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Abstract

In this thesis we investigate different interpretability methods for eval-
uating predictions from Convolutional Neural Networks. We look at re-
search on several explanation methods with a focus on Local Interpretable
Model-agnostic Explanations (LIME) and Layer-wise Relevance Propaga-
tion (LRP). Our goal is to investigate different interpretability methods and
how robust they are in comparison to each other.

We do initial experiments by testing a set of images with Guided Back-
propagation, Gradient-weighted Class Activation Mapping (Grad-CAM), LIME
and LRP. In the next set of experiments we focus on LRP and LIME. The
models we use are VGG16 with and without batchnorm layers. We use ro-
tation and Gaussian noise to transform the input images. To measure the
robustness we use Root Mean Square Error (RMSE). The transformation is
added to the input and sent through the model. The output from the model
is sent through the interpretability method. The resulting heatmap for the
transformed image is then compared with the original heatmap to measure
the RMSE score. We use a set of small transformations and a set of more
extreme transformations. The transformations we use for rotation are be-
tween 0.5-10 degrees and 15-40 degrees. For the Gaussian noise we use σ
between 0.01-0.10 and 0.25-10.0.

We observe that LIME focuses on super pixels and will therefore be less
robust for transformations compared to LRP. We find that methods which
emphasises on both positive and negative contributions, such as LRP and
Grad-CAM are more helpful since they highlight the regions that contribute
and work against the prediction in the image.

When implementing LRP with models using batchnorm layers we find
that this give unreliable results. We handle this by merging the batchnorm
layers with the corresponding convolutional layer before backpropagating
LRP.

Our experiments show that the explanation from the interpretability
method correlates significantly with the models robustness. Though in
some cases the robustness of the model is not reflected in the interpretabil-
ity method and this is especially noticeable when Gaussian noise are ap-
plied to the input in the LIME experiments.
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Chapter 1

Introduction

In this thesis we look at deep neural networks for image recognition and
explanation methods developed for them. Specifically we look at Convolu-
tional Neural Networks (CNN) [1] as a tool to recognize objects in images
and different explanation methods for these models such as LRP (Layer-
wise Relevance Propagation) [2] and LIME (Local Interpretable Model-agnostic
Explanations) [3].

The deep learning and in particular CNN, have made major impact for
image recognition and outperformed traditional classification methods. In
recent years, for selected applications CNNs have outperformed human
classification ability.

A major issue with deep learning systems is that they act as a black box
meaning that we do not know why they predict as they do. Even though the
model produces high softmax score for a classification, it is not given that
the actual labeled object is detected or even present. In [3] they showed
an example of this: The model predicted a wolf, but by looking at the ex-
planation map it was established that the model was only looking at the
snowy surrounding and not the actual wolf. This shows that it is important
to make these black boxes more interpretable. The image and explanation
from [3] is shown in Figure 1.1.
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Figure 1.1: An example of a prediction of an object that is not present in the
image. The explanation indicates bias in the models trained dataset. Left:
the input image. Right: the corresponding explanation. Image from [3].

CNN architectures are commonly used for image analysis. In a regu-
lar Deep Neural Network (DNN) all weights in layer l is connected to the
weights in layers l − 1 and l + 1. This results in a huge amount of param-
eters. A regular Deep Neural Network (DNN) requires to learn all weights
in the network, while CNN learn weights locally and reduces the amount
of parameters. A CNN model reduces the amount of neurons by taking ad-
vantage of the image 3D size. Unlike a regular deep neural network each
neuron is not connected to all the neurons in the layer before.
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Figure 1.2: Architectures of three CNN models. Left: LeNet-5. Middle:
AlexNet. Right: VGG. Figures from [4].

Figure 1.21 shows the design of three of the most known CNNs. In
1989 LeCun et al. [1] developed the first convolutional neural network
(CNN), LeNet-5. In 1998 LeCun et al [5] showed that the CNN model
trained on a dataset (MNIST) outperformed all other recognition systems
for similar data. In 2012 AlexNet was introduced by Krizhevsky et al [6].
While MNIST was a relatively small grayscale dataset with approximately
60000 training images of size 28 × 28, the dataset (ImageNet) that was
used to train AlexNet contains over 14 million annotated and labeled color
images of size 256 × 256. The model was based on LeNet with more con-
volutional layers and the image sizes and the layers required even more
computational data. AlexNet used two GPUs to parallellize the training.
In 2014 VGG was introduced. In 1.2 the three architectures of the mod-
els are shown. The reason for their popularity was the outperformance of
other computational systems and later also the human perceptron. These
models have inspired the design of even more complex architectures such
as DenseNet [7] and ResNet [8]. As the access to computational power in-
creased rapidly, the design of the models could afford to be more intricate
demanding previously impossible amounts of computational resources.

1https://www.uio.no/studier/emner/matnat/ifi/IN5400/v19/material/week7/in5400_2019_lecture6_training.pdf
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1.1 Thesis goal
For machine learning to be truly useful we have to know why the system
interprets the way it does. By understanding this we can discover errors
both in datasets and how much context plays a role in classification. In
this thesis we have mainly focused on the explanation methods used in
conjunction with CNNs.

A common approach for investigating the interpretability in a CNN is to
study each pixels contribution to the decision. These methods include e.g.
Guided Backpropagation [9], class activation maps [10] and LRP [2]. The
reliability for a CNN can also be studied by looking at changes to the input
pixels. The occlusion experiment [11] is an example of this and how this
affects the explanation.

A negative side to these approaches is that they only investigate one
image at a time and therefore not giving a global explanation that can be
used for similar images/predictions.

In this thesis we investigate different interpretability methods for eval-
uating predictions from CNN models. We look at research on several expla-
nation methods with a focus on LIME and LRP. Our goal is to investigate
different interpretability methods and how robust they are in comparison
to each other.

1.2 Thesis structure
The thesis is structured:

• Chapter 2: Convolutional Neural Networks (CNN) In this chap-
ter we give a short introduction to convolutional networks and how
they are used and trained.

• Chapter 3: Relevant literature review In this chapter we take a
look at different interpretability methods and how they are struc-
tured. This is represented by deconvnet, Guided Backpropagation,
CAM/Grad-CAM, LIME and LRP.

• Chapter 4: Applying different models with LRP In this chapter
we investigate LRP and how to integrate it with different models. We
also present some of the issues and decisions of the model used in the
later chapters.

• Chapter 5: Initial investigation of selected methods from the
literature In this chapter we use a few of the interpretability meth-
ods described in chapter 3 and a pretrained VGG16 model.

• Chapter 6: Robustness of explanation methods - literature re-
view In this chapter we review later research about the area: Inter-
pretability methods and how to measure their robustness and how to
make them more robust.

• Chapter 7: Experiments on measuring robustness of LRP and
LIME In this chapter we introduce our experiments and the methods
we use.
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• Chapter 8: Results In this chapter we present the results from the
experiments in chapter 7.

• Chapter 9: Model Sensitivity In this chapter we look at different
models sensitivity regarding LRP.

• Chapter 10: Further work In this chapter we look at potential fur-
ther work based on our experiments.

• Chapter 11: Conclusion In this chapter we conclude our thesis by
summarizing our learnings from the previous chapters.

• Source code: Some of the code used in this thesis can be found at
GitHub.2

2https://github.com/SignusRobotics/master-thesis
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Chapter 2

Convolutional Neural
Networks (CNN)

In this chapter we take a look at Convolutional Neural Networks, how they
are structured and used.

Convolutional layers, pooling layers and the fully connected layers are
the main blocks of a CNN model. Each building block have different func-
tionality constrained by given rules such as hyperparameters and activa-
tion functions.

The convolutional layer is dependent of four hyperparameters. These
are the number of filters (K), filter size (F), the stride of the convolution
steps (S) and the padding of the input (P). The dimensions of the output,
and therefore the input to the next layer, are given by the input dimensions
and these hyperparameters:

kw(l+1) =
(kwl − F + 2P )

S
+ 1,

kh(l+1) =
(khl − F + 2P )

S
+ 1,

d(l+1) = K

where kwl, khl and dl is the width, height and depth of the input to layer
l and likewise for the output of layer l. In addition the image has to be
reshaped to the dimensions of the input layer of the network. For LeNet
this is 28 × 28 and for VGG16 256 × 256. The pooling layer is only depen-
dent on the hyperparameters filter size and the stride. The most common
type is the Maxpool where the maximum number in the kernel is preserved
and therefore reduces the output volume and thus less neurons. The main
function of this layer is to reduce the amount of neurons surpassed through
the next layer and control overfitting. The most common type is a kernel of
2×2 and stride of 2. A kernel that is greater will give too much information
loss. It can be discussed on how necessary pooling layers are.

ReLU [12] is a type of activation function. Here only the positive param-
eters from the the layer before is kept and all negative parameters are set
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to 0. These functions are used to prevent the vanishing/exploding gradients
problem [13].

The last units of a CNN model often consist of fully connected layers
(FC) and a softmax layer. The FC layers can be seen as a regular neural
network where all neurons in one layer are connected to all neurons in the
previous layer. It is usually more than one FC layer in a model, and the
first can be seen as a 1 × 1 × N where N is the amount of neurons in the
previous layer. The last FC layer is converted to the number of classes used
to train the model.

The model is then trained by feeding a dataset of images to the model.
For a classification problem, the images are labeled and might also be an-
notated with a bounding box of the labeled object. ImageNet1, MNIST2,
CIFAR3, PASCAL VOC4 and COCO5 are examples of such datasets. The
model is designed and bounded by the image dimensions of the dataset
used to train the model. Each dataset consist of a unique test set to prevent
false positive accuracy.

The earliest CNNs consisted of convolutional layers, pooling layers and
fully connected layers ending with a softmax layer. Later it was improved
by other layers such as Droput [14] and Batchnorm [15] layers. Recently
newer forms of layers have been designed, such as convolutions with dila-
tions. Dropout is used as a regularization technique to prevent overfitting
but also reduces computational time. The main idea is to randomly drop
weights and connections in the network while training [14].

Normalization is a regularizer method that prevents weights in the net-
work to explode. As an added benefit this makes the training process faster.
Batch Normalization between layers was introduced in 2015 [15]. The
Batchnorm layers main function is normalizing the layer inputs to prevent
internal covariate shift. This is done for each mini-batch in the training
process. These layers are used as a regularizer but also gives a flexibility to
the learning process. Some of the benefits of adding these layers to the ar-
chitecture is to use higher learning rates that results in less training time
and more flexible initialization. The Batchnorm layers can in some cases be
used instead of Dropout [15]. It is possible to fine-tune an already trained
model for a similar case by using some of the model architecture and train
the modified new model with the weights from the old with a new dataset.
This is appropriate when the required dataset is small and the pretrained
models dataset is similar to the new dataset.

