)−E[g(X)])2] = E [g(X)2−2XE [g(X)]+E [g(X)]2] = E [g(X)2]−E [g(X)]2, (2.6)

which sometimes is a useful identity.

2.2 Quantifying Information and Information Differ-

ence

In 1948, Claude Shannon published a paper to discuss and formalize the concept of infor-
mation by addressing the following problem: given all possible “messages” a source can
transmit over a noisy channel to a given receiver, how can the message be reconstructed
in a way to minimize the loss of information? Shannon’s main result [11, thm. 10, p. 408],
the noisy channel coding theorem, states that for a given channel capacity C transmitting
information at a rate R < C, there exists a way to transmit the message with arbitrarily
low probability of error. A fundamental mathematical quantity behind this result is the
so called Shannon entropy, and it is a key concept in the definition of information.

In this section we will briefly formalize the concept of information, in particular defining
the amount of information within a probability distribution. We will see how the concept
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of entropy naturally enters the description of information, and how that is used to describe
the overall behavior of random variables.

2.2.1 Entropy in Information Theory

Imagine you have an unfair coin1 favoring largely heads, and you toss it a large number
of times. Intuitively, you expect to see mostly heads in the long run and it would not be
a big surprise to get another head if you were to toss it again. In one sense, the amount
of information contained in the series of random outcomes is low due to the high level of
predictability. Conversely, there is more surprise associated with a fair coin as it is less
predictable, i.e., there is more to learn about its behavior.

Shannon Entropy

A common way to measure the amount of information in a random variable X with N

possible outcomes is by using the Shannon entropy

H(X) = −
N∑
i=1

pi loga pi, (2.7)

where pi is the probability for outcome i. Here, 0 · loga 0 is defined as 02. The unit of
information depends on the choice of base a in the logarithm, but a common choice is
simply base 2 as it has an intuitive interpretation in computer science: the bit of infor-
mation. Another choice seen in the literature, but less popular, is the natural logarithm
(base e) with the nat as the unit of information. We will stick to using logarithm base 2

making a bit the fundamental unit of information.

In simple terms, the Shannon entropy measures the “level of surprise” associated with
a series of outcomes of X. To recast eq. (2.7) into the language of probability theory,
the entropy is simply the expectation value of the so called self information loga [1/p(X)]

given the probability distribution p for X. In other words, the Shannon entropy tells us
1A tossed coin that lands on one side more often than the other.
2From the analytical fact that x loga x → 0 as x → 0+
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on average how many outcomes measured in number of bits that can be identified by
identifying one of the outcomes. Alternatively, the Shannon entropy gives us the average
number of bits needed to encode any message that is transmitted by X.

Example: The Lottery

To shine light on the rather cryptic conclusion from the previous paragraph, let us consider
a classic lottery example with a small twist. Imagine a lottery with 100 playing numbers
with one of them being the winning number. Little do we know that it is our good friend
Alice that runs this lottery, and she decides to first pick one number at random and reveal
if it is the winning number or not. If we assign the probability to reveal the winning
number as w = 1/100 and consequently the probability to reveal non-winning numbers
l = 99/100, we can understand the Shannon entropy of Alice’s message (winning number
or not) in the following way: if Alice does not reveal the winning number (probability
99/100), barley any information, log2(100/99) ≈ 0.014 bits, is conveyed by Alice since it
only allows us to identify the revealed number as one of the non-winning numbers. If Alice
reveals the winning number (probability 1/100), she conveys a staggering log2 100 ≈ 6.6

bits of information to us, since we based on that single message now can identify all the 99

non-winning numbers and the one winning number. While the information from a single
reveal measures how many playing numbers we can throw away in the search for the
winning number, the average value of these two scenarios is exactly the Shannon entropy,
interpreted as the effective size of Alice’s message in number of bits, i.e.,

H =
99

100
(0.014 bits) + 1

100
(6.6 bits) ≈ 0.081 bits.

Despite being a good friend, Alice will on average not be very helpful revealing the winning
number if we were to repeat this game a large number of times.

Example: The Game of Sixty-Four

What does it mean that the Shannon entropy gives us the number of bits needed to
encode a message? To understand this better, you are asked to play the following game
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with Alice: she thinks of a number from 1 to 64, let us say 17, and your task is to deduce
the number by asking only yes-no questions. What is the smallest number of yes-no
questions needed to identify the number? Intuitively, a good strategy is to divide the set
of 64 possibilities into equal sized sets in the following manner:

1. Is the number higher than 32? No.

2. Is the number higher than 16? Yes.

3. Is the number higher than 24? No.

4. Is the number higher than 20? No.

5. Is the number higher than 18? No.

6. Is the number higher than 17? No.

After 6 questions, Alice’s number is deduced to be 17. How much information is gained
after every question? Assuming that each set of halves are equally likely to contain Alice’s
number, the information gain is log2(1/0.5) = 1 bit; in total 6 bits after 6 questions. This
comes from the fact that half of the remaining numbers are identified after every question
(being Alice’s number or not) which is the fastest scheme to exclude possible numbers. In
other words, 6 bits of information and at least 6 questions are needed to identify Alice’s
number which can be thought of as her message encoded as a string of yes-no answers.
Interestingly, and not hard to prove, log2 64 = log2 2

6 = 6 bits of information is required
to identify Alice’s number independent of your strategy.

Largest Possible Entropy

For a given number of possible outcomes N , what configuration of outcome probabilities
pi gives the largest Shannon entropy H(X)? This is an easy optimization problem using
Lagrange multipliers under the constraint that the variables pi sum to 1, with the solution
that all p1, p2, . . . , pN are equal, i.e., pi = 1/N . The maximal Shannon entropy possible
for X is therefore

Hmax(X) = log2N,
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measured in number of bits. One immediate corollary from this observation is that entropy
is a decreasing function of the probability distribution in the sense that moving away from
a uniform distribution reduces H(X). This is expected since the outcomes of X become
more predictable and consequently less surprising, i.e., there is less to learn about the
behavior of X.

Continuing the example from the beginning, the maximal Shannon entropy associated
with a series of coin flips is log2 2 = 1 bit. There is on average 1 bit of information needed
to capture the behavior of a fair coin since it has two equally likely outcomes. Conversely,
there is no information (0 bits) required to encode an unfair coin having “heads” on both
sides as it will always result in heads.

