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Abstract

The multi-Needle Langmuir Probe (m-NLP) instrument is an electron density sensor made for sound-
ing rockets and satellites. It is capable of a much higher sampling rate and spacial resolution com-
pared to a traditional single probe system, making it possible to detect small-scale structures in the
ionosphere, which is important for space weather analysis. An application-specific integrated cir-
cuit (ASIC) is being developed at UiO to replace the off-the-shelf components currently used. A
field-programmable gate array (FPGA) based system has been used to test this ASIC before, but in
a constrained manner as it lacked the ability to save data and was not very intuitive to use. In this
thesis a read-out system for testing and reading-out of this ASIC using a PYNQ-Z2 development
board was developed, improving on the downsides of the previous system. This read-out system
was successfully tested, with performed measurements for the ASIC ADC and the front-end.



Nomenclature

ADC Analog-to-digital Converter

ASIC Application-Specific Integrated Circuit
DAC Digital-to-analog Converter

EIDEL Eidsvoll-Electronics

EM  Electro-Magnetic

ENOB Effective Number of Bits

EUV  Extreme Ultra-Violet

FE Front-end

FPGA Field-Programmable Gate Array
GNSS Global Navigation Satellite System
GPS  Global Positioning System

HDL Hardware Description Language

I-V  Current-Voltage

IEEE Institute of Electrical and Electronics Engineers
1P Intellectual Property

IRI International Reference Ionosphere
LSB Least Significant Bit

m-NIC Multi-Needle Integrated Circuit
m-NLP Multi-Needle Langmuir Probe

MCU Microcontroller Unit



MSB Most Significant Bit

OtS  Off-the-Shelf

PL Programmable Logic

PS Processing System

SoC  System-on-Chip

TEC Total Electron Content
TIA  Transimpedance Amplifier
UiO  University of Oslo

VHDL Very High Speed Integrated Circuit Hardware Description Language



Acknowledgements

This work was carried out in the period from January 2020 to June 2021. I would like to thank
my main supervisor Ketil Rged for introducing me to space electronics and the m-NLP instrument.
Thanks to Candice Quinn for all your help with my writing, as well as the help in the lab and de-
signing the PCB. Thanks to Joar Martin Ostby for answering all my questions regarding the design
of the m-NIC, and a big thanks to Girish Aramanekoppa Subbarao for all your help regarding the
operation of the m-NIC. I want to thank Olav Stanly Kyrvestad for all the help related to the lab
and ordering new parts whenever it was needed, and Philipp Héfliger for good advice during our
bi-weekly meeting. Thanks to my great uncle Olav for providing useful tips and feedback on my
writing.

Thanks to everyone at 333 and SEF for making the days more fun and tolerable. Lastly I want
to thank my parents, friends and girlfriend for support and patience, especially through these last
weeks.



Contents

1 Introduction
[[.1 Challenge with the current readout system . . . . . . . . . . . . ... ... ...
.........................................
[[.3 Thesisoutling . . . . . . . . . . . . .
2  Background theory
R.1 Tonospherd. . . . . . . . . . . e,
R.1.1  TonoSpheric re@ions . . . . . . v v v v v e
....................................
R.2 Langmuir probed . . . . . . . ...
R.2.1 Current-Voltage Characteristicd . . . . . . . . . o v v v
R.2.2  Parameter Calculation] . . . ... .. .. ... ... ... ... ..
2.2.3 Them-NLPinstrument . . . . . . . . . . o v v v i i i
2.3 multi-Needle Integrated Circuif . . . . . .« o o v v v i
2.3.1 m-NICADQ . . . . o oo
....................................
....................................
R2.3.4 Existing readout method . . . . . . .. . . .. .. ... ... ... ...
R.4 FPGA based readout systems . . . . . . . . . . .. a
R.4.1 FPGA Introduction . . . . . . . . . . o v i i
R.4.2 Advanced eXtencible Interface . . . . . . .. .. ... ... ... .. ...
.43 PL-PSHybridd . . .. .. .. .
B  Measurement System Design
B.1 m-NICPCB . . . . . .
B.1.1 Post-assembly PCB Modificationd . . . . . . .. .. ... ... ......
B.2 Embedded readout system desien . . . . . . . . .. .. e
B.2.1  OVEIVIEW . . v o o o e e e e
B.2.2 RequiremMents . . . . . . . v v v e
B.23 m-NICPCBinterfacd . . . . . . . . . . . . . i
B.2.4 Datatransferl . . . . . . . . . .,
B.2.5  Softward . . . . . . ...

0 00 I

10
11
12
12
13
14
14
15
17
18
20
20
21
21
22



4

Measurement setup|

B.1  Characterization SEtUp . . . . « o v v e e e
B.1.1 Requirements . . . . . . o v v v e e e

.....................................
.....................................
#.2 Front-endtabletes| . . . . ... .. . . . .. ... ...
#.2.1 Probe-current vs output voltagd . . . . . .. ... ... ... ... ....
#.3  Proposed plasma chambertes{ . . . . . ... ... ... .. ... . ........

Q

B.1 Measurementy . . . . . . . ou oo e e e
5.1.1  ADQ . . . . e e
.....................................
5.1.3 Front-endtabletest . . . . . . . . . . . . . . .

5.2 Readout system performance . . . . . . . . . . . ...
5.2.1 Resource utilization . . . . . . . . . . .

.1 Measurements . . . . . . . .o e e
6.1.1 ADQ . . . . e
.....................................
6.1.3  Front-end measurements . . . . . . . . . . ooooii

.2 Readoutsystenml . . . . . . . . . . ...
6.2.1 Requirementy . . . . . . . o oo
6.2.2 Limitationd . . . . . . . . . .,

[[.1 Future workl . . . . . . . . .

[A" VHDL Codéd

IA.1 pcb interface v3.vhd . . . . . .
IA.2 dac control.vhd . . . . . . ... ...
A3 ext dac control.vhd. . . . . . ...
A4 int dac control.vhd . . . . . .. ...
IA.5 tb adc sawtooth.vhd . . . . . . ...
IA.6 ext adc control.vhd . . . . . . . . . ..
IA.7 int adc control.vhd . . . . . .. ...
IA.8 sawtooth wave.vhd . . . . . . . . . . . ..
A9 sine wave.vhd . . .. ...
IA.10 sine package.vhd . . . . . . ...
IA.11 debounce.vhd . . . . . . ...

B

State machine Diagrams

36
36
36
37
38
39
39
40

41
41
42
45
46
46
46

48
48
48
49
49
49
49
50

51
51



IC Pin assienment

D Python cod€

D.1 Readoutcodd . ... ...

D.2 Deviation calculation codd

Vivado block diagram

m-NIC PCB Schematics

116

119
119
122

124

127



Chapter 1

Introduction

The University of Oslo’s (UiO) multi-Needle Langmuir Probe (m-NLP) instrument was first devel-
oped by T.A Bekkeng in 2009 [|l]. Since then, multiple revisions have been adapted for different
missions and have been present on both sounding rockets and satellites. Previous versions have
relied on off-the-shelf (OtS) components installed on a custom PCB. Utilizing OtS components has
its advantages, such as low cost and short development time, but does come with drawbacks such
as a large area requirement and high power consumption. Choosing the right components and op-
timizing PCB layout are two ways of reducing the effects of these downsides, but due to the larger
form factor it will in most cases use more power than an ASIC counterpart. An ASIC design called
the multi-Needle Integrated Circuit (m-NIC) is currently in development at UiO, with the goal of
replacing all of the OtS components used in the original system. One problem with ASIC develop-
ment is complexity as a small error on a revision can lead to failure of the entire chip, something
which would then require a new revision, compared to a PCB where doing modifications is possi-
ble to some extent. m-NIC is currently on revision two (m-NIC2), adding additional features and
changing some existing modules from the first revision (m-NIC1). For the m-NIC to become flight
ready its current problems has to be resolved. Both integrated circuits (IC) have been tested to some
extent before but mostly as a proof of concept. Extensive testing on each of the IC’s internal module
needs to be performed to properly reveal all problems, as well as testing on the system as a whole.
A field-programmable gate array (FPGA) based readout system has been suggested in order to thor-
oughly test and prototype the ASIC system. In future revisions it is proposed to integrate a FPGA
readout design into the ASIC, something this readout system would be an early prototype of.

1.1 Challenge with the current readout system

An FPGA based readout system is already in place and has been used in previous rounds of testing.
Currently, the state of it is more akin to a collection of code meant for proof-of-concept measurements
rather than a fully functioning readout system. One major challenge is its functionality to produce
output data back for interpretation, as it currently shows output data on a HEX-display and a row of
leds, and has no method of saving data to be properly analysed.



1.2

Goal

The goal of this thesis is to develop a testing focused readout system for both the m-NIC1 and
m-NIC2. Something which would enable the possibility of performing measurements for character-
izing the internal ADC and DAC, as well as testing the front end in both a table-top configuration
and with a Langmuir probe in a plasma chamber.

1.3

Thesis outline

Given below are an overview of this thesis’ structure and contents:

Chapter 2: Background theory gives a brief background of the Ionosphere, plasma, Lang-
muir probes and UiO’s m-NLP instrument. A description of the relevant parts of both the
m-NICI and m-NIC2 will be provided. As well as an introduction to FPGA based readout
systems.

Chapter 3: Measurement System Design describes the m-NIC PCB and readout system
developed in this thesis

Chapter 4: Measurement Test Setup describes the test-setup for characterization measure-
ments and bench-top testing of the front-end.

Chapter 5: Results provides results from characterization measurements as well as bench-top
testing. Results regarding the performance of the readout system will also be given.

Chapter 6: Discussion discusses the measurement results, as well as the resulting readout
system.

Chapter 7: Conclusion concludes and summarizes the work done in this thesis.

Appendix contains very high speed integrated circuit hardware description language (VHDL)
code for the programmable logic (PL) design, state machine diagrams, block diagram from
Vivado, constraints for I/O assignments, python code for readout and for post-processing and
m-NIC PCB schematics.



Chapter 2

Background theory

Each of this chapter’s four sections contain a different topic necessary to understand this thesis. A
brief introduction to the ionosphere and plasma is presented in the first section. Langmuir probe
theory is explained in the second section, and the third section is an overview of the present state of
the m-NIC chips. Finally, an introduction to FPGA based readout systems is given.

2.1 Tonosphere

From approximately 60 km up to around 1000 km above the Earths surface lies the ionosphere
[2]. The ionosphere ionized, but the ionization grade varies by orders of magnitude depending on
height, position and time of day. When solar winds interact with the Earth’s magnetic field, particles
from the Sun are directed along the field lines down towards the polar regions. Polar regions are
the areas around the geomagnetic poles and get the highest amount of mass-particles from the Sun,
which can cause disturbances in the ionosphere. Disturbances like this causes accuracy problems for
Global Navigation Satellite Systems (GNSS) like Global Positioning System (GPS), as described in

paragraph 2.1.2.1].
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Figure 2.1: Plot of ionospheric electron density depending on day or night-time. Data from Interna-
tional reference lonosphere (IRI) model [3]

2.1.1 Ionospheric regions

The ionosphere consists of five layers that can change and vary throughout the day due to solar
activity. There are no firm boundaries for these regions due to the fact that the ionosphere changes
its characteristics. An example of the electron density in the ionosphere depending on day or night
is shown in Figure R.1I.

D Region The D region is the lowest and smallest region. Starting around 60 - 70 km above the
surface, and extends to approximately 90 km. Since the density of the atmosphere is much greater
there than further up, collisions between particles are more common which changes the dynamics

10



compared to higher altitudes. But it is still a high enough altitude that high energy electro-magnetic
(EM) waves and particles can also ionize the atmosphere [4].

E Region Stretching from 90-100 km to about 120 - 150 km lies the E region. Here, collisions are
much less frequent [4], and ionization rate is much higher compared to the D region. Soft X-rays
and extreme ultra-violet (EUV) are the predominant drivers of ionization in this region, with the
former being the highest. A higher ionization rate will then natural lead to a higher electron density.

F Region Starting around 150 km, the F region will vary greatly in height. Collisions are rare, and
the ionization is mainly driven by high energy EM-waves from the sun. Sometimes the F region is
referred to F1 and F2 due to changes in its characteristics depending on the time of day [4]. F1 exist
only during daylight, the F region then changes into F2 at night.

Plasmasphere Above the F region lies the Plasmasphere, it is also sometimes called the inner
magnetosphere. Here, the movement of the plasma is dominated by the Earth’s magnetic field, and
is therefore relatively stable and irregularity free compared to the lower regions [5].

Magnetosphere is the area around the Earth which is controlled by its magnetic field. It is directly
affected by the solar wind, which compresses on the day side and creates a long tail of magnetic field
lines on the night side. Similar to how a boat compresses the water in front and leaves a long tail
behind.

2.1.2 Plasma

Plasma is a naturally occurring substance and is one of the four fundamental states of matter, it is
the matter that makes up the majority of the visible universe. It consists of both neutral and charged
particles that together create an ionized gas. At Earth, plasma occurs during lightning strikes and
flows around the planet in the Ionosphere. On a smaller day-to-day scale plasma is also created in
the fraction of a second during an electro-static discharge (ESD), for example when getting a shock
from touching a metallic door handle. In modern-day technology, plasma is used in plasma TV’s.
To describe a plasma, one usually refers to a few parameters: electron density, electron temperature,
plasma potential and magnetization.

2.1.2.1 Small-scale structures

Small-scale structures can be considered as a form of turbulence in the Plasma. Plasma blobs and
bubbles are irregularities in the plasma, which can range from hundreds of kilometers to a few
meters [6]. These structures are one of the challenges with space weather as it can disturb radio
communication. Another issue created by small-scale structures is scintillations, which is caused by
variation in refractive index of the plasma that occurs due to difference in #,. Scintillations disrupt
and change the path an EM wave has to travel, increasing the distance it has to travel as seen in

Figure 2.2,

11
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Figure 2.2: Figure showing the effects of the ionosphere on GNSS signals [7], where total electron
count (TEC) irregularities is plasma bubbles which causes scintillations.

Scintillation effects on GNSS Scintillations decrease the accuracy of GNSS services such as GPS
because it alters the EM waves as they travel through the ionosphere[7]. Figure 2.2 shows the
difference in possible paths the waves can take through a less turbulent plasma versus one that has
irregularities. The present method used to minimize the affects of a non-turbulent ionosphere is
the total electron content (TEC), which is an approximation the the amount of electrons between a
receiver and a transmitter [8].

2.2 Langmuir probes

Since Irving Langmuir invented the Langmuir probe in the 1920s, it has been widely used to measure
different plasma parameters. When a voltage bias is placed on the probe in a plasma it will either
attract or repel electrons depending on a positive or negative voltage bias. An I-V curve, as seen in
R.3, is obtained by performing a linear voltage sweep. A linear voltage sweep is a constant change
in voltage that has a starting point and a stopping point. For example, 0 V to 10 V. From this sweep
the electron density ,n,, and the electron temperature ,T,, can be determined.

2.2.1 Current-Voltage Characteristics

I-V characteristics of a Langmuir probe are divided into three different regions, “ion saturation”,
“retardation region” and “electron saturation”. These regions can be seen in Figure 2.3. In the ion
saturated region, V} is more negative than V), the negative voltage will then repel electrons and

12
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Figure 2.3: Langmuir Probe I-V characteristics illustrating the three main regions. Figure from [9]

attract ions so that the ion current dominates. As in an electronic circuit, the electrons will always
follow the least resistive path to a more positive voltage. Langmuir probes will attract electrons and
repel ions when Vj, is more positive than V). In this region the electron current will dominate and
increase approximately linear. In the electron retardation region a gradual shift from ion dominating
current to electron dominating current will happen as the voltage becomes more positive.

2.2.2 Parameter Calculation

Electron Density The current collected from a probe with the voltage potential V' is given in Eq.
as presented in [[10].
_ 2kgT,

1% 2
kiT ) = - (n.q2r1)% + m—q(nqurl)ZV (2.1)

I? = 21{733;3 (nqum’l)z%(l +
Where 1, and T, are the electron density and electron temperature respectively, g is the electron
charge and m, is the electron mass. kg is the Boltzmann’s constant. r Is the radius of the probe and /
is the length, V is the probe potential. The two unknown parameters T, and 7, are separated. Since
T, is not dependent upon the bias voltage, taking the difference in current between two different
biases will remove this part of the equation.

2k T, 2k T, 2e 2e
oI5 = Be “(neq2rl)® — nf “(neq2rl)® + - = (neq2rl)*Va = —=(neq2rl)*Vy
ALY = 2 (n,q2r1)2AV
me
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Where K = 251(7;7221)2’ which is decided upon by the probes geometry. This derivation originates
from [[10].

n. =1/ K

2.2)

Electron Temperature T, is determined from the electron retardation region [|1f].

. e
kBAret

T, (2.3)

where A, represents the slope of the retardation region.

2.2.3 The m-NLP instrument

For plasma measurements in the ionosphere, the major drawback of a single-probe sweep setup is
spacial resolution. Given a circular low-earth orbit (LEO) velocity of 7.5 km/s, a sweep of 1 s will
give a spacial resolution of 7.5 km. To combat this the m-NLP instrument was developed [[10] [|L]].
Four Langmuir probes are utilized here with individual voltage bias’, Vj,, where V}, is measured
with respect to the spacecraft potential. A curve fit is performed from these four points to create
an approximate I-V curve, this eliminates the need for an AC sweep. Samples can now be gathered
much faster due to each probe having a static bias voltage, increasing the sampling rate and therefore
the spacial resolution.

UiO’s m-NLP instrument has been present on 9 sounding rocket launches, as well as a few
satellites such as NorSat-1 and ExAlta-1 [[11]]. Both of which were apart of the QB50 nano satellite
mission which is a CubeSats mission for lower thermosphere and re-entry research [[12]. Together
with Eidsvoll Electronics (EIDEL), the m-NLP has been made into a commercial product, and is
per today the only commercial instrument capable of delivering sub meter resolution [[13]. A fixed
voltage bias increases the sampling rate from mHz up to the kHz range, which can reduce the spacial
resolution down to the meter scale [[14]. A meter scale resolution introduces the ability to see and
analyze small-scale structures in the plasma, such as the mentioned plasma bubbles. Measuring
these plasma bubbles will help develop a better understanding of the dynamics of the ionosphere.

2.3 multi-Needle Integrated Circuit

The Nanoelectronics group (NANO) at the Department of Informatics (IFI) has together with the
4DSPACE initiative at the Department of Physics developed two iterations of an ASIC. In the future
it is desired that this chip will be used as a replacement for today’s OtS components based instrument.
Both m-NIC iterations consist of an analog front end, a system for serial communication and the same
16-bit capacitor-resistor hybrid (CR-hybrid) successive approximation register (SAR) ADC [[15]. A
7-bit DAC and a programmable front-end controlled through a serial register was added for the

14



second revision. When referring to m-NIC1 or m-NIC2 in this thesis, it is referred to either revision
one or two respectively. When only m-NIC is written without a number, it is meant as a reference
to the series of chips and not one revision in particular. m-NICs common ADC will be described in
Section P.3.1), then both iterations of the chip will be described in the following Sections. Table
provides an overview of the functionality of both chips.

Component | m-NIC1 m-NIC2
ADC | Functional Functional

ADC Noise | Not quantified Not quantified

Number of channels | 1 2
DAC: | N/A Semi-functional
ENOB: | 12 12
Front end: | Functional Programmable, non-functioning
Front end noise: | Undocumented | Undocumented
Interface: | 4-bit parallel bus | Serial shift register, also a non-functioning SPI module.

Table 2.1: Status overview of both m-NLP IC’s.

2.3.1 m-NIC ADC

The ADC is unchanged from the first to second revision. From previous rounds of testing, the ADC
has been determined to be functional but noisy [[16]. The ADC has previously been calculated to
have an effective number of bits (ENOB) of 12 bits in the linear region, this region is defined from
50 mV to 2.7 V. After 2.7 V, the relation between the input voltage and the converted value is no
longer linear [|L6].

2.3.1.1 CR-hybrid SAR ADC

A SAR ADC works by using a comparator to compare the output of a DAC with the input of the ADC.
It will begin by comparing the input with the output of the DAC, which will be equal to Vg.r/2.
VRer 1s the reference voltage which determines the maximum value. In other words, it is checking
if the analog input is higher or lower than the most significant bit (MSB) of the DAC. If it’s higher,
the MSB of the ADC result becomes a logic high, if not it becomes a logic low. The comparator
output is then fed back into the SAR logic, see Figure 2.4. The SAR then moves to the next most
significant bit. The same operation is done successively on all bits to find an approximation to the
analog input. After finishing with all bits in the SAR, an end-of-conversion (EOC) signal will go
high. If doing continuous conversions, the next clock cycle will then give the value of the MSB.

2.3.1.2 Operation

There are two different methods for reading out this ADC. By using the serial register interface
described more detailed in Section 2.3.3.1|, or by directly connecting to the comparator and EOC
output. The ADC uses three external voltage references for the DAC. VL, VM and VH. VH is the

15
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Figure 2.4: Block diagram of a SAR ADC. S/H is a sample and hold block, which makes sure the
input of the comparator is kept the same for an entire clock cycle.

high voltage, earlier mentioned as V,.y. VM is the middle value which should be as close to VH /2
as possible. VL is the low voltage, and is designed to be connected to ground. The comparator is
dependent on a 5p A bias current to function properly.

2.3.1.3 Propagation delay

During verification of the readout system, an undocumented property of the ADC appeared. After
a conversion and EOC has been high for one ADC_CLK period, EOC should go low and MSB will
be asserted high if the analog input is higher than V). This is not quite what happens, as there
is a propagation delay for both EOC and COMP. EOC is asserted around 50 ns after ADC CLK,
and COMP after 100-300 ns. The delay of EOC is constant, while the timing of COMP varies
depending on the input voltage, as shown in Figure R.3. A voltage that is slightly greater than V),
will yeild a longer delay, while a voltage closer to Vi will result in a shorter delay. However, this
is expected behaviour as the input voltage increases, the difference between this voltage and the
threshold voltage to flip the most significant bit increases. A larger difference will give a faster
result as the comparator output will stabilize faster.

