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KAPITTEL 1

Introduction

In statistical analysis of data we are interested in understanding or estimating
certain aspects of the probability distribution generating the data. The aspects
we are interested in does not always relate to all the parameters of the probability
distribution. In this case the parameters that are not of primary interest is
termed «nuisance parameters» and need to be dealt with in order to gain insight
on the parameters of interest.

We will in this thesis focus on a special case of this problem where the
nuisance parameters are especially problematic. The problem we are interested
in is when the number of nuisance parameters increases with the data, such
that increasing the number of observations does not improve estimates of the
nuisance parameters. The problem was introduced by the statistician Jerzy
Neyman and his student Elizabeth Scott in their article from 1948 (Neyman og
Scott, 1948). Neyman and Scott called it the «incidental parameter problem».

Briefly explained the incidental parameter problem occurs when parameters
that are not of interest increase in number with the data at a rate large enough
to disturb the maximum likelihood estimates of the parameters that are of
interest, in the sense that the maximum likelihood estimators for the parameters
of interest will no longer be consistent.

The impact of the paper was not as large as perhaps it should have been.
In his survey of the status of the problem since the release of the Neyman
and Scott paper in 1948, Tony Lancaster (Lancaster, 2000) noted on how little
attention it had received in economics despite its prevalence in many economic
applications, including a problem that is of primary focus for this thesis, namely
fixed effects in panel data.

Panel data can be used to model many phenomena of interest in economics
as given in the following examples given by Karyne B. Charbonneau in her
paper «Multiple Fixed Effects in Nonlinear Panel Data Models» (Charbonneau,
2012). Abowd, Kramarz og Margolis (1999) studied wage determinants using
matched firm-employee data with fixed effects for both firms and workers in an
influential paper. In a similar fashion papers by Aaronson, Barrow og Sander
(2007) and by Rivkin, Hanushek og Kain (2005) studied acedemic achievement
using matched data between students and teachers. One can also, as is the main
motivation for the paper by Charbonneau (2012), apply the fixed effects gravity
equations model to estimate factors influencing international trade, such as
distance between countries, historical connections and diplomatic relations. In
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this case the Poisson distribution is commonly used to model quantity of goods
traded.

There are several proposed solutions to the incidental parameter problem. In
this thesis we will compare an approximate conditional likelihood derived by
Charbonneau (2012) and four modifications to the profile likelihood presented
by Pace og Salvan (2006), when applied to a model of Poisson distributed panel
data with two fixed effect. We will study their behaviour on simulated data,
and in a simulation study compare the accuracy of estimators based on these
likelihood functions.

The thesis is organized as follows. In Chapter 2 we present the incidental
parameter problem with an overview of the literature and several proposed
solutions, including the conditional likelihood and profile likelihood modifications
suggested by Pace og Salvan (2006). We also describe the model for Poisson
distributed panel data with two fixed effect, and the approximate conditional
likelihood derived by Charbonneau (2012). In Chapter 3 we derive the profile
likelihood corrections presented by Pace og Salvan (2006) for the Poisson panel
data model, and in Chapter 4 we study the behaviour of the profile likelihood,
four modifications of the profile likelihood and the approximate conditional
likelihood when applied to the model presented in Chapter 2. In a simulation
study we compare the mean squared errors of their respective estimators. The
code used for the simulations is presented in Appendix C.
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KAPITTEL 2

Background

2.1 The incidental parameter problem

In their paper, Neyman og Scott (1948) describe parameters as either
«structural» or «incidental». Structural parameters appear in the probability
distribution of every random variable, while incidental parameters appear in
the distribution of a finite number of random variables.

We want good estimates of the structural parameters, but removal of the
incidental parameters by way of maximum likelihood estimation is marred by
what Neyman and Scott termed «inconsistent observations». Each observation
contains information about the parameters of its probability distribution, but in
the incidental parameter problem information about the incidental parameters
does not increase with the data.

Let θ ∈ Θ denote the structural parameters, and let λ ∈ Λ denote the
incidental (or nuisance1) parameters of the probability distribution of a random
variable Y distributed according to the density f(y ; θ, λ). Let L(θ, λ ; y) denote
the likelihood, defined as the density of Y viewed as a function of θ and λ with
y given. The classical way to do maximum likelihood estimation of θ is done in
two steps. First we find λ̂θ as

λ̂θ = max
λ
{L(θ, λ ; y) : λ ∈ Λ}

the values of λ that maximizes the likelihood given θ. Then we find the estimate
of θ as

θ̂ = max
θ
{L(θ, λ̂θ ; y) : θ ∈ Θ}

the value that maximizes the likelihood evaluated in λ̂θ the maximizing value
of λ given θ. The function L(θ, λ̂θ ; y) is called the profile likelihood.

In the incidental parameter problem setting the bias from the first stage
estimation of the incidental parameters λ carries over to the second stage
estimations of the structural parameters θ.

Neyman og Scott (1948) defined the incidental parameter problem by the
following proposition.

Proposition 2.1.1. Maximum-likelihood estimates of the structural parameters
relating to a partially consistent series of observations need not be consistent.

1The term «nuisance» parameters generally refer to parameters that are not of primary
interest, while «incidental» parameters are nuisance parameters that increase in number with
the sample size (Lancaster, 2000).
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2.2. The profile likelihood

To illustrate the proposition consider the following example.

Example 2.1.2. Let {xij} be independent and normally distributed such that
the density of xij is given by

f(xij) = 1
σ
√

2π
exp{−(xij − αi)2/2σ2}, i = 1, . . . , s, j = 1, . . . , ni, s→∞.

Because the {αi} only appears in the distribution of ni random variables
they are considered incidental, while σ2 is considered structural because it
appears in the distribution of every random variable.

To demonstrate the proposition take for simplicity the samples related to αi
to be constant, ni = n, for all i, the maximum-likelihood estimate of αi is given
by α̂i = xi. From a well known result about the sum of squared differences from
the mean we have that the maximum-likelihood estimate of σ2 is

σ̂2 =
∑s
i=1
∑ni

j=1(xij − xi)
sn

∼ σ2χ2
1(s[n− 1])
sn

where χ2
1 denotes a random variable following a chi-square distribution with

one degree of freedom. Therefore σ̂2 has expectation σ2(n− 1)/n for every s.
Since σ̂2 is biased for every s it is an inconsistent estimator for σ2.

The important insight is that the ni are fixed, which means we do not get
more information on the incidental parameters when s increases and the bias
will be constant.

2.2 The profile likelihood

The maximum of the likelihood for a given value of the parameter of
interest, in our notation the function L(θ, λ̂θ(θ) ; y), is usually termed the
profile likelihood. Often `(θ, λ ; y) = log(L(θ, λ ; y) is used for inference as
the log-function is a monotone increasing function and thus has the same
maximizing value, while often also simplifying calculations. We will also refer
to `P (θ) = log(L(θ, λ̂θ(θ) ; y)) as the profile log-likelihood.

Although `P (θ) is not a genuine log-likelihood for θ, in that it is no longer
a probability distribution viewed as a function of its parameters and with
observed values of the stochastic variable taken as constant, it has many
desirable properties. As summarized by Pace og Salvan (2006) it is invariant
under interest respecting reparameterizations, it is maximised by the maximum
likelihood estimate and, under mild regularity conditions, the corresponding
log-likelihood ratio statistic has the usual χ2 with q degrees of freedom as its
asymptotic null distribution.

However, as pointed out by Berger et al. (1999) and Pace og Salvan (2006),
it does not take the sampling variability of λ̂θ properly into account. One effect
of this is that the score computed from the profile likelihood typically has score
and information bias of order2 O(1) (McCullagh og Tibshirani, 1990). When
we say the profile likelihood has information and score bias of order O(1) we
refer to the fact that a proper likelihood `(θ, λ ; y) has

E
(
∂`(θ, λ ; y)

∂θ

)
= 0

2See Appendix A on page 33 for a definition of O(f(n)).
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2.3. Proposed solutions to the incidental parameter problem

and

E
(
∂2`(θ, λ ; y)
∂θ∂θT

)
+ E

{(
∂`(θ, λ ; y)

∂θ

)(
∂`(θ, λ ; y)

∂θ

)T}
= 0.

while for the profile likelihood

E
(
∂`P (θ)
∂θ

)
= O(1)

and

E
(
∂2`P (θ)
∂θ∂θT

)
+ E

{(
∂`P (θ)
∂θ

)(
∂`P (θ)
∂θ

)T}
= O(1).

As a practical consequence, the usual χ2 and normal approximations for the
null distributions of the profile likelihood ratio statistic and of its signed version
for a scalar θ may be poor, leading to systematically misleading inferences (Pace
og Salvan, 2006).

The likelihood in the maximum point may not be representative of the entire
likelihood, or even locally around this point. By only using the maximizing
point for λ the profile likelihood ignores the uncertainty inherent in estimation
of λ̂.

When we in treat a function as a likelihood, as we do with the profile
likelihood, we often term this function a pseudo likelihood, and the log of this
function a pseudo log-likelihood. Thus we are looking for pseudo likelihoods that
will improve on the profile likelihood when we have the incidental parameter
problem.

2.3 Proposed solutions to the incidental parameter
problem

The question of how to solve the incidental parameter problem depends first
and foremost on which school we wish to apply. For a Bayesian statistician the
treatment of incidental parameters is clear – integrate them from the likelihood
with respect to a prior distribution conditioned on all remaining known or
unknown parameters. The issue is then how to choose this prior (Lancaster,
2000).

