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Abstract

The Standard Model (SM) of particle physics does not incorporate gravity. In addition,
it suffers from the hierarchy problem. An approach to these two predicaments is the idea
of introducing extra spatial dimensions. The Randall-Sundrum (RS) model proposes
that we live in a multi-dimensional Universe consisting of two (3+1)-dimensional branes
separated from each other by a five-dimensional bulk in which gravity propagates. The
hypothetical massless mediators of gravity, “gravitons”, can be detected experimentally
in a detector via the leptonic decay of their massive Kaluza-Klein partners. In this
thesis we search for high-mass resonances of the lightest Kaluza-Klein graviton G∗ in
the invariant mass distributions of electron and muon pairs. The exclusion limits for the
G∗ in pp collisions recorded in the ATLAS detector at

√
s = 13 TeV, corresponding to an

integrated luminosity of 139 fb−1, are extracted. The data are consistent with the back-
ground consisting mainly of SM Drell-Yan, top and diboson processes. “Fake” electrons
stemming from non-prompt backgrounds are also taken into account. We interpret the
data in terms of a hypothetical RS graviton with coupling to leptons, k/MPl ∈ [0.1, 0.3],
whereMPl is the reduced Planck mass. Both statistical and systematic uncertainties are
taken into account. Masses less than 4.10 TeV, 4.01 TeV and 4.38 TeV are excluded at
95% C.L. for k/MPl = 0.1, while masses less than 5.27 TeV, 4.98 TeV and 5.40 TeV are
excluded for k/MPl = 0.3 in the electron, muon and combined channels, respectively.
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Introduction

Withstanding the test of time, the Standard Model (SM) is widely recognised as the
most robust theory in particle physics, classifying existing particles in terms of sym-
metry groups. There exist three generations of leptons, three generations of quarks and
particles mediating the forces between them. These include the strong force, electro-
magnetic and the weak force. The SM also describes the unification of the weak and
electromagnetic force, coined the electroweak force. In addition, it also predicts the
Higgs boson responsible for spontaneous symmetry breaking. The Standard Model can
thereby account for all fundamental forces except gravity.

First developed by Sir Isaac Newton during the 17th century, and extended, to put
it mildly, by Albert Einstein in his theory of General Relativity during the beginning
of the 20th century, gravity is to date extraordinarily and elegantly described on a
classical level. However, this elegance does not necessarily apply to the quantum level.
The cornerstones of the Standard Model, provided by quantum field theory described in
Ch. 1, do not account for gravity. Nor can gravity be incorporated into the framework
of the Standard Model. In other words, we must look for new physics to be sensitive
to gravity on a quantum level. One way to do so is by extra dimensional models, one
of which is providing the theoretical predictions for this thesis (the Randall-Sundrum
model, which is discussed in Ch. 2).

Being provided the theoretical predictions we can embark on an attempt at testing
them experimentally. In this thesis, we will do so by studying final states of proton-
proton (pp) collisions. When studying interactions between particles we first and fore-
most need to know their kinematical properties and behaviours in hadron collisions,
discussed in Ch. 3. We must also be able to detect and extensively describe the out-
going particles, as outlined in Ch. 4. In this thesis, we will make use of the ATLAS
detector at the Large Hadron Collider (LHC) for this purpose. We will make use of
Bayesian analysis to help provide some statistical insight into the pp collision data,
described in Ch. 5. The focus of this thesis will be the analysis procedure, that is,
what we do with the data once we have acquired it from the ATLAS detector. What
requirements do we impose on the final state particles to narrow down our search for
the excited graviton resonances predicted by the RS model, and what other processes
provided by the Standard Model do we need to account for when looking at the data?
This, along with statistical inference of the data, is the topic of Ch. 6. Our final results
are presented and discussed in Ch. 7.
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Part I

Theoretical Overview of the
Standard Model and Beyond
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Chapter 1

Theoretical Framework

In this chapter we will have a look at the model which summarises our current knowledge
about particle interactions, the Standard Model, and the theoretical framework from
which the model is based on, discussed in Section 1.1. The Standard Model is discussed
in Section 1.2. The material in this chapter is largely based on Refs. [1] and [2].

1.1 The cornerstones of the Standard Model

In order to describe the dynamics of a system consisting of fields φ(x) and their cor-
responding derivatives ∂µφ(x) we may utilize a quantity known as the Lagrangian L,
defined as the difference between kinetic and potential energy within the system, and
may be written as a volume integral over the Lagrangian density L,

L =

∫
L(φ, ∂µφ)d3x. (1.1)

We may employ the Lagrangian in another important element of quantum field theory
(QFT), namely the action S. The action allows us to find the evolution of a system,
through its time integral of the Lagrangian. That is,

S =

∫ t2

t1

dtL =

∫
d4xL. (1.2)

By the principle of least action, we can find the path of a field in configuration space,
between times t1 and t2, which requires the least amount of energy [1]. This is done by
minimizing the action,

0 = δS

=

∫
d4x

{
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

}
=

∫
d4x

{
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ+

(
∂L

∂(∂µφ)
δφ

)}
.
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By considering δφ = 0 at the boundaries, and letting the integral vanish for arbitrary
δφ, we can simplify the principle of least action and obtain the Euler-Lagrange equation
for the motion of a field,

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0, (1.3)

also known as the equation of motion.

1.1.1 Bosonic and fermionic fields

In order to get a sense of the properties of a relativistic quantum field, we must first
understand the definition of a quantum field. There are two main categories of fields,
mainly a bosonic field, describing scalar and vector fields, and a fermionic field describ-
ing spinor fields. The intuition behind the naming of these fields will be explained in
the following.

Bosonic fields

The primary and perhaps the simplest type of a quantum field is the scalar field φ
described by the Klein-Gordon (KG) Lagrangian according to eq. (1.3),

LKG =
1

2

[
|∂µφ|2 −m2|φ|2

]
. (1.4)

The equation of motion following LKG is(
∂µ∂µ +m2

)
φ(x) = 0, (1.5)

where ∂µ∂µ ≡ ∂2

∂t2
− ∇2, otherwise known as the Klein-Gordon equation. In order to

move from a classical field theory to a quantum field theory, we may utilize a proced-
ure known as second quantization. That is, to promote the field wavefunctions φ and
momentum densities π = ∂L

∂φ̇
, to field operators which obey the canonical commutation

relations. Working in the Scrödinger picture, the commutation relations for a real scalar
field are

[φ(x), π(y)] = iδ(3)(x− y),

[φ(x), φ(y)] = [π(x), π(y)] = 0,
(1.6)

where δ(3)(x− y) is the Dirac-delta function in three dimensions. We may express the
scalar field φ(x) and its conjugate momentum π(x) as

φ(x) =

∫
d3p

(2π)3

1√
2Ep

(
ape

ip·x + a†pe
−ip·x

)
, (1.7)

π(x) =

∫
d3p

(2π)3
(−i)

√
Ep

2

(
ape

ip·x − a†pe−ip·x
)
, (1.8)

6



where the ladder operators a and a† can be interpreted as annihilation and creation
operators, respectively, of momentum eigenstates with energy Ep and momentum 3-
vector p. In other words, they may be thought of as operators calling for particle
excitations, carrying an energy-momentum relation Ep =

√
|p|2 +m2 and mass m, of

a field. These indistinguishable quanta are known as Klein-Gordon particles, or bosons
carrying integer spin, and obey the Bose-Einstein statistics. This, in essence, means that
under any interchange of two particle states the wave function will remain invariant, and
an arbitrary mode p may contain multiple particles, not subject to the Pauli exclusion
principle1.

Fermionic fields

Perhaps one immediate disadvantage of utilizing the Klein-Gordon equation in classical
field theory is its treatment of probability densities. By looking at its possible energy
solutions we see that they contain both positive and negative energies:

Ep = ±
√
|p|2 +m2. (1.9)

The probability density, ρ(x, t), of a wavefunction ψ may be expressed as

ρ(x, t) = ψ∗(x, t)ψ(x, t). (1.10)

Writing out and rearranging the KG-equation from eq. (1.5) such that the time derivat-
ives are on the LHS and the spatial derivatives along with the mass are contained on the
RHS, and taking the difference of the resulting equation and its hermitian conjugate,
each multiplied with φ∗ and φ respectively, we obtain

φ∗
∂2φ

∂t2
− φ∂

2φ∗

∂t2
= φ∗(∇2φ−m2φ)− φ(∇2φ∗ −m2φ∗),

and simplifying

∂

∂t

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
= ∇ · (φ∗∇φ− φ∇φ∗). (1.11)

From the charge density continuity equation,

∂µj
µ = ∇ · j +

∂ρ

∂t
= 0, (1.12)

where j is the probability current, we may identify the probability density ρ from
eq. (1.11) as

ρ = i

(
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

)
and j = −i(φ∗∇φ− φ∇φ∗), . (1.13)

1Due to the nature of indistinguishable particles, a two-particle bosonic state may be written as
ψ+(x1,x2) = A [ψa(x1)ψb(x2) + ψb(x1)ψa(x2)]. If ψa = ψb then ψ+(x1,x2) 6= 0, thus allowing the two
indistinguishable bosons to occupy the same state.
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where we include the factor i to ensure that ρ is real. Inserting a plane-wave solution in
the probability density we find that ρ = 2|N |2Ep, with N ≡ φ∗φ. In other words, the
negative energy solutions give rise to negative probability densities! This relationship is
due to the Klein-Gordon equation containing second order space and time derivatives.
The Dirac equation starts off with a slightly different perspective leading to significant
differences from that of Klein-Gordon. The Dirac equation is expressed in terms of
first-order derivatives in both space and time,

(iγµ∂µ −m)ψ(x) = 0, (1.14)

which when squared implies the Klein-Gordon equation2. The Dirac equation is the
equation of motion for the Dirac Lagrangian,

LDirac = ψ̄(iγµ∂µ −m)ψ. (1.15)

Here, ψ(x) is a Dirac spinor and γµ are the Dirac-Pauli matrices in a chiral represent-
ation. That is,

ψ =

(
ψL
ψR

)
, and γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
where σi are the Pauli spin matrices, and ψL and ψR are known as the left-handed and
right-handed Weyl spinors3, respectively. Quantizing the Dirac Lagrangian we follow
the same formulae as with second quantization, with one exception; the field operator
must now obey the canonical anticommutation relations4. That is,

{ψa(x), ψ†b(y)} = δ(3)(x− y)δab

{ψa(x), ψb(y)} = {ψ†a(x), ψ†b(y)} = 0
(1.16)

where δab is the Kronecker-delta function. The Dirac field operators may be expressed
as

ψ(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
aspu

s(p)e−ip·x + bs†p v
s(p)eip·x

)
(1.17)

ψ̄(x) =

∫
d3p

(2π)3

1√
2Ep

∑
s

(
bspv̄

s(p)e−ip·x + as†p ū
s(p)eip·x

)
(1.18)

where u(p) and v(p) originates from the positive and negative frequency solutions of
the Dirac equation, respectively,

ψ+(x) = u(p)e−ip·x and ψ−(x) = v(p)e+ip·x,

2Every solution of the Dirac equation is then also a solution of the Klein-Gordon equation.
3I.e. they are the eigenstates of the helicity operator, whose eigenvalues reflects the direction of a

particle’s momentum in relation to its intrinsic spin.
4This is to ensure only positive-energy excitations of the vacuum. For the complete derivation of

this reasoning the reader is referred to ref. [1], pp. 52-57.
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with

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2

where s represents the two possible spin states of a Dirac particle, spin-up ξ1 = η1 = ( 1
0 )

and spin-down ξ2 = η2 = ( 0
1 ) along the 3-direction. Again, the ladder operators a and

a† correspond to excitations of a spinor field, carrying energy Ep and momentum p.
However, the field operators are also now including the ladder operators b and b†. These
represent anti-particles excited from the spinor field. These particles can mathematically
be thought of as the negative energy states from eq. (1.9), travelling backwards in time5.
Physically, they are interpreted as the counterpart of the original particle, characterised
by the same properties, except for the charge which is the opposite of that of the particle.
For example, the anti-particle of an electron is a positron. The quanta excited from a
Dirac spinor field are known as Dirac particles, or fermions carrying half-integer spin,
and follow the Dirac-Fermi statistics. That is, the wavefunction is anti-symmetric under
any interchange of two particle states. An arbitrary mode p may never contain multiple
particles in the same state, i.e. fermions are subject to the Pauli exclusion principle6.

1.1.2 Symmetries

An astounding feat of classical field theory is the capability of finding the relation
between symmetries and conservation laws in nature.7 In this section we delve into the
two main categories representing the transformations leading to potential invariance in
a theory; continuous and discrete transformations.

Continuous symmetries

Noether’s theorem [3] states that if a continuous transformation,

φ(x)→ φ′(x) = φ(x) + α∆φ(x),

leaves the equations of motion, the Euler-Lagrange equation from eq. (1.3), invariant
then we may call the transformation a symmetry. This is ensured if the action remains
invariant under the transformation. Likewise, for any transformation of the Lagrangian
density L,

L(x)→ L(x) + α∂µJ µ, with J µ ≡
(

∂L
∂(∂µφ)

∆φ

)
,

which satisfies the continuity equation from eq. (1.12) we have a conservation law. No-
ether’s theorem can also be applied to spacetime transformations, such as rotations and

5According to the Feynman-Stückelberg interpretation.
6A two-particle fermionic state is expressed as ψ−(x1,x2) = A [ψa(x1)ψb(x2)− ψb(x1)ψa(x2)]. If

now ψa = ψb, then ψ− = 0, meaning the wave function in essence disappears.
7As derived by German mathematician Emmy Noether.
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translations. Under the infinitesimal transformation xµ → xµ + aµ of a field configura-
tion φ(x),

φ(x)→ φ(x+ a) = φ(x) + aµ∂µφ(x),

the Lagrangian density transforms as

L → L+ aµ∂µL = L+ aν∂µ(δµνL).

From eq. (1.12) the conserved charge is expressed as

Q ≡
∫

all space

j0d3x.

Discrete symmetries

There are other symmetries within nature which cannot be described by continuous
transformations. These are known as discrete symmetries, and require specific spacetime
operations on the field. A discrete transformation X̂ is regarded as a symmetry if it
commutes with the Hamiltonian of the system, that is [X̂,H] = 0. As seen above, the
continuous spacetime transformations are in the form of e.g. translations and rotations.
But what about reflections in spacetime? This is where discrete symmetries enter. A
short introduction to three types of discrete symmetries of the Lorentz group acting on
the Dirac spinor field will be given here.

o Parity : When acting on the wavefunction of a particle, parity (a Hermitian op-
erator denoted by P ) acts as a spatial reflection of a particle’s position without
affecting its intrinsic spin. That is,

Pψ(t,x)P = γ0ψ(t,x).

When parity acts on a fermion-antifermion state, such as as†q bs†q |0〉 we get an
additional (-1), that is P (as†p b

s′†
q |0〉) = −(as†−pb

s′†
−q |0〉).

o Time reversal : The application of time reversal (denoted by T ) does not invert
the spatial components of a particle, but rather time,

Tψ(t,x) = (−γ1γ3)ψ(−t,x),

with a relative minus “+”-sign occurring when dealing with anti-fermions. This
effect not only reverses the momentum of a particle, but also its spin orientation.
That is, TaspT = a−s−p and TbspT = b−s−p.

o Charge conjugation: The operator representing charge conjugation (denoted by
C) acts as a map between fields ψ and ψ̄. That is, it represents the symmetry
between particles and anti-particles:

Cψ(x)C = −i(ψ̄γ0γ2)T , or CaspC = bsp

Cψ̄(x)C = (−iγ0γ2ψ)T , or CbspC = asp

10



One explicit property of the discrete symmetries is that a field theory may be invariant
under a specific combination of said symmetries, such as CP 8, although it may violate
the symmetries separately. However, in order for a quantum field theory to remain
Lorentz invariant it must remain invariant under the combination CPT , which is re-
garded as a perfect symmetry of nature. This means that if CP is violated, so too must
T be violated. Correspondingly, if CP is not violated, T must also not be violated.

Another useful concept is that of chirality, which is introduced when we are deal-
ing with parity violations in weak interactions, discussed in subsection 1.1.3. Chiral
projection operators allow us to decompose any Dirac spinor into so-called left- and
right-handed chiral states, that is

PL ≡
1

2
(1− γ5), PR ≡

1

2
(1 + γ5)

ψ(x) = ψL(x) + ψR(x) ≡ PLψ(x) + PRψ(x)

where the eigenvalues of the γ5-matrix, with γ5 = iγ0γ1γ2γ3, determine the handedness
of particles. That is, left-handed (LH) chiral states have eigenvalue −1, while right-
handed (RH) have +1.

1.1.3 Gauge invariance

A gauge transformation has the explicit property of transforming the fields themselves,
and is known as an internal symmetry if it leaves the Lagrangian invariant. We dis-
tinguish between two types of transformations: a global transformation, which can act
upon free, non-interacting fields as a whole by the use of an arbitrary phase factor
χ, and a local transformation whose phase factor is dependent on spacetime variables,
χ(x). A local gauge transformation introduces new degrees of freedom in the form of
vector fields, i.e. gauge bosons, thus promoting the theory to one describing interact-
ing fields. The conserved quantities associated with internal symmetries are related to
the charges of distinct fundamental forces. We categorize the gauge groups related to
internal symmetries according to the behaviour of the so-called generators of a group,
which is briefly summarized below. Three examples of gauge transformations leading
to the fundamental forces described in the Standard Model are included to demonstrate
the wonders of gauge invariance9.

Abelian gauge groups

When performing unitary transformations on N -dimensional vectors, we refer to the
collective term U(N) from Lie algebra. Such a transformation has the property of
commuting with any other unitary transformation, and classifying them as Abelian.
The U(N) transformations are expressed in terms of a local phase rotation,

ψ(x)→ ψ′(x) = eigα(x)ψ(x), (1.19)
8An example of a CP -violating process is Kaon weak decay.
9For this reason, we will restrict ourselves to mainly include examples of unitary transformations,

U(N), and special unitary transformations, SU(N).
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with a scale factor g and an arbitrary phase factor α(x).

o Quantum electrodynamics: The unitary symmetry group U(1) can be expressed
in terms of the local phase rotation shown in eq. (1.19) with the space-time phase
factor α(x). Do note, however, that simply imposing this transformation on the
free-particle Dirac equation from eq. (1.14) does not result in any invariance of
the theory, but rather an additional term involving α(x)10. Therefore, in order
to ensure invariance we must introduce a new field Aµ. This leaves the Dirac
equation as

iγµ(∂µ + iqAµ)ψ −mψ = 0, (1.20)

with the condition that Aµ transforms according to

Aµ → A′µ = Aµ −
1

g
∂µα(x),

thereby cancelling out the additional phase term. Aµ can be interpreted as the
vector field for a massless gauge boson, that is the photon (γ), which carries an
electromagnetic potential. The introduction of the field Aµ, by a local phase
rotation of ψ(x), leads to the field theory of quantum electrodynamics (QED),
whose corresponding Lagrangian is expressed as

LQED = ψ̄(i/∂ −m)ψ − 1

4
(Fµν)2 − gψ̄γµψAµ

= ψ̄(i /D −m)ψ − 1

4
(Fµν)2,

(1.21)

where Fµν = ∂µAν−∂νAµ is the electromagnetic field tensor, and Dµ is the gauge
covariant derivative

Dµ ≡ ∂µ + igAµ(x),

which arises due to the invariance of the Lagrangian under local phase rotations.
An interaction within QED can thereby be described by the vertex factor −igγµ,
from the interaction term LQED ⊃ gψ̄γµψAµ, corresponding to the Feynman
diagram in figure 1.1. The conserved charge of QED is the electric charge q.

Non-Abelian gauge groups

A subgroup of unitary transformations is the Lie group SU(N), which consists of N×N
unitary transformations with determinant 1. Furthermore, the transformations contain
N2 − 1 non-commuting Hermitian generators ta. The transformations related to the
SU(N) group are expressed as

ψ(x)→ ψ′(x) = eigα
i(x)tiψ(x) (1.22)

10Generally speaking, imposing a local phase transformation on a free-particle (non-interacting)
theory does not result in an invariance of the theory.
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ψ(x)

ψ̄(x)

= −ieγµ
Aµ(x)

Figure 1.1: With time moving from left to right, this Feynman diagram of a basic QED
vertex describes the interaction between a fermion and an anti-fermion field, ψ and
ψ̄ respectively, with coupling strength g ≡ +|e|, annihilating to a photon carrying an
electromagnetic potential Aµ.

acting on an N -plet vector

ψ(x) ≡

ψ1(x)
...

ψN (x)

 .

