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Abstract

GeSe is a layered compound semiconductor that can be exfoliated to form a quasi-two dimensional material,
moreover GeSe has attained a growing interest in the scientific community in recent years. However, the
plasmonic behaviour of quasi-two dimensional GeSe is poorly investigated, which consequently opens up
a novel opportunity of understanding the complex band structure of GeSe as a function of the decreasing
dimensions and stoichiometric changes. From literature, the optical bandgap of two-dimensional α-GeSe is
predicted to have a direct bandgap in the range of 1.16 − 1.66eV, in accordance with ab-initio simulations.
Experimental evidence of the bandgap of bulk GeSe is found to be ∼ 1.2eV, even though pure two-dimensional
GeSe flakes is yet to be realised experimentally, we suggest some interesting result regarding the bandgap of
quasi-two dimensional GeSe.

In this work we present a comprehensive analysis of GeSe plasmonic behaviour under the influence of thickness
and atomic concentration variations. The determination of plasmonic behaviour of GeSe was done by Electron
Energy Loss spectroscopy (EELS), where we locally investigate regions of interest with a nanometer spatial
resolution. In addition to analysing the plasmonic behaviour, we also give an estimate of the bandgap of quasi-
two dimensional GeSe through simple linear fit method by EELS and micro-photoluminescence (micro-PL). As
an extension to the analysis of plasmonic behaviour and bandgap, a topography determination of GeSe is given
by the use of optical microscope, atomic force microscopy (AFM) and scanning electron microscopy (SEM).

The topography analysis of GeSe was two-fold 1) determination of flake-sizes along the elongated direction by
optical microscope images. 2) Thickness variation within a single flake by AFM. The estimated average flake
size along the elongated direction gave mean value of 3.044µm with a standard deviation of σ = 1.819µm.
These results suggest a high spatial resolution for accurate measurements. In some of the selected samples, the
flake thickness varied down to 2.70nm, i.e. equivalent to 3 monolayers of GeSe. The plasmonic behaviour as a
function of thickness was measured trough EELS, demonstrating interesting shifts in the plasmon peaks. Where
the blue shift in energy of the plasmon peak took place approximately t . 22 ± 1.2nm, for a range of 10x10nm
area of Low-loss spectra, this blue shift was due to reduced thickness as well as stoichiometry variations. By
reducing the low-loss spectra area to 1.5x10nm we managed to lower the standard deviation of the average
thickness from ∼ 7.53% to ∼ 6.04% as well as decrease the measured thickness. An observed blue shift as well
as a red shift was confirmed. Once the thickness decreased below t ∼ 15 ± 1.3nm, a drastic red shift took place
- which was attributed to surface plasmons. A clear blue shift was also confirmed by plasmon peak variation
as a function of phases, between GeSe (flake-like morphology), Se-rich (random morphology) and Ge-rich
(Needle-like morphology), where the blue shift took place from ∼ Ge0.5Se0.5, ∼ Ge0.1Se0.9 to ∼ Ge0.9Se0.1.
Micro-PL measurements showed a prominent emission band centred at 1.24eV, whereas the linear fit method
from EELS showed a bandgap from ∼ 1.53eV at t ∼ 50 ± 1.8nm to ∼ 1.64eV at t ∼ 14 ± 4.6nm. The pros
and cons attributed to these techniques are discussed for the advantage of determining the bandgap of quasi-two
dimensional materials as well as nano-particles.
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Chapter 1

Introduction

In the recent decades an extensive investigation in various two-dimensional materials has
been conducted, and a vast majority directed towards Graphene since its discovery in 2004
[1, 2]. In these materials we are witness to some remarkable physics due to quantum
confinement which will be addressed in the subsequent chapter 2. One of the most known
phenomena occurring in two-dimensional materials is the increase in bandgap as one
reaches the monolayer as well as a transition from indirect to direct bandgap. In this thesis
one will investigate the bandgap behaviour from multiple factors, such as thickness and
phases through Electron Energy Loss Spectrum (EELS). Quasi-two dimensional materials
with direct bandgap attract a growing attention for opto-electronic applications including
solar cells, photo-detectors, light-emitting diodes and photo-transistors, capacitive energy
storage, photodynamic cancer therapy and sensing on flexible platform. Furthermore, one
will get a comprehensive understanding of how plasmon peaks are effected by thickness
and phases. An interesting feature of plasmon peaks in quasi-two dimensional materials
is surface plasmon, surface plasmon submerge as a dominant attribute for low-volumed
materials and will be addressed in chapter 4.

The thesis will deal with GeSe classified as a two-dimensional material. We work with
GeSe flakes dispensed in isopropanol, delivered by 2dsemiconductors Inc. This is, in theory,
an atomically thin semiconductor in group IV-VI. GeSe is an appealing two-dimensional
photovoltaic material due to its desirable electronic and optical properties as well as being
an earth-abundant constituent element. The manufacturing of monolayer GeSe has proven
difficult with a range of mechanical and syntesizing processes in play. Pure monolayer
GeSe sheet is yet to be realised, however, a range of publications provide a relative thin
GeSe sample down to just a few layers of GeSe sheets [3–8]. In this thesis we investigate
the quasi-two dimensional material GeSe through Transmission electron microscopy (TEM),
providing a nanoscale spatial resolution. To overcome the problem of producing pure
monolayer GeSe, we extended the study to atomic resolution. The bandgap measurements
are two-fold, 1) through micro-PL, 2) through electron energy loss spectroscopy (EELS) by
linear fit method. In the former, one may achieve a spatial resolution of a few microns
in diameter, however, it is impossible to focus on a single edge location, which ultimately
provide an uncertain bandgap estimation due to many locally varying emission bands. In
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EELS, which is a subset of TEM, one measures the energy loss of an electron passing through
the sample. The great advantages of EELS is the atomic resolution enabling investigation at
edges, this also produces the possibility of extreme local investigation of plasmon peaks. In
EELS, one is unfortunately subject to lower energy resolution - which may be reduced to
0.1 - 0.01eV by applying a monochromator [9], enabling the possibility of detect Spin-Orbit
coupling.

In chapter 2 an overview of the main theory is explained, where one goes through basic
condensed matter physics in bulk structures and work our way down to two-dimensional
systems in section 2.1. Followed by electrical transport in two dimensional materials,
whereas various attributes such as electrical conductivity, mobility, quantum confinement,
scattering mechanisms, multivalley semiconductor and interlayer coupling is discussed in
section 2.2. A brief explanation of envelope function for quasi-two dimensional system is
explained through the use of relativistic Schrödinger equation - namely the Dirac equation
in section 2.3. The last section 2.4, goes into the depth about excitons in order to understand
the optical bandgap occurring in our measurements.

In order to fully appreciate the results of this thesis one would need an introduction to the
experimental techniques applied, therefore, chapter 3 introduces a variety of instruments
which is used throughout this thesis. As we have bare minimum control over the mean
value of size and thickness as well as elemental composition of the flakes dispensed in
isopropanol, one would need to analyse them through various characterisation techniques.
The techniques used are Atomic Force microscopy in order to give an estimation of the
thickness profile of the flakes, Scanning Electron Microscope (SEM) used to characterise
the topography, Scanning Transmission Electron Microscope (STEM) which is a powerful
characterisation technique enabling high spatial resolution. Within STEM one is able to
determine the elemental composition at high spatial resolution through Energy Dispersive
X-Ray Spectroscopy (EDX). Furthermore In order to analyse the plasmon peaks and give
an estimation of optical bandgap one could implement Electron Energy Loss Spectrometry
(EELS). An introduction and explanation of these techniques are provided in chapter 3.

The results will be presented in chapter 4, where the first section is dedicated to the crystal
structure and properties of GeSe, whereas the information provided is solely from former
experimental and theoretical work. Furthermore, section 4.2 will give an overview of the
topography of GeSe through some of the techniques given in chapter 3. The determination
of various phases by atomic concentration as well as thickness will be provided by STEM,
EDX and EELS in section 4.3. Lastly, the results of plasmon peak variation as a function of
thickness and phases will be presented as well as bandgap measurements from EELS and
micro-PL.
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Chapter 2

Theory

Study hard what interests you the most
in the most undisciplined, irreverent
and original manner possible.

Richard Feynmann

In this chapter I would like to talk about some basic, yet, necessary physics. I will cover some
important concepts of condensed matter physics, mesoscopic physics and quantum physics. In
order to understand two dimensional samples, as well as the rich physics which is expressed in
such materials. I would like to emphasize a great deal on the theory for the purpose of
establishing a thorough understanding of the rich physics behind quasi-two dimensional
materials in contrast to its bulk counterpart - and it will not be specified towards the
results given in this thesis.

Furthermore, some of the most important elements in this chapter will be condensed matte physics,
where we firstly will consider bulk materials, and gradually work our way towards 2D materials.
Transition Metal Dichalcogenides (TMDs) and other layered structures materials turns out to have
sizable bandgaps that change from indirect to direct in single layers, allowing applications such as
transistors, photodetectors and electroluminescent devices. This chapter will not go into depth in the
material of interest, namely, GeSe. However, the physics surrounding it will be discussed, and the
material properties as well as the crystal structure will be discussed in chapter 4 section 4.1.

The structural composition of this chapter consist of a brief introduction in condensed matter physics
regarding bulk structures as well as some implementations towards two-dimensional structures,
explained in section 2.1. Here we will go into the physics of crystal structure and the importance of
momentum space, as well as density of states in both bulk and two dimensions. Lastly, one will discuss
the importance in electronic band structure and electron occupancy. Furthermore, electrical transport
in semiconductors is of high value when researching condensed matter physics for application in
electrical devices. In section 2.2 electrical conductivity and mobility is explained. When discussing
two dimensional materials, one needs to understand the importance of quantum confinement as well
as different scattering mechanism which is influenced by the diminished dimension. Brief explanation
of multivalley semiconductors as well as the interlayer coupling present in two dimensional materials
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is discussed. Interlayer coupling is of interest in two dimensional materials, as they consist of
layers, whereas these layers interact in terms of Van der Waals forces. In section 2.3 we will
briefly discuss the importance and use of envelope functions and the famous Dirac equation. As
we enter the quantum realm and the electron velocity approaches the speed of light, one needs new
methods for solving the Schrödinger equation. Furthermore, the implementation of envelope function
is widely used throughout the scientific community to approximate the wavefunction in terms of
imperfection of the crystal structure. In the last section 2.4 one will discuss and explain excitons in
two dimensional structures. Where a further explanation of the electron band structure is discussed,
and how electron-holes coupling is related to excitons. Furthermore, exciton binding energy and
recombination mechanism is explained. Finally, an important introduction to spin-orbit coupling is
presented.

2.1 Condensed matter physics in bulk structures

Condensed matter physics is a broad field of physics, here we will focus on the the crystal structure
of materials, and the theory to explain and present crystal structure mathematically. Furthermore,
in order to describe and explain the physics of condensed matter one converts real space into the
reciprocal - momentum space. Ones momentum space is understood we work our way towards density
of states, and this is a key concept of condensed matter physics, whereas it furthers our knowledge
towards available energy states in a material. This section is based on the famous book "Introduction
to solid state physics" by Kittel,C [10] and "Semiconductor Physics" [11]

2.1.1 Crystal structure & Momentum space

In condensed matter physics one often discuss solid crystaline materials. These solid
materials possess a certain well defined crystal structure. This crystal structure is an
important factor to take into account when determining electric, thermal, optical properties.
It is possible to recreate the entire crystal by what is called a primitive unit cell. The
mathematical formulation of such a cell is explained by the primitive lattice vectors, a1, a2, a3.
Any vector in real space can be written as, r = u1a1 + u2a2 + u3a3, where (u1, u2, u3) are real
numbers, where r points to a specific point in real space. The primitive lattice vectors span
the real space, creating the primitive unit cell, which is translated by translation symmetry
across the crystal. There is no cell of smaller volume than, a1 · a2 × a3, that can be used as a
building block of the crystal structure. It is convenient to create another vector determined
by the same lattice vectors as r:

r = u1a1 + u2a2 + u3a3 (2.1)

T = n1a1 + n2a2 + n3a3 (2.2)
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In this case T is determined by integers (n1, n2, n3). As an example, picture the simple cubic
structure in figure 2.1. Since the primitive lattice vectors spans the real space, and thereby
spans the simple cubic structure in our case. It is simple to see that if n1 = n2 = n3 = 0,
this would point to the origo. On the other hand, if n1 had value one and the others value
zero, the vector T would point to another atom. By this we could literally map all atoms in
the crystal structure, this is an important tool to appreciate in condensed matter physics
and becomes important when we touch upon momentum space when referring to crystal
translation.

A unit cell is the smallest repeating unit in a crystal. If one where to take an example -
Polonium - which has the crystal structure named simpel cubic. This is the easiest structure
a material may possess, and Polonium is the only known material which possesses this
structure. A simple cube where Polonium is places in each corner. This simple cubic
structure is iterated throughout the crystal in all three dimensions (x, y, z) by the use of the
primitive lattice vectors described above. One can therefore say that the unit cell of simple
cubic structure has 1 atom in its unit cell, since each atom in the corner is shared among
8 other unit cells. Giving us #atoms = 1

8 × 8. In a simple cubic, depicted by figure 2.1 the
primitive lattice vectors is:

a1 = ax, a2 = ay a3 = az (2.3)

Where x, y, z follows the Cartesian coordinate system, and a is the primitive lattice parameter,

Simpel cubic (SC) Body centred cubic (BCC)

Base-centred (BC) Face centred cubic (FCC)

a)

c)

b)

d)

Figure 2.1: Illustration of Bravais lattices, simpel cubic, body centered cubic,
base-centred cubic and face centred cubic
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determining the length of vectors. Off-course, these primitive lattice vectors alters when the
crystal structure differs from that of simple cubic.

One often finds one self directed towards momentum space also called k-space or reciprocal
space, in condensed matter physics. A fairly simpel discussion about crystal structures
and the use of primitive lattice vectors is the basis for tackling the use and meaning of
momentum space. However there is one more thing to look at before we go into details, and
that is crystal momentum itself. In short, momentum space is just converting real space to
the reciprocal space named momentum space to make things much simpler when working
with condensed matter physics. Especially when talking about electrons and holes, one
need a proper way to describe the wavefunctions.

Schrödinger (S.H) equation is an equation widely used throughout quantum mechanics and
other disciplines. It is a way to determine the eigenvalues of a certain eigenfunction, where
a wavefunction typically is the eigenfunction. Also there is an operator operating on the
wavefunction, H is the Hamiltonian operator, which is written as H = p̂2

2me
+ V(r) which

is the sum over kinetic and potential energies of the system. Where p̂ is the momentum
operator written in quantum mechanics as: p̂ = −ih̄∇r. The wavefunction ψk(r) may in the
simplest case be written as a traveling plane wave:

ψk(r) = ei(k·r−ωt) (2.4)

This is just a plane wave traveling in one direction. Whereas k is the wavevector and k is the
magnitude of that vector called wavenumber (|k| = k = 2π/λ). Here we have introduced
the first take on reciprocal space. As one can see the wavenumber is the reciprocal of real
space. Further on we have the S.H equation for a singel electron where we neglect the
potential V(r) acting in the crystal.

H ψk(r) = εkψk(r) (2.5)

We know that the hamiltionan operates on the wavefunction. Giving us the corresponding
energy eigenvalue:

− h̄2

2me
∇rei(k·r−ωt) = εkei(k·r−ωt)

εk =
h̄2k2

2me
(2.6)

This is called the energy dispersion relation for free electron fermi-gas (FEFG). The same
goes for the momentum operator. One can simple let the momentum operator act on the
wavefunction - where p̂ = −ih̄∇r, giving us the eigenvalue of the momentum to be p = h̄k,
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however this is not the crystal momentum. In order to introduce the crystal momentum one
needs to take into account the periodicity of the crystal. Our wavefunction becomes a bit
more complicated, because we are now looking at an electron wavefunction perturbed by
the periodicity of the crystal. We usually depict the wavefunction as a Bloch function.

ψk(r) = eik·ruk(r) (2.7)

Where the function uk(r) is the part that contains the periodicity of the crystal structure.

uk(r) = ∑
G

uk+GeiG·r (2.8)

Here we have to introduce a new vector, namely G, this is in analogy to the translation
vector derived earlier T, however, this vector is in reciprocal space. The close definition and
value will be explained shortly. We can now arrive at the proper crystal momentum:

− ih̄∇rψk(r) = pψk(r) (2.9)

Simply inserting for the Bloch periodicity in the wavefunction.

− ih̄∇r ∑
G

uk+Gei(k+G)·r = p ∑
G

uk+Gei(k+G)·r (2.10)

We then arrive to the proper depicted crystal momentum:

p = h̄(k + G) (2.11)

It is now due time for an explanation for what momentum space is. We go by in the same
manner as we descibed real space, namely by introducing some primitive vectors which
has the purpose of spanning the reciprocal space. We call these primitive reciprocal lattice
vectors for (b1, b2 and b3), and we define them as such:

b1 = 2π
a2 × a3

a1 · a2 × b3
b2 = 2π

a3 × a1

a1 · a2 × b3
b3 = 2π

a1 × a2

a1 · a2 × b3
(2.12)

We can see by geometry that we use the primitive lattice vectors in order to describe the
primitive reciprocal lattice vectors. We may now proceed to define G = m1b1 +m2b2 +m3b3,
where m1, m2, m3 are integers. One important property of the primitive reciprocal lattice
vectors is:

bi · aj = 2πδij (2.13)
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Where δij = 1 if i = j and δij = 0 if i 6= j. This is an important property which manifests itself
throughout calculations. It shows that the potential of a perfect crystal is invariant under
translation by a vector T- giving us V(r) = V(r + T). This can be shown as:

V(r) = ∑
G

VGeiG·r (2.14)

V(r + T) = ∑
G

VGeiG·(r+T) = ∑
G

VGeiG·(r)eiG·T = V(r) (2.15)

This result important yet obvious, since the crystal is periodic one would expect the
potential to be periodic. Shifting the potential by a translation vector T simply reproduces
the potential, this implies for the periodic Bloch part as well, uk(r) = uk(r + T), due to
equation 2.13 - important to note that this is for a perfect crystal and we are off course
neglecting certain impurities such as defects.

2.1.2 Density of States from 3D to 2D samples

Density of states (DoS) is an important value of materials. The energy eigenvalue for a free
electron mentioned in subsection 2.1.1, may indeed occupy various energy levels, often one
add an index n (εnk) - called band index. This subscript determines the energy level the
electron is at, the reader is encouraged to read "particle in a box in one dimension", for
further description. The main thing to know is that to completely describe an electron, four
quantum numbers is needed: energy (n), angular momentum (L ), magnetic moment (mL ),
and spin (ms). Whereas the quantum number (n = 1,2,3 ...), determines at which energy level
the electron is at, and it is not possible for more than two electron to occupy the same energy
level, orbital or electron wavefunction. This is indeed due to Pauli exclusion principle, which
states that two fermions can not have identical quantum numbers or energies. Therefore,
if we consider 1s2 orbital in Helium, there are two electrons in the first orbital. However
these electron do not have the same quantum number, because they have opposite spin
ms =

[ 1
2 ,− 1

2

]
, typically denoted in Bra-Ket notation as: ψ+ = |+〉 and ψ− = |−〉.

We may yet again direct our attention towards the electron wavefunction ψnk(r). However
this time we need to take into account that the crystal structure is limited in all three
dimensions. In order to incorporate this into our wavefunction we need to establish a
boundary condition. We define a new vector called L = Na1 + Na2 + Na3, where N is
number of atoms and Lx = Na, gives us the length of the crystal in a given direction. The
boundary condition reads:

ψnk(r) = ψnk(r + L) (2.16)
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We know from subsection 2.1.1 that eik·L = 1 in order for the translation to be valid and
that the Bloch wavefunction needs to be invariant under translation. As we saw previously
the Bloch part uk is invariant under translation by T, it will therefore be invariant under
translation by the vector L. This puts a restrain on our wavevector k. We may now define
k-values as a consequence of the periodic boundary condition applied:

k =
2πn

L
n = ±0,±1,±2,±3 ...

