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Abstract

The flux of terrestrial dissolved inorganic phosphorous (DIP, i.e. PO4*) via rivers
into coastal seas is usually calculated by simply multiplying its concentration with the
corresponding water tflow at the river mouth. Subsequent adsorption/desorption of
DIP onto suspended sediment and the influence of salinity in the estuary are often
overlooked. A series of DIP adsorption/desorption experiments under different
salinities (0, 5, 15, 30) and suspended sediment concentrations (1-40 g L) were
conducted in order to assess the potential influence of these factors on the overall DIP
loading to the coastal zone. The effect of different sea-salt ions on DIP
adsorption/desorption was also assessed by comparing different experimental
solutions (NaCl solution, artificial seawater and real seawater). In estuaries, the
adsorption of DIP to suspended sediments was greater than desorption, and the net
adsorption increased with increasing concentration of suspended sediments and
salinity. This enhanced DIP adsorption onto suspended sediment reduces the riverine
discharge of DIP to coastal ecosystems. Disregarding this process, especially for the
gated estuaries with high sediment resuspension, potentially leads to an
overestimation of the terrestrial DIP input to the coastal region.

Key words: seaward dissolved inorganic P flux; adsorption/desorption;

suspended sediment; salinity
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1. Introduction

Anthropogenic pressure on estuarine and coastal environments is increasing,
due to the growing population along the coast (CIESIN, 2018). Coastal eutrophication
is one of the most severe and wide-spread environmental problems, primarily caused
by intensified influx of riverine nutrients (phosphorus and nitrogen) (Ballagh et al.,
2019). Hence, quantification of nutrient inputs from land to sea is important for
understanding and managing coastal eutrophication.

Typically, the nutrient flux to the sea is calculated by multiplying nutrient
concentrations at the river mouth with corresponding water flow. However, this
approach neglects the important physicochemical processes taking place in the
estuarine systems, such as adsorption and desorption of nutrients on suspended
sediment. These processes are highly affected by changing physicochemical
conditions along the estuarine-coastal gradient. The calculated nutrient flux may
therefore not represent an “effective” input to the coastal zone. These processes must
therefore be taken into account when estimating the riverine loading of a pollutant,
especially regarding particle-reactive chemical species such as phosphate (PO4>).
This is particularly the case for estuaries with river inflow controlled by gates,
signified by pulsed flow patterns and high sediment resuspension. The complex
chemical and hydrodynamic environment in estuaries fed by gated rivers aftects the P
cycling processes and thereby the DIP flux to the sea (Wang et al., 2010; Zhang et al.,
2019a; Meng et al., 2014a). Although the total influx from gated rivers is lower than
that from rivers without gates or dams, the increased hydrodynamic turbulence during
discharge pulses enhances sediment resuspension, especially during the flood season
(Duan et al., 2008; Lehner et al., 2011; Zarfl et al., 2015; Eiriksdottir et al., 2017;
Ding et al., 2019). According to field investigation and other studies, the highest
measured sediment concentration in gated rivers or the maximum estuarine turbidity
zones is around 40 g L-1 ( Uncles et al., 2006; Snedden et al., 2007; He et al., 2010;

Yao et al., 2016; Palinkas et al., 2019).
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Phosphorus (P) is an essential element for phytoplankton growth and DIP
typically limits primary production during spring in estuaries receiving high inputs of
nitrogen (Ruttenberg, 1992; Ballagh et al., 2019). Rivers are the dominant source of P
to coastal seas (Benitez-Nelson, 2000). Accurate estimates of the riverine flux of
bioavailable P (i.e., mainly dissolved inorganic phosphate, DIP) is a prerequisite for
selecting appropriate abatement strategies to ensure a sustainable management of the
coastal environment (Ding et al., 2019; Palinkas et al., 2019; Liu et al., 2020).

