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Chapter 1

Introduction

In this chapter we will state the purpose and goal of this thesis and how we intend to

achieve our goal. A short introduction to the problem focus, schema integration, will be

given before presenting a case that will be used throughout the thesis. From the case

we will identify con�ict groups that we want to investigate further. First we give some

background history of our problem area.

1.1 Background

More and more of our society is becoming dependent on the use of computers. The

sharing and storing of information has exploded during the last decades. Over the years

there has been a continuous development on the frontier of database systems. Hierarchical

and network philosophies were released by the relational philosophy as the leading in this

�eld. Later we also have seen the object-oriented databases emerge, a new way of viewing

and modeling the world that has become very popular.

Computer systems are widely used in all functions of contemporary organizations. In

most of these organizations, the computing environment consists of distributed, hetero-

geneous and autonomous1 hardware and software systems. Although no provision for a

possible future integration was made during the development of these systems, there is

an increasing need for technology to support the cooperation of the provided services and

resources for handling more complex applications.

The requirements for cooperation among distinct systems can be met at two levels �

a lower level and a higher level [MHG+92]. The ability of systems to communicate and

exchange information is referred to as interconnectivity. At a higher level, the systems are

not only able to communicate, but also be able to interact and jointly execute tasks. This

ability is referred to as interoperability.

Unfortunately, one might say, the system over all systems, that will solve all needs,

has yet to be developed and it most probably never will be found for obvious reasons.

Therefore our database world as it is today has several di�erent database systems to cope

with. As with a lot of other areas it is often the vendors who control, or at least in�uence,

1These terms will be closer de�ned in later chapters

1
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what we are buying and thereby which systems we have in use. But di�erent vendors have

been successful in di�erent areas and as a result companies have a lot of di�erent systems

based on di�erent characteristics, e.g. data models. Also within companies database

solutions can be diverse. This raises new needs in the companies: How can we obtain

uni�ed views over some existing database systems in the company? Applications and

users would like a uni�ed view over relevant database systems in the company and be able

to manipulate them through a single logical database system level rather than to operate

on them locally through multiple and heterogeneous database systems. Multidatabases or

federated databases are an approach to solve this problem. Multidatabases are discussed in

more detail in chapter 2. Multidatabases do however have many problems that still have

to be investigated. The focus in this thesis is the problem of schema integration which

will be given a short introduction in section 1.3.

1.2 Purpose of the Thesis/Problem Speci�cation

The overall theme of this thesis is multidatabases. The thesis will give an overview of

the basic concepts of multidatabases as a basis for understanding the problem areas to be

discussed. The main focus of the thesis is re�ected in the title of this work; �ODL-M �

A Mapping Language for Schema Integration in Object-Oriented Multidatabases�. First of

all, we will concentrate on object-oriented multidatabases in this discussion. This means

that the multidatabase systems considered here take advantage of the object-oriented

paradigm that has become more and more popular recently. Further, within the context

of object-oriented multidatabases, we will study more closely the problem area of inte-

grating schemas obtaining a schema that represents the union of the concepts from the

integrated schemas. The schemas in our context are heterogeneous. The term heteroge-

neous is understood as that the involved schemas are modeled in di�erent data models, e.g.

the network model or relational model, and also such that the schemas are designed inde-

pendently and therefore have discrepancies not only in data model and structure but also

in the semantics they express, e.g. the perceptions of the modeled reality can be di�erent.

Furthermore we will de�ne and develop a mapping language, which we will call ODL-M,

for the purpose of supporting schema integration in object-oriented multidatabases.

This work will give an overview of the problems within schema integration and also

suggest a method for a solution of the problems in focus, namely resolving speci�c schema

con�icts. We will come back to what kind of schema con�icts we are discussing here. It is

not intended to give a full framework and detailed solution in this thesis since this would

go beyond the scope and time bounds of this work. Instead we will try to extend existing

work. In the �eld of object-oriented databases the ODMG-93 database standard [Cat94]

has recently emerged from a group of database system vendors. This standard will be

used as a basis for our proposals.

We believe that the problems of schema integration is not yet fully understood, al-

though there has been done a lot of work on this area. Therefore this thesis will also try

to give a summarizing status quo of the research in this �eld.
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1.2.1 Goal

This thesis is meant to give the reader an understanding of the concepts of multidatabases.

Herein lies a basic architecture of such a system, the problems that arise and suggested

solutions to problems described in the literature. More speci�cally this work will give an

understanding of the complexity of schema integration problems in multidatabase systems,

what characterizes them and also what can be done to resolve the problems. To organize

our e�ort we will de�ne requirements where we �nd it necessary and as far as possible meet

our de�ned requirements in our discussion. Further we will consider some existing systems

and discuss their approach to the problem area of schema integration in multidatabase

systems.

We will summarize our goals as the following:

Goal: To identify requirements for, and propose solutions to schema integration in object-

oriented multidatabase systems.

I will give a suggestion to a support tool approach considered to be bene�cial for

handling these problems and argue why this approach is bene�cial. The support tool

will be a mapping language, which will be able to de�ne mappings between classes in

object-oriented schemas using the ODMG/ODL object model [Cat94] as a basis.

1.2.2 Methodology

It is assumed that the reader is familiar with database technology in general and todays

commonly used standards. The standard ODMG-93 [Cat94] will be described later since

it will be used as a basis for our proposed solutions.

With reference to the goals of this thesis this work will introduce the reader to mul-

tidatabase systems based on a general knowledge of database concepts. Multidatabases

incorporate a large portion of knowledge drawn from several parts of computer science

research and this work will in no way cover all aspects of this topic as it would be far to

exhaustive. However there will be given a general overview of commonly accepted basic

concepts of multidatabase systems. The focus of this work is schema integration so we

will give a more detailed description of this topic and try to enlighten what has been

experienced as important research areas and future goals on the subject.

To guide the reader's understanding of the problems discussed, a case will be designed

and used throughout this thesis. The case will hopefully ease the understanding of some

complicated descriptions of schema discrepancy problems, which we will describe closer in

the following chapters, and also demonstrate how our suggested solutions will work. As an

aid to the schema integration process a mapping language will be developed and de�ned.

We will call it ODL-M, since it will be an extension to the ODL object model of ODMG

[Cat94]. Using this mapping language the case will again be used to show the usability

and bene�ts of the mapping language. To guide the path of discussion and evaluation a

set of requirements will be de�ned that our solutions should meet. Our �rst set of general

requirements on structural con�icts will be de�ned in section 1.5, and as we discuss in

more detail the issues of schema integration, we will de�ne two additional requirement
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tables. One table will de�ne the requirements for a canonical data model. The other will

de�ne requirements for the schema integration process itself, based on the complexity of

the process and the understandability of its result. Finally the proposed mapping language

and its use will be discussed along the intention of the requirements.

1.3 Schema Integration Problems in Multidatabase Systems

As mentioned, multidatabases try to give a uni�ed view over multiple underlying hetero-

geneous databases or parts of them. Several problems arise in this approach. One of the

basic problems is that incompatible data models are trying to communicate with each

other. This is a di�cult problem which can be divided into several subproblem areas. In

short it can be solved by translating each database's schemas to a common data model,

a canonical model2, through which the communication is made. It is during this transla-

tion it can be necessary to integrate two or more schemas from di�erent databases to one

schema in a canonical data model. Examples of when this would be necessary are:

� When we encounter two schemas that actually are duplicates in two di�erent databases

and we need one common schema in the canonical model to map these two through,

i.e. all modi�cations done to the one schema should also be done to the other.

� When we encounter two schemas that partly duplicate each other and we need one

common schema to represent them in the canonical model.

� When we have two di�erent schemas in two heterogeneous databases that represent

the same real life object, but di�erent aspects of it and we need a single schema in

the overlaying system to represent the two as the real life entity they describe.

1.4 Case

As mentioned above, this thesis will have an example case that will be used to demonstrate

various problems and solutions in schema integration. The same case will also be used

to show how some proposed solutions can be performed. The case will be modeled in an

object-oriented data model. The case is outlined with each schema`s classes and attributes

in �gure 1.1.

The case to be used will model four university databases with corresponding schemas.

University A has two schemas, Schema 1 and Schema 2. University B is modeled by

Schema 3, university C is modeled by Schema 4, and �nally university D is modeled by

Schema 5. The information stored therein will be faculty scholastic activities(teaching

courses and advising theses) and student performance.

University A has separated its student information into two o�ces, represented by two

schemas, one for undergraduate students and one for graduate students. The graduate

student o�ce only maintains students' thesis information and grade point averages of

their course work. Also the faculty information is kept at both schemas (but some faculty

2The canonical model is discussed in more detail in section 2.5.
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advisor_ssn(INTEGER)

Graduate_info
ssn(INTEGER)

Faculty
lastname(CHAR)
firstname(CHAR)
ssn(INTEGER)
dept(CHAR)
rank(CHAR)

Enroll
cno(CHAR)
fac_ssn(INTEGER)
stud_ssn(INTEGER)
grade(REAL)

lastname(CHAR)
firstname(CHAR)

Student

ssn(INTEGER)
type(CHAR)
major(CHAR)

Emp_tax
ssn(INTEGER)
salary(INTEGER)

tax(INTEGER)
bracket(CHAR)

bonus(REAL)

Emp_personal
ssn(INTEGER)
age(INTEGER)
wt_in_kg(INTEGER)
ht_in_cm(INTEGER)

Employee
name(CHAR)
ssn(INTEGER)
position(CHAR)

Faculty=>Employee

rank(CHAR)
dept(Department)

Employee
name(CHAR)
ssn(CHAR)
supervisor(Employee)

Department
name(CHAR)
chairperson(CHAR)

Thesis
title(CHAR)

status(CHAR)
author(Gradstudent)

Restricted_course
cname(CHAR)
cno(INTEGER)
major(CHAR)

Employee

ssn(INTEGER)
name(CHAR)

position(CHAR)

Emp_other

bonus(REAL)

ssn(INTEGER)
age(INTEGER)
wt_in_lb(INTEGER)
ht_in_in(INTEGER)
salary(INTEGER)

tax(INTEGER)
bracket(INTEGER)

Grad_student

Schema 2:

sssn(INTEGER)

fssn(INTEGER)

sname(CHAR)

major(CHAR)
gpa(REAL)
fname(CHAR)

frank(CHAR)
thesis_title(CHAR)

=> : subclass of

=> : subclass of

Schema 3:

Address Course

Course_restriction Thesis

ssn(INTEGER)
street(CHAR)
city(CHAR)
zip(CHAR)

cname(CHAR)
cno(CHAR)

cno(CHAR)
major(CHAR)
prereq_cno(CHAR)

title(CHAR)
ssn(INTEGER)
grade(REAL)

Schema 4:

Admfaculty=>Faculty

Student
name(CHAR)
ssn(INTEGER)
major(CHAR)
gpa()(REAL)

position(CHAR)
Course

cname(CHAR)
cno(CHAR)
prereq(SET_OF Course)

Enroll
course(Course)
fssn(INTEGER)
sssn(INTEGER)
grade(REAL)

Student Gradstudent=>Student

Course

Schema 5:

Thesis
title(CHAR)
author(Gradstudent)
status(CHAR)

Faculty=>Employee
dept(CHAR)
rank(CHAR)

Employee
name(CHAR)
ssn(INTEGER)
position(CHAR)

Gradstudent=>Student
advisor(SET_OF Faculty)

fname(CHAR)
lname(CHAR)
ssn(CHAR)
major(CHAR)

cname(CHAR)
cno(CHAR)

gpa()(REAL)

advisor(Faculty)
committee(SET_OF Faculty)

prereq(SET_OF Course)

Under_Grad

Schema 1:

name(CHAR)
ssn(INTEGER)

Faculty Course

major(CHAR)
address(CHAR)

name(CHAR)
ssn(INTEGER)
dept(CHAR)
rank(CHAR)

cno(INTEGER)
cname(CHAR)

fssn(INTEGER)
sssn(INTEGER)

cno(CHAR)

grade(REAL)

Enroll

Enroll

fssn(CHAR)
sssn(CHAR)
grade(REAL)

course(Course)

University D

University B

University C

University A

supervisor(Employee)

Figure 1.1: Case used in the thesis
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members belong to only one schema/o�ce DB). Universities A and B (schemas 1, 2, and

3) have relational DBMSs � their schemas re�ect this fact, e.g. that no de�ned types are

used as attribute domains and no subclasses occur. An OMT [RBP+91] representation of

the schemas 1, 2 and 3 is given in �gure 1.2.

course
Restricted_

Course

Under_Grad

Faculty

Grad_student

Employee

Enroll

Graduate_
info

Thesis Course

Course_
Restriction

Enroll

Schema 1: Schema 2:

fssn

ssn

Emp_other

ssnssn
{one of}

Emp_personalEmployeeAddress

Student Faculty Emp_tax

ssn

Schema 3:

ssn

ssn

advisor_ssn

ssn

ssn

ssn

cno cno
prereq

Figure 1.2: OMT model for schema 1,2 and 3 of the case

Universities C and D use object-oriented database systems to store their students' in-

formation (schema 4 and 5). The Student class in the OODBs of schemas 4 and 5 have the

gpa method for computing students' grade point averages, whereas in other universities,

separate queries have to be issued to compute the gpa. The schemas of university C and D

are similar to one another, however there are some interesting di�erences between the class

de�nitions of Schema 4 and Schema 5. The ssn attribute has di�erent domains, namely

Integer and String. The advisor attribute of the Gradstudent class in Schema 4 and

Schema 5, respectively, has domains SET_OF(Faculty) and Faculty, while Gradstudent

in Schema 5 has an additional attribute committee. The attribute dept has domains

String and Department.

The modeling of schemas 4 and 5 shows its di�erence from schemas 1, 2, and 3 in that

former schemas have object-oriented constructs, subclassing and methods. This di�erence
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will show to introduce interesting con�icts across the schemas.

An OMT representation of the schemas 4 and 5 is given in �gure 1.3.

Employee

Admfaculty

Faculty

Course

Enroll

Gradstudent

Student

Thesis

Department

Employee

Faculty

Course

Enroll
Gradstudent

Thesis

Schema 4:

advisor

Schema 5:

Student

advisor
committee

supervisor

supervisor

prereq

prereq

Figure 1.3: OMT model for schema 4 and 5 of the case

1.5 Requirements derived from the Case

Having presented this case, we have seen a few examples of con�icts needed to be resolved

if we wish to integrate these schemas. Con�icts can arise at di�erent levels between

schemas. From the case we can encounter several con�icts by a quick overview. The

classes Grad_student in Schema 2 and Gradstudent in Schema 4 seem to represent the

same entity type with some di�erences, such as that Gradstudent in Schema 4 is a subtype

in some inheritance hierarchy while Grad_student in Schema 2 is an class of its own. We

can also see con�icts between corresponding attributes, such as an undergraduates name

being represented by one attribute in Schema 1 while it is split up in two attributes,
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namely lastname and firstname in Schema 3. Another attribute con�ict is between

e.g. ht_in_in (height_in_inches) of the Emp_other class in Schema 1 and ht_in_cm

(height_in_centimeters) of the Emp_personal class in Schema 3. Further we see that

in Schema 1 we have an address attribute of the Under_Grad class, while this same

information is represented as an class of its own in Schema 3, namely the Address class.

Without seeing the details of the attribute values in the case we can assume that although

attributes have the same name and represent the same concept, they might have di�erent

representations of the information they represent.

The examples in the previous paragraph show the type of con�icts we are interested

in this thesis. The mentioned con�icts represent di�erent levels of con�icts that can arise

between schemas and we will want to classify the con�icts according to this di�erence in

level. Thus we classify according to the detected levels of con�ict in the following. We

can have con�icts between two or more classes in di�erent schemas, called class con�icts.

We can have con�icts between two or more attributes between schemas, called attribute

con�icts. We can have con�icts that arise between classes and attributes, as in the ad-

dress example, called class vs attribute con�icts. And �nally the data representation

of attributes can collide with each other � we call this di�erence in data representation.

These con�icts groups have been discussed similarly by Batini et. al [BLN86] as structural

con�icts between modeling constructs and Kim et. al [KCGS95] give a classi�cation of

structural con�icts which coincides with our con�ict groups.

The four groups of con�icts we have encountered will represent the main requirements

in this work. For each group of con�icts we want to identify the types of con�icts that

belong to this group. By identifying these individual con�ict types, we hope to have

covered the possibilities of structural con�icts between schemas. Since schemas not only

represent pure structural representations but also inherently represent meaning of the data,

or semantics as we call it, we would also like to investigate this to a degree. Semantics

don't necessarily reveal themselves in the structures of the schemas, so we want to approach

classifying semantic similarities and discrepancies using a separate method and see how

this method can be used, if possible, in conjunction with the structural approach.

Having identi�ed the four groups of con�icts and their characteristics, we will try to

resolve the con�icts found by developing methods to support this and specifying how to

use them. We would wish for the resolving methods to be as complete as possible in that

they cover all the con�icts we have detected, but in cases where we are unable to resolve

con�icts to a satisfying degree we will identify the cause for this.

To summarize the requirements we have encountered we present a table of the four

groups of con�icts we identi�ed in table 1.1.

The four requirement con�ict groups represent four groups we wish to identify con�ict

types within and resolve using a developed method for the purpose.
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Requirements

RCG-1 Class Con�icts

RCG-2 Attribute Con�icts

RCG-3 Class vs Attribute Con�icts

RCG-4 Data Representation Con�icts

Table 1.1: Requirement con�ict groups

1.6 Structure of the Thesis

This thesis is divided in three parts.

The �rst part, �An Introduction to Multidatabases and Schema Integration�, covers

the properties of multidatabases and the problems of schema integration within multi-

databases. It also discusses several approaches to solve the problem of schema integration.

In chapter 2 we present the multidatabase systems, their objectives and key issues, and

a basic architecture. In chapter 3 we go into further detail of one of the key issues of

multidatabases, schema integration, braking down the schema integration process into

subprocesses and describing each step. In chapter 4 we dig ourselves into the complexity

of schema con�icts that can arise during the comparison step of schema integration by

presenting a structural classi�cation of the con�ict types identi�ed and also presenting a

semantic measure for semantic similarity. In chapter 5 we look at some real-world pro-

totypes and project systems that approach the multidatabase system design and see how

their e�orts di�er and also how they manage integration.

The second part, �Schema Integration in ODL-M�, gives an introduction to the ODL-

M mapping language and then suggests a method of solving schema integration within the

framework of using ODL-M as an extension to the ODMG/ODL object model [Cat94].

This part is the main contribution of this thesis where we develop and de�ne a mapping

language and use it to resolve the schema con�icts identi�ed in chapter 4. In chapter 6

we de�ne the ODL-M language, a mapping language for mapping object type interfaces

in ODL to each other. Its de�nitions and use are demonstrated by various examples. In

chapter 7 we develop a set of resolution techniques to resolve the con�ict areas we identi�ed

in chapter 4. We also suggest how the semantic approach presented in chapter 4 can be used

together with our resolution techniques to merge the schematic and semantic approach to

schema integration. The case of this thesis is used as a basis for both exemplifying our

con�icts and how to use ODL-M to resolve them by mapping constructs.

Following the main two parts is a third part, �Conclusion and Future Work�, including

the chapter of concluding remarks and suggestion to further work.

Finally the appendices are included.
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Chapter 2

Multidatabases

In this chapter we will describe the properties of the multidatabase systems. Herein we

will identify the objectives and key issues of such a system, and also present a general

architecture. First a brief history of the evolvement of database systems will be given.

2.1 History of Database Systems

In the �early days�, before any commercial database systems had been developed, data

storage in computer systems was mainly done on �les. The �les were simple and of-

ten pure sequential. One can call this the very �rst primitive database system. The

database managing system, if we could call it that, was made by the programmer himself

who designed a data structure or format that these �les should follow and therefore each

database management system was uniquely di�erent from another. This scheme soon

showed to be unsu�cient and better strategies needed to be developed. Independently

several approaches to better data storage emerged.

2.1.1 Hierarchical Database systems

The hierarchical model [TL76], as the name suggests, is based on a hierarchical structure.

The model consists of two main data structuring concepts: records and parent-child rela-

tionships. A record is a collection of �eld values that provide information on an entity or

a relationship instance. A parent-child relationship type is a 1 : N relationship between

two record types.

2.1.2 Network Database systems

The data of the network model [DBT71] are represented by collections of records and

relationships among data are represented by links. Each record consists of a group of

related data values. Navigation through the network is achieved by following the links.

13
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2.1.3 Relational Database systems

In the relational model, the data are represented by a collection of tables. Each row in a

table represents a collection of related data values. The relational database systems are

based on the relational data model introduced by E. F. Codd [Cod70]. The model has

become widely used because of its simplicity. Its advantages also include uniform data

structures and a formal nature.

2.1.4 Object-Oriented Database Systems

The object-oriented database systems are built on the object-oriented paradigm (see ap-

pendix A). The data of interest is modeled as encapsulated objects which have a state,

described by their attributes, and a behavior, described by their methods or operations.

2.2 Distributed Database Management Systems

A distributed database is a database that physically is spread over multiple sites in a

network, but that logically belongs to the same system.

Reasons for distributed databases:

� Natural distribution in e.g. companies located at di�erent sites(e.g. bank)

� Increased reliability and availability

� Controlled sharing of data throughout the distributed system

� Improved performance(locally)

2.2.1 Types of distributed database systems

The basic property of systems like this is that data and software are distributed over

multiple sites connected by some form of communication network.

There are two factors in particular we will consider within these types of systems:

� Homogeneity versus heterogeneity.

� Autonomy versus non-autonomy

The �rst addresses the distributed systems characteristics such as operating system,

database management system and modeling paradigm. The more heterogeneous the sys-

tems are, the more diverse their characteristics are. One system can use a relational model

on a DOS platform while another can use an object-oriented modeling of its data on a

Unix platform. Clearly, the more heterogeneous the distributed systems parts are, the

more problems it introduces to manage the system.

There are two extremes of the autonomy spectrum relevant to this thesis. At the

one extreme we have a distributed database management system (DDBMS) that looks
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like a centralized DBMS to the user. There exists only one conceptual schema, and all

access to the system goes through an application processor. No local autonomy exists.

At the other extreme is a type of DBMS called a federated DDBMS or a multidatabase

system, depending on its characteristics. In such a system each data processor(DP) is an

independent and autonomous centralized DBMS that has its own local users with local

transactions and a DBA1 and therefore a very high degree of local autonomy. The local

DP speci�es an export schema to authorize access to particular portions of its database.

Note: A federated/multidatabase system is a hybrid between distributed and central-

ized systems; it is a centralized system for the local autonomous users and a distributed

system for the global users.

Since the local DBMSs are heterogeneous it is necessary to have a canonical system

language and include language translators in the AP(application process) to translate

subqueries from the canonical language to the language of each data processor.

2.3 Multidatabases � A Motivation

Over the years companies and institutions have developed their computer systems accord-

ing to their needs and what has been available on the market. Almost any institution

that uses a data system of some kind has some sort of database system. The need for

storing data has increased, likewise has the need for developing better database systems

to manage the data been stored. There are numerous database systems to choose from

and therefore there exists several systems in use. These systems however were not initially

designed to communicate with each other. The need of accessing multiple systems at mul-

tiple sites homogeneously is increasing and it is this that forces the development of the

multidatabase systems. These systems will be designed to integrate the existing systems

so the the union of their shared data will be accessible as one dataset.

2.4 General Introduction � Basic Concepts and De�nitions

There has been done a lot of research on interoperability of autonomous databases and

architectures for such systems. However, we will mainly follow the classi�cations and

taxonomy from Sheth and Larson [SL90] because their work gives a general overview that

seems to cover the majority of the literature on the subject (e.g. [BHP92, HM85, LMR90,

NSGS89]). Also, most of the literature in recent years seems to refer to Sheth and Larson

[SL90] as a basis for their work.

As mentioned above, a database system (DBS) can vary in its level of distribution.

At the one end a DBS can be centralized and residing on one computer system. At

the other end a DBS can be distributed and residing on multiple computer systems.

The multidatabases are characterized at the one extreme of the autonomy spectrum, as

described above. A general description of a multidatabase system can be the following:

1Data Base Administrator
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A Multidatabase System (MDBS) is a database system that manages multiple com-

ponent DBSs residing at di�erent sites, i.e. the MDBS can do operations across its

participating DBSs simultaneously. A simultaneous operation across the component

DBSs means that it's not only submitting separate requests to each DBMS, but that

the operation is a cooperation of multiple requests to the component DBMSs.

A MDBS can be homogeneous or heterogeneous . A homogeneous MDBS means that

each component DBMS is the same, i.e. is based on the same data model and system

level support(concurrency control, commit, recovery etc). In a heterogeneous MDBS the

component DBMSs are di�erent, i.e. are based on di�erent data models or the underlying

DBMSs are di�erent. We normally think of the latter type when discussing MDBSs in

general

2.4.1 Objectives and Key Issues of Multidatabase Systems

Here are the most important general objectives of a multidatabase system [Kim95]:

Objective 1: It must obviate the need for a batch conversion and migration of data from

one data source to another.

Objective 2: It must require absolutely no changes on the local database system(LDBS)

software. This preserves the design autonomy. In other words, an MDBS must

appear to any of the LDBSs as just another application or user.

Objective 3: It must not prevent any of the LDBSs from being used in its native mode. In

other words, users of an LDBS may continue to work with the system for transactions

that require access only to data managed by the system, while users will use the

MDBS to issue transactions that require access to more than one data source. In this

way, applications written in any of the LDBSs are preserved, and new applications

that require access to more than one data source may be developed using the MDBS.

Objective 4: It must make it possible for users and applications to interact with it in

one database language. In other words, the users and applications should not have

to work with the di�erent interface languages of the LDBSs.

Objective 5: It must shield the users and applications from the heterogeneity of the

operating environments of the LDBSs, including the computer, operating system

and network protocol.

Objective 6: Unlike most previous attempts at allowing the interoperability of hetero-

geneous database systems, it must support distributed transactions involving both

reads and updates against di�erent databases.

Objective 7: It must be a full-blown database system � that is, it must make available to

users all the facilities provided by standard database systems, including schema def-

inition, non-procedural queries, automatic query optimization, updates, transaction
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management, concurrency control and recovery, integrity control, access authoriza-

tion, both interactive and host-language application support, graphics application

development tools, and so forth.

Objective 8: It must introduce virtually no changes to the operation and administration

of any of the LDBSs.

Objective 9: It must provide run-time performance that approaches that of a homoge-

neous distributed database system.

We summarize the objectives in table 2.1.

Multidatabase System Objectives

1. Obviate need for batch conversion and migration

2. No change to local database system

3. Allow LDBSs to be used in its native mode

4. Users and applications interact with one language

5. Shield users from heterogeneity of operating environment

6. Support for distributed transactions(reads and updates)

7. Full-blown database system

8. No changes to operation and administration of LDBSs

9. Run-time performance that approaches �ordinary� distributed system

Table 2.1: Multidatabase System Objectives

The three key issues for a full-�edged multidatabase system are [Kim95]:

1. Constructing a global schema across independently designed heteroge-

neous databases. The basis for achieving this is having a comprehensive taxon-

omy of schema di�erences and a schema integration technique for homogenizing, i.e.

resolving, each type of di�erence.

2. Processing of queries that the users will issue against the global database.

This is achieved by translating each global query into a set of subqueries to be carried

out by the LDBSs.

3. Management of transactions, issued against the global database as an

atomic unit, across heterogeneous databases. Sub-issues in this context are

how to obtain concurrency control and recovery routines as the scheme here obviously

is more complicated than the legacy database systems. Deadlock detection and

resolution is also a consideration in this regard.

We will come back to schema integration in section 2.6, query processing in section

2.7, and transaction management in section 2.8.
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2.4.2 Three Dimensions of Multidatabases

Multidatabase systems can be viewed from three orthogonal dimensions [SL90]:

Distribution Databases may be stored on one machine or distributed among multiple

data-machines in di�erent ways. In the MDBS case there usually exist component

DBSs that are distributed physically from the beginning across some communication

lines.

Heterogeneity There are two sides of heterogeneity; technical and semantic. The techni-

cal side involves di�erences in DBMSs such as data models, di�erences in operating

systems and hardware systems. The semantic heterogeneity deals with the problems

of the understanding or intention of the data in the databases. This is an area not

yet fully understood and introduces di�cult problems in building multidatabases.

Autonomy The dimension of autonomy measures the strength of a component DBSs

independent control. This can be in terms of how the component DBS is designed,

how willingly it will communicate with others and also to what extent it will share

its data.

In the following the two latter dimensions will be focused on. The next section will

present a taxonomy which focuses on the autonomy dimension.

2.4.3 Taxonomy of Multidatabase Systems

In this section we present a taxonomy of multidatabase systems as described in [SL90]. It

will show the classi�cations such a system can have and what characterizes each classi�-

cation. It will also serve as a pointer to which classi�cation we assume to be addressing

in the later chapters of this thesis.

Database Systems

Nonfederated Federated 

Database Systems

Loosely Coupled Tightly Coupled

Single Federation Multiple Federation

Multidatabase
  Systems

Figure 2.1: Taxonomy
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A multidatabase system is a database system designed to operate on multiple compo-

nent databases. Based on the level of autonomy of the component systems, an MDBS can

be classi�ed into two types(�g.2.1):

� Non-federated database system � A non-federated system is an integration of local

systems which have no local autonomy. The overlaying MDBMS controls all the

participating DBMSs which are only slaves to the system.

� Federated database system � A federated system has a set of autonomous DBSs

participating in the federation. There is an agreement of how the local systems share

their data with the federation so they still can control their data as an independent

DBS. Sharing data means that the component DBS has to somehow respond to

extern requests and therefore it must give up some of its autonomy to support the

cooperation.

The autonomy factor of the component systems a�ects the way they are integrated

into the system. Another factor to consider is the responsibility of management of the

system. We can categorize a federated system by these two factors; A federated database

system(FDBS) is loosely coupled if the user is responsible for the management of the

federation. On the other hand we have a tightly coupled FDBS if the administrators of the

federation have the responsibility of managing the system. This means creating a federated

schema and controlling access to the component DBSs. To the user, the federation will be

transparent in the sense that he will not see at which underlying system the data of the

federated schema originates.

Finally, in this taxonomy, we can categorize tightly coupled federated systems as single

federations and multiple federations. The di�erence lies in how many federated schemas

are allowed created in the system. A multiple federation allows several schemas, a single

federation allows only one. This one schema will then be a union of the shared data of

the component DBSs. In the rest of this thesis we will be referring to a single federation

when talking about a multidatabase in general.

2.4.4 The Five-Level Schema Architecture

In the traditional ANSI/SPARC architecture [TK78] for database systems, the three-

schema architecture, we have three (of course) levels; the internal level, the conceptual

level and the external level. This architecture was proposed for single database systems

to achieve data independence, both logical and physical. The three-schema architecture is

adequate for describing the architecture of centralized DBMSs, however it is not adequate

for MDBMSs because of the three dimensions; distribution, heterogeneity and autonomy.

To support the three dimensions, Sheth and Larson [SL90] have proposed an extended

architecture: The �ve-level schema architecture (�g. 2.2).

The �ve-level architecture has the following schemas:

Local Schema The local schema is the conceptual schema of one of the component DBSs.

It is therefore expressed in this local DBMS's native data model.
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Local
Schema

Local
Schema

Schema
Component

Schema
Component

Schema Schema
Export Export

Schema 
Integration

Schema 
Integration

Schema Schema
Federated Federated 

External

Schema

Filter

Filter Filter

Component
DBMS

Component
DBMS

Transforming
Local-Canonical

Transforming
Local-Canonical

Native Model

Common Data Model

Figure 2.2: Five-level schema/system architecture of an FDBS
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Component Schema To avoid the MDBMS having to understand several data models,

the local schemas are translated to a uniform model, called the canonical model(see.

2.5). It is at this level the heterogeneity feature of MDBMSs is supported. This

process generates the mappings between the component schema objects and the

local schema objects. The process of translation might also add semantics to the

original schema to provide better understandability in the component schema.

Export Schema The autonomy feature of aMDBMS allows the component DBSs, among

other things, to restrict access to its data. The export schema is only a subset of the

component schema, where the non-shared data is �ltered out. This is the schema

that is available to the federation.

Federated Schema The federated schema is an integration of multiple export schemas

from the component DBMSs. The federated schemas also need information on how

these integrated schemas were constructed, i.e. which parts of it came from which

export schemas.

External Schema In a MDBMS, as in a traditional centralized DBMS, the user does

not always need access to all the data of the available schema. The external schema

is de�ned for a user or application and a �ltering process is applied to the federated

schema to �lter out unnecessary or non-accessible data.

Saltor et. al [SCG94] have suggested an extension of this architecture. They argue

that three additional schemas be added:

Negotiable Schema: This schema is located between the component schema and the

export schema. It serves as the data from the CDB that di�erent federations can

negotiate from to include in their export schemas. Di�erent federations may therefore

have di�erent export schemas derived from the same negotiable schema.

Translated Schema: The user of the federated system might not be educated in the

canonical model used. Therefore in those cases where the user requirements demand

it, the external schema is divided in two: the translated schema which �lters out data

from the federated schema, and the user schema which is modeled in the user familiar

model. Between the translated and the user schema is a transforming processor to

translate to the users model.

Application Schema: The federated schema is integrated from di�erent source compo-

nent schemas. It expresses the underlying semantics by compromising the di�erent

semantics expressed. However the user might want to di�erentiate between sepa-

rate semantics in the federated schema, thus an application schema should express

which semantics to use. It is located between the federated schema and the ex-

ternal/translated schema to support multiple semantics. The user might have a

requirement of knowing which local database the data came from, so the data is

source tagged for this purpose.



22 CHAPTER 2. MULTIDATABASES

Translated Schema 2

Application Schema

Federated Schema

External Schema 1

Export Schema

A-Negotiable Schema

Application Schema

Federated Schema

External Schema=
Federated Schema

Export Schema=
C-Negotiable Schema

Negotiable Schema

Local Schema

Component DB

Multiple semantics
and source tagged

Native
model

User Schema 2 User model

CDM-A CDM-C

Semantics 1 Semantics 2

Loosely-coupled dederation CTightly-coupled federation A

Figure 2.3: Complete 8-level Architecture

The full 8-level architecture is described in �gure 2.3.