N
2

(2.17)

This gives us a discrete set of k-values. All other values of k is invalid and will destroy the
wavefunction in the applied boundary condition. Furthermore if we remember equation
2.6, we figured out the energy dispersion relation for FEFG, and one can clearly see that
this energy is dependent of the wavevector. We showed above that the wavevector is indeed
discrete when boundary condition is applied to the wavefunction. This implies that the
energy is discrete as well. Another important fact to recognise is that the maximum value of
k is kmax = π

a . This is an interesting result, that shows importance of Brillouin zones and
wave diffractions in a crystal. We know from before in subsection 2.1.1 that the reciprocal
lattice vector G spans the reciprocal space. We now introduce the diffraction condition in
reciprocal space:

k ·
(

1
2

G
)
=

(
1
2

G
)2

(2.18)

Some algebra gives us the following condition:

kG =
1
2
|G| (2.19)

a)

b)

Reciprocal lattice: 1.st Brillouin zone (BZ)

O π
a−π

a

After applying boundary conditions: Showing allowed values of k inside the 1.st BZ

k

O

k−π
a ≤ k ≤ π

a

2π
L− 2π

L
4π
L− 4π

L
6π
L− 6π

L
Nπ
L−Nπ

L

∆k = 2π
L

Figure 2.2: a) Reciprocal lattice in one dimension, showing the 1.st Brillouin
zone (BZ) in the darker grey region. b) illustration of allowed k-values inside
the 1.st BZ. The letter O stands for origo.



10 Chapter 2. Theory

Where kG is |k|cos(θ). This is what defines the Brillouin zone in the reciprocal space, it is a
consequence of the diffraction condition. In analogy to the Brillouin zone, it is somewhat
useful to compare it with the Wigner-Seitz cell in real space. In figure 2.2, there is a schematic
representation of the 1.st Brillouin zone in a one dimensional crystal.

In figure 2.2 a), the dark grey region represent the first BZ and shows the lengt of the
reciprocal lattice vector as 1

2 |G|. Furthermore, in figure 2.2 b) the 1.st BZ is zoomed in
showing allowed states in k-space, due to boundary condition.

The definition of density of states is number of states/orbitals per unit volume. There is a
simple mathematical representation of this interperiated in three dimensions:

D3D(εnk) =
dN

dεnk
(2.20)

Firstly we need to find the total number of states N. An easy way of doing that is to create a
sphere with radius kF. The magnitude of kF points to the fermi surface of the sphere - and
this is the fermi-energy. There is also two allowed states within a volume element (2π/L)3,
due to Pauli exclusion principle.

N = 2 × 4πkF
3/3

(2π/L)3 =
V

3π2 kF
3 (2.21)

Using our previously calculated results for the energy dispersion relation for FEFG, and
insert for kF in equation 2.21 we end up with the density of states in a three dimensional
sample following FEFG:

D3D(εnk) =
1

2π2

(
2me

h̄2

)3/2

ε1/2
nk (2.22)

Which shows that the density of states in 3D is proportional to ε1/2
nk .

We have yet spoken about temperature-dependency. If the system is at the lowest energy
possibly we say that it is in ground state, and this is possible at zero kelvin. However, in
order to incorporate an analysis of how the system is perturbed under the influence of
temperature, we introduce Fermi-Dirac distribution. Fermi-Dirac distribution gives the
probability that an orbital/state at energy εnk will be occupied in thermal equilibrium:

f (εnk, T) =
1

e(εnk−µ)/kBT + 1
(2.23)

Where kB is Boltzmann constant and µ is the chemical potential. At zero kelvin, µ = εF and
the Fermi-Dirac distribution is a step-function around εnk, by this we see that all states below
Fermi energy εF is occupied while all states with energies greater than εF is unoccupied
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(zero probability). However at greater temperatures this probability changes, and there is a
likelihood that energies above εF is occupied. This is mainly due to thermal energy given by
kBT, as this energy is increasing the probability that an electron is excited to another energy
level is increased.

Electrons occupy the valence band and conduction band in a semiconductor. The electron
density in a band is obtained by integrating over the spectral electron density n(E), i.e.
the density of electrons in the interval [E, E + dE]. The spectral electron density is given
by the spectral density of electronic states D(E) available, multiplied by their occupation
probability. Furthermore at zero kelvin the conduction band is empty according to the
fermi-dirac function and that the fermi level resides within the bandgap in a semiconductor.
The electron density in a band is given by:

n =
∫ Etop

Ebottom

n(εnk)dεnk =
∫ Etop

Ebottom

D(εnk) f (εnk, T)dεnk (2.24)

In order to appreciate these results in comparison to two dimensional samples. The density
of states is basically determined the same way, except we confine our self to two dimensions,
giving us the total number of states:

N = 2 × πkF
2

(2π/L)2 =
L2kF

2

2π
(2.25)

Once again, we need to account for electron spin. Here we create a circle with radius kF,
and find out how many states there is per possible state (2π/L)2

k

a) b)ky

kx

∆k = 2π
L

kx
ky

kz

k

Figure 2.3: Illustration of Density of States in 2D. a) showing available states
within the two dimensional plane. b) If we are in a quasi-two dimensional
state the restriction of kz-values are incorporated
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We can now solve for density of states in a two dimensional system using equation 2.20 in
the similar manner as previously:

D2D(εnk) =
me

h̄2π
(2.26)

As we can see, the wavevector falls and those where the only one containing εnk, and by
that the density of states in 2D is independent of energy. If we further our investigation, we
find that the density of states in 2D is in fact a step-function in real life. As we compress
one dimension we get large values in k-space. So we still have 3D, but in fragments sort
of. The areas created also move in the 3rd dimension, but with large spacing, this is what
gives rise to the step-function. Figure 2.3 a,b) is not correctly scaled of course. But it gives
an overview, that the area we created during D2D calculation are indeed also in 3D with
discreet values in kz. The planes comes further apart as the dimension is reduced.

In this two dimensional model we have a finite confinement in one direction. This leads to
discrete values as illustrated in figure 2.3b), which again lead to a step-function in D2D. As
we saw for 3D case, the density of states varies with ε1/2.

For the 2D case in we find that the electrons can move about in the x-y plane approximate
to that in bulk and dispersion relation can be written as:

εn(kx, ky) = εn,z +
h̄2(k2

x + k2
y)

2me
(2.27)

A more general way of formulating this equation would be to incorporate the so called
electron effective mass and the overlapping of directions, through a summation.

εn(k) = εn,z +
h̄2

2 ∑
α,β

kαkβ

m∗
e(α,β)

(2.28)

Where εn,z is the quantized bound state energies and α, β are the x and y direction, the
effective mass will be explained fairly soon. So by this we can see that the Density of state
as we calculated earlier is in fact:

D2D(εnk) =
me

h̄2π
∑
n

Θ(εk − εnk) (2.29)

Changes as we increase the band index n, where Θ(εk − εnk) is a Heaviside step function.
So D2D = 0 until the first bound state is reached, then it increases with me

h̄2π
and so on. We

can also look at Lz dependency since it is this dimension we are confining.

D2D(εnk) =
me

h̄2π

1
Lz

(2.30)
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So with larger values of Lz - increasing dimension- gives us an increasingly overlap with the
bulk case. Since the steps in the step-function are decreasing and the values comes closer to
the 3D case. So by increasing Lz we enter the three dimensional case, and the discreteness
vanishes.

We now further our interest toward Electronic band structure & electron occupancy in light
of semiconductors.

2.1.3 Electronic Band Structure & Electron Occupation

In this thesis we are working with semiconductors, a neat but powerful definition of
a semiconductor is that the bandgap is at intermediate value compared to metals and
insulators. The bandgap has a satisfying value which serves as an important fact for
electronic devices. Will come back to this later on. As briefly touched upon in subsection
2.1.2 a semiconductor has a valence and conduction band. The region separating these bands
is called the bandgap. The valence band is in the lower energy region and the conduction
band is in the higher energy region. In a metal the ”free” electron is in the conduction band
- or there is only one electron in the outer orbital. This electron would then be semi-free to
conduct electricity, yielding the high conductivity for metals.

So far we have looked at free electron fermi gas, and have purposely neglected the potential
acting on the electrons in a crystal. If we are to consider the band structure of a crystal the
potential needs to be incorporated in to our model.

The nearly free electron model starts from a free electron gas and treats a weak periodic crystal
potential within perturbation theory 1. Here, the bandgap emerge from interferences of the
electronic waves that get scattered from the crystal potential, which results in standing waves
at the edges of the Brillouin zones. These edges is often referred to as special symmetry
points the Brillouin zone.

εnk =
h̄2k2

2m∗
e

(2.31)

Here we have incorporated the so-called electron effective mass, which is needed in semi-
conductors, the effective mass is a second order tensor in three dimensions, and it effects
the mass of electrons and holes. As one is studying the bandstructure of semiconductors,
electrons and holes effective masses are influenced by the curvature of this bandstructure,
it is therefor necessary to implement the effective masses into our equations. Further
information about effective masses is shown in Appendix A. Due to periodicity the electron

1Pertubation theory refers to an approximation of the model due to some abnormalities. These abnormalities
may just as well be impurities or other types of defects such as vacancies, grain boundary etc. These abnormalities
breaks the periodic symmetry of the crystal
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energy is repeated throughout reciprocal space with interval of 2π
a . The band crossing

that occur at k = ±π
a , is highly relevant. At these points, bragg’s reflection is fulfilled.

(k + G)2 = k2 → k = ± 1
2 G = πn

a . At these brillouin zone edges the propagating waves are
interfering in such a manner that a standing wave is formed and consequently a bandgap
emerges, as can be seen from figure 2.4c), where the bandgap is illustrated by the filled
red regions. Furthermore one can look at this picture with ease, and say that the first band
(band index n = 1) comes from 1s2 orbitals, which means it is full, also it has the quantum
number n = 1, the second band (band index n = 2) may as well be 2s2 orbital serving the
quantum number n = 2, and the third band (band index n = 3) may then be 2p6 orbitals
having quantum number n = 2 as well. These last two bands differs in energy even though
they have the same quantum number n, where angular momentum, magnetic moment, and
spin all contribute to the total energy of the system.

When talking about semiconductors the typical bandgap value is below 4eV, anything above
this value is classified as an insulator. In the valence band there are a high population of

a) b)

c)

EV

EC

εF

EV

EC

εF Eg

0 π
a

2π
a

3π
a

−π
a− 2π

a− 3π
a

k

εnk

Figure 2.4: a,b) Intrinsic semiconductors with T = 0K and µ = εF. a)
Illustration of intrinsic semiconductor with valence EV and conduction EC
band, fermi level EF, consequently in the middle. b) An electron is excited to
the conduction band, leaving behind a hole illustrated as a blue ball. This
excitation is demanding an energy of Eg, and can only take place if the
electron receives this amount, either through phonons or photons etc. c)
Illustration of nearly free electron model, where high symmetri points nπ

a
gives standing waves due to interference and a bandgap emerges, where
[−π

a , π
a ] defines the 1.st Brillouin zone. The filled red regions illustrates the

bandgap.
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electrons, which is possible to calculate using equation 2.24, with well defined boundaries.
The concentration of electrons in the conduction band may be expressed as:

ne =
∫ ∞

EC

Dd(εnk) f (εnk, T)dεnk (2.32)

Equivalently the hole concentration in the valence band may be expressed as:

ph =
∫ EV

∞
Dd(εnk) [1 − f (εnk, T)] dεnk (2.33)

Where ph is the hole concentration in the valence band and the subscript d indicates
dimensions d = 1, 2, 3. Here, we need to consider the effective hole mass in the density of
states, which may be abbreviated as m∗

p.

Let us look at intrinsic carrier concentrations in semiconductors as illustrated by figure
2.4a,b). Semiconductors which is free of impurities and other defects, is called intrinsic, and
the equations 2.32,2.33 are appropriate means to calculate the concentrations. In these types
of semiconductors, the carriers are provided due to thermal excitation. The thermal energy
may be expressed as; εT = kbT, if this thermal energy is in the range of the bandgap, Eg,
the the thermal energy is sufficient to excite electrons up to the conduction band, this can
also be seen through the fermi-dirac distribution. Where, higher temperature smears out
the fermi-dirac distribution, and thereby increasing the probability that an electron occupy
another state.

Interestingly, the number of k-states in the 1.st Brillouin zone is equal to the number of
primitive unit cells, N, in a given volume of Lx, Ly, Lz. Due to the nature of electrons they
still behave according to Pauli exclusion principle, and thereby two electrons can be in one
distinct k-state yielding 2N independent orbitals/k-states in each energy band.

In the next section electrical transport in two dimensional materials will be analysed, where
one need to consider the different boundary conditions that comes into account. Mesoscopic
systems will be of importance when discussing two dimensional materials, where the effect
of small dimensions in on direction prohibits motion of electrons and phonons causing
various phenomena.

2.2 Electrical transport in Two dimensional materials

This section aims to give an explanation of the basic electronic transport in semiconductors as well
as two dimensional semiconductors. Furthermore, the importance of quantum confinement and
the change in various scattering mechanisms is explained. Where we discuss the mean free path
of electrons and the influence of diminished dimension, and electron-electron interactions. This
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section is based on the books "Mesoscopic electronics in solid state nanostructures", "Transport in
nanostructures"[12, 13] and "Introduction to solid state physics" by Kittel,C [10].

2.2.1 Electrical conductivity & mobility

Two dimensional materials possess some special attributes due to its two-dimensional
nature. Strictly speaking we confine ourself in the x,y-plane, however, most materials
do extend in the third dimension. These are not exactly two dimensional, but quasi-two
dimensional. We will use these terms quite interchangeably, but it will be stated otherwise
if needed. In these systems there are profoundly more interesting substance to cover in
the quantum confinement of two dimensional materials. In order to give an overview of
the electrical properties of two dimensional materials we will confine ourself to carrier
transport parallel to the confining potential, that is the non-reduced x,y-plane. By this we
may treat the material in the same manner as homogeneous transport in bulk system in
terms of conductivity and mobility. Various scattering events as a consequence of the lower
dimensionalities will be discussed in a subsequent section.

We now proceed to inventigate carrier mobilities and conductivity. We may start with
a classical approach, namely Newtons second law. F = m · dv||/dt, where we here are
considering the force upon an electron in an electrical field ξ ||, all subsequent vectors will be
in the non-confined spacial plane, if otherwise, it will be stated. In order to accommodate
the electric field we may rewrite Newtons second law in terms of Lorentz force as follows:

m∗
e

dv
dt

= −e
(

ξ + e
v
c
× B

)
(2.34)

To get an overview over the velocity of carrier electrons in a semiconductor we need to
address the so-called group velocity. The group velocity is defined as such:

vg =
∂ω(K)

∂K
(2.35)

Where ω(K) is the dispersion relation for phonons, and K is the corresponding wavevector.
Further on if we use the definition that εnk = h̄ω, we may substitute for ω(K) and get the
group velocity for electrons:

vn(k) =
1
h̄
∇kεnk (2.36)

Where we now have calculated the group velocity of electrons in a subsequent band indexed
by n. As we can see, the velocity is determined by the change in the dispersion relation. We
can now determine the velocities at the dispersion relation extrema. This gives us:

vn(k) =
1
h̄
∇kεnk|k=0 = 0 (2.37)
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The velocities of electrons is indeed affected by the effective mass of the electron. We once
again refer to appendix A for further reading on effective mass. We circle back to equation
2.34 and assumes that the magnetic field is zero → B = 0, we then end up with:

m∗
e

dv
dt

= −eξ (2.38)

Instead of implementing our definition of the electron velocity in this equation we would
rather set m∗

e v = h̄k, and look at how k-space changes with applied electric field. We may
now understand that, once the momentum space shifts in a direction, it directly effects
the motion of electron, this will become clear in a moment. If we further the discussion of
equation 2.38, and solve for the velocity we find:

v = − eξτ

m∗
e

(2.39)

As we discussed, briefly, the momentum space is shifted incrementally when as force is
exerted upon it, in this case an electric field. Here we have arrived to an expression of
the velocity of this incrementally shift of momentum space which is also called the drift
velocity. We consider the time between successive scattering events of electron to be τ, it is
basically the average time between each electron collision. We are then considering the shift
in momentum space to be defined from this mean free time of electron scattering events.
Quick rearrangement of equation 2.39 with m∗

e v = h̄k, we get that the infidesimal change in
momentum space is δk = −eξ/h̄. The electric current density is now possible to work out.
We start by considering the number of electron per unit volume in a constant electric field ξ

and that each electron has charge −e, we get:

J = −en2Dv

Substituting for the incremental electron velocity in the momentum space shift we get:

σ =
e2n2Dτ

m∗
e

ρ =
m∗

e
e2n2Dτ

(2.40)

We have now arrived to the electron conductivity and the reciprocal of that namely the
electron resistivity, extracted from Omh‘s law, which is defined as J = σξ. By surprise we
have already worked out the electron mobility at this point. If we redirect our attention
towards equation 2.39, we define the electron mobility as v = µξ, we then have:

µ = − eτ

m∗
e

(2.41)

The electron mobility tells how easily the electron is transported inside the material. As we
can see, the electron mobility is as well affected by the electron effective mass, however we
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are in this subsection limiting ourself to the non-confining plane. That means that we do
not have the full second order tensor describing the electron effective mass. It is somewhat
common to call the effective mass remaining in the two dimensional plane for transverse
effective masses (m∗

e ).

2.2.2 Quantum confinement & Scattering mechanisms

In order to get a comprehensive view of electronic transport in two dimensional systems,
one first needs to be familiar with some important features. De Broglie wavelength of
electrons (size quantization), Electronic mean free path (Ballistic transport), scattering events
(electron-electron, electron-phonon). All these features determines the electronic transport
in two dimensional systems.

de Broglie wavelength We may start with the first one which directly involves the diminished
z-dimension. Fermi wavelength, this wavelength is defined as λF = 2π

kF
, where kF is the fermi

k-vector used in equation 2.25. λF is also named de Broglie wavelength of the electrons at
the Fermi edge. Size quantization may occur if the sample size orthonormal to the x,y-plane
is comparable to the Fermi wavelength of the electrons. We have this condition: Lz ≤ λF.
We may further calculate the Fermi-wavelength, by applying kF from equation 2.25, by using
that the electron density is n2D = N/L2.

k2
F = 2πn2D (2.42)

λF =
2π

kF
=

(
2π

n2D

)1/2

, λF =
h
p
=

h√
2m∗

e εnk
(2.43)

Where we can see that the Fermi wavelength is inversely proportional with the square root
of the electron density and also the momentum p. If one where to assume room-temperature
and simplify by the use of thermal energy, the thermal energy would be E = 3

2 kT = 26meV
and an effective mass of one tenth the free electron mass, de Broglie wavelength would then
be λF = 10nm. So if the statement Lz ≤ λF is for fulfilled one would expect some sort of
quantization present2. If the wavelength of the electrons that carry the current is comparable
to the size Lz the wave character becomes important and the kinetic energy of the electrons
will be quantized as shown in figure 2.3. Where the diminished Lz-direction unfolds a
quantization in kz. There is however one more criterion which needs to be fulfilled before
one gets this effects, and that is the so-called mean free path of electrons.

2This does, however, not give a quantization of different phenomena such as quantum Hall effect when a
magnetic field is applied perpendicular to the x,y-plane.
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le = 〈v〉τy

x

Figure 2.5: Illustration of electron mean free path in a perfect crystal,
showing trajectories after scattering events. Grey and red circles illustrate,
ions and electron respectively.

Electron mean free path

As we know, electrons travel through the material if either a metal or semiconductor. We are
expecting that the electrons collide after some length le. This length scale is called mean free
path, and is roughly speaking the average length an electron travels before getting scattered
as shown in figure 2.5. We talked about the mean free time in the previous subsection, and
this will come into mind shortly. If this length scale (le) is comparable to the device length -
Lz in our case, we have fulfilled the criterion Lz ≤ le. This gives rise to what is called Ballistic
regime. This would in, theory, suggest that the electron may travel without scattering events,
and we should expect lossless transportation - meaning we would expect superconducting
behaviour. This is unfortunately not the reality, we cannot transport electrons across a
ballistic regime without resistance. We are once again experiencing quantization of electrical
transport. If one where to consider the extrinsic property of conductance, one sees that
the quantization is represented in multiple integer values of e2

πh̄ . Further-on if we where to
look at the mean free path through the consideration of expectation value of velocity for
electrons. We would firstly need to consider the velocity through the momentum p:

v =
p

m∗
e

(2.44)

We have previously introduced the momentum operator p̂ = −ih̄∇r, if we then were to look
at the expectation value of velocity and introduce the fact that mean free path is calculated
as le = 〈v〉τ we get 3:

〈v〉 = 〈p〉
m∗

e
=

1
m∗

e
〈ψ|p̂|ψ〉 = − ih̄

m∗
e

∫
ψk(r)∗∇rψk(r)dr (2.45)

le = 〈v〉τ = − ih̄τ

m∗
e

∫
ψk(r)∗∇rψk(r)dr (2.46)

3It is fully possible to calculate the expectation value of velocity without the momentum operator p̂ = −ih̄∇r,
one would then need to translate the wavefunctions into momentum space by the use of Fourier transform -
θ(p) = 1√

2πh̄

∫ ∞
−∞ e−ip·r/h̄ψk(r)dr
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This is off-course a simplified estimation of the mean free path for electrons, whereas the
laws are altered once the mean free path is in the order of the device length Lz - where
quantization effects enters. We will not go into more depth on this matter.

