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Abstract

The Standard Model (SM) of particle physics has been used to explain many observed
phenomena in the nature with great precision. But not everything that is observed has
been explained by the SM, like the non-zero mass of the neutrino. A mechanism that
tries to explain the mass of the neutrino is the Inverse Seesaw mechanism (ISS) yielding
heavy neutrino masses and the existence of right-handed neutrinos. This can lead to heavy
pseudo-Dirac neutrinos with trilepton final states and a neutrino from the decay of a W -
boson. This thesis uses two types of such neutrino signals with neutrino masses, N1, of
150 GeV and 450 GeV with data from proton-proton collisions collected by the ATLAS
detector at

√
s = 13 TeV.

In this thesis we use the two simulated signal samples containing particles properties
with Machine Learning to train classification models on these signals. This is a supervised
learning case where we use multiclass classification to classify the vertex permutations of
the leptons. The leptons in each event in the original Ntuples are ordered after pT where
lepton 1 is the lepton with highest pT . With the multiclass classification we want to find
from which vertex these leptons really originate from in each event. We train several
different classification models to find the best performing model to use on unseen data.

For these simulated signals we find that the Light Gradient Boosting Machine (LGBM)
is the fastest and best for classifying both simulated signals with accuracy scores of 0.88
for the 150 GeV signal and 0.96 for the 450 GeV signal when evaluating with the test set.

With the LGBM model we classify simulated background and signal data containing
proton-proton collision events to find the particle vertex permutations for the three leptons
in the final state. The outcome is to classify the vertex permutations such that we can study
the charge and flavor of the leptons in the production and decay of the heavy neutrino. We
study and compare features for these backgrounds and signals with different signal regions,
and compare with a more standard analysis as benchmark. If an excess is observed some
time in the future, we would like to study which neutrino mass model we are dealing with.

For the two simulated signals we only get predictions for the 123 and 132 vertices of the
leptons, while the simulated backgrounds have predicted vertex permutations for 123, 132
and 213. The 213 vertex is predicted much less than the other two vertex permutations.
The 213 vertex er predicted a maximum 10871 number of times, while 123 and 132 are
predicted between 22337 and 5821865.

In the signal regions we find that the same flavor and opposite sign state of leptons from
vertex 1 and 2 for electrons and muons are more dominant with much more events than
the different flavor and opposite sign cases for the backgrounds. We get different degrees
of lepton flavor violation for the different vertex permutations. For the signals there is not
that much difference in the flavor ratios.

For the invariant mass of the three lepton system (m3l) we find that it is easier to
differentiate between background and the 450 GeV neutrino signal for masses higher than



400-500 GeV. The significance of the 450 GeV for m3l reach maximum above 4 σ for all
signal regions after 250 GeV, except for the 213 vertex permutations with no signal events.
For the missing transverse energy (MET) backgrounds and signals have similar number of
events and are more difficult to differentiate. The significance was found to be higher with
the 450 GeV signals compared to the 150 GeV signal, and higher for the m3l compared
with the MET. The significance of the signals are much less in the MET distributions
compared with the m3l distributions. As expected the MET does not discriminate well
the signals and backgrounds and we do not expect any excess in the signal distributions
for MET.

The multiclass classification of the lepton vertex permutations with the LGBM model
have successfully predicted the lepton vertices, yielding better performance than the cur-
rent simple benchmark analysis in general.

Searching for new physics with the LHC is demanding and it is not always clear how to
get the results we want. This is where ML can be of great assistance to uncover new physics
by e.g. implementing multiclass classification to classify lepton vertices like we have done
in this thesis. This study has been a great help to understand how ML techniques can be
used to analyze and discover new physics, especially in particle physics.
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Chapter 1

Introduction

The goal of this thesis is to use Machine Learning (ML) algorithms to classify the origin
vertices of final state particles from proton-proton collisions. We will study two simulated
neutrino signal scenarios with a heavy neutrino mass of 150 and 450 GeV, respectively.
These signals go beyond the particle physics Standard Model (SM) with three final state
leptons and a neutrino. We will compare the two signals with each other and compare
particle features with some chosen cuts with a simpler analysis using more standard cuts
as used in Pascoli et al. [1].

Particle physicists focuses a lot on colliding particles at high energies is to produce
known and possibly unknown particles. When two particles collide, they will produce
new particles that move through detectors built around the collision points. At the Large
Hadron Collider (LHC), huge amount of data are produced each second which is captured
by detectors and stored for further analysis. Many particles are produced in each such
particle collision, and it is not always trivial to identify all these particles. There are also
cases where some particles are not directly detected at all, like neutrinos. By using ML
algorithms, which is a study in computer science and mathematics involving, among others,
pattern recognition, we can try to computationally identify the vertices of the produced
particles from the collision decays.

Particle physics takes a closer look at the building blocks of the universe, the funda-
mental particles in the SM. This is a theory that fits well with most observations. However
there are several observations in the universe that cannot fully be explained by the SM, like
dark matter and dark energy, meaning that the SM is incomplete and have to be extended.
One of the methods to complete or expand the SM is to find new particles. This is done at
large laboratories like CERN, where one of the things they do is to collide particles at high
energies to produce new particles. After colliding particles, the new particles are detected
using big detectors like A Toroidal LHC ApparatuS (ATLAS). One of the major discoveries
at CERN is the discovery of the Higgs boson[2][3], which was the last missing piece of the
SM. In this thesis, we will analyze both ”truth” and more realistic simulations after taking
into account hadronization, showers and detector inefficiency of particle collisions. With
”truth” we mean simulated data or the particle collisions where we know exactly which
particles have been produced and their origins.
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1.1 Motivation for Thesis

The Compact Muon Solenoid (CMS) collaboration published in 2014 an article ”Search for
heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at√
s=8 TeV”[4] using an integrated luminosity of 19.7 fb−1 of

√
s = 8 TeV p-p collision data

produced by the CMS experiment at CERN. They searched for 2 leptons and 2 jet final
states in signal regions with only same flavor (SF) and no lepton flavor violation (LFV).
They observed a 2.8 local significance in the 2 electron and 2 jet (eejj) channel with no
excess in the 2 muon and 2 jet (mmjj) channel. The ratio in the eejj channel had a SS/OS
event ratio of 1/14. This is not consistent with left-right symmetry model (LRSM) theory.

When more data was included, this excess disappeared. Nevertheless, the results gave
motivation for new neutrino mass mechanism theories to study this lack of SS and LFV,
e.g. the Inverse seesaw (ISS) mechanism[1]. There has not been discovered any significant
excess in the heavy neutrino searches at the LHC since.

This thesis looks at the same neutrino models as Pascoli et al. [1] to produce the final
trilepton plus missing transverse energy (MET) states, seen in the Born diagram in Figure
1.1. By applying ML techniques on simulated data of this type of trilepton final state, we
want to see if we can identify the final state lepton’s production vertices origins in events
seen in Fig. 1.1. If we can classify the vertex origins of the leptons, we can study the charge
and flavor of the leptons in the production and decay of the heavy neutrino (Nm). Different
neutrino mass models gives different expectation on the LFV and Majorana component
of the Nm. This gives rise to different amount of SS/OS lepton pairs as well as the ratio
between SF, for lepton flavor conservation (LFC), and DF (LFV) lepton pairs. If an excess
is observed some time in the future, we would like to study which models of neutrino mass
mechanism the excess is compatible with by efficiently identify and study the properties
of the leptons involved in the neutrino production and decay.

Figure 1.1: The Born diagram for the charged current Drell-Yan process of the proton-
proton collision (on the left) producing a heavy pseudo-Dirac neutrino N in the inverse
seesaw mechanism model, leading to a trilepton plus missing transverse energy (a light
neutrino) final state. Figure is taken from ref. [1].
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1.2 Motivation for Machine Learning

Machine learning and data science has had a huge growth since 2014. There are now a
bigger variety of algorithms and approaches better suited for data analysis and different
types of analyses depending on both the datasets and the desired goals. The datasets are
as well a lot bigger than before, with samples ranging up to billions. This is both good
and bad, since most machine learning models need a lot of training data to perform and
predict on a good level. But with larger datasets, more time is needed to do the analyses
since there are more data, obviously. This means that the models have to be fast and
good.

Machine learning models have pattern recognition as one of the main focuses. The
idea is to automatize and learn what normally is complex and difficult for humans to
do. This can include image analysis or to learn the rules of a game. The more data the
learning models have, the better they can do their tasks. Even though the algorithms can
do quite complex tasks, the fundamental methods in these algorithms include normally
simple methods. Many of the most used algorithms have several hyperparameters that
are used to optimize the models. After a machine learning algorithm have been trained
on some data, it can be exported and used on other types of similar data. This skips the
step of training the algorithms with the data each time, and we can do straight to the
predictions of the new data.

We will test several different classification model algorithms, and the best performing
models for each signal sample will be chosen. If successful, then we can export the best
models to other similar scenarios later.

1.3 Structure of Thesis

In the first chapters of part I, we take a look at an introduction to particle physics and
further theories connected with the model we study. The next chapters involve the particle
kinematics of particle collisions, and how they are collided and detected by instruments.
Then follows theory of machine learning, the classification models and evaluation metrics
to be used in this thesis.

Part II starts by looking at the most important libraries we use, the data and the
features of the data prior to classification. Then we look at more detailed implementation
and evaluation of the machine learning aspect leading to the best performing multiclass
classification model. The ML analysis is chosen to be done in the programming language
Python, which has many useful libraries for doing machine learning.

In part III we first present the results of the classification of simulated data with the
trained classification models. Then follows the analysis of some chosen features of the data
in defined signal regions, and a comparison with a more standard analysis.

Part IV consists of discussions of the results, concluding remarks of the thesis and a
short look into future research based on this thesis.
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Notation and Conventions

• e = 1.6 · 10−19 C : The elementary charge.

• c = 2.998× 108 m/s: Speed of light in vacuum.

• 1 GeV = 109 eV = 109× 1.602× 10−19 J: Approximately the rest mass energy of the
proton.

• me = 9.109× 10−31 kg = 0.511 MeV/c2: Mass of an electron.

• 1 barn (b) ≡ 10−28 m2: Interaction cross sections (dimension of area).

• h = 6.626× 10−34 J·s: Planck’s constant, a fundamental physical constant.

• ~ = h
2π

= 1.055 × 10−34 J·s: Unit of action in quantum mechanics (also called the
reduced Planck constant).

• Einstein energy-momentum formula: E2 = p2c2 +m2
oc

4

• Coulomb force between two charged particles: F = q1q2
4πε0r2

• Natural units (from S.I. units):

– Replace [kg, m, s] with [~, c, GeV].

– ~c = 197 MeV fm.

– Use ~ = c = ε0 = µ0 = 1.

• 1D time-dependent Schrödinger equation:

i
∂ψ(x, t)

∂t
= − 1

2m

∂2ψ(x, t)

∂x2
+ V̂ ψ(x, t)

• Planck scale ∼ 1019 GeV.

• GUT scale ∼ 1016 GeV.

• Magnetic fields are measured in Tesla (T).
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Part I

Theory

13



Chapter 2

The Standard Model of Particle
Physics

Throughout the years, there have been many theories in physics of what the universe
is made up of and how everything fits together. For now, the best theory/model is the
Standard Model (SM) of particle physics. This theory has many times through the years
proven to successfully predict and explain particles and their interactions. This model has
lead to the discovery of what we now call elementary particles and fundamental forces,
and they are the building blocks of the universe.

In this chapter we look closer at the contents of the SM and the underlying theories
and models. Much of the information in this chapter is based upon Thomson [5] and some
on Elert [6].

2.1 Particle and Force Contents

The known elementary particles can be categorized into two main categories according
to their spins; fermions and bosons. Fermions have half-integer spins, while bosons have
integer spins. The Higgs boson is categorized as a boson but has 0 spin. In Figure 2.1 we
see the categorization of the elementary particles, and the fundamental forces, in the SM.
The individual categorizations will be explained in the upcoming sections. The interactions
between the SM particles can be seen in Figure 2.2.

2.1.1 Gauge Bosons

From what we know of, there exists four fundamental forces. Three of these can be
explained by the SM through exchange of (gauge) bosons. That is why bosons also are
called force-carrier particles. The three forces are the electromagnetic, strong and weak
nuclear forces, where each force has its own connected boson(s). There are five different
bosons that mediates these forces, and they all have integer spins. This means that they
go with vector fields, along a direction.
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Figure 2.1: The Standard Model contents, source [7].

Figure 2.2: The interaction between the particles in the Standard Model. Credit:
Wikipedia.
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Strong nuclear force

The strong nuclear force is mediated by eight massless gluons (g). They only affect the
(r,g,b) color charged quarks, and come in combinations of color and anti-color charges.
Since the six gluons carry a different variation of color and anti-color combinations, they
come in an octet of colored states. The color assignments of these eight physical gluon
variations can be written as:

bḡ, br̄, gb̄, gr̄, rb̄, rḡ,
1√
2

(rr̄ − gḡ),
1√
6

(rr̄ + gḡ − 2bb̄)

It is this strong interaction force that binds the quarks together to make e.g. protons and
neutrons. The gluons can also self-interact with each other. This makes the interaction
range of the strong nuclear force short, keeping the gluons within the nucleus. The exchange
of gluons by interactions of colored particles is a mathematical model known as quantum
chromodynamics (QCD, sect.2.4.2).

Electromagnetic force

The electromagnetic force is mediated by the massless photon (γ). Photons have interact
with electrically charged particles. Since the photon is massless and electrically neutral,
it has an infinite range. The electromagnetic force is responsible for holding electrons in
place around the nucleus, and is not as strong as the strong nuclear force. Electrically
charged particles are either attracted to each other or repelled away for each other, de-
pendent on if the charges of the particles have the same sign or not. The exchange of
photons by interactions of charged particles is a mathematical model known as quantum
electrodynamics (QED, sect.2.4.2).

Weak nuclear force

The weak nuclear force is mediated by the W± and Z0 bosons. There are two charged
variants of the W with charge +e or −e. The Z boson is electrically neutral. They er all
massive which gives a short lifetime and short range. Because of the difference in charges,
they act on different particles. The W boson couples the electromagnetic interactions. The
W boson can decay to all flavors of quarks, except the top quark which is too massive,
leptonic final states or hadronic final states. The weak interaction force can change the
flavor of quarks. The exchange of W and Z bosons is explained with a more complex
mathematical model that unifies both the weak and electromagnetic interactions, and it is
known as electroweak theory (EWT, sect.2.4.2).

Gravitational force

The last force of nature is gravity. We have not yet found the hypothetical graviton (G)
particle which should carry the gravitational force. All the other forces seem to be well
explained in the SM, except for gravity. So the gravitational force is not included in the
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SM. LIGO and Virgo discovered in 2015 gravitational waves from observing the merging
of two black holes with ∼30 solar masses each [8], which might give insight into gravitons
in the future. When looking at small objects (micro size), gravity does not seem to have
any noticeable effect. But when we look at bigger objects of mass like humans or planets
(macro size), then gravity has a much bigger effect and is well described by Einstein’s
General Theory of Relativity. Since gravity has more or less a negligible effect on particles
energies so far probed in experiments, particle physicists do not have to take gravity into
consideration.

2.1.2 Higgs Boson

The Higgs boson (H) is a ”recently” discovered particle (2012) [2][3] theorized by Peter
Higgs in 1964. This particle has intrinsic no spin, which makes it a scalar particle, and
the only scalar particle discovered so far. It’s electrically neutral and massive (mH ≈125
GeV), and interacts with itself. Since it is so massive, the lifetime of the Higgs boson is
very short and it’s hard to detect directly. It can in principle decay to all massive SM
particles. The heavier particle, the stronger is the coupling to the Higgs.

The discovery of the Higgs boson was a major contribution to the SM since it can
explain the origin of the masses of the other elementary particles. It also confirmed the
existence of the Higgs (scalar) field, which gives the other elementary particles mass when
they interact with this field. This field is thought to be everywhere in the universe with a
non-zero vacuum expectation value. Here, Higgs bosons appear and disappear and interact
with other particles in the field giving them their masses. The gluons and photons do not
interact with this field, hence they are massless.

2.1.3 Fermions

The fermion group in the SM consists of 12 elementary particles with half-integer spins.
These particles are also known as matter-particles, since these particles are the building
blocks of the matter in the universe. Each fermion has its own antiparticle. The an-
tiparticles have the same mass as their particle partner, but has opposite electric charges
and different quantum numbers. Fermions which acts as their own antiparticles are called
Majorana particles.

The 12 fermions can be split into two groups of six quarks and six leptons. The fermions
can then be categorized into three generations, which goes from lighter and more stable
to heavier and less stable. As seen in the SM figure (2.1), the first generation is called
the ”everyday matter”. This is because most of the stable (baryonic) matter is made
from the first generation particles. The reason for this is that the first generation particles
do not decay. Second and third generation particles are only observed in high-energy
environments. None of the neutrinos decay, but they oscillate and scatter, and they rarely
interact with baryonic matter.
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Quarks

The six quarks are up, down, charm, strange, top and bottom. A characteristic property
for the quarks is that they all have color and electric charges, and they interact through
the strong nuclear force. The colors charges are denoted red, green and blue and they all
have an anti-color. Quarks cannot exist as free particles. As explained in section 2.1.1, the
quarks have a strong binding force between them since they are acted upon by the strong
nuclear force. From this strong binding force, the quarks form particles called hadrons, like
protons and neutrons. They are made up of either three quarks (baryons) or a quark and
an anti-quark (mesons). A proton is made up of one down quark and two up quarks. The
hadrons are color-neutral particles. Since quarks have electric charges, they also interact
via the electromagnetic force and the weak nuclear force.

Leptons

The six leptons are electron (e), electron neutrino (νe), muon (µ), muon neutrino (νµ),
tau (τ) and tau neutrino (ντ ). The electron, muon and tau leptons have electric charges
and are influenced by electromagnetism. They all carry a −1e electric charge, while their
respective antiparticle having electric charge +1e. Every lepton carrying a lepton number,
which is conserved in all known interactions. The leptons also interact weakly. Both
leptons and antileptons have their respective lepton number +1 and -1, and each flavor
has its own lepton flavor number with the same values as the lepton numbers. There are
three generations where the three charged leptons are paired with their respective neutrino,
and the masses of these three leptons increases with the generation. Only the electron (1st
gen) is stable and doesn’t decay, while the muon and tau leptons decay via the weak
interaction.

2.2 Neutrinos

The three neutrinos (electron, muon, tau) are a little more special than the other elemen-
tary particles. They are classified as leptons with half-integer spins, but they do not carry
any charge and are thus neutral. They only interact via the weak nuclear force, making
them very hard to observe since they go through almost everything without interacting
much with anything. If the neutrinos are Majorana, they are the only Majorana fermions
of the SM since all the other fermions have an non-zero electric charge. By detection of
neutrinos and antineutrinos, only left-handed neutrinos and right-handed antineutrinos
are observed. From the weak nuclear force mediator particles, the W± bosons, we know
that they only couple to left-handed particles and right-handed antiparticles. This means
that interaction of the right-handed neutrinos is not covered in the SM. Since mass terms
couple both left- and right-handed states, the neutrinos are considered as massless in the
SM. Through the discovery of neutrino oscillations [9], we know that the neutrinos can
change flavor meaning they cannot be massless. We know that they have to have mass
since the neutrinos oscillate, but the mechanism behind the masses are not known. So,
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one type of neutrino can in fact change flavor to another type of neutrino when it travels
over a large distance. Neutrino oscillation describes the difference between the neutrino
flavor eigenstates and the neutrino mass eigenstates. This type of physics is not covered
by the SM and will be looked more into later in this thesis.

2.2.1 Neutrino Oscillations

From the SM we know that for all interactions the lepton number is conserved for both
the total and each lepton flavor separately. The lepton number is conserved when a W±

boson decays into a lepton neutrino pair. We will in this thesis have a W± boson that
decays into leptons

The discovery of neutrino oscillations was done by two experiments. Namely the Super-
Kamiokande Observatory[10] and the Sudbury Neutrino Observatories (SNO)[11] experi-
ments. They got the Nobel Prize in physics in 2015 for their contributions by detecting
solar neutrinos from the Sun [12]. The Super-Kamiokande detected electron neutrinos
using a big water Čerenkov detector, but they got a too low electron neutrino flux than
what was expected to be produced in the Sun. The SNO experiment showed that the
atmospheric neutrinos and the neutrino flux from β-decay in the Sun had strong muon
and tau components by using heavy water. Since only electron neutrinos are produced by
nuclear fusion in the Sun, the neutrinos must have the ability to change their flavor when
moving over large distances.

The neutrino oscillation is a quantum-mechanical phenomenon, where the neutrino
flavor (weak) eigenstates (νe, νµ, ντ ) can be related to the mass eigenstates (ν1, ν2, ν3) by
an unitary transformation matrix U asνeνµ

ντ

 =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

ν1ν2
ν3

 . (2.1)

The flavor eigenstates are linear combinations of the mass eigenstates. The 3× 3 unitary
matrix is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, and it’s expressed with
three mixing (rotation) angles and a complex Dirac CP violation phase if the neutrinos
are Dirac particles. The unitary of the PMNS matrix implies that U−1 = U † ≡ (U∗)T and
UU † = I.

If the neutrino mass eigenstates are not the same, we get neutrino oscillations from
the phase differences in components of the wavefunction. Since we already know that
the neutrinos change flavor from the discovery of neutrino oscillations, we know that the
neutrinos need some mass, differing by flavor, to being able to change flavor. That is why
the neutrinos need non-zero masses and not equal to each other for neutrino oscillations to
be true. From experimental measurements, like long baseline accelerators, for the neutrino
masses there is only found upper limits to the masses. The best upper limits on the
neutrino masses was found to be

3∑
i=1

mνi . 1.1eV (2.2)
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by the Karlsruhe Tritium Neutrino (KATRIN)[13] experiment in Germany. The reason why
the neutrino masses seems to be so much smaller than the other fundamental particles is
not known.

2.3 Symmetries

Particle dynamics are heavily influenced by symmetries and laws of conservation. From
classical Newtonian physics, we know that energy (E ), three-momentum (~p) and total
angular momentum (J ) are conserved quantities. This is also the case in the SM. A
quantity that is not conserved is the (rest) mass (m). This is something we know according
to Einstein’s Special Relativity. This enables production of heavier particles than the
colliding particles.

Another fundamental symmetry of physical laws is the CPT theorem. The CPT the-
orem is one of the results concluded by quantum field theory (QFT), and states that all
physical processes are symmetric under CPT-transformation [14]. C is charge conjugation,
where every particle can be replaced by its antiparticle. P is parity reflection, where every-
thing in the universe is mirrored along the three physical axes. T is time reversal, where
the direction of time is reversed in the sense of looking at the local properties of the SM.
The combination of these three symmetries is predicted by the SM to be a symmetry, while
each symmetry alone is only a near-symmetry. The CPT symmetry explains why particles
and antiparticles have identical masses, magnetic moments, etc. The CPT is also thought
to be an exact symmetry in the Universe. Only the weak interactions of quarks and leptons
seems to violate the C-, P-, T- and CP-symmetries out of the three fundamental forces
explained by the SM.

A topic to be further discussed later is gauge theory (sect. 2.4.2). From the connected
gauge symmetry in the SM, we get a conservation of certain quantum numbers during
the different interactions with the fundamental forces based on the SU(3)×SU(2)×U(1)
group. The quantities that are conserved are: the color charge for the strong nuclear
interaction (SU(3)), the electric charge for electromagnetic interactions (U(1)) and the
weak isospin for the weak nuclear interaction (SU(2)).

Other important conservation laws are the conservation of baryon number, B, and
lepton number, Lx, in an interaction. x is the lepton flavor. The only case where the
lepton number is not conserved is for neutrino oscillation. As we have explained earlier,
neutrinos can change flavor when traveling large distances. But, this is not something we
have to be concerned about in our case since we look at particles in particle detectors over
short distance. This distance is not big enough for neutrino oscillations to occur.

2.4 Quantum Field Theory

The Standard Model is based on the framework of quantum field theory (QFT). This is
a theory that combines quantum mechanics, special relativity and field theory. In other
words, quantum field theory tries to explain the little things in the universe, like the
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elementary particles, that move very fast, close to or with light speed c. This also means
that every elementary particle has its own associated field. These fields can then be
explained in terms of the Lagrangian density, L, to explain the dynamics and kinematics
of the fields.

The combination of quantum mechanics and special relativity does give some problems.
The most important equation in quantum mechanics is the Schrödinger equation, and it’s
not Lorentz invariant. The problem with this is that Schrödinger’s equation is not the
same for two observers in different reference frames. Other problems this leads to is that
we get violation of causality, negative energy states and there is no possibility for new
particle creations. The good thing is that these problems can be fixed by exchanging
the Schrödinger equation (see Notation and Conventions) by the Dirac equation [15][16]
for 1

2
-spin particles and the Klein-Gordon equation [15][16] for scalar particles. With the

Dirac and Klein-Gordon fields, this leads to specific (gauge) theories for different particles
and associated interactions, which we have briefly mentioned earlier and will explain more
soon.