The substance of these additional schemas are not applicable to the focus of this thesis

so we will not mention them in the following. However we feel it is interesting to include

them as they may show to be necessary in future research on full-�edged multidatabase

systems.

2.5 Canonical Data Model

Suppose we were to develop a multidatabase system with n heterogeneous component

systems. Initially we are dealing with potentially n di�erent data models that we are

trying to communicate across. At �rst sight we might need n�n translators to cope with

the n : n possible connections. The factor n�n grows by a square factor with the number

of component systems connected and this factor is naturally undesirable. Parallel to e.g.

networking systems we therefore de�ne one data model as a standard that all models can be

translated/mapped to. This data model we call the canonical data model(CDM). Having

one common data model at the component level ensures that one only needs n translators

in the MDBMS. The CDM can be the same as one of the component data models, but

can also be a model separate from the existing ones. We can say that this translation

solves the problem of syntactic heterogeneity, consequence of the use of di�erent native

data models. The CDM must be chosen according to requirements for suitability in such

a system. This is discussed next.
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2.5.1 Requirements for a Canonical Data Model

For a data model to �t as a CDM, Saltor et. al [SCG91] suggest that it should have two

properties: Expressiveness, and Semantic Relativism. Especially for schema integration

they argue that data models should support views. Views are also discussed as an enhance-

ment to to models by Pitoura et. al [PBE95] and we therefore add it as an additional

requirement. We summarize the three requirements in table 2.2 and describe them in the

following.

Requirements for a canonical data model

RCDM-1 Expressiveness

RCDM-2 Semantic Relativism

RCDM-3 Support for Views

Table 2.2: Requirements for a canonical data model

2.5.1.1 Expressiveness

The canonical model is the model that all underlying models translate to. This means that

this model should be powerful enough to express all concepts of all potential component

data models. Otherwise we would lose information in the translating process. Moreover it

should support additional semantics made explicit through a semantic enrichment process

in case that such a process is applied.

Expressiveness may be seen as composed of a structural part and a behavioral part.

Structural expressiveness is the ability of the structures of the model to represent con-

cepts. Behavioral expressiveness re�ects the ability of the model to represent behaviors of

concepts.

2.5.1.1.1 Semantic enrichment Assuming that the component local schemas are less

expressive than the CDM leads to the fact that the local schemas were intended to express

more information than they explicitly show by their syntax. In fact, one can say that

all schemas are intended to express more than their syntax expresses. This is especially

true of the semantics of the schema where the semantics are not explicitly shown. Since

the CDM has greater expressiveness, it would be bene�cial to extract knowledge from

the local schemas that is intended, but not explicitly expressed. This will be referred to

as semantic enrichment and it is done through the process of knowledge acquisition in

cooperation with the schema designers. Thereby the transformation from local schemas

into component schemas is not just a syntactic translation from one model to another, it

includes a structural and behavioral semantic enrichment in order to upgrade the semantic

level of the local schemas. The schema integration process will then be less di�cult, by

making use of these additional semantics to detect and solve semantic con�icts.
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2.5.1.2 Semantic Relativism

A DB should not just support one conceptualization, but many. A conceptualization

is not absolute, it is relative to the point of view of a user or group of people because

di�erent persons perceive and conceive reality in di�erent ways. A DB should store a single

conceptualization, encompassing all those conceptualizations, and avoiding redundancies.

For the DB to support all users' conceptualizations, it must support one external schema

for each conceptualization, and their derivation from the single database schema.

The semantic relativism of a DB is the degree to which it can accommodate all these

di�erent conceptualizations(of the same real world).

We call semantic relativism of a data model the ability of its operations to derive

external schemas.

2.5.1.3 Support for Views

A view is a way of de�ning a �virtual� database on top of one or more existing databases.

Views are not stored, but are recomputed for each query that refers to them. The de�nition

of a view is dependent upon the data model and the facilities of the language used to specify

the view. Object-oriented views are in general de�ned by a set of virtual classes that are

populated by existing objects or by imaginary objects constructed from existing objects

([PBE95]). In general, the object-oriented models lacks some necessary mechanisms for

grouping already-existing objects and we need therefore to de�ne a suitable way to de�ne

and express views.

2.6 Schema Integration

As we mentioned in section 2.4.1 the three key issues were; constructing a global schema

by means of schema integration, processing of queries by means of query processing, and

management of transactions by means of transaction management. In the following we

describe these three issues and how they are characterized in multidatabase systems. First,

we present schema integration.

The process of schema integration takes place between the export schemas and the

federated schemas in the �ve-schema architecture. Its purpose is to integrate the constructs

of the export schemas. This integration is the basis for the communication between the

global and local system and provides the MDBS with a global schema representing all of

the underlying systems shared data to the global management system. When integrating

schemas from local export schemas there are two considerations to make:

Structural: The structural constructs of the local schemas must be investigated for sim-

ilarities and discrepancies. These include aliases between named entities and related

inheritance hierarchies. The structural con�icts must be resolved by proper schema

integration techniques to form the integrated schema.

Semantical: Pure data has no meaning without an interpretation of it. Since the schemas

of the local databases usually are designed by di�erent designers, their modeling may
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vary by which viewpoint they have. In the schema integration process it is important

to capture the intention of the data represented. The semantical meaning can vary

in level from a meaning of a relationship down to the symbolism of attribute values.

We will cover the process of schema integration and the con�icts that can arise therein

in chapter 3 and 4.

2.7 Query Processing

A multidatabase system must support a query processing system in order to extract the

information within the underlying databases. The application programmer is provided

with a global query language to specify queries against the global schema. We call these

queries global queries to distinguish them from the queries taking place at the local DBs.

Conceptually a global query can be processed in three steps[MY95]:

� Query decomposition

� Query translation

� Query combining

2.7.1 Query Decomposition

When a global query is submitted, it is �rst decomposed into two types of queries by the

query composer. One is queries against individual export schemas. These type of queries

are called export schema subqueries or simply subqueries. Another is queries that combine

the results returned by subqueries to form a global answer. These types of queries are

called post-processing queries. Post-processing queries may not always be needed.

The decomposition itself is usually accomplished in two steps. At the �rst step, the

global query using global names is modi�ed to queries using only names in the export

schemas. At the second step, these queries are decomposed such that the data needed by

each subquery are available from one local database.

2.7.2 Query Translation

After the decomposition the subqueries are still in the global query language. If the

global query language is di�erent from the language of the local database system, the

corresponding export schema subquery must be translated to the local subquery language

by the query translator. For example, if the global query language is an OODB query

language and a subquery is for a relational system using SQL, then this subquery needs

to be translated to an SQL query. The system will need as many query translators as it

has heterogeneous local database systems attached.
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2.7.3 Query Combining

Finally the local query processors will return their answers and it is up to the global query

processor to now combine all the results to a global answer which addresses the query that

was submitted in the �rst place.

2.7.4 Optimizing Global Queries

Clearly, the complexity of this scheme is at a high level. Query optimization in single

database systems is a research �eld of its own. Now the �eld has been broadened to

optimize over distributed data in di�erent data models. When optimizing the process

of global query decomposition and translation the system must consider the whole chain

of events from the global query modi�cation, through the translation to the actual data

transfer that takes place when the local data is returned. This area will show to be of

great importance for providing good enough performance in future multidatabase systems.

2.8 Transaction Management

Access to data located in one or more local data sources is accomplished through trans-

actions. A transaction results from the execution of a user written program written in a

high level programming language. In a single database system the transaction manager

system can work on the basis of an autonomous, cooperating system. In a multidatabase

system a major problem is introduced; local autonomy in the local database systems.

There are two types of transactions executed at local systems[BGMS95]: transactions

that the MDBS is not aware of, i.e. local transactions, and transactions that the MDBS has

submitted to the local DBMS as a part of the execution of a global transaction(global sub-

transactions). Each local DBMS has its own concurrency control mechanism that ensures

serializable and deadlock-free execution of local transactions and global sub-transactions.

The objective of MDBS transaction management is to ensure multidatabase consistency

in the presence of local transactions.

The key issue to how the transaction manager will be able to perform is autonomy �

that is, how willingly are the individual DBMSs to share their control information with

the MDBS or to restrict access of local transactions to local data. De�ning local autonomy

too broadly may lead to considerable di�culties in retaining global database consistency.

On the other hand, de�ning local autonomy too narrowly would not satisfy the basic

requirement that a local DBMS be largely independent from the centralized coordinator

and thereby would make the multidatabase system unacceptable to the users.

As the case is for the stand-alone database systems, the MDBMS's global transactions

must be atomic for correctness � that is, either all their actions commit or they all abort.

In a homogeneous distributed database system, atomicity of transactions is ensured by an

atomic commit protocol such as the two-phase commit(2PC) protocol. The 2PC protocol

requires that the participating local sites provide a prepare-to-commit command in their

interface and thereby promising the global manager that it will commit its work in the
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future if so asked by. It loses some of its autonomy by this commitment since it is no

longer free to make decisions regarding some of its own resources.

Multidatabase transaction management research is still at an early stage, and consid-

erable work needs to be done. It seems clear that full data consistency and serializability

can only be achieved in a multidatabase system by imposing restrictions that many con-

sider severe. Thus, there may be a need to identify alternative forms of consistency and

ways of restricting standard notions of consistency so that positive results can be stated,

rather than impossible results.

2.9 Basic Problems in Multidatabase Systems

The main keywords for what complicates the idea of multidatabases are heterogeneity

and autonomy. The heterogeneity exists at three basic levels. The �rst is the platform

level. Database systems reside on di�erent hardware, use di�erent operating systems and

communicate with other systems using di�erent communication protocols. The second

level of heterogeneity is the database management system level. Data is managed by a

variety of database management systems based on di�erent data models and languages(e.g.

�le systems, relational database systems, object-oriented database systems etc.). Finally

the third level of heterogeneity is that of semantics. Since di�erent databases have been

designed independently, semantic con�icts are likely to be present. This includes schema

con�icts and data con�icts. Semantic con�icts might be considered the hardest level of

heterogeneity to resolve due to the complexity it can have and the fact that it seems to

not be fully understood.

The autonomy of the underlying systems is a crucial factor to how smooth the feder-

ation will cooperate. The spectrum can vary from a CDB being a slave to the MDBMS

to operating as a stand-alone DB where the MDBMS is treated like any other application

or user with no special privileges. From the federations viewpoint it is desirable that the

underlying systems �obey on command�, but there can be several reasons for a CDB to

maintain its autonomy(e.g. e�ciency demands it must meet locally or security aspects).

So the global and local systems may have to negotiate on a policy to follow regarding the

autonomy of the local system in order to create a system that all participants can accept.

With reference to MDBS objective no. 6: �Support for distributed transactions(reads

and updates)�, it has become clear that this objective might be di�cult, if not impossible,

to completely satisfy. Transactions regarding read-only operations seem to be achievable,

but when it comes to update-transactions the complexity of performing this will increase

vastly compared to single database systems. In short, the reason for this is that we may

de�ne mappings from the global schema to the local ones, but their nature is often that they

are irreversible such that the data �ow cannot be de�ned the opposite way � at least not

without unde�ned or undesirable results. Also the control of this operation introduces new

problem dimensions that might demand that we give up other objectives(e.g. autonomy).
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2.10 Summary

In this chapter we introduced the multidatabase systems. We gave an overview where

we identi�ed the objectives such a system should strive for, the three key issues sought

solutions for, and suggestions to alternative architectures. The canonical model was argued

to be an important build-stone and we listed table 2.2 as the requirements it should meet.

We will come back to how our thesis proposal meets these requirements in chapter 7. From

the three key issues we chose to focus on schema integration and will take a closer look at

it in the next chapter. This chapter has served as a basis for our further work as we now

go into further detail of schema integration.



Chapter 3

Schema Integration

In this chapter we will describe the process of schema integration from section 2.6 in more

detail. We will explain why schema integration is needed and why schema diversity arises.

The problems in this area will also be discussed. Finally we will de�ne a set of requirements

that the schema integration process and its resulting integrated schemas should meet.

3.1 De�nition

Batini et. al [BLN86] de�ne schema integration as the following:

Schema Integration: the activity of integrating the schemas of existing or proposed

databases into a global uni�ed schema.

We can divide the occurrence of schema integration in two contexts [BLN86]:

View Integration (in database design) produces a global conceptual description of a

proposed database. This would be in the context of �top-down� methodology from

[SL90].

Database Integration (in distributed database management) produces the global schema

of a collection of databases. This global schema is a virtual view of all databases

taken together in a distributed database environment. This would be in the context

of �bottom-up� methodology from [SL90].

The focus in this thesis will be on database integration. The database integration

activity is described in a general way in �gure 3.1. It shows that this activity has as

input the local schemas and the local queries and transactions. There has not been done

much work that explicitly takes into account the latter process-oriented information in

developing the integrated schema. It is strictly used in mapping the queries between

the global and the local levels. Hence the �gure shows the global schema as well as

the data and query-mapping speci�cations to be the outputs of the database integration

activity. However, this thesis will focus on the structural and semantical merging of

29
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Database Integration

Local Database
Schemas

Local Database
Queries/Transactions

Data Mapping
from Global 

to Local Databases

Queries/Transactions
from global

to Local Databases

Mapping ofA Global
Database Schema

Figure 3.1: Database Integration

local schemas into a global schema. Although query and transaction mapping is partly

inherently supported by the schema merging, it will not explicitly be discussed further1.

More speci�cally, schema integration in a multidatabase system takes place between

the level of export schemas and the federated schema(s) of the system (see section 2.4.4 on

page 19). Selected export schemas are integrated into federated schemas. If it is a single

federation, all the export schemas are integrated into one global schema. If a multiple

federation is being designed, several federated schemas are integrated from the export

schemas where the export schemas can participate in one or more global schemas. Both

source and target schemas in this process are of the same common data model so there is

no translation involved. However there must be mappings between them.

The schema integration process can be thought of as deriving a single schema (in the

case of single federation) from a set of schemas through a sequence of simpler functions

each of which address (resolve) a schematic discrepancy [KCGS95]:

schema int process : schema1 � schema2 � : : :� scheman ! int schema

This is just to get a preliminary overview of this process. We will look closer at it in

section 3.4.

3.2 Integration Motivation

There is a growing trend to regard data as an autonomous resource of the organization,

independent of the functions currently in use in the organization. There is a need to

capture the meaning of data for the whole organization in order to manage it e�ectively.

1An introduction to query processing and transaction management in MDBSs was presented in chapter 2
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Because of this awareness, integration of data has become an area of growing interest in

recent years.

From a view integration point of view, the structure of the database for large applica-

tions (organizations) is too complex to be modeled by a single designer in a single view.

Several designers can break down the complexity and perform a view integration to merge

the parts. From a database integration point of view, di�erent user groups typically op-

erate independently in organizations and have their own requirements and expectations

of data, which may con�ict with other user groups. A multidatabase system builds a

common view over the user groups' local database systems(LDBSs) that are of interest,

and the schema integration process is an e�ort to solve and homogenize their con�icts.

3.3 Causes for Schema Diversity

The basic problems to be dealt with during integration come from structural and semantic

diversities of schemas to be merged. The main reasons for this diversity is discussed in

the following.

3.3.1 Di�erent Perspectives

Di�erent user groups adopt their own viewpoints in modeling the same objects in the

application domain. A real life object modeled as some construct in one application,

might be found to be modeled as a totally di�erent construct in another application.

3.3.2 Equivalence among Constructs of the Model

In conceptual models, several combinations of constructs can model the same application

domain equivalently. As a consequence, semantically �richer� models have a larger variety

of possibilities to model the same situation. As an example, �gure 3.2 shows two equivalent

constructs, where Man and Woman are distinguished by a generalization hierarchy in the

�rst schema, whereas in the second schema they are distinguished by the di�erent values

of the attribute Sex.

Person

Man Woman

Person
Sex

(a) (b)

is_ais_a

Figure 3.2: Equivalent constructs: (a) Generalization hierarchy. (b) A single class
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3.3.3 Incompatible Design Speci�cations

A good schema integration methodology should, as far as possible, analyze the component

schemas for erroneous choices regarding names, types, integrity constraints, etc. Such

errors, if not detected and corrected, may result in erroneous inputs to the schema inte-

gration process, propagating the errors upwards to the global schema.

3.3.4 Common Concepts

The three aspects above are concerned with what we call the common part of the various

schemas, i.e. the set of concepts of the application domain that are represented in two or

more schemas. In other words, the above aspects represent the reasons why the common

part may be modeled in di�erent ways in di�erent schemas. In order to perform schema

integration is is important to single out not only the set of common concepts, but also the

set of di�erent concepts in schemas that are mutually related by some semantic proper-

ties. In general we refer to these as interschema properties and the con�icts among such

properties as interschema con�icts.

3.4 The Process of Integrating Schemas

In their survey, Batini et al.[BLN86] suggest the process of schema integration be divided

into the following activities:

� Preintegration

� Comparison

� Conforming

� Merging and restructuring

These activities will be described in the following sections.

3.4.1 Preintegration

This action is carried out as a method of deciding on policy for the rest of the process.

Typically this stage consists of choosing which schemas should be integrated with each

other and in which order. Global strategies for integration, namely the amount of designer

interaction and the number of schemas to be integrated at one time, are also decided at

this phase. Finally one tries to get an overview of any additional information needed for

the integration that isn't implicitly known such as any assertions or constraints.

The choice of schemas also involves processing component schemas in some sequence.

In general, the number of schemas considered for integration can be n � 2. Figure 3.3

shows four possible variations termed integration processing strategies [BLN86] . Each

strategy is shown in the form of a tree. The leaf nodes of the tree correspond to the com-

ponent schemas, and the non-leaf nodes correspond to intermediate results of integration.
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Integration process

Binary n-nary

Ladder Balanced One-shot Iterative

Figure 3.3: Types of integration-processing strategies

The root node is the �nal result. The general integration process strategies are classi�ed

into binary versus n-ary.

Binary strategies allow the integration of two schemas at a time. They are called ladder

strategies when a new component schema is integrated with an existing intermediate result

at each step. A binary strategy is balanced when the schemas are divided into pairs at the

start and are integrated in a symmetric fashion.

N -ary strategies allow integration of n schemas at a time (n > 2). An n-ary strategy

is one-shot when the n schemas are integrated in a single step, it is iterative if the schemas

are integrated stepwise through intermediate schemas. This is the most general case.

The advantage of binary strategies is the simpli�cation of the activities of comparison

and conforming at each integration step. The disadvantages are an increased number of

integration operations and the need for a �nal analysis to add missing global properties.

The advantages of n-ary strategies are: A considerable amount of semantic analysis

can be performed before merging, avoiding the necessity of a further analysis and trans-

formation of the integrated schema. Also the number of steps for integration is minimized.

The disadvantages are that the analysis will be more complex.

3.4.2 Comparison

This step is also called the schema analysis step. It involves comparing the concepts of

schemas to be integrated to determine con�icts in the representation of the corresponding

objects in di�erent schemas. Two main con�ict types are naming con�icts and constraint

di�erences.

The naming con�icts arise due to that people from di�erent application areas of the

same organization refer to the same data using di�erent terminology or di�erent data

using the same terminology. This gives rise to two con�ict types:
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1. Synonyms: When the same name is used for two di�erent concepts, causing incon-

sistency unless detected.

2. Homonyms: When the same concept is described by two or more di�erent names,

preventing a complete merging unless detected.

A special type of homonyms occurs when for the same concept there is a match on

names but no match on the corresponding sets of instances. They can occur at various

levels of abstraction. An example could be the class Student in one database referring

to all students registered whereas in the married-student-housing database it refers to

married students only.

We use the term structured con�icts to include con�icts that arise as a result of a

di�erent choice of modeling constructs or integrity constraints. To roughly capture the

basic con�ict types we present a classi�cation which distinguishes between the following

kinds of con�icts:

� Type Con�icts. These arise when the same concept is represented by di�erent

modeling constructs in di�erent schemas. This is the case when, for example, a class

of objects is represented as a de�ned class in one schema and as an attribute in

another schema.

� Dependency Con�icts. These arise when a group of concepts are related among

themselves with di�erent dependencies in di�erent schemas. For example, the re-

lationship Marriage between Man and Woman is 1 : 1 in one schema, but m : n in

another accounting for a marriage history.

� Key Con�icts. Di�erent keys are assigned to the same concept in di�erent schemas.

For example, SocSec# and Emp_id may be the keys of Employee in two component

schemas.

� Behavioral Con�icts. These arise when di�erent insertion/deletion policies are

associated with the same class of objects in distinct schemas. For example, in one

schema a department may be allowed to exist without employees, whereas in another,

deleting the last employee associated with a department leads to the deletion of the

department itself. Note that these con�icts may arise only when the data model

allows for the representation of behavioral properties of objects.

The comparison step also includes the activity of discovering interrelationships among

the schema objects. It may be a by-product of con�ict detection. However found, any

inter-schema properties discovered during this step are saved and processed during schema

merging. Although it would be of great advantage to automate the comparison step of

integration, its complexity and often semantically in�uence leads to that it in general is

aided by a strong interaction between the designers and users .

We will take a closer look at the con�icts that can arise during this step in chapter 4.
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3.4.3 Conforming

After the con�icts have been determined, an e�ort is made to resolve them so that the

merging of the schemas is possible. The goal of this activity is to conform or align schemas

to make them compatible for integration. Achieving this goal amounts to resolving the

con�icts, which in turn requires that schema transformations be performed. One might

have to accept compromises on certain aspects to achieve workable results. This is because

some types of con�icts are of such a nature that they can not be resolved completely as

desired as we will see later in the thesis. As an example of resolving naming con�icts, we

can use simple renaming operations for homonyms, such as pre�xing the names with the

schema name of which they belong to.

3.4.4 Merging and Restructuring

Now all the analyzing and preparations have been done and the actual merging of the

schemas takes place. This step can take place at each temporary integrated schema or

just at the �nal schema. Analyzing the �nal merged schema can give some last information

on how to do a �nal restructuring in order to achieve more desirable properties.

3.4.5 Summary - Integration Process

We have given an overview of the steps of the process of schema integration according

to Batini et. al [BLN86]. These steps are general, basic steps that each include their

own subproblems to be solved. It is important to note that this list not necessarily is

followed sequentially, but can also be followed stepwise with drop-backs to previous steps

and iterations over two or more steps to achieve the desired �nal result. To clarify the

intermediate steps' results we have constructed a graphical representation of the process

is given in �gure 3.4 that spans the process from the local schemas to the integrated

federated schema.

In our proposal later in this thesis (chapter 7), we will come back to a suggestion to

how we will conform and merge the con�icts in our case.

3.5 Requirements for Schema Integration

In this section we discuss what might be considered as successful schema integration and

give some requirements to how obtain this.

3.5.1 What is Good Schema Integration?

To answer this question, it is important to �rst look at the goal of schema integration. In

our context we are trying to integrate two or more schemas from heterogeneous databases

into a global uniform schema to access the information in a homogeneous manner. The goal

in this must be to be able to access the underlying data in a transparent way through the

integrated schema and that the integration process is done in a way that is understandable
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Figure 3.4: Steps of the schema integration process.
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and not too complex. The �nal integrated schema should also meet normal expectations

of that of native database schemas.

3.5.2 Requirements

In the following sections we will list a number of requirements for future reference. The

requirements will as far as possible be a guide to evaluate solutions as to how well they

support schema integration of schemas.

In their comparison survey, Batini et. al [BLN86] give a list of requirements for what

qualitative criteria the global schema integration should have: completeness, correctness,

minimality and understandability. Here we would like to add a new requirement to this

list, a schema integration process oriented criteria, namely schema integration support.

Batini et. al [BLN86] do not discuss this requirement so we introduce it in this thesis as

an additional requirement. The requirements are described closer in the following sections.

3.5.3 Completeness

The integrated schema should represent the union of all the concepts in the component

schemas. To achieve completeness, the designer has to conclude the analysis and addition

of inter-schema properties that is initiated in previous design steps. Note that the variety

of inter-schema properties is strongly related to the repertory of schema constructs at the

disposal of the data model.

3.5.4 Correctness

Having covered all the concepts of the underlying schemas it is also desired that the

information represented in the integrated schema is correct. One might occasionally have

a situation where one can slightly compromise this to achieve other goals, but this is

generally not advisable as the consequences can be undetermined.

3.5.5 Minimality

Integrating schemas with di�erent concepts will sometimes integrate the same concept

from di�erent schemas. The minimality requirement says that multiple equal concepts

integrated must only be represented once in the integrated schema. This is of course to

avoid redundancy as a basic requirement in all database systems. Also concepts that can

be derived by other concepts should be considered when seeking equivalent concepts.

3.5.6 Understandability

The process of integrating schemas and the �nal global schema should have a reasonable

understandability. Solving con�icts by a highly complex method that produces a schema

which is hard to understand will cause other problems. This requirement implies that

among the several possible representations of results of integration allowed by a data

model, the one that is qualitatively the most understandable should be chosen. However
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a quantitative and objective measure of conceptual understandability is di�cult to de�ne.

Some guidelines to parameters in a graphical representation of the conceptual model could

be shape of the diagram, the total length of connections, the number of crossings and

bends, and so forth.

3.5.7 Schema Integration Support

As far as possible the process of integration should be automated. It is desirable that

the system supports the integration process and that the interaction with the developer is

minimized to the degree where the developer still can follow and understand the process.

Due to the highly semantic degree of understanding schemas, it is obvious that this process

cannot be entirely automated, but integration guide tools and mapping methodologies are

examples of helpful aids.

3.6 Summary

In this chapter we discussed in further detail our key issue in multidatabase systems;

schema integration. We argued why schema diversity arose and identi�ed the need for

schema integration. The process was broken down into subprocesses that all should be

part of an e�ective and understandable means of achieving the integrated schemas, from

to merging and restructuring of the �nal schemas. The schema integration process and

its resulting schemas should meet some qualitative criteria, so we summarize the criteria

as table 3.1 as the requirements they should meet. We will revisit the requirements in

Requirements for schema integration

RSI-1 Completeness

RSI-2 Correctness

RSI-3 Minimality

RSI-4 Understandability

RSI-5 Schema Integration Support

Table 3.1: Requirements for schema integration

chapter 8 where we will argue how our proposal has met them.

In the 'comparison' step of the schema integration process it is clear that there are

several types of con�icts to identify and resolve between schemas. In the next chapter the

inter-schema con�icts will be in focus as we will classify the requirement con�ict groups

from table 1.1.



Chapter 4

Schema Heterogeneities

In this chapter we will outline various schema heterogeneities that have been encountered.

It can be considered a study of the comparison step in the schema integration process

of chapter 3. It is not a canonical overview, but discusses the most important variations

that have been sought solutions for. First we will de�ne a general classi�cation that is

constructed to give a starting point of discussion. Later we will go into further detail on

this classi�cation by adopting classi�cations from the literature. Two views on the schema

heterogeneities are given; a structural classi�cation that conforms to our requirements

in table 1.1 in the introduction chapter, and a semantic view expressed by a semantic

proximity function. The structural classi�cation breaks up our mentioned requirement

con�ict groups in table 1.1 into further detail describing the characteristics of each con�ict

and also giving examples. The semantic approach de�nes a semantic measure of semantic

similarity introduced by Sheth and Kashyap [SK92]

4.1 Introduction

Schemas in independent databases are often designed by di�erent schema designers. This

di�erence in design introduces several problems as to interpreting the semantics of the

schemas. One of the key problems that will arise in this context is to be able to verify

equivalences and relations between database schemas or parts of them.

Examples of situations where this problem turns up could be [Øre92]:

� Modi�cation of a database schema, in order to obtain a better one.

� Design of the various schemas for a database, using a DBMS with a multi-schema

architecture.

� Design of the various schemas for a distributed database

� Splitting of one schema into two or more schemas

� Integration of two or more schemas into one schema

In this thesis the focus will be put on the latter of these examples.

39



40 CHAPTER 4. SCHEMA HETEROGENEITIES

4.2 A general Classi�cation of Schema Comparisons

Here we will cover shortly some of the relations schemas can have between each other.

This classi�cation is a general comparison we have de�ned as a starting point constructed

to start the discussion at a higher level of abstraction. Later in this chapter we will go

into further detail.

Clearly a minimum of randomly chosen schemas compared with each other will actually

be equivalent. They will rather be either disjoint from each other or something in between

the two extremes(see �g.4.1).

B

AA B A BA B

Equivalent Inclusion Overlapping Disjoint

Figure 4.1: Scale of schema relationships

As �g. 4.1 shows, we can have four situations of schema comparison:

1. Equivalent: schema A and schema B are equivalent in some way we have agreed on.

2. Inclusion: All attributes in schema B are also attributes of schema A, however schema

A has additional attributes1.

3. Overlap: Schema A and schema B have a set of equivalent attributes, but each

schema also has attributes of their own.

4. Disjoint: Schema A and B do not share any attributes.

Savasere et. al [SSG+91] present these situations in a classi�cation(see �g. 4.2).

mergeable

equivalent
inclusion overlap disjoint

non-mergeable

class relationships

Figure 4.2: Classi�cation

1Otherwise we would have situation 1.
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They argue that this classi�cation holds for a straightforward type of merging were

one uses abstraction or subclassing in the case of inclusion and a one-to-one mapping in

the case of equivalence. In the case of overlap or disjoint schemas we need to use more ad

hoc approaches.

Note: The non-mergeable overlap class might seem strange since one could argue that

all overlapping schemas have some possibility of merging. However, Savasere et. al include

this class since they interpret it as the schema intergrator's choice whether it is necessary

or not. Example: Regardless of whether Course and Instructor overlap or are disjoint,

they need not necessarily be merged into a common class, even though they are related in

the sense that instructors teach courses.

In their approach they exploit the notions of subsumption and classi�cation for schema

integration to automatically determine relationships among classes. They de�ne subsump-

tion and classi�cation as follows:

Subsumption: A class f subsumes a class g if and only if every instance of g also is an

instance of f , i.e. f is a superclass of g. The subsumption relationship is computed on

the basis of whether the attribute constraints for class g logically imply the attribute

constraints for class f.

Classi�cation can be viewed as the process of correctly locating a given class in an

existing taxonomy2.

Let E[f ] and E[g] represent the extensions of classes f and g, respectively.

We de�ne the subsume function as:

subsume(f; g) = true i� E[f ] � E[g] (4.1)

However, as explained above, subsumption is computed on the basis of class de�nitions

and not the actual extensions. This means that the subsume function returns true if and

only if the constraints on each attribute of g logically imply the constraints on the corre-

sponding attribute of f . Therefore, subsume(f; g) � f includes g � g is-included-in f .

Here we present the de�nitions on each classi�cation from �gure 4.2 [SSG+91]:

Equivalence:

equivalent(f; g) = true i� E[f ] � E[g] (4.2)

Using subsumption it can be computed as

equivalent(f; g) = subsume(f; g)^ subsume(g; f) (4.3)

Inclusion: Following from the above discussion we have:

subsume(f; g) � f includes g � g is-included-in f (4.4)

2One way of computing classi�cation is to take the transitive reduction over a boolean matrix generated

by computing the subsumption relationship between all possible pairs of classes in the database schema, i.e.
class taxonomy. Since there are n2 such pairs, classi�cation is an O(n2) algorithm where the fundamental

unit of computation is the subsumption operation. However, computing subsumption is at least co-NP-

hard[Neb88]
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Overlap:

overlap(f; g) = true i� :subsume(f; g)^ :subsume(g; f)^ :disjoint(f; g) (4.5)

Disjoint:

disjoint(f; g) = true i� E[f ]\E[g] = ; (4.6)

Disjoint can be computed as:

disjoint(f; g) = true i� incoherent(conjunction(f; g)) (4.7)

where conjunction is a function which returns a new class from two given classes

such that the extension of the new class is the intersection of the extensions of the

given classes:

E[conjunction(f; g)] = E[f ]\E[g] (4.8)

incoherent is a boolean function which tests for logical inconsistency in constraints

on the attributes of a given class.

We compute incoherence of a class by checking if the class is subsumed by a known

incoherent class i:

incoherent(f) = subsume(i; f) (4.9)

The functions de�ned above are based on the ability to compute subsumption, i.e. they

are based on the semantics of class de�nitions. However, it is possible to de�ne boolean

functions which return true or false based on more syntactic criteria such as attribute

relationships. Therefore, we de�ne two additional operators:

1. attr overlap(f; g)

This function returns TRUE if and only if there exists at least one pair of attributes

a1 and a2 such that a1 � a2 or a1 � a2 or a2 � a1 where a1 is any attribute of f

and a2 is any attribute of g.

2. attr disjoint(f; g)

This function returns TRUE if and only if there does not exist any pair of attributes

a1 and a2 such that a1 � a2 or a1 � a2 or a2 � a1 where a1 is any attribute of f

and a2 is any attribute of g.

All these functions are argued to be computable automatically. The user can now

restructure the global schema based on his perspective of the domain of discourse with

the help of these functions.



4.2. A GENERAL CLASSIFICATION OF SCHEMA COMPARISONS 43

4.2.1 More on Equivalence

In the database context the term equivalence has come up e.g. around talks on equivalence

of databases. One has discussed what makes two databases equivalent in di�erent contexts.

Work done by [Øre92] enlightens this topic. In projects concerning database construction,

it is often needed to verify equivalence of database schemas.

The term equivalence has di�erent interpretations in di�erent contexts. The term can

mainly be divided in two main categories:

1. Equivalence of content

(a) Syntactically

(b) Semantically

2. Equivalence of behavior

In the former de�nition, the contents of the objects to be compared is taken into

consideration. One way to view the contents is by syntactical comparison. In a database

schema context this would be comparing attributes with one another, either in the same

data model or in di�erent models. Using di�erent models would need a mapping tool of

some kind to be able to compare directly. Another way to compare contents is by viewing

its semantical meaning, but deciding that two schemas are equivalent based on a semantic

consideration may prove not to be easy. Indeed, the semantical aspects of schemas are not

fully understood as we shall discuss more in this thesis.