The transport and transformation of P through an estuary is governed by a
complex set of processes. In addition to a large number of environmental factors in
the water column affecting DIP concentrations, processes at the sediment-water
interface also influence P transformations and thereby the P flux (Wang et al., 2012;
Kang et al., 2018; Rapin et al., 2019). For example, oscillations in organic matter
content and redox enhance P release from sediment (Wang et al., 2012; Kang et al.,
2018), while submerged macrophytes will enhance DIP uptake (Wang et al., 2012). In
estuaries, the interaction between DIP in water and suspended sediments is a key
process controlling bioavailable P. Suspended sediments can efficiently scavenge DIP
from the water column through adsorption, thereby decreasing the DIP flux to the sea
(Millero et al., 1986; Millero et al., 2001; Liu et al., 2002; Egger et al., 2015). On the
other hand, DIP released from the sediment via desorption may subsequently increase
the DIP flux to the sea. For gated estuaries, it remains unclear whether enhanced
sediment resuspension actually increases or decreases the net seaward DIP flux.

Adsorption of DIP onto suspended sediment is influenced by salinity,
temperature and pH, as well as the characteristics of the sediments such as texture and
organic matter content (Jones et al., 1993; Sundareshwar et al., 1999; Cao et al., 2011;
Zhang et al., 2011; Zhou et al., 2018). Among these factors, salinity is the most
prevalent factor affecting the adsorption process in estuaries, due to the large
gradients in salinity from fresh to seawater. The estuarine gradients in temperature,

organic matter and pH are generally smaller and to a large extent controlled by
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salinity (Jun et al., 2013; Flower et al., 2017; Paudel et al., 2019). The fact that
salinity enhances phosphate adsorption implies that the phosphate oxyanion is bound
to active sites via inner-sphere (ligand exchange) complexation. Electrostatic outer-
sphere interactions between phosphate and suspended sediments are weakened by
increased salinity due to competition for active sites by electrolyte anions, such as
chloride (Bai et al., 2017; Huang et al., 2015). Moreover, the inner-sphere
complexation is facilitated by the high sodium ion (Na”) concentration weakening the
electrostatic outer-sphere interactions through lowering of particle net negative
surface charge (Zhang et al., 2019b). On the other hand, increased salinity also
promotes particle flocculation (Asmala et al., 2014; Bai et al., 2017), which decreases
the total surface area of the suspended particles and thereby their adsorption capacity.
Solutions of sodium chloride (NaCl) are commonly used instead of real
seawater to analyze salinity effects on DIP adsorption (Wang et al., 2006; Wu et al.,
2012; Bai et al., 2017; Zhang et al., 2019b; also see Fig. S1). In addition to sodium
(Na™) and chloride (CI), seawater contains significant concentrations of calcium
(Ca®"), magnesium (Mg?"), sulfate (SO4>), and bicarbonate (HCO5") (Riebesell et al.,
2010). The influence of these additional ions on the DIP adsorption differs from that
of Na™ and CI" (Flower et al., 2017). Therefore, it is of special importance to assess
the specific ionic effect on the estimates of the DIP seaward flux. This is especially a
concern in estuaries where the load of suspended sediments is high, such as from
rivers with gates.
This paper aims to evaluate the influence of suspended sediments on the seaward
DIP flux, based on experiments for assessing the effect of salinity, ionic composition
and sediment concentration on DIP adsorption and desorption processes, especially

the scavenging effect caused by the elevated sediment resuspension in gated rivers.

2. Methods

2.1. Sampling
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An estuarine surface sediment (ca. 0-5 cm) bulk sample was collected using a
plastic shovel in November 2019 from the DuLiuJianHe River, Tianjin, China, above
a tidal gate (38°45°58.25” N; 117°33’57.76” E) close to the river mouth. The
sediment sample was air-dried at room temperature (~ 27 °C) to a constant weight,
then softly ground to crush aggregates and sieved through 30 mesh.

