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Abstract

Lasso is an optimization problem that is favored by both statisticians and data
scientists, and algorithms for solving it is offered in most statistical computing
and machine learning software. However, new research into the fundamental
barriers in the theory of computation shows that several optimization methods,
including lasso, are generally non-computable. It has been shown that, when
the input matrices are assumed to have more columns than rows, the following
phenomenon occurs: (1) For any K ≥ 1, one can construct an input class for
lasso such that any algorithm will fail to compute K or more correct digits of
the true solution for at least one input. This means that lasso is non-computable
in the traditional Turing sense. (2) There is an algorithm that computes K − 1
correct digits for the same input class, but any such algorithm requires an
arbitrarily long time to do so. (3) There is an algorithm that computes K − 2
correct digits, which is polynomial in the number of variables in the inputs.
Similar results to (1), (2), and (3) are shown for randomized algorithms as well.

This thesis establishes the impossibility results outlined above, for lasso in
the form typical of regression situations, where the input matrices are assumed to
have more rows than columns. The impossibility results are then generalized to
hold for a continuous error ε ≥ 0 instead of the number of correct digits K. This
leads to phase transitions for lasso that are reminiscent of the phase transitions
that appear in hardness of approximation. We call the values where the phase
transitions occur for a given lasso input class the strong breakdown-epsilon, and
the weak breakdown-epsilon. Specifically, for a given input class, solutions with
error less than the strong breakdown-epsilon are non-computable in general.
Solutions with error less than the weak breakdown-epsilon are computable, but
require an arbitrary amount of time in the worst case. Solutions with error
greater than the weak breakdown-epsilon are computable in polynomial time (in
the number of input variables). We extend the results to hold for randomized
algorithms as well, and establish the values of the probabilistic versions of the
breakdown-epsilons for the same input class. These results show that it is
sometimes impossible to compute solutions to lasso by use of algorithms.
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CHAPTER 1

Introduction

The least absolute shrinkage and selection operator, commonly known as lasso
was introduced as a regression tool in 1996 by R. Tibshirani [Tib96], and
has since made its way into most statistical computing and machine learning
toolboxes. Originally formulated as a method for estimating coefficients in
linear regression models, lasso has the ability to both shrink and perform subset
selection of the coefficients. The latter part is a result of lasso’s tendency to
set some of the coefficient estimates to be exactly zero, effectively excluding
the corresponding variable from the linear model. This makes lasso a popular
and widely used tool. Lasso is also used for signal reconstruction in compressed
sensing, where it is closely related to quadratically constrained basis pursuit and
basis pursuit denoising [AH21; FR13].

We take basis in the theory from [HTJ07; Tib96]. Consider a typical
regression situation, where we have m ∈ N data points {(ai, yi)}mi=1, such that
ai = (ai1, . . . , aiN )> contain values for N independent variables and yi is the
dependent variable or outcome for the i-th case. We follow the practice of
assuming that the aij are standardized, in the sense that (1/m)

∑
i aij = 0 and

(1/m)
∑
i a

2
ij = 1 are satisfied. One also typically assumes that the data points

(ai, yi) are independent, or that the outcomes yi are conditionally independent
given the aij . The lasso estimate is defined as any solution of

argmin
(x0,x1)∈R×RN

m∑
i=1

(
yi − x0 −

N∑
j=1

x1
1aij

)2
subject to

N∑
j=1
|x1
j | ≤ t (1.1)

where t ≥ 0 is a free parameter that determines the degree of regularization.
Letting A =

(
a1 · · · am

)> ∈ Rm×N , we can write (1.1) in its Lagrangian
form

argmin
(x0,x1)∈R×RN

m∑
i=1

(
yi − x0 −

N∑
j=1

x1
1aij

)2
+ λ

N∑
j=1
|x1
j | (1.2)

= argmin
(x0,x1)∈R×RN

‖y − x01m −Ax1‖22 + λ‖x1‖1 (1.3)

where λ is the regression parameter, and has a one-to-one correspondence with t.
Lasso of the form (1.1) is sometimes called constrained lasso, while (1.2) is called
unconstrained lasso. Sometimes, the `2 term in the minimization problem is
multiplied by a factor 1/2 or 1/(m), to simplify the expression of its derivatives
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or to make the term equivalent to the mean squared error of the linear model
built from the (x0, x1) estimates. This difference is inconsequential, since λ is a
free parameter and can be chosen to counteract any such change. The lasso
function1 provided by Matlab solves the problem

argmin
(x0,x1)∈R×RN

1
2m‖y − x

01m −Ax1‖22 + λ‖x1‖1 (1.4)

where the factor 1/(2m) is chosen. Sometimes, we may assume that the intercept
component x0 of the model is zero, and therefore consider the minimization
problem

argmin
x∈RN

1
2m‖y −Ax‖

2
2 + λ‖x‖1 (1.5)

instead. Another way to exclude the intercept component x0 from the expression
in (1.4) is to integrate it into Ax by letting x = (x0, x1

1, . . . , x
1
N )> and

A =
(

1m
(
a1 · · · am

)>) in (1.5). Therefore, the problem of solving (1.4)
and (1.5) can be considered equivalent. In this thesis we will consider the lasso
problem in the forms given by (1.4) and (1.5).

In essence, lasso is just an optimization problem; we want to find the
coefficients that minimize the mean squared error of the linear model, subject
to some `1 constraint. Computing lasso solutions is a quadratic programming
problem, for which there have been developed several algorithms [Tib96].
However, new research in an upcoming paper by A. Bastounis, A. C. Hansen,
and V. Vlačić [BHV] shows that despite their widespread application, several
optimization problems, including lasso, suffer from the same limitation: They
are non-computable in a computational model that allows for approximate, real
inputs and calculations with round-off errors. In other words, there are cases
where the lasso minimization problem can not be solved to arbitrary precision
by any algorithm, even randomized. Nevertheless, successful computing of lasso
estimates in practice is commonplace.

A vast majority of modern computers are based on floating-point arithmetic.
However, even a rational number such as 1/3 can not be represented by a finite
number of digits in the common base 2 floating-point representation. The same
holds for irrational numbers like π and

√
2. These are some of the underlying

limitations of computers that traditional numerical analysis of the lasso solution
algorithms fails to consider. In S. Smale’s list of problems for the 21-century
[Sma98], he asks for "[Computational] models which process approximate inputs
and which permit round-off computations". The computational model that has
been developed over a series of papers [Ben+15a; Ben+15b; Ben+20; BHV;
Han11] fulfills this requirement, and has been used to establish computational
impossibility results for linear programming, basis pursuit, and constrained and
unconstrained lasso. Even though linear programming problems are solvable
in polynomial time for rational inputs [Blu+98; Kar84; Kha80], the outlook is
more bleak when we allow the inputs to be real. In [BHV], it is shown that
for any of the problems listed above, and any natural number K ≥ 2, there
exists a class of inputs Ω, for which no algorithm can produce an estimate of
the solution with K correct digits for all the inputs in Ω. There is an algorithm

1https://se.mathworks.com/help/stats/lasso.html
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that can provide estimates with K − 1 correct digits for all the inputs in Ω, but
any such algorithm will need an arbitrarily long runtime to do so. However,
there is an algorithm that can compute estimates with K − 2 correct digits for
all the inputs in Ω, that has runtime polynomial in the number of variables
in the input. The input classes Ω constructed in the proof of this result all
feature matrices A ∈ Rm,N where N > m. Furthermore, the input classes are
well-conditioned and bounded. Nevertheless, estimates of the solutions can not
always be computed to arbitrary precision. The definition of the algorithm
used is purposefully made as general as possible, so the impossibility results
established are universal across all models of computation. In particular, the
impossibility results hold in the Turing model as well.

This thesis further explores the computational barriers of the lasso problem
(1.5). A similar result to the central theorem of [BHV], summarized above, is
established for lasso where the matrices A ∈ Rm,N featured in the input set Ω
satisfy m > N . The impossibility result holds in the usual regression situation,
where the matrix A is standardized before fitting the model. The result is then
generalized to hold for a continuous error ε ≥ 0 rather than the number of
correct digits K, which is discrete. This leads to phase transitions reminiscent
of the field of hardness of approximation [AB09; Pap94]. We shall see that,
for the input class Ω, the problem of computing solutions to lasso transitions
between

1. being computable in polynomial time,

2. being computable, but requiring an arbitrarily long runtime, and

3. being non-computable,

depending on how small error ε ≥ 0 is required on the solution. Unlike
the problems that appear in hardness of approximation however, the phase
transitions established in this thesis are independent of whether P 6= NP. Here,
P and NP refer to the complexity classes containing problems solvable in
polynomial time by a deterministic Turing machine, and a non-deterministic
Turing machine, respectively [AB09; Ko91; Pap94; Sip13].

We will generalize the impossibility results to hold for randomized algorithms
as well. In the computational model developed in [Ben+15a; Ben+15b; Ben+20;
BHV; Han11], allowing randomized algorithms the possibility of having a non-
zero probability of not halting makes them more powerful. An interesting result
is that even though the problem of approximating lasso solutions for the inputs
in Ω is non-computable for small enough ε ≥ 0 (if we require the algorithms to
always halt), there is a randomized algorithm that can compute approximations
for arbitrarily small ε ≥ 0 with probability 2/3. However, this algorithm has
a non-zero probability of not halting. Furthermore, we will show that the
probability 2/3 of success can not be improved.
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Original work

This thesis contains several results that, to the best of my knowledge, are original.
These results, and their relation to the results in [BHV], are summarized here.

Theorem 3.2.1 can be considered an extension to the deterministic results
in theorem 3.3 in [BHV]. There, they have established impossibility results for
lasso of the form

argminx∈RN ‖Ax− y‖22 + λ‖x‖1,

where it is assumed that the input matrix A ∈ Rm,N satisfies N > m. In this
paper, we will establish similar impossibility results for lasso of the form

argminx∈RN
1

2m‖Ax− y‖
2
2 + λ‖x‖1,

where we assume that the input matrix A ∈ Rm,N satisfies m > N and is
standardized. This is a typical regression situation, while the setup in [BHV] is
more reminiscent of applications in compressed sensing and signal reconstruction
[AH21].

Theorem 3.5.1 can be considered a generalization of theorem 3.2.1. More
specifically, theorem 3.2.1 is a ’quantised’ version of theorem 3.5.1, where the
approximation accuracy is measured in the number of correct digitsK, instead of
the actual distance to the true solution (in some given metric). Theorem 4.1.3 is
an extension of theorem 3.5.1, and establishes ’unquantised’ impossibility results
for randomized algorithms. There is no ’unquantised’ version of theorem 3.3 in
[BHV], although the possibility of such a result is mentioned. Therefore, these
results can be considered original. Lastly, lemma 3.3.1 can also be considered
my own.
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CHAPTER 2

General algorithms and
complexity theory

We start by introducing several concepts from complexity theory and the
solvability complexity index (SCI) from [Ben+15a; Ben+15b; BHV; Han11].
Since there are several models of computation that are non-equivalent, we
introduce the concept of the general algorithm which will encompass all
reasonable models of computation. This means that all of the impossibility
results shown for general algorithms in the later chapters, are universal across the
different models of computation. We specify what is meant by a computational
problem, explain how general algorithms deal with inexact input, and introduce
the concept of breakdown epsilons. We will later extend the theory to include
randomized general algorithms, and the corresponding probabilistic breakdown
epsilons.

2.1 Preliminaries for the deterministic impossibility results

This section contains the exact definitions of a computational problem, the
general algorithm, and the strong and weak breakdown epsilons. The definitions
are taken from [BHV].

Definition 2.1.1 (Computational Problem). Let Ω be a set of input values, and
let Λ be a set of complex valued functions on Ω such that for ι1, ι2 ∈ Ω we
have that ι1 = ι2 if and only if f(ι1) = f(ι2) for all f ∈ Λ. Let (M, d) be a
metric space, and let Ξ : Ω→M. Then we call the collection {Ξ,Ω,M,Λ} a
computational problem. Furthermore, we call Ω the domain, Λ the evaluation
set, and Ξ the problem function or solution map. If it is clear by context, we can
omitM and Λ and simply write {Ξ,Ω} as a shorthand for the computational
problem.

This definition is quite abstract, to allow a vast amount of computational
problems to fit into the framework. The components of a computational problem
can be more naturally explained in the following way. The domain Ω is the
set of objects or inputs that induces the computational problem, whileM is
the metric space in which the solutions to the problem are given. The problem
function Ξ : Ω→M is the solution map that we want to compute with some
algorithm. Finally, the evaluation set Λ is the collection of functions we may
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2.1. Preliminaries for the deterministic impossibility results

use to read information from the inputs in Ω. In particular, we can rewrite
lasso as a computational problem {Ξ,Ωm,N ,MN ,Λm,N} where

• The domain Ωm,N consists of pairs ι = (y,A) of vectors y ∈ Rm and
matrices A ∈ Rm×N of given dimensions m,N ∈ N.

• The metric space (MN , d) is (RN ∪{∞}, d), where d is the metric induced
by the q-norm ‖ · ‖q for some q ∈ [1,∞]. The q-norm is defined by
‖x‖q := (

∑N
i=1 |xi|q)1/q for x ∈ RN . This is normally referred to as the

p-norm, but in this paper we will call it the q-norm. This is to avoid
confusion later, when p will be reserved for a probability variable.

• The evaluation set Λm,N consists of coordinate functions. Specifically,
Λm,N = {fvec

i : fvec
i (ι) = yi}mi=1 ∪ {fmat

i,j : fmat
i,j (ι) = Aij}i=m,j=Ni=1,j=1 .

• The problem function Ξ is the map giving the true lasso solutions for each
ι = (y,A):

Ξ(ι) = argmin
x∈RN

1
2m‖Ax− y‖

2
2 + λ‖x‖1 (2.1)

In statistics and machine learning, the matrix A is typically required to be
standardized. In many implementations of lasso, such as the one provided
by Matlab, the input matrix is automatically standardized before the
minimizer is estimated. The problem function is then

Ξ(ι) = argmin
x∈RN

1
2m‖Ãx− y‖

2
2 + λ‖x‖1 (2.2)

where Ã is the standardized version of the matrix A.

We want to investigate whether or not there exists an algorithm that, given
any input to the lasso computational problem (2.2), computes an approximate
solution. For this we need to define exactly what an algorithm is. The following
definition of an algorithm is very general, and encompasses all other reasonable
definitions. In particular, the Turing machine and the Blum-Shub-Smale (BSS)
machine can both be considered special cases of the general algorithm.

Definition 2.1.2 (General Algorithm). Let {Ξ,Ω,M,Λ} be a computational
problem. A general algorithm for {Ξ,Ω,M,Λ} is a mapping Γ : Ω→M∪{NH}
such that for every ι ∈ Ω the following conditions hold:

(i) there exists a nonempty subset of evaluations ΛΓ(ι) ⊂ Λ, and whenever
Γ(ι) 6= NH, we have |ΛΓ(ι)| <∞,

(ii) the action of Γ on ι is uniquely determined by {f(ι)}f∈ΛΓ(ι),

(iii) for every ι′ ∈ Ω such that f(ι′) = f(ι) ∀f ∈ ΛΓ(ι), it holds that
ΛΓ(ι′) = ΛΓ(ι).

The case where Γ(ι) = NH is a non-halting output that signifies that the
general algorithm Γ does not halt on the given input ι. We shall, with slight
abuse of notation, write GA for the family of all general algorithms for a given
computational problem.
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2.1. Preliminaries for the deterministic impossibility results

Remark 2.1.3. The non-halting output NH is needed in the definition of the
general algorithm when we later extend the definition to the randomized general
algorithm. One could omit the possibility of outputting NH in the definition
of the general algorithm, in which case it is simply a mapping Γ : Ω → M.
However, allowing a randomized general algorithm the possibility of not halting
(i.e. not producing reasonable a output) makes it more powerful. This is
affirmed by theorem 4.1.3 in chapter 4, and is also shown in [BHV].

To be able to evaluate the output of the general algorithm we have to extend
the metric d on M to a metric on M∪ {NH}. This is done in the following
way:

d̃M(x, y) =


dM(x, y) if x, y ∈M
0 if x = y = NH
∞ otherwise.

(2.3)

However, the problem function Ξ of a given computational problem may be
multi-valued. This can sometimes be the case for minimization problems such
as lasso, if there are more than one minimizer for a given input ι ∈ Ω. In such
cases, Ξ(ι) is the set of all valid minimizers, and the goal is to approximate any
of the minimizers in Ξ(ι). If Γ : Ω→M∪{NH} is a general algorithm for some
computational problem {Ξ,Ω,M,Λ}, we measure the approximation error by

distM(Γ(ι),Ξ(ι)) = inf
ξ∈Ξ(ι)

d̃M(Γ(ι), ξ). (2.4)

Given some ε ≥ 0, an output Γ(ι) that satisfies distM(Γ(ι),Ξ(ι)) ≤ ε will in
this paper be referred to as an ε-approximation.

How to deal with inexact input

We can not typically expect that all input can be exactly represented, when given
to a general algorithm. Sometimes the inputs we want to use are solutions to
separate computational problems of their own. Given a computational problem
{Ξ,Ω,M,Λ}, a general algorithm Γ is able to read an input ι ∈ Ω though the
functions in the evaluation set Λ. Suppose that Λ = {fj}j∈β , where β is some
index set (which can be both finite or infinite). If, for instance, fj(ι) = π for
some j ∈ β, then fj(ι) can not be accessed exactly. Instead, we can use a
sequence fj,n(ι) : Ω→ D + iD, such that

‖{fj,n(ι)}j∈β − {fj(ι)}j∈β‖∞ ≤ 2−n, ∀ι ∈ Ω.

Here D is the set of dyadic rational numbers, that is, D = {a/2b : a, b ∈ N}.
Then, fj,n(ι) → fj(ι) as n → ∞, so we can instead get access to an
approximation of fj(ι) to the accuracy we need. This concept is formalized in
the definition of ∆1-information below.

Definition 2.1.4 (∆1-information). Let {Ξ,Ω,M,Λ} be a computational
problem with Λ = {fj}j∈β . Suppose that for each j ∈ β and n ∈ N, there exists
a function fj,n : Ω→ D + iD, and that

‖{fj,n(ι)}j∈β − {fj(ι)}j∈β‖∞ ≤ 2−n, ∀ι ∈ Ω. (2.5)

holds for all n ∈ N. Then we say that the set Λ̂ = {fj,n : j ∈ β, n ∈ N} provides
∆1-information for {Ξ,Ω,M,Λ}. We denote the family of all such sets Λ̂ by
L1(Λ).
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2.1. Preliminaries for the deterministic impossibility results

Remark 2.1.5. The reason the functions fj,n are mapped onto dyadic rationals,
is to allow the algorithms designed in this paper to be run on Turing machines
that operate with binary numbers (see definition 2.1.9). Turing machines, unlike
general algorithms, are only able to work with numbers with finite representation.
Since non-dyadic numbers do not have finite binary representations, we restrict
the output of the functions to D.

The definition of the general algorithm naturally also holds for computational
problems {Ξ,Ω,M, Λ̂} for a given Λ̂ ∈ L1(Λ). However, we are usually interested
in algorithms that that can be applied to {Ξ,Ω,M, Λ̂} for all possible choices
of Λ̂ ∈ L1(Λ). For this, we have the following definition.

Definition 2.1.6 (Computational problem with ∆1 information). Suppose
{Ξ,Ω,M,Λ} is a computational problem with Λ = {fj}j∈β . The corresponding
computational problem with ∆1-information is defined as

{Ξ,Ω,M,Λ}∆1 := {Ξ̃, Ω̃,M, Λ̃}

where
Ω̃ =

{
ι̃ = {(fj,1(ι), fj,2(ι), . . . )}j∈β : ι ∈ Ω and
fj,n : Ω→ D + iD satisfies (2.5) for all n ∈ N

} (2.6)

and Ξ̃(ι̃) = Ξ(ι), and Λ̃ = {f̃j,n}j∈β,n∈N where f̃j,n(ι̃) = fj,n(ι). Then for each
ι̃ ∈ Ω̃, there is a unique ι ∈ Ω such that ι̃ = {(fj,1(ι), fj,2(ι), . . . )}j∈β . We say
that ι ∈ Ω corresponds to ι̃ ∈ Ω̃.

By this definition, we can interpret Ω̃ as the family of all sequences that
approximate the inputs in Ω. Given a computational problem {Ξ,Ω,M,Λ}∆1 ,
a general algorithm must work for all inputs ι̃ ∈ Ω̃. In other words, it must
work for any sequence that approximates some ι ∈ Ω. In contrast, a general
algorithm for {Ξ,Ω,M, Λ̂}, where Λ̂ is defined as in definition 2.1.4, need only
work for that particular choice of ∆1-information.

Relation of the concepts to the Turing model

As mentioned earlier, we will use general algorithms to establish the general
impossibility results for the various computational problems. However, for any
results regarding the cases where satisfactory algorithms do exist, we need a
more explicit model of computation for which the computational complexity of
algorithms can be analyzed. In this paper, all such results are done for problems
{Ξ,Ω,M,Λ}∆1 = {Ξ̃, Ω̃,M, Λ̃}, using algorithms that can be executed by a
Turing machine (see [AB09; Ko91; Pap94] for a classical presentation of the
Turing model, and [Sip13] for a more in-depth introduction to the Turing
machine).

For our purposes, it suffices to think of a Turing machine as a control head
working on an infinite tape divided into cells, that each can contain only one
of a finite amount of symbols. The machine starts with the input written on
the tape (with some form of encoding for vectors and matrices, in our case).
As the machine starts, the control head can move along the tape, reading and
writing on the cells, until only the desired output remains on the tape and the
machine halts. The tape is infinite, so the control head may use as many cells
as needed to store information while the machine operates, and to write the
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2.1. Preliminaries for the deterministic impossibility results

final output on the tape. However, the input given to the machine must be of
finite length. The runtime of a Turing machine on a given input is the number
of steps the control head takes before the machine halts, where a step is defined
as the control head moving from one cell to the neighboring cell to its left or
right. The space complexity on a given input is the total number of cells the
control head reads or writes to during computation.
Remark 2.1.7 (Oracle tape providing ∆1-information to Turing machines). We
need to make clear exactly how ι̃ ∈ Ω̃ is given to an algorithm as input. In the
Turing model, we suppose that the index set β for Λ is countable, and that the
indices j ∈ β are integers, or otherwise encoded in a finite alphabet. A Turing
machine can access ι̃ ∈ Ω̃ through an oracle O that, upon input (j, n) ∈ β × N,
writes the unique finite binary string representing f̃j,n(ι̃) = fj,n(ι) ∈ D on a
separate tape called the oracle tape. The Turing machine can make a query
to the oracle at any time during the computation, at which point the oracle
takes over until it has written the unique binary string for fj,n(ι) on the oracle
tape. We do not specify how the oracle provides fj,n(ι), as we are interested in
algorithms that work for all sequences ι̃ approximating some ι ∈ Ω. We call a
Turing machine with access to an oracle an Oracle Turing machine. See [Ko91]
for a more in-depth explanation of oracle Turing machines.