Due to the non-commuting property of the generators the SU(N) symmetry falls under
the category of a non-Abelian theory. In other words,

[ti, tj ] = if ijktk (1.23)

where f ijk are known as structure constants. In order to promote the global gauge
transformation to a local one we must take into account the covariant derivative

Dµ ≡ ∂µ − igAiµti, (1.24)

where Aiµ corresponds to the N2 − 1 different gauge fields in the SU(N) group. Fur-
thermore, to ensure gauge invariance we must require the fields, Aµ, to transform as

Aiµ → A
′i
µ = Aiµ +

1

g
∂µα

i + f ijkAjµα
k. (1.25)

The corresponding Lagrangian for an SU(N) symmetry is then

L = −1

4
(F iµν)2, where F iµν = ∂µA

i
ν − ∂νAiµ + gf ijkAjµA

k
ν , (1.26)

where the last term introduces self-interactions between the gauge bosons. Adding the
Lagrangian for the gauge field into the Dirac Lagrangian and replacing the ordinary
partial derivative with the covariant derivative we can promote the field theory into one
interacting with fermions, that is

LYM = ψ̄(i /D −m)ψ − 1

4
(F iµν)2, (1.27)

known as the Yang-Mills Lagrangian.
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o The weak interaction: The special unitary symmetry group SU(2) corresponds to
replacing the generators with Pauli spin matrices, that is ti → 1

2σ
i. The covariant

derivative thereby becomes

Dµ ≡ ∂µ − ig
σi

2
W i
µ,

where W i corresponds to three gauge fields of the SU(2) group. Since the gener-
ators are functions of the 2× 2 Pauli spin matrices, the wavefunction ψ(x) must
be expressed as a doublet, coined a weak isospin doublet, where the members of
the doublet always differ by one unit in electric charge. The first generation of
quarks, q, and leptons, l, are defined as

q(x) =

(
u(x)

d(x)

)
, l(x) =

(
νe(x)

e−(x)

)
.

The conserved charge associated with the SU(2) symmetry is that of isospin I,
more specifically the third component of the isospin I(3)

W . The upper member of the
isospin doublet carries I3

W = +1/2, while the lower member carries I3
W = −1/2.

As mentioned, in subsection 1.1.2, a spinor field can be projected into a left-
and right-handed component. The SU(2) gauge transformation affects only LH
particles and RH antiparticles [4]. For this reason, any RH particles and LH
antiparticles are placed in isospin singlet states with I3

W = 0, and we therefore
refer to the symmetry as SU(2)L. This is the gauge group which defines the
second fundamental force of nature, namely the weak force. It should however be
mentioned that the three gauge bosons do not correspond to the physical bosons
observed in experiments, as is discussed in subsection 1.2.1. Figure 1.2 shows
examples of weak interaction Feynman diagrams.

o Quantum chromodynamics: The generators of the SU(3) group are ti ≡ 1
2λ

i,
where λi is defined as the 3× 3 Gell-Man matrices, such that the covariant deriv-
ative becomes

Dµ ≡ ∂µ − ig
1

2
λiGiµ, (1.28)

where Giµ corresponds to the 8 gauge fields of the SU(3) group, exciting the gauge
bosons termed gluons. Following the logic of Noether’s theorem, the Yang-Mills
theory related to the SU(3) group must have a conserved quantity. This conserved
quantity is that of colour charge11. There are three colour charges (red, green and
blue) which are mediated by the gluons, and correspond to the charges conserved
within the third fundamental force, known as the strong force, described by the
field theory of quantum chromodynamics (QCD). The only fermions carrying col-
our charge are quarks. It goes without saying that the wavefunction is described

11We thus also refer to the SU(3) group as SU(3)C .
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ψ1(x)

ψ̄2(x)

= −igW√
2
γµ 1

2(1− γ5)
Wµ(x)

Wµ(x)

Wµ(x)

∝ gW
Wµ(x)

Wµ(x)

Wµ(x)

Wµ(x)

Wµ(x)

∝ g2
W

Figure 1.2: With time moving from left to right, the Feynman diagram to the top
left describes a weak interaction vertex between two spinor elements of a weak isospin
doublet and a gauge boson W , with coupling strength g ≡ gW , while the diagrams to
the top right and bottom describe the self-interactions of gauge bosons W .

as an SU(3)C triplet,

qC(x) =

qr(x)
qg(x)
qb(x)

 ,

for each quark flavour (six in total). Due to the self-interaction term in eq. (1.25)
there will also be self-interactions between the gluons, as seen in figure 1.3.

q

q̄

= −igs2 λ
iγµ

g

g

g

∝ gs
g

g

g

g

g

∝ g2
s

Figure 1.3: With time moving from left to right, the Feynman diagram to the left
describes a QCD interaction vertex between two quarks and a gluon g, excited from the
gauge field Gµ, with coupling strength gs, while the diagrams from center to the right
describe the self-interactions of gluons.
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1.2 The Standard Model

The combination of the three gauge groups described in subsection 1.1.3, along with
three generations of leptons and three generations of quarks, make up the gauge field
theory

U(1)Y ⊗ SU(2)L ⊗ SU(3)C ,

also known as the Standard Model (SM) of particle physics [2, 5, 4, 6], seen in figure 1.4.
Each subindex on the symmetries corresponds to the conserved quantities in the field
theory. That is, U(1)Y conserves hypercharge, discussed further below, experienced by
all leptons and quarks carrying an electric charge or non-zero I(3)

W , SU(2)L ensures weak
interaction couplings to only LH-particles and RH-antiparticles, while SU(3)C conserves
colour charge, mediated only between quarks by gluons.

1.2.1 Experimental implications

What has not yet been addressed is the physical implications of the field theory, in
other words the actual measurements made in the laboratory of elementary particles.
One of which is the observation of massive weak gauge bosons. This stands in contrast
to that of the prediction of massless gauge bosons in the SU(2)L field theory. The
explanation of this phenomenon was proposed in the Glashow-Weinberg-Salam (GSW)
model [7, 8, 9] through the unification of the weak and electromagnetic symmetries,
coined the electroweak symmetry, combined with a non-zero vacuum expectation value.

Electroweak symmetry

There are as mentioned three generators of the SU(2)L field theory giving rise to three
gauge bosons, W (1)

µ ,W
(2)
µ and W

(3)
µ . The charged gauge bosons can be expressed in

terms of the linear combinations

W±µ =
1√
2

(
W (1)
µ ∓ iW (2)

µ

)
.

It is tempting to define W (3)
µ as the neutral gauge boson Z0 of SU(2)L. This is however

contradicted by experiments, implying that Z0 couples to both left- and right-handed
particles. By unifying QED and the weak interaction we are left with two neutral
gauge fields, Aµ and Zµ, along with the two charged gauge fields, W+

µ and W−µ . This
unification asserts an additional constraint on the U(1) symmetry, by demanding a new
conserved quantity, known as hypercharge,

Y = 2(Q− I(3)
W )

where Q is the electric charge of a particle with third component isospin I
(3)
W . Thus,

the gauge transformation of a fermionic field ψ(x) is expressed as

ψ(x)→ ψ′(x) = eig
′ Y
2
ξ(x)ψ(x),
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thereby introducing a new gauge field Bµ to the interaction term

L ⊃ g′Y
2
γµBµψ,

with coupling strength g′. Under this transformation the gauge fields Aµ and Zµ may
now be expressed as the linear combinations

Aµ = Bµ cos θW +W (3)
µ sin θW ,

Zµ = −Bµ sin θW +W (3)
µ cos θW ,

with θW being the weak mixing angle. The linear combination of Zµ entails the coup-
ling of Z0 to both LH and RH particles, but in an asymmetric way, as indicated by
observations.

Higgs mechanism

The electroweak unification U(1)Y ⊗SU(2)L does not, in itself, evoke the mass acquired
by the gauge bosons. This occurs when embedding spontaneous symmetry breaking
(SSB) into the field theory, in which one chooses a non-zero vacuum ground state12 φ0

of the system, thereby breaking its invariance. For example, if we consider a complex
scalar field φ with the Lagrangian

L = −1

4
(F 2

µν) + |Dµφ|2 − V (φ) (1.29)

and potential

V (φ) = −µ2φ∗φ+
λ

2
(φ∗φ)2, (1.30)

then the Lagrangian (1.29) will remain invariant under the U(1) transformations

φ(x)→ eiα(x)φ(x) and Aµ(x)→ Aµ(x)− 1

e
∂µα(x). (1.31)

If we choose µ2 > 0 then the U(1) global symmetry will be spontaneously broken, as
we obtain a non-zero expectation value

〈φ〉 = φ0 =

(
µ2

λ

)1/2

. (1.32)

Inserting (1.32) back into the potential,

V (φ) = − 1

2λ
µ4 +

1

2
· 2µ2φ4 +O(φ3

i ), (1.33)

12The vacuum state is the lowest energy state of a field φ and is equivalent to the minimum of the
field’s potential.
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we have now acquired a mass m =
√

2µ for the gauge field φ1. In other words, it is
a non-zero vacuum expectation value 〈φ0〉 which allows gauge bosons like W±, Z0 to
gain mass. This mechanism is known as the Brout-Englert-Higgs mechanism [6, 10],
and was confirmed in 2012 by the experimental discovery of the Higgs boson [11], the
gauge boson related to the Higgs field13.

Figure 1.4: The Standard Model of elementary particles, consisting of three generations
of leptons and three generations of quarks, along with corresponding antiparticles, as
well as the gauge bosons contained within the field theories [SU(2)L ⊗ U(1)Y ] and
SU(3)C and the Higgs boson originating from the Higgs mechanism. Figure taken
from [12].

1.2.2 Shortcomings

Despite the veracity of the Standard Model, withstanding the test of time throughout
the past 50 years and perhaps being the most predictive theory in all of Physics, it still

13Also the latest contribution to the Standard Model.
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remains a subject to unanswered questions. Some of which will be discussed in short
below.

Experimental observations within high energy physics

o Gauge couplings: The coupling constants of the Standard Model are all of similar
magnitude. This, in turn, provides a hypothesis of unification of the couplings at
some higher energy scale where their corresponding magnitudes intersect, ΛGUT ∼
1016 GeV. The Standard Model is believed to be the low-energy approximation
of this hypothesis, providing only a unification of the weak and electromagnetic
force. A theory which can render the unification of all fundamental forces, and the
coupling constants of the corresponding gauge interactions, is known as a grand
unified theory (GUT).

o Dark matter and dark energy: The necessity for dark matter first became a topic
of discussion when attempting to explain the velocity distribution of stars within
galaxies. It is believed to make up about 85% of all matter, and 27% of the
mass-energy density, present in the Universe, while the Standard Model achieves
to explain only about 5% of all mass-energy. There is no dark matter candidate in
the Standard Model, nor does the Standard Model provide a description of dark
energy. That is, the energy, which makes up about 68% of the mass-energy density,
required to provide the observed acceleration in the expansion of the Universe.

o Matter-antimatter asymmetry: After the expansion and temperature decrease of
the early Universe, the number of baryons and antibaryons remained approxim-
ately constant14, nB − nB ≈ constant. However, observations today imply that
the Universe is dominated by matter. How can this be? In order for a matter-
antimatter asymmetry to take place three conditions must be satisfied. The first
of which is non-constant baryon number. The second is deviation from thermal
equilibrium, and the third demands C and CP -violation to have taken place. The
Standard Model includes CP -violation in weak interactions between quarks and
leptons [4]. This alone, however, does not satisfy the sheer number of CP -violating
processes which must have taken place resulting in the observed baryon-antibaryon
asymmetry.

Theoretical aspects within high energy physics

o Free parameters: So far there are 25 free parameters within the Standard Model.
These are the results of measurements made in experiments, and include paramet-
ers such as fermion masses, gauge bosons masses, Higgs mass, coupling constants
and mixing angles of neutrinos and quarks. In other words, the values of these
parameters are not derived from any greater theoretical models.

14Referred to as the Big bang baryogenesis.
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o Gravity: The current description of gravity, the theory of General Relativity, does
not have an equivalent nor compatible quantum description at the Planck scale,
ΛPl ∼ 1019 GeV, contained within the Standard Model.

o Hierarchy problem: If the Standard Model were to describe a grand unified theory,
in other words, describing the interactions of particles approaching energy scales
such as ΛGUT ∼ 1016 GeV, the required loop corrections to the Higgs boson in-
creases in Λ2. This implies that the Higgs mass too must increase beyond that of
the electroweak scale. One of the theories postulating a solution to this problem
is that of supersymmetry, cancelling the loop corrections by the introduction of
sparticles, supersymmetric partners of particles.

1.3 Summary

Up until now we have taken a look at quantum field theory of which the Standard Model
of particle physics is based on, and some unanswered questions which the Standard
Model cannot account for. This motivates potential physics beyond the Standard Model.
In the next chapter we will have a look at why we cannot use the quantum field theory
description to incorporate quantum field theory into the Standard Model. In addition
we will have a look at a theory which proposes a solution to the hierarchy problem and
that of quantum gravity by the introduction of Kaluza-Klein partners of the graviton
propagating in extra dimensions.
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Chapter 2

Quantum Gravity and Extra
Dimensions

Gravitational effects on a quantum level only become significant at the Planck scale ∼
10−33 cm, where gravity couples to other particles as strongly as the other gauge bosons
do1. The length of the Planck scale is the equivalent wavelength a photon must have
to reach the corresponding energy of the Planck scale at approximately 1019 GeV. To
probe anything at this energy already proves a challenge, requiring massive engineering
feats not likely to happen in the nearby future. This is however not the only challenge
to overcome, the primary one being to find a theory of quantum gravity. Section 2.1
takes a look at how simply quantizing gravity leads to a non-renormalizable theory,
where the material from this section is based on Refs. [13] and [14]. Section 2.2 explores
physics beyond the Standard Model in the search for a theory of quantum gravity, and
is based on Refs. [15] [16], [17] and [18].

2.1 From the perspective of quantum field theory

In order to describe an appropriate quantum field theory we quantize the Lagrangian
density L governing the dynamics of a classical field. The Lagrangian for gravity is
incorporated in the Einstein-Hilbert action [13]

SEH =
1

16πGN

∫
d4x
√
−gR[g] ≡ 1

2

∫
d4x
√
−gR[g]M

2
Pl, (2.1)

1The value of 10−33 cm is quite a significant value, but perhaps difficult to envision. An example
would be taking a dot with the width of a human hair (∼ 0.1mm) and scaling this up to the size of
the observable universe (∼ 93 billion light-years). The Planck length would then be the equivalent size
of a human hair’s width within that “dot-universe”.
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where GN is the Newtonian gravitational constant, g ≡ det{gµν} is the metric2, R is
the Ricci curvature scalar and MPl ≡ 1/

√
8πGN ∼ 2× 1018 GeV is the reduced Planck

mass. A more detailed description of the metric and the Ricci scalar can be found in
Appendix A.

Just like any other quantum field theory, we assume there exists a hypothetical gauge
boson for gravity, just as the photon exists for electromagnetism. This hypothetical
particle is coined the graviton, and is the massless spin-2 propagator3 for our quantized
gravitational theory, excited from a field hµν . The graviton couples to anything carrying
energy and momentum, and since the graviton itself also carries energy and momentum
then MPl must also describe self-interactions.

We can incorporate the graviton into our gravitational field theory by perturbing
the flat space (Minkowski) metric, ηµν , with the field exciting the graviton, i.e.

gµν = ηµν +
1

MPl

hµν . (2.2)

Expanding the action in terms of hµν , we get

SEH =

∫
d4x[(∂h)2 +

1

MPl

h(∂h)2 +
1

M
2
Pl

h2(∂h)2 + . . .], (2.3)

where the first term describes the kinetic term of the graviton, while the cubic and
higher-order terms describe the self-interactions of the graviton. There are two remarks
one can take away from this theory of quantum gravity:

i) The relevant coupling for gravity in the quantum theory is κ ≡ 1/MPl, and the
higher-order interaction terms are suppressed by powers of MPl.

ii) Experiments today generally probe the electroweak scale, ΛEW ∼ 103 GeV. The
ratio of the electroweak scale and Planck scale is ΛEW /ΛPl ∼ 10−15, i.e. the
experience of quantum gravity on a daily basis is negligible.

When operating at low energies, gravity is weak. But, as we approach energies near the
Planck scale, the strength of gravity becomes comparable to the other three forces in the
SM. Couplings of this type are known as irrelevant [13]. Irrelevant couplings imply that
the field theory does not behave well at high energies. These types of theories are known
as non-renormalizable, due to the infinite number of counter-terms which are required to
tackle the divergences that appear in higher-order Feynman diagrams. In comparison to

2gµν describes the geometry of the background spacetime. As an example, QFT is set in a Minkowski
spacetime, i.e. a flat spacetime in four dimensions using the Minkowski metric ηµν . As opposed to the
metric notation common to most particle physicists, gµν = (+,−,−,−), the sign notation used for gµν

in this instance is (−,+,+,+).
3A scalar (spin-0) field contradicts the equivalence principle, which states that the gravitational

potential is independent on velocity. A vector (spin-1) field results in like charges repelling each other,
which is not what we see in gravitation where positive masses attract each other. A tensor (spin-2)
field not only allows positive masses to attract, but it also gives the gravitational inverse square-law
and obeys the equivalence principle.
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QED and QCD, whose coupling constants are dimensionless, the divergences that occur
from the vertices in Feynman diagrams in quantum gravity cannot be renormalized
away.

2.2 From the perspective of extra dimensions

The idea of extra dimensions was first motivated by Theodor Kaluza [19] in 1921 in
an attempt to unify electromagnetism and gravitation by the introduction of a fifth
dimension on a classical level. The theory of Kaluza was quantized by Swedish physicist
Oscar Klein [20] who interpreted the fifth dimension as being microscopic and curled
up as a circle with radius R, where R is the order of the Planck length. This solves
the problem of not seeing the extra dimension in our day-to-day lives, but on the
other hand complicates our search for the extra dimension as this radius is much too
small to ever detect, at least with the experimental equipment available to us today.
Additionally, the calculated electron mass in the Kaluza-Klein theory turns out to be
1022(!) times heavier than the physical mass of the electron [18]. More modern theories,
discussed in subsections 2.2.2 and 2.2.3, approach the subject of gravity contained in
extra dimensions from a slightly different perspective; by using geometrical objects
known as branes.

2.2.1 Branes

Branes are theoretical geometrical objects floating around in a higher-dimensional space-
time. We distinguish between different branes by the p number of dimensions they
represent, and the umbrella term for branes is thus p-branes. For example, a 0-brane is
a point-like particle, a 1-brane is a string, and a 2-brane is a two-dimensional surface
much like a membrane4 [21].

2.2.2 ADD model

In the previous section it was assumed that Planck scale is the fundamental short-
distance scale setting the strength of the gravitational interaction. But how can we ever
probe gravity at distances ∼ 10−33 cm? What if we instead were to use the experimental
certainty of the weak scale, mEW , as the only fundamental short-distance scale in the
Universe, thereby removing the premise of the Planck distance? But that also begs the
question; how does the usual gravitational coupling strength arise in such an alternative
theory?

The above question is what the ADD model [17, 22] attempts to answer, by localizing
the Standard Model to a (3+1)–brane immersed by n large extra dimensions of radius
R. In this (4 + n)-dimensional theory, the Planck scale MPl(4+n) is then approximated
as mEW . The gravitational potential V (r) between two masses m1, m2 separated at a

4Perhaps a more intuitive example would be the ocean effectively acting as a 2-brane, being a part
of the surface of the Earth, floating around in a (3+1)-dimensional Universe (as far as we know).
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distance r then becomes

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1

rn+1
, r � R,

V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n

1

r
, r � R.

(2.4)

In the case r � R we retrieve the usual 1/r dependence, as the gravitational flux lines
do not continue to penetrate further into the extra dimensions [17], and thus rn ≈ Rn.
By setting MPl(4+n) ∼ mEW , we can from the square of the 4-dimensional MPl,

M2
Pl ∼M2+n

P l(4+n)R
n, (2.5)

find the radius R of the n’th extra dimension,

R ∼ 10
30
n
−17cm×

(
1TeV

mEW

)1+ 2
n

. (2.6)

From eq. (2.6), the number of extra dimensions n must be greater or equal to two5.
Thus, it is the size of the extra dimensions which introduces the hierarchy of the graviton
coupling strength compared to other gauge couplings in our (3+1)-dimensional world.

As the graviton couples too weakly to be detected in a detector, one way to test the
physical consequences of the ADD model is to search for excitations of gravitons in the
form of missing energy /ET from collider experiments6.

