
UNIVERSITY OF OSLO

Department of Informatics

Observable Behavior of

Distributed Systems:

Component Reasoning

for Concurrent Objects

Research Report 401

Crystal Chang Din

Johan Dovland

Einar Broch Johnsen

Olaf Owe

ISBN 82-7368-362-1

ISSN 0806-3036

November 2010

Contents

1 Introduction 2

2 Syntax for the ABS Language 3

3 Observable Behavior 5
3.1 Invariant Reasoning . 8

4 Analysis of ABS Programs 9
4.1 Semantic Definition by a Syntactic Encoding 9
4.2 Weakest Liberal Preconditions . 11
4.3 Hoare Logic . 12
4.4 Object Composition . 14

5 Reader/Writer Example 15
5.1 Implementation . 15
5.2 Specification and Verification . 16

6 Related and Future Work 18

7 Conclusion 18

A Complete Code of Fairness Reader/Writer 20

B Definition of Writers 21

C Definition of Writing 21

D Verification Details for RWController 21
D.1 openR . 22
D.2 openW . 22
D.3 closeR . 22
D.4 closeW . 22
D.5 read . 22
D.6 write . 23

1

Observable Behavior of Distributed Systems:

Component Reasoning for Concurrent Objects

Crystal Chang Din, Johan Dovland, Einar Broch Johnsen, Olaf Owe

Dept. of Informatics – Univ. of Oslo,

P.O. Box 1080 Blindern, N-0316 Oslo, Norway.

E-mails: {crystald,johand,einarj,olaf}@ifi.uio.no

Abstract

We present a partial correctness proof system for ABS, an imperative, con-
current and object-oriented language which provides asynchronous communication
model that is suitable for loosely coupled objects in the distributed setting. The
proof system is derived from a standard sequential language by means of a syn-
tactic encoding and applies Hoare rules. The execution of a distributed system
is represented by its communication history, which can be predicated by history
invariant. Modularity is achieved by establishing history invariants independently
for each object and composed at need. This results in behavioral specification of
distributed system in an open environment. As a case study we model and analyze
the reader-writer example in the framework we developed.

1 Introduction

Distributed systems play an essential role in the modern world, and the quality of such
systems is often crucial. Quality assurance is however non-trivial since distributed sys-
tems depend on unpredictable factors such as different processing speeds of independent
components and network transmission speeds. Such systems are therefore hard to test
under the different conditions, which calls for precise modeling and analysis frameworks
with suitable tool support. In particular, there is a need for compositional verification
systems such that each component can be analyzed independently from its surrounding
components.

Object orientation is the leading framework for concurrent and distributed systems,
recommended by the RM-ODP [12]. Many distributed systems are today programmed
in object-oriented, imperative languages like Java and C++. Programs written in these
languages are in general difficult to analyze due to composition and alias problems, and
the complexity of their concurrency, communication, and synchronization mechanisms.
Rather than performing analysis at the level of the Java and C++ code, it may be
easier to consider a model of the program at a suitable level. In this paper, we consider
ABS , a high-level object-oriented language, which is inspired by the Creol language [13].
ABS supports concurrent objects with an asynchronous communication model that is
suitable for loosely coupled objects in a distributed setting. The language is imperative,
and avoids some of the mentioned difficulties of analyzing distributed systems.

In ABS, there is no access to the internal state variables of other objects, and a con-
current object has its own execution thread. Object communication is only by method
calls, allowing asynchronous communication in order to avoid undesirable waiting in the
distributed setting, where one object need not depend on the responsiveness of other
objects. Internally in an object, there is at most one process executing at a time, and

2

intra-object synchronization is programmed by processor release points. These mecha-
nisms provide high-level constructs for process control, and in particular allow an object
to change dynamically between active and reactive behavior. Concurrency problems in-
side the object are avoided since each region from a release point to another release point
is performed as a critical region. The operational semantics of ABS has been worked
out in [10].

The execution of a distributed system can be represented by its communication
history or trace; i.e., the sequence of observable communication events between system
components [5,11]. At any point in time the communication history abstractly captures
the system state [6,7]. Therefore a system may be specified by the finite initial segments
of its communication histories. The local history of an object reflects the communication
between the object and its surroundings. A history invariant is a predicate over the
communication history, which holds for all finite sequences in the prefix-closure of the
set of possible histories, expressing safety properties [2].

In this paper, we develop a partial correctness proof system for the ABS language. A
class is specified by a class invariant over the class attributes and the local communica-
tion history. The proof system is derived from a standard sequential language by means
of a syntactic encoding, using nondeterministic assignments to the history for reflecting
activity of other processes . The reasoning inside a class is comparable to reasoning
about a sequential while-language, and it amounts to proving that the class invariant
is maintained from one release point to another. Since remote access is restricted to
method calls, the classical Hoare rule for assignment is sound.

For each object, a history invariant can be derived from the class invariant by hiding
the local state of the object, allowing objects to be specified independently of their inter-
nal implementation details. Such specifications describe the observable communication
between each object and the environment. In order to derive a global specification of a
system composed of several objects, one may compose the specifications of different ob-
jects. Modularity is achieved since history invariants can be established independently
for each object and composed at need.

Report overview. Section 2 introduces and explains the ABS language syntax, Sec-
tion 3 formalizes the observable behavior in the distributed systems, and Section 4 defines
the proof system for ABS programs and considers object composition. Section 5 pro-
vides an example, Section 6 discusses related and future work, and Section 7 concludes
the paper.

2 Syntax for the ABS Language

The syntax of the ABS language (slightly simplified) can be found in Fig.1. An interface
I may extend a number of superinterfaces, and defines a set of method signatures S∗.
We say that I provides a method m if a signature for m can be found in S∗ or among
the signatures defined by a superinterface. A class C takes a list cp of class parameters,
defines attributes w, methods M∗,and may implement a number of interfaces. Remark
that there is no class inheritance in the language, and the optional code block s of a
class denotes object initialization, we will refer to this code block by init. There is read-
only access to the class parameters cp. For each method m provided by an implemented
interface I, an implementation of m must be found in M∗. We then say that instances of
C support I. Object references are typed by interfaces, and only the methods provided
by some supported interface are available for external invocation on an object. The
class may in addition implement auxiliary methods, used for internal purposes only. In
this paper, we focus on the internal verification of classes where interfaces play no role,
and where programs are assumed to be type correct. Therefore types and interfaces are
ignored in this paper (except in the ABS examples).

3

P ::= Dd∗ F ∗ In∗ Cl∗ [s] ? program
In ::= interface I [extends I+] ?{S∗} interface declaration
Cl ::= class C([T x]∗) [implements I+] {[T w]∗ [s] ? M∗} class definition
M ::= S B method definition
S ::= T m([T x]∗) method signature
B ::= {[var [T x]∗;]? [s;]? return e} method blocks
T ::= I | D | Void types(interface or data type)
v ::= x | w local variables or attributes
e ::= v | null | this | p | t | f(e∗) pure expressions
es ::= new C(e∗) | e.m(e∗) expressions with side-effects
s ::= v := e | v := es | e!m(e∗) | await g | suspend statements

| es | skip | abort | if e then s [else s]? fi | s; s
g ::= v := e.m(e∗) | e.m(e∗) | e guards

Dd ::= data D {[Co(T ∗)]∗} data type declaration
F ::= def T fn([T x]∗) = rhs function declaration
t ::= v local variables or attributes

| Co(e∗) constructor expressions
| (e, e) pair constructor

p ::= v | Co(p∗) | (p, p) pattern
rhs ::= e pure expressions

| case e{b∗} case expression
b ::= p ⇒ rhs branch

Figure 1: The BNF syntax of the ABS language with the imperative sublanguage and the
functional sublanguage, where rhs denotes a side-effect free expression in the underlying
functional language for defining data types Dd and functions F . We use [] as meta
parenthesis and let ? denote optional parts, ∗ repeated parts, + parts repeated at least
once. Thus e∗ denotes a (possibly empty) expression list.