Computational complexity in the Turing model

In the Turing model, the amount of space an algorithm uses is bounded by its
runtime. This is because the number of cells a Turing machine reads or writes to
can not be greater than the number of steps the control head takes. Therefore,
we need an exact definition of the runtime of an oracle Turing machine, to be
able to analyze the time and space complexity of the algorithms constructed in
chapters 3 and 4.

Definition 2.1.8 (Runtime of an algorithm in the Turing model). Given an
oracle Turing machine Γ for the problem {Ξ,Ω,M,Λ}∆1 = {Ξ̃, Ω̃,M, Λ̃} we
define the runtime of Γ on ι̃ ∈ Ω̃ by

RuntimeΓ(ι̃) = The number of steps performed by Γ before halting
+ the combined cost of all the calls to the oracle O for ι̃

(2.7)

where the cost of calling the oracle O for f̃j,n(ι̃) = fj,n(ι) is j + n.

Note that this definition inherently accounts for the cost of making a query
to, and reading the output of, the oracle. The following definition gives the
number of bits needed to represent a dyadic rational number in binary.

Definition 2.1.9 (Binary representation and size of a dyadic rational).
For a dyadic number d ∈ D, its binary representation is

d = ±sn · · · s1s0.t1t2 · · · tm

where m is called its precision. The bit size of d is m+ n+ 3. If w is a vector
of dyadic numbers, the bit size is defined as the sum of the bit sizes of the
components of w.

The following definition gives the number of bits needed to represent integers
and rational numbers.
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Definition 2.1.10 (Bit encoding length). For an integer n ∈ Z, the encoding
length is defined as

Len(n) = 1 + dlog2(|n|+ 1)e.

For a rational number a/b ∈ Q, where a and b > 0 are coprime integers1, the
encoding length is defined as Len(a/b) = Len(a) + Len(b). If w is a vector of
rational numbers, the encoding length is defined as the sum of the encoding
lengths of the components of w.

Remark 2.1.11 (Computing K correct digits). Consider the computational
problem for lasso which was defined on page 6. We will often discuss whether
an algorithm Γ can compute K correct digits for the computational problems
{Ξ,Ωm,N ,MN ,Λm,N}∆1 , where m,N ∈ N are the dimensions of the inputs
ι = (y,A) ∈ Rm × Rm×N . What is really meant by this statement, is whether
or not

distM(Γ(m,N, ι̃), Ξ̃(ι̃)) = inf
ξ∈Ξ̃(ι̃)

‖Γ(m,N, ι̃)− ξ‖q ≤ 10−K

for all ι̃ ∈ Ω̃m,N and all dimensions m,N ∈ N. Here, the algorithm Γ takes
the dimensions m,N ∈ N as input, and has access to ι̃ corresponding to an
ι ∈ Ωm,N though some oracle O. Moreover, ‖·‖q is the q-norm we use to measure
error, and q ∈ [1,∞]. Whenever this inequality is fulfilled, each component of
x̂ = Γ(m,N, ι̃) is at most 10−K away from the corresponding component of
ξ ∈ Ξ̃(ι̃). This means that all components of x̂ have at least K correct digits
after the decimal point, in base 10. The reason that we chose to count the
number of correct digits in base 10, and not the more natural base 2, is to
mimic the setup in [BHV].
Remark 2.1.12 (The complexity of an algorithm). While the runtime of an
algorithm Γ (in the Turing model) for a specific input ι̃ ∈ Ω̃ is given by definition
2.1.8, we are more interested in the worst-case runtime of Γ given any input.
We measure the overall time complexity of Γ in terms of the number of variables
in the input (given by its dimensions m and N), and the accuracy required on
the output. Above, the accuracy is stated in terms of the number of correct
digits K, but we shall later see cases where it is given by some error threshold
ε ≥ 0.

Breakdown epsilons

We now introduce the concept of the breakdown epsilons. For a given
computational problem, the breakdown epsilons provide lower bounds on the
accuracy attainable by general algorithms. There are two different versions with
slight, but important, differences. We call them the strong and weak breakdown
epsilon. The strong breakdown epsilon, defined below, can informally be
described as the largest ε ≥ 0 for which no algorithm can produce a solution
with accuracy better than ε.

Definition 2.1.13 (Strong breakdown epsilon). Let {Ξ,Ω,M,Λ} be a computa-
tional problem. The strong breakdown epsilon is defined by

εsB = sup{ε ≥ 0 : ∀Γ ∈ GA,∃ι ∈ Ω such that distM(Γ(ι),Ξ(ι)) > ε}.
1Two integers are coprime is their only mutual divisor is 1.
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On the other hand, the weak breakdown epsilon can informally be described
as the largest ε ≥ 0 for which all algorithms need to use an arbitrarily large
amount of input information to produce a solution with ε accuracy. To be
able to define the weak breakdown epsilon, we need the following concept of
the minimum amount of input information needed by an algorithm. In this
definition, Λ is assumed to be countable and enumerated by some index k ∈ N.

Definition 2.1.14 (Minimum amount of input information). Let {Ξ,Ω,M,Λ}
be a computational problem where Λ = {fk : k ∈ N, k ≤ |Λ|}, and let Γ be a
general algorithm. The minimum amount of input information for Γ and ι ∈ Ω
is defined by

TΓ(ι) := sup{m ∈ N : fm ∈ ΛΓ(ι)}.
Note that if Γ(ι) = NH, then the set ΛΓ(ι) may be infinite by definition 2.1.2.
In this case, TΓ(ι) =∞.

Definition 2.1.15 (Weak breakdown epsilon). Let {Ξ,Ω,M,Λ} be a computa-
tional problem where Λ = {fk : k ∈ N, k ≤ |Λ|}. The weak breakdown epsilon is
defined by

εwB = sup{ε ≥ 0 : ∀Γ ∈ GA and ∀M ∈ N,∃ι ∈ Ω such that
distM(Γ(ι),Ξ(ι)) > ε or TΓ(ι) > M}.

Note that by this definition, the weak breakdown epsilon is independent of
how we enumerate Λ.

At times, it will be convenient to have an alternative definition of the weak
breakdown epsilon for computational problems with with some Λ̂ ∈ L1(Λ) that
provides ∆1-information. In this case, the amount of input information needed
by an algorithm is more conveniently given by the input accuracy it requires.
The definition below formalizes this in terms of the number of correct digits
needed on the input.

Definition 2.1.16 (Number of correct ’digits’ required on the input). Suppose
Λ̂ = {fk,m : k ∈ β,m ∈ N} provides ∆1-information to the computational
problem {Ξ,Ω,M,Λ}. Let Γ be a general algorithm for {Ξ,Ω,M, Λ̂}. The
number of correct ’digits’ required on the input is given by

DΓ(ι) := sup{m ∈ N : ∃k ∈ β such that fk,m ∈ Λ̂Γ(ι)}

Consider a general algorithm Γ for a computational problem {Ξ,Ω,M, Λ̂}
like the one given in definition 2.1.16 above. Suppose DΓ(ιn)→∞ as n→∞
for some sequence {ιn}∞n=0 in Ω. Then, no matter what enumeration of fk,m ∈ Λ̂
is used to define TΓ, we have that TΓ(ιn)→∞ as n→∞ as well. If additionally
Λ is finite, then TΓ(ιn)→∞ as n→∞ for some sequence {ιn}∞n=0 in Ω implies
that DΓ(ιn)→∞.

This means that, for a computational problem {Ξ,Ω,M, Λ̂} where the
∆1-information is derived from a finite evaluation set Λ, we have

εwB = sup{ε ≥ 0 : ∀Γ ∈ GA and ∀M ∈ N,∃ι ∈ Ω such that
distM(Γ(ι),Ξ(ι)) > ε or DΓ(ι) > M}.

(2.8)

Remark 2.1.17 (Connection between accuracy of input and Turing runtime).
Let Γ be a Turing machine for the problem {Ξ,Ω,M,Λ}∆1 = {Ξ̃, Ω̃,M, Λ̃}.
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Then the number of correct ’digits’ required on the input ι̃ ∈ Ω̃ is given by
DΓ(ι̃) = sup{m ∈ N : ∃k ∈ β such that f̃k,m ∈ Λ̃Γ(ι)} = sup{m ∈ N : ∃k ∈
β such that fk,m ∈ Λ̂Γ(ι)}, where Λ̂ provides the particular ∆1-information
corresponding to ι̃. It follows from definition 2.1.8 that

RuntimeΓ(ι̃) ≥ DΓ(ι̃).

Consequently, if the weak breakdown epsilon as defined in (2.8) is greater
than some ε > 0, DΓ can be used to show that any Turing machine will have
arbitrarily high runtime when attempting to achieve ε accuracy. Note that this
is not unique to the Turing model, as any reasonable complexity model should
have a definition of the runtime of an algorithm such that the runtime is at
least as high as the number of digits read from the input (see remark 8.23 in
[BHV]).

2.2 Tools for proving the deterministic impossibility
theorems

In this section we present the essential tool we need to establish the deterministic
impossibility results. The tool is the following proposition, which will later be
the key to proving lower bounds for the strong and weak breakdown epsilons.
Its proof is a simplification of the proof of proposition 2.4.5, which will be stated
in the next section.

Proposition 2.2.1. Let {Ξ,Ω,M,Λ} be an arbitrary computational problem
with countable Λ = {fk : k ∈ N, k ≤ |Λ|}. Let {ι1n}∞n=1 and {ι2n}∞n=1 be two
sequences in Ω, and consider the following conditions.

(a) There exists sets S1, S2 ⊂M and κ > 0 such that
inf

x1∈S1, x2∈S2
dM(x1, x2) ≥ κ and Ξ(ι1n) ⊂ S1, Ξ(ι2n) ⊂ S2.

(b) For every k ≤ |Λ| there is a ck ∈ C such that |fk(ι1n) − ck| ≤ 1/4n and
|fk(ι2n)− ck| ≤ 1/4n for all n ∈ N .

(c) There is an ι0 ∈ Ω such that for every k ≤ |Λ|, (b) is satisfied with
ck = fk(ι0).

Depending of which of these conditions are fulfilled, there exists a Λ̂ ∈ L1(Λ)
such that the following holds for {Ξ,Ω,M, Λ̂}.

(i) εwB ≥ κ/2 if (a) - (b) are satisfied.

(ii) εsB ≥ κ/2 if (a) - (c) are satisfied.

Proof. We start by proving that if (a) and (b) are satisfied, then (i) holds. We
define a new sequence {ιn}∞n=1 in Ω by setting ι2n = ι1n+1 and ι2n−1 = ι2n+1.
In light of lemma 2.4.2 we can assume without loss of generality that
Ω = {ιn : n ≥ 1}. We want to construct a set Λ̂ ∈ L1(Λ) providing ∆1-
information for {Ξ,Ω,M,Λ} such that (i) holds. For positive integers m,n
and k ≤ |Λ|, let dn,mk ∈ Dm + iDm be such that |fk(ιn) − dn,mk | ≤ 2−m, and
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let cmk ∈ Dm + iDm be such that |cmk − ck| ≤ 2−m/
√

2. Then for k ≤ |Λ| and
m ∈ N , define the function fk,m : Ω→ Dm + iDm by

fk,m(ιn) =
{
dn,mk if 1 ≤ n ≤ m
cmk if n > m

∀ιn ∈ Ω. (2.9)

Let Λ̂ := {fk,m : k ≤ |Λ|,m ∈ N}. Then we have that for all n ≥ 1,

|ck − fk(ιn)| ≤ 4−(dn/2e+1) ≤ 2−(n+2)

by assumption (b) and our construction of {ιn}∞n=1. Noting that 2−(n+2) ≤
2−(m+3) for all m,n ∈ N with n > m, we get that

|fk,m(ιn)− fk(ιn)| = |cmk − fk(ιn)| ≤ |cmk − ck|+ |ck − fk(ι)|

≤ 2−m√
2

+ 2−(n+2)

≤ 2−m√
2

+ 2−(m+2)

= 2−m(1/
√

2 + 2−3) < 2−m,

for all n > m. For 1 ≤ n ≤ m, we also have

|fk,m(ιn)− fk(ιn)| = |dn,mk − fk(ιn)| ≤ 2−m,

by the definition of dn,mk . Thus Λ̂ provides ∆1-information for {Ξ,Ω,M,Λ} by
definition 2.1.4.

We will prove that εwB ≥ κ/2 for {Ξ,Ω,M, Λ̂} by contradiction. Therefore,
assume that εwB < κ/2. By (2.8) there exists a general algorithm Γ and some
M ∈ N such that

distM(Γ(ι),Ξ(ι)) ≤ εwB < κ/2 and DΓ(ι) ≤M, ∀ι ∈ Ω

In particular, we have DΓ(ιM+1) ≤ M , which implies that m ≤ M for all
fk,m ∈ Λ̂Γ(ιM+1). This and (2.9) gives fk,m(ιM+1) = cmk . By the same
argument, we also have fk,m(ιM+2) = cmk . But then Λ̂Γ(ιM+1) = Λ̂Γ(ιM+2) by
definition 2.1.2 (iii), which gives Γ(ιM+1) = Γ(ιM+2) by definition 2.1.2 (ii).
This means that

distM(Ξ(ιM+1),Ξ(ιM+2))
≤ distM(Γ(ιM+1),Ξ(ιM+1)) + distM(Γ(ιM+1),Ξ(ιM+2))
= distM(Γ(ιM+1),Ξ(ιM+1)) + distM(Γ(ιM+2),Ξ(ιM+2))
< κ.

(2.10)

By the construction of {ιn}∞n=1, we have that Ξ(ιM+1) ∈ S1 if and only if
Ξ(ιM+2) ∈ S2, where S1 and S2 are as in (a). Thus,

inf
x1∈S1, x2∈S2

dM(x1, x2) ≤ distM(Ξ(ιM+1),Ξ(ιM+2)) < κ

by (2.10). But this contradicts the assumption that condition (a) is satisfied.
We conclude that εwB ≥ κ/2 for {Ξ,Ω,M, Λ̂}.
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The proof that (a) - (c) implies εsB ≥ κ/2 for {Ξ,Ω,M, Λ̂} for some
Λ̂ ∈ L1(Λ) is very similar. Let {ιn}∞n=0 be defined as before for n ≥ 1, and let
ι0 = ι0 from condition (c). In light of lemma 2.4.2, we can assume without loss
of generality that Ω = {ιn : n ≥ 0}. Furthermore, for m,n ∈ N and k ≤ |Λ|
let dn,mk and cmk be defined as before. Then for k ≤ |Λ| and m ∈ N we define
fk,m : Ω→ Dm + iDm by

fk,m(ιn) =
{
dn,mk if 1 ≤ n ≤ m
cmk if n = 0 or n > m

∀ιn ∈ Ω. (2.11)

Let Λ̂ := {fk,m : k ≤ |Λ|,m ∈ N}. We already showed that |fk,m(ιn)−fk(ιn)| <
2−m whenever n ≥ 1 in the proof of (i). For n = 0, we also have

|fk,m(ι0)− fk(ι0)| = |cmk − ck| ≤ 2−m/
√

2 < 2−m.

Thus Λ̂ provides ∆1-information for {Ξ,Ω,M,Λ} by definition 2.1.4.
We once again argue by contradiction, so assume that εsB < κ/2. Then

there exists a general algorithm Γ such that distM(Γ(ι),Ξ(ι)) ≤ εsB < κ/2 for
all ι ∈ Ω. The bound on the distance function implies that this Γ always halts;
otherwise the distance would be ∞ by (2.3). Since Γ halts on all ι ∈ Ω, we have
that |Λ̂Γ(ι)| <∞ for all ι ∈ Ω by definition 2.1.2. Let n = |Λ̂Γ(ι0)| <∞, and
consider some fk,m ∈ Λ̂Γ(ι0). Then m ≤ n < n + 1 < n + 2. This and (2.11)
implies that fk,m(ι0) = fk,m(ιn+1) = fk,m(ιn+2) = cmk for all fk,m ∈ Λ̂Γ(ι0).
But then Λ̂Γ(ι0) = Λ̂Γ(ιn+1) and Λ̂Γ(ι0) = Λ̂Γ(ιn+2) by definition 2.1.2 (iii),
which gives Γ(ι0) = Γ(ιn+1) = Γ(ιn+2) by definition 2.1.2 (ii). As in equation
(2.10), this means that distM(Ξ(ιn+1),Ξ(ιn+2)) < κ. By the construction of
{ιn}∞n=0, we have that Ξ(ιn+1) ∈ S1 if and only if Ξ(ιn+2) ∈ S2, where S1 and
S2 are as in (a). Thus,

inf
x1∈S1, x2∈S2

dM(x1, x2) ≤ distM(Ξ(ιn+1),Ξ(ιn+2)) < κ.

But this contradicts the assumption that condition (a) is satisfied. We conclude
that εsB ≥ κ/2 for {Ξ,Ω,M, Λ̂}. �

2.3 Preliminaries for the randomized impossibility results

There are several modern methods of problem solving that depend on the
ability to make random decisions; for example Monte Carlo methods. There
is a built-in random number generator in most programming languages, for
this purpose. Randomized algorithms are also frequently used in machine
learning. It therefore makes sense to extend our theory to cover probabilistic
models of computation. Before introducing the randomized version of the
general algorithm, we give a brief description of the randomized version of the
Turing machine. A probabilistic Turing machine can be seen as a (standard)
Turing machine with the ability to make a so-called coin-flip. At each step in
the computation, the control head chooses between two possible next moves,
each with probability 1/2, depending on the outcome of the coin-flip. See
[AB09; Pap94; Sip13] for a more in-depth description of the probabilistic Turing
machine. The runtime of a probabilistic Turing machine on a given input, is
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the worst case number of steps the control head takes before the machine halts.
The space the machine uses on a given input, is the worst case total number
of cells used on the tape. Like before, we let probabilistic Turing machines for
computational problems with ∆1-information access the inputs ι̃ ∈ Ω̃ though
an oracle O (see remark 2.1.7).

The randomized general algorithm is, like the general algorithm, purposefully
made to be as general as possible, and encompasses all reasonable probabilistic
models of computation. This includes the Turing model, as a probabilistic
Turing machine can be seen as a special case of the randomized general algorithm
[BHV].

Definition 2.3.1 (Randomized general algorithm [BHV]). Given a computational
problem {Ξ,Ω,M,Λ} where Λ = {fk : k ∈ N, k ≤ |Λ|}, a randomized general
algorithm (RGA) is a collection X of general algorithms Γ : Ω→M∪ {NH},
a σ-algebra F on X, and a family of probability measures {Pι}ι∈Ω on F such
that:

(i) For each ι ∈ Ω, the mapping Γran
ι : (X,F)→ (M∪ {NH},B) defined by

Γran
ι (Γ) = Γ(ι) is a random variable. Here, B is the Borel σ-algebra on
M∪ {NH}.

(ii) For each n ∈ N and ι ∈ Ω, we have {Γ ∈ X : TΓ(ι) ≤ n} ∈ F

(iii) For all ι1, ι2 ∈ Ω and E ∈ F such that, for every Γ ∈ E and every
f ∈ ΛΓ(ι1), we have f(ι1) = f(ι2), it holds that Pι1(E) = Pι2(E).

As before, we shall with slight abuse of notation write RGA for the family of
all randomized general algorithms for a given computational problem. We refer
to the algorithms in RGA by Γran.

It is worth noting that condition (ii) of definition 2.3.1 above ensures that
the minimum amount of input information is a random variable. Specifically,
we can for each ι ∈ Ω define

TΓran(ι) : X → N ∪ {∞} defined by Γ 7→ TΓ(ι). (2.12)

Then TΓran(ι) is a valid random variable because of condition (ii).

Probabilistic breakdown epsilons

We can now define the probabilistic version of the strong breakdown epsilon.

Definition 2.3.2 (Probabilistic strong breakdown epsilon). Let {Ξ,Ω,M,Λ}
be a computational problem. The probabilistic strong breakdown epsilon
εsPB : [0, 1)→ R is defined by

εsPB(p) = sup{ε ≥ 0 : ∀Γran ∈ RGA ∃ι ∈ Ω s.t. Pι(distM(Γran
ι ,Ξ(ι)) > ε) > p},

where Γran
ι is as defined in definition 2.3.1(i).

The probabilistic strong breakdown epsilon of p can informally be described
as the largest ε ≥ 0 for which all randomized algorithms will fail to produce
a solution with ε accuracy with probability at least p, for at least one input.
Another way to think of the probabilistic strong breakdown epsilon is that it is
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the largest ε ≥ 0 for which no algorithm can produce an ε-approximation with
probability greater than 1− p for all inputs.

It turns out that the impossibility results for randomized algorithms differ
when we consider randomized general algorithms that are required to halt on
every input. Therefore, we introduce following definition of a halting randomized
general algorithm, and the corresponding halting probabilistic strong breakdown
epsilon.

Definition 2.3.3 (Halting randomized general algorithm [BHV]). A randomized
general algorithm Γran for a computational problem {Ξ,Ω,M,Λ} is called
halting randomized general algorithm (hRGA) if for all ι ∈ Ω, Pι(Γran

ι = NH) =
0.

As before, we write hRGA for the family of all halting randomized general
algorithms for a given computational problem. Below is the corresponding
strong breakdown epsilon for halting randomized general algorithms.

Definition 2.3.4 (Halting probabilistic strong breakdown epsilon). Let
{Ξ,Ω,M,Λ} be a computational problem. The halting probabilistic strong
breakdown epsilon εsPhB : [0, 1)→ R is defined by

εsPhB(p) = sup{ε ≥ 0 : ∀Γran ∈ hRGA ∃ι ∈ Ω s.t.
Pι(distM(Γran

ι ,Ξ(ι)) > ε) > p},

where Γran
ι is as defined in definition 2.3.1(i).

Lastly, we have the probabilistic version of the weak breakdown epsilon. As
in the deterministic case, it involves the minimum amount of input information
an algorithm needs to produce a solution.