A real seawater sample, with salinity of 30, was collected with a plastic bucket in
January 2020 from Dongjiang Port (39°1°8.38” N; 117°49°5.80” E), Tianjin, China.
In the laboratory, the seawater was filtered through 0.45 pm filter to remove
suspended particles, and stored in clean polyethylene bottles at 4 °C for later
experiments.

Basic physical and chemical characteristics of the collected sediment and
seawater samples are presented in Table S1.

2.2. Experiments

A solution with the suspended sediment sample in real seawater and NaCl
solution were used to conduct the P adsorption and desorption experiments. To
simulate the change in salinity from freshwater to seawater, solutions with a salinity
gradient of 0, 5, 15 and 30 were prepared by diluting the real seawater, NaCl solution
and artificial seawater with deionized water. For simplicity, the aqueous solutions
made from real seawater, NaCl solution and artificial seawater are referred to as
seawater, NaCl solution and artificial seawater, respectively. Four laboratory
experiments were conducted: 1) Adsorption; 2) Desorption; 3) Kinetics; and 4) Salt-
specific effects. All mixtures were shaken at 130 rpm for 48 h in a constant
temperature-water shaker at 27 °C, to achieve adsorption equilibrium. The suspensions
were centrifuged at 6000 rpm for 10 min, and the supernatants were filtered through
0.45 pm filter. The DIP content in the filtrates were measured spectrophotometrically
using the ammonium-molybdate method (Hansen and Koroleft, 2007; Murphy and
Riley, 1962).

1) Adsorption experiments
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For the phosphate adsorption on suspended sediment, 39 mL solutions with
different salinities were added 1 mL 2 mM KH;POs solution, generating a P
concentration of 50 uM. A maximum sediment concentration of 40 g L™} was used in
this study. A series of adsorption experiments were conducted using solutions (50 pM
P) with sediment levels of 1, 5, 10, 20 and 40 g L under different salinities (0, 5, 15,
30). Each treatment was measured in duplicate.

2) Desorption experiments

No extra P was added to the solutions. Besides from this, the DIP desorption
experiments were conducted in a similar manner as for the adsorption experiments
with sediment concentrations at 2, 10, 20, and 40 g L"! and salinities at 0, 5, 15 and 30.

3) Kinetic experiments

The DIP concentration was reduced to 20 uM in the kinetic experiments in order
to study the DIP adsorption efficiency on sediment devoid of any adsorption capacity
limitations. Salinities and concentrations of suspended sediment tested in the kinetic
experiments were 0, 5, 30 and 10, 20, 40 g L', respectively. After the experiment
started, sub-samples were collected at 0.5, 1.0, 2.0, 4.0, 6.0, 10.0, 16.0, 24.0, 34.0,
48.0 h. Other experimental conditions were the same as described for the adsorption
experiment.

4) Salt specific experiments

In order to assess the specific effects of different sea salt ion compositions on
DIP adsorption, CaCl, MgClz, Na;SOs, and NaHCOs solids were added, respectively,
to NaCl solution with 15 salinity to form a final concentration of 0.01 M for the added
salts. This led to a slight increase in the salinity by between 0.84 to 1.42. Then, the P
adsorption experiments were conducted with a sediment concentration of 5 g L'!. In
order to compare influence of multiple ions on DIP adsorption, an adsorption
experiment with salinities at 5, 15, 30 and sediment concentration at 10 g L' was
conducted in seawater, NaCl solution and artificial seawater.

2.3. Statistical analysis
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All the data of the amount of adsorbed and desorbed P was subjected to the
ANOVA using MIXED procedure (SAS Institute 2010) to evaluate the effects of
salinity, sediment concentration, and solution types with their interaction. The effects
were deemed significant when P <0.05; differences among least square means for all
of the treatment pairs were identified using LSMEANS (/diff) statement (t-test). The

results are listed in Tables S2 and S3.