2.2.2 Entropy in Statistical Mechanics

While the concept of information is relatively new, the related concept of entropy has
older roots. After the birth of thermodynamics in the late 18th century industrialized
Victorian England, the idea of thermodynamic entropy was developed to understand and
improve heat machines. In simple terms, a heat machine works by extracting useful
energy between two reservoirs that differ in macroscopic quantities such as pressure and
temperature to do work. Entropy is then effectively a measure of how close the heat
machine has reached thermal equilibrium with the reservoirs – the inevitable final state
of maximal entropy with uniform temperature and pressure where all useful energy is
exhausted. This is the point when no more work can be done by the machine.

In statistical mechanics, the most general definition for thermodynamic entropy in a
system is the so called Gibbs entropy

S = −kB

W∑
i=1

pi ln pi, (2.8)

where kB is the Boltzmann constant and pi is the probability to find the system in a
micro state i out of W possible states. This definition of entropy is simply the Boltzmann
constant times the Shannon entropy base e, giving the Gibbs entropy identical properties.
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Analogous to maximizing the Shannon entropy eq. (2.7), the basic and founding assump-
tion of statistical mechanics is that any of the possible micro states i are equally realizable.
Thus, pi = 1/W which immediately yields

S = kB lnW

using eq. (2.8). This result is known as Boltzmann’s entropy equation, and it gives in fact
a nice interpretation of entropy in context of information. The thermodynamic entropy
S/kB is a measure of how much information on average is required to determine the exact
micro state of a system characterized by a particular macro state.

2.2.3 Cross Entropy and Information Divergence

We have just shown that uniform (or flat) distributions have maximal entropy. Suppose
now that we have a distribution q for a random variable X with N possible outcomes
that is an approximation of a true distribution p, with the property that p = 0 whenever
q = 0. In this context, q is often called the reference distribution – the one you compare
with. We can then define what is known as the cross entropy or Shannon-Jaynes entropy
as

K(p || q) =
N∑
i=1

pi log2

[
pi
qi

]
, (2.9)

where pi and qi are probabilities for outcome i. The cross entropy is simply the expectation
value of log2 [p/q] = log2 p − log2 q assuming p, and it can be thought of as how much
information is lost by using q to approximate the true distribution p. Equivalently, it
measures the information gain using p as opposed to using q.

Kullback-Leibler Divergence

By now we have seen how entropy is used to quantify the amount of information within
discrete probability distributions. In analogy with eq. (2.9), we can also define the cross
entropy known as the Kullback-Leibler divergence (KL divergence) for n-dimensional con-
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tinuous probability distributions q(x) and p(x) as the functional

DKL(p || q) =
∫
Ω

p(x) log2

[
p(x)

q(x)

]
dnx, (2.10)

where Ω is the common domain of q and p. We require again that p = 0 whenever q = 0

(formally, the support of q is at least as big as the support of p). The KL divergence
satisfies the following properties [12, sec. 1]:

1. DKL(p || p) = 0.

2. DKL(p || q) = 0 ⇐⇒ p = q.

3. DKL(p || q) ≥ 0 ∀ p, q.

One nice feature from this set of properties is that the KL divergence gives us a way to
test if two arbitrary smooth distributions are identical by asserting DKL(p || q) = 0.

While there are several ways to interpret the KL divergence, it is nevertheless a common
tool to measure how different two probability distributions are. Following the analogy
from eq. (2.9), it measures the gain in information using the true distribution p rather
than the approximation q. While it is tempting to classify the KL divergence as a metric
on the space of probability densities, it will fail as a metric since it is not symmetric in
its arguments.

Example: Comparing Normal Distributions

To demystify the KL divergence and the cross entropy between two distributions, let us
consider a couple of simple examples using one dimensional normal distributions.

Imagine you have a normal distribution X0 ∼ N (µ0, σ
2
0) with the goal to approximate

another normal distribution X ∼ N (µ, σ2). What do you lose in terms of information
using the approximation? The density associated with a normal distributed variable
X ∼ N (µ, σ2) is

f(x;µ, σ2) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
,
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which translates into q = f(x;µ0, σ
2
0) and p = f(x;µ, σ2). The KL divergence eq. (2.10)

can then be evaluated as

DKL(p || q) = 1√
2πσ2

∫ ∞

−∞
exp

[
(x− µ)2

2σ2

]
log2

[
σ0

σ
exp

[
(x− µ0)

2

2σ2
0

− (x− µ)2

2σ2

]]
dx

which simplifies to

DKL(p || q) = log2

(σ0

σ

)
+

1

ln(2)
√
2πσ2

∫ ∞

−∞

[
(x− µ0)

2

2σ2
0

− (x− µ)2

2σ2

]
exp

[
(x− µ)2

2σ2

]
dx.

This is a matter of evaluating the expectation value of X2 with respect to p, which is very
simple using eq. (2.6) and E [X] = µ directly giving

E [X2] = µ2 + σ2.

Thus, the final expression for the KL divergence from q to p in number of bits is

DKL(p || q) = 1

2 ln(2)

[
(µ− µ0)

2 + σ2 − σ2
0

σ2
0

− ln

(
σ2

σ2
0

)]
. (2.11)

In fig. 2.1 we have depicted the effect on DKL(p || q) by shifting and scaling the normal
distributions to different amounts. In figs. 2.1a and 2.1b, the two normal distributions are
slightly shifted relative to each other, while in figs. 2.1c and 2.1d they are slightly scaled.
It is clear that DKL(p || q) grows as the distributions are shifted or scaled more from each
other, i.e., becoming more different.

The blue shaded areas in figs. 2.1a, 2.1b, 2.1c and 2.1d represent the integrand in eq. (2.10),
and the final KL divergence in every figure is therefore the net blue area. It is clear from
the figures that this net blue area is non negative, consistent with the properties of the
KL divergence. The final DKL(p || q) is computed using eq. (2.11).

For the observant reader, also hinted in the very introduction of this thesis, the ratio
between p(x) and q(x) is strictly necessary to compute DKL(p || q). This can in general
be notoriously hard, and quite a bit of effort has been dedicated to develop methods to
attack this problem. In this thesis, we will explore one such way to approximate the said
ratio using classifiers.
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Figure 2.1: Two normal distributions q and p showing the effect of shifting and scaling on
DKL(p || q). The distributions on the top row demonstrates shifting, and the distributions
on the bottom demonstrates scaling. The KL divergence DKL(p || q) is computed analyt-
ically using eq. (2.11), and the blue shaded areas represent the integrand in eq. (2.10).
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2.3 Approximating Density Ratios Using Classifiers

Approximating a multi-variable probability density by populating a multi-dimensional
histogram is not an easy task due to the vast number of samples required. Imagine
you had a simple population with equally distributed variables and made a histogram
over one of them to approximate its marginal distribution. If 100 samples are needed to
roughly resemble the distribution, then it would require roughly 1002 = 10, 000 samples
to populate a 2D histogram over two of the variables or 1003 = 1, 000, 000 samples over
three of the variables! The number of samples required for a fixed sample density scales
exponentially with the dimensionality of the sample space. This is one aspect of what is
often called the curse of dimensionality.