2.3.1.4 Performance

As previously mentioned, the ADC has been calculated to have an ENOB of 12-bits in its linear
range [[16]. During the initial round of testing in 2018, a measurement of the output with a constant
1.65V input was performed. This measurement showed a difference of 35 least-significant-bits
(LSBs) between the maximum and minimum value. This indicates a resolution of less than 12-

16
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Figure 2.5: Visuilization of the propegation delay, where t,; is EOCs falling delay and t.; is the
variation in COMPs MSB rising delay.

bits. However, this is not conclusive evidence of the ADCs ENOB, as measurements for ground
noise and noise from the voltage source is not present. To date, a max sampling rate has not been
formally tested. A very clear dip in the resolution and an increase in noise has been measured to be
more visible once the sampling rate reaches 40-50 kS/s.

2.3.2 m-NIC1

As seen in table R.1], m-NIC1 consists of a SAR-ADC, an arbiter and an analog front-end. Only the
ADC and front-end are relevant for this thesis and are therefore the only ones described in further
detail.

VOLIt

Figure 2.6: A simplified trans-impedance amplifier (TIA) [[17] with a current source and feedback
resistor connected to the inverting input.

17



Module | m-NIC1 -> m-NIC2 change description

ADC | Mostly unchanged, but now with the option of being multiplexed between
two channels.

DAC | 7-bit DAC was added

Channels | m-NIC2 contains two Langmuir probe channels instead of one
Front-end | Programmable gain was added, as well as a redesigned op-amp. However,
a design error in the current bias circuitry rendered this module useless.
Communication | A serial register was added to configure front-end, DAC and read from
ADC. An SPI module was added but is not functional.

Table 2.2: Overview of most relevant changes from m-NICI1 to m-NIC2.

2.3.2.1 Frontend

A front end is required in order to convert the Langmuir probe current to a voltage so that it can
be measured, this conversion is done with a trans-impedance amplifier (TIA). To enduce a current
from the plasma, a bias is applied to the probe via a follower, which is a biasing method using an
op-amp. Current then flows into the TIA. Due to the TIA output not being between 0 - 3.3 'V, but
rather between Vbias - 10 V, a level-shifter and inverter is needed to create an output voltage (OutLS)
between 3.3 -0 V.

A TIA works in principle by receiving an unknown current, which is delivered to an op-amp with
a known feedback resistor, and reading the output. In this case the unknown current is the plasma
current from the Langmuir probe. Figure 2.4 illustrates a simplified TIA.

2.3.3 m-NIC2

m-NIC2 Is the second and latest revision of the m-NICs. An overview of the changes made is shown
in table

2.3.3.1 Serial interface

The serial interface is a custom interface designed to communicate with the m-NIC2’s modules. It
consists of writing to 54-bit long serial register using the SI (serial in) port, then asserting a logic
high on the SWRITE port. In table an overview of the pinout of the serial interface is described.
Table provides more detailed information about the serial register for controlling the front-end.

18



Number of bits # Description Direction
14 Channel 1
14 Channel 2 In
8 Independent test DAC
16 ADC Result
1 ADC Select channel 1 bit Out
1 ADC End-of-conversion bit
(a) Overview of the m-NIC2 shift-register for controlling the front-end, DAC
and reading from the ADC.
Number of bits # | Description
CFBc Adds 0.5 pF to the 0.5 pF TIA feedback, will lower feedback band-
width and noise.
(élll\élcc Sets gain of TIA.
G2He Sets gain of second stage invert and level shift amplifier.
G2Mc
FHc High sets 10 kHz corner frequency for sixth order lowpass filter, low
sets it to 1 kHz.
FLPc High signal enables the low pass filter.
Vscer[6:0] Digital input of the DAC

(b) More detailed view of the register for controlling the Channel 1/2 register in 2.34.

Table 2.3: Overview and detailed overview of the m-NIC2 serial-register.

2.3.3.2 DAC

The m-NIC2 DAC is a 0-10 V, 7-bit DAC controlled by a serial register. It has three outputs, two of
them are used for setting the screen voltage on the Langmuir probes while the third is a testing DAC
(TDAC) and is meant for testing purposes. Table .4 presents the current issues with the DAC.
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Issue Description

Range For the screen voltage outputs the range is not 0-10 V, but 1.5 V - 10
V. This is because the output goes through a buffer to which does not
give any less voltage than 1.5 V.

MSB Switching spike | Another distortion appears at higher frequencies. A spike is visible at
around 5V, when the most significant bit changes. This effect is caused
by two things. One reason is shifting further in the R2R network that
is used in the DAC. The second reason is due to switching between
the PMOS amplifier and the NMOS amplifier. When the PMOS is
switched off and the NMOS is on. This was a distortion which was
also noticed during simulation.

Probe output bias There is a design flaw with the biasing circuitry for the DAC. The
main current reference does not provide enough current for the output
buffers. Both VSCR1 and VSCR2U are then affected, and will not be
able to drive even small loads and will also struggle at higher frequen-
cies. This effect was noticed during testing with the readout system
developed in this thesis.

Table 2.4: Overview of the issues related to the m-NIC2 DAC.

2.3.4 Existing readout method

During previous testing of both chips, an older Cyclone 2 FPGA board from Intel was used to test the
individual modules. In adition to the FPGA, it contained a row of LEDs, switches, headers and four
7-segment display. Using this method, the system could display data on the 7-segmented displays
or an array of leds. Averaging filters and the option to display max an min values, it was able to do
some debugging and analisys. Saving data was then performed by manually writing down values
on a spreadsheet, this was the systems largest limitation. Doing formal characterization would be
impossible with the current system, as it is only possible to do measurements on DC signals or very
slow mHz waveforms.

2.4 FPGA based readout systems

FPGAs are a popular tool used in readout systems. There are a plethora of reasons for this, for
example flexibility in interfacing non-standard communication protocols as well as speed, as FPGAs
can process large amounts of data in a parallelized fashion.
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2.4.1 FPGA Introduction

An FPGA is primarily built up of Configurable Logic Blocks (CLB), which are essentially blocks
programmed to give a certain output given a specific input. Most common building blocks of a CLB
are of Look-up-tables (LUT), flip-flops (FF) and often a multiplexter (MUX). Figure 2.7 illustrates
the build-up of a CLB. These are the building blocks of an FPGA and are connected togheter with
interconnects to create a large mesh of programmable logic. Other blocks such as Block Random
Access Memory (BRAM) and Digital Signal Processing (DSP) cells are also a part of an FPGA, but
serve specific purposes related to memory or calculations.

Logic block SRAM | *—
set by configuration
bit-stream
> = 1
. Output
Inputs 4-LUT FF 0
A

4-input look-up table

Figure 2.7: Example CLB with a 4-bit LUT, SRAM block and FF. Taken from []18]

2.4.2 Advanced eXtencible Interface

AXI is first and foremost a high bandwidth, parallel, multi-master and multi-slave interface. It is
mostly used for on-chip communication. As other other high bandwidth interface utilizes, AXI uses
one channel for each “type” of communication. This means that there is a seperate bus for data,
addresses, ready signals etc. Compared to a 3-wire interface like SPI where the different words
(address, data) will be transferred after each-other sequentially. AXI has a separate channel for
both read/write addresses and data. There are three types of AXI4 interfaces: AXI4, AXI4-Lite
and AXI4-Stream, where the latter two are the focus of this thesis. In this thesis the focus will lie
on AXI4-Lite and AXI4-Stream. From here on, AXI4-Stream will be referred to as AXIS and is
designed for high-speed data streaming. AXI4-Lite is for simple, low-throughput memory-mapped
communication. Both AXI4-Lite and AXIS are compatible with different clock frequencies on the
master and slave side.

2.4.2.1 Master/Slave

The AXI interface is based on the Master/Slave model of communication. This means that there
will be one device/interface which will be the master, and one or multiple slaves that will follow the
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masters instructions. A master will initiate and control the communication, the slave then follows
the given instructions.

2.4.2.2 AXI4-Lite

The AXI4-Lite interface consist of five different channels, with read and write channels for both the
address and data channel. A write response channel is also present, as the slave will acknowledged
a write operation performed by the master. AXI4-Lite is able to do both read and write operations
simultaneously, which mean that communication can flow between the master and slave at the same
time.

aclk |
- | | 3 3 3 3 | 3 |
walid / 3 3 3 3 3 3
8 : : : : : : : 1 :
2 tlast - : : : : : /—\_
= : : : : : : : : :
ws o X ;2 X o YN o YO
tdata ‘ ‘ ‘
~ - f f : : : : f : /
o
5 tread
= eady

Figure 2.8: Example waveform for a shared clock AXIS transfer, functionality of both tvalid and
tready are shown.

2.4.2.3 AXI4-Stream

AXIS is different from AXI4-Lite due to it being a one way data transfer protocol, as it can only
transfer data from the master to the slave and not the other direction. The advantage of AXIS comes
from the fact that the amount of data to be streamed is unlimited. AXIS utilizes a READY and
VALID bus. The slave pulls READY high whenever it is ready to read data, and the master pulls
VALID high when it has data ready. A transaction is done when both READY and VALID are high.
An optional LAST signal is asserted high for one clock cycle when the master is finished streaming.
An example illustrating this behaviour is shown in Figure 2.8,

2.4.3 PL - PS Hybrids

A modern development in SoC FPGA technology is the combination of programmable logic (PL)
and a processing system (PS). Combined it has the benefits of an FPGA which can run computa-
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tions in parallel and easily interface a non-standard communication protocol, And the single thread
performance of a PS, along with the PS running an OS which often has functionality to interface an
external PC/CPU that can handle and save data for later analysis.

2.4.3.1 PYNQ-Z2

PYNQ-Z2 utilizes a Zynq7020 which is an aforementioned SoC FPGA, but which is specialized in
low development time and usability. On the PS, and embedded Linux version is running a Jupyter
notebook. This means that data can be transferred from the PL directly to a python environment,
using only a single python command with a custom library.
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Chapter 3

Measurement System Design

Figure 3.1: Picture of the PYNQ board (bottom) and m-NIC PCB (top) connected together.

In this chapter the measurement system designed will be described, Figure B.2 gives an overview of
the whole system from a broad perspective where a single ADC/DAC combination is used. Section
B.1 describes a PCB containing both revisions of the m-NIC, as well as an OtS ADC and DAC.
Section B.2 describes a readout and control system developed for this PCB.
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m-NIC PCB PYNQ-Z2

PAC 1« FPGA
—>
Langmuir probe —» Front-end |» ADC ARM processor
running Linux

Laptop

Figure 3.2: Block diagram showing the connection between the m-NIC PCB and PYNQ-Z2 based
readout system developed in this thesis.

Component name | Brief description
m-NIC1 | First revision m-NIC, see 2.3.2
m-NIC2 | Second revision m-NIC, see 2.3.3
MAX1133 | 16-bit, 200 kS/s ADC
TLC7226 | 8-bit, 0 - 10 V DAC

Table 3.1: Overview of relevant PCB components

3.1 m-NIC PCB

The m-NIC PCB is designed by PhD student Candice Quinn in which both m-NIC chips and refer-
ence converters are mounted on. Reference converters are included to be able to perform the same
tests as with the m-NIC converters, but with a component which is already characterized and doc-
umented by the manufacturer [19] [20]. Both reference components were chosen based on having
a higher ENOB, and will therefore be able to produce higher resolution result that may reveal more
information compared to the internal converters. Figure B.3 shows a simplified block diagram of the
schematic where only connections between each component is shown and external connections are
not included. Table B.1| gives a short overview of the relevant components on the PCB.
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Figure 3.3: Block diagram meant for illustrating the connections between the different PCB com-
ponents. Not visible in this Figure: Power management, I/O connections and other general circuit
components not necessary to understand its function.

3.1.1 Post-assembly PCB Modifications

Prior to the PCB’s design, the chips had never been tested together and under the same conditions
before. A complex PCB which is being tested for the first time have a high chance of containing
some sort of error. After component population some modifications had to be performed in order
for it the PCB to function as desired.
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Change

Description

Comparator and EOC trace cut

Both m-NICs comparator output, as well as the digital-
out (DOUT) port of the MAX1133 ADC were connected
to the same header. Since only one ADC were to be active
at any given time, this was not seen as an issue but a way
to reduce the amount of cables. However, during testing
the comparator output was not able to be driven to 3.3 V,
and was instead only able to reach around 1V. To solve
this, all three signals had to be separated and brought out
on headers. A simple trace cut was then performed on m-
NIC1 and m-NIC2 comparator trace, while DOUT was
left on the original header. m-NIC2s EOC signal was also
separated from m-NIC1s EOC in the same fashion as the
comparator outputs.

MAX1133 Power Rails change

After production, it was noticed that the digital power rail
of the MAX1133 was designed for 5V £ 0.25V, a volt-
age that is too high and potentially harmful to the elec-
tronics on the PYNQ board. This did not become an is-
sue as the ADC operated the same way with a DVDD of
3.5 V. A trace cut to open the connection between AVDD
and DVDD was made, as well as soldering on a header
to provide 3.5 V to DVDD.

Change gain non-inverting op-amp

The output of the TLC7226 was connected to a TLV217
op-amp in a non-inverting configuration with a gain of 3.
Therefore, all outputs greater than 3.3 V from the DAC
became 10 V from the output and any input signal greater
than 3.3 V became saturated. To solve this, the feedback
resistor was replaced by a 0 Q resistor, bringing the gain
down to 1. Full range off the DAC was still not achived
as the maximum output of the op-amp was VDD-0.5, re-
sulting in about 95% of the DA C output range being used.

Trace cuts for reference IC

The REF5010AIDR IC is used to provide a stable 10
V reference voltage for TLC7226. Three of its pins
which were specified to be unconnected was connected
to ground [21], and did therefore not function properly.
By cutting these traces, or snipping its legs the connec-
tion was eliminated and the reference circuitry performed
as intended.

Table 3.2: Table describing the modifications made to the PCB after component placement.
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‘ m-NIC PCB ’
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Programmable Logic
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Interface

[ User Input } Ethernet

Figure 3.4: Simplified block diagram of the readout system.

3.2 Embedded readout system design

In this section the PYNQ based readout system will be presented.

3.2.1 Overview

The readout system itself contains two main modules referred to as the ”m-NIC PCB interface” and
”Data transfer module”. m-NIC PCB interface connects to the m-NIC PCB to control, configures
and readout from its components. Then the data that is going to be sent to the data transfer module
is selected. AXIS Master, a 32-bit word module that takes this data and sends it to a FIFO using an
AXIS interface. From there the data is gathered by the DMA which then again delivers data to the PS.
Now the data is accessible to the user through the python environment which is further explained in
Section B.2.5.1]. The Jupyter notebook runs on the Linux operative system and is accessible through
Ethernet.

3.2.1.1 User Input

After the SoC is programmed the user can control certain aspects of it operation with button and
switches. An active high reset signal is mapped to a button on the PYNQ board. Problems can
appear when the button signal is not a square wave, which the output of buttons rarely are when
being pressed by a person. To counter this a debouncer is used, and works by detecting activity from
the button, then sending a generated square pulse as a replacement for the pure button output. There
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are also two switches on the board, SW0 and SW1 that are used to determine which mode is used,
as seen in table B.3.

Mode[0:1] | m-NIC2 DAC | External DAC | m-NIC1/2 ADC | External ADC
”00” Enabled Disabled Enabled Disabled
”01” Enabled Disabled Enabled Disabled
”10” Disabled Enabled Disabled Enabled
”11” Disabled Enabled Disabled Enabled

Table 3.3: Table explaining what modules are being used for different mode inputs.

Since the physical buttons and switches are not enough to control all the modes of the FPGA
design, there is also used an IP module added called Virtual Input/Output”. To be able to use
this module one must use the Vivado Synthesis Tool ¥ to program the FPGA. Table overviews the
operation of this module.

Input Description
DAC _DATA[7:0] Selects input data for the DAC when DC mode is selected.
SWEEP _FREQUENCY[20:0] | Selects the divider for the SWEEP clock provided for sine
and sawtooth generators.
WAVE TYPE[1:0] Selects a sinewave(’00”), sawtooth(’01”"), DC mode (’10”)
or random waveform (’117).

Table 3.4: Description of input possibilities with the VIO module.

3.2.1.2 Clocking

The internal main clock (mclk) is a 100 MHz clock from the IO Phase Locked Loop (PLL) clock
source. All interconnects and IPs, as well as the m-NIC PCB interface uses this clock. During pro-
gramming of the FPGA through Jupyter, only the IO PLL will be considered. What this means is
that if the design utilizes the ARM PLL source with a generated clock of 80 MHz, the PYNQ will
select the closest frequency to that but using the IO PLL clock source. Due to these sources being
divided from different oscillators with different base frequencies the resulting frequency might be
79 MHz, without any warning given to the developer. A problem which was noticed after analyzing
the ADC data where it seemed to be out of sync from the same data recorded by as oscilloscope.

To create clocks used in other parts of the system, the main 100 MHz clock is divided into slower
frequencies. These clocks are generated and sent out to either the m-NIC or one of the other external
components, there are problems with this method however. Generating clocks and using them in the
FPGA before they are sent out to external pins sends the clocks into the interconnect mesh which

'Vivado Synthesis Tool is Xilinx’s tool for creating designs, synthesis, implementation and programming of a physical
FPGA.
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Description

R.1 | Inexpensive. Due to speed requirements being low compared to today’s technol-
ogy it should not cost more than a low-cost FPGA development kit, this would
mean to less than 3000 NOK.

R.2 | Speed, it should be able to handle a transfer-rate of 1.92 Mb/s.

R.3 | Ease of use, with the ability to operate with little to no FPGA knowledge.

R.4 | Reusability and further development

Table 3.5: Summary of the most important requirements related to the FPGA based readout system.

is inside the FPGA. Causing unnecessary timing delays for the clock compared to on a dedicated
clocking tree.

3.2.2 Requirements

As mentioned in [[16] the desired sampling rate of the internal ADC is 20 kS/s and requires a clock
frequency of 340 kHz E, this means a data transfer rate of

20 kbit/s * 16 bit = 320 kbit/s

must be achieved. This will cover the transfer rate for one ADC at 20 kS/s. In the future the goal is
four channels at 20 kS/s, as well as the 8-bit DACs. Including this the requirement is now

4x20kS/s «16bit +4 « 20kS/s * 8 bit = 1.92 Mbit/s

With the current technology this is well within what is expected to be achieved. Expected resource
utilization was not a great concern, therefore speed and resource specifications were not qualities
which were deemed highest priority.

What is important, however, is finding a development board which would require minimal effort
to get started and would also be easy to use while performing measurements. There is also a need
for 30-40 input/output (I/O) pins. In the end the TUL PYNQ-Z2 board was selected as the platform
to be used, as the board focused on fast development time and flexibility due to having a processing
system running Linux. It allows the user (read: not designer) to need no experience with the any
FPGA toolchain, but instead program and control the SoC FPGA via python. Requirements for this
system are summarised in Table B.3.

3.2.3 m-NIC PCB interface

In this section the module which controls the components on the PCB is described, it is callen ”m-
NIC PCB Interface” contains three other modules: External ADC Control, m-NIC ADC Control

2]t is actually 20.008 kS/s and 340.136 kHz, due to clock division due to 100 M/340 k not being an integer
31f looking through the code in the appendix, this module will be called pcb_interface_v3 and has changed name in
the thesis to make it more readable.
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Figure 3.5: Block diagram of the m-NIC PCB interface, which is the hardware abstraction layer
(HAL) between the m-NIC PCB and processing system.

and DAC Control. These three modules are together responsible for controlling, configuring and
reading-out the physical ADCs and DACs. A MUX controlled by SW1 and SWO is used to select
which data is stored, this is described in table B.3.

3.2.3.1 External ADC control

This module is responsible for configuring and reading out from the MAX1133 ADC. Figure B.4
illustrates the timing diagram of the ADC. Internal clocking mode is selected, which means that the
internal clock of the ADC is used for the conversion and the external clock provided by the PYNQ
board is used for communication only.

Clock generation SCLK is the external serial clock for MAX1133 and should be kept low during
the conversion period to improve noise performance [[19]. To solve this an enable signal and an and
gate was introduced to the output. However, glitches in the combinational logic could then lead to
missed clock cycles and short pulses. A common workaround for this issue is most often a change
in the structure of the module which is being controlled, which is not possible in this situation.

3.2.3.2 m-NIC1/2 Comparator method

One method of reading out from the adc implemented in both mNIC1 and 2 is to directly read out
from the comparator port. This is done by looking at the COMP output and the EOC signal, and
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Figure 3.6: Inputs and outputs of the MAX1133 ADC during a conversion. From the MAX1133
Datasheet [[19].
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Figure 3.7: Detailed timing diagram of two convertions for the m-NIC ADC, looking at the eoc,
comp and ADC enable ports. Where index 0 represents the MSB.
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is illustrated with an example in Figure B.7. A sample of the produced data from this method is
shown in Figure B.8. An unexpected difference between this method and the serial register data was
observed, as reading directly from the comparator port led to a signal containing much larger levels
of noise, as well as abnormally large spikes. The reason for this is most likely that the comparator
output will take time to settle if the input is close to the threshold between high and low. Reading
this value too early might then result in an interpreted value much higher or lower than the previous
and proceeding values.
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Figure 3.8: Readout results from the m-NIC1 ADC by using the comparator and EOC port, showing
large spikes due to misinterpreted data. Input waveform is a 1.5 Hz triangle wave.

3.2.3.3 m-NIC2 Shift-register control

Controlling the shift register is done with 4 ports and a clock input for SCLK. These 4 ports are
SWRITE, SREADB, SO and SI, where SI and SO are data input and output to the register respec-
tively. To perform a write operation, data starts to shift out on the SI port. After 53 clock cycles
SWRITE should then be pulled high to perform a write operation. SCLK must be low during this
write pulse. A faster write operation can be performed by pulling SWRITE high earlier. To read,
a similar operations is performed. SREADB, which should be high when not active, will go low
for one SCLK period. 18 bits will then be fed out of the SO port, where the first 16 are the last
converted ADC value. Due to the previous readout system had already created a module to read
from the shift-register, this module was slightly modified and re-used for this system.

3.2.3.4 DAC control

DAC control function is to control both the internal and external DAC. It is the only module con-
taining sub modules, as it creates different waveforms which is used by both DACs.
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Figure 3.10: Block diagram of the DAC control module, showing the internal structure.