Definition 2.3.5 (Probabilistic weak breakdown epsilon). Let {Ξ,Ω,M,Λ} be a
computational problem with Λ = {fk : k ∈ N, k ≤ |Λ|}. The probabilistic weak
breakdown epsilon εwPB : [0, 1)→ R is defined by

εwPB(p) = sup{ε ≥ 0 : ∀Γran ∈ RGA and M ∈ N, ∃ι ∈ Ω s.t.
Pι(distM(Γran

ι ,Ξ(ι)) > ε or TΓran(ι) > M) > p},

where Γran
ι is as defined in definition 2.3.1(i), and TΓran(ι) is as defined in (2.12).

Both the probabilistic weak breakdown epsilon and the (deterministic)
weak breakdown epsilon describes a weaker form of failure than their strong
counterparts. The strong breakdown epsilons describe the barriers beyond
which ε-approximations are non-computable (with a certain probability p in
the probabilistic case). In contrast, the weak breakdown epsilons describe the
barriers beyond which ε-approximations may be computable by algorithms,
however any such algorithm will need an arbitrarily large amount of input
information (for a certain probability p in the probabilistic case).
Remark 2.3.6. There are several so-called impossibility statements that can
be made. In particular, for a computational problem {Ξ,Ω,M,Λ} with ∆1-
information, we have the following statements for fixed ε > 0 and p ∈ [0, 1):

(i) There exists a Λ̂ ∈ L1(Λ) such that for the computational problem
{Ξ,Ω,M, Λ̂}, we have εsPB(p) ≥ ε
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(ii) When considering the computational problem {Ξ,Ω,M,Λ}∆1 , we have
that εsPB(p) ≥ ε

We will show statements of type (i), which says that there is a particular
choice of Λ̂ that provides ∆1-information for the computational problem, such
that no algorithm, given this specific ∆1-information, is able to produce an
ε-approximation for all inputs in Ω. Note that (i) implies (ii). Furthermore, the
probabilistic strong breakdown epsilon in the statements can be replaced with
any of the other breakdown epsilons we have defined so far, and we still have
that (i) implies (ii).

2.4 Tools for proving the randomized impossibility
theorems

As we did in the deterministic case, we will now present the main tool we
need to establish lower bounds on the various probabilistic breakdown epsilons.
This tool comes in the form of proposition 2.4.5, which can be seen as the
"big brother" of proposition 2.2.1. However, we first give the following useful
proposition which summarizes the relationships between the various breakdown
epsilons that have been introduced so far.

Proposition 2.4.1. Let {Ξ,Ω,M,Λ} be a computational problem with Λ = {fk :
k ∈ N, k ≤ |Λ|}. Suppose p, q ∈ [0, 1) with p ≤ q. Then

εsPB(q) ≤ εsPB(p) ≤ εsB , (2.13)
εwPB(q) ≤ εwPB(p) ≤ εwB , (2.14)
εsPB(p) ≤ εsPhB(p), (2.15)
εsPB(p) ≤ εwPB(p), (2.16)

εsB ≤ εwB . (2.17)

Proof. First note that the last three inequalities follow directly from the
definitions of the involved breakdown epsilons. In particular, (2.15) and (2.16)
follow from definitions 2.3.2, 2.3.4 and 2.3.5, and (2.17) follows from definitions
2.1.13 and 2.1.15.

For (2.13), we have that εsPB(q) ≤ εsPB(p) by definition 2.3.2. Now, suppose
for contradiction that εsPB(p) > εsB. Then we can write εsPB(p) > ε > εsB
for some ε > 0. By definition 2.3.2 of the probabilistic strong breakdown
epsilon, this means that for all Γran ∈ RGA there exists an ι ∈ Ω such that
Pι(distM(Γran

ι ,Ξ(ι)) > ε) > p. On the other hand, ε > εsB implies that there
exists an Γ ∈ GA for which distM(Γ(ι),Ξ(ι)) ≤ ε for all inputs ι ∈ Ω. However,
any general algorithm Γ can be seen as a randomized general algorithm. An
RGA corresponding to Γ has X = {Γ} and Pι(distM(Γ(ι),Ξ(ι)) > ε) = 0 for
all ι ∈ Ω. But this contradicts our earlier statement of εsPB(p) > ε. Therefore,
εsPB(p) ≤ εsB must hold instead.

The proof of (2.14) is identical, except it relies on definitions 2.1.15 and
2.3.5. �

The three following lemmas will be useful in proving proposition 2.4.5. The
first lemma states that if any breakdown epsilons can be established for a subset
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of the input Ω of a computational problem, then the corresponding breakdown
epsilons for the computational problem can not be any smaller.

Lemma 2.4.2. Suppose we have computational problems {Ξ,Ω,M,Λ} and
{Ξ,Ω′,M,Λ′}, where Ω′ ⊂ Ω and Λ′ = {f |Ω′ : f ∈ Λ}. Then any of the
breakdown epsilons for {Ξ,Ω,M,Λ} is at least as large as the corresponding
breakdown epsilon for {Ξ,Ω′,M,Λ′}.

Proof. We prove the lemma for the probabilistic strong breakdown epsilon
εsPB. The proof is analogous for εsPhB and εwPB, and follows for the deterministic
breakdown epsilons εsB and εwB because general algorithms can be written as
randomized general algorithms.

Suppose {Ξ,Ω′,M,Λ′} has εsPB
′(p) > 0 for some p ∈ [0, 1), but that

{Ξ,Ω,M,Λ} has εsPB(p) < εsPB
′(p). By definition 2.3.2 of the probabilistic

strong breakdown epsilon, there exists some Γran for {Ξ,Ω,M,Λ}, consisting of
a collection X of general algorithms, a sigma algebra F on X, and probability
measures {Pι}ι∈Ω, such that for all ι ∈ Ω we have Pι(distM(Γran

ι ,Ξ(ι)) > ε) ≤ p
for εsPB(p) < ε < εsPB

′(p). Let Γran′ be a randomized general algorithm for
{Ξ,Ω′,M,Λ′} consisting of a collectionX ′ of general algorithms, a sigma algebra
F ′ on X ′, and probability measures {P′ι}ι∈Ω′ , and let X ′ = {Γ|Ω′ : Γ ∈ X},
F ′ = F , and P′ι = Pι for all ι ∈ Ω′. Then we have that for all ι ∈ Ω′,
Pι(distM(Γran

ι
′,Ξ(ι)) > ε) ≤ p for εsPB(p) < ε < εsPB

′(p), as well. However, this
contradicts the fact that {Ξ,Ω′,M,Λ′} has probabilistic strong breakdown
epsilon εsPB

′(p). We conclude that if {Ξ,Ω′,M,Λ′} has probabilistic strong
breakdown epsilon εsPB

′(p) > 0 for some p ∈ [0, 1), then {Ξ,Ω,M,Λ} has
εsPB(p) ≥ εsPB

′(p). �

The following lemma states that condition (iii) of definition 2.3.1 of the
randomized general algorithm holds no matter what enumeration of the
evaluation set Λ is chosen.

Lemma 2.4.3. Let Γran be an RGA for a computational problem {Ξ,Ω,M,Λ}
with countable Λ = {fj : j ≤ |Λ|}. For X, F , and {Pι}ι∈Ω (as defined in
Definition 2.3.1), we have the following.

(i) For each ι ∈ Ω and f ∈ Λ, we have {Γ ∈ X : f ∈ ΛΓ(ι)} ∈ F .

(ii) If θ : N → N is a bijection and n ∈ N, then {Γ ∈ X : ΛΓ(ι) ⊂
{fθ(1), . . . , fθ(n)}} ∈ F . In particular, this means that Γran is an RGA
for {Ξ,Ω,M,Λ} independently of the enumeration of the evaluation set
Λ.

Proof. For arbitrary ι ∈ Ω and fj ∈ Λ, we have that

{Γ ∈ X : fj ∈ ΛΓ(ι)} = {Γ ∈ X : TΓ(ι) = j}
= {Γ ∈ X : TΓ(ι) ≤ j} \ {Γ ∈ X : TΓ(ι) ≤ j − 1}.

Furthermore, {Γ ∈ X : TΓ(ι) ≤ n} ∈ F for all n ∈ N by definition 2.3.1(ii). But
then, {Γ ∈ X : TΓ(ι) ≤ j} \ {Γ ∈ X : TΓ(ι) ≤ j − 1} ∈ F since F is a σ-algebra.
This establishes (i) of the lemma.
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For (ii), let θ : N → N be any bijection, and let n ∈ N. Define
S = {θ(j) : j ∈ N, j ≤ n}. Then we have that

{Γ ∈ X : ΛΓ(ι) ⊂ {fθ(1), . . . , fθ(n)}} = X \
⋃

m∈N\S

{Γ ∈ X : fm ∈ ΛΓ(ι)} ∈ F

because {Γ ∈ X : fm ∈ ΛΓ(ι)} ∈ F by (i), and F is a σ-algebra. �

This last lemma shows that the minimum number of digits required on the
input DΓran(ι) is a random variable, just like the minimum amount of input
information TΓran(ι).

Lemma 2.4.4. Let {Ξ,Ω,M,Λ} be a computational problem with countable Λ,
and suppose we have some Λ̂ = {fk,m : k ≤ |Λ|,m ∈ N} ∈ L1(Λ) and an
RGA Γran for {Ξ,Ω,M, Λ̂} (with X and F as in definition 2.3.1). Then for
each ι ∈ Ω, the function DΓran(ι) : X → N ∪ {∞} defined by Γ 7→ DΓ(ι) is
F-measurable.

Proof. Let n ∈ N be arbitrary, and consider the set S = {(k,m) ∈ N2 : k ≤
|Λ|,m ≤ n} of indices for the elements fk,m ∈ Λ̂. Recalling definition 2.1.16 of
DΓ, we have that for each ι ∈ Ω,

{Γ ∈ X : DΓ(ι) ≤ n} = {Γ ∈ X : Λ̂Γ(ι) ⊂ {fk,m : (k,m) ∈ S}}

= X \
⋃

(k,m)∈N2\S

{Γ ∈ X : fk,m ∈ Λ̂Γ(ι)} ∈ F , (2.18)

because F is a σ-algebra, and {Γ ∈ X : fk,m ∈ Λ̂Γ(ι)} ∈ F by lemma 2.4.3(i).
But then we have that for all n ∈ N, {Γ ∈ X : DΓ(ι) = n} = {Γ ∈ X : DΓ(ι) ≤
n} \ {Γ ∈ X : DΓ(ι) ≤ n− 1} ∈ F , and furthermore

{Γ ∈ X : DΓ(ι) =∞} = X \
⋃
n∈N
{Γ ∈ X : DΓ(ι) ≤ n} ∈ F .

This means that for any subset A ⊂ N ∪ {∞}

(DΓran(ι))−1(A) = {Γ ∈ X : DΓ(ι) ∈ A}

=
⋃
a∈A
{Γ ∈ X : DΓ(ι) = a} ∈ F .

Thus DΓran(ι) is a measurable function. �

We are now ready to state and prove the main result of this section. This
proposition is a partial replication of proposition 9.5 in [BHV]. Furthermore,
proposition 2.2.1 follows directly from this proposition, by proposition 2.4.1.

Proposition 2.4.5. Let {Ξ,Ω,M,Λ} be an arbitrary computational problem
with countable Λ = {fk : k ∈ N, k ≤ |Λ|}. Let {ι1n}∞n=1 and {ι2n}∞n=1 be two
sequences in Ω, and consider the following conditions.

(a) There exists sets S1, S2 ⊂M and κ > 0 such that
inf

x1∈S1, x2∈S2
dM(x1, x2) ≥ κ and Ξ(ι1n) ⊂ S1, Ξ(ι2n) ⊂ S2.
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(b) For every k ≤ |Λ| there is a ck ∈ C such that |fk(ι1n) − ck| ≤ 1/4n and
|fk(ι2n)− ck| ≤ 1/4n for all n ∈ N .

(c) There is an ι0 ∈ Ω such that for every k ≤ |Λ|, (b) is satisfied with
ck = fk(ι0).

Depending of which of these conditions are fulfilled, there exists a Λ̂ ∈ L1(Λ)
such that the following holds for {Ξ,Ω,M, Λ̂}.

(i) εwB ≥ εwPB(p) ≥ κ/2 for p ∈ [0, 1/2) if (a) - (b) are satisfied.

(ii) εsB ≥ εsPhB(p) ≥ κ/2 for p ∈ [0, 1/2) and εsPB(p) ≥ κ/2 for p ∈ [0, 1/3) if
(a) - (c) are satisfied.

The proof of this proposition will be separated in two parts, for each of the
results (i) and (ii).

Proof of 2.4.5 (i). Assume conditions (a) and (b) hold. Just as in the proof of
proposition 2.2.1, we define a new sequence {ιn}∞n=1 in Ω by setting ι2n = ι1n+1
and ι2n−1 = ι2n+1. In light of lemma 2.4.2, we can assume without loss of
generality that Ω = {ιn : n ≥ 1}. Form,n ∈ N and k ≤ |Λ|, let dn,mk ∈ Dm+iDm
be such that |fk(ιn) − dn,mk | ≤ 2−m, and let cmk ∈ Dm + iDm be such that
|cmk − ck| ≤ 2−m/

√
2. For k ≤ |Λ| and m ∈ N , we define the function

fk,m : Ω→ Dm + iDm by

fk,m(ιn) =
{
dn,mk if 1 ≤ n ≤ m
cmk if n > m

∀ιn ∈ Ω. (2.19)

Let Λ̂ := {fk,m : k ≤ |Λ|,m ∈ N}. It was shown in the proof of proposition 2.2.1
that this Λ̂ provides ∆1-information for {Ξ,Ω,M,Λ}.

We will prove that εwPB(p) ≥ κ/2 for all p ∈ [0, 1/2) for the computational
problem {Ξ,Ω,M, Λ̂} by contradiction. Therefore, assume that εwPB(p) < κ/2
for some p ∈ [0, 1/2). By definition 2.3.5 of the probabilistic weak breakdown
epsilon, this means that there exists some Γran ∈ RGA and some N ∈ N such
that

Pι(distM(Γran
ι ,Ξ(ι)) ≥ κ/2 or TΓran(ι) > N) ≤ p, (2.20)

for all inputs ι ∈ Ω. Recall from definition 2.3.1 that this Γran consists of a
collection X of general algorithms, a sigma-algebra F on X, and a family of
probability measures {Pι}ι∈Ω on F . We will work with this Γran and N ∈ N.

Notice first that by definitions 2.1.14 and 2.1.16 of TΓ and DΓ, there must
exist some M ∈ N such that the conditional statement

DΓ(ι) > M =⇒ TΓ(ι) > N (2.21)

holds for all Γ ∈ X and all ι ∈ Ω. Using this M ∈ N, define the sets

F1 := {Γ ∈ X : distM(Γ(ιM+1),Ξ(ιM+1)) ≥ κ/2 or DΓ(ιM+1) > M},
F2 := {Γ ∈ X : distM(Γ(ιM+2),Ξ(ιM+2)) ≥ κ/2 or DΓ(ιM+2) > M},
F̂2 := {Γ ∈ X : distM(Γ(ιM+2),Ξ(ιM+2)) ≥ κ/2}, and
F̊2 := {Γ ∈ X : DΓ(ιM+2) > M}.
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By the continuity of the metric dM, condition (i) of definition 2.3.1, and lemma
2.4.4, we have that these sets are measurable. Furthermore, for j = 1, 2 we have

PιM+j (Fj) = PιM+j ({Γ ∈ X : distM(Γ(ιM+j),Ξ(ιM+j)) ≥ κ/2
or DΓ(ιM+j) > M})

= PιM+j ({Γ ∈ X : distM(Γ(ιM+j),Ξ(ιM+j)) ≥ κ/2
or TΓ(ιM+j) > N})

≤ p

by (2.20) and (2.21).
We will use the three following statements to arrive at a contradiction that

completes the proof of (i).

1. X = F1 ∪ F̂2

2. PιM+1(F̂2 ∩ F̊ c2 ) = PιM+2(F̂2 ∩ F̊ c2 )

3. PιM+1(F̊2) = PιM+2(F̊2)

To prove statement 1, consider an arbitrary Γ ∈ X. Suppose that
Γ 6∈ F1 and Γ 6∈ F̂2. Then we have that distM(Γ(ιM+1),Ξ(ιM+1)) < κ/2,
distM(Γ(ιM+2),Ξ(ιM+2)) < κ/2, and DΓ(ιM+1) ≤ M . The last inequality
implies that m ≤ M for all fk,m ∈ Λ̂Γ(ιM+1). But then fm,k(ιM+1) =
fm,k(ιM+2) = cmk by (2.19). This implies that Λ̂(ιM+1) = Λ̂(ιM+2) by condition
(iii) of definition 2.1.2, which again implies that Γ(ιM+1) = Γ(ιM+2) by condition
(ii) of definition 2.1.2. But then we have that

inf
x1∈Ξ(ιM+1)
x2∈Ξ(ιM+2)

dM(x1, x2) = distM(Ξ(ιM+1),Ξ(ιM+2))

≤ distM(Γ(ιM+1),Ξ(ιM+1))
+ distM(Γ(ιM+1),Ξ(ιM+2))

= distM(Γ(ιM+1),Ξ(ιM+1))
+ distM(Γ(ιM+2),Ξ(ιM+2))

< κ

which contradicts assumption (a). Therefore, we must have that Γ ∈ F1 ∪ F̂2,
and since Γ was arbitrary, we conclude that X ⊆ F1∪ F̂2. However, F1∪ F̂2 ⊆ X
by their definitions. Thus X = F1 ∪ F̂2.

To prove statement 2 and 3, we will show that PιM+1(E∩F̊ c2 ) = PιM+2(E∩F̊ c2 )
for all E ∈ F . If E ∩ F̊ c2 = ∅, the equality holds because both sides are
zero. Therefore, we only need to prove the equality for E ∈ F such that
E ∩ F̊ c2 6= ∅. We have that for all Γ ∈ E ∩ F̊ c2 and fk,m ∈ Λ̂Γ(ιM+2), m ≤ M

because F̊2 := {Γ ∈ X : DΓ(ιM+2) > M}. Together with (2.9), this implies
that fk,m(ιM+1) = fk,m(ιM+2) = cmk . By definition 2.3.1 (iii), this means
PιM+1(E ∩ F̊ c2 ) = PιM+2(E ∩ F̊ c2 ) as claimed. Statement 2 follows by noting
that F̂2 ∈ F since F̂2 is measureable. Statement 3 follows by using E = X ∈ F
and observing that PιM+1(F̊2) = 1 − PιM+1(F̊ c2 ) = 1 − PιM+1(X ∩ F̊ c2 ) =
1− PιM+2(X ∩ F̊ c2 ) = 1− PιM+2(F̊ c2 ) = PιM+2(F̊2).
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We can now show that our assumption that εwPB(p) < κ/2 for some p ∈ [0, 1/2)
leads to a contradiction. We have that

1 = PιM+1(X) = PιM+1(F1 ∪ F̂2)
≤ PιM+1(F1) + PιM+1(F̂2)
= PιM+1(F1) + PιM+1(F̂2 ∩ F̊ c2 ) + PιM+1(F̂2 ∩ F̊2)
= PιM+1(F1) + PιM+2(F̂2 ∩ F̊ c2 ) + PιM+1(F̂2 ∩ F̊2)
≤ PιM+1(F1) + PιM+2(F̂2 ∩ F̊ c2 ) + PιM+1(F̊2)
= PιM+1(F1) + PιM+2(F̂2 ∩ F̊ c2 ) + PιM+2(F̊2)
≤ PιM+1(F1) + PιM+2(F2)
≤ p+ p < 1

where we have used statements 1, 2, and 3, the addition law of probability,
as well as the facts that (F̂2 ∩ F̊ c2 ) ∪ F̊2 = F2 and p < 1/2. We conclude that
εwPB(p) ≥ κ/2 for all p ∈ [0, 1/2). By proposition 2.4.1, we have εwB ≥ εwPB(p),
and statement (i) follows.

�

Proof of 2.4.5 (ii). Assume conditions (a) through (c) hold. Let {ιn}∞n=1 be
defined as before, and let ι0 = ι0 from condition (c). By lemma 2.4.2, we can
assume without loss of generality that Ω = {ιn : n ≥ 0}. For m,n ∈ N and
k ≤ |Λ|, let dn,mk and cmk be defined as above as well. Then for k ≤ |Λ| and
m ∈ N we define fk,m : Ω→ Dm + iDm by

fk,m(ιn) =
{
dn,mk if 1 ≤ n ≤ m
cmk if n = 0 or n > m

∀ιn ∈ Ω. (2.22)

Let Λ̂ := {fk,m : k ≤ |Λ|,m ∈ N}. It was shown in the proof of 2.2.1 (ii) that
this Λ̂ provides ∆1-information for the computational problem {Ξ,Ω,M,Λ}.

We start by proving that for {Ξ,Ω,M, Λ̂}, we have εsPB(p) ≥ κ/2 for
p ∈ [0, 1/3). Assume that εsPB(p) < κ/2 for some p ∈ [0, 1/3) for contradiction.
By definition 2.3.2 of the probabilistic strong breakdown epsilon, this means
that there exists some Γran ∈ RGA such that Pι(distM (Γran

ι ,Ξ(ι)) ≥ κ/2) ≤ p
for all ι ∈ Ω. Let Fn := {Γ ∈ X : distM(Γ(ιn),Ξ(ιn)) ≥ κ/2} for all n ∈ N∪{0}.
The Fn sets are measureable by the continuity of the metric dM. Then we have
that

Pιn(Fn) ≤ p for all n ∈ N ∪ {0}. (2.23)

Define Gn(ι) := {Γ ∈ X : DΓ(ι) ≤ n} for ι ∈ Ω and n ∈ N ∪ {0}, and
notice that Gn(ι) ⊂ Gn+1(ι). By lemma 2.4.4, the sets Gn(ι) are measureable.
Furthermore,

X \
∞⋃
n=1
Gn(ι0) = X \

∞⋃
n=1
{Γ ∈ X : DΓ(ι0) ≤ n}

= {Γ ∈ X : DΓ(ι0) =∞}
= {Γ ∈ X : |Λ̂Γ(ι0)| =∞}
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= {Γ ∈ X : Γ(ι0) = NH}
⊆ {Γ ∈ X : distM(Γ(ι0),Ξ(ι0)) =∞}
⊆ F 0

by definitions 2.1.16 and 2.1.2(i), as well as equation (2.3). Consequently,

Pι0
(
X \

∞⋃
n=1
Gn(ι0)

)
≤ p (2.24)

by (2.23). For all Γ ∈ Gn(ι0), we have that fk,m ∈ Λ̂(ι0) implies m ≤ n by
definition 2.1.16 of DΓ. This means that fk,m(ι0) = fk,m(ιn+1) = fk,m(ιn+2) =
cmk for all fk,m ∈ Λ̂(ι0) by (2.22). But then Λ̂(ι0) = Λ̂(ιn+1) = Λ̂(ιn+2) by
definition 2.1.2 (iii), which gives Γ(ι0) = Γ(ιn+1) = Γ(ιn+2) by definition 2.1.2
(ii). Consequently,

Γ(ιn+1) = Γ(ιn+2) for all Γ ∈ Gn(ι0). (2.25)

We will use the following statement to complete the proof of (ii); There exists
an n ∈ N such that:

1. Pι0(Gn(ι0)) > 2p

2. Gn(ι0) ⊂ Fn+1 ∪ Fn+2

3. Pι0(Fn+1 ∩ Gn(ι0)) = Pιn+1(Fn+1 ∩ Gn(ι0))

4. Pι0(Fn+2 ∩ Gn(ι0)) = Pιn+2(Fn+2 ∩ Gn(ι0))

Statement 1 is proved by contradiction. Suppose that Pι0(Gn(ι0)) ≤ 2p for
all n ∈ N, and recall that Gn(ι0) ⊂ Gn+1(ι0) for all n. Then by continuity of
measures [Lin18, Proposition 7.1.5],

Pι0
(
X \

∞⋃
n=1
Gn(ι0)

)
= 1− Pι0

( ∞⋃
n=1
Gn(ι0)

)
= 1− lim

n→∞
Pι0(Gn(ι0)) ≥ 1− 2p.