The latter category views our world as objects that interact with one another. These

objects have methods or functions that the outside world has access to. The contents

of the objects may or may not be visible. Two objects are considered equivalent if the

behavior of the same actions on them are the same, i.e. the objects alter their state in an

equivalent way when manipulated with equivalent methods.

4.2.1.1 De�nitions of 'Equivalence'

A general, overall de�nition of the term equivalence could be the following [Øre92]:

Equivalence Two objects are equivalent for some purpose if they are interchangeable for

that purpose.

This general de�nition is not very helpful to us, but it gives us a starting point of

�nding a suitable de�nition in this thesis. We have to be more speci�c about what we

mean by objects and purpose.
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4.3 A Schematic Classi�cation of Heterogeneity

Kim and Seo [KS91] have developed a framework for enumerating and classifying the

types of MDBMS structural and representational discrepancies. They assume in their

classi�cation that the canonical model in the MDBMS is the relational model, i.e. all local

database schemas have been mapped to the relational data model. Later this classi�cation

has been expanded to also include aspects of the object-oriented data model in Kim et. al

[KCGS95]. We take their classi�cation a step further and adopt it to yield a classi�cation

of structural con�icts using a object-oriented model only as a canonical model.

The classi�cation can roughly be be distinguished into three schema con�ict groups

and one data con�ict group. The three schema con�ict groups are: �Class-vs-Class�,

�Attributes-vs-Attributes�, and �Class-vs-Attributes�. The data con�ict group is: �Dif-

ferent Representation for Equivalent Data�. These four groups of con�icts correspond to

our requirement list in table 1.1 which we presented in the introduction. In the following

the con�ict groups are presented in sections 4.3.1, 4.3.2, 4.3.3, and 4.3.4 respectively.

4.3.1 Class-vs-Class(RCG-1)

These con�icts occur when di�erent component databases(CDBs) use di�erent de�nitions

to represent information in classes. Class-vs-class con�icts can be further decomposed

into one-to-one class con�icts and many-to-many classes con�icts(one-to-one con�icts is

a special case of many-to-many). Table 4.1 gives an overview of the con�icts in con�ict

group RCG-1.

Con�ict Group RCG-1: Class-vs-Class

(a) One-to-One Class

i. Class Name

-di�erent names for equivalent classes

-same name for di�erent classes

ii. Class Structure

-missing attributes

-missing but implicit attributes

iii. Class Constraints

iv. Class Inclusion

(b) Many-to-Many Classes

Table 4.1: Con�ict Group RCG-1

4.3.1.1 One-to-One Class Con�icts

These con�icts can occur when CDBs represent the same information in single classes

using di�erent names, structures, and constraints. We decompose these con�icts further
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into class name con�icts, class structure con�icts, class constraints con�icts, and class

inclusion con�icts.

4.3.1.1.1 Class Name These con�icts arise due to di�erent names assigned to classes

in di�erent CDBs. There are two types:

� con�icts due to the use of di�erent names for semantically equivalent classes (syn-

onyms)

� con�icts due to the use of the same name for semantically di�erent classes (homonyms)

Example: Two equivalent classes across the schemas in the case are Under_Grad in

Schma 1 and Student in Schema 3. Even though their attributes are not identical they

represent the same real world class.

4.3.1.1.2 Class Structure These con�icts arise from di�erences in the number of at-

tributes in CDB classes, i.e. when a class in one CBS is missing some attributes in a corre-

sponding table in another CDB. A class is, among other criteria, not union-compatible with

corresponding classes in other CDBs if it is missing some attributes. Missing attributes

can be interpreted in two ways:

� The attributes are indeed missing and we have no information about them.

� The missing attributes are implicit of the other attributes and can thus be deduced

from them.

Example: The attribute address of the Student class in Schema 3 is apparently miss-

ing compared to the Under_Grad class of Schema 1. However the information is available

in the separate class Address and thus may be derived from it by some appropriate reso-

lution technique.

4.3.1.1.3 Class Constraints These con�icts arise from di�erences in the speci�ca-

tions of class constraints (such as key constraints). Unlike other constraints, which cause

di�culties in the formulation of queries or in the de�nition of views involving multiple

CDBs, constraint con�icts, including attribute constraint con�icts (discussed later), can

cause di�culties with simultaneous updates to multiple CDBs. For example, if an at-

tribute is a key attribute in one CDB, but the corresponding attribute in another CDB

is not a key attribute, it is di�cult to impose the key constraint on the attribute at the

MDBS level.

4.3.1.1.4 Class Inclusion A class inclusion con�ict arises from the generalization

modeling abstraction in OODBSs. This type of con�ict occurs when a class in one CDB

is logically included in another class in another CDB. A simple example is the classes

Student and Grad_student, taken from the case, which can induce a natural inclusion

relationship in an MDB schema. A more complex situation occurs when an inheritance

hierarchy from one OODB is to be integrated with a related inheritance hierarchy from

another OODB that has a di�erent structure.
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4.3.1.2 Many-to-Many Classes Con�icts

These con�icts occur when CDBs use di�erent number of classes to represent the same

information. CDB designers typically de�ne their classes in di�erent ways for a variety of

reasons. Therefore this type of con�ict can occur frequently in an MDBS.

Example: We recognize this con�ict type in the case where the concept of employee is

modeled as the two classes Employee and Emp_other in Schema 1, but in Schema 3 the

concept is split up into three classes, namely Employee, Emp_personal, and Emp_tax.

4.3.2 Attribute-vs-Attribute(RCG-2)

These con�icts are caused by di�erent de�nitions for semantically equivalent attributes

in di�erent component databases, including di�erent names, attribute data types, and

integrity constraints. Like the class-vs-class con�icts, these con�icts can be further de-

composed into one-to-one and many-to-many con�icts. Table 4.2 gives an overview of the

con�icts in con�ict group RCG-2.

Con�ict Group RCG-2: Attribute-vs-Attribute

(a) One-to-One Attribute

i. Attribute Name

-di�erent names for equivalent attributes

-same name for di�erent attributes

ii. Attribute Constraints

-integrity constraints

-data values

-composition

iii. Default Values

iv. Attribute Inclusion

v. Methods

(b) Many-to-Many Attributes

Table 4.2: Con�ict Group RCG-2

4.3.2.1 One-to-One Attribute Con�icts

These are due to di�erent de�nitions for semantically equivalent attributes in di�erent

classes. We decompose one-to-one attribute con�icts into attribute name con�icts, at-

tribute constraint con�icts, default value con�icts, attribute inclusion con�icts, and meth-

ods con�icts.



4.3. A SCHEMATIC CLASSIFICATION OF HETEROGENEITY 47

4.3.2.1.1 Attribute Name Attribute name con�icts are similar to the class name

con�icts discussed earlier. There are two types in this category:

� one arising from the use of di�erent names for semantically equivalent attributes in

di�erent CDBs (synonyms)

� one arising from the use of the same name for semantically di�erent attributes

(homonyms)

The latter type is often caused by the use of incompletely speci�ed names. For example,

one CDB uses an attribute name salary, meant semantically as gross salary, and another

CDB uses the same name for net salary. Similarly, attribute name price may represent

the price including VAT in one CDB and the price before adding VAT in other CDBs.

Example: An example of the �rst from the case is the attribute major from the

Grad-student class and the dept attribute from the Faculty class of Schema 4 which

have the same meaning but di�erent names.

4.3.2.1.2 Attribute Constraints These con�icts are further decomposed into in-

tegrity constraints con�icts, data type con�icts, and composition con�icts.

Integrity Constraints This type of con�ict, will often show to be a problem during

an update to the MDBS. It arises from the di�erences in de�ned constraints in di�erent

CDBs. Depending on what constraint has been adopted by the MDBS, the update may

not succeed in one of the CDBs.

Data Type These con�icts occur when semantically equivalent attributes in di�erent

CDBs have di�erent domain or type. For example, taken from the case, the attribute ssn

has the type string in Schema 5 but integer the the others. A more general con�ict

arises when integrating OODBs, because an attribute can have a user-de�ned type based

on some class. This latter example can be regarded as part an aggregation con�ict.

Example: The dept attribute of Faculty in Schema 4 is of type string while the

corresponding attribute in Schema 5 is of the user-de�ned type Department

Composition Attribute composition con�icts arise when similar concepts are rep-

resented in one CDB data model as an aggregation or composition abstraction, while not

in the other CDB.

Example: In Schema 4, consider the attribute course of the class Enroll with the

domain of the user-de�ned type Course which in turn has an attribute prereq whose

domain is SET_OF(Course). Compare this with the corresponding classes in Schema 3.

Note that this type of con�ict is di�erent from the many-to-many class con�icts because

it is not the di�erence in the number of classes involved, rather it arises because non-object-

oriented models often do not support the aggregation abstraction. However, con�icts

between related aggregation hierarchies in more than one OODB can be thought of as a

special case of the data type con�ict mentioned above.



48 CHAPTER 4. SCHEMA HETEROGENEITIES

4.3.2.1.3 Default Values This con�ict type, like constraint con�icts, can manifest

itself during update. It occurs when there are di�erent choices of default values for at-

tributes in di�erent CDBs. Updates to the MDBS view may result in a con�ict of what

default values to insert in the CDBs if the value is not explicitly speci�ed in the MDBS

update.

Example: The bonus attribute in Schema 1 might have a default value of 10% while

in Schema 3 the same attribute might have no default value, but it is rather expected that

some value be provided at every update.

4.3.2.1.4 Attribute Inclusion This con�ict arises when an inclusion relationship

exists between two or more attributes. For example an attribute son_name can be regarded

as being included in child_name. Clearly, this con�ict falls into a category di�erent from

di�erent names or data types. An inclusion relationship between two attributes may be

used to induce a natural inheritance hierarchy among the corresponding classes in the

MDB schema.

4.3.2.1.5 Methods Since a method declaration is part of the de�nition of an OODB

class, methods can be treated just like an attribute. For example, when two classes E1 and

E2 are identical except for a missing method, for our purposes, we may regard one class

as missing an attribute. Likewise, if two classes have methods with di�erent names but

equivalent semantics, the situation can be considered as identical to the attribute name

con�ict. When methods have arguments with di�erent types, the two methods may be

integrated by considering the data type con�icts between the corresponding arguments.

In some sense, this situation may be seen as similar to an attribute composition con�ict.

When integrating an inheritance hierarchy, if a specializing method is de�ned in a subclass,

the situation is analogous to an attribute inclusion con�ict.

Example: In the case only Schema 4 and Schema 5 have the method gpa(). The others

are missing it and they can in this case be regarded as missing an attribute. However

the corresponding methods gpa() in Schema 4 and Schema 5 can di�er in number of

arguments and the type of the arguments such that some matching method must be

provided to resolve the con�ict.

4.3.2.2 Many-to-Many Attributes Con�icts

This category of con�icts arises when the CDBs use a di�erent number of attributes to

represent the same information. As remarked for the many-to-many class con�icts, these

con�icts may combine many-to-many attribute con�icts with sub-categories of one-to-

one attribute con�icts. These occurrences can be interpreted as the compound con�icts

mentioned earlier and further decomposed into several types of basic con�icts.

Example: A simple case of this con�ict is represented in the case by the name informa-

tion for students being broken into a lastname and firstname in Schema 3 and Schema

5 while it is simply name in the other CDBs.



4.3. A SCHEMATIC CLASSIFICATION OF HETEROGENEITY 49

4.3.3 Class-vs-Attribute(RCG-3)

These con�icts occur if some CDBs use classes and others use attributes to represent the

same information. This con�ict type can be regarded as a combination of many-to-many

class con�icts and many-to-many attribute con�icts. We present con�ict group RCG-3 in

table 4.3.

Con�ict Group RCG-3

Class-vs-Attribute

Table 4.3: Con�ict Group RCG-3

Example: This con�ict type is typically represented in the case by the address infor-

mation. The attribute address represents this information in Schema 1 while the same

information is represented as a class in Schema 3.

4.3.4 Di�erent Representation for Equivalent Data(RCG-4)

There are three di�erent aspects to the representation of data across CDBs: expressions,

units, and precision. Table 4.4 gives an overview of the con�icts in con�ict group RCG-4.

Con�ict Group RCG-4: Di�erent Representation for Equivalent Data

(a) Di�erent Expression denoting same Information

(b) Di�erent Units

(c) Di�erent Levels of Precision

Table 4.4: Con�ict Group RCG-4

4.3.4.1 Di�erent Expression denoting same Information

Con�icts in expressions arise between CDBs when they use the same type of data or

di�erent types of data for the same information. The following examples show various

expressions for the same data:

� Di�erent words for the same data: Oslo, OSL, Osl

� Di�erent strings for the same data:

Forskningsveien 1, Room 335A(Third floor), 0314 Oslo

or

Forsknvn.1, 3-335A, 0314-O
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� Di�erent codes for the same data:

*****,A,Excellent,1,5,S

****,B,Good,2,4,Mg

***,C,Fair,3,3,G

**,D,Poor,4,2,Ng

*,E,Bad,5,1,Lg

The latter shows an example of di�erent data types used for the di�erent representa-

tions of the same data.

4.3.4.2 Di�erent Units

These con�icts arise when CDBs use di�erent units for numeric data. Di�erent units give

di�erent meanings to numeric values, as in the attribute weight with value 3 meaning

three pounds in one CDB and meaning three kilograms in another CDB.

This con�ict type can, in a sense, be regarded as an attribute name con�ict. Thus, if a

fully quali�ed name is used for each attribute(e.g. weight_in_lb and weight_in_kg re-

spectively), the attributes in di�erent units can be regarded as distinct attributes. However

we regard attributes in di�erent units as carrying semantically equivalent information.

4.3.4.3 Di�erent Level of Precision

Con�icts in precision occur when CDBs use values from the domains of di�erent cardinal-

ities for the same data.

Example: Suppose the grade attribute in Schema 1 had its value given along a scale

from 1 to 100. If the corresponding grade attribute in Schema 3 was given along an

alphabetic scale from A to E the precision con�ict is obvious and some sort of range from

the more precise scale would have to correspond to each value of the less precise. Note

that we will lose some information in doing this.

We note that when di�erent CDBs use di�erent values from domains with same cardi-

nalities, they are in expressions con�ict rather than in precisions con�ict, as in the third

example of �Di�erent Expression denoting same Information�.

4.3.5 Compound Con�icts

We regard compound con�icts as combinations of di�erent con�ict types in this classi�-

cation. This approach makes it possible to classify arbitrarily complex con�icts as we can

decompose them into the basic con�ict types of this classi�cation.
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4.4 A Semantic Proximity Approach

Apart from trying to map equivalent objects on a one-to-one syntactical basis, one can

de�ne a semantic measure for equivalence of objects. Here we present a semantic proximity

function, �rst introduced by Sheth and Kashyap [SK92], to de�ne a measure of comparison

of schemas.

4.4.1 The semPro Function

To provide a classi�cation of semantic similarities, we here present the concept of semantic

proximity to characterize semantic similarities between objects. The above classi�cations

are mainly focused on structural aspects in schemas. The following work is a semantic

approach to schema comparison.

Webster's 7th edition dictionary de�nes semantics to be �the meaning or relationship

of meanings of a sign or set of signs.� The real world and the model world di�er in that

the model world is a representation of real world. It seems clear it would be an impossible

task to completely de�ne what an object of interest denotes or means in the model world

[SG89]. However, it is still possible to introduce a certain level of formal reasoning as to

considering an object's semantics. The following is an approach toward this.

The semPro function was developed by Sheth and Kashyap [SK92]. As the name

suggests it is a function that qualitatively measures semantic proximity. It is a function

between two objects based on four concepts: context, abstraction, domain, and state. A

context is where the objects are compared, abstraction is a mapping between the objects'

domains and the state is the current value of the objects.

4.4.2 De�nition

Given two objects O1 and O2, the semantic proximity between them is de�ned by the

4-tuple given by

semPro(O1; O2) =< Context; Abstraction; (D1; D2); (S1; S2) > (4.10)

where D
i
is domain of O

i
and S

i
is state of O

i
.

Context Every object is interpreted according to its given context. The context of seman-

tic proximity is where semantic proximity holds. Two objects may be semantically

closer in some contexts than in others. A context can have many representations,

but in this formal reasoning we are interested in representing and reasoning about

context as an explicit concept.

In this classi�cation scheme, we are often interested in the cases where the context

of the objects under consideration can be determined to be one of the following:

� ALL, i.e. the semPro of the objects is being de�ned with respect to all possible

contexts.
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� SAME, i.e. the semPro of the objects is being de�ned with respect to the same

context.

� SOME, i.e. the semPro of the objects is being de�ned with respect to more

than one context.

� SUB-CONTEXTS, when the semPro can be de�ned in a previously de�ned

context that is further constrained.

� NONE, i.e. the objects under consideration do not exhibit any useful semantic

similarity under any context.

Abstraction We can refer to the mechanism of mapping the domains of objects to each

other or to the domain of a common third object as abstraction. Useful abstractions

can be:

� A total 1-1 value mapping between the domains of the objects, i.e. for every

value in the domain of one object, there exists a value in the domain of the

other object and vice versa. Also there is a one-to-one correspondence between

the values of the two domains.

� A partial many-one mapping between the domains of the objects. In this

case some values in either domain might remain unmapped, or a value in one

domain might be associated with many values in another domain.

� The generalization abstraction to relate to domains of the concerned objects.

One domain can generalize/specialize the other, or domains of both the objects

can be generalized/specialized to a third domain

� The aggregation abstraction to relate the domains of the objects. This can be

expressed as a partial, 1-1 mapping between the cross-product of the domains

of the objects being aggregated and the domain of the aggregated object.

� ANY, is a special term used to denote that any abstraction such as the ones

de�ned above may be used to de�ne a mapping between two objects.

� NONE, is a special term used to denote that there is no mapping de�ned

between two semantically related objects.

� NEG, is a special term used to denote that there is no mapping possible be-

tween two semantically unrelated objects.

Domain A domain is referred to as the set of values an object can take its values from.

Domains can be further decomposed, called a composite domain or it can be atomic,

i.e. can not be decomposed any further. The �leaf nodes� of such a structure are

atomic ones.

State An object is said to be in a particular state according to its stored values. Objects

typically change state whenever they are updated or otherwise manipulated. It is

important to note that two objects with di�erent model values can be equivalent in

a real world context.

As the structural de�nitions of schematic similarities were given earlier, we will here

give a semantic comparison overview based on the semPro function.
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4.4.3 Semantic Equivalence

In the semantic proximity measurement semantic equivalence is the strongest meaning of

how close two objects are. We say that two objects are said to be semantically equivalent

if they represent the same real world concept or class. This means that there should be a

one-to-one mapping between the domains of the two objects in any and all contexts. In

semPro we can express this by :

semPro(O1; O2) =< ALL; total 1-1 value mapping; (D1; D2);� > (4.11)

This variant of semPro could also be called domain semantic equivalence because it

depends on the de�nitions of the domains of the objects. 3

Example: Synonyms � The attributes objects are semantically alike but with di�erent

names. Mapping can be established between them with respect to all contexts. Therefore,

the two objects can be considered semantically equivalent. This can be found between the

Student classes of Schema 4 and Schema 5.

4.4.4 Semantic Relationship

We say that two objects are semantically related to one another when given O1, we can

identify O2 but not vice versa. We �nd this situation when there exists a partial many-

one mapping between the domain of the objects or a generalization or aggregation ab-

straction(which could be thought of as a many-one relation). This is a relaxation of the

equivalence requirements, but the context requirements remain the same and thus we can

de�ne semantically relationship in semPro as:

semPro(O1; O2) =< ALL;M; (D1; D2);� > (4.12)

where M = partial many-one mapping, generalization, or aggregation

Example: The attributes of two objects might have a precision con�ict as described

earlier. There may be a one-to-one or many-to-one mapping from the domain of the precise

attribute to the one of the coarse attribute with respect to all contexts. The objects can

in this case be considered to have a semantic relationship.

4.4.5 Semantic Relevance

If two objects can be related using some abstraction in the same context we say that the

two objects are semantically relevant. The context dependency means that two objects

may be semantically relevant in one context, but not in another. However, any abstraction

will hold for this proximity measure and we de�ne it as

semPro(O1; O2) =< SAME;ANY; (D1; D2);� > (4.13)

3Sheth and Kashyap[SK92] also mention a stronger notion of equivalence calling it state semantic

equivalence which takes under consideration the states of the databases the objects belong to. This is why

the state parameters are included in the de�nition. We include the state parameters for the completeness

of Sheth and Kashyap`s de�nition, but do not use them any further.
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Example: Suppose we in the case introduced a Person class, and the Student and

Employee classes were subtyped from the Person class. For the simplicity of this example

assume further that Student and Employee are semantically incompatible. The semantic

relationship and possible mappings between a Person class and a Student class would vary

depending on what context the Person had. If the Person class actually was considered as

a student in some context then the Person class and the Student class are equivalent, but

if the Person class is considered an Employee then it will be semantically incompatible

with the Student class. This example shows that the Person class and the Student class

only can have a de�ned mapping if they are considered to be in the same context, thus

they are semantically relevant to each other.

4.4.6 Semantic Resemblance

The weakest measure of semantic proximity we call semantic resemblance. It considers a

somewhat di�cult form of semantic proximity, i.e. di�cult to specify. Semantic resem-

blance considers the case where the domains of two objects cannot be related to each other

by any abstraction in any context. To be able to specify this type we need an aspect of

context, which we will call role. role is a binary function mapping an objects participation

of an object in a context to a role name.

role� of : object� context ! rolename

With this function we de�ne semantic resemblance as

semPro(O1; O2) =< Context;NONE; (D1; D2);� > (4.14)

where Context = context(O1) [ context(O2)

and D1 6= D2

and role� of(O1; Context) = role� of(O2; Context)

Example: Suppose the Employee class has an attribute hPrice1 which represents the

hourly fee a customer would have to pay for the associated employees work. Suppose

a di�erent schema has the same attribute, hPrice2, for an Employee class. The former

schema may have a constraint attached to the hPrice1 attribute stating that no employee

may charge more than NOK 650 hourly, while the latter schema may have a constraint

on the corresponding attribute stating that no employee may charge less than NOK 700

hourly. The two constraints are incompatible with each other. But nevertheless these two

attributes play the same role in the two schemas which make the attributes semantically

resemble each other where

Context = context(hPrice1) [ context(hPrice2)

and Domain(hPrice1) 6= Domain(hPrice2)

and role� of(hPrice1; Context) = role� of(hPrice2; Context) = StandardPrice

4.4.7 Semantic Incompatibility

As we have de�ned measurements for some degree of semantic similarity we also include

a variant of semPro that describes semantic incompatibility. It describes the lack of any
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semantic similarity. This doesn't automatically imply that the considered objects are

semantically incompatible. The requirements to establish semantic incompatibility are

that there is no context nor abstraction in which the domains of the objects can be related

and that the two objects cannot have similar roles in the context(s) in which they exist.

This can be expressed by:

semPro(O1; O2) =< NONE;NEG; (D1; D2);� > (4.15)

where context1 = context(O1) and context2 = context(O2)

and Abstraction = NEG, signifying dissimilarity

and D1 may or may not be equal to D2

and role� of(O1; context1) 6= role� of(O2; context2)

Example: Homonyms � The attributes are semantically unrelated but with the same

name. Thus, there cannot be any context in which an abstraction maps one to the other,

and they are considered semantically incompatible.

4.4.8 A Semantic Proximity Taxonomy

The classi�cations we have discussed form a taxonomy [SK92], from weakest to strongest

semantic similarity. Figure 4.3 shows the taxonomy as a directed graph with assignments

attached to the edges.

Semantic Resemblance Semantic Incompatibility

Similar[Context = SOME,
          Abstraction = NONE]

Dissimilar[Context = NONE,
Abstraction = NEG]

Context = SAME,
Abstraction =SOME

Semantic Relevance Semantic RelationshipContext = ALL,
Abstraction = SOME

Semantic Equivalence

Semantic Proximity

Abstraction = Total 1-1 mapping

Figure 4.3: Semantic proximity: a taxonomy
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Structural con�icts don't always have a general semantic category they correspond to.

However table 4.5 sums up the most likely semantic categories of some of the structural

con�ict groups [Kor94].

Comparison Structural/Semantical

Synonyms Semantic equivalence

Homonyms Semantic incompability

Data representation con�icts Semantic equivalence

Data unit con�icts Semantic equivalence

Data precision con�icts Semantic relationship

Default value con�icts Semantic relevance

Integrity constraint con�icts Semantic resemblance

Table 4.5: Structural con�icts and their semantic proximity

4.5 Summary

This chapter presented two views of schema heterogeneity; schematic and semantic. The

emphasis was put on the structural con�icts, but in interpreting these we had to use

semantics alongside them. The schematic con�icts were presented as an adopted classi�-

cation from Kim et. al [KCGS95] and its basic structure conformed to the requirement

con�ict groups we de�ned in table 1.1. The semantic viewpoint was presented by a se-

mantic measure called semPro which categorized objects' similarities according to di�erent

parameters than our structural classi�cation did. We will come back to both the structural

classi�cation of con�icts and the semPro function in chapter 7 where we will suggest how

to resolve the structural con�icts found and how we might be able to use semPro to aid

this process.

In the initial chapters of this thesis we have discussed the background theory for our

problem area. In the next chapter we will step into the real world and see some approaches

to multidatabase systems have been implemented and how they handle integration.



Chapter 5

Object-Oriented Multidatabase

Systems

The �rst chapters in this thesis have given a thorough background for our problem area. It

is important not to forget the real world and its limitations and therefore we here present

some existing prototypes and project systems that address the multidatabase system e�ort.

This is to get an idea of di�erent approaches towards our problem area and to realize how

theory is one thing while real life is another. We hope to get some ideas on how our

own proposal could be built, but realize that the level of detail we have investigated our

problem area is too deep to really be able to investigate these systems at the same level of

detail. Nevertheless, the systems that are given an overview show how the �rst attempts

of how the multidatabase systems are being approached and serve as possible guidelines

to how future commercial systems might operate.

Several multidatabase systems have been developed or are under development. Here

we present various systems where we focus on these main dimensions:

� System architecture

� Common data model

� Translation model and integration aspects.

The systems are limited to where the common data model(CDM) is object-oriented or

the system uses object-orientation in its management of the global and underlying systems.

5.1 Pegasus

Pegasus [AAD+93, ADD+91, ADK+91] is an object-oriented multidatabase system being

developed at Hewlett-Packard Laboratories.

The goal of the system is to provide facilities for multidatabase applications for ac-

cessing and manipulating multiple autonomous heterogeneous object-oriented, relational

and other databases. A native database is created in Pegasus, and both its schema and

57
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data are managed by Pegasus. External databases are accessible through Pegasus, but

not directly controlled by it.

The focus of Pegasus is thus in the area of multi-model data integration.

5.1.1 System Architecture

Pegasus provides three functional layers:

� The intelligent information access layer provides services as information mining,

browsers, schema exploration and natural languages interfaces.

� The cooperative information management layer deals with schema integration, global

query processing, local query translation and transaction management.

� The data access layer manages schema and command translation, local system in-

vocation, network communications, data conversion and routing.

The architecture is outlined in more detail in �gure 5.1.
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Figure 5.1: Pegasus architecture

Pegasus takes advantage of the encapsulation mechanisms of object-oriented program-

ming by hiding the heterogeneous aspects of various systems in the implementation part of
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types. Di�erent external databases might be attached to the local native database which

contains the schema of the local database represented in the canonical object-oriented data

model of Pegasus.

5.1.2 Common Data Model

The common data model is based on the IRIS object-oriented model. It consists of three

basic constructs: objects, types and functions. The types represent what we also know

as classes. The types are organized in a hierarchy supporting inheritance(also multiple),

generalization and specialization. Object properties, relationships between objects and

computation on objects are expressed in terms of functions.

Pegasus introduces a language called HOSQL(Heterogeneous Object SQL), and it

serves both as a data de�nition and data manipulation language. HOSQL provides non-

procedural statements to manipulate multiple databases. It also provides for attachment

and mapping of schema of local databases. Support is provided for speci�cation of types

and functions in this language and these speci�cations can be imported from underlying

databases.

5.1.3 Translation and Integration

Schema integration is done on the canonical data-model layer. HOSQL provides mecha-

nisms for importing a schema from a participating database, as mentioned. It is possible

to de�ne a type as a generalization of two underlying types. It is then possible to give cri-

terias for equivalence between two objects from di�erent sub-types. Techniques for dealing

with domain mismatches have been investigated.

Pegasus represents external databases by imported schemas. The translation from the

native schema to the imported schema and the importation of the external schemas are

performed in a single step, using the view mechanism of the HOSQL language. Importation

of an external data model can be done by developing a separate module and installing it

independently of other external models.

Pegasus provides integration with a basis of distinguishing the views of the data admin-

istrator and the end user. Two kinds of types are de�ned, unifying types and underlying

types. Each underlying type has a unifying type. The initial assumption is that every type

is its own uni�er. Pegasus supports unifying inheritance, i.e. every function de�ned for a

type is also de�ned for its unifying type. Resolution problems are resolved explicitly by

the administrator who de�nes a reconciler algorithm for each overloaded function. This

algorithm speci�es which function that will be used.

Pegasus handles the following types of con�icts:

� Semantic con�icts are handled by de�ning appropriate functions at the unifying

type.

� Naming con�icts referring to function synonyms are solved by de�ning aliases.

Additionally, names of functions and types can be pre�xed by their database names

to prevent ambiguities.
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� Structural con�icts can be handled by de�ning adequate imported functions.

� Identity con�icts are resolved by allowing the user to specify equivalences among

objects.

5.2 VODAK

ViewSystem [KDN91] is an object-oriented environment that has been developed as a �rst

prototype of a project at GMD-IPSI. The project is called KODIM1 [KFM+96, KDN91]

and is mainly concerned with the dynamic integration of heterogeneous and autonomously

administrated information bases. ViewSystem provides an object-oriented query language

with extensive view facilities for de�ning virtual classes. The following describes a later

development of this project.

5.2.1 System Architecture

The basis modules of the system architecture are:

� A transaction manager, which provides services for processing transactions.

� Amessage handler, which is responsible for exchanging messages between objects.

� A communication manager, which is used by the message handler to send the

message to a component system.

� An object manager, which creates more complex objects by combining objects of

the underlying storage system, handles persistent and non-persistent global objects

and dynamically loads and stores objects from and to the underlying systems.

� Query processor and compiler components, which compile global schema def-

initions onto internal representations.

� A schema integrators workbench, which lays on top of the above modules and

provides for the integration of export schemas and for the construction of integrated

views.

5.2.2 Common Data Model

The common data model, called VML (VODAK Model Language[DKT88], consists of

classes, objects and object types, structural properties and methods. A class describes

the structure and behavior of a collection of similar objects, called the extension of the

class. The extension of a class is de�ned by the commonly known instantiation of the

class. Each class has an associated object type that de�nes the structure and behavior of

the instances of the class. Di�erent classes can share the same object type.

1Knowledge-Oriented Distributed Information Management
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VML supports application classes and metaclasses. The application developer de�nes

the application classes to organize and classify the objects dealt with by the application.

The system administrators and application developers de�ne the metaclasses to organize

the application classes and to make sure the model can meet the requirements of a task.

Metaclasses are used to described the common structure and behavior of the application

classes and their instances.

5.2.3 Translation and Integration

Local schemas are connected to the system and translated to the VODAK model. The

export schemas of the local systems are de�ned by metaclasses that de�ne interfaces to

their modeling constructs. Augmenting transformations are performed on subschemas

of the local databases to overcome structural heterogeneities. The system distinguishes

between four types of augmenting transformations:

� Augmentations that use independent properties of a class to generate roles of the

class.

� Augmentations that introduce additional abstractions.

� Augmentations that use a categorizing property to generate categories of the class.

� Augmentations that introduce a category generalization for properties.

A semi-automatic method is supported by the system where the user de�nes the corre-

spondences between schemas and then the augmenting transformations are automatically

generated by the system. After this homogenization, corresponding classes are combined

by generalization, and corresponding properties are combined by user-de�ned methods to

form the actual integrated schema. During this last phase, possible data con�icts are also

resolved by user system de�ned methods.

5.3 SISIP

SISIP � A Systems Integration Platform based on Distributed Persistent Objects [BHR+95]

is a framework under development at the Department for Informatics at SINTEF. It is

a distributed heterogeneous object management system with support for heterogeneous

implementations for objects, and an object model which uni�es concepts from distributed

systems, database systems and object-oriented systems.

5.3.1 SISIP architecture

SISIP is an integration architecture that takes an object-oriented approach to the following

integration areas:

Control Integration: The degree to which tools are able to interact with each other. It

can be further re�ned into two subareas:
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� Request-oriented is the extent to which tools are able to interact directly with

each other, by requesting and providing functional services.

� Noti�cation-oriented is the extent to which tools are able to interact by sending

out noti�cation about certain events. These noti�cations may be picked up by

other tools that have registered interest in them.

Data Integration: The degree to which tools are able to share common data. It can be

further re�ned into two subareas:

� Single-model is the extent to which tools are able to share common data and

information that are stored and manipulated through one single data model

and a corresponding storage service.

� Multi-model is the extent to which tools are able to share common data and

information that are stored and manipulated through multiple data models and

corresponding storage services.

Presentation Integration: The degree to which a user-interface programmight provide

the access to the functionality needed by the user through a uniform look and feel.

It can be further re�ned into two subareas:

� Display-oriented is the degree to which a common look-and-feel is provided by

the tools which are used.

� Model-oriented is the degree to which the functionality presented through the

display is accessed and combined from one or more underlying functional mod-

els.

Process Integration: The degree to which a user's working process and use of tools

can be guided by a model of the work process and the methodology to be followed,

possibly in cooperation with other users. It can be further re�ned into two subareas:

� Interaction-oriented is the extent to which the user's working-process and use

of tools can be guided by a model if the work process and the methodology to

be followed.

� Inter-working-oriented as the degree to which group-work and inter-working

between people is supported.

5.3.2 Common Data Model

SIOM is the SISIP Object Model. It is a fully object-oriented model, as de�ned in [Dit86],

as a merge of structurally and behaviorally object-oriented models (EXPRESS, ODMG

object model, OMG IDL). Initially SIOM has language bindings to C++ and Smalltalk,

both being object-oriented.