Random DAC Waveform To create a pseudo-random signal for the DAC, a 16-bit 4—‘[apE Linear-
Feedback shift Register (LFSR) is used. The last 8/7-bits, depending on the DAC, are used for the
DAC input. The reason for choosing a 16-bit length is due to the fact that an 8-bit LFSR would
create a 128 bit long sequence, while with an 16-bit LFSR the sequence is 65536 bits long. With a
longer sqeuence it will take longer before it repeats itself.

3.2.4 Data transfer

Transferring data consists of four main components: AXIS Master, FIFO, DMA and the PS wrapper.
A port called TDATA_ASYNC is a 32-bit bus that feeds into the AXI stream master, and the 32-
bit word is shown in table B.6. The AXIS master is generated from the Vivado tool, and has only
a slight modification to it. An internal signal called stream_data is set to be the aforementioned
TDATA_ ASYNC input, resulting in the module functioning to something akin a translator from a

4An LFSR feeds some elements in a register back to the input of the register. All feedbacks go through an XOR port
with another “’tap”, which is what a feedback is called. A 16-bit 4-tap then means a 16-bit register with 4 feedbacks.
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Bits | Description

0-15 | Selected ADC data
16 Synchronize wave from the waveform generator
17 Synchronize wave output from the DAC
18 Oscilloscope trigger value

19-22 | Always low

23-30 | DAC value
31 Always high, as this will keep the length of the same when doing string manipulation

in python

Table 3.6: Overview of 32-bit word transferred from the PL design to the DMA.

32-bits bus to AXIS. These AXIS signals are then connected to an AXIS FIFO IP. Both the FIFO
AXIS slave and output of the AXIS Master are driven by the same clock, this is described in the
next paragraph. AXI FIFO is configured with a depth of 32768, which is then sent to the DMA at
a 100 MHz rate. A clock which is used for both the output of the AXIS master and FIFO slave is
generated to be the same as the ADC sampling rate.

3.2.5 Software

Python scripts were run in Jupyter to retrieve and plot the data which were received from the FPGA.
Jupyter is a python environment run on the PS and is accessible on a PC connected to the PYNQ
board. Other code was a simple python program used for plotting and simple analysis.

3.2.5.1 Jupyter

Programming the FPGA is done in Jupyter by using a python Pynq library, that also contains func-
tionality which allows for controlling the DMA. Data capture is initiated by calling a transfer func-
tion from said library and waiting for a buffer to be returned, where one buffer is 32-bit wide and
215 = 32768 long. As previously mentioned, the 32-bit word from the PL contains different data.
By reading this word as a string, it is possible to use string manipulation in python to save each indi-
vidual type of data to variables. After this, the data is then stored in columns in a comma separated
values (.csv) file.
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Chapter 4

Measurement setup

In this chapter, setups for characterization measurements of the internal converters and testing of the
front-end is presented. Two front-end setups are described, with one using a current source and the
other using a biased Langmuir probe in a plasma chamber as the input.

4.1 Characterization setup

The m-NIC ADC and DAC are not formally characterised. This needs to be done in order to con-
tinue further testing of the chip. Both the ADC and DAC characterization setups utilizes a digital
oscilloscope for analog measurements. This is to analyse the DAC output and ADC input. More
specifically it is a Keysight DSOX1202G, which is a 200 MHz 2GS/s scope. More in depth de-
scription of the setups are found below in Section and B.1.3. Since the m-NIC2 DAC has
problems with the output buffer, as mentioned in Section P.3.3.2, it’s the TLC7226 output which
will be analyzed.

4.1.1 Requirements

For proper statistical analysis of both the ADC and DAC enough samples must be captured. Based
on the Institute of Electrical and Electronics Engineers’ (IEEE) standards, a minimum of 2%? sam-
ples will be needed per waveform for ADC analysis and 2'8 samples for the DAC[22] [23]. There
are different requirements for types of waveforms for the ADC and DAC, all waveform types and
frequencies can be seen in Table .1 for the ADC and Table §.2 for the DAC.

4.1.1.1 Frequencies

There are three different categories of waveform frequencies which are to be tested: Fine, Medium
and Coarse [22] [23]. Medium and coarse are selected to both cause and not cause errors with
aliasing, while fine frequencies are selected to specifically get hits on all the converters codes. To
do this Eq is used. "Where ] is an integer that is relatively prime to M. fyppaTE is the update
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Figure 4.1: Block diagram of ADC characterization setup

rate and M is the record length.” [22].

fi= %fUPDATE 4.1)

4.1.2 ADC

ADC characterization is performed by sending a known signal to the ADC and analyzing the output.
For the signal source, a Keysight 33500B waveform generator is used. A splitter connects the wave-
form generator output to channel 1 on the oscilloscope. The other side of the splitter connects to
the ADC EXT IN pin on the m-NIC2 ADC. This pin can be selected as the ADC input by pulling
ADC _EXT SEL to a logic high. Keysight 33500B also has a sync output, a square wave with a
50% duty cycle where one period equals one period of whatever waveform is selected for channel
1. Channel 2 on the oscilloscope and pin AR11 the Pynq board receives this sync wave. By doing
this the data from the oscilloscope and PYNQ board can be synced up, despite not sharing absolute
time or sampling rate. Figure @.1] illustrates the setup connections.

4.1.2.1 Trigger

To ensure that the data capture starts at the same time for both the Pynq board and oscilloscope,
there is introduced a shared trigger by creating a signal which is 0 when the system is being reset.
Calling the data capture function described in Section starts the capture, as long as the system
is not actively being reset. Pressing the reset button before calling this function, to then release it
will start the capture and pull the trigger high. A high trigger will also start the data capture on the
oscilloscope.
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Categories Requirements Description
Scale Full scale (0 - 3.3V) 0to3.3V

Attenuated 0t02.97V
Waveforms S.awtooth

Sine wave

Fine 1.273 Hz, 17.867 Hz, 369.41 Hz, 1 kHz
Frequencies Medium 3.01 kHz, 5.01 kHz, 6 kHz
Coarse 7 kHz, 8 kHz, 9 kHz

Table 4.1: Overview of the waveforms and frequencies to be used during ADC characterization,
based on a sampling rate of 20.008 kHz.

4.1.3 DAC

Chl: Sync wave

Oscilloscope Ch2: DAC Waveform
Chl Ch2 p N
A
L m-NIC PCB
S J

e ™ (
PYNQ Laptop

\ ) L

Figure 4.2: Schematic of DAC characterisation setup

Characterizing the DAC is similar to the ADC characterization setup, but does not require a wave-
form generator as the waveform is generated on the PYNQ board and sent to the DAC. Channel 1 on
the scope is connected to the DAC output, and channel 2 is connected to a pin on the PYNQ board,
which produces a square wave of the same nature as the sync wave generated from the waveform
generator in Section §.1.2. Due to issues with the m-NIC2 DAC, the TLC7226 reference DAC will
be used for all DAC related measurements instead.
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Categories | Requirements | Description
Scale Full scale 0to 3.3V
Waveforms S'awtooth
Sine wave
Fine 2.86 Hz, 77.6 Hz, 1181.98 Hz, 1457.4 Hz
Frequencies Medium 3161 Hz, 4709 Hz, 6022 Hz, 6595 Hz
Coarse 17658 Hz, 21467 Hz, 23152 Hz, 24468 Hz

Table 4.2: Waveforms and frequencies to be used during DAC characterisation, based on a sampling
frequency of 50 kS/s.

4.2 Front-end table test

m-NIC1 FE — ADC |— PYNQ

\

Figure 4.3: Measurements setup for testing m-NIC1 front-end, the arrow indicates the direction of
a negative current.

In the previous section, a setup for capturing ADC and DAC measurements was described for doing
characterization of both modules. Now, the ADC will be used together with the m-NIC1 front-end
to perform a functional test of the chip. As a way to test that the setup is done correctly and that
the PCB connections perform as intended, a mock-LP run is performed. A mock-run in this case
will be to simulate a positive biased Langmuir probe in a plasma, drawing a negative current. If this
tests works, the system should then be ready for measurement with a Langmuir probe in a plasma
chamber. To simulate a probe, a voltage source and resistors in the M) range is used and connected
to the InS port of m-NICI1.

4.2.1 Probe-current vs output voltage

From simulations done during development of the m-NIC front-end, the measurable current range
is shown to be from 1 nA - 2500 nA []15]. After the simulation however, the front-end has not been
characterized. To actually quantify the performance of the system as a whole, the relation between
the collected current ,I., going into the TIA and the produced output voltage on OutLS must be
found. This is done by sending in a known current and measuring the output, by doing this for
multiple input currents an [-V curve can be found.
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Figure 4.4: Measurements setup for plasma chamber testing

m-NIC1 FE

4.3 Proposed plasma chamber test

Using the m-NIC with a Langmuir probe in a plasma environment has never been done before and
is not only a test of the readout system, but the functionality of the ICs themselves. The setup
closely resembles the one described in Section , but the current source is now switched with a
biased probe in a plasma chamber, as seen in Figure #.4. Instead of a power supply, the external
DAC TLC7226 is used to provide a voltage bias to the front-end which in turn biases the probe, this
creates a negative current draw to the front-end input.
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Chapter 5

Results

This chapter will present measurements performed with the readout system developed in this thesis,
as well as some resource utilization of the FPGA design.

5.1 Measurements

Measurements from a generated input wave to the ADC will be presented, as well as measurements
from a m-NICI and m-NIC2 table test.

Measurement type Status

ADC Characterization Performed for the m-NIC2 ADC, but an error 5.1.1.1 oc-
curred for all measurements which was not noticed until a later
date. Included in the measurements section are characteri-
zation measurements for two frequencies to demonstrate the
functionality of the readout system.

DAC characterization Not performed.
Front-end Table measurements | Performed for both m-NIC1 and m-NIC2 ADC.
Plasma chamber measurements | Not performed.

Table 5.1: Current status of which measurements have been performed.
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Frequency | Standard deviation [LSB] | Maximum deviation [LSB]
1.273 Hz 10.06 36
4 mHz 9.92 60

Table 5.2: Calculation of parameters for the deviation from a regress line at different frequencies,
as shown in Figure 5.3 and 5.3.

3.01 3.0 /\\
2.5 25 / \
' /
\
s 2.01 s 2.0 / \
/ \
s s / \
1.01 1.0 / \
051 / \
051 /
0.04 -~ \
04 05 06 07 08 09 10 11 12 00010 00012 00014 00016 00018  0.0020
Time [s] Time [s]
(a) 1.273 Hz (b) 1 kHz

Figure 5.1: Triangle wave input at 1.273 Hz and 1 kHz, measured with the m-NIC2 ADC using the
shift-register readout.

5.1.1 ADC

Shown in Figure are zoomed in data of a 210 second capture of two input signals. From the
1.273 Hz measurement a linear

Figure 5.2 displays the deviation from a regress line in the linear region for the waveform displayed
in Figure 5.1/ a). For this wave, the amount of samples analysed in the linear region is approximately
6500 samples which is too low to get one sample per LSB step.

Another measurement was performed, this time a sawtooth wave with a frequency of 4 mHz. With
this measurements there are about 4 * 10 samples, this equals approximate 77 samples per LSB
step, giving more detailed view. Results from a regress line similar to what was perfomed on the
1.273 Hz waveform is found in Figure 5.3.

Calculations for both maximum deviation and standard deviation for Figure and b.3 is found

in Table 5.2
For both Figure and b.3 a clear spike can be seen at 1.65 V, this is around VM for the ADC
and is where the MSB will be asserted high. This transition is shown in more detail in Figure 5.4
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Figure 5.2: Deviation in LSBs from a linear fit in the linear region (50 mV to 2.7 V). Taken from
the 1.273 Hz measurement as seen in figure 5.1 a).
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Figure 5.3: Deviation in LSBs from a linear fit in the linear region from a 4 mHz sawtooth wave.
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Figure 5.4: A zoomed in view of the transition of MSB low to MSB high from the deviation plot in

Figure 5.3,

5.1.1.1 ADC issues caused by DAC sweeping

During the data capture of the ADC characterization measurements the external DAC was perform-
ing sweeps. It was connected to the output of the m-NIC2 DAC output, which caused the ADC to
not perform as expected. Capturing of the input wave was done on a oscilloscope to be synced with
the measured ADC data as a way of double checking that everything was correct, this showed that
nothing was wrong with the input.
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Figure 5.5: Triangle wave output of the m-NIC2 DAC, demonstrating the issues which occur at
higher frequencies.

5.1.2 DAC

As described in Table R.4 there are multiple issues regarding the m-NIC2 DAC, two of which are
visible in Figure 5.3. In Figure the issue with the output buffer regarding lower voltages is seen
to be approximate 0.8 V. Figure shows an effect which has not been documented prior to these
measurements. The output voltage of the DAC struggles to follow the input, and settles at an offset
close to 3.1 V with a peak to peak voltage of approximate 2.2 V.
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5.1.3 Front-end table test

Figure 5.6 shows the relation between input current on the TIA input port InS and its voltage output
OutLS. An approximate linear relation can be seen as the current becomes more negative. For the
m-NIC2 -1500 nA measurement an unknown error occurred, which the reason for the output voltage
being zero, in the linear fit performed in Figure B.€ this measurements is left out on purpose.

® m-NIC1 Measured voltage
m-NIC2 Measured voltage
301 m-NIC1 Linear fit
—— m-NIC2 Linear fit
2.5 4
S 2.0 A
(0]
(@)}
8
L 1.5
1.0 A
0.5 A
o
—2500 —2000 —1500 —1000 -500 0

Current [nA]

Figure 5.6: Comparison between m-NIC1 ADC and m-NIC2 ADC of the measured output voltage
of the m-NIC1 front-end.

5.2 Readout system performance

In this section, the FPGA design resource utilization and timing performance will be presented.

5.2.1 Resource utilization

Table 5.3 presents the FPGA resources used for both the full system, as well as only the m-NIC
PCB interface module. It is clearly seen that the m-NIC PCB interface is far less resource demand-

I'Current negative current refers to an electron flow into the chip.
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Resource | Total utilization | m-NIC PCB Interface utilization | Amount available
LUT 2994 756 53200
FF 4273 735 106 400
BRAM 35.5 0 140
1/0 43 43 125

Table 5.3: Table containing the resource utilization of the whole system, as well as only the m-NIC
PCB interface.

ing compared to the data transfer module, and the whole system itself is not very resource heavy
compared to what is available.
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Chapter 6

Discussion

In this final chapter the measurements performed will be discussed and the readout systems perfor-
mance will be evaluated.

6.1 Measurements

Measurements for both the m-NIC1 and m-NIC2 ADC were performed while testing the m-NIC1
front-end, as well as a measurement of the m-NIC1 ADC with a sawtooth wave as an input. Due
to time constraints related to the delivery of this thesis, proper characterization did not have time to
take place and plasma chamber testing were scrubbed.

6.1.1 ADC

The measurements for the n-NIC2 ADC gave similar results to what has been shown in earlier
rounds of testing, something which proves the functionality of the developed readout system. With
the added functionality of saving data automatically, more formal characterisation can be performed.

Comparing the results from this thesis to what was seen in 2018 for the m-NIC1 ADC and there
are some differences. In the 2018 round of testing the standard deviation from a linear regress line
in the linear region was 8 LSB, and the maximum deviation was 23 [[L6]. These numbers are lower
than the ones found in this thesis, which were 9.92 and 60 respectively for the largest dataset, see [5.2.
However, the 2018 measurements were performed with a sampling frequency of 1 S/s compared to
20.008 kS/s which were used in this thesis. A different conversion value when comparing multiple
sampling frequencies was also noticed in 2018 [[16]. Comparing these two measurements is therefore
not straight forward and it is uncertain if the lower standard deviation found in 2018 is due to a less
noisy setup, if the m-NIC1 ADC has less noise compared to m-NIC2, if the lower sampling rate
helped to reduce noise or if the old measurements simply did not contain enough samples. Proper
characterization measurements for the m-NIC2 ADC following IEEE standard 1241-2010[22] will
be carried out following the submission of this thesis.
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Requirement # Status
R.1 Achieved
R.2 Achieved
R.3 Partly achieved
R4 Partly achieved

Table 6.1: Table summarising the requirements described in Section B.2.2.

6.1.2 DAC

Measurements performed on the DAC illustrated an effect which has previously not been docu-
mented as described in Section 5.1.2. DAC characterization of the m-NIC2 DAC was planned, but
due to its performance, further measurements for characterization were deemed unnecessary. In-
creasing the frequency futher from what was shown in Section only decreased the peak to peak
voltage of the output wave, and it shared more and more similarities with a noisy DC signal.

6.1.3 Front-end measurements

Observing the front-end results presented in Section and a clear trend of a decreasing output
voltage is observed for an more negative current (electrons flowing into the front-end). These results
are, however, different from what has been documented earlier. Depending on the bias voltage set
on the front-end the current range will be different, as in the output voltage will stop decreasing
in a linear fashion at different current levels, with a 5 V bias voltage the range was previously
determined to be 0 to 1.5 pA [[16]. This is not what the results in this thesis show. When performing
measurements manually using an oscilloscope the results were reported to be much more similar to
what was seen in [|[L§]. The reason for the differing results is not known and the measurements with
the m-NIC ADC should be attempted to reproduced.

6.2 Readout system

In this section the performance of the readout system will be discussed and weather it achieved its
intended purpose.

6.2.1 Requirements

This section will discuss the requirements and to what degree each of them were fulfilled.

R.1 A PYNQ-Z2 board, together with accessories such as cables, protective case and an SD-card
costs 2 013,00 NOK at farnell.no the 27 of May 2021. This is an inexpensive board and satisfies the
requirement of keeping the price below 3000 NOK.
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R.2 The speed requirement of 2 Mbps was easily achieved by transferring data with the DMA. As
power consumption was not a consideration during the development of this design, there was not
much reason to change the 100 MHz clock. Seeing that the speed requirement was achieved by such
a good margin, the clock frequency could be reduced to save power if this became desirable.

R.3 Performing measurements with the ADC requires the usage of physical switches and running
commands in Jupyter, while to control the DAC Vivado is also needed. While it has more function-
ality compared to the old readout system, it is not easier to use due to needing user input from three
different sources to operate with full functionality. Moving the physical button and virtual input/out-
put to the AXI GPIO would create a more intuitive user interface, but would only be a small step
in the right direction. To take full advantage of the systems potential, a AXI4-Lite control register
should be added, as described in Section [7.1].

R.4 Reusability for this system can be split into two parts, the data-transfer module and the m-
NIC PCB interface module. As of now, the data-transfer module can operate at high speeds and
easily change its data source. It is not perfect however, as it currently relies on using a clock which
is synchronized with the incoming data to transfer at a correct rate. A better option would be to
fully utilize the AXIS bus signals, and add functionality for a TVALID o signal. The m-NIC PCB
interface module is reusable to an extent, as its components can be used in different designs to control
its physical counterparts, but the top design would require more changes. Transferring this design
over to later revisions of the m-NIC might not be applicable either, as the communication interface
might, and should, be changed to a more standard protocol.

6.2.2 Limitations

Due to using Vivado specific IP’s the data transfer module is locked to the PYNQ platform. Moving
to a different Xilinx PS-PL hybrid platform will require some changes but is still possible given cor-
rect specifications, if the decision to use a different manufacturer is made this module would then
require a re-design. Being locked to a PS-PL hybrid will also make the transition to integrate the
readout design into an ASIC with the front-end functionality more challenging.

Most of the resources used by the design comes from the data transfer module. This module is
capable of far higher speeds that what is necessary for this test setup, but does not impact anything
in a negative way here. However, for prototyping an FPGA design which could be further devel-
oped into the ASIC this would be far from an ideal solution. A UART, SPI or I>C protocol could
be implemented instead to reduce the resource utilization of the data transfer module, and therefore
have a smaller area impact on an ASIC.

ITVALID is one of the masters signals in the AXIS bus. It will go high when it has valid data to transfer, and data will
only transfer when it is high as mentioned in
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Chapter 7

Conclusion

This thesis main goal was to enable the ability to further understand the m-NIC project by devel-
oping a readout system towards both revisions and some reference converter components. A goal
which was achieved, and some measurements were successfully done using the developed system,
improving on the previous readout system which had been used for similar tests. The two readout
modules developed in this thesis, being the m-NIC PCB interface and the data transfer module are
both valuable additions to the project. By modifying the m-NIC PCB interface module functionality
for a future chip can be integrated, meaning much less work and far less time needs to be dedi-
cated to characterizing future revisions. There are still some issues however, most notable being
the user interface to the whole system being a combination of physical inputs, Jupyterm and virtual
inputs through Vivadol. Over the following weeks, characterization measurements for the internal
converters and plasma chamber measurements should be performed. This will help the gain better
insight in the current state of the m-NIC project.

7.1 Future work

Additional measurements In the near future both characterisation measurements and plasma
chamber measurements will be performed. This will help quantify performance and reveal use-
ful information for the next revisions of the m-NIC. More extensive measurements on the front-end
is also necessary to find a proper I-V characteristic for different voltage biases.

AXI4-Lite Control register The readout system now is more difficult to control and operate than
what it needs to be. To improve usability a memory mapped control register should be added to take
over the functionality. This would eliminate the need for the physical switches and the virtual in-
put/output module in Vivado. Writing data to the control register would then be performed in Jupyter
and would make the user interface exceedingly less complex and more automatic, something which

IPython environment initiating the data capture code.
2Xilinx software to program the Zynq7020-SoC.
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would also allow for longer characterization captures as scripts could run without the supervision of
a person.