2.2.3 Randall-Sundrum model

From the beginning, the ADD model in subsection 2.2.2 employs a metric which is
independent of the coordinates of the extra dimensions. This strategy has two main
rippling effects in the theory. The first being that the n extra dimensions must be
compact in order to be consistent with the well-tested gravitational theory of Newton
and that of General Relativity, whereas the (3+1) spacetime dimensions, confined to the
brane where the SM resides, remain non-compact. The second consequence is that MPl

depends on the size of the extra dimensions. The Randall-Sundrum (RS) model [15, 16]
approaches quantum gravity from a different perspective, in which they do not assume
the metric to be independent of the extra-dimensional coordinates. This again leaves
behind two main consequences signifying the framework of the RS modell. That is,
that the universe consists of 4 + n non-compact dimensions, and that MPl is no longer
dependent on the size of the extra dimensions but rather curvature. The description of
the Randall-Sundrum model is based on Refs. [15] and [16].

5When n = 1, R ∼ 1013cm, deviating from the predictions of Newtonian gravity over large distances.
If n = 2 then R ∼ 100µm− 1mm.

6When a graviton is emitted in a process it will propagate to higher dimensions, thereby leaving
behind missing energy in the detector.
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Framework of the RS model

The set-up for the Randall-Sundrum model is two flat (3+1)-branes embedded in a
five-dimensional bulk spacetime, referred to as the “5D bulk”. The SM particles and
forces reside on one brane, also known as the TeV-brane7. The second brane, placed
a certain distance from the TeV-brane, is known as the Planck brane and is where
gravity is concentrated. The two branes thereby act as boundaries to the fifth dimension
orthogonal to the branes.

The metric

The metric for this scenario is a function of the four-dimensional metric multiplied by
an exponential “warp”-factor described by the fifth dimension,

ds2 = e−2krcφηµνdx
µdxν + r2

cdφ
2, (2.7)

where k is on the order of the Planck scale8, φ ∈ [0, π] is the extra-dimensional coordin-
ate whose interval size is set by rc, with rc interpreted as the curvature of the fifth di-
mension, and xµ are the usual four-dimensional coordinates. ηµν = diag(1,−1,−1,−1)
is the flat-space metric. The Planck-brane is placed at φ = 0 while the TeV-brane is
placed at φ = π. There are different variations of the RS model. The first of which is
that one assumes the fifth dimension to be confined to a finite volume, where the branes
thereby act as the boundaries for the fifth dimension, also known as the RS1 model. The
second is where we assume the fifth dimension to have an infinitely large volume and
that the TeV-brane is put somewhere inside this volume. This infinitely large volume
model is coined the RS2 model. A natural consequence arising from warped geometry
is a scaling dependency, expressed in terms of the factor e−2krcφ. I.e. at any point
along rcφ between the Planck and the TeV-brane the scaling decreases exponentially,
thereby suppressing the gravitational force as it fluctuates across the bulk towards the
TeV-brane. In addition, due to the warping of spacetime, the physical masses m ob-
served in our (3+1)-dimensional world positioned at φ = π is due to the scaling of some
fundamental mass scale m0, that is

m = e−2krcφm0, (2.8)

where krc ≈ 10 [15].

Kaluza-Klein modes

The gravitational fluctuations within the RS model satisfy the wave equation

(∂µ∂
µ − ∂j∂j + V (zj))ĥ(xµ, zj) = 0 (2.9)

7An anlaog for particles being “stuck” to a lower dimensional brane in a 5D bulk, can be water
droplets being “stuck” on a 2D shower curtain in a 3D world.

8k is related to the energy on the branes and in the bulk.

25



with µ ∈ [0, 3] and j labelling the additional dimensions. Arising from the curvature is
the so-called ”volcano-potential” V (zj),

V (zj) =
15k2

8(k|zj |+ 1)2
− 3k

2
δ(zj) (2.10)

which describes a decreasing quantum mechanical potential away from the Planck brane.
The shape of this potential is seen in figure 2.1. We may rewrite the higher-dimensional

Figure 2.1: Quantum mechanical potential for the continuous KK-modes, dubbed the
”volcano-potential” in red, from Ref. [23]. The volcano-potential is made up by (a) a
δ-function at the Planck brane representing a single bound state, being the zero-mode
graviton (particle that communicates the force of gravity), and (b) the potential for the
KK-modes.

gravitational fluctuations ĥ(xµ, zj) in terms of four-dimensional Kaluza-Klein modes
(KK-modes), i.e. ĥ(xµ, zj) = eipẋψ̂(zj). These modes describe the KK-partners of the
graviton, particles which carry momentum in the extra dimension9. From the δ-function
there exists a single bound state on the Planck brane, which is described as the zero-
mode associated with the massless graviton, communicating the force of gravity. The
wavefunction in the fifth dimension is defined as[

−m2

2
e−2ky − 1

2
∂2
y − 2kδ(y) + 2k2

]
ψ(y) = 0, (2.11)

with m being the four-dimensional mass of the KK-excitation, and y ≡ rcφ representing
the coordinate in the fifth dimension. The continuum KK-modes all have m2 > 0, and
will be quantized according to the fundamental unit of energy on the TeV-brane. Thus,
in theory, there can exist multiple graviton excitations with mass at the TeV scale10, as

9KK-modes are particles which move in the bulk. Being the manifestation of spacetime itself, gravity
(mediated by the graviton) propagates in all dimensions and must be the only force propagating in
the bulk as forces described by the SM are confined to the TeV-brane. Thus, the KK-modes must be
partners of the graviton.

10I.e. there may exist a 1 TeV graviton, 2 TeV, 3 TeV and so on.
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determined by the coupling k/MPl. The reason the KK-modes are interesting is their
coupling strength, which is proportional to TeV−1 compared to the massless graviton
whose coupling strength is proportional to M

−1
Pl . That is, the KK-particles couple

approximately 1015 times more strongly than the graviton. This brings about another
important point, the motivation for this thesis; a KK-particle interacts like a weak-
scale particle, and can therefore decay in the detector. This allows us to detect it
as a resonance via its decay products. The width of these resonances is proportional
to (k/MPl)

2, and we can thus expect narrow resonances for k/MPl ≤ 1. The most
probable KK-mode we can detect in a detector, given the current energy range in
collider experiments, is the lightest KK-mode denoted G∗. One can search for graviton
excitations in pp collisions via processes such as qq̄ → G∗ → l+l− and gg → G∗ → l+l−,
visualised by the Feynman diagrams in figure 2.2.

Graviton spin signature

When demonstrating that a resonance in the data indeed belongs to the graviton, and
not some other exotic object, we can utilize the angular distribution. Since a spin-2
intermediate state is unique to the graviton we can use statistics to differentiate between
the angular distributions in collisions, and exclude any particles which may exhibit a
spin-1 or spin-0 signature. The angular decay distribution for a graviton, a vector and
a scalar boson decaying to a fermion-antifermion pair is shown in table 2.1.

Table 2.1: Angular distributions for a graviton (G), a vector (V) and a scalar (S) boson,
with θ∗ being the angle between a final state fermion and the beam direction in the
centre-of-mass frame of colliding protons. The angular distribution for the graviton is
found in Ref. [24].

Process Distribution
qq̄ → G→ ff̄ 1− 3 cos2 θ∗ + 4 cos4 θ∗

gg → G→ ff̄ 1− cos4 θ
gg, qq̄ → V → ff̄ 1 + α cos2 θ∗

gg, qq̄ → S → ff̄ 1

Gravitational potential

The non-relativistic gravitational potential between two particles, m1 and m2, on the
TeV-brane is expressed as

V (r) ∼ GN
m1m2

r
+

∫ ∞
0

dm
GN
k

m1m2e
−mr

r

m

k
, (2.12)

which, when integrating over dm, is written as

V (r) = GN
m1m2

r

(
1 +

1

r2k2

)
. (2.13)
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The leading term describes the familiar Newtonian potential, and arises from the zero-
mode. The correction term stems from the continuous KK-modes and is considered to
be extremely suppressed. Even in the relativistic limit, all proper relativistic corrections
are found [16]. One can therefore consider the Randall-Sundrum model to be an effective
four-dimensional theory of gravity.

q

q̄

l−

l+

G∗

g

g

l−

l+

G∗

Figure 2.2: With time moving from left to right, these Feynman diagrams describes the
processes of (left) qq̄ → G∗ → l+l− and (right) gg → G∗ → l+l−.

2.3 Summary

In this chapter we have taken a look at the behaviour of quantum gravity as a field
theory, and how extra-dimensional models attempt at describing quantum gravity.. The
ADD and RS models attempt at resolving the hierarchy problem by specifically confining
the Standard Model to a (3+1)-brane floating around in a higher dimensional space,
while gravity propagates either in n large, extra dimensions (ADD), or constricting
gravity to another brane, acting as a boundary to a fifth dimension (RS). For the
remainder of this thesis we will explore the manifestation of gravity at the microscopic
scale in presence of extra dimensions using the predictions of the Randall-Sundrum
model, in which we will search for potential graviton mass resonances in pp collisions.
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Part II

Production and Detection
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Chapter 3

Production

In the previous chapter we had a look at the theoretics of the Standard Model, and the
phenomena it could not account for. In this and the next chapter we take a look at
practical applications and the tools available to us in the search for new physics. The
material in this chapter is based on Refs. [2] and [25].

3.1 Kinematics of particles

The motion of a particle is described by its four-momentum, which, to better account
for the geometry of the detector, is expressed in terms of polar angle θ and azimuthal
angle φ,

pµ = (E, px, py, pz) = (E, pT cosφ, pT sinφ, |p| cos θ), (3.1)

where the transverse momentum is expressed as pT ≡
√
p2
x + p2

y = |p| sin θ. Both the
energy and the momentum vector can be expressed as relativistic quantities, that is
E = γm and p = γmβ, where γ = 1/

√
1− β2 and β = v/c. The four-momentum

squared results in the Lorentz-invariant quantity

m2 = pµpµ = E2 − |p|2, (3.2)

known as the square of the invariant mass. For a system containing n particles, m2 is
expressed as

m2 = pµpµ =

(
n∑
i=1

Ei

)2

−

(
n∑
i=1

pi

)2

. (3.3)

In this analysis, an interaction of the type 2→ 2 collision is of interest1. The invariant
mass of two final state leptons will be denoted as mll. The total energy in the centre-
of-mass (CM) frame, denoted

√
s, is equivalent to the square-root of the quantity in

eq. (3.3).
In collisions between hadrons, the CM-frame is not between the partons2 but rather

1See figure 2.2 for the exact Feynman diagrams.
2The constituent quarks and gluons which make up a hadron.
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the hadrons themselves, where the net longitudinal momentum is given as a function of
the energy of the hadron. Thus, the final state particles of a process such as pp→ l+l−

are boosted along the beam axis. We introduce a kinematic property known as the
rapidity, y, used to express the lepton angles. The differences in rapidity between
particles remain Lorentz invariant under boosts along the beam axis. In the high-energy
limit where lepton masses can be neglected we use the property of pseudorapidity, η,
where pz ≈ E cos θ,

y ≡ 1

2
ln

(
E + pz
E − pz

)
, η = − ln

(
tan

θ

2

)
, (3.4)

where the measurable quantities E and pz represent the energy and momentum z-
component of a lepton. The smaller the scattering angle from the beam axis is, the
greater |η| becomes. If there is a backwards scattering the pseudorapidity turns negative.
Additionally, to describe the amount of “activity” around a lepton, we can define a circle
of radius ∆R in (η, φ)-space surrounding the lepton,

∆R =
√

(∆η)2 + (∆φ)2. (3.5)

The centre of the circle carries the majority of the momentum, while further out towards
∆RR we find particles carrying lower energies. ∆R is also used to characterise the
distance between two particles in (η, φ) space.

3.2 Proton-proton collisions

An important parameter in collider physics is the instantaneous luminosity L(t) which,
along with the cross-section σ, determines the number of interactions N taking place
in a collider,

N = σ

∫
L(t)dt, where L = f

n1n2

4πσxσy
, (3.6)

where σx,y denotes the beam size, f the frequency of bunch crossings, and n1,2 the
number of particles in two colliding bunches. The cross-section is expressed as

σ =

∫
dσ

dΩ
dΩ, where

dσ

dΩ
=

1

F

dN

dΩ
, (3.7)

and describes the probability for an interaction to occur. The differential cross-section
dσ/dΩ describes the N number particles scattered into a solid angle dΩ per unit time
per unit flux F (with F being equivalent to the instantaneous luminosity).

3.2.1 Parton distribution functions

At high energies the cross-section for inelastic scattering dominates. As the proton
is a mixture of three quarks, denoted valence quarks, the quarks are viewed as free
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Figure 3.1: Product of proton momentum fraction, x, and parton distribution func-
tion, f(x,Q2), calculated at next-to-leading order (NLO) for two different values of the
momentum transfer (Q2 = 10 Gev2 and Q2 = 104 GeV2). Taken from Ref. [26].

particles and interact elastically in deep inelastic collisions3. Each quark carries a
certain momentum fraction x, known as Bjorken x, of the proton momentum. In high-
energy collisions where the proton mass can be neglected, the invariant mass of two
colliding partons q1 and q2, with momentum fractions x1 and x2 from protons p1 and
p2 respectively, is expressed as

m2 = x1x2s, (3.8)

where s is the centre-of-mass energy squared of the proton-proton system. The valence
quarks within a proton do not only interact with one another by the exchange of virtual
gluons, they also emit gluons which decay into qq̄-pairs, giving rise to a “sea” of gluons
and quarks surrounding the valence quarks. The momenta of partons is dependent on
the momentum transfer Q2 and is represented by an experimentally determined mo-
mentum distribution, known as a parton distribution function (PDF)4 f(x,Q2). That
is, the PDF gives the probability for a parton to go into a collision process with mo-
mentum fraction x. Examples of PDFs multiplied with the momentum fraction, xf(x),
at two different energy scales of Q2 is shown in figure 3.1. At high Bjorken x the PDFs
decrease rapidly. The PDFs at low Bjorken x manifest themselves in what is commonly
referred to as parton-luminosity tails [27], whose size increases with the resonance width
(explained in subsection 3.2.2).

Figure 3.2 shows the schematics of the process pp→ l+l−+X. The two protons each
carry a total momentum p1 and p2 along the beam line, respectively. If a quark from
p(p2) emits a gluon, and the gluon in turn produces a quark-antiquark pair, then the

3When approaching high enough energies, the collisions between two protons causes each proton
to “break apart”. The interactions then occur between the partons themselves in the form of elastic
collisions.

4The contribution of sea quarks is mostly noticeable at low x, due to the suppression of gluon
production from 1

q2
.
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antiquark (carrying momentum x2p2) could collide with another valence quark (carrying
momentum x1p1) from proton p(p1) giving a lepton pair in the final state. The cross-

l−

l+

p1

p2

x1p1

x2p2

Z/γ

Figure 3.2: Feynman diagram (with time moving from left to right) for the process
pp → l+l− + X, where X denotes any hadrons formed by the remaining quarks not
taking part in the s-channel collision between the qq̄-pair carrying momentum fractions
x1 and x2 from protons p(p1) and p(p2), respectively.

section for the process pp→ l+l− +X is [1]

σ(p(p1) + p(p2)→ l+l− +X) =

1∫
0

dx1

1∫
0

dx2

∑
f

ff (x1)ff̄ (x2) · σ(qf (x1p1) + q̄f (x2p2)→ l+l−), (3.9)

where σ(qf (x1p1) + q̄f (x2p2)→ l+l−) is calculated at the lowest order according to the
Feynman diagram drawn at tree-level in figure 3.2.

3.2.2 Breit-Wigner resonance

For an unstable particle, such as the Z boson, the total decay rate (the inverse of the
mean particle lifetime τ) is included in its wavefunction, ψ ∝ e−imte−Γt/2 = e−it(m−iΓ/2).
The finite lifetime is also included in the propagator, such that

σ ∝
∣∣∣∣ 1

q2 −m2
Z + imZΓZ

∣∣∣∣2 =
1

(s−m2
Z)2 +m2

ZΓ2
Z

. (3.10)

As the centre-of-mass energy approaches mZ a peaked resonance at the invariant mass
of the unstable particle, referred to as a Breit-Wigner resonance, can be seen in the
distribution of cross-section vs.

√
s. The decay width Γ is the equivalent of the full width

at half-maximum (FWHM) of the corresponding resonance. According to Heisenberg’s
uncertainty principle, ∆E∆t ≥ ~/2, the smaller the particle lifetime is the greater the
uncertainty in its energy becomes.

3.3 Summary

Using the kinematic properties of particles and the knowledge of how they interact in
proton-proton collisions we can try and detect them in the real world, by initiating
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a reaction from the particles using matter. The next chapter looks into the different
interactions particles have in matter and how these reactions can be used to detect and
identify the particles in a closed environment.
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Chapter 4

Particle Detection and
Identification

In order to test a theory we must know how to detect particles in the real world. In this
chapter, we will distinguish between the interactions of light particles, such as electrons,
from the interactions of heavier particles, such as muons and hadrons. We will make
use of Refs. [25] and [28] to describe the interactions of particles in matter, and Ref. [29]
when describing the detector setup used in the identification of particles. The detector
setup will be supplemented by Refs. [30] and [31] to characterise the reconstruction and
identification techniques used.

4.1 Interactions of particles in matter

The passage of particles through matter is characterised by two distinct features; (i) the
energy loss of a particle and (ii) the deflection of a particle from its initial trajectory. All
charged particles interact via electromagnetism due to the range of the Coulomb force.
The electrons and nuclei within an atom contained in the absorbing material, which
the particles are travelling through, deflect the particles from their incident direction by
exerting either a repulsive or attractive force. The amount of deflection depends on the
mass of the particle, i.e. the greater the mass of passing particles the smaller the deflec-
tions. We distinguish between the interactions of light particles (electrons/positrons)
and heavier particles (particles with mass heavier than the electron).

4.1.1 Interactions of heavier particles

Most particles interact via inelastic collisions, where parts of the kinetic energy is trans-
ferred from the deflected particle to the atom contained in the material, either exciting
or ionizing it. The energy loss from one such interaction is quite small, but the cumu-
lative energy loss from a consecutive number of such interactions1 leads to a continuous
decrease in the particle’s energy. The decrease in energy per unit length for a particle,

1Which can be described as a stochastic process.
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with charge ze and velocity v, traversing a material, with number density N and atomic
number Z, is described by the Bethe-Bloch formula [28],〈

−dE
dx

〉
=

4πe4z2

m0v2
NB, (4.1)

where

B ≡ Z
[
ln

2m0v
2

I
− ln

(
1− v2

c2

)
− v2

c2

]
,

with m0 being the particle rest mass, e the electron charge and c the speed of light. The
relative parameter I is determined experimentally and describes the average excitation
and ionization potential of the material. In essence, as the particles are slowed down
their energy loss increases approximately logarithmically, such that the energy loss per
unit length is greater towards the end of its path. This can be explained by the time the
particle spends next to an electron; as the velocity of a particle decreases the amount of
interaction time increases, thus allowing for a greater amount of energy to be transferred.
The potential for energy loss increases for particles with a higher charge, as described
by the z2-dependence in eq. (4.1).

4.1.2 Interactions of electrons and photons

Electrons predominantly lose energy by scattering2 at low energies. Due to the small
mass of the electron we can no longer assume that the incident particle remains un-
deflected during a collision process. In addition, the collisions now take place between
identical particles. These two considerations must be taken into account as corrections
to the Bethe-Bloch formula3.

As the electron/positron approaches higher energies, the main source for energy loss
will stem from bremsstrahlung, meaning braking radiation in German. Bremsstrahlung
occurs when an electron is decelerated by the Coulomb force exerted by a nucleus. The
change in kinetic energy manifests itself in the form of a photon, emitted from the elec-
tron. The emission probability σ for bremsstrahlung to occur is inversely proportional
to the particle’s mass squared, σ ∝ (e4/m2) [28]. The emission probability for radiation
by muons, the next lightest particle, is on the other hand some 40 000 times smaller
than that for electrons.

The energy at which the energy loss from radiation is equal to that from collisions,(
dE

dx

)
rad

=

(
dE

dx

)
col
, E ≡ Ec, (4.2)

coined the critical energy Ec, is related to the charge Z of the nucleus and is Ec ≈
800me/(Z + 1.2) [28]. The critical energy acts, in essence, as the lower limit for when

2The term scattering can here mean processes such as excitation or ionization of atoms from inter-
actions between electrons, e−e− → e−e−.

3The reader is referred to eq. (2.63) on p. 35 in Ref. [28] for the exact expression.

38



bremsstrahlung dominates completely. We thus decompose the energy loss for an elec-
tron into a radiation term (rad) and a collision term (col),

dE

dx
=

(
dE

dx

)
rad

+

(
dE

dx

)
col
. (4.3)

Photons interact with matter via (i) photoelectric effect4 (E ∼ keV), (ii) Compton
scattering5 (E ∼ MeV) and (iii) pair-production6 (E > 1.022 MeV). Final state elec-
trons interacting with nearby nuclei might emit photons via bremsstrahlung which yet
again could undergo pair-production. This cascade of electrons, positrons and photons
is known as an electromagnetic shower, and is illustrated in figure 4.1. The shower
continues until the energy of the pair-produced electrons and positrons drop below the
critical energy Ec determined by eq. (4.2).