5.3. SISIP 63

Here are some of the principles for SIOM:

� The representation of functionality and data of heterogeneous systems and databases

as encapsulated objects.

� All interaction happens through messages sent to encapsulated objects.

� A set of objects �belonging� together can express certain semantics, i.e. attributes,

relationships.

� The use of three languages: SIODL, SIOML and SIOQL.

� The separation between interface, implementation and extent.

� The representation of run-time information about interfaces, implementations and

extents.

5.3.3 Translation and Integration

The SISIP framework supports a pool of distributed objects that serves as the conceptual

model the application programmer relates to (see �g. 5.2). It should be transparent which
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Figure 5.2: Integration through a distributed persistent object space in SISIP

systems in the underlying connected systems, the objects might represent information and

functionality from. The distributed objects represent the totality of functionality and data

available as objects.

The SIOM model introduces abstract attributes and relations. Together with the

OQL they serve as a foundation for the support of integration. The separation between

interface and implementation allows several implementations for an interface which in

turn supports mapping to di�erent types of constructs in the underlying systems and also

supports behavioral integration.
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Implementation managers manage the implementation of objects from the underly-

ing systems and the interface managers manage implementation managers that might

represent classes with the same concepts, e.g. a METAEmployee class could manage an

EmployeeRDB and an EmployeeOODB implementation manager thereby supporting the

integration of employees from two underlying systems.

5.4 The EIS/XAIT OMS Project

The Object Management System (OMS) [PSH91, HZ90] is an object-oriented interoper-

ability framework for Engineering Information Systems(EIS) designed at Xerox Advanced

Information Technology(XAIT).

5.4.1 Common Data Model

The common data model is called FUGUE. It is an object/function model that consists

of three basic constructs:

� Objects

� Functions

� Classes � called types.

The model does not support class hierarchies.

5.4.2 Integration

The global schema is de�ned through a view mechanism. The population of the virtual

classes (called derived types) is de�ned by a query over the base classes. The objects that

populate the virtual class are always assigned new OIDs. The functions of a derived class

may invoke functions from the base classes, but these functions will be executed in the

scope of the class where they were originally de�ned, i.e. they will be applied not to the

new objects but to the objects of the appropriate base class (delegation). The procedure

that implements a function has its own view. Each client that requests the application of

a function is assigned a view that provides the context in which it will operate.

5.5 DOMS

DOMS, Distributed Object Management System [MHG+92, BOH+92], is being developed

at the GTE Laboratories. It is an object-oriented environment in which heterogeneous

and autonomous local systems can be integrated and native objects can be implemented.

The local systems can be di�erent systems like e.g. conventional systems, hyper-media

systems and application programs.
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5.5.1 System Architecture

The DOMS architecture is based on the general principles of the distributed object-based

architectures. Object managers are implemented as DOMs. A local application interface

(LAI) provides an interface between a DOM and a local system that allows the DOM to

access local data and the local system to make requests to access objects from other local

systems or to use DOM services.

5.5.2 Common Data Model

The common data model is called Functional/Relational Object-Oriented Model (FROOM).

The CDM consists of three basic constructs:

� Objects

� Functions � which model both state and behavior

� Types � The subtype relation is determined implicitly; any type that has the interface

required by a type T is implicitly a subtype of T.

Objects of the same type may support di�erent implementations of the same function

due to the supported distinguishing between implementation and interface.

The de�nition of FROOM includes an object algebra that resembles an extended rela-

tional algebra. The object algebra includes a set of high-level functions, which are de�ned

for collections of objects and create new collections as results.

5.5.3 Integration

Integration is supported by de�ning views through queries. When objects involved in the

query belong to local attached systems, DOMS maps these queries through object-algebra

expressions into expressions in the local query languages of the attached systems. There

is ongoing development for FROOM to address the issue of providing general facilities for

creating arbitrary objects and functions using algebra expressions. It will also address the

problem of determining an optimum set of algebra functions for use in query optimization.

5.6 Carnot

Carnot is a project at Microelectronics and Computer Technology Corporation (MCC)

[HJK+92, WCH+93, TLM+92, WSHC92]. It addresses the problem of logically unify-

ing physically distributed, enterprise-wide heterogeneous information, coming from di�er-

ent systems, such as database systems, database applications, expert systems/knowledge

bases, business work�ows and the business organization itself.
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5.6.1 System Architecture

Carnot has developed and assembled a large number of generic facilities. These facilities

are organized into �ve sets of services:

� Communication services provide the user with a uniform method for connecting

heterogeneous equipment and resources.

� Support services implement basic network utilities. A distributed shell environment

is a central component. This shell environment is called extensible service switch

(ESS) [TLM+92] and it provides interpretive access to communication resources,

local information sources and applications at a local site.

� Distribution services support relaxed transaction processing and a distributed agent

facility.

� Semantic services provide a global view of all the resources integrated within a

Carnot-supported system.

� Access services provide mechanisms for manipulating the other four Carnot services.

5.6.2 Common Data Model � Translation and Integration

Carnot considers the integration of knowledge based systems and process models in addi-

tion to database schemas. Instead of translating the local systems schemas into a common

data model, Carnot compares and merges them with Cyc [CHS91], a common sense knowl-

edge base. Cyc has knowledge about most data models and about the relationships among

them in addition to its common sense knowledge of the world. The common language is

called global context language (GCL).

Integrating a resource is done by specifying a syntax and a semantics translation be-

tween the resource and the global context. The syntax translation produces a bidirectional

translation between the local resource management language and GCL. The semantics

translation is a mapping between two expressions in GCL that have equivalent meaning.

The model integration software tool (MIST) is a graphical tool that automates some of

the routine aspects of model integration.

5.6.3 Object-Orientation in Carnot

Carnot does not follow any of the three dimensions of object-orientation listed in the

introduction to this chapter, it rather uses object-orientation in the implementation of its

various tools (e.g the ESS is an actor object).

5.7 Other Systems

We have also investigated a few other systems, but they did not show to be schema-

integration-relevant enough to be included in the same manner as the systems above.



5.8. HKBMS 67

They do, however, have some features that in general are interesting to multidatabase

systems, so we include them in short here and also mention them in the summary of this

chapter.

CIS [BGN+88, BGN+89] (Comandos Integration System) is part of the ESPRIT project

COMANDOS. Several di�erent application environments(e.g. RDBMSs, graphical

databases, public databanks) have been integrated using this system.

FBASE [Mul92] is a decentralized heterogeneous object-oriented database system. A

prototype has been implemented at the InterBase Lab at Purdue University.

InterBase* [ME93] is being implemented as part of the InterBase project at Purdue

University[BCD+93]. It supports global applications accessing many local systems,

such as SAS, Sybase, Ingres, D2 and Unix utilities.

The A la carte framework [DKH92] is part of the University of Colorado's L'Heureux

toolkit, a set of tools addressing interoperability at di�erent system levels. The

framework provides a reusable and extensible architecture in which a set of hetero-

geneous database management systems can be integrated.

5.8 HKBMS

Heterogeneous Knowledge Base Management System (HKBMS) [SDS96] is a system being

implemented at the Database Research and Development Center of the University of

Florida. This work investigates the problem of the integration of multiple heterogeneous

rule-based systems and a database management system. The HKBMS system currently

consists of three expert systems and an INGRES relational DBMS.

The HKBMS System doesn't really �t in with the framework of our thesis, but it is

an interesting system that touches upon some of the same problems we are dealing with,

but in a related research �eld, so we will include a description of it.

5.8.1 System Architecture

The architecture of HKBMS is generally composed of two layers of managers:

� The global knowledge administrator module (GKAM) at the global level.

� The Multiple local knowledge administrator modules (LKAMs) at the local level.

Global information resources are de�ned by a global knowledge schema (GKS) and a

function graph (FG).The GKAM manages this information. The GKS is the user's view

of the integrated knowledge bases and de�nes all data items and their relationships as seen

by the user, and the FG de�nes the relationships among variables referenced in the rules

of the component systems.
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5.8.2 Common Data Model

The global view is de�ned by the Object-Oriented Semantic Association Model (OSAM*).

This model integrates the concepts of semantics modeling and the object-oriented paradigm.

In contrast to the normal object-oriented inheritance concept, classes in the OSAM* are

related by �ve prede�ned associations ; Aggregation, Generalization, Interaction, Compo-

sition and Close-Product. Further classes consist of a speci�cation and an implementation

part. The speci�cation part is an addition to the methods' de�nitions and includes the

association of the class with other classes. The implementation part is the procedures that

implement the methods. Two types of classes are distinguished:

� Entity classes � contain a set of instances that are explicitly created and modi�ed

by the users of the database, and have OIDs associated with them.

� Domain classes � which are virtual classes which are type declarations where the

values that satisfy the declaration are self-naming and have no OID assigned.

5.8.3 Integration

All the classes de�ned in the local systems and the associations between them are included

in a global schema (GKS). Knowledge derivation paths and triggering conditions keep

track of the relationships between the classes. The knowledge paths specify what data

item can be derived from what data types and the triggering conditions indicate under

what conditions to activate the associate knowledge paths.

The function graph (FG) is a merge of all the rules in the component expert schemas.

The nodes of FG represent an attribute used in a rule and the edges represent the rules

in the integrated rule base. Common rules or cooperation among the component expert

systems will be re�ected in shared nodes in the graph which accordingly are associated

with several expert systems. Path optimization is also sought for values that can be

obtained through more than one path.

5.9 Comparison of the Systems

In the following we present three tables that summarize the overview of multidatabases

chapter.

Table 5.1 characterizes the types of systems and their support for integrated systems.

In table 5.1 we characterize as complete systems, systems that, in addition to providing

an integration framework, support network communication and various operating system

facilities. HKBMS di�ers in that it does not consider the integration of heterogeneous

database systems, but the integration of various heterogeneous expert systems with a

database system.

Table 5.2 summarizes the common data model sections from the systems we gave an

overview to. We notice that each system de�nes its own data model, however there are

similarities between them since they follow the basic object-oriented concepts.
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System Type Integrated Systems

Pegasus Complete data manage-
ment system

Information systems of
various data models

VODAK Complete multidatabase
system

Heterogeneous database
systems

SISIP Integration framework Various heterogeneous sys-
tems

OMS Framework Engineering information
systems

DOMS Complete system In addition to database
systems, hyper-media, ap-
plication programs, etc.

Carnot Complete system Knowledge-based systems,
and process models

CIS/OIS Integration tool File systems, databanks,
information retrieval sys-
tems, etc.

FBASE Integration framework Database systems

Interbase* Complete system Database systems and
UNIX utilities

A la carte Framework for the integra-
tion of DBMS

Heterogeneous database
management systems

HKDBMS System that integrates
expert systems with a
database system

Many heterogeneous ex-
pert systems with one
database management sys-
tem

Table 5.1: Heterogeneous systems

Finally, table 5.3 compares the various integration techniques used. The importation

entry refers to ways of de�ning a virtual global class that corresponds directly to a class

in a component database, whereas the derivation entry refers to ways of de�ning a virtual

global class that combines information stored in more than one class in the component

databases. We discuss this table in section 5.9.2.

5.9.1 System Architecture

The criteria for categorizing an architecture as object-oriented is that the resources are

modeled as objects, and all provided services are modeled as object methods. Object

managers handle objects and the communication between them. OIS(CIS), DOMS, VO-

DAK and A la carte support such an object-based architecture. A la carte o�ers object

managers only for transaction management related services (see table 5.1).

5.9.2 Integration and Translation

The overview shows that there are numerous ways to approach the problem of integration

(see table 5.3).

Our �streamline� description of a multidatabase system in chapter 2 is not necessary

the skeleton followed. However, from the systems described, OIS, CIS, FBASE and Inter-
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Base* are tightly coupled based on that they support the creation of a global schema. All

the other systems described are loosely coupled because they do not support the integra-

tion of the schemas of their component databases. A la carte di�ers from the others in that

ii focuses on integrating transaction management services, and therefore does not discuss

schema integration. All the tightly coupled systems use the view de�nition of their query

languages. The approach of VODAK is to resolve structural con�icts by transposing the

con�icts to corresponding graph operations for di�erent categories.

The approach to how virtual classes share the functionality of their base classes is often

using the object-oriented inheritance concept. However OMS and DOMS introduce the

means of delegation for information sharing. It is di�cult to analyze which approach that

would be most useful, but we choose to not investigate this any further � rather be aware

of the diversity of approaches.

5.10 Summary

We have given an overview of some existing multidatabase systems and related systems.

As we have experienced there are several di�erent approaches to implement multidatabase

systems and closely related systems.

These systems all have a basis in object-orientation, but as we have seen, they all

de�ne their own frameworks with specially developed object-oriented data models for their

purpose. In this thesis we would like to avoid developing a system from scratch, but rather

use some existing system and expand it if necessary to meet our requirements. A natural

direction to go would therefore be to choose an existing standard as our data model. The

ODMG-932 database standard [Cat94] is such a standard. The ODMG group [Cat94] is

a group of vendors who have been working on a standard which they commit themselves

to follow in the development of database products. It is considered as state-of-the-art in

database research and therefore seems a natural choice as a starting point for our e�ort

towards schema integration.

In the next part of the thesis we will see how we can use the ODMG-93 database

standard [Cat94] and its ODL object model to support schema integration.

2ODMG = Object Database Management Group
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System Data model DD/DM Language Translation

Pegasus Iris data model HOSQL
Extension of SQL

During importation
Supports automatic
translation of rela-
tional models

VODAK VODAK data model VML During importation
Uses metaclasses
which implement
interfaces to the
modeling of the local
systems

SISIP SIOM SIODL, SIOML,
SIOQL

During importation
Uses metaclasses
as implementation
managers which im-
plement interfaces to
the local systems

OMS FUGUE model Extension of a
functional-based
query language

Not discussed

DOMS FROOM Extension of a
functional-based
query language

Not discussed

Carnot Instead of a CDM it
uses a common-sense
knowledge base called
Cyc

GCL - Global Context
Language
Based on extended
�rst-order logic

Special frames are de-
�ned for common in-
formation sources

CIS/OIS Abstract data
model(CIS)
Integration data
model(OIS)

QL
Extension of a logic-
based query language

Operational mapping

FBASE Object-Oriented
De�nes a class hierar-
chy to model the inte-
grated system

FSQL
Extension of SQL

Performed by special
FBASE servers

InterBase* Object-Oriented InterSQL
Based on FSQL
It also provides trans-
action speci�cation
facilities

Performed by special
servers called CSIs

A la carte Not applicable

HKBMS OSAM Natural language-
based

Not discussed

Table 5.2: Data model and translation
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Integration

System

Importation Derived Classes Con�icts

Pegasus
By queries
Virtual classes are called
producer types and the
query that de�nes them
producer expression

By queries
Virtual classes are called
unifying types and func-
tions are inherited from
the base classes by unify-
ing inheritance

Domain mismatch
Naming & Schema Mis-
match
Object Identi�cation

VODAK Uses metaclasses to map
the modeling constructs of
local systems to the CDM

Uses the graphical rep-
resentation of the local
schemas to identify struc-
tural correspondences
among them and then
applies augmentation
constructors.
Then combines classes
using the generalization
constructor

Resolves structural con-
�icts by applying augmen-
tation constructors
Resolves data con�icts by
de�ning appropriate meth-
ods

SISIP

The SIOM model introduces abstract attributes and
relations. Together with the OQL they serve as a
foundation for the support of integration. The sepa-
ration between interface and implementation. Inter-
face managers and implementation managers.

Not discussed

OMS

By queries and functions(constructors)
Virtual classes are called derived classes
An object algebra is de�ned with a set of functions
that produce new sets of objects from existing ones.

Not discussed

DOMS

By queries and functions(constructors)
An object algebra is de�ned with a set of functions
that produce new sets of objects from existing ones. Not discussed

Carnot
Uses articulation axioms to express mappings be-
tween two expressions that have equivalent meaning Not discussed

CIS/OIS Not supported

FBASE Not supported

InterBase* Not supported

A la carte Not applicable

HKDBMS

Deals with the integration of rule-based
(expert) systems
In addition to global knowledge schema, a function
graph is de�ned to desribe relationships between vari-
ables referenced in the rules of the component systems

Additional information is
stored to determinate the
best way to get a value
Con�icts in values are
resolved by the adminis-
trator

Table 5.3: Integration
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Chapter 6

ODL-M � A Mapping Language

Extension to ODL

In the previous chapter we argued that none of the systems we investigated used a standard

as part of their framework. We want to avoid developing a new model and therefore choose

to extend an existing one. The ODMG-931 database standard [Cat94] is a state-of-the-art

standard we will consider. As a starting point we look into the ODMG ODL [Cat94],

object de�nition language, and will use it as our canonical data model. None of the

existing systems we have investigated have used the ODMG ODL [Cat94] directly as their

canonical model, so in this part of the thesis we will give a proposal to how we can use

ODL as a canonical model in multidatabase systems and how we will support schema

integration in this framework.

Using ODMG ODL as a canonical model means that we will perform our schema

integration process on ODL schemas. Our idea is to extend ODL with some construct

that allows us to de�ne object types in the federated schema that act like �virtual� classes

whose instances are mapped from the underlying systems (see �gure 6.1). The �gure

shows the mapping from the source schemas to the target schema and describes which

underlying classes serve as source data for the target schema object type instances. So the

data �ow can be thought to propagate along the de�ned mappings to populate the target

schema object types. From this intension we need to de�ne a mapping extension to ODL,

since ODL doesn't support this inherently.

6.1 Introduction

In this chapter we will develop and de�ne an extension to the ODMGs ODL [Cat94],

namely ODL-M (Object De�nition Language - Mapping). As the name suggests, ODL-M

is an extension supporting various mapping constructs, being supportive to e.g. schema

integration work. The idea is taken from the EXPRESS-M mapping language [Bai95],

an extension to EXPRESS. The intended use of EXPRESS-M is to map entities from

1Object Database Management Group
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Source Schemas (CDB Export Schemas)

Mappings of object types

Target Schema (Federated Schema)

CDB1 CDB2 CDBn

Figure 6.1: The idea of mapping ODL schemas.

one EXPRESS schema to any number of other schemas (i.e. source and target schemas).

ODL-M is not as extensive as EXPRESS-M, it will only borrow the constructs that are

needed for our purpose and add the constructs which are needed in addition to what

EXPRESS-M o�ers. The above mentioned purpose of ODL-M is to extend the object-

oriented data model ODL with the notion of views. We will use ODL/ODL-M as a support

for schema integration within the ODMG-93 database standard [Cat94].

ODL-M will be used in chapter 7 as a mapping tool to resolve our problem classi�cation

from chapter 4.

Since the ODMG-93 database standard is a basis for our contribution it is in place to

give a brief overview of this standard in the following section.

6.2 The Object Database Standard � ODMG-93

This section brie�y describes the ODMG-93 standard [Cat94]. For a more in-depth

overview, we refer to appendix B.

6.2.1 Introduction

The ODMG is a group of vendors who got together and decided to standardize their e�orts

of developing an object database instead of going in their own directions, developing non-

interoperable products. The result of their work is the ODMG Object Database Standard

which is an ongoing process. The participating vendors have committed themselves to

follow this standard in their products. The goal of the project has been to allow an

ODBMS user to write portable applications, i.e. applications that could run on more than

one standard compliant ODBMS product. The hope for the member companies is that

this proposal will become a de facto standard for the industry.
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6.2.2 Object Model

The common data model has used the OMG Object Model [Sol90] as a basis. Components

have been added to support the intended needs of the ODMG group.

The Object Model is simply summarized as:

� The basic modeling primitive is the object.

� Objects that exhibit common behavior and have a common range of states are cat-

egorized into types.

� The behavior of objects is de�ned by a set of operations or messages that can be

executed on an object of the type2.

� An object has a set of properties that can be either attributes of the object itself or

relationships between the object and one or more objects. The state of an object is

de�ned by the value it has for its properties.

6.2.3 Object De�nition Language

The Object De�nition Language (ODL) is a speci�cation language to de�ne the interfaces

to object types that conform to the ODMG Object Model. The ODMG group has had

a primary objective with the ODL to facilitate portability of database schemas across

conforming ODBMSs. ODL is not intended to be a full programming language nor is

it meant to be programming-language dependent. It is a speci�cation language for in-

terface signatures. It de�nes the characteristics for types, including their properties and

operations, but is does not address the de�nition of the methods that implement those op-

erations. Further, ODL provides a context for integrating schemas from multiple sources

and applications. These source schemas may have been de�ned with any number of object

models and data de�nition languages, and they may all be translated to ODL as a com-

mon basis (see �g.6.2). This common model allows the various models to be integrated

with common semantics. An ODL speci�cation can be realized concretely in an object

programming language like C++ or Smalltalk (see section 6.2.5 and �g.6.2).

6.2.4 Object Query Language

The object query language (OQL) for the ODMG data model will be described brie�y

in the following. The ODMG group designed the OQL with the following principles and

assumptions:

� OQL is not computationally complete. It is a query language which provides easy

access to an object database.

� OQL provides declarative access to objects.

� OQL relies on the ODMG object model.

2E.g. you can �draw� an object of type Circle
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SQL 3 Other

C++ SQL 3 Smalltalk Other

STEP/Express

Language-Independent ODL

Figure 6.2: Mapping from other models to ODL, and from ODL to other languages

� OQL has an abstract syntax.

� The formal semantics of OQL can easily be de�ned.

� OQL has one concrete syntax which is SQL-like, but it is easy to change the con-

crete syntax. Other concrete syntaxes are de�ned for merging the query language

into programming languages (e.g. a syntax for preprocessed C++ and a syntax for

Smalltalk)

� OQL provides high-level primitives to deal with sets of objects but does not restrict

its attention to this collection construct. Thus, it also provides primitives to deal

with structures and lists, and treats all such constructs with the same e�ciency.

� OQL does not provide explicit update operators but relies on operations de�ned on

objects for that purpose.

� OQL can be easily optimized by virtue of its declarative nature.

OQL can be a stand alone language or it can be embedded into a programming lan-

guage. The query language supports both types of objects, mutable and literals, depending

on the way these objects are constructed or selected.

6.2.5 Language Bindings

The standard describes language bindings for both C++ and Smalltalk. The program-

ming language-speci�c bindings for ODL/OML for C++ and Smalltalk are based on one

basic principle: The programmer should feel that there is one language, not two separate

languages with arbitrary boundaries between them.
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6.2.6 ODL/ODL-M as a Canonical Model

As we recall the canonical data model (CDM) is the model that the local schemas are

translated into. The advantages of using an object-oriented CDM has been discussed,

among others, by Pitoura et. al [PBE95]. They summarize their discussion of advantages

with an object-oriented CDM as the following enumeration:

1. The object-oriented data model is semantically rich, in that it provides a variety

of type and abstraction mechanisms. It supports a number of relations between its

basic constructs which are not expressed in traditional models.

2. The object-oriented data model permits the behavior of objects to be captured

through the concept of methods. Methods are very powerful because they enable

arbitrary combinations of information stored in local databases. For example, if

books with similar topics exist in di�erent databases, a method can be de�ned in

the global schema that eliminates duplicates, sorts di�erent editions, translates titles

into a common natural language (e.g. English).

3. The object-oriented model makes it possible to integrate non-traditional databases

through behavioral mapping.

4. Since the actual storage and retrieval of data is supported by the underlying local

systems, there is no important performance degradation of the overhead of support-

ing objects in the conceptual CDM.

5. Finally, the metaclass mechanism adds �exibility to the model, since it allows arbi-

trary re�nements of the model itself, e.g. additions of new relationships.

As we discussed in section 2.5 the canonical model should have the properties of ex-

pressiveness, semantic relativism, and support for views. Saltor et. al [SCG91] argue that

object-oriented models are among the best suited models to serve as a canonical model

in that they meet the two �rst required properties to a better degree than other models.

The only lack of essential properties, according to Saltor et. al [SCG91], is that they

don't support views as a rule. This is a point Pitoura et. al [PBE95] also discuss. They

de�ne an object oriented view as a way of de�ning a virtual database on top of one or

more existing databases by in general de�ning a set of virtual classes that are populated

by existing objects or by imaginary objects constructed from existing objects.

ODL is a speci�cation language for the ODMG Object Model. The ODMG Object

Model's de�nition includes the basic concepts of an object-oriented model and thereby has

the advantages discussed by Pitoura et. al [PBE95] and it satis�es the desired properties

according to Saltor et. al [SCG91] with the exception of the support of views. The ODL-M

extension covers this last requirement by supporting mapping of attributes and methods

of the interface in ODL, creating a �virtual� database, thereby also supporting views.

We therefore argue that ODL/ODL-M is a suitable speci�cation language for an object

model that meets the requirements speci�ed by Saltor et. al [SCG91] and our additional

requirement of supporting views.
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Another important reason for choosing ODL as a basis for the canonical model is that

it is part of the ODMG-93 Object Database Standard. The vendors participating in the

ODMG-group are committed to support this standard and therefore ODL will hopefully

be a standard we can rely on to be with us for some time.

6.3 Motivation � ODL-M

The current approaches to integrating schemas involve schema examination and ad hoc

methods for translation and mapping of data between schemas. ODL-M provides for a

more generic method of mapping schemas and facilitates automatic production of mapping

from simple mapping instructions. This way the multidatabase system designer has a more

uni�ed method of resolving the mapping and translation tasks. Other systems we have

investigated, e.g. Pegasus and VODAK discussed in chapter 5, de�ned views with the

query language they supported. However, we have not seen any system that describes an

approach to views in ODMG/ODL. This proposal will therefore �ll the gap and de�ne an

extension to ODL that will support this.

6.4 What is ODL-M?

ODL-M is a schema mapping language for ODL schemas. It describes how object type

instances in ODL are to be mapped between schemas in order to facilitate data transfer

between the models described by the mapping schemas and the mapped schemas. An

ODL-M mapping description uses mapping commands to specify which characteristics are

to be mapped from which schemas (source), which schema to map to (target) and how the

mapping should be done. Thus it maps each construct of the ODL interface characteristics.

Fundamental principles:

� The ODL-M language is a means by which ODL object types can be mapped from

one schema to another.

� ODL-M does not describe how to read/write individual types to/from applications,

it references ODL schemas to resolve de�nitions of object types.

6.5 ODL-M Compiler

Here we give a short description of how an ODL-M compiler can be used.

The �rst stage is the generation of C++ [Str91] code from the mapping �le. The

mapping �le and the source and target �les are run through their respective compilers

as �gure 6.3 shows. The result mapping code is in C++3. Work has been done on a

ODL-to-C++ compiler [LS92]. The EXPRESS-M language has a compiler developed and

3The output language may be other languages, e.g. Smalltalk. C++ and Smalltalk are the two languages

which have a described mapping from ODL in the ODMG-93 standard



6.6. DECLARATIONS 81

ODL-M Compiler

ODL Compiler

Mapping
File

C++ code

TargetSource
Schemas Schemas

Figure 6.3: ODL-M Compiler

it should be a feasible task to develop a compiler for the ODL-M language since it is close

to EXPRESS-M.

Once the mapping �le is translated to C++ it may be integrated with the rest of the

application to implement the mappings between schemas.

6.6 Declarations

An overview of the mapping constructs in ODL-M is given in the following. Since ODL-M

is intended to map object type interfaces, we must de�ne constructs that allow mapping

of each characteristic in the ODL interface de�nition (see �gure B.5 in appendix B). The

syntax of the constructs de�ned here is described in appendix C.

6.6.1 Type declarations

Here we de�ne some limitations on type declarations:

� ODL-M includes all the data types that are available in ODL, both simple (integer,

boolean) and aggregate (array, bag).

� Named data types may not be declared in ODL-M. Types which have been declared

in the source and target schemas may be mapped.

� Constructed types may not be declared within the scope of an ODL-M map, but

may be referenced in a map.

6.6.2 Schema Map

ODL-M mappings require that the names of the source and target schemas be declared.

The SCHEMA_MAP declaration is used to specify which source and target schemas may be

mapped. The syntax of the declaration is:
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SCHEMA_MAP target_schema <- source_schema1, source_schema2;

<body>

END_SCHEMA_MAP;

There is no limit on the number of source schemas, but there may be only one target

schema. The body of the map declaration is contained between the schema map header,

SCHEMA_MAP schema <- schema, and the END_SCHEMA_MAP statement. All the object type

map and instantiation commands that make out the mapping will be contained within the

schema map body. In the following sections of this chapter we will omit the SCHEMA_MAP

statement because it is not important for the understanding of the examples and would

take up unnecessary space. We will, however, use it in chapter 7 in our resolving techniques.

6.6.3 Object Type Map

The MAP declaration in ODL-M de�nes which object types are to be mapped from the

source schemas and which are to be mapped from the target schema and how their at-

tributes and operations are to be mapped. It is within the object type maps the speci�cs

of the mappings are described. We will describe the attribute maps and operation maps

in following sections, but �rst the general object type map will be described.

A MAP declaration consists of a series of attribute maps and statements. Local variables

may be declared in a MAP declaration. Assignment statements may also be declared in a

map declaration, but only if they are to be used to assign values to local variables. The

syntax of the MAP statement is as follows:

MAP target_object_type <- source_object_type1, source_object_type2;

<body>

END_MAP

The body of the map is contained between the map header,

MAP target_object_type <- source_object_types, and the END_MAP command. The

body is made up of a series of attribute and operation mapping commands, which specify

how equivalent attributes and corresponding operations are to be converted and mapped

from source to target.

Example: This is a simple example of object type mapping. The source schema de-

scribes an inheritance hierarchy of a man and a woman being subtypes of human. The target

schema de�nes the generic type human_beeing.
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Source schema:

typedef float inches;

interface Human{

Integer age;

Inches height;

};

interface Man:Human{};

interface Woman:Human{};

Target schema:

typedef float centimeters;

typedef enum{male, female} male_or_female;

interface human_beeing{

male_or_female sex;

Integer how_old;

centimeters how_tall;

}

The mapping between these schemas would be:

SCHEMA_MAP to_schema <- from_schema

MAP human_beeing <- man;

sex :- 'male';

how_old :- age;

how_tall :- height*2.54;

END_MAP;

MAP human_beeing <- female;

sex :- 'female';

how_old :- age;

how_tall :- height*2.54;

END_MAP

END_SCHEMA_MAP;

The example above shows a simple map which assigns attribute values from the object

types of the source schema to those in the target schema. The attributes are mapped as

described in the following section. The example shows direct assigning of values to the

attribute sex, which is forced to take the value of 'male' or 'female'. Simple transfer of

attribute values is shown with the age attribute being mapped, and the use of mathemat-

ical operators is shown in the height attribute map. We will come back to these mapping

types in the following sections.

6.6.3.1 Attribute Maps

In this section we describe how the attributes of the ODL interface may be mapped.

An attribute map assigns values to attributes de�ned in one of the target properties

of the map. These values may be derived from the values of attributes which are de�ned

in the source properties.



84 CHAPTER 6. ODL-M � A MAPPING LANGUAGE EXTENSION TO ODL

There is no requirement to make a total mapping, i.e. to map all the properties of the

source properties.

An attribute map will be a statement consisting of a left hand operand and a right

hand operand separated by an assignment operator ':-'. The left hand operator must be

a quali�ed attribute de�ned in the target object of the MAP. The right hand operand must

be either a simple expression, or a quali�ed attribute de�ned in one of the source object

types of the map.

Attributes inherited from supertypes may be mapped the same way. That is, attributes

inherently belonging to a subtype (inherited from its supertype) may be mapped the same

way as its other attributes.

Relationships will be interpreted and mapped in the same manner as attributes. The

inverse speci�cation is up to the designer to maintain by taking care of the inverse

relationship in the corresponding object type. This can however become automated in

ODL-M by de�ning a special syntax for it in a later de�nition of ODL-M.

Attribute map example:

1.) attribute1 :- attribute_a;

2.) attribute1.attribute2 :- attribute_a;

3.) objtyp1.attribute1 :- attribute_a;

4.) attribute1 :- attribute_a * 4;

1. maps attribute_a to attribute_1

2. maps attribute_a to attribute_2 of attribute_1

3. shows attribute_1 being quali�ed by an object type name

4. shows a simple mathematical operation being carried out on the mapping.

6.6.3.2 Operation Mapping

Here we describe how operations in ODL interfaces may be mapped.

An operation map will map an operation de�ned in the source object type to an

operation de�ned in the target object type. The parameters of the operation will be

mapped speci�cally to the corresponding target parameters. Source and target operations

can only be mapped if their parameters can be matched, i.e. each attribute in the source

operation can be mapped to a corresponding parameter in the target operation, possibly

with a cast (see section 6.6.8). However, mapping can also be allowed to an expression

that expresses the nature of the underlying operation. This way, missing operations in

CDBs can be encountered for by including a map to an expression on some of the CDBs

other data.

The operation map is built up by an operation name map header followed by the list

of parameter mappings. If the parameter lists has an ordered one-to-one correspondence
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matching, the parameter list map may be omitted as ODL-M automatizes the mapping

process in that case. The map header consists of a left and right hand operation name, from

the target and source object types respectively, separated by the '= symbol. A WHERE clause

follows that quali�es each parameter mapping. If an expression is provided instead of

the operation-to-operation map, it will simply have the syntax: op_name = expression ,

where the expression usually is based on some other attributes in the source schema.

Example:

Source object type:

interface Cube{

Integer x_axis;

Integer y_axis;

Integer z_axis;

Integer size(in x_length:Integer, in y_length:Integer, in z_length:Integer);

};

Target object type:

interface Square_Block{

Integer xcoord;

Integer ycoord;

Integer zcoord;

Integer volume(in z:Integer, in y:Integer, in x:Integer);

}

The mapping could be:

MAP Square_Block <- Cube;

xcoord :- x_axis;

ycoord :- y_axis;

zcoord :- z_axis;

volume() = size()

WHERE (xcoord :- z,

ycoord :- y,

zcoord :- x);

END_MAP;

In the above example the parameters of size and volume were in di�erent order and

therefore had to be mapped speci�cally to rearrange them so they matched up with the

target parameters. If the operation de�nitions instead had read:

Integer size(in x_length:Integer, in y_length:Integer, in z_length:Integer);

for the source, and

Float volume(in x:Integer, in y:Integer, in z:Integer);

then the mapping declaration could simply have been:

volume() = (Float) size();

indicating that the parameter lists had a direct corresponding structure.
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6.6.3.3 Instantiating Multiple Properties

In some mapping cases the object type being mapped from expresses several instantiations

of the target object type. This section describes how we handle these cases.