3. Results and discussion
3.1. Scavenging effect of suspended sediments

Field-based studies reported decreasing DIP concentrations with increased
loading of suspended sediments during flood season (Li et al., 2017; Ding et al., 2019).
Our laboratory experiments explain these results by showing that with an increase in
suspended sediment loading (Sc, g L), the total amount of adsorbed P (Qad, pmol)
onto the suspended sediment generally increased (Fig. 1a), i.e. removing more than
80% of the DIP in water. The relative amount of absorbed P normalized to the amount
of sediment (qad = pmol Qad / g sediment) decreased with increased suspended
sediment concentration (Fig. 1a), indicating a limitation of DIP on the adsorption
equilibrium.

The total amount of desorbed P (Qg, pmol) from the suspended sediment
increased almost linearly with the suspended sediment concentration for
concentrations below 20 g L (Fig. 1b). Above this level, the Qqe decreased slightly
with increased suspended sediment (Fig. 1b) due to re-adsorption of desorbed P to the
suspended sediments. This may indicate a DIP limitation to how much P can be
desorbed from the suspended sediments due to opposing adsorption/desorption
processes. Regardless, the absolute values for DIP adsorption were always higher than
that for P desorption. This reflects that P tends to adsorb onto suspended sediment,
rather than desorb from suspended sediment.

The normalized values of adsorbed and desorbed P (qad and qqe) are linearly

7
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correlated with the suspended sediment concentration after logarithmic transformation
(Fig. 1c). The regression slopes were negative albeit larger than -1 (as would be
expected if there was no effect of sediment concentration on adsorption/desorption)
for all the adsorption and desorption experiments (Table 1). This is partly due to the
more effective contact between dissolved phosphorus and the suspended sediment
surface under the conditions of relatively low sediment loading (Cao et al., 2011).

The slopes of the adsorption regressions generally increased with increased
salinity. This indicates that the influence of suspended sediment concentration for DIP
adsorption is less important under low salinity (Fig. 1c, Table 1). On the other hand,
in the desorption experiments no significant difference in the slopes under different
salinities were observed, except for deionized water (Salinity=0) (Fig. 1c, Table 1).
This implies that for saline water the suspended sediment concentration primarily
controls the desorption of P. The exception for zero salinity suggests that the
desorption of P from the sediment suspended in freshwater is stronger than that in
saline water.

DIP absorption typically reached equilibrium within 10 hours and 80% of the
equilibrium within an hour (Fig. 2). The DIP removal percentage from aqueous phase
was strongly correlated (r = 0.96 - 0.99) with the concentration of suspended sediment,
reaching between 60% and 85% of DIP in water being scavenged by suspended
sediment when the suspended sediment concentration was 40 g L' (Fig. 2).
Increasing the salinity from 0 to 5 increased the DIP removal at equilibrium (Qad) by
up to 80% in the saltwater solutions (Fig. 3). This strong increase in removal
efficiency, with only slight increase in salinity, illustrates the important effect
increased salinity has on the sediments’ scavenging of DIP in brackish estuarine
waters.

These adsorption/desorption laboratory experiments demonstrate that suspended
sediments in the estuarine zone have a strong capacity to efficiently and rapidly

remove DIP from estuarine water. This is especially important in estuaries receiving
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discharge from gated rivers. The strong hydrodynamic force when the gate opens re-
suspends bed sediments, thereby episodically increases the concentration of
suspended sediments in the gated estuary. Increasing salinity in estuaries enhances the
DIP scavenging by the suspended particles. Salinity increase also causes the
suspended particles with the adsorbed P to flocculate into larger particles that settle
faster in the deeper estuarine channels ( Snedden et al., 2007; Figueroa et al., 2020a,
2020b). The fate of the DIP absorbed to settling particles remains unknown, but it is
possible that the actual seaward flux of DIP, and hence total P, is overestimated by
disregarding the scavenging effect by suspended sediment, especially for the estuaries
of gated rivers.