A method definition has the form m(x){var y; s; return e}, ignoring type in-
formation, where x is the list of parameters, y an optional list of local variables, and
s; return e the body. As for class parameters, there is read-only access to the pa-
rameter list x. The value of the expression e is returned to the caller upon method
termination. To simplify the presentation without loss of generality, we assume that all
methods return a value. Methods declared with return type Void are assumed to end
with a return void statement, where void is the only value of type Void .

Processor release points influence the internal control flow in an object. A processor
release point is either declared by a guarded command await g or unconditionally
by suspend. After a processor release, an enabled and suspended process is selected
for execution. The suspend statement suspends the executing process and releases
the processor, and the suspended process is enabled whenever the processor is free.
If the guard of an await statement evaluates to false during process execution, the
continuation of the process is suspended, and the processor is released. By execution of
an external asynchronous method call await x.m(e) or await v := x.m(e), the method
m is invoked on x with input values e. The continuation of the calling process is then
suspended and becomes enabled when the call returns. Other processes of the caller may
thereby execute while waiting for the reply from x. The return value is assigned to v when
the continuation gets processor control. Execution of statement await b, where b is a

4

Boolean side-effect free expression over the state of the object, leads to no suspension if
b evaluates to true. The process is otherwise suspended, and the continuation is enabled
whenever b evaluates to true. The statement e!m(e) invokes e.m asynchronously, and
the calling process continues without waiting for the reply. The language additionally
contains statements for object creation, synchronous method calls, skip, conditionals,
loops, and sequential composition. The execution of a system is assumed to be initialized
by a system generated root object main. Object main is allowed to generate objects, but
can otherwise not participate in the execution. Especially, main provieds no methods
and invokes no methods on the generated objects.

3 Observable Behavior

The execution of a distributed system can be represented by its communication history or
trace; i.e., the sequence of observable communication events between system components
[5, 11]. At any point in time the communication history abstractly captures the system
state [6, 7]. Therefore a system may be specified by the finite initial segments of its
communication histories. A history invariant is a predicate over the communication
history, which holds for all finite sequences in the prefix-closure of the set of possible
histories, expressing safety properties [2]. To deal with concurrent objects interacting
by method calls we let the history reflect invocation events and completion events of the
called methods. To observe and reason about object creation using histories, we let the
history reveal relevant information about object creation.

Notation. Sequences are constructed by the empty sequence ε and the right append
function _⊢_ : Seq[T]× T → Seq[T] (where “_” indicates an argument position). Let
a, b : Seq[T], x, y, z : T , and s : Set[T]. Projection _/_ : Seq[T]× Set[T]→ Seq[T] is de-
fined inductively by ε/s , ε and (a ⊢ x)/s , if x ∈ s then (a/s) ⊢ x else a/s fi.
The “ends with” and “begins with” predicates _ew_ : Seq[T]× T → Bool and _bw_ :
Seq[T]× T → Bool are defined inductively by ε ew x , false, (a ⊢ x) ew y , x = y,
ε bw x , false, (ε ⊢ x) bw y , x = y, and (a ⊢ z ⊢ x) bw y , (a ⊢ z) bw y.
Furthermore, let a 6 b denote that a is a prefix of b, and # a denote the length of a. Let
Arrow be the enumeration type ranging over {→, ։,←, և}, and let Data be the type
of values that may occur as actual parameters to method calls, including Obj , Nat , and
Bool . Communication events are defined next.

Definition 1 (Communication events) Let o, o′ : Obj, m : Mtd, c : Cls, e : List[Data],
and v : Data. We define the following sets of communication events:

• the set IEv of invocation events 〈o,→, o′, m, e〉,

• the set IREv of invocation reaction events 〈o, ։, o′, m, e〉,

• the set CEv of completion events 〈o,←, o′, m, v〉,

• the set CREv of completion reaction events 〈o, և, o′, m, v〉,

• the set NEv of object creation events 〈o,→, o′, C, e〉,

• the set NREv of object creation reaction events 〈o, ։, o′, C, e〉, and

• the set Ev of all events; i.e, Ev = IEv ∪ IREv ∪ CEv ∪CREv ∪ NEv ∪ NREv.

5

o o′

o→ o′.m(e)

o և o′.m(v)

o ։ o′.m(e)

o← o′.m(v)

Figure 2: A method call cycle, where object o calls a method m on object o′. The arrows
indicate message passing, and the bullets indicates events. The events on the left hand
side are visible to o, whereas the events on the right hand side are visible to o′. Remark
that there is an arbitrary delay between message receiving and reaction.

Graphical representation of the events are given by o → o′.m(e), o ։ o′.m(e),
o ← o′.m(v), o և o′.m(v), o → o′.new C(e) and o ։ o′.new C(e). Events may
be decomposed by the functions _.caller, _.callee : Ev → Obj, _.mtd : Ev → Mtd,
_.cls : Ev→ Cls, _.par : Ev→ List[Data] and _.data : Ev→ Data. For object creation,
we assume a function parent : Obj → Obj such that parent(o) denotes the creator of o,
with parent(main) = main. Equality is the only executable operation on object identities.
Given the parent function, we may define an ancestor function anc : Obj→ Set[Obj] by
anc(main) , {main} and anc(o) = parent(o)∪anc(parent(o)) (where o 6= main). We say
that parent chains are cycle free if o /∈ anc(o) for all generated objects o.

A method call is in our model reflected by four communication events, as illustrated
in Fig. 2 where object o calls a method m on object o′. An invocation message is
sent from o to o′ when the method is called, which is reflected by the invocation event
o → o′.m(e) where e is the list of actual parameters. The event o ։ o′.m(e) reflects
that o′ starts execution of the method, and the event o ← o′.m(v) reflects method
termination. Reading the reply in object o is reflected by the event o և o′.m(v). Next
we define communication histories as a sequence of events. The creation of an object o′

by an object o is reflected by the events o→ o′.new C(e) and o ։ o′.new C(e), where
o′ is an instance of class C and e are the actual values for the class parameters. The
event o → o′.new C(e) reflects that o initiates the creation, whereas o ։ o′.new C(e)
reflects that o′ is created. When restricted to a set of objects, the communication history
contains only events that are generated by the considered objects.

Definition 2 (Communication histories) The communication history of a (sub)system
up to given time is a finite sequence of type Seq[Ev].