2.4.1 The Lagrangian

For more simple classical mechanics cases the Lagrangian is just given as the difference
between the kinetic energy, K, and the potential energy, V , L = K − V . This is also
a baseline for the QFT. By using the Lagrangian of a system with a set of generalized
coordinates qi and their time derivatives q̇i, we can find the equation of motion that
describes the system by using the Euler-Lagrange equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (2.3)

A difference for QFT is that instead of kinetic and potential energies, or the generalized
coordinates, we use fields with four space-time coordinates. This changes the Lagrangian
L to the Lagrangian density L as a continuous system. This is a function of the fields,
φi(t, x, y, z), and their derivatives, ∂µφi(t, x, y, z). Since L is the spatial integral over L,

L =

∫
Ld3x, (2.4)

and using the principle of least action [17], the new Euler-Lagrange equation becomes

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂φi

= 0. (2.5)

For simplicity we will just denote the Lagrangian density the Lagrangian from now on.
From this new Euler-Lagrange equation, we can derive both the free-particle Dirac and
the Klein-Gordon equations by imposing the Lagrangian with a free fermion field1 and free

1Relativistic spin-half fields, Chapter 17.2.2 in Thomson [5]
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theory2 respectively. The Lagrangian for the spin-half (spinor) field, ψ, is

LD = iψ̄γµ∂µψ −mψ̄ψ, (2.6)

and the Lagrangian for the non-interacting scalar field, φ, is

LS =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2. (2.7)

Both of these two equations for the Lagrangian contain a kinematic term and a mass term.
With perturbation theory in quantum mechanics, the Lagrangian can also be used to

describe the behavior and interaction of elementary particles with Feynman diagrams for
simpler visualization of usually complex particle interactions.

2.4.2 Qauge Theories

From the new Lagrangian we now know that we need some new theory to explain the
interactions between the elementary particles, since these interactions vary depending on
the particles and associated interactions involved. In this theory we need to require that the
Lagrangian stays invariant under local transformations using symmetry or gauge groups.
In special relativity, this global symmetry group is called the Poincaré group which includes
spacetime symmetries.

To describe the SM we need an internal gauge invariant symmetry that represents the
different elementary interactions and is independent of spacetime coordinates. This is the
local SU(3)×SU(2)×U(1) gauge symmetry group. Here each special unitary group with
degree n (the number in the parenthesis) is connected to its own gauge theory and the
three elementary interactions in the SM, and n is a n-dimensional space. If a symmetry
group is commutative, meaning that regardless of what the order of the elements are
applied the result will be the same, then it is called an Abelian group. If the group is
non-commutative, it is then a non-Abelian gauge theory which implies the existence of
gauge boson self-interaction.

Quantum chromodynamics (QCD)

The gauge theory that defines the strong interaction between the quarks and (eight) gluons
(color charged particles) is the quantum chromodynamics sector [18]. The QCD conserves
the separately conserved color charges red, green and blue, and thus works in a three
dimensional color space. Another quantity which is conserved in QCD is parity. This comes
from that the QCD interaction Hamiltonian is invariant under parity transformations (sect.
11.2.2 in Thomson [5]). The antiquarks carry the opposite color charge to the quarks of
red, green and blue. The color states consists of color isospin and color hypercharge. It
also ensures invariance under the local gauge transformation. The gauge symmetry group
for this sector is SU(3)C and is represented by 3 × 3 matrices, where the C stands for

2Relativistic scalar fields, Chapter 17.2.2 in Thomson [5]
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the conserved color. This symmetry group does not commute and is a non-Abelian gauge
theory, or more precise it is a Yang-Mills gauge theory [19]. By using this gauge theory,
we can derive a new invariant Lagrangian which does not have a mass term for the gluons:

LQCD = ψ̄(iγµ∂µ −m)ψ − 1

2
gsψ̄γ

µλaψG
a
µ −

1

4
Ga
µνG

µν
a (2.8)

ψ is a fermion (quark) field, gs is a coupling constant of the strong interaction, γµ are
Dirac matrices, a = 1, ..., 8 are the eight gluons, λa is one of the eight Gell-Mann matrices
and Ga

µν is a gauge invariant gluon field strength tensor. The last term of the Lagrangian
in equation 2.8 implies that the gluons should be massless and can self-interact.

In Figure 2.3 we see the QCD vertices for quark and gluon interactions (and self-
interacting gluons).

Figure 2.3: Here we see Feynman diagrams of the basic QCD vertices. From left to right
we see, the coupling of gluon fields (g) interaction with quark fields (q), a triple gluon
vertex and a quartic gluon vertex. Source Fig. 10.1 in Thomson [5].

Quantum electrodynamics (QED)

The gauge theory that defines the electromagnetic interaction for the electrically charged
particles and photons is the quantum electrodynamics sector [20]. The QED conserves the
electric charge of the particles. Like in QCD, parity is conserved in QED (sect. 11.2.2 in
Thomson [5]). The gauge symmetry group for QED is U(1) which is an Abelian group.
By starting with a free fermion field for the Lagrangian (eq.2.6, invariant under global
U(1) transformation) and require invariance under a local phase transformation, leads
to a Lagrangian with a Lorentz-invariant description where there is an electromagnetic
interaction between fermions and the gauge field of the massless photon:

LQED = ψ̄(iγµ∂µ −me)ψ + eψ̄γµψAµ −
1

4
FµνF

µν . (2.9)

ψ is the field of the spin half particles, e is a coupling constant of the electromagnetic
interaction, γµ are Dirac matrices, Aµ is a covariant four-potential (gauge field), and Fµν
is the electromagnetic field strength tensor.

From the Lagrangian in equation 2.9, we can construct the Feynman diagram of a QED
interaction vertex between a single photon and two spin-half fermions, seen in Figure 2.4.
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Figure 2.4: A Feynman diagram of the basic QED vertex for the interaction between
fermions (f) and a massless photon (γ). Source Fig. 5.6 (and 10.10a) in Thomson [5].

Electroweak theory (EWT)

The gauge theory which defines the weak interaction for the 3rd component of isospin
particles and the W and Z bosons/fields is the unified theory known as electroweak theory
(EWT) [21] or Glashow-Weinberg-Salam (GWS) theory. This theory (from the 1960’s)
earned the three contributors Glashow[22], Weinberg[23] and Salam[24] the Nobel Prize in
Physics in 1979 [25][26].

Unlike QCD and QED, it is found experimentally that parity is not conserved in the
weak interaction (sect. 11.2.3 in Thomson [5]). This parity-violation makes the weak
interaction treat left-handed and right-handed particles differently. The charge-current
weak interaction is invariant under SU(2) local phase transformations and includes weak
isospin. The cross-section of W -pairs produced at higher energies, violates quantum me-
chanical unitarity such that particle probability is no longer conserved. This is solved
because the couplings of the γ (QED), W± and Z EWT are related to each other in the
unified electroweak model.

In the EWT theory fermions exists as left- and right-handed chirality states, while
W -bosons only couple to left-handed fermions. The EWT conserves the flavor charge and
weak isospin of the particles. It is the weak isospin quantum number that accounts for
the W -boson coupling, since left-handed fermions have half-isospin and appears as isospin
doublets while right-handed fermions appear as isospin singlets. Something to take notice
of here is that, the weakly interacting quarks are superpositions of the mass eigenstates
while the strongly interacting quarks are mass eigenstates.

The electroweak theory is based on the SU(2)L × U(1)Y symmetry group, where L is
left-handed interaction and Y is the weak hypercharge expressed by the electric charge Q
and the third component of the weak isospin I3, Y = 2(Q − I3). This new U(1)Y local
gauge symmetry is used instead of that in QED, where the charge now has been replaced
by the weak hypercharge. Each gauge invariant transformation in this theory, introduce
new gauge fields which as linear combinations corresponds to the photon and the W and
Z bosons of the weak interaction. With these new gauge fields, we can derive yet another
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new preliminary (electroweak) Lagrangian that is associated with the EWT theory:

LEWT =ψ̄Lγ
µ

[
i∂µ −

1

2
gσWµ −

1

2
g′Y Bµ

]
ψL + ψ̄Rγ

µ

[
i∂µ −

1

2
g′Y Bµ

]
ψR

− 1

4
BµνB

µν − 1

4
WµνW

µν (2.10)

ψL,R are the fields for left- and right-handed fields respectively, g and g′ are coupling
constants related to the elementary charge, γµ are the Dirac matrices, σ are the Pauli
matrices, Bµ is a field strength tensor for the weak hypercharge gauge field for U(1)Y ,
Wµν is a field strength tensor for the three weak isospin gauge fields for SU(2)L.

The EWT gauge symmetry group is non-Abelian. In Figure 2.5 and 2.6 we see Feyn-
man diagrams of the electroweak interaction vertices including fermions and gauge boson
self-interactions. The photon and the Z-boson couple with both left- and right-handed
fermions, while the W -bosons do not.

Figure 2.5: Here we see Feynman diagrams of the electroweak interaction vertices that
includes fermions.

Figure 2.6: Here we see Feynman diagrams of the electroweak interaction vertices for gauge
boson self-interaction.

By introducing the BEH mechanism we get, in addition to the coupling in Figure 2.5
and 2.6, couplings between the Higgs boson and the massive gauge boson as well as Higgs
self-interaction. These couplings can be seen in Figure 2.7.
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Figure 2.7: Here we see Feynman diagrams of the couplings between the Higgs boson and
the massive gauge bosons and Higgs self-interaction.

Fermion masses: The Higgs mechanism can also be used to give masses to the
fermions. The Higgs isospin doublet has a lower and an upper element. The lower el-
ement is used to give masses to down-type quarks and charged leptons, while the masses
of the up-type quarks are constructed from the conjugate doublet. The gauge invariant
mass terms of the Dirac fermions are then described as

mf =
gfv√

2
, (2.11)

where gf is the Yukawa coupling constant of the fermions to the Higgs field, as shown in
Figure 2.8.

Figure 2.8: Here we see Feynman diagrams of the coupling between the Higgs boson and
fermions.

Full EWT Lagrangian

The complete Lagrangian for the EWT is given by:

LEWT =ψLγ
µ

[
i∂µ −

1

2
gσWµ −

1

2
g′Y Bµ

]
ψL + ψRγ

µ

[
i∂µ −

1

2
g′Y Bµ

]
ψR

− 1

4
BµνB

µν − 1

4
WµνW

µν +

∣∣∣∣ (i∂µ − 1

2
gσWµ −

1

2
g′Y Bµ

)
φ

∣∣∣∣2
− V (φ)− (gfψLφψR +G′fψLφcψR + h.c.) (2.12)

The first line is the couplings between the fermions and the gauge fields and kinetic terms
for the fermion fields. The second line is the kinetic terms for the gauge fields and the Higgs
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field, the couplings between the gauge field and the Higgs field, and the couplings between
the gauge fields. The third line contains the scalar potential, the Yukawa coupling terms
and the fermion mass terms, and h.c stands for the corresponding Hermitian conjugate.
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Chapter 3

Neutrinos Beyond the Standard
Model

The SM explains most of the physics we measure in experiments. The SM has several
free parameters which are chosen to match observations. Nevertheless, the SM does not
explain everything. For theorists the ultimate goal is to construct a Theory of everything,
which explain all the physical phenomena in a unified way (including also gravity). Particle
physicists try to address the shortcomings of the SM by extending it and construct more
complete models which can explain e.g. gravity or the masses of the neutrinos.

A major problem in today’s particle physics is that the SM can only explain about
5% of the total energy density of the Universe. This 5% of the matter in the Universe
is called baryonic matter, while the rest is something yet unknown. One theory is that
about 25% is something called dark matter, that acts as matter, but we can’t see it, and
has a gravitational pull in the Universe. The remaining 70% is then thought to be dark
energy, which has a pushing affect on the galaxies in the Universe making it expanding
faster and faster with time. A dark matter candidate is neutrinos. We will not go into the
dark matter aspect, but look closer at neutrinos and the neutrino masses.

From the discovery of neutrino oscillations, we know from observations and experi-
ments, that the neutrinos need to have mass since they have the ability to change flavor
over very large distances. Why the neutrinos have mass and what gives them mass, on the
other hand, are not explained in the SM. The only place in the SM that allows CP-violation,
is in the weak interaction domain where left-handed neutrinos are affected through neutrino
mixing. Since it is not observed right-handed neutrinos nor left-handed antineutrinos, C-
and P-symmetry should be violated. It has not yet been observed if CP-violations occur in
neutrino oscillations, since neutrinos seem to uphold the CP-symmetry with the existence
of right-handed antineutrinos. This means that some new physics is required to explain
this breaking of CP-violation.

For the neutrinos to acquire mass, we have to go beyond the SM neutrino knowledge,
and introduce some new theories. We will look more into the neutrino masses and the
model for this thesis in this chapter.
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3.1 Neutrino Masses

According to the SM, neutrinos do not have mass because only left-handed (LH) neutrinos
are covered by the SM and thus, right-handed (RH) neutrinos are not involved in any
of the fundamental interactions and have not yet been observed. As mentioned earlier,
we know from observations and experiments of neutrino oscillations that neutrinos have a
tiny, but non-zero mass. to being able to change flavor when moving over large distances.
The neutrino masses are something we need to look more into.

3.1.1 Dirac Neutrinos

Dirac particles are particles which can be distinctively separated from its antiparticle. The
Dirac field is described by a four-component Dirac spinor ψ and can be divided into a
left-handed ψL and a right-handed ψR part as two component Weyl spinors:

ψ =

(
ψL
ψR

)
. (3.1)

The left-handed neutrinos in the SM are described by this left-handed Weyl field. Since
the Dirac mass term require both left- and right-handed fields in the SM, there is no Dirac
mass term for the neutrinos.

If we assume neutrinos as Dirac particles, the neutrino mass is added similarly to the
up-type quarks as the conjugate Higgs doublet. The gauge invariant Dirac neutrino mass
term after spontaneous symmetry breaking becomes

LD = −mν(νRνL + νLνR), (3.2)

with the neutrino mass still determined by the Yukawa coupling constant as for Dirac
fermions (eq. 2.11):

mν =
gνv√

2
(3.3)

The neutrino masses have been found to be several orders of magnitude smaller than
the charged lepton masses. This leads to a Yukawa coupling constant gν ≤ 10−12 for
neutrino masses that are less than 1.1 eV (sect. 2.2.1). There are no reasons why the
Yukawa constants should be so small, which gives reason to believe that there must be
some other mechanism giving neutrinos their masses. The right-handed neutrino in the
SM would be sterile and only interact with the Higgs boson.

3.1.2 Majorana Neutrinos

Another option for the neutrinos, is that they can be Majorana neutrinos. This means
that they can be their own antiparticles. The result of this would mean that the lepton
number no longer is conserved, which it is in the SM. To not break the gauge invariance of
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the SM when adding the fields for RH neutrinos and LH antineutrinos in the Lagrangian,
the LH antineutrinos appear as the CP conjugate field of the RH neutrino[5] defined by

ψcL = ĈP̂ψ = Cψ
T

R, (3.4)

where C is the charge conjugation matrix.
For a Majorana neutrino we have ψc = ψ, which means that the neutrino field can be

expressed with a Majorana spinor

ψν =

(
νcR
νR

)
(3.5)

for LH and RH neutrino fields and the CP conjugate of the RH field (or the LH antineu-
trino) νcR. The local gauge invariant Majorana neutrino mass term, with Majorana mass
M , becomes

LM = −1

2
M(νcRνR + νRν

c
R). (3.6)

This means that the Majorana mass term is not constrained by gauge symmetry and can
be arbitrary large. The global baryon number minus the lepton number (B−L) symmetry
of the SM would be broken if the neutrino is a Majorana neutrino. From observations of
the asymmetry between matter and antimatter in the Universe, it actually looks like the
baryon number is not conserved.

A generic Majorana mass matrix, M, with three neutrinos can also be expressed as

M =

(
ML mD

mT
D MR

)
(3.7)

mD is the mass for a Dirac neutrino, ML is the Majorana mass for a LH neutrino (νL) and
MR is the Majorana mass for a RH neutrino (νR).

3.1.3 Pseudo-Dirac Neutrinos

A pseudo-Dirac neutrino[27][28] mass matrix is similar to the Majorana mass matrix in
equation 3.7, except that the ML and MR masses are the lepton number violating Majorana
masses of light neutrinos1. When the Dirac mass is mD >> ML,MR, we get a pseudo-Dirac
mass matrix where the eigenvalues of the resulting mass eigenstates are close to each other.
This means that the two light neutrinos can form a Dirac-like/pseudo-Dirac neutrino.

3.1.4 The Seesaw Mechanism

One of many theories for the light masses of the neutrinos is to add RH neutrinos that
couple to the LH neutrinos. However, this would lead to a disparity problem regarding
mass scale. To solve this, a seesaw mechanism is introduced where the observed (light
Dirac) LH neutrinos couple with very heavy (sterile) Majorana RH neutrinos. This would

1A RH neutrino is also called a sterile neutrino, νs.
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explain the small masses of the observed SM left-handed neutrinos and the absence of
observation of RH neutrinos. The problem is that the mass scale of the RH neutrinos is
unknown, since the masses of the Dirac neutrinos are still uncertain. So they could be
somewhere between a few keV, and possibly be light dark matter particle candidates, or
have higher masses near the unification energy (GUT scale), where the electromagnetic,
weak and strong forces have equal strength.

Type-I seesaw mechanism

There are several varieties of the seesaw mechanism which extends the SM, but the simplest
one is the Type-I seesaw mechanism[29]. This involves the mix of LH Dirac neutrinos
and RH Majorana neutrinos. In this theory, a right-handed neutrino is added for each of
the SM LH neutrinos, in total three. When involving neutrinos as Majorana, we get that
νLνR is equivalent to νcRν

c
L. The Lagrangian after the spontaneous electroweak symmetry

breaking with both the Dirac and Majorana mass terms becomes:

LDM = −1

2

(
mDνLνR +mDνcRν

c
L +MνcRνR

)
+ h.c. (3.8)

mD is the Dirac mass andM is the Majorana mass. This seesaw mechanism is characterized
by ML << mD << M(R). This equation can also be written in terms of a 2×2 mass matrix
(M) for the neutrinos:

LDM = −1

2
(νLνcR)

(
0 mD

mD M

)(
νcL
νR

)
+ h.c. (3.9)

By looking at the eigenvalues (λ) of the mass matrixM we get the physical masses of the
neutrinos (in this model) as (sect.17.8.1 in Thomson [5])

m± = λ± =
M ±M

√
1 + 4m2

D/M
2

2
. (3.10)

If we assume the Majorana mass much larger than the Dirac mass, M >> mD, we get a
light LH neutrino state (ν) and a heavy RH neutrino state (N) with masses

|mν | ≈
m2
D

M
& mN ≈M. (3.11)

The physical neutrino states are in this case

ν ≈ (νL + νR)− mD

M
(νR + νcR) & N ≈ (νR + νcR) +

mD

M
(νL + νcL). (3.12)

By looking at equation 3.11, we see that the lightness of the SM neutrinos are explained
by the existence of much heavier right-handed neutrinos.
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Inverse seesaw mechanism

The model we will be studying in the following section involves a slightly different seesaw
(ISS) theory, namely the so-called Inverse seesaw mechanism [1][30]. This is a low-scale
Type-I neutrino mass model and yields heavy neutrino masses and allows large Yukawa
couplings. While the ordinary (Type-I) seesaw predict very heavy RH neutrinos (∼ 1014

GeV), from the ISS predicts TeV-scale RH neutrinos. Masses of 1014 GeV is out of range
for experiments, which is not so attractive.

Besides the addition of three right-handed neutrinos, this model also adds three LH
singlet fermions as well as three light LH neutrinos. These three added particle ”groups”
make a 3× 3 matrices for each group. The ISS Lagrangian is a 9× 9 matrix given as:

LISS = −νLmDNR − SLMNR −
1

2
S̄LµS

c
L + h.c. (3.13)

νL is the (SM) LH neutrino, NR is the RH neutrino, SL is a new light singlet neutrino and
µ is a lepton violating parameter (µ << mD,M). The light neutrino mass matrix can be
written as a 3× 3 matrix:

mν = mT
D(MT )−1µM−1mD.

2 (3.14)

These nine neutrinos form three heavy pseudo-Dirac neutrino pairs with small lepton
number violations in the singlet mass terms. This comes from the decay of a W±

R to a
pseudo-Dirac neutrino, since a neutrino coupled to a W±

R is a pseudo-Dirac fermion. It is
during this process that the lepton number is approximately conserved, and accounts for
missing same-sign electron events.

Our base model is the SU(2)L × SU(2)R × U(1)B−L left-right symmetry group which
involves the ISS mechanism, and is based on the

SU(3)C × SU(2)L × SU(2)R × U(1)B−L (3.15)

gauge symmetry. The main difference from the Type-I seesaw mechanism is that instead of
a heavy Majorana mass eigenstate neutrino, we have a heavy pseudo-Dirac neutrino mass
eigenstate. The mass difference (mixing) between the left- and right-handed neutrinos
probe small neutrino masses. This leads to Left-Right symmetric models with the same
final state as for a heavy Majorana neutrino.

3.2 The Charge Current Drell-Yan Process

The model in this thesis is based on the works of Pascoli et al. [1] with the inverse seesaw
mechanism. Here, two protons are accelerated and collided to produce a heavy pseudo-
Dirac neutrino, and a left-right symmetric model. Since the inverse seesaw mechanism
allows a large left-right neutrino mixing, while keeping the neutrino masses tiny, the W
boson may decay into a charged lepton l and a heavy pseudo-Dirac neutrino Nm. The

2Scales: mν ∼ eV, mD ∼ eV, µ ∼ keV, M ∼ TeV.
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pseudo-Dirac neutrino then decays into another lepton with opposite sign and another W ,
which then decays into another lepton and MET/a (light) neutrino:

qq′ → W±(∗) → l±1 Nm → l±1 l
∓
2 W

±(∗) → l±1 l
∓
2 l
±
3 ν̄l (3.16)

The final state is then three charged leptons (trilepton) plus a neutrino which goes unde-
tected through the detector, and is observed indirectly through large missing transverse
energy in the event (like ATLAS). This decay process can be seen in Figure 3.1, and is pro-
duced through the charged current Drell-Yan (CCDY) process [1]. In this model, the lepton
number is almost conserved. This is set by the mixing parameter µ. For the mixing of N1’s
couplings to electrons and muons, the mixings are set to µ = |VeN | = |VµN | = 1√

2·10−2 and

|Vτ | = 03 for no mixing to tau in the simulation models for charged lepton flavor violation
(LFV). This means that the amount of opposite-sign and same-sign events for the first two
leptons may differ from e.g. the normal seesaw model. The mixings allow LFV between
vertex 1 and 2, i.e. an electron at vertex 1 and a muon at vertex 2 or vice versa, while the
W boson decays according to the SM. As seen in equation 3.16, the leptons in the lepton
pairs 1 and 2 and 2 and 3 must always have opposite sign (OS) while 1 and 3 always have
same sign (SS).

Figure 3.1: The Born diagram for the charged current Drell-Yan process of the proton-
proton collision (on the left) producing a heavy pseudo-Dirac neutrino N in the inverse
seesaw mechanism model, leading to a trilepton plus missing transverse energy (a light
neutrino) final state. Figure is taken from ref. [1].

The decay products of such particle collisions can be detected in experiments like the
LHC and ATLAS (sect.5.3). These events can also be simulated, meaning that we can
simulate proton-proton collision events and the decay processes. For each decay final state
product, we can measure many properties like momentum, the transverse momentum,
the polar angle and the azimuthal angle. We can also detect which final state particles
are produced. With these particle properties we can calculate the angles and angular
distances between each produced particle, and for truth we have all the information about

3Equation 3.18 in Pascoli et al. [1].
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the neutrino (MET). In a real detector, we only have the transverse information4. We can
also calculate the invariant masses of pairs of combined final state particles. We should
then be able to find out which lepton comes from which decay branch (vertex) in the decay
process in Figure 3.1 computationally.

In Figure 3.2 we see a distribution of the lepton flavor between vertex 1 and 2 for the
150 and 450 GeV signals. We either have two electrons, or two muons (SF) or an electron
and a muon (DF). This distribution shows that we expect more DF events and LFV for the
150 Gev signal than for the 450 GeV signal. The LFV is important if we were to discover
some excess to better understand which neutrino mass model we are dealing with.

Figure 3.2: Distribution of the lepton flavor between vertex 1 and 2 for the 150 and 450
GeV signals where we either have two electrons, or two muons (SF) or an electron and a
muon (DF).

The end goal is to identify the decay vertices (according to Fig. 3.1), by utilizing the
particle properties in various machine learning algorithms. We will look more into machine
learning in chapter 6. The data we are analyzing are covered in section 7.2.

4I.e. no pz and no θ.
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Chapter 4

Proton-Proton Collisions

In this thesis we study the proton-proton (p-p) collisions from LHC (sect.5.2). Protons
consists of quarks and this makes proton-proton collisions somewhat complex. When two
hadrons collide, it is the constituents of the hadrons1 which collide. The colliding partons
only carry fractions of the total momentum of the protons. We use the center-of-mass
(CM) frame of the p-p collision system and not the CM frame of the patrons that collide.
This chapter explains the basics of high energy proton-proton collisions.

4.1 Particle Kinematics

To describe the kinematics of what happens in p-p collisions, we need the momentum,
energy and rest mass of the particles. The Einstein energy-momentum relation in natural
units becomes

E2 = p2 +m2. (4.1)

Since the protons will reach very high velocities when they collide, we need to include
special relativity into the equations2:

E = γm and p = βγm (4.2)

These equations depend on the Lorentz factor

γ =
1√

1− β2
and β =

v

c
.

We then introduce the momentum as a four-vector momentum

P µ = (E,p) = (E, px, py, pz).

1The partons, i.e. quarks and gluons.
2In natural units.
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The scalar product of the four-momentum is then a Lorentz-invariant quantity

P 2 = P µPµ = E2 − p2 (4.3)

= γ2m2 − β2γ2m2

= m2,

since the momentum and energy are conserved separately, the four-momentum is also con-
served. By rearranging this equation, we just end up with the Einstein energy-momentum
relationship in equation 4.1. This is a very useful relation in particle collisions.