Electron-electron interactions

Regarding electron-electron interaction in terms of energy levels, and electron orbitals one
need to incorporate conservation laws. Take figure 2.6a) as an example. Two electrons with
wavevector k1, k2 are interacting and produces to subsequent electron wavevectors k3, k4.
Momentum conservation law then tells us k1 + k2 = k3 + k4, furthermore one may exhibit
an elastic collision between these two electrons, which would furthermore conserve energy.
In this elastic regime, there are limited options, given that no energy is lost, as well as
gained during the interaction. As an example, let us consider electrons in the valence band.
There are an accumulation of electrons in the occupied electron orbitals which forms the
valence band. The only possible energy levels, or orbitals lies in the conduction band - as a
consequence of the Pauli exclusion principle, electron-electron interaction does not cause
any transition of energy levels, the electron-electron interaction is elastic.

Another case to consider is the inelastic scattering event, in this case, momentum is stil
conserved while the energy is converted into heat, photon, lattice vibrations(phonons)
and so forth. The famous physicist Richard Feynman4, created the so-called Feynman
diagram as shown in figure 2.6b) of electron-electron scattering named Møller scattering.
This diagram shows the interaction between two fermions in which a photon is created
during the interaction time. Where energy conservation in this system may be formulated
as ε1 + ε2 = ε3 + ε4 + h̄ωk. The creation of a photon with energy h̄ωk, may be possible, if
an incoming electron source with sufficient energy, excited an electron in the valence band

a) b)
Ky

Kx

K1

K2

K3

K4

γ

e− e−

e−e−

Figure 2.6: a) Electron-electron scattering resulting in two new wave vectors
k3, k4 which needs to obey Pauli exclusion principle. b) Feynman diagram of
electron-electron interaction, called møller scattering.

4Richard Feynman first introduced Feynman diagrams in 1949 in a Physical Review [14]
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to the conduction band. The excited electron is then after a certain amount of time relaxed
down to a lower energy state. The difference in energy may then produce a photon -
typically in the range of the bandgap.

As we are working in quasi-two dimensional system, electron-electron scattering is rather
unlikely in the diminished dimension, and if we where to consider the electron mean free
path to be comparable to the device lengt Lz. The electron would simply scatter with
the boundaries before colliding with an electron in som sense (If the electrons travels
perpendicular to the two-dimensional plane, meaning, no x,y- component in the electron
velocity vector).

Let us now briefly look at the electron-electron scattering rate through Fermi’s Golden Rule.
The Fermi’s Golden Rule is used to define the scattering rates between different scattering
events. It utilises quantum mechanics, and an unperturbed Hamiltonian is perturbed by
a time-dependent term. This time dependent term translate or rotate the system frame in
such a manner that we may consider the interaction to be "frozen" in time. An elongated
process is needed order to reach the Fermi’s Golden Rule, and it may be formulated as this
for the electron-electron interaction.

1
τ|k〉→|k′〉

≈ 2π

h̄
|〈k′|Wee|k〉|2δ(εk − εk′) (2.47)

Here we have a transition from |k〉 → |k′〉, and inside the square on the right-hand side
is the so-called transition matrix element or scattering matrix element. As in the case
for electron-electron interactions, the scattering matrix element comes from the screened
Coulomb interactions as well as perturbation theory. The last factor is a delta-function,
which in this case takes care of energy conservation. One, may convert this formulation of
Fermi’s Golden Rule to a more appropriate version by:

1
τee

≈ 2π

h̄
|Vq|2Dd(εk)ne (2.48)

Where Dd(εk) is the joint density of states, and in our case, we are looking at d = 2, meaning
a constant density of state (as long as constant band index n). The only interference is
the scattering matrix element itself as well as the energy range for which the electrons
may interact. This is incorporated inside ne from equation 2.32 as we discussed in section
2.1.3. The energy range in which electrons is capable of interaction, is in fact, given by
the fermi-dirac distribution. Higher thermal energy yields a greater number of electron
in which are capable of interaction. A rather crude estimate gives us that the number of
electron in which are available is proportional to ∝ 1/T
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Electron-phonon interactions

In quasi-two dimensional system where the ballistic regime is working in the diminished
direction, we also need to consider the in-plane electrons interaction with lattice vibrations.
This is of interest due to the potential electron-phonon scattering effects. As we do not have
any confinement in this plane we do indeed have electron-phonon scattering events. These
scattering events cause a decreased mobility. As we may write the total mobility by the use
of Matthiessen’s rule:

1
µtot

=
1

µimp
+

1
µlattice

(2.49)

Where the first term on the right-hand side is mobility in terms of impurity scattering. In
figure 2.5 we showed a perfect crystal lattice, if one where to introduce impurities in an
otherwise perfect lattice, the total mobility would indeed decrease as a consequence of
decreased mean free path. The second term is scattering events such as electron-phonons
interactions - called lattice scattering events. Phonons are described as the quanta of energy
of a lattice vibration εnk = (1/2 + n)h̄ωK, where thermal energy is ε = kbT, h̄ is the reduced
Planck constant and ωK is the phonon mode dispersion relation between angular frequency
and the wavenumber given by K-values. As the carriers are confined in the in-plane, mobility
is affected by the electron-phonon scattering time τep, by µep = −eτep/m∗

||, where m∗
|| is the

in-plane effective mass. Whereas the scattering time is manly influenced by occupation
number as well as temperature - high temperature yields a lower scattering time which
further reduces the mobility. At high temperatures, more phonons are excited 5 and may
contribute in scattering events. Further-on, we may as previously, approximate the scattering
rate by using the Fermi’s Golden Rule:

1
τ|k〉→|k′〉

≈ 2π

h̄
|〈k′|Wph|k〉|2

δ(εk − εk′ + h̄ωK)︸ ︷︷ ︸
absorption

+ δ(εk − εk′ − h̄ωK)︸ ︷︷ ︸
emission

 (2.50)

In contrary to electron-electron scattering rate, electron-phonon scattering rate is either
dominated by absorption of an energy quanta of phonon εk′ = εk + h̄ωK or the emission
εk′ = εk − h̄ωK. Also, the scattering matrix element matrix is formulated according to
the electron-phonon interaction. In the case of emission, the phonon energy is used to
relax an electron after collision, reducing the energy of the electron by ωK. Interestingly,
elastic collision happens at so-called degenerate valleys. If symmetry allows it, there may
be multiple valleys with states |k〉 and |k′〉 in which are close in energy- called degenerate
states. An interaction between phonon and electron may then shift the electrons momentum,
but conserve its energy, a type of valley transition would occur. On the other hand, inelastic
collision occurs if states |k〉 and |k′〉, which are located at different position in k-space, does

5According to Bose−Einstein statistics, phonons have a higher probability to be excited to a higher mode as
temperature is increased. Bose-Einstein distribution is formulated as: 〈n〉 = 1

eh̄ωK/kb T+1



2.2. Electrical transport in Two dimensional materials 23

not have the same energy. Then, energy is not conserved and is transmitted in the form of
light or other energy packages.

2.2.3 Multivalley semiconductors & interlayer coupling

In the previous subsection we briefly mentioned degenerate valleys in semiconductors. In
order for degenerate valley to form, rotational symmetry about the z-axis needs to be present.
Meaning, if a correct rotation about the z-axis is applied, one would simply reproduce the
crystal structure - the crystal structure is invariant under certain rotation translations. Figure
2.7, shows degenerate valleys in a semiconductor with hexagonal structure. Whereas the
hexagonal Brillouin zone shows a six-fold rotational translation about the z-axis. At the
high-symmetry point K, K′ we see the formation of conduction band and valence band. In
this illustration they are at the same k-space, giving us a direct bandgap.

V
(
r + Tφ6

)
= ∑

G
VGeiG·

(
r+Tφ6

)
= ∑

G
VGeiG·reiG·Tφ6 = V(r) (2.51)

We can see the invariance under translation here, where Tφ6 is the six-fold translation matrix.
The same yields for the periodic Bloch part; uk(r) = uk

(
r + Tφ6

)
.

As mentioned in subsection 2.2.2 electrons may scatter through electron-phonon interaction
into a new degenerate valley by the transfer of momentum. Furthermore these electron
transition events between successive valley may be traced and stored as information through
Spin-Valley locking. So-called Valleytronics is a way of storing information in bits of 0 and 1
(↑ and ↓). Each valley possesses a discrete k-space value and zeros and ones is stored in
these discrete valleys. This is a possible way of manipulating multivalley semiconductors.
We will not go further into this matter.

Two-dimensional material stems from original three dimensional structures. In bulk for-
mation, the structure is layered. Each layer is separated by van der Waals (vdW) forces.
If

K

K′

Figure 2.7: Valley degenerate states in a Hexagonal structure. Degenerate
bands occurs in six-fold symmetry crystal structure. A direct bandgap is
illustrated at the high symmetry points K, K′.
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these forces are sufficiently weak, mechanical exfoliation is possible 6, where one separate
layer by layer until desired thickness is achieved. Unique properties alters as one goes from
bulk to two-dimensions. Some of these changes in property is due to interlayer coupling.
The interlayer interaction determines to which degree the band structure is alternated as
one decrease number of layers. In a more technical approach, the wave function overlap and
interaction between layers determines to which degree the band structure is changed with
number of layers. The vdW energy - energy required to exfoliate layered crystals, or the
cost of removing a single layer from the surface of the bulk compound, has been estimated
from both experiments [15, 16].

Interlayer coupling is a factor which gives rise to the phenomena of valence band maximum
(VBM) splitting. In a multilayered structure spin-orbit coupling (SOC) as well as interlayer
coupling determines VBM splitting, and VBM splitting becomes important in section 2.4.
SOC is a relativistic effect which will be discussed in subsection 2.4.4. As one reached
monolayer structures the effect of interlayer coupling disappears in VBM splitting, the
monolayer behaves as an isolated layer, however we can still see the effect of SOC in some
2D-materials.

2.3 The Envelope Function Approximation for Quasi-Two-
Dimensional Systems & Dirac equation

This brief section applied for the sole purpose of giving the reader a more in-depth view of the rich
and complex physics present in condensed matter and quantum physics. We will not go into depth
on any of the topics discussed here, but rather give an overview. Where we dip our toes into the
envelope function and Dirac equation in order to give a more in-depth understanding of the physics
occurring within these crystalline materials. This section is based on the book "Spin-Orbit Coupling
in Two-Dimensional Electron and Hole Systems" [17]

2.3.1 Envelope Functions

Real crystals are not perfect, as we have touched upon throughout this chapter. Their
translational symmetry can be perturbed, either by unwanted lattice imperfections, or by
intentionally built-in defects. The question then rises, how do the wave functions and energy
leves look in such a perturbed crystal? This question can not be answered by the simple S.H
equation, an approximation in the form of a slowly varying envelope function is needed
- called the Envelope Function Approximation (EFA). We will not go into depth on k · p -
theory, and derive the entire EFA.

6Typically graphene is produced in this way, furthermore the so-called transition metal dichalcogenide
(TMDC) are also layered structures with vdW forces. DFT calculation may determine interlayer binding energies
in order to achieve mechanical exfoliation.
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A perturbed crystal gives rise to internal electric or magnetic fields which alters the lattice
potential. If we where to consider a lattice imperfection with the perturbation potential
Vp(r), this potential takes into account various defects formation which induces electric
and magnetic fields. For simplicity, we take only one electronic band into account. It is
important to notice that the perturbed potential is slowly varying on the scale of the crystal
unit cell. The Schrödinger equation for the imperfect crystal reads:

[
− h̄2

2m∗∇+ Vlattice(r) + Vp(r)

]
ψk(r) = Eψk(r) (2.52)

The additional term Vp(r) is incorporated into the equation. We are not able to solve this by
the use of the conventional wavefunction as formulated in subsection 2.1.1. As the potential
is perturbed the wavefunction is also perturbed to follow the slowly varying potential
applied. As the Bloch function in the previous case takes into account the periodicity of
the crystal structure our new envelope function is indeed affected by the defect formations.
The resulting Envelope function may be formulated with the influence of effective mass
approximation as follows:

ψ′
k′(r) =

1√
Ω

∑
k′

ck′eik′r′ (2.53)

Substituting this Envelope function into our wave equation yields the Envelope wave
equation, which is given as:

[
− h̄2

2m∗∇+ Vp(r)

]
ψ′

k′(r) = [E − EC]ψ
′
k′(r) (2.54)

This Envelope function solves the energy eigenvalues for the perturbed system with potential
Vp(r), it is only valid for slowly varying potential on the scale of the crystal unit cell, as
mentioned. Notice that the energy eigenvalues are given relative to the conduction band EC.
The means of this Envelope function is to solve energy eigenvalues of a perturbed crystal
potential with a slowly varying wavefunction - called the Envelope wavefunction.

2.3.2 Dirac equation - relativistic Schrödinger equation

So far we have investigated Bloch electron which travels in a periodic structure, where they
are considered free in the exception of scattering mechanisms. These Bloch electron travel
with thermal velocities in the order of ( 107cm/s) in semiconductors, and relativistic effects
may therefor be neglected. Once the electron approaches the speed of light (c = 3.0 × 1010

cm/s) relativistic effects needs to be incorporated into our equations of motion. There are
some fine examples of which such effects is needed in order to approximate the solution to
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a finer degree.

The most known example unfolds itself in graphene, where we observe so-called Dirac-
cones in the bandstructure at the K, K′-points, where we have time-reversal and inversion
symmetry7. These Dirac-cones show a linear dependent dispersion relation which yields
mass-less Dirac-fermions. As these electron experience no mass, they reaches the speed of
light within these reciprocal space locations, and therefore Dirac equation is needed in order
to fully understand and approximate the energy eigenvalues at these subbands. Furthermore,
SOC, as briefly mentioned in subsection 2.2.2 is dependent of relativistic effects. Due to
Coulomb interaction between the nuclei and electron, electrons near the nuclei reaches
velocities near the speed of light, typically for 2D TMDCs the SOC is originated from d-
orbitals of the heavy metal atoms. Large nuclei with correspondingly larger charge induces
a greater SOC effect. As usual, S.H equation is not valid here and the implementation of
relativistic effects needs to be considered. The Dirac equation may be formulated as:


− h̄2

2m0

∂2

∂r2 + V(r)︸ ︷︷ ︸
S.H

+
1

8m3
0c2

∂4

∂r4 − h̄2

4m2
0c2

∂V(r)
∂r

· ∂

∂r︸ ︷︷ ︸
Relativistic correction

 1 − ih̄2

4m2
0c2

σ ·
(

∂V(r)
∂r

× ∂

∂r

)
︸ ︷︷ ︸

SOC

 ψ = εψ

(2.55)

The relativistic corrections within the curly brakets are correction of the potential and kinetic
energies as implemented in the original S.H equation. The last term within the curly brakets
named SOC, is the spin-orbit coupling term. Further information about Dirac equation will
not be addressed.

As mentioned, Graphene exhibit Dirac cones, however, this is a rare quality in 2D materials.
There has been some studies showing that a square-octagon square lattice monolayer of
MoS2 showed Dirac-cones. The Dirac cones where forming in the dx2−y2 orbitals. Whereas
as dz2 exhibits heavy fermions, approximately 1.1me from X − Γ and 1.78me from M − Γ. The
masse-less Dirac-fermions where calculated to have a velocity of vF = 2.3 − 2.4 × 106m/s,
which is indeed comparable to the mass-less Dirac-fermions in graphene. [18]

2.4 Excitons - Quasiparticles in 2D

This section focuses on the creation and property of the exciton quasiparticle in two dimensions.
Firstly a furthered explanation of the band structure is needed, then we explain the formation and

7Time-reversal symmetry yields εn(k, ↑) = εn(−k, ↓) and inversion symmetry yields εn(k, ↑) = εn(−k, ↑).
The presence of both symmetries gives Kramers’ degeneracy which is formulated as εn(k, ↑) = εn(k, ↓). In the
case of SOC, inversion symmetry is broken and splitting off energy bands that lift degeneracy unfolds itself:
εn(k, ↑) 6= εn(k, ↓)
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creation of excitons by electron-hole pairs. A brief explanation of the variety of electron-hole pair
interactions is presented - where we see two distinct excitons: Wanner-Moth and Frenkel excitons.
Their binding energies and recombination mechanisms is discussed, and finally the influence of
spin-orbit coupling is implemented.

This section is based upon the review article "Exciton physics and device application of two-
dimensional transition metal dichalcogenide semiconductors" [19] and a number of books "Spin-Orbit
Coupling in Two-Dimensional Electron and Hole Systems" [17], "Introduction to solid state physics"
by Kittel,C [10], and "Two-Dimensional Transition-Metal Dichalcogenides" [20, 21]

2.4.1 Electron band structure cont.

The electric band structure where briefly discussed in section 2.1.3, where figure 2.4 shows
The nearly free electron model and simplified picture of valence band and conduction band
in an intrinsic semiconductor. In order to understand Excitons, a slightly different approach
is needed. The band structure of a semiconductor is often given in terms of εn(k) in k-space.
Where the high-symmetry points is of main interest - these high-symmetry points are
aligned at origo and at the 1.st Brillouin zone edges. Furthermore, it is often convenient to
give an explanation through the free electron model. Here we may as previously, describe
our electron through the electron dispersion relations from equation 2.31. The electron
effective mass is already taken into account here. What emerges from this equation is a set
of parabolas, with various quantum number n. We are in this case interested in the quantum
number which yields the valence and conduction band. Since, it is between these that the
bandgap emerges.

If we use this approach to describe the valence and conduction band, the electrons are
placed in the valence band and exhibits different k-values, as previously. In this case
they do indeed exhibit an effective mass due to the curvature of the bands. Electrons in
the valence band may experience an increase in energy due to various influences in the
crystal structure. Thermal energy is a possibility as well as photon energy of an incoming
light source. Thermal energy is often transferred to lattice vibration or phonons. High
temperature yield an higher thermal energy which is often converted to higher phonon
modes. In light of excitons, which will be described in the subsequent section, photons is
of great importance. If a light source with photon energy at the magnitude of the energy
bandgap Eg ≤ h̄ωk, where ωk is the angular frequency of the incoming light, this contains
information about the frequency as well as the wavelength. If the energy of the photon
is large enough, there is a possibility that the incoming light excites the electron from the
valence band into another unoccupied energy level. Note that the bandgap is undefined in
the sense that electron can not be present in this regime due to lack of electron orbital levels.
The only possible energy levels for the electron in an otherwise occupied valence band is
the conduction band which is in this case unoccupied.
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We have two kinds of valence and conduction band transitions, direct and indirect bands.
In the case of a direct bandgap the valence and conduction band is placed at the identical
k-value. This has profound impact in photoluminescence, as the excitation of electrons does
not need to change momentum in the excitation process. In the other case, indirect banggap,
the valence and conduction band is misplaced in k-space. If an excitation of electrons where
to take place, we also need to convert some of the energy into k-space transfer, meaning that
some of the energy under this process is lost in heat dissipation - energy may be converted
into thermal energy or lattice vibrations.

If one where to illustrate the various processes figure 2.8 is a good place to start. In figure
2.8a) a simplified electron band structure is illustrated, where to the left we have a direct
bandgap and to the right an indirect bandgap. The curvature of the bands is approximated
through the electron dispersion relation by a simple k2-behaviour. The inset showing exciton
energy levels will be addressed in the subsequent section 2.4.2. The figure to the right in
a) show an indirect bandgap, where a shift in k-space is precent between the valence and
conduction band. Important to note that the axis are εnk as a function of kx, in this case.
Meaning, we are in principle looking at a one dimensional band structure which unfolds
itself into a two dimensional plot. In figure 2.8b) an illustration of a two dimensional
band structure with εnk as a function of kx, ky, which unfolds in a three dimensional plot.
Meaning if we where to examine a three dimensional band structure we would need a four
dimensional plot, which is inconceivable to the human eye.