The communication history for a set O of objects is a finite sequence of type Seq[EvO]

6

where
IEvO , {e : IEv | e.caller ∈ O}
IREvO , {e : IREv | e.callee ∈ O}
CEvO , {e : CEv | e.callee ∈ O}
CREvO , {e : CREv | e.caller ∈ O}
NEvO , {e : NEv | e.caller ∈ O}
NREvO , {e : NREv | e.callee ∈ O}
EvO , IEvO ∪ IREvO ∪ CEvO ∪ CREvO ∪ NEvO ∪ NREvO

The local communication history of an object contains only events that are generated
by that object.

Definition 3 (Local communication histories) The local communication history
of an object o is a finite sequence of type Seq[Evo].

In this manner, the local communication history reflects the local activity of each
object. For the method call o′.m(e) made by object o as explained above, the events
o → o′.m(e) and o և o′.m(v) are local to o. Correspondingly, the events o ։ o′.m(e)
and o← o′.m(v) are local to o′. For object creation, the event o→ o′.new C(e) is local
to o whereas o ։ o′.new C(e) is local to o′.

Functions may extract information from the history. In particular, we define oid :
Seq[Ev]→ Set[Obj] as follows:

oid(ε) , {null} oid(h ⊢ γ) , oid(h) ∪ oid(γ)

oid(o→ o′.m(e)) , {o, o′} ∪ oid(e) oid(o ։ o′.m(e)) , {o, o′} ∪ oid(e)

oid(o← o′.m(v)) , {o, o′} ∪ oid(v) oid(o և o′.m(v)) , {o, o′} ∪ oid(v)

oid(o→ o′.new C(e)) , {o, o′} ∪ oid(e)

oid(o ։ o′.new C(e)) , {o, o′} ∪ oid(e)

where γ : Ev, and oid(e) returns the set of object identifiers occurring in the list e. The
function ob : Seq[Ev]→ Set[Obj× Cls× List[Data]] returns the set of created objects in
a history: ob(ε) , ∅, ob(h ⊢ o → o′.new C(e)) , ob(h) ∪ {o′ : C(e)}, and ob(h ⊢
others) , ob(h) for all other events; the function obId : Seq[Ev] → Set[Obj] returns
identities of the created objects: obId(ε) , ∅, obId(h ⊢ o→ o′.new C(e)) , obId(h) ∪
{o′}, and obId(h ⊢ others) , obId(h) for all other events. For a local history h/o 1,
the projection ob(h/o) returns all objects created by o.

In the asynchronous setting, objects may send messages at any time. Type checking
ensures that only available methods are invoked for objects of given types. Assuming
type correctness, we define the following well-formedness predicate over communication
histories:

Definition 4 (Well-formed histories) Let O be a set of object identities and h :
Seq[EvO], the well-formedness predicate wf : Seq[EvSet[Obj]]× Set[Obj] → Bool is defined

1Let h/o be the shorthand for h/Evo

7

by:

wf(ε, O) , true

wf(h ⊢ o→ o′.m(e), O) , wf(h, O) ∧ o 6= null ∧ o′ 6= null

wf(h ⊢ o ։ o′.m(e), O) , wf(h, O) ∧ o 6= null
∧ (o ∈ O⇒ valid(h, o→ o′.m(e), o ։ o′.m(e)))

wf(h ⊢ o← o′.m(v), O) , wf(h, O) ∧ valid(h, o ։ o′.m(_), o← o′.m(_))

wf(h ⊢ o և o′.m(v), O) , wf(h, O) ∧ o′ 6= null
∧ valid(h, o→ o′.m(_), o և o′.m(_)))
∧ (o′ ∈ O ⇒ valid(h, o← o′.m(v), o և o′.m(v)))

wf(h ⊢ o→ o′.new C(e), O) , wf(h, O) ∧ parent(o′) = o ∧ o′ /∈ oid(h)

wf(h ⊢ o ։ o′.new C(e), O) , wf(h, O) ∧ parent(o′) = o
∧ (o ∈ O)⇒ h ew o→ o′.new C(e)

where the validity function valid : Seq[Ev]× Ev× Ev→ Bool is defined by:

valid(h, e1, e2) , #(h/e1) > #(h/e2)

The validity check of well-formedness is defined as following. For invocation reaction
events, if the caller is in O, the method must have been called more times than the
number of started method executions. In other words, there must be more invocations
events than invocation reaction events. When sending completion events, there must
be more invocation reaction events than completion events. For completion reaction
events where the callee is in O, there must be more completion events than completion
reaction events. Remark that for object creation, the parent object and the created
object synchronize, i.e., the creation event o ։ o′.new C(e) is immediately preceded by
o→ o′.new C(e) on a composed history.

For an object o′, message sending is not visible on the local history of o′ if the sender
o is different from o′. For the message receiving o ։ o′.m(E) in Def.4, the validity check
is trivially satisfied for a well-formed local history of o′ when o 6= o′. Consequently, for
the local history of o′, the validity check only applies to local calls (i.e., where o = o′).
For a global system, i.e., where O contains all objects in the system, the validity check
is applied to all events since both the caller and the callee must be in O.

3.1 Invariant Reasoning

In interactive and nonterminating systems, it is difficult to specify and reason com-
positionally about object behavior in terms of pre- and postconditions of the defined
methods. Also, the highly non-deterministic behavior of ABS objects due to internal
suspension points complicates reasoning in terms of pre- and postconditions. Instead,
pre- and postconditions to method definitions are in our setting used to establish a
so-called class invariant.

The class invariant must hold after initialization in all the instances of the class, be
maintained by all methods, and hold at all processor release points. The class invariant
serves as a contract between the different processes of the object instance: A method
implements its part of the contract by ensuring that the invariant holds upon termination
and when the method is suspended, assuming that the invariant holds initially and
after suspensions. To facilitate compositional and component-based reasoning about
programs, the class invariant is used to establish a relationship between the internal state
and the observable behavior of class instances. The internal state reflects the values
of class attributes, whereas the observable behavior is expressed as a set of potential
communication histories. By hiding the internal state, class invariants form a suitable
basis for compositional reasoning about object systems.

8

A user-provided invariant I(w, hthis) for a class C is a predicate over the attributes w
and the local history hthis, as well as the class parameters cp and this, which are constant
(read-only) variables. The full class invariant IC(w, hthis) is obtained by strengthening
I(w, hthis) with the well-formedness property and knowledge about the initial object
creation message on the local history:

IC(w, hthis) , I(w, hthis) ∧ wf(hthis, {this})
∧ hthis bw parent(this) ։ this.new C(cp).

4 Analysis of ABS Programs

The semantics is expressed as an encoding into a sequential sublanguage without shared
variables, but with a nondeterministic assignment operator [8]. Nondeterministic history
extensions capture arbitrary activity of other processes in the object during suspension.
The semantics describes a single object of a given class placed in an arbitrary envi-
ronment. The encoding is defined in Section 4.1, and weakest liberal preconditions are
derived in Section 4.2. In Section 4.3 we consider Hoare rules derived from the weak-
est liberal preconditions. The semantics of a dynamically created system with several
concurrent objects is given by the composition rule in Section 4.4.

A call to a method of an object o′ by an object o is modeled as passing an invocation
message from o to o′, and the reply as passing a completion message from o′ to o. Sim-
ilarly, object creation is captured by a message from the parent object to the generated
object. This communication is captured by four events on the communication history,
as illustrated in Fig. 2. For a local call (i.e., o = o′), all four events are visible on the
local history of o.