However, this implies that p ≥ 1− 2p by (2.24), which is a contradiction since
p ∈ [0, 1/3). Therefore, there exists some n ∈ N for which Pι0(Gn(ι0)) > 2p.
This establishes statement 1.

For statement 2, note that if Γ ∈ Gn(ι0) but Γ 6∈ Fn+1 ∪ Fn+2, then

distM(Ξ(ιn+1),Ξ(ιn+2)) ≤ distM(Γ(ιn+1),Ξ(ιn+1)) + distM(Γ(ιn+1),Ξ(ιn+2))
= distM(Γ(ιn+1),Ξ(ιn+1)) + distM(Γ(ιn+2),Ξ(ιn+2))
< κ,

by (2.25). By the construction of {ιn}∞n=1, we have that Ξ(ιn+1) ∈ S1 if and
only if Ξ(ιn+2) ∈ S2, where S1 and S2 are as in condition (a). Thus

inf
x1∈S1, x2∈S2

dM(x1, x2) ≤ distM(Ξ(ιn+1),Ξ(ιn+2)) < κ,
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but this contradicts the assumption that condition (a) is satisfied. Therefore
we have that any Γ ∈ Gn(ι0) also satisfies Γ ∈ Fn+1 ∪ Fn+2.

For statement 3, note that for any Γ ∈ Gn(ι0)∩Fn+1, we have fk,m(ιn+1) =
fk,m(ι0) for all fk,m ∈ Λ̂(ι0) by (2.25). Furthermore, Gn(ι0) ∩ Fn+1 ∈ F
since both Gn(ι0) and Fn+1 are measureable. But then Pι0(Gn(ι0) ∩ Fn+1) =
Pιn+1(Gn(ι0) ∩ Fn+1) by definition 2.3.1 (iii). The proof of statement 4 is
identical.

We can now show that our assumption that εsPB(p) < κ/2 for some p ∈ [0, 1/3)
leads to a contradiction. We have that

2p < Pι0(Gn(ι0)) = Pι0(Gn(ι0) ∩ (Fn+1 ∪ Fn+2))
= Pι0

(
(Gn(ι0) ∩ Fn+1) ∪ (Gn(ι0) ∩ Fn+2)

)
≤ Pι0(Gn(ι0) ∩ Fn+1) + Pι0(Gn(ι0) ∩ Fn+2)
= Pιn+1(Gn(ι0) ∩ Fn+1) + Pιn+2(Gn(ι0) ∩ Fn+2)
≤ Pιn+1(Fn+1) + Pιn+2(Fn+2)
≤ 2p

(2.26)

where we have used statement 1, 2, 3, and 4, the addition law of probability,
and (2.23). This is clearly a contradiction, and therefore we must have that
εsPB(p) ≥ κ/2 for all p ∈ [0, 1/3).

It now remains to show that εsB ≥ εsPhB(p) ≥ κ/2 for all p ∈ [0, 1/2) for the
same {Ξ,Ω,M, Λ̂}. Note that by proposition 2.4.1, εsB ≥ εsPhB(p). Therefore
we need only establish εsPhB(p) ≥ κ/2.

Assume for contradiction that εsPhB(p) < κ/2 for some p ∈ [0, 1/2). By
definition 2.3.4 of the halting probabilistic strong breakdown epsilon, this means
that there exists some Γran ∈ hRGA such that Pι(distM(Γran

ι ,Ξ(ι)) ≥ κ/2) ≤ p
for all ι ∈ Ω. Here, Γran is a halting randomized general algorithm consisting of
a collection X and a sigma-algebra F , as well as probability measures {Pι}ι∈Ω
as defined in definition 2.3.1. Furthermore, Pι(Γran

ι = NH) = 0 for all ι ∈ Ω.
Define Fn := {Γ ∈ X : distM(Γ(ιn),Ξ(ιn)) ≥ κ/2} for all n ∈ N ∪ {0} and
Gn(ι) := {Γ ∈ X : DΓ(ι) ≤ n} for ι ∈ Ω and n ∈ N ∪ {0} as before. Then we
have that

Pιn(Fn) ≤ p for all n ∈ N ∪ {0}. (2.27)

and

Γ(ιn+1) = Γ(ιn+2) for all Γ ∈ Gn(ι). (2.28)

by the same arguments used to establish (2.23) and (2.24). Moreover,

X \
∞⋃
n=1
Gn(ι0) = X \

∞⋃
n=1
{Γ ∈ X : DΓ(ι0) ≤ n}

= {Γ ∈ X : DΓ(ι0) =∞}
= {Γ ∈ X : |Λ̂Γ(ι0)| =∞}
= {Γ ∈ X : Γ(ι0) = NH}
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so instead of (2.24), we get

Pι0
(
X \

∞⋃
n=1
Gn(ι0)

)
= Pι0({Γ ∈ X : Γ(ι0) = NH}) (2.29)

= Pι0({Γran
ι0 = NH}) = 0. (2.30)

Suppose that Pι0(Gn(ι0)) ≤ 2p for all n ∈ N. Then by continuity of measures
[Lin18, Proposition 7.1.5],

0 = Pι0
(
X \

∞⋃
n=1
Gn(ι0)

)
= 1− Pι0

( ∞⋃
n=1
Gn(ι0)

)
= 1− lim

n→∞
Pι0(Gn(ι0)) ≥ 1− 2p.

because Gn(ι0) ⊂ Gn+1(ι0) for all n ∈ N ∪ {0}. Since this is a contradiction, we
have that there exists some n ∈ N for which Pι0(Gn(ι0)) < 2p. Thus statement 1
holds for this Γran as well. Furthermore, statement 2, 3 and 4 hold by the exact
same arguments as before. This means that we can derive the contradiction
in (2.26) by the exact same steps. We conclude that εsPhB(p) ≥ κ/2 for all
p ∈ [0, 1/2). �
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CHAPTER 3

Deterministic computational
barriers for lasso

3.1 A practical example

Consider the following lasso problem

argmin
x∈RN

1
2m‖Ãx− y‖

2
2 + λ‖x‖1 (3.1)

for m = 3, N = 2, λ ∈ (0, 1/
√

3], where y =
(
1/
√

2 −1/
√

2 0
)>, and

A =

 1√
2 − α

1√
2

− 1√
2 − α − 1√

2
2α 0

 (3.2)

for α > 0, and Ã is the standardized matrix for A. We want to compute a
solution to this problem using Matlab’s lasso-function, and compare it to
the true solution given by lemma 3.3.1, which is stated in the next section.
The lasso-function standardizes the input matrix by centering and scaling the
columns so they have mean zero and norm

√
m. Therefore, we can write

Ã =
(
a1 − ā11m · · · aN − āN1m

)
D

where āi = 1
m

∑m
j=1(ai)j and D is the unique diagonal matrix such that the

columns of Ã have norm
√
m.

The lasso-function will by default standardize the so-called "design matrix"
(A in our case) before fitting the model, and applies the regularization on x on
the standardized scale. The estimated minimizer is returned on the original
scale, however. Given the A and y as defined above as input, lasso should return
Dx∗, where x∗ is an estimate of the true minimizer of (3.1). Table 3.1 shows
the result for decreasing values of α. The column labelled ’Warning’ indicates
whether the lasso function issued a warning after execution or not. If a warning
was issued, then Matlab met some sort of problem during the execution of the
lasso-function. We see that lasso fails to compute a minimizer to (3.1) accurately.
Moreover, the ’Warning’ parameter does not reliably indicate whether the result
is trustworthy or not. More often than not, no warning was issued even when
the output was highly inaccurate.
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3.1. A practical example

What is happening here is not that Matlab’s lasso-function is implemented
incorrectly. Rather, this is the manifestation of a deeper problem with the
computability of lasso itself. Table 3.1 shows an interesting phenomenon where
lasso is able to accurately approximate the true solution for the larger values of
α, but completely fails at this task as α gets close to zero.

Default

α Error Runtime Warning
2−1 2 · 10−16 < 0.01s 0
2−7 0.68 < 0.01s 0
2−15 1.17 < 0.01s 0
2−20 1.17 < 0.01s 0
2−24 1.17 < 0.01s 0
2−26 1.17 < 0.01s 0
2−28 1.17 < 0.01s 0
2−30 1.17 < 0.01s 0

’RelTol’ = εmach

α Error Runtime Warning
2−1 2 · 10−16 < 0.01s 0
2−7 6 · 10−16 0.02s 0
2−15 1.17 0.27s 1
2−20 1.17 0.28s 1
2−24 1.17 0.27s 1
2−26 1.17 0.27s 1
2−28 1.17 < 0.01s 0
2−30 1.17 < 0.01s 0

’RelTol’ = εmach, ’MaxIter’ = ε−1
mach

α Error Runtime Warning
2−1 2 · 10−16 < 0.01s 0
2−7 6 · 10−16 0.02s 0
2−15 1 · 10−11 1522.7s 0
2−20 no output > 12h 0
2−24 no output > 12h 0
2−26 no output > 12h 0
2−28 1.17 < 0.01s 0
2−30 1.17 < 0.01s 0

Table 3.1: Evaluating the performance of the lasso-function when applied to
(3.1) with λ = 0.1. The first table shows the results using default settings.
The middle and last tables show the results when changing the tolerance and
maximum number of iterations allowed.
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3.2. Computational barriers in terms of number of correct digits

3.2 Computational barriers in terms of number of correct
digits

The phenomenon demonstrated in section 3.1 is a result of theorem 3.2.1 listed
below, which can be considered an addendum to theorem 3.3 in [BHV]. Given
an λ ∈ (0, 3/5], consider the lasso problem

argmin
x∈RN

1
2m‖Ãx− y‖

2
2 + λ‖x‖1 (3.3)

for y ∈ Rm and A ∈ Rm×N , where Ã is the unique standardized version of A.
Theorem 3.2.1 says that, for any integer K ≥ 2, there exists an input set Ω for
(3.3) such that no algorithm can compute K correct decimal digits of the true
solution for all the inputs in Ω. There is an algorithm that can compute K − 1
digits for all the inputs in Ω, however any such algorithm will require arbitrary
precision of the inputs, and therefore arbitrarily long runtime. Finally, there
does exist an algorithm that has polynomial time and space complexity, that
can compute K − 2 digits for all the inputs in Ω.

The theorem is proved by construction of an input set Ω that gives rise
to the aforementioned situation. However, the construction method makes it
clear that the resulting Ω is only one of infinitely many input sets that exhibit
similar behaviour. The matrices A ∈ Rm×N appearing in the input set Ω that
will be constructed in this paper, all satisfy m > N ≥ 2. In contrast, the input
set constructed in the proof of Theorem 3.3 in [BHV] use matrices A ∈ Rm×N
with m < N , and the result holds for lasso where A is not standardized.

Theorem 3.2.1. Consider the solution map Ξ to the lasso problem (3.3) with
λ ∈ (0, 3/5] (and in the Turing case, let λ be rational as well). Let the metric
onMN be induced by the ‖·‖q-norm, for an arbitrary q ∈ [1,∞]. Let K ≥ 1 be
an integer. There exists a set of inputs

Ω =
⋃

m,N∈N
m>N≥2

Ωm,N such that Ξ: Ωm,N ⇒MN (3.4)

as well as ∆1-information Λ̂m,N ∈ L1(Λm,N ) such that

(i) For {Ξ,Ωm,N ,MN , Λ̂m,N} with m,N ∈ N, m > N ≥ 2, we have
εsB > 10−K .

(ii) If K ≥ 2, we additionally have that εwB > 10−(K−1) for the same
{Ξ,Ωm,N ,MN , Λ̂m,N}, with m,N ∈ N and m > N ≥ 2. However,
when considering the computational problems {Ξ,Ωm,N ,MN ,Λm,N}∆1 =
{Ξ̃, Ω̃m,N ,MN , Λ̃m,N}, there exists an algorithm Γ that takes the dimen-
sions m,N and any ι̃ ∈ Ω̃m,N as input, and satisfies

distM(Γ(m,N, ι̃), Ξ̃(ι̃)) ≤ 10−(K−1).

(iii) If K ≥ 2, we also have that there exists an algorithm Γ that takes the
dimensions m,N and any ι̃ ∈ Ω̃m,N as input, and satisfies

distM(Γ(m,N, ι̃), Ξ̃(ι̃)) ≤ 10−(K−2).
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3.3. Constructing the input set used to prove theorem 3.2.1

Furthermore, in the Turing model, the runtime and space complexity of
the Turing machine Γ are bounded by a polynomial in nvar = mN +m,
and only a constant number of digits is read from the oracle tape.

The proof consists in constructing two types of lasso input sets: One that
will induce a non-zero strong breakdown epsilon, and one that will induce a
non-zero weak breakdown epsilon. For convenience we will call the members
of the first set "strong" inputs, and the ones of the second set "weak" inputs.
The union of these two sets across all valid input dimensions m,N results in
the input set Ω in (3.4). In the next section, we define the inputs ι that make
up Ω. The complete proof of this theorem is given in section 3.4.
Remark 3.2.2. In theorem 3.3 in [BHV], the size of the inputs ι = (y,A) ∈ Ωm,N
are bounded in the sense that ‖y‖∞ ≤ 2 and ‖A‖max ≤ 1. Furthermore,
the condition of the mapping Ξ, and the condition number of AA∗ are both
bounded. (See §8.1 as well as proposition 9.32 in [BHV]). Therefore, the
phenomenon in theorem 3.2.1 is independent of whether or not the problem
{Ξ,Ω} is well-conditioned. The same bounds can not be claimed for the input
set Ω constructed in this paper, but this is merely a consequence of the initial
choice of y and A in the experiment in section 3.1, which this Ω is based on.

3.3 Constructing the input set used to prove theorem 3.2.1

Inspired by the experiment conducted in section 3.1, we construct a family of
matrices A(α, β,m,N) ∈ Rm×N and a family of vectors yA(yc,m) ∈ Rm, where
α, β ≥ 0 and yc > 0, and m > N ≥ 2. Let

A(α, β,m,N) =

 1√
2 − α

1√
2 − β

− 1√
2 − α − 1√

2 − β
2α 2β

⊕ ( IN−2
0m−N−1×N−2

)
(3.5)

yA(yc,m) = yc

(
1√
2 − 1√

2 0 · · · 0
)>

. (3.6)

When there is no ambiguity, we will write A = A(α, β,m,N) and yA = yA(yc,m)
for the sake of brevity. Notice that setting m = 3, N = 2, β = 0, and yc = 1
yields the matrix (3.2) used in our Matlab experiment.

The following lemma gives the exact solution to the problem 3.1.

Lemma 3.3.1. Let m,N ∈ N with m > N ≥ 2, and let A = A(α, β,m,N) and
y = yA(yc,m) be as in (3.5) and (3.6), respectively. Let λ ∈ (0, yc/

√
m], and

suppose that at least one of α, β is equal to zero. Then if

(w0, w1) ∈ argmin
(x0,x1)∈R×RN

1
2m‖Ãx

1 − x01m − y‖22 + λ‖x1‖1, (3.7)

where Ã is the standardized matrix such that its columns satisfy ãi = (ai −
āi1m)di and D = diag(d1, · · · , dN ) is the unique diagonal matrix such that the
ãi have norm

√
m, we have that w0 = 0 and

Dw1 =


{

(yc − λ
√
m)e1

}
if α = 0 < β{

(yc − λ
√
m)e2

}
if β = 0 < α{

(yc − λ
√
m)(te1 + (1− t)e2) : t ∈ [0, 1]

}
if α = β = 0

29



3.3. Constructing the input set used to prove theorem 3.2.1

Proof. Notice first that ā1 = ā2 = 0 and ā3 = · · · = āN = 1
m by (3.5). By the

definition of the diagonal matrix D, we have that

d1 =
√
m/‖a1 − ā11m‖2 =

√
m

[(
1√
2
− α

)2
+
(
− 1√

2
− α

)2
+ 4α2

]−1/2

=
√
m(6α2 + 1)−1/2

and

d2 =
√
m/‖a2 − ā21m‖2 =

√
m

[(
1√
2
− β

)2
+
(
− 1√

2
− β

)2
+ 4β2

]−1/2

=
√
m(6β2 + 1)−1/2.

and

di =
√
m/‖ai − āi1m‖2 =

√
m
[
(1− 1/m)2 + (m− 1)(−1/m)2]−1/2

= m(m− 1)−1/2

for 3 ≤ i ≤ N . In particular, we have that d1 ≤
√
m with equality if and only

if α = 0, and similarly d2 ≤
√
m with equality if and only if β = 0.

Next, write Ã = (A − Ā)D by defining Ā =
(
ā11m · · · āN1m

)
. Then

we have that (3.7) is equivalent to

(w0, w1) ∈ argmin
(x0,x1)∈R×RN

1
2m‖(A− Ā)Dx1 − x01m − y‖22 + λ‖x1‖1,

which holds if and only if

(ŵ0, ŵ1) ∈ argmin
(x0,x1)∈R×RN

1
2m‖(A− Ā)x1 − x01m − y‖22 + λ‖D−1x1‖1,

for ŵ1 = Dw1. Furthermore, if we let a = (ā1 · · · āN ), then

‖(A− Ā)x1−x01m − y‖22 = ‖Ax1 − Āx1 − x01m − y‖22

=
[(

1√
2
− α

)
x1

1 +
(

1√
2
− β

)
x1

2 − 〈a, x1〉 − x0 − yc
1√
2

]2

+
[(
− 1√

2
− α

)
x1

1 +
(
− 1√

2
− β

)
x1

2 − 〈a, x1〉 − x0 + yc
1√
2

]2

+ (2αx1
1 + 2βx1

2 − 〈a, x1〉 − x0)2

+ (x1
3 − 〈a, x1〉 − x0)2 + · · ·+ (x1

N − 〈a, x1〉 − x0)2

=
[

1√
2
(
x1

1 + x1
2 − yc

)
−
(
αx1

1 + βx1
2 + 〈a, x1〉+ x0)]2

+
[

1√
2
(
x1

1 + x1
2 − yc

)
+
(
αx1

1 + βx1
2 + 〈a, x1〉+ x0)]2

+ (2αx1
1 + 2βx1

2 − 〈a, x1〉 − x0)2

+ (x1
3 − 〈a, x1〉 − x0)2 + · · ·+ (x1

N − 〈a, x1〉 − x0)2
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3.3. Constructing the input set used to prove theorem 3.2.1

= (x1
1 + x1

2 − yc)2 + 2(αx1
1 + βx1

2 + 〈a, x1〉+ x0)2

+ (2αx1
1 + 2βx1

2 − 〈a, x1〉 − x0)2

+ (x1
3 − 〈a, x1〉 − x0)2 + · · ·+ (x1

N − 〈a, x1〉 − x0)2

= (x1
1 + x1

2 − yc)2 + 6(αx1
1 + βx1

2)2 + 3(〈a, x1〉+ x0)2

+ (x1
3 − 〈a, x1〉 − x0)2 + · · ·+ (x1

N − 〈a, x1〉 − x0)2

Thus, we have that
1

2m‖(A− Ā)x1−x01m − y‖22 + λ‖D−1x1‖1

≥ 1
2m‖(A− Ā)x1 − x01m − y‖22 + λ

2∑
j=1

∣∣∣x1
j

dj

∣∣∣
≥ 1

2m‖(A− Ā)x1 − x01m − y‖22 + λ

2∑
j=1

x1
j

dj

≥ 1
2m‖(A− Ā)x1 − x01m − y‖22 + λ√

m
(x1

1 + x1
2)

= 1
2m

(
(x1

1 + x1
2 − yc)2 + 6(αx1

1 + βx1
2)2 + 3(〈a, x1〉+ x0)2

+ (x1
3 − 〈a, x1〉 − x0)2 + · · ·+ (x1

N − 〈a, x1〉 − x0)2
)

+ λ√
m

(x1
1 + x1

2)

≥ 1
2m (x1

1 + x1
2 − yc)2 + λ√

m
(x1

1 + x1
2)

= 1
2m

(
(x1

1 + x1
2 − yc)2 + 2λ

√
m(x1

1 + x1
2)
)

= 1
2m

(
(x1

1 + x1
2)2 − 2

(
yc − λ

√
m
)
(x1

1 + x1
2) + y2

c

)
= 1

2m

((
x1

1 + x1
2 −

(
yc − λ

√
m
))2 − (yc − λ√m)2 + y2

c

)
≥ 1

2m

(
y2
c −

(
yc − λ

√
m
)2)

Examining the inequalities in this calculation, we see that the first inequality
is an equality if and only if x1

3 = · · · = x1
N = 0. The second inequality is an

equality if both x1
1 and x1

2 are non-negative. The third inequality is an equality
if and only if x1

1 = 0 whenever β = 0 < α, and x1
2 = 0 whenever α = 0 < β. If

α = β = 0, it is always an equality. The fourth inequality is an equality only if,
in addition to the above, 〈a, x1〉+ x0 = 0. However, since 〈a, x1〉 = 0 whenever
x1

3 = · · · = x1
N = 0, it suffices to require that x0 = 0. The last inequality is an

equality if and only if x1
1 + x1

2 = yc − λ
√
m. Notice that yc − λ

√
m ≥ 0 since

λ ∈ (0, yc/
√
m], so this does not contradict the requirement that x1

1 and x1
2

should be non-negative.
Any minimizer (ŵ0, ŵ1) must satisfy these conditions, and thus we have

that ŵ0 = 0, and ŵ1 =
(
yc − λ

√
m
)
e1 if α = 0 < β and ŵ1 =

(
yc − λ

√
m
)
e2 if

β = 0 < α. In the case where α = β = 0, we get

ŵ1 ∈
{
t
(
yc − λ

√
m
)
e1 + (1− t)

(
yc − λ

√
m
)
e2 : t ∈ [0, 1]

}
.
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3.3. Constructing the input set used to prove theorem 3.2.1

This proves the lemma. �

We are now ready to construct the input set that will be used to prove
theorem 3.2.1. For a given λ ∈ (0, 3/5] and natural numbers K ≥ 1, and
m > N ≥ 2, let

yK(m) := yA(4 · 10−K + λ
√
m,m), and (3.8)

Ωsm,N,K := {(yK(m), A(α, β,m,N)) : (α, β) ∈ L} (3.9)

where
L := {[0, 1/4]× {0} ∪ {0} × [0, 1/4]}, (3.10)

Similarly, if K ≥ 2, let

Ωwm,N,K := {(yK−1(m), A(α, β,m,N)) : (α, β) ∈ L \ {z}}. (3.11)

where z = (0, 0). If K = 1, we let Ωw
m,N,K := ∅. The superscripts s and w

are used to note that the input sets will be used to show results connected
to the strong breakdown epsilons and weak breakdown epsilons, respectively.
For convenience, we call the inputs in Ωw

m,N,K "weak" inputs, and the inputs
in Ωs

m,N,K "strong" inputs. Now, for each N ≥ 2 and m > N , we define the
fixed-dimension input set for a given K ∈ N as

Ωm,N = Ωsm,N,K ∪ Ωwm,N,K (3.12)

Lastly, we define the combined input set as the union of the fixed-dimension
input sets:

Ω =
⋃

m,N∈N
m>N≥2

Ωm,N (3.13)

We now consider the lasso problem (3.3) for the inputs ι = (y,A) ∈ Ω.
By lemma 3.3.1 we have that Ξ(ι) ⊂ {4 · 10−K+1e1, 4 · 10−K+1e2} if ι ∈
Ωw
m,N,K for any N < m ≤ 2. Likewise, we have that Ξ(ι) ⊂ {4 · 10−K(te1 +

(1 − t)e2) : t ∈ [0, 1]} if ι ∈ Ωs
m,N,K for any N < m ≤ 2. Figures 3.1 and 3.2

visualize the solutions.
Notice that for weak inputs, it is easy to construct an algorithm that outputs

a solution that has less than 10−K+2 error. Indeed, simply outputting an xN
corresponding to any point within the intersection of the blue circles in figure 3.1
will do. However, for a solution that has less than 10−K+1 error, the algorithm
needs to determine which of α or β is smaller. Since α and β may have infinite
representations, determining which of them is smaller will in the worst case
scenario take an infinite amount of input information. This is what induces a
lower bound on the weak breakdown epsilon.