As we are working with quasi-two dimensional system we would indeed need all three
spatial directions in order to describe the band structure. It is therefore convenient to
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Figure 2.8: Band structure depicted from the free electron energy fermi-gas dispersion relation,
showing. a) Band structure in one dimension showing bandgap as well as valence band and
conduction band, The two insets show direct and indirect bandgap respectively. Red dots illustrates
electrons in the upper valence band energy levels. b) A two dimensional example of the band
structure, showing energy as a function of kx, ky, where the valence and conduction band is
separated by a bandgap Eg
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produce a so-called irreducible Brillouin zone from the 1.st Brillouin zone. This irreducible
Brillouin zone consist of the special symmetry points as mentioned earlier. In a sense we
are only interested in the paths between each special symmetry point - due to translation
symmetry this comprehensively incorporate all values of interest whitin the 1.st Brillouin
zone, without loss of generality. We may then present the band structure as a classical two
dimensional band structure.

In Figure 2.9 a real Density Functional Theory (DFT) calculation of a two dimensional transi-
tion metal dichalcogenide (TMDC) MoS2 is presented. In a) we see an illustration of the 1.st
Brillouin zone as well as the irreducible Brillouin zone in red lines. The high symmetry lines
are here called [Γ, K, M, L, H, A]. In figure 2.9b) the actual DFT-calculations are presented,
showing the band structure of the two dimensional MoS2, as well as the density of states.
As we may see, MoS2 exhibit a direct bandgap at the high symmetry point K 8. In close
proximity to K, the approximated dispersion relation yields an adequate estimate. As
mentioned in the previous sections, each band comes from different contribution from
electron orbitals. The main orbital character at the edge of the valence band is due to a
combination of dx2−y2 and dxy orbitals from Mo-metal, which hybridizes with px and py

orbitals of the chalcogen atom S. The edge of the conduction band is formed by d3z2−r2

orbital of Mo-metal, additionally some contribution of px and py orbitals of S atom.
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Figure 2.9: a) Irreducible Brillouin zone of 1.st Brillouin zone of Hexagonal structure in three
dimensions. Showing special symmetry points along the sides and edges. b) Band structure and
Density off states as ab intitio calculated using density functional theory (DFT) by simulation
package (VASP) of monolayer MoS2. Arrows indicates the indirect bandgap at the special symmetri
point K. Band structure and density of states of MoS2 presented, were calculated during the course
of FYS-MENA4111.

8 MoS2 exhibits an indirect bandgap at bulk structure, as the dimension is reduced we see an indirect-direct
bandgap transition.
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2.4.2 Electron-hole pairs - Creation of excitons

Electron-hole pairs have a significant meaning in physics, especially in semiconductors and
transistors. Previously in this chapter we have investigated the creation of the bandstructure
and the meaning of energy levels in which the electrons occupy. Further on we have also
seen how electrons interact trough scattering mechanisms. These mechanism may very well
excite electron to the nearest free orbital or energy level. In semiconductors we know by
now that the electrons are prohibited from choosing energy levels which lies in-between
the valence and conduction band. Thereby, in order to excite electrons which lie in the top
of the valence band, an energy larger than the bandgap is necessary. An energy source is
needed to provide the electron the sufficient energy in order to be excited, and this source
may very well be electromagnetic waves with energy h̄ω, such as photons. Incoming light
excites a given electron in the valence band with energy h̄ω = Eg. Consequently, the excited
electron naturally leaves behind a positively charged hole. By this the electron and hole has
a coupling constituted by electro-static forces, such Coulomb forces. The coupling between
electron and hole are named exciton, which is a quasi-particle with neutral charge.

The relationship between the coupled electron and hole are explained by considering
k − space. The total wavevector of an otherwise filled valence band is zero, due to inversion
symmetry (r → −r) and that the summation over the entire Brillouin zone yields zero. If
an electron at ke where to be excited, the total wavevector is deduced to −ke. This is then
applied to the description of the hole. We then get kh = −ke. Further on, a hole is different
from the electron by the obvious term, namely the charge, but it also possesses different
spin (ms). As mentioned, electrons have spin ± 1

2 , whereas the holes have spin ms =
3
2 . The

coupling between electron and hole provides an integer spin value, the consequence of this
spin value is that the Exciton quasi-particle is treated as a Bose-Einstein condensate 9.

We mainly differentiate between to types of excitons, Wanner-Moth and Frenkel exciton as
seen in figure 2.10. The difference is mostly due to the coupling between the electron and
hole. As we know by now, in two-dimensional semiconductors the electron is confined in
the plane due to boundaries at the surface. As the exciton is created from various processes
they are bound by Coulomb forces, and the effect of these Coulomb forces is affected by the
electric field screening. For semiconductors the relative permittivity is relatively large, which
means dipoles generally align, and thereby inducing a field. This field reduced the Coulomb
interaction between the electron and hole. Consequently, the radius is large in-between the
electron and hole, this is called Wanner-Moth excitons. As for material with small relative
permittivity the opposite is true, the internal field weakly screens the Coulomb interactions
and the electron-hole is more densely packed, yielding a shorter radius named Frenkel

9The fact that excitons exhibit integer spin values, opens up the possibility of an electron pairing mechanism
similar to Cooper-pairs - in relation to superconductivity. This is theoretical work which has not been realised
experimentally. The main idea is to create layered structure of semiconductors and metals in order to induce the
relative permativity to increase the binding energy of excitons which consequently would increase the critical
temperature Tc for superconductivity. [22, 23]
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Figure 2.10: Illustration showing the bound state between the electron and
hole resulting in excitons in a crystal structure lattice. a) Wanner-Moth
exciton with small dielectric constant , yielding a large radius between
electron and hole. b) Frenkel exciton with radius in the range of the unit cell,
given by the small dielectric constant.

exciton. Interestingly, for quasi-two dimensional material, this relative permittivity can
drastically decrease as the dimension in reduced. This is mainly due to confinement effects,
the electric field screening is reduced due to change in the relative permittivity, the exciton
is confined in the monolayer plane with a small radius (Typically, in the order of the unit
cell). This provides an interesting topic of research for quasi-two dimensional materials, as
the exciton binding energies has increased.

2.4.3 Exciton binding energy & recombination

Binding energy

As mentioned, electron and holes couple through electro-static forces, such as Coulomb
forces. This particular force between electron and holes may be converted into binding
energy. This is the energy needed for the electron and hole to loose its coupling and
recombine. One may also see it as the difference between the electronic and optical
bandgaps10, which reflects the strength of the Coulomb interaction. Typical exciton binding
energies are in the meV range, however TMDCs are a magnitude order larger - these values
all point to exceptionally strong Coulomb interaction, due to the large effective masses of
both electrons and holes and the reduced screening in the quasi-two dimensional limit.
Once the electron is excited to the conduction band, and a coupling between the electron
and hole emerges, the total energy of the exciton is reduced by the exciton binding energy.
The energy of the bound electron or exciton is lowered due to attractive Coulomb forces. As
we can see from figure 2.10, the exciton resonances occur within the forbidden bandgap.
This is only possible due to the lowering of energy from Coulomb interaction, and under

10Optical bandgap is used for optical measurement when a photon excites an electron to the conduction
band. It is the possible to measure the optical bandgap through photoluminescence or cathodeluminescence,
the energy required to create an exciton is measured
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excitonic effects, strong peaks at energies equal to E2D
ex (n) just below the band edge are

expected to appear in absorption and emission spectra.

In order to determine the excitons binding energy one need to possess the relative permat-
tivity of the material, spectroscopic ellipsometry 11, is an effective method to measure the
dielectric constant directly. Furthermore the binding energy may be determined by the 2D
screened potential, and solved by (S.H) as we have seen previously. This model for solving
the exciting binding energy for quasi-two dimensional materials was provided by Thomas
Olsen, Simone Latini, Filip Rasmussen, and Kristian S. Thygesen [24]

[
−∇2

2µ
+ W(r)

]
ψ(r) = Enψ(r) (2.56)

This is not much different from the Envelope function we showed in subsection 2.3.1, where
equation 2.54 provides the same information, except, in this case we use µ as the effective
mass of the exciton. W(r) 2D convolution of the Coulomb interaction. Previous reports
have suggested that a 2D Rydberg series is sufficient for calculating the exciton binding
energy, as reported in [24], the exciton spectrum of WS2 was measured and shown to deviate
significantly from the Rydberg series of a 2D hydrogen model scaled by an overall screening
factor. By some calculations, they ended up with an expression for the exciton binding
energy.

E2D
ex (n) = Eg −

µ

2(n − 1
2 )

2ε2
n

(2.57)

This is model is based upon the Rydberg Excitonic Series, but has implemented the n-
dependent relative permittivity (εn) as well as the effective mass of the exciton ( 1

µ = 1
m∗

e
+ 1

m∗
h
).

This model estimates the exciton energy levels as depicted in figure 2.10, by the overall
screening factor εn and quantum number n. Quantum number n = 1 has the lowest exciton
energy level, namely the exciton ground state, and correspondingly the highest exciton
binding energy, and n = ∞ diverges towards the lowest energy state of EC.

Recombination

We mentioned that the typical exciton binding energy for TMDCs are a magnitude order
larger than that of bulk materials which lies in the meV range. In comparison the thermal
energy at room-temperature is as mentioned in subsection 2.2.2 ERT = 26meV, this would
mean that the coupling between electron and hole would be destroyed and the recombination
probability would increase. We briefly mentioned direct and indirect bandgaps in

11Spectroscopic ellipsometry is an optical technique used for measuring dielectric properties of materials.
Ellipsometry measures the change of polarization upon reflection or transmission - by this dielectric properties
are extracted
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Figure 2.11: Decay of excess carriers
by recombination.

section 2.4.1,and this material quality has
profound consequence of exciton recombina-
tion mechanism. For a direct bandgap semi-
conductor the recombination occurs sponta-
neously, meaning that the probability of an
electron and hole to recombine is constant
in time. One could then expect an expo-
nential solution to the excess carriers and
that the electrons and holes recombine in
pairs, meaning that the concentration of ex-
cess electrons and holes remains are equal
throughout the recombination process. By
excess electron and holes, we mean the con-
centration of electrons and holes created by
excitations.

δn(t) = ∆ne−
t

τn (2.58)

Where δn(t) is the change of carrier concentration with time (t), ∆n is the excess carrier
concentration at initial time. τn is the carrier lifetime, a general expression may be formulated
as:

τn =
1

αr(ne + ph)
(2.59)

αr is the proportionality for recombination and ne, ph is the electron and hole concentration
shown in equations 2.32, 2.33. As shown in figure 2.11, the excess electron and holes
recombine in an exponential manner. Usually, recombination times is in the order of 10−9 −
10−15s. Recombination times in the order of ps is a typical value for many semiconductors.
Once excitons is created they may either recombine radiatively, meaning - as a direct band
transition, emitting electromagnetic radiation in the visual range or non-radiativley, through
indirect band transitions. As explained earlier, through indirect transitions, the electron
scatters with phonons to adjust for the momentum space difference. One would have a
wide range of possibilities of recombination, one could suggest defect levels within the
bandgap that acts like intermediate transition states for the electron, this implication would
prolong the recombination time. Furthermore, the recombination through phonon scattering
or background carriers would mean non-radiatively recombination outside the light cone,
into so-called dark states.
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2.4.4 Spin-Orbit coupling

Spin-Orbit coupling (SOC) is an interesting phenomena which occurs in some semicon-
ductors. One of the effects which is observable from SOC is VBM splitting, as well as
a potentially much weaker CBM splitting. These effects is observable in photolumines-
cence and cathodoluminescence experiments, where one investigate the optical spectra
of a material. The bandgap observed is called the optical bandgap as mentioned in 2.4.3.
Due to the splitting of VBM one can observe an additional peak in the optical spectra
which is manifested from SOC. We briefly mentioned the potential mechanism behind VBM
splitting - interlayer coupling as well as SOC, however, in pure two-dimensional materials
the interlayer coupling vanishes yielding SOC as the main contributor.

The most typical occurrence of SOC is in two-dimensional materials. The reason for this can
be reviewed from symmetry arguments, where one finds that SOC is possible with broken
inversion symmetry. As mentioned in the footnote in 2.3.2, Time-reversal symmetry dictates
that the energy at a band εn(k, ↑) is equal to the energy of band εn(−k, ↓). Time-reversal
symmetry then yields the criteria εn(k, ↑) = εn(−k, ↓), furthermore the inversion symmetry
follows the operation k → −k, which give us εn(k, ↑) = εn(−k, ↑). The presence of both
Time-reversal symmetry and inversion symmetry gives what is called Kramers’ degeneracy
- εn(k, ↑) = εn(k, ↓). This does not lift the degeneracy, and consequently VBM splitting is
absent. Breaking off inversion symmetry is present in two dimensional materials, and this
implies that SOC could be present and the degeneracy is lifted. The splitting of energy
bands that lifts degeneracy may be written as - εn(k, ↑) 6= εn(k, ↓), where the difference in
energy is the VBM splitting energy ∆SOC, associated with SOC.

εnk

kx

VB

CB

Eg

∆SOC

∆SOC

Figure 2.12: Bandstructure showing conduction
band (CB) and valence band (CV), effect of
Spin-Orbit coupling splitting the valence band by
energy ∆SOC.

We mentioned in the Dirac equation in sub-
section 2.3.2, whereas one of the contribu-
tion to the relativistic effects was the SOC.
Further-on, due to the strong internal field
near the nuclei the electron in the vicinity
would feel a strong effect from the internal
field, which would induce a higher velocity.
SOC becomes stronger with increasing nu-
clei with correspondingly increasing charge.
Typically heavy metal atoms produces large
VBM splitting due to a large SOC. The Dirac
equation, as seen, incorporate the SOC as a
third term yielding a more precise measure-
ment of the Dirac equation as well as reduc-
ing symmetry and removing some degen-
eracies of valence band states (conduction
band states) - providing spin-orbit splitting
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of valence band (conduction band). The SOC term is also relativistic, from our explanation
this makes sense. Furthermore, the SOC term in the Dirac equation may be written in terms
of angular momentum operator (L) and Pauli spin matrices S.

HSOC =
ih̄2

4m2
0c2

σ ·
(

∂V(r)
∂r

× ∂

∂r

)
(2.60)

HSOC =
1

2m2c2
1
r

∂V(r)
∂r

S · L (2.61)

S =
h̄
2

σ L = −ih̄(r ×∇) (2.62)

Here we have simply converted the HSOC from subsection 2.3.2 to a form which consist
of a clear insight into S · L. Here we can see the direct coupling between spin and orbit -
as given by the Pauli spin matrices and angular momentum operator. Further discussion
related to VBM and CBM splitting and the difference in energy is manifested in S · L and
which orbital that contribute to the given band.

Figure 2.12 shows a simplified illustration of the bandstructure of a direct material. The
VBM is split as a consequence of SOC, the magnitude of ∆SOC mainly depends upon
the heavy metal atoms. As mentioned, one can observe this effect in photoluminescence
experiments, but ∆SOC needs to be sufficiently large in order to observe it. As indicated by
εn(k, ↑) 6= εn(k, ↓), the two subbands have spin up ↑ and spin down ↓ giving the possibility
of optical selection rules.

In monolayer materials with broken inversion symmetry, the valence and/or conduction
bands are split ut by the SOC. If we circle back to the discussion about Spin-valley coupling
2.2.3. The SOC would occur at the high symmetry points and the spin splitting must be
opposite at the two equivalent valleys, meaning that potentially, multiple valley would
experience a band splitting. One could potentially control excitation of spin up ↑ and spin
down ↓ electrons by right and left-handed circularly polarized light12, that only couples to a
certain valley.

Keeping the previous sections in mind, particular features associated with quasi-two di-
mensional materials with decreasing dimensionality is the appearance of a direct bandgap,
large binding energies of exciton due to large effective masses and reduced screening and
their scattering mechanism which is quantum confined. Furthermore, many features are

12In order to achieve right or left-handed circular polarized light a photoelastic modulator may one imple-
mented in the experimental setup. A photoelastic modulated is an optical device which modifies the polarization
of the light source
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detectable through various experiments such as photoluminescence and Raman scattering.
In photoluminescence and cathodoluminescence it is possible to determine the transition
from indirect to indirect bandgap by absorption measurements as well as detecting VBM
splitting due to SOC. This furthers the discussion about features, as the dimensionality
is reduces to monolayer the inversion symmetry is broken yielding SOC, which one can
calculate using the relativistic Dirac equation in Density functional theory.
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Chapter 3

Experimental Techniques

This chapter contains an overview of the experimental techniques used in this work. Transmission
Electron Microscopy (TEM) has been central, and we describe the fundamentals behind different
modes of operation and techniques that have been used. Furthermore, an introduction to Atomic
Force Microscopy and Scanning Electron Microscope will be given. The aim is to provide descriptions
and details of the employed techniques as a supplement to the information given in chapter 4. This
chapter is based on the book "Physical Principles of Electron Microscopy" by R.F. Egerton [25]

3.1 Transmission Electron Microscopy (TEM)

Throughout this thesis Transmission Electron Microscopy (TEM) is extensively employed
in order to analyse the sample. TEM’s are widely used in the scientific community for its
superior spacial resolution as well as imaging variety compared to other imaging techniques.
TEM operates through a high electron energy beam accelerated towards the sample. Due to
the low wavelength of the electron beam, high resolution imaging is possible. In contrast to
SEM, TEM usually analyses the transmitted electrons after passing through the sample due
to high electron accelerating voltages (60-300keV). Due to high acceleration voltages extreme
details of the structure and morphology can be achieved at atomic scale. The development
of TEM throughout the last decade is unchallenged. In 1986 Ruska was awarded the Nobel
Prize in Physics for his work in Transmission Electron Microscope [26]. There have afterward
been fundamental developments, and modern TEM’s are able to achieve sub-angstrom
spatial resolution. Furthermore, the development is still growing and the attention toward
TEM’s is ever increasing.

The are many different interaction mechanisms between the electron beam and the specimen,
each with different physics in play. In this theses we will mainly focus on Scanning
Transmission Electron Microscopy (STEM), which differs from TEM in that the incident
electron beam is focused on a small region on the sample through various condenser
lenses. Electron energy loss spectroscopy (EELS), which operates through STEM, and collect
electrons within a certain energy range after interaction with the specimen (several scattering
mechanisms involved). Energy Dispersive X-Ray Analysis (EDX) very well comparable to
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various compositional mapping in SEM. Scattered x-rays from the surface from the incident
electron beam is collected to form an energy dispersive map of the sample.

3.1.1 Scanning Transmission Electron Microscopy (STEM)

Historically, imaging in TEM-mode has been the most used method, however due to the
increasing growth in the development of aberration, electron guns, and generally improved
electronics, the interest in STEM has increased. One of the main attraction with operating
TEM in STEM-mode is the improved spatial resolution, however, it also provides the
opportunity of using multiple detectors simultaneously. This means that STEM is more
versatile, able to collect different information from several scattering mechanisms.

As mentioned, development of aberration correction in STEM has improved greatly. This
furthers the improvement of providing a smaller probe for increased resolution. As a
consequence of a more local electron beam, the focused beam decrease illumination of the
neighbouring columns in the specimen, enabling the possibility of increasing the probe
current without decreasing the resolution. The ultimate goal is to improve resolution, and
the decrease in probe size and increase in probe sharpness improves the contrast as well as
signal-to-noise ratio.

In figure 3.1, and illustration of the STEM is provided, giving us a brief overview of the
electron beam path towards the sample. In figure 3.1a) we have a pure STEM mode, showing
the incident electron beam from the electron beam source. The electron beam source is
typically a probe composed of W or ZrO2-coated W, enabling a relatively coherent emission
of electrons 1. The high coherent emission of electrons is a criteria for the possibility of both
coherent and incoherent2 imaging which is crucial for STEM [27]. By applying a voltage at
the probe tip a current is induced, further on, each electron increases its thermal energy as a
function of current, at some point the electrons possesses enough energy to bypasses the
work function of the solid.

By this the electrons are emitted from the solid to vacuum, an electrical field is applied for
accelerating the electrons to high velocities given by eq. 2.39. Further on, the electron beam
passes by the lenses, marked C1,C2 and C3, and an aperture is chosen optimised beam
convergence. These lenses aims to focus the electron beam/wave front into a perfect

1Remember that electron are fermions, not bosons. Meaning that coherence in this sense is attributed to the
individuality of each electron. When there is coherence between two points within the beam, it means that the
individual electron wave has spread out over these two points.