3.2. Salinity effect

Due to the predominant inner-sphere specific chemical bonding of PO4> to net
negatively charged particles, ions such as Ca®>", Mg>*, SOs* and HCOs actually
determine the overall P adsorption and desorption in estuarine water. The effect of
increased salinity on DIP adsorption differed between the three experimental solutions,
i.e. NaCl solution, seawater, and artificial seawater (Fig. 3). Generally, the P
adsorption is stronger in the artificial seawater and lower in the NaCl solution. This
indicates that the DIP adsorption is underestimated if NaCl solution is used and
overestimated if the artificial seawater is used to simulate DIP sorption in estuarine
waters.

Specitically, in the case of NaCl solution, the total adsorbed P onto the sediment
(Qaa) at low salinity (0, 5) was larger than that at high salinity (15, 30). It was reported
that the structural destruction of Na™ on particle and the competitive behavior of CI°
for active point on sediment, could reduce the P adsorption on sediment (Zhang et al.,
2011; Wu et al., 2012; Nguyen et al., 2019). For artificial seawater, there is a strong
increase of Qad from 0 to 5 salinity, but no significant change was measured with
further increase in salinity from 15 to 30. For seawater, the DIP adsorption under both

low and high salinity conditions is lower than that under moderate salinity (i.e. 15)
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(Fig. 3). The instable influence of salinity in seawater may be caused by coexistence
of cation promotion and anion restraint effects on DIP adsorption (Meng et al., 2014b).
Similarly, it seemed that the cation effect played a more important role with the
increase of salinity for the artificial seawater. This entails that the underestimation of
DIP adsorption for NaCl-solution-based experiments would increase with salinity, and
the overestimation of DIP adsorption for artificial-seawater-based experiments would
be larger for low and high salinity conditions.

The differences in DIP adsorption change with salinity among the three types of
saltwater solutions may conceivably be related to their ionic compositions, as
indicated in Fig. 4. Divalent cations, such as Mg”>" and Ca®’, conceptually promote
phosphate adsorption on sediments, by forming bridge binding between negatively
charged surface functional groups and the phosphate anion, described above,
enhancing the number of DIP adsorption sites on sediments surface (Millero et al.,
2001; Spiteri et al., 2008). Concurrently, divalent cations promote coagulation and
flocculation and thereby settling of the sediments (Liu et al., 2002). Although
restraining effect of SO4% on PO4* adsorption in other studies (e.g., Flower et al.,
2017), SO4> was relative to Cl- observed to enhance the DIP adsorption (Fig. 4). The
calcite content is 2% in the sediment. It was reported that sulfate may increase calcite
solubility, and thereby can promote Ca’* release from the sediment (Liu et al., 2012).
The cation Ca®" can offer adsorption point for phosphate on sediment. Free Ca*" will
precipitate with SO4> in advance because the concentration of sulfate is higher than
phosphate (200:1). Calcium sulfate will then be converted into hydroxyapatite acting
as a continuous calcium supply pool for phosphate removal (Liu et al., 2012). This
pathway may explain the phenomenon, as the pH of the solution was 7.0-8.0 and the
Ca”" content of the sediment was 28.8 g kg™ (Table S1). Compared to the pure NaCl
solution and seawater, the HCOs. inhibited DIP adsorption. This may be due to the
competition between HCOs™ and PO4* for the positively charged sorption sites on

sediment (Miller et al., 2001; Flower et al., 2017; Nguyen et al., 2019). Compared
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with seawater, artificial seawater has higher SO4* (3.160 g L) and lower HCO3
(0.139 g LY contents (Table SI-1), and there are no other ions except Na* and CI- in
the NaCl solution. This difference in sulfate could partly explain why the P adsorption
was highest in artificial seawater, and lowest in NaCl solution (Fig. 3).