We will in this thesis only study the frequentist approach, except perhaps
when considering the integrated likelihoods approach, which draws much
inspiration from the Bayesian school. In the frequentist setting there are several
proposed solutions. In the following, we will present some of these.

2.3.1 Conditional likelihood

One proposed method for solving the incidental parameter problem, is the so-
called conditional likelihood, as described by Lancaster (2000) in the following
way.

If we can find a statistic S such that the likelihood of Y , L(y | θ, λ), factors
into a part containing only the incidental parameters λ, and a part containing
the structural parameter θ and that is independent of the incidental parameters,
in the following way

L(y | θ, λ) = L1(S | λ)L2(y | S, θ) (2.1)
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2.3. Proposed solutions to the incidental parameter problem

we can make inference on θ based only on the second part L2(y | S, θ). If the
parameter space for θ does not depend on that for λ (variation independence)
and standard regularity conditions are satisfied this will provide consistent
inference for λ.

If the likelihood does not factor in the original parametrization we may be
able to find a reparameterization from θ, λ to θ, λ∗ such that the likelihood
does factor. Then the same arguments apply and consistent inference can be
based on L2.

When Equation (2.1) on the previous page applies, possibly after a
reparameterization of the incidental parameters, α, λ are termed likelihood
orthogonal, because we then have that

∂2 logL
∂α∂λ

= 0. (2.2)

Other factorizations

If λ, θ can not be made likelihood orthogonal but the likelihood factors as

L(y | λ, θ) = L1(S | λ, θ)L2(y | S, θ) (2.3)

or
L(y | λ, θ) = L1(S | θ)L2(y | S, λ, θ) (2.4)

inference may be made from L2 in (2.3) or L 1 in (2.4), which is free of the
incidental parameter (Lancaster, 2000). The terms L1 in (2.3) and L2 in (2.4)
depend on θ, so when they are ignored, and inference on θ is based on the
remaining terms there is some loss of information. But supporters of this
approach suggest that one loses only information about θ that is inextricably
tied with the unknown parameter λ (J. O. Berger mfl., 1999).

2.3.2 Likelihood corrections

We now present the main approach for this thesis, which concerns implementing
corrections to the profile likelihood. These corrections are summarized in the
paper ”Adjustments of the profile likelihood from a new perspective” by Pace
og Salvan (2006). Let ξ0 = (θ0, λ0) denote the true parameter values. Pace og
Salvan (2006) defines the least favorable target log-likelihood as

`T (θ) = `(ξθ)

where ξθ = (θ, λθ) and λθ is the maximizer of E0{`(θ, λ)} with respect to λ for
fixed θ. They seek to create a pseudo log-likelihood `PS(θ) that is an unbiased
estimator of E0(`T (θ)), where E0(·) = E(· | ξ0) denotes the expectation under
ξ0, the true value of the parameters.

Before we present Pace and Salvan’s arguments for this pseudo log-likelihood
we define some notation. Let

j(ξ) = −∂
2`(ξ)
∂ξ∂ξT

(2.5)
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2.3. Proposed solutions to the incidental parameter problem

denote the observed information matrix evaluated in ξ, and let

jθθ = − ∂
2`(ξ)
∂θ∂θT

(2.6)

denote a block of the observed information matrix. In a similar fashion, let jθλ,
jλθ and jλλ denote the remaining blocks of the observed information matrix.
Let also

i(ξ) = E(j(ξ))

denote the expected information, and in a similar fashion to the observed
information let iθθ, iθλ, iλθ and iλλ denote the blocks of the expected information
matrix.

Motivations for the corrected likelihoods

When a suitable reduced marginal or conditional model exists whose densities
depend only on θ, inference about θ may be based on the corresponding log-
likelihood. The modified profile likelihood `M (θ) created by Barndorff-Nielsen
(Barndorff-Nielsen, 1980 and Barndorff-Nielsen, 1983) is an approximation
to integrated and conditional likelihoods. Assume that the minimal sufficient
statistic for the model is a one-to-one function of (θ̂, λ̂, a), where a is an ancillary
statistic, either exactly or approximately, so that `(θ, λ ; y) = `(θ, λ ; θ̂, λ̂, a).
Then,

`M (θ) = `P (θ)− 1
2 log |jλλ(ξ̂θ)| − log

∣∣∣∣∣∂λ̂θ∂λ̂
∣∣∣∣∣, (2.7)

with ∣∣∣∣∣∂λ̂θ∂λ̂
∣∣∣∣∣ =
|`λ;λ̂(ξ̂θ)|
|jλλ(ξ̂θ)|

,

where
`λ;λ̂(ξ̂θ) = ∂2`(θ, λ ; θ̂, λ̂, a)

∂λ∂λ̂T

are the sample space derivatives. This modified profile likelihood has score
bias of order O(n−1) (Pace og Salvan, 2006). And also has information bias of
order O(n−1) (DiCiccio mfl., 1996). Calculation of sample space derivatives is
straightforward only in special classes of models, such as exponential family
models. When θ and λ are orthogonal we have3 log |∂λ̂θ/∂λ̂| = Op(n−1) in the
moderate-deviation neighbourhoods, i.e., for θ − θ̂ = Op(n−1/2). Which means
that the pseudo log-likelihood

`A(θ) = `P (θ)− 1
2 log |jλλ(ξ̂θ)|, (2.8)

proposed by Cox og Reid (1987), is an approximation of `M (θ) with error
of order Op(n−1) in the moderate-deviation neighbourhoods (Pace og Salvan,
2006). Severini (1998a) proposed the modified profile likelihood `IIIAE(θ), which
we will consider in Equation (2.12), as an approximation to `M (θ).

3We use the notation Op(g(n)) for stochastic boundedness. For details see Appendix A
on page 33.
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2.3. Proposed solutions to the incidental parameter problem

Simulation results by Diciccio og Martin (1993), Diciccio og Stern (1994) and
Sartori mfl. (1999), show that inference based on the modified profile likelihood
is quite accurate, even in the presence of many nuisance parameters, and when
a marginal or conditional target likelihood does not exist (Pace og Salvan, 2006).
Further, Sartori et al. (2003) studies the distribution of a directed likelihood4

sgn(θ̂0 − θ)[2{`0(θ̂)− `0(θ)}]1/2

for θ with respect to a likelihood `0, with a maximizing value θ̂0 and compares
one calculated from an adjusted profile likelihood having score bias of order
O(n−1) with one calculated from the profile likelihood. They show that it is
closer to the distribution of a directed likelihood calculated from a genuine
likelihood.

Connection with the least favorable target likelihood

Pace og Salvan (2006) give the following arguments for seeking a pseudo log-
likelihood `PS(θ) that is an unbiased estimator of E0(`T (θ)). If for every ξ0 ∈ Ξ
we have that E0(`PS) = E0(`T (θ)) then `PS(θ) has some desirable properties,
also found in a genuine likelihood. In particular it satisfies

E0(`PS(θ0)) > E0(`PS(θ)),

for θ 6= θ0, and thus ∂`PS(θ)/∂θ is an unbiased estimating function for θ0.
Moreover, at the true θ0, the expected curvature of `PS(θ) gives the correct
information in that minus the expected Hessian at θ = θ0 will coincide with

iθθ·λ(ξ0) = iθθ(ξ0)− iθλ(ξ0)iλλ(ξ0)−1iλθ(ξ0),

the partial expected information for θ. Also, under regularity conditions, λ̂θ is
a consistent estimator for λθ (Huber mfl., 1967).

In addition Pace og Salvan (2006) mentions the following property. Let λ̃θ
be a function of θ such that λ̃θ0 = λ0 and let `R(θ) = `(θ, λ̃θ) be a generic
log-likelihood for θ obtained through model restriction. Then

E0[`R(θ0)− `R(θ)] ≥ E0[`T (θ0)− `T (θ)],

which means that for any given θ 6= θ0, the curve ξθ minimises the
Kullback–Leibler divergence between f(y ; θ, λ̃θ) and f(y ; ξ0) among all possible
curves (θ, λ̃θ) with λ̃θ0 = λ0.

In constructing `PS(θ) Pace og Salvan (2006) view the profile likelihood,
`P (θ), as an estimate of E0(`T (θ)) with bias of order O(1) and suggest using
an adjustment term a(θ) for correcting the profile likelihood, resulting in an
adjusted likelihood of the form

`AE(θ) = `P (θ)− a(θ). (2.9)

Where the adjustment term a(θ) estimates the bias

b(θ ; ξ0) = E0(`P (θ)− `T (θ)).
4Also known as a signed likelihood ratio.
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2.3. Proposed solutions to the incidental parameter problem

Pace og Salvan (2006) show that the following three adjusted likelihoods
are asymptotically equivalent versions of `AE(θ):

`IAE(θ) = `P (θ)− 1
2 log |jλλ(ξ̂θ)| −

1
2 log |Vξ̂(λ̂θ)| (2.10)

`IIAE(θ) = `P (θ) + 1
2 log |jλλ(ξ̂θ)| −

1
2 log |vλλ(ξ̂θ, ξ̂θ ; ξ̂)| (2.11)

`IIIAE(θ) = `P (θ) + 1
2 log |jλλ(ξ̂θ)| − log |vλλ(ξ̂θ, ξ̂ ; ξ̂)| (2.12)

with Vθ(·) = Var(· | θ), and

vλλ(ξ1, ξ2 ; ξ0) = Eξ0(`λ(ξ1)`λ(ξ2)T ). (2.13)

Many available adjustments to the profile log-likelihood may be seen as
connected to these versions of `AE (Pace og Salvan, 2006).