2When talking about coherent and incoherent imaging one usually refers to the wave nature of electrons.
In that sense, coherent represent elastically scattered electrons and incoherent represent inelastically scattered
electrons
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Figure 3.1: Beam paths of STEM without and with monochromator illustrated. a) Operational mode:
STEM b) Operational mode: monochromated STEM

spherical wave so that it will eventually converge to a single point on the specimen. With the
ongoing development of aberration correctors, the lenses are extremely complex, and differs
from conventional lenses. These highly complex lenses consist of quadrupoles, hexapoles,
or octuples, however, the physics and principle of optics remains the same. In figure 3.1 a
monochromator is applied after the electron gun. The monochromator acts as an energy
filter and is dispersing the electrons as a function of energy, and the first lens C1 and its
aperture is selecting which energy range that should be bypassed. As a consequence of this
filtering of electrons in the beam, the total beam current is decreases as well as the brightness,
however, the electron brightness per electron volt energy spread remains constant. The use
of a monochromator increases the spatial resolution of STEM images, and complementary,
band gap measurements through EELS is enhanced [28–30]

Once the focused incident electron beam reaches the surface of the sample multiple scattering
mechanisms between the electron beam and the sample takes place. The electron beam hits
a column of atoms orthogonal to the surface plane and a cascade of scattering events occur.
As seen in figure 3.2 once the electrons are scattered through the sample they have various
angles according to the scattering mechanism that took place. We have four main detectors,
which collect electrons that has transmitted from the sample at a certain angle β. Firstly, we
have High-Angle Annular Dark-field Imaging (HAADF), also known as Z-contrast
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Figure 3.2: Imaging of sample through various detectors. Electron beam is scattered from the
sample, at an angle β. STEM images is collected according to scattering angle. The detectors can be
defined as High-Angle Annular Dark-Field (HAADF), Annular Dark-Field (ADF), Annular Bright
Field (ABF) and Bright Field (BF).

imaging. HAADF is sensitive to atomic number (Z) and shows what is known as incoherent
characteristic. Every electron that is not scattered at these angles consistent with the
HAADF detector simple passes by and is collected through another detector. The reason
HAADF is sensitive to atomic number is due to the high scattering angles achievable
through electron-nucleus interactions. Once the high energy electron beam enters the
sample some electrons will interact with the nucleus charge giving an unscreened high
angle scattering. The scattering mechanism between electron and nucleus in this high
energy regime becomes essentially pure Rutherford scattering3 with a cross-section that
is approximatly Z24. As the nuclear potential is localised in space, the scattering power
becomes comparable to the thermal vibration amplitude of atoms. The incident electrons
would then "see" the atoms with different atomic spacing and scatter in different direction
- incoherent scattering. Further-on, incoherent imaging is the summation of scattering
cross-sections and the scattering from an entire column is then approximated as 〈Z2〉. As
the scattering cross-section provides information of number of particles scattered at a certain
angle β per unit time per incident intensity, we would see a clear distinction between
elements with different atomic number in HAADF image. In this respect, heavy elements
provide a brighter contrast image than light elements.

3Elastic scattering of charged particles by Coulomb interactions

4As the nucleus potential is localised in space, this provide an image that makes the atoms appear smaller
when seen through the HAADF detector.
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Annular Dark-Field (ADF) captures slightly smaller angles than HAADF, furthermore,
ADF also captures electrons which are affected by the screening of nucleus potential by
localised electrons. Even though ADF collects electrons scattered due to higher screened
potentials near the nucleus, it is still Z-number sensitive. It does, in fact, have a lower
Z-number exponent compared to HAADF. One may also detect certain local characteristics
such as local electric fields present due to strain. Annular Bright-Field (ABF) is mostly used
for capturing lighter elements such as oxygen and nitrogen [31], as light elements have
substantially less screened potential the scattered electrons are reflected at a much smaller
angle than Dark-Field imaging. Lastly, we have Bright Field, this contains the initial electron
beam. As the scattering angle is severely small compared to HAADF, ADF and ABF, the
electron does not interact with the nucleus and one implies that the BF-detector collects
unscattered electrons but with a high enough angle to collect outer Bragg reflections.

3.1.2 Electron Energy Loss Spectrometry (EELS)

The spectroscopy of electrons that passes through a thin sample in STEM is massively
complex and offers a way to analyse the inelastically scattered electron through Electron
Energy Loss spectroscopy (EELS). EELS is a powerful tool equipped to the STEM or TEM-
mode and provides information about the energy loss of the inelastically scattered electrons.
This information manifests itself to the chemical and structural properties of the specimen
of study. As for the STEM-mode EELS electrons scattered through small angles enter an
energy-loss spectrometer and form an energy-loss spectra or an energy-filtered image. [32]

When operating EELS through STEM-mode transmitted electrons scattered at large angles
form a dark-field image, by feeding the signal from the annular detector to a display device
as mentioned earlier. Furthermore, smaller scattered electrons transmitted through the
sample forms the energy-loss spectra. The main principle behind EELS is the energy filter
mechanism, this provides further information about the inelastically scattered electrons post
sample. In figure 3.3a) an illustration of the electron beam passing through the sample
is displayed. Once the electron beam is transmitted through the sample is reaches the
Gatan Imaging Filter-entrance (GIF-entrance). The GIF-entrance aperture determines which
portion of the electron beam that contribute to the spectrum image. The GIF consist of
a series of apertures for correction, the apertures controls the collection angles as well as
the signal intensity (Ic)for EELS. The most important feature of the GIF is the energy filter.
This is a magnetic prism that generates a magnetic field to which the electrons respond to.
The electron beam is bends 90o within this energy filter. Typical magnetic field is around
0.01T[32], and the magnetic field acts on the electron through F = Bev = mv2

R , where B is the
applied magnetic field, e is the electron charge, v is the electron velocity, m is the relativistic
mass and R is the radius at which the electron is bent. As the radius depends on the electron
velocity it also depends on the kinetic energy of the electron.
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R =
mBv

e

Figure 3.3a) is just for illustration purposes, the electron beam passing through the energy
filter, is bent as described above, elastically or unscattered electrons may contribute5.These
have the highest energy, and therefore the larges radius through the energy filter in GIF, they
form the so-called zero-loss peak in the energy-loss spectra. As seen 3.3a), once the electron
passes through the energy filter they goes through a series of lenses such as quadrupole
and sextupole (named imaging optics). Finally, the filtered electron beam gets collected
by a Charge-Coupled Device detector (CCD-detector). In figure 3.3b) a three dimensional
illustration of the process is illustrated. An incident electron beam focused at a single point
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Figure 3.3: a) Illustration of EELS, where the incident beam penetrates the sample and gets collected
in GIF-entrance. An energy filter is applied and the incident beam is collected in CCD. b) Schematic
of electron energy loss as a function of x,y-position.

5Elastically scattered electrons are electrons that have negligible energy loss after scattering. This occurs
when an electron is deflected by an electrostatic field of an atomic nucleus, which is determined by the screened
potential of the electron around the nucleus.
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(pixel) forms an entire EELS spectra according to 3.3a). The STEM scans through the desired
region and EELS collects data for each pixel, creating a so-called EELS spectra.

In figure 3.4b) simplified illustration of different atomic excitation from various scattering
mechanisms. The gray arrow, illustrated elastically or unscattered electrons which does not
lose energy when transmitted, and they are collected and displayed as a zero-loss peak at
∆E ≈ 0 and this is seen as the most intense feature in EELS, see first region in figure 3.4a) .
We usually separates EELS spectra in three regions, 1) zero-loss peak, 2) low-loss region
and 3) high-loss/core-loss region, as depicted in figure 3.4a). The ’pink’ arrow illustrates
low-loss region interactions, where the incident electron beam scatters inelastically with
the sample. In the case of semiconductors and insulators, the electrons get excited to the
conduction band from the valence band as described in chapter 2. The intensity (Ic) in
the EELS spectra is proportional with the joint density of states 6, meaning that the signal
becomes visible within the energy range of the bandgap, typically energies are less than
50eV [33–35]. The high-loss or core-loss region which operates above 50eV stems from core
electrons excitations, as illustrated by ’red’ arrow. These are electrons within a deeper shell,
and they need to acquire a large amount of energy in order to be excited to the conduction
band. This region has much lower intensities than the low-loss region. Ionization occurs at
this region, and each element has a characteristic binding energy Ek at each orbital, by this,
one can determine which element that is present at a given pixel in the EELS spectra.
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Figure 3.4: a) EELS spectra showing Zero-loss peak, low-loss and core-loss regions. b) Energy
diagram is illustrated showing the atomic excitations from various scattering mechanisms.

6The joint density of states that appeared In the Fermi Golden rule subsection 2.2.2 is a consequence of the
so-called Van Hove Singularity, which is when the derivative of the density of states diverges. This is due to
band nesting, when valence and conduction band is parallel within a certain energy range ∆E. The joint density
of states is then the number of electronic states in the conduction and valence band that are separated by a
certain energy Eg.
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Furthermore, one can calculate the amount of each element by measuring the intensity (Ic)
above the background.

Plasmon energies and specimen thickness from EELS

Previously we discussed the low-loss region of EELS spectra. In this region we investigate the
weakly bound valence electrons and their transition mechanisms. As mentioned in chapter
2 there are many forms of transition. Whether the electron is excited trough direct, indirect,
intra- and interband 7 transitions is dependent on many factors, and we will not go any
further into the specifics of the above-mentioned mechanisms. However, the Fermi-Golden
rule is essential for explaining the probability and frequency of a certain transitions occuring.
As for the low-loss region of EELS we have essentially looked at individual electrons excited
to the conduction band or other intraband transitions - so-called single-electron mode of
transition. As, we know there is a beam of initial electron passing through the sample.
This collection of electron induces a local electric field in the sample. This induced field
collectively displaces the ’free’ electrons in the sample, causing a collective oscillation of
electrons known as plasmons (in analogy to phonons). This collective oscillation of valence
electron density takes the form of a longitudinal traveling wave and can be described as
a pseudoparticle, plasmon, with energy Ep = h̄ωp, where ωp is the plasmon frequency -
usually the plasmon energy lies in the range of 5-30eV for most solids. Furthermore the
plasmons provide information about the dielectric function [36], valence electron densities,
and in some cases, phases presented. The plasmon peak is the second most intense feature
in EELS, and the free electron plasmon energy is described as [37]:

Ep,F = h̄ωp = h̄

√
nve2

m0ε0
(3.1)

Where the plasmon frequency ωp comes from the equation of motions in an applied electric
field as well as polarization which is discribed by the displacement in the equation of
motions. As we can see by 3.1 the plasmon frequency ωp is proportional to the electron
density in the valence band nv, electron charge e, electron rest-mass m0 and permittivity of
free space ε0. Furthermore, this free electron model has it limitations. For semiconductors,
we also have a contribution from the core electrons in terms of another damped oscillation
ωb =

Eg
h̄ . This damped oscillations is influencing the plasmon oscillation as the core electron

and ion core has strong interaction causing a damped oscillation mechanism to the plasmon
oscillation. One may simply modify the free electron model to semi-free electron model by
incorporating the damped oscillation arising from core electrons[37]: :

Ep,S−F = h̄
√

E2
p,F + E2

g (3.2)

7Interband transitions refers to the transition between valence band and conduction band. Intraband
transition refers to the transition within the same band.
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EELS also possesses the possibility of local relative thickness measurments. As discussed
earlier, STEM-EELS collects a set of spectra over the entire EELS spectra of choice. Fur-
thermore, in each pixel one may calculate the relative thickness through Poisson statistics
[32]:

Pn =

(
1
n!

)(
t
λ

)n

e−
t
λ (3.3)

Where Pn is the probability of exciting n plasmon peaks, t is the relative thickness and λ is
the inelastic mean free path 8 By choosing n = 0 for the zero-loss peak one may rewrite 3.3
as:

P0 = e−
t
λ =

I0

It
→ t

λ
= −ln

(
I0

It

)
(3.4)

Where we have rewritten P0 as a fraction of integrals of zero-loss peak intensity I0 and
the entire EELS spectra integral It. Once the dimension is diminished and one approaches
quasi-two dimensions so-called surface plasmons becomes dominant, surface plasmons
dominates only at (<20nm). We have a simple relationship between bulk plasmon energies
and surface plasmon energies Es give by Ep =

√
2Es[38].

Even though plasmon peak is the second most prominent feature in EELS spectra there is also
a possibility to observe excitons, as discussed in 2.4. However, a high-resolution spectrometer
is needed in order to detect the associated energy losses. The energy loss from an excited
electron to an exciton state is observed adjacent to that of plasmon energy losses. Optical
bandgaps is therefor possible to detect through high-resolution EELS measurements9[37]. A
number of books shows that the bandgap varies with sample thickness [20, 21], this is a
well know phenomena for quasi-two dimensional materials, also, there is reports of strain
[39] and plasmon energies [40] effect on bandgap. As thoroughly discussed in chapter 2,
the effect on bandgap from variations in thickness is dependent on a numerous factors.
The most important reason is the quantum confinement effects that becomes dominant for
quasi-two dimensional materials. This effects the interlayer coupling distance as well as
lattice parameters, which further redefines the band structure. The number of bands (N)
also becomes more prominent as one reaches monolayer thickness - which again influences
the band structure.

8The inelastic mean free path is the average distance an electron travels through a solid before losing energy -
typically in the order of 100nm.

9By applying a monochromator to the EELS setup one may reach an energy resolution of 0.1-0.01eV [9]
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3.1.3 Energy Dispersive X-Ray Spectroscopy (EDX)

Energy dispersive X-ray spectroscopy (EDX) is a widely used technique for determining
elemental composition at high spatial resolution. EDX used in STEM-mode provides high
spatial resolution due to the highly focused initial electron beam, and it is even possible to
identify single atoms using this technique [41].

In figure 3.5a) we see an illustration of how EDX is set up in STEM. Where the initial electron
beam operates as in standard STEM, with a highly focused beam localised at a single point
(pixel) at the sample. Furthermore, characteristic X-rays are emitted from the sample and
collected through a series of scintillation EDX detectors. As a consequence of the highly
focused electron beam yielding high spatial resolution, one is subject to low count rate -
yielding low signal-to-noise ratio. In this illustration four scintillation EDS detectors are
displayed, this would increase the signal-to-noise ratio and optimise detector efficiency and
acquisition time. In figure 3.5b) A simplified illustration of electron-electron interaction
from initial electron beam and sample are displayed. The atom may be ionized by the initial
electron beam, furthermore, an electron in a higher energy shell could relax to the free
energy state. This de-excitation of an electron could emit a characteristic X-ray depending
on the energy transfer occurring. We distinguish between multiple characteristic X-rays by
K − α (red)K − β (purple) and L − α (yellow). For further information about EDX the reader
is referred to the book by Williams and Carter [42].

M

L

K

a) b)

Figure 3.5: a) Simplified illustration of EDX, showing characteristic X-rays emitted from sample and
detectors. b) illustration of electron-electron interaction, which indirectly causes a characteristic
X-ray.
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3.2 Atomic Force Microscopy (AFM)

Atomic Force Microscopy (AFM) is extensively used in the scientific community and is a
type of scanning probe microscopy. As discussed in chapter 2, an important parameter for
the properties of quasi-two dimensional materials is the number of atomic layers in the
sample. AFM aims to, quantitatively, provide measurements of small variations in thickness.
On the other hand, qualitative thickness variations in a flake can be observed with an optical
microscope, but this provides no quantitative data [43, 44]. With AFM it is possible to
identify a single atomic layer. The high sensitivity of this technique enables measurements
down to the nanometer scale and the proven resolution is in the order of fractions of a
nanometer [45]. This gives an improved resolution of 1000 times, compared to the optical
diffraction limit.

Feedback electronics

Sample surface

Laser

Photodetector

Cantiliver & tip

Figure 3.6: Simplified AFM setup. The laser beam is aimed at the cantilever for feedback, cantilever
with a sharp tip scans the desired area. The laser beam is reflected towards a photodetector which
forwards informations to the feedback electronics.

3.2.1 Working principles

In figure 3.6 we see the essential parts of an AFM setup. The cantilever acts as a beam for
the tip, and its fundamental property is its elasticity. As the cantilever is elastic, it is possible
to measure infinitesimal changes in its z-coordinates. The sharp tip placed at the end of
the cantilever is usually made from silicon or silicon nitride, with a radius on the order of
nanometers in order to achieve high resolution imaging. As seen in figure 3.6 the sample is
placed underneath the cantilever and tip. A laser beam is directed towards the cantilever
and reflected onto a photodetector. As the tip scans the sample surface, irregularities in the
topography are detected by a slight change in the laser beams phase. The measured height,
along with the corresponding x- and y-coordinates are stored as a 3D matrix. One of the
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most common ways of illustrating the dataset is through a 2D map with colorbar of the
z-direction.

When the tip is brought into close proximity of the sample a number of forces has to be taken
into account, and according to Hook’s law the cantilever will experience bending/deflection
as a consequence of the acting forces. Depending on the material, imaging mode and
situation, the forces that are measured in AFM include mechanical contact force, capillary
forces, chemical bonding, electrostatic forces, magnetic forces and van der Waals forces.[46]

3.2.2 Imaging mode: Tapping mode

The imaging mode may vary, here we will talk about tapping mode. Keep in mind that
there are other modes as well, such as non-contact and contact mode. Firstly, taping mode,
also called dynamic mode, intermittent contact, AC mode, or vibrating mode.

Tapping mode is widely used and is gentle to the sample, as there is a small amount of
force applied to the surface as well as a short duration of time when the tip is brought
in close proximity to the sample surface. The distance between the tip and sample is
approximately the distance needed for close range forces to be present. These forces are
Van der Waals forces, dipole-dipole interactions and electrostatic forces and Van der Waals
forces are strongest at about 1nm-10nm range. In tapping mode, the cantilever is driven
to oscillate at its resonance frequency, determined by its spring constant. The resonance
frequency of the cantilever regulates the scan rate. Higher resonance frequency yields a
higher scan rate, AFM cantilevers with resonance frequency of 300kHz and above yields fast
scan rates. In order to achieve and control the image contrast in AFM tapping-mode, we
look at the difference in what is called set-point and free amplitudes of the cantilever and
tip (prope). The free amplitude is the amplitude when the tip oscillates above the sample
surface. Set-point amplitude is the amplitude when the tip is engaged to the surface.

3.3 Scanning Electron Microscope (SEM)

The scanning electron microscope is in many ways the little brother to Transmission electron
microscope, discussed in 3.1. Due to high spatial resolution and many operating possibilities
such as Energy Dispersive X-Ray Spectroscopy (EDX), cathodoluminescence (CL) and high
resolution topography imaging it is a widely used instrument.

The working principle of an SEM is shown in figure 3.7. In the electron gun, electrons are
emitted through either thermionic emission or field emission. In thermionic guns tungsten
or LaB6 filaments are used, where the latter typically produces brighter emission and higher
resolution. Field emission guns have even brighter emission and higher resolution than the
thermionic LaB6 guns, but are also considerably more expensive.
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The emitted electrons are accelerated through a potential of up to 30 kV and directed towards
the sample. Before the beam hits the sample it goes through a number of condensers and
objective lenses. The electron beam is scanned across the sample yielding an emission
of electrons. The emitted electron or emission of X-rays is collected through a series of
detectors placed in the vicinity of sample. The number of electrons collected in the detectors
depends on the scattering angle, a steep and inhomogeneous sample would thereby produce
a high contrast image, showing the topography of the sample.

Electron gun

Lenses

Detectors (*)

(*)(*)

Sample

Figure 3.7: Schematic illustration of
scanning electron microscope.