The average length over which the energy of an electron is reduced by a factor 1/e
is known as the radiation length X0,

X0 ≈
1

4αnZ2r2
e ln
(
287/Z1/2

) , with re =
e2

4πε0mec2
, (4.4)

where re is the classical radius of the electron and n is the number density of nuclei.
The mean energy 〈E〉 of the radiated particles in the shower decreases rapidly from the
energy E of the initial particle as a function of the number of radiation lengths x, that
is

〈E〉 ≈ E

2x
. (4.5)

The maximum number of radiation lengths, xmax, is reached when 〈E〉 ≈ Ec. From
eq. (4.5) then,

xmax =
ln(E/Ec)

ln 2
. (4.6)

The critical energy varies from material to material. For example in a high-Z material,
such as lead, a 100 GeV shower reaches a maximum length of xmax ∼ 13X0.

4.1.3 Hadronisation

Particles consisting of partons, that is hadrons such as protons and pions, are the colour
singlet bound states of quarks/antiquarks which carry zero colour in total. This is a part
of the colour confinement hypothesis in which only colour singlet states can be observed

4When a photon transfers all its energy to a bound electron. In order for momentum to be conserved,
any recoil momentum is absorbed by the nucleus.

5Scattering of photons on free electrons. Although electrons in matter are bound, they act free if
the photon energy is sufficiently high compared to the binding energy.

6Occurs when a photon is near a nucleus of charge Z, γ + Z → Z + e+ + e−. The energy must be
higher than 1.022MeV, the combined rest mass of an electron and positron.
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Figure 4.1: Illustration of an electromagnetic shower. An incoming electron radiates a
photon at radiation length 1X0. At radiation length 2X0 the emitted photon undergoes
pair production, and the cascade continues until the energy is no longer sufficient for
a pair-production, or bremsstrahlung becomes suppressed compared to other processes
such as ionization. X0 is not a fixed length, as the processes which determine X0, i.e.
bremsstrahlung and pair-production, are stochastic processes by nature. Figure taken
from Ref. [2], p. 19.

in Nature, putting the restriction on colour wavefunctions, ψc, to be anti-symmetric.
Due to colour confinement we never observe a free quark or gluon in Nature. Quarks
can be indirectly observed within colourless hadrons contained within jets formed by
hadronisation. This process occurs when quarks within bound states begin to separate
from one another at high energies. This causes the gluon field between them to reach
energies sufficient to create a new qq̄-pair, due to the strong field lines narrowing as
the quarks continue to separate. An exception to hadronisation is the top quark which
decays before hadronisation can occur due to its short lifetime.

4.2 The ATLAS detector

The ATLAS (A Toroidal LHC ApparatuS) detector is a general multi-purpose detector,
located at the LHC (Large Hadron Collider), which provides us with the necessary
information regarding decay products from colliding pp beams. The ATLAS detector
provides nearly full solid-angle coverage around the interaction point (IP) in a collision7.
Figure 4.2 visualises the four main sub-detectors of ATLAS; (i) the inner detector (ID),
(ii) electromagnetic calorimetry (ECal), (iii) hadronic calorimetry (HCal) and (iv) the
muon spectrometer (MS). These are described in short throughout subsections 4.2.1–
4.2.3, which are in large part based on the information provided in Ref. [29]. The

7The ATLAS detector operates with cylindrical coordinates. That is, (r, φ) used in the transverse
plane, with φ being the azimuthal angle around the z-axis, and the polar angle θ, often expressed in
terms of η = − ln tan(θ/2). The z-axis points longitudinally along the beam line, the y-axis points
upward in the transverse plane, and the x-axis points toward the center of the LHC ring from the IP.
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performance of the detectors are characterised in terms of their momentum and energy
resolutions [25] (σpT /pT and σE/E respectively)

σE
E

= a/
√
E ⊕ b, σpT

pT
= cpT ⊕ d, (4.7)

where x ⊕ y is shorthand notation for
√
x2 + y2. a describes stochastic fluctuations

in the energy and b the non-uniformity in a medium. The tracking term c takes into
account the finite accuracy when measuring deflection angles of particles in a magnetic
field, while d takes into account multiple scattering. Table 4.1 shows the energy and
momentum resolutions for the different sub-detectors.

Figure 4.2: Illustration of the ATLAS detector layers, taken from Ref. [32].

Table 4.1: Momentum and energy resolutions for each sub-detector with corresponding
pseudo-rapidity coverage η. The units for pT and E are given in GeV. Values are taken
from Ref. [29].

Sub-detector Resolution η coverage
Inner detector σpT /pT = 0.05%pT ⊕ 1% ±2.5

EM calorimetry σE/E = 10%/
√
E ⊕ 0.7% ±3.2

Hadronic calorimetry (jets) σE/E = 50%/
√
E ⊕ 3% ±3.2

σE/E = 100%/
√
E ⊕ 10% 3.1 < |η| < 4.9

Muon spectrometer σpT /pT = 10% at pT = 1 TeV ±2.7
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4.2.1 Inner detector

Immersed in a 2 T magnetic field and , covering a total region of |η| < 2.5, the inner
detector provides first measurements of the momenta and the identification of particles
carrying an electric charge. It is made up of three independent systems; the pixel
detector, the semiconductor tracker (SCT) and the transition radiation tracker (TRT).
The pixel detector, the innermost part of the ID, consists of silicon-strip electronic mod-
ules8 providing tracking and momentum measurements. The SCT provides precision
tracking in which a track passes by eight layers consisting of silicon modules.

The outermost part of the ID, the TRT, provides both tracking and identification of
particles with |η| < 2.0 by the use of multiple straw tubes surrounded by gas contained
within either polymer fibres or foils9. The fibres/foils act as a boundary between two
different media that the relativistic particles pass through, thereby emitting transition
radiation. The TRT discriminates between electrons and hadrons, such as pions, by the
Lorentz factor, γ = E

m , of the particle. If both particles were to carry the same energy
E, a high Lorentz factor would indicate the detection of an electron due to its lower
mass m compared to a heavier hadron. This is the same as looking at the ratio p/E. If
p/E ∼ 1 then the mass of the particle must be light, whereas if p/E � 1 we must be
looking at a heavier hadron.

4.2.2 Calorimetry

The ECal is made up of a barrel and two end-cap components. It contains liquid-argon
(LAr) electromagnetic (EM) calorimeters which measure the energy deposits of charged
particles within a range |η| < 3.2. It measures the energy deposit of particles in energy
clusters and determines the corresponding energy loss.

The emission probability of bremsstrahlung is as mentioned proportional to the in-
verse mass squared, which was the reason why hadrons primarily lose energy via inelastic
collisions and not radiation. For this reason, most hadrons are detected in the HCal.
The HCal consists of alternating iron plates and scintillating tiles providing energy
measurements of jets.10 The HCal covers |η| < 1.7. Combined, the total calorimetry
covers |η| < 4.9.

4.2.3 Muon spectrometer

Any charged particles, such as the minimum-ionising muons, making it past both the
ECal and the HCal are measured in the MS. The MS holds a strong magnetic field

8As a charged particle moves through one of the modules it ionises the atoms within the silicon
strip. The emitted electrons form an electric current which is then read out signalling the position of
where the particle passed by.

9Charged particles moving through the gas ionise the atoms within. The distance of the liberated
electrons to the tubes is determined by the electrons’ drift time (at most 40ns), and one can thereby
infer the track of particles moving through the multiple drift tubes.

10The scintillating tiles emit light when a charged particle passes through. This light is then converted
to an electric current by photo-multiplier tubes, providing information on the total energy deposit of
hadrons.
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bending the muons, providing optimised muon momentum resolution from the meas-
urements of the sagittae of the track curvatures. It covers |η| < 2.7, and consists of three
main components, each providing magnetic deflection; a barrel (|η| < 1.4) and two-end
cap components (1.6 < |η| < 2.7) inserted at the end of the barrel. The magnetic
bending in the transition region (1.4 < |η| < 1.6) is provided by both barrel and the
end-caps and is lower than in the other pseudorapidity regions. The MS consists of four
separate chambers, the first of which is the Monitored Drift Tubes (MDTs) providing
precision measurements of track coordinates covering most of the pseudorapidity-range.
The Cathode Strip Chambers (CSC) contribute towards larger |η| (2.0 < |η| < 2.7)
providing a higher granularity. Furthermore, the gaseous Resistive Plate Chambers
(RPCs) situated in the barrel, and Thin Gap Chambers (TGCs) which are used in the
end-cap regions, make up the trigger system used to characterise the trigger levels for
low- and high-pT muons.

Muon momentum resolution

From Ref. [33], the muon momentum resolution in the MS is expressed as

σpT
pT

=
pMS

0

pT
⊕ pMS

1 ⊕ pMS
2 · pT , (4.8)

where pMS
0 is related to the energy loss, pMS

1 to multiple scattering11, and pMS
2 to the

position resolution. The muon momentum resolution in the ID is expressed as

σpT
pT

= pID
1 ⊕ pID

2 · pT , for |η| < 1.9,

σpT
pT

= pID
1 ⊕ pID

2 ·
pT

tan2 θ
, for |η| > 1.9,

(4.9)

where pID
1 represents multiple scattering, and pID

2 the intrinsic resolution terms. The
tan2 θ-term accounts for curvature measurement when the track length of a muon is
reduced, as is the case close to the boundary of the TRT, i.e. |η| ≤ 1.9. From eqs. (4.8)
and (4.9) the p1-term dominates the momentum resolution at low pT . However, at high
pT it is the p2-term that will dominate. From table 4.2 we see that the ID provides
a better tracking resolution for high-pT muons with 2.0 < |η| < 2.5. However, for
|η| < 2.0 it is the MS which clearly comes out on top for high-pT muons.

4.2.4 Triggering system

From 40MHz data available, that is a bunch crossing occurring every 25 ns, ATLAS has
the capability of storing about 1 kHz data. Because of the restricted storage capacity,
we need to filter out the events which are worth storing from those that are not. The
triggering system is therefore significant in determining the amount of statistics that
contain interesting events, and are made available to an analysis. The triggering system

11This coefficient is mostly relevant when extrapolating tracks from the MS to the ID.

43



Table 4.2: Muon momentum resolutions in the ID and MS. A coefficient is denoted N/A
if it is not used as a parameter in eqs. (4.8) or (4.9). These values are obtained from
Ref. [33].

η region pMS
0 [Tev] pMS

1 [%] pMS
2 [TeV−1]

|η| < 1.05 0.25± 0.01 3.27± 0.05 0.168± 0.016
1.05 < |η| < 1.7 0 6.49± 0.26 0.336± 0.072
1.7 < |η| < 2.0 0 3.79± 0.11 0.196± 0.069
2.0 < |η| < 2.5 0.15± 0.01 2.82± 0.58 0.469± 0.028

η region pID
0 [Tev] pID

1 [%] pID
2 [TeV−1]

|η| < 1.05 N/A 1.55± 0.01 0.417± 0.011
1.05 < |η| < 1.7 N/A 2.55± 0.01 0.801± 0.567
1.7 < |η| < 2.0 N/A 3.32± 0.02 0.985± 0.019
2.0 < |η| < 2.5 N/A 4.86± 0.22 0.069± 0.003

consists of a hardware-based first-level trigger (L1) and a software-based high-level
trigger (HLT). The L1 trigger is the primary module deciding which events to keep or
not, within a time-slot of 25 ns before the next bunch crossing arrives. Events accepted
by the L1 trigger is then passed on to the Read-Out System (ROS) and the HLT. The
HLT puts additional constraints on the kinematic properties of particles. Events passing
both the L1-trigger and the HLT are then passed on to “offline” selections for further
analysis.12

4.2.5 Object definitions

In the reconstruction of particles in the ATLAS detector there are two parameters
proving quite useful to get familiar with:

o d0: The transverse impact parameter, i.e. the shortest distance from the recon-
structed particle to the interaction point in the transverse direction.

o z0: The longitudinal impact parameter, i.e. the shortest distance from the recon-
structed particle to the interaction point along the longitudinal direction (along
the beam line).

The particles which originate from the primary vertex are denoted signal or prompt.
Selection cuts are made to distinguish between prompt leptons and uninteresting back-
ground leptons which may originate from hadrons misidentified as leptons and semileptonic
decays of hadrons in the ID13.

12An “online” selection refers to the kinematic constraints put on events during data-taking, and is
performed by the triggers. An “offline” selection refers to any further requirements put on the events
by a user once data have been stored.

13See Section 6.1 for the different types of processes yielding either prompt or non-prompt leptons
considered in this thesis.
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4.3 Reconstruction and identification of leptons

In the search for new physics in pp collisions, it is essential to reconstruct and identify
particles from prompt decays of e.g. weak gauge bosons W± and Z, and distinguish
them from particles originating from misidentified hadrons, photon conversions, and
leptons produced from heavy-flavour decay. The capability of doing so is restricted by
the peak luminosity achieved and pile-up (overlapping collisions) in the detector. This
necessitates improved reconstruction techniques to achieve higher efficiencies in the
identification of leptons. As electrons and muons are treated differently in the detector,
due to their differences in mass, they require different reconstruction and identification
methods. These methods and their corresponding efficiencies are what will be discussed
throughout this section.

4.3.1 Reconstruction

There are three main components contributing to an electron’s reconstruction; (i) loc-
alized cluster energy deposits in the ECal, (ii) tracks in the ID and (iii) close matching
of the cluster and the track in (η, φ)-space [30]. The reconstruction of an electron
track is based on hits in the ID tracking layers, and is defined according to the dis-
tance ∆R =

√
(∆η)2 + (∆φ)2 in (η, φ)-space from other reconstructed tracks, and

whether it is associated to a cluster in the ECal. As the electron traverses the layers
of the ECal it deposits energy in the calorimeter cells. The energy within each cell
is then summed to a total deposited energy within a cluster using the sliding-window
seed-cluster algorithm [34] and calibrated to account for energy deposited outside the
cluster. The sliding-window algorithm provides a high efficiency, εclus, in reconstruct-
ing electron clusters, with εclus = 65–96% for ET = 4.5–7 GeV and εclus ∼ 99% for
ET > 15 GeV [30]. If the measurements show at least four hits in the silicon layers
with no indication of stemming from a photon conversion vertex, the charged particle
is considered an electron candidate if it is associated to a cluster.

Muons require a different approach as they are minimum-ionising in the calorimetry.
Their reconstruction is performed independently in the ID, where muons are treated
in the same manner as any other charged particle, and the MS [31]. There exists four
classifications of a muon; combined14 (CB), segment-tagged15 (ST), calorimeter-tagged16

(CT), and extrapolated17 (ME). CB track reconstruction yields the highest accuracy for
high-pT muons, followed by ME muons. As the ID only covers |η| < 2.5, any muons
reconstructed at |η| ≥ 2.5 are extrapolated muons.

14A combined track of reconstructed tracks in the ID and the MS is made using a global refit.
15When a track reconstructed in the ID is associated with at least one hit in the (MDT) or CSC in

the MS. Used for low pT muons, which cross only one layer in the MS.
16When a track in the ID is associated with a minimum-ionising charged particle in the calorimeters.
17Also known as stand-alone muons, extrapolated muons have the requirement of traversing at least

two layers in the MS. The muon track is then reconstructed using only hits in the MS.
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4.3.2 Identification

Electrons

The selection of prompt electrons in the region |η| < 2.47 is based on the likelihood LS
for signal and LB for background,

LS(B)(x) =
n∏
i=1

PS(B),i(xi) (4.10)

where the vector x contains the n discriminating variables (DV) used in the electron
identification, such as E/p and shower profile variables (see Ref. [30] for further details).
PS(B)(xi) is the signal (background) probability density for an electron candidate at
point xi for DV i. Here, the signal corresponds to prompt electrons originating from
the interaction point (primary vertex), while the background is made up of non-prompt
electrons, such as jets displaying similar signatures like prompt electrons, electrons
produced in pair production from photons passing the detector material and decay of
heavy flavour hadrons. In addition, there exists a discriminant dL for each electron
candidate,

dL =
LS

LS + LB
∼

{
1, signal electron
0, background electron

,

and a transformed discriminant d′L, written as the inverse sigmoid function of dL,

d′L = −τ−1 ln
(
d−1
L − 1

)
(4.11)

where τ = 15. The transformed discriminant gives a range of values which can be used
to define four operating points. If an electron candidate within the working point has
a value larger than d′L it is considered a prompt electron, otherwise non-prompt. The
four operating points, in increasing order of background rejection, are

o VeryLoose: Requires only one hit in the pixel detector, and is thus most relevant
for background studies.

o Loose: Requires a combination of seven hits total from the pixel and silicon-strip
detectors, two of which must stem from the pixel detector.

o Medium: Same selection criteria as for Loose, but one of the seven hits must also
occur in the innermost pixel layer reducing background from photon conversions.

o Tight : Same selection criteria as Medium but tighter requirements on the DVs.

The corresponding identification efficiencies are summarised in table 4.3. Each working
point is a subset of working points with a lower background rejection, i.e. Tight⊂
Medium ⊂ Loose ⊂ VeryLoose.

One can find the electric charge of an electron using its track curvature. However,
there still exists a chance of misidentifying electron charges, either due to a mismatch
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Table 4.3: Identification efficiencies (εid) for each identification working point in the
electron [30] and muon channel [31]. The electron efficiencies are given for the threshold
ET = 40 GeV (100 GeV), while the muon efficiencies are quoted using 5 < pT < 20 GeV
(pT > 100 GeV).

Loose[%] Medium[%] Tight [%] High-pT [%]
Electron 93(96) 88(94) 80(90) −
Muon 98(98) 97(97) 90(93) 79(80)

of the reconstructed track to an electron candidate, or inaccurate measurements of the
track curvature. High-energy electrons lose energy by bremsstrahlung. If the photon
emitted undergoes photon-conversion, γ → e−e+, then three tracks are now associated
to the primary electron, two of which with the correct charge, thereby making it harder
to identify the correct charge of the primary track. Charge misidentification may also
occur when the curvature of the tracks is ill-defined, which is most probable for high
pseudorapidities. In ATLAS, charge misidentification and a mismatch of track to the
primary electron is most probable in the pseudorapidity-region 1.5 < |η| < 2.2 [30].

Muons

There are also four main categories to identify muons, each with a subset of requirements
tailored for specific physics analyses and each yielding different efficiencies in the low-pT
region (5 < pT < 20 GeV) and the high-pT region (pT > 100 GeV). These efficiencies
are summarised in table 4.3.

o Loose: Maximises reconstruction efficiency. All muon types are used, although
the majority of muon candidates are CB muons for |η| < 2.5.

o Medium: Includes same selection criteria as for the loose selection, but with the
aim of minimising systematic uncertainties. Only CB and ME muons are used in
the selection.

o Tight : Maximises purity of muons at the expense of lower efficiency. Only CB
muons are considered.

o High-pT : Ideal for searches at higher resonant masses, with the aim of maximising
the momentum resolution for pT > 100GeV, but at the expense of identification
efficiency. By requiring at least three hits in three precision layers of the MS
thereby, decreasing the reconstruction efficiency by ∼ 20%, the momentum resol-
ution increases by about 30% for muons with pT > 1.5TeV.

4.3.3 Isolation

In physics searches it is highly desirable to separate between prompt electrons, muons
and photons in signal processes from those originating from background processes such
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as misidentified hadrons and photon conversions in the detector material. A prompt
lepton could be surrounded by a lot of activity, especially if it is in near vicinity of a
jet. By checking if the lepton is isolated we can distinguish between the non-prompt
leptons, occurring from the inside of a jet, and prompt leptons.

The isolation of a particle can be divided into two categories; calorimeter-based
and track-based isolation. Calorimeter-based isolation looks at the sum of transverse
energies in an area ∆R < X, with X being an arbitrary distance, around a candidate.
Variables used in track-based isolation aim to select tracks which originated from the
interaction point. Among multiple vertices, it is the vertex which displays the greatest
sum of transverse momenta squared that can be considered the primary vertex. Track-
based isolation variables thereby look at the sum of pT within a cone of radius ∆R
around a candidate. For electrons we have three isolation categories; Loose,18, Gradi-
ent19 and Fix 20. The criteria imposed on the discriminating variables pvarcone30

T (scalar
sum of transverse momenta around the candidate within ∆R = min(10GeV/pµT , 0.3)
and Etopcone20

T (sum of transverse energy around the candidate within ∆R = 0.2) define
the seven operating points used for muons. The cone size in the track-based isola-
tion variable is dependent on the lepton candidate’s transverse momentum in order to
improve the performance for muons originating from the decay of high-pT particles.