4.1.1 Colliding Particles

The reference frame of choice for colliding particles, is as mentioned the CM frame of the
two colliding particles. This is defined where the sum of the three-momenta p is zero.
When two particles collide, this means that p1 = −p2. And when these two particles have
the same rest mass E1 = E2 = E, we get

(P1 + P2)
µ = (2E,0). (4.4)

Now we introduce what is called a Mandelstam variable[5], s , which is defined as the
squared sum of the four-momenta

s = (P1 + P2)
2. (4.5)

This we have already found out is a Lorentz-invariant quantity. We can then draw two
conclusions; 1) s is a Lorentz-invariant quantity as well, and 2), the

√
s = 2E can be

interpreted as the total energy of the CM system. This is a key quantity in particle
physics for particle colliders.

From equation 4.3, we got that P 2 = m2. This means that if the colliding particles were
elementary particles,

√
s could be interpreted as the possible energy available for heavier

particle production. This would then be an upper limit for producing a heavy particle with
mass M , as M ≤

√
s. But since protons are not elementary particles and the p-p collisions

are really collisions between partons, this limit changes. We denote the momenta carried
by the two partons colliding as q1 and q2. The associated four-momenta for the partons
are Qµ

1 and Qµ
2 . Since we mentioned that the partons only carry fractions of the momenta,

these fractions will be defined as x1 and x2 for the two colliding partons. By using what is
called the Drell-Yan process3 (explained and derived in Thomson [5]) for a quark and an
antiquark, we get the fractions given as

x1 =
q1
E

and x2 =
q2
E
. (4.6)

3This is not restricted to Drel-Yan processes, but yields for any 2-¿1 process.
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To get the mass M of a produced particle from the collision with the partons, we use
the same limit as for an elementary particle collision and equation 4.5 for s:

M ≤
√
s

M2 ≤ s

M2 ≤ (Q1 +Q2)
2 = E2

[
(x1 + x2)

2 − (x1 − x2)2
]

= 4x1x2E
2

= x1x2s

This leads to that the produced invariant mass is equal to the CM energy of the colliding
partons.

The actual values of the fractions are described by the parton distribution functions
(PDFs). These PDFs can be interpreted as the probability of a parton with a special flavor
to carry the fraction x of the proton momentum when the parton participates in a hard
scattering process.

From this section, we can see that the event kinematics in hadron-hadron collisions
have to be explained by the three independent kinematic variables, Q2, x1 and x2.

4.1.2 Products of Particle Collisions

In particle colliders, like at the LHC, the direction of the particle beams are normally
defined in the z-direction which gives p = (0, 0, p). This plane is the longitudinal plane.
The positive y-direction is defined upwards, and the positive x-direction is defined towards
the center of the ring. We can then define the transverse momentum pT perpendicular to
the z-axis as

pT =
√
p2x + p2y. (4.7)

The corresponding transverse energy is given as

ET =
√
p2T +m2. (4.8)

The total momentum can then be derived as

p =
√
p2T + p2z. (4.9)

The reason for working in the transverse (xy) plane of the initial beam direction, is that the
initial momentum is zero in this direction. We want to express the kinematics in spherical
coordinates in terms of the polar angle θ and the azimuthal angle φ.

After the collisions, not just the parton jets, but the whole system will get a boost
along the beam direction. That is why we introduce a rapidity variable y that is used to
express the jet angles:

y =
1

2
ln

(
E + pz
E − pz

)
(4.10)
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What is useful with this rapidity variable, is that the rapidity differences are invariant
under Lorentz boosts along the beam direction. This does not apply for the polar angle θ.

If the particle mass is small compared to the particle energy, pz ≈ E cos θ. We can then
rewrite the rapidity as

y ≈ 1

2
ln

(
1 + cos θ

1− cos θ

)
=

1

2
ln

(
cot2

θ

2

)
= − ln

(
tan

θ

2

)
≡ η (4.11)

This new variable η is called the pseudorapidity. The pseudorapidity also has the following
relation with the polar angle: η(θ) = −η(180° − θ). We now have the most used set of
variables (pt, φ, θ) for describing the kinematics of particles in a detector. In Figure 4.1 we
see the illustration of the transverse and longitudinal planes. The cylindrical shape shows
how particle accelerators will be situated around the collision point.

(a) The transverse plane. (b) The longitudinal plane.

Figure 4.1: Illustrations of the (a) transverse plane and the (b) longitudinal plane. The
collision point is at the origin. Figures are both from ref. [31].

Another useful variable associated with hadron colliders, is the angular distance be-
tween two particles

∆R =
√

(∆η)2 + (∆φ)2. (4.12)

The angular distance defines how much two particles are moving in the same direction or
as the separation in the φη-space, and is invariant under longitudinal boosts.

4.2 Proton-Proton Interactions

When proton-proton collisions take place in colliders, the interactions can roughly be
divided into three groups:

i) elastic (el) ii) diffractive (di) iii) non-diffractive (nd)
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These three groups are also components that make up the total cross-section at proton-
proton colliders:

σtotal = σel + σdi + σnd (4.13)

For elastic processes, both the colliding protons remain unchanged. For the diffractive
processes (di and nd), the collisions/interactions are inelastic and one or both protons will
be fragmented. This leads to multi-particle final states.

The elastic and diffractive interactions have cross-sections that can not be calculated
using perturbation theory, meaning they are non-perturbative processes. In these cases we
get so-called pomerons, which are color singlet states that do not exchange color between
the protons. These interaction processes at high-pT proton-proton collisions are normally
not interesting, since they will produce particles with low transverse momentum close to the
beam line. They are thus difficult to detect, but important for luminosity measurements
since they contribute to the total p-p cross-section. These events are detected in special
experiments that use minimum bias events, where the final state has no requirements or
special triggers.

4.2.1 Hard Scattering Events

The more interesting events to look at in high-pT p-p collisions, are the non-diffraction
events. With non-diffractive events, there is an exchange of color between the partons in
the interaction. These are called hard scattering events. Hard scattering events with high
momentum transfers, Q2, may create heavy particles. This is the main interest in particle
colliders.

A hard scattering event can be expressed as

A+B → c+X, (4.14)

where the collision between the partons are expressed as

a+ b→ c. (4.15)

A and B are the two colliding protons, and a and b are the corresponding colliding partons.
c are the interesting high pT objects. X are underlying products which are mostly remnants
after the original collision.

In Figure 4.2 we see how a hard scattering p-p collision may look like, with outgoing
partons, underlying events, initial- and final-state radiation. The initial-state radiation is
mean radiation of gluons or photons from partons before the hard scattering. Final-state
radiation is the mean radiation from the produced partons after the hard interaction. The
underlying events are the further interactions between partons beyond the hard scattering.
These interactions will often go out of reach of the detector, and is another reason why we
look at the transverse plane.
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Figure 4.2: Illustration of a hard scattering proton-proton collision. Figure is taken from
ref. [32].

4.2.2 Parton Distribution Function

The parton distribution function (PDF)4 is used to describe the probability density of the
two partons, a in proton A and b in proton B, to carry the proton momentum fractions xa
and xb. These PDFs are also dependent on the squared of the momentum scale indicating
the total four-momentum transfer in the collisions Q2 as Fa/A(xa, Q

2) and Fb/B(xb, Q
2).

These PDFs must be found experimentally in Deep Inelastic Scattering (DIS) experiments
of leptons against hadrons, since they cannot be calculated from QCD theory. The PDFs
are also used to get the cross-section of the collisions.

With the measured PDFs f(x,Q2), a structure function F ep
2 (x,Q2) can be determined

F ep
2 (x,Q2) = 2xF ep

1 (x,Q2) = x
∑
i

Q2
i fi(x), (4.16)

where i is a quark in the proton and Qi is the charge of the quark. The interesting here are
the f(x) of each of the partons. So results of measurements from several DIS experiments
of varying structure functions, which are superpositions of the same fi(x)’s, are combined
to get the f(x) for each parton.

4.2.3 Hadronization

We already have covered that quarks and gluons carry color charge (sect. 2.1), and that
they are not observed as free particles5. They can only be found in colorless objects like
hadrons.

We also talked about the strong force, which increases in strength when increasing
the distance between (elementary) particles. So if we separate a quark from a hadron, the

4See chapter 8 in Thomson [5] for more in depth explanations.
5Only exception is the top quark with shorter lifetime than the QCD interaction time scale.
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color field will increase and the emerged energy will enable creation of new quark-anitquark
pairs or gluons. These will be observed as jets of colorless particles. As this production of
partons continue, the energy will decrease until it is low enough to produce hadrons. This
process of high-energy quarks (and gluons) that produce new jets until we get hadrons, is
called hadronization. The jets can also be called hadronic showers, since many hadrons
are usually produced in hadronization processes.

Jets are not only produced in p-p collisions with hard scattering, but also in the un-
derlying events and from initial- and final-state radiation. This makes p-p collisions very
complicated and messy when trying to study them, compared to electron-positron colli-
sions.
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Chapter 5

Particle Accelerators and Collider
Experiments

To fully understand the physics of the particles around us and what the Universe is made
of, we need some way of looking at the subatomic world. This is done in huge particle
accelerators where particles are accelerated to high velocities and energies, and collided
with each other to make other particles. Here the aftermath of the collisions result in new
particles with new energies that are detected as they move through detectors.

There are various accelerators and detectors which produce and accelerate different
particles in the world. In this chapter we will look at the biggest particle physics laboratory
in the world, namely the European Organization for Nuclear Research (CERN1), and some
of its components like particle accelerators and detectors.

5.1 CERN

The CERN laboratory lies near Geneva, on the border between France and Switzerland,
and was founded in 1954 [33]. It is a multinational collaboration between 23 (mostly)
European countries. They also have several international relations with other countries
both inside and outside of Europe. CERNs main focuses today is particle physics and
particle accelerator experiments. Many of the biggest discoveries in particle physics have
come from particle experiments at CERN. This includes, among others, the discovery of the
Higgs boson and discovery of the W and Z bosons. At the main site of CERN in Meyrin,
and in the World LHC Computing Grid (WLCG) scattered around the world, data of
simulations of particle collisions are stored. CERN is the place where Tim Berners-Lee
invented the World Wide Web in the late 1980s [34].

CERN consists of several particle accelerators, experiments and facilities in different
shapes and sizes. The two main types of accelerators are linear and circular. They are
located at various sites, and they accelerate particles to high energies before they send
the particles to be collided with other accelerated particles or particles with stationary

1The name CERN is originally from French; Conseil Européen pour la Recherche Nucléaire.
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targets, or are sent to more powerful accelerators. They are built differently to accelerate
different kinds of particles with different masses. In Figure 5.1 we see the CERN accelerator
complex. Some of the accelerators are mostly used to pre-accelerate the particles before
they are sent to another accelerator where they are accelerated even more. This repeats
until the particles reach the desired energy to collide with at one of the detectors.

Figure 5.1: The CERN accelerator complex as of 2019. Credit: CERN[35].

For the more important discoveries, like the ones we have mentioned above, the W
and Z bosons were discovered by the Super Proton Synchrotron (SPS) in 1983. The SPS
delivered an energy between 300-450 GeV. It was then later used to accelerate high energy
electrons and positrons into the Large Electron-Positron Collider (LEP). LEP is the largest
and most powerful lepton collider built to this date, and was functional between 1989 and
2000. LEP was then replaced by the Large Hadron Collider (LHC) in 2008 to collide
protons and heavy ions.
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5.2 The LHC and Accelerator Experiments

Today’s largest and most powerful particle accelerator is the Large Hadron Collider (LHC)
[36], which we easily can see in Figure 5.1 as the biggest gray circle around the North
Area. The particles are sent in bunches up to 1011 protons and are accelerated using
radio frequency cavities in a 27 km ring consisting of superconducting magnets, where the
particles are boosted in several structures along the ring to the desired energies. The LHC
is designed to have 2808 bunches at the same time traveling in the ring. The ring lies 100
m underground in a tunnel beneath the French-Swiss border. Along the ring, there are
4 main crossing points (ATLAS, CMS, ALICE, LHCb) with detectors that register the
particle collisions and the following particle decays. At these collision points, the total
collision energy, or center-of-mass energy

√
s, can reach 13 TeV2. There are in total seven

detectors along the ring, each designed for different experiments.
The LHC was first used for proton-proton (hadron) collisions in 2010 (run 1), where

it reached a record high energy of 3.5 TeV per beam. After upgrades, during run 2, it
reached an even higher energy of 6.5 TeV per beam. It is currently stopped for another
upgrade, which started in 2018 and is during operation. The accelerator sends two high-
energy beams, in separate tubes and directions, near the speed of light before they collide
at one of the detectors. To reach these high energies, the particle beams are accelerated
in several systems which increase the energies before injected into the main LHC ring [37].
Inside the tubes, there is an ultrahigh vacuum. To make sure that the particles are directed
correctly through the ring, superconducting electromagnets are used to bend the particle
trajectories. The magnets vary in strengths and sizes to direct the beams properly. Since
the particles are incredibly tiny, the precision of the magnets have to be extremely good
to make the particles hit each other at the collision points. That is also why beams of 1011

protons are accelerated and not single particles. Since the construction of the accelerator
is a ring they can continue around again when some of them do not collide. A beam can
typically go around in the ring for about 10 hours before the beam has lost too much
intensity.

As mentioned earlier, there are seven detector experiments at the LHC [38]. The four
main, and biggest, detectors in the LHC, have different objectives. The ATLAS and CMS
experiments are two large and similar general-purpose particle detectors that looks for new
physics and more precise study of the SM. The ALICE and LHCb experiments have more
specific roles, and study the quark-gluon plasma from heavy ion collisions and missing
antimatter connected to CP-violation after the Big Bang, respectively. The remaining
detectors are much smaller and are used in more specialized research. We will look more
at the ATLAS detector later (sect.5.3).

The LHC is used to explore many different open questions in physics, like to further
study the SM and theories beyond it. In addition to proton-proton collisions, the LHC
can also collide heavy ion collisions at some of the detectors.

2The LHC is theorized to a limit of 14 TeV.
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5.2.1 Important Parameters

One of the most important parameters of measurements at particle accelerators, is the CM
energy

√
s we already have mentioned. For two particles colliding, the Lorentz invariant

quantity s (the squared invariant mass) is formed as

s =

(
2∑
i=1

Ei

)2

−

(
2∑
i=1

pi

)2

. (5.1)

There are also other important parameters used to describe the performance of particle
colliders:

Luminosity

Another important parameter in particle collider performance is the luminosity, L. The
design luminosity of the LHC is L = 1034 cm−2s−1. The bunches at the LHC are separated
by 25 ns, which corresponds to a frequency of f = 40 MHz. The (instantaneous) luminosity
is used to describe the number of collisions per area per second as3

L = f
n1n2

4πσxσy
, (5.2)

where f is the frequency of the particle beam bunches colliding (bunch crossing rate),
n1 and n2 are the number of particles in the colliding bunches and σx and σy are the
root-mean-square (rms) horizontal and vertical beam sizes.

The complete collider luminosity at the LHC can be written in terms of colliding beam
parameters [39]

L = f
n1n2nb
4πσxσy

F (σx, σy, σs,Φ). (5.3)

This equation has the same parameters as in equation 5.2, except for two additional param-
eters. nb is the number of proton bunches. F is a geometrical reduction factor accounting
for the non-zero-crossing angle at the interaction point, depending on the two rms beam
sizes, the beam length σs and the crossing angle Φ.

Rate

The cross-section, σ, for a given collision process is given by the SM (or any other new
model). The cross-section can be used to compute the (event) rate, R, after accumulating
many such collisions. The rate is calculated as

R = σL. (5.4)

3With the assumption of Gaussian profile beams and head-on collisions.
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Number of interactions

The total number of expected events of a given process with cross-section, σ, over a given
time, is the time integration of the event rate

N = σ

∫
Ldt. (5.5)

The time-integral of the luminosity,
∫
Ldt, is often called the integrated luminosity, and is

given in inverse femtobarns [fb−1].

Pile-up

In particle collisions, we want a high instantaneous luminosity. This means that the in-
tensity of the proton beam need to be high. But with high intensity proton beams, the
probability of having more than one proton undergoing an inelastic interaction per bunch
crossing is increased. This leads to what is called pile-up events, where there are several
collisions from the same bunch crossing. This means we need very accurate measurements
in detection of the particle tracks to distinguish which new particles comes from which col-
lisions. The main event that is normally used in detection, and this corresponding vertex
is called the primary vertex.

Since we want higher and higher luminosity to get more collisions, we also get more
pile-ups. This need to be controlled to be able to use the data efficiently. The additional
collisions do normally have smaller momentum transfers, which means we can characterize
them as minimum bias events.

5.3 The ATLAS Experiment and Particle Detection

To detect the particles produced at particle colliders, we need different instruments that
can detect the various types of particle interactions. The largest detector at the LHC is
the ATLAS (A Toroidal LHC ApparatuS) experiment. In Figure 5.2 we see a computer
generated image of the ATLAS detector with pointers to the main components. It is 25
m in diameter, 46 m long and weights about 7000 tons. The cylindrical shape of ATLAS
is optimized to detect as many particles as possible, and covers almost a 4π angle with
detectors. Like we mentioned earlier for particle collisions in the LHC, ATLAS uses the
same Cartesian coordinate system with the z-direction in the direction of the beam, y-
direction is upward and x-direction is towards the center of the accelerator circle. It also
uses a spherical coordinate system with the azimuthal angle φ in the xy-plane around the
beam axis, and the polar angle θ being the angle from the beam axis. To measure the
distance between the particles, the angular distance ∆R (eq.4.12) in the φη-plane is used.

The ATLAS detector is designed to be a general-purpose detector, covering a wide range
of signals. The particle properties the ATLAS detector can detect is the mass, momentum
and energies of the particles. For ATLAS to detect these properties, it has a layered design
of detectors that is optimized in observing specific properties of the various particles. The
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Figure 5.2: The ATLAS detector and its components. Credit: CERN [40].

ATLAS detector consists of several main systems; the inner detector (ID), calorimeters, a
muon spectrometer (MS), a magnet system and a trigger and data acquisition system. The
main systems consists of smaller sub-systems, which we will take a brief look at next. In
Figure 5.3, we see a sketch of the detector layout systems and how some particles behave
in these different systems. Only the neutrinos should now go undetected through the
detectors, in principle, and they are normally identified as missing momentum, or MET.
This comes from the energy conservation law, where the sum of the measured transverse
momenta of the all particles produced should be zero.

5.3.1 Inner Detector

The inner detector tracks charged particles that leaves traces of ionized atoms when travel-
ing through a medium. The tracks, momentum and charges of the particles can be traced
in a 2 T magnetic field that makes the charged particles curve. The degree of the curvature
is used to determine the charge and the momentum.

The inner detector consists of three sub-systems. The inner most part is a silicon Pixel
Detector that is used for extremely precise tracking near the interaction point of the particle
collisions. The second part is a Semiconductor Tracker (SCT) that covers a bigger area
than the pixel detector for the particle tracking and uses long and narrow strips instead of
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Figure 5.3: An illustration of the main tracking systems in the ATLAS detector, including
how some particles behave in the various systems. Credit: ref. [41].

pixels. The third part is a Transition Radiation Tracker (TRT) that covers an even larger
area with lower spatial resolution, and can detect transition radiation photons by using gas
filled drift/straw tubes. The TRT provides the capability of electron identification for a
variety of energies since the transition radiation gives out a stronger signal than ionization
signal.

5.3.2 Calorimeters

Outside the ID and the solenoid magnet system, there follows two types of calorimeters;
an (inner) electromagnetic calorimeter and a (outer) hadronic calorimeter. Their purpose
is to measure the energy of the passing particles and particle showers especially.

The electromagnetic calorimeter (ECal) measures particles that interact electromag-
netically, like charged leptons and photons. The ECal is made of layers of lead absorbing
plates and liquid argon, and covers the whole φ angle around the beam axis. The energy
is measured in the liquid argon, and free electrons are picked up by electrodes. The ECal
is covered by cryostats to keep it at the correct low temperature.

48



The hadronic calorimeter (HCal) measures hadrons and hadronic showers14. The HCal
is made of several layers of steel absorbers and plastic scintillator tiles that alternates. The
iron in the detector both slows down and traps hadrons. The HCal is a lot bigger than
the ECal.

5.3.3 Muon Spectrometer

Outside the calorimeters, we find the muon spectrometer. Here high-energy muons are
detected. This detector is very large, 11 m radius [42], and consist of three parts; a
magnetic field with several toroidal magnets, a set of chambers measuring the tracks of
the muons and a set of triggering chambers with accurate time-resolution. The detection
of the muons happens the same way as before, by measuring their momentum as they are
bent in the detector. They should also be simpler to identify since all other identifiable
particles should not reach this far out from the interaction point.

5.3.4 Magnet System

ATLAS uses two types of superconducting magnet systems to measure the momentum
from the bending of the particles through the Lorentz force. The magnet system consists
of a central solenoid, a barrel toroid and two end-cap toroids. The central solenoid is
located between the inner detector and the electromagnetic calorimeter, which produces
the 2 T magnetic field for the ID. The barrel toroid produces a magnetic field of 0.6 T,
and is located around the middle cylinder of the MS barrel outside the calorimeters. The
two end-cap toroids produce magnetic fields of 1 T, and are located at the end-cap regions
of the Muon System.

5.3.5 Trigger System

The detector produces a huge amount of data, which need to be stored and processed. The
output event storage rate have to be reduced from an initial bunch crossing of 40 MHz to
∼200 Hz. To only get the most interesting data for further analysis, a trigger system is
used to extract these relevant events. The ATLAS Trigger and Data Acquisition system
(TDAQ) has three levels for reducing the amount of stored data [43]; the Level 1 (LVL1)
trigger is hardware-based and makes quick decisions of which events to store, the Level
2 (LVL2) and the Event filters (EF) are software-based and are often combined to and
referred to as the High Level Triggers (HLT). Only the events passing both the LVL1 and
HLT are stored for further analysis.

The LVL1 trigger uses information from the calorimeters and the muon spectrometer
to choose interesting events. These interesting events passed on to the next trigger. The
LVL1 trigger also defines regions based on the φ and η coordinates from the interesting
events.

14It measures the energy of particles that interact via the strong force, which is mainly hadrons.
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The LVL2 trigger uses all the information within the regions of interest (ROIs) defined
by the LVL1 trigger to further reduce the amount of event data. The accepted events are
then assembled put together into a full event. The EF uses an offline analysis to even
further reduce the data used to store and further analysis at the WLCG.
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Chapter 6

Machine Learning

6.1 Introduction

Machine learning (ML) has recently become widely used in many fields of research. The
meaning of machine learning is to train computational algorithms to automatically deter-
mine an outcome from specific patterns in data the algorithms have not seen before by
using pre-trained algorithms with a given input set of hyperparameters. When training
an algorithm, one tries to teach patterns using large amounts of data. ML goes in under
what is called artificial intelligence, which is where the computer takes its own decisions
to produce and predict solutions to problems.

The machine learning algorithms build a model based on some given data and general
rules. The data may often need to be processed in some way, like when there are missing
values in the dataset. The models are then fit and trained on sample data, which is a
subset of the full dataset. The remaining data, which is a smaller part than the training
data, are used to make predictions and do an evaluation of the trained model. There is
a huge variety of different evaluation metrics which are used to check the performance of
the algorithms on data. When we have a good enough trained model, we can save it and
use it later on similar unseen data.

There is a plethora of usages for machine learning, and it is often divided into estima-
tion or prediction problems. An example of a machine learning problem can be to identify
objects in images of animals, which may be easy to humans. Algorithms can be trained
to identify various animals by the algorithms given some features to best distinguish the
animals from each other. This may be the shape of ears or the tail of the animals. Compu-
tationally this means we choose some observable quantity x in the data we look at which
are related to some parameter θ. The model p(x|θ) is describing the probability of observ-
ing x given θ. A dataset X, also called a design matrix, is produced to fit the model. The
design matrix only consists of feature data, while the class variables are stored in a target
vector y. These two datasets are often split into training and test sets, and sometimes
even into training, test and validation sets. The fitting of the model then tries to find the
parameters θ̂ which best explains the data. In this thesis, it is the accuracy of the model
that we want to optimize and focus on. Optimizing the accuracy of θ̂ is often the concern
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with estimation problems, where as prediction problems focuses more on how the model
makes new predictions.

Most machine learning problems consists of the same ingredients, starting with a
dataset D = (X,y), where X is the matrix containing the independent variables x and
y is a vector containing the dependent variables. Then there is a model as a function
f : x→ y with the parameters θ. The function is used to predict the outputs given vectors
of input variables. For the predictions to take place, we need a cost function C(y, f(X; θ))
that judges how well the model performs on the observations. When fitting the model, we
want the θ̂ which best explains the data. When considering a linear regression case with
the sum of least squares as the cost function,

C(y, f(X; θ)) =
N∑
i

(yi − f(xi; θ))
2, (6.1)

we get the best fit with the set of parameters that minimize the cost function:

θ̂ = argmin
θ
{C(y, f(X; θ))} (6.2)

The ML approaches are usually divided into supervised, unsupervised and reinforce-
ment learning 1. Supervised learning already has the answers or outputs before we
do anything to the model. The dataset needs to be labeled and have the answers to the
problem such that the algorithms know what is correct. During training, the algorithm
predicts the answers from what it has learned. If we are not satisfied with the accuracy the
algorithm provides, we change the hyperparameters or the algorithm until we are satisfied
with the results. Unsupervised learning does not have any labeled data or correct an-
swers, meaning that it has to find its own structure in the inputs. The algorithms can only
use predefined metrics to make a conclusion. This can then be used to discover hidden
data patterns or to reproduce the given input. Reinforcement learning uses a dynamic
environment that has a specific goal. As the problem is solved through trial, error and
experience, the program tries to maximize its rewards from feedback during the problem
solving. The program then trains itself to make decisions.