Bootstrap estimation of the bias corrected profile likelihood

As suggested by Pace og Salvan (2006) we can also use bootstrapping to create
the simulation adjusted estimative log-likelihood `SA(θ) as an estimate of the
bias corrected profile likelihood `AE(θ) from (2.9) in the following way.
Algorithm 1: Bootstrap estimation of modified profile likelihood
Estimate θ̂ and λ̂, the unconstrained maximum likelihood estimates of θ
and λ;
for r = 1, . . . , R do

Generate bootstrap sample yr from f(y ; θ̂, λ̂);
Calculate λ̂∗θ(r), the constrained maximum likelihood estimate of λ
given θ;

end
Estimate `SA(θ) by

`SA(θ) = 1
R

R∑
r=1

`(θ, λ̂∗θ(r) ; y)

Although this estimator may be computationally intensive, it has the
advantage of being fairly simple to implement. Pace og Salvan (2006) also
suggest this estimator on the basis that it does not require an explicit nuisance
parameterisation, as it only involves constrained maximisation, and that it is
invariant under interest respecting reparameterizations.

Through expansions one can show that `SA(θ) is asymptotically of the form
`AE(θ) in (2.9), estimating a(θ) in a similar fashion as `IAE(θ) in (2.10) (Pace
og Salvan, 2006).

2.3.3 Integrated Likelihoods

Another solution to the incidental parameter problem is to simply eliminate
the nuisance parameter by integration of the likelihood (with respect to the

9



2.3. Proposed solutions to the incidental parameter problem

Lebesgue measure) with a weight function π(θ | λ). The resulting integrated
likelihood

L(θ) =
∫

Λ
L(θ, λ | y)π(θ | λ)dλ. (2.14)

According to J. O. Berger mfl. (1999) likelihood methods which operate solely
on the likelihood L(θ) can also be used with an integrated likelihood. For
example using the mode, θ̂, of L(θ) as the estimate of θ and using (when θ is a
p dimentional vector)

C =
{
θ : −2 log

(
L(θ)/L(θ̂)

)
≤ χ2

p(1− a)
}

as an approximate 100(1 − a)% confidence set for θ, where χ2
p(1 − a) is he

(1 − a)th quantile of the chi squared distribution with p degrees of freedom
(Sweeting, 1995).

Integrated likelihoods has been studied for the incidental parameter problem
in the frequentist context by De Bin mfl. (2015), but as we did not implement
integrated likelihoods in this thesis we will not go into further detail here. The
interested reader can find more in Appendix B.

10



KAPITTEL 3

Likelihood corrections

For the rest of this thesis we will focus on a model of Poisson distributed
variables in two way panel data with fixed effects.

3.1 Poisson model with two fixed effects

We want to model trade data where yij models trade flow in number of goods
exported from country i and imported by country j. This means that there
are no observations yii, as no country trades with itself. We have a panel of n
individuals with n×(n−1) observations where each observation is independently
Poisson distributed

yij ∼ Pois(λij) i 6= j

with
λij = exp(xijβ + µi + αj).

where µi and αj are individual fixed effects, xij is a vector of explanatory
variables and β a vector of k elements (β1 β2 · · · βk)T . The pdf of yij is

f(x ; β) =
λ
yij

ij e
−λij

yij !
, i 6= j.

The model is motivated by the gravity equations that are frequently used to
model international trade. Charbonneau (2012), Helpman mfl. (2008), and Silva
og Tenreyro (2006) use such nonlinear models with fixed effects for importing
and exporting countries. This model is also relevant for other areas, such as labor
economics, where a wage equation might contain both worker and firm fixed
effects, or industrial organization, where knowledge diffusion equations using
patent data can include citing and cited country fixed effects (Charbonneau,
2012).

When modelling trade with the gravity equations, the Poisson model with
two fixed effects is frequently used (Charbonneau, 2012). Hausman mfl. (1984)
used a conditional maximum likelihood approach to develop what is now called
the fixed effect Poisson estimator for the Poisson model with one fixed effect. But
Lancaster (2002) shows that there really is not an incidental parameter problem
in the Poisson model with one fixed effect. The maximum likelihood estimator,
the maximum likelihood estimator conditioned on the sufficient statistic and
a Bayes posterior1 all yield as n → ∞ the same consistent answer Lancaster

1after integrating the reparameterized nuisance parameter with respect to any proper
prior exhibiting independence between the nuisance parameters and parameters of interest
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3.2. Conditional likelihood for a Poisson model with fixed effects

(2000). But for the Poisson model with two fixed effects the incidental parameter
problem remains as shown by Charbonneau (2012).

3.2 Conditional likelihood for a Poisson model with fixed
effects

We now consider the conditional likelihood for the proposed model by first
giving a quick summary of a conditional likelihood for a model with one fixed
effect, leading to the derivation of a conditional likelihood for the model with
two fixed effects.

Conditional likelihood for a Poisson model with one fixed effect

Charbonneau (2012) presents the conditional likelihood for a Poisson model
with one fixed effect. Consider first the case with two observations for each
individual. Let

yit ∼ Pois(exp(xitβ + αi)).

The distribution of yi1 given that yi1 + yi2 = K is given by

yi1 | (yi1 + yi2 = K) ∼ Binom
(
K,

exp(xi1β)
exp(xi1β) + exp(xi2β)

)
.

This does not involve the fixed effects, and will therefore give consistent
estimates of β.

The fixed effect Poisson estimator of Hausman mfl. (1984) extends this logic
to several observations for each individual in the following way. Suppose we
have observations of n individuals, yij , observed over T periods. Let

yij ∼ Pois(λit = exp(xitβ + αi + α0)),

where αi represents individual fixed effects and α0 is the overall intercept.
We then have

P(yit | xit, αi) = e−λitλyit

it

yit!
. (3.1)

The incidental parameter problem prevents us from consistently estimating
the parameters in (3.1) by maximum likelihood. To solve this problem, Hausman
mfl. (1984) follow Andersen (1970) and Andersen (1972) and condition on the
sum

∑
t yit (cited by Charbonneau, 2012). This is a sufficient statistic for αi,

and it is well known that the distribution of yit conditional on
∑
t yit is a

multinomial distribution such that

P(yi1, yi2, · · · , yiT |
∑

yit) = P(yi1, yi2, · · · , yi,T−1,
∑T
t=1 yit −

∑T−1
t=1 )

P(
∑
yit)

=

e−Σtλit
∏
t λ

yit

it∏
t(yit!)

e−Σtλit
(∑

t λit
)Σtyit(∑

yit
)
!

12



3.2. Conditional likelihood for a Poisson model with fixed effects

=
(∑

t yit
)
!∏

t(yit!)
∏
t

[
λit∑
t λit

]yit

.

The term on the right can be simplified to

exitβ+µi∑
t e
xitβ+µi

= exitβ∑
t e
xitβ

which does not depend on the fixed effects. Thus we can use it to produce a
likelihood function to consistently estimate the parameter β.

Conditional likelihood for a Poisson model with two fixed effect

In order to eliminate the nuisance parameters in the model Charbonneau (2012)
conditions on the vector of sums of the columns {

∑
i yij}, denoted c, and the

vector of sums of the rows {
∑
j yij}, denoted r, which are the sufficient statistics

for the fixed effects.
Let Y denote the vector of observations {yij}, and let µ, α denote the vectors

of fixed effects. Let x = {xij} denote the covariates, and β the parameter or
vector of parameters of interest. Define also Q to be the set of all possible
distributions of yij such that the sum of the rows is given by r and the sums of
columns is given by c. Charbonneau (2012) shows that the resulting conditional
probability distribution of the data is

P(Y | r, c, α, µ, x, β) = P(Y | α, µ, x, β)
P(r, c | α, µ, x, β)

= P(Y | α, µ, x, β)∑
Y ′∈Q P(Y ′ | α, µ, x, β)

=

e−ΣiΣjλij
∏n
i,j=1 λ

yij

ij∏n
i,j=1(yij !)∑

Y ′∈Q
e−ΣiΣjλij

∏n
i,j=1 λ

y′
ij

ij∏n
i,j=1(y′ij !)

.

This is the probability of Y over the sum of probabilities of all possible
Y ′ that have the same sum of rows and columns. Implementing this sum
is not computationally feasible, as there will be too many possible Y ′’s in
realistic applications, such as those reflecting trade between countries. In stead
Charbonneau (2012) presents the following estimator. Compare a matrix Y to
one other alternative matrix Y ′ with the same sum of rows and columns, which
results in a likelihood function that does not depend on the fixed effects in the
following way

P(Y | α, µ, x, β)
P(Y | α, µ, x, β) + P(Y ′ | α, µ, x, β)

=
(

1 +
∏n
i,j=1(yij !)∏n
i,j=1(y′ij !)

(
e

∑
i

∑
j
xijβ(y′

ij−yij)))−1
.

To implement this for estimation, Charbonneau (2012) suggests selecting a
random l and k for each observation ij to compose a small 2× 2 matrix. Then
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3.3. Corrected likelihoods

generate a second matrix, Y ′ that has the same sum of columns and rows. For
each pair ij, the procedure can be repeated T times, using the estimate that
minimizes

`CL(β) =
T∑
t=1

n∑
i=1

n∑
j=1

log
(

1+yij !yik!ylj !ylk!
y′ij !y′ik!y′lj !y′lk!