In order to fully understand the principles
of SEM one needs to look into the vari-
ous emissions that occur once the electron
beam hits the sample. The two most im-
portant emissions are created by backscat-
tered and secondary electrons. The inci-
dent beam of electrons emitts electrons by
either backscattered or secondary electrons.
Firstly, backscattered electrons (BSE) are
electrons which are scattered by the crystal
structure of the sample. BSEs can occur at
half the penetration depth of the initial elec-
trons, around several hundred nanometers.
BSEs give an elemental contrast due to its Z-
dependency (see section 3.1.1). Large atomic
number yields a higher scattering angle than
a low atomic number. It is thereby possi-
ble to distinguish the large angle scattering
from the low scattering angles in the BSE-
detectors, giving a contrast image which
is dependent on the Z-number. Secondly,
secondary electrons (SE) are created by ion-
ized atoms and originate from near-surface
regions of the sample. The initial electron
beam ionizes the atom within the sample,
and the ejected electrons get detected by the
SE-detector. Usually, the SEs have a signifi-
cantly lower energy than the BSEs, meaning
that SEs generated deep within the sample does not have sufficient energy to escape the
sample. Therefore, SEs are usually detected near the surface of the sample in contrast to BSE.
The SEs then provides information about the surface structure of the sample, the topography,
and does not provide information about the elemental composition. The penetration depth
of the primary electrons are dependent on two main factors. (i) The primary electron
energy, given by the acceleration voltage. An increase in acceleration voltage increases the
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interaction volume with the sample. (ii) The density of the material also influences the
penetration depth, a high density material would decrease the penetration depth, and vice
versa. In addition to detecting electrons, SEM is also equipped with an appropriate detector
capable of performing energy dispersive x-ray spectroscopy (EDX). The principles of EDX
are discussed in section 3.1.3.

There are multiple factors to adjust in order to increase spatial resolution in SEM. The
main factors which are crucial are acceleration voltage and probe current. The acceleration
voltage affects the initial electron beam energy, one needs to be careful when managing
the acceleration voltage, as excessive voltage may damage the sample. On the other hand,
too low acceleration voltage yields a low image resolution. The probe current affects the
number of incident electrons on the sample per unit time. As for the acceleration voltage,
there is a balance between low and high probe current in order to achieve optimal image
resolution.

3.4 Photoluminescence Spectroscopy

Photoluminescence (PL) spectroscopy is a characterisation technique which is widely used
for its brilliant determination of optical properties for semiconductors. This section will
briefly mention the important and rich physics intervened in PL, where the fundament is
laid in chapter 2, section 2.4 . The measurements presented in this thesis were done my
Dr. Augustinas Galeckas, and due the sample under investigation, micro-PL technique was
utilised for its improved spatial resolution. This section is based upon the review article of
Gilliand, [47].

The underlying principles of PL are already mentioned in chapter 2, however, we will
redirect this information towards PL. Photoluminescence is subject to radiative and non-
radiative processes, see subsection 2.4.3. Assuming only radiative transitions occur, Fermi’s
Golden Rule mentioned in subsection 2.2.2, determines the radiation rate as a product of
density of lower empty states and density of carriers in higher energy states. One would
assume that there is no difference between absorption and emission, as they are counterparts
of one another. Absorption is often descriped as the mean free path of an incident photon
decay. Whereas, emission is often described as the photon generation per unit volume. The
incident photons directed towards the sample gets absorbed to some extend - which could
lead to a broad emission band as the absorbed photon energies may be dispersed in energy.
These absorptions excite electrons to higher energy states, dependent on the band structure
and the nature of the transition. As mentioned in subsection 2.4.3, recombination processes
by radiative transitions lead to an emission of electromagnetic radiation. These photons
generated by the absorption is detected by a photomultiplier tube and is compiled as an
intensity (counts/s) as a function of photon energy (eV) dataset.
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The usual graphical presentation of Photoluminescence measurements is a simple graph
containing the intensity of photons detected as a function of photon energies. As mentioned
previously, we also have intra- and interband transitions, see subsection 3.1.2, as well
as defect states present within the bandgap. These are all possible to detect through
Photoluminescence Spectroscopy, as one may observe prominent emission bands consistent
with a defect states, or the optical bandgap. The curvature of the band structure influences
the measured intensity significantly, as well as the energy location of the emission band,
and a keyword is band nesting, as mentioned in subsection 3.1.2. Furthermore, it is also
possible to detect and observe Spin-Orbit coupling, discussed in subsection 2.4.4, and also
exciton binding energies, discussed in section 2.4.
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Chapter 4

Group IV-VI: GeSe - In light of TEM
& PL

4.1 Crystal structure & properties

Two dimensional materials such as ,graphene and transition metal dichalcogenides (TMDCs)
have unique properties [20, 21, 48, 49]. Furthermore, GeSe, which is the scope of this
thesis also has some abnormal qualities as one reaches two-dimensional structure. These
qualities are enhanced optical properties as one goes from indirect to direct bandgap from
quantum confinement as well as thermal and electrical changes. GeSe is of interest for many
scientists, due to its high stability, earth abundant constituents, environmental friendliness
as well as many similar properties of other TMDs. Germanium and Selenium have densities
of 5.32g/cm3, 4.82g/cm3 and electron configurations: [Ag]3d104s24p2 and [Ag]3d104s24p4,
respectively.

As reported by Zhang et al.,[50] there are five polymorphs of GeSe monolayer - α-GeSe,
β-GeSe, γ-GeSe, σ-GeSe and ε-GeSe. However, to the best of my knowlegde, only α,−β have
been realised experimentally. These structures are layered, as the usual TMDCs, but consist
of elements in group IV-VI, meaning the typical monochalgonides are SnSe, SnS, GeSe and
GeS. GeSe has a phosphorus crystal structure which is orthorhombic. Furthermore, the most
stable phase of GeSe is the α-GeSe [50]. A brief introduction of the structural arrangement
of GeSe, optical properties and other properties will be discussed. Furthermore, we will see
how plasmons behave in GeSe.

In figure 4.1 a visual representation of the α-GeSe crystal structure as well as irreducible
Brillouin zone of the orthorhombic structure. In figure 4.1a) we see the layered structure of
GeSe, showing zigzag chains along the single GeSe layers. As discussed in chapter 2 the
layers are bonded together through van der Waals forces with an interlayer binding energy.
In order to mechanically exfoliate layered structured material one needs to overcome the van
der Waals interlayer binding energy. Experimental and theoretical studies of these forces
have been applied to a number of TMDs, showing an interlayer binding energy of
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Figure 4.1: Visual presentation of the crystal structure of α-GeSe with the use of software VESTA
[51] a) b) c) Irreducible Brillouin zone of 1.st Brillouin zone of orthorhombic structure in three
dimensions. Showing special symmetri points along the sides and edges

about 13-21 meV/Å2 [21]. In this work we analyse synthesized GeSe, and not mechanically
exfoliated. The GeSe interlayer binding energy has been calculated as a function of interlayer
distance (d) 1[52], and they suggest that monolayers of GeSe is obtainable through mechan-
ical exfoliation. Where the interlayer binding energy was calculated to be 15-40meV/Å2

when the interlayer distanced varied from 1.0-3.0Å.

In table 4.1 a number of material-dependent values are displayed through a number of
articles. The main propose of this table is to show the variation in reported values across
multiple articles as well as give a good overview over the to main phases α, β in bulk and
monolayer. Interestingly, in bulk GeSe the reported space group is Pnma, with one article
reporting a Pbnm structure, and once we have a monolayer, we see reports of space group
Pmn21. The lattice vectors reported are relatively close in value within one phase, which
amplifies the validity of the experimental values. The interlayer distance reported for

1Interlayer distance is the distance between every subsequent monolayer. Usually, a monolayer is defined by
the intralayer distance plus the interlayer distance.
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Table 4.1: Table of α & β - GeSe, showing space group, lattice vectors (a,b,c),
interlayer distance (d), calculated fundamental bandgaps (EHSE

g , HSE hybrid
functional) for bulk and monolayers.. The star (*) indicates direct band gaps.

Phase Space Group a [Å] b[Å] c[Å] d[Å] EHSE
g [eV]

Bulk

α-GeSe Pnma,Pbnm53,54 4.4-4.553,55 3.8-3.953,55 10.84-11.3153,55 3.3753 0.6-1.3853,55,56

β-GeSe Pnma53,54,57 8.153 5.853 3.853 2.60-3.273,53 0.553

Monolayer

α-GeSe Pmn21
54,58 4.26-4.3055,58,59 3.97-3.9955,58,59 – – 1.16-1.66*eV4,52,54,55,59

β-GeSe Pmn21
54,57,58 5.90-5.9157,58 3.66-3.6757,58 – – 2.47-2.9357,58

bulk α, β-GeSe is in the range d = 2.60 − 3.37Å. Furthermore, a number of bandgap
measurements through DFT calculation has been conducted, where they used a HSE hybrid
functional. HSE hybrid functionals is know for overestimating the fundamental bandgap to
some extend. What is important here is the clear increase in bandgap as one goes from bulk
to two-dimensions, as well as the sharp increase in bandgap from α to β-GeSe. In α-GeSe we
have a transition from indirect to direct bandgap as one goes from bulk to two-dimensions
as well, which is compatible with literature of many two-dimensional materials [20, 21].

As well as many calculated values of the bandgap through the powerful algorithms of
DFT, there has also been experimental values assembled. One of the greatest technique
to measure optical bandgaps is through photoluminescence. As we know that there has
been difficult challenges in producing pure two-dimensional GeSe. There has been a report
of GeSe triangular nanoplates showing a bandgap of Eg = 1.246eV, at estimated thickness
from AFM to be 44nm [60]. This would still be considered bulk, and bandgap as a function
of thickness would still be plausible. The value of 1.246eV would then be attributed to
bulk GeSe. The article "Two-Dimensional GeSe as an Isostructural and Isoelectronic Analogue of
Phosphorene: Sonication-Assisted Synthesis, Chemical Stability, and Optical Properties" [3], were
able to control the thickness of GeSe-flakes through varying the centrifugal speeds. They
showed a variation in bandgap as a function of thickness to some extend. The reported
values of bandgap was Eg = 1.08-1.53 eV. From bulk to four sheets of GeSe (∼ 2nm), where
a monolayer was reported to be 0.54nm. Lastly, brute force methods have also been applied
in order to achieve two-dimension in GeSe [8], here they laser thinned the GeSe sheets in
order to achieve an average thickness of 1.5nm, and achieved a broad PL-spectra with eight
continuous peaks located at ≈ 2.105, 1.893, 1.682, 1.494, 1.199, 1.053, 0.944, and 0.852 eV.
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4.2 Determining topography of GeSe

In order to get a good overview of the sample under investigation, pure topography analysis is
performed. Scanning electron microscope as well as optical microscope images are taken in order to
get a ’feel’ of what we are working with. Furthermore, the flake sizes along the elongated direction
are measured. In addition to optical images, SEM images reveal potential binary phases which will
be analysed further in section 4.3 . Lastly, we present AFM- images of what is believed to be GeSe.
These AFM-images are analysed and a variety of thicknesses is observed within a single flake.

4.2.1 SEM & optical microscopy of layered structure

The sample under investigation is purchased from 2dsemiconductors Inc and contains GeSe
mono-and few-layer thick flakes dispensed in isopropanol (IPA). In order to examine the
layered structure the solution was deposited on a substrate of choice. Under this section,
the GeSe solution is deposited on a 1x1cm Si-substrate. We kept the original solution pure,
with no additional IPA applied for thinning purposes. A cleaned Si-substrate 2 was used.
The GeSe solution was transferred to the cleaned Si-substrate by a pipette. Typically, 3-4
droplets of GeSe solution was transferred, for high density of GeSe flakes.

To get an overview of concentration as well as size of GeSe flakes contained in the dispensed
solution, optical images were taken in order to give an approximate understanding of
concentration and size. The optical microscope used was an Olympus BX 41 M. All images
are at 100X magnification power. In figure 4.2 four optical images of GeSe deposited on
Si-substrate are presented. All four images are from the same substrate, and in close vicinity
to each other. The GeSe flakes was inhomogeneously distributed across the Si-substrate.
The location depicted in the four optical images were the highest density locations on
this particular sample. At this high density location, one can clearly see a reasonably
homogenous distribution with the small exception of figure 4.2b).

In addition to optical images, we performed high resolution SEM images. SEM images
permits a better resolution than optical microscopes, contributing to a more in depth
understanding of the surface structure of GeSe. The SEM used was a JEOL IT-300. As seen
by figure 4.3, two images with 5 and 10 microns inset bar were acquired. These images
differs somewhat by the phases occurring. In 4.3a) we see a potentially pure GeSe flake,
as evidence by EDX in subsection 4.3.1. This image provides an excellent overview of the
structure presented by GeSe. We can clearly see a layered structure as

2Basic cleaning procedure; Si-substrate washed in IPA for 2-3min and then displaced in ultrasonic water for
another 2-3min. Thereafter, Si-substrates was rinsed of with deionized water for additional 2-3min. Finally, the
Si-substrate was dried by N2
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a) b)

c) d)

Figure 4.2: Microscopic image of GeSe on a 1x1cm Si-substrate. Inset bar is at 25µm. Every picture is
taken in close vicinity to each other.

predicted for two-dimensional materials. It is fair to assume that this flake is not two-
dimensional, it is rather in the bulk regime. However, towards the left side of the flake,
one can see a minimised thickness. From the left side towards the centre, one can observe
a clear step-wise increase in thickness as multiple layers of GeSe is applied. From figure
4.3a) it is hard to see any clear impurities or other phases present. From figure 4.3b) we
can see a different SEM image with an approximately identical GeSe flake amongst an
accumulation of needles and other irregularly shaped particles. This sample was provided
by a previous batch of GeSe solution from 2dsemiconductors Inc which was deemed impure
due to the accumulation of different phases arising from thermal fluctuation during travel.
These different phases occurring are nonetheless interesting, and we will determine the
elemental composition as well as plasmon peak dependency as a function of phases. This
will become subject of section 4.3.

To estimate the average size of the deposited GeSe flakes, a thorough analytical process of
measuring each individual flake was used. From the optical images seen by figure 4.2, plus
one additional site, we measured each individual flake along the elongated direction in
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a) b)

Figure 4.3: Scanning Electron Microscope image of GeSe from GeSe dispensed in isopropanol
solution deposited on a 1x1cm Si-substrate. a) Image of pure GeSe flakes. One can clearly see the
layered structure as anticipated. b) Accumulated region from another GeSe dispensed isopropanol
solution. This show some binary phases differentiated by the colours orange and cyan, and GeSe
flake coloured red. These binary phases will be addressed in subsections 4.3.2 and 4.3.3.

order to get an overview of the size. Measurements were done manually across 525 GeSe
flakes seen in the optical images. The aim of this analytical process is not to get defined
and exact data, but rather an estimate. Once the 525 data points were collected we could
see the distribution of size. In figure 4.4 a histogram of the collected data points is shown.
Flake-size collected was estimated to have a mean value of 3.049µm along the elongated
direction with the standard deviation estimated to be σ=1.821µm. This show a rather large
’spread’ of estimated size of the flakes along the elongated direction.
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Figure 4.4: Histogram distribution of flake sizes. Values extracted from optical images along the
elongated direction of each individual flake. Mean value from 525 data points from five different
locations on sample is 3.049µm with a standard deviation σ = 1.821µm .
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4.2.2 AFM-result of GeSe layered structure

Further analyses of the GeSe topography is presented here, through the technique of AFM.
In order to give an overview of the thickness of the GeSe flakes distributed, AFM was
performed. There is a great technical challenge to image pure two-dimensional materials
through AFM. Sensitive measurements needs to be taken in order to see an atomic sheet
down to 0.5-1.0nm. In this subsection we present two AFM-images from two distinct
locations on GeSe deposited on Si-substrate. Si-substrate was the substrate of choice due to
its fine surface structure, allowing a more accurate measurement of GeSe. The AFM used
was a Veeco Dimension 3100.

In figure 4.5 we see the first AFM images, where the size of the flake is well within the
margins of estimated values of the flakes elongated direction. As seen by the topography
images 4.5a,b) the images are contaminated with periodically displayed spots. These spots
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Figure 4.5: Topography image using AFM - from flake 1. a) 2D image of potential GeSe, with
colorbar displaying thickness in nanometer. Red lines indicate the line profiles in c). b) 3D image of
the same flake, where the z-axis is in the range of 0-132nm c) Thickness profile from the line profiles
in a), with thickness of the layers inserted.
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may be due to contamination of the AFM-tip. As the tip is scanned across the sample
surface, it may pick up loose impurities and contaminate the produced image. One could
by this assume that these spots are created by the contaminations of the AFM probe and
are not representative to the real surface. Furthermore, line profiles were extracted from
the images in order to examine the thickness profiles along certain directions. In figure
4.5a) we see three line profiles labeled 1,2 and 3. These three line profiles were placed
along the location of the thinnest step-size available at this flake. In figure 4.5c) we see the
thickness profiles belonging to the lines in 4.5a). The thickness was estimated by calculating
the average thickness from each layer in the line profiles and subtract the lower layer to get
the thickness. Line 1, gives a unsharp step of about 4.90nm. By following the reported
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Figure 4.6: Topography image using AFM - from flake 2. a) 2D image of potential GeSe, with
colorbar displaying thickness in nanometer. Red lines indicate the line profiles in c). b) 3D image of
the same flake, where the z-axis is in the range of 0-164nmc) thickness profile from the line profiles
in a), with thickness of the layers inserted.
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monolayer thickness of 0.54nm [3] and the interlayer distance of d = 2.60 − 3.37Å, this
is equivalent to a stacking of ∼6 monolayers. Line 2, show a sharp step of 3.81nm, ∼4
monolayers. Line 3 has three steps of 8.27, 3.87 and 8.32nm which corresponds to ∼ 10, 5
and 10 monolayers, respectively.

On the same sample we performed another AFM-image on another location. We were able
to detect another flake with the same kind of structural shape as in figure 4.5. In figure
4.6, however, the remnants on the tip is removed by the use of a new AFM probe. The
same procedure is conducted here, as in figure 4.5. In this flake there seems to be smaller
steps in the layered structure, as seen by figure 4.6c) the steps is consistently in the range of
2.70 − 3.35nm. Where line 1 has a step of 2.70, ∼3 monolayers. Line 2, has a step of 3.35nm,
∼4 monolayers, and line 3 has a step of 3.02nm, ∼4 monolayers.
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4.3 Transmission Electron Microcopy results (TEM)

In this section Transmission Electron Microscopy will be utilised. To further our understanding of
GeSe as well as the peculiar binary phases occurring in our sample STEM, EDX and EELS will
be used. We dive in to three main regions consisting of three different elemental compositions. The
three phases under study are named GeSe flake (flake morphology), Ge-rich (random morphology)
and Se-rich (Needle-like morphology), corresponding to figure 4.3b). The main goal in this section is
to determine the exact elemental composition and the behaviour of plasmon peaks as a function of
thickness in pure GeSe and plasmon peaks as a function of chemical variations (phases). In order
to achieve the correct plasmon peaks dependencies, we will firstly investigate the sample through
STEM and EDX. Then, once the phases and thickness are established we will move on to EELS
measurements. The experiments were performed in a FEI Titan G2 60-300 kV STEM, equipped
with a probe-corrector. Supplementary information of specific positions of EELS measurements,
Low-loss spectra, python scripts, as well as calculated thickness profiles for GeSe flake is found in
Supplementary Information3

4.3.1 STEM & EDX of GeSe (flake morphology)

We examined regions exhibiting three characteristic morphologies: flake, random and
needle-like. Starting with GeSe flake, STEM images are shown in figure 4.7. The images
show three different modes of STEM, a) Annular Dark Field (ADF), b) High Angle Annular
Dark Field (HAADF) and c) Annular Bright Field (ABF). Close to the edges within both
GeSe_ROI_1 and GeSe_ROI_2 there is a slight decline in intensity in the HAADF image.
As we know from subsection 3.1.1, the HAADF image is pure Z-contrast, and the decrease
in intensity in HAADF image could point to a lower concentration of Selenium (Z=34) in
comparison to Germanium (Z=32). However, as the Z-numbers does not differ much, the
intensity difference could be an indication of lower thickness of the sample. All further
results are in the vicinity or in the marked regions, named, GeSe_ROI_1 and GeSe_ROI_2,
as seen by the figure 4.7d).

A High resolution STEM-image is taken within GeSe_ROI_2 as seen in figure 4.8a), and
the corresponding Fast Fourier transformation (FFT) in b). The colored rectangles in a) are
line profiles along four different directions. Intensity profiles were collected from the given
rectangles yielding a way of estimating the lattice spacing, the intensity profiles are available
in Supplementary Information. The IP1 intensity profile gave a lattice spacing of 0.284nm
which is consistent with the (111) plane of GeSe, and IP2 gave a lattice spacing of 0.289nm
which matches the (011) plane of GeSe [3]. Furthermore, the intensity profiles of IP3 and
IP4 yielded lattice spacings of 0.382nm and 0.429nm, respectively. These measurements may
be attributed to (010) [0.382nm] and (001) [0.429nm] planes [7]. In figure 4.8b) a Fourier

3Supplementary Information is provided through the link: https://github.com/Kristopy/The-Effect-on-
Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases.

https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
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a) b) c)

d) Complete overview of GeSe flake, illustrating the areas where EELS spectra were acquired.