4.1 Semantic Definition by a Syntactic Encoding

We consider a simple sequential language with the syntax

skip | abort | v := e | s1; s2 | if b then s1 [else s2]
? fi.

This language has a well-established semantics and proof system. In particular, Apt
shows that this proof system is sound and relative complete [3,4]. Let the language SEQ
additionally include a statement for nondeterministic assignment, assigning to y some
values x satisfying a predicate P :

y := some x . P (x)

For partial correctness, we assume that the statement does not terminate normally if no
such x can be found. In addition we include assert statements in order to state required
conditions: The statement

assert b

means that one is obliged to verify the condition b for this state, and has otherwise no
effect. Similarly assume statements are used to encode known facts. Semantically the
statement

assume b

could be understood as if b then skip else abort fi.
A process with release points and asynchronous method calls is interpreted as a non-

deterministic SEQ program without shared variables and release points, by the mapping
〈〈 〉〉, as defined in Fig. 3. Let P x

e , where x and e are of the same length, denote the
substitution of every free occurrence of x in P by e. Expressions and types are mapped
by the identity function. At the class level, the list of class attributes is augmented with

9

〈〈 s1; s2 〉〉 , 〈〈 s1 〉〉; 〈〈 s2 〉〉
〈〈skip 〉〉 , skip
〈〈abort 〉〉 , abort
〈〈 v := e 〉〉 , v := e

〈〈suspend 〉〉 , assert IC(w,H); w,H := some w′,H′ .H 6 H′ ∧ IC(w′,H′)∧
Pending(H′, caller ։ this.n(x))

〈〈if b then s1 else s2 fi 〉〉 , if b then 〈〈 s1 〉〉 else 〈〈 s2 〉〉 fi
〈〈 o.m(e) 〉〉 , H := H ⊢ this→ o.m(e); v′ := some v′ . true;
H := H ⊢ this և o.m(v′) (o 6= this)

〈〈 v := o.m(e) 〉〉 , 〈〈 o.m(e) 〉〉; v := v′;

〈〈 o!m(e) 〉〉 , H := H ⊢ this→ o.m(e)

〈〈await o.m(e) 〉〉 , H := H ⊢ this→ o.m(e); o′ := o; 〈〈suspend 〉〉; v′ := some v′ . true;
H := H ⊢ this և o′.m(v′);assume wf(H) (o 6= this)

〈〈await v := o.m(e) 〉〉 , 〈〈await o.m(e) 〉〉; v := v′;

〈〈 this.m(e) 〉〉 , H := H ⊢ this→ this.m(e);assert IC(w,H);
v′, w,H := some v′, w′,H′ .H 6 H′ ∧ IC(w′,H′) ∧ Pending(H′, caller ։ this.n(x))∧

(∀z . Sx,caller
e,this ⇒ Rreturn,w,H

v′,w′,H′);

H := H ⊢ this և this.m(v′);assume wf(H) (z = FV (S, R) \ w,H, cp)

〈〈 v := this.m(e) 〉〉 , 〈〈 this.m(e) 〉〉; v := v′;

〈〈await this.m(e) 〉〉 , H := H ⊢ this→ this.m(e);assert IC(w,H);
v′, w,H := some v′, w′,H′ .H 6 H′ ∧ IC(w′,H′) ∧ Pending(H′, caller ։ this.n(x))
H := H ⊢ this և this.m(v′);assume wf(H)

〈〈await v := this.m(e) 〉〉 , 〈〈await this.m(e) 〉〉; v := v′;

〈〈await b 〉〉 , if b then skip else assert IC(w,H);
w,H := some w′,H′ .H 6 H′ ∧ IC(w′,H′) ∧ Pending(H′, caller ։ this.n(x)) ∧ bw

w′ fi
〈〈 x := new C(e) 〉〉 , x′ := some x′.parent(x′) = this ∧ x′ /∈ oid(H);
H := H ⊢ this→ x′.newC(e); x := x′

〈〈m(x) B 〉〉 , H := H ⊢ caller ։ this.m(x); 〈〈B 〉〉;
H := H ⊢ caller← this.m(return);assume wf(H)

〈〈return e 〉〉 , return := e

Figure 3: ABS syntactic equations. The assumptions reflect that the history in an exe-
cution is welldefined. For non-deterministic extension of H, we let n(x) be the enclosing
method of the statements.

this : Obj and H : Seq[Evthis], representing self reference and the history, respectively.
We let wf(H) abbreviate wf(H, {this}).

The semantics of a method is defined from the local perspective of processes. A
SEQ processes executes on a state w∪H extended with local variables. The local effect
of executing an invocation or a release statement is that w and H may be updated
due to the execution of other processes. In the encoding, these updates are captured
by nondeterministic assignments to w and H. When a method m(x) starts execution,
the local communication history is extended by H := H ⊢ caller ։ this.m(e). The
termination of a local process, representing a method invocation, extends H with a
completion message: H := H ⊢ caller← this.m(v), where v is the return value of m.

When the process executes an invocation statement x.m(e), the history is extended
by an output message: H := H ⊢ this → x.m(e), and fetching the reply is encoded by
H := H ⊢ this և x.m(v). When a process is suspended waiting for a reply, it preserves
the invariants and a nondeterministic update of w and H captures execution by the en-

10

(1) H = 〈parent(this) ։ this.new C(cp)〉 ⇒ wlp(init, IC(H, w))
(2) IC(H, w)⇒ wlp(〈〈m(x) B 〉〉, IC(H, w))
(3) S(H, w)⇒ wlp(〈〈m(x) B 〉〉, R(H, w))

Figure 4: Verification conditions for ABS methods. Condition 1 is for class initialization
to establish the invariant. init refers to the initialization block of the class. Condition 2
ensures that the invariant is maintained by each encoding of method m(x) B. Condition
3 is used to verify local synchronous calls, where S is the precondition and R is the
postcondition for the encoding of method m(x) B.

vironment and by other processes in the same object. For partial correctness reasoning,
we may assume that processes are not suspended infinitely long. Consequently, non-
deterministic assignment captures the possible interleaving of processes in an abstract
manner.

In the encoding of object creation, nondeterministic assignments are used to construct
unique identifiers. The parent relationship is captured by updating the history with a
creation message, which also ensures that the values of the class parameters are visible
on the local history of the new object.

The following Pending function describes that method calls are not completed.
Pending : Seq[Ev]× Ev→ Bool :

Pending(h, o ։ o′.m(e)) , #(h/o ։ o′.m(e)) > #(h/o← o′.m(_))

In Fig. 3, the usage of Pending captures that the current process is not terminated
during suspension.

Lemma 1 The local history of an object is well-formed for any legal execution.

Proof. Preservation of well-formedness is trivial for statements that do not extend
the local history H, and we need to ensure well-formedness after extensions of H. Well-
formedness is maintained by processor release points since the class invariant implies
well-formedness. Extending the history with invocation or invocation reaction events
maintains well-formedness of the local history. It follows straightforwardly that wf(H) is
preserved by the encoding of statement o.m(e). For the remaining extensions, i.e., com-
pletion and completion reaction events, well-formedness is guaranteed by the assume
statements following the different extensions.