(
exp

{∑
a,b∈{i,j,l,k}

βxab(y′ab−yab)
}))

(3.2)
with

exp
{∑

a,b∈{i,j,l,k}
βxab(y′ab − yab)

}
= exp

{
β
[
xij(y′ij − yij) + xik(y′ik − yik) + xlj(y′lj − ylj) + xlk(y′lk − ylk)

]}

3.3 Corrected likelihoods

We now implement the likelihood corrections suggested by Pace og Salvan
(2006) for a model with Poisson panel data with two fixed effects, as described
in section 3.1.

The log-likelihood for this model is given by

`(β, µ, α) = `(β, µ, α ; x, y) =
∑
ij

yij log(λij)− λij − log(yij !). (3.3)

Observe that the score for a single βh, µk and αl is

∂`(β, µ, α)
∂(βh, µk, αl)

=


∑
ij yijxijh − xijhλij∑

j ykj − λkj∑
i yil − λil

 . (3.4)

To describe the information matrix, observe first that

− ∂2`(β, µ, α)
∂µi∂µTi′

=
{∑

j λij , for i = i′.

0, for i 6= i′.
(3.5)

− ∂2`(β, µ, α)
∂αi∂αTi′

=
{∑

i λij , for i = i′.

0, for i 6= i′.
(3.6)

− ∂2`(β, µ, α)
∂µi∂αTj

= −∂
2`(β, µ, α)
∂αj∂µTi

= λij , for i 6= j. (3.7)

Recall that there is no observation yii, and thus there is no observation containing
both µi and αi.

Note that there is no stochastic element yij in the observed information for
the nuisance parameters, µ and α, and therefore the observed and the expected
information matrix for the nuisance parameters will be the same. From (3.5),
(3.6) and (3.7) we see that
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3.4. Adjusted likelihoods

jξξ(β, µ, α) = −E
( ∂2`(β, µ, α)
∂(µ, α)∂(µ, α)T

)
=
[
iαα iαβ

iβα iββ

]
Where

[iαα]i,i′ =
{∑

j λij , if i = i′

0, otherwise.

[iββ ]i,i′ =
{∑

j λji, if i = i′

0, otherwise.

[iαβ ]i,i′ = λi(i′+1).

[iβα]i,i′ = λ(i+1)i′ .

[iαβ ]i,i′ = 0, for i = i′.

3.4 Adjusted likelihoods

Let ξ = (µ, α) and let ξ̂β = (µ̂β , α̂β) denote the constrained maximum likelihood
estimates of µ and α given β and let ξ̂β̂ = (µ̂β̂ , α̂β̂) denote their unconstrained
maximum likelihood estimates. Let also θ = (β, µ, α), θ̂β = (β, µ̂, α̂) and
θ̂β̂ = (β̂, µ̂, α̂).

From Equation (2.13)
vθ,θ(θ1, θ2 ; θ0) = Eθ0

[
`θ(θ1) · `θ(θ2)T

]
.

Pace and Salvans first correction

We want to implement

`IAE(β) = `P (β)− 1
2 log |jξξ(θ̂β)| − 1

2 log |Vξ̂(ξ̂β)|.

From a well known property of maximum likelihood estimators the variance
of the estimator is asymptotically the expected information for the variables to
be estimated (Casella og R. L. Berger, 2002, s. 472).

Vξ̂(ξ̂β) p−→ Eξ̂
[
∂2`(β0, µ0, α0 ; y)
∂(µ, α)∂(µ, α)T

]
= Eξ̂(jξξ(θ0)) = jξξ(θ0)

with (β0, µ0, α0) the true values of (β, µ, α), and the last equality results from the
fact that, as shown above, for this model the observed and expected information
is the same. As the maximum likelihood estimator is a consistent estimator we
have that (Casella og R. L. Berger, 2002, s. 472)

jξξ(θ̂β) p−→ jξξ(θ0)

which means we can use jξξ(ξ̂β) to estimate Vξ̂(ξ̂β)). Thus our estimator for
`IAE(β) is

`IAE(β) = `P (β)− log |jξξ(θ̂β)|. (3.8)
Note that this is very close to the modified likelihood `A in Equation (2.8)

that was proposed by Cox og Reid (1987).
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3.4. Adjusted likelihoods

Pace and Salvans second correction

We now implement the second estimator in Equation (2.11). In the notation for
the current model

`IIAE(β) = `P (β) + 1
2 log |jξξ(ξ̂β)| − 1

2 log |vθθ(θ̂β , θ̂β ; θ̂)|

We need to find the expression for

vθ,θ(θ̂β , θ̂β ; θ̂) = Eβ̂, ξ̂
[
`ξ(θ̂β) · `ξ(θ̂β)T

]
.

For ease of readability, let Eβ(y) = E(y | β, ξ̂) denote the expectation evaluated
in (β, ξ̂), and similarly let Covβ(y) = Covβ,ξ̂(y). Let also λ̂ij(β) = Eβ(yij) =
exp{βxij + µ̂i + α̂i}. The matrix vξ,ξ(θ̂β , θ̂β ; θ̂) will be of the form

vξ,ξ(θ̂β , θ̂β ; θ̂) =
[
vµµ vµα

vαµ vαα

]
.

Using the score equations in Equation (3.4) on page 14 we find element (i, i′)
in matrix vµµ as[

vµµ
]
i,i′

= Eβ̂
(∑

j

(yij − λ̂ij(β)) ·
∑
j

(yi′j − λ̂i′j(β))
)

=
∑
jk

Eβ̂(yijyi′k)− 2
∑
jk

Eβ̂(yij)λ̂i′k(β) +
∑
jk

λ̂ij(β)λ̂i′k(β)

=
∑
jk

[
Covβ̂(yij , yi′k) + Eβ̂(yij) Eβ̂(yi′k)

]
− 2

∑
jk

Eβ̂(yij)λ̂i′k(β) +
∑
jk

λ̂ij(β)λ̂i′k(β)

=
∑
jk

Covβ̂(yij , yi′k) +
∑
jk

[
Eβ̂(yij)− λ̂ij(β)

][
Eβ̂(yi′k)− λ̂i′k(β)

]
=
∑
jk

Covβ̂(yij , yi′k) +
∑
jk

[
λ̂ij(β̂) − λ̂ij(β)

][
λ̂i′k(β̂) − λ̂i′k(β)

]
=
∑
jk

Covβ̂(yij , yi′k) +
∑
j

[
λ̂ij(β̂) − λ̂ij(β)

]∑
j

[
λ̂i′j(β̂) − λ̂i′j(β)

]
.

In the third equality we use the formula Cov(X1, X2) = E(X1X2)−E(X1) E(X2).
From the independence of the observations {yij} and using the fact that, for
the Poisson distribution, Var(yij) = λij∑

jk

Covβ̂(yij , yi′k) =
{∑

j Varβ̂(yij), for i = i′

0, for i 6= i′.

=
{∑

j λ̂β̂ , for i = i′

0, for i 6= i′.

Similarly[
vαα
]
i,i′

= Eβ̂
(∑

j

(yji − λ̂ji(β)) ·
∑
j

(yji′ − λ̂ji′(β))
)
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=
∑
jk

Covβ̂(yji, yki′) +
∑
j

[
λ̂ji(β̂) − λ̂ji(β)

]∑
j

[
λ̂ji′(β̂) − λ̂ji′(β)

]
.

with

∑
jk

Covβ̂(yji, yki′) =
{∑

j Varβ̂(yji), for i = i′

0, for i 6= i′.

=
{∑

j λ̂β̂ , for i = i′

0, for i 6= i′.

and

[
vµα
]
i,i′

=
[
vαµ
]
i′,i

= Eβ̂
(∑

j

(yij − λ̂ij(β)) ·
∑
j

(yji′ − λ̂ji′(β))
)

=
∑
jk

Covβ̂(yij , yki′) +
∑
j

[
λ̂ij(β̂) − λ̂ij(β)

]∑
j

[
λ̂ji′(β̂) − λ̂ji′(β)

]
,

= Varβ̂(yii′) +
∑
j

[
λ̂ij(β̂) − λ̂ij(β)

]∑
j

[
λ̂ji′(β̂) − λ̂ji′(β)

]
,

= λ̂ii′β̂ +
∑
j

[
λ̂ij(β̂) − λ̂ij(β)

]∑
j

[
λ̂ji′(β̂) − λ̂ji′(β)

]
, for i 6= i′,[

vµα
]
i,i′

=
[
vαµ
]
i′,i

= 0, for i = i′.

For ease of implementation we will define the matrix

M =
[
Mµµ Mµα

Mαµ Mαα

]
with elements[

Mµµ

]
i,i′

=
∑
j

[
λ̂ij(β̂) − λ̂ij(β)

]∑
j

[
λ̂i′j(β̂) − λ̂i′j(β)

]
.

[
Mαα

]
i,i′

=
∑
j

[
λ̂ji(β̂) − λ̂ji(β)

]∑
j

[
λ̂ji′(β̂) − λ̂ji′(β)

]
.