Similarly, it is easy to construct an algorithm that outputs a solution with
less than 10−K+1 error for strong inputs. As before it suffices to output any
xN corresponding to a point within the intersection of the blue circles in figure
3.2. However, for a solution with less than 10−K error, the algorithm needs
to determine if one of α or β is smaller. But this is an impossible task, since
the problem of determining if α = β or not is undecidable, even for general
algorithms. This is what induces a lower bound on the strong breakdown
epsilon.

The following lemmas give definite proof of the lower bounds on the
breakdown epsilons for the strong input sets and weak inputs sets.
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3.3. Constructing the input set used to prove theorem 3.2.1

Figure 3.1: Graph of the solutions to the "weak" inputs along the first two
dimensions. Ξ(ι) is 4 · 10−K+1e1 if α < β, and 4 · 10−K+1e2 if β < α. The red
circles show the area within which the distance to the true solutions is less than
10−K+1. The blue circles show the area within which the distance to the true
solutions is less than 10−K+2. In this example, distances are measured in the
‖·‖2-norm, and we assume that K ≥ 2.

Lemma 3.3.2. Let k,m,N ∈ N with m > N ≥ 2 and k ≥ 1. Consider the
computational problem {Ξ,Ωsm,N,k,MN ,Λm,N}, where Ξ is the solution map to
the lasso problem (3.3), the input set Ωsm,N,k is as defined in (3.9), and the metric
on MN is induced by ‖·‖q for some q ∈ [1,∞]. Then there exists a Λ̂m,N ∈
L1(Λm,N ) such that, for the computational problem {Ξ,Ωs

m,N,k,MN , Λ̂m,N},
we have εsB ≥ 21+1/q · 10−k, and in particular, εsB > 10−k.

Proof. The proof consists of constructing two input sequences {ι1n}∞n=1, {ι2n}∞n=1
and one input ι0 in Ωs

m,N,k, as well as two sets S1, S2 ⊂ RN , that satisfy the
conditions (a) - (c) of proposition 2.2.1. By the proposition, we will get the
desired lower bound on the strong breakdown epsilon.

For the given k ≥ 1 and m > N ≥ 2, let ι0 = (yk(m), A(0, 0,m,N)) and

ι1n = (yk(m), A(0, 2−1 · 4−n,m,N))
ι2n = (yk(m), A(2−1 · 4−n, 0,m,N)).

For ease of reading, let A0 = A(0, 0,m,N), A1,n = A(0, 2−1 · 4−n,m,N) and
A2,n = A(2−1 · 4−n, 0,m,N). Let S1 = {4 · 10−ke1} and S2 = {4 · 10−ke2}. We
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3.3. Constructing the input set used to prove theorem 3.2.1

Figure 3.2: Graph of the solutions to the "strong" inputs along the first two
dimensions. Ξ(ι) is 4 · 10−Ke1 if α < β, and 4 · 10−Ke2 if β < α. If α = β, Ξ(ι)
consists of the points on the line between and including these two points. The
red circles show the area within which the distance to the true solutions is less
than 10−K . The blue circles show the area within which the distance to the
true solutions is less than 10−K+1. In this example, distances are measured in
the ‖·‖2-norm, and we assume that K ≥ 1.

have that
inf

x1∈S1, x2∈S2
‖x1 − x2‖q = ‖4 · 10−ke1 − 4 · 10−ke2‖q

= (2(4 · 10−k)q)1/q

= 22+1/q · 10−k

and by lemma 3.3.1 we have

Ξ(ι1n) = Ξ((yk(m), A(0, 2−1 · 4−n,m,N)) = 4 · 10−ke1 ∈ S1

Ξ(ι2n) = Ξ((yk(m), A(2−1 · 4−n, 0,m,N)) = 4 · 10−ke2 ∈ S2

for all n ∈ N. So condition (a) of proposition 2.2.1 is satisfied. Next, we have
that for any f ∈ Λm,N

|f(ι1n)− f(ι0)| = |f((yk(m), A1,n))− f((yk(m), A0))|
≤ max{‖A1,n −A0‖max, ‖yk(m)− yk(m)‖∞}
= ‖A1,n −A0‖max = 4−n

and by the same steps, we get |f(ι2n) − f(ι0)| ≤ 4−n. So condition (b) of
proposition 2.2.1 is satisfied with f(ι0) for all f ∈ Λm,N . Since ι0 ∈ Ωs

m,N,k,
condition (c) is satisfied as well. By proposition 2.2.1 (ii), we conclude that
εsB ≥ 21+1/q · 10−k. In particular, we have that εsB > 10−k. �
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Lemma 3.3.3. Let k,m,N ∈ N with m > N ≥ 2 and k ≥ 2. Consider
the computational problem {Ξ,Ωw

m,N,k,MN ,Λm,N}, where Ξ is the solution
map to the lasso problem (3.3), the input set Ωw

m,N,k is as defined in (3.11),
and the metric on MN is induced by ‖·‖q for some q ∈ [1,∞]. Then
there exists a Λ̂m,N ∈ L1(Λm,N ) such that, for the computational problem
{Ξ,Ωw

m,N,k,MN , Λ̂m,N}, we have εwB ≥ 21+1/q · 10−k+1, and in particular,
εwB > 10−k+1.

Proof. The proof is very similar to the proof of Lemma 3.3.2 above. For the
given k,m,N ∈ N, let ι0 = (yk−1(m), A(0, 0,m,N)) and

ι1n = (yk−1(m), A(0, 2−1 · 4−n,m,N))
ι2n = (yk−1(m), A(2−1 · 4−n, 0,m,N)).

Let A0 = A(0, 0,m,N), A1,n = A(0, 2−1 · 4−n,m,N) and A2,n = A(2−1 ·
4−n, 0,m,N) as before. Finally, let S1 = {4·10−k+1e1} and S2 = {4·10−k+1e2}.
We have that

inf
x1∈S1, x2∈S2

‖x1 − x2‖q = ‖4 · 10−k+1e1 − 4 · 10−k+1e2‖q

= (2(4 · 10−k+1)q)1/q

= 22+1/q · 10−k+1

and by lemma 3.3.1 we have

Ξ(ι1n) = Ξ((yk−1(m), A(0, 2−1 · 4−n,m,N)) = 4 · 10−k+1e1 ∈ S1

Ξ(ι2n) = Ξ((yk−1(m), A(2−1 · 4−n, 0,m,N)) = 4 · 10−k+1e2 ∈ S2

for all n ∈ N. Next, we have that for any f ∈ Λm,N

|f(ι1n)− f(ι0)| = |f((yk−1(m), A1,n))− f((yk−1(m), A0))|
≤ max{‖A1,n −A0‖max, ‖yk−1(m)− yk−1(m)‖∞}
= ‖A1,n −A0‖max = 4−n

and by the same steps, we get |f(ι2n)− f(ι0)| ≤ 4−n. So conditions (a) and (b)
of proposition 2.2.1 are satisfied, and we conclude that εwB ≥ 21+1/q · 10−k+1.
In particular, εwB > 10−k+1. �

3.4 Proof of theorem 3.2.1

We now have the tools necessary to prove theorem 3.2.1. We separate the proof
into three subsections, for each of the results (i) - (iii).

Proof of theorem 3.2.1 (i)

Consider the fixed dimensional problem {Ξ,Ωm,N ,MN ,Λm,N} where Ξ is the
solution map to the lasso problem (3.3), and Ωm,N = Ωs

m,N,K ∪ Ωwm,N,K as in
(3.9) and (3.11). Lemma 3.3.2 establishes the existence of a

Λ̂sm,N = {fsj,n : j ≤ nvar, n ∈ N} ∈ L1(Λm,N )
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such that for {Ξ,Ωsm,N,K ,MN , Λ̂sm,N} we have εsB > 10−K . Similarly, if K ≥ 2,
lemma 3.3.3 establishes the existence of a

Λ̂wm,N = {fwj,n : j ≤ nvar, n ∈ N} ∈ L1(Λm,N )

such that for {Ξ,Ωwm,N,K ,MN , Λ̂wm,N} we have εwB > 10−(K−1).
Now, define Λ̂m,N := {fj,n : j ≤ nvar, n ∈ N} where

fj,n =
{
fsj,n(ι) if ι ∈ Ωsm,N,K
fwj,n(ι) if ι ∈ Ωwm,N,K

(3.14)

for j ≤ nvar and n ∈ N. Since Λ̂sm,N and Λ̂wm,N provide ∆1-information for
{Ξ,Ωs

m,N,K ,MN ,Λsm,N} and {Ξ,Ωw
m,N,K ,MN ,Λwm,N}, respectively, we have

that Λ̂m,N provides ∆1-information for {Ξ,Ωm,N ,MN ,Λm,N}. Furthermore,
Ωsm,N,K ,Ωwm,N,K ⊂ Ωm,N , and

Λ̂sm,N = {f �Ωs
m,N,K

: f ∈ Λ̂m,N}

Λ̂wm,N = {f �Ωw
m,N,K

: f ∈ Λ̂m,N}.

By lemma 2.4.2, this implies that any breakdown epsilons for
{Ξ,Ωm,N ,MN , Λ̂m,N} are at least as large as the corresponding breakdown
epsilons for {Ξ,Ωsm,N,K ,MN , Λ̂sm,N} and {Ξ,Ωwm,N,K ,MN , Λ̂wm,N}. Therefore,
we have that

εsB > 10−K , and
εwB > 10−(K−1) if K ≥ 2

for {Ξ,Ωm,N ,MN , Λ̂m,N}, which establishes (i) as well as the first part of (ii)
of theorem 3.2.1.

Proof of theorem 3.2.1 (ii)

Consider {Ξ,Ωm,N ,MN , Λ̂m,N} where Ξ is the solution map to the lasso
problem (3.3), and Ωm,N = Ωsm,N,K ∪Ωwm,N,K as in (3.9) and (3.11). We already
showed that εwB > 10−(K−1) for this computational problem in the proof of 3.2.1
(i) above. It remains to show the existence of a general algorithm that returns
K − 1 correct digits on all inputs of the problems {Ξ,Ωm,N ,MN ,Λm,N}∆1 =
{Ξ̃, Ω̃m,N ,MN , Λ̃m,N}, for all m,N ∈ N with m > N ≥ 2. Specifically, we
want to construct an algorithm Γ that, given m,N and any ι̃ ∈ Ω̃m,N , provides
an output that satisfies distM(Γ(m,N, ι̃), Ξ̃(ι̃)) ≤ 10−(K−1).

To this end, we fix ι̃ ∈ Ω̃m,N and write ι̃ = ({y(n)
j }∞n=0, {A

(n)
j,k }∞n=0)j,k which

corresponds to an ι = (y,A) ∈ Ωm,N . Call the algorithm Deterministic K-1 digit
algorithm. We need two so-called subroutines in this algorithm: One subroutine
that can identify whether ι̃ corresponds to an ι in Ωs

m,N,K or Ωw
m,N,K , and

one subroutine we can call upon if the latter is true (that is, if ι̃ corresponds
to an ι ∈ Ωw

m,N,K). Call these subroutines IdentifyStrongOrWeak and Weak,
respectively.
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IdentifyStrongOrWeak
Inputs: The dimensions m,N .
Oracles: Ovec providing access to the components y(n)

j of an input ι̃.
Output: Either ’InputStrong’ or ’InputWeak’.
Procedure:

1. Compute w1, w2 such that w1 ≈ 1√
2 and w2 ≈

√
m√
2 to 4K bits of

precision.

2. Compute t0 ≈ 4 · 10−Kw1 + λw2 and t1 ≈ 4 · 10−(K−1)w1 + λw2 to
4K bits of precision.

3. Use Ovec to read y′1 := y
(4K)
1 .

4. If y′1 ≤ t0 + 3 · 2−4K , output ’InputStrong’ and terminate. Else if
y′1 ≥ t1 − 3 · 2−4K , output ’InputWeak’ and terminate.

We need to prove that this subroutine correctly identifies whether ι̃ corresponds
to an ι in Ωs

m,N,K (’InputStrong) or Ωw
m,N,K (’InputWeak’). If ι ∈ Ωs

m,N,K ,
then we have

y1 =
(

4 · 10−K + λ
√
m
) 1√

2
= 4 · 10−K 1√

2
+ λ

√
m√
2

= 4 · 10−K
( 1√

2
− w1

)
+ λ
(√m√

2
− w2

)
+ 4 · 10−Kw1 + λw2

≤ 4 · 10−K · 2−4K + λ2−4K + t0 + 2−4K

= 2−4K(4 · 10−K + λ) + t0 + 2−4K

≤ 2 · 2−4K + t0,

where we have used that |w1 − 1/
√

2| ≤ 2−4K , |w2 −
√
m/
√

2| ≤ 2−4K ,
|t0− (4 ·10−Kw1 +λw2)| ≤ 2−4K , λ ≤ 3/5, and K ≥ 1. Thus y′1 ≤ y1 + 2−4K ≤
t0 + 3 · 2−4K , and the subroutine outputs ’InputStrong’ as it should.

If instead ι ∈ Ωw
m,N,K , then we have that K ≥ 2, since Ωw

m,N,1 = ∅ by
definition. Hence,

y1 =
(

4 · 10−(K−1) + λ
√
m
) 1√

2
= 4 · 10−(K−1) 1√

2
+ λ

√
m√
2

= 4 · 10−(K−1)w1 + λw2 − 4 · 10−(K−1)
(
w1 −

1√
2

)
− λ
(
w2 −

√
m√
2

)
≥ 4 · 10−(K−1)w1 + λw2 − 4 · 10−(K−1) · 2−4K − λ · 2−4K

≥ t1 − 2−4K − 2−4K(4 · 10−(K−1) + λ)
≥ t1 − 3 · 2−4K ,

where we have again used that |w1 − 1/
√

2| ≤ 2−4K , |w2 −
√
m/
√

2| ≤ 2−4K ,
|t1 − (4 · 10−(K−1)w1 + λw2)| ≤ 2−4K , and λ ≤ 3/5. Thus y′1 ≥ y1 − 2−4K ≥
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t1−3·2−4K , and the subroutine outputs ’InputWeak’ as long as y′1 ≤ t0+3·2−4K

is not satisfied. We see that this is indeed the case. Using the fact that
2−4K < 5

8 · 10−K , we get

y′1 ≥ t1 − 3 · 2−4K

≥ 4 · 10−K+1w1 + λw2 − 2−4K − 3 · 2−4K

= 4 · 10−Kw1 + λw2 + 36 · 10−Kw1 − 4 · 2−4K

≥ t0 − 2−4K + 36 · 10−Kw1 − 4 · 2−4K

≥ t0 + 36 · 10−K(1/
√

2− 2−4K)− 5 · 2−4K

= t0 + 36√
2

10−K − 2−4K(36 · 10−K + 5)

> t0 + 36√
2

10−K − 5
8 · 10−K(36 · 10−K + 5)

= t0 +
(

36√
2
− 5

8(36 · 10−K + 5)
)

10−K

> t0 +
(

36√
2
− 5

8

(36
10 + 5

))
10−K

> t0 + 35
8 · 10−K

> t0 + 3 · 2−4K .

We conclude that the subroutine IdentifyStrongOrWeak correctly identifies the
cases ’InputStrong’ and ’InputWeak’.

It is also worth noticing that the Turing runtime of this subroutine is
polynomial in log(m). Let us look at the runtime of each of the steps:

1. In step 1 of the subroutine, we can use the Newton-Raphson iteration
to compute

√
1/2 and

√
m/2 to 4K bits of precision as in [Mul05,

p. 92-93]. Moreover, this can be done in polynomial time. Indeed, by
using the Newton-Raphson iteration, division and square-root evaluation
has the same complexity as multiplication; and for two b-bit numbers,
multiplication can be done in O(b log(b)) time. Consequently, the runtime
for calculating w1 ≈

√
1/2 to 4K bits of precision is polynomial in 4K,

and the runtime for calculating w2 ≈
√
m/2 to 4K bits of precision is

polynomial in 4K and Len(m). However, O(4K) = O(1) since K is
assumed to be fixed. We conclude that step 1 of the subroutine has an
overall runtime polynomial in log(m), as Len(m) = O(log(m)).

2. In step 2 of the subroutine, t0 and t1 are computed by finitely many
arithmetic operations on fractions whose bit encoding lengths are bounded
by polynomials in Len(10−K), Len(λ), Len(w1) and Len(w2). As noted
before, K and λ ∈ Q are fixed, and Len(w1) is constant. However, Len(w2)
is bounded by its runtime, that is, a polynomial in log(m). So the overall
complexity of step 2 is also O(log(m)).

3. The call to Ovec in step 3 has cost O(K) = O(1), which is constant.
However, the cost of reading y′1 = y

(4K)
1 corresponds to its bit size, which

by definition 2.1.9 is bounded by O(log(m)).
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4. Lastly, the bit sizes of t0, t1 and y′1 are all bounded by a polynomial in
log(m), since they are computed in O(log(m)) time. This means that
the comparisons in step 4 can be done in O(log(m)) time. The output
’InputStrong’ or ’InputWeak’ can be given as a boolean, and thus takes
O(1) time.

We conclude that the overall Turing runtime of IdentifyStrongOrWeak is
polynomial in log(m). Furthermore, there is only one call to the oracle Ovec,
and this call requires only 4K digits of the input. Since K is fixed, the number
of digits requested from the oracle is constant. Next, we have the subroutine
Weak.

Weak
Inputs: The dimensions m,N , and kε ∈ N.
Oracles: Omat providing access to the components A(n)

j,k of an input ι̃.
Output: x ∈ DN with distM(x, Ξ̃(ι̃)) ≤ 10−kε
Procedure:

1. For n = 1, 2, ...:

a. Use Omat to read A(n)
3,1 and A(n)

3,2 . Set d = A
(n)
3,1 −A

(n)
3,2 .

b. If d > 2−n+1, output x ∈ DN with ‖x− 4 · 10−K+1e1‖q ≤ 10−kε ,
and terminate.

c. If d < −2−n+1, output x ∈ DN with ‖x−4·10−K+1e2‖q ≤ 10−kε ,
and terminate.

d. Otherwise, continue loop.

We claim that if subroutine Weak is applied to an input ι̃ corresponding to an
ι ∈ Ωwm,N,K , the subroutine always terminates with an output x ∈ DN satisfying
distM(x, Ξ̃(ι̃)) ≤ 10−kε . The proof goes as follows.

Fix the iteration n of the loop in step 1. Then Omat is used to read
A3,1 = 2α and A3,2 = 2β to precision 2−n. Thus A(n)

3,1 ≤ 2α + 2−n and
A

(n)
3,2 ≥ 2β − 2−n. Furthermore, by the definition of Ωw

m,N,K we have that
α 6= β but that one of α, β is equal to zero. Suppose that α = 0 < β. Then
d = A

(n)
3,1 − A

(n)
3,2 ≤ (2α + 2−n) − (2β − 2−n) < 2−n+1. So the subroutine

will never terminate at step b. However, if n is sufficiently large, then d ≤
(2α+2−n)−(2β−2−n) = −2β+2−n+1 < −2−n+1, so the subroutine will output
an x such that ‖x−4 ·10−K+1e2‖q ≤ 10−kε , and terminate at step c. By lemma
3.3.1, we get distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι)) = ‖x − 4 · 10−K+1e2‖q ≤ 10−kε
as wanted. The case β = 0 < α is identical, except now d will never be smaller
than −2−n+1, and instead we will (after a sufficient number of iterations), have
d > 2−n+1. The subroutine thus outputs and terminates at step b, which also
yields distM(x, Ξ̃(ι̃)) ≤ 10−kε . We are now ready to construct the Deterministic
K-1 digit algorithm.
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Deterministic K-1 digit algorithm
Inputs: The dimensions m,N .
Oracles: Ovec and Omat providing access to the components y(n)

j and A(n)
j,k

of an input ι̃.
Output: x ∈ DN with distM(x, Ξ̃(ι̃)) ≤ 10−(K−1).
Procedure:

1. Execute IdentifyStrongOrWeakOvec,Omat(m,N).

2. If it outputs ’InputWeak’, execute WeakOvec,Omat(m,N, kε = K − 1)
and terminate.

3. If it outputs ’InputStrong’, output an x ∈ DN with
‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q ≤ 10−K and terminate.