3.3. Combined effects on seaward P flux

As described above, both salinity and suspended sediment concentration have
significant effect on DIP adsorption on sediment. Spatially, salinity increases and
suspended sediment concentration decreases with the distance from the river mouth.
In the estuarine environment of gated rivers, the temporal changes in salinity and
suspended sediment concentration are governed by the strong hydrodynamic episodes
related to the opening of the gates. This means that the effects of salinity and
suspended sediment concentration on DIP adsorption and desorption are generally
combined in space and time. The distribution ratio (DR) between P in suspended
sediment and DIP in water varied with salinity and suspended sediment concentration
(Fig. 5). In the adsorption experiment using seawater (30 salinity), the DR value
increased with suspended sediment concentration (Fig. 5a). Within the same level of
suspended sediment concentration, the highest DIP adsorption was achieved under
medium salinity condition (15). However, the influence of suspended sediment
concentration on DIP adsorption was larger than that of salinity (cf. Fig. 1a). This
implies that during periods with open gates, the enhanced sediment resuspension is
probably more important for the DIP adsorption than the antagonistic effect caused by
the concurrent reduced salinity of the freshwater pulse.

In the desorption experiment using seawater, the DR values tended to increase
with increasing suspended sediment concentration (Fig. Sb), indicating that
desorption decreases with increasing suspended sediment concentration. On the other
hand, the DR value showed a sharp decrease at low salinity (<5), implying that
salinity may promote P desorption under such conditions. At higher salinity (>5), the

DR values remained stable at low suspended sediment concentration (< 25 g L™).
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However, the DR value increased with continuous increased salinity (>5) in the
solutions with higher suspended sediment concentration (> 25 g L), indicating that
the combined effect of salinity (> 5) and higher sediment concentration (> 25 g L)
may reduce P release from sediment.

3.4 Implications and perspectives

Both suspended sediment concentration and salinity were found to affect P
adsorption and desorption processes in estuaries, though the effect of suspended
sediment concentration is larger than salinity. Although P desorption at high sediment
concentration is highest around 10 salinity, under low salinity conditions the P
desorption is outweighed by the role of suspended sediments. Therefore, the
scavenging effect for DIP plays an important role, implying that the overall DIP
concentration decreases through the estuarine zone.

DIP concentrations in the world’s estuaries exhibit many different patterns
across the salinity gradient (Fig. 6). These changes from land to sea are governed by
many different processes from physical mixing between the riverine and oceanic end-
member, inputs from point sources along the salinity gradient, uptake by plants and
bacteria, remineralization processes and release of iron-bound phosphate. In addition
to these well-studied processes, we submit that absorption/desorption processes
should also be considered for assessing the potential impact of riverine DIP inputs on
the coastal biogeochemistry, at least in estuaries with hydrological control of
freshwater discharge.

The pulse-like water discharge during the open gate period promotes sediment
resuspension, and this will enhance adsorption of DIP onto the suspended sediment,
potentially reducing the DIP flux to the sea. Even though moderate (15) salinity
initially accelerate the P desorption, higher salinity may reduce the P desorption (Fig.
1b). Certainly, this effect is limited by the DIP adsorption capacity of suspended
sediments, and the P adsorbed on buried sediment may release back into the water

column. However, for high sediment concentrations the P adsorption capacity could
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be sufficient to maintain P absorbed to particles, and the release of DIP from sediment
to water column is generally slow and limited within the sediment surface (Lopez-
Hernandez et al., 1980). Hence, burial of DIP absorbed to sediment particles could be
an important sink for P, thereby reducing coastal eutrophication and the potential
release of iron-bound phosphate.

Simply scaling the freshwater DIP concentration with the water flow will
possibly provide an overestimate of the seaward flux of DIP, especially in estuaries
fed by gated rivers. The discrepancy between the actual and estimated values of
seaward DIP flux depends on the concentration of DIP and particles in the freshwater
discharge. The latter is determined by the number of gates, the fluctuation in
hydrodynamic strength, and the gate location, as well as the physical and chemical
properties of estuarine sediment. In addition, particle sedimentation is probably
enhanced when the gates shut down the upstream water flow. This suggests that
alternating hydrological regimes could potentially promote sediment burial of P and
reduce the seaward flux of DIP.