The object types which are to be instantiated by the map are speci�ed in the map

header. More than one object of the same type may be instantiated by using an index

quali�er [] as a su�x to the object type name. An index quali�er may specify an inde-

terminate number of objects [?]. Several objects of di�erent types may be instantiated

by listing the object type names, separated by commas.

Example: Mapping to several objects from one source object.

MAP line[4] <- polyline;

MAP line[?] <- polyline;

MAP wheels, shoe <- rollerskate;

6.6.4 Creating Target Objects from Multiple Source Objects � Build

Sometimes we do not wish to map all instances from a merge of source schemas, but rather

restrict the mapping to certain conditions. This section describes how we can manage this.

Mapping from multiple object types is possible in ODL-M. However, when mapping

from more than one object type, the instances of those source object types have to be

accounted for. Some value criteria has to be given for the map, otherwise every possible

combination of instances of the source object types will be mapped.

A BUILD statement is used to construct object type instances in the target model from

unrelated instances of di�erent types in the source model. The conditions under which

the target types will be created are given in the WHERE rule in the body of the BUILD

command, and all combinations of source instances which satisfy the rule will create a

target instance.

The BUILD declaration states the source object types which are to be mapped, and

the target object type to be created from them. The body of the declaration may contain

attribute maps, and �ow control statements in the same way as a map declaration body.

Example: Create a target type Couple from the source types man and woman using the

build command.
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Source ODL:

Interface Man{

string name;

Integer masculinity;

};

Interface Woman{

string name;

Integer femininity;

};

Target ODL:

Interface Couple{

string husband_name;

string wife_name;

};

The ODL-M would be:

BUILD Couple <- Man, Woman;

WHERE

ABS(man.masculinity - woman.femininity) <= 2;

husband_name :- man.name;

wife_name :- woman.name;

END_BUILD

The condition to build a couple from a Man and a Woman is the (absolute) di�erence in

masculinity and femininity4. Thus for every Man and Woman instance that satis�es the

condition, a Couple instance will be built in the target application. This can be seen as a

way of creating possible couples, as a man or woman may be in more than one couple.

The WHERE rule used in the build command must be speci�ed very precisely to avoid

unwanted instances being created in the target model.

6.6.5 Copy

To simplify straightforward mappings we de�ne the COPY command described in the fol-

lowing.

The COPY command may be used to map classes without mapping the attributes. This

may only be used when the source and target object type have the same attribute names

and types, i.e. the object types are identical with respect to their attributes.

4The femininity/masculinity condition is just an example of possible conditions. An age condition could

just as well be used.
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Example:

Source ODL:

Interface Worker{

Integer age;

string name;

};

Target ODL:

Interface Employee{

Integer age;

string name;

};

The ODL-M would be:

COPY Employee <- Worker;

6.6.6 Discarded Data

If a class cannot be mapped to any structure listed in the target application then that

class may be discarded. We can use a NO_MAP <object_type> to achieve this.

6.6.7 Type Mapping

In order to provide a high level method of data exchange, one may use type mapping.

Named types other than object types may be mapped using a MAP_TYPE declaration.

Type mapping takes two forms; de�ned type mapping and enumeration type mapping.

6.6.7.1 Mapping of De�ned Data Types

De�ned type mapping is used to declare which elements of a de�ned type map to their

equivalent elements in a target de�ned type. It may also be used in a trivial case mapping

where de�ned types are renamed simple types.

Here is an example of trivial type mapping5 where the map header shows the simple

relationship between the types:

Source type:

typedef float inches;

Target type:

typedef float centimeters;

The type mapping would be:

MAP_TYPE centimeters = inches * 2.54;

END_MAP_TYPE;

The above example is very simple, the type mapping will be called when casting (see

section 6.6.8) an attribute of type inches to an attribute of type centimeters in an attribute

map.

5A similar mapping was made in section 6.6.3, but there the attributes were mapped explicitly whereas

here the type is being mapped.
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The more complex case of type mapping is when the types involved are not simple

types, but compound types, such as arrays or bags. The array is an ordered collection and

its members can be mapped according to their index position. Bags however are unordered

so the the entire contents is mapped provided the sizes of the types involved in the map

are the same.

6.6.7.2 Mapping of Enumeration Types

Enumeration type mapping is used for declaring equivalences between elements of source

and target enumeration types. The map header will be the same as for de�ned type

mapping, but the individual corresponding components of the enumeration will also be

mapped. The ':-' operator is used to indicate which elements correspond to each other in

the map. The left hand side of the operator will be the target enumeration identi�er and

the right hand side will be a list of one or more source enumeration identi�ers, separated

by commas.

Example: Enumeration of colors

Source enumeration type:

typedef enum{red, green, blue, burgundy, transparent, aquamarine} hues;

Target enumeration type:

typedef enum{red, green, blue} colors;

A possible mapping could be:

MAP_TYPE colors = hues;

red :- red, burgundy;

blue :- blue;

green :- green, aquamarine;

END_MAP_TYPE

In the above example the transparent enumeration element has no equivalent to map

to, and so is not mapped at all. Also, the example illustrates how more than one source

element may be mapped to a single target element.

6.6.7.3 Using Type Mapping

Type mapping should generally be used in cases where more than one object type map

uses a speci�c type so that there is no repetition of verbose attribute mapping. It also

has another function; that of semantic enrichment to the model, improving the under-

standability. This is because adding named types clearly adds information to the schemas

much like quali�ed attributes do (e.g. weight_in_kilograms). In some cases, however, it

is simpler to carry out the task with just an attribute map.
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6.6.8 Casting

Casting is used to convert data types between source and target attributes. It can be used

to convert between simple types and in addition it can be used to call object type maps

and type maps to carry out conversion of non-simple attribute types.

Example: Simple type mapping

Source object type:

interface product{

Integer serial_number;

};

Target object type:

interface device{

String identification_code;

};

The mapping could be:

MAP device<- product;

identification_code :- (String) serial_number;

END_MAP

Another use of casting is when using it with attributes that are object types. In these

cases the casting speci�es that the object type should be converted to a speci�c type, and

thereby calls the appropriate object type map. The following example shows casting with

object types and de�ned types.

Example:

Source schema:

typedef Float Inches;

interface Car{

String color;

String make;

String model;

Integer age;

};

interface Person{

Integer age;

Inches height;

Car vehicle;

};

Target schema:

typedef Float Centimeters;

interface Automobile{

String manufacturer;

String model;

String paint;

};

interface Human{

Float age;

Centimeters height;

Automobile transport;

};

The type mapping in this case could be:

MAP_TYPE Centimeters = Inches*2.54;

END_MAP_TYPE
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And the object type mapping can be:

MAP Automobile <- Car;

manufacturer :- make;

model :- model;

paint :- color;

END_MAP;

MAP Human <- Person;

height :- (Centimeters) height;

age :- age;

transport :- (Automobile) vehicle;

END_MAP;

In the above example the cast (Centimeters) calls the appropriate type map to carry

out the conversion from Inches to Centimeters. The (Automobile) cast calls the object

type map from Car to Automobile).

6.7 Instance Control

We need to control how the target object types are instantiated. Sometimes our de�ned

mapping constructs have undesired e�ects or may not have the functionality to instantiate

the way we want it to. This section describes how we can �ne-tune the instantiation.

Instantiation of target classes can be controlled in four ways:

1. Mapping precedence by order.

2. Default instantiation of objects when they are mapped.

3. Manual creation of speci�c instances which are to be referenced.

4. Pruning of classes to prevent a source instance being mapped more than once.

We describe them in the following.

6.7.1 Mapping Precedence

Mapping precedence is de�ned by the order of the mapping statements. When a source

instance is mapped by two separate map statements, the target instance will be created

by the statement which is �rst in the SCHEMA_MAP. An important feature is that the key

attributes of the target objects act like pruning �ags automatically. If an instance of a

target object type is attempted mapped more than once with the same key attributes, the

latter attempts will not create duplicate instances, but may add to missing attribute values

in the target if the alternative source objects can provide it. Mapping precedence will in

these cases ignore following clashes in attribute values or possibly notify the designer.
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6.7.2 Default instantiation

ODL-M distinguishes between target type instances that are instantiated as a result of

type maps and those that are the result of attribute maps.

Example: Mapping Points.

Source ODL:

interface Line{

Point start;

Point end;

}

interface Point{

Float x, y, z;

}

Target ODL:

interface Line_Vector{

Point begin;

Point terminate;

}

interface Cartesian_Point{

Array<Float> vector;

}

The mapping can be done in two di�erent ways. The �rst is to cast to map the points.:

MAP Line_Vector <- line;

begin :- {Cartesian_Point} start;

terminate :- {Cartesian_Point} end;

END_MAP

MAP Cartesian_Point <- Point;

vector[0] :- x;

vector[1] :- y;

vector[2] :- z;

END_MAP;

In the above case, the points will only be mapped once � in the point map (Note: the

[n] after vector is not a multiple instance declaration as we described earlier, but simply

the elements of a vector).

It is possible to map points without a cast. Here is an example of this:

MAP Line_Vector <- Line;

begin.vector[0] :- start.x;

begin.vector[1] :- start.y;

begin.vector[2] :- start.z;

terminate.vector[0] :- end.x;

terminate.vector[1] :- end.y;

terminate.vector[2] :- end.z;

MAP Cartesian_Point <- Point;

vector[0] :- x;

vector[1] :- y;

vector[2] :- z;

END_MAP;
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In this second case, the points will be instantiated twice � once by the Line map and once

by the Point map. This may be undesirable and we will see in the section �Type Instance

Pruning� below how we can avoid this.

6.7.3 Manual Creation

One may create speci�c instances of target object types by using instantiation clauses.

The instantiation clause is used to explicitly create object types. The form of the clause

is as follows:

#instance_id = objtype_id (parameter_1, parameter_2 ... parameter_n);

The parameters are of the following types:

object type instance_id � preceded by the # symbol

numerical value � corresponding to integer, float types

binary value � hexadecimal e.g. F45ED20

boolean value � .TRUE. .FALSE.

string � contained in quotes e.g. 'hello'

aggregates � contained in parentheses e.g. (1,2,3,4,5)

enumeration element � e.g. .enum_id

null element � $ symbol used where optional attributes are not assigned.

Example:

interface Thing{

Float x;

}

interface Widget{

Float a;

logical b;

binary c;

String d;

Array<Integer> e;

Optional Integer f;

Thing g;

}

Two instance clauses could be:

#objtype_1 = Thing(6);

#objtype_2 = Widget(4.56, .UNKNOWN., F64E, 'Hello', (1,2,3,4,5), $, objtype_1);

6.7.4 Type Instance Pruning

As mentioned above our mappings may have undesired e�ects. In some cases we might

map more than one object at the result of a map from the same source instance. This

section describes a pruning de�nition we can use to avoid this.

Object type instances may be subject to a pruning algorithm. Pruning clauses are

used to prevent more than one object being instantiated at the result of a map from the

same source instance.
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A prune statement may be declared within the scope of a map statement. A prune

clause has a prune identi�er or list of identi�ers. The clause contains a list of target

attributes and object types which the pruning process acts on. The attribute identi�ers

contained in a prune clause reference attributes of the target object types described in the

map header. The object type identi�ers is a subset of the target object types listed in the

header.

A prune clause may contain more than one pruning identi�er. The identi�er may be

combined using the logical operators AND, OR and XOR to enable control of object type

instancing under di�erent circumstances.

Example:

PRUNE prune_id1, prune_id2;

<target attributes and/or object types>

END_PRUNE;

PRUNE prune_id1, prune_id2; means that the following object types will be pruned

if they have been mapped from the same source object type by another map that is subject

to prune_id1 or prune_id2.

PRUNE prune_id1 AND prune_id2;

<target attributes and/or object types>

END_PRUNE;

PRUNE prune_id1 AND prune_id2; means that the following object types will be

pruned if they have been mapped from the same source object type by two maps which

are subject to prune_id1 and prune_id2

Example: When object types are mapped using attribute maps they may be instanti-

ated in the target more than once. To avoid this pruning may be used as follows:

Source ODL:

interface Line{

Float start_x, start_y;

Float end_x, end_y;

}

interface Point{

Float x,y;

}

Target ODL:

interface Line{

Point start;

Point end;

}

interface Point{

Float x_coord, y_coord;

}

One approach to mapping is:

MAP Line <- Line;

start.x_coord :- start_x;

start.y_coord :- start_y;

end.x_coord :- end_x;

end.y_coord :- end_y;

END_MAP

MAP Point <- Point;

x_coord :- x;

y_coord :- y;

END_MAP
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In this case, there would be duplicate instantiations of the point object types in the

target model. Pruning may be used to prevent point instances of the same value being

created:

MAP Line <- Line

PRUNE Line_Points_pruning;

start, end;

END_PRUNE;

start.x_coord :- start_x;

start.y_coord :- start_y;

end.x_coord :- end_x;

end.y_coord :- end_y;

END_MAP

MAP Point <- Point

PRUNE Line_Points_pruning;

Point;

END_PRUNE;

x_coord :- x;

y_coord :- y;

END_MAP

In the above case, both maps are subject to the same pruning identi�er, namely

Line_Points_pruning so any points created by either map will be value compared, and

only one instance of that value will be allowed to exist in the target model.

6.8 Summary

We have de�ned a mapping language, ODL-M, that can be used to map interfaces from

one target object type to multiple source object types. Not only is it able to map the

properties of the ODL interface, but also can perform type mapping, a strong feature

that introduces better semantics to the model and eases the understanding of mapping

constructs. The instance control that ODL-M o�ers, secures that we don't achieve any

unwanted instantiations and that we can have full control of our mapping intensions.

In the next chapter we will use ODL-M to realize suggested resolution techniques.
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Chapter 7

Schema Integration with ODL-M

7.1 Introduction

In this chapter we will revisit the con�icts detected in chapter 4. A classi�cation of

resolution techniques will be presented that will show that they cover the con�icts we

listed in the four tables 4.1, 4.2, 4.3, and 4.4, from section 4.3. With reference to the

schema integration process steps of chapter 3, this chapter deals with the conforming and

merging steps, but also the preintegration step to a degree. To perform the resolution

techniques we will use the ODL-M mapping language that we developed in chapter 6.

Finally we will discuss a proposal for how to use of the semPro function from chapter 4.

But �rst we will give a brief suggestion to an architecture this system could run under.

The architecture borrows some concepts from the systems mentioned in chapter 5.

7.2 An Architecture Basis

Here we will design a rough framework of how a full working system could be implemented.

According to the goals of the ODMG group, we would like to comply with how they in-

tend for the database standard to participate in a distribution of heterogeneous databases.

Our proposal is to use the OMG Object Request Broker [OMG92] as the network service

to support the object passing between the local and the global systems. We borrow the

idea of a distributed persistent object space from SISIP [BHR+95] as the uniform integra-

tion space. The component ODL schemas will be integrated in this integration space to

the object types of the federated schema which in turn o�ers its interface to the external

global users. The basic nature of the proposed framework is outlined in �gure 7.1. We

will not discuss the details in this architecture any further since our focus is on resolution

techniques in this chapter. Besides, all the constructs in �gure 7.1 have been discussed

earlier in the thesis.

97
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Figure 7.1: Proposed framework/architecture

7.3 Con�ict Resolution in ODMG-93 using ODL-M

A classi�cation of resolution techniques will be introduced in the next sections. The tech-

nique classi�cation will cover the con�icts discussed in the classi�cation tables of section

4.3. The techniques are partly inspired by Kim et. al [KCGS95] and partly independently

designed as part of this thesis. Th main structure of the resolution techniques is taken

from Kim et. al [KCGS95], but we have adopted the techniques to an object-oriented

context and introduce the use of ODL-M as a means of performing our techniques. This

approach has not been investigated before, as far as we know. In resolving the con�icts we

will use ODL/ODL-M as de�ned in chapter 6, either directly through the properties of the

data model of ODL or by means of the mapping rules available in the ODL-M language.

The mappings will typically be of the form:

MAP MDB_object_type <- SCHEMA1_object_type, SCHEMA2_object_type

<body>

END_MAP

where the CDB object types are the sources of the mapping and the MDB object type is

the source.

7.3.1 Introduction

The case mentioned in the introduction chapter is revisited here (see �g. 7.2), this time
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Figure 7.2: Revisited Case
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with types according to the ODL data model de�nition. In this chapter we will go into

more detail in the case and resolve con�icts between the classes being integrated.

In order to be able to use the ODL-M language, the schemas must be expressed in

the ODL language. The translation of the case will be used in the examples of resolution

techniques in the following sections. The ODL-representation of all the object types in

the case is presented in appendix D.

7.4 Resolution Techniques

The classi�cation used in this section is shown in �g. 7.3. The con�icts these resolution

techniques are meant to address are listed in the four requirement tables in section 4.3.

For each type of con�ict, in each of the four requirement tables, the resolution technique

can be modeled as a transformation from one or more classes/object types de�ned in the

CDB schemas to a single class/object type de�ned in the MDB schema. Whenever this

transformation is isomorphic, the global class is updatable [KCGS95]. We will only brie�y

mention when a resolution meets this criteria and not focus on it here.

We present a classi�cation of resolution techniques and for each group in the classi�-

cation we enter a section containing three parts:

Con�ict: In this part we refer to which con�ict in which table from section 4.3 we will

address in order to refresh our memory and to keep track of which con�icts we have

covered so far.

Resolution: In this part we suggest one or more resolution techniques to resolve this

particular con�ict type. Resolutions of di�erent types of con�icts might resemble

each other but we choose to separate them in order to address the con�ict types

apart from one another.

Example: In this part we generally extract an example from the case and use the reso-

lution technique recently stated to demonstrate its use.



7.4. RESOLUTION TECHNIQUES 101

1. Renaming Classes and Attributes

2. Homogenizing Representations

(a) Expressions

(b) Units

(c) Precision

3. Homogenizing Attributes

(a) Type Coercion

(b) Extraction of a Composition Hierarchy

(c) Default Values

(d) Attribute Concatenation

4. Horizontal Merges

(a) Union Compatible

i. Simple Union Compatible Merge

ii. When Attribute is Missing

iii. When Attribute is Missing but Value is Implicit

(b) Extended Union Compatible

i. For Class Inclusion

ii. For Attribute Inclusion

5. Vertical Merges

(a) For Many-to-Many Classes

(b) For Class-vs-Attributes

(c) For Aggregation Hierarchies

6. Mixed Merges

7. Homogenizing Methods

Figure 7.3: A Classi�cation of ODL-M Resolution Techniques
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7.5 Renaming Classes and Attributes

Con�ict Con�icts of type �Class Name� and �Attribute Name� in table 4.1 and table

4.2 arise when concepts(classes or attributes) with similar meaning have di�erent

names (synonyms) or when di�erent concepts bear the same name (homonyms) in

the CDB schemas.

Resolution A catalog is maintained in the MDB that captures the correspondence be-

tween MDB names and CDB names. The entrances in the catalog can be maintained

by either the designer or it could be semi-automatic maintained by a semantic mea-

sure that assigns similarity values (such as the semPro function from chapter 4)

to encounter synonyms. The problem of equal names for di�erent concepts can be

avoided by pre�xing the class names by their schema names.

Example A resolution from Pegasus (see section 5.1) on handling ambiguity is this: Ob-

jects with equal names can be pre�xed with their respective schema names to de�ne

unambiguous names of the form: schemaname.objectname. Likewise the attributes

can be pre�xed with their respective schema names and object names of the form:

schemaname.objectname.attributename.

Case example:

The object type Under_Grad in Schema 1 and Student in the remaining CDBs

are similar concepts bearing di�erent names. Similarly, the attributes major in

Gradstudent and dept in Faculty have the same meaning but di�erent names.

7.6 Homogenizing Representations

Here we discuss homogenization of di�erent expressions denoting the same information,

di�erent units, and di�erent levels of precision. They correspond to the class of con�icts

identi�ed as �Di�erent Representation for Equivalent Data� in table 4.4.

7.6.1 Di�erent Expressions Denoting the Same Information

Con�ict Con�icts of type �Di�erent Expression denoting same Information� from table

4.4 arise when di�erent scalar values are used to represent the same data. Of partic-

ular interest are cases when di�erent CDBs use separate codes to denote the same

data.

Resolution Since this type of con�ict arises when di�erent scalar values denote the same

data, it is resolved by de�ning an isomorphism between di�erent representations.

This can be achieved either by de�ning type mappings denoting the isomorphism or

by direct mappings object type to object type.

Example Considering di�erent representations of grades from the case as enum types we

could have the following mapping between types:
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Source enumeration type:

typedef enum{A, B, C, D, E, F} grade_alpha;

Target enumeration type:

typedef enum{1, 2, 3, 4, 5, 6} grade_digit;

A mapping between the two would be:

MAP_TYPE grade_alpha=grade_digit;

A :- 1;

B :- 2;

C :- 3;

D :- 4;

E :- 5;

F :- 6;

END_MAP_TYPE

We use the type mapping de�ned here in the following example:

Assume we change the Enroll object types slightly by using the di�erent types for the

grade attribute that we just de�ned. We use the grade_digit type for the grade attribute

of Schema 1 and the grade_alpha type for the grade of Schema 4 and Schema 5. We

could map the source Enroll object types integrating them into a target All_Enroll

object type using the above de�ned types and type mapping as the following:

Source object types:

Schema 1:

interface Enroll{

extent enrolls;

keys cno,fssn,sssn;

string cno;

integer fssn;

integer sssn;

grade_digit grade;

}

Schema 3:

interface Enroll{

extent enrolls;

keys cno,fac_ssn,stud_ssn;

string cno;

integer fac_ssn;

integer stud_ssn;

float grade;

}

Schema 4 and 5:

interface Enroll{

extent enrolls;

keys Course,fssn,sssn;

Course course

integer fssn;

integer sssn;

grade_alpha grade;

}
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Target object type:

interface All_Enroll{

extent all_enrolls;

keys cno,fssn,sssn;

string cno;

integer fssn;

integer sssn;

grade_alpha grade;

}

The mapping could be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3, SCHEMA4, SCHEMA5;

MAP All_Enroll <- SCHEMA1.Enroll;

cno :- cno;

fssn :- fssn;

sssn :- sssn;

grade :- (grade_alpha) grade;

END_MAP;

MAP All_Enroll <- SCHEMA3.Enroll;

cno :- cno;

fssn :- fac_ssn;

sssn :- stud_ssn;

IF 1 <= Enroll.grade <= 1.9 THEN

grade :- 'A';

ELSE_IF 2 <= Enroll.grade <= 2.9 THEN

grade :- 'B';

ELSE_IF 3 <= Enroll.grade <= 3.9 THEN

grade :- 'C';

ELSE_IF 4 <= Enroll.grade <= 4.9 THEN

grade :- 'D';

ELSE_IF 5 <= Enroll.grade <= 5.9 THEN

grade :- 'E';

ELSE

grade :- 'F';

END_MAP;



7.6. HOMOGENIZING REPRESENTATIONS 105

MAP All_Enroll <- SCHEMA4.Enroll;

cno :- course.cno

fssn :- fssn;

sssn :- sssn;

grade :- grade;

END_MAP;

MAP All_Enroll <- SCHEMA5.Enroll;

cno :- course.cno

fssn :- fssn;

sssn :- sssn;

grade :- grade;

END_MAP;

END_SCHEMA_MAP;

In the mapping from SCHEMA1 we cast the grade attribute thereby triggering the type

mapping de�ned. In the mapping from SCHEMA3 we had to divide the grade scale into

ranges that �t the target grade attribute. This latter method is actually an example of

di�erent precision con�ict and we will see how to resolve this con�ict more e�ciently in

the �Di�erent Levels of Precision� section.

The two last mappings from SCHEMA4 and SCHEMA5 were trivial.

7.6.2 Di�erent Units

Con�ict Con�icts of type �Di�erent Units� from table 4.4 arise when numerical data

denoting the same physical quantity are represented in di�erent units across CDBs.

Di�erent units give di�erent meanings to numerical data.

Resolution Since this is a con�ict among numerical data, it is resolved by de�ning arith-

metic expressions to convert numeric value in one unit to another. There are limi-

tations to the accuracy of such conversions due to at least two reasons:

1. Not all arithmetic operators are closed on numeric values, e.g. division is not

closed for integers.

2. There are limitations of machine representations for real values.

Example Schema 1 and Schema 2 of the case consequently use di�erent units for height

and weight. If the source MDB schema had decided to use kg and cm as units we

could map the units either by type mapping or by direct mapping in each case.

The type mapping case would look like this:

Source type:

typedef float inches;

typedef float pounds;

Target type:

typedef float centimeters;

typedef float kilograms;
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The type mapping would be:

MAP_TYPE centimeters = inches * 2.54;

END_MAP_TYPE;

MAP_TYPE kilograms = pounds * 2.24;

END_MAP_TYPE;

The example in the next section shows how we can use the type mappings we de�ned

here.

7.6.3 Di�erent Levels of Precision

Con�ict Con�icts of type �Di�erent Levels of Precision� from table 4.4 arise when seman-

tically equivalent attributes draw values from domains with di�erent cardinalities.

This di�erence in cardinality results in di�erent scales of precision for similar data.

Resolution This type of con�ict is resolved by de�ning a mapping between the domains

of semantically equivalent attributes. The mapping can be done either by creating a

special (static) object_type, as a lookup-table, with information about the bounds

needed for the mapping or de�ning a type mapping on range. Since the cardinality

of these domains are di�erent, we de�ne a many-to-one mapping for converting a

value from a more precise domain to a value from a less precise domain.

Example The problem arises with the attribute bracket of the case which has a nu-

meral representation in Schema 1 and a string representation in Schema 3. With a

few typedef de�nitions the mapping would be range-wize from numerical values to

strings as follows:

Source type:

typedef integer bracket_num;

Target type:

typedef string bracket_char;

A possible mapping could be:

MAP_TYPE bracket_char = bracket_num;

``upper'' :- 500000..10000000;

``middle'' :- 250000..499999;

``lower'' :- 0..249999;

END_MAP_TYPE

Here follows an example approach using the type mapping de�ned here (and in the

previous section). We have used the types de�ned in this and the previous section where

appropriate. The example integrates the employee information from Schema 1 and Schema

3 into a target object type, All_Employee:
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Source object types:

Schema 1:

interface Employee{

extent employees;

key ssn;

string name;

integer ssn;

string position;

}

interface Emp_Other{

extent emp_others;

key ssn;

integer ssn;

integer age;

pounds wt_in_lb;

inches ht_in_in;

integer salary;

float bonus;

integer tax;

bracket_num bracket;

}

Schema 3:

interface Employee{

extent employees;

key ssn;

string name;

integer ssn;

string position;

}

interface Emp_Personal{

extent emp_personals;

integer ssn;

integer age;

kilograms wt_in_kg;

centimeters ht_in_cm;

}

interface Emp_Tax{

extent emp_taxes;

integer ssn;

integer salary;

float bonus;

integer tax;

bracket_char bracket;

}

Target object type:

interface All_Employee{

extent all_employees;

key ssn;

string name;

integer ssn;

string position;

integer age;

kilograms wt_in_kg;

centimeters ht_in_cm;

integer salary;

float bonus;

integer tax;

bracket_char bracket;

}
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The mapping would be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3;

MAP All_Employee <- SCHEMA1.Employee;

name :- name;

ssn :- ssn;

position :- position;

END_MAP;

MAP All_Employee <- SCHEMA1.Emp_other;

ssn :- ssn;

age :- age;

wt_in_kg :- (kilograms) wt_in_lb;

ht_in_cm :- (centimeters) ht_in_in;

salary :- salary;

bonus :- bonus;

tax :- tax;

bracket :- (bracket_char) bracket;

END_MAP;

MAP All_Employee <- SCHEMA3.Employee;

name :- name;

ssn :- ssn;

position :- position;

END_MAP;

MAP All_Employee <- SCHEMA3.Emp_personal;

ssn :- ssn;

age :- age;

wt_in_kg :- wt_in_kg;

ht_in_cm :- ht_in_cm;

END_MAP;

MAP All_Employee <- SCHEMA3.Emp_tax;

ssn :- ssn;

salary :- salary;

bonus :- bonus;

tax :- tax;

bracket :- bracket;

END_MAP;

END_SCHEMA_MAP;
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7.7 Homogenizing Attributes

An object type is a sequence of attributes; an attribute and its domain qualify an object

type by de�ning membership criteria for instances to belong to that object type. Similarly,

the �signature� of a target object type quali�es it, and the mapping statements determine

how this target object type is to be materialized. However, each MAP statement must

retrieve objects from the CDBs such that their attribute values conform to the interface of

the target object type. Thus, each corresponding attribute of the CDB object types being

integrated must be rede�ned and appropriately transformed such that each attribute is

compatible with the interface of the target object type. We describe such transformations

below.

7.7.1 Type Coercion

Con�ict Con�icts of type �attribute data type� in table 4.2 arise when the domains

(types) are di�erent for semantically equivalent attributes.

Resolution In many cases it is possible to resolve this con�ict by coercing the type of one

attribute to another type, thus homogenizing the attributes in consideration. Such a

coercion is made possible in ODL-M by either casting directly where it is meaningful,

or de�ning an explicit type mapping. We may or may not loose information in such

a coercion. For example it is always possible to convert an integer value from a

CDB to a real in the MDB and back. However it is likely that a real value from a

CDB will be truncated when converted to an integer in the MDB and thereby losing

information.

Table 7.1 shows various meaningful type coercions.

Coercion BOOLEAN CHAR(n1) INTEGER FLOAT

BOOLEAN BOOLEAN (ad hoc) INTEGER FLOAT

CHAR(n2) (ad hoc) CHAR(max(n1; n2)) (ad hoc) (ad hoc)

INTEGER INTEGER (ad hoc) INTEGER FLOAT

FLOAT FLOAT (ad hoc) FLOAT FLOAT

Table 7.1: Type Coercion Rules

Example An example of coercion from the case schemas could occur if we were to inte-

grate the Employee object type of Schema 5 with any of the other Employee object

types from the other schemas. The attribute ssn of Employee in Schema 5 has the

type CHAR(or string in ODL) while the other equivalent ssn attributes in the other

schemas have the type INTEGER. In this case, we could do a simple atoi(ssn)1 to

resolve the type mismatch providing the CHAR ssn is a digit string representing the

1ASCII-to-Integer conversion
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ssn. Otherwise one could de�ne a speci�c type mapping from CHAR to INTEGER with

the type mapping construct of ODL-M.

7.7.2 Extraction of a Composition Hierarchy

Con�ict Composition hierarchies occur naturally in OODBs. Con�icts of type �attribute

omposition� in table 4.2 arise when there are structurally di�erences in related classes

such that the domain of a semantically equivalent attribute in one is a user-de�ned

class whereas that in another class is an atomic type. This situation occurs when

integrating OODBs with translated RDBs (to OOCDM) or other OODBs.

Resolution In general it is possible to combine the di�erent con�ict resolution types

to achieve a resolution. However a frequent method to resolve the con�ict could

be to �extract� the attributes needed for an MDB object type by use of mapping

constructs.

Example The Grad_student object type of Schema 2 inherently has information of fac-

ulties by the fname, fssn, major (same as dept. name) and frank attributes. We

use this information in the following example where we integrate the faculty concepts

of the underlying systems into an All_Faculty object type in the global schema.

Source object types:

Schema 1:

interface Faculty{

extent faculties;

key ssn;

string name;

integer ssn;

string dept;

string rank;

}

Schema 2:

interface Grad_Student{

extent grad_students;

key fssn;

string sname;

integer sssn;

string major;

float gpa;

string fname;

integer fssn;

string frank;

string thesis_title;

}

Schema 3:

interface Faculty{

extent faculties;

key ssn;

string lastname;

string firstname;

integer ssn;

string dept;

string rank;

}

Schema 4:

interface Faculty:Employee{

extent faculties;

string dept;

string rank;

}

Schema 5:

interface Faculty:Employee{

extent faculties;

Department dept;

string rank;

}
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Target object type:

interface All_Faculty{

extent all_faculties;

key ssn;

string name;

integer ssn;

string dept;

string rank;

}

The mapping of these object types would be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA2, SCHEMA3, SCHEMA4, SCHEMA5;

COPY All_Faculty <- SCHEMA1.Faculty;

MAP All_Faculty <- SCHEMA2.Faculty;

name :- fname;

ssn :- fssn;

dept :- major;

rank :- frank;

END_MAP;

MAP All_Faculty <- SCHEMA3.Faculty;

name :- concatstring(lastname,firstname);

ssn :- ssn;

dept :- dept;

rank :- rank;

END_MAP;

COPY All_Faculty <- SCHEMA4.Faculty;

MAP All_Faculty <- SCHEMA5.Faculty;

name :- name;

ssn :- atoi(ssn);

dept :- dept;

rank :- rank;

END_MAP;

END_SCHEMA_MAP;
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7.7.3 Default Values

Con�ict This con�ict type is related to the con�ict with the same name in table 4.2.

This type arises when the default values of semantically equivalent attributes in

di�erent CDBs are di�erent. The problem may show when updating against the

MDB schema.

Resolution The con�ict can be resolved in a manner similar to the case of missing but

implicit attributes (see description in the �Horizontal Merges� section). The example

below also gives a possible solution.

Example The bonus attribute in Schema 1 may have a default value of 10%, whereas

in Schema 3 the actual bonus value is expected to be provided when the object is

instantiated. Thus, if the Employee objects were to be integrated, choosing a default

value would cause problems at update time. However, as long as the MDB schema

has an update constraint of always providing a value, the problem is avoided.

7.7.4 Attribute Concatenation

Con�ict Information can be represented at di�erent levels of detail, especially when rep-

resented as character strings. Thus, con�icts of type one-to-many attributes (which

is a special case of the �many-to-many attributes� in table 4.2) arise if information

captured by a single attribute in one CDB class is equivalent to that in more than

one attribute belonging to another CDB class.