2.1 Training
Training of a CNN model and propagating the gradients of the loss are done
by sending appropriate data through the network, using backpropagation.
A dataset is required to train a network. This is usually divided into three
parts: training, validation and test. The training and validation sets are

1https://image-net.org/download.php
2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html
4http://host.robots.ox.ac.uk/pascal/VOC/
5https://cocodataset.org/home
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used for the actual training, while the test set is used to evaluate the model.
In early stopping the validation sets loss is checked against the training
sets loss.

The training process consists of a forward pass and a backward pass. In
the forward pass the input data is passed through the network. The main
purpose of the the backward pass is to update the weights in the network
by backpropagating the gradients. The softmax function is as follows:

σ(~z)i =
ezi∑K
j=1 e

zj
(2.1)

where σ(~z)i is the softmax vector and zi is the vector before softmax. K is
the number of classes and i and j represents which specific class number
between 0-K to look at. The softmax helps to distribute the networks class
scores to a valid probability distribution.

In the softmax layer the prediction is calculated. This dense layer is
designed with number of nodes equal to the number of classes from the
dataset the network is trained on. The activation function in this layer is
normally the softmax function. The purpose is to get a statistical score from
the models prediction. Further the Cross-Entropy Loss gives the prediction
score for each class.

L(p, q) = −
∑

p(x)log(q(x)) (2.2)

where L represents the cross entropy loss for each true (p) and predicted (q)
value in the distribution defined by x. For the backward phase the gradients
for a class is dependent and calculated only for that specific class.

The focus of training a network is to minimize the loss. An optimizer
is added to the network to minimize the gradient of the loss function with
respect to the weights of the models output. The loss is typically calculated
by looking at the true label and the predicted label of the class prediction.
Mean Square Error (MSE) is a regular loss function to this case. The loss is
minimized by using backpropagation and an optimization algorithm such
as ADAM [16] or Stochastic Gradient Descent (SGD) [17]. SGD with mo-
mentum [18] is an improvement of SGD. By adding a momentum to the
previous gradient function this will results in a faster convergence/training.
ADAM gives additionally a more stable and an improvement over previous
methods such as SGD. The learning rate for the ADAM optimizer is de-
cided after each iteration. This results in a faster and more flexible train-
ing process. AdaGrad [19] and RMSprop [20] are two other commonly used
optimizers.

The optimization function updates the weights and is controlled by the
learning rate. Ideally the training is stopped before overfitting. To prevent
overfitting a regularization method such as L1, L2 or Dropout can be used.
The regularization method penalize large image gradients. In addition a
technique called early stopping is often used. Early stopping checks the
validation loss versus the training loss and stops the training when the dif-
ference of the two losses reaches a break point. Data augmentation of the
training dataset is an initial preparation to prevent overfitting. This is done
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by generating more training data using one or combinations of transforma-
tions which can give a more robust model that is more flexible for similar
images.
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Chapter 3

Relevant literature review

In this chapter we look deeper into some of the existing interpretability
methods. The interpretability methods reviewed here are: Deconvolutional
Network [21], Guided Backpropagation [9], CAM [10], Grad-CAM [22], LIME
[3] and LRP [2].

Interpretability methods are important for understanding the output
of CNN models. It can detect anomalies of the architecture and catch
bias from the dataset. As the models have gotten more complex the in-
terpretability methods are increasingly becoming more important.

To understand CNN better researchers started to inspect the different
layers by visualizing the outputs of them. Over the past years it has been
developed several methods to visualize different aspects of CNN’s. It was
discovered in [9] that the first layers of the model usually detects simple
patterns such as edges and Gabor filters. More complex patterns are typ-
ically identified in the later layers of the model. An example of this is an
image of a face through a suited model. Here the first layers of the model
will reveal that it typically detects patterns less complex than layers nearer
the FC layers. For example will eyes and the nose be detected earlier in the
layers versus the whole face [11].

As more research and approaches have been tested new better methods
have been discovered. The newest approach is to make the explanation
method as part of training the model and give a more robust method of how
too understand and visualize the output of the model.

Originally the challenge with CNNs was a lack of computational power,
but now this is mitigated by powerful desktop GPUs and custom processing
units. Now one of the main challenges is to actually understand why CNNs
perform as they do and how to improve them using a scientific approach.

In this chapter we review some existing approaches for understanding
the performance of CNNs.

3.1 Deconvolutional Network, deconvnet [21]
and Guided Backpropagation [9]

One of the first papers on understanding CNNs was introduced by Zeiler
and Fergus [21]. Until then, the main process to understand, improve and
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look into the network was trial and error, which is not sustainable. There
were also a limited number of methods for looking into the activations in-
side the model and interpreting them. A natural approximation to this
could be using a Hessian matrix, but for the deeper layers the Hessian
cannot be easily computed. According to Zeiler and Fergus [11], “[..]visu-
alizations differ in that they are not just crops of input images, but rather
top-down projections that reveal structures within each patch that stimu-
late a particular feature map.”

Zeiler and Fergus presented two approaches, one based on deconvnet
[21], and one based on occlusion maps [11].

The principle used in Deconvnet is fairly similar to backpropagation, the
difference between backpropagation and the deconvnet approach is how the
ReLU function is performed. In backpropagation the negative gradients
flowing backwards through a ReLU function are removed. In Deconvnet
the ReLU is applied to the error signal, and therefore only the positive
error signals is backpropagated different from backpropagating. According
to [11] “A deconvnet can be thought of as a convnet model that uses the
same components (filtering, pooling) but in reverse, so instead of mapping
pixels to features does the opposite. In (Zeiler et al., 2011) [21], deconvnets
were proposed as a way of performing unsupervised learning.”

They also showed the correspondence between image structure and fea-
ture map activities by occlusion of images [11]. This was done by occluding
portions of the input image and then performing a sensitivity analysis of
the classifier output. It was discovered that not only the probability of the
class dropped when the object or part of the object for the class was oc-
cluded, but also the activity in the feature map.

It was also established in [11] that the deeper layers in the model gives
more complex structures and that these have to be trained for more epochs
to converge. Small changes in scaling and translation gave dramatic changes
in the shallow layers while deeper in the model it had lesser impact. They
also showed that the model they used had problems with input rotation.

In 2015 a new approach for visualization of filters was proposed [9],
guided backpropagation. According to [9] networks without max-pooling
layers could be challenging to visualize using deconvnet [21]. By combining
backpropagation and deconvnet, Guided Backpropagation [9] was created.
In this approach all the negative gradients from backpropagation and de-
convnet are set to zero. This gave better results, particularly for visualiza-
tion of the deeper layers with less artefacts and it highlights pixels that are
important for the classification of class c.

3.2 CAM/Grad-CAM

3.2.1 CAM [10]
Around 2016 a visualization method for CNNs called Class Activation Map-
ping (CAM) was proposed by Hansen et al. [10]. This method is able to vi-
sualize why the input image is classified as a given class c, by highlighting
which regions that have contributed to the classification. Based on the last
convolution layer in the model and the pre-softmax score for a given class,

11



the importance of the different regions in the input image is computed. By
using Global Average Pooling (GAP) the localization ability of the network
is maintained.

The result after performing GAP on each filter in given convolution
layer, fk(x, y), is then:

F k =
∑
x,y

fk(x, y), (3.1)

where k is the filter and F k represent the activation of unit k.
Then for each predicted class the new input after GAP to the softmax

layer, Sc is:

Sc =
∑
k

wc
kFk, (3.2)

where wc
k is the weights from the original forward pass in the layer before

softmax and k is filter number and c the specific class. wc
k indicates how

important the corresponding Fk is for a given class. To find the softmax the
new values Sc is used.

Mc defines the class activation map for a given class, c:

Mc(x, y) =
∑
k

wc
kfk(x, y). (3.3)

This is upsampled to the original size of the input image, and will show the
most important regions in the image that gives the classification for a given
class c.

3.2.2 Grad-CAM [22]
In 2019 a generalization of CAM called Grad-CAM, [22] was found. This
method is more flexible and it is possible to look at any layer with no re-
training requirement. This is done in one operation after a given class
prediction score is computed by partially backpropagating to the given con-
volutional layer. This was a great improvement from other methods such
as CAM and occlusion method.

The class-discriminative localization map for class c with respect to a
convolutional layer of size u × v is defined as Lc

Grad−CAM ∈ Ru×v. This
is computed with respect to the given feature map activations Ak and the
classification score, yc, for class c, and backpropagated to the selected con-
volutional layer. The neuron importance weights, α, is computed by doing
a GAP on the gradients on equivalent to the position of the convolutional
layer:

αc
k =

1

ij

∑
i

∑
j

fk(i, j)
∂yc

∂Ak
ij

, (3.4)
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where Aijk represent the activations of the convolutional layer and yc the
output prediction score for the class c. Like for CAM the weight αc

k repre-
sents the importance of each feature map for a given class c.

Before the class-discriminative localization map, Lc
Grad−CAM is obtained,

each combination of weights αc
k and feature maps with respect to the given

convolutional layer is sent through a ReLU. This results in a heatmap cor-
responding to the size of the feature maps at this layer. The ReLU function
is added to highlight only the positive neurons that give an increased pre-
diction score for class c and therefore also increase the performance of the
localization maps.

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
. (3.5)

This method gives the opportunity to also only highlight the negative re-
gions which prevents classification to the specific prediction score for the
given class. Instead of looking at the positive gradient one only looks at the
negative while following the other rules for Grad-CAM.

3.2.3 Guided Grad-CAM [22]
Guided Grad-CAM [22] is a combination of Grad-CAM and guided back-
propagation [9]. By combining these two methods it is possible to get more
fine-grained details like pixel space gradient visualization methods. The
class-discriminative localization maps are upsampled to the input image
resolution using bilinear interpolation and then performed elementwise
multiplication with the Guided Backpropagation map. Combining these
methods will remove all pixel information that gives negative information
about the class, and only highlights the fine-grained information about the
prediction score for class c.

3.3 Local Interpretable Model-agnostic Expla-
nations (LIME) [3]

In 2016 LIME was introduced in [3]. LIME is according to the article a
method “that explains the predictions of any classifier in an interpretable
and faithful manner, by learning an interpretable model locally around
the prediction”. LIME is a flexible method that can handle different mod-
els such as random forests and neural networks and therefore different
datasets containing different data types such as text and images. The main
focus of this method is the aspect of trusting a model and trusting a predic-
tion.

There are two aspects of this method one is LIME: “an algorithm that
can explain the predictions of any classifier or regressor in a faithful way,
by approximating it locally with an interpretable model.”. The other is SP-
LIME: “that selects a set of representative instances with explanations to
address the “trusting the model” problem, via submodular optimization.”.