Improved data transfer After the data is transferred from the PL to the PS it needs to be saved.
Currently, if performing a 210 second data capture at 20 kS/s it will take an additional 10 minutes
after the capture is complete to save the data. This data is saved in a csv format with the values
being floats. One solution for saving data faster could be to save it as the raw 32-bit word, and do
the decoding in post-process. Data could also be saved in smaller files, this could be performed
during data capture as it takes approximately 1.6 s to fill the FIFO and 350 ps to empty it.

m-NLP RISC-V  Another master project [24] looked at and developed a custom RISC-V core for
MNLP. It proved real-time calculations of the electron density within the timing constraints of a 20
kS/s sampling rate was very doable. This reduces the data cost and would allow to capture data at
maximum sampling rate for a longer duration.
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Appendix A

VHDL Code

A.1 pcb_interface v3.vhd

LIBRARY IEEE;

USE IEEE.std_logic_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

use work.sine_package.all;

--use work.sweep_buffer_pkg.all;

ENTITY pcb_interface_v3 IS

PORT (-- Board input

mrst : in std_logic;

mclk : in std_logic;

mode : in std_logic_vector(l downto 0);
adc_switch : in std_logic;

dbg_led : out std_logic;

adc_selected : out std_logic;

trigger : out std_logic;

-- Generated clocks

int_adc_clk : out std_logic;--std_logic_vector(l downto 0); -- Should run at
— 17*samplefreq, samplefreq: 1-10kHz max

max1132_clk : out std_logic; -- Can do multiple MHz
sclk : out std_logic; -- Uncertain, 1MHz maybe?
axis_clk_in : in std_logic;

axis_clk_out : out std_logic;

-— ADC control
-— Internal ADC

adc_en : out std_logic;--std_logic_vector(l downto 0);
adc_eoc : in  std_logic;--std_logic_vector(l downto 0);
adc_comp : in std_logic;--std_logic_vector(l downto 0); -- Read out

— directly from ADC comparator output

qp4d : in std_logic_vector(3 downto 0);
-— Ezternal ADC
max1132_dout : in std_logic; -- Dout
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33
34
35

36
37
38
39

40

41

42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
3
79

-

)

max1132_sstrb : in std_logic; -- SSTRB

max1132_din : out std_logic; -- digital in, write to adc

max1132_rst : out std_logic; -- reset adc

max1132_shdn : out std_logic; -- drive shdn low to put the adc in shutdown
— mode

max1132_cs : out std_logic;

—— DAC Control

--dac_sweep_ena : in std_logic; —-- Or always on? Pullup-header
— ddle

wave_type : in std_logic_vector(l downto 0); -- Selects sine
— input

sweep_mclk : in std_logic; -- Clock from PS to DAC, can be
—

dac_data : in std_logic_vector(31 downto 0);

-- Serial interface (internal DAC)

—-- Need more shif-register control? What happens during =2 dac
adc_selchl : out std_logic;

adc_ext_sel : out std_logic;

scr_enbias : out std_logic;
mresb : out std_logic_vector(1l downto 0);
si : out std_logic;
sreadb : out std_logic;
swrite : out std_logic;
so : in std_logic;

-— Ezternal DAC

dac_out : out std_logic_vector(7 downto 0);
wr : out std_logic;
A : out std_logic_vector(1l downto 0);
-- AXT
adc_result : out std_logic_vector(31 downto 0);
axis_clk_counter : out std_logic_vector(31 downto 0);
led : out std_logic_vector (1l downto 0);
comp_delayed : out std_logic;
eoc_delayed : out std_logic;
tvalid : out std_logic;
-— sweep_buffer : out buffer_array
-- DEBUG
reg_bank_sel : in std_logic_vector(2 downto 0);
sweep_sync : out std_logic;
input_sync : in std_logic;
dac_frequency_vio : in std_logic_vector(20 downto 0);
dac_latch : in std_logic;
dbg_adc_data_ila : out std_logic_vector(15 downto 0)

END ENTITY pcb_interface_v3;
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ARCHITECTURE arch OF pcb_interface_v3 IS

component debounce is

port (
mclk : in std_logic;
mrst : in std_logic;
button_inp : in std_logic;
button_stable : out std_logic
);

end component;
component dac_control is

port(
clk : in std_logic;
sweep_mclk : in std_logic;
reset : in std_logic;
enable : in std_logic;
sclk : out std_logic;
si : out std_logic;
sreadb : out std_logic;
swrite : out std_logic;
sweep_ena : in std_logic;
dac_data : in std_logic_vector(7 downto 0);
conf_reg_data : in std_logic_vector(6 downto 0);
reg_bank_sel : in std_logic_vector(2 downto 0);

conf_reg_latch : in std_logic;
dac_out : out sine_vector_type;

wr : out std_logic;

A : out std_logic_vector(1l downto 0);
adc_eoc : in std_logic;

sweep_sync : out std_logic;

dac_frequency : in std_logic_vector(20 downto 0);
dac_latch : in std_logic;

wave_type : in std_logic_vector(l downto 0);

wr_clk_out : out std_logic
);

end component dac_control;

component int_adc_control is

port (
mclk_adc : in std_logic;
reset : in std_logic;
enable_control : in std_logic;
-- ADC select
adc_selchl : out std_logic;
adc_ext_sel : out std_logic;
scr_enbias : out std_logic;
-— ADC control
mresb : out std_logic;
adc_clk : out std_logic;
adc_en : out std_logic;
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133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
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161
162
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164
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167
168
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170
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172
173
174
175
176
177
178
179
180
181

)

adc_eoc
adc_comp

—
adc_result
comp_delayed
eoc_delayed
tvalid

in std_logic;
in std_logic; -- Read out directly from ADC comparator output
: out std_logic_vector (15 downto 0);

: out std_logic;
: out std_logic;
: out std_logic

end component int_adc_control;

component ext_adc_control is

port (
mclk_ext_adc : in std_logic;
enable : in std_logic; -- outside decider of exADC is being used
reset : in std_logic; -- reset signal for exzADC
dout : in std_logic; -- Dout
sstrb : in std_logic; -- SSTRB
din : out std_logic; -- digital in, write to adc
adc_rst : out std_logic; -- reset adc
exadc_clk : out std_logic; -- clock for adc
shdn : out std_logic; -- drive shdn low to put the adc in shutdown mode
cs : out std_logic;
exADC_result : out std_logic_vector(15 downto 0) -- result to pcb_interface

)

end component ext_adc_control;

component tb_adc_arbiter_fifo_3 is
PORT (-- Reset and clk input

reset
clk
-- Reset out

reset_out

-- ADC

clk_adc
adc_en
adc_eoc
qpc
qp4d

-- FIFO

write_clk
clk_arb
disp_3
disp_2
disp_1
disp_0

—-— Debug port
dbg_sel_swt

dbg_port_sel
dbg_port_out

IN STD_LOGIC;
IN STD_LOGIC;

: OUT
: 0uT
: IN
: OUT

IN

: 0UT
: 0UT
: 0UT
: 0UT
: 0UT
: 0UT

: OUT STD_LOGIC;

STD_LOGIC;
STD_LOGIC;
STD_LOGIC;
STD_LOGIC_VECTOR ( 1 DOWNTO 0);
STD_LOGIC_VECTOR ( 3 DOWNTO 0);

STD_LOGIC;
STD_LOGIC;

STD_LOGIC_VECTOR ( 6 DOWNTO 0);
STD_LOGIC_VECTOR ( 6 DOWNTO 0);
STD_LOGIC_VECTOR ( 6 DOWNTO 0);
STD_LOGIC_VECTOR ( 6 DOWNTO 0);

IN STD_LOGIC_VECTOR ( 1 DOWNTO 0);

: OUT
IN

STD_LOGIC_VECTOR ( 3 DOWNTO 0);
STD_LOGIC_VECTOR ( 3 DOWNTO 0);
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182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232

dbg_sts

: OUT STD_LOGIC_VECTOR (15 DOWNTO 0)

< STD_LOGIC_VECTOR (3 DOWNTO 0)

);

end component;

component tb_adc_sawtooth is

PORT (-- Board input

reset_in IN STD_LOGIC; --
clk_in : IN STD_LOGIC; --
-— ADC select

adc_selchl : 0OUT STD_LOGIC; --
adc_ext_sel : OUT STD_LOGIC; --
scr_enbias : 0OUT STD_LOGIC; --
-— ADC control

mresb : OUT STD_LOGIC; --
adc_clk : 0UT STD_LOGIC; --
adc_en : OUT STD_LOGIC; --
adc_eoc : IN STD_LOGIC; --
-— ADC output interface

sclk : 0OUT STD_LOGIC; --
so IN STD_LOGIC; --
si : OUT STD_LOGIC; --
sreadb : OUT STD_LOGIC; --
swrite : 0UT STD_LOGIC; --

-— 7-Segment LED display

adc_data_3
adc_data_2
adc_data_1
adc_data_0

-- Average ADC output

dsp_sel_swt

—-- Test points
test_point_0O :
test_point_1
test_point_2 :

IN

0uT

: 0UT

ouT

R22
A12

G18
G20
E18

E19
F20
E20
D20

D19
C20
C19
Cc18
Cc17

: OUT STD_LOGIC_VECTOR (
: OUT STD_LOGIC_VECTOR (
: OUT STD_LOGIC_VECTOR (
: OUT STD_LOGIC_VECTOR (

(KEY[0])
(24 MHz)

(GPIO_1[25])
(GPIO_1[24]1)
(GPIO_1[23])

(GPIO_1[22])
(GPIO_1[21])
(GPIO_1[20])
(GPIO_1[19])

(GPIO_1[18])
(GPIO_1[17])
(GPIO_1[16])
(GPIO_1[15])
(GPIO_1[141)

6 DOWNTO 0);
6 DOWNTO 0);
6 DOWNTO 0);
6 DOWNTO 0);

STD_LOGIC; -- L22 (SW[0])

STD_LOGIC; -- H12 (GPIO_1[0])
STD_LOGIC; -- H13 (GPIO_1[1])
STD_LOGIC; -- H14 (GPIO_1[2])

-- sawtooth generation
: OUT std_logic;

sawtooth_signal
adc_result

end component;

: out std_logic_vector(15 downto 0)

CONSTANT ADC_CLK_PERIOD : integer
CONSTANT SER_CLK_PERIOD : integer
CONSTANT AXI_MASTER_CLK_HALFPERIOD

signal cur_ser_read
signal nxt_ser_read

signal cur_adc_en
signal nxt_adc_en

signal cur_adc_clk

: std_logic;
: std_logic;

: std_logic;
: std_logic;

: std_logic;

= 5000; -- 600;
= 2400;
integer := 2499;
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-- dbg_port_sts

--25617; --2499; --250;
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233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

274
275
276
277
278
279
280
281
282
283
284

signal
signal
signal

signal
signal
signal
signal

nxt_adc_clk
cur_adc_clk_count
nxt_adc_clk_count

cur_adc_clk_n
nxt_adc_clk_n

cur_adc_clk_n_count:
nxt_adc_clk_n_count:

-—CONSTANT ADC_CLK_PERIOD

-- Serial interface
int_sclk : std_logic;

signal

-- Ezternal DAC signals

signal
signal
signal

int_chipsel : std_1l

int_enable_sine : std_logic := '1';

conf_reg_data

--signal enable : std_logt

--signal reg_bank_sel :

signal

signal

conf_reg_latch : st

adc_rst ¢ std_

: std_logic;
integer := 0;
integer;

: std_logic;
: std_logic;

integer;

integer

ogic;

cs

d_logic;

logic;

—-- Int ADC signals (adc_comp readout)

)

integer := ADC_CLK_PERIOD;

:= 25000000,

: std_logic_vector(6 downto 0);

std_logic_vector(2 downto 0);

signal int_adc_reset : std_logic;

--signal int_adc_ena : std_logic;

signal int_adc_en : std_logic; -- bedre navn?

-- Ezternal ADC signals

signal exADC_enable : std_logic;

signal exADC_reset : std_logic;

signal exADC_dout : std_logic;

signal exADC_sstrb : std_logic;

signal exADC_tconv : std_logic;

signal exADC_din : std_logic;

signal exADC_clk : std_logic;

signal exADC_shdn : std_logic;

signal exADC_result : std_logic_vector(15 downto 0);
signal exADC_cs : std_logic;

-— Test mode management

signal int_mode : std_logic_vector(l downto 0);
signal ext_adc_ena : std_logic;

signal int_adc_ena : std_logic; --_vector(l downto 0);
signal int_dac_ena : std_logic;

signal ext_dac_ena : std_logic;
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286
287
288
289
290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

signal dummy_enable : st
signal dac_sweep_ena

signal int_int_adc_clk :
signal int_max1132_clk :

signal int_adc_result
signal max1132_result

signal adc_result_msb
--signal comp_delayed :
--signal eoc_delayed

--signal nxt_sweep_buffer :

signal int_adc_clk_slow :

signal dac_out_int

-- Serial clock

SIGNAL cur_ser_clk
SIGNAL nxt_ser_clk
SIGNAL cur_ser_clk_count
SIGNAL nxt_ser_clk_count

signal adc_result_sl

signal mrst_stable : st
signal adc_switch_stable

signal mNIC1ADC_ena : st
signal mNIC2ADC_ena : st

signal int_adc_result_x1
signal int_adc_result_x2

d_logic;
std_logic;

std_logic;
std_logic;

: std_logic_vector(15 downto 0);
: std_logic_vector(15 downto 0);

: std_logic;
std_logic;

: std_logic;

buffer_array;

std_logic;
: std_logic_vector(7 downto 0);

: STD_LOGIC;

: STD_LOGIC;
INTEGER := O;
INTEGER;

: std_logic_vector(15 downto 0);

d_logic;
std_logic;

d_logic;
d_logic;

std_logic_vector(15 downto 0);
std_logic_vector(15 downto O0);

--signal axis_clk_int : std_logic;
signal sweep_sync_sl std_logic;
signal axis_clk_ena : std_logic := '0';
signal HIGH : std_logic := '1';

signal LOW std_logic := '0';

signal temp_so : std_logic;

signal axis_clk_out_sl : std_logic;

signal axis_clk_out_s2 : std_logic;
--signal tvalid : std_logic;

signal adc_eoc_prev : std_logic;

59



337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356

357

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

signal wr_clk_dac : std_logic;

begin

-— Testing stignals/values
-—int_adc_clk(1) <= int_adc_clk_slow(1);
int_adc_clk <= int_adc_clk_slow;

dac_sweep_ena <= '1';
adc_result_msb <= adc_result_s1(15);
dbg_led <= adc_result_msb;

adc_selected <= mNIC2ADC_ena;
dbg_adc_data_ila <= int_adc_result_x1;

-- Clockstuff
int_sclk <= cur_ser_clk;

nxt_ser_clk <= cur_ser_clk WHEN cur_ser_clk_count < SER_CLK_PERIOD

— ELSE (cur_ser_clk XOR '1');

nxt_ser_clk_count <= (cur_ser_clk_count + 1) WHEN cur_ser_clk_count < SER_CLK_PERIOD

— ELSE 0;

-—int_sclk <= mclk;
-—tnt_adc_clk <= mclk;
int_max1132_clk <= mclk;
-—azis_clk <= axzis_clk_int;

--sclk <= int_sclk;
--maxl1132_ clk <= 4nt_max1132 clk;
int_int_adc_clk <= mclk;

dac_out <= dac_out_int;

--reg_bank_sel <= "011"; -- Setter output pd VSRC1_10
conf_reg_latch <= '0';

sweep_sync <= sweep_sync_sl;

adc_en <= int_adc_en;

adc_result(15 downto 0) <= adc_result_si;
adc_result(16) <= input_sync;
adc_result(17) <= sweep_sync_sl;
adc_result(31) <= '1';

adc_result (30 downto 23) <= dac_out_int;

axis_clk_counter(31) <= '1';
-—temp_so <= adc_comp;
--adc_result(31) <= '1';

--adc_result (29 downto 22) <= dac_out_int;

--CLK_GEN_0: clock_generator port map(
--mclk => mclk,
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394

402

--rst => mrst,

-—ext_adc_clk => ezxt_adc_clk,
--int_adc_clk => int_adc_clk,
--dac_clk => dac_clk);

ADC_SWITCH_DEBOUNCER: debounce port map(
mclk => mclk,
mrst => mrst,
button_inp => adc_switch,
button_stable => adc_switch_stable

);

DAC_0: dac_control port map(
clk => mclk,
sweep_mclk => sweep_mclk,
reset => mrst,
enable => ext_dac_ena,
sclk => open,
si => open,

sreadb => open,
swrite => open,
sweep_ena => dac_sweep_ena,

dac_data => dac_data(7 downto 0),
conf_reg_data => conf_reg_data,
reg_bank_sel => reg_bank_sel,

conf_reg_latch => conf_reg_latch,
dac_out => dac_out_int,

wr => wr,

A => A,

adc_eoc => adc_eoc,

sweep_sync => sweep_sync_sl,
dac_frequency => dac_frequency_vio,
dac_latch => dac_latch,

wave_type => wave_type,
wr_clk_out => wr_clk_dac

);
ext_adc_0: ext_adc_control port map(
mclk_ext_adc => int_max1132_clk, -- mulig lage en clock genereator?
enable => ext_adc_ena,
reset => mrst,
dout => max1132_dout,
sstrb => max1132_sstrb,
din => max1132_din,

adc_rst => max1132_rst,
exadc_clk => max1132_clk,

shdn => max1132_shdn,
cs => max1132_cs,
exADC_result => max1132_result
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460
461
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463
464
465
466
467
468
469

471
472
473
474
475
476
477
478

480
481
482
483
484
485
486
487

489
490

)

mNIC2ADC: int_adc_control port map(

mclk_adc => int_int_adc_clk,
reset => mrst,
enable_control => mNIC2ADC_ena,
adc_selchil => open,
adc_ext_sel => open,
scr_enbias => open, -- trenger for adc control? er ikke dette dac relatert
mresb => open,
adc_clk => open,
adc_en => open,
adc_eoc => adc_eoc,
adc_comp => adc_comp,
adc_result => open,
comp_delayed => comp_delayed,
eoc_delayed => eoc_delayed,
tvalid => open

);

mNIC1ADC: int_adc_control port map(
mclk_adc => int_int_adc_clk,
reset => mrst,
enable_control => mNIC1ADC_ena,
adc_selchl => open,
adc_ext_sel => open,
scr_enbias => open, -- trenger for adc control? er ikke dette dac relatert
mresb => mresb(0),
adc_clk => open,
adc_en => open,
adc_eoc => adc_eoc,
adc_comp => adc_comp,
adc_result => int_adc_result_x1,
comp_delayed => open,
eoc_delayed => open,
tvalid => open

);

mNIC1ADC_qgp4d: tb_adc_arbiter_fifo_3 port map(
reset => mrst,
clk => mclk,
reset_out => open, --mresb(0)
clk_adc => open,
adc_en => open,
adc_eoc => adc_eoc,
qpc => open,
qp4d => gp4d,
write_clk => open,
clk_arb => open,
disp_3 => open,
disp_2 => open,
disp_1 => open,
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491 disp_0O => open,

492 dbg_sel_swt => "00",

493 dbg_port_sel => open,

494 dbg_port_out => "0000",

495 dbg_sts => open

496 )

497

498 mNIC2ADC_sr: tb_adc_sawtooth port map(

499 reset_in => mrst,

500 clk_in => mclk,

501 adc_selchl => open,

502 adc_ext_sel => open,

503 mresb => mresb(1),

504 adc_clk => int_adc_clk_slow,

505 adc_en => int_adc_en,

506 adc_eoc => adc_eoc,

507 sclk => sclk,

508 so => adc_comp,

509 si => si,

510 sreadb => sreadb,

511 swrite => swrite,

512 adc_data_3 => open,

513 adc_data_2 => open,

514 adc_data_1 => open,

515 adc_data_0 => open,

516 dsp_sel_swt => HIGH,

517 test_point_0 => open,

518 test_point_1 => open,

519 test_point_2 => open,

520 sawtooth_signal => open,

521 adc_result => int_adc_result_x2

522 )

523

524 —--P_BUFFER: process(adc_eoc, int_adc_clk_slow,mclk, mrst) is

525 = variable count integer := 256;

526 - begin

527 -= if(mrst = '1') then

528 - nzt_sweep_buffer <= (others => (others => '0'));

529 - elsif rising_edge(adc_eoc) then

530 - if(count = 0) then

531 -= sweep_buffer <= nzt_sweep_buffer;

532 - nzt_sweep_buffer <= (others => (others => '0'));

533 - else

534 -= count := count - 1;

535 - nzt_sweep_buffer(count) <= int_adc_result & "0000000" & int_dac_ena &
< dac_out_int;

536 -= end if;

537 - end if;

538 -—end process;

539

540 -- Managing enable signals for different modules

541 int_mode <= mode;
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544
545
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548
549
550
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axis_clk_out <= axis_clk_out_sl;-- when mode = ""; —= int_adc_clk_slow; ——azis_clk_ena
— and axis_clk_in;

PROCESS (mclk, mrst)
BEGIN
IF (mrst = '1') THEN
cur_ser_clk <= '0';
cur_ser_clk_count <= 0;

ELSIF rising_edge(mclk) THEN
cur_ser_clk <= nxt_ser_clk;
cur_ser_clk_count <= nxt_ser_clk_count;

END IF;

END PROCESS;
-—-E. .. ... ... ... ... E. 000 ... . FE

P_AXIS_CLK: process(mclk, mrst) is --adc_eoc
variable counter : integer := 0;
begin
if(mrst = '1') then
axis_clk_out_sl <= '0';
counter := 0;
—-—elsif (adc_eoc = '1') then
- aris_clk_out_s1 <= '0';
- counter := 0;
elsif rising_edge(mclk) then
if (counter = AXI_MASTER_CLK_HALFPERIOD) then
axis_clk_out_sl <= not axis_clk_out_si;

counter := 0;
end if;
counter := counter + 1;

end if;
end process;

axis_clk_out_s2 <= wr_clk_dac;

P_TVALID: process(axis_clk_out_sl, mrst) is -- twalid, adc_eoc_prev
begin
if(mrst = '1') then
tvalid <= '0';
elsif rising_edge(axis_clk_out_s1) then
adc_eoc_prev <= adc_eoc;
tvalid <= '1';

if (adc_eoc_prev < adc_eoc) then -- rising edge
tvalid <= '1';
end if;
end if;
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593 end process;
594

595 P_TRIGGER: process(mclk, mrst) is

596 begin

597 if(mrst = '1') then

598 trigger <= '0';

599 adc_result(18) <= '0';

600 elsif rising_edge(mclk) then

601 trigger <= '1';

602 adc_result(18) <= '1';

603 end if;

604 end process;

605

606 P_AXIS_CLK_COUNTER: process(axis_clk_in,mrst) is
607 variable count : integer := 0;

608 begin

609 if(mrst = '1') then

610 count := 0;

611 elsif rising_edge(axis_clk_in) then

612 if (count < 1073741823) then -- 32-bit maz value -2
613 count := count + 1;

614 else

615 count := 0;

616 end if;

617 axis_clk_counter (29 downto 0) <= std_logic_vector(to_unsigned(count,30));
618 end if;