[
Mµα

]
i,i′

=
∑
j

[
λ̂ij(β̂) − λ̂ij(β)

]∑
j

[
λ̂ji′(β̂) − λ̂ji′(β)

]
.

and [
Mαµ

]
i′,i

=
[
Mµα

]
i,i′

We then have

vξ,ξ(θ̂β , θ̂β ; θ̂) = jξξ(θ̂) +M

and
`IIAE(β) = `P (β) + 1

2 log |jξξ(ξ̂β)| − 1
2 log |jξξ(θ̂) +M | (3.9)
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Pace and Salvans third correction

To implement the third corrected likelihood

`IIIAE(β) = `P (β) + 1
2 log |jξξ(θ̂β)| − log |vθθ(θ̂β , θ̂ ; θ̂)|

we first observe that the covariance matrix vθ,θ(θ̂β , θ̂ ; θ̂) is on the form

vθ,θ(θ̂β , θ̂ ; θ̂) = Eθ̂
[
`ξ(θ̂β) · `ξ(θ̂)T

]
=
[
v∗µµ v∗µα
v∗αµ v∗αα

]
with elements in the upper left block given by

[
v∗µµ
]
i,i′

= Eθ̂
(∑

j

(yij − λ̂ij(β)) ·
∑
j

(
yi′j − λi′j(β̂)]

))
= Eθ̂

(∑
j

(yij − λ̂ij(β)) ·
∑
j

(
yi′j − Eθ̂[yi′j ]

))
= Eθ̂

(∑
jk

yijyi′k −
∑
jk

yij Eθ̂(yi′j)

−
∑
jk

λ̂ij(β)yi′k +
∑
jk

λ̂ij(β) Eθ̂(yi′k)
)

=
∑
jk

Eθ̂(yijyi′k)−
∑
jk

Eθ̂(yij) Eθ̂(yi′j)

−
∑
jk

λ̂ik(β) Eθ̂(yi′j) +
∑
jk

λ̂ij(β) Eθ̂(yi′k)

=
∑
jk

[
Eθ̂(yijyi′k)− Eθ̂(yij) Eθ̂(yi′j)

]
−
∑
jk

λ̂ik(β) Eθ̂(yi′j) +
∑
jk

λ̂ij(β) Eθ̂(yi′k)

=
∑
jk

Covθ̂(yij , yi′k) + 0

=
{∑

j λij(θ̂), for i = i′,

0, for i 6= i′.

Similarly

[
v∗αα
]
i,i′

= Eθ̂
(∑

j

(yji − λ̂ji(β)) ·
∑
j

(
yji′ − λji′(β̂)]

))

=
{∑

j λji(θ̂), for i = i′,

0, for i 6= i′.

[
v∗µα
]
i,i′

=
[
v∗αµ
]
i′,i

= Eθ̂
(∑

j

(yij − λ̂ij(β)) ·
∑
j

(
yji′ − λji′(β̂)]

))
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=
{

0, for i = i′,

λii′(θ̂), for i 6= i′.

Thus for this model

vθ,θ(θ̂β , θ̂ ; θ̂) = jξξ(θ̂)

and
`IIIAE(β) = `P (β) + 1

2 log |jξξ(θ̂β)| − log |jξξ(θ̂)| (3.10)
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KAPITTEL 4

Results

In order to compare the usefulness of the described pseudo-likelihoods we will
compare their performance on simulated data. With simulated data we can
study the performance of the different pseudo-likelihoods on data that closely
resembles data from real world applications. It also allows for comparison of
performance on different sample sizes. To ease implementations, without loss of
generality for the results, we will include observations for yij with i = j, even
though these observations are not present in trade data applications.

We only consider the case where we have one parameter of interest β. This
makes the implementation easier and the computational burden smaller, as
optimization over multiple parameters is both difficult and computationally
intensive. With a simple implementation it is easier to separate aspects of the
pseudo-likelihood of interest from computational quirks of optimization.

We will implement and compare the profile log-likelihood `P (β), described
in section 2.2, the approximate conditional likelihood `CL(β) from Equation
3.2, in this section denoted as ”the conditional likelihood”, the likelihood
corrections `IAE(β), `IIAE(β) and `IIIAE(β) from Equations (3.8), (3.9) and (3.10),
and the bootstrap estimated corrected likelihood `BS(β) from section 2.3.2.
The modified likelihood `A(β) in Equation (2.8) consistently gave the same
estimates as `IAE(β) in preliminary studies and therefore is not presented here.

We will generate samples of simulated data and for each sample estimate
β using the mentioned pseudolikelihoods. In a preliminary study, we inspect
the estimates for 10 samples and study plots of the pseudo log-likelihoods for
a single sample. In a simulation study we calculate the root of the mean of
squared errors (RMSE) of estimates for 250 samples. For an estimator β̃ with
estimates {β̃i} RMSE is given by

RMSE = 1
n

n∑
i=1

(β̃i − β0)2.

To estimate the maximizing β for each pseudo log-likelihood we compute
the value of the pseudolikelihoods over a grid of evenly spaced β values,
ensuring that the true β0 is included, and use the maximizing value from
this grid as an estimate. The grid is chosen to be evenly spaced in the interval[
(1 − 30) · β0, (1 + 30) · β0

]
, to ensure the candidate β solutions represent a

wide interval relative to β0. This way we are not ”cheating” too much, by only
presenting candidates close to the true parameter value. The simulations are
all done in R (R Core Team, 2021) and computational estimation of maximum
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likelihood estimates is done with the optim package using the BFGS, algorithm
as this algorithm seems to have a good reputation for multivariate optimization
and seems to give reasonably good results for our data.

4.1 Simulating data

To simulate the data we draw

yij ∼ Pois(λij), i = 1, . . . , n, j = 1, . . . , n (4.1)

from the Poisson distribution with parameter

λij = exp(xijβ + µi + αj).

We will set xij = 1 for all i, j and µi = αj = 1, for all i, j. Thus we are
assuming all incidental parameters have an equal impact on the observations.

4.2 Settings

Selection of the precision parameter T for `BS(β) in Equation (3.2) was
done heuristically. With larger T more alternative sample points are used
for comparison in the estimator. The theoretical conditional likelihood compares
with all possible alternative sample points, which is computationally infeasible.
Setting T = 1000 was not very intensive, and increasing to T = 3000 did not
produce noticeably different results. We therefore chose T = 1000 for the entire
simulation study.

Selection of R, the number of bootstrap samples in the bootstrap estimator
`BS(β) from section 2.3.2, was also done heuristically. The results were very
good with R = 70, and did not improve with larger R. We therefore use R = 70
for the entire simulation study.

The model is in its current state overparameterized for parameter estimation.
Since the nuisance parameter enter the model through µi + αj for yij adding
a constant to all µ and subtracting the same constant from all α leaves the
likelihood unchanged. Therefore we need to standardize, for example by setting
µ1 = a. In our simulations we let a = 1, thus assuming that we are guessing
the correct value.

4.3 Preliminary study

We first study the case of a small sample of 10× 10 observations. Figures 4.1,
4.2 and 4.3 show series of estimation errors θ̂− θ0 for 10 different samples, with
respectively β0 = 0.2, β0 = 1 and β0 = 10. Figure 4.4 shows log-transformed
log-likelihood of a single sample. The transformation − log(−`(βi)) was used
on the plotted log-likelihoods in order to accentuate teaks that were relatively
small compared to the fluctuations in the likelihoods, especially for β values far
away from the true β0.

As expected the profile likelihood estimator does not perform very well. The
estimates are very unstable, and often far away from the true value.

The three likelihood corrections `IAE(β), `IIAE(β) and `IIIAE(β) do not seem to
improve upon the profile likelihood for any of the three values of β0.
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The third corrected likelihood `IIIAE(β) had problems producing estimates.
The problem seems to lie with the matrix jξξ(θ̂), which only relies on θ̂, the
unconstrained maximum likelihood estimate for the parameters. The estimated
determinant for this matrix is close to zero, and sometimes negative, which is a
problem as we expect this matrix to be positive definite. Since we take the log
of this determinant, a negative determinant will result in NA values polluting
the computations.

The approximate conditional likelihood `CL(β) performs differently for
the three values for β0. For β0 = 0.2 and β0 = 1 the estimates from `CL(β)
closely resembles those based on the profile likelihood, but does not seem to
consistently improve on it, while for β0 = 10 the approximate conditional
likelihood estimator is completely off, choosing values on the border of the
candidate β values. This is surprising, considering that larger β0 has increased
effect on the observations relative to the nuisance parameters, and thus it should
be easier for the estimators to identify.

The bootstrap estimator `BS(θ) on the other hand provides very good
estimates for all of the samples and for all three values of β0. Although for
β0 = 0.2 the estimator overestimates β0 slightly in each sample. It seems that
the influence of β0 on the sampling probabilities is too small for the estimator
to detect properly. For β0 = 1 and β0 = 10 the estimates are spot on for
each sample, keeping in mind that the candidate values are a rough grid, and
the exact true value will probably not be detected by the estimator when the
researcher selecting the proposed β values does not know the true value, or
when another maximization algorithm is used.

If we inspect the plotted log-likelihoods for a sample with β0 = 1 in 4.4 we see
that the profile likelihood and its corrections are very flat, except for some large
dips for values of β much larger than β0. The likelihood corrections `IAE(β),
`IIAE(β) and `IIIAE(β), do not compute values for all of the proposed β values,
and there does not seem to be a pattern to where it is not able to compute a
value. In the simulations the estimated information matrices jξξ(θ̂) and jξξ(θ̂β)
either have elements too large to be represented by the computer, resulting in
Inf datatypes which pollute the estimates, or their computationally estimated
determinant is negative which as mentioned is not good. With larger datasets
this problem increased, and for 100 × 100 observations neither of the three
likelihood corrections was able to compute values for any supplied β.