GeSe_ROI_1

GeSe_ROI_2

ADF-STEM HAADF-STEM ABF-STEM

Figure 4.7: STEM image of GeSe flake and regions of interest (ROI) - GeSe_ROI_1 and GeSe_ROI_2.
a) Angular Dark Field (ADF) image taken with STEM, showing regions of interest. b) High Angle
Annular Dark Field (HAADF) image. c) Annular Bright Field image (ABF). All scale bars in a,b,c are
at 200nm. d) A complete overview of EELS spectra obtained at four different location on GeSe flake.

transformation of the same STEM image in a) is shown, and the subscripted vectors were
measures through intensity profiling as in a). Where we measured; b1 = 5.26 1/nm and
the orthogonal vector b2 = 4.62 1/nm. b1

3, b2
3, was approximately the same with measured

values of 3.51 and 3.52 1/nm.

In order to determine the atomic concentration we performed EDX to the main regions
marked in figure 4.7a). These regions of interest are the regions where we perform EELS
measurements as well (with some minor discrepancies seen in Supplementary Information).
In order to determine the plasmon peaks as a function of phases we firstly need to determine
the atomic concentration. As seen in figure 4.9a,b) an EDX-map of Ge and Se is shown. A
rather homogeneous distribution of Ge and Se is observed. In addition to measuring the
atomic concentration deep within the flake, we also performed measurements towards the
edges (annotated by transparent boxes).

https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
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a) b)ABF-STEM ADF-STEM Fourier transformation

Ge
Se

IP1 IP2

IP3

IP4

Figure 4.8: High resolution STEM-image of GeSe_ROI_2. a) High resolution HAADF-STEM image.
b) Corresponding FFT.

Elemental composition within each region is provided through table 4.2. As seen, the
total elemental composition in both GeSe_ROI_1 and GeSe_ROI_2 is both approximated to
Ge0.55Se0.45. However, a slight Ge-enrichment at the edges is observed shown in table 4.2.
The edge positions were measured such that vacuum was excluded. In the provided atomic
concentration of edge position in table 4.2, oxygen is not taken into account. There is no

GeSe_ROI_1 GeSe_ROI_2

GeSe_ROI_1_Edge

GeSe_ROI_2_Edge

a) b)

Ge Se SeGe

Ge

Se

Ge

Se

Figure 4.9: EDX quantified maps of the two regions of interest. a) EDX-maps of Ge and Se at
GeSe_ROI_1, scale bar at 200nm b) EDX-maps of Ge and Se at GeSe_ROI_2, scale bar at 90nm.
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doubt that oxygen is present within the sample, as seen by Supplementary Information,
EDX-spectrum of both GeSe_ROI_1 and GeSe_ROI_2 is shown. The spectrum confirms the
presence of oxygen within both regions of interest. There is also an intensity signal from Cu
present, this is due to the TEM-grid used in sample preparations. The TEM grid is a copper
grid coated with carbon.

We also defined local positions within each ROI. An overview over the positions within
GeSe, is shown in figure 4.7d) as well as Supplementary Information. Multiple regions
within ROI_1 and ROI_2 is analysed through EELS. Three regions analysed in ROI_1 named
POS_1, POS_2 and POS_3. As well as EELS spectra collected at these positions, an estimation
of the effective thickness is also collected through the method discussed in subsection 3.1.2,
and will be further discussed in section 4.4.

Table 4.2: Table of elemental composition from EDX measurements. Local
edge measurements GeSe_ROI_#_Edge* does not include oxygen.

Element Atom. C [at.%] Rel. Error σ [%]

Ge 54.75 3.14
Se 45.25 3.18

GeSe_ROI_1

Ge 65.62 5.76
Se 34.38 7.90

GeSe_ROI_1_Edge*

Ge 54.54 3.06
Se 45.46 3.07

GeSe_ROI_2

Ge 79.86 3.68
Se 20.14 5.48

GeSe_ROI_2_Edge*

https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
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4.3.2 STEM & EDX of Se-rich phases (random morphology)

The second main regions under the scope of this thesis is called Se-rich phases. This region
is consistent with what we saw in figure 4.3b). In figure 4.10, the images are of ADF, HAADF
and ABF-STEM. Due to the weak structure we could not gather high resolution images from
this region. As was done for GeSe flake, we also focus in on two regions of interest here
and analyse through EELS. Mainly, our focus here is to collect the variation in elemental
composition, and ultimately find how plasmon peaks varies with elemental composition.

a) b) c)

d) Complete overview of Se-rich regions, where EELS spectra were acquired.

Se_ROI_2

Se_ROI_1

ADF-STEM HAADF-STEM ABF-STEM

Figure 4.10: STEM image of Se-rich phases and regions of interest (ROI) - Se_ROI_1 and Se_ROI_2.
a) ADF-STEM showing regions of interest. b) HAADF image. c) ABF image. All scale bars in a,b,c
are at 100nm. d) A complete overview of area where we acquired EELS spectra.
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Se-rich phase (ROI 1)

This is the first region of interest within the Se-rich phase. As seen by figure 4.10b) the
square box indicates the position of Se_ROI_1. Only one EELS measurement were done here,
named, Se_ROI_1_POS_1. The exact positions of where the EELS spectra were obtained
are found in figure 4.10d). Two EDX-measurements were done here, in order to get a good
understanding of the compositional nature. In the total Se_ROI_1 as seen by figure 4.11,
the measured atomic concentration was Ge0.14Se0.86 (values from Table 4.3). This value
indicates close to pure Selenium as an average of Se_ROI_1. Further measurements were
done, and in this case they were manually placed in the vicinity of the obtained EELS
spectra. As we locally varied the area of EELS spectra, we also needed to have the exact
elemental composition within that exact EELS spectra location. The measured values on
Se_ROI_1_POS_1 (seen in figure 4.10d)) were Ge0.20Se0.80. Here we again see a slight decrease
in Selenium in the same manner as for GeSe flake along the edges. This is assumed to be
due to a thinner region, and consequently a higher oxidised region because of increased
surface to volume ratio.
a) b) c)

Figure 4.11: EDX maps of Se-rich phase (Se_ROI_1). All scale bars are at 30nm.

Se-rich phase (ROI 2)

The second region of interest in taken to the far left in figure 4.10c). Within this ROI,
two subregions were measured through EELS. As seen by figure 4.10d), two areas of
acquired EELS spectra were collected. Furthermore, in this section we will not go into
detail of the collected EELS-data, specific information of the Low-loss spectra is provided in
Supplementary Information and will be discussed in section 4.5.

The two regions named Se_ROI_2_POS_1 and Se_ROI_2_POS_2 show quite distinct different
atomic concentration from the average EDX-map of Se_ROI_2. As we can see by the EDX-
map in 4.12 there seems to be a higher density of Se near the bulk region compared to the
edge (tip). On the other hand, the density of Ge is higher near the edge (tip) compared
to that of the bulk. By examining the measured values from EDX-data, we see by table
4.3 that Se_ROI_2_POS_1 show an elemental composition of Ge0.07Se0.93, which is very

https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
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close to pure Selenium. Se_ROI_2_POS_2 on the other hand show a completely different
atomic concentration. As mentioned previously, due to decreased thickness a superior
surface-to-volume ratio favours oxidation. The result show an atomic concentration of
Ge0.56Se0.44, which is nearly the same atomic concentration as seen by GeSe flake.
a) b) c)

Figure 4.12: EDX maps of Se-rich phase (Se_ROI_2). All scale bars are at 10nm.

Table 4.3: Table of elemental composition from EDX measurements of Se-rich
phases with some discrepencies marked with (*). Local measurements of
Se_ROI_#_POS_# are included due to EELS measurements at these regions.
Relative average thickness t/λ, and standard deviation σt.

Element Atom. C [at.%] Rel. Error σ [%] Rel. t/λ σt [t/λ]

Ge 14.27 3.66
– –

Se 85.73 3.13
Se_ROI_1

Ge 20.36 5.67
0.33 0.09

Se 79.64 3.96
Se_ROI_1_POS_1

Ge 32.00 3.28
– –

Se 68.00 3.14
Se_ROI_2

Ge 6.68 6.87
0.76 0.23

Se 93.14 3.46
Se_ROI_2_POS_1

Ge 56.43 3.74
0.83 0.02

Se 43.57 4.05
Se_ROI_2_POS_2 *
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4.3.3 STEM & EDX of Ge-rich phase (Needle-like morphology)

The final region of interest exhibited needle-like morphology. This is recalled from 4.3b)
where we saw a needle-like structure. We will do here as we have done in the previous
subsection, namely characterise the elemental composition in various key positions. Firstly,
as seen by figure 4.3.3a-c), ADF, HAADF and ABD-STEM images is taken of the needle
structure. Furthermore, we can see that the needle structure is accompanied with what
looks like an accumulated region as seen previously. We divide between two regions of
interest - Ge_ROI_1 and Ge_ROI_2. As we have seen previously, we divide these regions
of interest in multiple subregions with designated names, ending with POS_#. In Ge-rich
needle-like morphology, seen in figure 4.13d), we have four position within the two different
ROIs, whereas three of them is within Ge_ROI_1, and one is from Ge_ROI_2. For exact

d) Complete overview of Ge-rich regions, where EELS spectra were acquired.

a) b) c)
Ge_ROI_1

Ge_ROI_2

ADF-STEM HAADF-STEM ABF-STEM

Figure 4.13: STEM image of Ge-rich phases and regions of interest (ROI) - Ge_ROI_1 and Ge_ROI_2.
a) ADF-STEM showing regions of interest. b) HAADF image. c) ABF image. All scale bars in a,b,c
are at 500nm. d) A complete overview of area where we acquired EELS spectra.
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information of the Low-loss spectra for each distinct location provided, see Supplementary
Information. Further information of the Low-loss spectra will be provided in section 4.5.

Se/Ge-rich phases (ROI 1)

We start by analysing Ge_ROI_1, and as we can see by figure 4.14, we could potentially work
with a wide range of atomic concentration of Ge and Se. We analysed all regions marked
in figure 4.13d), that is, all areas of EELS spectra are marked with green. For Ge_ROI_1,
we analyse three regions including the entire Ge_ROI_1 seen by figure 4.14. The atomic
concentration for Ge_ROI_1 is given by table 4.4. Here we find an atomic concentration of
Ge0.11Se0.89, which is a Se-rich phase fairly similar to that seen in subsection 4.3.2. What
is interesting is the layer-like composition of Ge and Se seen in figure 4.14. It seems like
we have pure Ge and underneath we have an extension of the needle seen in figure 4.15.
Nevertheless, we performed three more EDX-measurements of the three regions marked in
4.13d). Ge_ROI_1_POS_1 which is in the upper left in figure 4.14 show, non-surprisingly,
an atomic concentration of Ge0.94Se0.06. Moving onwards to Ge_ROI_1_POS_2, we see a
slight decline in Ge giving us Ge0.91Se0.09. The last position, Ge_ROI_1_POS_3, we seem
to not measure the needle. We measure a Se-rich phase with an atomic concentration of
Ge0.07Se0.93. It need to be mentioned that the relative error is significantly high during these
measurements. This is mainly due to exposure time as well local estimation from a rather
large spatial resolution image.

a) b) c)

Figure 4.14: EDX maps of Ge/Se-rich phases (Ge_ROI_1). All scale bars are at 100nm.

Ge-rich phase (ROI 2)

Ge_ROI_2 is the final position analysed, as seen by figure 4.15, we mainly work with
pure Germanium. Indeed, we made EDX-measurements in two locations (Ge_ROI_2
and Ge_ROI_2_POS_1) and found that the atomic concentration were almost identical
∼ Ge0.96Se0.04. What is interesting by this region is the fact that the needle seems to have
some peculiar structure. Further EELS measurements will be done here to see the effect on
plasmon peaks. Average thickness measurements of the needle regions from the collected
areas of EELS spectra show values ranging from 0.82-1.01 [t/λ], for ROI_1, and 0.48[t/λ]

https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
https://github.com/Kristopy/The-Effect-on-Plasmon-Peaks-in-Quasi-Two-Dimensional-GeSe-by-Variation-in-Thickness-Phases
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a) b) c)

Ge_ROI_2

Figure 4.15: EDX maps of Ge-rich phase (Ge_ROI_2). All scale bars are at 500nm.

for ROI_2. λ is the mean free path for plasmon scattering. The typical value is in the order of
100nm, but dependency of material, energy of transmitted electrons and range of scattering
angles enabled is to be expected [32].

Three main regions have been analysed through STEM and EDX. We have seen a wide range
of atomic concentration throughout the three regions; Gese flake, Se-rich and Ge-rich. An
overview of the elemental compositions are shown in figure 4.16. Where we have element
on the x-axis and the atomic concentration on the y-axis. This wide range of elemental
composition yields an intriguing oppurtionity of analysing plasmon peak energies as a
function of phases. Furthermore, the average thickness of the Se-rich and the Ge-rich phases
are given in tables 4.3,4.4. Further discussion will be given in section 4.5. As for now,
we see that the average thickness is ∼ 76 − 101nm with λ = 100nm, for the two Ge and
Se-rich phases, which is well within the bulk regime. We have some discrepancies for
Se_ROI_1_POS_1 and Ge_ROI_2_POS_1 which show an average thickness of ∼ 33 and
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GeSe_ROI_1_edge:  Ge0.66Se0.34
GeSe_ROI_2     :  Ge0.55Se0.45
GeSe_ROI_2_edge:  Ge0.80Se0.20
Se_ROI_1       :  Ge0.14Se0.86

Se_ROI_2       :  Ge0.32Se0.68
Se_ROI_1_POS_1 :  Ge0.20Se0.80
Se_ROI_2_POS_1 :  Ge0.07Se0.93
Se_ROI_2_POS_2 :  Ge0.56Se0.44
Ge_ROI_1       :  Ge0.11Se0.89

Ge_ROI_2       :  Ge0.96Se0.04
Ge_ROI_1_POS_1 :  Ge0.94Se0.06
Ge_ROI_1_POS_2 :  Ge0.91Se0.09
Ge_ROI_1_POS_3 :  Ge0.07Se0.93
Ge_ROI_2_POS_1 :  Ge0.96Se0.04

Figure 4.16: Complete overview of elemental composition of every ROI as well as POS within a ROI.
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∼ 48nm, respectively. These measurements will be taken into account when presenting
plasmon peak energies as a function of phases in section 4.5.

Table 4.4: Table of elemental composition from EDX measurements of
Ge-rich phases with some discrepencies marked with (*). Local
measurements of Ge_ROI_#_POS_# is included due to EELS measurements at
these regions. Relative average thickness t/λ, and standard deviation σt.

Element Atom. C [at.%] Rel. Error σ [%] Rel. t/λ σt [t/λ]

Ge 10.65 3.33
– –

Se 89.35 3.04
Ge_ROI_1*

Ge 93.96 5.27
0.82 0.10

Se 6.04 18.88
Ge_ROI_1_POS_1

Ge 90.73 12.52
0.98 0.13

Se 9.27 41.18
Ge_ROI_1_POS_2

Ge 6.87 21.03
1.01 0.05

Se 93.13 6.70
Ge_ROI_1_POS_3*

Ge 95.59 3.15
– –

Se 4.41 5.81
Ge_ROI_2

Ge 96.05 5.20
0.48 0.05

Se 3.95 23.15
Ge_ROI_2_POS_1



4.4. Plasmonic behaviour as a function of thickness through EELS 73

4.4 Plasmonic behaviour as a function of thickness through EELS

We have by know examined the topography and elemental composition of multiple different
occurring structures. Furthermore we have determined pure GeSe flake, in this section we
will present and discuss the results of EELS-measurements of GeSe. The main goal is to
characterise the behaviour of plasmon peaks as a function of thickness. EELS is capable of
measuring the thickness as explained in section 3.1.2.

We start by analysing the acquired EELS spectra collected from GeSe_ROI_2_POS_1. The
average Low-loss spectra from the entire EELS spectra is provided in Supplementary
Information. In figure 4.17a) we see the familiar ADF-STEM image of GeSe flake. In
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Figure 4.17: EELS measurements of GeSe_ROI_2_POS_1 acquired from the area annotated by the
blue square in a).b) EELS measurements were done within the obtained EELS spectra shown by the
green rectangle. Gradually increased thickness along the EELS spectra shown by the red arrow.
Multiple red insets of 10x10nm was applied for Low-loss spectra at localised regions. c) Low-loss
spectra of each red square from b). Dark lines indicates bulk region deep within the flake, and
bright lines indicates quasi-two dimensional regions near the edge. Clear blue shift in plasmon peak
is detected from bulk to quasi-two dimensions in GeSe.
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figure 4.17b) we see the EELS spectra with 10x10nm red square insets. These insets are
chosen and analysed individually in order to see clear thickness dependence in the plasmonic
behaviour. As we previously mentioned we are able to analyse the average thickness in
the EELS spectra from integral intensity profiles. By this we are able to collect a graph of
the average thickness along the red arrow indicated in figure 4.17b). Once we have the
thickness profile along the EELS spectra as well as correct dimensions, we calculated the
average thickness of one 10x10nm inset. For further information of the thickness profile
collected from the EELS spectra see Supplementary Information.

In figure 4.17c) we see the final Low-loss spectra from each individual square inset. Dark
lines indicates bulk regions, deep within the flake. As the thickness is reduced, we see
a clear decrease in intensity in the Low-loss spectra. This is due to a reduced amount of
scattered electrons entering the GIF-entrance, as a consequence of the reduced thickness.
Each Low-loss spectra has underwent a background-subtraction after calibrating the zero-
loss peak. Furthermore, we analysed the position of plasmon peaks through a peak-finding
algorithm. The dataset was transformed using a multiple gaussians-fit algorithm to exclude
noice. In order to have a good approximation to the real values, the estimated Low-loss
spectra had a root mean square RMS = 10e−10. From this estimated function the plasmon
peaks was found through a peak finding algorithm, which is based on the derivative and
alternating signs. From this we found that the plasmon peaks had a clear blue shift in
energy as the thickness was reduced. The shift in energy of the plasmon peak takes place at
approximatly . 22 ± 1.2nm from Ep ∼ 16.30 − 17.83eV. The inset in figure 4.17c) are pure
gaussian functions from the estimated peaks in the Low-loss spectra.

As we previously mentioned, quasi-two dimensional materials tend to show a clear thickness
dependency in bandgap energy. Further decreasing the dimensions to quasi-two dimensions
quantum confinement effects becomes more prominent. The clear blue shift in plasmon peak
could be related to the bandgap energy, as the number of layers (N) in GeSe is decreased so
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Figure 4.18: Bandgap estimation from Tauc plot method. Values collected from GeSe_ROI_2_POS_1,
where each line is consistent with figure 4.17c). A clear increase in bandgap as the thickness is
decreased is shown. From ∼1.53eV at ∼ 50±1.8nm to ∼1.64eV at ∼ 14±4.6nm
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is the number of energy bands. Furthermore the surface-to-volume ratio is increasing
with decreasing thickness, and the bandstructure becomes extremely sensitive to external
interactions. This suggest that external interaction such as strain would modify the electronic
bandstructure. There are two main factors which may provide a shift in plasmon peaks, as
the thickness is decreased. The change in inter-atomic distance and dielectric constant. We
have unfortunately, not measured these values.

In order to see a clear relation between plasmon peaks and bandgap, we estimated the
bandgap through a linear fit method, which is frequently used in EELS [61]. The bandgap
energy may be estimated from the intersection of a linear fit to the onset of the Low-loss
spectra. The linear fit model was implemented on the Urbach tail as seen by figure 4.18. We
are able to extract an estimation of the bandgap from each individual Low-loss spectrum
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Figure 4.19: EELS measurements of GeSe_ROI_2_POS_1 acquired from the area annotated by the
blue square in a).b) EELS measurements were done within the EELS spectra shown by the green
rectangle. Gradually increased thickness along the EELS spectra shown by the red arrow. Multiple
red insets of 1.5x10nm were applied for Low-loss spectra at localised regions. c) Low-loss spectra of
each red square from b). Dark lines indicate bulk region deep within the flake, and bright lines
indicate quasi-two dimensional regions near the edge. Both red and blue shifts of plasmon peaks
was detected.
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as seen in figure 4.17c), and we see a clear trend in in the variation in bandgap as a function
of thickness and plasmon peak. The colour onset in figure 4.17c) is identical to that of figure
4.18. We see that the bandgap increases from ∼ 1.53eV at t ∼ 50 ± 1.8nm to ∼ 1.64eV at
t ∼ 14 ± 4.6nm. This does, however, not completely match that of plasmon peak variation.
We see that the increase in bandgap starts around t ∼ 40nm, where we do not have any
clear shift in plasmon peak. The reason for this is unclear, even though multiple factors
may intervene when collecting and analysing data from the EELS-measurments. As these
measurements were not done with monochromated EELS, we are subject to low energy
resolution, which consequently gives a poor estimate of the bandgap.