619 end process;

620

621

622 P_ADC_SWITCH: process(mrst, adc_switch_stable) is
623 begin

624 if(mrst = '1') then

625 mNIC2ADC_ena <= '1';

626 mNIC1ADC_ena <= '0';

627 elsif(adc_switch_stable'EVENT and adc_switch_stable = '1') then
628 mNIC1ADC_ena <= not mNIC1ADC_ena;

629 mNIC2ADC_ena <= not mNIC2ADC_ena;

630 end if;

631 end process;

632

633 P_MODE_SELECT: process(mclk, int_mode, int_adc_result_x2) is
634 begin

635 case int_mode is

636 when "00" =>

637 int_dac_ena <= '1';

638 int_adc_ena <= '1';

639 ext_dac_ena <= '0';

640 ext_adc_ena <= '0';

641

642 led <= "00";

643 when "O01" =>

644 int_dac_ena <= '1';
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end

int_adc_ena <= '0';
ext_dac_ena <= '0';
ext_adc_ena <= '1';
adc_result_s1(15 downto 0) <= max1132_result;
led <= "01";
when "10" =>
int_dac_ena <= '0';
int_adc_ena <= '1';
ext_dac_ena <= '1';
ext_adc_ena <= '0';
led <= "10";
—=if(mNIC2ADC ena = '1') then
--adc_result_s1(15 downto 0) <= int_adc_result_z2;
-—elsif(mNIC1ADC ena = '1') then
adc_result_s1(15 downto 0) <= int_adc_result_x1;
-—end if;
when "11" =>
int_dac_ena <= '0';
int_adc_ena <= '0';
ext_dac_ena <= '1';
ext_adc_ena <= '1';
adc_result_s1(15 downto 0) <= max1132_result;

led <= "11";
when others =>
end case;
end process;

--ezt_adc_ena <= 4int_mode(0);
--int_adc_ena <= not int_mode(0);
--int_dac_ena <= not int_mode(1);
--ezt_dac_ena <= 4nt_mode(1);
-— shift register control
adc_ext_sel <= '1'; -- ezt_dac_ena;
scr_enbias <= '1'; -- Always high?
adc_selchl <= '0'; -- Always low % think
-—adc_result <= int_adc_result when int_adc_ena = '1' else maxzl1132_result;
architecture;
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A.2 dac_control.vhd

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
use work.sine_package.all;

entity dac_control is

port (
clk : in std_logic;
sweep_mclk : in std_logic;
reset : in std_logic;
enable : in std_logic;
sclk : out std_logic;
sweep_ena : in std_logic;
si : out std_logic;
sreadb : out std_logic;
swrite : out std_logic;
dac_data : in std_logic_vector(7 downto 0);
conf_reg_data : in std_logic_vector(6 downto 0);
reg_bank_sel : in std_logic_vector(2 downto 0);
conf_reg_latch : in std_logic;
dac_out : out std_logic_vector(7 downto 0); -- 8 bit wector
wr : out std_logic;
A : out std_logic_vector(l downto 0);

adc_eoc : in std_logic;
sweep_sync : out std_logic;

dac_frequency : in std_logic_vector(20 downto 0);
dac_latch : in std_logic;

wave_type : in std_logic_vector(l downto 0);
wr_clk_out : out std_logic

);

end entity dac_control;
architecture dac_control_arch of dac_control is
-- component sine_wave 1S
—-— port(clock, reset, enable : in std_logic;
- wave_out : out sine_vector_type);

--end component sine_wave;

component ext_dac_control is

port(
clk : in std_logic;
reset : in std_logic;
enable : in std_logic;
sweep_gen_data : in std_logic_vector(7 downto 0);
ext_dac_out : out std_logic_vector(7 downto 0);
wr : out std_logic;
A : out std_logic_vector(1l downto 0)
);
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end component ext_dac_control;

component sine_wave is
port(
clk : in std_logic;
reset : in std_logic;
enable : in std_logic;
wave_out : out std_logic_vector(7 downto 0)
)3

end component;

component int_dac_control is

port(
reset_in : IN STD_LOGIC;
clk_in : IN STD_LOGIC;
ena : in std_logic;
-- Shift register control
mresb : OUT STD_LOGIC;
scr_enbias : OUT STD_LOGIC;
adc_ext_sel : OUT STD_LOGIC;
adc_selchl : OUT STD_LOGIC;
-—- Shift register
- I/0
sclk : out STD_LOGIC;
- so : IN STD_LOGIC;
si : OUT STD_LOGIC;
sreadb : OUT STD_LOGIC;
swrite : OUT STD_LOGIC;
-— Configuration register (Serial register)
conf_reg_data : IN STD_LOGIC_VECTOR( 6 DOWNTO 0); -- dc sweep
reg_bank_sel : IN STD_LOGIC_VECTOR( 2 DOWNTO O);

conf_reg_latch : IN STD_LOGIC
)

end component;

component sawtooth_wave is
generic(
MAX_VALUE : integer := 243;
MIN_VALUE : integer := 0

)5

port(
clk, reset : in std_logic;
sweep_sync_out : out std_logic;

wave_out : out std_logic_vector(7 downto 0));
end component;

constant SWEEP_CLK_PERIOD : integer := 977; --195(15kHz); --3333; --97656 (1Hz);
«  —=48828; -- 1 -> 50kHz. 25000 for 1Hz, 1 (md vere ~54 ganger stgrre enn serial
— clock til intern DAC)

constant WRITE_HALF_PERIOD : integer := 1000; -- 50kHz write/sample frequency

-- 1Hz : 97656
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-- 2Hz :

constant sine_cl
signal sine_rese
signal int_dac_o
signal int_reset
signal int_enabl
signal ext_enabl
signal sine_coun
signal sine_clk
signal sweep_gen
signal sweep_gen
— every WRITE_

signal wr_clk

signal mresb : s
signal scr_enbia
signal adc_ext_s
signal adc_selch

signal sweep_clk

signal ext_dac_o
-— DAC frequency

k_count
t : std_logic;
ut

std_logic;
e : std_logic;
e : std_logic;

integer := 50000000;

std_logic_vector(7 downto 0);

ter : integer := 0;
std_logic;
_data : std_logic_vector(7 downto 0);
_data_wr_freq std_logic_vector(7 downto 0); -- Sweep data updated
FREQUENCY
std_logic;

td_logic;

s : std_logic;
el : std_logic;
1 : std_logic;

std_logic;

ut
calculation:

std_logic_vector(7 downto 0);

-- CLK = 100MHz -- sweep_clk = CLK/(2*dac_frequency_integer)
= sweep_clk_period * 512

-— sweep period
signal dac_frequ

signal sine_ena :

signal sine_wave
signal sawtooth_
signal sawtooth_
signal dc_ena

begin

wr_clk_out <
int_enable <
ext_enable

int_reset <=

ency_integer

std_logic;

integer := 97656; -- 1Hz default

_data : std_logic_vector(7 downto 0);

ena : std_logic;
wave_data :
std_logic;

= wr_clk;

= not enable;
<= enable;

reset;

std_logic_vector(7 downto 0);

dac_out <= sweep_gen_data_wr_freq;
--sine_reset <= not reset; -- sine_wave uses active high reset

dac_frequency_integer <= to_integer (unsigned(dac_frequency)) ;

-- Only one enable signal will be high at a given moment.
sawtooth_ena <= wave_type(0) and (not dc_ena);
<= not wave_type(0) and (not dc_ena);

sine_ena
dc_ena

<= wave_type(1);
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151
152 dacl: ext_dac_control port map(

153 clk => clk,

154 reset => reset,

155 enable => ext_enable,

156 sweep_gen_data => sweep_gen_data_wr_freq,

157 ext_dac_out => int_dac_out,

158 wr => wr,

159 A => A);

160

161 dac2: int_dac_control port map(

162 reset_in => reset,

163 clk_in => clk,

164 ena => int_enable,

165 mresb => mresb,

166 scr_enbias => scr_enbias,

167 adc_ext_sel => adc_ext_sel,

168 adc_selchl => adc_selchil,
—

169 sclk => sclk,

170 si => si,

171 sreadb => sreadb,

172 swrite => swrite,

173 conf_reg_data => sweep_gen_data(6 downto 0), --dac_data(6 downto
— 0),--sweep_gen_data(6 downto 0),

174 reg_bank_sel => reg_bank_sel,

175 conf_reg_latch => dac_latch);

176

177 sine_comp: sine_wave port map(

178 clk => sweep_clk,

179 reset => reset,

180 enable => sine_ena,

181 wave_out => sine_wave_data);

182

183 sawtooth_comp: sawtooth_wave port map(

184 clk => sweep_clk,

185 reset => reset,

186 sweep_sync_out => sweep_sync,

187 wave_out => sawtooth_wave_data

188 )

189

190

191 --P_BIAS_CONTROLER: process(clk, reset) ts

192 - variable dac_out_int : integer range 0 to 255 :=0;

193 - begin

194 - if(reset = '1') then

195 - dac_out_int <= "00000000";

196 - elsif(dcbias_ena = '1') then

197

198 - sweep_gen_data <= std_logic_vector(to_signed(dac_out_int,8));

199 - end if;

200 -—end process;
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-- SWEEP_CLK_PERIOD --> dac_frequency_integer
P_SWEEP_CLK: process(sweep_mclk,reset) is

variable count : integer := O;
begin
if(reset = '1') then
sweep_clk <= '0';
count := O0;

elsif rising_edge(sweep_mclk) then
if (count = dac_frequency_integer) then
sweep_clk <= not sweep_clk;

count := 0;
elsif (count > dac_frequency_integer) then
count := 0;
else
count := count + 1;
end if;
end if;

end process;

P_WR_CLK: process(clk,reset) is

variable count : integer := 0;
begin
if(reset = '1') then

wr_clk <= '0';
elsif rising_edge(clk) then
if (count = WRITE_HALF_PERIOD) then
wr_clk <= not wr_clk;

count := 0;
else
count := count + 1;
end if;
end if;

end process;

P_SWEEP_WR_FREQ: process(clk, reset) is
begin
if(reset = '1') then
sweep_gen_data_wr_freq <= (others => '0');
elsif rising_edge(wr_clk) then
sweep_gen_data_wr_freq <= sweep_gen_data;
end if;
end process;

P_SWEEP_DATA_GEN: process(clk, reset) is
begin
if(reset = '1') then
sweep_gen_data <= (others => '0');
elsif rising_edge(sweep_clk) then
if(dc_ena = '1') then
sweep_gen_data <= dac_data;
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elsif(sawtooth_ena = '1') then
sweep_gen_data <= sawtooth_wave_data;

elsif(sine_ena = '1') then
sweep_gen_data <= sine_wave_data;
else
sweep_gen_data <= (others => '0');
end if;
end if;

end process;
end architecture dac_control_arch;

-- sine_clk_process: process(clk, reset) is
- begin
--variable counter : integer;
- if(rising_edge(clk)) then
-— if(sine_counter < sine_clk_count) then
- sine_counter <= sine_counter + 1;
-= else
- sine_counter <= 0;
- sine_clk <= not sine_clk;

-- end if;
--elsif reset = '0' then
-— sine_clk <= '0';
-- end if;

-—-end process sine_clk_process;
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A.3 ext_dac_control.vhd

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
use work.sine_package.all;

entity ext_dac_control is

port (
clk : in std_logic;
reset : in std_logic;
enable in std_logic;

sweep_gen_data in std_logic_vector(7 downto 0);
ext_dac_out : out std_logic_vector(7 downto 0);
wr : out std_logic;
A : out std_logic_vector(l downto 0)
);

end entity ext_dac_control;

architecture dac_control_arch of ext_dac_control is

-- Assuming 1MHz clk frequency

constant sine_clk_count : integer := 1000; -- 1 -> 50kHz. 25000 for 1Hz, 1
constant WR_FREQ integer := 1000000; -— 1 us =1
signal sine_reset : std_logic;
signal int_dac_out std_logic_vector(7 downto 0);
signal int_reset std_logic;
signal int_enable std_logic;
signal sine_counter : integer := 0;
signal sine_clk std_logic;
signal sine_out sine_vector_type;
signal nxt_wr std_logic;
begin
int_enable <= enable;
int_reset <= reset;
sine_reset <= not reset; -- sine_wave uses active high reset
--int_dac_out <= sweep_gen_data;
ext_dac_out <= int_dac_out;
A <= "00"; -- Or whatever channel %s used
-- Action | Min time requirement
____________________________ JE—
-—- Setup time for data : 4bns
-— Hold time, data : 10ns
—-- Pulse duration, WR low : 50ns
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-- settling time to 1/2 LSB is 5-7us depending on power supply setup

wr <= nxt_wr;

P_WRITE_DATA: process(clk, reset) is

variable count : integer := 0;
begin
if (reset = '1') then

nxt_wr <= '1';
elsif rising_edge(clk) then
if (count = WR_FREQR) then

--nzt_wr <= '0'; -- Keeps wr low for 2 clock periods
nxt_wr <= not nxt_wr; -- writes every 10 us (100kHz)
count := 0;
int_dac_out <= sweep_gen_data;

else
count := count + 1;

end if;

end if;

end process;

sine_clk_process: process(clk, reset) is
begin
--variable counter : integer;
if (reset = '0') then
sine_clk <= '0';
elsif (rising_edge(clk)) then
sine_clk <= '0';
if (sine_counter < sine_clk_count) then
sine_counter <= sine_counter + 1;
else
sine_counter <= 0;
sine_clk <= not sine_clk;
end if;
end if;
end process sine_clk_process;

end architecture dac_control_arch;

--i1f(int_reset = '0') then
int_dac_out <= (others => '0');
——elsif(rising_edge(clk)) then
dac_out <= int_dac_out;

-—end if;

-—end process;

--t1f(int_enable = '1') then
—-—int_dac_out <= wave_out;
-—end if;
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A.4 int_dac_control.vhd

library ieee;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
use work.sine_package.all;

entity int_dac_control is

port (
reset_in : in std_logic;
clk_in : in std_logic;
ena : in std_logic;
-- Shift register control
mresb : out std_logic;
scr_enbias : out std_logic;
adc_ext_sel : out std_logic;
adc_selchl : out std_logic;
-- Shift register
< I/0
sclk : out std_logic;
- so : ant std_logic;
si : out std_logic;
sreadb : out std_logic;
swrite : out std_logic;
-- Configuration register (Serial register)
conf_reg_data : in std_logic_vector(6 DOWNTO 0); -- sweep data
reg_bank_sel : in std_logic_vector(2 DOWNTO 0);
conf_reg_latch : in std_logic -- T21 (KEY[3])
)5

end entity int_dac_control;

architecture int_dac_control_arch of int_dac_control is
-— 7-segment display interface

CONSTANT DB_COUNT : unsigned := "000001";
CONSTANT SER_CLK_PERIOD : INTEGER := 40; -- 2400 = 41.67 kHz
CONSTANT LATCH_PER : INTEGER := 100000000

TYPE SER_IN_STATE_TYPE IS (ser_in_init, ser_in_data_write, ser_in_swrite);

SIGNAL cur_ser_in_state : SER_IN_STATE_TYPE;
SIGNAL nxt_ser_in_state : SER_IN_STATE_TYPE;
SIGNAL tb_reset : std_logic;

SIGNAL tb_sclk : std_logic;

SIGNAL tb_si : std_logic;
signal int_sclk : std_logic;
signal int_sclk_n : std_logic;

SIGNAL cur_ser_data_count : INTEGER := O;
SIGNAL nxt_ser_data_count : INTEGER;
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SIGNAL
SIGNAL
SIGNAL
SIGNAL

SIGNAL
SIGNAL
SIGNAL
SIGNAL

SIGNAL
SIGNAL
SIGNAL
SIGNAL

SIGNAL
SIGNAL
SIGNAL

SIGNAL

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

SIGNAL
SIGNAL

SIGNAL
SIGNAL

SIGNAL
SIGNAL

SIGNAL
SIGNAL

SIGNAL
SIGNAL

SIGNAL
SIGNAL
SIGNAL
SIGNAL

signal
signal

cur_swrite
nxt_swrite

cur_si
nxt_si

cur_ser_clk
nxt_ser_clk
cur_ser_clk_count
nxt_ser_clk_count

cur_ser_clk_n
nxt_ser_clk_n

cur_ser_clk_n_count:
nxt_ser_clk_n_count:

reset_db
cur_db_count
nxt_db_count

conf_reg_input

tdac
scr_1_dac
scr_1_conf
scr_2_dac
scr_2_conf

cur_tdac
nxt_tdac

cur_scr_1_dac
nxt_scr_1_dac

cur_scr_1_conf
nxt_scr_1_conf

cur_scr_2_dac
nxt_scr_2_dac

cur_scr_2_conf
nxt_scr_2_conf

nibble_0
nibble_1
nibble_2
nibble_3

int_enable
conf_reg_latch_test

: std_logic;
: std_logic;

: std_logic;
: std_logic;

: std_logic;
: std_logic;

INTEGER := O;
INTEGER;

: std_logic;
: std_logic;

INTEGER := O;
INTEGER;

: std_logic;
: unsigned( 5 DOWNTO 0);
: unsigned( 5 DOWNTO 0);

: std_logic_vector(53

: std_logic_vector( 6
: std_logic_vector( 6
: std_logic_vector( 6
: std_logic_vector( 6
: std_logic_vector( 6

: std_logic_vector( O
: std_logic_vector( O

: std_logic_vector( 0
: std_logic_vector( O

: std_logic_vector( O
: std_logic_vector( O

: std_logic_vector( O
: std_logic_vector( O

: std_logic_vector( O
: std_logic_vector( O

: unsigned ( 3 DOWNTO
: unsigned ( 3 DOWNTO
: unsigned ( 3 DOWNTO
: unsigned ( 3 DOWNTO

std_logic;

std_logic;
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DOWNTO 0);
DOWNTO 0);
DOWNTO 0) ;
DOWNTO 0);
DOWNTO 0);

TO 6);
TO 6);

TO 6);
TO 6);

TO 6);
TO 6);

TO 6);
TO 6);

TO 6);
TO 6);

0);
0);
0);
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-- Function to reverse array bits stream
FUNCTION reverse_array (in_array: std_logic_vector) RETURN std_logic_vector IS VARIABLE
< out_array: std_logic_vector(6 DOWNTO O);
BEGIN
FOR i in in_array'RANGE LOOP
out_array(i) := in_array(i);
END LOOP;

RETURN out_array;

END FUNCTION;

BEGIN
-- Shift register I/0
mresb <= not reset_in;
--sclk <= tb_sclk AND (NOT(cur_swrite));
-—tb_sclk <= sclk;
si <= tb_si;
tb_si <= cur_si;
--scr_enbias <= '1';
-—adc_ext_sel <= '0'; -- Ezternal source for ADC
-—adc_selchl <= '1'; -- N/A when adc_ext_sel =1 -- '0'

int_enable <= ena;

nibble_3 <= "0" & unsigned(cur_scr_1_conf(0 TO 2));
nibble_2 <= unsigned(cur_scr_1_conf(3 TO 6));
nibble_1 <= "Q0" & unsigned(cur_scr_1_dac(0 TO 2));
nibble_0 <= unsigned(cur_scr_1_dac(3 TO 6));

-- Configuration bit stream

tdac <= reverse_array(cur_tdac);
scr_1_dac <= reverse_array(cur_scr_1_dac);
scr_1_conf <= reverse_array(cur_scr_1_conf);
scr_2_dac <= reverse_array(cur_scr_2_dac);
scr_2_conf <= reverse_array(cur_scr_2_conf);

——conf_reg_input <= scr_1_conf & scr_1_dac & scr_2_conf & scr_2_dac & tdac & tdac(0) &
< "100000000000000001" ;

conf_reg_input <= "0000000" & conf_reg_data & "0000000000000000000000" &

< "000000000000000000" ;

--Sertal clock
sclk <= int_sclk and not(cur_swrite);

-- Switch (reset) debounce
--tb_reset <= not reset_in;--reset_db; -— NOT(reset_db);
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reset_db
nxt_db_count <

<= '1' WHEN cur_db_count
(OTHERS => '0') WHEN cur_db_count

-—- Shift enable
sreadb <= '1';
swrite <= cur_swrite;

P_SCLK_GEN: process(clk_in, reset_in) is

variable count integer := 0;
begin
if(reset_in = '1') then
count := 0;

int_sclk <= '0';
int_sclk_n <= '1';
elsif rising_edge(clk_in) then
count := count + 1;
if (count = SER_CLK_PERIOD) then
int_sclk <= not int_sclk;
int_sclk_n <= not int_sclk_n;
count := 0;
end if;
end if;
end process;

PROCESS(clk_in, reset_in)
BEGIN
IF (reset_in = '1') THEN

cur_db_count <= DB_COUNT;
--cur_ser_clk <= '0';
cur_ser_clk_count <= 0;
cur_ser_clk n <= '1';

cur_ser_clk_n_count <= 0;

ELSIF (clk_in'EVENT AND clk_in = '1') THEN

"000000" ELSE '0';
"000000" ELSE cur_db_count + 1;

cur_db_count
-—cur_ser_clk
cur_ser_clk_count
cur_ser_clk_n

<= nxt_db_count;

<= nxt_ser_clk;
<= nxt_ser_clk_count;
<= nxt_ser_clk_n;

cur_ser_clk_n_count <= nxt_ser_clk_n_count;

END IF;

END PROCESS;

ser_in_process: PROCESS(cur_ser_in_state, nxt_ser_in_state, cur_ser_data_count,

— cur_swrite, conf_reg_
BEGIN

nxt_ser_in_state <=
nxt_ser_data_count <=
nxt_si <=
nxt_swrite <=

input)

cur_ser_in_state;
cur_ser_data_count;
cur_sij;

cur_swrite;
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202
203 CASE cur_ser_in_state IS
204