This chapter takes a closer look at the supervised learning category in machine learn-
ing and some of the basics of statistical learning, as well as classification and multiclass
classification, which is used in this thesis. The theory is mostly based on the works of
Hastie et al. [45] and Mehta et al. [46].

6.2 Supervised Learning

For supervised learning, we already mentioned that we need the outputs, labeled data
and the need to tune hyperparameters for optimization. The inputs may also be called

1There exists other approaches that goes beyond these three mentioned approaches. The most dominant
approach today of these is called deep learning. See Goodfellow et al. [44] for more on deep learning and
other possible machine learning tasks.
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independent variables, while the outputs can be called dependent variables. Supervised
learning can be divided into different learning algorithms; classification, regression and
active learning. Active learning algorithms uses a source with information to label data
points with some desired output. Regression algorithms uses a given set of features
and inputs, and estimates the relationship between the features and an outcome variable.
Regression is mostly used for problems with a variation of outcome values, or a continuous
output, within a range of values. Classification algorithms has a limited set of values as
outputs, which can be categories, numbers or names. Classification uses pattern recognition
in sets of categories of discrete variables to identify new observations or to group unseen
data based on the inputs. We will take a closer look into the basics of statistical learning
with a focus on supervised learning next.

6.2.1 Basics of Statistical Learning

In statistical learning, the goal is to find a function h in a hypothetical set H such that
h ∈ H approximates an unknown function y = f(x) as best as possible. H consists here
of all possible functions that are defined in the domain of f and are of interest for the
problem at hand. With the newly developed function h(x), we would then get h ≈ f . The
expected error for a particular function h over all inputs x and outputs y is given by the
cost function C and the joint probability distribution for x and y as:

E[h] =

∫
X×Y
C(h(x), y)ρ(x, y)dxdy. (6.3)

In this case we need knowledge of the probability distribution, which we in most cases do
not. For n data points, we can instead use the empirical error :

EE[h] =
1

n

n∑
i

C(h(xi), yi). (6.4)

With the expected and empirical errors, we can compute the generalization error as
the difference between those two:

G = E[h]− EE[h]. (6.5)

In the limit of the generalization error goes towards zero,

lim
n→∞

G = 0,

we say that an algorithm can learn or generalize from the data. In general, we cannot com-
pute the generalization error since we in general cannot compute the expectation error.
To solve this we can divide our dataset into training and test sets, and then use cross-
validation to estimate the generalization error. The values on the cost function on the
training and test sets are called the in-sample error, Ein, and out-of-sample error, Eout, re-
spectively. The in-sample error can be an appropriate approximation to the generalization
error if the dataset is large enough and is representative of the function f .
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In Figure 6.1 we see how the errors in general behave when the training set size, or
number of data points, increases. We have assumed here that the number of data points
is large and that the true function f(x) can’t be exactly fit. As the number of data points
increase, we see that the in-sample error increases while the out-of-sample error decreases.
The sampling noise decreases since the error difference between the two errors decreases.
The out-of-sample error we get from this sampling noise is called the variance, which goes
towards zero in the infinite data limit. As the training dataset approaches the infinity
limit, we can conclude that the two errors must go to the same value. This is called the
model bias. The bias is a representation of the best our model can do with infinite data
size.

Figure 6.1: Illustration of the in-sample error, Ein, out-of-sample error, Eout, variance, bias
and difference of errors as function of the training set size. It is assumed that the number
of data points is not small, and that we cannot exactly fit the true function f(x). The
training error increases while the test error decreases as the training set size increases.
Figure is taken from ref. Mehta et al. [46].

6.2.2 Bias-Variance Decomposition

We will now go a bit further into the bias and variance that is an important aspect
of machine learning. Lets consider a dataset D(X,y) with N pairs of independent and
dependent variables. We then assume that the true data is created from a noise model

y = f(x) + ε, (6.6)
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where ε is a normally distributed noise with mean zero and standard deviation σε. A
chosen estimator f(x; θ̂) is trained by minimizing the cost function, lets say the sum of
squared errors2,

C(y, f(X; θ)) =
∑
i

(yi − f(xi; θ))
2. (6.7)

Our best estimates for the model parameters,

θ̂D = argmin
θ
{C(y, f(X; θ))}, (6.8)

are functions of the dataset D. Then we make another set of datasets Dn = (yn,X;n),
where all sets have N samples. We want the expectation value, ED, of the cost function of
all these datasets. We also want the expectation value of the average over different noise
instances Eε. The expected generalization error can be found to be (full derivation can be
seen in Appendix A):

ED,ε[C(y, f(X; θ̂D))] =
∑
i

(f(xi)− ED[f(xi; θ̂D)])2

+
∑
i

ED[{f(xi; θ̂D)− E[f(xi; θ̂D)]}2]

+
∑
i

σ2
ε (6.9)

The first term in equation 6.9 is the bias

Bias2 =
∑
i

(f(xi)− ED[f(xi; θ̂D)])2, (6.10)

and is a measure of the deviation of the expectation value of the model estimator from the
true value. This is the best we can do in the infinity limit as we have already discussed.
The second term is the variance

Var =
∑
i

ED[{f(xi; θ̂D)− E[f(xi; θ̂D)]}2], (6.11)

and measures the fluctuation in the estimator due to finite-sample effects. The last term
is just a noise term Noise =

∑
i σ

2
ε . By combining these three terms we can decompose the

out-of-sample error as
Eout = Bias2 + Var + Noise. (6.12)

It is often much simpler to train a very complex model than it is to obtain sufficient good
data. Therefore it is normally more useful to use a less complex model with higher bias,
since it is less sensitive to noise in the sampling data from having a finite-sized training
dataset.

2This is used in regression cases. For classification we could use cross-entropy for instance.
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6.2.3 Bias-Variance Tradeoff

Before we look into classification, we need to be aware of a few problems with supervised
learning. First is the balance of variance and bias. This is called the bias-variance
tradeoff in statistics and machine learning. We want to minimize both the variance
and bias such that our model both works well on unseen data and captures the relations
between the features and classes, but when one of them is lowered the other has a tendency
to increase. High bias may lead to underfitting between the features and the classes, while
high variance may lead to overfitting. When a model is overfit, it is excessively complex
and will then model noise in the data as well. Overfit models will then do a great job during
fitting, but worse on data outside of the training domain. Underfit models do not have the
power to capture important variations in the data. With today’s improved machinery, it
is often easier to make a model too complex rather than to not.

Second is the amount of training data that is available depending on the real function.
For a more simple real function, the model does not need that much training data to learn
on. While for a more complex3 real function, the model needs a lot of training data.

Third is the dimensionality of the features. If there are a lot of features with high
dimensionality, the model may be confused and cannot separate out the most important
features that defines the output. One way to fix this is to manually remove irrelevant
features in the data that can confuse the model. The method for doing this is called
dimensionality reduction, and there are several strategies for doing this.

The fourth and final major concern is noise or incorrect values in the desired output
values. This often comes from human error or errors in sensors which can lead to overfitting.
This can be fixed by e.g., remove noise training data or use early stopping. There also
exists other factors that one need to consider, but these four bias-variance related issues
are some of the biggest.

In Figure 6.2 we see illustrations of the bias-variance tradeoff for training error, Ein,
and test error, Eout, as the model complexity increases. In Figure 6.2a we see that as the
model complexity increases, the model fits the training data well leading to high variance.
For a low complexity model the bias is high. This is exactly as we have already look at
above. So we want a model that has a compromise between the variance and the bias,
as seen by the optimal line in Figure 6.2a. This optimal line is also where we have a
minimum in Eout. For the prediction error for test and training samples in Figure 6.2b
as function of the model complexity, we see the variance and bias areas for low and high
model complexities. From the gap between the two prediction error samples we see the
same argument for choosing a optimal compromise between variance and bias. This will
lead to a predicted error difference between training and test samples that is not to0 big
and not to0 similar to each other. Often we want to use a more biased model with small
variance to minimize Eout and maximize the predictions.

3When we talk about simple and complex real function, we mean the complexity of interactions between
the features and the number of features we use to approximate the true function.
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(a) (b)

Figure 6.2: Illustrations of the bias-variance tradeoff as function of model complexity.
From these two illustrations we see that we want to find the optimal compromise between
variance and bias that gives the best model, which does not underfit nor overfit the data.
Figures are taken from ref. Hastie et al. [45] and Mehta et al. [46].

6.2.4 Regularization

With increasing data power and amount of data collected, the datasets we can gather
can be quite complex. This means that we need better machine learning models. With
these better models we can solve more complex problems than before. As we mentioned
earlier, this also gives rise to more problems, especially overfitting models. Overfitting is a
more common issue than underfitting, since overfitting comes from models fitting functions
and training data too well, making it perform worse on unseen (test) data. This is not
something we desire to get, since machine learning is all about training model to analyze
new data.

Finding good methods to reduce overfitting has been an important aspect in machine
learning a long time. That is the reason for developing regularization techniques that
reduces overfitting problems without significantly worsen the performance on the training
data. Regularization techniques try to improve the generalization error of the test set.
There are several different regularization methods that can be used, depending on the
type of models which are used.

One way is to tune the model complexity to be better at predicting. This is done
by introducing a penalty for individual weights, w . There are two types of norms of
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regularization that is often used; L1 and L2:

L1,norm =
∑
i

|wi| (6.13)

L2,norm =
∑
i

||wi||2 (6.14)

The L1 penalty will yield sparse feature vectors from the fact that most features weights
will be zero. That means that the L1 norm can be seen as a kind of feature selection that
removes irrelevant features in datasets with higher dimensionality that would only confuse
the model when training. This feature reduction can also be done manually by removing
the irrelevant features that makes the model underperform, making it less complex. The
L2 norm also acts on the weights of the loss function. These two regularization norms are
set in the models as hyperparameters.

Other ways to avoid overfitting is to prune the models which use trees4, affecting the
splitting of trees. Sampling and early stopping are other ways to control overfitting, by
making boosted trees less correlated or stop training when a chosen training metric of a
model no longer improves. All these ways to control overfitting are controlled by various
input parameters numerically.

6.2.5 Hyperparameters

As we have already mentioned, hyperparameters are something which need to be manually
chosen before fitting a model. Hyperparameters help to tune and optimize the models in
order to do a better fit of the data, and used to control the algorithms. These hyperparam-
eters have no strict solution and change depending on the dataset we are looking at. The
same type of parameter may not have the same value in different models. For a small set of
hyperparameters we could simply use trial and error to test the parameters. Most modern
models require a lot of different hyperparameters. When there are a lot of parameters to
tune, we may want to use some learning algorithm that searches through some given sets
of hyperparameter values. An efficient method for doing this is to do a random search that
uses the fact that not all hyperparameters are equally important. Searching for parameters
are often computationally expensive since they require that the model is re-trained each
time we change a configuration of hyperparameters.

During the hyperparameter optimization, we want the test set to be isolated until the
model is fully optimized. This is where the validation set becomes useful. The purpose of
the validation set is to be used when training the model and optimize the hyperparameters.
The first split of the original dataset is into training and test sets. The training set can be
further split into a smaller training set and a validation set. This means that we loose some
training data which we need to take into consideration. The evaluation of the validation
set will not be the exact same as evaluating the test set. The generalization error of the
test set will be underestimated by the validation set error since the hyperparameters are
trained on the validation set.

4We will come back to what this is later.
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6.3 Classification

Classification is one of the most used and successful tasks in machine learning. Classifi-
cation uses algorithms to decide which category the input belongs to. The function that
produces an output value can be used to produce a probability distribution over the differ-
ent outcomes. The simplest and probably most common classification problems are binary
outcomes like True or False, Yes or No, Cat or Dog etc, where the outcomes are either the
one or the other. When there are more than two outcomes, or classes, we use multiclass
classification algorithms. Not all classification algorithms are made to classify instances
with more than two outcomes, and cannot be used to classify problems other than binary
outcomes. On the other hand, they can be turned into multiclassifiers by using various
strategies. There are also other types of classifiers that are similar to multiclass classifiers,
like multilabel and multioutput classification. They are similar, but are used in different
cases with different outcomes. For example, multiclass classification labels a sample as one
class only, meaning that it cannot be classified with two classes. This means that an image
of a cat can only be classified as either a ”cat” or a ”dog” by the algorithm. The other
two may categorize the image as both a ”cat” and as ”small” for instance.

In this thesis, we use multiclass classification to classify different particles in event
decay chains produced by colliding protons at the LHC. In this thesis we will test different
classification models and algorithms with various values for the hyperparameters for the
respective models, to try and optimize and find the most accurate model. We will also
study various evaluation metrics used to both find and evaluate the performance of the
best model.

6.4 Classification Models

A so-called ”hard” classifier will assign each datapoint to a category, while a ”soft” classifier
will give the probability of a given category. The simplest classification algorithm is the
”perceptron”. It is given by the same transformation as linear regression with a weight
matrix w,

y = Xw. (6.15)

The classes are then determined by the sign of the predictions by using sign functions or
boundary thresholds. The perceptron is an example of a ”hard” classifier. Sometimes it
may be useful to use a ”soft” classifier yielding category probabilities instead.

There are a lot of different classification models in machine learning with their own
strengths and weaknesses. This is why we in this thesis will test a few different approaches
and algorithms to find the best model for the analysis. In this section, we will briefly look
at the classification methods we will test in this thesis.
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6.4.1 Logistic Regression

A simple ”soft” model in statistical analysis for classifying discrete outcomes is logistic
regression (LR)[46]. It uses linear regression to fit data and a logistic function5, usually
the Sigmoid function

σ(s) =
1

1 + e−s
, (6.16)

to predict the outcomes into categories using probabilities. A threshold for the predicted
values is chosen which determines which classes the data belongs to. These boundary
thresholds can be complex and doesn’t have to be linear. The cost function is the usually
cross-entropy with added L1 (eq.6.13) and L2 (eq.6.14) regularization terms. The cross-
entropy is the negative log-likelihood of the prediction being in the dataset. The cross-
entropy is derived from the fact that the Maximum Likelihood Estimator (MLE) is the set
of parameters that maximize the log-likelihood.

The most basic model is a Binary Logistic Regression that yields two possible outcomes.
However, it can be extended to more than two outcomes by using Multinomial Logistic
Regression (MLR. Both LR and MLR can be combined with cross-validation, using various
optimization solvers supporting the regularization parameters as input.

6.4.2 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP)[47] is an artificial feed-forward neural network (FFNN)
model consisting of interconnected nodes, and is similar to LR in that it has an input
and an output layer, but differs in that between these layers, the MLP can have several
non-linear layers called hidden layers. In a FFNN the information only goes one way. The
inputs are called neurons and are transformed in the hidden layers by a weighted linear
summation of the inputs and a non-linear activation function to determine the outputs for
each layer. The hidden layers often have some bias to ensure non-zero values. The output
layer transforms the values from the last hidden layer into output values. In Figure 6.3a
we see how each node in a neural network is connected to all the nodes in the previous
layer with a weight value. Then it goes to a non-linear activation function that transforms
the node to an output either to a new node in a hidden layer or to the output layer. The
nodes will have some bias term individually connected to them. In Figure 6.3b we see a
fully connected neural network since all nodes are connected to all nodes in the next layer.

The MLP trains the model using backpropagation with initial guesses for the biases
and weights. Backpropagation is a method used to optimize the weights and biases to
minimize he cost function. The backpropagation iterates backwards from the last layer to
the first layer using gradient descent of the weights and biases to start a new feed-forward
process from the input layer. This process is repeated until the cost function is sufficiently
minimized.

5It can also be called an activation function.
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Figure 6.3: (a) Each node in a neural network has some input acted on by some associated
weights. Then the weighted inputs are summed together inside the node and passed to a
non-linear activation function which transforms it to an output. (b) This is a FFNN/MLP
with 3 inputs, 2 hidden layers and 2 classes. All the nodes in one layer is connected to all
the nodes in the next layer. This is then a fully connected neural network. Figure is taken
from ref. Vieira et al. [48].

Typical choices of activation functions are the hyperbolic tangent function, the sigmoid
and the rectified linear unit function (ReLU). The choice of cost function also needs to be
considered. The MLP library in Scikit-Learn only supports the cross-entropy loss function
as the cost function.

Neural networks typically have a large amount of parameters which often leads to
overfitting. That is why we add a L2 regularization penalty to the weights. This hyper-
parameter have to be tuned. Another hyperparameter that is needed is the learning rate.
This parameter is used to control the step length in the optimization of the cost function
with a gradient descent method. In neural networks the weights and biases are the param-
eters to be adjusted, while it can be different in other models. There are several gradient
descent methods, e.g. the stochastic gradient descent with minibathces, which can be used
to avoid interpreting a local minimum as a global minimum. A more modern method is the
adam solver proposed by Kingma and Ba [49]. It is a stochastic gradient-based optimizer
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which combines an adaptive learning rate6 with other functions, and thus adds a few more
hyperparameters to be tuned, i.e. β1, β2 and ε.

For multiclass classification, the softmax function is used as the last hidden layer ac-
tivation function. It normalizes the output of the network into a probability distribution
over the predicted output classes.

6.4.3 Decision Tree

Decision Trees (DTs)[50] tries to learn simple decision rules from the data features by
constructing tree-like models to predict the target values. The models simply break down
a complex decision into several simpler decisions. Each tree starts of with a single root
node containing all the class labels. The root node then splits into several smaller internal
nodes, which then splits into leaf nodes in the end representing the class targets. The
splits are decided by some chosen criterion function that uses a certain strategy to do the
splits. The root node is chosen as the feature with the highest information gain value by
the criterion function. The path from the root node to an internal node or a leaf is always
unique, and the leaves do not have any descendants.

The DT uses a cost function to determine the the most homogeneous branch when
splitting. The stopping point for splitting is something we can set as an input parameter
to the model by choosing a maximum depth of the tree from the root to the leaves, or
by setting the maximum number of leaves at the end. Other parameters for controlling
the size and splitting of the tree should be considered since the DT is prone to overfitting
with many features. This can be fixed by pruning the tree, i.e. to remove nodes with low
importance features, use dimensionality reduction with e.g. principal component analysis
(PCA)[51] or decrease some of the controlling parameters.

There are a few different DT algorithms to generate the optimal trees. The algo-
rithm that is implemented in Scikit-Learn is an optimized version of the Classification
and Regression Trees (CART) algorithm that construct binary trees from the features and
thresholds for giving the highest information gain at each node. The Scikit-Learn DT
classifier automatically supports multiclass classification.

6.4.4 Random Forest

Another classification ensemble method is the Random Forest (RnF)[52] algorithm. It pro-
duces a number of DT classifiers on bootstrapped training samples with a low correlation
to each other, and uses their average like the bagging method. This improves the accuracy
score and helps control overfitting. One can also choose to bootstrap samples.

Like with the DT algorithm, we can control the size and splitting of the tree. The DT
and RnF algorithms are very similar and have many of the same input parameters and
same procedure for building the trees. The main difference is that with the RnF algorithm,
we produce many trees with sources of randomness. This randomness is very important in

6It adjusts the learning rate as it iterates towards the minimum.
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that it decreases the variance when combining and taking the average of many trees, and
can cancel out some prediction errors. This normally yields a better model.

6.4.5 AdaBoost

Instead of using average ensembles where we use many independent bootstrap samples, we
can use something called boosting. This is a type of method which keeps the weight for
each iteration, and the base estimators are built sequentially. The boosting model then
builds a combined estimator that reduces the bias and the variance. The result is to get a
powerful ensemble from several weaker models combined.

One such boosting method is the AdaBoost classifier[53][54]. The AdaBoost uses adap-
tive boosting and weaker classifiers as estimators to sequentially combine them into a single
better classifier with a weighted majority. It will fit weaker classifiers sequentially such
that the next classifier will have a different weight than the previous to adjust for incorrect
classification in the previous. Data which are difficult to predict will then have an increas-
ing influence since the next classifier will learn from the mistakes of the previous weaker
classifier. The final prediction is the result of a weighted majority vote of the combination
of the weaker classifier predictions. A weaker classifier can then be boosted to a stronger
classifier that is more accurate.

The AdaBoost algorithm in Scikit-Learn takes a weaker classification algorithm as input
together with the maximum number of estimators to be boosted before stopping. If the
model is to be perfectly fit, the executing will also be stopped. It also takes a learning
rate parameter for the shrinking of the classifiers. The AdaBoost algorithm can naturally
detect and adapt to a multiclass problem.

6.4.6 Gradient Boosting

Gradient Boosting Decision Tree (GBDT)[55] is another boosting method like AdaBoost.
The GBDT is an additive model that tries to identify the shortcomings of the weak classi-
fiers. While AdaBoost uses high weight data points, the GBDT uses the same for gradients
in the loss function. This allows the cost function to become better for optimizing the fit-
ting. The K number of regression trees7 at each stage are fit on the negative gradient of
the binomial (binary class) or multinomial (multiclass) deviance loss function.

The algorithm is well suited for both binary and multiclass classification, and takes
the maximum number of estimators and the learning rate as input parameters. Since it
is a boosted tree method, it can also take the maximum depth of the trees and maximum
number of leaves as inputs. It is also quite robust against overfitting. In a multiclass
problem, the algorithm will create K trees for each iteration when we have K classes. The
loss function for multiclass also have to be ”deviance” to give probabilistic outputs (similar
to LR).

When dealing with larger datasets (n samples>10 000) or a large number of classes, a
histogram-based gradient estimator can be more useful. Scikit-learn has an experimental

7For a binary classification case, only a single tree is fit.
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implementation of GBDTs called HistGradientBoostingClassifier which is inspired by
Ke et al. [56] on a LightGBM algorithm. This estimator can be orders of magnitude
faster than the original GBDT estimator. To reduce the computation time and number of
splitting points, the algorithm bins the input samples into integer-valued bins. They share
most of the same parameter inputs which controls the models, except that the histogram-
based estimator gets a parameter for controlling the number of bins. This can act as
another regularization parameter.

6.4.7 Extreme Gradient Boosting

Another highly efficient, flexible and portable tree boosting method is the Extreme Gra-
dient Boosting (XGBoost)[57]. It is a scalable end-to-end tree boosting system using an
optimized distributed gradient boosting algorithm and provides fast and accurate parallel
tree boosting. It is one of the most used and highly recognized machine learning algorithms
today together with deep neural networks. The XGBoost algorithm won the Kaggle Higgs
ML challenge in 2014[58]. One of the most important aspects of the XGBoost is its scala-
bility, making it several times faster than other algorithms combined with parallelization.

The XGBoost algorithm uses the GBDT framework as its core. It looks at distributions
of the features for all data points in a leaf to build trees using potential loss for the possible
splits to make a new branch. This decreases the space of possible feature splits search.
The algorithm chooses features and split-points based on the criteria to maximize the gain.
The splits are binary such that it splits according to if a value is bigger or lower than a
threshold set by the algorithm. The gain is different depending on the type of loss function
which is used. With a small dataset, the XGBoost algorithm tries all split points gained by
the data values for each feature. The feature and threshold combination with the highest
gain is then chosen. For a larger dataset, the algorithm uses fewer candidate splits given
by the quantiles of the data.

Since XGBoost is more complex than other algorithms, it also requires more parameters
to be tuned to control the model properly. The parameters can be sorted into general
parameters for choosing the booster method, booster parameters which are dependent on
the boosting method and task parameters which specify learning task parameters and
learning objectives. We are using a tree booster which has many of the same tree boosting
parameters as the DT and RnF algorithms, i.e. regularization terms, hyperparameters for
tree controlling, pruning and others. The task parameters include the type and size of the
classes we have, e.g. multiclass classification, and types of evaluation metrics to use.

6.4.8 Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM)[56] is a distributed gradient boosting framework
for machine learning. It is similar to the XGBoost algorithm, but made to be faster, around
7 times faster, with higher efficiency, lower memory usage and better accuracy. This is a
huge advantage when dealing with larger datasets. The LGBM algorithm uses a gradient
based one-side sampling and exclusive feature bundling for filtering the data samples to

64



find the split value in the trees, while the XGBoost uses a histogram based algorithm
to find the best splits. This means that the LGBM algorithm will keep features with
higher absolute values, regarding information gain, than a pre-defined threshold and drop
the features with small absolute values. This will improve the accuracy. The features
that rarely have non-zero values simultaneously will be combined into a single feature, to
reduce the number of features in the dataset. XGBoost and LGBM have very similar input
parameters.

6.4.9 Multiclass Classification Models

To do multiclass classification, there are several existing techniques. We will look more into
two of those techniques8; transformation to binary and extension from binary. These are
all meta-estimators. This means that they all need a base estimator, most often a binary
classifier, which is extended to do multiclass classification when they are implemented in
the constructors.

The extension from binary technique is rather trivial. We simply use already existing
binary classifiers and modify them to do multiclass classification. Not all binary classifiers
can be extended to multiple classes. The classification models we have looked at, this far,
can either do this automatically, or have input parameters and constraints in the models
to tell the models to do multiclass classification.

Transformation to binary reduces our multiclass problem down to several binary clas-
sification problems. This technique can also be split into more strategies, which we will
look more into.

One-Vs-Rest Classifier

The first strategy is the one-vs-rest (OvR) classifier. Each class in this model has its
own classifier which does the fitting, and the classifier fits the single class against the
rest of the classes. This means we only need n classifiers for the n classes. This also
improves interpretability, since we can get information about a specific class by looking at
its classifier.