4.4 Systematic uncertainties

Errors which do not happen at random, but which can be replicated upon repetition of
an experiment, and propagating throughout the results, are known as systematic errors.
Such uncertainties may arise from external factors, like poor knowledge of the detector
acceptance or trigger efficiencies, and has the potential to cloud one’s judgement when
performing an analysis. That is, systematic effects lead to a larger overlap between the
null and alternative hypotheses, giving a larger probability that potential new physics
is overlooked and disregarded as being expected from the background, or worse: a false
discovery of new physics is made. How to include such systematics in the calculation of
the probability is further detailed in Chapter 5. The general definition, from Ref. [35],
of systematic uncertainties is

“Systematic uncertainties are measurement errors which are not due to stat-
istical fluctuations in real or simulated data samples.”

An accounting of such errors is crucial in order to gain an accurate picture of a dataset,
before any statistical inference is made. The treatment of the systematics depends on
whether or not there exists potential correlations between sources i and j, in which the
correlation is represented by the coefficient ρij . Assuming the systematic errors to be

18Aims at a fixed value of the isolation efficiency, εiso, uniform in ET and η.
19Aims at a fixed value of the isolation efficiency uniform in η but dependent on ET .
20Fixed requirements on value of the isolation variable.
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independent of one another, the total uncertainty from n systematic errors is

σ2
tot = σ2

1 + σ2
2 + . . .+ σ2

n =
n∑
i=1

σ2
i . (4.12)

If there however does exist a correlation between sources i and j then

σ2
tot = σ2

1 + σ2
2 + . . .+ 2ρ12σ1σ2 + . . . =

n∑
i=1

σ2
i + 2

n∑
i,j=1
i<j

ρijσiσj . (4.13)

Systematic uncertainties is divided into two categories; experimental and theoretical
systematics.

4.4.1 Experimental systematics

Experimental systematics are related to errors originating from modelling of the meas-
urement apparatus itself. Examples are poor knowledge of detector resolutions and
uncertainties related to the reconstruction, isolation and identification efficiencies.

For an electron, uncertainties are calculated by varying for example the mass window
around the Z-boson peak or the identification criteria for tag electrons. Methods for
estimating the systematic uncertainties related to electron efficiencies are described
in further detail in Ref. [30]. In this analysis we include a nuisance parameter for
the energy resolution measured in the calorimeters. Additional nuisance parameters
arise for instance from uncertainties related to the energy scale, the identification of an
electron in the ID and calorimeters, and the estimation of misidentified electrons21.

For a muon, the calculation of efficiency uncertainties follow the methodology de-
scribed in Ref. [31]. A nuisance parameter describing the uncertainty of a bad muon22

veto is applied. The momentum is measured in the ID and MS, and thus uncertainties
related to these two sub-detectors should also be taken into account. Additionally, the
muon momentum resolution can be affected by a sagitta bias23, that is a bias occurring
due to the rotation of detector layers.

4.4.2 Theoretical systematics

Theoretical systematics can arise from the estimation of parameters used in the Stand-
ard Model. An example being the experimental estimation of the strong coupling
parameter αs. Furthermore, parton distribution functions include non-perturbative
parameters and depend on αs. The contribution of uncertainties related to PDFs are
estimated from PDF-scale and eigenvector variations. Any applications of theoretical

21See Section 6.5
22Muons with poorly reconstructed momentum. The definition of good muons is based on the

quantity σ(q/p)/|q/p|, where q is the muon charge and p the momentum. The bad muon veto is
dependent on η and pT [36].

23A sagitta is the distance from the center of a circular arc to the center of a line between the two
ends of the corresponding arc. The smaller the sagitta, the greater the particle momentum is.
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uncertainties will in this analysis be done for the Drell-Yan background as this is the
most dominating background in the dilepton channel. The nuisance parameters for the
theoretical uncertainties also include photon-induced (PI) corrections and electroweak
(EW) corrections.

4.5 Summary

In this chapter we have taken a look at how particles interact with matter depending on
their sizes and which forces they abide by. We have taken a look at the ATLAS multi-
purpose detector, and how each sub-detector is dedicated to the optimisation of either
the energy or tracking resolutions, and the minimisation of possible systematic uncer-
tainty sources which could affect our measurements. Furthermore, we have reviewed
the identification and detection techniques used when identifying prompt leptons from
background leptons. Once data have been gathered from a detector, we must know how
to extract and interpret the information they hold. The next chapter provides us with
some of the tools allowing us to do exactly so.
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Chapter 5

Statistical Inference

In particle physics, experiments are restricted by the stochastic nature of particles.
As we cannot predict an outcome with absolute certainty, we ascribe probabilities for
certain outcomes to occur. When assigning probabilities related to interactions taking
place within particle collisions the outcomes, although difficult to reconstruct1, are
already known and accounted for by prior knowledge provided by a theory. The greater
complexity of particle collisions is assigning the cause for the observed outcome. E.g. if
there is a deviation between experimental observations and our prior knowledge, does
that indicate our theory to be flawed, and if so could it bring to light new physics? We
will use Refs. [35] and [37] to find the tools in answering such questions.

5.1 Statistical framework

Within a high energy physics experiment the quantity of interest is the presence of
a new physics signal, provided by the observed number of events in an experiment.
A reconstructed particle in the detector has a certain probability of passing a given
set of selection criteria. The more stringent the criteria, the smaller the probability.
The cut-and-count procedure entails a binomial, discrete distribution for a given mass
range, based on the recording of stochastic events from an arbitrary mass bin l. As the
number of bunch crossings increases, the number of events within a mass bin can be
approximated by a Poisson distribution. The Poisson probability mass function (pmf)
gives the probability of observing n events within a mass bin l for a given channel k,
given the expected number of events νkl prior to any data-taking,

P (n|νkl) = e−νkl
νnkl
n!
. (5.1)

The value of νkl is estimated from either the null hypothesis (H0), which in this ana-
lysis is any process associated with the Standard Model, or the alternative hypothesis
(H1), which is taken to be any Beyond Standard Model process plus background. The

1As was discussed in the previous chapter.
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expected number of events is dependent on the number of background, bkl, and signal,
skl, events within a mass bin, that is

νkl(σ,θ) =

{
bkl(θ), (H0)

skl(σ,θ) + bkl(θ), (H1)
(5.2)

where the parameter of interest σ is the cross-section for the production of a G∗ decaying
to dielectrons or dimuons, and θ is an array of nuisance parameters taken to be any
systematic uncertainties associated with the experiment and theoretical calculations2.
Explicitly, the number of expected signal events in bin l for channel k, subject to Nsys
nuisance parameters, under the H1 hypothesis is expressed as3

skl(σ,θ) = skl(σ)

1 +

Nsys∑
i=1

θi
(δskl)i
skl

 , skl = LintσAkεkl (5.3)

with an integrated luminosity Lint. The variableAk, referred to as “acceptance×efficiency”,
is the ratio of number signal events passing a given selection criteria over the initial
number of signal events produced, while εkl is the fraction of events within the signal
invariant mass histogram that goes into bin l. The term (δskl)i/skl takes into account
any possible shift in skl due to a nuisance parameter θi. Likewise, the number of back-
ground events bkl in bin l for channel k is expressed as

bkl(θ) = bkl

1 +

Nsys∑
i=1

θi
(δbkl)i

bkl

 , (5.4)

where bkl(θ) is the central value extracted from Monte Carlo simulations, and (δbkl)i/bkl
is the variation in the number of background events due to any systematic uncertainties
represented by θi.

The likelihood

L(σ,θ) = P (n|σ,θ) =

Nchan∏
k=1

Nbin∏
l=1

νkl(σ,θ)e−νkl(σ,θ)

nkl!
(5.5)

is a product of the probability distribution function (pdf) relevant for this analysis (5.1)
over Nchan number channels4 and Nbin number bins. n represents a set of the nkl
observations within bin l given channel k.

2See Section 6.7 for the relevant nuisance parameters applied in this analysis.
3When the nuisance parameters are modelled with a Gaussian prior distribution, then skl(σ,θ) is

described by a log-normal distribution. The log-normal distribution confines the signal distribution
to its allowed range [0,∞), and additionally provides a mathematically consistent limit setting when
signal systematics are included in the posterior. The exact expression for the log-normal function is
expressed in eq. (5.3) from [37].

4Nchan is equal to 1 when analyzing the dielectron or dimuon channels separately, and 2 when
analyzing the dilepton channel.
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5.1.1 Discovery statistics

When interested in the significance of a deviation between observed data and a hypo-
thesis, we can use the p-value prescription from frequentist statistics [35]. The p-value
tells us the probability of observing the same number of data events, or more, in an
experiment given the null-hypothesis to be true. The smaller the p-value is, the closer
we are to rejecting the H0-hypothesis. The probability

pi =

+∞∫
tobs

g(t|Hi)dt, i = 0 or 1, (5.6)

to observe test-statistic values5, tobs, greater than or equal to the one observed, given
either H0, also referred to as the background-only hypothesis, or H1, referred to as the
signal-plus-background hypothesis, to be true. The p-value is expressed as the area
under the Poisson pdf, g(t|Hi), where t > tobs,

The p-value is related to the significance level of a hypothesis via the inverse of the
cumulative distribution function of the unit Gaussian, Φ−1, that is

p =

+∞∫
Z

e−t
2/2

√
2π

dt =⇒ Z = Φ−1(1− p). (5.7)

A discovery within particle physics is claimed if the observed significance is Z ≥ 5σ,
i.e. p ≤ 2.87 · 10−7, such that the probability of claiming a discovery if the background
hypothesis is true is 2.87 · 10−7.

5.1.2 Exclusion limits

By the use of frequentist inference we can calculate the probability for some observed
data under a given hypothesis. By the use of Bayesian inference the quantity of interest
is the probability for the hypothesis to be true given the data, as expressed by Bayes’
theorem,

P (X|Y, I) =
P (Y |X, I)P (X|I)

P (Y |I)
. (5.8)

The probability of our hypothesis X being true given the data Y is expressed by the
term P (X|Y, I) also known as the posterior. The posterior is dependent on our degree-
of-belief, P (X|I), or rather our prior knowledge about the system based on any back-
ground information I available to us. This degree-of-belief is based on results from
previous experiments and is modified the more experiments we perform by the likeli-
hood, P (Y |X, I), of the data given our hypothesis to be true. P (Y |I) is the probability

5These are often taken to be either the number of observed events counted or the log-likelihood
ratio.
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for the observed data and acts as a normalisation constant. Explicitly, eq. (5.8) can be
written as

P (σ,θ|n) =
L(σ,θ)P0(σ,θ)

P (n)
, (5.9)

where n is a set containing the number of observed events in all bins for an experiment, σ
is the parameter of interest and θ represents Nsys nuisance parameters. The likelihood is
represented as L(σ,θ). The sub-index on P0 denotes our prior knowledge of the system,
where P0(σ,θ) is expressed as

P0(σ,θ) = P0(σ)

Nsys∏
i=1

φ(θi), (5.10)

with a standard normal prior pdf φ for the nuisance parameters and the cross-section
prior P0(σ) which is taken to be flat. The probability for a hypothesis to be true given
the observed data is then expressed by a marginalisation integral

P (σ|n) =

∫
P (σ,θ|n)dθ = N

∫ Nchan∏
k=1

Nbin∏
l=1

νkl(σ,θ)nkle−νkl(σ,θ)

nkl!

Nsys∏
i=1

φ(θi)dθ, (5.11)

where N is a normalisation constant determined by
∞∫

0

P (σ|n)dσ = 1.

We can express the upper limit on the signal cross-section, σup, within a certain cred-
ibility level (CL) 1− δ, such that any signal models containing a σ exceeding this limit
is excluded. This is expressed as

∞∫
σup

P (σ|n)dσ = δ, (5.12)

where δ is usually taken to be 0.05 such that we obtain a CL of 95%.

5.1.3 Covariance and correlation

The covariance cov[x1, x2] relates two random variables, x1 and x2, by their joint vari-
ation6. The covariance between n variables is expressed in terms of a covariance matrix
V ,

Vij = cov[xi, xj ] = E[xixj ]− E[xi]E[xj ], ρij =
Vij
σiσj

, (5.13)

6I.e. how much the variation of one variable affects the variation of another. If cov[x1, x2] > 0
the increase in variations of one parameter increases the variations of the other. If cov[x1, x2] < 0 the
increase in variations of one parameter decreases the variations of the other. If cov[x1, x2] = 0 the
variables do not affect each other in any way.
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where E[xi] is the mean of variable xi and σi is the variance of xi. ρ is the dimensionless
variable of the covariance and varies between 0 and 1, with 0 being no correlation, and
1 being completely correlated.

5.2 Markov Chain Monte Carlo

The computation of the marginalisation integral in eq. (5.11) can quickly become quite
intricate and tedious to perform when dealing with a large number of nuisance paramet-
ers. However, the integration can be achieved numerically by the use of Markov Chain
Monte Carlo7 (MCMC). By using a Monte Carlo method we can grow a Markov Chain
containing values of the posterior, such that any new knowledge of a system Pi(σ,θ)
is dependent on our previous knowledge of the system Pi−1(σ,θ) after performing an
experiment. We will in this analysis use the Bayesian Analysis Toolkit8 (BAT) [38] to
produce the MCMC and extract exclusion limits on the mass of G∗ for each coupling
strength, along with the 68% and 95% quantiles. It does so by using the simple MCMC
method of Metropolis sampling [39]9.

5.2.1 Metropolis method

By not assigning a specific distribution to the posterior, we let the posterior probability
distribution be governed by the likelihood and a prior. By proposing a new state
P (σ∗,θ∗), with σ∗ drawn from a uniform prior and θ∗ drawn from Gaussian proposal
distributions, we can calculate a probability ratio r of accepting the move to a new state
based on the previous posterior, that is

r =
P (σ∗,θ∗|n)

Pi−1(σ,θ|n)
=
L(σ∗,θ∗)P0(σ∗,θ∗)

L(σ,θ)P0(σ,θ)
. (5.14)

If r ≥ 1 we accept the new state. If however the previous posterior probability is greater
than the one proposed we treat the ratio as an acceptance probability. By comparing
r to a random number U , generated between [0, 1] from a uniform distribution, there
is a certain probability of rejecting the new state (r < U) or accepting the new state
(r ≥ U). A chart of the workflow for the Metropolis algorithm is seen in figure 5.1.

5.3 Summary

We can gain important insight in a dataset by the use of statistical inference. Using
discovery statistics we can find the probability for some observed data given a hypothesis
to be true, P (data|theory), while Bayesian analysis allows us to test the probability for

7Monte Carlo refers to methods used when generating random numbers. A Markov Chain is a
sequence of numbers in which any number is dependent on the number prior to it in the sequence.

8BAT is a program centered around Bayes’ theorem. It is implemented in C++ and interfaced with
ROOT.

9To be more precise, it uses the Metropolis-Hastings algorithm (i.e. importance sampling), but the
principle remains the same.
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Initialize
posterior

Propose
P (σ∗,θ∗|n)

r ≥ U?

Pi =
P (σ∗,θ∗|n)

Pi = Pi−1

i = i + 1 i > N?

End

true

false true

false

Figure 5.1: Workflow of the standard Metropolis algorithm. N is the total number of
iterations used in the generation of the Markov Chain, r the ratio of the proposed pos-
terior P (σ∗,θ∗|n) over the previous accepted posterior Pi−1(σ,θ|n) and U is a random
number generated from a uniform distribution.

a hypothesis to be true given some observed data, P (theory|data). In this thesis we will
make use of Bayesian analysis to set exclusion limits on the mass of G∗.
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Part III

Analysis
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Chapter 6

Analysis Procedure

Observed data, being the blueprint of Nature, is what we aspire to describe. Monte Carlo
points us in the direction of where to look. The observed data in this analysis is based on
data from pp collisions collected at the LHC during Run 2 (2015-2018) at

√
s = 13 TeV.

The total integrated luminosity is 139 fb−1, a combination of three different subperiods,
labelled a (2015–2016), d (2017) and e (2018), each with an integrated luminosity of
36.2 fb−1, 44.3 fb−1 and 58.5 fb−1, respectively. The Monte Carlo simulations are of
Standard Model background processes. Additionally, the simulation process of the RS
signals of G∗ is modelled and compared with the background hypothesis (SM) and the
observed data using statistical analysis.

6.1 Standard Model background

As we are simulating signals of the type qq̄ → G∗ → l+l− in pp collisions, we must
consider any possible contribution of SM processes which could also produce dileptons
in the final state. Any such background should be accounted for in order to gain an
accurate picture when comparing the observed data to that which can be accounted for
by the background, before performing any statistical inference.

6.1.1 Prompt leptons

Dibosons

A Standard Model process which produces either two Z/W bosons or a W and a Z
boson in the final state is known as a diboson process (ZZ,WZ,WW ). A Z0 can decay
leptonically to l+ and l−, whereas a W± can decay as W− → l−ν̄l and W+ → l+νl.
Thus, a diboson process may contribute to both same-sign and opposite-sign dilepton
pairs in the final state. An overview of the Feynman diagrams describing such processes
is seen in figure 6.1.
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Figure 6.1: Feynman diagrams of diboson processes included in the SM background
with dilepton pairs in the final state.

Top processes

Another significant background to take into consideration involving leptons is top pro-
cesses. The top quark, carrying a mass of 173 GeV [40], is heavier than the W -boson
and is the only quark which can be indirectly studied in isolation through its decay,
with the most dominating process being t → bW+, as no hadronisation has time to
occur due to its short lifetime. The W bosons may in turn decay to either quarks or
leptons in the final state, W+ → qq̄′, νll

+, which in turn means that the final state of a
tt̄ collision contain contain either exclusively jets of hadrons, lepton+jets or dileptons.
In addition, there are processes which result in the production of a single top-quark
accompanied by a W -boson, thereby potentially giving two leptons in the final state.
Examples of tt̄ and single-top processes are seen in figure 6.2, and the decay scheme of
top quarks in figure 6.3.

Drell-Yan

The annihilation of a quark-antiquark pair to a lepton-antilepton pair via the production
of either a virtual photon or Z is known as a Drell-Yan (DY) process, schematically
shown as a Feynman diagram at tree-level in figure 6.4. This process constitutes one of
the biggest backgrounds in the dilepton channel, as we will see in this analysis.
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Figure 6.2: Feynman diagrams of a tt̄ process (bottom) and single-top production (top).
The decay of the final state top quarks is shown in figure 6.3.
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Figure 6.3: Decay scheme of a top quark into b and W+, leading to a final state
containing a b-quark accompanied by either a lepton and a neutrino or two quarks. For
an anti-top quark the leptonic decay would consist of a b̄ and W− → ν̄ll
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Figure 6.4: With time moving from left to right, this Feynman diagram describes the
s-channel Drell-Yan process qq̄ → Z/γ → l+l− to first order.
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6.1.2 Fakes

“Fakes” is a collective term describing two categories of leptons; (i) leptons considered
to be “real” but not of the kind we are interested in, i.e. non-prompt leptons, and (ii)
mis-identified leptons, i.e. reconstructed particles which are not physically present in
the detector. In essence, fakes describe any reconstructed lepton not occurring from a
prompt dileptonic background process.

In the first category, non-prompt leptons are typically leptons originating from other
sources than the decay of Z and W bosons, with the exception of the top quark decay
to a W which in turn decays leptonically. The non-prompt leptons are very much
real, but the term “fake” is used when the non-prompt leptons “mimic” the signal of
prompt isolated leptons. These fake leptons can occur from decays of hadrons within
jets, or the decay of c- and b-quarks before they hadronise. An additional source of
non-prompt leptons are those occurring from photon conversions. An electron, or much
less probable a muon, can radiate a photon which in turn pair-produces an e+e−-pair1.
If one of the pair-produced leptons is combined with an otherwise single-lepton process,
e.g. from a semi-leptonic W -decay, then it could pass as a dilepton event. Additionally,
compared to a prompt DY process, pair-production processes could also result in same-
sign (SS) lepton pairs [41]. These fake leptons are an important contribution to the SS
background. Prompt leptons are expected to be isolated, as they do not originate from
within a jet. The use of isolation criteria helps us in better separating the prompt from
the non-prompt leptons. In some cases, however, non-prompt leptons can “sneak” past
the isolation selection criteria, and must be taken into account in the analysis.