205 WHEN ser_in_init =>
206
207 nxt_swrite <= '0';
208 nxt_ser_in_state <= ser_in_data_write;
209
210 WHEN ser_in_data_write =>
211
212 nxt_si <= conf_reg_input (cur_ser_data_count);
213
214 IF (cur_ser_data_count = 53) THEN --53
215
216 nxt_ser_data_count <= 0; -- resets the sertial data count
217 nxt_swrite <= '1'; -- Assert the write pulse
218 nxt_ser_in_state
o <= ser_in_swrite;
219 ELSE
220 nxt_ser_data_count <= cur_ser_data_count + 1;
221 END IF;
222
223 WHEN ser_in_swrite =>
224
225 nxt_swrite <= '0'; -- Deassert the write
— pulse
226 nxt_ser_in_state <= ser_in_init;
227
228 WHEN OTHERS =>
229
230 nxt_ser_in_state <= ser_in_init;
231
232 END CASE;
233
234 END PROCESS;
235
236 ser_pos_clk_process: PROCESS(reset_in, int_sclk)
237 BEGIN
238
239 IF (reset_in = '1') THEN
240
241 cur_ser_in_state <= ser_in_init;
242 cur_ser_data_count <= 0;
243 cur_swrite <= '0';
244 - cur_s?t <= '0';
245
246 ELSIF rising_edge(int_sclk) THEN
247
248 cur_ser_in_state <= nxt_ser_in_state;
249 cur_ser_data_count <= nxt_ser_data_count;
250 cur_swrite <= nxt_swrite;
251 - cur_s1t <= nrt_si;
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END IF;
END PROCESS;

ser_neg_clk_process: PROCESS(reset_in, int_sclk_n)
BEGIN

IF (reset_in = '1') THEN
cur_si ='0"';
ELSIF rising_edge(int_sclk_n) THEN
cur_si <= nxt_si;
END IF;

END PROCESS;

PROCESS(conf_reg_latch, reg_bank_sel, conf_reg_data, cur_tdac, cur_scr_2_dac,

< cur_scr_2_conf, cur_scr_1_dac, cur_scr_1_conf)
BEGIN

nxt_tdac <= cur_tdac;
nxt_scr_2_dac <= cur_scr_2_dac;
nxt_scr_2_conf <= cur_scr_2_conf;
nxt_scr_1_dac <= cur_scr_1_dac;
nxt_scr_1_conf <= cur_scr_1_conf;
IF (conf_reg_latch = '0') THEN
CASE reg_bank_sel IS
WHEN "000" => nxt_tdac <= conf_reg_data;
WHEN "001" => nxt_scr_2_dac <= conf_reg_data;
WHEN "010" => nxt_scr_2_conf <= conf_reg_data;
WHEN "011" => nxt_scr_1_dac <= conf_reg_data;
WHEN "100" => nxt_scr_1_conf <= conf_reg_data;
WHEN OTHERS =>
END CASE;

END IF;

END PROCESS;
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PROCESS (reset_in, int_scl
BEGIN

IF (reset_in = '1') T

cur_tdac <=
cur_scr_2_dac <=
cur_scr_2_conf <=
cur_scr_1_dac <=
cur_scr_1_conf <=

ELSIF rising_edge(int

cur_tdac <=
cur_scr_2_dac <=
cur_scr_2_conf <=
cur_scr_1_dac <=
cur_scr_1_conf <=

END IF;

END PROCESS;
end architecture int_dac_cont

k)

HEN

(OTHERS => '0')

(OTHERS => '0"')
(OTHERS => '0')
(OTHERS => '0')
(OTHERS => '0')
_sclk) THEN
nxt_tdac;

nxt_scr_2_dac;
nxt_scr_2_conf;
nxt_scr_1_dac;
nxt_scr_1_conf;

rol_arch;

3
)
’
3

3
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49

A.S tb_adc_sawtooth.vhd

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;
--USE WORK.spi_defs_pkg.ALL;

ENTITY tb_adc_sawtooth IS

PORT (-- Board input

reset_in : IN STD_LOGIC; -- R22 (KEY[0])
clk_in : IN STD_LOGIC; -- A12 (24 MHz)
-- ADC select
adc_selchl : OUT STD_LOGIC; -- G18 (GPIO_1[25])
adc_ext_sel : OUT STD_LOGIC; -- G20 (GPIO_1[24])
scr_enbias : OUT STD_LOGIC; -- E18 (GPIO_1[23])
-— ADC control
mresb : OUT STD_LOGIC; -- E19 (GPIO_1[22])
adc_clk : OUT STD_LOGIC; -- F20 (GPIO_1[21])
adc_en : OUT STD_LOGIC; -- E20 (GPIO_1[20])
adc_eoc : IN STD_LOGIC; -- D20 (GPIO_1[19])
-- ADC output interface
sclk : OUT STD_LOGIC; -- D19 (GPIO_1[18])
so : IN STD_LOGIC; -- C20 (GPIO_1[17])
si : OUT STD_LOGIC; -- C19 (GPIO_1[16])
sreadb : OUT STD_LOGIC; -- C18 (GPIO_1[15])
swrite : OUT STD_LOGIC; -- C17 (GPIO_1[14])
-— 7-Segment LED display
adc_data_3 : OUT STD_LOGIC_VECTOR ( 6 DOWNTO O);
adc_data_2 : OUT STD_LOGIC_VECTOR ( 6 DOWNTO O);
adc_data_1 : OUT STD_LOGIC_VECTOR ( 6 DOWNTO O);
adc_data_0 : OUT STD_LOGIC_VECTOR ( 6 DOWNTO O);
-- Average ADC output
dsp_sel_swt : IN STD_LOGIC; -- L22 (SW[0])
-- Test points
test_point_0 : OUT STD_LOGIC; -- Hi2 (GPIO_1[0])
test_point_1 : OUT STD_LOGIC; -- H13 (GPIO_1[1])
test_point_2 : OUT STD_LOGIC; -- H14 (GPIO_1[2])
-- sawtooth generation
sawtooth_signal : OUT std_logic;

adc_result : out std_logic_vector(15 downto 0)

);
END ENTITY tb_adc_sawtooth;
ARCHITECTURE tb_adc_sawtooth_arch OF tb_adc_sawtooth IS
-- 7-segment display interface
TYPE DISP_CODE_ARRAY IS ARRAY ( O TO 15) OF STD_LOGIC_VECTOR( 7 DOWNTO O);

CONSTANT DISP_CODE : DISP_CODE_ARRAY := (X"40", X"79", X"24", X"30", X"19", X"12",
N XIIOQII, XII78II’ XIIOOII, Xllloll’ XIIOSII, XIIO3II, Xll46ll’ Xll21ll, X"OG", XIIOEII);
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50 CONSTANT DB_COUNT : UNSIGNED := "000001";

51 CONSTANT ADC_CLK_PERIOD : INTEGER := 147; -- 10 -- 147

52 CONSTANT SER_CLK_PERIOD : INTEGER := 20; --147;, -- 2 --10

53

54 TYPE ADC_CONV_STATE_TYPE IS (adc_conv_init, adc_conv_start, adc_eoc_wait,

— adc_read_value, adc_conv_stop);

55 TYPE SER_IO_STATE_TYPE IS (ser_io_init, ser_io_start, ser_io_data_ready,
<« ser_io_data_latch, ser_io_data_read, ser_io_stop);

56 TYPE ADC_AVG_CALC_STATE_TYPE IS (wait_calc_start, calc_adc_avg);

57

58 SIGNAL cur_adc_conv_state : ADC_CONV_STATE_TYPE;

59 SIGNAL nxt_adc_conv_state : ADC_CONV_STATE_TYPE;

60

61 SIGNAL cur_ser_io_state : SER_IO_STATE_TYPE;

62 SIGNAL nxt_ser_io_state : SER_IO_STATE_TYPE;

63

64 SIGNAL tb_reset : STD_LOGIC;

65 SIGNAL tb_adc_clk : STD_LOGIC;

66 SIGNAL tb_adc_en : STD_LOGIC;

67 SIGNAL tb_adc_eoc : STD_LOGIC;

68 SIGNAL tb_sclk : STD_LOGIC;

69 SIGNAL tb_so : STD_LOGIC;

70 SIGNAL tb_si : STD_LOGIC;

71 SIGNAL tb_sreadb : STD_LOGIC;

72 SIGNAL tb_swrite : STD_LOGIC;

73

74 SIGNAL cur_adc_val_rdy : STD_LOGIC;

75 SIGNAL nxt_adc_val_rdy : STD_LOGIC;

76

77 SIGNAL cur_ser_read : STD_LOGIC;

78 SIGNAL nxt_ser_read : STD_LOGIC;

79

80 SIGNAL cur_adc_en : STD_LOGIC;

81 SIGNAL nxt_adc_en : STD_LOGIC;

82

83 SIGNAL cur_sreadb : STD_LOGIC;

84 SIGNAL nxt_sreadb : STD_LOGIC;

85

86 SIGNAL cur_swrite : STD_LOGIC;

87 SIGNAL nxt_swrite : STD_LOGIC;

88

89 SIGNAL cur_si : STD_LOGIC;

90 SIGNAL nxt_si : STD_LOGIC;

91

92 SIGNAL cur_so : STD_LOGIC;

93 SIGNAL nxt_so : STD_LOGIC;

94

95 SIGNAL cur_adc_bit_count : INTEGER := O;

96 SIGNAL nxt_adc_bit_count : INTEGER;

97

98 SIGNAL cur_adc_data : STD_LOGIC_VECTOR (17 DOWNTO O0);

99 SIGNAL nxt_adc_data : STD_LOGIC_VECTOR (17 DOWNTO O0);
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100

101 SIGNAL nibble_0 : UNSIGNED ( 3 DOWNTO O0);
102 SIGNAL nibble_1 : UNSIGNED ( 3 DOWNTO O0);
103 SIGNAL nibble_2 : UNSIGNED ( 3 DOWNTO 0);
104 SIGNAL nibble_3 : UNSIGNED ( 3 DOWNTO O0);

105

L SIGNAL inv_adc_data_1 : STD_LOGIC_VECTOR ( O T0 15);

107 SIGNAL inv_adc_data_2 : UNSIGNED (15 DOWNTO 0);

108

109 SIGNAL cur_inv_adc_data : STD_LOGIC_VECTOR (15 DOWNTO O0);
110 SIGNAL nxt_inv_adc_data : STD_LOGIC_VECTOR (15 DOWNTO O0);
111

112 SIGNAL cur_adc_clk : STD_LOGIC;

113 SIGNAL nxt_adc_clk : STD_LOGIC;

114 SIGNAL cur_adc_clk_count INTEGER := O;

115 SIGNAL nxt_adc_clk_count INTEGER;

116

117 SIGNAL cur_adc_clk_n : STD_LOGIC;

118 SIGNAL nxt_adc_clk_n : STD_LOGIC;

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

SIGNAL cur_adc_clk_n_count:
SIGNAL nxt_adc_clk_n_count:

SIGNAL cur_ser_clk
SIGNAL nxt_ser_clk
SIGNAL cur_ser_clk_count
SIGNAL nxt_ser_clk_count

SIGNAL cur_ser_clk_n
SIGNAL nxt_ser_clk_n

SIGNAL cur_ser_clk_n_count:
SIGNAL nxt_ser_clk_n_count:

SIGNAL reset_db
SIGNAL cur_db_count
SIGNAL nxt_db_count

SIGNAL cur_avg_calc_state :
SIGNAL nxt_avg_calc_state :

SIGNAL cur_adc_avg
SIGNAL nxt_adc_avg

SIGNAL cur_min_adc_val
SIGNAL nxt_min_adc_val

SIGNAL cur_max_adc_val
SIGNAL nxt_max_adc_val

signal cur_eoc_trigger
signal nxt_eoc_trigger

signal nxt_rdy

INTEGER := ADC_CLK_PERIOD;
INTEGER;

: STD_LOGIC;
: STD_LOGIC;

INTEGER := O;
INTEGER;

: STD_LOGIC;

: STD_LOGIC;
INTEGER := SER_CLK_PERIOD;
INTEGER;

: STD_LOGIC;
: UNSIGNED( 5 DOWNTO 0);
: UNSIGNED( 5 DOWNTO 0);

ADC_AVG_CALC_STATE_TYPE;
ADC_AVG_CALC_STATE_TYPE;

: UNSIGNED(16 DOWNTO 0);
: UNSIGNED(16 DOWNTO 0);

: UNSIGNED(16 DOWNTO 0);
: UNSIGNED(16 DOWNTO 0);

: UNSIGNED(16 DOWNTO 0);

: UNSIGNED(16 DOWNTO O0);

: std_logic;
: std_logic;

: std_logic;
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152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185

186

187

188
189
190
191
192
193
194
195
196
197
198
199

BEGIN

-— ADC select

adc_ext_sel <= '1'; -- Exzternal source for ADC
adc_selchl = '1'; -- N/A when adc_exzt_sel =1 -- '0'
scr_enbias <= '0'; -- Screen voltage from off chip

-— ADC control

mresb <= tb_reset;

adc_clk <= tb_adc_clk;
adc_en <= tb_adc_en;
tb_adc_eoc <= adc_eoc;

-- ADC output interface

sclk <= tb_sclk;
tb_so <= s0;

si <= tb_si;
sreadb <= tb_sreadb;
swrite <= tb_swrite;
tb_adc_en <= cur_adc_en;
tb_sreadb <= cur_sreadb;
tb_swrite <= cur_swrite;
tb_si <= cur_si;

-— 7-segment Display output

adc_data_3 <= DISP_CODE(TO_INTEGER(nibble_3)) (6 DOWNTO 0);

adc_data_2 <= DISP_CODE(TO_INTEGER(nibble_2)) (6 DOWNTO 0);

adc_data_1 <= DISP_CODE(TO_INTEGER(nibble_1)) (6 DOWNTO O);
adc_data_0 <= DISP_CODE(TO_INTEGER (nibble_0)) (6 DOWNTO 0);

nibble_3 <= inv_adc_data_2(15 DOWNTO 12) WHEN dsp_sel_swt
< cur_adc_avg(15 DOWNTO 12);
nibble_2 <= inv_adc_data_2(11 DOWNTO 8) WHEN dsp_sel_swt
< cur_adc_avg(11l DOWNTO 8);
nibble_1 <= inv_adc_data_2( 7 DOWNTO 4) WHEN dsp_sel_swt
— cur_adc_avg( 7 DOWNTO 4);
nibble_0O <= inv_adc_data_2( 3 DOWNTO O) WHEN dsp_sel_swt

< cur_adc_avg( 3 DOWNTO O0);

inv_adc_data_2 <= UNSIGNED(cur_inv_adc_data);
-- wnv_adc_data_2 <= inv_adc_data_1;
- inv_adc_data_1 <= cur_adc_data (17 DOWNTO 2);

-— 1-segment Display output
--sr_out <= cur_adc_data;

-— Test points

test_point_O <= cur_adc_val_rdy;
test_point_1 <= cur_ser_read;
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200
201
202
203
204
205
206

207

208
209

210

211
212
213
214

215

216
217

218

219
220
221
222
223

224
225
226
227
228
229
230
231
232
233
234
235
236

237
238
239
240
241

test_point_0 <= '0';

test_point_1 <= '0';
test_point_2 <= '0';
-— ADC clock
-—tb_adc_clk <= cur_adc_clk;
nxt_adc_clk <= cur_adc_clk WHEN cur_adc_clk_count <

< ADC_CLK_PERIOD ELSE (cur_adc_clk XOR '1');
nxt_adc_clk_count <= (cur_adc_clk_count + 1) WHEN cur_adc_clk_count <
< ADC_CLK_PERIOD ELSE O;

nxt_adc_clk_n <= cur_adc_clk_n WHEN cur_adc_clk_n_count <

< ADC_CLK_PERIOD ELSE (cur_adc_clk_n XOR '1');

nxt_adc_clk_n_count <= (cur_adc_clk_n_count + 1) WHEN cur_adc_clk_n_count <

— ADC_CLK_PERIOD ELSE O;

-- Serial clock

tb_sclk <= cur_ser_clk;

nxt_ser_clk <= cur_ser_clk WHEN cur_ser_clk_count <
< SER_CLK_PERIOD ELSE (cur_ser_clk XOR '1');

nxt_ser_clk_count <= (cur_ser_clk_count + 1) WHEN cur_ser_clk_count <
< SER_CLK_PERIOD ELSE O;

nxt_ser_clk_n <= cur_ser_clk_n WHEN cur_ser_clk_n_count <

< SER_CLK_PERIOD ELSE (cur_ser_clk_n XOR '1');

nxt_ser_clk_n_count <= (cur_ser_clk_n_count + 1) WHEN cur_ser_clk_n_count <

— SER_CLK_PERIOD ELSE O;

-- Switch debounce for Reset
tb_reset <= reset_db; -- NOT(reset_db);

reset_db <= '1"' WHEN cur_db_count
- 1;

PROCESS(clk_in, reset_in)
BEGIN

IF (reset_in = '1') THEN

cur_db_count <= DB_COUNT;
cur_adc_clk ='0";
cur_adc_clk_n <= '0';
cur_ser_clk <= '0';
cur_ser_clk_n <= '0"';

cur_adc_clk_count <= 0;
cur_adc_clk_n_count <=

— ADC_CLK_PERIOD;

cur_ser_clk_count <= 0;

cur_ser_clk _n_count <= SER_CLK_PERIOD;

ELSIF (clk_in'EVENT AND clk_in = '1') THEN
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242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264
265
266
267
268
269
270
271
272

273
274
275
276
271
278
279

281
282
283
284
285
286
287
288
289
290
291

cur_db_count <= nxt_db_count;

cur_adc_clk <= nxt_adc_clk;

cur_adc_clk_n <=

— nxt_adc_clk_n;

cur_ser_clk <= nxt_ser_clk;
cur_ser_clk_n <= nxt_ser_clk_n;

cur_adc_clk_count <= nxt_adc_clk_count;
cur_adc_clk_n_count <= nxt_adc_clk_n_count;
cur_ser_clk_count <= nxt_ser_clk_count;
cur_ser_clk _n_count <= nxt_ser_clk_n_count;
END IF;
END PROCESS;

P_TB_ADC_CLK: process(clk_in, reset_in) is

variable counter : integer := O0;
begin
if(reset_in = '1') then
tb_adc_clk <= '0';
counter := 0;

elsif rising_edge(clk_in) then
if (counter = ADC_CLK_PERIOD) then
tb_adc_clk <= not tb_adc_clk;
counter := 0;
end if;
counter := counter + 1;
end if;
end process;

adc_conv_process: PROCESS(cur_adc_conv_state, cur_adc_val_rdy, cur_adc_en,
— cur_ser_read, tb_adc_eoc)
BEGIN

nxt_adc_conv_state <= cur_adc_conv_state;

nxt_adc_val_rdy <= cur_adc_val_rdy;
nxt_adc_en <= cur_adc_en;
nxt_eoc_trigger <= cur_eoc_trigger;

CASE cur_adc_conv_state IS
WHEN adc_conv_init =>

--eoc_trigger <= '0';
nxt_adc_conv_state <= adc_conv_start;

WHEN adc_conv_start =>
nxt_adc_en <= '1"';

nxt_eoc_trigger <= '0';
nxt_adc_conv_state <= adc_eoc_wait;
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292
293

294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

WHEN

END CASE;
END PROCESS;

adc_pos_clk_proce
BEGIN

IF (tb_reset

cur_adc_c
cur_adc_e

WHEN adc_eoc_wait

4
--IF (tb_adc_eoc =

nxt_eoc_trigge

nxt_adc_val_

nxt_rdy <= '
nxt_adc_conv_
adc_read_
—--adc_result
nxt_adc_en <=

s

'1') THEN

r <='1";
rdy <=
0';

Ill;

state <= adc_conv_stop;

value;

<= cur_adc_data (16 downto

|0|; — l;

--eoc_trigger <= '1';

--END IF;
WHEN adc_read_value =>

nzt_adc_val_rdy <= '1

nxt_adc_conv_state <=
WHEN adc_conv_stop =>
--IF (cur_ser_read = '0') THEN
nxt_adc_val_rdy <=
nxt_adc_conv_state <=
— adc_conv_init;
-- END IF;

OTHERS =>

nxt_adc_conv_state <= adc_

ss: PROCESS(tb_reset, tb_adc_clk)

= '0') THEN

onv_state <= adc_conv_init;
n <= 101;
cur_adc_val_rdy <= '0';
cur_eoc_trigger <= '0';

1.
s

adc_conv_stop;

conv_init;

ELSIF (tb_adc_clk'EVENT AND tb_adc_clk = '1') THEN
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341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

376

371
378
379
380
381
382
383
384

385
386
387

cur_adc_conv_state <= nxt_adc_conv_state;
cur_adc_val_rdy <= nxt_adc_val_rdy;
cur_adc_en <= nxt_adc_en;
cur_eoc_trigger <= nxt_eoc_trigger;

END IF;
END PROCESS;
ser_io_process: PROCESS(cur_ser_io_state, cur_adc_bit_count, cur_adc_data,
— cur_ser_read, cur_sreadb, cur_swrite, cur_si, cur_adc_val_rdy, cur_so,
< cur_inv_adc_data)

BEGIN

nxt_ser_io_state <= cur_ser_io_state;
nxt_adc_bit_count <= cur_adc_bit_count;

nxt_adc_data <= cur_adc_data;
nxt_ser_read <= cur_ser_read;
nxt_sreadb <= cur_sreadb;
nxt_swrite <= cur_swrite;
nxt_si <= cur_si;

nxt_inv_adc_data <= cur_inv_adc_data;

CASE cur_ser_io_state IS

WHEN ser_io_init =>

nxt_sreadb <= '1';
nxt_swrite <= '0';
nxt_ser_read <= '1';
--adc_result <= (others =>

nxt_ser_io_state <= ser_io_start;
WHEN ser_io_start =>

——if(cur_adc_val_rdy = '1')

— then
nxt_sreadb <=
< lol;

nxt_ser_io_state <= ser_io_data_ready;
--END IF;
WHEN ser_io_data_ready =>
nxt_sreadb <= '1'; - "'0';
nxt_ser_io_state <= ser_io_data_read; —-

— ser_to_data_latch;

- WHEN ser_io_data_latch =>
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388
389
390
391
392
393
394

395
396
397
398
399

400
401
402
403
404
405
406
407

409
410
411
412
413

414

415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

nzt_sreaddb <= '1';
nxt_ser_to_state <= ser_io_data_read;

WHEN ser_io_data_read =>

nxt_adc_data(0) <= cur_so;
nxt_adc_data(17 DOWNTO 1) <= cur_adc_data(16
< DOWNTO 0);
nxt_si <= '0"';
IF (cur_adc_bit_count = 17) THEN -- 17
nxt_ser_read <=
PN IOI;

nxt_adc_bit_count <= 0;
nxt_ser_io_state <= ser_io_stop;