In this section we will present a way to circumvent the need to populate multi-dimensional
histograms to compute the ratio between two unknown multi-variable densities by recast-
ing the task into a statistical classification problem.

2.3.1 Classifiers

If you as a statistician find yourselves in a garden picking fruits from different fruit trees,
and your job is to sort fruits based on features such as type and size, then your task is
what is known as a classification problem. Our brains can easily identify different fruits of
different sizes, and therefore easily categorize them into different classes. In the language
of statistics, our brain resembles a classifier that takes a fruit as an input and classifies
the fruit based on its features.

More formally, a classifier on a particular population as defined in context of machine
learning is a function

s = s(x)

that predicts which class a given sample with features x belongs to. The classifier uses
a collection of samples obtained by sampling the population – the training data set – to
associate different features to different classes, and the output can be a categorical type
of data or simply a number. Classes are sometimes called targets, labels or categories.
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Machine learning (ML) is typically used to create classifiers by training predictive models
on different datasets, but other methods also exist. A particular ML technique common
and powerful for classification problems are decision trees, which will be discussed in more
detail in chapter 3.

It is increasingly common in science that a simulation samples from some generative
model based on a theory θ using a distribution px(x|θ) which is difficult to evaluate
directly, but can be numerically simulated. An example from particle physics is the use
of a hypothesis test on a null θ0 theory against an alternative θ1 given the observed data
points D = {x1, . . . ,xn} by using the likelihood ratio

λ(D; θ0, θ1) =
∏
x∈D

px(x|θ0)
px(x|θ1)

(2.12)

as a test statistic [1, sec. 2.1], where it is typically hard to evaluate the multi-variable
densities pX directly. However, it is possible to use a discriminative classifier to evaluate
the ratio between two densities in a relatively easy manner – which in fact is sufficient in
many cases, including the example above eq. (2.12).

Given two multi-variable densities qX(x) and pX(x) defined on a domain Ω in n variables,
it is possible to do a change of variable S = s(X) which will induce two new single-variable
densities qS(s = s(x)) and pS(s = s(x)) such that

r(x) ≡ qX(x)

pX(x)
=

qS(s = s(x))

pS(s = s(x))
∀ x ∈ Ω. (2.13)

The key requirement for eq. (2.13) to be valid is that the function s(X) has to be strictly
monotonous in the density ratio r(X), meaning that if you follow a path through Ω such
that r increases (or decreases), s has to change monotonically. The proof of this result
can be found in [1, thm. 1].

To shed light on eq. (2.13), evaluating density ratios can now be transformed into a
classification problem with s(x) being the classifier constructed to differentiate samples
x ∼ qX from x ∼ pX, which computationally speaking is far more feasible. This result also
guarantees that any classifier will do the job as long as it is monotonous in the density
ratio r(x), allowing us to use for instance supervised learning algorithms from ML to
construct s(x) which is convenient.
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Example: Computing Information Divergence of Normal Distributions with
Classifiers

Equation (2.13) will be of high importance in this master project. To demonstrate its
power, let us consider the normal distributions we created in fig. 2.1. Imagine now for
the purpose of this example that q and p are unknown probability densities. We could
solve this by numerically simulating q and p (generating samples) to approximate them
with the resulting histograms, but this is generally not an option for arbitrary probability
densities as discussed previously. Instead, we will use a technique from ML known as
a boosted decision tree (BDT) to train a classifier s(x) to differentiate samples x ∼ q

from x ∼ p, then use eq. (2.13) to compute the density ratio p/q to compute their KL
divergence with eq. (2.10) using Monte Carlo integration. We are not going to explain the
details around the implementation of the decision tree for this example since it is a mere
distraction from the main point. The general method in details is laid out in chapter 3.

Explicitly, we compute the KL divergence of the resulting class histograms using

DKL(ps || qs) =
∑
i

pS(si) log2

[
pS(si)

qS(si)

]
∆x (2.14)

where ∆x is the fixed bin width. The other, labeled as DKL(pX || qX), is computed by

DKL(pX || qX) =
∫

p(x) log2

[
p(x)

q(x)

]
dx (2.15)

using Monte Carlo (MC) integration by sampling numbers x from pX , which computes
the integral as the sample mean of log2 [pX(x)/qX(x)]. In fact, it is this integral we want
to compute using the suggested classification method on our kinematic distributions from
chapter 1. Now that we have trained a classifier to distinguish the samples from each
other, we can use eq. (2.13) allowing us to compute the ratio inside the logarithm as the
class ratio ps(s(x))/qs(s(x)). This is just the ratio of two one-dimensional distributions
which can easily be approximated by populating their histograms, resolving the problem.
These histograms are shown in fig. 2.2.

Figures 2.2a and 2.2b plot the class distributions of the output s(x) from the boosted
decision tree trained on qX and pX from fig. 2.1a. Similarly, figs. 2.2c and 2.2d show the
class distributions where the BDT is trained on qX and pX from fig. 2.1c. As we can see
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from the figures, DKL(p || q) and DKL(pX || qX) match as expected – verifying eq. (2.13)
in this simple scenario.

The choice of number of bins has a direct and obvious effect on the KL divergence estimate
of the class distributions qs and ps since the bin width ∆x enters explicitly, but only an
indirect effect on DKL(pX || qX). As shown in figs. 2.2b and 2.2d with 5000 bins, compared
to the decently binned histograms in figs. 2.2a and 2.2c with 50 bins, DKL(ps || qs) changes
considerably when increasing the number of bins, but DKL(pX || qX) on the other hand
is affected only slightly – approaching the true KL divergences seen in fig. 2.1. This is
due to the way s(x) behaves as the output of a decision tree with a finite number of class
leaves (see chapter 3), giving s(x) a discrete set of values it can take. The effect of this is
that histograms with different number of bins will in general “pick” up a different subset
of s-values which alters the density approximations ps and qs, and thus the ratio between
them ps/qs which is the way DKL(pX || qX) is indirectly affected.
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Figure 2.2: The output of a boosted decision tree as a classifier s(x) to differentiate
samples x ∼ qX from x ∼ pX , where upper plots in every figure shows the distribution of
the two possible classes qs and ps which is used to compute the KL divergence through
eq. (2.13). The lower plots shows the logarithmic class ratios ps/qs which is used directly
in the KL divergence estimation. There are 50 bins in figs. 2.2a and 2.2c, and 5000 bins
in figs. 2.2b and 2.2d.
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Chapter 3

Boosted Decision Trees for
Classification

To utilize eq. (2.13) from the previous chapter we need a classifier that is monotonous
in the pdf ratio p(x)/q(x). All the heavy lifting in computing the high-dimensional pdf
ratio is done with this classifier, making it an essential component for this project. In
this chapter we will introduce some basic ideas and terminology from machine learning,
and explain the classification technique known as boosted decision tree, which we employ
in our project.