Leptons in the second category are referred to as “true fake” leptons, and we will here
separate between the sources of true fake electrons and true fake muons. Because both
photons and electrons deposit their energy in the ECal, a photon can be mis-identified
as an electron if it by chance is matched to the track of a charged particle. There are two
sources of such a mis-identification – the first being hadronic jets and the second being
high-energy muons. If a photon is created in the jet before hitting the ECal, and happens
to be closely accompanied by a charged hadron, then the combination of the deposited
energy in the calorimeter and the hadron track in the ID could mimic the signal of
an electron. Similarly, high-energy muons emitting a photon (due to bremsstrahlung)
in the ID, leave behind energy deposits in the ECal similar to an electron. If a high-
energetic hadron makes it across the HCal to the MS, leaving behind a track both in
the ID and the MS, it could in principle be falsely identified as a muon. However, most
muons originating from jet activity are real muons.

An example of a process which leads to a dilepton final state with one true fake
lepton is W+jets, seen in figure 6.5. If the W -boson decays leptonically, W− → ν̄ll

−,
and a jet was mis-identified as a lepton, the observed final state would be a dilepton
pair. Additionally, single top and other QCD processes can also contribute to the fake
background, as a fake lepton can be reconstructed from the decay of a quark alongside
a real lepton. Figure 6.3 shows an example of the top-quark decay t → bW+. If the

1The pair-production of a µ+µ−-pair can also occur, but the probability for this conversion is much
less likely to occur due to the higher muon mass.
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W+ decays leptonically and the jet is mis-identified as a lepton, then the end result
would be a dilepton pair. The estimation of fakes present in a dataset is determined by
a data-driven technique, elaborated on in Section 6.5.
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Figure 6.5: t-channel and s-channel Feynman diagrams of W+jets processes to first or-
der. The leptonic decay of the W-boson and the mis-identification of the accompanying
jet (q) as a lepton could pass the selection criteria disguised as a dilepton pair.

6.2 Simulation process

The modelling of Standard Model backgrounds and signal samples are done using Monte
Carlo (MC) event generators. The events in each MC sample undergoes a reweighting
in order to simulate the background processes as close as possible to observed data
collected in the ATLAS detector (see subsection 6.2.3). Examples of reweightings are
the lepton and trigger efficiency scale factor, cross-section weight and pile-up weight.

6.2.1 Background estimation

The dominating background contribution is the Drell-Yan background, generated at
next-to-leading order (NLO) using the POWHEG generator [42] used alongside PY-
THIA 8 [43] for the modelling of parton showering and hadronisation. Any DY processes
giving a tau pair in the final state are simulated using the SHERPA 2.2.1 generator [44].
The second highest contributing background process is the production of dileptons from
top-quark processes simulated using POWHEG and PYTHIA 8. Furthermore, diboson
processes (WW, WZ, ZZ) were simulated using both SHERPA 2.2.1 and SHERPA 2.2.2.
A summary of the generators used for each process and order in the PDFs are given
in table 6.1. Passage of MC generated particles from background and signal processes
traversing matter in the ATLAS detector were simulated using GEANT4 [45].

6.2.2 Signal samples

The signal samples of the lightest Kaluza-Klein graviton mode G∗, i.e. the first grav-
iton excitation, were generated using PYTHIA 8 to leading order (LO) in the Feynman
diagrams. In the RS model there are two free parameters, (i) the mass of the graviton
excitation and (ii) the coupling strength k/MPl of the graviton to SM particles, where
k is the warp factor, as mentioned in subsection 2.2.3, and MPl is the reduced Planck
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Table 6.1: Summary of the MC samples used in the analysis. From left to right: SM
processes and signal process, the generator used, order of differential cross-section calcu-
lation, generator used for the simulation of parton showers, and the parton distribution
function (PDF).

Process Generator Order Parton shower PDF
WW, WZ, ZZ→ lX/lν/ll SHERPA 2.2.1-2 NNLO SHERPA 2.2.1-2 NNPDF3.0NNLO

qq̄ → Z/γ → ττ SHERPA 2.2.1 NNLO SHERPA 2.2.1 NNPDF3.0NNLO
qq̄ → Z/γ → ee, µµ POWHEG NLO PYTHIA 8 CT10

tt̄ POWHEG NLO PYTHIA 8 NNPDF3.0NLO
Single Top, Wt→ X POWHEG NLO PYTHIA 8 NNPDF3.0NLO

RS G∗ → ll PYTHIA 8 LO PYTHIA 8 NNPDF23LO

mass. The masses of G∗ range from mG∗ = 0.75–5 TeV. There are three coupling
strengths for each mG∗ , k/MPl = 0.1, 0.2, 0.3. As we are dealing with three separate
subperiods of data-taking during Run 2 of the LHC, each with a corresponding integ-
rated luminosity, we similarly have three separate signal samples comparable to each
subperiod just as we do too for the background. Some couplings were not available to
this project due to the deletion of datasets. Generating new MC samples was not part
of this thesis. An overview of the available signal samples are summarized in table 6.2.
Any missing coupling strengths of mG∗ from a subperiod will be accounted for by scal-
ing accordingly2, to the total integrated luminosity Ltot = 139 fb−1 in order to obtain
an accurate picture of the signal resonances.

Table 6.2: Available signal masses, mG∗ , for the RS G∗ and coupling strengths, k/MPl,
per subperiod of Run 2 of the LHC, generated by PYTHIA 8 to LO.

750 GeV 1000 GeV 2000 GeV 3000 GeV 4000 GeV 5000 GeV

G∗ → ee
run a 0.1, 0.3 0.1, 0.2 0.1, 0.2 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3
run d 0.1, 0.2, 0.3 0.2, 0.3 0.2 0.1, 0.2, 0.3 0.2 0.1, 0.2
run e 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2 0.1, 0.2, 0.3

G∗ → µµ
run a 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.2 0.1, 0.3 0.1, 0.2 0.1, 0.2, 0.3
run d 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1 0.2, 0.3 0.1, 0.3 0.1, 0.2, 0.3
run e 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.2, 0.3 0.1, 0.3 0.1, 0.2, 0.3

6.2.3 Reweighting and scaling

Each MC sample undergoes a reweighting on an event-by-event basis in order to better
describe the data. Furthermore, each MC sample also undergoes a scaling in order to
account for the difference in the expected number of events and simulated number of

2That is if we disregard potential changes between runs a, d and e in detector conditions and pile-up,
which in turn could affect the efficiencies and resolutions.
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events. The reweighting and scaling of simulated events are two important steps used
in obtaining the correct background estimation.

Event weights

The different event weights used in this analysis is listed below:

o Pile-up weight : Each MC sample is produced with an average number of interac-
tions per bunch crossing modelled on the data. Since the data is produced either
after or simultaneously with the simulation process of the MC samples, we have
no way of obtaining the true pile-up conditions during the simulations. Thus,
each event from a simulation process passing the offline selection is corrected with
a pile-up weight to better match the data.

o Lepton and trigger weight : In order to account for differences in the efficiencies in
the data and MC related to the lepton reconstruction we apply two weights, each
separately describing one lepton channel (electron and muon).

o K-factor weight : Not to be confused with the warp factor k in the graviton coup-
ling, the K-factor takes into account higher-order corrections to the cross-section.
It is defined as the ratio of a higher order differential cross-section (e.g. NNLO)
over the differential cross-section of the MC sample in question (e.g. NLO).

o Filter efficiency weight : The filters on a generator level has a certain efficiency
of disregarding uninteresting events. If a filter has a 50% efficiency, and a cut of
say mll > 100 GeV is applied, then only half the amount of interesting events is
considered. The cross-section used in a MC sample is the total cross-section for
a process. In order to correctly reflect the efficiency of the triggers we scale the
cross-section by the generator filter efficiency.

o tt̄ weight : This weight applies to tt̄-processes and, similarly to the k-factor, is
meant as a correction for higher-order estimations of the cross-section.

o MC weight : The MC weight is related to the simulation of an event, and is most
relevant for processes produced using Sherpa. In other cases it is set very close to
one.

Scaling

Each MC sample is simulated using a specific cross-section corresponding to the process
in question. The total number of expected events, Nexp, for a given integrated luminosity
L is found by multiplying the two variables together. The number of events produced
in a MC sample is thereby scaled up to correspond with the number of expected events
using the scale factor

sf =
Nexp

Nsim
=

σL

Nsim
. (6.1)
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6.3 Event selection

6.3.1 Object definitions and pre-selection

Before delving into the dilepton final state with all criteria imposed, we shall first look
at the object definitions set at the primary stage when producing dilepton ntuples from
final states of pp collisions.

Baseline selection

The samples were produced with a set of baseline requirements. The baseline selection
helps reduce the vast amount of data to events which may be interesting for an ana-
lysis. Among the requirements we impose electrons to pass a variation of the Loose
identification working point, known as LooseAndBLayer. This criterion uses the same
transformed discriminant d′L threshold (4.11) as the Loose working point, but with the
additional requirement of a hit in the innermost pixel layer. Furthermore, we require
muons to pass the high-pT identification working point 3. An event in either channel is
required to have at least one reconstructed primary vertex.

Electron channel

An electron candidate is required to have |η| < 2.47, i.e. be in the precision region of
the ATLAS detector, excluding the calorimeter crack region 1.37 < |η| < 1.52, and have
ET > 20 GeV. The pre-selection contains an identification criterion of Medium, thereby
reducing background from e.g. jets, at the cost of a small decrease in the efficiency.

To distinguish signal electrons from background electrons, that is prompt electrons
vs. electrons originating from non-prompt processes such as jets or bremsstrahlung, we
look at the amount of activity in the vicinity of an electron. The track of background
electrons are often surrounded by other particles, in contrast to signal electrons which
appear isolated. The isolation requirement follow the criteria imposed in the category
Gradient, i.e. the isolation efficiency is dependent on ET and uniform in |η|.

Furthermore, electrons are required to pass the recommended ID track requirements
|d0/ σ(d0)| < 5 and |∆z0 sin θ| < 0.5 mm. The criteria listed here are summarised in
table 6.3.

Muon channel

A muon candidate is required to have |η| < 2.5, i.e. be within the region measurable
to the ID, and have pT > 20 GeV. Furthermore, a muon is identified using the high-pT
criterion. That is, selecting only CB muons with at least three hits in the MS trigger
system chambers in order to optimise the muon momentum resolution in the MS4 and
improve the reconstruction of a track’s curvature. This requirement in turn reduces the
identification efficiency by ∼ 20% due to requiring a greater number of hits.

3See subsection 4.3.2.
4See table 4.2 in subsection 4.2.3.
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A muon must also pass the TightTrackOnly isolation working point. That is, a
muon must have pvarcone30

T /pµT < 0.06, meaning the scalar sum of transverse momenta
in a cone of radius ∆R = min(10 GeV/pµT , 0.3) must be less than 6% of the transverse
momentum pµT of the muon candidate. Keeping a maximum size on the cone for high-pT
leptons we suppress the probability of mis-reconstructed muons.

Lastly, the muons must pass the recommended ID track requirements |d0/ σ(d0)| < 3
and |∆z0 sin θ| < 0.5 mm. The criteria listed here are summarised in table 6.3.

Table 6.3: Object definitions and pre-selection in the dielectron and dimuon channels.

Channel Electron (e) Muon (µ)
Identification Medium High-pT

Isolation Gradient TightTrackOnly
|η| < 2.47 and 1.37 ≮ |η| ≮ 1.52 < 2.5

ET , pT ET > 20 GeV pT > 20 GeV
|d0/σ(d0)| < 5 < 3
|∆z0 sin θ| < 0.5 mm < 0.5 mm

6.3.2 Triggering and offline selection

After the baseline selection and object definitions, we further look at the triggering
criteria used for our selection of dilepton pairs. The triggering on lepton pairs is referred
to as an online selection, while the offline selection are any cuts imposed after the
triggers.

Electron channel

Since we are working with high-mass resonances it is desirable to maintain a high
efficiency at large ET , thus we trigger on two electrons with ET > 12 GeV passing the
electron working point Loose5. Furthermore, two electrons passing the electron working
point VeryLoose with ET > 17 GeV or ET > 24 GeV are also selected for the analysis6.
The loosest possible criteria are imposed in order to be able to obtain a fair estimation
on the fakes contribution to the background.

As we are interested in electron pairs in the final state we must require two isolated
electrons. Both electrons are required to have pT > 30 GeV and an invariant mass
mee > 70 GeV. Lastly, we do not impose any charge requirements on the electron pairs
due to possible charge misidentification, whose probability increases for higher ET , and
the possibility of overlooking non-negligible signal events, further discussed in subsection
6.4.1. Table 6.4 shows a summary of the offline selection criteria for electrons.

5These two criteria combined are contained in the HLT_2e12_lhloose_L12EM10VH.
6Described by triggers HLT_2e17_lhvloose_nod0 and HLT_2e24_lhvloose_nod0.
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Muon channel

A high muon efficiency at high-pT is desirable. We either trigger on a muon if it has
pT > 26 GeV, which is the lowest pT trigger threshold available7, or if it has pT > 50 GeV
as the trigger efficiency drops at very high-pT when combined with the muon criterion
in the first pT trigger case.8

In the muon channel we are interested in final states involving two isolated muons.
Both muons passing the above triggers are further required to have pT > 30 GeV and
have an invariant massmµµ > 70 GeV. Although the probability for an event to contain
a “bad” muon, described in subsection 4.4.1, is quite small, we still impose a veto on
such events due to their significantly worse momentum resolution [46]. Finally, we
impose an opposite-charge requirement on muons, as any contributions from charge-
misidentifications are near negligible throughout the pT -spectrum. This requirement
reduces background contributions from diboson-processes. Table 6.4 shows a summary
of the offline selection criteria for muons.

Table 6.4: Offline selection in the dielectron and dimuon channels.

Offline selection
Electron (e) Muon (µ)

Two isolated electrons Two isolated muons
No charge requirement Opposite charge requirement

pT > 30 GeV pT > 30 GeV
mee > 70 GeV mµµ > 70 GeV

6.4 First look at background and signal

To begin with we look at simulated prompt background and signal lepton pairs passing
the pre-selection in table 6.3 and the offline selection in table 6.4, using an integrated
luminosity Ltot = 139 fb−1. Unless stated otherwise, Ltot will be the standard choice of
integrated luminosity for distributions shown throughout this analysis. The weights and
scaling mentioned in subsection 6.2.3 are also applied to all data in these next sections.

6.4.1 Motivation for charge selection

Figure 6.6 shows the invariant mass distributions for various combinations of charged
leptons. An example of the signal mG∗ = 2 TeV (shown as fully drawn lines) shows
increasing decay width at increasing coupling strengths k/MPl = 0.1–0.3. The lower
plots show the expected significance Z under the signal+background hypothesis H1.
The significance for each bin was calculated following eq. (5.7) in subsection 5.1.1. The
p-value, that is the probability of observing at least Nbkg + Nsig events in a bin given

7Described by triggers HLT_mu26_imedium and HLT_mu26_ivarmedium.
8Described by the HLT_mu50.
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the expected number of events under H0, Nbkg, was calculated by eq. (5.6) where t is
set as Nbkg +Nsig number events and the integral is the sum over Poisson terms.

The distribution of total number e±e±–pairs (6.6(a)) differs from the number of
e±e∓–pairs (6.6(c)) by only about 2 orders of magnitude, compared to the two dimuon
channels which differ by about 5 orders of magnitude. Diboson processes are the domin-
ating background in the µ±µ± channel (6.6(b)) as Drell-Yan and top processes mostly
contribute in the opposite–sign channel. Therefore, due to low probability of muon
charge mis-identification, the Drell-Yan and top processes combined contribute less
than 13% in the µ±µ± channel, but dominate in the µ±µ∓ channel (6.6(d)). Thus, the
muon same sign–channel can be neglected, and we will refer to dimuon pairs as “µ+µ−”
from now on.

Electrons9 are prone to charge mis-identification at high |η|, as seen in figure 6.7
around 1.5 < |η| < 2.2. This is a consequence of photon conversions, bremsstrahlung
and decreasing sagitta of the track curvature due to higher pT . Figure 6.6 reflects the im-
pact of charge mis-identifications at high mll, where the total background contributions
in the opposite (6.6(a)) and same-sign (6.6(c)) channels become nearly indistinguishable.
Furthermore, the ratio of events between the opposite-sign channel over the same-sign
channel at the 2 TeV signal resonance with coupling 0.1 is 9.3 for the background while
for the signal it is 10.7. In other words, the scaling for both the background and signal
is reduced by a factor ∼ 10 when moving from the e±e∓-channel to the e±e±-channel.
Looking at the expected significance in the lower subplots, the equivalent ratio between
the two channels is ∼ 3.3. So, in contrast to the significance in the muon channel, the
expected significance in the electron same-sign channel cannot be neglected, and the
dielectron pair will thus be referred to as “ee” from now on.

6.4.2 Signal invariant mass distributions

Figure 6.8 shows the invariant mass distribution for each graviton mass between 0.75TeV
and 5TeV with couplings between 0.1–0.3. Each signal exhibits a small parton-luminosity
tail in the lower mll regions. The tails are not very prominent in the invariant mass
distributions for the G∗, but the decay width for each coupling is quite distinct, in which
it increases for increasing couplings. This reflects in turn how the lifetime τ of the G∗

decreases for increasing coupling strengths.

6.4.3 Signal acceptance× efficiency

Using the selection criteria in tables 6.3 and 6.4 we can now calculate the product
of signal acceptance and efficiency as a function of mass in the signal region10 (SR)
mll ≥ 120 GeV. By vetoing the Z-peak we reduce the charge-flip background in the
same-sign channel. The acceptance×efficiency (A×ε) for signal events with a theoretical

9Which is here used as the collective term describing both electrons and positrons.
10This is the same SR used in the ATLAS paper [27].
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Figure 6.6: Invariant mass distribution mll of (a) oppositely charged electrons, (b)
oppositely charged muons, (c) same charged electrons and (d) same charged muons. The
signal used is mG∗ = 2 TeV. Each signal corresponds to a unique coupling parameter
k/mPl, with mPl ≡ MPl. The lower plots show the expected significance of Nbkg,i +
Nsig,i for bin i under the background hypothesisH0. The bin widths follow a logarithmic
x-axis, thus the bin widths gradually increase for increasing mll.

cross-section σ is defined as

A× ε =
Nsig,f

Nsig,i
, Nsig,i ≡ σL, (6.2)
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Figure 6.7: Pseudorapidity distribution η of (a) leading electron from an opposite-sign
channel, (b) subleading electron from an opposite-sign channel, (c) leading electron from
a same-sign channel and (d) subleading electron from a same-sign channel. The signal
used is mG∗ = 2 TeV, as shown in the upper plots. Each signal corresponds to a unique
coupling parameter k/mPl, where mPl ≡ MPl. The lower plots show the expected
significance of Nbkg,i +Nsig,i for bin i under the background hypothesis H0.

whereNsig,i is the number of initial simulated signal events before imposing any selection
criteria, Nsig,f is the number of simulated signal events (scaled according to the total
luminosity) within the SR making it past all selection criteria, and L is the integrated
luminosity.
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Figure 6.8: Signal invariant mass distributions for masses mG∗ ∈ [0.75, 5.00] TeV with
(from left to right) couplings 0.1, 0.2 and 0.3 in the (top) dielectron channel and (bot-
tom) dimuon channel.

As seen in figure 6.9, the A × ε for all couplings in the dimuon channel decreases
in relation to increasing momenta, whereas the acceptance for dielectrons increases ac-
cordingly to increasing energies. This follows the expected behaviour reflected in the
momentum and energy resolutions from eq. (4.7). Electrons are characterised according
to the energy resolution as they deposit their energy in the calorimeters. Since muons
are minimum-ionising they will not be registered in the calorimeters on the same level
as electrons, and will instead make it to the muon spectrometer where they are categor-
ised according to the momentum resolution. Furthermore, the A × ε for dimuons lie
approximately 20% below dielectrons. This could be due to the more stringent selection
criteria in the pre-selection for optimised momentum resolution at the expense of a de-
creased efficiency. The A× ε drops again at high invariant masses which could be due
to the strongly decreasing parton luminosity at high momentum transfers. It should
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also be noted that due to missing signal MC-samples (in both channels) the values for
the acceptance might deviate slightly from the case where all couplings are available.
An example here is the couplings for mass mG∗ = 2 TeV in the ee-channel. Coupling
0.2 has signal samples from all subperiods available, compared to the lower-lying A× ε
for coupling 0.1, where run d is missing, and coupling 0.3 where both runs a and d are
missing. In the case of mG∗ = 2 TeV it is then run e which provides the lowest A× ε.
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Figure 6.9: Product of acceptance and efficiency, A× ε, for all three coupling strengths
of the G∗ in the (left) dielectron and (right) dimuon channels for six graviton mass
points in the range 750–5000 GeV in the signal region mll ≥ 120 GeV. The reduced
Planck mass MPl is denoted as mPl.