The flatness of the likelihoods, and the missing values for the corrected
likelihoods, explains the high variability and low precision of their resulting
estimates. The approximate conditional likelihood `CL(β) is highly erratic across
the proposed β values, with many peaks that will confuse an optimization
algorithm such as the Nelder Mead algorithm, or other methods that tends to
get stuck on local maxima. The fact that the corrected likelihoods are not able
to consistently compute values make these useless for optimization methods
other than perhaps for grid search. The plot of `BS(θ) on the other hand has a
clear peak at the true value and has a smooth trajectory. It is therefore likely
to produce good estimates for such maximization algorithms.

We also briefly study how the pseudo log-likelihoods perform on a larger
dataset of 20× 20 observations. A plot of estimation errors is shown in Figure
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4.4. Simulation study

4.5, and plotted log transformed log-likelihoods are shown in Figure 4.6. The
only notable difference here is that `CL(β) seems to perform slightly better
than the profile likelihood estimator. The other pseudo log-likelihoods perform
the same as they did in the smaller sample case.

Figur 4.1: Estimate errors β̂ − β0 with β0 = 0.2 for 10 samples with 10 × 10
observations.

4.4 Simulation study

We simulated 250 samples from the model with β0 = 1 and for each sample
we computed the pseudo log-likelihoods for a grid of β values and choose the
maximizing β as an estimate of β0. The grid of candidate estimates was chosen
in the same manner as as in the preliminary study, resulting in a grid of 21
evenly spaced candidate values in the interval [−29, 31].

Table 4.1 shows the square root of the mean of squared errors (RMSE) of
the estimates. Table 4.1 also shows the number of samples where the pseudo
log-likelihood fails to produce an estimate (NA). The results are in line with the
preliminary study on smaller samples with β0 = 1. The estimates from profile
likelihood are on average far away from the true value, with a RMSE of 14.35,
which is again as expected as the profile likelihood suffers from the incidental
parameter problem. The estimates from the three likelihood corrections `IAE(β),
`IIAE(β) and `IIIAE(β) has a larger RMSE than the profile likelihood, as we expected
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4.5. Discussion

based on their performance on the preliminary study, and the plots of their
corresponding pseudo log-likelihoods. The approximate conditional likelihood
`CL(β) produces the worst estimates with a RMSE of 18.9, while the estimates
from `BS(θ) has a RSME of 0, which means β0 is selected for each sample.

RMSE num. NA
Profile likelihood 14.35 0
Pace & Salvan I 16.14 0
Pace & Salvan II 15.56 3
Pace & Salvan III 14.95 133
Pace & Salvan Bootstrap 0.00 0
Approx. conditional likelihood 18.85 0

Tabell 4.1: Root mean square error for estimates of β based on 250 samples,
with β0 = 1.

4.5 Discussion

The bootstrap estimated corrected likelihood seems to completely solve the
nuisance parameter problem for this model selecting the true parameter for
each sample in the simulation study with β0 = 1. In the preliminary study
with β0 = 0.2 the estimates from `BS(θ) were biased upwards, indicating that
when the parameter of interest is small relative to the incidental parameters
the induced bias on estimates of the parameter of interest is more pronounced.
Although the estimates are remarkably good, we must keep in mind that in our
simulations we chose a grid of 21 candidate β that contains the true parameter
β0, with the two neighbouring candidates a distance of β0/21 away. We do not
know where in [(1− 1/21)β0, (1 + 1/21)β0] the bootstrap likelihood `BS(θ) will
have it’s peak, but it is unlikely that the maximizing point will be exactly at β0
for samples with 10× 10 observations. A drawback of the bootstrap estimated
corrected likelihood is that it is computationally intensive. In more realistic
applications one will have data with more than 100 individuals, resulting in
100× 100 observations requiring constrained maximum likelihood estimates of
200 incidental parameters for each bootstrap iteration.

The three corrected likelihoods `IAE(β), `IIAE(β) and `IIIAE(β) did not perform
very well. There are several possible causes for their instability and faulty
computations. They all rely on numerically estimated determinants and on
multivariate optimization algorithms for determining maximum likelihood
estimates, which may not give consistent results. There may also be rounding
errors disturbing the computations. With larger datasets, for 100 × 100
observations or more neither of the three likelihood corrections was able to
compute values for any supplied β, which means they can not be used for most
applications.

The approximate conditional likelihood `CL(β) had the worst performance
in this simulation study. It may be that choosing an even larger precision
parameter T would have eventually improved the estimates, but due to time
constraints we were not able to test the method with a larger value for T .
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4.5. Discussion

Figur 4.2: Estimate errors β̂ − β0 with β0 = 1 for 10 samples with 10 × 10
observations.

25



4.5. Discussion

Figur 4.3: Estimate errors β̂ − β0 with β0 = 10 for 10 samples with 10 × 10
observations.
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4.5. Discussion

Figur 4.4: log transformed likelihoods with β0 = 1 for one sample with 10× 10
observations.
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4.5. Discussion

Figur 4.5: Estimate errors β̂ − β0 with β0 = 1 for 10 samples with 20 × 20
observations.
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4.5. Discussion

Figur 4.6: log transformed likelihoods with β0 = 1 for one sample with 20× 20
observations.

29



KAPITTEL 5

Conclusion

We have studied the incidental problem first introduced by Neyman og Scott
(1948) in a model with Poisson distributed panel data with two fixed effects. We
have considered several proposed solutions to the incidental parameter problem.
The conditional likelihood derives the distribution of the data conditioned on a
sufficient parameter, Charbonneau (2012) derived an approximate conditional
likelihood for the model considered in this thesis. Corrected likelihoods seek to
adjust the bias in the expected information of the profile likelihood or, from
the perspective of Pace og Salvan (2006), to estimate a least favorable target
likelihood.

We have derived the corrected profile likelihoods suggested by Pace og
Salvan (2006) for the model considered. We have then compared these proposed
solutions and the profile likelihood in a simulation study, by first inspecting
the behaviour of the likelihoods in a preliminary study, and then by using the
chosen pseudo likelihoods to estimate the parameter of interest on multiple
samples and comparing their mean squared error.

The bootstrap estimate of corrected profile likelihood `BS by Pace og Salvan
(2006) consistently and accurately estimated the parameter of interest in the
simulated data as long as the parameter of interest was sufficiently large
compared to the incidental parameters. When the parameter of interest has
less influence on the sampling probabilities `BS had some bias, but still gave
consistent estimates that vastly improved on the profile likelihood.

The corrected profile likelihoods that were based on estimated information
matrices did not improve the bias of the profile likelihood and also suffered
from computational issues, often struggling to produce values. With larger
datasets closer to the size of real data we were unable to produce values for
these likelihoods, which means they can not be used in most applications.

Our implementation of the approximate conditional likelihood `CL did not
improve on the profile likelihood. The mean squared error of the estimates
from the data in the simulation study were larger than the estimates from the
profile likelihood, and a plot of the likelihood for one sample revealed an erratic
likelihood with many local maxima, and not a smooth curve with a clear peak,
as we would expect. Since `CL is an approximation of a conditional likelihood
it is possible that we simply did not allocate enough time and computations to
make the approximation sufficient. Still, with the same amount of computational
power or time available, the bootstrap estimated corrected likelihood `BS gave
better estimations and was also easier to implement.
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For further work we would suggest studying the behaviour of the approximate
conditional likelihood with more computations allocated to improve the
approximation, in order to see if the method will then produce a more useful
pseudo likelihood. It would be interesting to compare estimates from `BS with
other current estimates on real world data. For example data on trade between
countries. The gravity equations for trade between countries frequently use the
Poisson distribution to model panel data with fixed effects, with the parameters
of interest being country specific traits and relations between the countries.

We also briefly touched upon the integrated likelihoods approach to
eliminating the incidental parameter problem, with details given in Appendix B.
Integrated likelihoods have been shown to produce very accurate predictions
and confidence intervals in problems with many nuisance parameters, and it
would be interesting to see how an implementation of this approach compares
to the pseudo likelihoods studied in this thesis.
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TILLEGG A

Big-Oh notation

Big-Oh notation is used to indicate the order by which a function f(n) will
grow as n increases.

A.1 Big-Oh notation

The statement
f(n) = O(g(n))

is taken to mean that there exists a positive real number M and a real number
N such that

|f(n)| ≤Mg(n) ∀ n ≥ N.

A.2 Big-Oh notation for stochastic boundedness

We let Op(g(n)) denote big-Oh notation for stochastic boundedness, meaning if
we write

fn = Op(g(n))

we are stating that for any ε > 0 there exists finite numbers M > 0 and N > 0
such that

P (|fn/g(n)| > M) < ε, ∀ n > N.
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TILLEGG B

Integrated likelihoods

Inspired by Bayesian statistics we will refer to the weight function as a prior,
although it does not need to meet the requirements for a probability density
function.

Advantages

As mentioned the profile likelihood ignores the uncertainty inherent in the
estimation of the nuisance parameters λ. Integrated likelihoods addresses this
problem by averaging over the possible values of λ (J. O. Berger mfl., 1999).

According to Severini (2010) it can be shown that integrated likelihood
functions have the same type of optimality properties as the likelihood function
in models without a nuisance parameter (Wald, 1950).

Use of integrated likelihoods in likelihood ratio statistics

Severini (2010) has studied the properties of likelihood ratio statistics based on
integrated likelihoods. The statistic

R = sgn(θ − θ)[2{`(θ)− `(θ)}]1/2,

with `(θ) = log(L) and θ the maximizer of `(θ), is asymptotically normally
distributed to the second order, and under certain conditions close to the
standard normal distribution. If the information available for θ is large we can
satisfy these conditions by using what Severini terms the zero-score-expectation
parametrization, φ ≡ φ(θ, λ ; θ̂), of the nuisance parameters and choosing a prior
π(φ | θ) that, in general terms, does not depend strongly on θ (see Appendix B
on the following page).