4.2 Weakest Liberal Preconditions

Based on the encoding from ABS to SEQ , we may define weakest liberal preconditions
for the different ABS statements. The verification conditions of a class C with invariant
IC(H, w) are summarized in Fig. 4. Condition (1) applies to the initialization block init

of C, requiring that the invariant is established when init terminates. We may reason
about possible processor release points in init by the weakest liberal preconditions given
below. Condition (2) of Fig. 4 applies to each method m(x) B defined in C; ensuring
that each method maintains the class invariant. Condition (3) is used in order to prove
additional knowledge for local synchronous calls. For method m(x) B which starts
execution in a state where precondition S holds, the postcondition R must hold when
the method terminates. Remark that S and R may violate the class invariant.

The weakest liberal precondition for nondeterministic assignment is given by:

wlp(y := some x . P (x), Q) = ∀x . (P (x)⇒ Qy
x)

11

wlp(s1; s2, Q) , wlp(s1,wlp(s2, Q))

wlp(skip, Q) , Q

wlp(abort, Q) , false

wlp(v := e, Q) , Qv
e

wlp(suspend, Q) , IC(w,H) ∧ ∀w′,H′ . (H 6 H′ ∧ IC(w′,H′)∧

Pending(H′, caller ։ this.n(x)))⇒ Qw,H
w′,H′

wlp(if b then s1 else s2 fi, Q) , if b then wlp(s1, Q) else wlp(s2, Q)

wlp(o.m(e), Q) , ∀v′ . QH
H⊢this→o.m(e)⊢thisևo.m(v′) (o 6= this)

wlp(v := o.m(e), Q) , ∀v′ . Qv,H

v′,H⊢this→o.m(e)⊢thisևo.m(v′) (o 6= this)

wlp(o!m(e), Q) , QH
H⊢this→o.m(e)

wlp(await o.m(e), Q) , IC(w,H ⊢ this→ o.m(e))∧
∀v′, w′,H′ . ((H ⊢ this→ o.m(e) 6 H′) ∧ IC(w′,H′) ∧ wf(H′ ⊢ this և o.m(v′)))

⇒ Qw,H

w′,H′⊢thisևo.m(v′) (o 6= this)

wlp(await v := o.m(e), Q) , wlp(await o.m(e), Qv
v′)

wlp(this.m(e), Q) , IC(w,H ⊢ this→ this.m(e)) ∧ ∀v′, w′,H′ .

(H ⊢ this→ this.m(e) 6 H′ ∧ (∀z . Sx,caller,H

e,this,H⊢this→this.m(e) ⇒ Rreturn,w,H
v′,w′,H′)

∧IC(w′,H′) ∧ Pending(H′, caller ։ this.n(x)) ∧ wf(H′ ⊢ this և this.m(v′)))

⇒ Qw,H

w′,H′⊢thisևthis.m(v′) (z = FV (S, R) \ w,H, cp)

wlp(v := this.m(e), Q) , wlp(this.m(e), Qv
v′)

wlp(await this.m(e), Q) , IC(w,H ⊢ this→ this.m(e)) ∧ ∀v′, w′,H′ .
(H ⊢ this→ this.m(e) 6 H′ ∧ IC(w′,H′) ∧ Pending(H′, caller ։ this.n(x))∧

wf(H′ ⊢ this և this.m(v′)))⇒ Qw,H

w′,H′⊢thisևthis.m(v′)

wlp(await v := this.m(e), Q) , wlp(await this.m(e), Qv
v′)

wlp(await b, Q) , if b then Q else IC(w,H)∧

∀w′,H′ . (H 6 H′ ∧ IC(w′,H′) ∧ Pending(H′, caller ։ this.n(x)) ∧ bw
w′)⇒ Qw,H

w′,H′

wlp(x := new C(e), Q) , ∀x′ . (parent(x′) = this ∧ x′ /∈ oid(H))⇒ Qx,H

x′,H⊢this↔x′.newC(e)

wlp(m(x) B, Q) , wlp(H := H ⊢ caller ։ this.m(x); B;
H := H ⊢ caller← this.m(return),wf(H)⇒ Q)

wlp(return e, Q) , Qreturn
e

Figure 5: Weakest liberal preconditions for ABS statements.

assuming that x is disjoint from FV [Q] - {y}. The side condition may easily be satisfied,
since variable names in some expressions may be renamed to avoid name captures. The
weakest precondition for assert statements is given by:

wlp(assert b, Q) = b ∧Q

and similarly for assumptions:

wlp(assume b, Q) = b⇒ Q

Weakest liberal preconditions for the different ABS statements are summarized in Fig. 5,
which are straight forwardly derived from the encoding in Fig. 3.

4.3 Hoare Logic

The central feature of Hoare logic is the Hoare triple, of the form {P}s{Q}. Triples
{P}s{Q} have a standard partial correctness semantics: if s is executed in a state where

12

{wf(H)} s {wf(H)}

{H0 = H} s {H0 6 H}

{Pending(H, caller ։ this.m(e))} s {Pending(H, caller ։ this.m(e))}

{P} skip {P}

{true} abort {false}

{P x
e } x := e {P}

{IC} suspend {IC}

{IC} await b {IC ∧ b}

{Q ∧ b} await b {Q ∧ b}

{IC
H

H ⊢ this→o.m(e)∧ o′ = o} await v := o.m(e) {H ew this և o′.m(v) ∧ ∃v . IC
H

pop(H)}

{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

{P ∧B}S{Q} (P ∧ ¬B)⇒ Q

{P}if B then S fi{Q}

{P ∧B}S1{Q} {P ∧ ¬B}S2{Q}

{P}if B then S1 else S2 fi{Q}

(P ′ ⇒ P) {P}S{Q} (Q ⇒ Q′)

{P ′}S{Q′}

Figure 6: Derived Hoare Rules. IC denotes the class invariant. Primed variables are
logical variables, and pop denotes the (left) rest operation, and S ranges over ABS
statements, which may not use H as a program variable.

P holds and the execution terminates, then Q holds after s has terminated. Both weakest
liberal preconditions and Hoare reasoning may be used in the same proof, since proving
{P}s{Q} is the same as proving P ⇒ wlp(s, Q). If wlp(s, Q) also implies P , we say that
{P}s{Q} is complete with respect to the weakest liberal precondition. The Hoare rules
in Fig. 6 follow directly from the weakest liberal preconditions in Fig. 5 and Lemma 1.
Application of Hoare rules instead of wlp may simplify proofs since quantifiers are not
used for nondeterministic assignment. For instance, for a boolean guard b, the triple
{IC}await b{IC ∧ b} follows directly from wlp(await b, IC ∧ b). In order to avoid
the problem of undefined right-hand-side expressions, we assume defined default values
for all types and that partial functions are applied only when defined, i.e., writing if
y 6= 0 then x := 1/y else abort fi instead of x := 1/y.