3.1 Machine Learning

Machine learning (ML) algorithms are a special class of algorithms that are able to improve
automatically based on previous experience. The algorithm does this by creating a model
based on a dataset of samples, known as training data. The model is then used to make
predictions or decisions from new unseen samples, after having experienced the training
data. In many cases, learning problems can be formulated as a minimization of a loss
function during training, i.e., an optimization problem.

It has become more common in the last decades to deploy machine learning techniques in
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science. From forecasting the weather, recognizing cancerous biological tissues or predict-
ing stock prices, ML has a very wide range of applications, and is itself a highly active
field of research. There exists a large number of different ML techniques, with neural
networks and decision trees being two examples.

As an example of a very simple ML model we can consider a linear model,

y(x) = w0 +
N∑
i=1

wixi, (3.1)

where y is the output of the ML algorithm and x is the input describing a single sample
as a tuple of N numbers (xi). The numbers wi are known as the weights, and they are the
parameters that are optimized during training to make the model fit the dataset. This
simple model is used in linear regression, where we attempt to produce a best-fit straight
line to fit the given training set. The output of a ML model is often referred to as the
target value, and the components of the input sample x are referred to as the features of
the sample.

3.1.1 Decision Trees

In this thesis we will utilize a ML technique based on decision trees. A decision tree is
maybe one of the simplest approaches to construct a ML model, and it is used in a large
variety of problems involving regression, classification and decision making.

Terminology: A decision tree consists of a root node at the very top followed by in-
termediate interior nodes. The final bottom nodes of the tree are known as leaf nodes or
just leaves, while the connection between nodes are referred to as branches.

In a sense, all humans use decision trees on daily basis. Imagine that are considering
whether or not to play beach volleyball today. In the act of deciding, you might ask
yourself if it is raining or not. If it is, you decide not to play volleyball. If it does not
rain, you might next ask yourself if it is windy. If it is, you again do not want to play.
However, if it is not windy, you conclude that today is a fine day for some beach volleball.
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Figure 3.1: A simple decision tree to decide whether today is a good day or not to play
beach volleyball. By checking true-false questions, the input falls into one of the leaves
which represents the final output of the decision tree (interpreted as a decision).
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This “tree” of true/false conditions is exactly what we mean by a decision tree, and it can
be visualized graphically as in fig. 3.1.

In general, it works by categorizing the features of a dataset based on true/false conditions
to finally predict a target value. The tree is built by “splitting” the data points along
these conditions, and the end is reached at some maximum depth. A data point that has
traversed down the tree ending in a leaf node will belong to a class of data points sharing
the same features. This leaf node can represent a categorical data type representing a
choice or a decision, or simply a number. A common way to compute the appropriate
number for a class of data points is simply the average value of all the targets in that
class of data points.

Two examples of typical decision trees:

• Classification trees: predict which class a particular input data belongs to. This is
used when you want to categorize data (known as classification).

• Regression trees: output real numbers which is used to predict numerical targets
(number of expected hospitalizations day by day, efficiency of drugs on patients
etc.).

One benefit with decision trees is that they are really easy to implement and use, making
them a great entry point to ML. Depending on how you split your dataset (what nodes
you implement), the performance and accuracy of a decision tree can vary largely. There
exist iterative methods that will split your dataset in such a way that minimizes the overall
prediction error, for instance by minimizing the mean square error similar to finding the
best fit for linear regressions. Another benefit is that a decision tree requires very little
preparation of the data. As long as you can represent the data on the form

(x1, x2, . . . , xN , Y ) = (x, Y ) (3.2)

where x1, x2, . . . , xN are the features collected as a tuple x and Y is the target value, a
decision tree can automatically be created by choosing a particular set of splittings of the
features to a desired set of classes.
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However, there are a couple of limitations with decision trees to be aware of. First and
foremost, trees are highly sensitive to how you construct them. A small change in the
training data can have a large impact on the final predictions. Therefore, robust methods
are needed to create a set of nodes that minimizes the prediction error. A pitfall associated
with decision trees is that it is quite easy to make an overfit. This happens when there
are too many splittings, making the tree over-complex which do not generalize well to
new data.

A decision tree alone can be useful by itself, but sometimes it is necessary to deploy
multiple trees at once. In what follows we will briefly discuss one way to do this, and the
resulting algorithm will be the method to create a trained classifier for this project.

3.2 Boosted Decision Trees

With decision trees at hand, we can now combine multiple trees together to make a
predictive forest or an ensemble. As an example of how to create such a forest, we will
consider the boosting algorithm.

A boosting algorithm incrementally builds a forest by learning from previous mistakes.
That is, the next tree in the building process is used to compensate for the “flaws” of the
previous tree. Starting from a single decision tree constructed from a dataset with n data
points xi with an output ŷi = F1(xi), we can begin building the forest. The flaws are
measured by using a loss function, for instance the mean squared error

MSE =
1

n

n∑
i=1

(ŷi − yi)
2, (3.3)

where yi is the associated target with a data point with features xi.

With the goal to minimize the MSE for our dataset, we can introduce a second decision
tree with an output F2(x) such that

F2(x) = F1(x) + h(x), (3.4)

where h(x) is known as the residual of the first tree. If we now attempt to fit the second
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tree to the data points obtained by computing

h(xi) = yi − F1(xi), (3.5)

we will reduce the MSE because this is exactly the correction to add to eq. (3.4) to lower
the errors from yi. Continuing this process repeatedly, we can create a forest of N trees,
where each successive tree attempts to correct the errors of the previous. Every iteration
adding a new tree is called a boosting round.
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Chapter 4

Generating Datasets and Analysis
Implementation

In this chapter we present the data generation and analysis pipeline to produce the results
in the upcoming chapter 5. Starting from initializing an event generator of the electroweak
MSSM process presented in chapter 1 (eq. (1.51)), we want to end up at an estimate of
the Kullback-Leibler divergence (KL divergence) between the kinematic distributions at
LO and LO+NLO in perturbation theory. All the scripts we have written for this aim
are all publicly available.1.

In fig. 4.1 we have presented a pipeline that shows how the KL-divergence is computed
on a module based level.