The OvR takes a input a binary classifier along with samples and targets and outputs
a list of the classifiers for each class. When doing predictions, it uses all the classifiers on
unseen data and picks the class with the highest confidence score.

One-Vs-One Classifier

The second strategy is the one-vs-one (OvO) classifier. This takes one classifier and a pair
of classes at a time. For each pair of classes, the classifier trains on data containing these
classes and learns to distinguish them. This happens between all the classes. It then uses
a voting scheme to select the class with the most votes. For n number of classes in the
multiclass problem, the OvO trains n(n − 1)/2 binary classifiers. All the classifiers that

8There is also a third technique, hierarchical classification, that we will not cover.
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are trained will be applied when doing the prediction on unseen data, and the one with
the highest number of predictions will be predicted by the combination of classifiers.

This method is slower than the OvR since it has a O(n2) complexity. Both the OvO
and OvR methods suffer from the fact that there may be regions where the input space
can get the same number of votes.

6.5 Evaluation Metrics

To evaluate the performance of the classification models properly and decide which model
best fits the data, we need to have some evaluation metrics. In this section we will take a
look at the evaluation metrics used for the classification9.

6.5.1 Mutual Information

To look closer at the correlations in the dataset, we can use the entropy and information
gain. The entropy can be calculated using the probability P (j) of a value j occurring,
where j is a value which a feature group xi can take;

H(xi) = −
∑
j∈xi

P (j) log2 P (j) (6.17)

With a given target y, we can calculate the conditional entropy of a feature xi:

H(xi|y) = −
∑
y∈y

P (y)
∑
j∈xi

P (j|y) log2 P (j|y) (6.18)

Now we compute the information gain, or mutual information in the context of variable
selection, for a given feature as the difference between these two entropies:

I(xi : y) = H(xi)−H(xi|y) (6.19)

With the information gain we get a measure of the correlation between a feature and the
target, which shows dependencies between features and the amount of information that
one feature provides about others.

6.5.2 Accuracy Score

To measure the performance of the models, we use the the accuracy score for classification.
This is a measure on how well the models can predict the classes. It is defined as the number
of correct predictions divided by the total number of predictions, giving a value between
0 and 1.

Accuracy =

∑n
i=1 I(ỹi = yi)

n
, (6.20)

9See Scikit-Learn[59] for more details on metrics.
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where ỹi is the predicted target by the model, yi is the actual class target, n is the total
number of predictions and I is and indicator function

I =

{
1, if ỹi = yi

0, if ỹi 6= yi
(6.21)

When the model prediction fits the data perfectly we get an optimal score of 1.
The accuracy score can be computed for all datasets, i.e. training validation and test

sets. If there is a big difference between the accuracy score for either validation and training
or test and training, we might under- or overfit the data. When the training score is much
better, we most likely overfit the data.

Another way to balance out the accuracy scores is to use cross-validation. It’s a very
useful technique against overfitting, and can be used to tune hyperparameters. There
are several cross-validation techniques, but the main idea of cross-validation is to divide
samples into subsets. The cross-validation will do the analysis on one subset and compute
the accuracy on that subset. Then it will do another analysis with another subset and
compute the accuracy again. After many iterations, dividing the data into subsets and
computing several accuracy scores, the average score is used as an estimate of the model
performance.

6.5.3 Cohen Kappa Score

Another scoring statistic is the Cohen Kappa Score (CKS)[60]. The CKS accounts for
uncertainties in the predictions, comparing a random classifier against a more accurate
and tuned classifier. The CKS is calculated by using the rate of agreement for random
guessing, pe, and the rate of agreement for the actual prediction, pa. The CKS ranges
from -1 to 1, where 1 is the optimal score representing perfect agreement, 0 represents
agreement that can be expected by random guess and -1 represents no agreement, and is
calculated as

κ =
pa − pe
1− pe

(6.22)

6.5.4 Error Evaluation

We will use several different error metrics to get a good overall error estimate of the
classification models. These will also help to discover any over- or underfitting of the data.

Error Rate

With the accuracy score, we can compute the error rate. The error rate is defined as the
fraction of misclassifications:

error = 1− accuracy (6.23)

This is an often used metric in classification. Both the error and the accuracy score can
be computed in multiclass classification cases.
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Log Loss

Instead of using discrete predictions, we can evaluate probability outputs of classifiers. We
can use the log loss function, also called the cross-entropy or logistic regression loss, to
evaluate the probabilities. When dealing with a binary case with a probability estimate
p = P (y = 1), the log loss is defined as the negative log-likelihood given a true output for
each sample. It is computed as

Llog = − logP (y|p) = −(y log(p) + (1− y) log(1− p)). (6.24)

For a multiclass case, the log loss is taken over a whole set of size n with K labels, a
binary indicator matrix Y and a matrix Pr of probability estimates as

Llog(Y,Pr) = − logP (Y,Pr) = − 1

n

n∑
i=1

K∑
k=1

yi,k log pi,k. (6.25)

Variance

Previously in section 6.2.2, we defined the variance and the bias of a model. These two
are used to check for possible under- and overfitting. The variance is a measure of how far
the spread of our predictions are from their average values. Given the predictions, ỹ, of a
model, the variance is calculated as

Var(ỹ) =
1

n

n∑
i=1

(ỹi −
1

n

n∑
j=1

ỹj)
2. (6.26)

Bias

The bias error is a measure of the difference between the true values, y, and the average
of the predicted values. To get the out-of-sample error in equation 6.12. The bias squared
can be calculated as

Bias2(y, ỹ) =
1

n

n∑
i=1

(yi −
1

n

n∑
j=1

ỹj)
2. (6.27)

6.5.5 Classification Report

With Scikit-Learn, we can easily build what is called a classification report. This is a text
report containing some useful classification metrics using the true targets and predictions
of the model.

First we will look at some useful prediction results used to compute some of the report
metrics:

1. Positive (P) - The observation is positive.

2. Negative (N) - The observation is negative.
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3. True Positive (TP) - Observation is positive, and the prediction is positive.

4. True Negative (TN) - Observation is negative, and the prediction is negative.

5. False Positive (FP) - Observation is negative, but the prediction is positive.

6. False Negative (FN) - Observation is positive, but the prediction is negative.

With the last four outcomes above (3-6), we can compute some useful metrics in the report:

Precision - The fraction of a sample classified correctly as positive of all positive
predicted samples by the model:

TP

TP + FP

Recall - The fraction of a sample classified correctly as positive of all positive obser-
vations (true positive rate):

TP

TP + FN

The recall of the positive class is also called the sensitivity. The recall of the negative
class (true negative rate) is called the specificity.

F1-score - A weighted average of the precision and recall:

2× Precision× Recall

Precision + Recall

In the multiclass case, these metrics are computed for each class independently.
The classification report also includes for various classification cases:

Support - The number of true classes in the dataset for each class.

Accuracy - The accuracy score of the model (binary case).

Macro avg - Average of the unweighted mean for each class.

Micro avg - Average of the total true positives, false negatives and false positives
(multiclass or multilabel cases).

Weighted avg - Average of the support-weighted mean for each class.

Sample avg - Average of samples (multilabel case).
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6.5.6 Confusion Matrix

With the four outcomes in the classification report (3-6), we compute a confusion matrix.
For a binary case, the confusion matrix looks like Figure 6.4. Here we see the predictions
versus the true values. It gives a better understanding of the accuracy of a classification
model. The accuracy score shows the overall accuracy, whereas the confusion matrix shows
the predictions and accuracy of each class. It is easily extended for multiclass classification
as a matrix with dimension k × k for k classes. When the confusion matrix is normalized
the total values of the rows are equal to 1. In the optimal case with all predictions correctly
guessed, we should have 1’s along the diagonal and 0 elsewhere.

Figure 6.4: The confusion matrix is used to evaluate the accuracy of a classification model
by using the four true and false observation and prediction outcomes (TP, TN, FP, FN.
See sect. 6.5.5.).

6.5.7 Precision-Recall Curve

Scikit-Learn provides a useful function for plotting precision versus recall. In Figure 6.5
we see an example of how a precision-recall curve can look like in a multiclass case with
10 classes. This lets us see how the precision and recall behaves for different thresholds.
A large AUC is the result of both high precision and high recall, which is preferable. The
range of values will be between 0 and 1, as for accuracy. When the area under the curve
(AUC) of a class is close to 1, the classification model can predict this class with a good
accuracy. For a multiclass-case, the precision and recall are computed for each class as
binary cases. A large area for each class is the optimal case here as well.
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Figure 6.5: Example of a precision-recall curve for a multiclass classification case with 10
classes and a micro-average curve plotted. Most of the classes have a large AUC, showing
that the classifier can predict these classes with good accuracy. Credits Scikit-Learn [59].

6.5.8 Balanced Accuracy

If we are dealing with imbalanced datasets, we can use balanced accuracy. It uses a macro-
average of the recall for each class. When we have a balanced dataset, this just becomes
the standard classification accuracy. It is computed as the mean of the sensitivity and the
specificity:

Balanced-accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(6.28)

The balanced accuracy ranges from 0 to 1.

6.5.9 ROC Curve

The Receiver Operating Characteristic (ROC) curve utilizes the AUC to summarize the
overall performance of classification models. An example of a ROC curve plot can be seen
in Figure 6.6 with a multiclass case with 10 classes. This results in 10 ROC curves, a
random model curve and two different average curves, as seen in the figure. The ROC
curve function in Scikit-Learn plots the sensitivity versus the specificity for a model. A
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totally random model would result in an AUC of 0.5, showing as the straight dashed line
from the left bottom corner to the right top corner in the figure. The optimal model would
show an infinitely quick incline in the ROC curve at the beginning, before flattening out
with AUC close to 1. A good classifier would typically have an AUC larger than 0.8.

Figure 6.6: Example of a ROC curve for a multiclass classification case with 10 classes,
a micro-average curve, a macro-average curve and a random model (black dashed line)
plotted. All classes and averages have large areas under the curves, showing that the
classifier can predict the classes with good accuracy. Credits Scikit-Learn [59].
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Part II

Implementation
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Chapter 7

Preparing for Machine Learning

In this part we will look at the framework of the classification exploiting a range of different
models. First we will look at the data we will use and how it is made and converted to
fit our purposes. The data is already produced beforehand as ROOT files (more in sect.
7.2) and will be converted into dataframes with Python where we will make new features
as well as the target values. The data will then be analyzed and preprocessed (sect. 8.1)
with different methods before it is split into training, validation and test sets. We will then
go through some of the tuning which is done with the models on the validation set using
the evaluation metrics from section 6.5, before we apply the best fit model on new similar
data. The best model will be used to classify the vertices of the leptons in background and
signal data. The results will be presented in part III and discussed in part IV.

Python is used for easy implementation of machine learning libraries with Scikit-
Learn[59] and for plotting, using the Matplotlib library. In the following section, we will
give a brief presentation of the most important Python libraries we use in our code.

7.1 Python Libraries

Many of the libraries we use require other libraries to be installed, but they do not have
to be explicitly imported in the code itself. The code and necessary software requirements
are found in the GitHub repository1. It contains explanations on how to setup and run
the code.

When we present code snippets in this thesis, we will leave out some parts, noted by
”\\...”, since it will only be used for visualization of the code. The full source codes can
be found in the GitHub repository.

• NumPy: NumPy, or Numerical Python, is one of the most used packages in Python.
It handles arrays, matrices, has functions for working with high-level mathematics,
can dump data to files and more.

1https://github.com/krilangs/ComPhys—Master
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• Pandas: Pandas is a powerful and easy Python made library for handling data
manipulation and analysis. This library is very useful with machine learning for
handling the data for visualization, since it creates data structures that are flexible,
efficient, customizable and easy to use and read.

• Matplotlib: Matplotlib is a plotting library for Python and NumPy which creates
graphs and visualizations.

• Seaborn: Seaborn is a more high-level visualization library, and is based upon
Matplotlib. It is most used for statistical graphics to understand data better, and is
closely connected to pandas.

• ROOT: ROOT, or PyROOT, is ROOT’s Python C++ bindings. It lets us use
ROOT in Python. This is very much used in particle physics. This also lets us use
Python libraries like NumPy and Pandas combined with ROOT.

• Uproot: Uproot is a library for converting ROOT files to e.g. dataframes by com-
bining Uproot and Pandas.

• Scikit-Learn: Scikit-Learn is a library used for data analysis and machine learning
in Python. It contains a lot of useful tools for statistical modeling and machine
learning. Most of the classification models we use, are imported from this library.

• Imblearn: Imblearn, or Imbalanced-learn, is used with Scikit-Learn to handle im-
balanced datasets in machine learning.

• XGBoost: XGBoost is a library that provides a powerful, scalable and distributed
gradient boosting framework for machine learning.

• LightGBM: LightGBM is another distributed gradient boosting library for machine
learning. It is made to be efficient and faster than XGBoost for larger datasets.

7.2 Data

The inputs we are using in this thesis consists of Monte Carlo (MC) simulated background
data and neutrino signals as well as data from p-p collisions at

√
s = 13 TeV. The following

ATLAS data processing chain information is taken from Catmore [61]. The MC and data
go through the same chain of Reconstruction, Derivation and Analysis, shown in Figure
7.1. For the MC simulations (right side of Fig. 7.1) we have an additional step of Gen-
eration, Simulation and Digitization before Reconstruction. The (event) Generation step
is a simulation of the interaction between quarks and gluons in proton-proton collisions,
parton showering and hadronization and subsequent decays into stable particles. Next step
is detector Simulation which simulate how the particles interact with the detector. The
Digitization step turns simulated energy deposits into detector responses looking like real
raw data. The MC are from here on treated similarly as real data. In the Reconstruction

75



step histograms of the raw data are made. The Derivation step reduces the size of the
datasets from PB to TB, before the datasets will be even further reduced to MB-GB sized
ROOT Ntuples.

In this thesis the background data are made to best represent all possible production-
mechanisms that may give a three lepton final state with a given transverse momentum
plus MET.

Figure 7.1: The data flow for producing data and MC/background simulation. MC start
with Generation (right side) going through all the steps ending up with Analysis. Data
start with a Trigger (left side) that picks out interesting events and information from a
detector, e.g. the ATLAS detector. Credit: Catmore [61].

The data (left side of Fig. 7.1) we use is proton-proton collisions at
√

13 = 13 TeV
from the LHC from 2018. For the data we have a Trigger step that picks out interesting
events. What is regarded as interesting is defined by the physicists and the collaboration
depending on the analysis they want to perform. In our case we trigger on three leptons
with a given transverse momentum. This reduces the rate of writing data to disk.

The files we use for the MC training in this thesis have only gone through the Generation
step. We are then in full control over the truth origin, type (electron, muon, tau, quark
etc.), pT etc. of the particles. The simulation is done using MadGraph[62] with Pythia[63]
for showering/hadronization. The features we plot with MC and data are after the Analysis
step in Figure 7.1 with three leptons of good quality. For the ML we want to use the ML
models on simulated backgrounds2 and (neutrino) signal after the Analysis step. Now we no
longer have the ”truth” information about the particle types, the vertex it comes from etc.
E.g. instead of a ”true” electron we now have an electron object classified as an electron

2Following the SM processes.
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after it has passed a set of detector cuts. In some cases we get an electron is classified as a
muon or a jet, causing some inefficiency with respect to the ”true” distributions. Moreover,
the energy and momentum resolution of the detector will smear the measurement of these
quantities. In the case of the neutrino we know the full 4-vector at the truth level, while
after the Reconstruction step we only see it as missing transverse energy (MET) with no
information of its longitudinal component. We will just say we have three leptons and a
neutrino/MET in each event to distinguish easier in this thesis, even though the neutrino
is a lepton.

7.3 Feature Validation

We will now take a look at the features in the MC and signal Ntuples we will be using
in this thesis. The Ntuples all contain the same features with separate variables for the
three leptons, e.g. Charge, Flavor, Pt, Eta and Phi. We also use a feature to define tw0
cuts on the events that only contain 3 leptons, nLep base==3 and nLep signal==3. Since
we do not know the truth information of the leptons in these Ntuples, the leptons in each
event are arranged such that lepton 1 of an event has the highest momentum, lepton 2
has the second highest and so on. This does not mean that lepton 1 actually comes from
vertex 1. For the neutrino we only have the met Et and met Phi features. In the Ntuple
distributions we merge the higgs and topOther backgrounds into ttbar+X, diboson3L is
named WZ and diboson4L is named ZZ.

In Figure 7.2 we see the data, MC and signal plots for the Flavor and Charge of the
three leptons. The Flavor figures show either 1 or 2 as lepton flavor values corresponding
to electron and muon, respectively. The Charge figures show that the leptons can either
have -1 or 1 as values.

In Figure 7.3 we see the data, MC and signal plots of Eta and Phi for the three leptons.
The eta values are between -2.5 and 2.5, while the phi values are between −π and π. All
distributions show very little dependence on phi and eta.

In Figure 7.4 we see the Pt of the three leptons. As expected, since the arrangement of
the leptons are after pT lepton 1 has a long tail towards high pT reaching beyond 800 GeV.
Lepton 2 has only a few events around 800 GeV, while pT of lepton 3 reaches only to about
500 GeV. All distributions have most events at low pT and decreasing as pT increases. The
smaller signal with mass N1 = 150 GeV reaches its peak much earlier than the 450 GeV
signal in all pT figures. This makes sense since the signal with higher mass neutrino will
have more events with high energy leptons.

Met Et and met Phi are seen in Figure 7.5. The Phi feature is very similar to the Phi
feature for the three lepton, where the number of events is more or less equal for all values
of φ. The transverse energy, or Emiss

T , reaches to 600 GeV. Like for the pT of the leptons,
the smaller signal reaches its peak much earlier and has fewer events with higher pT .

A thing to notice from these figures is the remarkably good compliance between data
and MC. The optimal case would have all the dots in the lower frames on the 1-marked line
for Data/SM, and our data and MC looks to give a ver ygood agreement. The Data/SM
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(lower) plots show how well the simulated MC fit with the data for different features values.
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Figure 7.2: Plot of the Flavor and Charge features for the three leptons with data, MC
and two neutrino signals. The flavor of the leptons can either be 1 (an electron) or 2 (a
muon), while the charge of the leptons can be either -1 or 1.
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Figure 7.3: Plot of the Eta and Phi for the three leptons with data, MC and two neutrino
signals. All distributions show very little dependence on phi/eta.
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Figure 7.4: Plot of the Pt of the three leptons with data, MC and two neutrino signals.
The number of events with higher transverse momentum decreases for each lepton, where
lepton 1 has most events reaching above 800 GeV.
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Figure 7.5: The figure shows the Phi and Et of the missing transverse momentum for data,
MC and two neutrino signals. The Phi feature is similar to the three lepton Phi features,
and the MET is similar to the Pt feature for the leptons.

82



7.4 Making New Variables

We start by converting the desired datasets with proton-proton collision events from ROOT
to Python using the Uproot library. The files are then stored as dataframes with Pandas.
This is done in the script called Trilepton read root.py. By using the momentum and
energy of the leptons in each event we compute new useful variables, which are added to
a new dataframe. The new variables we make are the angular variables for each particle
(three leptons and a neutrino) (θ, φ, η), angular variables between pairs of particles (dφ,
dR) and the invariant masses of pairs of leptons (mll). We also have px, py, pz, pt and E
for all four particles. For benchmark cuts we will use later (sect. 9.2), we also make a m3l

variable for the invariant mass of the three lepton system. The new dataframes can now
be imported by other scripts to be used further with ML.

The reason we make new variables for eta, phi and pt that already exists is that during
the making of the invariant masses, we get some errors for some events where the p >
E. From the Einstein energy-momentum relation in equation 4.1, the invariant masses
becomes negative. This is not (physically) correct, and since this does not happen too
often we simply drop these events in all features. This could be a simulation error, but is
not known or explored further in this thesis.

In the Born diagram in Figure 3.1, the first lepton (l±1 ) and the pseudo-Dirac neutrino
(N) comes from the first vertex. The second lepton (l∓2 ) and the W -boson comes from
the second vertex, while the third lepton (l±3 ) and the neutrino (ν) comes from the third
vertex. By using the identity traits, the particle vertex and particle ID, we classify the
events by constructing a target variable as permutations of the vertexes the leptons come
from for the two signals samples we will use to train the classification models. The leptons
are ordered by decreasing pT , for both signals and backgrounds. The neutrino will always
come from the fourth vertex in the decay chain and is not considered in the targets. This
leads to the following vertex permutations for the leptons:

[123, 132, 213, 231, 312, 321] (7.1)

This means that e.g. the 132 vertex has the highest pT lepton coming from vertex 1, second
lepton from vertex 3 and thrid lepton from vertex 2.

The function for making the new variables can be seen in Listing 7.1. The new
dataframe is then exported as a .h5-file.

# Method f o r f l a t t e n i n g and adding add i t i o na l v a r i a b l e s
de f lepaugmentation ( df , nlep ) :

px = awkward . fromiter ( df [ 'px ' ] )
py = awkward . fromiter ( df [ 'py ' ] )
pz = awkward . fromiter ( df [ ' pz ' ] )
E = awkward . fromiter ( df [ 'E ' ] )
vtx = awkward . fromiter ( df [ ' vtx id ' ] )
pid = awkward . fromiter ( df [ ' pdgid ' ] )

# Make t l v − handy when computing angular v a r i a b l e s
tlv = uproot_methods . classes . TLorentzVector . TLorentzVectorArray .←↩

from_cartesian ( px , py , pz , E )
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\ \ . . .

# Make the l epton v a r i a b l e s
f o r i in range (1 , nlep+1) :

df [ ' l ep%i p t '%i ] = pt [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i p h i '%i ] = phi [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i e t a '%i ] = eta [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i t h e t a '%i ] = theta [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i px '%i ] = px [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i py '%i ] = py [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i p z '%i ] = pz [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i E ' %i ] = E [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i v t x '%i ] = vtx [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i p i d '%i ] = pid [ pt . argmax ( ) ] . flatten ( )
df [ ' l ep%i t l v '%i ] = tlv [ pt . argmax ( ) ] . flatten ( )

\ \ . . .

# Compute v a r i a b l e s f o r a l l combinat ions o f 2 l ep tons
pairs = pt_org . argchoose (2 )
p r i n t ( ” pa i r s : ” , pairs )
left = pairs . i0
right = pairs . i1

\ \ . . .

f o r ilep in range ( l en ( left [ 0 ] ) ) :
i = left [ 0 ] [ ilep ]
j = right [ 0 ] [ ilep ]
p r i n t ( ' i = %i , j = %i '%(i , j ) )
idx1 = left [ 0 ] [ i ]
idx2 = right [ 0 ] [ i ]

df [ ' ml l %i%i '%(i+1,j+1) ] = ( df [ ' l ep%i t l v '%(i+1)]+df [ ' l ep%i t l v '%(j+1) ] ) .←↩
apply ( get_invmass )

df [ ' dphi %i%i '%(i+1,j+1) ] = df . apply ( lambda x : get_deltaPhi ( x [ ' l ep%i t l v '%(←↩
i+1) ] , x [ ' l ep%i t l v '%(j+1) ] ) , axis=1)

df [ 'dR %i%i '%(i+1,j+1) ] = df . apply ( lambda x : get_deltaR ( x [ ' l ep%i t l v '%(i←↩
+1) ] , x [ ' l ep%i t l v '%(j+1) ] ) , axis=1)

i f Truth :
df [ ' t a r g e t ' ] = df . apply ( lambda x : classify_event ( x [ ' l ep1 v tx ' ] , x [ ' l ep2 v tx '←↩

] , x [ ' l ep3 v tx ' ] , x [ ' l ep4 v tx ' ] , x [ ' l e p1 p id ' ] , x [ ' l e p2 p id ' ] , x [ ' l e p3 p id ' ] ,←↩
x [ ' l e p4 p id ' ] ) , axis=1)

df = df . drop ( [ 'px ' , 'py ' , ' pz ' , ' pt ' , 'E ' , ' vtx id ' , ' pdgid ' , 'evnum ' , ' onshe l l w←↩
' , ' t l v ' , ' phi ' , ' theta ' , ' eta ' , ' l e p 1 t l v ' , ' l e p 2 t l v ' , ' l e p 3 t l v ' , '←↩
l e p 4 t l v ' ] , axis=1)

return df

Listing 7.1: Function for making new variables.

7.4.1 Plotting New Variables

To plot the newly produced variables, we will convert the dataframes back into ROOT to
make similar plots as shown in section 7.3. First is to convert the dataframes into comma
separated values files, .csv (CSV), before converting them into ROOT. In Listing 7.2 we
see how we convert from CSV to ROOT. We only look at the MC and signal data, which
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contain the samples of interest to us in this thesis. With the new background and signal
Ntuples, we can use the same plotting scripts as earlier (sect. 7.3) to make plots of the
newly produced features.

TFile ∗f = new TFile ( Filename_ROOT , ”RECREATE” ) # Create f i l e
TTree ∗tree = new TTree ( Name_of_Tree , Title_of_Tree ) # Create t r e e
tree−>ReadFile ( Filename_CSV ) # Read the . csv− f i l e
tree−>Fill ( )
tree−>Write ( )

Listing 7.2: Convert from CSV to ROOT.

The momentum features (px, py, pz) for all four particles are seen in Figures 7.6 and
7.7. They all peak around 0 GeV and decreases as the absolute value of the momenta
increases. px and py are very similar, while pz have more spiked peaks around 0 GeV
and have more events with higher momentum than the other two momentum coordinates.
The z-direction is the direction the particles travel initially, thus it makes sense to have
somewhat higher momentum along the z-direction. The only differences between these
particle momentum plots are more or less the width of the event peaks and how much
momentum the events reach. Like before, lepton 1 reaches higher momentum and decrease
for the other particles. Lepton 1 also has the broadest peak around 0 GeV which gets more
narrow for each lepton.