The algorithm for LIME is as following:
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ξ(x) = argmin
g∈G

L(f , g , πx ) + Ω(g) (3.6)

where f(x) is the probability of the prediction for a given class. πx(z)
measures how close an instance z is to x and L(f, g, πx) measures how un-
faithful g is in approximating f in the locality defined by πx(z). Ω(g) states
the complexity of the explanation g ∈ G.

The output gives for an example patches of image with contributions/non
contributions to why the image/patch is classified as it is. From the article
it is a dog with a guitar and it is clearly logical why the image is classified
as the different labels. This is also applicable for text datasets with random
forests where the words is highlighted for or against.

The article addresses different problems from a human perspective when
to trust a model and why. They argue for that when the user know why the
model have predicted as it did it is easier for the worker, such as medi-
cal personnel or engineer, that not necessary have machine learning back-
ground to understand and rely on the prediction. When the interpretability
method makes the prediction logical it is easier to discard or use it further.
This is especially important for systems that handles life-critical situations,
such as medical diagnosis.

The method in itself is not a straight forward implementation. It is built
on different libraries and the execution is time consuming. The output in
itself is based on number of iterations, that can give different outputs, and
higher the iterations the more time is used to run the method. The output
of this method gives both positive and negative areas of contributions.

3.4 Layer-wise Relevance Propagation (LRP)
[2]

Layer-wise relevance propagation [2] is a visualization method introduced
in 2015. This method is currently among the most popular methods used
for explaining CNN models.

LRP could be implemented with several different classifiers. In the pa-
per that introduced this method they showed how to use it on two different
classifier architectures, Bag of Words [23] features with non-linear Support-
vector Machines (SVM) [24] and neural networks.

The main problem is to figure out how and why the model classifies as
it classifies. LRP is an explanation method that makes an interpretation of
the prediction to help understand this. In many fields it is very important
to understand the model. An example of this could be the medical field,
where the classification gives a result with a decision that is essential for a
patients life and death.

Another important result with LRP is that the result would give an ex-
planation on which pixels that gives the highest importance for the class.
Thus, the pixels with the highest score would also indicate what the model
finds most important. This could reveal/expose anomalies in the model that
is used, such as bias and errors in the dataset that the model is trained on.
Therefore it would give an indication on how to improve the dataset.
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An example of this type of bias is to consider two classes young woman
and old woman where smile gives high relevance score for the class young
woman, while for old woman it gives indication against. Another similar
example is doctor vs nurse where woman/long hair contraindicate doctor
classification.

Unlike other explanation methods such as sensitivity analysis, LRP lo-
cates which pixel that contributed most to the given predicted class. For
each of the classes in the model a LRP score is calculated for each pixel of
the image being tested. This is a result of the LRP method implementation
having to pass several unit-tests such as continuity, conservation, selectiv-
ity and positivity. The method can be implemented to different classifiers
such as SVM and neural networks.

Thus, if the pixels with highest score is removed, then you will see that
the prediction score, f(x) is lower than it was before. The score will de-
crease proportionally with how much of the highest LRP score pixels that
is removed.

3.4.1 LRP in detail
LRP is an approximation of Deep Taylor Decomposition (DTD) [25] when
the function is highly non-linear. A problem that Layer-wise Relevance
propagation solves is the necessity of a root point in calculating the DTD
[25]. LRP can be calculated only with the input points and the classifier
score. The Layer-wise Relevance propagation score, R, of the current layer
(l), is calculated from the output layer (l + 1). Therefore it is easy to back-
propagate the LRP score from the prediction, f(x), back to the input pixels,
xd for a given classifier f and an image x.

f(x) ≈
V∑

d=1

Rd, (3.7)

where V is the number of pixels in the image.
The input pixels, xd, are sent from the input layer through the network

to the last layer that ends in the real-valued softmax score of the classifier
f . The l-th layer is modeled as a vector:

z = (zld)
V (l)
d=1 , (3.8)

where z is the vector of the relevance score for each node in layer l and V (l)
is the dimensionality.

Assuming that layer l + 1 has a relevance score, R(l + 1), then it is
possible to find the relevance score of the previous layers, R(l). This is
repeated until reaching the input layer to find the relevance score for each
pixel, R(1). Then the conservation rule gives:

f(x) = ... =
∑

d∈l+1

R
(l+1)
d =

∑
d∈l

R
(l)
d = .... =

∑
d

R
(1)
d . (3.9)
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Rd < 0 means that the respective pixel, xd, does not contribute to the class,
and Rd > 0 means that the pixel has a relevance for the class.

The procedure for a neural network starts the same, the first message is
the classifier score for the analyzing class. The message, R(l,l+1)

i←k , for layer,
l, is calculated from the neurons connected to the layer, l + 1. From Figure
3.11 you can see a visualization of this.

Figure 3.1: This Figure shows how the relevance score is calculated from
the output layer l + 1, from the current layer, l. Here you can see the back-
ward pass [26].

The main formulas to calculate the message contribution for each layer are:

R
(l)
i =

∑
k: i is input for neuron k

R
(l,l+1)
i←k , (3.10)

R
(l+1)
i =

∑
i: i is input for neuron k

R
(l,l+1)
i←k , (3.11)

R
(l,l+1)
i←k = R

(l+1)
k

aiwik∑
h ahwhk

. (3.12)

This last equation is another way to look at computing the relevance for
layer l from layer l+1. The messages for each layer are calculated based on
the next layer and starts with the softmax layer (R_output) and is calculated
back to the pixel level.

In a neural network it is possible to find every neurons relevance score,
Rl+1

j . For each node in current layer, i, the contribution of the relevance
score can be computed from the previous layers connected nodes, j, Ri←j .
These messages is calculated with the following equation:

1heatmapping.org
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R
(l,l+1)
i←j =

zij
zj
·R(l+1)

j , (3.13)

where zij is the message from the previous layers node j connected to node
i in the current layer and zj is the sum of all the preactivation scores from
the node j. R(l,l+1)

i←j is each neurons messages from layer l + 1 to layer l.
This can be confirmed by the conservation rule. The relevance score for

each node j in the previous layer, l + 1, can be calculated back again from
the i nodes in the current layer, pointing to node j.

∑
i

R
(l,l+1)
i←j = R

(l+1)
j ·

(
1− bj

zj

)
. (3.14)

To implement LRP for a network it has to fulfill the constraints that LRP
requires. A problem with the straightforward implementation is that it
might give a problem with unbounded values. This happens when zj is
small. This can be solved by using a predefined stabilizer, ε ≥ 0.

{
zj = zj + ε, if zj > 0
zj = zj − ε, if zj < 0.

(3.15)

Another way to solve this is to separate positive and negative preactiva-
tions. This approach will avoid relevance leakage and allows for control
of the importance of negative and positive evidence. This is defined by
α+ β = 1, and the equation 3.16.

R
(l,l+1)
i←j = R

(l+1)
j ·

(
α ·

z+ij

z+j
+ β ·

z−ij

z−j

)
. (3.16)

3.4.2 LRP-rules
Since the introduction of LRP in the article [2] new rules for the different
states and conditions have been established for LRP. In [27] different rules
for the different layers in the network were proposed. These rules were:
Basic rule, LRP-0:

Rj =
∑
k

Rk
ajwjk∑
0,j ajwjk

. (3.17)

Epsilon rule, LRP-ε

Rj =
∑
k

Rk
ajwjk

ε+
∑

0,j ajwjk
. (3.18)

Gamma rule, LRP-γ
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Rj =
∑
k

Rk

aj · (wjk + γw+
jk)∑

0,j aj · (wjk + γw+
jk)

. (3.19)

The different rules have different properties. It is possible to only use
one rule for all layers, but the best result is to use a combination with
the suitable rules for the right layers [28]. LRP-0 highlights artefacts and
therefore gives a result that is not understandable if it is used for the whole
network. This rule is used for the last layers in the network since it con-
tains a small amount of neurons, 4096 for VGG-16. The LRP-ε rule is used
for the middle layers and removes noise and results in keeping only the
most relevant pixels for the predicted object, but it gives a sparse result
and this rule can not be used alone. For the first layers one would like to
highlight all the features, relevant or not, before it is sent through LRP-ε
rule. LRP-γ does this. For the first layers it can also be used the α and β
ruled mentioned in the section before. By combining these three rules the
LRP heatmap gives a faithfully and understandable output.

A special case is when the data, such as pixel values are sent to the
model. Here it is appropriate to use the zB rule from the DTD framework.

Since a large variation of models exist it is important to evaluate the
model before applying the different rules to the layers of the model.

For models with batchnorm layers it was primarily recommended to use
the identity rule or the ε rule. This have later been shown to not give good
results [28].

Another approach is to merge the convolutional layer before the batch-
norm layer together and form a new convolutional layer [29, 30, 31] This
new architecture is then used when the LRP relevance is backpropagated
to the pixel level. One constraint of this method is that the model used have
to retain the weights and biases when the model is trained. If this is not
the case another solution is to remove the batchnorm from the architecture
and use this architecture when the LRP relevance is calculated.

In [28] the problem with batchnorm layers in the model was addressed
and new LRP rules for batchnorm layers were presented. Here they stated
that the bias had more to say than first assumed. They also showed that
the first proposed rules, ε rule, αβ rule and the identity rule were not suited
for these layers. This is especially observed for the MobileNetv2 [32] archi-
tecture where both ε rule and αβ rule shows little or no information on the
LRP heatmaps. This is due to the bias conservation and shows that the bi-
ases of the network gives a higher impact than assumed. The identity rule
ignores bias and therefore may give a poorer LRP heatmap result. This is
shown for the DenseNet121 model [7].

They presented a new rule used for the Batchnorm layers, |z| rule. This
rule considers the fact that bias in the batchnorm layers should not be ig-
nored like the Identity rule does. It is also critical that the rule handles
both positive and negative contributions, that is not the case for the αβ rule
shown for the MobileNetv2. In addition the rule avoids bias cancellations
unlike the ε rule.
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3.4.3 LRP implementation
In this thesis we base or work on the tutorial from the LRP website, heatmap-
ping.org and the original rules described first in this section. Initial testing
and implementations showed major flaws when use of models with batch-
norm. We therefore avoid use of batchnorm layers.
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Chapter 4

Applying different models
with LRP

In this chapter we present some of the challenges encountered during the
beginning of this thesis. This had an impact on the rest of the project. We
look at the model used for the rest of the thesis, the calibration of the LRP
rules and a discussion of models with batchnorm.

The main focus in this chapter is to investigate LRP on different models
and get reasonable results. It was tested with pretrained networks from
PyTorch and models trained on different datasets. The LRP implementa-
tion was based on the tutorial on the LRP website1 and the initial rules
referred to in section 3.4.2.