Therefore, it is necessary to introduce an imperial correction model to eliminate
the erroneous estimates of DIP seaward flux. The imperial correction model might be
estuary-specific, but could be derived from the calibration of lab experimental data
and field monitoring data. Correspondingly, the monitoring of P in the estuary should
cover the salinity range from freshwater to seawater and the whole process of gate

open and close, also the above-mentioned influencing factors.

4. Conclusion

The seaward flux of DIP from the terrestrial environment is important for
controlling coastal and marine eutrophication. However, this flux is possibly
overestimated by not accounting for the physicochemical processes taking place in the
gated estuaries where DIP scavenging by suspended sediment is enhanced. Increasing

salinity generally enhances the adsorption, and in addition, polyhaline conditions may

13



358
359
360
361
362
363

364

365
366
367
368
369
370
371
372
373
374
375
376
371
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

reduce P desorption. For estuaries fed by gated rivers, the seaward P flux may be
limited during period with open sluices due to enhanced P scavenging by higher

sediment resuspension, even though the salinity is lower.
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Table 1. The linear fitting parameters of Inqad and Inqqde with InSc.

Deionized water Seawater NacCl solution

Salinity 0 5 15 30 5 15 30
slope -0.37 -0.54 -0.53 -0.23 -0.50 -0.44  -0.12

Adsorption  intercept 1.33 2.04 2.09 1.05 1.66 1.05 0.24
R? 0.97 0.99 0.99 0.78 0.99 0.76 0.65

p 0.002 0.0002  0.0003 0.05 0.0006 0.05 0.1
slope -0.89 -0.67 -0.66 -0.59 -0.69 -0.70  -0.61

Desorption  intercept 0.92 -0.23 0.29 -0.51 0.59 0.49 0.37
R? 0.99 0.97 0.99 0.99 0.98 0.97 0.96

p 0.007 0.02 0.001 0.0003 0.01 0.01 0.02




Figure Captions

Fig. 1. The total amount of adsorbed and desorbed phosphorus (Q, umol g ) (a), the
amount of adsorbed and desorbed phosphorus for unit sediment (q, umol g ) (b), and
the linear relationships between the natural log of adsorbed/desorbed P and natural log
of suspended sediment concentration (Sc, g L 1) (c) under different suspended sediment
concentrations and salinities, using both seawater and NaCl solutions. The error bars
mark one standard deviation of the duplicates. The solid and dashed lines denote

adsorption and desorption, respectively

Fig. 2. DIP removal percentage over time from the kinetic experiment for different

suspended sediment concentrations (Sc) at different salinities of seawater solution.

Fig. 3. Comparison of P adsorption capacity of 10 g L' suspended sediment for
different salinities of NaCl solution, artificial seawater, and seawater. Qad (a), the total
amount of adsorbed P.

2+

Fig. 4. Influence of Ca>*, Mg?>", HCOs™ and SO4* on phosphorus adsorption in NaCl
solution (salinity = 15, suspended sediment concentration =5 g L'!). The concentration
of the added ions is 0.01 M. Pure seawater and NaCl solution without ion addition are

set as the control.

Fig. §. The combined effects of salinity and sediment concentration in seawater on P
distribution ratio (DR) between P adsorbed to sediment surface and DIP in the water
column. Note that the distribution ratio is not the same as equilibrium distribution

coefticient (Kq). The data were interpolated by the Kriging method.

Fig. 6. DIP concentrations along the salinity gradient for different estuaries worldwide
(De Jonge et al., 1989; Upchurch et al., 1974; Ballagh et al., 2019; Meng et al., 2015;
Xuetal, 2015; Lin et al., 2012; Pamplona et al., 2013).
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Highlights

1. DIP scavenging by suspended sediment is prevalent for gated estuaries.
2. The increasing of salinity can enhance the DIP adsorption on sediments.
3. Riverine flux of dissolved phosphorus to the coastal sea may be overestimated.

4. Not-real-seawater-based experiments may mislead the DIP flux estimation.
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