Since both IdentifyStrongOrWeak and Weak always terminate, so will this
algorithm. We need to prove that the output x ∈ DN of the algorithm satisfies
distM(x, Ξ̃(ι̃)) ≤ 10−(K−1). Consider the two possible cases:

Case 1: The input ι̃ corresponds to an ι in Ωs
m,N,K . In this case

IdentifyStrongOrWeak will output ’InputStrong’, and the algorithm executes
step 3. By lemma 3.3.1, we have that Ξ(ι)∩ {4 · 10−Ke1, 4 · 10−Ke2} 6= ∅. Thus

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι))
≤ max{‖x− 4 · 10−Ke1‖q, ‖x− 4 · 10−Ke2‖q}
≤ ‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q + ‖2 · 10−Ke1 − 2 · 10−Ke2‖q
≤ 10−K + 21+1/q · 10−K < 10−K+1.

Case 2: The input ι̃ corresponds to an ι in Ωw
m,N,K In this case Identi-

fyStrongOrWeak will output ’InputWeak’, and the algorithm will execute
WeakOvec,Omat(m,N, kε = K − 1) and then terminate. As was shown earlier,
the output from Weak satisfies distM(x, Ξ̃(ι̃)) ≤ 10−kε = 10−(K−1).

We conclude that the Deterministic K-1 digit algorithm always terminates
with an output x that satisfies distM(x, Ξ̃(ι̃)) ≤ 10−(K−1). This establishes
part (ii) of theorem 3.2.1.

Proof of theorem 3.2.1 (iii)

We want to show the existence of an algorithm that returnsK−2 correct digits on
all inputs of the problems {Ξ,Ωm,N ,MN ,Λm,N}∆1 = {Ξ̃, Ω̃m,N ,MN , Λ̃m,N},
for all m,N ∈ N with m > N ≥ 2. Specifically, we will construct an
algorithm Γ that, given m,N and any ι̃ ∈ Ω̃m,N , provides an output that
satisfies distM(Γ(m,N, ι̃), Ξ̃(ι̃)) ≤ 10−(K−2). Furthermore, the algorithm will
have polynomial runtime and space complexity in the Turing model, and the
number of digits it requires from the oracles will be bounded by a polynomial
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in log(nvar), where nvar = mN +m is the number of variables in a given input.
The algorithm is stated below.

Polynomial time K-2 digit algorithm
Inputs: The dimensions m,N .
Oracles: Ovec and Omat providing access to the components y(n)

j and A(n)
j,k

of an input ι̃.
Output: x ∈ DN with distM(x, Ξ̃(ι̃)) ≤ 10−(K−2).
Procedure:

1. Execute IdentifyStrongOrWeakOvec,Omat(m,N).

2. If it outputs ’InputWeak’, output an x ∈ DN with
‖x− 2 · 10−(K−1)e1 − 2 · 10−(K−1)e2‖q ≤ 10−(K−1), and terminate.

3. If it outputs ’InputStrong’, output an x ∈ DN with
‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q ≤ 10−(K−1), and terminate.

Note that this algorithm will always terminate, since IdentifyStrongOrWeak
always terminates with either ’InputStrong’ or ’InputWeak’ as output. We need
to show that the output x ∈ DN satisfies distM(x, Ξ̃(ι̃)) ≤ 10−(K−2). Consider
the two possible cases:

Case 1: The input ι̃ corresponds to an ι in Ωwm,N,K . Then IdentifyStrongOrWeak
will output ’InputWeak’, so the algorithm executes step 2, and terminates. By
lemma 3.3.1 we have that Ξ(ι) ∩ {4 · 10−K+1e1, 4 · 10−K+1e2} 6= ∅. Thus

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι))
≤ max{‖x− 4 · 10−K+1e1‖q, ‖x− 4 · 10−K+1e2‖q}
≤ ‖x− 2 · 10−K+1e1 − 2 · 10−K+1e2‖q

+ ‖2 · 10−K+1e1 − 2 · 10−K+1e2‖q
≤ 10−K+1 + 21+1/q · 10−K+1 < 10−K+2.

Case 2: The input ι̃ corresponds to an ι in Ωsm,N,K . Then IdentifyStrongOrWeak
will output ’InputStrong’, so the algorithm executes step 3, and terminates. By
lemma 3.3.1 we have that Ξ(ι) ∩ {4 · 10−Ke1, 4 · 10−Ke2} 6= ∅. Thus

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι))
≤ max{‖x− 4 · 10−Ke1‖q, ‖x− 4 · 10−Ke2‖q}
≤ ‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q + ‖2 · 10−Ke1 − 2 · 10−Ke2‖q
≤ 10−K+1 + 21+1/q · 10−K < 10−K+2.

In both cases, we have that distM(x, Ξ̃(ι̃)) ≤ 10−(K−2). It remains to show
that the algorithm has polynomial time and space complexity in the Turing
model. We analyze the algorithm step by step:
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1. Recall from the discussion in the proof of theorem 3.2.1 (ii) that
IdentifyStrongOrWeak has runtime polynomial in log(m).

2. The runtime of computing x ∈ DN if step 2 is executed, is bounded by
a polynomial in K and N . It suffices to estimate x1 = x2 ≈ 2 · 10−K+1

to 4K bits of precision. By setting x3 = · · · = xN = 0 for the remaining
components, x satisfies ‖x− 2 · 10−(K−1)e1− 2 · 10−(K−1)e2‖q ≤ 10−(K−1)

as wanted. Estimating 2 ·10−K+1 can be done in O(b log(b)) time by using
the Newton-Raphson iteration to compute b = 4K bits of the reciprocal
of 10K/2 [Mul05, p. 92-93]. Setting x3 = · · · = xN = 0 for the remaining
components requires O(N) time. The overall runtime of computing x is
therefore bounded by a polynomial in K and N .

3. The runtime of computing x ∈ DN such that ‖x−2·10−Ke1−2·10−Ke2‖q ≤
10−(K−1) if step 3 is executed, is bounded by a polynomial in K and N .
It suffices to estimate x1 = x2 ≈ 2 · 10−K to 4K bits of precision, and set
the remaining components of x to zero. This has runtime bounded by a
polynomial in K and N , by the same argument as before.

Since K is fixed, this means that the overall runtime is polynomial in log(m)
and N , and thus bounded above by a polynomial in nvar. Note that this
upper bound on the Turing runtime implies the same upper bound on the
space complexity of the algorithm. We conclude that the Polynomial time
K-2 digit algorithm has time and space complexity that is polynomial in nvar.
Furthermore, the only call to the oracles occur in the execution of the subroutine
IdentifyStrongOrWeakOvec,Omat(m,N) in step 1. The number of digits requested
from the oracles in IdentifyStrongOrWeak is contant, thus the Polynomial time
K − 2 digit algorithm only requires a constant number of digits from the oracles
as well. This establishes part (iii) of the theorem.

3.5 Computational barriers in terms of approximation error

So far, the results have been stated in terms of the number of correct digits
achievable. These results can easily be generalized by stating them in terms
of approximation error instead. This leads to fascinating similarities with the
field of hardness of approximation, which will be explored in section 3.7. We
start by rewriting theorem 3.2.1 in terms of approximation error, and with
exact values for the breakdown epsilons. Their proofs are very similar, and only
minor tweaks are needed.

Theorem 3.5.1. Consider the solution map Ξ to the lasso problem (3.3) with
λ ∈ (0, 3/5] (and in the Turing case, let λ be rational as well). Let the metric
onMN be induced by the ‖·‖q-norm, for an arbitrary q ∈ [1,∞]. Let K ≥ 1 be
an integer. There exists a set of inputs

Ω =
⋃

m,N∈N
m>N≥2

Ωm,N such that Ξ: Ωm,N ⇒MN (3.15)

as well as ∆1-information Λ̂m,N ∈ L1(Λm,N ) such that

42



3.6. Proof of theorem 3.5.1

(i) For {Ξ,Ωm,N ,MN , Λ̂m,N} with m,N ∈ N, m > N ≥ 2, we have

εsB = 21+1/q · 10−K . (3.16)

(ii) If K ≥ 2, we additionally have that for the same {Ξ,Ωm,N ,MN , Λ̂m,N},
with m,N ∈ N and m > N ≥ 2,

εwB = 21+1/q · 10−K+1. (3.17)

However, if K = 1 then εwB = εsB.

(iii) When considering the computational problems {Ξ,Ωm,N ,MN ,Λm,N}∆1 =
{Ξ̃, Ω̃m,N ,MN , Λ̃m,N}, there exists an algorithm Γ that takes the dimen-
sions m,N and any ι̃ ∈ Ω̃m,N as well as an error threshold εa > 0 as
input, and satisfies

distM(Γ(m,N, ι̃, εa), Ξ̃(ι̃)) ≤ ε for all ε = 21+1/q · 10−K + εa.

(iv) There exists an algorithm Γ that takes the dimensions m,N and any
ι̃ ∈ Ω̃m,N as well as an error threshold εa > 0 as input, and satisfies

distM(Γ(m,N, ι̃, εa), Ξ̃(ι̃)) ≤ ε for all ε = 21+1/q · 10−K+1 + εa

such that, in the Turing model, the runtime and space complexity of
the Turing machine Γ are bounded by a polynomial in log(1/εa) and
nvar = mN + m, and the number of digits read from the oracle tape is
bounded by a polynomial in log(nvar).

The proof of this theorem is given in the next section.
Remark 3.5.2 (The breakdown epsilons for {Ξ,Ωm,N ,MN ,Λm,N}∆1). The
various breakdown epsilons for {Ξ,Ωm,N ,MN ,Λm,N}∆1 are equivalent to
the breakdown epsilons for {Ξ,Ωm,N ,MN , Λ̂m,N}. Note that by (i) and
(ii) of the theorem above, and remark 2.3.6, the breakdown epsilons for
{Ξ,Ωm,N ,MN ,Λm,N}∆1 satisfy εsB ≥ 21+1/q · 10−K and εwB ≥ 21+1/q · 10−K+1

if K ≥ 2, or εwB ≥ 21+1/q · 10−K if K = 1. However, by statement (iii) of the
theorem, there is an algorithm for {Ξ,Ωm,N ,MN ,Λm,N}∆1 that computes ε-
approximations for all inputs, for any ε > 21+1/q · 10−K . This means that
we can compute ε-approximations for ε arbitrarily close to 21+1/q · 10−K .
Thus we have that the exact value of the strong breakdown epsilon for
{Ξ,Ωm,N ,MN ,Λm,N}∆1 is εsB = 21+1/q · 10−K . By the same argument, we
have that statement (iv) of the theorem implies that the exact value of the
weak breakdown epsilon for {Ξ,Ωm,N ,MN ,Λm,N}∆1 is εwB = 21+1/q · 10−K+1

if K ≥ 2, and εwB = 21+1/q · 10−K if K = 1.

3.6 Proof of theorem 3.5.1

Proof. Fix K ≥ 1 and let m,N ∈ N be such that m > N ≥ 2. Consider
{Ξ,Ωm,N ,MN ,Λm,N} where Ωm,N = Ωsm,N,K ∪ Ωwm,N,K as in (3.9) and (3.11).
By lemma 3.3.2 we have that there exists some Λ̂sm,N ∈ L1(Λm,N ) such
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3.6. Proof of theorem 3.5.1

that εsB ≥ 21+1/q · 10−K for {Ξ,Ωs
m,N,K ,MN , Λ̂sm,N}. Similarly, if K ≥ 2,

then lemma 3.3.3 establishes the existence of a Λ̂wm,N ∈ L1(Λm,N ) such that
εwB ≥ 21+1/q · 10−K+1 for {Ξ,Ωw

m,N,K ,MN , Λ̂wm,N}. Let Λ̂m,N := {fj,n : j ≤
nvar, n ∈ N}, where the fj,n are defined as in (3.14). As in the proof of theorem
3.2.1(i), we have that Λ̂m,N provides ∆1 information for {Ξ,Ωm,N ,MN ,Λm,N},
and that the breakdown epsilons for {Ξ,Ωm,N ,MN , Λ̂m,N} are at least as
large as the corresponding breakdown epsilons for {Ξ,Ωsm,N,K ,MN , Λ̂sm,N} and
{Ξ,Ωwm,N,K ,MN , Λ̂wm,N}. Thus we have that

εsB ≥ 21+1/q · 10−K (3.18)

and

εwB ≥ 21+1/q · 10−K+1 if K ≥ 2. (3.19)

for {Ξ,Ωm,N ,MN , Λ̂m,N}.
Now consider the computational problem with ∆1-information

{Ξ,Ωm,N ,MN ,Λm,N}∆1 = {Ξ̃, Ω̃m,N ,MN , Λ̃m,N}. As before, we fix the
notation for a ι̃ ∈ Ω̃m,N and write ι̃ = ({y(n)

j }∞n=0, {A
(n)
j,k }∞n=0)j,k which cor-

responds to an ι = (y,A) ∈ Ωm,N . By making minor alterations to the
subroutine Weak, we can construct an ε-approximation algorithm that works
for all ε > 21+1/q · 10−K .

Weak
Inputs: The dimensions m,N , and error threshold εa ∈ D.
Oracles: Omat providing access to the components A(n)

j,k of an input ι̃.
Output: x ∈ DN with distM(x, Ξ̃(ι̃)) ≤ εa
Procedure:

1. For n = 1, 2, ...:

a. Use Omat to read A(n)
3,1 and A(n)

3,2 . Set d = A
(n)
3,1 −A

(n)
3,2 .

b. If d > 2−n+1, output x ∈ DN with ‖x − 4 · 10−K+1e1‖q ≤ εa,
and terminate.

c. If d < −2−n+1, output x ∈ DN with ‖x− 4 · 10−K+1e2‖q ≤ εa,
and terminate.

d. Otherwise, continue loop.

As before, Weak uses Omat to read A
(n)
3,1 and A

(n)
3,2 to increasing precision

n until it can determine whether A3,1 < A3,2 or A3,1 > A3,2 (i.e. which of α
or β is larger for the input ι̃). It then outputs x ∈ DN sufficiently close to the
true solution, which is 4 · 10−K+1e1 if α < β or 4 · 10−K+1e2 if α > β. By the
same argument as before, Weak always terminates with an output x ∈ DN that
satisfies distM(x, Ξ̃(ι̃)) ≤ εa.

The following ε-approximation algorithm for ε > 21+1/q · 10−K is almost
identical to the Deterministic K - 1 digit algorithm constructed previously, but
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3.6. Proof of theorem 3.5.1

takes an error threshold εa as an additional input argument.

Deterministic ε > 21+1/q · 10−K algorithm
Inputs: The dimensions m,N ∈ N and positive error threshold εa ∈ D.
Oracles: Ovec and Omat providing access to the components y(n)

j and A(n)
j,k

of an input ι̃.
Output: x ∈ DN with distM(x, Ξ̃(ι̃)) ≤ εa + 21+1/q · 10−K .
Procedure:

1. Execute IdentifyStrongOrWeakOvec,Omat(m,N).

2. If it outputs ’InputWeak’, execute WeakOvec,Omat(m,N, εa) and
terminate.

3. If it outputs ’InputStrong’, output an x ∈ DN that satisfies
‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q ≤ εa and terminate.

This algorithm always terminates, since the subroutines IdentifyStrongOr-
Weak and Weak also always terminate. It remains to show that the output
x ∈ DN satisfies distM(x, Ξ̃(ι̃)) ≤ εa + 21+1/q · 10−K . Consider the two possible
cases for the input ι̃:

Case 1: The input ι̃ corresponds to an ι in Ωwm,N,K . Then IdentifyStrongOrWeak
will output ’InputWeak’, and the algorithm executes WeakOvec,Omat(m,N, εa)
in step 2, which always outputs an x ∈ DN such that distM(x, Ξ̃(ι̃)) ≤ εa <
εa + 21+1/q · 10−K .

Case 2: The input ι̃ corresponds to an ι in Ωsm,N,K . Then IdentifyStrongOrWeak
will output ’InputStrong’, and the algorithm skips step 2 and executes step 3.
By lemma 3.3.1 we have that Ξ(ι) ∩ {4 · 10−Ke1, 4 · 10−Ke2} 6= ∅. Thus,

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι))
≤ max{‖x− 4 · 10−Ke1‖q, ‖x− 4 · 10−Ke2‖q}
≤ ‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q + ‖2 · 10−Ke1 − 2 · 10−Ke2‖q
≤ εa + 21+1/q · 10−K .

In both cases, the output x ∈ DN of the algorithm always satisfies
distM(x, Ξ̃(ι̃)) ≤ εa + 21+1/q · 10−K . If the input εa is chosen such that
εa + 21+1/q · 10−K ≤ ε, then we have distM(x, Ξ̃(ι̃)) ≤ εa + 21+1/q · 10−K ≤ ε.
We conclude that the Deterministic ε > 21+1/q · 10−K algorithm provides ε-
approximations for {Ξ,Ωm,N ,MN ,Λm,N}∆1 whenever ε > 21+1/q · 10−K . Note
that if ε ≤ 21+1/q · 10−K , the algorithm does not work, as no εa ∈ D such that
0 < εa+21+1/q ·10−K ≤ ε exists. Indeed, since we proved that εsB ≥ 21+1/q ·10−K
for {Ξ,Ωm,N ,MN , Λ̂m,N}, we have that there does not exist an algorithm that
can provide ε-approximations for ε < 21+1/q ·10−K for {Ξ,Ωm,N ,MN ,Λm,N}∆1

either. However, the existence of the Deterministic ε > 21+1/q · 10−K algorithm
implies that we can compute ε-approximations arbitrarily close to 21+1/q · 10−K
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accuracy. Thus, we have that the exact value for the strong breakdown epsilon
is εsB = 21+1/q · 10−K for {Ξ,Ωm,N ,MN , Λ̂m,N}, as stated in the theorem.

Consider now instead an ε > 21+1/q ·10−K+1. By making small alterations to
the Polynomial time K - 2 digit algorithm, we can construct an ε-approximation
algorithm that has polynomial time and space complexity.

Polynomial ε > 21+1/q · 10−K+1 algorithm
Inputs: The dimensions m,N ∈ N, and positive error threshold εa ∈ D.
Oracles: Ovec and Omat providing access to the components y(n)

j and A(n)
j,k

of an input ι̃.
Output: x ∈ DN with distM(x, Ξ̃(ι̃)) ≤ εa + 21+1/q · 10−K+1.
Procedure:

1. Execute IdentifyStrongOrWeakOvec,Omat(m,N).

2. If it outputs ’InputWeak’, output an x ∈ DN with
‖x− 2 · 10−K+1e1 − 2 · 10−K+1e2‖q ≤ εa, and terminate.

3. If it outputs ’InputStrong’, output an x ∈ DN with
‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q ≤ εa, and terminate.

Since IdentifyStrongOrWeak always terminates with either ’InputStrong’
or ’InputWeak’ as output, it is clear that this algorithm will always terminate
as well. As before, we consider the two possible cases:

Case 1: The input ι̃ corresponds to an ι in Ωwm,N,K . Then IdentifyStrongOrWeak
will output ’InputWeak’, so the algorithm executes step 2 and terminates. By
lemma 3.3.1 we have that Ξ(ι) ∩ {4 · 10−K+1e1, 4 · 10−K+1e2} 6= ∅. Then

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι))
≤ max{‖x− 4 · 10−K+1e1‖q, ‖x− 4 · 10−K+1e2‖q}
≤ ‖x− 2 · 10−K+1e1 − 2 · 10−K+1e2‖q

+ ‖2 · 10−K+1e1 − 2 · 10−K+1e2‖q
≤ εa + 21+1/q · 10−K+1

Case 2: The input ι̃ corresponds to an ι in Ωsm,N,K . Then IdentifyStrongOrWeak
will output ’InputStrong’, so the algorithm skips step 2, and executes step 3
before terminating. By lemma 3.3.1 we have that Ξ(ι)∩{4·10−Ke1, 4·10−Ke2} 6=
∅. Then

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι))
≤ max{‖x− 4 · 10−Ke1‖q, ‖x− 4 · 10−Ke2‖q}
≤ ‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q + ‖2 · 10−Ke1 − 2 · 10−Ke2‖q
≤ εa + 21+1/q · 10−K

< εa + 21+1/q · 10−K+1
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Thus the output x ∈ DN satisfies distM(x, Ξ̃(ι̃)) ≤ εa + 21+1/q · 10−K+1. If
εa ∈ D is chosen to be sufficiently small such that εa+21+1/q ·10−K+1 ≤ ε, then
we have distM(x, Ξ̃(ι̃)) ≤ ε. As before, this only works for ε > 21+1/q · 10−K+1,
otherwise no such εa ∈ D exists. It remains to show that the algorithm has time
and space complexity bounded by some polynomial. Analyzing the algorithm
step by step shows that:

1. The subroutine IdentifyStrongOrWeak is unchanged, so recall from the
discussion in the proof of theorem 3.2.1 that it has runtime polynomial in
log(m) and only requests O(1) digits from the oracles.

2. To calculate an x ∈ DN such that ‖x− 2 · 10−Ke1 − 2 · 10−Ke2‖q ≤ εa, it
suffices to estimate x1 = x2 ≈ 2·10−K to b bits of precision, where b is some
positive integer that satisfies 2−b ≤ εa/2. By setting x3 = · · · = xN = 0 for
the remaining components, x satisfies ‖x− 2 · 10−Ke1− 2 · 10−Ke2‖q ≤ εa.
The runtime of computing x is then polynomial in N and log(1/εa), and
the argument for this claim goes as follows. Suppose εa ∈ D is given by
its (finite) binary representation (see definition 2.1.9) and that εa < 1.
This last assumption is natural since we want to investigate the time
complexity as εa → 0, and if εa ≥ 1 then x1 and x2 can be computed in
constant time. To find b, read εa and count the number d of 0s after the
binary point, before the first 1 appears. Then εa < 2−d, but εa ≥ 2−(d+1).
Setting b = d+2 ensures 2−b ≤ εa/2 as wanted. One can estimate 2 ·10−K
to b bits of precision in O(b log(b)) time, by using the Newton-Raphson
iteration to compute the reciprocal of 10K/2 (as in [Mul05, p. 92-93]).
We have that b = O(d) < O(log(1/εa)), which means that the runtime of
computing x1 and x2 is bounded by a polynomial in log(1/εa). Setting
x3 = · · · = xN = 0 for the remaining components requires O(N) time.
The overall runtime of computing x is therefore bounded by a polynomial
in log(1/εa) and N .