The implementation of the LRP heatmaps are based on utils.py of the
demo from the tutorial on the website with minor changes such as adding
implementation for showing the four first predicted heatmaps. The color
scheme used is the library ListedColormap from matplotlib.

When testing more complicated networks such as ResNet [8] and DenseNet
[7] the block based architecture gave problems with the basic LRP imple-
mentation. The LRP implementation would have to be deconstructed fur-
ther to work with the demo as is and this was not investigated further
here. Another problem were models with batchnorm layers. The original
suggested rules for batchnorm layers referred to in the LRP rule section
did not give acceptable results. It was observed that the LRP heatmaps
gave similar results as discussed in [28]. This is shown in Figures 4.1 and
4.2. All the testing in this chapter was done before the suggested rules for
batchnorm was presented [28].

1heatmapping.org
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Figure 4.1: Trained model with architecture from [33] saved BN parame-
ters. LRP results for the first 4 predicted classes. Not absorbed CNN layers
with corresponding BN layers. Heatmaps from pixel layers.

Figure 4.2: Trained model with architecture from [33] saved BN parame-
ters. LRP results for the first 4 predicted classes: deer, cat, frog, bird. Ab-
sorbing CNN layers with corresponding BN layers to new layers. Heatmaps
from pixel layers.

Figure 4.3: Pretrained VGG16 from pytorch LRP results. Left: VGG16
without batchnorm. Middle: VGG16 with batchnorm layers absorbed to
new CNN layers. Right: VGG16 with batchnorm layers used without ab-
sorbing of the layers. LRP output from layer 11.

Since complex architectures such as ResNet [8] and DenseNet [7] gave
problems we decided to use a VGG based architecture initially to get a func-
tional implementation of LRP as a baseline. The pretrained VGG with 16
layers, VGG16, from PyTorch [34] with and without batchnorm layers was
tested. Here it was discovered that the batchnorm layers gave problems
with the LRP output. When testing with the initial suggested rules the
heatmaps looked compressed and clearly not matching the predicted re-
sults.

The implementation was also tested with the pretrained model for AlexNet
[6] from PyTorch. Both VGG16 and AlexNet models are trained on Ima-
geNet.
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For the batchnorm issues we use a method that merged the convolu-
tional layer and the corresponding batchnorm layer to a new convolution
layer, this method was found from [35]. A demonstration of the results is
found in Figure 4.3. For this specific image where the predicted label is
castle it is observed that the model with batchnorm layers gives better LRP
results than the model without. This is also observed from the prediction
scores where the model with batchnorm layers give higher prediction score
for the class castle.

The LRP was also tested for models trained on CIFAR10 and CIFAR100.
Here we used pretrained models from ModelZoo [33, 36]. These models con-
tained batchnorm layers, but the parameters for bias was not preserved. To
use the fuse function bias parameters have to be preserved. This particular
problem was not a problem for the pretrained models from PyTorch since it
is a choice in the function call. Our first attempt was to train models not
containing batchnorm layers, but this gave inaccurate results. The quick fix
was to train a model based on the models from ModelZoo with a minor fix
to preserve the bias parameters. By doing this the fuse function performed
as expected. A problem with the CIFAR datasets is that it only contain one
label on each image.

4.1 Architecture of VGG models
The architectures of the networks used in this thesis are shown in Appendix
A.1 and A.2.

4.2 Calibration of the LRP-rules for the spe-
cific model

The parameters for the LRP rules for each model were tuned by following
the recommendations from [27]. In Figure 4.4 it is shown output for using
different LRP rules alone and in combinations. The description of each test
is listed in Table 4.1. The idea was to calibrate other models by the same
process.
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Figure 4.4: Testing of different LRP rules alone and together. The model
used is a pretrained VGG16 network from PyTorch

Initial: Original LRP parameters from demo.
Test 1: LRP-ε for all layers in the features part and

LRP-0 for the layers in the classifier part.
Test 2: Only using LRP-ε for the whole network.
Test 3: Only using LRP-γ for the whole network.
Test 4: Only using LRP-0 rule for the whole network.
Test 5: LRP-γ: layer 0-25, LRP-ε: 26-30 and LRP-0 for the classifier.
Test 6: LRP-γ: layer 0-10, LRP-ε: 11-30 and LRP-0 for the classifier.
Test 7: LRP-γ for all layers in the features part and

LRP-0 for the layers in the classifier part.

Table 4.1: List of tests for different LRP rules on a VGG16 model.

All tests gave expected results [27]. Tests 1, 2 and 6 gives quite similar
results due to the use of the LRP-ε rule. Test 5 and 6 gives the best results
as they are using all three rules. Test 3 and 7 shows that the LRP-0 rule on
the classifier part is important for the detection of negative pixels. It is also
observed that the LRP-γ rule registrates important pixels as pixels and do
not distinguish between positive or negative importance. The three rules
are important for a well operating LRP method. By following this rules and
tests it was easier to decide where to set the thresholds between the layers
in the other networks. For example for the pretrained VGG16 with batch-
norm the thresholds where tuned as for the VGG16 without batchnorm
layers. The pretrained VGG16 without batchnorm layers is set to: LRP-γ:
layer 0-16, LRP-ε: 17-30 and LRP-0 for the classifier. For the VGG16 with
batchnorm layers this corresponds to the layer partitioning: LRP-γ: layer
0-23, LRP-ε: 24-43 and LRP-0 for the classifier.
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Chapter 5

Initial investigation of
selected methods from the
literature

In this chapter we investigate a few of the explanation methods presented
in chapter 3. The methods used are: guided backpropagation, Grad-CAM,
LIME and LRP. The first section investigates images with one labeled object
and section two repeats the the experiment with images with more than
one object. The chapter concludes with the interpretability methods we
will look further into in the following chapters.

5.1 One label
In this section we look at the visualization methods introduced in section
2 considering interpretability. By using example images and a pretrained
network we decide which visualization method that is most interesting to
look further into.

Before these initial test is done some of the methods like deconvolution
and CAM are not considered further. Deconvolution alone is shown to give
more artefacts and is more noisy than using guided backpropagation [9]
[22]. Deconvolution is also incorporated in guided backpropagation. The
original CAM is discarded due to the architecture of the method being de-
pendent on retraining with small changes of the model.

The methods analyzed in this section are guided backpropagation, Grad-
CAM, LIME and LRP. The experiment used the pretrained Pytorch VGG-16
model [37]. The example images are: a tabby cat, a bee, a zebra and a castle
with surrounding landscape. Table 5.1 presents the results of the first four
predicted categories of each image.
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True label tabby cat castle bee zebra
1.prediction tabby: 87.1% castle: 52.5% bee: 82.3% zebra: 99.9%
2. prediction egyptian cat: 9.0% church: 11.6% fly: 17.5% -
3. prediction tiger cat: 3.2% monastery: 10.3% rapeseed: 0.07% -
4. prediction lynx: 0.2% bell cote: 7.2% ant: 0.05% -

Table 5.1: Predicted label and score for each image with pretrained VGG-16
model and Pytorch. Each label name is abbreviated to the first whole name
of the ImageNet name.

As seen in Table 5.1 the first prediction of the four images has a much
higher score than the next three and the image of the zebra gives high
prediction score for category zebra and very low score for the other classes.

The guided backpropagation method highlights fine-grained structures
of the interpretation, but is less class-discriminative compared to the other
three methods. The output based on the different prediction score from a
specific image gives almost the same results, see Figures 5.1, 5.5, 5.9 and
5.13.

Grad-CAM, LIME and LRP gives class-discriminative results. Both
LIME and LRP are able to show regions of negative and positive contri-
butions in the same visualization. Unlike LIME, LRP are able to give high-
resolution results down to specific pixels. An example of visualization of
a negative contribution is the LRP heatmap for the cat image, Figure 5.4,
with prediction of a lynx. Here it is shown that the nose and fur gives
more counter contribution for the lynx prediction than the three other. This
seems logical since the fur of a lynx and a cat is different.

Figure 5.16 shows the visualization method LRP with an image of a ze-
bra. For the first prediction the model is 99% confident that this is a zebra
and the corresponding heatmap shows that it is almost no negative parts.
For the three other LRP results, the score is too low to actually analyze it.
LRP is dependent on a relative high score to give reliable results [2]. For the
LIME visualization of the same image, shown in Figure 5.15, it is clearer
that the first prediction gives much higher score than the three other visu-
alizations where the three images shows less positive contributions to the
respective predictions. Grad-CAM for this set of predictions show that it is
small differences between the visualizations. See Figure 5.14.

By itself Guided Backpropagation is not tuned to determine class-discriminative
regions, but in combination with a class-discriminative method it can make
an improvement, a good example of this is Guided Grad-CAM [22]. Grad-
CAM seems to give more noisy output than LRP. It is also beneficial to see
which regions that contribute and work against the prediction in the same
image. This can among other things discover positive and negative biases
and therefore decide how robust the model/dataset is. Overall LRP have a
benefit with its high-resolution and class-discriminative output.

25



Image: Cat1

Figure 5.1: Guided Backpropagation results for image of tabby cat with re-
spect to the four first predicted classes. See table 5.1 for specific labelnames

Figure 5.2: Grad-CAM results for image of tabby cat with respect to the
four first predicted classes. See table 5.1 for specific labelnames

Figure 5.3: LIME results for image of tabby cat with respect to the four first
predicted classes. See table 5.1 for specific labelnames

Figure 5.4: LRP results for image of tabby cat with respect to the four first
predicted classes. See table 5.1 for specific labelnames

1https://www.kaggle.com/c/dogs-vs-cats
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Image: Castle2

Figure 5.5: Guided Backpropagation results for image of castle with respect
to the four first predicted classes. See table 5.1 for specific labelnames

Figure 5.6: Grad-CAM results for image of castle with respect to the four
first predicted classes. See table 5.1 for specific labelnames

Figure 5.7: LIME results for image of castle with respect to the four first
predicted classes. See table 5.1 for specific labelnames

Figure 5.8: LRP results for image of castle with respect to the four first
predicted classes. See table 5.1 for specific labelnames

2heatmapping.org
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Image: Bee3

Figure 5.9: Guided Backpropagation results for image of bee with respect
to the four first predicted classes. See table 5.1 for specific labelnames

Figure 5.10: Grad-CAM results for image of bee with respect to the four
first predicted classes. See table 5.1 for specific labelnames

Figure 5.11: LIME results for image of bee with respect to the four first
predicted classes. See table 5.1 for specific labelnames

Figure 5.12: LRP results for image of bee with respect to the four first
predicted classes. See table 5.1 for specific labelnames

3https://commons.wikimedia.org/wiki/File:Apis_mellifera__Brassica_napus__Valingu.jpg
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Image: Zebra

Figure 5.13: Guided Backpropagation results for image of zebra with re-
spect to the four first predicted classes. See table 5.1 for specific labelnames

Figure 5.14: Grad-CAM results for image of zebra with respect to the four
first predicted classes. See table 5.1 for specific labelnames

Figure 5.15: LIME results for image of zebra with respect to the four first
predicted classes. See table 5.1 for specific labelnames

Figure 5.16: LRP results for image of zebra with respect to the four first
predicted classes. See table 5.1 for specific labelnames

5.2 Images with more than one label
In this section we look at images with more than one label. The images are
obtained from the dataset cats vs dogs [38]. The experiment is the same as
described in section 3. Table 5.2 shows the four highest predicted scores for
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each image. The images was found by manually testing different images
from cats vs dogs dataset.