Processor release points are encoded as nondeterministic assignments to w and H.
Thus, the values of variables declared local to the method are not changed during method
suspension. For an assertion L over local variables and any guard g, the Hoare triples
{L}suspend{L} and {L}await g{L} follow directly from the weakest liberal precon-

13

{IC
H

pop(H)∧H ew caller ։ this.m(x)}B{wf(H ⊢ caller← this.m(return))⇒ IC
H

H⊢caller←this.m(return)}

Figure 7: Hoare triple formulation of verification condition (2) in Fig. 4 for the method
m(x) B.

ditions.
The syntactic encoding of a method m in Fig. 3 reveals the reaction event (H ⊢H

caller ։ this.m(x)) and completion event(H ⊢H caller ← this.m(return)). Verification
condition (2) in Fig. 4 may then be formulated as the Hoare triple given in Fig. 7, where
the pre- and postconditions to the method body are derived by standard reasoning.

4.4 Object Composition

By organizing the state space in terms of only locally accessible variables, including a
local history variable recording local communication messages, we obtain a compositional
reasoning system. By hiding the internal state variables of an object o of class C, an
external invariant Io:C(e) defining its observable behavior on its local history ho may be
obtained:

Io:C(e)(ho) , ∃w . (IC(w, ho))
this,cp
o,e

The substitution replace the free occurrence of this with o and instantiates the class
parameters with the actual ones, and the existential quantifier hides the local state
variables.

For object composition, it suffices to compare the local histories of the composed
objects. For this purpose, we adapt a composition method introduced by Soundarajan
[14,15]. When composing objects, the local histories of the composed objects are merged
to a common history containing all the events of the composed objects. Local histories
must agree on common messages when composed, expressed by projections from the
common history. Thus, for a set O of objects with history H , we require that the
projection of H on each object, e.g. o, is the same as the local history of object o:

H/o = ho

When reasoning about a global system, we assume the existence of system generated
object main, such that all object are created by main or generated objects. Thus, main is
an ancestor of all objects. The global invariant of such a system of dynamically created
objects may be constructed from the local invariants of the composed objects, requiring
well-formedness of global history. The global invariants I(H) of a global system with
history H is

I(H) , (
∧

(o:C(e))∈ob(H)

Io:C(e)(H/o)) ∧ wf(H, obId(H) ∪ {main})

The quantification ranges over all generated objects in the composition, which is a finite
number at any execution point. Note that the global invariant is obtained directly from
the external invariants of the composed objects, without any restrictions on the local
reasoning. This ensures compositional reasoning. Notice also that we consider dynamic
systems where the number and identities of the composed objects are nondeterministic.
Since object identities are only created by new statements, it follows that for a global
system with history H , that obId(H) ∪ {main} = oid(H) \ {null}. Since main is the
initial root object, the creation of main is not reflected on the global history H , i.e.,
main /∈ obId(H). The following lemma ensures that parent chains are cycle free for
global systems.

14

Lemma 2 Given a global system with history H and invariant I(H), then

∀o ∈ obId(H) . o /∈ anc(o) ∧main ∈ anc(o) ∧ (anc(o) \ {main}) ⊆ obId(H)

Proof. By induction over the length of H . The base case H = ε is trivial. For the
induction step, we consider a history of the form H ⊢ γ, for γ : Ev, and prove

∀o ∈ obId(H ⊢ γ) . o /∈ anc(o) ∧main ∈ anc(o) ∧ (anc(o) \ {main}) ⊆ obId(H ⊢ γ)

under induction hypothesis IH : ∀o ∈ obId(H) . o /∈ anc(o) ∧ main ∈ anc(o) ∧ (anc(o) \
{main}) ⊆ obId(H). The conclusion follows from IH for all γ except γ : NEv (object
creation events), since we then have obId(H ⊢ γ) = obId(H).

For the case H ⊢ o → o′.new (ignoring the class of o′), well-formedness of H gives
parent(o′) = o ∧ o′ /∈ oid(H). We distinguish two cases, o = main and o 6= main.
Case o = main: The conclusion follows directly by anc(o′) = main.
Case o 6= main: The conclusion follows from IH and the proof obligation:

o′ /∈ anc(o′) ∧main ∈ anc(o′) ∧ (anc(o′) \ {main}) ⊆ obId(H)

By the definition of anc, the proof obligation becomes

o′ /∈ {o} ∪ anc(o) ∧main ∈ {o} ∪ anc(o) ∧ (({o} ∪ anc(o)) \ {main}) ⊆ obId(H)

By o ∈ oid(H ⊢ o → o′.new), we have o ∈ obId(H ⊢ o → o′.new) since H is global.
Thus, o ∈ obId(H), and since o′ /∈ oid(H), we have o 6= o′. The proof obligation then
reduces to

o′ /∈ anc(o) ∧main ∈ anc(o) ∧ (anc(o) \ {main}) ⊆ obId(H)

Since o ∈ obId(H), we have main ∈ anc(o) and (anc(o) \ {main}) ⊆ obId(H) by IH . The
proof obligation then follows since o′ /∈ oid(H).

5 Reader/Writer Example

This section gives an example of the readers and writers problem implemented in the
ABS language. Also, we define safety invariants and illustrate the reasoning system
through verification of these invariants.

5.1 Implementation

We assume given a shared database db, which provides two basic operations read and
write. Through interface specifications, these are assumed to be accessible for RWCon-
troller objects. Clients will communicate with a RWController object to obtain read and
write access to the database. An implementation of RWController can be found in Fig.8.
The RWController provides read and write operations to clients and in addition four
methods used to synchronize reading and writing activity: openR (OpenRead), closeR
(CloseRead), openW (OpenWrite) and closeW (CloseWrite). A reading session happens
between invocations of openR and closeR and writing between invocations of openW and
closeW. A client is assumed not to terminate unless it has invoked closeR and closeW
at least as many times as openR and openW, respectively. To ensure fair competition
between readers and writers, invocations of openR and openW compete on equal terms
for a guard writer = null. The attribute readers contains the clients with read access,
writer contains the client with write access, and pr counts the number of pending calls
to method db.read. The readers set is extended by execution of openR, where the guard

15

class RWController() implements RW{
DB db; DataSet readers; Obj writer; Int pr;

{db := new DataBase(); readers := Empty; writer := null; pr := 0;}

Void openR(){await writer = null; readers := Cons(caller, readers);}

Void closeR(){readers := delete(caller, readers);}

Void openW(){await writer = null; writer := caller;}

Void closeW(){await writer = caller; writer := null;}

Data read(Int key){
Data result;
await isElement(caller, readers);
pr := pr +1; await result := db.read(key); pr := pr −1;
return result;

}

Void write(Int key, Data value){
await caller = writer && readers = Empty && pr = 0;
db.write(key, value);

}
}

Figure 8: Implementation of the fair reader/writer controller

ensures that there is no writer. By openW, a client will gain write access if there cur-
rently is no writer. A client may thereby become the writer even if readers is nonempty.
The guard in openR will then be false, which means that new invocations openR will be
delayed, and the write operations initiated by the writer will be delayed until the current
reading activity is completed. The client contained in writer will eventually be allowed
to perform write operations since all active readers are assumed to call closeR at some
point. Thus, even though readers may be nonempty while writer contains a client, the
controller ensures that reading and writing activity cannot happen simultaneously on
the database. Remark that a client contained in writer is not allowed to sign up for
reading (the example may be modified in order to give read access to the writer). The
complete implementation of the example can be found in Appendix A.