4.1 Generating and Combining Events

To construct a dataset of dislepton events for a BDT to train on, we need to generate
dislepton production events which we will come back to in a moment. Due to radiative
corrections at NLO, generating jets of gluons and quarks is inevitable. Thus, we have to
allow for explicit production of hard jets (gluons and quarks) in the final state.

1https://github.com/SundeMarius/UIO-MPHYS-project
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Figure 4.1: This flow chart highlights all the components involved in estimating the
KL divergence between kinematic distributions of a simulated MSSM process using the
high level kinematic variables from [13, table 5.2]. Starting from generating events with
MadGraph5_aMC@NLO, it continues to a Python script to combine the events into
appropriate datasets. Then we use XGBoost to create a BDT as a trained classifier
with supervised learning. All the software versions used in this project are also displayed.

One simple way to accomplish this is the following: generate the process without any
explicit jets at LO and at NLO to obtain two datasets, then repeat with an explicit jet
both at LO and at NLO. You now have four processes with four associated total cross
sections, but what you want are two processes that include jets in the correct proportion.
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The proportion of jet-events is simply

p =
σjet

σjet + σzero-jet
, (4.1)

which can be implemented in two ways. The first way is instead of giving each event a
count of 1, we count jet events as multiples of p and zero-jet events as multiples of 1− p

(known as weighing the events). This will make sure that the total count of events are in
the proportion given by eq. (4.1). Alternatively, you can turn the combination of events
into a probabilistic sampling problem. You have two bunches of events to pick from, and
you keep picking events until one of the sets is empty. If you pick a zero-jet event with
probability p, the proportion of jet events is expected to approach eq. (4.1) in the limit
of many events.

The benefit of the former method of combining events is that no events will be wasted, but
it has the downside that it is more difficult to implement because we need to keep track
of which dataset the event was picked from. The latter method however is the easiest
to implement, but there will be some events wasted depending on which bunch will be
emptied first. In this thesis, we have implemented the latter method because it is easy
and fail safe. The loss of events turns out to be negligible because the cross sections for
pp → ẽ+ẽ− with and without explicit jet production are quite similar.

4.1.1 Event Generator

The software we have used in this project to generate appropriate datasets for dislepton
production is MadGraph5_aMC@NLO[14]. It is a program written and interfaced
in Python to auto generate computer code (in C++ or Fortran) to primarily calculate
tree level, but in some cases also higher order diagrams of user-specified particle physics
processes. While MadGraph5_aMC@NLO has many models implemented by default,
and it is possible to deploy your own model by specifying its Lagrangian as long as it is
renormalizable. Examples of how to use this software can be found in [14, app. A,B,C].

To generate the process in eq. (1.51), we imported the MSSM model from [15] capable of
computing LO+NLO kinematics:
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1 import model MSSMatNLO_UFO -full

followed by generating the LO processes with and without explicit jets as

1 generate p p > el+ el- j

2 output ``desired_output_folder ''

1 generate p p > el+ el-

2 output ``desired_output_folder ''

Generating the corresponding LO+NLO processes was just a slight modification of the
commands above:

1 generate p p > el+ el- j [QCD] / go

2 output ``desired_output_folder ''

1 generate p p > el+ el- [QCD] / go

2 output ``desired_output_folder ''

where we excluded the gluino written as “go” in MadGraph5_aMC@NLO. While the
gluino can show up in loop corrections for the process we are studying, we focus on MSSM
scenarios where the gluino is too heavy to have any physical impact, and we therefore left
it out of the simulations. Then, we generated 6M events from each of the four processes
above at two different parameter points in the MSSM.

To decay the final state selectrons, we enabled MadSpin which is a tool included by
default in MadGraph5_aMC@NLO event generation. This makes sure that the selec-
trons remain on-shell, and that they will decay to a specified set of final state particles.
Since MadGraph5_aMC@NLO understands the Les Houches event file format, the
following syntax can be added to the “parameter card” in the four processes:

1 DECAY 1000011 2.136822e-01 # Width of selectron (sel-)

2 1.000000e+00 2 11 1000022 # branching ratio for selectron (sel-) for

decay to ``2'' and ``11'' pdg codes.

This sets the decay width of the selectron to 2.136 822×10−1GeV, along with setting the
branching ratio to 100% for our desired electron + neutralino final state (particle IDs 11
and 1000022 refer to the electron and neutralino, respectively).
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4.2 Training Classifiers with Python

To combine and compute the kinematic variables associated with every generated event,
we wrote multiple Python scripts to pipeline the process as shown in fig. 4.1. After
generating the datasets outputted from MadGraph5_aMC@NLO in the Les Houches
file format, we used the package PyLHE[16] to read these files into Python. Then we
combined the datasets as described in section 4.1, did event selection based on kinematic
cuts and computed the kinematic variables for every event. The events were stored in a
Pandas dataframe which is a convenient and efficient data structure to store and process
large amounts of data in Python.

4.2.1 Kinematic Variables

We implemented two sets of kinematic variables where we label one set as low level features
(LLF) and the other high level features (HLF). The set with LLF is simply all the 4-
momentum components of the four final state particles, and HLF consists of eight typical
kinematic variables seen in ATLAS papers such as [17] and [18]. The exact variables with
their definitions are listed in appendix A.

We implemented selection cuts for kinematic events. First and foremost, only events with
a leading-jet pT < 20 GeV were included. Since we are only considering the production
of selectrons, we have to consider events which are effectively a 2 → 2 for a hypothetical
detector. As discussed at the end of chapter 1, there are corrections with radiation of
quarks and gluons but they can not be considered separately. That means, only events
with a soft jet (pT < 20 GeV) are considered such events. Referring this cut as the base
cut, this is the only cut used to create the event dataset with LLF. For the event dataset
with HLF, we implemented additional cuts following [13, table 3.2, p. 29] and in [17, table
2, SR-SF-0J, p. 9]. To see the effect of cuts more clearly, we created an event dataset
with HLF using only the base cut.
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4.2.2 Training the BDT

To create a trained classifier as a BDT, we used a tailored library for the purpose known
as XGBoost [19]. It is a gradient boosting library that has implemented several efficient
machine learning algorithms interfaced in many different computer languages such as
Python and C++.

We used the training parameters in table 4.1 to train a BDT for each of the six event
datasets (two MSSM parameter points with three datasets each as explained above). The
first parameter (learning rate) decides how “aggressive” the algorithm is, while the second
parameter limits the number of tree layers (to avoid overfit). The “gamma” parameter is
a number from [0,∞) that sets the minimum loss reduction required to continue adding
tree layers. These particular parameters were chosen such that the loss function were
minimized by doing a simple parameter scan over the “learning rate” and the “maximum
depth”. To evaluate the performance of the BDT, we used the “area under the curve”
known as auc. More information about the use of XGBoost in Python with clarifying
examples can be found on the documentation pages2.