The individual angle features, η, θ and φ, of the four particles are seen in Figures 7.8
and 7.9. The η and φ features are similar to the ones in the original Ntuples with more
or less an equal amount of events for each eta and phi value, except now a peak in events
around η = 0 appears. θ shows similar traits like η with equal amount of events except for
a peak around θ = π/2.

The transverse momentum features are seen in Figure 7.10 for all four particles. They
all have most events below pT = 100 GeV, decreasing as pT increases. Lepton 1 has most
events reaching higher pT values around 800 GeV, while the neutrino with smallest pT s
has only most events reaching pT around 400 GeV. The E features in Figure 7.11 show the
same type of behavior like the pT features, where lepton 1 has much higher energy than
the other particles and it decreases more and more for each particle. Lepton 1 has events
reaching around 1 TeV, while the neutrino only has events reaching around 200 GeV. The
invariant mass of the three lepton system is similar to the lepton 1 energy, reaching around
1 TeV for all backgrounds. The 450 GeV signal has more events for higher mass > 450
GeV, while the 150 GeV signal has more events for lower masses.

The invariant mass pair plots in Figure 7.12 look similar to the transverse momentum
plots, where the event peaks are between 0 and 100 GeV depending on the particle combi-
nations, and decreases as the invariant masses increases. The 150 GeV signal follows the
MC for the number of events while the 450 GeV signal first reaches the peak around 400
GeV for the more massive combinations.

The azimuthal angle difference between pairs of particles are seen in Figure 7.13. Most
of the pairs have small peaks around ∆φ = ±π and ∆φ = 0 with not much difference
in the number of events elsewhere. The two signals have fewer events around ∆φ = 0,
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especially for the lepton 1 and 2 and 1 and 3 pairs.
The angular distance features for all four particles in Figure 7.14 have the number of

events increasing slowly until the angular distance is around 3.2 before it decreases more
rapidly when the angular distance approaches 6. This happens for all combinations of
angular distances. The main differences is how steep the increase and decrease are when
the angular distance approaches 3.2 and 6, respectively.

The plots of the features we have produced are as expected, except for the spiked event
peaks for pz, θ and η for all four particles. We do not know why we get more events at
these feature values.
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(a) px lepton 1 (b) px lepton 2

(c) py lepton 1 (d) py lepton 2

(e) pz lepton 1 (f) pz lepton 2

Figure 7.6: The momentum features of lepton 1 and 2. They both have number of event
peaks around 0 GeV, but lepton 1 has a broader peak reach higher (absolute) energies.
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(a) px lepton 3 (b) px neutrino

(c) py lepton 3 (d) py neutrino

(e) pz lepton 3 (f) pz neutrino

Figure 7.7: The momentum features of lepton 3 and the neutrino. These plots are similar
to lepton 1 and 2, except for the lower highest momentum for the events.
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(a) θ lepton 1 (b) θ lepton 2

(c) η lepton 1 (d) η lepton 2

(e) φ lepton 1 (f) φ lepton 2

Figure 7.8: The angular features (θ, η, φ) for lepton 1 and 2. Almost all the angular values
have an equal amount of events, except for θ with a peak around θ = π/2 and η with a
peak around η = 0.
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(a) θ lepton 3 (b) θ neutrino

(c) η lepton 3 (d) η neutrino

(e) φ lepton 3 (f) φ neutrino

Figure 7.9: The angular features (θ, η, φ) for lepton 3 and the neutrino. Almost all the
angular values have an equal amount of events, except for θ with a peak around θ = π/2
and η with a peak around η = 0.
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(a) pT lepton 1 (b) pT lepton 2

(c) pT lepton 3 (d) pT neutrino

Figure 7.10: The transverse momentum for all four particles showing decreasing number
of events when the momenta increases. Lepton 1 has events reaching highest pT around
800 GeV.
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(a) E lepton 1 (b) E lepton 2

(c) E lepton 3 (d) E neutrino

(e) Invariant mass of three lepton system

Figure 7.11: Energy for all particles in Figures 7.11a to 7.11d, and the invariant mass for
the three lepton system in 7.11e. Similar behavior for lepton 1 and invariant mass with
high amount of events reaching around 1 TeV.
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(a) mll lepton 1 and 2 (b) mll lepton 1 and 3

(c) mll lepton 1 and neutrino (d) mll lepton 2 and 3

(e) mll lepton 2 and neutrino (f) mll lepton 3 and neutrino

Figure 7.12: Invariant masses between pairs of particles. The further out in the vertices
the particles appear, the less is the invariant mass of the combinations of those particles.
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(a) ∆φ lepton 1 and 2 (b) ∆φ lepton 1 and 3

(c) ∆φ lepton 1 and neutrino (d) ∆φ lepton 2 and 3

(e) ∆φ lepton 2 and neutrino (f) ∆φ lepton 3 and neutrino

Figure 7.13: The azimuthal angular difference features between pairs of particles. Most of
the combinations have small peaks around ∆φ = ±π and ∆φ = 0.
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(a) ∆R lepton 1 and 2 (b) ∆R lepton 1 and 3

(c) ∆R lepton 1 and neutrino (d) ∆R lepton 2 and 3

(e) ∆R lepton 2 and neutrino (f) ∆R lepton 3 and neutrino

Figure 7.14: The angular distance features between pairs of particles. The number of
events increase mostly as ∆R approaches 3.2, and the decreases as ∆R approaches 6.
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Chapter 8

Evaluation of ML Models

8.1 Preprocessing of the Data

After importing all the necessary libraries mentioned in section 7.1 in a new script, Trilep-
ton classifier.py, we load the dataframes and drop unnecessary features that we have not
explained at this point and events with e.g. NaN values we will not consider in the classifi-
cation. Using the properties of Pandas dataframes and utilizing Seaborn and Scikit-Learn
we will do some preprocessing of the data. One thing we have to consider for our dataset
is NaN, or NULL, values. This have to be done since we in section 7.4 got errors in some
events when p > E which we gave NaN values and were dropped. Not all classification
models can deal with NaN values so we cannot have those in the datasets. We double-check
for any remaining NaN values and can drop them easily from the dataframe by doing the
following:

df . isnull ( ) # Returns a boolean matrix , i f the value i s NaN then True ←↩
otherw i se Fa l se .

df . isnull ( ) . sum( ) # Returns the column names along with the number o f NaN ←↩
va lue s in that p a r t i c u l a r column .

#df . dropna ( i np l a c e=True ) # Removes rows in the dataframe conta in ing NaN va lue s .

Listing 8.1: Check NaN values in the datasets to be removed if existing.

8.1.1 Inspect Data

Pandas dataframes lets us easily print a few lines and a summary of the dataframe. We
then get a quick overview of what the data looks like. The N1 = 150 GeV data summary:

<c l a s s ' pandas . core . frame . DataFrame '>
Int64Index : 66885 entries , 0 to 67773
Data columns ( total 55 columns ) :
# Column Non−Null Count Dtype

−−− −−−−−− −−−−−−−−−−−−−− −−−−−
0 lep1_pt 66885 non−null float32

1 lep1_phi 66885 non−null float32
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2 lep1_eta 66885 non−null float32

3 lep1_theta 66885 non−null float32

4 lep1_px 66885 non−null float32

5 lep1_py 66885 non−null float32

6 lep1_pz 66885 non−null float32

7 lep1_E 66885 non−null float32

8 lep1_tlv 66885 non−null ob j e c t
9 lep2_pt 66885 non−null float32

10 lep2_phi 66885 non−null float32

11 lep2_eta 66885 non−null float32

12 lep2_theta 66885 non−null float32

13 lep2_px 66885 non−null float32

14 lep2_py 66885 non−null float32

15 lep2_pz 66885 non−null float32

16 lep2_E 66885 non−null float32

17 lep2_tlv 66885 non−null ob j e c t
18 lep3_pt 66885 non−null float32

19 lep3_phi 66885 non−null float32

20 lep3_eta 66885 non−null float32

21 lep3_theta 66885 non−null float32

22 lep3_px 66885 non−null float32

23 lep3_py 66885 non−null float32

24 lep3_pz 66885 non−null float32

25 lep3_E 66885 non−null float32

26 lep3_tlv 66885 non−null ob j e c t
27 lep4_pt 66885 non−null float32

28 lep4_phi 66885 non−null float32

29 lep4_eta 66885 non−null float32

30 lep4_theta 66885 non−null float32

31 lep4_px 66885 non−null float32

32 lep4_py 66885 non−null float32

33 lep4_pz 66885 non−null float32

34 lep4_E 66885 non−null float32

35 lep4_tlv 66885 non−null ob j e c t
36 mll_12 66885 non−null float64

37 dphi_12 66885 non−null float64

38 dR_12 66885 non−null float64

39 mll_13 66885 non−null float64

40 dphi_13 66885 non−null float64

41 dR_13 66885 non−null float64

42 mll_23 66885 non−null float64

43 dphi_23 66885 non−null float64

44 dR_23 66885 non−null float64

45 mll_14 66885 non−null float64

46 dphi_14 66885 non−null float64

47 dR_14 66885 non−null float64

48 mll_24 66885 non−null float64

49 dphi_24 66885 non−null float64

50 dR_24 66885 non−null float64

51 mll_34 66885 non−null float64

52 dphi_34 66885 non−null float64

53 dR_34 66885 non−null float64

54 target 66885 non−null ob j e c t
dtypes : float32 (32) , float64 (18) , ob j e c t (5 )
memory usage : 20.4+ MB

lep1_pt lep1_phi lep1_eta . . . dphi_34 dR_34 target

entry . . .
0 364078.281250 1.312494 −1.321615 . . . 0 .891000 0.892144 (1 , ←↩

2 , 3)
2 43565.238281 1.124601 1.340168 . . . 2 .664658 3.030723 (1 , ←↩

3 , 2)
3 62504.234375 −3.002433 −0.343577 . . . 0 .209667 1.262884 (3 , ←↩

2 , 1)
4 77743.296875 −1.776769 −1.809337 . . . −2.731673 3.427304 (2 , ←↩
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3 , 1)
5 65388.453125 2.266318 2.015514 . . . 2 .228343 2.480432 (1 , ←↩

2 , 3)

[ 5 rows x 55 columns ]

Listing 8.2: Inspecting the 150 GeV data set.

The data summary for the N1 = 450 GeV signal can be found in Appendix B. The two
data summaries are very similar, but the 450 GeV signal has more events. The prints show
the names and values of the features for a few events as well as their data type. They also
count and print the number of non-null values and the memory usage.

Then we make a design matrix X, containing all the features for each event, and a
target vector Y, containing all the targets for each event. The targets are at this point of
type tuples. This makes classification more difficult, which is why we convert each event
target in Y into an integer and make a new target vector y with the different vertex
permutations as in equation 7.1.

Another useful thing to print is the individual target counts in the target vector y to
check the number of each target in the dataframe. With this check, we quickly get an
overview to see if we have a balanced or imbalanced dataset. This can be very important
to check, since it might lead to problems later. The target counts for both signals are
seen in Table 8.1. We easily see that there is an imbalance in both datasets where the
number of target counts vary a lot between the classes, and that the 450 GeV signal has
a lot more events. Vertex permutation 123 has the highest count for the 150 GeV signal,
which is where the highest pT lepton comes from the N1 production vertex. For the 450
GeV signal 231 has the highest count, which corresponds to the case where the highest pT
lepton comes from the N1 decay. The second highest pT lepton comes from the final W ,
and the third highest comes from the N1 production vertex. When the mass of N1 = 450
GeV, a lot of momentum is released into the lepton when it decays. When N1 = 150 GeV,
the first lepton has more phase space and thus can typically have larger momentum.

Vertex permutations
N1

150 GeV 450 GeV

123 26801 34303

132 9716 10863

213 12871 65308

231 8454 139686

312 4013 3938

321 5030 5338

Table 8.1: The target counts for both signal samples. For the 150 GeV signal, the highest
target counts is for vertex permutation 123. For the 450 GeV signal, 231 has the highest
count.
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Correlations

An important descriptive statistic for data analysis with multi-variable data is the cor-
relation matrix using Seaborn[64]. It is a symmetric table of size k × k, for k features
(this includes the targets as well), with pairwise correlations between the features in the
data. It summarizes the relationships between the features. With machine learning, it is
also an early preprocessing step that can give some information to whereas dimensionality
reduction might come in handy when dealing with high-dimensionality data. The closer
to 1 the correlation coefficients are, the more correlated they are. We don’t want a value
close to -1, since this indicates a strong negative correlation. The diagonal will of course
always be 1, since it is the correlation between the feature itself. This helps us exclude
features that worsen the predictions. The optimal case is then to have as many feature
correlations around 0 as possible

By using the correlations between the features, we print the feature pairs with strong
correlation (magnitude greater than 0.7) for the N1 = 150 GeV signal:

lep1_theta lep1_eta −0.982589
lep2_theta lep2_eta −0.980482
lep3_eta lep3_theta −0.979638
lep4_eta lep4_theta −0.967329
lep2_py lep1_py −0.861290
lep2_px lep1_px −0.832358
lep1_pz lep1_theta −0.821220
lep2_pz lep2_theta −0.798809
lep3_theta lep3_pz −0.788853
lep4_pz lep4_theta −0.701025
lep3_phi lep3_py 0.707593
lep1_pt lep3_pt 0.712439
mll_13 lep2_pt 0.719664

lep3_pt 0.753440
mll_12 mll_13 0.784307
lep4_pz lep4_eta 0.812571
lep1_pt mll_13 0.827285
lep2_pz lep2_eta 0.863876
lep3_eta lep3_pz 0.868294
lep1_pz lep1_eta 0.872948
lep1_pt mll_12 0.900048
mll_12 lep2_pt 0.900361
lep2_pt lep1_pt 0.914949

Listing 8.3: Correlation between the features with magnitude grater than 0.7 for 150 GeV
signal dataset.

We print the same for the 450 GeV signal yielding similar results:

lep1_eta lep1_theta −0.991685
lep4_eta lep4_theta −0.987881
lep3_eta lep3_theta −0.984183
lep2_eta lep2_theta −0.984020
lep1_pz lep1_theta −0.894602
lep1_py lep2_py −0.890322
lep2_px lep1_px −0.851323
lep2_pz lep2_theta −0.849920
lep3_pz lep3_theta −0.805985
lep4_theta lep4_pz −0.778867
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dR_14 dR_13 −0.759559
dR_13 dR_23 −0.715678

dphi_23 −0.709584
lep2_py lep1_phi −0.707875
lep4_phi lep4_py 0.704739
lep3_py lep3_phi 0.718642
dR_24 mll_24 0.730663
lep2_py lep2_phi 0.735340
lep3_pt mll_13 0.752684
mll_14 dR_14 0.775010
lep1_phi lep1_py 0.783622
dphi_23 dphi_12 0.783714
dR_13 mll_13 0.805792
lep4_eta lep4_pz 0.806726
lep1_pt lep2_pt 0.850018
mll_12 lep1_pt 0.862141

lep2_pt 0.864872
lep3_pz lep3_eta 0.872818
lep2_pz lep2_eta 0.898086
lep1_pz lep1_eta 0.924052

Listing 8.4: Correlation between the features with magnitude grater than 0.7 for 450 GeV
signal dataset.

The features we have printed for the two signals shows features that have strong correla-
tions, either positive or negative correlations, between the pairs. These feature correlations
may affect the predictions and is something we do not want. For this reason we may want
to remove some of these features. The full correlation matrices can be seen in Figures C.1
and C.2 in Appendix C.

To take a closer look at the correlations in the dataset, we use the mutual information of
the features from section 6.5.1. By using the mutual info classif function by Scikit-Learn,
we can easily compute the information gain of the features and the targets. We want
the features that maximizes the information gain. This helps us find which unnecessary
features to remove before classification. The full information gains for all features can be
seen in Appendix C.

From the strong correlation pairs, correlation matrices and the mutual information we
choose to remove the eta features for all the four particles in both signals. They show
high correlations to other features and have low mutual information, as seen in Table 8.2.
lep1 pt shows a high correlation with other features, but has one of the highest values for
mutual information with the target, lep1 pt ≈ 0.2766, for the 150 GeV signal. This is why
we do not remove it. In the case of decision trees, the information gain is used for the
splitting of trees.

8.1.2 Resampling

After the feature selection, we make a function using the Imblearn[65] library for imbal-
anced data. We want a balanced dataset to ensure that the classification model does not
favor some classes due to an insufficient amount of data. With resampling we ensure that
the classes have almost the same amount of data to be trained on. The Imblearn library
allows us to choose between the options of both oversampling and undersampling, or only
one of them. This function can be seen in Listing 8.5 and will balance the data by first
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N1 150 GeV 450 GeV

lep1 eta 0.0617 0.4363

lep2 eta 0.0604 0.4218

lep3 eta 0.0560 0.4210

lep4 eta 0.0649 0.4259

Table 8.2: Table for the mutual information of the eta variables for the leptons for both
N1 = 150 GeV and N1 = 450 GeV signals. They all show very low values, indicating low
correlations between these features and the target. For 450 GeV the values are higher, but
they are still among the smaller compared to the highest with mll23 : 0.6203

sampling the information we already have, then resample the dataset. Undersampling is
used to decrease the size of the samples for one or more classes, while the oversampler
increase the size of the samples for one or more classes. The random state is used to re-
produce the data when necessary, since the sampling algorithms will differ each time they
are run.

”””Resample the data to make the da ta s e t s more balanced . ”””
de f Resample (X , y , under=False , over=False ) :

i f under == True :
p r i n t ( ”Undersample” )
undersample = RandomUnderSampler ( sampling_strategy=”major i ty ” , ←↩

random_state=42)
X , y = undersample . fit_resample (X , y )

i f over == True :
p r i n t ( ”Oversample” )
oversample = ADASYN ( sampling_strategy=”not major i ty ” , random_state=42)
X , y = oversample . fit_resample (X , y )

#pr in t ( y . t a r g e t . va lue count s ( ) ) # Print the counts o f the d i f f e r e n t c l a s s e s←↩
a f t e r resampl ing

re turn X , y

Listing 8.5: Function for resampling and balancing the amount of data.

By looking at the target counts in section 8.1, we see that both datasets are imbalanced.
For the 150 GeV data we use only oversampling with the ADASYN algorithm in Scikit-
Learn to create more data depending on the distribution of the classes we will oversample.
All the classes except the class with highest count, the majority class, will be sampled with
ADASYN. The new target counts after resampling are seen in Table 8.3.

For the 450 GeV signal we have a lot more data than the other signal, but the data
is still very imbalanced. We balance the data by first undersample the majority class
with a RandomUnderSampler algorithm and then oversample the minority classes with
the ADASYN algorithm. The RandomUnderSampler takes random samples from the
majority class to produce a subset of the data with approximately the size of the biggest
minority class. We then get two majority classes with approximately the same size before
the ADASYN algorithm oversample the minority classes. The new target counts after
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resampling are seen in Table 8.3.

Vertex permutations
N1

150 GeV 450 GeV

123 26801 60667

132 25198 65352

213 26088 65308

231 26122 65263

312 27109 64924

321 27527 64600

Table 8.3: The target counts for both signal samples after using resampling techniques on
the datasets. Oversampling is used for the 150 GeV signal, while both undersampling and
oversampling is used on the 450 GeV signal.

8.1.3 Train, validation and test sets

Regardless of resampling or not, one important thing we have to do with our data when
doing classification is to split the data into multiple sets. We split the design matrix X,
containing the features, and the target vector y into three new sets each. This is done by
using a Scikit-Learn function called train test split, as seen in Listing 8.6. First we split X
and y into training and test sets. The training sets are then further split into new smaller
training sets and validation sets. We choose the splits to have 60% of the data as training
data, 20% are validation data and 20% are test data. The validation set is used to tune
the classification models, while the test set is only used as unseen data in the end when
we have a good enough trained model.

””” Sp l i t events in to t ra in ing , v a l i d a t i o n and t e s t s e t s . ”””
X_train , X_test , y_train , y_test = train_test_split (X , y , test_size=0.2 , ←↩

random_state=42, stratify=y )

X_train , X_val , y_train , y_val = train_test_split ( X_train , y_train , test_size←↩
=0.25 , random_state=42)

Listing 8.6: Splitting the data.

8.1.4 Scaling

The next technique we will apply is scaling of the data. We will use standardization of
the data, which means we transform the values with a mean of 0 and a standard deviation
of 1. This will fix any unwanted weighting favoring some features. Scikit-Learn has a
function for doing this called StandardScaler. We will both fit and transform the training
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data, meaning that we both compute the mean and standard deviation to standardize the
training set. We have to transform both the validation and test sets with the scaler, but
we don’t fit them. In Listing 8.7 we use the fit transform on the training set, while only
using transform on the validation and test sets. Note that we only scale the features, since
scaling the targets will assign a distribution to the categorical features.

””” Sca l e the data when c a l l e d . ”””
de f scaler ( X_train , X_val , X_test ) :

sc = StandardScaler ( )
X_train = sc . fit_transform ( X_train )
X_val = sc . transform ( X_val )
X_test = sc . transform ( X_test )
r e turn X_train , X_val , X_test

Listing 8.7: Function for scaling data.

8.2 Training the Classification Models

With the input data properly balanced and scaled we will use the two signals to train
several classification models to find the one with the best performance. We start with the
training of the classification models on the validation set with various hyperparameters.
We create a useful function that uses the RandomizedSearchCV function in Scikit-Learn to
test several different values of hyperparameters for some chosen model using a randomized
search with cross-validation. This is much easier than changing one hyperparameter at
a time for each run, since the randomized search function can test several hyperameters
in one run. Our function in Listing 8.8 prints the results of the randomized search given
some set(s) of hyperparameters. The results include the mean test scores for each set of
hyperparameters, and the best mean test score, with the corresponding hyperparameters.

de f getTrainScores ( gs ) :
# Function that p r i n t s the RandomizedSearchCV best parameters and mean ←↩

s c o r e s
p r i n t ( ” Sta r t ge tTra inScore s : ” )
gs . fit ( X_train , np . ravel ( y_train ) )
results = {}
runs = 0
f o r x , y in z ip ( l i s t ( gs . cv_results_ [ ' mean te s t s co r e ' ] ) , gs . cv_results_ [ '←↩

params ' ] ) :
results [ runs ] = 'mean : ' + s t r ( x ) + ' params ' + s t r ( y )
runs += 1

best = { ' best mean ' : gs . best_score_ , ” best param” : gs . best_params_}
pr in t ( results )
p r i n t ( best )
r e turn results , best

Listing 8.8: Function for training models using a randomized search function.

After training all the models with the randomized search function and implementing
the best hyperparameters for each model, we use the validation set to test and compare
the classification models. To evaluate and compare the models, we use the accuracy score
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on both the training and validation sets. This lets us see if we have any overfitting when
the training accuracy score is much higher than the validation accuracy score. It is the
accuracy score and the confusion matrices we will use as the main evaluation methods to
check the model performances on the validation set. We also look at the variance and bias
of the models. The XGBoost and LGBM models lets us plot the errors and log losses to
see the convergence and fitting of these two models. The best overall performing model
for each signal sample will be chosen for further use.

8.2.1 Choosing the Best Performing Models

In Table 8.4 the values of the evaluation metrics after tuning each model of the 150 GeV
model is shown. There we see the accuracy score of both the validation and training sets,
the balanced accuracy score, the variance and the bias for each classifier. We see the same
evaluation metrics for the same classifiers trained on the 450 GeV signal in Table 8.5.
From the tables we see that the most accurate classifiers for both signals are the XGBoost
with accuracy scores 0.863 and 0.950 and LGBM classifiers with accuracy scores 0.877 and
0.954.

Model Score Score train BAcc Var Bias

LogRegCV 0.410274 0.412666 0.409277 5937.2669 6102.1446

DecisionTree 0.608518 0.795671 0.607949 6033.3890 6086.2548

AdaBoost 0.851900 1.000000 0.850790 5796.7615 6088.7001

RandomForest 0.765558 0.911612 0.764617 5751.0957 6136.3113

OvR 0.774592 0.930866 0.773828 5819.3619 6123.2995

OvO 0.778810 0.929900 0.777738 5841.6059 6135.7178

MLP 0.822657 0.949238 0.822251 6045.2875 6044.7911

HGBC 0.786301 0.899881 0.785906 6023.6668 6058.7670

XGBoost 0.863106 0.999769 0.862487 6016.7689 6053.3081

LGBM 0.877868 0.999926 0.877134 6046.5238 6055.6849

Table 8.4: Table containing evaluation values with the 150 GeV signal validation set of the
classification models in section 6.4. From left to right: The classification model (names),
accuracy score of validation set, accuracy score of training set, balanced accuracy score,
variance and bias.
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Model Score Score train BAcc Var Bias

LogRegCV 0.699027 0.698413 0.696966 5994.8327 5975.0053

DecisionTree 0.850938 0.916329 0.848865 6048.3255 5953.8820

AdaBoost 0.938490 1.000000 0.937000 6107.4315 5948.8834

RandomForest 0.899343 0.922821 0.896808 6057.5101 5972.7990

OvR 0.906038 0.931635 0.903435 6045.4265 5972.2990

OvO 0.908771 0.931885 0.906208 6046.0539 5971.0928

MLP 0.934993 0.960599 0.933578 5984.1467 5950.7039

HGBC 0.928027 0.957107 0.925760 5980.3233 5961.7443

XGBoost 0.950883 0.999879 0.949377 6005.1208 5951.0907

LGBM 0.954081 0.999922 0.952588 5999.1799 5950.8842

Table 8.5: Table containing evaluation values with the 450 GeV signal validation set of the
classification models in section 6.4. From left to right: The classification model (names),
accuracy score of validation set, accuracy score of training set, balanced accuracy score,
variance and bias.