Resolution This type of con�ict is resolved by de�ning an operator for concatenating

attributes with the same domains (possibly coerced to the same domains). In gen-

eral we have some operator concatdomain() which takes as its argument a list of

attributes and returns the logical concatenation of these attributes.

Example In Schema 3 the name of a person is broken into firstname and lastname,

while it is simply name in the other CDBs. In the example above, integrating the

ALL_Faculty object type, we included an example of string concatenation, using

a special concatstring function for the purpose, in the All_Faculty <- SCHEMA3

map.

7.8 Horizontal Merges

A horizontal merge is a means to homogenize CDB classes by taking the union of all

instances materialized from each CDB class. There are two kinds of horizontal merges:

union compatible and extended union compatible. The union compatible merge allows the

user to integrate classes across CDBs such that the resulting target class has a signature

that is very similar to that of the CDB classes. The extended union compatible merge

extends this notion to provide a means to deal with inheritance hierarchies.
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7.8.1 Union Compatible

Union Compatibility: Two classes are union compatible if and only if they have equiv-

alent signatures.

NoteSCHEMA1 not have to be identical since we may use simple transformations such as

renaming or coercion. Thus, two signatures are equivalent if and only if for each attribute

in one signature there exists a corresponding attribute in the other signature such that

the attributes can be obtained from the other after due transformation. There are three

kinds of union compatible merges: no structural con�icts, when attribute is missing, and

when attribute is missing but value is implicit.

7.8.1.1 No structural Con�icts

Con�ict Con�icts of type �one-to-one class� in table 4.1 arise when various CDB classes

have similar or even identical de�nitions. In the simple case, there is no con�ict.

Resolution The simple case is resolved by simple object type mapping from the underly-

ing CDB object types which match the MDB target object type to. The integrated

object type will then become the union of the underlying instances, automatically

pruned by the key attributes. This type of simple map is usually employed in con-

junction with other con�ict resolution operations described in this chapter. A merge

is simple union compatible if the CDB attributes are transformed to be compatible

with the interface of the integrated object type such that the integrated object type

is updatable.

Example As an example let us de�ne an MDB integrated class, All_Course, representing

the union of the courses in the underlying schemas:

Source object types:

Schemas 1 and 3:

interface Course{

extent courses;

key cno;

string cname;

integer cno;

}

Schemas 4 and 5:

interface Course{

extent courses;

key cno;

string cname;

string cno;

Set<Course> prereq;

}

Target MDB object type:

interface All_Course{

extent courses;

key cno;

string cname;

string cno;

}
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The mapping would be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3, SCHEMA4, SCHEMA5;

COPY All_Course <- SCHEMA1.Course;

COPY All_Course <- SCHEMA3.Course;

MAP All_Course <- SCHEMA4.Course;

cname :- cname;

cno :- cno;

END_MAP;

MAP All_Course <- SCHEMA4.Course;

cname :- cname;

cno :- cno;

END_MAP;

END_SCHEMA_MAP;

7.8.1.2 Missing Attributes

Con�ict Con�icts of type �missing attribute� in the �one-to-one class� case in table 4.1

arise when the numbers of attributes in similar classes across CDBs are di�erent.

Resolution One way of resolving this con�ict could be to coerce nonexistent attributes

in the CDBs to NA2. Alternatively we could map the object types that resemble each

other closely by integrating them separately in such a way that the object type with

fewer attributes will be a superclass of the other, provided that the object types in

question induce a natural inclusion relationship.

Example As an example of the latter mentioned resolve method, we de�ne an inheritance

hierarchy for students and graduate students in schema 4 and schema 5 as follows:

Source object types:
Schema 4:

interface Student{

extent students;

string name;

integer ssn;

string major;

float gpa();

}

interface Gradstudent:Student{

extent gradstudents;

Set<Faculty> advisor;

}

2Not Applicable
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Schema 5:

interface Student{

extent students;

string fname;

string lname;

string ssn;

string major;

float gpa();

}

interface Gradstudent:Student{

extent gradstudents;

Faculty advisor;

Set<Faculty> committee;

}

Target object types:

interface All_Student{

extent all_students;

string name;

integer ssn;

string major;

float gpa();

}

interface All_Gradstudent:All_Student{

Set<All_Faculty> advisor;

}

interface All_Gradstudent_C:All_Gradstudent{

Set<All_Faculty> committee;

}

The mapping for this inheritance hierarchy would be:

SCHEMA_MAP MDB <- SCHEMA4, DDB5;

COPY All_Student <- SCHEMA4.Student;

MAP All_Student <- SCHEMA5.Student;

name :- concatstring(lname, fname);

ssn :- ssn;

major :- major;

gpa :- gpa();

END_MAP:

COPY All_Gradstudent <- SCHEMA4.Gradstudent;
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BUILD All_Gradstudent <- SCHEMA5.Gradstudent;

WHERE NOT EXISTS(SCHEMA5.Gradstudent.committee);

name :- concatstring(lname, fname);

ssn :- atoi(ssn);

major :- major;

gpa() :- gpa();

advisor :- advisor;

END_BUILD;

BUILD All_Gradstudent_C <- SCHEMA5.Gradstudent;

WHERE EXISTS(SCHEMA5.Gradstudent.committee)

name :- concatstring(lname, fname);

ssn :- atoi(ssn);

major :- major;

gpa() :- gpa();

advisor :- #Set<Faculty>.insert(advisor);

committee :- committee;

END_BUILD;

END_SCHEMA_MAP;

In this mapping we �rst mapped the �ordinary� students from Schema 4 and Schema 5

into the All_Student class, then we mapped the graduate students of Schema 4 to a

subclass of All_Student: All_Gradstudent. We also mapped those graduate students

from Schema 5 that conformed to All_Gradstudent. Finally we de�ned a subclass of

All_Gradstudent, namely All_Gradstudent_C that could handle the objects mapped

from the graduate students of Schema 5. The mapping is graphically described in �g-

ure 7.4.

7.8.1.3 Missing Attributes with Implicit Value

Con�ict Con�icts of type �missing but implicit attribute� in the �one-to-one class� case

in table 4.1 arise when an attribute is missing but can be implicitly given a default

value derived from the information available.

Resolution In general, one can resolve this con�ict by an expression for the missing

attribute in the form cdb attr name == value expression where cdb attr name is

the name of the attribute in the CDB object type that has a default value denoted

by value expression. Further the above mentioned expression will appear on the

right side of the mapping operator ':-'.

Example Suppose we use the Student object type in Schema 3 and its attribute called

type to denote whether a student is a graduate or undergraduate student. But

we know that the Student object types in the other CDBs denote only undergrad-

uate students. Thus, one way to integrate these object types would be to think
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Figure 7.4: Mapping of students and graduate students.

of the Student object types in all CDBs except Schema 3 as having an attribute

student_type with a default value denoting undergraduate students.

7.8.2 Extended Union Compatible

The notion of union compatibility needs to be extended to deal with inheritance hierar-

chies. As one goes lower in such a hierarchy, classes tend to have more attributes de�ned

in their respective signatures or to have attributes with more specialized domains. A class

C1 can be a subclass of C2 if and only if the signature of C2 subsumes that of C1 and

there exists an inclusion relationship between C1 and C2 (C2 subsumes C1, see section

4.2). This means that for each attribute of C2, there is a corresponding attribute in C1

such that its domain is union compatible (in the sense de�ned in the previous section)

with that in C2. An inheritance hierarchy also implies a set inclusion relationship between

the instances of a class and its subclasses.

Extended union compatible: Given two classes, C1 and C2, when the signature of C2

subsumes that of C1, and the extent of C1 is a subset of the extent of C2, then C1

and C2 are said to be extended union compatible.
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7.8.2.1 For Class Inclusion

Con�ict Con�icts of type �class inclusion� in table 4.1 arise when similarly related classes

are distributed across more than one CDB. A more complex situation is when an

inheritance hierarchy from one OODB is to be integrated with a related inheritance

hierarchy from another OODB that has a di�erent structure. This may be found

to be a compound con�ict which can be resolved by decomposing it into the more

primitive con�icts. Thus, when integrating two inheritance hierarchies, we must �rst

integrate two CDB classes using other resolution techniques described in this section,

such that the resulting MDB inheritance hierarchy re�ects the inclusion relationships

in the CDB hierarchies.

Resolution We use the notion of an extended union compatible merge to resolve class

inclusion con�icts. We do this by organizing a set of related CDB object types into

a generalization hierarchy.

Example As an example, we de�ne a hierarchy of courses that existed in neither of the

CDB schemas, it only existed between them. We use the All_Courses object type we

de�ned before and de�ne a subclass of it. All_Course_R, which represents restricted

courses. Neither of the CDB schemas had both restricted and non-restricted courses

de�ned in a hierarchy. This mapping example de�nes this hierarchy:

Source object types:

Schema 1:

interface Restricted_Course{

extent restricted_courses;

string cname;

integer cno;

string major;

}

Schema 3:

interface Course{

extent courses;

key cno;

string cname;

string cno;

}

Schema 3:

interface Course_Restriction{

extent course_restrictions;

string cno;

string major;

string prereq_cno;

}

Schema 4 and 5:

interface Course{

extent courses;

key cno;

string cname;

string cno;

Set<Course> prereq;

}
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Target object types:

interface All_Course_R:All_Course{

extent all_course_rs;

string major;

Set<All_Course> prereq;

}

The mapping for this subclass would be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3, SCHEMA4, SCHEMA5;

MAP All_Course_R <- SCHEMA1.Restricted_Course;

cname :- cname;

cno :- cno;

major :- major;

prereq :- NA;

END_MAP;

BUILD All_Course_R <- SCHEMA3.Course, SCHEMA3.Course_Restriction;

WHERE Course_Restriction.prereq = Course.cno;

cname :- Course.cname;

cno :- Course.cn

major :- Course_Restriction.major;

prereq :- #Set<All_Course>.insert(#All_Course(Course.cname,Course.cno));

END_BUILD;

BUILD All_Course_R <- SCHEMA4.Course;

WHERE EXISTS SCHEMA4.prereq;

cname :- cname;

cno :- cno;

major :- NA;

prereq :- prereq;

END_BUILD;

BUILD All_Course_R <- SCHEMA5.Course;

WHERE EXISTS SCHEMA5.prereq;

cname :- cname;

cno :- cno;

major :- NA;

prereq :- prereq;

END_BUILD;

END_SCHEMA_MAP;

The intension with this mapping was to classify the courses into those that have re-

strictions, and those that do not.
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7.8.2.2 Attribute Inclusion

Con�ict Con�icts of type �attribute inclusion� in table 4.2 arise when there is an inclu-

sion relationship between two or more attributes. This con�ict falls into a category

distinct from that in which attributes have di�erent names or data types, as discussed

before. An inclusion relationship between two attributes can be used to induce a

natural inheritance hierarchy among the corresponding classes in the MDB schema.

Resolution Attribute inclusion and class inclusion are di�erent kinds of con�icts. How-

ever, since an attribute inclusion relationship induces an class inclusion relationship,

both con�icts can be resolved using the extended union compatible merge operation.

Example We construct two small new schemas here for the purpose of demonstrating

this con�ict resolution. In the following two schemas the attribute son_name can be

regarded as being included in the attribute child_name.

Schema 6:

interface People{

string name;

integer age;

string son_name;

}

Schema 7:

interface Person{

string name;

integer age;

string child_name;

}

The inclusion relationship between son_name and child_name can induce a natural

inclusion relationship between People and Person such that the former includes the latter.

Thus we can integrate the two as follows:

Target object types:

interface Parents{

string name;

integer age;

string child_name;

}

interface Parents_of_Men:Parents{

string name;

integer age;

string son_name;

}

And the mapping a simple COPY for both:

SCHEMA_MAP MDB <- SCHEMA6, SCHEMAA7;

COPY Parents <- People;

COPY Parents_of_Men <- Person;

END_SCHEMA_MAP;
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7.9 Vertical Merges

A vertical merge is used to integrate a number of classes or attributes across one or more

CDBs into a single class at the MDB level representing the construct that spanned the

CDB schemas.

7.9.1 Many-to-Many Classes

Con�ict Classes in CDB schemas may be de�ned in di�erent ways for various reasons,

such as to remove redundant data or to reduce possibilities of inconsistency during

updates or improve the e�ciency of evaluating queries. This causes a given concept

to be decomposed into a number of classes. The normalization of a RDB schema

is an example of such a decomposition. Thus, con�icts of type �many-to-many

classes� in table 4.1 arise when, for example, integrating relating concepts that are

normalized in di�erent degrees in CDB schemas translated from RDB schemas or

when integrating a concept represented by many object types with a single MDB

object type.

Resolution We use the vertical merge to integrate many CDB classes into one class

representing the class that spans across the CDB schemas. In order to integrate

many CDB classes into many MDB classes, we need to perform a sequence of vertical

merges; we consider the many-to-many classes con�ict as a composite case of the

many-to-one class con�ict.

Example Our example of constructing the All_Employee object type in section 7.6.3was

an example which homogenized the object types Employee and Emp_other from

Schema 1 and Employee, Emp_personal and Emp_tax from Schema 3. Since per-

sonal or tax information about employees is not available in Schema 4 or Schema

5, the extent of All_Emp_Info only contains instances as result of a vertical merge

between Schema 1 and Schema 3. The result is graphically represented in table 7.5.

All_Employee

ssn name position age wt_in_kg ht_in_cm salary bonus tax

Employee Emp_Other

ssn name position age wt_in_lb ht_in_in salary bonus tax

... extent from schema 1

Employee Emp_personal Emp_tax

ssn name position age wt_in_kg ht_in_cm salary bonus tax

... extent from schema 3

Figure 7.5: Graphical representation of All_Employee extent
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7.9.2 Class-versus-Attributes

Con�ict Con�icts of type �class-versus-attributes� in table 4.3 arise when a concept or

part of a concept is represented as an class in one CDB but as a set of attributes,

possibly belonging to a related class, in another CDB.

Resolution This type of con�ict can be resolved in two ways; either by splitting an object

type into two or more parts or by integrating two object types (or parts of them)

into one by performing a vertical merge. Note that this is distinct from an attribute

concatenation because in that case the domain of each attribute must be the same;

there are no such restrictions here.

Example Look at the address �eld of the Under_Grad object type of Schema 1. It is

used to represent the address of each undergraduate student. The same information

can be found as an object type of itself, namely Address, in Schema 3. We can

resolve this con�ict in two ways. One way is to split the Under_Grad object type in

Schema 1;

Source object types:

Schema 1:

interface Under_Grad{

extent under_grads;

key ssn;

string name;

integer ssn;

string major;

string address

}

Schema 3:

interface Student{

extent students;

key ssn;

string lastname;

string firstname;

integer ssn;

string type;

string major;

}

interface Address{

extent addresses;

keys ssn,street,city,zip;

integer ssn;

string street;

string city;

string zip;

}

Target object types:

interface All_Under_Grad{

extent all_under_grads;

key ssn;

string name;

integer ssn;

string major;

}

interface All_Address{

extent all_addresses;

integer ssn;

string address;

}
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The mapping to these targets would be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3;

MAP All_Under_Grad <- SCHEMA1.Under_Grad;

name :- name;

ssn :- ssn;

major :- major;

END_MAP;

MAP All_Under_Grad <- SCHEMA3.Student;

name :- concatstring(lastname,firstname);

ssn :- ssn;

major :- major;

END_MAP;

MAP All_Address <- SCHEMA1.Under_Grad;

ssn :- ssn;

address :- address;

END_MAP;

BUILD All_Address <- SCHEMA3.Student,SCHEMA3.Address;

WHERE SCHEMA3.Student.ssn = SCHEMA3.Address.ssn;

ssn :- SCHEMA3.Student.ssn;

address :- concatstring(street,city,zip);

END_MAP;

END_SCHEMA_MAP;

The other way to resolve this con�ict type is to integrate the Address and Student

object types in Schema 3 into a single target object type by performing a simple vertical

merge.

Using the same source object types as in the previous example the target object type

now looks like this:

interface All_Under_Grad_X{

extent all_under_grad_xs;

key ssn;

string name;

integer ssn;

string major;

string address;

}
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And the mapping this time will be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3;

COPY All_Under_Grad_X <- SCHEMA1.Under_Grad;

BUILD All_Under_Grad_X <- SCHEMA3.Student, SCHEMA3.Address;

WHERE SCHEMA3.Student.ssn = SCHEMA3.Address.ssn;

name :- concatstring(lastname,firstname);

ssn :- SCHEMA3.Student.ssn;

major :- major;

address :- concatstring(street,city,zip);

END_BUILD;

END_SCHEMA_MAP;

7.9.3 Aggregation Hierarchies

Con�ict Con�icts of type �class structure� in table 4.1 and �attribute composition� in

table 4.2 in combination denote aggregation hierarchy con�icts. Thus, the con�icts

arising when integrating aggregation hierarchies in di�erent OODBs that are similar

but have di�erent structures are said to be due of the aggregation hierarchy.

Resolution To resolve this con�ict we can perform a vertical merge of the CDB object

types that compose the target object type being de�ned.

Example To exemplify this con�ict we de�ne a target object type called Advisement.

The Advisement class integrates concepts at class and attribute level into a global

object type. Further, Advisement gives info on who (advisor) gives advisement to

whom (advisee) at what department (dept) for which thesis (thesis).

Source object types:

Schema 2:

interface Grad_Student{

extent grad_students;

string sname;

integer sssn;

string major;

float gpa;

string fname;

integer fssn;

string frank;

string thesis_title;

}
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Schema 3:

interface Student{

extent students;

string lastname;

string firstname;

integer ssn;

string type;

string major;

}

interface Graduate_Info{

extent graduate_infos;

integer ssn;

integer advisor_ssn;

}

interface Faculty{

extent faculties;

string lastname;

string firstname;

integer ssn;

string dept;

string rank;

}

interface Thesis{

extent thesises;

string title;

integer ssn;

float grade

}

Schema 4:

interface Student{

extent students;

string name;

integer ssn;

string major;

float gpa();

}

interface Gradstudent:Student{

extent gradstudents;

Set<Faculty> advisor;

}

interface Faculty:Employee{

extent faculties;

string dept;

string rank;

}

interface Thesis{

extent thesises;

string title;

Gradstudent author;

string status;

}

interface Student{

extent students;

string fname;

string lname;

string ssn;

string major;

float gpa();

}

interface Gradstudent:Student{

extent gradstudents;

Faculty advisor;

Set<Faculty> committee;

}



126 CHAPTER 7. SCHEMA INTEGRATION WITH ODL-M

interface Faculty:Employee{

extent faculties;

Department dept;

string rank;

}

interface Thesis{

extent thesises;

string title;

Gradstudent author;

string status;

}

And the target object type to be integrated into is:

interface Advisement{

string advisor;

Set<string> advisee;

string dept;

string thesis;

}

The mapping would be:

SCHEMA_MAP MDB <- SCHEMA2, SCHEMA3, SCHEMA4, SCHEMA5;

MAP Advisement <- SCHEMA2.Grad_student;

advisor :- fname;

advisee :- #Set<string>.insert(string(sname));

dept :- major;

thesis :- thesis_title;

END_MAP;

BUILD Advisement<- SCHEMA3.Student,SCHEMA3.Graduate_Info,SCHEMA3.Faculty,SCHEMA3.Thesis;

WHERE Student.ssn = Graduate_Info.ssn AND

Graduate_Info.advisor_ssn = Faculty.ssn AND

Student.ssn = Thesis.ssn;

advisor :- concatstring(Faculty.lastname,Faculty.firstname);

advisee :- concatstring(Student.lastname, Student.firstname);

dept :- Student.major;

thesis :- Thesis.title;

END_BUILD;

BUILD Advisement <- SCHEMA4.Gradstudent, SCHEMA4.Faculty, SCHEMA4.Thesis;

WHERE Faculty IN Gradstudent.advisor AND Thesis.author == Gradstudent;

advisor :- Faculty.name;

advisee :- Gradstudent.name;

dept :- Gradstudent.major;

thesis :- Thesis.title;

END_BUILD;
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BUILD Advisement <- SCHEMA5.Gradstudent, SCHEMA5.Faculty, SCHEMA5.Thesis;

WHERE Faculty == Gradstudent.advisor AND Thesis.author == Gradstudent;

advisor :- Faculty.name;

advisee :- Gradstudent.name;

dept :- Gradstudent.major;

thesis :- Thesis.title;

END_BUILD;

END_SCHEMA_MAP;

Again we show the mapping as a pictorial representation in �gure 7.6.

Advisement

advisor advisee dept thesis

Grad_Student

fname sname dept thesis . . . �
... extent of schema 2

Faculty Student Thesis Graduate_Info

lastname �rstname . . . lastname �rstname major . . . title . . . ssn adv_ssn
... extent of schema 3

Faculty Gradstudent Thesis �

name . . . name major . . . title . . . �
... extent of schema 4

Faculty Gradstudent Thesis �

name . . . name major . . . title . . . �
... extent of schema 5

Figure 7.6: Pictorial representation of Advisement extent

7.10 Mixed Merges

A mixed merge is a combination of vertical and horizontal merges. It is used to integrate

arbitrarily fragments of classes from one or more CDBs to de�ne a target class. In general,

compound con�icts3, as we de�ned them in section 4.3.5, are resolved by a combination

of the two merge types and other simpler resolution techniques. In this manner we can

handle arbitrarily complex con�icts by breaking them down into elements that �t into our

resolution technique classi�cation.

3Con�icts that appear in combination
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7.11 Homogenizing Methods

Con�ict Method con�ict can be interpreted as attribute con�icts. We have discussed the

con�ict and touched upon how to resolve it in section 4.3.2.

Resolution As mentioned earlier, methods can be treated as attributes(see section 7.7).

In spite of this it is not possible in general to de�ne methods in the interface of a

target object type. However, in some cases we can de�ne methods when integrating.

In particular we can rede�ne a method in a target object type if it is possible to

de�ne that method as a derived attribute using some expression.

Example As an example we de�ne a target object type called All_Student_Method. It

will represent the global student class that incorporates students with a grade-point-

average calculated. In Schema 1 and Schema 3 we have to calculate the gpa in the

map, while the Student class of Schema 4 and Schema 5 already has the gpa()

operation, so the mapping in these cases is trivial.

Source object types:

Schema 1:

interface Under_Grad{

extent under_grads;

string name;

integer ssn;

string major;

string address

}

interface Enroll{

extent enrolls;

string Cno;

integer fssn;

integer sssn;

float grade;

}

Schema 3:
interface Student{

extent students;

string lastname;

string firstname;

integer ssn;

string type;

string major;

}

interface Enroll{

extent enrolls;

string cno;

integer fac_ssn;

integer stud_ssn;

float grade

}
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Schema 4:

interface Student{

extent students;

string name;

integer ssn;

string major;

float gpa();

}

Schema 5:

interface Student{

extent students;

string fname;

string lname;

string ssn;

string major;

float gpa();

}

Target object type:

interface All_Student_Method{

extent all_students;

string name;

integer ssn;

string major;

float gpa();

}

The mapping would be:

SCHEMA_MAP MDB <- SCHEMA1, SCHEMA3, SCHEMA4, SCHEMA5;

BUILD All_Student_Method <- SCHEMA1.Under_Grad, SCHEMA1.Enroll;

WHERE Under_Grad.ssn = Enroll.sssn;

name :- Under_Grad.name;

ssn :- Under_Grad.ssn;

major :- Under_Grad.major;

gpa() :- AVERAGE(Enroll.grade) BY Enroll.ssn;

END_BUILD;

BUILD All_Student_Method <- SCHEMA3.Student, SCHEMA3.Enroll;

WHERE Student.ssn = Enroll.sssn;

name :- concatstring(Student.lastname,Student.firstname);

ssn :- Student.ssn;

major :- Student.major;

gpa() :- AVERAGE(Enroll.grade) BY Enroll.ssn;

END_BUILD;

COPY All_Student <- SCHEMA4.Student;

COPY All_Student <- SCHEMA5.Student;

END_SCHEMA_MAP;
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7.12 Semantic Proximity in ODL-M

In the previous sections we have discussed resolving structural con�icts using the ODL-M

mapping language. Although we did not mention it, we constantly used semantics to some

degree in our mapping. We will always have to look at our model from two viewpoints;

one structural and one semantical. The structure has no meaning without interpreting the

semantics of it and the semantics have no usefulness without a structure to realize them in.

Thus these two concepts are tightly bound and our analysis should consider them both.

In chapter 4 we introduced a function that measured semantic proximity called semPro()

and we would like to utilize the semPro() operation as an aid in our schema integration

process. Koren [Kor94] has done work toward this goal. He suggests an expansion of the

ODMG type hierarchy to enhance the ODMG object model with support for semantic

proximity. The main contribution of the expansion is the de�ned type Context which

is an abstract type which provides semantic proximity to its subclasses. The subclasses

will be types which are used when describing new types of databases: Type, Schema, and

Subschema. Figure 7.7 shows the connection to the original full type hierarchy(see �g.B.1

in appendix B).

Denotable_Object Object

Type

Atomic_Object

Schema Subschema

Context

Figure 7.7: The new types Context, Schema, and Subschema

The interface description of the Context type includes the semPro function as:

semPro(oid1; oid2)! t : semProvalues

where semProvalues is an enumeration of the return values of semPro, namely �Se-

mantic Equivalence�, �Semantic Relationship�, �Semantic Relevance�, �Semantic Resem-

blance�, and �Semantic Incompability�.

Further we de�ne new characteristics to the type Type. The new characteristics are

four new instance operations:

context() ! c : Context

role()! r : String

domain()! d : Set < Atomic Object >

state() ! s : Set < Atomic Object >

The operation context() returns the instance of Context in which the type is de�ned.

The operation role() returns a user-supported string which is a name on the role of the

type in its context. This is fragile because the model does not have a notion of roles. The

operation domain() returns a set of all real world phenomena that may be represented by

instances of the type.
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All these operations are abstract, that is they are not implementable. The reason

for specifying them as operations is that it later may be possible to make automatic, at

least some of the reasoning about semantic similarity between schema objects. If semantic

reasoning will be possible, these operations must be implemented by the type programmer.

The last part of semPro, the abstraction between the domains of the schema objects,

cannot be user speci�ed. It is the responsibility of the semPro to �nd an abstraction be-

tween the actual domains, and from the abstraction deduce the actual semantic proximity

level.

The semPro function can hardly be implemented at current time since capturing the

semantics of objects is impossible to do entirely automated by a machine. However, a

pseudo-algorithm could look like this:

Is there a function f : O1:domain()! O2:domain()?

If No: Is O1:role() = O2:role()?

No: Semantic Incompability

Yes: Semantic Resemblance

If Yes: Is f 1-1 and total?

No: Semantic Relationship

Yes: Semantic Equivalence

If this algorithm returns �Semantic Relationship� or �Semantic Equivalence� only

when O1:context() = O2:context() we have �Semantic Relevance�.

From Savasere et. al [SSG+91] we have discussed a classi�cation (see section 4.2) of

schema comparisons into the four classi�cations: Equivalence, Inclusion, Overlap, and Dis-

joint. Each of these classi�cations can be computed automatically according to Savasere et.

al [SSG+91] using the subsume function 4.1 de�ned in section 4.2. Therefore the subsume

function might be a candidate for semPro to initiate an implementation. However, we will

not pursue this any further, just suggest that seems possible.

With these expansions to the object model we now have ODL-M which supports the

schematic mapping of constructs and to aid this process we have a built in function semPro

to capture the semantic aspects of schemas we wish to integrate, thus we have managed

to achieve our goal of analyzing from both a structural and semantic viewpoint.

A suggested use of the semPro function in the ODL-M mapping framework would be

to �rst analyze classes from the considered schemas to encounter the semantic similarities

between them. The search for identifying relations or possible con�icts may be guided by

the class hierarchy; Instead of comparing all classes in a random manner, classes may be

compared following the class-hierarchy in a top-down fashion [GCS93].

Semantic equivalence typically points out candidates for synonyms. We might �nd

correspondences that are hard to �nd by only analyzing the syntax of the schemas. When

all semantic similarities are found, we sort them by strength according to the taxonomy

presented in �gure 4.3 on page 55. The integration process should start by integrating

classes and concepts that have the closest resemblance to keep the resulting schemas as

simple as possible. The lesser strong similarities should be merged in with the rest until

all similarities are encountered for. This way we have the closest semantic similar objects
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modeled as the main objects in the target and other objects and concepts express the

additions we need to complete the integration.

7.13 Implementing our Proposal

A full-developed compiler for ODL-M has not been developed yet. Because of this, we

have not been able to try out the techniques in an implementation. However we have

investigated possible constructs one could use to implement the mappings that ODL-M

de�nes. An object-oriented database system called ObjectStore from Object Design is

conform4 to the ODMG-93 standard. ObjectStore features a pointer type denoted Ref.

This is actually a feature of the ODMG-93 database standard [Cat94]. Pointers of this type

are not �hard� links that are computed at compile-time, but they are rather computed at

run-time. We argue that this supports our mapping constructs since they are the support

for views. This means that if the mappings de�ned be ODL-M are implemented with the

Ref feature, the objects de�ned by these mappings will only be computed at run-time

when they are referenced. This is exactly what we want according to how we de�ned

views.

Although we have a good idea of how to implement the main contribution in this

thesis, we will not investigate it any further since the amount of work would be too large

for this thesis. It will be a project for future work.

7.14 Summary

We have presented a classi�cation of resolution techniques (table 7.3to resolve the con�ict

groups identi�ed in the four tables, table 4.1, table 4.2, table 4.3, and table 4.4 in section

4.3 of chapter 4. The resolution techniques showed to cover our con�icts list. The only

two con�ict groups that were not explicitly addressed by our resolution techniques were

�Class Constraints� from table 4.1 and �Attribute Integrity Constraints� from table 4.2.

We explained in chapter 4 why these two con�icts groups were complex and needed ad

hoc solutions that met the speci�c solution.

We can conclude this chapter by claiming a near complete means of resolving our

con�icts speci�ed in chapter 4. All our techniques had understandable mappings using

the ODL-M language as their basis and they should not be di�cult to follow by the

examples. We used extent �gures (�g. 7.5 and �g. 7.6) to suggest how we captured all

instances of the concept we integrated from the underlying systems. The only time we did

not feel we included all information possible from the underlying systems it was because

of the di�erent representations made in the underlying systems which unavoidably led to

information loss (e.g. data precision con�icts).

Our approach corresponds to the iterative schema integration strategy described in

chapter 3, some examples were one-shot. But in general our approach can integrate several

schemas at a time and we can integrate stepwise towards the �nal target schemas.

4So they claim.
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We also showed how a possible use of the semPro function could be implemented as an

extension of the type hierarchy of ODMG. All in all our ODL-M solution seems to have

good advantages for a possible means to resolve schema integration con�icts in object-

oriented systems using ODL or a conforming model as its canonical model.



134 CHAPTER 7. SCHEMA INTEGRATION WITH ODL-M



Part III

Conclusion and Future Work
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Chapter 8

Conclusion & Future Work

We have come to our �nal remarks in this thesis. We will relate to our stated goal in the

introductory chapter and see how we managed to reach our goal. Further we will discuss

our main three tables of requirement groups de�ned, and discuss how our proposal met

with these requirements. The three requirement group tables were structural con�icts, the

canonical model, and the schema integration process and its results.

Finally we suggest some future guidelines for how this work could be carried on towards

a full working system. But �rst we summarize brie�y what our work has been focused on.

8.1 Summary

In the �rst part of this thesis we investigated the concepts of multidatabases and schema

integration. In chapter 2 we de�ned the basics of multidatabases including the �ve- and

eight-schema architecture. We also identi�ed three key issues for a full �edged multi-

database: constructing a global schema by schema integration, processing of queries, and

management of transactions. We chose to focus on schema integration and gave a more

in-depth description of the schema integration process and its characteristics in chapter 3.

One of the basic problems in schema integration is to identify the con�icts that can arise,

and further to resolve these con�icts in an e�ective way. In chapter 4 we classi�ed the

con�ict possibilities from two viewpoints, a schematic and a semantic, giving an overview

and understanding of the complexity of schema con�icts. The schematic viewpoint was

presented as a classi�cation of structural con�icts and the semantic view was presented as

a semantic measure for semantic proximity, called semPro. In chapter 5 we took a look

at some existing approaches to manage multidatabase systems and brie�y included their

suggestions to schema integration.

The second part of the thesis was the proposal for a method to resolve con�icts in

schema integration. In chapter 6 we de�ned a mapping language, ODL-M, as a schema

integration support tool for mapping concepts between the underlying component schemas

and the global schema in the multidatabase system. In chapter 7 we revisited the con�ict

types encountered in chapter 4 and suggested resolving techniques using the ODL-M map-

ping language we de�ned. We also suggested a method for using the semantic measure

137
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de�ned in chapter 4 as an aid in the schema integration process so that the structural and

semantic approach were integrated during the process. Our case from the introduction

has been used to exemplify the con�icts we encountered in chapter 4 and also to show how

these con�icts could be solved using the resolution techniques developed in chapter 7.

8.2 The Goal

The essence of our goal in this thesis was: �To identify requirements for, and propose

solutions to schema integration in object-oriented multidatabase systems.�

As our focus narrowed down to the schema integration issue of multidatabase systems

we outlined the process of schema integration in chapter 3 and presented some alternative

strategies from the literature. From this discussion we summarized our requirements to

the schema integration process and its result schemas in table 3.1.

In chapter 4 we approached the complexity of con�icts between schemas from two

viewpoints; one schematic and one semantic. We made a classi�cation of possible struc-

tural con�icts that can arise and described each subgroup of con�icts. The classi�cation

was really a detailed version of our initial requirement table 1.1 from the introduction.

We also presented a semantical measure called semPro [SK92] and gave a taxonomy of

semantical similarity based on it.

Our connection to real world solutions was covered in chapter 5 where we gave an

overview of some prototypes and projects on multidatabase systems and similar systems.