Parameter Value

Learning rate 0.1

Max depth of tree 4

Gamma 3

Objective binary:logistic
Evaluation Metric auc

Table 4.1: All the different XGBoost parameters used in the training of all the kinematic
datasets using LLF, HLF and HLF base cut.

To avoid overfit, we used a feature in XGBoost that stops the training of the BDT if
the loss function has not decreased in the last 20 boosting rounds.

2https://xgboost.readthedocs.io/en/latest/python/index.html
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4.2.3 Computing Kullback-Leibler Divergence

We computed the Kullback-Leilber divergence for both the high-dimensional pdfs and
for the one-dimensional class distributions. The former was computed using Monte-Carlo
(MC) integration3 on eq. (2.10) where we substituted the pdf ratio with eq. (2.13). In that
case, we also computed the uncertainty using the corresponding MC variance. For the
latter, we computed the Kullback-Leibler divergence by numerically integrating eq. (2.10)
with qs and ps as inputs (approximated using their histograms).

3That is, you compute the mean of the dataset of samples.
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Chapter 5

Information Loss using Leading
Order Kinematics

By now we have performed training with BDTs on two types of collider event datasets;
one with events sampled assuming LO kinematics and one with events sampled assum-
ing LO+NLO kinematics, and we are ready to estimate the relevant KL-divergences to
quantify the information loss using LO kinematics.

5.1 Results

As explained in chapter 4, the DKL results are split into two categories: one based on low-
level features (LLF), and one based on high-level features (HLF). We have also repeated
the exercise for two different parameter points in the MSSM. For simplicity, we have picked
two different mass points for sleptons and neutralinos with mass splittings 150GeV and
50GeV to use as benchmarks. The dataset is split into a standard training/test set in
80/20 proportion, and all the results here reflect the test dataset. Moreover, each BDT
is trained with an equal number of LO and LO+NLO events.

We will often refer to the two distributions at play; namely the full LO kinematic dis-
tribution labeled as qx ≡ q(x), and the LO+NLO kinematic distribution labeled as
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px ≡ p(x). Here x is a tuple of LLF or HLF as defined in table A.1. The corresponding
one-dimensional distributions of the BDT classifier s = s(x) are labeled as qs(s) and ps(s),
respectively.

As briefly discussed in chapter 2, eq. (2.13) allows us to equate the two ratios

r(x) ≡ p(x)

q(x)
=

ps(s(x))

qs(s(x))
(5.1)

assuming that we have picked or trained an appropriate classifier s(x) which is monotonous
in the former ratio p(x)/q(x). That is, if you follow a particular path in the phase space
such that r(x) increases or decreases, s(x) changes monotonically. There is however
a rather subtle, but important point to make before applying it in this situation: the
monotonicity of ps/qs is a consequence of eq. (2.13) assuming we have picked a valid
classifier, but it is not a sufficient condition for the validity of the theorem. From fig. 5.1
through fig. 5.6, the class ratio ps/qs is mostly monotonous on the support of qs which
suggests that our BDT is sufficiently well trained, but the minor deviations confirm that
it is not perfect. This will effectively reduce the quality of our classifier and manifest
itself as an uncertainty in the KL-divergence estimates. A more thorough discussion of
this issue is found in section 5.2.

In every plot there are two similar, but subtly different measures of information loss using
the KL-divergence from eq. (2.10). One, labeled as DKL(ps || qs), is simply computed by
approximating the integral as a sum over bins from the two class distributions qs and ps,
i.e.,

DKL(ps || qs) =
∑
i

ps(si) log2

[
ps(si)

qs(si)

]
∆x

where ∆x is the fixed bin width. The other, labeled as DKL(pX || qX), is computed by

DKL(pX || qX) =
∫

p(x) log2

[
p(x)

q(x)

]
dnx (5.2)

using Monte Carlo (MC) integration by sampling events X from pX. The ratio inside
the logarithm is simply r(x) computed as ps(s(x))/qs(s(x)) via eq. (5.1). While these
two methods look similar, the difference is that in the former case ln [ps/qs] is averaged
over the ps distribution, and in the latter case over px itself. The latter method is in fact
the one that computes the true DKL(pX || qX), i.e., the information loss using the LO
approximation qX instead of the more accurate LO+NLO distribution pX.

60



The lower panel on all figures shows log2 (ps/qs). Viewing DKL as the expectation value
of log2 (p(x)/q(x)) assuming p(x) as its distribution, then DKL can simply be interpreted
as the average value of log2 (ps/qs) weighted with p(x).

The uncertainties displayed as red error bars in the lower panel of all the figures are
computed by error propagating log2 [ps/qs] treating qs and ps as the variables. Assuming
Poisson statistics, we take

σi =
√
ki (5.3)

as an uncertainty estimate for each bin i of the two histograms approximating qs and ps
1.

The KL-divergences DKL (px || qx) from fig. 5.1 through fig. 5.6 are collected in table 5.1
for easy reference.

m(ẽ, χ̃0
1) [GeV] DLLF

KL [bits] DHLF
KL [bits] DHLFbase

KL [bits]

(200, 50) (3.8±0.1)×10−3 (22.1±0.5)×10−3 (19.7±0.3)×10−3

(200, 150) (3.6±0.1)×10−3 (45.1±2.3)×10−3 (19.9±0.3)×10−3

Table 5.1: The KL-divergence DKL(px||qx) from fig. 5.1 through fig. 5.6 as a measure
of information loss using the LO kinematic distribution as opposed to the LO+NLO
kinematic distribution.

The classification of events using LLF and the corresponding class ratio ps/qs is shown in
fig. 5.1 with mass splitting 150GeV, and in fig. 5.2 with mass splitting 50GeV. From the
vanishing error bars in the lower panels of these figures, it is clear that the BDT is able
to statistically differentiate events sampled from qx and px.

1One way to understand eq. (5.3) is that populating a single bin i can be considered a binomial
experiment with a given success probability pi for a sample to end up in that bin depending on the
sample distribution, making ki a binomially distributed variable. Since there are many bins and samples
to pick between, pi will be tiny (→ 0), but the number of repeated “trials” n will be large (→ ∞). If
the expected number of samples E [ki] = npi remains finite in this limit, then this is exactly the limit
where a binomial distribution approaches the Poisson distribution with parameter λ = npi. Since the
histogram is populated only once, resulting in kobsi observed samples in bin i, an unbiased maximum
likelihood estimator for λ becomes λ̂ = kobsi , with a standard deviation σi =

√
Var [λ̂] =

√
kobsi using

that Var [X] = λ for a Poisson distributed variable X.
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Figure 5.1: The class distributions qs and ps of the BDT output s(x) trained on LLF
(upper plot) with associated class ratios from each bin plotted with red error bars (lower
plot). The mass splitting is 150GeV.