ELSE
nxt_adc_bit_count <= cur_adc_bit_count + 1;
END IF;
WHEN ser_io_stop =>

--IF (cur_adc_val_rdy = '0') THEN

nxt_ser_read <=

<y lll;

nxt_inv_adc_data <= cur_adc_data(16 DOWNTO
< 1); -- cur_adc_data(16 DOWNTO 1); --
adc_result <= cur_adc_data(16 downto
= 1)

nxt_ser_io_state <= ser_io_init;
--END IF;
WHEN OTHERS =>
nxt_ser_io_state <= ser_io_init;
END CASE;
END PROCESS;

ser_pos_clk_process: PROCESS(tb_reset, tb_sclk)
BEGIN

IF (tb_reset = '0') THEN
cur_inv_adc_data <= (OTHERS => '0');

cur_ser_io_state <= ser_io_init;
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435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

458
459
460
461
462
463
464
465

467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486

cur_adc_bit_count <= 0;

cur_adc_data <= (OTHERS => '1'); —— 10!
cur_ser_read <= '0';
cur_swrite <= '0';
cur_si <= '0"';
- cur_so <= '0';

- cur_test_point_0 <= '0';
-- cur_test_point_1 <= '0';
—-= cur_test_point_2 <= '0';

ELSIF (tb_sclk'EVENT AND tb_sclk = '1') THEN
cur_inv_adc_data <= nxt_inv_adc_data;

cur_ser_io_state <= nxt_ser_io_state;
cur_adc_bit_count <= nxt_adc_bit_count;

cur_adc_data <= nxt_adc_data;
cur_ser_read <= nxt_ser_read;
cur_swrite <= nxt_swrite;
cur_si <= nxt_si;
-= cur_so <= tb_so;

—-= cur_test_point_0 <= nzt_test_point_0;

- cur_test_point_1 <= nxi_test_point_1;

- cur_test_point_2 <= nzt_test_point_2;
END IF;

END PROCESS;

ser_neg_clk_process: PROCESS(tb_reset, cur_ser_clk_n)
BEGIN

IF (tb_reset = '0') THEN
cur_so <= '0';
- cur_ser_read <= '0';

cur_sreadb <= '1';

ELSIF (cur_ser_clk_n'EVENT AND cur_ser_clk_n = '1') THEN

cur_so <= tb_so;
- cur_ser_read <= nxt_ser_read;
cur_sreadb <= nxt_sreadb;
END IF;

END PROCESS;

END;
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487
488
489
490

491
492
493
494

495

496
497
498

499
500
501
502

503

disp_

disp_

52));

disp_

disp_

-- Data selection for display output

nibble_0

sel_swt = "10"

nibble_1
ll10ll

sel_swt =

nibble_2

sel_swt = "10"
nibble_3
sel_swt = "10"

ELSE

ELSE

ELSE

cur_adc_data( 3 DOWNTO
cur_adc_data (19 DOWNTO

cur_adc_data( 7 DOWNTO
cur_adc_data (23 DOWNTO

cur_adc_data (11 DOWNTO
cur_adc_data (27 DOWNTO

cur_adc_data (15 DOWNTO
cur_adc_data (31 DOWNTO
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0)
16)

)
20)

8)
24)

12)
28)

WHEN disp_sel_swt = "00" ELSE
WHEN disp_sel_swt = "01" ELSE
cur_adc_data (35 DOWNTO 32) WHEN

cur_adc_data (51 DOWNTO 48);
WHEN disp_sel_swt = "00" ELSE
WHEN disp_sel_swt = "01" ELSE

cur_adc_data (39 DOWNTO 36) WHEN

("00" & cur_adc_data (53 DOWNTO
WHEN disp_sel_swt = "00" ELSE

WHEN disp_sel_swt = "01" ELSE
cur_adc_data (43 DOWNTO 40) WHEN

IIOOOO n ;
WHEN disp_sel_swt = "00" ELSE
WHEN disp_sel_swt = "01" ELSE

cur_adc_data (47 DOWNTO 44) WHEN

0000 n;



A.6 ext_adc_control.vhd
LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.NUMERIC_STD.ALL;

entity ext_adc_control is

o S - NV T O VO R SR

28

29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46

port (

mclk_ext_adc : in std_logic;

enable : in std_logic; -- outside decider of exADC is being used

reset : in std_logic; —-- reset signal for exADC

dout : in std_logic; -- DOUT

sstrb : in std_logic; -- SSTRB is low during adc conversion, for tconv time

din : out std_logic; -- digital in, write to adc

adc_rst : out std_logic; -- reset adc

exadc_clk : out std_logic; -- clock for adc

shdn : out std_logic; -- drive shdn low to put the adc in shutdown mode

cs : out std_logic;

exADC_result : out std_logic_vector (15 downto 0) -- result to pcb_interface
)5

end entity ext_adc_control;

architecture arch of ext_adc_control is

constant CALIBRATE_WORD : std_logic_vector(7 downto 0) := "11101000"; -- 1: Start,
— 1: unipolar, 1: internal clock, 01: Start calibration, 000: Don't care?
constant START_WORD std_logic_vector(7 downto 0) := "11100000"; -- 1: Start,

— 1: unipolar, 1: internal clock, 00: Short acqusition mode (24 ext clk
< periods/conversion), 000: Don't care?

constant ADC_CLK_PERIOD : integer := 25; -- 25 = 2MHz
constant ENABLE_CLOCK : integer := 1000;

signal ext_clk_ena : std_logic := '0';

signal ext_adc_clk : std_logic;

--signal cs : std_logic;

TYPE EXT_ADC_CONV_STATE is (ADC_IDLE, ADC_WRITE_CALIBRATE,ADC_WRITE_START,
< ADC_CLK_START, ADC_CS_LOW, ADC_START, ADC_WAIT, ADC_READ, ADC_DONE);

signal state : EXT_ADC_CONV_STATE;
signal nxt_state : EXT_ADC_CONV_STATE;

signal result : std_logic_vector(15 downto 0);
signal dout_d : std_logic;

signal int_enable : std_logic;
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47
48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73

74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97

begin
-— ADC Clock generation

--ezadc_clk <= ext_adc_clk when(sstrb = '1') else '0'; -- external serial
— goes low during conversion, this gives better noise performance

exADC_result <= result;

-— P_TEST: process(sstrb,ext_adc_clk) is
- begin

- if(sstrb = '1') then

- exadc_clk <= ext_adc_clk;
- elsif(sstrb = '0') then

- -—exzadc_clk <= '0';

-= end if;

-- end process;

-—ezadc_clk <= ext_adc_clk and ext_clk_ena;
shdn <= '1';

P_INT_ENABLE_CLK: process(ext_adc_clk, reset) is

variable count : integer := 0;
begin
if(reset = '1') then
count := O0;

-—ext_adc_clk <= '0';
-—ext_clk_ena <= '0';
-—ezadc_clk <= '0';
int_enable <= '1"';
elsif rising_edge(ext_adc_clk) then
if (count = ENABLE_CLOCK) then
int_enable <= '1';

count := 0;
else
count := count + 1;
int_enable <= '0';
end if;
end if;

end process;

P_EXT_ADC_GEN: process(mclk_ext_adc, reset) is

variable count : integer := 0;
begin
if(reset = '1') then
count := 0;

ext_adc_clk <= '0';
-—ext_clk_ena <= '0';
exadc_clk <= '0';

elsif rising_edge(mclk_ext_adc) then
count := count + 1;
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98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

if (count = ADC_CLK_PERIOD) then

ext_adc_clk <= not ext_adc_clk;

count := 0;

if(ext_clk_ena = '1') then
exadc_clk <= not ext_adc_clk;

elsif(ext_clk_ena =

'0') then

exadc_clk <= '0';

end if;
end if;
end if;
end process;

P_DOUT_SAMPLING: process(ext_adc_clk, reset) is

begin
if(reset = '1') then
dout_d <= '1';

elsif falling_edge(ext_adc_clk) then

dout_d <= dout;
end if;
end process;

P_RESET: process(ext_adc_clk, reset)
begin
if(reset = '1') then
--state <= ADC IDLE;
adc_rst <= '0';

is

elsif rising_edge(ext_adc_clk) then

--state <= nzt_state;
adc_rst <= '1';
end if;
end process;

P_ADC_CONV_FALLING: process(reset, ext_adc_clk)

variable word_bit_cnt : integer
variable bit_cnt : integer := 0;
begin
-—cs <= '1"';
-—ext_clk_ena <= '0';
if(reset = '1') then
cs <= '1';
din <= '0';
word_bit_cnt := 0;
bit_cnt := 0;

:=0;

elsif falling_ edge(ext_adc_clk) then

cs <= '1';
ext_clk_ena <= '0';
--din <= '0';
case state is
when ADC_IDLE =>
--cs <= '1';
-—ext_clk_ena <=

101;
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when ADC_WRITE_CALIBRATE =>

cs <= '0';

ext_clk_ena <= '1';

-—din <= CALIBRATE_WORD(7);

if (word_bit_cnt < 7) then
din <= CALIBRATE_WORD(7 - word_bit_cnt);
word_bit_cnt := word_bit_cnt + 1;

elsif(word_bit_cnt = 7) then
din <= CALIBRATE_WORD(O);
word_bit_cnt := 0;

end if;

when ADC_WRITE_START =>

cs <= '0';

ext_clk_ena <= '1';

-—din <= CALIBRATE WORD(7);

if (word_bit_cnt < 7) then
din <= START_WORD(7 - word_bit_cnt);
word_bit_cnt := word_bit_cnt + 1;

elsif (word_bit_cnt = 7) then
din <= START_WORD(O0);
word_bit_cnt := 0;

end if;

when ADC_WAIT =>
-—cs <= '1';
-—ext_clk_ena <= '0';
din <= '0"';

when ADC_READ =>
cs <= '0';
ext_clk_ena <= '1';

when others =>
end case;
end if;
end process;

P_ADC_CONV_FSM: process(state,nxt_state,ext_adc_clk, sstrb,reset) is
variable word_bit_cnt : integer :=0;

variable bit_cnt : integer := 15;
begin
if(reset = '1') then

state <= ADC_IDLE;
-=din <= '0';
--cs <= '1"';
word_bit_cnt := O;
bit_cnt = 0;
elsif rising_edge(ext_adc_clk) then

case state is

when ADC_IDLE =>
if (int_enable = '1') then
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state <= ADC_WRITE_START;

--cs <= '0';
--din <= CALIBRA

TE_WORD(7) ;

7) then

-—int_enable <= '0';
end if;
when ADC_WRITE_CALIBRATE =>
if (word_bit_cnt < 7) then
word_bit_cnt := word_bit_cnt + 1;
elsif(word_bit_cnt =
word_bit_cnt := 0;

state <= ADC_WAIT;

end if;
when ADC_WRITE_START =>

if (word_bit_cnt < 7) then
word_bit_cnt := word_bit_cnt + 1;
elsif (word_bit_cnt =
word_bit_cnt := 0;

7) then

state <= ADC_WAIT;

end if;
when ADC_WAIT =>
if(sstrb = '1') then

state <= ADC_READ;

end if;
when ADC_READ =>

if (bit_cnt = 15) then
result(0) <= dout;

-—ext_clk_ena <=
--cs <= '0';
bit_cnt := 0;

/01;

state <= ADC_DONE;

else
result (15 - bit_

end if;
when ADC_DONE =>

--tnt_enable <= '0';
state <= ADC_IDLE;

when others => state <= ADC_IDLE;

end case;
end if;

end process;

end architecture arch;

cnt) <= dout;
bit_cnt := bit_cnt + 1;
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A.7 int_adc_control.vhd

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.NUMERIC_STD.ALL;

entity int_adc_control is

port (
mclk_adc : in std_logic;
reset in std_logic;
enable_control in std_logic;
-— ADC select
adc_selchl : out std_logic;
adc_ext_sel : out std_logic;
scr_enbias : out std_logic;
-— ADC control
mresb : out std_logic;
adc_clk : out std_logic;
adc_en : out std_logic;
adc_eoc : in std_logic;
adc_comp : in std_logic; -- Read out directly from ADC comparator output

adc_result
comp_delayed
eoc_delayed
tvalid

)

end entity int_adc_control;

architecture arch of int_adc_control is

: out std_logic_vector(15 downto 0);
: out std_logic;
: out std_logic;
: out std_logic

type adc_conv_state is(adc_conv_idle, adc_conv_read, adc_conv_stop);

CONSTANT ADC_CLK_PERIOD : INTEGER :=
— 50ks/s. 5000; --1M/100k = 1k

-— ADC control signals

signal int_adc_en

signal nxt_adc_result :
signal cur_adc_result :

-— ADC clock signal s

signal
signal
signal
signal

signal
signal
signal
signal

-= fsm

signal cur_adc_conv_state

cur_adc_clk
nxt_adc_clk

std_logic;

std_logic;
std_logic;

cur_adc_clk_count : INTEGER :=
nxt_adc_clk_count : INTEGER;

cur_adc_clk_n
nxt_adc_clk_n

cur_adc_clk_n_
nxt_adc_clk_n_

std_logic;

std_logic;
count: INTEGER :=
count: INTEGER;

147;-- 147 ca 20k samples/s --56 => 850kHz =>

std_logic_vector(16 downto 0);
std_logic_vector(15 downto 0);

0;

ADC_CLK_PERIOD;

: adc_conv_state;
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signal nxt_adc_conv_state : adc_conv_state;

signal cur_adc_en : std_logic;
signal adc_eoc_prev : std_logic;
signal adc_comp_int : std_logic;

-—type result_buffer is array (255 downto 0) of std_logic_vector(15 downto 0);

signal buf_rdy : std_logic;
signal adc_result_rdy : std_logic;
signal adc_comp_delayed : std_logic;
signal adc_eoc_delayed : std_logic;
signal adc_eoc_int : std_logic;
signal tvalid_switch : std_logic := '0';
signal tvalid_switch_d : std_logic := '0';
begin
-— ADC select
--adc_ext_sel <= '0'; -- External source for ADC
--adc_selchl <= '1'; -- N/A when adc_ext_sel = 1
--scr_enbias <= '0'; -- Screen voltage from off chip

-— ADC control

mresb <= not reset; -- mresb active low, asic s wierd
--adc_en <= int_adc_en;

adc_result <= cur_adc_result;

--adc_result(0) <= '0';

adc_comp_int <= adc_comp_delayed;

adc_eoc_int <= adc_eoc_delayed;

comp_delayed <= adc_comp_delayed;
eoc_delayed <= adc_eoc_delayed;

-- ADC clock generation

adc_clk <= cur_adc_clk;

nxt_adc_clk <= cur_adc_clk WHEN cur_adc_clk_count <
< ADC_CLK_PERIOD ELSE (cur_adc_clk XOR '1');

nxt_adc_clk_count <= (cur_adc_clk_count + 1) WHEN cur_adc_clk_count <
< ADC_CLK_PERIOD ELSE O0;

nxt_adc_clk_n <= cur_adc_clk_n WHEN cur_adc_clk_n_count <
< ADC_CLK_PERIOD ELSE (cur_adc_clk_n XOR '1');

nxt_adc_clk_n_count <= (cur_adc_clk_n_count + 1) WHEN cur_adc_clk_n_count <
— ADC_CLK_PERIOD ELSE O0;

-- signal assignments for testing
int_adc_en <= enable_control; --'1';

P_COMP_DELAY: process(cur_adc_clk,reset)
begin
if(reset = '1') then
adc_comp_delayed <= '0';
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elsif falling_edge(cur_adc_clk) then
adc_comp_delayed <= adc_comp;
adc_eoc_delayed <= adc_eoc;
end if;
end process;

P_TVALID: process(mclk_adc,reset)
begin
if(reset = '1') then
tvalid <= '0';
elsif rising_edge(mclk_adc) then
tvalid_switch_d <= tvalid_switch;
if (tvalid_switch /= tvalid_switch_d) then
tvalid <= '1';
else
tvalid <= '0';
end if;
end if;
end process;

P_MRESET: process(mclk_adc, reset)

begin
if(reset = '1') then
cur_adc_clk <= '0';
cur_adc_clk_n <=
< 'OI;

cur_adc_clk_count <= 0;
cur_adc_clk_n_count <= ADC_CLK_PERIOD;

elsif rising_edge(mclk_adc) then
cur_adc_clk <= nxt_adc_clk;
cur_adc_clk_n <= nxt_adc_clk_n;
cur_adc_clk_count <= nxt_adc_clk_count;
cur_adc_clk_n_count <= nxt_adc_clk_n_count;
end if;
end process;

p_adc_conv_process: process(cur_adc_clk, reset) -- adc control zfab2
— ,cur_adc_conv_state, nzt_adc_conv_state, cur_adc_en

variable count : integer := 255;
begin

if(reset = '1') then

cur_adc_conv_state <= adc_conv_idle;
cur_adc_result <= (others => '0');

elsif rising_edge(cur_adc_clk) then
--nxt_adc_conv_state <= cur_adc_conv_state;
adc_eoc_prev <= adc_eoc_int;
adc_result_rdy <= '0';
buf_rdy <= '0"';
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adc_en <= '0';
--nzt_adc_en <= cur_adc_en;

case cur_adc_conv_state IS
when adc_conv_idle =>
if(int_adc_en = '1') then
cur_adc_conv_state <= adc_conv_read;
end if;

when adc_conv_read =>
adc_en <= '1';

if(adc_eoc_int = '1') then
--bit_count := 16;
if (adc_eoc_prev = '0') then

adc_result_rdy <= '1';
cur_adc_result <= nxt_adc_result(15 downto 0);
tvalid_switch <= not tvalid_switch;
count := count - 1;
—--result_buffer(count) (15 downto 0) <= nzt_adc_result(15
— downto 0);
if (count = 0) then
--result_buffer <= cur_result_buffer;
buf_rdy <= '1';
end if;
end if;
-—if(enable_control = '1') then
cur_adc_conv_state <= adc_conv_read;

--else
--cur_adc_conv_state <= adc_conv_stop;
-—end if;
elsif(adc_eoc_int = '0') then

--nzt_adc_result(0) <= '1';
nxt_adc_result(0) <= adc_comp_int;
nxt_adc_result (16 downto 1) <= nxt_adc_result(15 downto 0);
--bit_count := bit_count - 1;
end if;

when adc_conv_stop =>
nxt_adc_result <= (others => '0');
if int_adc_en = '1' then
—-—cur_adc_conv_state <= adc_conv_read;
cur_adc_conv_state <= adc_conv_idle;

else
cur_adc_conv_state <= adc_conv_idle;
end if;
when others => cur_adc_conv_state <= adc_conv_idle;
end case;

end if;

end process;
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-- p_adc_pos_clk_process: process(reset, cur_adc_clk)

-- begin
- if (reset = '1') then

- cur_adc_conv_state <= adc_conv_idle;

- cur_adc_en <= '0';

- elsif rising_edge(cur_adc_clk) then

- cur_adc_en <= '1';

- cur_adc_conv_state <= nzxt_adc_conv_state;
--cur_adc_en <= nzt_adc_en; -- why? adc_en md synces?