The confusion matrix for each classifier is also considered when we choose the best
performing model for each signal. Like the evaluation metric tables of the classifiers, the
LGBM has the best confusion matrices for both signals. The confusion matrices for the
two signals are seen in Figure 8.1. The confusion matrices for the rest of the classifiers
are found at the GitHub-repository in the Plots-folder. With these confusion matrices we
get to see the individual prediction accuracy for each class, which gives more info than
just the accuracy score on the whole set. The confusion matrices for the LGBM all show
individual class accuracy scores bigger than 0.8, and most of them are bigger than 0.84
which is a good indication for a good classification model.

Based on this evaluation of the validation set on the models, we will use the LGBM as
the preferred model further for both signals.
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(a) 150 GeV signal: Confusion matrix (b) 450 GeV signal: Confusion matrix

Figure 8.1: Left: Validation set confusion matrix of the LGBM classifier trained on the
150 GeV signal. The 150 GeV model seems to be better at predicting the 231, 312 and
321 classes with predicted accuracy scores bigger than 0.88 for these three classes. Overall
for all classes, the model predicts all classes with accuracy scores bigger than 0.84. Right:
Validation set confusion matrix of the LGBM classifier trained on the 450 GeV signal. The
450 GeV signal model predicts all the classes at 0.91 and better, except the 123 class with
only 0.82.

8.3 Classification with Test Set

After choosing the best performing model in section 8.2 for each signal, we do a new
evaluation using the test set. We use the evaluation metrics from section 6.5 for evaluating
the classification model performance to check that the performances of the best model is
satisfying.

8.3.1 Evaluation of the Best Models

From the the model evaluation with the validation set in section 8.2, we choose the LGBM
as the best performing model for both signal samples since it has the highest accuracy
scores of the classes. The LGBM model is then evaluated on the test set for both signals.

When the performances of the best model is good enough, we use a Scikit-Learn module
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called Pickle to save the model to separate .pkl-files for the signals. These files can be
loaded and exported to be used on new unseen data with the same features we have
trained on. This quick and easy way of loading already trained models lets us skip the
training of the model such that we can go straight to predicting the outcomes on the new
data.

150 GeV signal

With the test set we use more evaluation metrics to evaluate the LGBM model. We start
by looking at the classification report of the LGBM model trained on the 150 GeV signal
in Table 8.6. All values for precision, recall and f1-score are higher than 0.8, which is an
indicator that the LGBM model is a good classifier for the 150 GeV signal. All classes
seems to be predicted satisfactory and the model has a high accuracy score of 0.88. This
can also be seen in the confusion matrix in Figure 8.2 which has very similar prediction
scores compared to the validation set confusion matrix (Fig. 8.1).

Vertex permutation Precision Recall F1-score Support

123 0.88 0.84 0.86 5360

132 0.90 0.85 0.87 5040

213 0.86 0.85 0.85 5218

231 0.89 0.88 0.88 5224

312 0.87 0.94 0.91 5422

321 0.89 0.91 0.90 5505

accuracy 0.88 31769

macro avg 0.88 0.88 0.88 31769

weighted avg 0.88 0.88 0.88 31769

Table 8.6: Classification report of the LGBM model trained on the 150 GeV signal with
the test set. All classes show high scores for precision, recall and f1-score, except for recall
on the 123 vertex. The high scores indicate a good classification model.

The evaluation metrics of the model are seen in Table 8.7. The accuracy score, CKS
and balanced accuracy score all have score higher than 0.85, showing that the LGBM
model is satisfactory trained and performs well. The high accuracy score of the training
set might indicate some overfitting and the log loss is at a respectable level, but the model
still performs good enough.

We also plot the precision-recall curve and ROC curve. The ROC curves in Figure 8.3
all show AUC scores around 0.99. An AUC score higher than 0.8 is usually considered a
good model. The precision-recall curve is seen in Figure 8.4 and shows AUC scores higher
than 0.92.

Finally, we take a look at the 20 most important features decided by the LGBM model,
seen in Figure 8.5. The invariant mass pairs are clearly the most important features when
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Figure 8.2: Test set confusion matrix of the LGBM classifier trained on the 150 GeV signal.
The model on the test set shows similar accuracy scores for the classes like it did with the
validation set, where all classes are predicted with 0.84 or higher.

Score Score train CKS BAcc LogLoss Var Bias

0.879285 0.999935 0.855092 0.878572 0.333487 6033.5629 6054.7185

Table 8.7: Table containing evaluation values with the 150 GeV signal test set of the
LGBM model in section. From left to right: The accuracy score of test set, accuracy score
of training set, the CKS score, balanced accuracy score, log loss, variance and bias.

predicting with the model, with mll12 being the most important one. Other important
features are dPhi, dR and E. Thus the variables we have added to the data with the
angular variables and invariant masses of pairs of particles, have high importance when
predicting.

The performance of the LGBM on the 150 GeV signal is proven to be very good, and
is saved with Pickle to be used later.
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Figure 8.3: ROC curve plot for the LGBM model with the 150 GeV signal test set. The
AUC for all classes are around 0.99, which shows that the model is a very good model for
predicting the classes.

Figure 8.4: Precision-recall curve plot for the classes predicted by the LGBM model with
the 150 GeV signal test set. All classes and the average have AUC higher than 0.92, once
again showing the good performance of the model.
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Figure 8.5: The most important features decided by the LGBM model trained on the 150
GeV signal for predicting new data. The features we added to the data with the angular
variables and invariant masses of pairs of particles show high importance when making
predictions.

450 GeV signal

For the 450 GeV signal, the classification report in Table 8.8 shows similar results like the
150 GeV signal, but better. Almost all values are around 0.9 or higher, except for the
recall for the 123 vertex, as seen for the 150 GeV signal. This indicates that the LGBM
model trained on the 450 GeV is a very good classifier. The confusion matrix for the 450
GeV signal model in Figure 8.6 is very similar to the validation set, with all classes higher
than 0.92 and an accuracy score of 0.96. Compared with the 150 GeV confusion matrix,
the 450 GeV trained model is better on predicting all the classes except the 123 vertex,
for which the two models perform equally.

The evaluation metrics in Table 8.9 show a high accuracy score, CKS and balanced
accuracy, not to far away from the accuracy score of the training set. This means that we
are less likely of having overfitting since the two accuracy scores are close in value. The
log loss is also less than for the 150 GeV signal.

The ROC curves in Figure 8.7 are better than the 150 GeV signal, with AUC around
1.0 for all classes. The precision-recall curve in Figure 8.8 is also better, with all AUC
values higher than 0.97. These plots indicate a very good classification model on these
data.

The 20 most important features decided by the LGBM model as seen in Figure 8.9. It is
still the invariant mass pairs that are clearly the most important features when predicting
with the model, with mll14 now the most important one. Other important features are
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Vertex permutation Precision Recall F1-score Support

123 0.97 0.83 0.89 12133

132 0.92 0.99 0.96 13070

213 0.99 0.92 0.95 13062

231 1.00 1.00 1.00 13053

312 0.93 1.00 0.97 12985

321 0.94 0.99 0.97 12920

accuracy 0.96 77223

macro avg 0.96 0.96 0.96 77223

weighted avg 0.96 0.96 0.96 77223

Table 8.8: Classification report of the LGBM model trained on the 450 GeV signal with
the test set. All classes show high scores for precision, recall and f1-score, except for recall
on the 123 vertex. The high scores indicate a very good classification model.

Score Score train CKS BAcc LogLoss Var Bias

0.956982 0.999914 0.948356 0.955582 0.111992 5997.1512 5948.8764

Table 8.9: Table containing evaluation values with the 450 GeV signal test set of the
LGBM model in section. From left to right: The accuracy score of test set, accuracy score
of training set, the CKS score, balanced accuracy score, log loss, variance and bias.

here dPhi, dR and E.
The performance of the LGBM on the 450 GeV signal is proven to be very good and

even better than the 150 GeV signal. This model is also saved with Pickle to be used later.
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Figure 8.6: Test set confusion matrix of the LGBM classifier trained on the 450 GeV signal.
The model on the test set shows similar accuracy scores for the classes like it did with the
validation set, where all classes are predicted with 0.9 or higher except for the 123 vertex
permutation class.
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Figure 8.7: ROC curve plot for the LGBM model with the 450 GeV signal test set. The
AUC for all classes and averages are around 1.0, which shows that the model is a very
good model for predicting the classes.

Figure 8.8: Precision-recall curve plot for the classes predicted by the LGBM model with
the 450 GeV signal test set. All classes and the average have AUC higher than 0.97, once
again showing the good performance of the model.
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Figure 8.9: The most important features decided by the LGBM model trained on the 450
GeV signal for predicting new data. The features we added to the data with the angular
variables and invariant masses of pairs of particles show high importance when making
predictions also in this case.
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Part III

Results
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Chapter 9

Classification Results

To classify leptons in background and signal Ntuples, we first trained classification models
on two signals samples with truth data and chose the best performing model for each signal
sample. Then we evaluated the performance of these models with classification evaluation
metrics. With the models saved, we can classify background and signal Ntuples from
section 7.2 after they’ve been through all the steps of the data and MC processing chain
in Fig. 7.1. We present the classification results in this chapter. Discussions of the results
are done in chapter 10.

9.1 Ntuple Classification

The models have been trained on two samples of signal data with truth variables for
classifying leptons. Now we want to classify and predict the lepton vertices in various
background data which has been simulated, digitized and paved through detector recon-
struction to give a good representation of the data. The background Ntuples are originally
ROOT-files which have to be converted to dataframes with the same features like the sig-
nals, except for the truth. We use a new script for classification of the backgrounds and
signal Ntuples, called Trilepton classify Ntuples.py. This time we do not create the target
variables since the backgrounds do not contain truth data. We also do this with the two
signal samples, containing the same events as the samples used in training/validation/test,
but containing data after reconstruction.

After converting the backgrounds and signals to dataframes, we load the files containing
the trained best models for the two signals and use them to classify the background and
signal lepton vertices. The predicted vertex permutations for the two signals are seen in
Tables 9.1 and 9.2. Table 9.1 contains the predicted counts of the two signals with the 150
GeV trained model, while Table 9.2 contains the predicted counts of the two signals with
the 450 GeV trained model. These two tables have different counts for the vertex classes,
indicating that the two models predict differently. The most predicted vertices are the 123
and 132 vertices. This makes sense since the leptons are ordered after highest pt, and in
both of these cases the highest pT lepton comes from the N1 production vertex. The pT of
the produced particles decreases after the first vertex decay. We get one 213 predictions
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of the 450 GeV signal with the 450 trained model. This may look like a misclassification
case since it only happens once, but we will see that the backgrounds also have the 213
vertex predicted. The signals look to only contain events with the 123 and 132 vertices.

Classes 123 132 213 231 312 321

150 GeV 7358 4879 0 0 0 0

450 GeV 7464 5450 0 0 0 0

Table 9.1: The target counts of the predicted classes of the signal Ntuples with the LGBM
model trained on the 150 GeV signal. Only predicted classes are 123 and 132.

Classes 123 132 213 231 312 321

150 GeV 7435 4802 0 0 0 0

450 GeV 7856 5057 1 0 0 0

Table 9.2: The target counts of the predicted classes of the signal Ntuples with the LGBM
model trained on the 450 GeV signal. Mostly predicted classes are 123 and 132.

For the background Ntuples, we see the predicted vertex permutations in Table 9.3 for
the 150 GeV trained model, and in Table 9.2 for the 450 GeV trained model. Most of
the predicted vertices are still 123 and 132, like for the signals. In these cases we now get
more predictions of the 213 vertex as well, and still almost none of the last three vertices
in the tables. Like for the signals it makes sense that since the leptons are ordered after
highest pT , lepton 1 should at least be in the first two vertices. This is very clear for the
backgrounds where lepton 1 never is predicted coming from the third vertex.

For each dataframe, the predicted outcomes are saved in the dataframe before the
dataframe is converted to a (CSV) file, and then converted back into ROOT like we did
earlier in section 7.4.1. The ROOT-files now contain all original variables, as well as the
variables we produced and used for classification and the predicted vertex permutations.
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Classes 123 132 213 231 312 321

diboson2L 547161 518339 595 0 5 0

diboson3L 2878169 2688290 844 0 2 0

diboson4L 2554621 2352298 746 0 4 0

higgs 821006 807451 437 0 5 0

singletop 410908 261725 252 0 21 0

topOther 2573115 2382427 941 0 1 0

triboson 27629 22337 3 0 0 0

ttbar 4752100 3847796 2455 0 10 0

Zjets 5157323 5821865 7923 0 62 0

Table 9.3: The predicted target counts of the backgrounds for the 150 GeV trained LGBM
model. 123 and 132 are the most predicted classes with 213 predicted much less. 312 is
just predicted a few times, while 231 and 321 are never predicted.

Classes 123 132 213 231 312 321

diboson2L 558950 506051 1098 0 1 0

diboson3L 2754490 2812135 677 0 1 2

diboson4L 2535186 2371997 482 0 1 3

higgs 731278 897241 380 0 0 0

singletop 330649 341791 465 0 1 0

topOther 2390539 2565389 553 0 0 3

triboson 26268 23700 1 0 0 0

ttbar 4288182 4311015 3155 0 4 5

Zjets 5596455 5379835 10871 0 7 5

Table 9.4: The predicted target counts of the backgrounds for the 450 GeV trained LGBM
model. 123 and 132 are the most predicted classes with 213 predicted much less. 312 and
321 are just predicted a few times, while 231 is never predicted.
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9.2 Signal Regions

We then plot the background and signal variable distributions again using the first ROOT-
plotting scripts. We define some signal regions and cuts in the variables used for the
plotting. The outcome classes (lepton vertices) from the classification are used to define
cuts. We will use the lepton flavors, same flavor (SF) and different flavor (DF), and signs
of the leptons, opposite sign (OS), for the three leptons as cuts as well since these scenarios
are of most interest to us from equation 3.16. All these cuts are seen in Table 9.5. From
Tables 9.1 to 9.4, the most predicted vertices are 123, 132 and 213. The other three vertices
are predicted so much less, close to zero in comparison, that we would not get anything by
using them as cuts. That is why we leave them out of the analysis. The DF, SF and OS
are to be applied between leptons i and j depending on the vertex permutation, e.g. SF
would be lepi Flavor == lepj Flavor. The leptons i and j are the first and second vertices
in each vertex permutation, e.g. vertex 123 has i=1 and j =2.

Signal region cuts:

Baseline leptons nLep base == 3
Signal leptons nLep signal == 3

SF & OS lepi Flavor == lepj Flavor & lepi Charge != lepj Charge
DF & OS lepi Flavor != lepj Flavor & lepi Charge != lepj Charge

Lepton vertices pred class == [123, 132, 213]

Table 9.5: Signal region cuts used for plotting variable distributions of Ntuples for back-
grounds and signals with classification variables and predicted lepton vertices. Cuts to be
applied where leptons i and j to have same flavor (SF) and opposite sign (OS), and leptons
i and j to have different flavor (DF) and OS. The leptons i and j are the first and second
vertices in each vertex permutation, e.g. vertex 123 has i=1 and j =2. Combine them with
the cuts for lepton vertices.

Then we will use some (benchmark) cuts for a more ”standard” analysis at
√
s = 14

TeV from Pascoli et al. [1] for comparison. These cuts are seen in Table 9.6. 1

Benchmark ”Standard” Analysis at
√
s = 14 TeV:

mli,lj > 10 GeV, |mli,lj −MZ | > 15 GeV, |m3l −MZ | > 15 GeV,

pl1T > 55 GeV, pl2T > 15 GeV, m3l > 80 GeV

Table 9.6: Cuts used for a benchmark analysis to be compared with our cuts from Table
9.5. The combinations of lilj are for l1, l2 and l3. MZ = 91.2 GeV is the mass of the
Z-boson and m3l is the invariant mass of the three lepton system. Reference: Table 6 in
Pascoli et al. [1].

1We have left one cut out, pb−TaggedT , since this variable is not available to use in our files.
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9.3 Distributions

The most interesting features we want to look at are the invariant mass of the three lepton
system and the MET for both the 150 GeV and 450 GeV signals with cuts defined in
Table 9.5 and 9.6. In the following plots we have the histogram distributions we have
plotted earlier, e.g. like in section 7.3, in the upper part of the plots and in the lower
part of the plots we have the Significance Z plots of the simulated signals to look for
excess. Significance plots show the expected significance Z of the signals and quantifies
the separation between the backgrounds and the signals. When the significance is high it
means we have good sensitivity to the signal. The significance plots are used to see where
we should cut in the variable we’re looking at to maximize the significance. Typically we
want to cut where the significance distribution has it’s maximum. If we can reach > 5 σ it
is possible to discover the model. If it reaches 1.37 we have sensitivity to possibly exclude
the model if the data follows the SM background expectation.

In Table 9.7 and 9.8 we see the number of events for the different signal regions from
table 9.5 for each backgrounds, the total number of events for the backgrounds and the two
neutrino signals. After the cuts we see that the number of events for the MC and signals
are much less compared to Table 9.3 and 9.4. There is also a difference between the flavors
of the first and second vertex leptons SF and DF where the SF plots have distributions
with much more events. The total number of background event ratios for DF/SF are seen
in Table 9.9 for the three vertex permutations.

Ntuples
150 GeV model Cuts

123 132 213

SF DF SF DF SF DF

diboson2L 189.3 55.3 65.2 52.8 0.0 0.0

diboson3L 5924.9 1963.7 4841.0 1522.2 0.7 0.2

diboson4L 3519.6 398.5 1649.1 694.0 0.2 0.1

ttbar+X 409.3 197.9 358.2 178.7 0.1 0.0

singletop 143.6 135.8 82.3 72.8 0.1 0.0

triboson 35.1 25.1 25.6 19.2 0.0 0.0

ttbar 2730.9 2718.0 1557.8 1519.4 0.7 1.0

Zjets 74606.5 2065.8 23289.2 14726.9 11.4 0.2

SM total 87559.2 7560.1 31868.3 18786.0 13.2 1.5

150 GeV 6392.4 6309.4 2869.1 2768.5 0.0 0.0

450 GeV 8658.1 8890.8 5401.7 5162.3 0.0 0.0

Table 9.7: Table for the number of events for each background, the total for backgrounds
and signals with the combinations of vertex and flavor cuts for 150 GeV model. OS,
baseline and signal lepton cuts are applied as before in Table 9.5.
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Ntuples
450 GeV model Cuts

123 132 213

SF DF SF DF SF DF

diboson2L 193.5 51.7 67.2 53.6 0.1 0.0

diboson3L 5634.3 1939.9 4397.4 1616.1 0.0 0.1

diboson4L 3578.3 398.2 1639.6 676.4 0.0 0.0

ttbar+X 389.2 186.3 375.9 190.0 0.0 0.0

singletop 132.4 128.1 88.5 83.0 0.0 0.0

triboson 32.7 24.6 28.4 20.3 0.0 0.0

ttbar 2532.9 2526.4 1679.5 1638.2 0.4 0.5

Zjets 75098.6 2171.9 23404.5 14226.3 69.0 0.0

SM total 87591.8 7427.1 32221.1 18504.0 69.7 0.7

150 GeV 6529.2 6359.7 2876.1 2714.0 0.0 0.0

450 GeV 9349.0 9264.7 4698.2 4706.4 0.0 0.0

Table 9.8: Table for the number of events for each background, the total for backgrounds
and signals with the combinations of vertex and flavor cuts for 450 GeV model. OS,
baseline and signal lepton cuts are applied as before in Table 9.5.

Model 123 132 213

150 GeV 0.0863 0.589 0.114

450 GeV 0.0848 0.574 0.042

Table 9.9: Flavor ratio, DF/SF, for the two signal models with vertex cuts showing that
there are a lot more SF events than DF events for the backgrounds.

The plots for the invariant masses with DF between the leptons are seen in Figure
9.1, and the plots with SF for the leptons are seen in Figure 9.2. There are less events
with the 213 vertex permutation compared to the 123 and 132 vertices. There are only
a few backgrounds in the 213 vertex cut plots (Fig. 9.1e, 9.1f, 9.2e, 9.2f) that has events
with this predicted vertex permutation compared with the other vertex cuts, about 1-70
events. Most of the events are around 100-200 GeV where more or less all events are below
500 GeV. The signal models favor the 123 and 132 vertex permutations with no signals in
the 213 vertex permutation. In total for the backgrounds the 450 GeV model for the 213
vertex has more events compared to the 150 GeV model, ≈ 70 vs 13 events. There is a
clear difference between the DF and SF plots where there are a lot more events in total
in the SF plots as seen in Table 9.9 for the flavor ratios. Mainly because Z can not decay
into electron-muon (emu) events and thus reduces the large backgrounds such as WZ and
Z+jets.

The 150 GeV simulated signal in the plots have around the same number of events
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like the backgrounds and where the number of events decrease when the masses increase,
with some fluctuations mostly after reaching around 500 GeV. This makes the 150 GeV
simulated signal more difficult to differentiate from the backgrounds, however it reaches
a significance of > 2 in the DF channels. The 450 GeV simulated signal is easier to split
from the backgrounds since it has more events for higher masses, from around the m3l

mass of 400 GeV the heavier signal becomes dominant over the backgrounds in terms of
events. For the simulated signals there is not much difference between the flavors for the
first and second vertex leptons with only maximum 300 events in difference for the same
vertices.

The significance plots for the m3l plots with the SF channel, 123 and 132 vertex regions
are very similar for the 450 GeV simulated signal where it starts at 0 GeV and reaches the
maximum significance over 4 σ around 250 GeV. The 150 GeV simulated signal significance
increases after 100 GeV but varies a lot more depending on the signal regions. For the
123 vertex in 450 GeV model the significance of the 150 GeV signal reaches its maximum
around 800 GeV, while in the 150 GeV model it stays around 2 σ from 300-950 GeV.
For the 132 vertex plots the 150 GeV signal never goes beyond 2 σ. For the DF channel
and the 123 vertex region the significance of the 450 GeV signal starts at almost 3 σ and
reaches over 4 σ around 160 GeV for both signal models. The 150 GeV signal in the 150
GeV model starts at 2 σ and reaches beyond 4 σ around 850 GeV. In the 450 Gev model
the 150 GeV signal reaches its maximum with σ > 4 between 400-800 GeV. In the 132
vertex plots the maximum significance is close to 4 σ in the 150 GeV model and 3 σ in the
450 GeV model for the 150 GeV signal in the region around 600-700 GeV. There are no
signals in the 213 vertex plots which give no significance to look at.

The standard analysis plot in Figure 9.3 have cuts on the invariant mass higher than
100 GeV. This plot has a total number of 214780.4 background events which is much
more than the SF plots. The 450 GeV simulated signal is easier to differentiate from the
backgrounds after 450 GeV while the 150 GeV simulated signal is more difficult, similar
to the plots with the vertex cuts. The significance of the 150 Gev signal increases slowly
towards 1 σ while the invariant mass increases to 1 TeV. For the 150 GeV model we reach
higher sensitivity with our ML model than with this simplified model. The 450 GeV goes
over 4 σ at around 380 GeV and stays there.

Also for MET we get that the SF plots have much more events than the DF plots.
For this feature we can’t differentiate as easily between the backgrounds and signals we
could before for both the vertex cuts and for the benchmark cuts. All the signals seem
to have the same amount of events like the backgrounds, and we do not have the same
difference between the two signals either. They are much closer in number of events for
this feature. For DF and vertex 123 for both signal models we have that the 450 GeV
simulated signal has more events that the MC around 100-500 GeV. The only real source
of MET for our signal models comes from the neutrino thus we do not expect any excess
of high MET in the signal distributions. However, one does see a slightly longer tail in the
MET distribution of the 450 GeV signal since it typically has more momentum available
for the neutrino.

The significance for the DF and 123 vertex plots goes quickly from 3 σ to over 4 σ and
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stays there for the 450 GeV signal. The 150 GeV signals starts at 2 σ and ends at 0 around
410 GeV in the 150 GeV model and around 280 GeV in the 450 GeV model because we
run out of events in the signal model. The significances of the signals are much less in
the MET distributions compared with the m3l distributions and, as expected, does not
discriminate very well the signals and backgrounds.