In similar fashion, the classification of events using HLF and HLF base cut are shown
in figs. 5.3 and 5.4 with mass splitting 150GeV. Due to additional cuts, the majority of
events are excluded leaving us only with the “tail” of the kinematic distributions. This
explains the overall higher uncertainty in bin counts as shown by the red error bars on the
lower plots. Moreover, there are far fewer events to train the BDT with, but in contrast
there are now only eight kinematic features used in the classification which obviously
requires smaller datasets.

The class distributions using HLF base cut are populated with about as many events as
the class distributions using LLF. While HLF and HLF base cut are identical up to choice
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Figure 5.2: The class distributions qs and ps of the BDT output s(x) trained on LLF
(upper plot) with associated class ratios from each bin plotted with red error bars (lower
plot). The mass splitting is 50GeV.

of cuts, they resemble very different distributions of events. The former case covers more
ground of the phase space to include a bigger variety of events, while the latter includes
only the “tails” of the kinematic distributions due to the strict cuts.

5.2 Estimating Uncertainties

In this section, we will consider the uncertainties in our classification method to quantify
the resulting uncertainties in the KL-divergence estimates.
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Figure 5.3: The class distributions qs and ps of the BDT output s(x) trained on HLF
(upper plot) with associated class ratios from each bin plotted with red error bars (lower
plot). The mass splitting is 150GeV.

5.2.1 Uncertainty due to MC Integration

The integral in eq. (5.2) is estimated by Monte Carlo integration. The variance of a mean
estimator µ̂ using the sample mean is given by

Var [µ̂] = Var [θi]
N

,

where θi is one of the N independent samples. Using θi = log2 [ps(si)/qs(si)] and the
sample variance as an estimate of Var [θi], the uncertainty due to the finite number of
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Figure 5.4: The class distributions qs and ps of the BDT output s(x) trained on HLF
base cut (upper plot) with associated class ratios from each bin plotted with red error
bars (lower plot). The mass splitting is 150GeV.

samples in the Monte Carlo integration is

Var [DKL] =
1

N
Var

[
log2

[
ps(si)

qs(si)

]]
. (5.4)

The square root of Var [DKL] gives us the standard deviation of the DKL estimates which
we will refer to as Monte Carlo uncertainties. Applying eq. (5.4), the uncertainty in the
DKL estimates as in table 5.1 are at least 1% and at most 5%.
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Figure 5.5: The class distributions qs and ps of the BDT output s(x) trained on HLF
(upper plot) with associated class ratios from each bin plotted with red error bars (lower
plot). The mass splitting is 50GeV.

5.2.2 Uncertainty due to Imperfect Classifier

The uncertainties shown in table 5.1 are purely due to random sampling, introduced above
as Monte Carlo uncertainties. However, there is another source of error related to the
quality of our classifiers. This error manifests itself as a non monotonic behavior of the
class ratios ps/qs in fig. 5.1 through fig. 5.6, which ideally would be strictly monotonous
for perfectly trained classifiers. This uncertainty is not taken into account in this project,
but a couple of methods are presented on how that can be done.

To analyze the quality of our classifiers, there are a couple of suggested methods from
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bars (lower plot). The mass splitting is 50GeV.

the literature. Since the true density ratio r(x) = p(x)/q(x) is not known, one way is to
create an estimator of this ratio and compute an estimate from the dataset to compare
with the available class ratios. Another way is to use the density ratio ps/qs to redefine

qx :=
qs
ps
px,

then sample events from this new rescaled distribution. Now, if eq. (5.1) is valid, then it
would be impossible for the classifier to distinguish events x from qx and px. This method
is therefore a direct way to address the validity of eq. (5.1). For more information using
these diagnostics, see [1, sec 3.5, p. 13].
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5.3 Interpreting the Results and Outlook

There are some interesting features in all figures from fig. 5.1 through fig. 5.6. Clearly,
which table 5.1 also shows, there is a near complete overlap between qX and pX yielding
a tiny KL-divergence estimate meaning the gain of information is minute. Using the
chosen LLF and HLF in direct dislepton production shows that one does learn virtually
nothing more about the kinematic distribution going to NLO in perturbation theory,
which is reassuring for theoretical physicists that uses analytical LO approximations to
analyze and simulate similar particle processes. Another common feature is the growing
uncertainty along the tails of the class distributions. However, all characteristic events x
where s(x) is considerably far from 0.5 corresponds to areas in the phase space where
one distribution dominates the other. Such events, constituting an exceptionally small
minority, will have a negligible effect on the DKL estimate. Another way to view this
is that pX → 0 along the tail giving vanishing contributions to DKL

2. Moreover, the
class ratios ps/qs are very close to 1 at s = 0.5 which is expected by the use of balanced
datasets. In simple terms, s = 0.5 represents a set of events xi where the classifier fails
to distinguish p(x) from q(x) (strictly inconclusive). An explanation for why this is the
case can be found in [20, p. 68, sec. 5.2.2].

There is a level of asymmetry in the class distributions about their mean. This is an
interesting point as it can be directly linked to the different shapes of qX and pX. The
fact that there are many more events x classified as s < 0.5 signals that the “tail” of qX in
a particular direction outruns the corresponding tail in pX, making such extreme events
classified mostly as LO. Consequently, to preserve the unit norm of the distributions, pX
will dominate in other domains of the phase space. Also notice that for s < 0.5 both
qs and ps have a peak close to s = 0.5, but for s > 0.5 the distributions are more flat
reaching relatively far away from s = 0.5. The fact that the distribution reaches far
away for s > 0.5 indicates that pX vastly dominates qX in this region of the phase space.
Similarly, the peaks just below s = 0.5 indicate that this is an area of the phase space
where pX and qX are nearly equal but covers the majority of events.

2From the analytical fact that x lnx → 0 as x → 0+.
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One important difference between classification across LLF and HLF is that while there are
16 features in the LLF classification, there are only 8 physical degrees of freedom3 in the
direct dislepton production implying that 8 of the features are redundant. These features
will be constrained by conservation of 4-momentum, and the effect of this is that some
of the information will be hidden away, reducing the KL-divergence estimate. Another
difference is the average density of training points in the feature space which is related
to the number of events available for each kinematic variable. If we picture the training
points organized on a grid in feature space, the average training point densities would
correspond to about six grid points in each direction in the HLF case, but only about two
grid points per direction in the LLF case. The classifier using HLF has three times as many
events in each direction to train with, which increases both the prediction accuracy and
the KL-divergence estimate as well as reducing the associated uncertainty. Moreover, we
should not necessarily expect a strong correlation between the KL-divergences obtained
using classification across LLF and HLF. This is because HLF and LLF represent two
entirely different classification problems, effectively exploring two completely different
multi variable densities.