True label dog/tub cat/maraca cat/hamper
1. prediction bucket: 55.19% ping-pong ball: 47.29% hamper: 44.8%
2. prediction Norwich terrier: 18.42% pool table: 43.70% shopping basket: 23.2%
3. prediction tub: 11.97% tennis ball: 5.17% tabby: 12.3%
4. prediction chow: 6.75% maraca: 1.73% tiger cat: 7.2%

Table 5.2: Predicted label and score for each image with pretrained vgg16
model and pytorch. Each label name is abbreviated to the first whole name
of the ImageNet name.

As expected the guided backpropagation method highlights fine-grained
structures, but is less class discriminative and the heatmap for the four
predictions are almost identical. The three other methods highlights and
focuses on objects that seem natural from my point of view. The LRP is the
most detailed of the four methods used.

Image: Dog/Tub
An interesting observation is that for the bucket and the tub predictions the
heatmaps focuses on different shapes. The bucket prediction focus on the
pixels forming half of the tub. For the tub prediction the shape of the pixels
is the edges of the whole object. This can indicate that the model recognizes
different areas of the object and that the bucket is more round-shaped than
the tub. This is not so clear from the LRP heatmap. The question is why
this happens and if it is bias related, LRP related or just coincidence.

As in section 3, it is observed that LIME gives a more precise result than
Grad-CAM. Especially the edge of the tub shows this. This is also observed
by comparing Grad-CAM and LIME for prediction two and four. Here it is
shown that the two heatmaps for Grad-CAM is slightly different while the
corresponding heatmaps for LIME shows more differences and also follows
the shape of the dog and negative pixels are also highlighted.

As expected the LRP heatmaps focuses only on the dog for prediction
two and four. For the two predictions labeled respectively bucket and tub it
is shown that the dog is present for both heatmaps. This is unexpected but
may be due to bias in the dataset that was used when training the model.
Another possibility is a mismatch due to computational error or from the
visualization method. This should be analyzed further.
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Figure 5.17: Guided Backpropagation results for image of dog and tub with
respect to the four first predicted classes. See table 5.2 for specific label-
names

Figure 5.18: Grad-CAM results for image of dog and tub with respect to the
four first predicted classes. See table 5.2 for specific labelnames

Figure 5.19: LIME results for image of dog and tub with respect to the four
first predicted classes. See table 5.2 for specific labelnames

Figure 5.20: LIME results for image of dog and tub with respect to the four
first predicted classes. See table 5.2 for specific labelnames
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Figure 5.21: LRP results for image of dog and tub with respect to the four
first predicted classes. See table 5.2 for specific labelnames

Image: Cat/Maraca
In this image the focus of all of the methods are mainly the maracas. The
four first predictions contain round objects as shown in table 5.2. The out-
puts from the visualization methods indicates that the pixels that are recog-
nized corresponds to the object in the image that is logically corresponding
to the predictions. In this case this is the round shape of the maracas. Com-
pared to the other methods, LIME noticeably include more of the cat and
the surroundings.

It was experimented further on the cat in the image by isolating the cat
and the result was that the model predicted the cat as a Persian when the
maracas was not present. This indicates a weakness for predictions in im-
ages containing multiple objects with different labels, in effect highly confi-
dent label predictions obstruct other labels. Possible further work might be
looking into how YOLO [39] solves this.

Figure 5.22: Guided Backpropagation results for image of cat and maraca
with respect to the four first predicted classes. See table 5.2 for specific
labelnames

Figure 5.23: Grad-CAM results for image of cat and maraca with respect to
the four first predicted classes. See table 5.2 for specific labelnames
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Figure 5.24: LIME results for image of cat and maraca with respect to the
four first predicted classes. See table 5.2 for specific labelnames

Figure 5.25: LIME results for image of cat and maraca with respect to the
four first predicted classes. See table 5.2 for specific labelnames

Figure 5.26: LRP results for image of cat and maraca with respect to the
four first predicted classes. See table 5.2 for specific labelnames

Image: Cat/Hamper

Figure 5.27: LRP results for image of cat and hamper with respect to the
four first predicted classes. See table 5.2 for specific labelnames
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Figure 5.28: LIME results for image of cat and hamper with respect to the
four first predicted classes. See table 5.2 for specific labelnames

Figure 5.29: LIME results for image of cat and hamper with respect to the
four first predicted classes. See table 5.2 for specific labelnames

For the hamper/shopping basket it is also observed here that some of the
surroundings is predicted as positive contribution as for tub/bucket

5.3 Discussion of initial experiments
In this section we have looked into some of the different interpretability
methods introduced in section 2. By running different images we have con-
sidered the output for the explanation methods and the validity of the re-
sults. Here we have seen that as expected the Guided Backpropagation
method gives pixel specific results but is not class sensitive.

Grad-CAM, LIME and LRP gives class specific results, LRP and LIME
gives in addition positive and negative contributions in the same heatmap.
Grad-CAM gives a more noisy output than LIME. LIME is more time con-
suming than the three other methods. LRP gives pixel specific results,
but have some issues with specific classes, such as bucket/tub and ham-
per/shopping basket where the surroundings are predicted as positive con-
tributions. It is uncertain why this happens and if it is a bias in the dataset
or LRP related. Overall LRP have a benefit with its high-resolution and
class-discriminative output.

For the rest of the thesis we are going to look further into LIME and
LRP.
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Chapter 6

Robustness of explanation
methods - literature
review

In this chapter we look deeper into some of the robustness analysis of the
existing interpretability methods that is currently used.

When GDPR was introduced in 2016, a higher focus on the importance of
transparency of digital processes followed it. As an example insurance com-
panies have to make sure their systems do not make decisions on invalid
background such as skin color, gender or the weekday you were born on.
Therefore it is very important to know how the neural network is trained
and if there is such biases in the dataset used. Thus the focus on under-
standing the prediction output from a neural network and the explanation
methods (XAI) was increased. In medical and terror context it is essential
that the models and the XAI gives a correct result, if not it can give critical
consequences. A tool to decide if a method produces a faithfull result or not
is to estimate how robust the method is.

Saliency/a posteriori methods was the first approach to explain an out-
put from a neural network. These explanations can at first look good, but
when breaking down the methods the results are revealed as deceptive.

Several articles have addressed the problem with the lack of robustness
in saliency methods such as LRP, LIME and guided backpropagation. By
showing that these methods fail and investigate why they fail, one can help
to improve/optimize existing methods or create new more robust explana-
tions methods.

In this section we look at different works related to investigation and
solutions of existing a posteriori methods, where the output from a neural
network is sent through a saliency method.

In 2018 Alvarez-Melis et al [40] investigated the robustness of explana-
tion methods and argued that robustness in an interpretability method is
very important to give a meaningful explanation. The main two arguments
for why an interpretability method should strive for robustness is: The first
is to remain constant - “in order for an explanation to be valid around a
point, it should remain roughly constant in its vicinity, regardless of how it
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is expressed”. Second: “robustness of the simplified model implies that it
can be approximately used in lieu of the true complex model, at least in a
small neighborhood”.

Most explanation methods is based on an a posteriori approach, that
means that the explanation is found by looking at the output of the machine
learning model and then working backwards to finding the cause. Since
this does not actually give a explicit pattern of the cause it gives potentially
many pitfalls. The vulnerability of an a posteriori explanation is among
other things raw features such as pixels can give noisy explanations and it
is not robust to transformations.

The main idea is that by making a small transformation on the input
image the explanation should stay the same. Their experiments showed
that this is not the case for the methods analysed. By using a measure
for robustness of each method they were able to estimate how robust each
method was.

The experiment was performed by using different datasets such as Im-
ageNet and MNIST and then training a suitable model such as a random
forest classifier. Then there was fetched 200 randomly samples from the
test set and then use of the explanation method. At last the suitable Lips-
chitz continuity was used to estimate the robustness. The transforms that
was used was Gaussian noise.

To estimate the robustness of the explanations they used a variation
of Lipschitz continuity, a stability that measures relative changes in the
output with respect to the input, but here on the local stability and not the
typically global. The output is unitless quantities. The same equation is
used in adversarial attacks [41].

They evaluated methods such as Saliency Maps, LRP and Occlusion
sensitivity. By using a simple neural network they could verify that the
explanations for a linear model were stable but not for a simple two layer
network, with significant difference between the two explanation methods.

Other results were that for a small perturbed image the explanation was
dramatically changed, this was especially the case for LIME and occlusion
methods. LIME is a sparse superpixel based explanation and therefore
make it prone to small input perturbations. For a more complex model and
a set of perturbed images with the same predictions the explanations also
show differences.

They also suggested strategies to enforce robustness on existing inter-
pretability methods or design methods robust by construction. One tec-
nique is to train an interpretable CNN with robust explanations by using
a slight generalization of criterion such as the Lipschitz continuity. This
approach is also similar to Adversarial training, [41].

In [42] the same authors expanded the work to include two new require-
ments, explicitness and faithfullness. They argue that the ideal way to
explain a model would be to train the model such that it is possible to make
an interpretability method that could explain on a deeper level and not only
on an a posteriori manner. The idea is to make a complex self-explaining
model where interpretability is a key in the implementation and enforced
through regularization. This type of model will therefore reassure the three
proposed requirements for interpretability: explicitness, faithfulness and
stability. This is referred to as a self-explaining neural network (SENN).
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The three requirements should answer how understandable the explana-
tions from SENN are, if the relevant features really are relevant and how
coherent explanations for similar inputs are.

Explicitness stands for the fact that instead of simple features such as
pixels it is focused on higher level features such as strokes in an image.
These concepts have to be defined to make sense. Faithfulness is to esti-
mate the feature relevance, the particular feature is removed and then the
prediction drop is measured from the original prediction score. Stability
ensures that similar inputs gives similar explanations.