This overview gave us some ideas as to how our problem area has been approached by

others and some of these ideas we brought into our own proposal later. The main con-

tribution of chapter 5, however, was that we would rather work in the framework of a

standard instead of either creating our own framework or using one of the stand-alone

frameworks discussed in this chapter. We argued that the ODMG-93 database standard

[Cat94] is a state-of-the-art standard we would like to investigate further in our proposal.

To solve the four requirement con�ict groups we identi�ed in chapter 4 we �rst devel-

oped and de�ned a mapping language in chapter 7 to support our proposal. It was an

extension to the ODMG ODL object model [Cat94], a supposed de facto standard that we

brie�y described �rst. Our proposed solution to resolve the con�icts was presented as a

classi�cation of techniques in chapter 7, each technique addressing a subgroup of con�icts.

The resolution techniques showed to mainly cover the list of con�icts so we had a method

of resolving nearly all our identi�ed con�icts. To aid this method we suggested to use the

semPro function as a semantical measure included in the ODL model.

In reference to the essence of our goal at the start of this section, identi�ed requirements

for schema integration in three tables, one for the con�icts we wanted to resolve, one for

the canonical data model in which the schema integration process is restricted, and one

for the schema integration process itself and its resulting schemas. We proposed a solution

as a mapping language, called ODL-M, and demonstrated how the mapping language in

the context of the ODMG database stsndard (extended), resolved our de�ned con�icts.

Thereby we met our goal in this thesis.
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8.3 Evaluation of the Requirements

In our discussion we identi�ed three requirement groups in three tables at di�erent levels.

We here discuss how we met our requirements.

8.3.1 General Requirement Con�ict Groups

In the introduction we presented a case from which we derived four groups of con�icts

(see table 8.1). From these groups we wanted to go into detail of which problems belonged

Initial general requirement con�ict groups

RCG-1 Class Con�icts

RCG-2 Attribute Con�icts

RCG-3 Class vs Attribute Con�icts

RCG-4 Data Representation Con�icts

Table 8.1: General requirement con�ict groups

to which groups. We achieved this in the classi�cation of table 4.3 and further achieved

resolving techniques for these con�ict groups in table 7.3 by the use of the mapping

language ODL-M.

We now split table 8.1 into four tables, one for each general con�ict group according

to our requirement tables in section 4.3, and evaluate how each speci�c con�ict has been

resolved by our proposal. In the evaluation we will use the following symbols: + means

the requirement was met, +/� means the requirement was partially met, and � means

the requirement was not met.

Table 8.2 gives an evaluation of con�ict group RCG-1.

Con�ict Group RCG-1: Class-vs-Class

(a) One-to-One Class

i. Class Name

-di�erent names for equivalent classes +

-same name for di�erent classes +

ii. Class Structure

-missing attributes +

-missing but implicit attributes +

iii. Class Constraints �

iv. Class Inclusion +

(b) Many-to-Many Classes +

Table 8.2: Evaluation of con�ict Group RCG-1

�Class Name� con�icts were resolved by our �Renaming� proposal in straightforward-

chapter 7. Two union compatible horizontal merges resolved the �missing attribute� and
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�missing, but implicit� con�icts that were classi�ed as �Class Structure� con�icts. �Class

Constraints� con�icts are di�cult to solve in general, they are rather resolved ad hoc de-

pending on the constraint. We developed an extended union compatible horizontal merge

technique to resolve the �Class Inclusion� con�icts. Finally �Many-to-Many Classes� con-

�icts were resolved by a vertical merge technique.

Table 8.3 gives an evaluation of con�ict group RCG-2.

Con�ict Group RCG-2: Attribute-vs-Attribute

(a) One-to-One Attribute

i. Attribute Name

-di�erent names for equivalent attributes +

-same name for di�erent attributes +

ii. Attribute Constraints

-integrity constraints �

-data values +

-composition +

iii. Default Values +

iv. Attribute Inclusion +

v. Methods +/�

(b) Many-to-Many Attributes +

Table 8.3: Evaluation of con�ict Group RCG-2

Renaming techniques were also used to resolve �Attribute Name� con�icts. Like �Class

Constraints� the �Attribute Integrity Constraints� con�icts are di�cult to solve in a gen-

eral way � it depends on the situation. We used �Type Coercion� to resolve �Data Type�

con�icts and �Extraction of a Composition Hierarchy� to resolve �Composition� con�icts.

We suggested a similarity to �missing, but implicit attribute� to resolve �Default Values�

con�icts. Like we did for classes, we developed an extended union compatible horizontal

merge to resolve �Attribute Inclusion� con�icts. We feel our proposal for resolving �Meth-

ods� con�icts was not complete, but nevertheless resolved speci�c con�icts. Finally the

�Many-to-Many Attributes� con�icts were resolved mainly by homogenizing with attribute

concatenation.

The evaluation of the third con�ict group, RCG-3, is given in table 8.4.

Con�ict Group RCG-3

Class-vs-Attribute +

Table 8.4: Evaluation of Con�ict Group RCG-3

For the �Class-vs-Attribute� con�icts we developed a resolution technique where we

either split a class in two or more parts or integrated two classes into one by performing

a vertical merge.
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The fourth and last con�ict group, RCG-4, is evaluated in table 8.5.

Con�ict Group RCG-4: Di�erent Representation for Equivalent Data

(a) Di�erent Expression denoting same Information +

(b) Di�erent Units +

(c) Di�erent Levels of Precision +

Table 8.5: Evaluation of con�ict Group RCG-4

These con�icts deal with di�erent representations for equivalent data and we resolve

them with di�erent homogenizing techniques. �Di�erent Expression denoting same Infor-

mation� was resolved by an expression technique, for �Di�erent Units� we used a units

technique and the �Di�erent Levels of Precision� con�icts we resolved by developing a

precision technique.

8.3.2 Requirements for a Canonical Data Model

We stated that to overcome the problem of syntactical language di�erences between het-

erogeneous schemas we translated each schema in a native model to a canonical model.

This supported schema integration by avoiding translation as part of the schema inte-

gration process. The choice of a canonical model was required to meet three properties;

expressiveness, semantic relativism, and support for views (see table 8.6). We chose ODL,

Requirements for a canonical data model

RCDM-1 Expressiveness +

RCDM-2 Semantic Relativism +

RCDM-3 Support for Views +

Table 8.6: Evaluation of requirements for a canonical data model

an object-oriented model, as our canonical model for two reasons. First it is a strong

model that meets our requirements. The meeting of the two �rst requirements was dis-

cussed according to Saltor et. al [SCG91]. They argue that the object-oriented models in

general are well suited as canonical models, but their only drawback is that they do not

support views as a rule. This, however, was covered in our proposal by our ODL-M ex-

tension. Second we assume that the ODMG-93 database standard [Cat94] will become an

important and supported standard so our solutions in ODL/ODL-M can be implemented

in conforming products.

8.3.3 Requirements for Schema Integration

The requirements for schema integration were stated in section 3.5 as: Completeness,

Correctness, Minimality, Understandability, and Schema Integration Support (see table

8.7).
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Requirements for schema integration

RSI-1 Completeness +

RSI-2 Correctness +

RSI-3 Minimality +

RSI-4 Understandability +

RSI-5 Schema Integration Support +

Table 8.7: Evaluation of requirements for schema integration

To start with the last one, we have de�ned a mapping language that strongly supports

the schema integration process and achieves the other requirements at the same time.

The mapping process we discussed covered all our con�icts groups and thereby com-

pletely includes the underlying con�ict concepts. The correctness was not always perfect,

but this was due to non-avoidable information loss inherited from the designers choice of

representation. A more formal approach to state completeness and correctness in each

resolution technique could have been investigated, but this would be out of the scope and

time bounds of this thesis and we therefore leave it as future work work.

Our examples all de�ned target concepts that represented the union of similar concepts

in the underlying systems without having to duplicate the information thereby keeping

the minimality requirement.

We argued that a qualitative measure of understandability was di�cult to de�ne.

However, when analyzing our techniques, we �nd that we mostly use mappings that are

relatively easy to follow. In addition the resulting target object types were unifying con-

cepts very similar to the ones in the source schemas or inheritance hierarchies mapped

directly from the underlying schemas without any complicating steps. A strong feature

for understanding the schemas and the mapping process is the type mapping (TYPE_MAP)

construct. It strongly introduces semantics to the schemas as it attaches meaningful names

to types rather than non-informative built in types.

8.4 Conclusion

We have de�ned and developed ODL-M, a mapping language for ODMG-93/ODL. ODL-M

is a well suited mapping tool for achieving schema integration within the ODMG standard.

It is based on a strong data model that meets our requirements for a canonical model.

Further it supports the resolution techniques we identi�ed to cover1 all our con�icts groups.

It does so by meeting our requirements for schema integration to a good degree.

1Well, mostly
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8.5 Future Work

Having given a conclusion to our contributions, we �nally give some pointers to how this

work could be carried on. We have divided our suggestions into a general and a speci�c

part in the following.

8.5.1 General Considerations

� As we mentioned the proving of completeness and correctness was argued at a non-

formal level. The argument of these properties would be strongly enhanced by formal

reasoning to show that our techniques do what they are intended to. But this is left

as additional work as this would demand a whole new thesis work.

� In our mapping proposal and support in ODL-M we feel that the mapping of re-

lationships might be too weak, especially because it doesn't speci�cally cover the

inverse statement in ODL. This shouldn't be to hard to incorporate into ODL-M

but is still left out for later development.

� The two evaluations that we failed to give a general resolve technique to were �Class

Constraints� in table 8.2 and �integrity constraints� in table 8.3. These type of

con�icts are di�cult to resolve in general because they are often constraints specif-

ically speci�ed for some situation. Also their nature may be such that di�erent

constraints from di�erent component databases are non-merge-able. The con�icts in

these groups also include dependency con�icts, behavior con�icts, and key-attribute

con�icts, discussed in section 3.4.2, which we haven't focused on too strong. The

con�icts that arise from constraints as mentioned here might be more extensive than

we thought, so work should be done to try to resolve these con�icts in general.

� Also method mapping might be lacking completeness (see table 8.3). It covers direct

mapping between parameters and expression mapping, but we feel this might not

be strong enough. This could however be as far as we can reach with ODL because

ODL is an interface speci�cation language and does not specify the implementation

of methods. Still we should investigate this further to be sure.

� The type coercion table 7.1 of section 7.7 listed several 'ad hoc' entries. This isn't

really a lack of method, but the rules for these entries have to be resolved sepa-

rately at each implementation since they depend strongly on the semantics of the

corresponding types. We therefore include this as a future consideration.

8.5.2 An Implementation

Our approach to schema integration has been proposed on the basis of a standard. The

next step in this process would be to design and develop a full system to implement the

ideas introduced in this thesis. As we have mentioned work has been done on a ODL-

to-C++ compiler [LS92]. The ODL-M language needs a compiler in order to integrate

the mapping statements with the rest of the application. Since the ODL-M language is
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relatively close to the EXPRESS-M language we assume it to be a feasible task to develop

a compiler for ODL-M. We have ourselves touched upon a simple implementation of the

source schemas with simple mappings using the Ref feature of ObjectStore (from Object

Design), an object-oriented database system claiming conformity to the ODMG standard.

In short, the Ref feature assigns �loose� pointers to objects that are computed at run-time

and this seems to support such a mapping that we have proposed in that we avoid �hard�

links to the underlying systems (since they wish to maintain autonomy).

The schema integration process we have developed should have a designers graphical

tool to further support the use of the constructs we have presented. The goal is to au-

tomate the process as much as possible without the schema integrator losing control and

understanding of the process.
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Appendix A

Object Oriented Concepts

A.1 History

The basis of the Object-Oriented(OO) paradigm was developed through the programming

language Simula-67 [DMN70]. The starting point of the language was to provide a mean to

describe complex systems, which could be simulated. The developers of Simula had a more

philosophical approach than language-oriented which is re�ected by their system-oriented

de�nition of object-orientation.

The System-de�nition: In object-oriented programming an information process is re-

garded as a system developing through transformations in state. The substance of the

process is organized as the system components, called objects. A measurable property of

the substance is a property of an object. Transformations of state are regarded as actions

by objects. A system is a part of the world that is regarded as a whole consisting of com-

ponents, each component characterized by properties that are selected as being relevant

and by actions related to these properties and those of other components.

A.2 The Principles of Object-Orientation

The more common de�nition, also known as the American perspective, has four principles

that a programming language must support to be classi�ed as an object-oriented language.

In traditional programming the emphasis is on data-structures and control structures,

where as in object-oriented programming it is on objects and messages.

A.2.1 Encapsulation

Data and operations that logically belong together in a meaningful way are encapsulated.

Such an encapsulation is often referred to as an object1 and could e.g. be used to model

a real world object and its properties. The encapsulation of the object ensures that the

object can hide its information and share only what it �nds necessary. The data of the

1Thus the term 'Object-Orientation'

i
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object represents the state of the objects and the operations of it are the messages or

services it can compute. Furthermore the encapsulation of the object provides the outside

world with entry points or interface to the objects services. However, it is up to the

object(or really the creator of the object) how it implements its services.(A real world

example of this hidden implementation could be a car. You, the outside user, do not

need to know how the engine is built to drive the car. The only thing you must know is

how to operate its interface, i.e. throttle pedal etc.) This way, the object can change its

implementation of its interface as long as the services remain the same (in the car example

the manufacturer can change the engine to a totally di�erent one without the user having

to care about it too much). We also say that object can send messages to each other and

that the object that receives the message executes the appropriate method according to

the message sent.

A.2.2 Classi�cation

Common objects should be classi�ed. Since the outside world can only access an objects

interface we classify objects according to their interfaces. Objects are classi�ed into classes.

A class de�nes the interface of a common set of objects and describes how these objects will

be implemented in terms of their variables and methods. We say that an object belonging

to a class is an instance of that class and that its variables are instance variables. The

class is �responsible� for the creation of new objects as it has the base skeleton for new

objects.

A.2.3 Inheritance

Classes can be extended into new classes that share the �rst classes properties, but also

adds some new. We say that it inherits from the existing class. The class that inherited

is said to be the sub-class of the super-class it was derived from. The sub-class might

add new messages to the super-class' and might also override the current de�nitions of

methods, and do something di�erently. Another possibility is multiple inheritance which

means that a sub-class can inherit from multiple super-classes.

A.2.4 Dynamic Binding

Dynamic binding, or late binding, is when an object decides which method to execute. Con-

sider a message x1 de�ned for class languagesX, and that this message is re-implemented

in class Y an Z, Y and Z being sub-classes of X. If the sender knows only that the ob-

ject it is in contact with can respond to the message x1, it is an instance of class X or a

sub-class of X. Since the message x1 is re-implemented in the sub-classes Y and Z, it has

to be decided at run-time which actual method to invoke(the binding is done at a later

time). The notion of dynamic binding is also known as polymorphism among objects. An

example of this could be that we have a class called Geometric-Object that has two

sub-classes, Square and Triangle. The super-class has a method called Draw that is

re-implemented in its two sub-classes. If the sender invokes a call to the method Draw of
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an object in this hierarchy, the correct method for drawing the corresponding �gure will

be invoked.(see �g.A.1).

is_ais_a

Draw

DrawMethod:

Geometric-Object

Triangle Square

Draw

Figure A.1: Dynamic binding - the correct Draw method will be decided at run-time.

A.3 Object-Oriented Programming

As mentioned, the Simula-67 language was early in introducing the object-oriented way

of thinking. Later, this paradigm has received a popularity that is still growing and we

have seen several new programming languages emerge. Two of the most popular are

C++[Str91] and Smalltalk[GR83].

Object-Oriented programming is not just a few new features added to programming

. Rather, it is a new way of thinking about the process of decomposing problems and

developing solutions. Where traditional programming languages had the emphasis on data-

structures and control-structures, the object-oriented languages have emphasis on objects

and message passing between them. The objects act like autonomous agents and by the

interaction of objects, the computation proceeds. By reducing the interdependency among

software components, object-oriented programming permits the development of reusable

software systems. Such components can be created and tested as independent units,

on isolation from other portions of software application. Reusable software components

permit the programmer to deal with problems on a higher level of abstraction. We can

de�ne and manipulate objects simply in terms of the messages they understand and a

description of the tasks they perform, ignoring implementation details.

Although the object-oriented programming languages support the object-oriented prin-



iv APPENDIX A. OBJECT ORIENTED CONCEPTS

ciples, it is never the less possible to program the traditional way using most of these

languages. It is up to the programmer to alter his way of thinking when developing new

software to take advantage of object-orientation.

A.4 Object-Oriented Databases

ODBMSs provide an architecture that is signi�cantly di�erent than other DBMSs. A

summary de�nition of ODBMS could be:

ODBMS is a DBMS that integrates database capabilities with object-oriented program-

ming language capabilities.

Rather than providing only a high-level language such as SQL for data manipulation, an

ODBMS transparently integrates database capability with the application programming

language. The advantages of this are e.g.:

� One doesn't have to use a separate DML2, it lies within the programming language.

� The DBMS no longer has to copy and translate data between data and programming

language representations(see �g.A.2). This is a good performance advantage.

Transparent

ODBMS

Data Transfer

Copy and

Translation

Application

Data Structures

Relational

Representation

RDBMS

Figure A.2: Comparison of RDBMS and ODBMS architectures

2Data Manipulation Language
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A.5 What are the Bene�ts of OO?

There are several bene�ts of adapting OO. The following bene�ts, although subjective,

are considered by many to be good reasons for adopting OO.

� OO modeling re�ects reality better than traditional modeling

� The model is more stable than functionality

� Subclassing and virtuals improve the reusability of code
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Appendix B

ODMG-93 - The Object Database

Standard

In this appendix we will describe the ODMG-93 [Cat94] object database standard. This is

a standard proposed by the Object Database Management Group(ODMG). The ODMG

is a consortium of object-oriented database management system (ODBMS) vendors and

interested parties working on standards to allow portability of customer software across

ODBMS products.

B.1 Introduction

The object-oriented view in computer science has become more and more popular the

later years.1 Simula-67 [DMN70] was an early object oriented language developed at

The Norwegian Computing Center(NR)2 in Oslo. The most widespread object-oriented

language however is C++ [Str91]. Following the program languages that have complied

to this paradigm are the database systems. The relational model has had success for

some time now, but here we also see that the object-oriented thinking has entered the

scene. Several vendors have developed object-oriented database management systems.

But a group of vendors saw that the importance of a standard to ensure portability and

endorsement of the approach was crucial to meet the customers requirements. This group

founded ODMG and have been working on the object database standard. This work is an

ongoing work and in 1996 the group will release their next version of their work with the

latest extensions.

B.2 Goals

The ODMG group has a primary goal to de�ne a standard that allows an ODBMS user

to write portable applications, i.e. applications that could run on more than one standard

1See Appendix A for an introduction to the object-oriented way of mind
2Norsk Regnesentral

vii
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compliant ODBMS product. It is also a hope that the standard proposal will be helpful

in allowing interoperability between the ODBMS products. In the context of this thesis,

this could e.g. be used for heterogeneous distributed databases communicating through

the OMG3 Common Object Request Broker[OMG92].

An important goal is also to try to bring programming languages and database systems

to a new level of integration. Using the relational model in database systems has shown

to have a mismatch between the application language and the database systems internal

representations. The object model described here has had this in thought and it is de�ned

closer to the programmers application language(object-oriented), making it possible for an

ODBMS to transparently integrate database capabilities with the programming language.

All the participating member companies are committed to support the standard, thus

they hope this proposal will become a de facto standard for the industry. The participating

vendors have already released products that are compliant with the standard. Two of these

are ObjectStore OODBMS from Object Design, and Versant OODBMS from Versant.

B.3 Architecture

The architecture of the ODMG-93 standard has four major components:

1. Object Model

2. Object De�nition Language

3. Object Query Language

4. Language Binding

These components will be described closer in the following sections.

B.3.1 Object Model

The common data model has used the OMG Object Model [Sol90] as a basis. Components

have been added to support the intended needs of the ODMG group.

The Object Model is simply summarized as:

� The basic modeling primitive is the object.

� Objects that exhibit common behavior and have a common range of states are cat-

egorized into types or object types.

� The behavior of objects is de�ned by a set of operations or messages that can be

executed on an object of the type4.

� An object has a set of properties that can be either attributes of the object itself or

relationships between the object and one or more objects. The state of an object is

de�ned by the value it has for its properties.

3Object Management Group
4E.g. you can �draw� an object of type Circle
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B.3.1.1 Types and Instances

A type has one interface and one or more implementations. The interface of the type de-

�nes the external interface supported by all the instances of the type. An implementation

de�nes data structures in terms of which instances of the type are physically represented

and the methods that operate on those data structures to support the externally visible

state and behavior de�ned in the interface.

B.3.1.1.1 Inheritance Types may be organized into a hierarchy of subtypes and su-

pertypes. The subtype inherits all of the characteristics(properties and operations) of

its supertype. In addition it can de�ne its own characteristics that apply only to its in-

stances(or subtypes). This way a subtype can be treated as an instance of its supertype

because it has its characteristics, but not vice versa, thus the subtype supports all the

state and behavior of the supertype as well as new state and/or behavior unique to its

more specialized nature.

Some types are termed abstract which means that they do not de�ne an implementation

and therefore can not be instantiated. They must be subtyped and their subtypes must

de�ne an implementation for the inherited characteristics.

B.3.1.1.2 Extent The set of all instances of a type is called the extent of the type.

There is a direct correspondence between the intentional notion type and the extensional

notion extent. If an object is an instance of type A, then it will automatically be a member

of the extent of A. In a similar way the extent of B will be a subset of the extent of A if

B is a subclass of A.

B.3.1.1.3 Implementations and Classes A type has one or more implementations.

An implementation of an object type consists of a representation and a set of methods.

The representation is a set of data structures and the methods are procedure bodies. The

methods implement the external operations, but there may also be internal methods that

have no associated operation.

Implementations are named uniquely within the scope de�ned by a type.

The combination of the type interface speci�cation and one of the implementations

de�ned for the type is called a class.

In comparison with e.g. the C++ de�nition of a class the ODMG model is richer in

that it allows multiple implementations for a given interface. Which implementation an

object uses is speci�ed at object creation time and it is not possible to dynamically change

the implementation of an object at a later time.

B.3.1.2 Objects

Objects have state and behavior and also identity. Their identity is intrinsic in and of

themselves and not based by the objects characteristics.
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Figure B.1: The full type hierarchy
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B.3.1.2.1 The Denotable_Object The hierarchy of object types is rooted at the

type Denotable_Object(see �g.B.1). As we can see the Denotable_Object is decomposed

into two categories, Object(mutable) and Literal(immutable) which are further decom-

posed into Atomic and Structured branches. These �rst to decompositions represent the

two orthogonal lines over which Denotable_Object can be decomposed.

B.3.1.2.2 Type Object All denotable object have a unique identity however the in-

ternal representation of these di�ers between the objects and the literals. The literals

are typically identi�ed by their bit pattern, but the object representation is referred to

what we call object identi�er, or OID for abbreviation. The OID is a specially constructed

bit pattern generated only for the purpose of uniquely identifying a particular object(the

actual structure of the bit pattern is not de�ned by the Object Model � this is considered

a representation issue). The OIDs remain unchanged over an objects lifetime. Individual

objects may however be given names meaningful to the programmer. A name must refer

uniquely to a single object within the scope of the name5.

An object may be de�ned as a subtype of one or more other types. If objects type B

is declared to be a subtype of A, then any operations de�ned on A are also available on

instances of B, all attributes de�ned on A are also de�ned on B, and any relationships

de�ned on A are also available on instances of B.

The following built-in properties are de�ned on type Object and thus inherited to all

subclasses:

� has_name?:Boolean

� names:Set<String>

� type:Type

The following built-in operations are de�ned on type Object:

� delete()

� same_as?(oid: Object_id) ! b:Boolean

There is also an explicit create operation that creates an object, assign an Object_id

and returns the id as the value of the operation. The delete operation removes the object

from the database and thereby removing it from any relationships in which it participated.

This does not mean that it recursively deletes any other objects related to it. The ODBMS

may however be responsible of removing the object from the maintained extensions. The

Object_id is not reused.

5From the application programs point of view, the database adds a new out-most scope to those de�ned

in the program.
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B.3.1.2.3 Literals Literals are objects whose instances are immutable. The hierar-

chy(see �g.B.1 de�nes two subtypes of literals:

1. Atomic_Literals � e.g. numbers and characters

2. Structured_Literals � e.g. date and time

There is no explicit create operation de�ned on atomic literals; they implicitly pre-

exist. It follows that they do not have unique OIDs, but nevertheless have unique identity.

The structured literals are further decomposed into two sub-categories:

1. Immutable_Collection

2. Immutable_Structure

They are analogous to their counterpart Structured_Object types, Structure and Col-

lection, but are immutable.

B.3.1.3 Modeling State � Properties

An object type de�nes a set of properties. Two kinds of property are de�ned in the model:

1. Attribute

2. Relationship

They are described in the following.

B.3.1.3.1 Attributes Attributes are de�ned on a single object type and take literals

as their values. They do not have OIDs. An attribute takes as its value a literal or a set

of literals.

The following built-in operations are de�ned on attributes:

� set_value(new_value:Literal)

The set_value() operation gives the attribute a new value, replacing whatever value

it currently has.

� get_value() ! existing_value:Literal

The get_value() operation will return the literal supplied by the argument to the

previous set_value(). If it was not set, the return value will be the default value if

one was set at object type de�nition, otherwise nil.

Attributes de�ne abstract state. They therefore appear within the interface de�nition

of an object rather than in the implementation. It is not necessary that the attribute is

implemented as part of a data structure. E.g. a call to a get_value() operation on an

age attribute of a type Person could be implemented as a method deriving the person's

age from a date_of_birth attribute.

Attributes can not be added subtype speci�c operations nor participate in relation-

ships. However it is possible to override the set_value() and get_value() operations
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allowing the type de�ner to have better control over attribute settings and access, e.g. by

doing constraint evaluation on the invocation of a set_value() operation.

The programmer will seldom see or need the set_value() or the get_value() oper-

ations directly. They will rather be woven in to the programmers normal environment

as assignments(object.att=literal) or default value settings(new Person(33) � 33 being an

initial age setting). The Preprocessor or compiler will further translate this syntax to the

appropriate Object Model operations.

B.3.1.3.2 Relationships are de�ned between mutable object types. The base model

doesn't support n-ary relations, only binary relations. But it does support one-to-one,

one-to-many and many-to-many relationships.

The relationships themselves have no names, instead named traversal paths are de�ned

for each direction of traversal. An example of a many-to-many relationship could be that

a student takes a course, conversely, a course is_taken_by a set of students. Each name

is de�ned within the interface de�nitions of the respective object types that participate in

the relationship. To tie the relationships de�ned in the two objects together we indicate

that they are inverses of each other(see �g.)

interface Student

{ ...

takes: Set<Course> inverse Course::is_taken_by

}

and

interface Course

{ ...

is_taken_by: Set<Student> inverse Student::takes

}

Figure B.2: Interface de�nitions of the relationships between Student and Course

Relationships maintain referential integrity; if an object that participated in relation-

ship is deleted, a subsequent attempt to traverse the relationship will raise an exception.

Also relationships do not have OIDs, they are uniquely identi�ed by the object instances

that participate in them.

B.3.1.4 Modeling Behavior � Operations

Instances of an object type have a de�ned behavior and it is speci�ed as a set of operations.

For each operation, an operation signature is included in the object type de�nition by the

type programmer. The signature includes the argument names and types, exceptions
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potentially raised, and types of the values returned, if any. Operations are always de�ned

on a single object type, never on two or more object types nor are they ever de�ned

independently of an object type.

Operations are only uniquely de�ned within a single type de�nition which means that

operations de�ned on di�erent types may have the same name. This raises some problems

in schema integration as we have mentioned in chapter 4(homonyms).

We have the following built-in operation on type Operation:

� invoke()

� return()

� return_abnormally(e:Exception)

These operations can usually not be directly invoked by the programmer. The occur-

rence of an operation name within a statement of the programming language is instead

compiled into the code which invokes the named operation.

The object model supports exception handling with the root type Exception provided

by the ODBMS. It includes an operation to print out a message noting that an unhandled

exception of some type has occurred and to terminate the process. The root type can be

subtyped into a supertype/subtype hierarchy.

B.3.1.5 Structured Objects

As we can see from the full type hierarchy(�g.B.1), the Structured_Object has two sub-

types � Structure and Collection.

Structures have a �xed number of named slots of which contains an object or a literal

and these slots can be referred to directly to modify them, e.g. address.zip_code.

Collections, on the other hand, contain an arbitrary number of elements. They do not

have named slots and their elements are all of the same type, which is not a requirement

for Structures.

B.3.1.5.1 Collections A collection is an object that groups other objects. They may

be de�ned over any instantiable subtype of type Denotable_Object. Individual collec-

tions are instances of collection types, collection types are instances of collection type

generators, also called parameterized types. A parameterized type can be instantiated to

generate a new type, e.g. the parameterized Stack<T> can be instantiated to produce

Stack<Customer> by supplying it with the element type Customer. The type checking

of parameterized types is done at runtime.

Each collection has an immutable identity, just like any other object. This means that

one can insert, delete or modify an element in a collection and it will still be identi�ed

as the same collection. Also, two collections having the same elements are not the same

collection.

Insertion into collections is based on one of two alternatives:

1. Absolute position within the collection, at the beginning or the end.



B.3. ARCHITECTURE xv

2. Point established by a cursor

Retrieval is based on one of three alternatives:

1. Absolute position(as in insertion)

2. Current cursor-relative position(as in insertion)

3. A predicate that uniquely selects an element from the collection based on the value(s)

the sought object carries for one or more of its properties.

The object model supports both ordered and unordered collections, where the order

is de�ned either by the sequence in which objects are inserted or by the value of one of

the properties of the objects that are members of the collection. The same object may be

allowed to be present in the collection more than once(bag) or it may not be allowed.

Iteration over the elements in a collection is done by de�ning an iterator or cursor

that maintains a current position within the collection to be traversed. The type Iterator

has four basic operations:

� first()

� last()

� next()

� more?()

that can be used to step through the elements.

Collection<T> is an abstract type and can not be instantiated. It has a number of

properties and operations that are inherited by its subtypes. The object model de�nes a

standard set of built-in type generators:

Set<T> Sets are unordered collections and do not allow duplicates.Its de�ned operations

are common set operations, e.g. union(), intersection() and is_subset().

Bag<T> Bags are unordered collections that allow duplicates. Bag<T> de�nes the

following operations in addition to its inherited ones; union(), intersection() and

di�erence().

List<T> Lists are ordered collections that allow duplicates. The order is based on the or-

der of their insertion. It de�nes list speci�c operations such as insert_element_after(),

remove_last_element and retrieve_last_element().

Array<T> Arrays are dimensional arrays of varying length. Its initial size is speci�ed at

creation time, but it can be changed both implicitly(by inserting beyond the current

end) and explicitly(by the resize() operation).
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B.3.1.5.2 Structures A structure is an unnamed group of elements. Each element is

a (name, value) pair, where the value may be any subtype of type Denotable_Object and

thereby also other structures as members of its elements. Since they are immutable they

remain unchanged after their creation and since they are literals they do not have OIDs.

The operations de�ned on Structure < e1 : T1; :::en : Tn > are:

� create([<initializer-list]) ! s:Structure

� delete()

� get_element_value(element) ! value: Denotable_Object

� set_element_value(element, value:Denotable_Object)

� clear_element_value(element)

� clear_all_values()

� copy() ! s: Structure

B.3.1.5.3 Structured Literals Structured literals have two subtypes:

1. Immutable_Collection

2. Immutable_Structure

parallel to the structured object.

The built-in subtypes of Immutable_Collection mirror those of Collection and are:

� Immutable_Set

� Immutable_Bag

� Immutable_List

� Immutable_Array

The immutable collections behave just like their mutable counterparts apart from that

they can not be modi�ed. Immutable sets are the basis for the extensional treatment of

sets that is common in mathematical logic.

There are no de�ned subtypes of Immutable_Structure. Immutable structures may

be used to capture update constraints on the values of a property and are often returned

as the results of queries � cutting out the interesting parts of objects rather than having

to walk through the object for interesting parts afterwards.
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B.3.1.6 Transactions

Persistent data is data that survives the process that creates it. Programs that use persis-

tent data are organized into transactions. Transactions are data referrals or modi�cations

that have the three following properties:

1. Atomicity � which means that the transaction either happens as a whole or not at

all. If the transactions succeeds(commits), the transactions changes are permanent

and visible to other user of the database. If it aborts, than the database is unchanged

as if the transaction never happened.

2. Consistency � which means that database users will always see the database in a

consistent state. A transaction will bring the database from one consistent state to

another.

3. Integrity � which means that committed transaction are ensured to never be lost,

surviving process abortions and operation system failure.

The object model supports nested transactions like in �g.B.3.

Transaction::begin() ! t:Transaction

. . .

Transaction::begin() ! a:Transaction

. . .

Transaction::begin() ! b:Transaction

. . .

b.commit()

. . .

a.commit()

. . .

t.commit()

Figure B.3: Nested Transactions

In this scheme, if t aborts, then changes made by x and y will be aborted, whether or

not they had already committed. The commit of a nested transaction is only relative to

the commit of its containing parent transaction. If a nested transaction aborts, this does

not cause abort of the containing transaction.

B.3.1.7 Type Database

A database provides storage for persistent objects of a given set of types. Each database

has a schema, which consists of a set type de�nitions. The database may contain instances
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of the types de�ned in its schema. Each database in an instance of type Database. The

type Database6 has the following operations:

� open()

� close()

� contains_object?(oid:Object) ! b:Boolean

� lookup_object(oid:Object) ! b:Boolean

The names of the types in the schema and their associated extents are global to the

database, and become accessible to a program once it has opened the database. A database

may also contain named objects, often called �root objects�, that can be referenced by a

program. Type names, extent names and root object names are the three kinds of global

names that serve as entry points into the database allowing the programmer to do initial

navigation from.