As mentioned in chapter 4, the datasets are generated in a rather ideal and simplified man-
ner through MadGraph5 with MadSpin. This raises the important question what effect a
more physically appropriate constructed dataset would have on the final KL-divergence
estimates – for instance adding the effect of showers and the resulting hadronisation, or
adding different detector effects that shows up in real experiments. Ideally, final state
particles are modelled as sharp momentum states represented by delta functions at par-
ticular momenta which would be captured by a perfect detector. However, a real detector
has a finite resolution for measuring and pinpointing the momentum of absorbed parti-
cles, resulting in a distribution of measurements centered at a narrow peak with a tiny
spread. Therefore, there will be an uncertainty to the true momentum of a particle, and
this effect is known as smearing. In our case, the smearing would wash out subtle differ-
ences between px and qx since the smaller differences can not be resolved by the detectors,
resulting in a lower KL-divergence estimate. With showering, the creation of secondary
particles such as mesons and pions from hadronisation and electron/anti electron pairs

3From chapter 1 the number of degrees of freedom in an unpolarized 2 → N process is 3N − 4.
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from hard photons, alters which particles that are actually observed in the detectors. The
process we are considering creates dileptons, missing energy and soft jets (quarks and
gluons) in the final state, but the observed particles may be different. This affects the
value of measured high level kinematical variables such as leading pT and ∆φ

(
pmiss
T , pllT

)
since some of the secondary particle tracks can be hard to detect and therefore potentially
get lost in the energy balance.

As a note to future work, it would be interesting to use one of the diagnostic methods
explained previously to investigate the uncertainty from using poor classifiers. In favor
of time, we did not take this uncertainty into account. However, the class ratios behave
to a big degree monotonically across the histograms and we do believe the associated
uncertainty due to the minor deviations is not bigger than the Monte-Carlo uncertainty.
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Chapter 6

Conclusion and Outlook

In this thesis we have investigated a new approach for estimating the Kullback-Leibler di-
vergence (KL divergence) for high-dimensional probability distributions in particle physics.
The core of this approach is the use of a trained classifier to estimate the ratio between
two pdfs appearing in the KL divergence. Specifically, we applied this method to elec-
troweak production of disleptons with final state dileptons and LSPs as predicted by the
MSSM with R-parity conservation. We created two types of kinematic datasets using the
event generator MadGraph5, where one was labeled “low level features” with 16 distinct
features, and the other with 8 “high level features”. A boosted decision tree, playing the
role as the classifier, was trained for each dataset using XGBoost.

As the results of electroweak production of sleptons from the previous chapter show, there
is very little to learn about the differential cross section at LO+NLO as compared to LO
for the given parameter points. This implies that the kinematic distributions are vastly
similar throughout feature space, which we can expect from the nature of electroweak
interactions. The noticeable differences are found in the tails where one distribution can
dominate the other, which has a significant effect on the the class distributions by making
them highly asymmetrical about their means. We picked this process in particular because
it stands as a challenging test of the sensitivity of our trained classifier, compared to other
processes where NLO kinematics has more influence. Note however that even though the
kinematic distributions are virtually identical, the effect of LO+NLO can still be vital in
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predicting the total cross section which is the integral of the differential cross section over
the kinematic phase space.

One aspect which could be investigated more is the impact on the uncertainty in the KL-
divergence estimates due to poorly trained classifiers. Moreover, it would be interesting
to repeat this exercise more than once using other parameter points in the MSSM. By
repeating the process across the parameter space, we can use this method as a tool to see
how much there is to gain using LO+NLO kinematics in different parts of the space which
might be useful for particle physicists doing parameter scans and model fits. For a single
parameter point, the whole procedure from generating and combining event datasets to
estimating the KL divergence between LO and LO+NLO kinematics took approximately
1 hour.

Despite being applied to particle physics, this procedure using trained classifiers remains
universal and does not make any explicit links to physics which makes the method a
wide-applicable tool across different disciplines. It would be interesting to study how our
classifer-based approach performs compared to other suggested methods for KL divergence
estimation, see e.g. [21, 22, 23]. Currently this remains an open question.
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Appendix A

Kinematic Variables

This is a short overview of all the variables used to specify kinematic events for the process
defined in eq. (1.51). While the low level features in the left column of table A.1 are self-

LLF HLF

pµ for e− mll

pµ for e+ mT

pµ for χ̃0
1 mT2

pµ for χ̃0
1 hT

Emiss
T

Emiss
T /hT

∆φ(pll
T ,p

miss
T )

∆Rll

Table A.1: Low level features and high level features as the two sets of variables used in
this thesis. There are 16 low level features and 8 high level features.

explanatory, we will below define the high level features shown in the right column.

• mll is the invariant mass of a lepton pair. If they have momentum pµ1 and pµ2
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respectively, their invariant mass is

mll ≡
√

(p1 + p2)µ(p1 + p2)µ =
√
(E1 + E2)2 − (p1 + p2)2 (A.1)

• mT is known as the transverse mass of a particular process with missing energy,
and it is defined as

mT =
√
2|pll

T ||pmiss
T |(1− cos∆φ) (A.2)

where pll
T = pT,1 + pT,2 is the total 3-momentum of the lepton pair (the lepton

system), and Emiss
T and ∆φ are defined below.

• mT2 is known as the stransverse mass of a particular process with missing energy,
and it is defined as

mT2(pT,1,pT,2,p
miss
T ) = min

qT,1+qT,2=pmiss
T

{max [mT (pT,1,qT,1),mT (pT,2,qT,2)]} (A.3)

• hT is defined as the scalar sum of pT = |pT | for leptons, which in our case is simply

hT = pT,1 + pT2 . (A.4)

• ∆φ(pll
T ,p

miss
T ) is the difference in azimuthal angle between the lepton system and

the direction of missing energy (angular difference in the transverse plane).

• ∆R is the distance between the leptons in the angular space spanned by φ =

arctan(py/pz) and η = −1/2 ln [tan2(θ/2)], i.e.,

∆R =
√
(∆φll)2 + (∆ηll)2, (A.5)

where φ is the standard azimuthal angle and θ is the polar angle (angle from z-axis
to the leptons direction of motion).
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