To estimate the stability of the explanation model they use a variation
of the Lipschitz constant and this is done to make sure the particular inter-
pretability method is robust. The stability estimate can be time consuming
for traditional interpretability methods such as LIME. This is solved by
using Bayesian Optimization [43]. When they evaluated the robustness
of different datasets and interpretability methods the conclusion was that
the new approach, SENN, outperformed all other methods and also showed
that it is a big problem with the lack of robustness of the a posteriori meth-
ods. It was also clear that the model in itself can be robust but not the
interpretability method.

In 2017 P. Kindermans et al. suggested two new explanation techniques,
PatternNet and PatternAttribution [44].

Here they demonstrated that interpretability methods such as LRP, Guided
Backpropagation and DeConvNet was giving weak results even for linear
models. They showed that the model gradient is not an estimate for the sig-
nal in the data. Instead it was revealed that it is a relation between signal
direction and the distracting noise contribution.

They divided the interpretability methods in three groups of visualiza-
tion: function, signal and attribution. The groups gives different informa-
tion about the network, but complement each other. Where function and
signal groups visualize the explanation using the original color channels,
the attribution group is visualized as a heatmap of the relevance for each
input pixel. From their analysis they concluded that none of these visual-
izations shows what the signal in the neural network is. The function group
such as Gradients and saliency gives information about how to extract the
signal. The signal group included DeConvNet and Guided Backpropaga-
tion shows the filter and not the direction as supposed. The last group such
as LRP and DTD shows the relevance from the output through the input
pixels.

To measure the robustness of the XAI they used a quality measure for
neuron-wise signal estimators. These estimators were used to create an
optimized explanation method. They presented solutions for the different
groups. For function and signal groups the PatternNet was introduced and
for the attribution methods PatternAttribution. Their experiments showed
both qualitative and quantitatively that by including the data distribution
the visualization methods can be optimized.

In 2019 Macdonald et al took the optimisation further by using a rate
distortion framework, [45]. Here they proposed the minimisation proce-
dure Rate-Distortion Explanation (RDE). Their analysis showed that use
of heuristic explanation methods in practical applications can be useful.

By looking at the dropping distortion it is possible to find out an estima-
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tion of correctness. How fast distortion drop indicates how many relevant
components that are correctly identified. By comparing this method with
a posteriori interpretability methods it was found that RDE performs bet-
ter. This method finds the most relevant components and thus giving the
steepest rate-distortion graph compared to the other

In 2020 Bykov et al. made a new approach to investigate the uncertain-
ties of XAI where they mixed a XAI with a Bayesian Neural Network (BNN)
[46]. Here they convert the XAI into an explanation method for BNN, with
an integrated modeling of uncertainties. This new approach quantifies the
uncertainties and visualize them.

The specific XAI they based their work on here was LRP and the new
method was called B-LRP. This new approach can in theory be used on any
XAI and not just LRP. The output of this was not only one heatmap as
for regular LRP, but a distribution of heatmaps. As for LRP the heatmaps
shows negative and positive contributions. In particular they demonstrated
the results by using the 5th, 25th, 50th, 75th and 95th percentile. By look-
ing at the different heatmaps from B-LRP it is possible to figure out un-
certainties of the LRP. The pixels that are positive in the 5th percentile
heatmap will stay positive in the rest of the distribution from 5-100. The
same is the case for the negative pixels in the 95th percentile. The pix-
els that are negative in the 95th percentile will be negative from 0-95th
percentile heatmaps. The 50th percentile was equal to the original LRP
heatmap. By only looking at the positive pixels in the 5th and the negative
pixels in the 95th it is revealed that the pixels in the heatmaps are quite
changeable and thus the uncertainty are quite big for a LRP heatmap. The
Clever Hans effect was also verified were the text in an image was pre-
dicted as positive even if the text was not a part of the object that was pre-
dicted. Another approach to checking the reliability of a saliency method is
proposed in [47]. Here they argued that a reliable XAI method should be
invariant to transformations that does not impact the model. This property
is called input shift invariance. A XAI should give the same results for two
corresponding equally trained models, where the only difference can be a
transformation of the dataset used for training. They demonstrated that
this is not the case by several examples. By comparing two models with the
same XAI and where the only differences in the two models are that one is
trained with the same dataset than the other but adding a constant shift.
Since the process for both input images are the same the interpretabil-
ity should also be the same and therefore the two heatmaps should be the
same. They also showed that input shift invariance can easy be used to
purposefully manipulate the explanation of predictions.

In 2020 [46] proposed a new process to investigate attribution methods
such as PatternAttribution, Guided Backpropagation and LRP. Cosine simi-
larity convergence (CSC) focuses on how much the later layers contribute to
the explanation. This work was inspired by the sanity check from [48]. Here
they showed that by randomizing the last layers parameters, the saliency
maps stayed the same, thus showed that the last layers parameters did
not contribute to the explanation. The fact that the XAI is ignoring the
last layer is clearly a weakness of the interpretability method and thus can
not explain the prediction faithfully. In [46] they took the work further by
looking at more methods and create a new estimate, CSC, to calculate how
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information from the later layers are ignored.
They also addressed the problem with class insensitivity by especially

the different LRP methods [49], [50]. By recognizing the issue the commu-
nity was able to optimize the method. The Datasets CIFAR and ImageNet
[51] have a problem by not having more than one class pr image and thus
not revealing class sensitivity.

Their results of this particular article [46] shows that almost every at-
tribution method investigated failed the test. An exception was DeepLIFT
[52] that was the only method that passed the test. A proposition to solving
the class insensitivity was to backpropagate negative relevances similar to
DeepLIFT.

In this section we have looked at works related to investigations of XAI
methods and their solutions. These methods can be optimized by making
a new model with an integrated explanation method such as SENN [42],
PatternNet and PatternAttribution [44] or measure of the robustness of
the existing models such as B-LRP [46], RDE [45] and CSC [53]. Inspecting
where the XAI methods fail can help to improve/optimize and understand
how to create new more robust XAI methods. It was also clear that a neural
network in itself can be robust even though the XAI is not.
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Chapter 7

Experiments on
measuring robustness of
LRP and LIME

In this chapter we look at how to measure explanation method robustness.
The goal of this chapter is to find a method to measure how robust the
explanation method is and decide on which method to use.

The robustness can be estimated on different approaches such as B-
LRP [46], Lipschitz continuity [40], RDE [45] and Root Mean Square Error
(RMSE) [54]. To test the robustness of an explanation method and a net-
work/model one can use similar techniques as when augmenting datasets
used for training a model. Examples of this are adding different types of
noise, rotation, color shift and zoom. For testing of robustness others have
also used perturbations such as patching out parts of the image [11] as
described in chapter 3.1.

We decided to use RMSE to estimate the robustness for these experi-
ments. To test the robustness we decided to use rotation and Gaussian
noise. We use minor transformations to verify that the model and the XAI
method perform as it should. If the prediction changes it might indicate a
weakness in the model and on the contrary if the RMSE for the explanation
before and after the transformation increases, it is an contraindication of
robustness in the explanation method.

By looking at robustness indicators like RMSE with these basic trans-
formations it is possible to decide if further investigations should be done.
These investigations might include more complex robustness investigations
such as Lipschitz continuity [40, 42] or adversarial attacks [41].

7.1 Quantitative Analysis
For the quantitative analysis we use Root Mean Square Error (RMSE) as a
tool. The RMSE value that is close to 0 is best, where the ideal value is 0.
The higher the RMSE value the more inadequate result, thus signaling a
brittle method.
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RMSE is given as:

RMSE =

√√√√ N∑
i=1

(ytransformedi − yrefi)2
N

, (7.1)

where ytransformedi
is the transformed heatmap pixels and yrefi is the ref-

erence heatmaps pixels. N is the number of pixels in the heatmap and i
denotes the pixel.

The RMSE is calculated for each LRP pair, with LRP after transfor-
mation as ytransformed and the original LRP as yref . For the rotations the
reference LRP output is rotated by the same angle as the image was rotated
before LRP estimation and then RMSE is calculated. This is done to get the
original heatmap and the transformed heatmap to be as similar as possible
and thus prevent an additional source of error.

To use RMSE as a measurement of the explanation methods correctness,
it is dependent on the models robustness. The original and the transformed
image should produce similar results from the model. If the model can do
this, a divergence in the RMSE score for the image pair can reveal deficien-
cies in the explanation method.

7.2 Transformations
We have decided to use the following transformations in this experiment:

• rotation of the input image

• adding of noise to the input image

It is also possible to transform the image either by changing the grayscale
or zooming. Two potential issues by doing this are that most models look at
the texture and not the shape of the object when predicting [55]. By chang-
ing the color scheme, the observed texture changes, potentially resulting in
a different prediction by the model. When zooming, important parts of the
object might be clipped resulting in erroneous predictions i.e. distinct ears
of a lynx being cut resulting in a prediction of a cat instead. Randomized
zoom may only leave a small part of the object which might be outside the
scope of the models training. This might discover flaws of the model such
as bias in the dataset.
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Figure 7.1: Examples of an image before and after transformations. The
original image to the left, 10 degree rotated image in the middle and image
with added Gaussian noise with sigma = 5.0

As seen the middle image in Figure 7.1 the rotation gives gray edges,
and this again can generate a boost in the LRP detection. To avoid this the
image is cropped before sent through RMSE estimation. Since the model
used here, VGG-16, requires a set input size and the images used are ap-
proximately the same size, the cropping have to be done after the LRP es-
timation. This can therefore affect the result of the prediction estimation.
Another problem with the images used in this experiment is that the object
spans over substantial parts of the image. Additionally the size of the im-
ages are small 224× 224 and therefore the cropping may remove significant
parts of the object of interest. Small angles will work, but larger angles
will remove to much of the object. A solution to this would be to use im-
ages that can be cropped such that the whole object is not affected by the
cropping of the image and still have proper size required by the model. The
grey edges in this experiment are removed by calculating where the grey
edges are and cropping them away. Another approach could be to take a
portion of the object in the image and then find that part of the image after
rotation. This could then be sent through LRP and estimate the RMSE for
this portion on each image.

7.3 Explanation methods
The two chosen interpretability methods for these experiments are LIME
and LRP. The implementation we use for LRP is the one based on [26] as
described in chapter 4. The LIME implementation is based on the tutorial
from [3, 56]. We use Jupyter Notebooks to execute all code.

The LIME algorithm used is from the lime package introduced in [56].
This method is more complex to implement and it is also dependent of im-
ages, and not tensors.

7.4 Experiment process
The model used in this section is a pretrained VGG-16 model from Py-
Torch [37, 34]. A discussion of why this is selected is found in chapter
4. The images used are the same as presented in 5.2. These images contain
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more than one object and have almost the same shapes as the ImageNet
dataset that the model is trained on. In this way we avoid the displace-
ment/cropping of the object.