B.3.2 Object De�nition Language

The Object De�nition Language (ODL) is a speci�cation language to de�ne the interfaces

to object types that conform to the ODMG Object Model. The ODMG group has had

a primary objective with the ODL to facilitate portability of database schemas across

conforming ODBMSs. ODL is not intended to be a full programming language nor is

it meant to be programming-language dependent. It is a speci�cation language for in-

terface signatures. It de�nes the characteristics for types, including their properties and

operations, but is does not address the de�nition of the methods that implement those op-

erations. Further, ODL provides a context for integrating schemas from multiple sources

and applications. These source schemas may have been de�ned with any number of object

models and data de�nition languages, and they may all be translated to ODL as a common

basis (see �g.B.4). This common model then allows the various models to be integrated

with common semantics. An ODL speci�cation can be realized concretely in an object

programming language like C++ or Smalltalk (see. B.3.4 and �g.B.4).

B.3.2.1 Speci�cation

A type is de�ned by de�ning its interface in ODL. In a type de�nition the characteristics

of the type itself appear �rst followed by the de�nitions of the properties and operations

of the types interface. The top-level BNF7 for ODL is described in �g.B.5. Any list may

be omitted if it is not applicable for the types interface.

6The type Database is really a proposed type which is meant to be included in the next version of the

ODMG Database Standard
7Bachus Naur Format
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SQL 3 Other

C++ SQL 3 Smalltalk Other

STEP/Express

Language-Independent ODL

Figure B.4: Mapping from other models to ODL, and from ODL to other languages

<type definition> ::= interface <type_name>[:<supertype_list>]

{

[<type_property_list>]

[<property_list>]

[<operation_list>]

};

Figure B.5: Top-level BNF for ODL
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B.3.2.2 Type characteristics

Type characteristics are the characteristics that apply to the type itself, and not directly to

its instances. From the top-level BNF for types the type characteristics are <type_name>,

<supertype_list> and <type_property_list>. The BNF for these are described in

�g.B.6.

<type_name> ::= <string>

<supertype_list> ::= <supertype> | <supertype>, <supertype_list>

<supertype> ::= <type_name>

<type_property_list> ::= <type_property>;

| <type_property><type_property_list>

<type_property> ::= extent <extent_name> | key[s] <key_list>

<extent_name> ::= <string>

<key_list> ::= <key_spec> | <key_spec>, <key_list>

<key_spec> ::= <property_name> | (<property_list>)

<property_list> ::= <property_name> | <property_name>, <property_list>

<property_name> ::= <attribute_name> | <traversal_path_name>

<attribute_name> ::= <string>

<traversal_path_name>::= <string>

Figure B.6: BNF for type characteristics

Each supertype must be speci�ed in its own type de�nition. The supertype, extent

and key de�nitions may appear in any order in the type property list and furthermore

there should not be more than one extent or key de�nition.

B.3.2.3 Instance Properties

The type's instance properties are the attributes and relationships of its instances. These

properties are speci�ed in attribute and relationship speci�cations. the BNF for the in-

stance properties are described in �g.B.7

B.3.2.4 Operations

ODL is compatible with IDL8 for speci�cation of operations. The BNF for the <operation_list>

is described in �g.B.8

B.3.3 Object Query Language

The object query language (OQL) for the ODMG data model will be described in the

following. The ODMG group designed the OQL with the following principles and as-

8IDL is the Interface De�nition Language from the OMG core Object Model
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<property_list> ::= <property_spec>; | <property_spec><property_list>

<property_spec> ::= <attribute_spec> | <relationship_spec>

<attribute_spec> ::= [attribute]<domain_type>[[<size>]]<attribute_name>

<domain_type> ::= <atomic_literal> | <structured_literal> |

<collection of objects or literal>

<size> ::= <integer>

<relationship_spec>::= [relationship]<target_of_path><traversal_path_name_1>

inverse <inverse_traversal_path>

[{order_by<attribute_list>}]

<traversal_path_name_1> ::= <string>

<target_of_path> ::= <target_type> | <collection_type><target_type>

<target_type> ::= <target_name>

<inverse_traversal_path> ::= <target_type> :: <traversal_path_name_2>

<traversal_path_name_2> ::= <string>

<attribute_list> ::= <attribute_name> | <attribute_name>, <attribute_list>

Figure B.7: BNF for instance properties

<operation_list> ::= <operation_spec>; | <operation_spec>, <operation_list>

<operation_spec> ::= <return_type><operation_name>

([<argument_list>])[<exceptions_raised>]

<return_type> ::= <type_name>

<operation_name> ::= <string>

<argument_list> ::= <argument> | <argument>, <argument_list>

<argument> ::= <role> [<argument_name>:]<argument_type>

<role> ::= in | out | inout

<exceptions_raised> ::= raises(<exception_list>)

<exception_list> ::= <exception> | <exception>, <exception_list>

<exception> ::= [[...]]

Figure B.8: BNF for operation speci�cation
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sumptions:

� OQL is not computationally complete. It is a query language which provides easy

access to an object database.

� OQL provides declarative access to objects.

� OQL relies on the ODMG object model.

� OQL has an abstract syntax.

� The formal semantics of OQL can easily be de�ned.

� OQL has one concrete syntax which is SQL-like, but it is easy to change the con-

crete syntax. Other concrete syntaxes are de�ned for merging the query language

into programming languages (e.g. a syntax for preprocessed C++ and a syntax for

Smalltalk)

� OQL provides high-level primitives to deal with sets of objects but does not restrict

its attention to this collection construct. Thus, it also provides primitives to deal

with structures and lists, and treats all such constructs with the same e�ciency.

� OQL does not provide explicit update operators but relies on operations de�ned on

objects for that purpose.

� OQL can be easily optimized by virtue of its declarative nature.

OQL can be a stand alone language or it can be embedded into a programming lan-

guage. The query language supports both types of objects, mutable and literals, depending

on the way these objects are constructed or selected.

Creating objects with an identity is achieved by using a type name constructor as in:

Person(name:"Peter", birthdate:"3/28/56", salary:100000)

Here we have initialized certain properties of the object. The object can, however, have

additional properties which are given default values.

A literal might be created using the literals name in a similar way:

struct(a: 10, b:"Peter")

creating a structure with two valued �elds.

When using OQL embedded in a programming language, objects are created with the

constructs of this (extended) language.

An extraction expression may return a number of di�erent object types depending on

its nature:

� A collection of objects with identity, e.g. select x from x in Persons where

x.name="Peter" returns a collection of persons whose name is Peter.
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� An object with identity,

e.g. element(select x from x in Persons where x.passport_number=1234567)

returns the person whose passport number is 1234567.

� A collection of literals, e.g. select x.passport_number from x in Persons where

x.name="Peter" returns a collection of integers giving the passport numbers of peo-

ple named "Peter".

� A literal, e.g. Chairman.salary

Therefore the result of a query is an object with or without object identity: some

objects are generated by the query language interpreter, and others are produced from

the current database.

B.3.4 Programming Language Bindings

The standard describes language bindings for both C++ and Smalltalk. The program-

ming language-speci�c bindings for ODL/OML for C++ and Smalltalk are based on one

basic principle: The programmer should feel that there is one language, not two separate

languages with arbitrary boundaries between them.

B.3.4.1 C++ binding

The most important programming language for ODBMSs has proven to be C++. The

C++ binding of ODL is expressed as a class library and an extension to the standard C++

class de�nition grammar. The class library provides classes and functions to implement

the concepts de�ned in the ODMG object model.

The C++ to ODBMS language binding approach described by this standard is based

on the smart pointer or �Ref-based� approach. In the Ref-based approach, the C++

binding maps the Object Model into C++ by introducing a set of classes that can have

both persistent and transient instances. These classes are distinct from the normal classes

de�ned by the C++ language, all of whose instances are transient. For each database

class X, an ancillary class Ref<X> is automatically de�ned by the ODL preprocessor.

Instances of database classes are then referenced using parameterized references, e.g.:

1. Ref<Professor> profP;

(Comment: declares the object profP as an instance of the automatically de�ned

type Ref<Professor>)

2. Ref<Department> deptRef;

(Comment: declares deptRef as an instance of the automatically de�ned type Ref<Department>)

3. profP ! grant_tenure();

(Comment: invokes the grant_tenure() operation de�ned on class Professor, on

the instance of that class referred to by profP)
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4. deptRef = profP ! dept

(Comment: assigns the value of the dept attribute of the professor referenced by

profP to the variable deptRef)

B.3.4.2 Smalltalk Binding

Smalltalk Images provide a form of object persistence, but are not the same as databases.

Smalltalk implements its own memory management and expects all Smalltalk objects to

exist within its object space. A Smalltalk object can not refer to memory outside this

space via a direct pointer. Thus Smalltalk cannot directly reference objects within an

ODBMS cache. This means that in all likelihood an ODMG Smalltalk binding will be

implemented through external procedures.

The ODMG Smalltalk binding is based on the Smalltalk Object and Class instance

protocols, along with new classes DatabaseGlobals and Session.

The Smalltalk binding for ODL has a syntactic style that is consistent with the declar-

ative aspects of the Smalltalk language. Instances of these classes can be manipulated

using Smalltalk and the Smalltalk OML. Figure B.9 shows a simple object type declara-

tion including property type declarations and operation type declarations. As Smalltalk

is a dynamic language, operations need not be speci�ed at object type declaration time.

Object subclass:'Professor'

instVarNames:#('age','name','salary','universityId','dept','advisees')

classVars:#()

poolDictionaries:#()

inDictionary:ADictionary

constraints:#(#('age',SmallInteger),

#('name',String),

#('salary',Money),

#('universityId',Integer),

#('dept',Department,'inverse','professors'),

#('advisees',StudentSet,',inverse','advisor','orderedBy','studentId'))

Figure B.9: Smalltalk Sample Object Type Declaration

We use the Smalltalk class de�nition facilities directly. The constraints:argument

array contains type de�nitions for implementations of both attributes and relationships.

The class compiler detects these constraint types and generates appropriate methods to

support the attribute and relationship semantics.

The only types that can be embedded as objects within a class are Char and SmallInteger.

All other types are treated be Smalltalk as �rst-class objects.
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B.4 Status

Currently(spring-96) the ODMG group have released the 1.2 version and are expecting to

release version 2.0 soon.
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Appendix C

ODL-M Syntax

The syntax of the constructs introduced in chapter 6 is described in the following.

C.1 ODL-M Keywords

The following are the ODL-M keywords:

ALIAS AS BEGIN BOOLEAN

BUILD BY CASE COPY

ELSE END END_BUILD END_CASE

END_IF END_MAP END_PRUNE END_SCHEMA_MAP

ENUMERATION IF INTEGER MAP

PRUNE SCHEMA_MAP STRING THEN

WHERE

C.2 Schema Map

<sche_map_decl> ::= <sche_map_head> <sche_map_body> END_SCHEMA_MAP;

<sche_map_head> ::= SCHEMA_MAP <schema_id> {',' <schema_id>} '<-'

<schema_id> {',' <schema_id>}

<sche_map_body> ::= {<interface_spec>} {<global_decl>} {<instansiate_clause>}

{<sche_map_component>}

<sche_map_component> ::= <map_decl> | <external_function_ref> | <no_map_decl> |

<external_call_decl> | <function_decl> | <procedure_decl>

C.3 Object Type Interface Map

<map_decl> ::= <map_head> <map_body> END_MAP;

<map_head> ::= MAP <target_group> '<-' <source>;

<target_group> ::= <target_factor> {<target_operator> <target_factor>

xxvii
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<source> ::= <qualified_type> {AND <qualified_type>}

<map_body> ::= [<prune_clause>] {<map_body_component>}

<map_body_component> ::= <statement> | <attribute_map> | <local_decl>

<target_factor> ::= <qualified_type> | <oneof_factor> | <optional_factor>

<target_operator> ::= AND | OR | ',' | ANDOR

<oneof_factor> ::= ONEOF '(' <target_group> ')'

<optional_factor> ::= OPTIONAL '(' <target_group> ')'

<attribute_map> ::= <qualified_attribute> ':-'

[<cast>] (<qualified_attribute | <simple_expression>)

C.4 Build

<build_decl> ::= <build_head> <where_clause> <build_body> END_BODY;

<build_head> ::= BUILD <entity_id> {<build_operator> <entity_id>} '<-'

<entity_id> ',' <entity_id>;

<build_operator> ::= ',' | AND

<build_body> ::= <map_body>

C.5 Copy

<copy_decl> ::= COPY <copy_target> '<-' <copy_source>;

<copy_source> ::= (<entity_id> {AND <entity_id>}) |

(<function_id> '(' <entity_id> ')' )

<copy_target> ::= <entity_id> {AND <entity_id>}

C.6 Object Type Instantiation

<instance_clause> ::= <instance_id> '=' (<simple_instance> |

<complex_instance>) ';'

<simple_instance> ::= <entity_id> '(' <attribute_instance>

{',' <attribute_instance> } ')'

<complex_instance> ::= '(' <simple_instance> { <simple_instance> } ')'

<instance_id> ::= '#' <simple_id>

<attribute_instance> ::= <instance_id> | ''' <string_literal> ''' |

<integer_literal> | <float_literal> | <hex_literal> |

'.' <logical_literal> '.' | '.' <boolean_literal> '.' |

'.' <enumeration_id> '.' | <aggregate_instance> | '$'

<aggregate_instance> ::= '(' <attribute_instance> {','<attribute_instance>}')'
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C.7 Object Type Pruning

<prune_clause> ::= PRUNE <prune_list> ';' [<objtype_list>]

[<attribute_list>] END_PRUNE ';'

<prune_list> ::= <prune_id> [',' <prune_id>] |

['('] <prune_element> <prune_op> <prune_element> [')']

<prune_element> ::= <prune_list>

<prune_id> ::= <simple_id>

<prune_op> ::= AND | OR | XOR

<objtype_list> ::= <objtype_id> {',' <objtype_id> } ';'

<attribute_list> ::= <attribute_id> {'.' <attribute_id> } ';'

C.8 Type Mapping

<type_map_decl> ::= <type_map_head> <type_map_body> END_MAP_TYPE ';'

<type_map_head> ::= MAP_TYPE <type_id> '=' <type_id> | <simple_expression> ';'

<type_map_body> ::= <defined_type_map_body> | <enumeration_type_map_body>

<defined_type_map_body> ::= {<type_id> [<bound_spec>] '='

([<bound_spec>]) | <simple_expression> ';'}

<enumeration_type_map_body> ::= <enumeration_map> {<enumeration_map>}

<enumeration_map> ::= <enumeration_id> ':=' <enumeration_id>

{',' <enumeration_id> } ';'
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ODL-Description of the Case

Schema 1:

interface Under_Grad{

extent under_grads;

key ssn;

string name;

integer ssn;

string major;

string address

}

interface Faculty{

extent faculties;

key ssn;

string name;

integer ssn;

string dept;

string rank;

}

interface Course{

extent courses;

key cno;

string cname;

integer cno;

}

interface Restricted_Course{

extent restricted_courses;

key cno;

string cname;

integer cno;

string major;

}

interface Enroll{

extent enrolls;

keys cno, fssn, sssn;

string cno;

integer fssn;

integer sssn;

float grade;

}

interface Employee{

extent employees;

key ssn;

string name;

integer ssn;

string position;

}

interface Emp_Other{

extent emp_others;

key ssn;

integer ssn;

integer age;

integer wt_in_lb;

integer ht_in_in;

integer salary;

float bonus;

integer tax;

integer bracket;

}

xxxi
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Schema 2:

interface Grad_Student{

extent grad_students;

key sssn;

string sname;

integer sssn;

string major;

float gpa;

string fname;

integer fssn;

string frank;

string thesis_title;

}

Schema 3:

interface Student{

extent students;

key ssn;

string lastname;

string firstname;

integer ssn;

string type;

string major;

}

interface Graduate_Info{

extent graduate_infos;

key ssn;

integer ssn;

integer advisor_ssn;

}

interface Faculty{

extent faculties;

key ssn;

string lastname;

string firstname;

integer ssn;

string dept;

string rank;

}

interface Address{

extent addresses;

keys ssn,street,city,zip;

integer ssn;

string street;

string city;

string zip;

}

interface Course{

extent courses;

key cno;

string cname;

string cno;

}

interface Course_Restriction{

extent course_restrictions;

key cno;

string cno;

string major;

string prereq_cno;

}

interface Enroll{

extent enrolls;

keys cno, fac_ssn, stud_ssn;

string cno;

integer fac_ssn;

integer stud_ssn;

float grade;

}

interface Thesis{

extent theses;

keys title, ssn;

string title;

integer ssn;

float grade

}

interface Employee{

extent employees;

key ssn;

string name;

integer ssn;

string position;

}
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interface Emp_Personal{

extent emp_personals;

key ssn;

integer ssn;

integer age;

integer wt_in_kg;

integer ht_in_cm;

}

interface Emp_Tax{

extent emp_taxes;

key ssn;

integer ssn;

integer salary;

float bonus;

integer tax;

string bracket;

}

Schema 4:

interface Student{

extent students;

key ssn;

string name;

integer ssn;

string major;

float gpa();

}

interface Gradstudent:Student{

extent gradstudents;

key ssn;

Set<Faculty> advisor;

}

interface Employee{

extent employees;

key ssn;

string name;

integer ssn;

string position;

Employee supervisor;

}

interface Faculty:Employee{

extent faculties;

key ssn;

string dept;

string rank;

}

interface Admfaculty:Faculty{

extent admfaculties;

key ssn;

string position;

}

interface Course{

extent courses;

key cno;

string cname;

string cno;

Set<Course> prereq;

}

interface Enroll{

extent enrolls;

keys course, fssn, sssn;

Course course

integer fssn;

integer sssn;

float grade;

}

interface Thesis{

extent theses;

keys title, author;

string title;

Gradstudent author;

string status;

}
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Schema 5:

interface Student{

extent students;

key ssn;

string fname;

string lname;

string ssn;

string major;

float gpa();

}

interface Gradstudent:Student{

extent gradstudents;

key ssn;

Faculty advisor;

Set<Faculty> committee;

}

interface Employee{

extent employees;

key ssn;

string name;

string ssn;

Employee supervisor;

}

interface Faculty:Employee{

extent faculties;

key ssn;

Department dept;

string rank;

}

interface Course{

extent courses;

key cno;

string cname;

string cno;

Set<Course> prereq;

}

interface Enroll{

extent enrolls;

keys course, fssn, sssn;

Course course;

string fssn;

string sssn;

float grade;

}

interface Thesis{

extent theses;

keys title, author;

string title;

Gradstudent author;

string status;

}

interface Department{

extent departments;

key name;

string name;

string chairperson;

}



Bibliography

[AAD+93] R. Ahmed, J. Albert, W. Du, W. Kent, W. Litwin, and C.Shan. An Overview

of Pegasus. In Proc. IEEE Workshop on Research Issues on DE: Interoper-

ability in Multidatabase Systems, Vienna, pages 273�277, April 1993.

[ADD+91] Ra� Ahmed, Philippe DeSchedt, Weimin Du, William Kent, Mohammad A.

Ketabchi, Witold A. Litwin, Abbas Ra�i, and Ming-Chen Shan. The Pe-

gasus Heterogeneous Multidatabase System. IEEE Computer, 24(12):19�27,

December 1991.

[ADK+91] Ra� Ahmed, Philippe DeSchedt, William Kent, Mohammad A. Ketabchi,

Witold A. Litwin, Abbas Ra�i, and Ming-Chen Shan. Pegasus: A System

for Seamless Integration of Heterogeneous Information Sources. In COMP-

CON 91, pages 128�136, March 1991.

[Bai95] Ian Bailey. EXPRESS-M Reference Manual. CIMIO Ltd., Brunel Science

Park, Engle�eld Green, Surrey, TW20 0JZ, ENGLAND, August 1995.

[BCD+93] Omran Bukhres, Jiansan Chen, Weimin Du, Ahmed K. Elmagarmid, and

Robert Pezzoli. InterBase: An Execution Environment for Heterogeneous

Software Systems. IEEE Computer, 26(8):57�69, August 1993.

[BGMS95] Yuri Breitbart, Hector Garcia-Molina, and Avi Silberschatz. Transaction Man-

agement in Multidatabase Systems, chapter 28, pages 573�591. ACM Press,

1995.

[BGN+88] E. Bertino, R. Gagliardi, M. Negri, G. Pelagatti, and L. Sbattella. The coman-

dos Integration System: an Object Oriented Approach to the Interconnection

of Heterogeneous Applications. In Advances in Object-Oriented Database Sys-

tems 2nd International Workshop on ObjectOriented Database Systems, pages

213�218, New York, September 1988. Springer-Verlag.

[BGN+89] E. Bertino, R. Gagliardi, M. Negri, G. Pelagatti, and L. Sbattella. Integration

of Heterogeneous Database Applications through an Object-Oriented Inter-

face. Information Systems, 14(5):407�420, 1989.

[BHP92] M.W. Bright, A.R. Hurson, and S.H. Pakzad. A Taxonomy and Current Issues

in Multidatabase Systems. IEEE Computer, 25(3), March 1992.

xxxv



xxxvi BIBLIOGRAPHY

[BHR+95] Arne-Jørgen Berre, Frode Høgberg, Magnus Rygh, David Skogan, and

Jan Øyvind Aagedal. SISIP � A Systems Integration Platform based on Dis-

tributed Persistent Objects. Technical report, Department of Informatics,

SINTEF, 1995.

[BLN86] C. Batini, M. Lenzerini, and S.B. Navathe. A Comparative Analysis of

Methodologies for Database Schema integration. ACM Computing Surveys,

18(4):323�364, December 1986.

[BOH+92] A. Buchmann, M. T. Ozsu, M. Hornick, D. Georgakopoulos, and F. A. Manola.

A Transaction Model for Active Distributed Object Systems. In Transac-

tion Models for Advanced Database Applications, chapter 5, pages 123�158.

Morgan-Kaufmann, 1992.

[Cat94] R. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kauf-

mann, San Mateo, 1994.

[CHS91] C. Collet, M. Huhns, and W-M. Shen. Resource Integrating Using a Large

Knowledge Base in Carnot. Computer Magazine of the Computer Group News

of the IEEE Computer Group Society, 24(12):55�63, December 1991.

[Cod70] E. F. Codd. A Relational Model for Large Shared Databanks. Communications

of the ACM, 13(6):377�390, June 1970.

[DBT71] CODASYL DBTG. Report of the CODASYL DataBase Task Group. ACM

Computing Surveys, April 1971.

[Dit86] Klaus R. Dittrich. Object-Oriented Database Systems: The Notion and the

Issues. Technical report, Forschungszentrum Informatik (FZI) an der Uni-

versität Karlsruhe, 1986. Preface in 2nd International OODBMS Workshop

1988.

[DKH92] P. Drew, R. King, and D. Heimbigner. A Toolkit for the Incremental Imple-

mentation of Heterogeneous DatabaseManagement Systems. VLDB, 1(2):241�

284, October 1992.

[DKT88] H. Duchene, M. Kaul, and V. Turau. VODAK Kernel Data Model. In Pro-

ceedings of the Second International Workshop on Object-Oriented Database

Systems, pages 174�192, September 1988.

[DMN70] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA 67 Common Base Lan-

guage. Norwegian Computing Center, Oslo, 1970. NCC Publication S-52.

[GCS93] M. García-Solaco, M. Castellanos, and F. Saltor. Discovering Interdatabase

Resemblance of Classes for Interoperable Databases. In Proceedings of the 2nd

International Workshop on Interoperability in Multidatabase Systems, pages

26�33, 1993.



BIBLIOGRAPHY xxxvii

[GR83] Adele Goldberg and David Robson. Smalltalk-80, The Language and its Im-

plementation. Addison-Wesley, 1983.

[HJK+92] M. N. Huhns, N. Jacobs, T. Ksiezyk, W. M. Shen, M. P. Singh, and P. E. Can-

nata. Enterprise Information Modeling and Model Integration in Carnot. In

Enterprise Integration Modeling, Proceedings of the First International Con-

ference, pages 290�299, Cambridge, Mass., 1992. The MIT Press.

[HM85] Heimbigner and McLeod. A Federated Architecture for Information Manage-

ment. ACM Transactions on O�ce IS, 3(3), July 1985.

[HZ90] S. Heiler and S. Zdonik. Object Views: Extending the Vision. In Proceedings

of the Sixth International Conference on Data Engineering, pages 86�93, 1990.

[KCGS95] Won Kim, Injun Choi, Sunit Gala, and Mark Scheevel. On Resolving

Schematic Heterogeneity in Multidatabase Systems, chapter 26, pages 521�550.

ACM Press, 1995.

[KDN91] M. Kaul, K. Drosten, and E. J. Neuhold. Viewsystem: Integrating Hetero-

geneous Information Bases by Object-Oriented Views. In IEEE International

Conference on Data Engineering, pages 2�10, 1991.

[KFM+96] Wolfgang Klas, Peter Fankhauser, Peter Muth, Thomas C. Rakow, and

Erich J. Neuhold. Database Integration using the Open Object-Oriented

Database System VODAK. In Omran A. Bukhres and Ahmed K. Elmagarmid,

editors, Object-Oriented Multidatabase Systems: A Solution for Advanced Ap-

plications, chapter 14, pages 472�532. Prentice-Hall, 1996.

[Kim95] Won Kim. Introduction to Part 2: Technology for Interoperating Legacy

Databases. In Won Kim, editor, Modern Database Systems � The Object

Model, Interoperability, and Beyond, chapter 25, pages 515�520. ACM Press,

1995.

[Kor94] Espen Frimann Koren. Semantic Proximity in Object-oriented Data Models.

Master's thesis, Department of Informatics, University of Oslo, May 1994.

[KS91] Won Kim and Jungyun Seo. Classifying Schematic and Data Heterogeneity in

Multidatabase Systems. IEEE Computer, 22(3):183�236, December 1991.

[LDS92] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed Object Management

in Thor. In Proc. Int. Workshop on Distributed Object Management, pages 1�

15, Edmonton (Canada), August 1992.

[LMR90] W. Litwin, L. Mark, and N. Roussopoulos. Interoperability of Multiple Au-

tonomous Databases. ACM Computing Surveys, 22(3), September 1990.

[LS92] Petter Lowzow and Per Solberg. COOM ODL Compiler. Master's thesis,

University of Trondheim, May 1992.



xxxviii BIBLIOGRAPHY

[ME93] J. G. Mullen and A. Elmagarmid. InterSQL: A Multidatabase Transaction

Programming Language. In Proceedings of the 1993 Workshop on Database

Programming Languages, 1993.

[MHG+92] F. Manola, S. Heiler, D. Georgakopoulos, M. Hornick, and M. Brodie. Dis-

tributed Object Management. In A. K. Elmagarmid, editor, International

Journal of Intelligent and Cooperative Information Systems, volume 1, pages

5�42, March 1992.

[Mul92] J. G. Mullen. FBASE: A Federated Objectbase System. International Journal

of Computer Systems Science and Engineering, 7(2):91�99, April 1992.

[MY95] Weiyi Meng and Clement Yu. Query Processing in Multidatabase Systems,

chapter 27, pages 551�572. ACM Press, 1995.

[Neb88] Bernhard Nebel. Computational Complexity of Terminological Reasoning in

BACK. Arti�cial Intelligence, 34(3):371�383, April 1988.

[NSGS89] Navathe, S.B., Gala, and S.K. A Federated Architecture for Heterogeneous In-

formation Systems. In Yu, editor, 1989 Workshop on Heterogenous Databases,

December 1989.

[OMG92] Object Management Group, Inc., 492 Old Connecticut Path, Framingham,

MA 01701. The Common Object Request Broker: Architecture and Speci�ca-

tion, 1.1 edition, 1992.

[Øre92] Ole Øren. Proving the Equivalence of Databases and Database Schemas. PhD

thesis, Institute for Informatics, University of Oslo, September 1992.

[PBE95] Evaggelia Pitoura, Omran Bukres, and Ahmed Elmagarmid. Object Orien-

tation in Multidatabase Systems. ACM Computing Surveys, 27(2):141�195,

June 1995.

[PSH91] G. Pathak, B. Stackhouse, and S. Heiler. EIS/XAIT Project: An Object-Based

Interoperability Framework for Heterogeneous Systems. Computer Standards

and Interfaces, 13(1�3):315�319, October 1991.

[RBP+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and

William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[SCG91] F. Saltor, M. Castellanos, and M. García-Solaco. Suitability of Data Models as

Canonical Models for Federated Databases. ACM SIGMOD Record, 20(4):44�

48, December 1991.

[SCG94] F. Saltor, B. Campderrich, and M. García-Solaco. On Architectures for Fed-

erated DB Systems. In Sixth ERCIM Database Research Group Workshop on

Deductive and Interoperable Databases. ERCIM, Barcelona, November 1994.



BIBLIOGRAPHY xxxix

[SDS96] S. Y. W. Su, A. Doshi, and L. Su. HKBMS: An Integrated Heterogeneous

Knowledge Base Management System. In Omran A. Bukhres and Ahmed K.

Elmagarmid, editors, Object-Oriented Multidatabase Systems: A Solution for

Advanced Applications, chapter 17, pages 589�616. Prentice-Hall, 1996.

[SG89] A. P. Sheth and S. K. Gala. Attribute Relationships: an Impediment in Au-

tomating Schema Integration. In Yu, editor, 1989 Workshop on Heterogenous

Databases, December 1989.

[SK92] Amit Sheth and Vipul Kashyap. So far (Schematically) yet so near (Seman-

tically). In David K. Hsiao, Erich J. Neuhold, and Ron Sacks-Davis, edi-

tors, IFIP DS-5 Semantics of Interoperable Database Systems, pages 272�301,

Lorne, Victoria, Australia, November 1992.

[SL90] Amit P. Sheth and James A. Larson. Federated Database Systems for Manag-

ing Distributed, Heterogeneous and Autonomous Databases. ACM Computing

Surveys, 22(3):183�236, September 1990.

[Sol90] Richard M. Soley, editor. Object Management Architecture Guide. Object

Management Group(OMG), Frameington, MA, November 1990.

[SSG+91] A. Savasere, A. Sheth, S. Gala, S. Navathe, and H. Marcus. On Applying

Classi�cation to Schema Integration. In International Workshop on Interop-

erability in Multidatabase Systems, Kyoto, April 1991.

[Str91] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Read-

ing, 2 edition, 1991.

[TK78] D. Tsichritzis and A. Klug, editors. ANSI/X3/SPARC DBMS Framework.

AFIPS Press, 1978.

[TL76] D. Tsichritzis and F. Lochovsky. Hierarchical Database Management: A Sur-

vey. ACM Computing Surveys, 8(1), March 1976.

[TLM+92] C. Tomlinson, G. Lavender, G. Meredith, D. Woelk, and P. Cannata. The

Carnot Extensible Service Switch (ESS) � Support for Service Execution. In

Enterprise Integration Modeling, Proceedings of the First International Con-

ference, pages 493�502, Cambridge, Mass., 1992. The MIT Press.

[WCH+93] D. Woelk, P. Cannata, M. Huhns, W. Shen, and C. Tomlinson. Using Carnot

for Enterprise Information Integration (Synopsis). In Proceedings of the Second

International Conference on Parallel and Distributed Information Systems,

pages 133�136, San Diego, CA, January 1993.

[WSHC92] D. Woelk, W. Shen, M. N. Huhns, and P. E. Cannata. Model-driven Enter-

prise Information Management in Carnot. In Enterprise Integration Modeling,

Proceedings of the First International Conference, pages 301�309, Cambridge,

Mass., 1992. The MIT Press.


	Tittel
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Background
	1.2 Purpose of the Thesis/Problem Specification
	1.3 Schema Integration Problems in Multidatabase Systems
	1.4 Case
	1.5 Requirements derived from the Case
	1.6 Structure of the Thesis

	Part I An Introduction to Multidatabases and Schema Integration
	Chapter 2 Multidatabases
	2.1 History of Database Systems
	2.2 Distributed Database Management Systems
	2.3 Multidatabases   A Motivation
	2.4 General Introduction � Basic Concepts and De˝nitions
	2.5 Canonical Data Model
	2.6 Schema Integration
	2.7 Query Processing
	2.8 Transaction Management
	2.9 Basic Problems in Multidatabase Systems
	2.10 Summary

	Chapter 3 Schema Integration
	3.1 Definition
	3.2 Integration Motivation
	3.3 Causes for Schema Diversity
	3.4 The Process of Integrating Schemas
	3.5 Requirements for Schema Integration
	3.6 Summary

	Chapter 4 Schema Heterogeneities
	4.1 Introduction
	4.2 A general Classification of Schema Comparisons
	4.3 A Schematic Classification of Heterogeneity
	4.4 A Semantic Proximity Approach
	4.5 Summary

	Chapter 5 Object-Oriented Multidatabase Systems
	5.1 Pegasus
	5.2 VODAK
	5.3 SISIP
	5.3 SISIP
	5.4 The EIS/XAIT OMS Project
	5.5 DOMS
	5.6 Carnot
	5.7 Other Systems
	5.8 HKBMS
	5.9 Comparison of the Systems
	5.10 Summary

	Part II Schema Integration in ODL-M
	Chapter 6 ODL-M   A Mapping Language Extension to ODL
	6.1 Introduction
	6.2 The Object Database Standard   ODMG-93
	6.3 Motivation   ODL-M
	6.4 What is ODL-M?
	6.5 ODL-M Compiler
	6.6 Declarations
	6.7 Instance Control
	6.8 Summary

	Chapter 7 Schema Integration with ODL-M
	7.1 Introduction
	7.2 An Architecture Basis
	7.3 Con˛ict Resolution in ODMG-93 using ODL-M
	7.4 Resolution Techniques
	7.5 Renaming Classes and Attributes
	7.6 Homogenizing Representations
	7.7 Homogenizing Attributes
	7.8 Horizontal Merges
	7.9 Vertical Merges
	7.10 Mixed Merges
	7.11 Homogenizing Methods
	7.12 Semantic Proximity in ODL-M
	7.13 Implementing our Proposal
	7.14 Summary

	Part III Conclusion and Future Work
	Chapter 8 Conclusion & Future Work
	8.1 Summary
	8.2 The Goal
	8.3 Evaluation of the Requirements
	8.4 Conclusion
	8.5 Future Work

	Appendices
	Bibliography