3. By the same argument as above, the runtime of calculating x ∈ DN
such that ‖x− 2 · 10−K+1e1 − 2 · 10−K+1e2‖q ≤ εa, is also bounded by a
polynomial in log(1/εa) and N .

We conclude that the overall runtime of the algorithm is polynomial in log(m),
N , and log(1/εa). Additionally, since the only call to the oracles occurs in the
execution of the subroutine IdentifyStrongOrWeak, the number of digits needed
from the oracles is constant.

The existence of the Polynomial ε > 21+1/q · 10−K+1 algorithm means that
we can compute ε-approximations for ε arbitrarily close to εwB, with only a
constant number of digits needed from the oracles. By definition 2.8 of the
weak breakdown epsilon, this means that the inequality in (3.19) is an equality.
Thus εwB = 21+1/q · 10−K+1 for {Ξ,Ω,MN , Λ̂m,N} whenever K ≥ 2.

Note that if K = 1, then Ωw
m,N,K = ∅ for all m,N . Consequently, Ω

consists only of strong inputs, which means that step 2 of the Deterministic
ε > 21+1/q · 10−K algorithm is never executed. But this means that it has
runtime polynomial in log(m), N, and log(1/εa) and only requires a constant
number of digits from the oracles, by the same argument as was used above.
So we can compute ε-approximations for ε arbitrarily close to 21+1/q · 10−K ,
with only a constant number of digits needed from the oracles. By definition
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2.8, we get εwB ≤ 21+1/q · 10−K . However, εwB ≥ εsB = 21+1/q · 10−K by (2.16).
Therefore, εwB = εsB for {Ξ,Ω,MN , Λ̂m,N} whenever K = 1. This concludes the
proof of theorem 3.5.1.

�

For convenience, we will refer to the Deterministic ε > 21+1/q · 10−K
algorithm as the Deterministic ε-approximation algorithm from now on, with
the understanding that ε > εsB. Similarly, we refer to the Polynomial
ε > 21+1/q · 10−K+1 algorithm as the Polynomial ε-approximation algorithm
with the understanding that ε > εwB .

3.7 Phase transitions and relation to hardness of
approximation

The phenomenon described in theorem 3.5.1 leads to phase transitions
reminiscent of the field of hardness of approximation. This field arose from the
desire to find polynomial time approximation algorithms providing approximate
solutions to NP-hard optimization problems. A problem L is NP-hard if every
problem in the complexity class NP is polynomial time reducible to L. Recall
that NP is the class of problems for which there exists polynomial time non-
deterministic Turing machines that solves them. See [AB09; Pap94; Sip13] for
a more in-depth explanation of NP and NP-hardness. It is widely believed
that P 6= NP, which would mean that for NP-hard problems, there does not
exist a deterministic Turing machine that computes solutions in polynomial
time. However, one may still be able to construct polynomial time Turing
machines that compute approximate solutions instead. It turns out that finding
approximate solutions to NP-hard problems is not always possible. A 1976
paper by T. Gonzalez and S. Sahni showed that some NP-hard optimization
problems are NP-hard to approximate within a given error threshold as well
[SG76].

Taking basis in the theory from [Pap94], suppose we have an optimization
problem that depends on n variables, with domain Ω ⊂ Rn. For each ι ∈ Ω, let
F (ι) ⊂ Rd denote the set of feasible solutions, and let

OPT(ι) := min
x∈F (ι)

fι(x) (3.20)

where fι : Rd → R≥0 is the cost function (often called the objective function)
we want to minimize. There are several optimization problems that fit into this
framework that are NP-hard; The Travelling Salesperson Problem, for example.
This means that, unless P = NP, a range of optimization problems can not
be solved by Turing machines in a realistic timeframe. However, there may
exist polynomial time algorithms that can give approximate solutions instead.
For an ε ≥ 0, an algorithm Γ is called an ε-approximation algorithm for the
optimization problem given by (3.20) if, for all ι ∈ Ω we have Γ(ι) ∈ F (ι) and

fι(Γ(ι)) ≤ (1 + ε) OPT(ι). (3.21)

An ε-approximation algorithm for which there exists a polynomial pol : R→ R
such that RuntimeΓ(ι) ≤ pol(n) for all ι ∈ Ω is called a polynomial time
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ε-approximation algorithm. An output Γ(ι) satisfying (3.21) is called an ε-
approximate solution.

It turns out that for some NP-hard optimization problems, there exists
a polynomial time ε-approximation algorithm for all ε > 0. In other words,
approximability has no limits. On the other hand, there also exists NP-hard
optimization problems that have a threshold beyond which no polynomial time ε-
approximation algorithm exists. We refer to this threshold as the approximation
threshold of a problem, and define it as in [Pap94, p. 300] by

εA := inf{ε ≥ 0 : there exists a polynomial time
ε-approximation algorithm}.

(3.22)

An example of an optimization problem for which εA = 0 is Knapsack
[p. 305][Pap94]. An even stronger result than εA = 0, is if there exists an
algorithm Γ that for each ε > 0 and ι ∈ Ω, satisfies Γ(ι) ∈ F (ι) and (3.21),
and has runtime polynomial in n that depends on ε. Such an algorithm is
referred to as a polynomial time approximation scheme (PTAS). If the runtime
is polynomial in 1/ε as well, it is called a fully polynomial time ε-approximation
scheme (FPTAS).

On the other hand, if P 6= NP, there are several optimization problems
where εA > 0. Some examples are the Travelling Salesperson Problem, the
Cycle Cover Problem, and the Clique Problem; see [Pap94; SG76]. A non-zero
approximation threshold implies that the problem of computing ε-approximate
solutions is in P for ε > εA, but not in P for ε < εA. This sharp phase transition
leads to the situation illustrated in figure 3.3.

Figure 3.3: Phase transitions for NP-hard optimization problems
with εA > 0, if P 6= NP.

Note that a key difference between the optimization problems (3.20) from
hardness of approximation and lasso, is that the former seeks the minimum of the
cost/objective function, while the latter seeks the minimizer itself. Furthermore,
the algorithms we have constructed for lasso in this thesis do not access the
inputs ι̃ ∈ Ω̃ directly, but through oracles. Although the context is different,
theorem 3.5.1 shows that the problem of computing ε-approximations to lasso
minimizers has similar phase transitions, characterized by the strong and weak
breakdown epsilons.

To be able to classify the problem of computing ε-approximations for lasso,
we need to define some suitable complexity classes. Let POε denote the class
of computational problems with ∆1-information, for which ε-approximations
can be computed by an oracle Turing machine with access to an oracle for each
input ι̃ ∈ Ω̃, with runtime polynomial in the number of variables nvar in the
input. Similarly, let EXPTIMEOε denote the class of computational problems
with ∆1-information, for which ε-approximations can be computed by an oracle
Turing machine, with access to an oracle for each input ι̃ ∈ Ω̃, with O(2pol(nvar))
runtime for some polynomial function pol(nvar).
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Consider the input set Ω for which the result of theorem 3.5.1 holds. Then
there are phase transitions for the computational problem {Ξ,Ω}∆1 , where
Ξ is the solution map to the lasso problem (3.3). We have that for ε > εwB,
computing ε-approximations can be done in polynomial time, and the problem
is therefore in POε . On the other hand, if ε < εsB, then ε-approximations are
non-computable in general. However, if εsB < ε < εwB, then ε-approximations
are computable, but require an arbitrarily high amount of input information in
the worst case. This clearly means that the problem is not in POε ; it is not even
in EXPTIMEOε . This is visualized in figure 3.4.

Figure 3.4: Phase transitions for lasso with domain Ω given by
theorem 3.5.1.

The sharp phase transitions between ε-approximations being computable
in polynomial time, and ε-approximations not being computable at all, occurs
when K = 1. In this case, all inputs in Ω are "strong" inputs, and εwB = εsB.
This means that the Deterministic ε-approximation algorithm is polynomial
time, by the same argument used to show that the Polynomial ε-approximation
algorithm is polynomial time. Subsequently, ε-approximations are computable in
polynomial time for ε > εwB = εsB , but non-computable for ε < εwB = εsB . When
K ≥ 2, we have εwB > εsB , and therefore the problem does not transition directly
between these two phases. Instead, we have a middle-ground; ε-approximations
are computable, but not in EXPTIMEOε , for εsB < ε < εwB .

Unlike the phase transitions that occur in figure 3.3, the phase transitions in
figure 3.4 are independent of whether P = NP or not. Furthermore, the result
given by theorem 3.5.1 is stronger than a hardness of approximation result in
the sense that the phase transitions are not between P and NP-hardness, but
between POε and having completely unbounded runtime, or directly between
POε and non-computability.
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CHAPTER 4

Randomized computational
barriers for lasso

In this chapter, the impossibility results for lasso will be strengthened by
showing that even randomized algorithms are susceptible to the phenomenon
outlined in theorem 3.2.1 and theorem 3.5.1. For the same input set that was
constructed in chapter 3, we will show that randomized algorithms can not
provide ε-approximations better than ε ≥ 21+1/q ·10−K with probability greater
than 1/2 for all inputs, if we require that they always halt. However, if we
relax the conditions by allowing algorithms that have a non-zero probability
of not halting, we can construct an algorithm that produces arbitrarily good
ε-approximations with probability at least 2/3 for all inputs. While this is
a positive result, it is also shown that this probability can not be improved.
Indeed, for any p < 1/3 all algorithms will, for at least one input, fail to produce
an ε-approximation better than ε ≥ 21+1/q ·10−K , with probability greater than
p.

Recall that the lower bounds on the (deterministic) breakdown epsilons in
theorem 3.2.1 and theorem 3.5.1 were given by lemmas 3.3.2 and 3.3.3. The
proof of these lemmas were based on invoking proposition 2.2.1. However, by
instead invoking proposition 2.4.5, we get lower bounds on the probabilistic
breakdown epsilons as well.

4.1 Computational barriers for randomized algorithms

We start with generalizing lemmas 3.3.2 and 3.3.3 to hold for the probabilistic
breakdown epsilons.

Lemma 4.1.1. Let k,m,N ∈ N with m > N ≥ 2 and k ≥ 1. Consider
the computational problem {Ξ,Ωs

m,N,k,MN ,Λm,N}, where Ξ is the solution
map to the lasso problem (3.3), the input set Ωs

m,N,k is as defined in (3.9),
and the metric on MN is induced by ‖·‖q for some q ∈ [1,∞]. Then
there exists a Λ̂m,N ∈ L1(Λm,N ) such that, for the computational problem
{Ξ,Ωs

m,N,k,MN , Λ̂m,N}, we have εsPhB(p) ≥ 21+1/q · 10−k for p ∈ [0, 1/2) and
εsPB(p) ≥ 21+1/q · 10−k for p ∈ [0, 1/3).

Proof. The proof is identical to the proof of lemma 3.3.2, except that instead of
invoking proposition 2.2.1 we invoke proposition 2.4.5 to get the lower bounds
on the breakdown epsilons. Let {ι1n}∞n=1, {ι2n}∞n=1, ι0 in Ωs

m,N,k as well as S1
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and S2 in RN , be the same as in the proof of lemma 3.3.2. Then conditions
(a) - (c) of proposition 2.4.5 are satisfied. By result (ii) of the proposition,
we get εsPhB(p) ≥ 21+1/q · 10−k for p ∈ [0, 1/2) and εsPB(p) ≥ 21+1/q · 10−k for
p ∈ [0, 1/3). �

Lemma 4.1.2. Let k,m,N ∈ N with m > N ≥ 2 and k ≥ 2. Consider
the computational problem {Ξ,Ωw

m,N,k,MN ,Λm,N}, where Ξ is the solution
map to the lasso problem (3.3), the input set Ωw

m,N,k is as defined in (3.11),
and the metric on MN is induced by ‖·‖q for some q ∈ [1,∞]. Then
there exists a Λ̂m,N ∈ L1(Λm,N ) such that, for the computational problem
{Ξ,Ωwm,N,k,MN , Λ̂m,N}, we have εwPB(p) ≥ 21+1/q · 10−k+1 for p ∈ [0, 1/2).

Proof. As above, the proof is identical to the proof of lemma 3.3.3, except that
we invoke proposition 2.4.5 instead of proposition 2.2.1. Let {ι1n}∞n=1, {ι2n}∞n=1,
ι0 in Ωwm,N,k as well as S1 and S2 in RN , be the same as in the proof of lemma
3.3.3. Then conditions (a) and (b) of proposition 2.4.5 are satisfied. By result
(i) of the proposition, we get εwPB(p) ≥ 21+1/q · 10−k+1 for p ∈ [0, 1/2). �

We can now state and prove the following randomized impossibility theorem,
which can be considered an extension of theorem 3.5.1.

Theorem 4.1.3. Consider the solution map Ξ to the lasso problem (3.3) with
λ ∈ (0, 3/5]. Let the metric on MN be induced by the ‖·‖q-norm, for an
arbitrary q ∈ [1,∞]. Let K ≥ 1 be an integer. For the same set of inputs

Ω =
⋃

m,N∈N
m>N≥2

Ωm,N such that Ξ: Ωm,N ⇒MN (4.1)

and ∆1-information Λ̂m,N ∈ L1(Λm,N ) as in theorem 3.5.1, we additionally
have that

(i) For {Ξ,Ωm,N ,MN , Λ̂m,N} with m,N ∈ N, m > N ≥ 2, we have

εsPhB(p) = 21+1/q · 10−K for all p < 1/2, and (4.2)
εsPB(p) = 21+1/q · 10−K for all p < 1/3. (4.3)

(ii) If K ≥ 2, we additionally have that for the same {Ξ,Ωm,N ,MN , Λ̂m,N},
with m,N ∈ N and m > N ≥ 2,

εwPB(p) = 21+1/q · 10−K+1 for all p < 1/2. (4.4)

However, if K = 1 then εwPB(p) = εsPB(p) for all p < 1/2.

(iii) When considering the computational problems {Ξ,Ωm,N ,MN ,Λm,N}∆1 =
{Ξ̃, Ω̃m,N ,MN , Λ̃m,N}, there exists a randomized algorithm Γran with a
non-zero probability of not halting, that takes the dimensions m,N and
any ι̃ ∈ Ω̃m,N as input, as well as an error threshold εa ≥ 0, and satisfies

Pι̃(distM(Γran(m,N, ι̃, εa), Ξ̃(ι̃)) ≤ εa) ≥ 2/3.
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The proof of this theorem is given in the next section, however, we first give
a short summary of the breakdown epsilons we have established for the lasso
computational problem so far. The conjunction of this theorem and theorem
3.5.1 establishes the following relationships between the breakdown epsilons for
{Ξ,Ωm,N ,MN , Λ̂m,N}, where Ξ is the lasso problem (3.3) and Ωm,N is as in
(3.12), assuming K ≥ 2:

εsB = 21+1/q · 10−K (4.5)
= εsPhB(p) for p ∈ [0, 1/2) (4.6)
= εsPB(p) for p ∈ [0, 1/3), (4.7)

and

εwB = 21+1/q · 10−K+1 (4.8)
= εwPB(p) for p ∈ [0, 1/2). (4.9)

Remark 4.1.4 (The breakdown epsilons for {Ξ,Ωm,N ,MN ,Λm,N}∆1). We once
again have that the various breakdown epsilons for {Ξ,Ωm,N ,MN ,Λm,N}∆1

are equivalent to the breakdown epsilons for {Ξ,Ωm,N ,MN , Λ̂m,N}. Indeed, by
statements (i) and (ii) in the theorem above, and remark 2.3.6, we have that
εsPhB(p) ≥ 21+1/q · 10−K for all p < 1/2, εsPB(p) ≥ 21+1/q · 10−K for all p < 1/3,
and εwPB(p) ≥ 21+1/q · 10−K+1 for all p < 1/2, for {Ξ,Ωm,N ,MN ,Λm,N}∆1 , if
K ≥ 2. Recall from remark 3.5.2 that we also have εsB = 21+1/q · 10−K and
εwB = 21+1/q · 10−K+1 as well. However, by proposition 2.4.1, we know that
εsPhB(p) ≤ εsB, εsPB(p) ≤ εsB, and εwPB(p) ≤ εwB for all p ∈ [0, 1). Hence, we have
that εsPhB(p) = 21+1/q · 10−K for all p < 1/2, εsPB(p) = 21+1/q · 10−K for all p <
1/3, and εwPB(p) = 21+1/q ·10−K+1 for all p < 1/2, for {Ξ,Ωm,N ,MN ,Λm,N}∆1 .
The argument for the case when K = 1 is identical.

4.2 Proof of theorem 4.1.3

Proof. Fix K ≥ 1 and let m,N ∈ N be such that m > N ≥ 2, and consider
{Ξ,Ωm,N ,MN ,Λm,N} where Ωm,N = Ωsm,N,K∪Ωsm,N,K is as in (3.9) and (3.11).
By lemma 4.1.1, there exists some Λ̂sm,N ∈ L1(Λm,N ) such that

εsPhB(p) ≥ 21+1/q · 10−K for p ∈ [0, 1/2), and
εsPB(p) ≥ 21+1/q · 10−K for p ∈ [0, 1/3)

for {Ξ,Ωsm,N,K ,MN , Λ̂sm,N}. By lemma 4.1.2 we similarly have that if K ≥ 2,
there exists some Λ̂wm,N ∈ L1(Λm,N ) such that

εwPB(p) ≥ 21+1/q · 10−K+1 for p ∈ [0, 1/2)

for {Ξ,Ωw
m,N,K ,MN , Λ̂wm,N}. Let Λ̂m,N := {fj,n : j ≤ nvar, n ∈ N}, where

the fj,n are defined as in (3.14). As in the proof of theorem 3.2.1 (i),
we then have that Λ̂m,N provides ∆1-information for {Ξ,Ωm,N ,MN ,Λm,N}
Furthermore, Λ̂sm,N = {f �Ωs

m,N,K
: f ∈ Λ̂m,N} and Λ̂wm,N = {f �Ωw

m,N,K
:
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4.2. Proof of theorem 4.1.3

f ∈ Λ̂m,N}. By lemma 2.4.2 we have that the breakdown epsilons for
{Ξ,Ωm,N ,MN , Λ̂m,N} are at least as large as the corresponding breakdown ep-
silons for {Ξ,Ωsm,N,K ,MN , Λ̂sm,N} and {Ξ,Ωwm,N,K ,MN , Λ̂wm,N}. We conclude
that

εsPhB(p) ≥ 21+1/q · 10−K for p ∈ [0, 1/2),
εsPB(p) ≥ 21+1/q · 10−K for p ∈ [0, 1/3), and
εwPB(p) ≥ 21+1/q · 10−K+1 for p ∈ [0, 1/2) if K ≥ 2.

for {Ξ,Ωm,N ,MN , Λ̂m,N}.
Notice that both Ωm,N and Λ̂m,N are the same sets used to prove theorem

3.5.1. Therefore, we have the same deterministic breakdown epsilons for
{Ξ,Ωm,N ,MN , Λ̂m,N} as in theorem 3.5.1: εsB = 21+1/q · 10−K and εwB =
21+1/q · 10−K+1 if K ≥ 2, but εwB = εsB if K = 1. However, we know that
εsPhB(p) ≤ εsB, εsPB(p) ≤ εsB and εwPB(p) ≤ εwB for all p ∈ [0, 1) by proposition
2.4.1. Hence

εsPhB(p) = 21+1/q · 10−K for p ∈ [0, 1/2),
εsPB(p) = 21+1/q · 10−K for p ∈ [0, 1/3), and
εwPB(p) = 21+1/q · 10−K+1 for p ∈ [0, 1/2) if K ≥ 2.

If K = 1, we have εwB ≥ εwPB(p) ≥ εsPB(p) = 21+1/q · 10−K for p ∈ [0, 1/2)
by proposition 2.4.1. But εwB = 21+1/q · 10−K when K = 1, so this implies
εwPB(p) = 21+1/q · 10−K for p ∈ [0, 1/2). This establishes (i) and (ii) of the
theorem.

To prove part (iii), consider the computational problem {Ξ,Ωm,N ,MN ,Λm,N}∆1 =
{Ξ̃, Ω̃m,N ,MN , Λ̃m,N}. As before, we fix the notation of the algorithms for a
single ι̃ ∈ Ω̃m,N , and write ι̃ = ({y(n)

j }∞n=0, {A
(n)
j,k }∞n=0)j,k which corresponds to

an ι = (y,A) ∈ Ωm,N . We need a new subroutine which, when called upon, will
guess the solution for strong inputs. As in [BHV], we shall call this subroutine
Guess.

Guess
Inputs: The dimensions m,N , and an error threshold εa ∈ D
Oracles: Ovec and Omat providing access to the components y(n)

j and A(n)
j,k

of an input ι̃.
Output: x ∈ DN which potentially satisfies distM(x, Ξ̃(ι̃)) ≤ εa.
Procedure:

1. Make a random coin flip which returns True or False, each with
probability 1/2.

2. If it outputs True, output an x ∈ DN with
‖x− 4 · 10−Ke1‖q ≤ εa, and terminate.

3. If it outputs False, output an x ∈ DN with
‖x− 4 · 10−Ke2‖q ≤ εa, and terminate.
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We also need a subroutine that acts as a biased coin flip, which returns
True with probability 1/n for a given n ∈ N. Note that such a subroutine
can be constructed in any model that has access to a normal coin flip that
returns True or False each with probability 1/2. In particular, a probabilistic
Turing machine can run such a subroutine. Call this subroutine BiasedCoinFlip.
Note that both Guess and BiasedCoinFlip halt with probability 1. Using
these subroutines, as well as the subroutine Weak from the proof of theorem
3.5.1, we can construct a randomized ε-approximation algorithm that provides
arbitrarily accurate solutions with probability greater than or equal to 2/3,
for all inputs in ι̃ ∈ Ω̃. Note that if this algorithm is to be executed by a
probabilistic oracle Turing machine, the regression parameter λmust be rational.

Randomized ε-approximation algorithm
Inputs: The dimensions m,N , and an error threshold εa ∈ D
Oracles: Ovec and Omat providing access to the components y(n)

j and
A

(n)
j,k of an input ι̃.

Output: With probability at least 2/3, the algorithm outputs an x ∈ DN
which satisfies distM(x, Ξ̃(ι̃)) ≤ εa.