The model is trained with different types of augmentation [37, 57]. Here
it is used techniques to recognize objects at different scales, horizontal flip-
ping and color shift and subsections of the images. The model is not trained
with vertical flipping and rotated augmentations.

We use the images with transformations and compare them to the orig-
inal images. The experiment can in theory be used on any CNN model or
explanation method.

7.4.1 Rotation of input image
The rotation angles used are: 0.5, 1.0, 5.0 and 10.0 degrees. It is also tested
with significantly greater angles between 15 to 40 degrees. The first predic-
tion of the rotated image from a pretrained VGG-16 model is used further
to compare the changes in rotation in the original image. In table 8.1 the
prediction score and the corresponding angle used is shown. To estimate
the RMSE for each image pair, the LRP heatmaps before and after rotation
are compared. The original heatmap is rotated by the same angle as the
original image sent through LRP.

It was in addition experimented with greater rotation angles (15, 20,
25 and 40 degrees). Since the image is quite small and the object is not
surrounded by much background it is best to do this experiment on images
with more background than the images used here.

7.4.2 Noise on input image
For the experiment we added Gaussian noise to each image before send-
ing it through LRP. For the noise we use Gaussian distributed noise on
input with sigmas from 0.01 to 0.1 with step of 0.01. The used explana-
tion heatmaps is then compared with the original explanation heatmaps.
The explanation methods we use here are LRP and LIME. We also exper-
imented with significantly higher levels of sigma between 0.25-10.0. The
small sigma parameters was selected such that the changes in the image
with noise was minor enough to still be recognized by the human eye. The
higher sigma values was to investigate how much noise could be added be-
fore the model were unable to predict accurately.
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Chapter 8

Results

In this chapter we investigate how robust the selected explanation meth-
ods, LRP and LIME are by doing a quantitative analysis. We specifically
evaluate how the method performs with transformed data using noise and
rotation. This chapter presents the results from the experiments described
in chapter 7. The results are divided in a noise and a rotation section where
an investigation for each explanation method have been done. Finally we
conclude our findings in the end of the chapter.

Here we investigate the LRP and LIME methods and compare the orig-
inal heatmaps to the transformed heatmaps. We focus on the first predic-
tion, the reason being that this gives the highest prediction score and the
LRP method is unreliable for low prediction scores [2], as discussed earlier
in chapter 3.

Due to the sparse results LIME was giving, this method was only in-
vestigated with the minor transformations i.e. rotations between 0.5-10.0
degrees and Gaussian noise with σ between 0.01-0.10.

8.1 Rotation
In this section we present the results for the rotation part of the experi-
ment. This includes the explanation methods heatmaps after the specific
angles and RMSE graphs for rotation pr image.

From tables 5.2 and 8.1 it is observed that the first prediction for the
images cat/maraca and cat/hamper the prediction label is similar before
and after transformation. This is not the case for the dog/tub image where
the original image prediction label is bucket and for the angles 1.0 and
10.0 gives prediction Norwich terrier. The difference is also observed in the
RMSE graphs in Figures 8.14 - 8.16, where the similar prediction labels
before and after transformation is more even and the graph for the dog/tub
gives a jump when the label is different. This is expected since the two
labels are quite different and will mostly focus on different pixels in the
image and therefore give higher RMSE values.

By comparing the original labels to the labels after rotation it can imply
a bias in the dataset, and that the object is not represented in different
positions. Most objects in real life can exist in different poses, such as a
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plane taking off. The plane upside down is not a logical position, but if
it is a system that searches for a plane crash this might be a potential
orientation in the required models dataset. On the other hand a model that
detects numbers should be sensitive to rotations, since 6 and 9 are equal
upside down. In this example it would be better if the system have some
requirement such as that the document scanned should be placed in a given
position or some kind of context based rule for detecting orientation.

It is observed that for some of the rotations the LRP predicts a bit more
positive/negative pixels in the edges than the reference LRP. This will affect
the RMSE estimation and may therefore give a higher deviation in RMSE
than without these effects. To avoid this the edges can be cropped away.
Particularly if the pixels in the edges are not clearly important for the pre-
diction of the object and not part of the object to investigate the edges can be
cropped away from the heatmaps before RMSE is estimated. Another ap-
proach is to fill the gray parts due to the rotation with similar pixels from
the edges. In this particular case it is observed that the gray edges are not
affecting the models predictions in a considerable amount and therefore the
edges from the heatmaps are cropped away after the prediction and before
the RMSE estimation. For the image containing cat/hamper the object de-
tected is in the edges. In this particular case it is observed that the edges
are part of the hamper/shopping basket label, but also maintain as positive
pixels through the rotations. The edges from the heatmaps are also here
cropped away before the RMSE estimation.

For the cat/hamper image the prediction consistently gives similar la-
bels (i.e. hamper/shopping basket and tabby/egyptian cat) through label
1-4 with respect to reference images. This shows in the graphs for RMSE,
as they are quite similar and seemingly increases proportionally with the
increased rotation. This is also true for the cat/maraca images with an ex-
ception in the fourth prediction where the angles 0.5 and 10.0 gives a differ-
ent label than the reference, as shown in the RMSE graph. For the dog/tub
images the angles that show different prediction label gives higher RMSE
and the similar labels give a lower RMSE score. Especially prediction 1
and 2 where the label respectively are terrier/bucket and bucket/terrier. It
is also observed that bucket prediction shows positive contribution for the
dog pixels as in chapter 3.2.

For the graphs it is observed that the cat/hamper image is the one that
gives lowest RMSE value for all the rotations and the predictions. This
is unexpected since it has the most positive/negative contributions of the
three images. One would have expected that this image would have given
the highest RMSE values. One reason can be the edges in the heatmaps,
another can be that the object of the predicted label is stretched more out in
the image and thus the range of the positive contributions are higher and
will potentially be more sources for errors since LRP is an interpretability
method that gives pixel specific output and not area such as LIME and
Grad-CAM.

The image with the dog/tub might reveal some issues with the model
since the model predicts different labels for the original image and the
transformations 1.0 and 10.0 degrees. The RMSE values for these degrees
must be disregarded since it clearly will give a higher RMSE than for two
similar predictions. The heatmaps for the other rotations shows that there
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are some differences in the positive contributions of the pixels. The 5.0 de-
gree heatmap is closer to the original heatmap, and this prediction score is
also higher than the 0.5 degree. The 0.5 degree focuses on the detail of the
tub as opposed to the original and the 5.0 degree heatmap.

For the cat/maraca image it is observed that the angles 0.5, 1.0 and 10.0
results in predicted label ping pong ball as for the original image with the
corresponding score: 44.7%, 58.8% and 43.4%. In this case the prediction
is wrong but the shape and texture are similar to the maracas in the image
as the LRP take as positive contributions. In these heatmaps it is a distinct
difference in the heatmaps. Especially the negative contributions are vari-
ant for the three heatmaps. These variations indicates that the explanation
method may not be robust for these transformations.

The cat/hamper image rotated gives prediction label hamper and shop-
ping basket. Even for a small change in rotation 0.5 degrees, the score
drops approximately 10% which can indicate that the model in itself have a
dataset bias and the hamper is only represented in one position, and not for
example upside down. Hamper and shopping basket have similar texture
and therefore the heatmaps looks similar.

Although the shape of the predicted label is similar it is proved that
cnn systems as opposite to humans do not look at shapes but on textures
such as fur. This was tested with a shape of a cat but with elephant skin.
The models predicted elephant and not cat, [55]. This can be a reason why
machine learning systems are fragile to transformations.

For an interpretability method it is expected that the explanation shows
the same when the model predicts the same for the different transforma-
tions, this is addressed in several articles and discussed in chapter 6. 10
degrees for a rotation is not a big transformation and one would expect that
the models prediction would stay the same as the original input and there-
fore the RMSE values would stay close to zero. This is not the case and it
indicates that even though the model in itself is robust for transformations
the interpretability method is not necessarily that.

Angle/True label dog/tub cat/maraca cat/hamper
0.5 bucket: 43.8% ping-pong ball: 44.7% hamper: 34.7%
1.0 Norwich terrier: 63.4 % ping-pong ball: 58.8% shopping basket: 45.4%
5.0 bucket: 51.0% tennis ball: 38.8% shopping basket: 36.6%

10.0 Norwich terrier: 43.4 % ping-pong ball: 43.4% shopping basket: 26.0%

Table 8.1: First prediction for each rotated image with pretrained vgg16
model and Pytorch. The images dog/tub, cat/maraca and cat/hamper are
rotated for a given angle and then the first prediction is fetched for the
LRP visualization. The column shows the first prediction label and score
for each rotated image. Each label name is abbreviated to the first whole
name of the ImageNet name. Angles are in degrees.

8.1.1 LRP results
In this section we look at different LRP heatmaps for rotation of the images.
We also look at RMSE effects between cropped and not cropped images be-
fore estimating RMSE. The main experiments are done with minor angles
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and the VGG16 model. In a second experiment we use significantly higher
rotations on the cropped input images. Finally the experiment with minor
rotations are briefly repeated using a VGG16 architecture with batchnorm
layers.

RMSE results without cropping the images

The heatmaps for the first prediction of each rotation are shown in Figure
8.1, The RMSE is estimated for these heatmaps. The RMSE graphs are
found in Figures 8.2 - 8.4.

Figure 8.1: LRP heatmaps for the first predictions for each rotation of all
three images with angles 0.5, 1.0, 5.0 and 10.0 degrees. The smallest angle
from the top to the highest angle in the bottom, 10.0 degrees. The image of
dog and tub to the left, cat/maraca in the middle and cat/hamper to the left.
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Figure 8.2: Quantitative Analysis of image of dog and tub rotated using
RMSE with respect to original LRP heatmaps.

Figure 8.3: Quantitative Analysis of image of cat and maraca rotated using
RMSE with respect to original LRP heatmaps.
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Figure 8.4: Quantitative Analysis of image of cat and hamper rotated using
RMSE with respect to original LRP heatmaps.

RMSE results for cropped heatmaps

The cropped images and corresponding heatmaps are found in Figures 8.5-
8.7. The corresponding RMSE graphs for the first 4 prediction for each
image are found in Figures 8.8-8.10.
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Figure 8.5: LRP heatmaps for the first predictions for each rotation of image
of dog and tub with angles 0.5, 1.0, 5.0 and 10.0 degrees. The smallest angle
from the top to the highest angle in the bottom, 10.0 degrees.
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Figure 8.6: LRP heatmaps for the first predictions for each rotation of image
of cat and maraca with angles 0.5, 1.0, 5.0 and 10.0 degrees. The smallest
angle from the top to the highest angle in the bottom, 10.0 degrees.
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Figure 8.7: LRP heatmaps for the first predictions for each rotation of image
of cat and hamper with angles 0.5, 1.0, 5.0 and 10.0 degrees. The smallest
angle from the top to the highest angle in the bottom, 10.0 degrees.
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Figure 8.8: Quantitative Analysis of image of dog and tub rotated using
RMSE with respect to original LRP heatmaps.