- end if;
-- end process;

end architecture;

—-adc_neg_clk_process: process(reset, cur_adc_clk_n)

--begin

- if (reset= '0') then
--cur_adc_val_rdy <= '0';

-- ELSif (adc_clk_n'event and adc_clk_n = '1') then
--cur_adc_val_rdy <= nzt_adc_val_rdy;

- end if;
-—end process;
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A.8 sawtooth wave.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sawtooth_wave is
generic(
SAWTOOTH_MAX_VALUE :
SAWTOOTH_MIN_VALUE :
)3

port( clk, reset: in std_logic;
sweep_sync_out : out std_logic;

integer :=
integer :=

243;

wave_out: out std_logic_vector(7 downto 0));

end;

architecture arch of sawtooth_wave is
signal sweep_sync : std_logic;
signal sawtooth_wave_data :

begin

wave_out <= sawtooth_wave_data;
sweep_sync_out <= sweep_sync;

std_logic_vector(7 downto 0);

P_SAWTOOTH_WAVE: process(clk, reset) is --linear sweep
=1

variable dir :
variable dac_out_int
- "00000000";

begin
if(reset = '1') then
dir := 1;
dac_out_int := 0;

elsif rising_edge(clk) then
if (dac_out_int =
dir := -1;
sweep_sync <=
elsif (dac_out_int

|0|;

dir := 1;
sweep_sync <= '1';
end if;

dac_out_int

integer range -1 to 1
integer range 0 to 255

:= dac_out_int + dir;

1= 0; -- unsigned(7 downto 0)

SAWTOOTH_MAX_VALUE) then

= SAWTOOTH_MIN_VALUE) then

sawtooth_wave_data <= std_logic_vector(to_signed(dac_out_int,8));

end if;
end process;

end;
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A.9 sine wave.vhd

-- Synthesisable design for a sine wave generator
-— Copyright Doulos Ltd
-- 8D, 07 Aug 2003

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.sine_package.all;

entity sine_wave is
port( clk, reset, enable: in std_logic;
wave_out: out sine_vector_type);
end;

architecture archl of sine_wave is
type state_type is ( counting_up, change_down, counting_down, change_up );
signal state, next_state: state_type;
signal table_index: table_index_type;
signal positive_cycle: boolean;
begin

process( clk, reset )
begin
if reset = '1l' then
state <= counting_up;
elsif rising_edge( clk ) then

if enable = 'l' then
state <= next_state;
end if;
end if;

end process;

process( state, table_index )
begin
next_state <= state;
case state is
when counting up =>
if table_index = max_table_index then
next_state <= change_down;
end if;
when change_down =>
next_state <= counting_down;
when counting_down =>
if table_index = O then
next_state <= change_up;

end if;
when others => -- change_up
next_state <= counting_up;
end case;

end process;
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process( clk, reset )
begin
if reset = 'l' then
table_index <= 0;
positive_cycle <= true;
elsif rising_edge( clk ) then
if enable = '1' then
case next_state is
when counting_up =>
table_index <= table_index + 1;
when counting_down =>
table_index <= table_index - 1;
when change_up =>

positive_cycle <= not positive_cycle;

when others =>
-- nothing to do
end case;
end if;
end if;
end process;

process( table_index, positive_cycle )
variable table_value: table_value_type;
begin

table_value := get_table_value( table_index );

if positive_cycle then

wave_out <= std_logic_vector(to_signed(table_value,sine_vector_type'length));

else

wave_out <= std_logic_vector(to_signed(-table_value,sine_vector_type'length));

end if;
end process;

end;
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A.10

sine_package.vhd

library ieee;
use ieee.std_logic_1164.all;

package sine_package is

constant max_table_value:

subtype table_value_type

constant max_table_index:

subtype table_index_type

subtype sine_vector_type

function get_table_value

end;

integer := 127;
is integer range 0 to max_table_value;

integer := 127;
is integer range 0 to max_table_index;

is std_logic_vector( 7 downto 0 );

(table_index: table_index_type) return

package body sine_package is

function get_table_value (table_index: table_index_type) return

begin

when 0 =>

table_value :

when 1 =>

table_value :

when 2 =>

table_value :

when 3 =>

table_value :

when 4 =>

table_value :

when 5 =>

table_value :

when 6 =>

table_value :

when 7 =>

table_value :

when 8 =>

table_value :

when 9 =>

table_value :

when 10 =>

table_value :

when 11 =>

table_value :

when 12 =>

table_value :

when 13 =>

case table_index is

10;

12;

13;

15;

16;

18;

19;

variable table_value: table_value_type;
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table_value :

when 14 =>

table_value :

when 15 =>

table_value :

when 16 =>

table_value :

when 17 =>

table_value :

when 18 =>

table_value :

when 19 =>

table_value :

when 20 =>

table_value :

when 21 =>

table_value :

when 22 =>

table_value :

when 23 =>

table_value :

when 24 =>

table_value :

when 25 =>

table_value :

when 26 =>

table_value :

when 27 =>

table_value :

when 28 =>

table_value :

when 29 =>

table_value :

when 30 =>

table_value :

when 31 =>

table_value :

when 32 =>

table_value :

when 33 =>

table_value :

when 34 =>

table_value :

when 35 =>

table_value :

when 36 =>

table_value :

when 37 =>

table_value :

when 38 =>

table_value :

when 39 =>

21;

22;

24;

26;

27;

29;

30;

32;

33;

35;

36;

38;

39;

41;

42;

44,

45;

46;

48;

49;

51;

52;

54;

55;

56;

58;
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table_value :

when 40 =>

table_value :

when 41 =>

table_value :

when 42 =>

table_value :

when 43 =>

table_value :

when 44 =>

table_value :

when 45 =>

table_value :

when 46 =>

table_value :

when 47 =>

table_value :

when 48 =>

table_value :

when 49 =>

table_value :

when 50 =>

table_value :

when 51 =>

table_value :

when 52 =>

table_value :

when 53 =>

table_value :

when 54 =>

table_value :

when 55 =>

table_value :

when 56 =>

table_value :

when 57 =>

table_value :

when 58 =>

table_value :

when 59 =>

table_value :

when 60 =>

table_value :

when 61 =>

table_value :

when 62 =>

table_value :

when 63 =>

table_value :

when 64 =>

table_value :

when 65 =>

59;

61;

62;

63;

65;

66;

67;

69;

70;

71;

72;

74,

75;

76;

78;

79;

80;

81;

82;

84;

85;

86;

87;

88;

89;

90;
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table_value :

when 66 =>

table_value :

when 67 =>

table_value :

when 68 =>

table_value :

when 69 =>

table_value :

when 70 =>

table_value :

when 71 =>

table_value :

when 72 =>

table_value :

when 73 =>

table_value :

when 74 =>

table_value :

when 75 =>

table_value :

when 76 =>

table_value :

when 77 =>

table_value :

when 78 =>

table_value :

when 79 =>

table_value :

when 80 =>

table_value :

when 81 =>

table_value :

when 82 =>

table_value :

when 83 =>

table_value :

when 84 =>

table_value :

when 85 =>

table_value :

when 86 =>

table_value :

when 87 =>

table_value :

when 88 =>

table_value :

when 89 =>

table_value :

when 90 =>

table_value :

when 91 =>

91;

93;

94;

95;

96;

97;

98;

99;

100;

101;

102;

102;

103;

104;

105;

106;

107;

108;

109;

109;

110;

111;

112;

112;

113;

114;
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table_value :

when 92 =>

table_value :

when 93 =>

table_value :

when 94 =>

table_value :

when 95 =>

table_value :

when 96 =>

table_value :

when 97 =>

table_value :

when 98 =>

table_value :

when 99 =>

table_value :

when 100 =>

table_value :

when 101 =>

table_value :

when 102 =>

table_value :

when 103 =>

table_value :

when 104 =>

table_value :

when 105 =>

table_value :

when 106 =>

table_value :

when 107 =>

table_value :

when 108 =>

table_value :

when 109 =>

table_value :

when 110 =>

table_value :

when 111 =>

table_value :

when 112 =>

table_value :

when 113 =>

table_value :

when 114 =>

table_value :

when 115 =>

table_value :

when 116 =>

table_value :

when 117 =>

114;

115;

116;

116;

117;

118;

118;

119;

119;

120;

120;

121;

121;

122;

122;

123;

123;

123;

124;

124;

124,

125;

125;

125;

126;

126;
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259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

table_value :=
when 118 =>
table_value :=
when 119 =>
table_value :=
when 120 =>
table_value :=
when 121 =>
table_value :=
when 122 =>
table_value :=
when 123 =>
table_value :=
when 124 =>
table_value :=
when 125 =>
table_value :=
when 126 =>
table_value :=
when 127 =>
table_value :=
end case;
return table_value;

end;

end;

126;

126;

126;

126;

127;

127;

127;

127;

127;

127;

127;
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31
32

33

34

35
36
37
38
39

40
41
42
43
44
45

A.11 debounce.vhd

LIBRARY ieee;
USE ieee.std_logic_1164.all;

entity debounce is

GENERIC(
clk_freq : INTEGER := 100_000_000; --system clock frequency in Hz
stable_time : INTEGER := 10); --time button must remain stable in ms
port(
mclk : in std_logic;
mrst : in std_logic;
button_inp : in std_logic;
button_stable : out std_logic
)3
end entity;

architecture arch of debounce is
constant WAIT_TIME : integer := clk_freqg*stable_time/1000;

signal flipflops : STD_LOGIC_VECTOR(1 DOWNTO 0); --input flip flops
signal counter_set : STD_LOGIC; --sync reset to zero
begin
counter_set <= flipflops(0) xor flipflops(1l); --determine when to start/reset counter

process(mclk, mrst)

variable counter : integer := 0; --counter for timing
begin
if(mrst = '1') then --reset
flipflops(1 downto 0) <= "00"; --clear input flipflops
button_stable <= '0'; --clear result
— register
elsif rising_edge(mclk) then --rising clock edge
flipflops(0) <= button_inp; --store button value in
— 1st flipflop
flipflops(1l) <= flipflops(0); --store 1st flipflop value
— in 2nd flipflop
if (counter_set = '1') then --reset counter because
— input 1S changing
counter := 0; --clear the counter
elsif (counter < WAIT_TIME) then --stable input time is not yet met
counter := counter + 1; -—-increment counter
else --stable input time is met
button_stable <= flipflops(1); -—output the
— Sstable value
end if;
end if;

END PROCESS;

end arch;
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State machine Diagrams
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INIT <

swrite <=0

> DATA_WRITE

si <= conf_ref_input(data_count)

data_count++

data_count = 53

swrite <=0

swrite <=1

IN_WRITE

Figure B.1: State machine controlling the m-NIC2 serial register, writing
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Y

INIT

nxt_sreadb <=1

nxt_ser_read <=1

Y

START

nxt_sreadb <=0

Y
X
m
>
O

nxt_adc_data(0) <= cur_so
nxt_adc_data(17:1) <= cur_adc_data(16:0)
bit_cnt++

IF CUR_ADC_BIT_CNT=17

nxt_ser_read <=1
adc_result <= cur_adc_data(16:1)

STOP

Figure B.2: State machine controlling the m-NIC2 serial register, reading
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11
12
13
14
15
16
17
18
19

20

Appendix C

Pin assignment

set_property —dict
#BTNO
set_property —dict
#SWO
set_property —dict
#SW1
set_property —dict
#LEDO
set_property —dict
#LEDI
set_property —dict
#LED3
set_property —dict
] #BTN2
set_property —dict
adc_selected 0]

{PACKAGE PIN
{PACKAGE_PIN
{PACKAGE_PIN
{PACKAGE PIN
{PACKAGE_PIN
{PACKAGE_PIN
{PACKAGE _PIN

{PACKAGE_PIN
#LED2

D19

M20

M19

R14

P14

M14

L20

N16

set_property —dict {PACKAGE PIN N17

#AR13
#set_property —dict
#AR12

set_property —dict
#RP35
set_property —dict

#RP5
set_property —dict
int_adc_clk 0]
set_property —dict
#RP27

{PACKAGE PIN P18 IOSTANDARD LVCMOS33}

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

IOSTANDARD

LVCMOS33}
LVCMOS33}
LVCMOS33}
LVCMOS33}
LVCMOS33}
LVCMOS33}
LVCMOS33}
LVCMOS33}

LVCMOS33}

[get ports
[get _ports
[get _ports
[get ports
[get ports
[get _ports
[get ports
[get ports

[get ports

mrst_0]
{mode_0[0]}]
{mode_O[1]}]
{led_0[0]}]
{led_0[1]}]
dbg_led 0]

adc_switch 0

trigger 1]

[get ports TEST POINT]

{PACKAGE PIN Y8 IOSTANDARD LVCMOS33} [get ports adc_en 0]

{PACKAGE_PIN W19 IOSTANDARD LVCMOS33} [get ports

{PACKAGE_PIN A20 IOSTANDARD LVCMOS33}

#RP38

{PACKAGE PIN Y16 IOSTANDARD LVCMOS33}
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[get _ports

[get ports

adc_eoc 0]

adc_comp 0]



21

22
23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44
45

46

47

48

set_property —dict
[01}]

set_property —dict

set_property —dict
] #RP3
set _property —dict
adc_ext _sel 0]
set_property —dict
#RP16
set_property —dict
#RP13
set_property —dict
#RP24
set_property —dict
#RP26
set_property —dict

set_property —dict

set_property —dict
max1132 clk 0]
set_property —dict

max1132_dout_0]

set_property —dict

max1132 sstrb 0]

set_property —dict

] #RP11
set_property —dict
] #RP15

set_property —dict

max1132 shdn 0]

set_property —dict
] #RP23

set_property —dict
#AR9

set_property —dict
#ARS

set_property —dict

set_property —dict
[0]}] #ARO

set_property —dict
[11}] #ARI

set_property —dict
[2]}] #AR2

{PACKAGE_PIN

#RP8

{PACKAGE_PIN
#RP36
{PACKAGE_PIN

{PACKAGE PIN
#RP12
{PACKAGE_PIN

{PACKAGE_PIN
{PACKAGE PIN
{PACKAGE_PIN

{PACKAGE PIN
#RP40
{PACKAGE PIN
#RP32

{PACKAGE_PIN
#RP18
{PACKAGE_PIN
#RP21
{PACKAGE PIN
#RP19
{PACKAGE_PIN

{PACKAGE_PIN
{PACKAGE _PIN
#RP7

{PACKAGE_PIN
{PACKAGE_PIN
{PACKAGE_PIN
{PACKAGE_PIN
#AR10

{PACKAGE PIN

{PACKAGE_PIN

{PACKAGE PIN

Y18 IOSTANDARD LVCMOS33}

B19 IOSTANDARD LVCMOS33}
W18 IOSTANDARD LVCMOS33}

C20 IOSTANDARD LVCMOS33}

[get ports

[get ports
[get ports

[get ports

W6 IOSTANDARD LVCMOS33} [get ports

V7 IOSTANDARD LVCMOS33} [get ports

F19 IOSTANDARD LVCMOS33}

U19 IOSTANDARD LVCMOS33}

[get ports

[get ports

Y9 IOSTANDARD LVCMOS33} [get ports

B20 IOSTANDARD LVCMOS33}

U18 IOSTANDARD LVCMOS33}

V10 IOSTANDARD LVCMOS33}

[get ports

[get _ports

[get _ports

V8 IOSTANDARD LVCMOS33} [get ports

{mresb_1

sclk 0]

adc_selchl 0

scr_enbias_ 0]

{mresb_1[1]}]

sreadb_0]

swrite 0]

so 0]

si_ 0]

U7 IOSTANDARD LVCMOS33} [get ports max1132 din_0

U8 IOSTANDARD LVCMOS33} [get ports max1132 rst 0

V6 IOSTANDARD LVCMOS33} [get ports

W10 IOSTANDARD LVCMOS33}

V18 IOSTANDARD LVCMOS33}

V17 IOSTANDARD LVCMOS33}

T16 IOSTANDARD LVCMOS33}

T14 IOSTANDARD LVCMOS33}
Ul12 IOSTANDARD LVCMOS33}

U13 IOSTANDARD LVCMOS33}
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[get_ports

[get ports

[get ports

[get ports
[get ports
[get ports

[get ports

max1132 cs_0

{A_0[0]}]

{AO0[1]}]

{wr_0}]
{dac_out 0
{dac_out 0

{dac_out 0



49

50

51

52

53

54

55

56
57
58
59
60
61
62
63
64
65
66

set_property —dict

[3]1] #AR3

set_property —dict

[4]}] #AR4

set_property —dict

[51}] #ARS

set_property —dict

[6]}] #ARG6

set_property —dict

[7]}] #AR7

set _property —dict

] #AR11

set_property —dict

#RP33

set _property DRIVE
set_property DRIVE

connect_debug port dbg hub/clk

{PACKAGE_PIN
{PACKAGE_PIN
{PACKAGE PIN
{PACKAGE_PIN
{PACKAGE_PIN

{PACKAGE PIN

V13

V15

T15

R16

u17

R17

IOSTANDARD LVCMOS33}
IOSTANDARD LVCMOS33}
IOSTANDARD LVCMOS33}
IOSTANDARD LVCMOS33}
IOSTANDARD LVCMOS33}

IOSTANDARD LVCMOS33}

[get ports
[get ports
[get ports
[get ports
[get ports

[get ports

{PACKAGE_PIN W8 IOSTANDARD LVCMOS33} [get ports

12 [get ports
12 [get_ports

{AO[T]}]
{A_0[0]}

]

set_operating conditions —process maximum
set _operating conditions —heatsink low

set_property C CLK INPUT FREQ HZ 300000000
set_property C_ENABLE CLK DIVIDER false
set property C USER SCAN CHAIN 1

[get debug cores dbg hub]
[get debug cores dbg hub]

[get debug cores dbg hub]

[get nets

clk]
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{dac_out 0
{dac_out 0
{dac_out 0
{dac_out 0
{dac_out 0

sweep_sync_ 0

input_sync_ 0]
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Appendix D

Python code

D.1 Readout code

# Imports

from pynq import Overlay

from pynq import Clocks

from pynq import GPIO

from pynq.lib import AxiGPIO
import pynq.lib.dma

from pynq import Xlnk

import numpy as np

import time

import matplotlib.pyplot as plt
import csv

from datetime import datetime
import os

# Programs the FPGA

# This loads the .bit (bitstream), as well as a .tcl and .hwh file. These files must have
— the same name at the .bit file

overlay =

— Overlay('/home/xilinx/pynq/overlays/pcb_control/plasma_chamber/final_x2/x2_plasma.bit')
dma = overlay.axi_dma_adc

x1lnk = Xlnk()

def save(path, filename):
with open(path + filename, mode='w') as file:
writer = csv.writer(file)
row = ["VH=" + str(VH),"VM=1.6498"]
writer.writerow("Current=1500")
#uriter.writerow(row)
row = ["time [s]", "adc_data [16-bit]"]
writer.writerow(row)
index = 0
for n in range(N):
for i in range(data_size):

119



32
33
34
35
36
37
38
39
40
41
4
43

44
45
46
47
48
49
50
51
52
53

54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81

82
83

if (index == 0):
counttime [index]
else:

1]
o

counttime[index] = counttime[index-1] + period

try:
adc[index] = int(bin(int(data[n,i])) [18:34],2)*to_volts
#dac[index] = int(bin(int(dataln,i]))[3:12],2)*to_volts_dac
#adc_sync[index] = int(bin(int(dataln,<])) [17:18],2)
#sweep_sync[index] = int(bin(int(dataln,<]))[16:17],2)

except Exception as e:
adc[index] = adc[index-1]
error_count += 1

row = [counttime[index], adc[index]]
#row = [counttime[i],adc[%],adc_sync[i]]
#row = [counttime[i], adc[i]]
writer.writerow(row)
index += 1

#print (n)

def capture(N):
for i in range(N):

dma.recvchannel .transfer (buffer) # Gets 1 buffer from the DMA, 1 buffer

dma.recvchannel.wait ()
datal[i] = buffer

# Path and filename, make sure path folder exzists
path = '/home/xilinx/pynq/data/’
filename = 'test.csv'

# Captures data

frequency = 20.008 * 10**3 # To create time azTis
period = 1/frequency

data_size = 32768

N = 2 # Amount of buffers, 130 = 3.5 min capture

print("Capture time: ", N*32768/frequency, "s")

data = np.ndarray(shape=(N,data_size)) # (N z data_size) array
buffer = xlnk.cma_array(shape=(data_size,), dtype=np.uint32)
np_buffer = np.zeros(data_size)

# Clearing last buffer

dma.recvchannel.transfer (buffer)

dma.recvchannel.wait ()

start_time = time.time()

print ("Starting with" , filename)

capture(N) # Receives N buffers from the DMA
print ("Done")

stop_time = time.time()
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85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99
100
101
102
103
104
105
106
107
108

exec_time = stop_time-start_time
print ('Execution time: ',exec_time)

# Data capture ts finished, moves to saving data

index = 0

error_count = 0

adc = np.zeros(data_sizex*N)

dac = np.zeros(data_sizexN)
counttime = np.zeros(data_sizex*N)
adc_sync = np.zeros(data_sizexN)
osc_trigger = np.zeros(data_sizex*N)
sweep_sync = np.zeros(data_sizex*N)
adc_trigger = np.zeros(data_sizex*N)
VH = 3.2989 # Measured VH referance
to_volts = VH/65536.0

to_volts_dac = 5/256.0

save(path, filename) # Saves data to path/filename.csv
print ("Error count: " , error_count)

stop_time = time.time()
exec_time = stop_time-start_time

print("Finished with" , filename, "Total time: ", exec_time)
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D.2 Deviation calculation code

import numpy as np

import matplotlib.pyplot as plt
import csv

import time

time = []

adc_data = []

start = 5500

stop = int(2.4%10%%6) # To create a regress line from 50 mV to 2.7 V

with open('4mhz_ver3.csv', 'r') as data:
csv_reader = csv.reader(data)
line_count = 0
for row in csv_reader:
if (line_count < 2):
line_count += 1
else:
time.append(float (row[0]))
adc_data.append(float(row[1]))
line_count += 1
#plt.plot (time,adc_data)
#plt.show()

time_lin = np.array(time[start:stopl)
plt.plot(adc_datal[start:stop])

1sb = 3.3/2%*(16)

adc_data_lin = adc_data[start:stop]

reg = np.polyfit(time_lin, adc_data_lin,1)
reg_eq = reg[0]*time_lin + reg[1]

error = adc_datal[start:stop] - reg_eq

#plt.plot(reg_eq,error/lsb, label='Deviation from straight line')
plt.xlabel("Input voltage [V]")

plt.ylabel("Error [mV]")

plt.legend()

#plt.show()

n = 64

label = str(n) + ' length moving average'
# Moving average calculation

ret = np.cumsum(error, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
averaged_error = ret[n - 1:]/n

averaged_error_bits = averaged_error/lsb
std = np.std(error/lsb)

print ("Average error (LSB) = " , np.average(np.abs(error)/1lsb))
print("Standard deviation (LSB) = " , np.std(error/lsb))
print("Max deviation:" , np.max(np.abs(error/lsb)))
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57
58

plt.

plt

plt.
plt.
plt.

plot(reg_eql:len(averaged_error_bits)], averaged_error_bits, label=label)
.xlabel ("Regress line voltage [V]")
plt.

ylabel("Deviation from regress line [LSB]")

grid('on')
legend ()
show ()
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Vivado block diagram
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——— > dbg_led_0

peb_interface_v3_0

——{ > adc_selected_0

mrst_0[>
mode_0[L:0] [
1:0]
adc_switch_0 [ . switch
adc_eoc 0 D axis_clk_in
- eoc
adc_comp_0 [> :_comp
apad[3:0]
1132_dout
max1132_sstrb_0 [ 1132_sstrb L
_type(1:0]
so_0[> p_mclk
vio_0 :_data[31:0]
probe_out0[2:0]| g_bank_sel[2:0]
probe_out1[7:0]| put_sync
clk probe_ :_frequency_vio[20:0]

probe_out3[0:0]

probe_out4[1:0]

VIO (Virtual Input/Output)

input_sync_0 [

max1132_dout_0 [

:_latch

— D trigger_1

dbg_|
int_adc_clk_0
adc I
i9g {> max1132_clk_0
int_adc_ ‘
max1132_c

axis_clk_

’—D sclk_0

adc_en_0

max1132_din_0
adc_en O

max1132_din| ’—{ > max1132_rst_0
max1132_rst

,—( » max1132_shdn_0
max1132_shdn|
max1132_cspm——————————————{ > max1132_cs_0

adc_selch]
L[ adc_selch1 0
adc_ext_sel
scr_enbias L( > adc_ext_sel_0
mresb1:0]
scr_enbias_0

si

mresb_1[1:0]

si_0
dac_out[7:0]
> swrite_0
\1:0]}
] dac_out_0[7:0]
adc_
axis_clk_counter[31:0] mm ——Dwo
led[1:
DA o0
comp_delayed =
eoc_delayed /= led_0[1:0]
tvalid =
sweep_s > sweep_sync_0
dbg_adc_data_ila[15:0] ms

pch_interface_v3 v1_0

data_transfer

)_axis_ack

USTOM_DATA[31:0]

oor+ ||}
Fixeo_o+ ||

{Fixep_io

FCLK_CLI

FCLK_CLK1|

sreadb_0 G—‘

Figure E.1: Block diagram of the full system being run on the PYNQ board
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Figure E.2: Block diagram of the data transfer module
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Appendix F

m-NIC PCB Schematics
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