In the benchmark plot for MET the significance for the 150 GeV signal stays at 0 while
it increases and ends up at 4 σ at 600 GeV for the 450 GeV signal.
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(a) 150 GeV signal: DF,OS,123
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(b) 450 GeV signal: DF,OS,123
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(c) 150 GeV signal: DF,OS,132
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(d) 450 GeV signal: DF,OS,132
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(e) 150 GeV signal: DF,OS,213
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(f) 450 GeV signal: DF,OS,213

Figure 9.1: The invariant mass of the three lepton system with DF and OS cuts between
lepton 1 and 2 and different vertex cuts for the two signals with masses 150 GeV (left side
plots) and 450 GeV (right side plots) defined in the subcaptions.
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(a) 150 GeV signal: SF,OS,123
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(b) 450 GeV signal: SF,OS,123
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(c) 150 GeV signal: SF,OS,132

2−10

1

210

410

610

810

1010

E
ve

nt
s 

/ 1
0 

G
eV =450 GeV (4698.2)1N

=150 GeV (2876.1)1N

SM total (32221.1)

Z+jets (23404.5, 72.6%)
WZ (4937.4, 15.3%)
ttbar (1679.5, 5.2%)
ZZ (1639.6, 5.1%)
ttbar+x (375.9, 1.2%)
singletop (88.5, 0.3%)
diboson2L (67.2, 0.2%)
triboson (28.4, 0.1%)

 InternalATLAS
1−13 TeV, 59.9 fb

SR_3LClass_SF_OS_vtx132
EWK3L v2.3c
2018 data vs. mc16e

0 100 200 300 400 500 600 700 800 900 1000

 [GeV]3lm

0

2

4

S
ig

ni
fic

an
ce

 Z Lower cut

(d) 450 GeV signal: SF,OS,132
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(e) 150 GeV signal: SF,OS,213
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(f) 450 GeV signal: SF,OS,213

Figure 9.2: The invariant mass of the three lepton system with SF and OS cuts between
lepton 1 and 2 and different vertex cuts for the two signals with masses 150 GeV (left side
plots) and 450 GeV (right side plots) defined in the subcaptions.
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Figure 9.3: The invariant mass of the three lepton system with the benchmark cuts for a
standard analysis with MC and two signals.
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(a) 150 GeV signal: DF,OS,123
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(b) 450 GeV signal: DF,OS,123
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(c) 150 GeV signal: DF,OS,132
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(d) 450 GeV signal: DF,OS,132
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(e) 150 GeV signal: DF,OS,213
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(f) 450 GeV signal: DF,OS,213

Figure 9.4: The MET with DF and OS cuts between lepton 1 and 2 and different vertex
cuts for the two signals with masses 150 GeV (left side plots) and 450 GeV (right side
plots) defined in the subcaptions.
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(a) 150 GeV signal: SF,OS,123
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(b) 450 GeV signal: SF,OS,123
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(c) 150 GeV signal: SF,OS,132
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(d) 450 GeV signal: SF,OS,132
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(e) 150 GeV signal: SF,OS,213
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(f) 450 GeV signal: SF,OS,213

Figure 9.5: The MET with SF and OS cuts between lepton 1 and 2 and different vertex
cuts for the two signals with masses 150 GeV (left side plots) and 450 GeV (right side
plots) defined in the subcaptions.
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Figure 9.6: The MET with the benchmark cuts for a standard analysis with MC and two
signals.
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Chapter 10

Discussion

This chapter is dedicated to the discussion of the findings we get working with this thesis
as presented in part III. The discussion of the results are ranged by tasks where we first
discuss the classification performances of the models we have used, how we choose the best
performing model and the classification of the Ntuples. Second, we compare and discuss
the new feature distributions with different cuts applied.

10.1 Performance of the Classification Models

When we used the correlations and mutual information of the features in section 8.1.1, we
came to the conclusion to remove the eta variables for each lepton from the dataframes.
There were other features with high correlations, greater than —0.7—, or low mutual in-
formation, lower than 0.1 for 150 GeV and lower than 0.45 for 450 GeV, as well. Removing
some of these features together with the etas gave only worse results. This is why we only
removed the eta features from the dataframes.

During resampling (sect. 8.1.2) of the imbalanced datasets we used different techniques
of resampling depending on which signal was to be trained on. From the target counts of
the signals in Table 8.1, we see that the 450 GeV signal has from 3938 to 139686 events
while the 150 GeV signal only has from 4013 to 26801 events. For the 150 GeV signal,
undersampling the majority class with the RandomUnderSampler would not be a great
idea since we would not have that much data left to train on afterwards. We would then
get something around 12800 events for each class, instead of around 26000 events for each
class using only oversampling. With the 450 GeV signal, we still have enough data that we
could use the RandomUnderSampler to undersample the majority class to around 65000
events. Using both resampling techniques gave better results since we got overfitting on
the trained data when only using oversampling to around 130000 events per class.

With the 150 GeV signal we trained ten different classification models with various
results. In Table 8.4 we see the evaluation metrics used for the validation set. Most of the
classifiers have an accuracy score below 0.8, which is not good enough to be used more.
The classifiers that stand out are the AdaBoost, XGBoost and LGBM models with at
least an accuracy score of 0.85. The LGBM model has the highest accuracy score both
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overall with score of 0.88, and individually for each class as seen in the LGBM confusion
matrix in Figure 8.1. We get the same kind of results with the 450 GeV signal, but all
the accuracy scores are much higher. Most of the classifiers get a score higher than 0.9,
but the LGBM model is the best also here with accuracy score of 0.95. The reason why
the accuracy scores are higher for the 450 GeV model might be because we now have a
lot more events (≈ 65000 events for each class) than for the 150 GeV model (≈ 26000
events for each class). The models have a lot more data to train on and detect important
differences in the features for deciding a class. The accuracy scores and confusion matrices
are the reasons why we pick the LGBM as the best performing model to be used more.
The LGBM was also the fastest model to train.

The test set results are very similar to the validation results for the LGBM model with
accuracy scores of 0.88 and 0.96 for the 150 GeV and 450 GeV trained models, respectively.
This is good since it means that the model can give similar accuracy scores for different
unseen data. Once again, the 450 GeV trained model gives better results most likely since
it has been trained on more data. The most important features for training the LGBM
model on both signals are the invariant masses between the pairs of particles. All the
invariant masses show high feature importance for predictions as seen in Figure 8.5 and
8.9. For the 150 Gev model the invariant masses are chosen between 100000 and around
400000 times, while the rest of the features are chosen under 50000 times each. For the
450 GeV model the invariant masses are chosen between 250000 and 900000 times each,
while the rest of the features are chosen less than 100000 each.

10.2 Comparing Ntuple Distributions

From the analysis of the different cuts applied to the invariant mass of the three lepton
system and the MET, we see that we have a lot more events in the SF plots by comparing
the total number of MC events for m3l in Figures 9.1 and 9.2, the MET Figures 9.4 and
9.2 and the number of events for each plot with cuts shown in Tables 9.7 and 9.8 for
the 150 and 450 GeV models, respectively. The DF/SF ratios for the two signal models
and each vertex permutation are seen in Table 9.9 also showing that there are a lot more
SF events. This ratio difference does not apply for the two simulated signals, where the
number of SF and DF events are more equal for each vertex and between the models.
The 450 GeV signal has on average between 2000-3000 more events in each plot than the
150 GeV signal, except for the plots with the 213 vertex where there are no signal events.
From the plot of the expected flavor ratios and LFC in Figure 3.2 for the two models, the
150 GeV shows clearly a larger DF component. This is also what we see in Table 9.9, and
is most prominent for the 123 and 132 vertex permutations. We can conclude that SF is
favored over DF with two electrons or two muons in the first and second vertices.

The standard analysis plot for the invariant mass has significance similar to the SF
and 132 vertex permutation where the 450 GeV significance increases to over 4 σ while
the 150 GeV stays below 1 σ. The sensitivity looks to be bigger in the DF channel with
almost the same amount of signal events, but the backgrounds have much less events. This
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is as expected since the DF cut removes Z-decay which happens in the WZ and Z+jets
backgrounds. From the flavor ratios we get different degrees of LFV for the different vertex
permutations. This is interesting to look at for the future if we were to discover excess to
better understand what type of neutrino mass model we are dealing with. This would also
be interesting for the SS vs. OS like the CMS saw.

The 450 GeV signal looks easier to split from the backgrounds when looking at higher
invariant masses than 400-500 GeV for the three lepton system with the 123 and 132 vertex
permutations. The 450 GeV signal is more dominant in this region in terms of events. The
standard analysis looks to have the same results for dividing background and signal where
the 450 GeV signal has more events for m3l > 500 GeV. In general it seems like our trained
model performs better then the simple benchmark analysis. However, one should bare in
mind that the benchmark model from Table 9.6 has not been optimized on the signal
models under study.

For MET it is not as easy to differentiate between the backgrounds and signals since
both signals have more or less the same amount of events like the backgrounds have.
The 450 GeV can be differentiated to some extent between 100 and 400 GeV for the 123
vertex plots. The signals do also have very similar amount of events for energies below
400 GeV. So to differentiate the signals from the models we might need to look in the
higher energy regions. For the significance with the MET the 150 GeV signal were only
as high as 2 σ with this signal region for 0-100 GeV. For the other signal regions the 150
GeV signal significance stays mostly between 0-1 σ. The significances are much less in
the MET distributions. As expected the MET does not discriminate well the signals and
backgrounds.
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Chapter 11

Conclusion and Future Work

11.1 Conclusion

In this thesis we have tested a new approach in particle physics by utilizing ML and
multiclass classification of lepton vertices to be used to differentiate simulated signal and
backgrounds and looking for excess. We first trained multiclass classification models on
two neutrino signal scenarios with different neutrino masses of 150 and 450 GeV. These
models have been used to find the classification models that best predicts the lepton vertex
permutations for a trilepton plus a neutrino final state system. The proton-proton decay
model is based on the decay of a SM W -boson decaying to a heavy pseudo-Dirac neutrino
through the Inverse seesaw mechanism, leading to the trilepton final state. The Light
Gradient Boosting Machine (LGBM) was found to be the best performing model with
accuracy score of 0.88 for the 150 GeV trained signal and accuracy score of 0.96 for the
450 GeV trained signal.

We then classified the vertex permutations of simulated background MC and two sim-
ilar neutrino signals corresponding to the data recorded by the LHC in 2018. The most
predicted vertex permutations, 123, 132 and 213, were used as cuts for a feature analysis
to check for LFV between the leptons coming from vertex 1 and 2 for electrons and muons.
The invariant mass of the three lepton system and the MET were used for comparing
our selected signal region cuts with a more standard analysis applying different cuts from
Pascoli et al. [1].

The standard analysis was found to give similar results for the signals significance
for the SF with OS cuts and vertex permutation 132 for both signals. The classification
models for the backgrounds seemed to favor the SF and OS case more with much more
events for the 123 and 132 vertex permutations for these signal region cuts. The two
simulated signals had number of events quite similar for the SF and DF. With the 450
GeV signal we found it easier to differentiate against background when we looked at higher
masses than 400-500 GeV of the invariant three lepton system mass for both the flavor,
charge and vertex permutation signal regions and the standard analysis signal region. This
differentiation between the backgrounds and the 450 GeV signal could also somewhat be
seen with the MET for the DF, OS and 123 vertex signal regions between 100 and 400
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GeV. The significance were found to be higher with the 450 GeV signal compared with
the 150 GeV signal, and higher for the m3l compared with the MET.

In general it seems like our trained models perform better than the simple benchmark
analysis. However, one should bare in mind that the benchmark model in Table 9.6 has
not been optimized on the signal models under study.

Modern ML techniques are rapidly modified and developed in the field of particle
physics and high energy physics (HEP) for analysis. The article by Feickert and Nachman
[66] presents a list of interesting literature into the development and application of ML
techniques for HEP analyses. The article is constantly updated and made for the commu-
nity to follow the development of different ML techniques. It only contains a fraction of
the papers about the use of ML with particle physics that are out there.

11.2 Future Work

We have tested a few classification models yielding various results and performances on the
datasets. There are other ML models to test and other useful libraries for ML that could
be used to train classification models, e.g. Tensorflow or Keras. Another ML technique
to be tested could be deep learning or other networks that may give different results than
the ones we have used in this thesis. Only the MC and two neutrino signals were classified
with the LGBM model. The data could also be classified and analyzed together with the
MC and signals.

The work on ML has been the main focus of this thesis. A natural continuation of this
work is to extend it with more detailed particle physics studies, such as more in depth of
the particle physics and the deviation of the number of SS vs. OS the CMS looked at in
the article [4].

Another possible continuation of this work would be to extend the analysis to include
other data periods, like data from the whole Run 2 by the LHC. This is easily implemented
in the scripts we have used to plot the feature distributions. It would also be interesting
to test the models on the data to see how it fits with the SM background expectations.

Other neutrino signals with other masses could also be interesting to test. The invariant
mass production errors with p > E is something to further studied as well.

The most interesting results of this work would be if an excess is observed to try and
see if one can understand more about the events and which underlying theoretical model
would fit the observed excess best.
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Appendix A

Bias-Variance Decomposition

Here we do the full derivation of the expected generalization error in equation 6.9:

ED,ε[C(y, f(X; θ̂D))] = ED,ε

[∑
i

(yi − f(xi; θ̂D))2

]

= ED,ε

[∑
i

(yi − f(xi; θ̂D)− f(xi) + f(xi))
2

]
=
∑
i

Eε[(yi − f(xi))
2] + ED,ε[(f(xi)− f(xi; θ̂D))2]

+ 2Eε[yi − f(xi)]ED[f(xi; θ̂D)]

=
∑
i

σ2
ε + ED[(f(xi)− f(xi; θ̂D))2]

Here we have used the fact that the noise has zero mean and variance σ2
ε . We also further

decompose the second expectation term:

ED[(f(xi)− f(xi; θ̂D))2] = ED

[
(f(xi)− f(xi; θ̂D)− ED[f(xi; θ̂D)] + ED[f(xi; θ̂D)])2

]
= (f(xi)− ED[f(xi; θ̂D)])2 + ED[{f(xi; θ̂D)− E[f(xi; θ̂D)]}2]

Putting these two equation together leads to the expected generalization error:

ED,ε[C(y, f(X; θ̂D))] =
∑
i

(f(xi)− ED[f(xi; θ̂D)])2

+
∑
i

ED[{f(xi; θ̂D)− E[f(xi; θ̂D)]}2]

+
∑
i

σ2
ε
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Appendix B

450 GeV Signal Data Summary

The N1 = 450 GeV data summary:

<c l a s s ' pandas . core . frame . DataFrame '>
Int64Index : 259436 entries , 0 to 261331
Data columns ( total 55 columns ) :
# Column Non−Null Count Dtype

−−− −−−−−− −−−−−−−−−−−−−− −−−−−
0 lep1_pt 259436 non−null float32

1 lep1_phi 259436 non−null float32

2 lep1_eta 259436 non−null float32

3 lep1_theta 259436 non−null float32

4 lep1_px 259436 non−null float32

5 lep1_py 259436 non−null float32

6 lep1_pz 259436 non−null float32

7 lep1_E 259436 non−null float32

8 lep1_tlv 259436 non−null ob j e c t
9 lep2_pt 259436 non−null float32

10 lep2_phi 259436 non−null float32

11 lep2_eta 259436 non−null float32

12 lep2_theta 259436 non−null float32

13 lep2_px 259436 non−null float32

14 lep2_py 259436 non−null float32

15 lep2_pz 259436 non−null float32

16 lep2_E 259436 non−null float32

17 lep2_tlv 259436 non−null ob j e c t
18 lep3_pt 259436 non−null float32

19 lep3_phi 259436 non−null float32

20 lep3_eta 259436 non−null float32

21 lep3_theta 259436 non−null float32

22 lep3_px 259436 non−null float32

23 lep3_py 259436 non−null float32

24 lep3_pz 259436 non−null float32

25 lep3_E 259436 non−null float32

26 lep3_tlv 259436 non−null ob j e c t
27 lep4_pt 259436 non−null float32

28 lep4_phi 259436 non−null float32

29 lep4_eta 259436 non−null float32

30 lep4_theta 259436 non−null float32

31 lep4_px 259436 non−null float32

32 lep4_py 259436 non−null float32

33 lep4_pz 259436 non−null float32

34 lep4_E 259436 non−null float32

35 lep4_tlv 259436 non−null ob j e c t
36 mll_12 259436 non−null float64
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37 dphi_12 259436 non−null float64

38 dR_12 259436 non−null float64

39 mll_13 259436 non−null float64

40 dphi_13 259436 non−null float64

41 dR_13 259436 non−null float64

42 mll_23 259436 non−null float64

43 dphi_23 259436 non−null float64

44 dR_23 259436 non−null float64

45 mll_14 259436 non−null float64

46 dphi_14 259436 non−null float64

47 dR_14 259436 non−null float64

48 mll_24 259436 non−null float64

49 dphi_24 259436 non−null float64

50 dR_24 259436 non−null float64

51 mll_34 259436 non−null float64

52 dphi_34 259436 non−null float64

53 dR_34 259436 non−null float64

54 target 259436 non−null ob j e c t
dtypes : float32 (32) , float64 (18) , ob j e c t (5 )
memory usage : 79.2+ MB

lep1_pt lep1_phi lep1_eta . . . dphi_34 dR_34 target

entry . . .
0 247239.234375 1.705486 −0.009060 . . . −0.059092 0.872886 (2 , ←↩

3 , 1)
1 242870.343750 −2.694518 −1.187190 . . . 0 .105023 0.717894 (2 , ←↩

1 , 3)
2 275632.000000 −0.628263 −0.185416 . . . 1 .024500 1.044483 (2 , ←↩

1 , 3)
3 203956.265625 2.971124 −2.185891 . . . −0.364194 0.678069 (2 , ←↩

1 , 3)
4 106095.476562 −0.685928 −0.315220 . . . −0.983589 1.397503 (2 , ←↩

1 , 3)

[ 5 rows x 55 columns ]

Listing B.1: Inspecting the 450 GeV data set.
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Appendix C

Correlations

Signal N1 = 150 GeV:

Figure C.1: Correlation matrix of the features in the 150 GeV signal dataset. Values close
to 1 or -1 show high correlations between the features.

Information gain of the features :
[ ( ' l e p2 ph i ' , 0 .05178672925582184) ,
( ' l e p1 ph i ' , 0 .053745432520311276) ,
( ' dphi 24 ' , 0 .05485490369918944) ,
( ' l e p3 ph i ' , 0 .05502894645503176) ,
( ' l e p 3 e t a ' , 0 .05594756636754683) ,
( ' l e p 3 th e t a ' , 0 .05598787413359707) ,
( ' l e p4 ph i ' , 0 .05641456053531346) ,
( ' l ep4 pz ' , 0 .05947799347697558) ,
( ' l e p 2 e t a ' , 0 .06035343605141508) ,
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( ' l e p 2 th e t a ' , 0 .060373423669804804) ,
( ' dphi 14 ' , 0 .06083513368874938) ,
( ' dphi 34 ' , 0 .06115565193619199) ,
( ' l e p 1 e t a ' , 0 .061662610215777125) ,
( ' l e p 1 th e t a ' , 0 .06168403392066146) ,
( ' l ep3 pz ' , 0 .06422467081537953) ,
( ' l e p 4 th e t a ' , 0 .06485782851335387) ,
( ' l e p 4 e t a ' , 0 .0648977837020408) ,
( ' l ep4 py ' , 0 .06604010400547766) ,
( ' l ep4 px ' , 0 .06752198284777089) ,
( ' l ep4 E ' , 0 .06793095808433014) ,
( 'dR 34 ' , 0 .06849304962655012) ,
( ' l ep1 pz ' , 0 .06885166365937634) ,
( ' l ep2 pz ' , 0 .06906061765196592) ,
( 'dR 13 ' , 0 .0716082982162769) ,
( 'dR 14 ' , 0 .07197872976190567) ,
( ' dphi 13 ' , 0 .07423421063493052) ,
( 'dR 24 ' , 0 .07595752322276583) ,
( ' l ep3 E ' , 0 .08410378910700622) ,
( ' l e p4 p t ' , 0 .09082301709001017) ,
( ' dphi 23 ' , 0 .09258874841582809) ,
( ' dphi 12 ' , 0 .09770848996184833) ,
( ' l ep1 E ' , 0 .10512713284596842) ,
( ' l ep3 px ' , 0 .10532072166635142) ,
( ' l ep2 E ' , 0 .10629293534281459) ,
( ' l ep3 py ' , 0 .10734840100318799) ,
( 'dR 12 ' , 0 .10964280256859293) ,
( 'dR 23 ' , 0 .11751795736407011) ,
( ' mll 24 ' , 0 .12528976189890173) ,
( ' l ep1 px ' , 0 .14667014422688363) ,
( ' l ep2 px ' , 0 .14672888551516206) ,
( ' l ep2 py ' , 0 .15222854675813702) ,
( ' l ep1 py ' , 0 .1559645954915414) ,
( ' l e p3 p t ' , 0 .17443874057539732) ,
( ' mll 14 ' , 0 .19302957284767652) ,
( ' mll 34 ' , 0 .20736617389081324) ,
( ' mll 23 ' , 0 .2081857239040863) ,
( ' l e p2 p t ' , 0 .27355582731666006) ,
( ' l e p1 p t ' , 0 .276609594149106) ,
( ' mll 13 ' , 0 .28691694495451703) ,
( ' mll 12 ' , 0 .3932658736116754) ]

Signal N1 = 450 GeV:

Information gain of the features :
[ ( ' l e p 4 th e t a ' , 0 .4191552527318376) ,
( ' l e p4 ph i ' , 0 .42027977972758146) ,
( ' l e p 3 e t a ' , 0 .42045370659465386) ,
( ' l e p1 ph i ' , 0 .4210809806293345) ,
( ' l ep2 pz ' , 0 .42162772292849215) ,
( ' l e p 2 e t a ' , 0 .42201102378344824) ,
( ' l e p2 ph i ' , 0 .4230067197296721) ,
( ' l ep1 pz ' , 0 .424541501741019) ,
( ' l e p 4 e t a ' , 0 .4257280226520528) ,
( ' l ep3 pz ' , 0 .42672816312478656) ,
( ' l e p3 ph i ' , 0 .427599991411618) ,
( ' l e p 3 th e t a ' , 0 .42907751026540675) ,
( ' l ep4 pz ' , 0 .4301374641613722) ,
( ' l e p 2 th e t a ' , 0 .4312103916746548) ,
( ' l ep1 E ' , 0 .43129937565133747) ,
( ' l ep4 px ' , 0 .43132544346123725) ,
( 'dR 12 ' , 0 .4322203904822728) ,
( ' l ep4 E ' , 0 .43372185011808995) ,
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Figure C.2: Correlation matrix of the features in the 450 GeV signal dataset. Values close
to 1 or -1 show high correlations between the features.

( ' dphi 12 ' , 0 .43389037653643614) ,
( ' l ep4 py ' , 0 .43395756196715096) ,
( 'dR 13 ' , 0 .4347988629887223) ,
( ' dphi 13 ' , 0 .43616113224927466) ,
( ' l e p 1 e t a ' , 0 .43616248827916504) ,
( ' l e p 1 th e t a ' , 0 .4386034683797735) ,
( ' l ep3 E ' , 0 .44167047831807293) ,
( ' l ep2 E ' , 0 .44415728982148406) ,
( ' l ep3 px ' , 0 .4471424012534033) ,
( ' dphi 24 ' , 0 .4487297203828642) ,
( ' l ep3 py ' , 0 .44887857656083185) ,
( ' l ep1 px ' , 0 .45032798796079376) ,
( ' l ep1 py ' , 0 .4515757089823731) ,
( ' l e p4 p t ' , 0 .45213792012843435) ,
( ' l ep2 px ' , 0 .4580357692816419) ,
( ' l ep2 py ' , 0 .4610110981533644) ,
( ' dphi 14 ' , 0 .4611574842208519) ,
( ' dphi 23 ' , 0 .462426274698871) ,
( 'dR 24 ' , 0 .4692019081992844) ,
( ' dphi 34 ' , 0 .4784639532967272) ,
( 'dR 14 ' , 0 .4809026477868572) ,
( ' l e p3 p t ' , 0 .48225046197217947) ,
( ' l e p1 p t ' , 0 .49983354913044953) ,
( 'dR 34 ' , 0 .5095008908298231) ,
( ' l e p2 p t ' , 0 .5120865029463617) ,
( 'dR 23 ' , 0 .5122830173546382) ,
( ' mll 24 ' , 0 .5187574240316617) ,
( ' mll 13 ' , 0 .540453212175724) ,
( ' mll 14 ' , 0 .5424036353399868) ,
( ' mll 12 ' , 0 .5602705982085625) ,
( ' mll 34 ' , 0 .6049717229179872) ,
( ' mll 23 ' , 0 .6204488569318036) ] )
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Acronyms

ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC ApparatuS

AUC area under the curve

BEH Brout-Englert-Higgs

CART Classification and Regression Trees

CCDY charged current Drell-Yan

CERN European Organization for Nuclear Research (EN)

CKS Cohen Kappa Score

CM center-of-mass

CMS Compact Muon Solenoid

CSV comma separated values

DF different flavor

DIS Deep Inelastic Scattering

DT Decision Tree

ECal electromagnetic calorimeter

EF Event filter

EWT electroweak theory

FFNN Feed-Forward Neural Network

GBDT Gradient Boosting Decision Tree
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GWS Glashow-Weinberg-Salam

HCal hadronic calorimeter

HEP high energy physics

HLT High Level Trigger

ID inner detector

ISS Inverse Seesaw

KATRIN Karlsruhe Tritium Neutrino

LEP Large Electron-Positron Collider

LFC lepton flavor conservation

LFV lepton flavor violation

LGBM Light Gradient Boosting Machine

LH left-handed

LHC Large Hadron Collider

LHCb LHC-beauty

LR Logistic Regression

LRSM Left-Right Symmetric Model

MC Monte Carlo

MET missing transverse momentum

ML machine learning

MLE Maximum Likelihood Estimation

MLP Multi-Layer Perceptron

MLR Multinomial Logistic Regression

MS muon spectrometer

OS opposite sign

OvO one-vs-one
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OvR one-vs-rest

PCA Principal Component Analysis

PDF parton distribution function

PMNS Pontecorvo-Maki-Nakagawa-Sakata

QCD quantum chromodynamics

QED quantum electrodynamics

QFT quantum field theory

ReLU Rectified Linear Unit

RH right-handed

RnF Random Forest

ROC Receiver Operating Characteristic

ROI region of interest

SCT Semiconductor Tracker

SF same flavor

SM Standard Model

SNO Sudbury Neutrino Observatories

SPS Super Proton Synchrotron

SS same sign

TDAQ The ATLAS Trigger and Data Acquisition system

TRT Transition Radiation Tracker

WLCG World LHC Computing Grid

XGBoost Extreme Gradient Boosting
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