Severini (2010) recommends integrated likelihood ratios for their well behaved
nature. They have been shown to produce finite confidence sets where the profile
likelihood will (unreasonably) produce infinite sets (Ghosh mfl., 2006) and to
produce a single confidence interval from a unimodal integrated likelihood,
where the profile likelihood is bimodal with two resulting confidence intervals
(Malley mfl., 2003).

Selection of nuisance parameterization and prior

Severini (2007) shows in his paper that in order for an integrated likelihood to
be a useful pseudolikelihood function we should choose a parameterization of
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the nuisance parameter γ that is unrelated to θ and choose a prior π(γ | θ) that
does not depend on θ.

By unrelated Severini means that γ̂θ, the maximum likelihood estimator of
γ for fixed θ, is approximately constant as a function of θ. The definition of
unrelated, and the arguments leading to these criteria will be presented after
we introduce Severini’s suggested method for finding such a parameterization.

The zero-score-expectation parameter

Severini (2007) defines the zero-score-expectation parameter, φ ≡ φ(θ, λ ; θ̂), as
the data dependent parameter that solves the implicit equation

E{`λ(θ, λ) | θ̂, φ} ≡ E{`λ(θ, λ) | θ0, λ0}
∣∣∣∣
(θ0,λ0)=(θ̂,φ)

This parameter depends on the data, and in a Bayesian setting this would
be a problem as a parameter of a probability distribution can not be data-
dependent, but it does not cause problems in a likelihood function where the
data are considered fixed.

Severini (2007) shows that φ is strongly unrelated to θ, and that in models
where E{`(θ, λ) | θ̂, λ̂} = `(θ, λ), such as for full-rank exponential family models
with loglikelihood of the form `(θ, λ) = c(θ, λ)Tx−d(θ, λ), the stronger property
φ̂θ = φ̂ holds for all θ.

Let L∗(θ, φ) denote the likelihood function in terms of (θ, φ). Then the
integrated likelihood for θ with respect to a density π(φ) for φ is given by

L(θ) =
∫
L∗(θ, φ)π(φ)dφ.

By showing that this integrated likelihood is an approximation to the modified
likelihood proposed by Barndorff-Nielsen (1983), Severini shows that this
integrated likelihood will be score unbiased and information unbiased to order
O(n−1).

Definition of unrelated

To define relatedness, we first need a definition of deviations, which in broad
measures describes how far a parameter is from its maximum likelihood value.
Severini defines moderate deviations of θ as θ = θ̂ + O(n−1/2) and large
deviations of θ as θ as θ = θ̂ +O(1).

Severini then defines relatedness in the following way. A parameter γ is
weakly unrelated to θ if γ̂θ = γ̂ + O(n−1) for moderate deviations of θ. An
implication of this is that if γ and θ are orthogonal parameters, then γ is weakly
unrelated to θ (Severini, 2007 suggests Cox og Barndorff-Nielsen, 1994 and Pace
og Salvan, 1997 for examples).

Severini also defines γ to be strongly unrelated to θ if γ̂θ = γ̂ +O(n−1/2) for
large deviations of of θ. As noted by Severini, an orthogonal nuisance parameter
is not in general strongly unrelated to θ.
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Selection of a prior for the nuisance parametes

In the following, we list Severini’s arguments for why, in order to construct
an integrated likelihood function that is useful for non-Bayesian inference, we
should construct a nuisance parameter φ that is strongly unrelated to θ and
then choose a prior density for φ that does not depend on θ.

First, if there exists a nuisance parameter γ such that the likelihood factors
as

L1(θ)L2(γ)

then L1(θ) can be used as a likelihood for θ. We would therefore like an
integrated likelihood to correspond to L1 in this case. If π(λ | θ) is such that θ
and γ are independent then∫

Λ
L1(θ)L2(γ)π(λ | θ)dλ = L1(θ)

∫
Λ
L2(γ)π(λ | θ)dλ ∝ L1(θ)

In other words the integrated likelihood will correspond to L1 provided that
π(λ | θ) is such that θ and γ are independent. Since γ does not depend on θ, as
seen from the factorization of the likelihood, this property suggests that, for
non-Bayesian inference about θ, π(θ | λ) should be chosen so that unrelated
parameters are independent.

As mentioned, two important frequentist properties of a genuine likelihood
are score unbiasedness and information unbiasedness. In general, E(`θ(θ) | λ)
and E(`θθ(θ) + `θ(θ)`θ(θ)T | λ) are both O(1) as n → ∞ (Severini, 1998b).
But if the model is parameterized by a nuisance parameter γ that is weakly
unrelated to θ and π(γ | θ) does not depend on θ, then E(`θ(θ) | λ) = O(n−1)
(Severini, 1998b).

If γ is strongly unrelated to θ and π(γ | θ) does not depend on θ, then
E(`θθ(θ) + `θ(θ)`θ(θ)T | λ) is also O(n−1) (Severini, 1998b).

Again, this analysis suggests that π(γ | θ) should be chosen so that, if a
nuisance parameter γ is strongly unrelated to θ, then θ and γ are independent
under π(γ | θ).

Lastly Severini argues that we will not want the integrated likelihood to be
sensitive to the choice of prior, as the choice of prior is somewhat arbitrary. For
instance, in case where L(θ, λ) = L1(θ)L2(γ) any prior density π(λ | θ) under
which θ and γ are independent yields the same integrated likelihood. But what
about the case when the likelihood does not factor neatly? Severini shows that
if the model is parameterized in terms of a nuisance parameter γ that is weakly
unrelated to θ and π(γ | θ) does not depend on θ, then, for θ in the moderate
deviation range, L(θ) does not depend on the form of π(γ), if terms of order
n−1 are ignored, and if γ is strongly unrelated to θ then in addition, for θ in
the large deviation range, L(θ) does not depend on the form of π(γ) if terms
of order n−1/2 are ignored. Which again means that if we want an integrated
likelihood function to not depend heavily on incidental features of the prior,
the prior should be chosen so that parameters that are strongly unrelated are
independent.
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TILLEGG C

Code

• The functions used to simulate the data and find maximum likelihood
estimates is presented in Appendix C.1.

• The functions used to compute the approximate conditional likelihood in
Equation (3.2) is presented in Appendix C.2 on page 39.

• The functions used to compute the Bootstrap estimated corrected
likelihood from section 2.3.2 is presented in Appendix C.3 on page 40.

• The functions used to compute the profile likelihood and the corrected
likelihoods `IAE(β), `IIAE(β) and `IIIAE(β) from Equations (3.8), (3.9) and
(3.10) is presented in Appendix C.4 on page 41.

C.1 Sampling data, and maximum likelihood estimation

1 sample_x_and_parameters <- function(beta, m, n) {
2 # x <- array(runif(m*n, min = 0, max = 1), c(m,n))
3 # TODO temp
4 x <- array(1, c(m,n))
5 # mu <- runif(m, min = 0, max = a)
6 # alpha <- runif(n, min = 0, max = a)
7

8 mu <- rep(1, m)
9 alpha <- rep(1, n)

10

11 return( list(x=x, mu=mu, alpha=alpha) )
12 }
13

14 sample_y <- function(beta, x, m, n, mu, alpha) {
15 theta <- outer(mu, alpha, FUN = "+")
16 eta <- x*beta + theta
17 y <- matrix(rpois(n = n*m, lambda = exp(eta)),
18 nrow = m)
19 return(y)
20 }
21

22 negative_loglikelihood_beta <- function(params, beta, m, n, x, y, mu_1)
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C.1. Sampling data, and maximum likelihood estimation

23 {
24 mu <- c(mu_1, params[1:(m-1)])
25 alpha <- params[m:(n+m-1)]
26 eta <- outer(mu, alpha,
27 FUN = function(mu, alpha)
28 {
29 (x*beta + mu + alpha)
30 }
31 )
32 lambda <- exp(eta)
33 return(
34 - sum(y*eta) + sum(lambda)
35 )
36 }
37

38 negative_loglikelihood_ur <- function(params, m, n, x, y, mu_1)
39 #' Negative loglikelihood for unrestricted maximum likelihood
40 #' estimation of beta mu and alpha
41 {
42 mu <- c(mu_1, params[1:(m-1)])
43 alpha <- params[m:(n+m-1)]
44 beta <- params[n+m]
45 eta <- outer(mu, alpha,
46 FUN = function(mu, alpha)
47 {
48 (x*beta + alpha + mu)
49 }
50 )
51 return(
52 - sum(y*eta) + sum(exp(eta))
53 )
54 }
55

56 # TODO: rename
57 theta_mle_given_beta <- function(beta, x, y, m, n, mu_1) {
58 #' Restricted maximum likelihood estimation given beta
59

60 optim_out <- optim(fn = negative_loglikelihood_beta, par = rep(0.5, n+m-1)
61 , beta = beta
62 , m = m
63 , n = n
64 , x = x
65 , y = y
66 , mu_1 = mu_1
67 , method = "BFGS"
68 )
69 optim_estimate <- optim_out$par
70 mu_hat <- optim_estimate[1:(m-1)]
71 alpha_hat <- optim_estimate[m:(n+m-1)]
72
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C.2. Approximate conditional likelihood

73 return(list(
74 optim_estimate = optim_estimate,
75 mu_hat = mu_hat,
76 alpha_hat = alpha_hat
77 )
78 )
79 }
80