6.5 Fake lepton background

An additional background contributing to the observed data stems from signatures of
jets passing the lepton selection criteria, i.e. true fakes. Other sources of fake leptons
include photon conversions and semi-leptonic decays of b- and c-quarks. Contributions
from fake leptons are expected to be negligible in the dimuon channel [27], and we will
thus restrict the inclusion of fake leptons to the dielectron channel. The summary of
the data-driven technique used to estimate the amount of fake leptons is largely based
on Refs. [41, 47, 48].

6.5.1 Matrix method

Fake leptons are accounted for using a data-driven technique known as the matrix
method. We first separate between two classes of leptons:

o A “real” lepton, defined as a prompt isolated lepton not originating from a jet.

o A “fake” lepton, defined as a non-isolated, non-prompt lepton.
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The matrix method is based on two separate working points; (i) loose and (ii) tight. The
number of leptons passing the loose selection, also known as inclusive loose, is denoted
NL while the number leptons passing the tight selection is denoted NT . The number of
leptons which pass only the loose selection criteria but not tight are known as exclusive
loose and are denoted as NL′ . In essence, NL ⊃ NL′ and NL ⊃ NT . Sample events
containing lepton pairs are thereby split into four measurable quantities, NTT , NTL′ ,
NL′T and NL′L′ , with subscripts from left to right denoting the leading and subleading
lepton candidates.

The efficiency r of a real lepton (superscript R) passing the tight selection given
that it passes the loose criteria, and the corresponding efficiency f for a fake lepton
(superscript F ), is defined as

f =
NF
T

NF
L

and r =
NR
T

NR
L

. (6.3)

We assign such probabilities to each lepton included in the final state. The number
of leptons originating from lepton pairs passing either the loose (L - inclusive, L′ -
exclusive) or tight (T ) selection criteria and the number of real and fake leptons passing
the loose criteria is related by


NTT

NTL′

NL′T

NL′L′

 = M


NRR
LL

NRF
LL

NFR
LL

NFF
LL

 , (6.4)

where M is a 4× 4 matrix

M =


r1r2 r1f2 f1r2 f1f2

r1(1− r2) r1(1− f2) f1(1− r2) f1(1− f2)
(1− r1)r2 (1− r1)f2 (1− f1)r2 (1− f1)f2

(1− r1)(1− r2) (1− r1)(1− f2) (1− f1)(1− r2) (1− f1)(1− f2)

 . (6.5)

The elements contained in the vector on the left hand side of eq. (6.4) are exclusive,
meaning that the elements are not subsets of one another. The number of real and
fake leptons passing the tight selection (NTT ), thus reconstructed as being signal-like
electrons, is found by multiplying out the components of the first row from the matrix
multiplication above,

N l+l
TT = r1r2N

RR
LL

N l+jets
TT = r1f2N

RF
LL + f1r2N

FR
LL

Ndi-jet
TT = f1f2N

FF
LL .

(6.6)

Finally, the total number of fake lepton pairs reconstructed as signal-like lepton can-
didates are defined as lepton pairs containing at least one fake originating from a jet,

N fakes
TT = N l+jets

TT +Ndi-jet
TT . (6.7)
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The estimation of the efficiencies is measured from control regions which contain a
high purity11 of either real of fake leptons depending on which efficiency parameter is of
interest. A high purity in this context means the amount of “real” leptons contaminating
the fake control region, and vice versa.

The real efficiency is measured from control regions which contain a high purity of
real leptons. The region around the Z-peak contains a high purity of real leptons, and
this is thus a typical choice to calculate r.

The fake efficiency is estimated by calculating the ratio of number of objects passing
the tight selection over the number of objects passing the loose selection. Real leptons
have a greater probability passing the tight selection than fakes do, which in turn falsely
increases the efficiency f . The estimation of the fakes purity in a fake control region is
found by “lepton subtraction”. That is, since we have no way of actually observing the
amount of real and fake leptons in a detector, we subtract all leptons originating from
SM backgrounds using MC,

purityfake =
N leptons

data −N leptons
MC real

N leptons
data

=
N leptons

fake

N leptons
data

, (6.8)

to find the purity of fakes in the fake control region. The subtraction of leptons origin-
ating from SM backgrounds using MC also applies to the fake efficiency from eq. (6.3),
that is

f =
N l
T −NMC

T

N l
loose −NMC

loose

. (6.9)

6.5.2 Misidentified electrons in the signal region

Due to poor estimation results of the real efficiency r in the region around the Z-
peak12, the contribution of fakes is only taken into account for invariant masses above
the Z-peak, that is mll ≥ 130 GeV. Figure 6.10 shows the effect of excluding vs.
including fakes in the SR. Despite its low contribution in lower mll regions, the relative
contribution of the fakes background to the total background increases in importance
at higher invariant masses, due to e.g. increasing probability for bremsstrahlung and
decreasing track sagittae.

6.6 Data/MC distribution comparisons

Figure 6.11 shows the invariant mass distributions in the mass range 120 < mll <
10 000 GeV for the dielectron and dimuon channel. Figures 6.13 and 6.14 show the
distributions for transverse momenta and pseudorapidity, respectively. The grey bands

11“Purity” refers to the relative amount of real (fake) leptons contained in a fake (real) control region.
12The number of estimated fake background events around the Z-peak is highly sensitive to small

deviations in the real efficiency.
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Figure 6.10: Invariant mass distribution when (left) excluding misidentified electrons,
i.e. fakes, and (right) including fakes in the SR. The distribution of fakes was estimated
using the matrix method for an integrated luminosity L = 139 fb−1 in the signal region
(SR) mll ≥ 120 GeV. The signal included is mG∗ = 2 TeV.

show the systematic uncertainties (see Section 6.7) associated with the simulated back-
ground, while the red arrows indicate bins containing a data over background ratio
which exceeds the limits in the lower subplots.

6.6.1 Dielectron channel

The maximum dielectron invariant mass observed during Run 2 is 4.06 TeV. In addi-
tion, the maximum observed pT for the leading and subleading electrons is 2.02 TeV
and 1.93 TeV, respectively. From figure 6.11 the amount of observed data and MC
background is approximately equal, with the ratio steadily remaining around 1, in the
lower regions in the dielectron channel with minor statistical uncertainties related to
the data points. The differences between data and simulations become more apparent
as we approach yet higher invariant mass regions, mee > 500 GeV, where the number
of data events is restricted by statistics. Table 6.5 shows the total contribution of each
background with corresponding systematic uncertainties.

Towards the tail at high invariant masses we see a slight deviation in the observed
data from the simulated background. Specifically, the two bins after the 2TeV mark
contains 7 and 8 observed events, whereas the number of background events in the
same bins are 3.36 and 2.54. Summing the contents in these two bins we find an
observed significance of Zobs = 3.13σ. These data points could also be mere statistical
fluctuations, although the error bars on the data points lie outside the region of the
background expectation. Figure 6.12 shows the relative contribution to the background
and observed data from each sub-run in Run 2. The outliers are visible in each sub-run
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Table 6.5: Expected background yields and observed data in the dielectron channel for
a given mass range (left-most column). The quoted uncertainties have been calculated
from a combination of theoretical (DY only) and experimental systematics. A 100%
uncertainty is assigned to the fakes background. A “−” corresponds to no events being
found.

mee range
[GeV]

Observed
yield

Total
SM DY Top Dibosons Jet mis-

identification
70–120 43 645 657 41 858 080±219 3175 41 649 562±2 193 172 122 631±1 378 85 887±3 563 −
120–400 1 105 825 1 083 526±38 303 864 617±37 783 192 458± 4027 21 853±1 487 4 598±4 598
400–600 20 565 20 106±1 272 13 682±1 066 5 315±564 853±316 256±256
600–900 4 744 4 596±460 3 480±310 816±275 206±178 94.51±94.51
900–1 300 919 893±151 729±90 87.40±82.75 47.77±85.32 29.00±29.00
1 300–1 800 166 170±27 144±22 8.36±3.31 9.44±14.14 8.25±8.25
1 800–3 000 38 38.02±6.04 32.37±5.35 0.82±0.21 2.12±0.75 2.70±2.70
>3 000 2 1.57±0.39 1.28±0.34 − 0.11±0.02 0.19±0.19

for the same mass bins. However, the error bars on these mass points are within the
background expectation, thus implying that they could indeed be statistical fluctuations.

Distributions of the leading and subleading electron transverse momenta are seen
in figure 6.13. The majority of both observed and simulated events lie in the lower pT -
regions, which is consistent with the distributions of the invariant mass. The data points
which exceed the limits of the lower subplot lie in the higher transverse momentum
region (pT ≥ 500 GeV), where the statistics are less than 100 events per bin thereby
leading to a more unstable ratio. Furthermore, it should be mentioned that the data-
driven background used in this analysis was applied to the invariant mass only, however,
this should not affect the statistical analysis later on. The fluctuations in the systematics
for leading electrons compared to subleading electrons could be due to contributions
from theoretical systematics from the DY background. For instance, the DY background
and single events from the diboson background contribute to the total background
for leading electrons towards the tail (between 1 500 and 2 000 GeV), whereas the DY
background dominates when pT & 1 500 GeV for the subleading electrons.

6.6.2 Dimuon channel

The maximum dimuon invariant mass observed during Run 2 is 2.75 TeV. Additionally,
maximum observed pT for the leading and subleading muons is 2.60 TeV and 1.04 TeV,
respectively. Similarly to the dielectron channel the ratio remains steadily around 1 in
the lower mass regions, as can be seen from figure 6.11. Fluctuations begin to occur
as the number of observed events drops below 104, i.e. mµµ & 0.5 TeV. In the higher
mass regions, where the ratio is restricted by statistics, there is a greater uncertainty
related to the observed data. The contributions of each background is approximately
the same as that for the dielectron channel. The total contribution of each background
with corresponding systematic uncertainties is found in table 6.6.

The transverse momenta distributions for the leading and subleading muon candid-
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Table 6.6: Observed and expected background yields in the dimuon channel for a given
mass range (left-most column). The quoted uncertainties have been calculated from a
combination of theoretical (DY only) and experimental systematics. A “−” corresponds
to no events being found.

mµµ range
[GeV]

Observed
yield

Total
SM DY Top Dibosons

70–120 46 966 911 45 240 347±2 550 357 45 040 986±2 550 355 115 354±2 007 84 007±2 690
120–400 1 017 542 1 001 638±36 795 811 725±36 539 171 450±4 088 18 463±1 457
400–600 16 156 16 175±936 10 865±655 4 652±587 658±322
600–900 3 476 3 503±401 2 640±196 709±303 154±177
900–1 300 613 638±132 528±66 76.42±92.56 34.43±68.88
1 300–1 800 105 115±23 24.66±8.26 6.76±2.77 8.16±13.53
1 800–3 000 18 25.21±5.64 23.39±5.61 0.68±0.06 1.14±0.57
>3 000 − 1.29±2.65 1.27±2.65 − 0.02±0.00

ates are seen in figure 6.13. The contributions of the uncertainties related to different
backgrounds lead to fluctuations in the systematics, as was discussed in the dielectron
channel. Furthermore, the distributions of the leading and subleading muons differ by
the pT range. That is, leading muons reach a higher pT than subleading muons (as per
definition of leading muons) resulting in a wider pT range.

6.7 Systematic uncertainties

Any uncertainties which are regarded to have a non-negligible impact on the cross-
section limits are seen as nuisance parameters. The systematic uncertainties displayed
in the plots are calculated using the description in eq. (4.12), in which we assume no
correlations between the nuisance parameters. For each systematics source a variety of
up/down errors are calculated as

∆up =
yup − ynominal

ynominal
, (6.10)

where each ∆up = −∆down. The contributions of each non-negligible nuisance para-
meter, as a function of the invariant mass, to the total background uncertainty are
shown in figure 6.15, while the up- and down variations for each nuisance parameter are
shown individually in appendix B. Additionally, any theoretical uncertainties included
in this analysis arise from the dominating DY background. The nuisance parameters
included are EW and photon-induced corrections, the strong coupling constant (αs),
choice of PDF, and variations of PDF scales. There are seven PDF variations, each
treated as a separate nuisance parameter.

The uncertainty on the energy resolution in the electron channel is relatively small
compared to the experimental uncertainties arising from the energy scale and beam
energy. By assigning a 100% uncertainty on the fakes background we include an ad-
ditional uncertainty in the electron channel which increases as a function of mll. This
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Figure 6.11: Comparison of invariant mass distributions provided by background and
observed data in mass range 120 ≤ mll ≤ 10 000 GeV for (a) dielectron channel and (b)
dimuon channel in the upper subplot, and corresponding ratio of data over background
for a given bin in the lower subplot. Signals mG∗ = 2, 3, 4 and 5 TeV with coupling 0.1
are also shown. The systematics in the grey shaded bands were “smoothed” prior to
plotting.

also reflects the increasing contribution of fakes compared to the total background at
high mll. The theoretical uncertainties represent the largest background uncertainties
in the dielectron channel, with the “PDFReducedChoiceNNPDF” and the 2nd and 5th
PDF variations being the top contributors towards the tail.

The momentum resolution for muons is determined both from the MS and the ID.
The uncertainty on these momentum resolutions are among the top contributors to the
total uncertainty in the muon channel. In addition there is a charge-dependent con-
tribution from the sagitta residual bias13 whose contribution is relatively small. The
uncertainty on the reconstruction efficiency is the fourth highest contributor among the
experimental uncertainties. Despite the large uncertainties related to the muon mo-
mentum resolutions, it is in fact uncertainties related to the bad muon veto which pose
as the greatest uncertainty in the higher mll regions. Among theoretical uncertain-
ties it is the “PDFReducedChoiceNNPDF” which contribute the most, followed by the
2nd PDF variation. The uncertainty on the reconstruction efficiency exceeds 30% at
high invariant masses in the muon channel, while it is nearly negligible in the electron
channel.

13Abbreviated as “RESBIAS”.
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Figure 6.12: Data/MC invariant mass distributions for subruns a, d and e in the mass
range 120 ≤ mll ≤ 10 000 GeV for the dielectron channel. Signals mG∗ = 2, 3, 4 and
5 TeV with coupling 0.1 are also shown.

6.8 Statistical analysis

In this section we have a look at the expected and observed upper cross-section limits.
Other parameters of interest are the 68% and 95% quantiles14 extracted from pseudo-
experiments generated under the background hypothesis. We will distinguish between
two different scenarios: (i) limits without systematic uncertainties, discussed in subsec-
tion 6.8.1, and (ii) limits with systematic uncertainties, discussed in subsection 6.8.2,
and the production of central limits and quantiles. We also look into the accuracy of the
analysis compared to the limits produced for another hypothetical, heavy gauge boson
Z ′χ [49].

6.8.1 Exclusion limits - without systematic uncertainties

The BAT program operates with a parameter range [0, σsig,max], where the maximum
upper-cross section, σsig,max, is adjusted manually15 and is estimated from the upper
limit on the number of signal events, Nsig,max. Table 6.7 shows the expected limits for
the dielectron, dimuon and combined channels when using L = 139 fb−1.

14Also denoted as the 1σ and 2σ bands.
15The Nsig,max is estimated from the ratio r of σsig,max = Nsig,max/[L(A × ε)] over the expected

limit produced, and is adjusted to the point where r ∼ 4 in order to not lose any interesting insight
regarding the production of the exclusion limits. If σsig,max is set too low we could miss out on upper
cross-section limits which could have a significance for the analysis.
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Figure 6.13: Comparison of pT provided by background and observed data in the SR
for leading (a) and subleading (c) lepton in the dielectron channel and leading (b) and
subleading (d) lepton in the dimuon channel. The lower subplots show the ratio of data
and MC along with systematic uncertainties, shown as grey shaded bands, related to
the background.

6.8.2 Exclusion limits - with systematic uncertainties

The inclusion of systematic uncertainties results in more relaxed expected limits, as is
seen in table 6.8 and figure 6.17. The effect of background systematics is more notice-
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Figure 6.14: Comparison of η provided by background and observed data in the SR
for leading (a) and subleading (c) lepton in the dielectron channel and leading (b) and
subleading (d) lepton in the dimuon channel. The lower subplots show the ratio of data
and MC along with systematic uncertainties related to the background.

able where there is a large background, i.e. in the lower mass regions, which certainly
holds in both channels. For example, the ratio of limits when including systematics over
the limits when excluding systematics (here referred to as the nominal limits) for a mass
of 1 TeV is 6.3% in the electron channel and 17.5% in the muon channel for kMPl. In
the muon channel, however, the effect of systematics is seen throughout the whole mass
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Figure 6.15: Systematic uncertainties on the total background as a function of invariant
mass from different uncertainty sources in the (top) dielectron channel and (bottom)
dimuon channel. The two left-most plots represent theoretical uncertainties while the
right-most plot shows the experimental uncertainties.

range. This would imply that the signal systematics play a bigger role in the muon
channel where the background is small. Figure 6.16 displays the difference in signal
systematic contributions between the electron and muon channel for signal masses 2
and 4 TeV. For instance, when excluding only signal systematics for mG∗ = 4 TeV with
coupling 0.1 the limit increases by 9% from not including any at all. Meanwhile, the
limits decrease by 1.9% when including only background systematics from the nominal
limits. Specifically, it is the uncertainty on the bad muon veto and efficiency uncertain-
ties which are the biggest contributors in the high-mll regions. Although uncertainties
related to the resolution are non-zero they do not alter the amount of signal events in
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Figure 6.16: Systematic uncertainties on the (top) 2 TeV and (bottom) 4 TeV G∗ signals
with coupling k/MPl = 0.1 as a function of invariant mass from different uncertainty
sources in the (left) dielectron channel and (right) dimuon channel.

the final selection, but rather “smear” out the shape of the signal peaks.16. As the G∗

couplings increase so too does the width of the signal resonances. The more narrow our
signal peak is the more we constrain signal systematics from the side-band regions of a
signal region. This could also help explain why the differences between the respective
couplings from tables 6.8 to 6.7 appear to increase the greater the signal width becomes.

To ensure the cross-section limits ofG∗ have been produced correctly we can compare
them with the limits of Z ′χ, obtained from Ref. [49], due to their similar intrinsic widths.
That is, the Z ′χ displays a width of 1.2% of its mass, while the G∗ with coupling 0.1

16Figure B.5 in Appendix B shows the total signal systematics of each coupling (per mass).
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Table 6.7: Overview of expected exclusion limits produced with L = 139 fb−1 for mG∗ ∈
[0.75, 5.00] TeV without systematic uncertainties. The limits are given in fb.

k/MPl Channel 0.75TeV 1.00TeV 2.00TeV 3.00TeV 4.00TeV 5.00TeV

0.1
ee 0.69 0.38 0.11 0.048 0.034 0.032

µ+µ− 1.26 0.77 0.21 0.10 0.073 0.067
ee+ µ+µ− 0.60 0.34 0.094 0.039 0.026 0.023

0.2
ee 0.97 0.54 0.13 0.056 0.038 0.035

µ+µ− 1.43 0.86 0.22 0.10 0.071 0.070
ee+ µ+µ− 0.80 0.46 0.11 0.045 0.028 0.025

0.3
ee 1.26 0.71 0.16 0.065 0.043 0.040

µ+µ− 1.41 0.92 0.25 0.11 0.081 0.076
ee+ µ+µ− 0.92 0.56 0.13 0.051 0.032 0.029

Table 6.8: Overview of expected exclusion limits produced with L = 139 fb−1 for mG∗ ∈
[0.75, 5.00] TeV with systematic uncertainties. The limits are given in fb.

Coupling Channel 0.75TeV 1.00TeV 2.00TeV 3.00TeV 4.00TeV 5.00TeV

0.1
ee 0.73 0.40 0.11 0.048 0.035 0.032

µ+µ− 1.48 0.94 0.22 0.10 0.080 0.082
ee+ µ+µ− 0.64 0.35 0.091 0.038 0.027 0.023

0.2
ee 1.14 0.63 0.13 0.055 0.039 0.035

µ+µ− 1.83 1.11 0.23 0.11 0.076 0.086
ee+ µ+µ− 0.97 0.55 0.11 044 0.029 0.027

0.3
ee 1.75 0.93 0.16 0.066 0.043 0.040

µ+µ− 1.94 1.25 0.25 0.12 0.090 0.091
ee+ µ+µ− 1.25 0.74 0.13 0.051 0.034 0.029

displays an intrinsic width of ∼ 1.4% of its mass. The comparison was done using
a luminosity of 36 fb−1 to match that of the paper. It should be noted that only a
direct comparison could be made for coupling k/MPl = 0.1, as the limits for the Z ′χ
are quoted using fiducial limits17 for intrinsic widths greater than 0.012mZ′χ . From the
right-most column in table 6.9 the ratios lie relatively close to 100% for masses up to
∼ 3 TeV, which indicate the exclusion limits to have been produced correctly for both
channels18. The greater deviations seen for masses 4–5 TeV could be due to the parton-
luminosity tails contained in the mll-distributions of the Z ′χ, which result in a greater
overlap between signal and background compared to that of the G∗.