5.2 Specification and Verification

Next we define a safety invariant for the RWController class, expressing a relation between
observable communication and internal state of class instances. The internal state is
given by the values of the class attributes, and functions over the local communication
history are used to extract relevant information from the history. Define the function
Readers : Seq[Ev]→ Set[Obj] by:

Readers(ε) , ∅
Readers(h ⊢ o← this.openR) , Readers(h) ∪ {o}
Readers(h ⊢ o← this.closeR) , Readers(h) \ {o}
Readers(h ⊢ others) , Readers(h)

in which others matches all ground terms not giving any match in the above equations.
Upon termination of openR, the caller is added to the set of readers and the caller is
removed from the set upon termination of closeR. We furthermore assume a function

16

Writers, defined over completions of openW and closeW in a corresponding manner, see
Appendix B. Also define Reading : Seq[Ev]→ Nat by:

Reading(h) , #(h/this→ db.read)−#(h/this և db.read)

Thus, the function Reading(h) computes the difference between the number of initated
calls to db.read and reaction event from this method. The function Writing follows the
same pattern over calls to db.write, the definition can be found in Appendix C.

The safety invariant I is defined over the class attributes and the local history by:

I , I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 ∧ I6 ∧ I7

where
I1 , Readers(H) = readers

I2 , Writers(H) = {writer}
I3 , #{writer} 6 1

I4 , Reading(H) = pr

I5 , Writing(H) > 0⇒ pr = 0

I6 , Reading(H) > 0 ∧Writing(H) > 0

I7 , OK(H)

The invariant illustrates how the values of class attributes may be expressed in terms
of observable communication, e.g., Readers(H) has the same value as readers. In ad-
dition, the invariant I implies Reading(H) = 0 ∨ Writing(H) = 0, i.e. no reading and
writing activity happens simultaneously. The predicate OK : Seq[Ev] → Bool is defined
inductively over the history by:

OK(ε) , true

OK(h ⊢ _← this.openR) , OK(h) ∧Writers(h) = ∅ (1)

OK(h ⊢ _← this.openW) , OK(h) ∧Writers(h) = ∅ (2)

OK(h ⊢ this→ db.write) , OK(h) ∧ Readers(h) = ∅ ∧

Reading(h) = 0 ∧ Pending(h,Writers(h) ։ this.write) (3)

OK(h ⊢ this→ db.read) , OK(h) ∧

(∃r .Pending(h, r ։ this.read) ∧ r ∈ Readers(h)) (4)

OK(h ⊢ others) , OK(h) (5)

Here, conditions (1) and (2) reflects the fairness condition: invocations of openR and
openW compete on equal terms for the guard writer = null, which equals Writers(H) = ∅
by I2. While writer is not null, conditions (1) and (2) additionally ensure that no clients
can be included in the readers set or be assigned to writer. Condition (3) is an abstraction
of the guard in write: when invoking db.write, there cannot be any readers or any pending
calls to db.read. Furthermore, there must be an uncompleted invocation of this.write,
with the registered writer as the caller. Correspondingly, Condition (4) expresses that
when invoking db.read, there must be a pending call to this.read, and the caller of this.read
must be in the set of registered readers.

As a verification example, the verification of read with respect to I1 is presented in
Fig. 9. The verification succeeds by application of the Hoare rules in Fig. 6 and the
derivation in Fig. 7. Especially, the await statement is analyzed by the derived rule.
The complete verification of this case study can be found in Appendix D.

17

{Readers(H) = readers}
await writer = null;
{Readers(H) = readers ∧ writer = null}
{Readers(H) ∪ {caller} = Cons(caller, readers)}
readers := Cons(caller, readers)
{Readers(H) ∪ {caller} = readers}

Figure 9: Verification details for the body of method read with respect to the invariant I1.
Here, two consecutive predicates {P}{Q} resolves to the verification condition P ⇒ Q.

6 Related and Future Work

Related Work. The work is based on [1, 9], but the syntactic encoding is based on a
different notion of locality. In [9] message sending is visible on the local history of both
the caller and the callee. Thus, message sending leads to restrictions on the local history
of the receiver. Here we solved the problem by redefining message sending, which is
considered as a local action of the sender, whereas reacting upon the message is con-
sidered as a local action of the receiver. When composed, each reaction by the receiver
must match a sent message. In contrast to the earlier work, the current approach allows
unrestricted use of assumptions on the environment. This is valuable when reasoning
about objects in an open environment.

Future Work. A sound and complete reasoning system for ABS language have been
developed in this work. The next milestone of our research is to implement this rea-
soning system in the theorem prover framework of KeY, and make (semi-)automatic
verification possible. We will then make a larger case study in ABS with the reasoning
support of KeY.

7 Conclusion

The state space of distributed system will often be infinite. Therefore reasoning about a
distributed system with model checking approaches is problematic. In order to solve this
problem, we develop a compositional reasoning systems, choosing ABS as our language
for modeling distributed systems, due to its high-level concurrency and communication
mechanisms. In our reasoning system, the communication between objects in the dis-
tributed setting can be analyzed locally for each object and composed at need without
having any knowledge of other objects’ state. A complete communication of a method
call between two objects is recorded by four events, with a partial ordering captured by
the notion of well-formedness. The verification of a class can be done locally by means
of verifying a class invariant, letting the invariant refer to the attributes and the local
communication history. The history reflects the sequence of communication events and
allows a compositional system for reasoning about distributed concurrent objects. Our
system is sound and complete by construction, and is easy to apply in the sense that
class reasoning is similar to standard sequential reasoning, but with the addition of ef-
fects on the local history for statements involving methods calls. In this paper, we have
shown the verification of a reader-writer example in the ABS language using the proof
system we develop.

18

References

[1] W. Ahrendt and M. Dylla. A system for compositional verification of asynchronous
objects. Science of Computer Programming, In Press, 2010.

[2] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters,
21(4):181–185, Oct. 1985.

[3] K. R. Apt. Ten years of Hoare’s logic: A survey — Part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, Oct. 1981.

[4] K. R. Apt. Ten years of Hoare’s logic: A survey — Part II: Nondeterminism.
Theoretical Computer Science, 28(1–2):83–109, Jan. 1984.

[5] M. Broy and K. Stølen. Specification and Development of Interactive Systems.
Monographs in Computer Science. Springer-Verlag, 2001.

[6] O.-J. Dahl. Object-oriented specifications. In Research directions in object-oriented
programming, pages 561–576. MIT Press, Cambridge, MA, USA, 1987.

[7] O.-J. Dahl. Verifiable Programming. International Series in Computer Science.
Prentice Hall, New York, N.Y., 1992.

[8] J. Dovland, E. B. Johnsen, and O. Owe. Verification of concurrent objects with
asynchronous method calls. In Proceedings of the IEEE International Conference on
Software - Science, Technology & Engineering (SwSTE’05), pages 141–150. IEEE
Computer Society Press, Feb. 2005.

[9] J. Dovland, E. B. Johnsen, and O. Owe. Observable Behavior of Dynamic Systems:
Component Reasoning for Concurrent Objects. Electronic Notes in Theoretical
Computer Science, 203(3):19–34, 2008.

[10] R. Hähnle, E. B. Johnsen, B. M. Østvold, J. Schäfer, M. Steffen, and A. B.
Torjusen. Deliverable D1.1A Report on the Core ABS Language and Method-
ology: Part A. http://www.cse.chalmers.se/research/hats/sites/
default/files/Deliverable11a_rev2.pdf, 2010.