81 theta_mle_ur <- function(x, y, m, n, mu_1) {
82 #' Unrestricted maximum likelihood estimates of all parameters
83

84 optim_out <- optim(fn = negative_loglikelihood_ur, par = rep(0.5, n+m)
85 , method = "BFGS"
86 , m = m
87 , n = n
88 , x = x
89 , y = y
90 , mu_1 = mu_1
91 )
92 optim_estimate <- optim_out$par
93 mu_hat <- optim_estimate[1:(m-1)]
94 alpha_hat <- optim_estimate[m:(n+m-1)]
95 beta_hat <- optim_estimate[m+n]
96

97 return(list(
98 optim_estimate = optim_estimate,
99 mu_hat = mu_hat, # Does not include mu_1 = 0

100 alpha_hat = alpha_hat,
101 beta_hat = beta_hat
102 )
103 )
104 }

C.2 Approximate conditional likelihood

1 negative_conditional_loglikelihood <- function(beta, x, y, m, n, nt) {
2 #' Computes an estimate of the negative of the conditional log-likelihood
3 #' from Charboonneu (2012) "Multiple Fixed Effects in Nonlinear Panel Data Models".
4 #'
5 #' nt = number of alternative y's to compare to. Increases computations by O(n*m)
6 #'
7 cond_loglik <- 0
8 for (t in 1:nt) {
9 for (i in 1:m) {

10 for (j in 1:n) {
11 # Choose a submatrix from y and x
12 l <- sample(1:m, 1)
13 k <- sample(1:n, 1)
14 y_sub <- array(c(y[i,j], y[i,k], y[l,j], y[l,k]), c(2,2))
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C.3. Bootstrap estimated corrected likelihood

15 x_sub <- array(c(x[i,j], x[i,k], x[l,j], x[l,k]), c(2,2))
16

17 # Construct alternative y matrix, with same row- and column sums
18 y_alt <- array(rep(NA, 4), c(2,2))
19 mar_sums <- c(colSums(y_sub), rowSums(y_sub))
20

21 # First value must allow for row and column sums to be the same as in y_ijlk
22 y_alt[1] <- sample(
23 max(0, (y_sub[1,1]-y_sub[2,2])):min(mar_sums[1], mar_sums[3]),
24 1)
25 y_alt[2,1] <- mar_sums[1] - y_alt[1,1]
26 y_alt[1,2] <- mar_sums[3] - y_alt[1,1]
27 y_alt[2,2] <- mar_sums[2] - y_alt[1,2]
28

29 cond_log_ijt <- log(1 + prod(factorial(y_sub)/factorial(y_alt))
30 * exp(beta*sum(x_sub*(y_alt-y_sub))))
31

32 # Add term if not NA
33 if (!is.na(cond_log_ijt))
34 cond_loglik <- cond_loglik + cond_log_ijt
35 }
36 }
37 }
38 # Return negative log-likelihood
39 return(cond_loglik)
40 }
41 negative_conditional_loglikelihood <- Vectorize(negative_conditional_loglikelihood
42 , vectorize.args = "beta")

C.3 Bootstrap estimated corrected likelihood

1 bootstrap_profile_loglikelihood <- function(beta, x, y, m, n,
2 beta_ur, mu_ur, alpha_ur, R, mu_1) {
3 #'
4 #' Returns bootstrapped corrected profile likelihood given beta
5 #' R (int): number of bootstrap iterations
6 #'
7

8 Rinv = 1/R
9 bs_corrected_loglik <- 0

10 theta <- outer(c(mu_1, mu_ur), alpha_ur, FUN = "+")
11 lda <- exp(x*beta + theta)
12 for (r in 1:R) {
13 y_bs <- matrix(rpois(n = n*m, lambda = lda), nrow = m)
14

15

16

17 optim_estimate <- theta_mle_given_beta(beta=beta, x=x, y=y_bs, m=m, n=n, mu_1)
18 mu_hat_beta <- optim_estimate$mu_hat
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C.4. Corrected likelihoods

19 alpha_hat_beta <- optim_estimate$alpha_hat
20

21 eta_beta = outer(c(mu_1, mu_hat_beta),
22 alpha_hat_beta,
23 FUN = function(mu, alpha)
24 {
25 (x*beta + mu + alpha)
26 }
27 )
28 # Add current bootstrap estimate to the mean estimator
29 bs_corrected_loglik <- bs_corrected_loglik +
30 Rinv*sum( y*eta_beta - exp(eta_beta) - lfactorial(y) )
31 }
32

33 return(bs_corrected_loglik)
34 }
35 bootstrap_profile_loglikelihood <- Vectorize(bootstrap_profile_loglikelihood,
36 vectorize.args = "beta")

C.4 Corrected likelihoods

1 corrected_profile_loglikelihood <- function(beta, x, y, m, n,
2 beta_ur, mu_ur, alpha_ur, mu_1) {
3 #' Returns corrected profile likelihood given beta
4 #'
5

6 optim_estimate <- theta_mle_given_beta(beta=beta, x=x, y=y, m=m, n=n, mu_1=mu_1)
7 # Estimates given beta
8 mu_hat_beta = optim_estimate$mu_hat
9 alpha_hat_beta = optim_estimate$alpha_hat

10 num_fisher_info = optim_estimate$num_fisher_info
11

12 # Full linear operatar (contains mu_1 = 0)
13 eta_beta_full = outer(c(mu_1, mu_hat_beta),
14 alpha_hat_beta,
15 FUN = function(mu, alpha)
16 {
17 (x*beta + mu + alpha)
18 }
19 )
20 lambda_beta_full <- exp(eta_beta_full)
21

22 # Remove the mu_1 row, as we are not estimating mu_1
23 lambda_beta <- lambda_beta_full[2:m, ]
24

25 observed_info_aa <- diag(rowSums(lambda_beta))
26 observed_info_gg <- diag(colSums(lambda_beta))
27 observed_info_ag <- lambda_beta
28 j_xx_beta <- rbind(cbind( observed_info_aa, observed_info_ag ),

41



C.4. Corrected likelihoods

29 cbind( t(observed_info_ag), observed_info_gg ))
30

31 det_j_xx_beta <- det(j_xx_beta)
32

33

34 # Unrestricted ml estimate of covariance matrix
35 lambda_ur <- outer(c(mu_1, mu_ur),
36 alpha_ur,
37 FUN = function(mu, alpha)
38 {
39 exp(x*beta_ur + mu + alpha)
40 }
41 )
42

43 lambda_ur <- lambda_ur[2:m,]
44

45 Cov_aa <- diag(rowSums(lambda_ur))
46 Cov_gg <- diag(colSums(lambda_ur))
47 Cov_ag <- lambda_ur
48 j_xx_beta <- rbind(cbind( Cov_aa, Cov_ag ),
49 cbind( t(Cov_ag), Cov_gg ))
50

51 det_jxx_beta <- det(j_xx_beta)
52

53 # Profile likelihood
54 profile_loglik <- sum( y*eta_beta_full - lambda_beta_full - lfactorial(y) )
55

56

57 # Pace & Salvan
58 Pace_Salvan_I <- profile_loglik - log(det_j_xx_beta)
59 Pace_Salvan_II <- NA
60 Pace_Salvan_III <- NA
61

62 # Pace & Salvan - correction II
63 # We will implement:
64 # M_11[i,i'] = sum_j( lambda_diff_ij ) * sum_j( lambda_diff_i'j )
65 # M_22[i,i'] = sum_j( lambda_diff_ji ) * sum_j( lambda_diff_ji' )
66 # M_12[i,i'] = sum_j( lambda_diff_ij ) * sum_j( lambda_diff_ji' )
67 # M_21[i,i'] = sum_j( lambda_diff_i'j ) * sum_j( lambda_diff_ji )
68 lambda_diff <- lambda_ur - lambda_beta
69 diffsum_ij <- rowSums(lambda_diff) # dd[i] = sum_j( lambda_diff_ij )
70 diffsum_ji <- colSums(lambda_diff) # dd[i] = sum_j( lambda_diff_ji )
71 M_11 <- outer(diffsum_ij, diffsum_ij, "*")
72 M_22 <- outer(diffsum_ji, diffsum_ji, "*")
73 M_12 <- outer(diffsum_ij, diffsum_ji, "*")
74 M_21 <- t(M_12)
75

76 M <- rbind(cbind( M_11, M_12 ),
77 cbind( M_21, M_22 ))
78 j_xx_M_beta <- j_xx_beta + M
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C.4. Corrected likelihoods

79 det_j_xx_M_beta <- det(j_xx_M_beta)
80 Pace_Salvan_II <- profile_loglik + 0.5*log(det_j_xx_beta) - 0.5*log(det_j_xx_M_beta)
81

82 Pace_Salvan_III <- profile_loglik + 0.5*log(det_j_xx_beta) - log(det_jxx_beta)
83

84 cox_approximate_mod_lik <- profile_loglik - 0.5*log(det_j_xx_beta)
85

86 likelihood_esimates <- c( profile_loglik,
87 cox_approximate_mod_lik,
88 Pace_Salvan_I,
89 Pace_Salvan_II,
90 Pace_Salvan_III
91 )
92 # Set infinity estemates to NA
93 likelihood_esimates[is.infinite(likelihood_esimates)] <- NA
94

95 return(
96 likelihood_esimates
97 )
98 }
99 corrected_profile_loglikelihood <- Vectorize(corrected_profile_loglikelihood,

100 vectorize.args = "beta")
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