In Figure 4.19, we kept the same region of interest. We previously worked with 10x10nm
insets, which gave a mean value of the Low-loss spectra as well as a mean thickness.
The standard deviation of the average thickness from the 10x10 inset, seen in table 4.5,
show an average deviation of ∼ 7.53%, we want to lower this value as well as the average
thickness. As we see in figure 4.19b) the insets are decreased. In this case we have decreased
them to 1.5x10nm. By narrowing down one dimension, we are able to get a more precise
determination of the average thickness. Our new measurements show an average standard
deviation of ∼ 6.04%, we have successfully reduced the average standard deviation, values
of the standard deviation as well as thickness for each inset is seen in table 4.5. Furthermore,
as seen by figure 4.19c) we have also successfully reduced the average thickness for each
individual inset. By using λ = 100nm we find the thinnest inset to be t ∼ 7 ± 0.7nm which
is around 8 monolayer of GeSe.

Table 4.5: Table of measured average thickness for each Low-loss spectrum in
figure 4.17c) and 4.19c). Standard deviation of thickness is given by σt.

GeSe_flake_ROI_POS_1

10x10nm 1.5x10nm
Rel. t/λ σt[t/λ] Rel. t/λ σt[t/λ]

— 0.14 0.046 0.07 0.007
— 0.22 0.012 0.09 0.006
— 0.26 0.020 0.12 0.010
— 0.34 0.028 0.15 0.013
— 0.40 0.021 0.16 0.013
— 0.43 0.014 0.18 0.003
— 0.45 0.013 0.20 0.006
— 0.46 0.015 0.21 0.012
— 0.47 0.017 0.21 0.006
— 0.50 0.018 0.22 0.012
— – – 0.21 0.005
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The plasmon peaks show a peculiar variation which deviates from the plasmon peak
variation in figure 4.17c). We can see that the plasmon peak show a clear blue shift in
energy from around t ∼ 22 ± 0.5nm to t ∼ 18 ± 0.3nm. Which is consistent with previous
measurements of the 10x10nm inset. Once the thickness decreases below t ∼ 15 ± 1.3nm we
see a drastic red shift in plasmon peak energy. This red shift could be explained through
surface plasmons. Once the quantum confinement effect becomes large, surface plasmon
dominates over bulk plasmons. There has been reports of surface plasmon in atomically
thin samples [38]. Where the plasmon peak energy showed a clear decrease in energy in
contrast to the bulk plasmon peaks. The main reason could be that the excitation of a surface
plasmon mode requires less energy than the bulk counterpart. The surface plasmon can be
estimated from the simple relation [38]:

Esp =
Ep√

2
(4.1)

Bandgap measurements of the 1.5x10nm inset did not give any reliable data, as the number of
incident electron scatterers sufficiently dropped from that of 10x10nm inset. The background
subtraction proved to give an unreliable Urbach tail, as clearly seen in figure 4.19c), and the
high noise-to-signal ratio gave insufficient results.

4.5 Plasmonic behaviour as a function of phase through EELS

We have by now analysed the elemental composition of the three main regions of inter-
est; GeSe flake, Se-rich and Ge-rich phases. Furthermore we have determine the aver-
age thickness at the different locations. In the last section 4.4, we specifically looked at
GeSe_ROI_2_POS_1, and saw clear plasmon peak dependency as a function of thickness. In
this section we will look at each location to see a plasmon peak dependency as a function
of elemental composition. As we already have seen, the plasmon peaks for pure GeSe, is
around ∼ 16.25eV. One would expect a shift in plasmon peak as a function of elemental
composition, as the fundamental structural arrangement change with variation in atomic
percentage. A number of factors within the structural arrangement could give a response
in plasmon peaks. A change in the compositions space group would definitely change the
bandstructure which consequently could give a shift in plasmon peak. Furthermore, slight
increase or decrease in the interlayer distance (d), lattice vectors (a, b, c) and bond lengths
would potentially give a shift in plasmon peaks.

In order to discover a potential plasmon peak shift as a function of phase we used the
values calculated in tables 4.2,4.3 and 4.4. As we already have collected EELS spectra at
these locations we are able to extract the average Low-loss spectra at these locations. As
seen by figure 4.20a) the plasmon peak energy is plotted in the x-axis and every position of
interest as mentioned in subsections 4.3.1 , 4.3.2 and 4.3.3 are plotted in the y-axis. The first
column is represented by GeSe flake, and the plasmon peaks show an average energy of
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∼ 16.33, when excluding the 10x10nm_GeSe_ROI_2_POS_1. The measurements are taken
as an average over the entire EELS spectra, if not stated otherwise. The black dot from the
10x10nm inset in figure 4.20a) show a plasmon peak at ∼ 17.82eV, and is directly taken
from the values in figure 4.17c), as we see, this value is extracted from the thinnest 10x10nm
inset. We have already established that the plasmon peaks in pure GeSe shifts as a function
of thickness, and we can with confident say that the plasmon peaks for pure GeSe is around
∼ 16.33eV. As we saw from the EDX-analysis, we determined a stable atomic percentage
of Ge0.55Se0.45. Naturally, as the surface-to-volume ratio increases the presence of oxygen
becomes more prominent. It is possible to assume that the edge location suffers from a
higher concentration of oxygen as mention previously, furthermore we have shown that the
edges are Ge-rich.

The second column in figure 4.20a) show a trend in the Se-rich phase. On first sight, we see
that the plasmon peaks has shifted up in energy by ∼ 1.53eV, for the three positions in the
second column, these three location show a high percentage of Selenium as we previously
discussed. And the average plasmon peak energy was estimated to be ∼ 17.83eV. We
also note that the relative average thickness for these three positions were ∼ 33 ± 9nm, ∼
76 ± 23nm and ∼ 101 ± 5nm for Se_ROI_1_POS_1, Se_ROI_1_POS_2 and Ge_ROI_1_POS_3,
respectively. It is fair to assume that surface plasmon do not dominate within these regions.
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Figure 4.20: a) Diagram of plasmon peak energies as a function of phases. b) Designated Low-loss
spectra from each position showing a clear shift in plasmon peak as a function of phase.
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The third and final column in figure 4.20a) show the trend in the Ge-rich phase. When
we analysed the elemental composition of the variety of regions we got a wide spread in
atomic percentage at the different locations. The first two positions in the third column are
nearly pure Germanium, which show an plasmon peak energy of ∼ 20.55eV and ∼ 21.17eV,
respectively. The average plasmon peaks energy results in a shift up in energy of 3.15eV from
that of nearly pure selenium from column two. Furthermore, the last position in the third
column; Ge_ROI_2_POS_1, show a peculiar plasmon peak at 13.57eV. This discrepancy of
plasmon peak energy compared average energy of ∼ 20.86eV, suggest that surface plasmons
dominate. By using the estimated equation for surface plasmons in equation 4.1, we find
that the approximated bulk plasmon should be ∼ 19.19eV. The average thickness at this
location was calculated to be 48 ± 5nm. Even though we did not see any prominent surface
plasmons at this thickness in pure GeSe, this could still be the case. A close look at figure
4.20b) reveals that the surface plasmon is accompanied by a shoulder peak which is the bulk
plasmon counterpart.

In figure 4.20b) we simultaneously plot all Low-loss spectra for all positions discussed,
except the localised 10x10nm insets. At first sight it is difficult to see a clear trend, the
stippled lines indicates how the plasmon peak is shifted as a function of phase. We see
that pure GeSe from the flake has the lowest plasmon peak energy, followed by Ge0.1Se0.9

at a slight increase of about 1.38eV, thereafter followed by Ge0.9Se0.1 at an increase of
about 3.15eV. The plot of the spectra are normalized in order to see the shape of each
plasmon peaks. One imminent feature of the plasmon peaks are the width. We can see that
pure GeSe show narrow plasmon peaks in contrast to Ge0.1Se0.9 and Ge0.9Se0.1. The reason
for an increase in width could be the fact that not all Low-loss spectra pixels yields the
same plasmon peaks, so that when we are taking the average we are in fact observing a
superposition of multiple plasmon peaks. We also see Ge0.56Se0.44, named Se_ROI_2_POS_2,
which is nearly identical to that of GeSe flake. Even though the elemental composition
is nearly identical, the plasmon peak energy is clearly shifted. We measured the average
thickness in this EELS spectra in table 4.3, the value extracted was around 83 ± 2nm. This
value is clearly bulk, which suggest that the peak should be around ∼ 16.33eV. The plasmon
peak energy is at 18.70eV, which is in close proximity of the t ∼ 18 ± 0.3nm plasmon peak
at 18.28eV in figure 4.19c).

4.6 Bandgap measurements - EELS & micro-PL

Here we will make a small comparison between bandgap measurements from EELS in
section 4.4 and micro-PL. Micro-PL technique allows for excitation spot of only a few microns
in diameter, which potentially allows for addressing individual GeSe flakes. Furthermore, it
has an advantages in leading to very high excitation intensities (of the order of 100kW/cm2).
Micro-PL: Coaxial excitation configuration: OBJ X50 DM450+LP550 / iHR320Gr2 SL0.2
exc405nm (14mW FWHM 3um) Iexc ∼100kW/cm2.
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Micro-PL measurements of the sample was taken as a supplement to the EELS-measurements.
The goal was to analyse and determine single sheet bandgap of GeSe. Throughout this
chapter we have seen that we are not working with pure GeSe, there are multiple other
phases involved as well. This would deem that our micro-PL results are solely from GeSe,
as questionable at least. In figure 4.21b) we see the prope position for the measurements in
a). The probe position were positioned at the highest density for increasing the probability
of signal.

In figure 4.21a) we see the emission spectra from the measurements with a 405nm laser. We
can see interband emission peaks around 1.8-2.3eV as it exceeds the expected bandgap of
GeSe. Furthermore, we see a prominent emission band centred at 1.24eV, this optical signal
may be attributed to GeSe, however, little evidence suggest that this is indeed pure GeSe.
Even though there have been reports of an optical signal of ∼ 1.20eV of triangular nanoplate
arrays with thickness of ≥ 44nm[60]. These results does not suggest any clear quantum
confinement effects, as the thickness of an average flake is in the bulk region. There is also
no evidence of Spin-Orbit coupling as discussed in section 2.4.4. The interference from other
phases is also a reason to distrust these kind of measurements. As the emission spectra
could contain the emission spectra from several different phases and thicknesses.

a) b) Probe position

Figure 4.21: Micro-PL measurements of potential GeSe at 300K. a) Prominent emission band centred
at around 1.24eV (∼1000nm) which might be an optical signature of GeSe. b) Probe position for
measurements in a).



4.6. Bandgap measurements - EELS & micro-PL 81

In comparison to our EELS-measurments there is an offset of about ∼ 0.3eV, to the micro-PL
measurements. The comparison is based upon the bulk values from EELS. Furthermore, an
advantage of EELS is the spatial resolution. This yields opportunities of selecting localized
regions of interest within the material for data-collection. As we saw in section 4.4, we were
able to vary the measurements with extreme precision, controlling the thickness variation
and enabling bandgap measurements through the linear method. As there are advantages
with EELS there are also disadvantages in comparison to micro-PL. In EELS, one subject to
lower energy resolution, which may yield inaccurate measurements. With this in mind, we
might be subject of inaccurate measurements of EELS when we estimated the bandgap.
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Chapter 5

Conclusion

In summary, we purchased GeSe mono-and few-layer thick flakes dispensed in IPA from
2dsemiconductors Inc, to analyse the plasmonic behaviour as a function of thickness and
phases. In section 4.2, we analysed the topography of the sample after depositing GeSe
solution on Si-substrate. A numerous optical images as well as SEM images gave a greater
understanding of the shapes and sizes of the material dispensed in IPA. The optical images
were analysed through a histogram of the flake size along the elongated direction, and a
mean value of 3.049µm with a standard deviation σ = 1.821 was calculated. Furthermore,
the SEM images collected showed what is believed to be pure GeSe, with the exception of
the needle, and other irregularly shaped particles. Clear step-size topography revealed itself
in the SEM images. In addition to optical and SEM images, the topography was investigated
through AFM. Two successful AFM images was analysed, and showed clear step-size
behaviour. Multiple line profiles was placed on the collected image. With the assumption
that a monolayer is 0.54nm and the interlayer distance is in the range of d = 2.60 − 3.37Å,
the line profiles revealed around ∼ 3 − 10 monolayers of GeSe. Which is, to the best of our
knowledge, the only result confirming a 3 monolayer GeSe from AFM-measurements.

Topography analysis was implemented for a greater understanding of the sample under
investigation. As we saw in section 4.2, multiple phases of GeSe was present. In section 4.3,
a number of EDX-maps was presented as well as STEM images. Firstly, we analysed the
GeSe flake which proved to be pure GeSe, however, no clear step-size structure was detected
from the STEM images. High resolution STEM images were taken from the GeSe_flake,
which gave lattice spacings of 0.284nm consistent with the (111) plane, and of 0.289nm which
matches the (011) plane, according to literature. The EDX-maps showed a clear decrease in
Selenium near the edges of GeSe_flake, which could be due to higher surface-to-volume
ratio, which could increase the possibility of oxidation. Even though, there have been reports
that α − GeSe[50], and β − GeSe [53] are stable under ambient conditions. Two other regions
of interest was analysed for their elemental composition, namely, Se-rich and Ge-rich. The
EDX-maps revealed a wide variation in the elemental composition ranging from ∼ Ge0.9Se0.1

to ∼ Ge0.1Se0.9, which gave an intriguing opportunity of analysing plasmonic behaviour as
a function of phases.



84 Chapter 5. Conclusion

The main goal was to investigate the plasmonic behaviour as a function of thickness and
phases. In section 4.4 we analysed one region in GeSe flake with EELS. A clear trend in
plasmonic behaviour was seen by varying the thickness of the sample. We observed both
blue and red shift in plasmon energy. The blue shift resulted in an increase in conduction
band energy which consequently increased the bandgap. The bandgap was estimated
through a linear method allowing us to see a clear increase in bandgap as the thickness
decreased. Furthermore, we decreased the size of average Low-loss spectra enabling analysis
of thinner regions on GeSe. The results showed a clear blue shift followed by a red shift at
thickness below ∼ 15 ± 1.3nm. This red shift could be explained by surface plasmons. As
the surface-to-volume ratio is sufficiently large, the effect of surface plasmon surpasses that
of bulk plasmon, and surface plasmon is lower in energy compared to that of bulk plasmons
by a factor of

√
2 according to [38]. In section 4.5, every Low-loss spectra presented was

analysed as an average in order to see a trend in plasmon peaks as a function of phases.
We could see a clear shift in plasmon peak energy as the atomic percentage changed.
In addition, average thickness was calculated at each EELS spectra obtained to rule out
any potential surface plasmons. Some discrepancies occurred, but a clear blue shift took
place from ∼ Ge0.5Se0.5, ∼ Ge0.1Se0.9 to ∼ Ge0.9Se0.1. The variation in plasmon width could
be determined through the average measurements taken, where we could very well be
observing a superposition of multiple plasmon peaks.

Finally, a brief comparison of EELS and micro-PL was discussed. We estimated the
bandgap through EELS and found a clear increase in bandgap as the thickness was reduced.
These measurements showed a bandgap from ∼ 1.53eV at ∼ 50 ± 1.8nm to ∼ 1.64eV at
∼ 14 ± 4.6nm. On the other hand, micro-PL measurements gave a prominent emission band
centred at 1.24eV, which contradict our EELS measurements. The reason are manifold, as we
have pros and cons in both techniques. Mainly, the energy precision in micro-PL surpasses
that of EELS, while EELS provide a much greater spatial resolution than micro-PL. Further-
more, micro-PL measurements may collect some signal from the other phases discussed
which could influence the emission band observed. The EELS-measurements that provided
the bandgap estimation, could overestimate the bandgap, however, there are reasons to
believe that the bandgap variation as a function of thickness is a real property observed.

Suggestions for Further Work

In this work the plasmonic behaviour as a function of thickness and phases were analysed.
The purchased GeSe dispensed in IPA, proved to be consistent of multiple different atomic
concentrations of Germanium and Selenium. This gave us a genuine opportunity of
analysing the different phases occurring through plasmons.
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For future work, one could optimise EELS measurements for higher accuracy, as well
as gather Low-loss spectra at even thinner regions. One would perhaps not expect any
fundamentally different results if the thickness decreased even further, as surface plasmon
dominate. In addition to analysing different regions of pure two-dimensional thickness, it
would be highly beneficial to conduct strain analysis of the different phases. In this work, no
strain analysis were done. It is therefore difficult to solely attribute the plasmonic behaviour
to either thickness and phases. Especially, strain analysis near the edge of the pure GeSe
flake would yield some interesting result regarding the shift in energy as well as bandgap.
At least in order to determine what is the most reasonable cause of the plasmonic behaviour.

Furthermore, the bandgap analysis conducted through EELS were a rough estimate which
suffers from unreliable data due to low energy resolution. A suggestion would be to
implement a higher energy resolution to EELS measurements, in order to give a more
accurate bandgap estimate - by applying monochromation and work at 60kV to reduce
Cherenkov radiation effects. In addition, it would be interesting to create a 2D map of
the plasmon peaks from the low-loss spectra. This would in turn yield a 2D map of the
bandgaps at different pixels at the low-loss spectra. One would then in theory be able to see
a clear bandgap correlation to the plasmon peaks - which could confirm or disconfirm this
theory.

A more far-fetched approach could be to manipulate the zone axis for a better understanding
of the band structure. By changing the zone axis to multiple different direction, prior to
EELS measurements, one could in theory collect the bandgap of a specified high symmetry
point (in reference to the irreducible Brillouin zone). Electron traveling along a lattice
direction specified by the zone-axis indices [uvw], would then be scattered along this high
symmetry point, potentially yielding the plasmonic behaviour as well as the bandgap. If this
could be realised, a unique technique for analysing the band structure of semiconductors
would be feasible, without any density functional theory applied.
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Appendix A

Effective mass I

Let us consider the effective mass of an electron or hole in a semiconductor. The simplest
way to go about is to treat the eigenvalue of the schrodinger equation as a free electron
experiencing no external potential, the energy dispersion is then:

E(k) = E0 +
h̄2k2

2m
(A.1)

Which is the energy of a free electron. The number of electrons in the conduction band,
as well as the number of holes in the valence band, is small compared to the number of
available electronic states in all cases of relevance, and the few carriers will find themselves
in close proximity to the band extremal points. Around these extremal points, we can
expand the energy dispersion in a Taylor series up to second order:

E(k) ≈ E0 + k
∂E
∂ki

∣∣∣∣
k=0

+
1
2

k2 ∂2E
∂ki∂k j

∣∣∣∣
k=0

+ ... (A.2)

Where the first derivative around the extramal points is zero, so we are only left with the
second order term. Now we may insert the energy for the free electorn into the expansion
of around the extrema points.

E0 +
h̄2k2

2m
≈ E0 +

1
2

k2 ∂2E
∂ki∂k j

∣∣∣∣
k=0

(A.3)

Which then yield the effective mass, which is dependent on the second order derivative of
energy with respect to k.

(
1

m∗

)
ij
≈ 1

h̄2
∂2E

∂ki∂k j

∣∣∣∣
k=0

(A.4)

Here the effective mass is a second order tensor defines the efficive masses along different
crystal directions. Take for example Si and GaAs. Si has a indirect bandgap where the
valence band is located around the Γ point whereas the conduction band is located close
to the X point. Because the X point is symmetric, and has six equivalent points in the



88 Appendix A. Effective mass I

first Brillouin zone, the masses need to be determined by the effective mass tensor. The
crystal structures is identical but the bandstructur is different, yielding bandgaps at different
high symmetry point within the 1.st Brillouin. At the Γ point for GaAs there is no Valley
degenerated states, because the Γ has no equivalent positions. So for GaAs the electron
effective mass simply becomes a scalar of m∗

e .
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