Procedure:

1. Execute IdentifyStrongOrWeakOvec,Omat(m,N).

2. If it outputs ’InputWeak’, execute WeakOvec,Omat(m,N, εa) and
terminate.

3. If it outputs ’InputStrong’, initiate the following loop.
For n = 1, 2, . . . :

Execute BiasedCoinFlip(2n−1 + 2). If it returns True, go to
step 4. Otherwise, use Omat to read A(n)

3,1 and A(n)
3,2 . Set

d = A
(n)
3,1 −A

(n)
3,2 . The next action depends on d:

3a. If d > 2−n+1, output an x ∈ DN with ‖x− 4 · 10−Ke1‖q ≤ εa,
and terminate.

3b. If it d < −2−n+1, output an x ∈ DN with
‖x− 4 · 10−Ke2‖q ≤ εa, and terminate.

If neither 3a or 3b were executed, increment n and continue
the loop.

4. Execute GuessOvec,Omat(m,N, εa) and terminate.

For convenience we say that the algorithm is correct for an ι̃ ∈ Ω̃m,N if
it outputs an x ∈ DN such that distM(x, Ξ̃(ι̃)) ≤ εa. Otherwise, we say that the
algorithm fails. Note that failure includes the possibility of the algorithm not
halting. Indeed, it will be made clear that there is a non-zero probability that
the algorithm does not halt at all. It remains to show that for all ι̃ ∈ Ω̃m,N ,
the Randomized ε-approximation algorithm is correct with probability at least
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2/3. This can be proved by looking at the four possible cases for the input ι̃:

Case 1: ι̃ corresponds to a "weak" input ι ∈ Ωw
m,N,K . Since Identi-

fyStrongOrWeak will correctly output ’InputWeak’, the algorithm executes
WeakOvec,Omat(m,N, εa) and terminates. Furthermore, Weak will always out-
put an x ∈ DN satisfying distM(x, Ξ̃(ι̃)) ≤ εa, so the algorithm is correct for
all ι̃ corresponding to some ι ∈ Ωwm,N,K with probability 1.

Case 2: ι̃ corresponds to a "strong" input ι ∈ Ωs
m,N,K such that ι =

(yK(m), A(0, β,m,N)) and β ∈ (0, 1/2]. Then Ξ̃(ι̃) = Ξ(ι) = 4 · 10−Ke1 by
lemma 3.3.1. Since IdentifyStrongOrWeak will correctly output ’InputStrong’,
the algorithm skips step 2 and executes step 3 instead. The outcome of
the algorithm from here on out depends on random events, so we want to
calculate the probability that the algorithm outputs an x ∈ DN satisfying
distM(x, Ξ̃(ι̃)) ≤ εa. Notice first however, that d = A

(n)
3,1 −A

(n)
3,2 ≤ 2−n − (2β −

2−n) < 2−n+1 for all n ∈ N. Thus the algorithm will never terminate at step 3a.
On the other hand, d ≤ 2−n+1− 2β will be smaller than −2−n+1 for sufficiently
large n. Then n0 = inf{n ∈ N : d < −2−n+1} is finite. This means that the
algorithm may terminate at step 3b, but this depends on the outcome of the
execution of BiasedCoinFlip in each iteration of the loop in step 3. Let Fn be the
event that the algorithm exits the loop by going to step 4 at the n-th iteration.
Then P(Fn) = 0 for n > n0 because the algorithm will have terminated either by
some earlier event Fj , j ≤ n0, or at step 3b on iteration n0. For n ≤ n0, P(Fn)
is equal to the probability that the algorithm has executed n− 1 iterations of
the loop without terminating, and then BiasedCoinFlip(2n−1 + 2) returns True
at the n-th iteration. As the outcome of BiasedCoinFlip is independent of all
previous outcomes, these two events are independent of each other. Furthermore,
all the events Fj for j = 1, · · · , n − 1 prior to Fn are disjoint. Thus we have
that

P(Fn) = P
(( n−1⋃

j=1
Fj

)c)
· P(BiasedCoinFlip(2n−1 + 2) returns True)

=
(

1− P
( n−1⋃
j=1

Fj
)) 1

(2n−1 + 2) =
(

1−
n−1∑
j=1

P(Fj)
) 1

(2n−1 + 2)

for n ≤ n0. By strong induction, we get P(Fn) = 3−1 · 2−n+1 for n ≤ n0. It
is clear that since n0 is finite, the algorithm terminates with probability 1.
However, the output x ∈ DN may be incorrect. The only possible way for
this to happen is if the subroutine Guess is executed, and it outputs x ∈ DN
such that ‖x− 4 · 10−Ke2‖q ≤ εa instead of ‖x− 4 · 10−Ke1‖q ≤ εa. Since the
probability of Guess outputting x ∈ DN such that ‖x − 4 · 10−Ke2‖q ≤ εa is
1/2, the probability that the Randomized ε-approximation algorithm produces
an incorrect output is

∞⋃
n=1

P(Fn)1
2 =

∞∑
n=1

P(Fn)/2 ≤
∞∑
n=1

3−1 · 2−n = 1/3.
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Consequently, the probability that the output is correct is

1−
∞⋃
n=1

P(Fn)1
2 ≥ 1− 1/3 = 2/3.

Case 3: ι̃ corresponds to a "strong" input ι ∈ Ωs
m,N,K such that ι =

(yK(m), A(α, 0,m,N)) and α ∈ (0, 1/2]. Then Ξ̃(ι̃) = Ξ(ι) = 4 · 10−Ke2 by
lemma 3.3.1. Since IdentifyStrongOrWeak will correctly output ’InputStrong’,
the algorithm skips step 2 and executes step 3 instead. The argument
that the Randomized ε-approximation algorithm is correct with probability
at least 2/3 is the same as in case 2, with only minor differences. Since
α > β = 0 we have that the algorithm will never terminate at step 3b, however
it may terminate at step 3a after a sufficiently high number of iterations.
As before, the algorithm halts with probability 1, and will only produce
an incorrect output if Guess is executed and outputs an x ∈ DN such that
‖x− 4 · 10−Ke1‖q ≤ εa instead of ‖x− 4 · 10−Ke2‖q ≤ εa. This occurs with a
probability

∑∞
n=1 P(Fn) 1

2 ≤
∑∞
n=1 3−1 · 2−n = 1/3, thus the probability that

the output is correct is 1−
∑∞
n=1 P(Fn) 1

2 ≥ 1− 1/3 = 2/3 as before.

Case 4: ι̃ corresponds to a "strong" input ι ∈ Ωs
m,N,K such that ι =

(yK(m), A(0, 0,m,N)). Then Ξ̃(ι̃) = Ξ(ι) ⊃ {4 · 10−Ke1, 4 · 10−Ke2} by lemma
3.3.1. As before IdentifyStrongOrWeak will correctly output ’InputStrong’,
so the algorithm skips step 2 and executes step 3 instead. However, since
α = β = 0, then d = A

(n)
3,1 −A

(n)
3,2 = 0 for all n ∈ N. This means that the loop in

step 3 will never terminate at step 3a or 3b. The only way for the algorithm to
terminate is if Guess is executed, that is, if BiasedCoinFlip(2n−1 + 2) returns
true at the n-th iteration of the loop for some n ∈ N. This corresponds to
the event Fn; that the algorithm exits the loop by going to step 4 at the n-th
iteration. As before,

P(Fn) =
(
1− P(

n−1⋃
j=1

Fj)
)
(2n−1 + 2)−1 = P(Fn) = 3−1 · 2−n+1

by strong induction, only in this case it holds for all n ∈ N. The probability
that the algorithm terminates is thus

P(
∞⋃
j=1

Fj) =
∞∑
j=1

P(Fj) =
∞∑
j=1

3−1 · 2−j+1 = 2/3 ·
∞∑
j=1

2−j = 2/3.

Furthermore, no matter what Guess outputs, it always satisfies

distM(x, Ξ̃(ι̃)) = distM(x,Ξ(ι)) = inf
ξ∈Ξ(ι)

‖x− ξ‖q ≤ εa

because {4 · 10−Ke1, 4 · 10−Ke2} ⊂ Ξ(ι). Consequently, the algorithm is correct
with probability 2/3.

These four cases cover all possible forms of the input ι̃. Furthermore, the
algorithm was correct with probability at least 2/3 in all cases. Therefore,
the Randomized ε-approximation algorithm provides a solution x ∈ DN such
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that distM(x, Ξ̃(ι̃)) ≤ εa with probability at least 2/3, for all ι̃ ∈ Ωm,N . This
concludes the proof of theorem 4.1.3 (iii).

�

4.3 Phase transitions for randomized algorithms

Theorem 4.1.3 leads to phase transitions similar to what was shown in figure
3.4. As in chapter 3, we define a new complexity class BPPOε , inspired by the
complexity class BPP from classical complexity theory. BPP (Bounded-error
Probabilistic Polynomial-time) is the class of problems that can be solved by
a probabilistic Turing machine in polynomial time, with an error probability
no larger than 1/3 [Sip13]. Let BPPOε denote the class of computational
problems with ∆1-information, for which ε-approximations can be computed
by a probabilistic oracle Turing machine with access to an oracle for each input
ι̃ ∈ Ω̃, with runtime polynomial in the number of variables nvar in the input,
and with error probability no larger than 1/3 for all inputs.

Let us consider the computational problem {Ξ,Ω}∆1 , where Ξ is the lasso
solution map given in (3.3), and Ω is the input set defined in (3.13) for which
theorem 4.1.3 holds. Note that the Randomized ε-approximation algorithm does
not make the problem of computing ε-approximations for {Ξ,Ω}∆1 in BPPOε
for all ε ≥ 0. While the algorithm has error probability no larger than 1/3 for
all inputs, it does not run in polynomial time. In fact, it may not even halt on
some inputs.

Figure 4.1: Phase transitions in the randomized case for lasso with
domain Ω given by theorem 4.1.3. Here, we have fixed εwPB = εwPB(p1)
for p1 < 1/2 and εsPB = εsPB(p2) for p2 < 1/3, for ease of reading.

.

Consider instead an error ε ≥ 0 satisfying εwPB(p1) > ε > εsPB(p2) for
p1 ∈ [0, 1/2) and p2 ∈ [0, 1/3). We have that for all randomized general
algorithms Γran ∈ RGA and all M ∈ N, there exists an ι̃ ∈ Ω̃ such that
Pι̃
(

distM(Γran
ι̃ , Ξ̃(ι̃)) > ε or TΓran(ι̃) > M

)
> p1. This means that if a

probabilistic oracle Turing machine Γran has polynomial runtime for all inputs,
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then Pι̃
(

distM(Γran
ι̃ , Ξ̃(ι̃)) > ε or TΓran(ι̃) > M

)
= Pι̃

(
distM(Γran

ι̃ , Ξ̃(ι̃)) >

ε
)
> p1 for at least one input ι̃ ∈ Ω̃. This shows that the problem is still not in

BPPOε , because p1 can be chosen larger than 1/3.
However, if we consider an error ε ≥ 0 satisfying ε > εwPB(p1) for p1 ∈ [0, 1/2),

then ε > εwB by (4.8). This means that the problem of computing ε-
approximations is in POε , as already established in section 3.7. The situation is
summarized in figure 4.1.
Remark 4.3.1 (BPPOε vs. EXPTIMEOε ). By their original definitions in classical
complexity theory, BPP ⊆ EXPTIME. Thus it would seem that the result
from section 3.7 (that the problem of computing ε-approximations is not in
EXPTIMEOε for εsB < ε < εsB) is stronger than the result shown in the upper
box of figure 4.1, considering (4.5) and (4.8). If it was the case that BPPOε ⊆
EXPTIMEOε , then this would indeed be true. However, the exact relationship
between BPPOε and EXPTIMEOε has yet to be determined.

4.4 The breakdown epsilons can be arbitrarily large

We conclude this thesis with a short section remarking upon the size of the
breakdown epsilons for the problem of computing approximate solutions to the
lasso problem. Recall the definitions of A(α, β,m,N) and yA(yc,m) from (3.5)
and (3.6). For a given λ ≥ 0 and natural numbers K ≥ 1, and m > N ≥ 2, let

Ωsm,N,K = {(yK(m), A(α, β,m,N)) : (α, β) ∈ L} (4.10)

where L = {[0, 1/4]×{0}∪{0}× [0, 1/4]} and yK(m) := yA(4 · 10K +λ
√
m,m).

By lemma 3.3.1, we have that Ξ(ι)∩{4 ·10Ke1, 4 ·10Ke2} 6= ∅ for all ι ∈ Ωsm,N,K .
Then we have the following result:

Lemma 4.4.1. Let k,m,N ∈ N with m > N ≥ 2 and k ≥ 1. Consider
the computational problem {Ξ,Ωs

m,N,k,MN ,Λm,N}, where Ξ is the solution
map to the lasso problem, the input set Ωs

m,N,k is as defined in (4.10),
and the metric on MN is induced by ‖·‖q for some q ∈ [1,∞]. Then
there exists a Λ̂m,N ∈ L1(Λm,N ) such that, for the computational problem
{Ξ,Ωsm,N,k,MN , Λ̂m,N}, we have εsB ≥ εsPhB(p) ≥ 21+1/q · 10−k for p ∈ [0, 1/2)
and εsPB(p) ≥ 21+1/q · 10−k for p ∈ [0, 1/3).

Proof. The proof is identical to the proof of lemma 3.3.2, except all exponents
are changed from −k to k. For the given k ≥ 1 and m > N ≥ 2, let
ι0 = (yk(m), A(0, 0,m,N)) and

ι1n = (yk(m), A(0, 2−1 · 4−n,m,N))
ι2n = (yk(m), A(2−1 · 4−n, 0,m,N)).

For ease of reading, let A0 = A(0, 0,m,N), A1,n = A(0, 2−1 · 4−n,m,N) and
A2,n = A(2−1 · 4−n, 0,m,N). Let S1 = {4 · 10ke1} and S2 = {4 · 10ke2}. We
have that

inf
x1∈S1, x2∈S2

‖x1 − x2‖q = ‖4 · 10ke1 − 4 · 10ke2‖q

= (2(4 · 10k)q)1/q

= 22+1/q · 10k
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and by lemma 3.3.1 we have

Ξ(ι1n) = Ξ((yk(m), A(0, 2−1 · 4−n,m,N)) = 4 · 10ke1 ∈ S1

Ξ(ι2n) = Ξ((yk(m), A(2−1 · 4−n, 0,m,N)) = 4 · 10ke2 ∈ S2

for all n ∈ N . Next, we have that for any f ∈ Λm,N

|f(ι1n)− f(ι0)| = |f((yk(m), A1,n))− f((yk(m), A0))|
≤ max{‖A1,n −A0‖max, ‖yk(m)− yk(m)‖∞}
= ‖A1,n −A0‖max = 4−n

and by the same steps, we get |f(ι2n) − f(ι0)| ≤ 4−n. Then conditions (a)
- (c) of proposition 2.4.5 are satisfied. By result (ii) of the proposition, we
get εsPhB(p) ≥ 21+1/q · 10−k for p ∈ [0, 1/2) and εsPB(p) ≥ 21+1/q · 10−k for
p ∈ [0, 1/3). �

This means that we can construct input classes for which the strong
breakdown epsilons are arbitrarily large. By choosing any large K ≥ 1, we have
that for the computational problem {Ξ,Ωsm,N,K ,MN , Λ̂m,N}, where Ωsm,N,K is
as defined in (4.10), the various strong breakdown epsilons satisfy

εsB > 10k,
εsPB(p) > 10k for p ∈ [0, 1/3), and
εsPhB(p) > 10k for p ∈ [0, 1/2).

This means that for any deterministic lasso algorithm, there are cases where
the algorithm will output an estimate x for which distM(x,Ξ(ι)) > 10K .
Furthermore, for any halting randomized algorithm, there are cases where
the probability that the algorithm outputs an x for which distM(x,Ξ(ι)) > 10K
is greater than any p < 1/2. A similar result can be established for the weak
breakdown epsilons.
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CHAPTER 5

Conclusions

The main results of this thesis are theorem 3.5.1 and theorem 4.1.3. We
summarize these two theorems in a more reader friendly manner below.

Summary of theorems 3.5.1 and 4.1.3. Consider the lasso problem

argmin
x∈RN

1
2m‖Ãx− y‖

2
2 + λ‖x‖1 (5.1)

and some `q-norm to measure error, q ∈ [1,∞]. For all K ≥ 2, there exists a
class of inputs Ω such that the following holds.

(i) It is impossible for any algorithm to compute solutions to (5.1) for which
the error is less than 21+1/q · 10−K for all inputs in Ω. Even randomized
algorithms are unable to do this with probability greater than 1/2, if they
are required to always halt.

(ii) If we consider randomized algorithms with a non-zero probability of not
halting, then there exists an algorithm that can compute solutions to
(5.1) to arbitrary accuracy for all inputs in Ω, with success probability
2/3. However, there does not exist any such algorithm that can compute
solutions to arbitrary accuracy for all inputs in Ω with probability greater
than 2/3.

(iii) Any algorithm that computes solutions to (5.1) for which the error is
less than 21+1/q · 10−K+1 for all inputs in Ω will, in the worst case,
need an arbitrarily long runtime. Furthermore, such an algorithm exists.
This holds for randomized algorithms as well: There does not exist any
randomized algorithm that can compute solutions for which the error is
less than 21+1/q · 10−K+1 and the runtime is bounded for all inputs in Ω,
with probability greater than 1/2.

(iv) There is an algorithm that can compute solutions to (5.1) with error
less than or equal to any ε ≥ 0 satisfying ε > 21+1/q · 10−K+1 for all
inputs in Ω. This algorithm has runtime polynomial in log(1/ε) and the
number of variables in the input. In particular, the problem of computing
ε-approximations to (5.1) is in POε for ε > 21+1/q · 10−K+1.

(v) To establish the results (i) - (iii), the input class Ω can be chosen with fixed
dimensions m > N ≥ 2 for its entries (y,A) ∈ Rm×Rm×N . Furthermore,
if we only consider the results (i) and (ii), then we can choose K = 1.
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In order to make clear what the consequences of this list of results are,
some comments are in order. An immediate consequence of (i) is that the lasso
problem is not computable in the traditional Turing sense. However, this does
not mean that computing solutions to the lasso problem is completely hopeless.
While solutions can not always be computed to arbitrary accuracy, result
(iv) shows that if we are willing to sacrifice some accuracy, then approximate
solutions may still be computed. In other words, even if lasso is non-computable
for a particular input class Ω, solutions may sometimes be computable to the
accuracy needed in practice. This can explain why lasso has had great success
in practice.

As mentioned in the introduction to this thesis, the phenomenon character-
ized by theorems 3.5.1 and 4.1.3 is not unique to lasso. Similar results have
been established for linear programming, basis pursuit, and constrained lasso in
[BHV] (for the case where N > m in the inputs) for the K, K − 1 and K − 2
correct digits cases. What has been developed in [BHV], and restated in chapter
2, is the beginnings of a new complexity theory for non-computable problems.
Furthermore, related computational barriers have been established for neural
networks in [ACH21]. It seems that we have only just begun to scratch the
surface of the computational barriers inherent in our idea of what an algorithm
is, and therefore the limitations of what a computer can solve.

Future work and areas of inquiry

The computational model developed in [BHV] is new, and there are many
directions of inquiry that can be taken from here. Some suggestions for future
work are listed below.

Similar impossibility results to theorems 3.5.1 and 4.1.3 can be established
for other optimization problems. Some potential candidates are the matrix
completion problem, and other forms of lasso such as the square-root lasso or
group lasso.

Analysis into how prevalent the phenomenon characterized by theorem 3.5.1
and theorem 4.1.3 is would be useful, especially in the situations typically met
in practice. The impossibility result stems from cases where the true solution
"flips" between two disjoint subsets S1, S2 ⊂M with a non-zero "gap" between
them. Are there necessary and sufficient conditions under which lasso is always
computable?

One could investigate the relationship between the complexity classes BPPOε
and EXPTIMEOε . Other complexity classes can be defined, based on already
established complexity classes in traditional complexity theory; like PPOε for
PP1. What are the relationships between the different complexity classes, and
which problems do they contain?

1The complexity class PP consists of the decision problems that can be solved by a
probabilistic Turing machine in polynomial time, with an error probability less than 1/2 for
all inputs [Pap94].
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APPENDIX A

MATLAB code

A.1 MATLAB code for the lasso experiment in section 3.1

1 format shortG
2
3 % Machine epsilon for double precision floats
4 machine_eps = 2^(-52);
5 max_iter = 1/machine_eps;
6
7 % LASSO example that will lead to failure
8 lambda = 0.1;
9 y = [1/sqrt(2); -1/sqrt(2); 0];

10 Dx_sol = [0; 1-sqrt(3)*lambda]; % True solution
11 deltas = 2.^[-1, -7, -15, -20, -24, -26, -28, -30];
12
13 Dx_error = [];
14 warning = [];
15 runtime = [];
16
17 for i = 1:length(deltas)
18 % Define the problem matrix A
19 A = [1/sqrt(2) - deltas(i), 1/sqrt(2);
20 -1/sqrt(2) - deltas(i), -1/sqrt(2);
21 2*deltas(i), 0];
22
23 % Use lasso to estimate Dx with default settings
24 lastwarn('',''); % Reset last warning
25 tic; % Start timer
26 [Dx_star1, FitInfo1Dx] = lasso(A,y,'Lambda',lambda);
27 runtime(i,1) = toc; % Save lasso runtime
28 if (isempty(lastwarn())); warning(i,1) = 0;
29 else; warning(i,1) = 1; end
30
31 % Use lasso with 'RelTol' set to machine epsilon
32 lastwarn('',''); % Reset last warning
33 tic; % Start timer
34 [Dx_star2, FitInfo2Dx] = lasso(A,y,'Lambda',lambda,...
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A.1. MATLAB code for the lasso experiment in section 3.1

35 'RelTol',machine_eps);
36 runtime(i,2) = toc; % Save lasso runtime
37 if (isempty(lastwarn())); warning(i,2) = 0;
38 else; warning(i,2) = 1; end
39
40 % Use lasso with with 'RelTol' set to machine epsilon
41 % and 'MaxIter' set to 1/(machine epsilon)
42 lastwarn('',''); % Reset last waning
43 tic; % Start timer
44 [Dx_star3, FitInfo3Dx] = lasso(A,y,'Lambda',lambda,...
45 'RelTol',machine_eps,'MaxIter',1e8);
46 runtime(i,3) = toc; % Save lasso runtime
47 if (isempty(lastwarn())); warning(i,3) = 0;
48 else; warning(i,3) = 1; end
49
50 % Calculate error
51 Dx_error(i,1) = norm(Dx_star1 - Dx_sol);
52 Dx_error(i,2) = norm(Dx_star2 - Dx_sol);
53 Dx_error(i,3) = norm(Dx_star3 - Dx_sol);
54 end
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