17In which one applies a mass window around the pole mass to exclude the parton-luminosity tail
from the Breit-Wigner distribution in order to make an analysis more model-independent. In ref. [49]
a mass window of two times the true width around the pole mass is used.

18The 19% difference in the ratio for mG∗ = 0.75TeV in the dimuon channel could be due to sys-
tematic uncertainties. From figure 6.17 the difference between the limits when including vs. excluding
systematic uncertainties is approximately 20% for the same mass point.
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Figure 6.17: Comparison of expected limits when including systematic uncertainties for
(left) dielectron and (right) dimuon channels. The solid lines show cross-section limits
when ignoring systematic uncertainties, compared to the dashed lines which include
systematics as nuisance parameters.
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Figure 6.18: Comparison of expected limits when including systematic uncertainties
for (from left to right) couplings 0.1, 0.2 and 0.3 in the dimuon channel. The solid
lines show cross-section limits when ignoring systematic uncertainties, compared to the
dashed lines which include systematics as nuisance parameters. The circles denote limits
which have been producing when including only background systematics, the upward-
facing triangles represent limits produced with both background and signal efficiency
systematics, while the downward-facing triangles show limits produced with background
systematics and signal resolution systematics.

Figure 6.19 shows an example of the posterior distributions when including system-
atic uncertainties. The posterior distributions are shown formG∗ = 2 TeV with coupling
0.1 in both channels. The normal priors for the nuisance parameters contribute in the
more Gaussian-like shape of the posterior distributions.

Correlation of parameters

The correlation between parameters is extracted form joint posteriors of two parameters
at the same time. Figure 6.20 shows the covariance matrices in the dielectron and
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Table 6.9: Overview of expected exclusion limits produced with L = 36 fb−1 with
systematic uncertainties. Column four shows the signal acceptance×efficiency for G∗

with the upper limits on the signal cross-section σ in column five. Columns six and
seven show the acceptance×efficiency and upper cross-section limit for Z ′χ obtained
in ref. [49]. The right-most column shows the ratio between the two limits, with (*)
indicating a scaling to account for the observed difference in the acceptance×efficiency
which could stem from possible improvements in the reconstruction and selections as
well as possible differences in the kinematical distributions between the G∗ and Z ′.

Channel Mass [TeV] Nsig,max
This analysis Z ′ paper [49] Limit(*)/paper limit

A× ε Limit [fb] A× ε Limit [fb]
ee 0.75 140 69% 1.38 61% 1.63 96%
ee 1.00 80 71% 0.74 64% 0.96 86%
ee 2.00 27 73% 0.24 70% 0.27 92%
ee 3.00 20 74% 0.15 71% 0.16 98%
ee 4.00 15 73% 0.13 69% 0.16 85%
ee 5.00 13 73% 0.12 65% 0.23 56%

µ+µ− 0.75 200 50% 3.10 38% 3.43 119%
µ+µ− 1.00 120 49% 1.73 40% 2.07 102%
µ+µ− 2.00 35 48% 0.49 41% 0.56 102%
µ+µ− 3.00 25 46% 0.28 39% 0.34 96%
µ+µ− 4.00 17 44% 0.25 37% 0.35 83%
µ+µ− 5.00 15 41% 0.27 34% 0.58 56%
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Figure 6.19: Expected posterior density distributions for mG∗ = 2 TeV with coupling
k/MPl = 0.1 at L = 36 fb−1, in the (left) dielectron channel and (right) dimuon channel.
The signal cross-section σ (denoted as “signal”) is given in pb. The upper limit is
defined as the boundary between two and three standard deviations, i.e. 95% and
99.7% quantiles, such that there is less than a 5% probability that σ > σup.

dimuon channels. The labels on the x-axes are mirroring the labels on the y-axes, which
is reflected by the fully correlated elements along the diagonal. Among the nuisance
parameters themselves, the first PDF variation (PDF_VAR1) and αS (ALPHAS) is
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correlated by ∼ −0.8 in the dielectron channel and ∼ −0.6 in the dimuon channel. In
other words, the variations of the two parameters move in opposite directions of one
another. In the dimuon channel the reconstruction efficiency (EFF_RECO) and the
”bad muon” uncertainty is correlated by ∼ 0.4, meaning the increase in variations of
one slightly increases the variations of the other.
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Figure 6.20: Correlation matrices for the (top) dielectron and (bottom) dimuon channels
for the signal mG∗ = 2 TeV with coupling 0.1.
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Expected limits from ensembles

If we are interested in the sensitivity of an experiment, we can create ensembles of cross-
section limits estimated from pseudo-experiments. That is, we create pseudo-data by
repeating the procedure described in subsection 5.1.2 a given number of times N . For
each pseudo-experiment we draw a random number of “observed” events from a Poisson
distribution with an expectation value bkl from bin l of channel k. In addition, sample
values for the nuisance parameters are drawn according to a Gaussian distribution. The
expected limit, quoted as the median of the distribution of cross-section limits, and the
68% and 95% quantiles are then calculated.

Figure 6.21 shows an example of how the extracted limits, computed from the medi-
ans of 10 and 400 pseudo-experiments, and quantiles become more precise as the number
of pseudo-experiments increase. The expected (observed) mass limits are then extracted
as the intersections between the theoretical and the expected (observed) cross-sections.
This is done using an interpolation between the given mass points. The intersection
is extracted from a linear extrapolation if the intersection point exceeds the final mass
point.
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Figure 6.21: Comparison of expected cross-section limits and quantiles extracted from
(top) 10 and (bottom) 400 pseudo-experiments for coupling k/MPl = 0.1 in the (from
left to right) dielectron, dimuon and dilepton channels.
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Chapter 7

Final Results

The observed and expected invariant mass distributions in the dielectron and dimuon
channels from figure 7.1 appear to be in good agreement with each other. We see slight
statistical deviations between some data points and the background expectation towards
the tails (mll > 2 TeV), but due to the number of events in each bin being less than 10
these deviations could merely be statistical fluctuations.
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Figure 7.1: Comparison of invariant mass distributions provided by background and
observed data in the mass range 120 ≤ mll ≤ 10 000 GeV for the (a) dielectron channel
and (b) dimuon channel in the upper subplot, and corresponding ratio of data over
background for a given bin in the lower subplot. Signals mG∗ = 2, 3, 4 and 5 TeV with
coupling 0.1 are also shown.

The maximum number of pseudo-experiments used for the production of exclusion
limits and quantiles in this analysis is 950. Table 7.1 shows the expected and observed
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95% C.L. lower limits for the graviton mass for couplings k/MPl = 0.1–0.3 in each
channel, with corresponding upper cross-section limits in table 7.2. Figure 7.2 shows
the cross-section limits with ±1σ and ±2σ bands. The lower mass limits are extracted
from the intersection between the theoretical signal cross-sections with the expected and
observed signal cross-sections computed from the posterior marginalisation1. Figure 7.3
shows examples of the expected and observed distributions of P (σ|n), at which the upper
cross-section is extracted from, at mG∗ = 2 TeV for coupling k/MPl = 0.1.

Table 7.1: The expected and observed 95% C.L. lower mass limits, given in TeV, on G∗

using 950 pseudo-experiments for the expected limits (in this analysis). A comparison
for coupling 0.1 is given by the recent CMS publication [50].

Channel k/MPl = 0.1 k/MPl = 0.2 k/MPl = 0.3
Exp. Obs. Exp. Obs. Exp. Obs.

Analysis
ee 4.31 4.10 4.96 4.91 5.38 5.27

µ+µ− 3.92 4.01 4.57 4.64 4.90 4.98
ee+ µ+µ− 4.44 4.38 5.09 5.11 5.46 5.40

CMS
ee 4.43 4.42 − − − −

µ+µ− 4.59 4.59 − − − −
ee+ µ+µ− 4.81 4.78 − − − −

The difference in the lower limits on mG∗ between this analysis and the CMS paper
could perhaps stem from different values used for the free parameters, such as αs, giv-
ing different cross-sections. This could be cross-checked by comparing the theoretical
cross-sections computed by ATLAS to those computed by CMS2. It could also be due
to differences in the resolution. For muons, the differences between this analysis and
the CMS limits are enhanced in the dimuon channel, which could be a result of the
greater magnetic field in the CMS detector providing a better muon momentum resol-
ution than the ATLAS detector. Although not as pronounced, it could also be due to
the parton-luminosity tails, as discussed in subsection 6.4.2. The signal distributions
produced in the analysis contain parton-luminosity tails in the lower mll regions where
the background levels are much higher compared to the higher mll regions. The tails
increase for increasing widths, thus it is also reasonable to suspect that the limits pro-
duced are somewhat weaker than if we were to use fiducial limits instead. Additionally,
the effects of systematics between the ATLAS and CMS detector cannot be ruled out.

Current experimental outlook

Previous searches [27, 52, 50] at
√
s = 8 TeV and

√
s = 13 TeV found no significant

excess and led to the observed mass limits of the lightest KK-mode of the RS graviton
at variable couplings k/M̄Pl ∈ [0.01, 0.2]. The mass limits produced with

√
s = 13 TeV,

with a corresponding integrated luminosity of L = 140 fb−1, are the most stringent to
1Expressed in eq. (5.11) in subsection 5.1.2
2These are for the moment not given in HEPDATA [51].
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Figure 7.2: The expected and observed 95% C.L. upper cross-section limits, given in pb,
on G∗ for couplings 0.1–0.3 (top to bottom) in the (left) dielectron, (middle) dimuon
and (right) dilepton channels.

date, in which a spin-2 resonance is excluded at 95% C.L. for masses below 4.78 (2.47)
for coupling parameter k/MPl = 0.1 (0.01) [50]. These are shown in table 7.3.
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Table 7.2: The expected and observed 95% C.L. upper cross-section limits, given in
fb, at the G∗ mass corresponding to the mass limits from table 7.1 using 950 pseudo-
experiments for the expected limits.

Channel k/MPl = 0.1 k/MPl = 0.2 k/MPl = 0.3
Exp. Obs. Exp. Obs. Exp. Obs.

ee 4.63e-02 5.85e-02 4.16e-02 5.32e-02 4.03e-02 5.10e-02
µ+µ− 1.14e-01 6.36e-02 1.34e-01 1.17e-01 1.21e-01 7.90e-02

ee+ µ+µ− 3.90e-02 4.27e-02 2.59e-02 2.48e-02 2.68e-02 3.20e-02
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Figure 7.3: Examples of posterior distributions using mG∗ = 2 TeV with L = 139 fb−1

and coupling k/MPl = 0.1 in the (a-b) dielectron, (c-d) dimuon and (e-f) dilepton
channels.
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Table 7.3: The observed and expected 95% C.L. lower limits on the masses of G∗ (mG∗)
from a center-of-mass energy

√
s = 8 TeV (ATLAS) [27], and

√
s = 13 TeV (CMS) at

L = 36 fb−1 [52] and L = 140 fb−1 [50]. The couplings k/MPl are shown in the top row,
with corresponding expected limits (Exp.) and observed limits (Obs.) from the second
row. N/A indicates that a signal with such coupling was not considered in the analysis.

√
s L Channel 0.01 0.03 0.05 0.1 0.2

Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.
13 TeV 36 fb−1 ee 1.85 1.85 N/A N/A 3.30 3.30 3.90 3.90 N/A N/A
13 TeV 137 fb−1 ee 2.29 2.16 N/A N/A 3.83 3.70 4.43 4.42 N/A N/A
13 TeV 36 fb−1 µ+µ− 2.00 2.05 N/A N/A 3.50 3.50 4.05 4.05 N/A N/A
13 TeV 140 fb−1 µ+µ− 2.32 2.34 N/A N/A 3.96 3.96 4.59 4.59 N/A N/A
13 TeV 36 fb−1 ee+ µ+µ− 2.05 2.10 N/A N/A 3.60 3.65 4.25 4.25 N/A N/A
13 TeV 140 fb−1 ee+ µ+µ− 2.53 2.47 N/A N/A 4.19 4.16 4.81 4.78 N/A N/A
8 TeV 20 fb−1 ee+ µ+µ− 1.28 1.25 1.95 1.96 2.25 2.28 2.67 2.68 3.05 3.05
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Conclusion and Future Work

Conclusion

A search for the lightest Kaluza-Klein graviton mode G∗ in the dilepton final state
using the framework of extra dimensions, described by the Randall-Sundrum model,
has been presented. Data collected from proton-proton collisions at

√
s = 13 TeV using

the ATLAS detector at the LHC was used for the analysis. This data was extracted
from three sub-runs of the LHC during its Run 2 period, each with different integrated
luminosities. The total integrated luminosity of L = 139 fb−1 consists of run a with
L = 36.2 fb−1 (2015-2016), run d with L = 44.3 fb−1 (2017) and run e with L = 58.4 fb−1

(2018). Only the opposite-sign channel was considered for muons due to negligible
statistics from the same-sign channel. The same could not be said for the electron-
channel due to charge-misidentification and thus both the same-sign and opposite-sign
channels are considered in order to not lose non-negligible signals. The signal region
was set for invariant masses above 120 GeV, thereby vetoing the Z-peak. The simulated
background (SM DY, top and diboson processes) and data were in good agreement with
each other in the high-statistics regions.

The Randall-Sundrum graviton excitation G∗ is described by two free parameters;
its mass and coupling strength k/MPl. The six available G∗ mass points considered
in this thesis ranged between 0.75 TeV and 5 TeV, and were all given for the three
coupling strengths 0.1, 0.2 and 0.3. Exclusion limits at 95% C.L. for the mass of the
G∗ were therefore computed with respect to each coupling both in the electron, muon
and combined channels. The effects of systematic uncertainties on the limits were
also studied. Background systematics play a significant role where the background is
large, typically in the lower mass regions. Uncertainties arising from signal systematics
related to efficiencies in the muon channel, such as the reconstruction and identification
efficiencies, also played a role in the limit setting at higher invariant masses. Masses
up to 4.10 TeV, 4.01 TeV and 4.38 TeV in the electron, muon and combined channels,
respectively, are excluded at 95% C.L. for coupling 0.1. For coupling 0.2, masses less
than 4.91 TeV, 4.64 TeV and 5.11 TeV are excluded in the electron, muon and combined
channels, respectively. Lastly, masses less than 5.27 TeV, 4.98 TeV and 5.40 TeV are
excluded for coupling 0.3 in the electron, muon and combined channels, respectively.
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Future work

The exclusion limits presented in this analysis leave room for the possibility of detecting
a graviton signal in the data above the given mass limits. However, even if a signal
peak was present in the data we cannot be truly certain if the resonance stems from a
Kaluza-Klein graviton signal. It might as easily be from a potential Z ′-boson or a scalar
resonance. As was briefly mentioned in Chapter 2.2.3, the graviton displays a spin-2
angular distribution, whereas the Z ′ would display a spin-1 angular distribution. We
can differentiate between a graviton signal and other beyond the SM physics by looking
at the angular distributions in the center-of-mass frame. This would be interesting to
look further into, as it can provide more insight into potential signal resonances with
masses beyond the exclusion limits.

Furthermore, theoretical variations of the Randall-Sundrum model imply different
search strategies. For instance, the RS2 model takes into account the TeV-brane being
embedded in an infinite extra spatial dimension. This results in Kaluza-Klein partners
localized not only close to the TeV-brane, but also arbitrarily lighter KK-modes further
out along the fifth dimension. An experimental implication is then that the favoured
decay of TeV KK-particles is to yet lighter, non-visible KK-modes, thereby appearing
as missing energy in the detector.

Additionally, there is no requirement for Standard Model particles, including gauge
bosons, to solely be localized to the TeV-brane. In fact, the Standard Model particles
can also propagate in the five-dimensional bulk, so long as the Higgs boson is localized
on the TeV-brane, in order to maintain a solution to the hierarchy problem. This is
with the requirement that the two branes act as boundaries to the bulk, as discussed
in the RS1 model, and that the size of the extra dimension be relatively small. In
this variation, the graviton is predicted to decay primarily via top-quarks, changing the
search strategy quite drastically.

Of course, the Randall-Sundrum model is not the only candidate trying to provide
a solution to the hierarchy problem. If no experimental advances to this specific model
are made, then it is simply an indication that we should look elsewhere, because “new
physics” is just that, it’s new. It is unknown, enthralling and playful, situated right at
the frontiers. And with the experimental equipment available today, we can push the
boundaries of physics even further.
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Appendix A

A note on General Relativity

This short note is meant as a simple attempt to bring about a few fundamental concepts
used within general relativity, with the purpose of supplementing some intuition behind
the few variables mentioned in this thesis. The reader is referred to Ref. [53] by Sean
M. Carroll for a much more detailed and rigorous explanation of the variables and their
applications. This note is based upon the lecture notes from said author [54].

The metric tensor

Before we jump into one of the key concepts of general relativity, curvature in space-
time, we shall have a brief look at a mathematical property used to calculate physical
distances. When describing the distance between two points in spacetime we use the
line element ds2, expressed in Cartesian coordinates as

ds2 = −dt2 + dx2 + dy2 + dz2. (A.1)

We can simplify the expression for ds2 by collecting the coefficients of the spacetime
coordinates into a table denoted the metric gµν , that is

ds2 = g00dx
0dx0 + g11dx

1dx1 + g22dx
2dx2 + g33dx

3dx3 = gµνdx
µdxν . (A.2)

In short, the metric, gµν = diag(−1, 1, 1, 1), is a powerful tool giving us the necessary
information to calculate physical distances along a curved path through the sum of
infinitesimal path lengths ds along a trajectory. The metric tensor expressed here
describes a flat spacetime, which has no curvature. The metric changes according to
the geometry of the surface it describes. E.g. the metric of a sphere in two dimensions
is gµν = diag(r2, r2 sin2 θ) in which the line element takes the form ds2 = r2dθ2 +
r2 sin2 θdφ2.

Curvature in spacetime

Contrary to our daily experience of being on a seemingly flat surface, the geometry of
spacetime can be bent. The curvature of spacetime reveals itself in the effect it has on
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moving bodies, and manifests itself in what we call “gravity”1. We can determine the
curvature of a surface using the Riemann curvature tensor, expressed as

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλµσ, (A.3)

where the Christoffel symbols Γκαβ are identified from the metric tensor,

Γκαβ =
1

2
gκρ(∂αgρβ + ∂βgρα − ∂ρgαβ). (A.4)

The Riemann tensor provides a tool to calculate the curvature of a surface in all possible
directions. However, it also proves tedious to calculate due to the number of components
it contains. Two other mathematical objects which also encapsulate the curvature, but
perhaps in a more gentle manner, are the Ricci tensor (the contraction of the Riemann
tensor),

Rµν = Rλµλν , (A.5)

and the Ricci scalar,

R = RµRµ = gµνRµν . (A.6)

The Ricci tensor represents the changing of volume along a curved surface2, while the
Ricci scalar tells us the average curvature along a surface. If there is no curvature present
then both the Ricci tensor and the Ricci scalar is zero. The greater the curvature is,
the greater the Ricci tensor and scalar become.

1For example, if we were to place two objects at a distance from each other along the equator of the
Earth, the two objects would move closer and closer together as they simultaneously move towards a
common pole, whether it be the North or South. This is due to Earth’s spherical shape.

2E.g. if two objects were to move simultaneously from the equator to a common pole, any volume
between the two objects would decrease due to the curvature of the Earth.
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Appendix B

Systematics

The ratio of systematic uncertainties over the total background is shown in figures B.1–
B.4, while the ratio of the sum of signal systematic uncertainties over the total signal
yield is shown in figure B.5. The nuisance parameters included in this analysis are listed
below.

Experimental systematics

• Electron energy resolution

• Muon momentum resolution (ID, MS, RESBIAS)

• Electron identification efficiency

• Lepton reconstruction efficiency

• Lepton isolation efficiency

• Lepton trigger efficiency

• Electron energy scale

• Beam energy scale

• Muon momentum scale

• Misidentified electrons (fakes)

• “Bad muon” veto

• Muon track-to-vertex association

Theoretical systematics

• αs and EW higher-order corrections

• Photon-induced effect

• PDF variations, PDF scale, PDF choice
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Figure B.1: Experimental background systematics in dielectron channel for
√
s =

13 TeV.
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Figure B.2: Theoretical background systematics in dielectron channel for
√
s = 13 TeV.
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Figure B.3: Experimental background systematics in dimuon channel for
√
s = 13 TeV.
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Figure B.4: Theoretical background systematics in dimuon channel for
√
s = 13 TeV.
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(a) Signal systematics in dielectron channel.
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(b) Signal systematics in dimuon channel.

Figure B.5: Signal systematics in (a) dielectron and (b) dimuon channels for masses
mG∗ ∈ [0.75, 5.00] TeV.
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