[11] C. A. R. Hoare. Communicating Sequential Processes. International Series in Com-
puter Science. Prentice Hall, 1985.

[12] International Telecommunication Union. Open Distributed Processing - Reference
Model parts 1–4. Technical report, ISO/IEC, Geneva, July 1995.

[13] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling, 6(1):35–58, Mar. 2007.

[14] N. Soundararajan. Axiomatic semantics of communicating sequential processes.
ACM Transactions on Programming Languages and Systems, 6(4):647–662, Oct.
1984.

[15] N. Soundararajan. A proof technique for parallel programs. Theoretical Computer
Science, 31(1-2):13–29, May 1984.

19

A Complete Code of Fairness Reader/Writer

data Data{int(Int) bool(Bool) string(String) obj(Obj) Nothing}
data Map{Empty Bind(Int, Data, Map)}
data DataSet{Empty Cons(Data, DataSet)}

def Bool isElement(Data data, DataSet list) =
case list{

Empty => False;
Cons(d, l) =>

data == d || isElement(data, I)
}

def Data lookup(Int key, Map map) =
case map{

Empty => null;
Bind(k, d, m) =>

if (key == k) {d}
else {lookup(key, m)}

}

def ListData delete(Data data, DataSet list) =
case list{

Empty => Empty;
Cons(d, l) =>

if (data == d) {delete(data, I)}
else {Cons(d, delete(data, l))}

}

def Map modify(Int key, Data data, Map map) =
case map{

Empty => Bind(key, data, Empty);
Bind(k, d, m) =>

if (key == k) {Bind(k, data, m)}
else {Bind(k, d, modify(key, data, m))}

}

interface RW{
Void openR();
Void closeR();
Void openW();
Void closeW();
Data read(Int key);
Void write(Int key, Data data);

}

interface DB{
Data read(Int key);
Void write(Int key, Data data);

}

class DataBase implements DB{
Map map;

{map == Empty;}

20

Data read(Int key){
return lookup(key, map);

}

Void write(Int key, Data data){
map := modify(key, data, map);

}
}

class RWController() implements RW{
DB db; DataSet readers; Obj writer; Int pr;

{db := new DataBase(); readers := Empty; writer := null; pr := 0;}

Void openR(){await writer = null; readers := Cons(caller, readers);}

Void closeR(){readers := delete(caller, readers);}

Void openW(){await writer = null; writer := caller;}

Void closeW(){await writer = caller; writer := null;}

Data read(Int key){
Data result;
await isElement(caller, readers);
pr := pr +1; await result := db.read(key); pr := pr −1;
return result;

}

Void write(Int key, Data value){
await caller = writer && readers = Empty && pr = 0;
db.write(key, value);

}
}

B Definition of Writers

Writers : Seq[Ev]→ Set[Obj]

Writers(ε) , ∅
Writers(h ⊢ o← this.openW) , Writers(h) ∪ {o}
Writers(h ⊢ o← this.closeW) , Writers(h) \ {o}
Writers(h ⊢ others) , Writers(h)

C Definition of Writing

Writing : Seq[Ev]→ Nat

Writing(h) , #(h/this→ db.write)−#(h/this և db.write)

D Verification Details for RWController

We here present the verification details for each method in RWController, with respect
to the user defined invariant I (Section 5.2). For each method we only show the relevant
parts of I, the verification for the remaining parts of I is trivial.

21

D.1 openR

I2∧7 :

{OK(H) ∧Writers(H) = {writer}}
await writer = null;
{OK(H) ∧Writers(H) = {writer} ∧ writer = null}
{OK(H) ∧Writers(H) = ∅ ∧Writers(H) = {writer}}
readers := Cons(caller, readers)
{OK(H) ∧Writers(H) = ∅ ∧Writers(H) = {writer}}

D.2 openW

I2∧3∧7 :

{(OK(H) ∧Writers(H) = {writer}∧#(Writers(H)) 6 1)}
await writer = null;
{(OK(H) ∧Writers(H) = {writer}∧#(Writers(H)) 6 1) ∧ writer = null}
{OK(H) ∧Writers(H) = ∅ ∧Writers(H) ∪ {caller} = {caller} ∧
#(Writers(H) ∪ {caller}) 6 1}
writer := caller
{OK(H) ∧Writers(H) = ∅ ∧Writers(H) ∪ {caller} = {writer} ∧
#(Writers(H) ∪ {caller}) 6 1}

D.3 closeR

I1 :

{Readers(H) = readers}
{Readers(H) \ {caller} = delete(caller, readers)}
readers := delete(caller, readers);
{Readers(H) \ {caller} = readers}

D.4 closeW

I2 :

{Writers(H) = {writer}}
await writer = caller;
{Writers(H) = {writer} ∧ writer = caller}
{Writers(H) \ {caller} = {null}}
writer := null;
{Writers(H) \ {caller} = {writer}}

D.5 read

I1∧4∧7 :

{OK(H) ∧Readers(H) = readers ∧ Reading(H) = pr ∧ Pending(H, caller ։ this.write)))}
await isElement(caller, readers);
{OK(H)∧Readers(H) = readers∧Reading(H) = pr∧Pending(H, caller ։ this.write)))∧

22

isElement(caller, readers)}
{OK(H) ∧ (∃r .Pending(H, r ։ this.read) ∧ r ∈ Readers(H))
∧ Readers(H) = readers ∧ Reading(H) + 1 = pr + 1}

pr := pr + 1;
{OK(H) ∧ (∃r .Pending(H, r ։ this.read) ∧ r ∈ Readers(H))
∧ Readers(H) = readers ∧ Reading(H) + 1 = pr}

await result := db.read(key);
{(∃result . I1∧4∧7

H

pop(H)) ∧H ew this և db.read(result)}
{OK(H) ∧Readers(H) = readers ∧ Reading(H) = pr− 1}
pr := pr− 1;
{OK(H) ∧Readers(H) = readers ∧ Reading(H) = pr}
return result;
{OK(H) ∧Readers(H) = readers ∧ Reading(H) = pr}

D.6 write

I1∧2∧4∧5∧7 :

{OK(H) ∧Writers(H) = {writer} ∧ Readers(H) = readers ∧ Reading(H) = pr ∧
(Writing(H) > 0⇒ pr = 0) ∧ Pending(H, caller ։ this.write))}

await caller = writer && readers = Empty && pr = 0;
{OK(H) ∧Writers(H) = {writer} ∧ Readers(H) = readers ∧ Reading(H) = pr ∧

(Writing(H) > 0⇒ pr = 0 ∧ Pending(H, caller ։ this.write))) ∧
(caller = writer ∧ readers = Empty ∧ pr = 0)}
{OK(H) ∧ Readers(H) = ∅ ∧ Reading(H) = 0 ∧ Pending(H,Writers(H) ։ this.write) ∧

Writers(H) = {writer} ∧ Readers(H) = readers ∧ Reading(H) = pr ∧
(Writing(H) > 0⇒ pr = 0)}

db.write(key, value);
{OK(H) ∧Writers(H) = {writer} ∧ Readers(H) = readers ∧ Reading(H) = pr ∧

(Writing(H) > 0⇒ pr = 0)}

23