Figure 8.9: Quantitative Analysis of image of cat and maraca rotated using
RMSE with respect to original LRP heatmaps.
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Figure 8.10: Quantitative Analysis of image of cat and hamper rotated us-
ing RMSE with respect to original LRP heatmaps.

By rotating the cat/hamper image even more it is observed that the pre-
dicted label changes to ’tabby cat’ for all rotation in this part of the experi-
ment. While the original image is predicted as ’hamper’. This will affect the
RMSE results. The rotation/cropping of the image leads to important parts
of the object hamper disappears from the part that is sent through the LRP.
It is observed that as expected when the angle is to high the cropped image
is not recognizable. The RMSE calculation give inconsistent results since
the rotated and the original images have different prediction labels. This is
observed for all three images, both for cropped and not cropped versions.
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Figure 8.11: LRP heatmaps for the first predictions for each rotation of
image of dog and tub with angles 15.0, 20.0, 25.0 and 40.0 degrees. The
smallest angle from the top to the highest angle in the bottom, 40.0 degrees.
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Figure 8.12: LRP heatmaps for the first predictions for each rotation of
image of cat and maraca with angles 15.0, 20.0, 25.0 and 40.0 degrees. The
smallest angle from the top to the highest angle in the bottom, 40.0 degrees.
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Figure 8.13: LRP heatmaps for the first predictions for each rotation of
image of cat and hamper with angles 15.0, 20.0, 25.0 and 40.0 degrees. The
smallest angle from the top to the highest angle in the bottom, 40.0 degrees.
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Figure 8.14: Quantitative Analysis of image of dog and tub rotated using
RMSE with respect to original LRP heatmaps.

Figure 8.15: Quantitative Analysis of image of cat and maraca rotated us-
ing RMSE with respect to original LRP heatmaps.
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Figure 8.16: Quantitative Analysis of image of cat and hamper rotated us-
ing RMSE with respect to original LRP heatmaps.

Comparison of cropped and not cropped images

Figure 8.17: Quantitative Analysis of image of cat and hamper rotated us-
ing RMSE with respect to original heatmaps.
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Figure 8.18: Quantitative Analysis of image of cat and hamper rotated us-
ing RMSE with respect to original heatmap. LIME vs LRP.

LRP results using VGG16 with batchnorm

In this section we present the results for the rotation experiment using
minor rotation and a pretrained VGG16 with batchnorm layers. In Figure
8.19 the heatmaps for the rotated input images are shown. The four first
predicted labels are shown in Figure 8.20. In conclusion a comparison of
the two models used in this chapter are shown in Figure 8.21.
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Figure 8.19: The four first LRP heatmaps generated for each rotation.

Figure 8.20: The four first RMSE for each rotation.
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Figure 8.21: Comparison of Quantitative Analysis of image cat/hamper us-
ing two different models. RMSE calculated by using rotation.

8.1.2 LIME results
In Figure 8.22 shows the results for the experiment with rotation of the
input image and using the explanation method LIME. Only the first pre-
diction pr image is shown in this Figure. The corresponding RMSE graphs
is shown in Figure 8.23-8.25.
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Figure 8.22: LIME heatmaps for the first predictions for each rotation of all
three images with angles 0.5, 1.0, 5.0 and 10.0 degrees. The smallest angle
from the top to the highest angle in the bottom, 10.0 degrees. The image of
dog and tub to the left, cat/maraca in the middle and cat/hamper to the left.

Figure 8.23: Quantitative Analysis of image of dog and tub rotated using
RMSE with respect to original LIME heatmaps.
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Figure 8.24: Quantitative Analysis of image of cat and maraca rotated us-
ing RMSE with respect to original LIME heatmaps.

Figure 8.25: Quantitative Analysis of image of cat and hamper rotated us-
ing RMSE with respect to original LIME heatmaps.
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8.2 Noise on original image
As observed in Table 8.2 it is cat/hamper that gives the most stable pre-
diction scores of the three images. This indicates that the changes in the
heatmaps should be from the explanation method and not due to instability
of those particular networks used here.

We focuses here on the image cat/hamper since this image have the same
predicted label through the smallest adding of noise. It is observed that for
these adding of noise there are drastically changes for the LIME heatmaps
than the LRP heatmaps. Since this image gives the most stable result we
decided to test it with higher levels of noise.

LIME finds superpixels and small changes may have major effect on the
explanation heatmap. This is also discussed in [40].

Added noise/True label dog/tub cat/maraca cat/hamper
0.01 bucket: 53.0% ping-pong ball: 45.7% hamper: 44.3%
0.02 bucket: 54.1 % pool table: 50.1% hamper: 45.0%
0.03 bucket: 50.4% ping-pong ball: 48.0% hamper: 45.6%
0.04 bucket: 41.6 % pool table: 51.5% hamper: 43.4%
0.05 bucket: 43.6% ping-pong ball: 45.8% hamper: 44.6%
0.06 bucket: 39.3 % ping-pong ball: 40.1% hamper: 42.8%
0.07 bucket: 36.4% ping-pong ball: 41.5% hamper: 42.7%
0.08 bucket: 32.3 % pool table: 41.1% hamper: 49.8%
0.09 bucket: 38.0% pool table: 36.6% hamper: 41.7%
0.1 bucket: 20.9 % ping-pong ball: 41.7% hamper: 41.5%

Table 8.2: First prediction for each transformed image with pretrained
vgg16 model and Pytorch. The images dog/tub, cat/maraca and cat/hamper
are added Gaussian noise and then the first prediction is fetched for the
LRP visualization. The column shows the first prediction label and score
for each image added noise. Each label name is abbreviated to the first
whole name of the ImageNet name.

8.2.1 LRP results
The first four predictions and corresponding LRP heatmaps for the image
cat/hamper are found in Figures 8.26-8.27.

The RMSE graphs for the first prediction for all images are found in
Figure 8.28. Table 8.2 shows the first prediction score and label for each
image with added Gaussian noise. The noise added are from 0.01 to 0.1,
with step size of 0.01.

The fact that the bucket prediction decreases from 53.0% to 20.9% indi-
cates that the model in itself is not as robust as expected. A model should
manage to give the same output regardless of adding a small amount of
noise. The image is not changed enough to see the difference from the orig-
inal image. Here the labels are consistently the same as the original image.
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Figure 8.26: LRP heatmaps for the 4 first predictions for each rotation of
image of cat and hamper with added noise. The smallest added noise from
the top to the highest added noise in the bottom. σ between 0.01-0.05

66



Figure 8.27: LRP heatmaps for the 4 first predictions for each rotation of
image of cat and hamper with added noise. The smallest added noise from
the top to the highest added noise in the bottom. σ between 0.06-0.10
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Figure 8.28: Quantitative Analysis of the three images. Each graph repre-
sents the first predictions for each added noise.

Figure 8.29: Adding Gaussian noise to the cat/hamper image with σ be-
tween 0.25-10. Each row represents the 4 first predictions for each added
noise. The upper row starts from 0.25

By adding more noise it is observed that the model recognizes images
with Gaussian noise defined by sigma=0.45. The threshold for this par-
ticular image is observed to be between 0.45 and 1.0. The cat/maraca is
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predicted as maraca until sigma equal 1.0 where it gets the label ’jelly fish’.

LRP results using VGG16 with batchnorm

In this section we present the results for the rotation experiment using
Gaussian noise and a pretrained VGG16 with batchnorm layers. In Figure
?? the heatmaps for the rotated input images are shown. The four first
predicted labels are shown in Figure 8.30. In conclusion a comparison of
the two models used in this chapter are shown in Figure 8.31.

Figure 8.30: RMSE graphs for the four first prediction.
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Figure 8.31: Comparison of Quantitative Analysis of image cat/hamper us-
ing two different models. RMSE calculated by using noise.
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8.2.2 LIME results

Figure 8.32: LIME heatmaps for the first predictions for each image of dog
and tub with added noise. The smallest added noise from the top to the
highest added noise in the bottom.
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Figure 8.33: LIME heatmaps for the first predictions for each image of cat
and maraca with added noise. The smallest added noise from the top to the
highest added noise in the bottom.
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Figure 8.34: LIME heatmaps for the first predictions for each rotation of
image of cat and hamper with added noise. The smallest added noise from
the top to the highest added noise in the bottom.
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Figure 8.35: Quantitative Analysis of image of dog and tub added noise
using RMSE with respect to original LIME heatmaps.

Figure 8.36: Quantitative Analysis of image of cat and maraca added noise
using RMSE with respect to original LIME heatmaps.
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Figure 8.37: Quantitative Analysis of image of cat and hamper added noise
using RMSE with respect to original LIME heatmaps.

8.3 Discussion
The quantitative analysis shows significant differences in the RMSE re-
sults. LIME gives a drastic change in the heatmaps by only adding small
transformations. This indicates that the LIME method is not robust for
perturbations of the input image. The LRP results shows that LRP is less
susceptible to transformations compared to LIME. This indicates that the
inconsistency may come from the explanation method and not only from the
model. The prediction scores show that the model in itself is not trained on
rotation as expected and will therefore have problems by detecting rotated
objects.

One reason why the LIME method under perform compared to LRP can
be that the actual calculation for the LIME method is done inside the li-
brary, and this makes it more complicated to add transformations and cal-
culating the RMSE score for the experiments. In addition it is a very time
consuming method to run, resulting in a very long feedback loop when test-
ing.

The RMSE score for these experiments are high and from a qualitative
analysis perspective when looking at the two outputs this is not surprising
since the difference between the reference and the transformed heatmap
are significantly different. Another possibility is that our implementation
is wrong.

For the noise experiment it is observed that LRP is more robust for small
changes than LIME. This may be due to the fact that LIME finds super pix-
els and therefore small changes may have major effect on the explanation
heatmap. This is also discussed in [40].
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It was observed in chapter 5.2 that LIME with higher precision may
give a more consistent result and this should be investigated further. The
main issues are that these kinds of experiments are time consuming and
also require significant computational data resources.
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Chapter 9

Model Sensitivity

In this chapter we look at the model sensitivity for VGG-16 when using LRP
by comparing other similar works. The models looked on in this chapter are
trained on the same dataset, ImageNet and the images used as reference
are fetched from the article our work is compared by, [28].

In 2015 batchnorm [15] were proposed as a new method to make a neu-
ral net more stable and faster. A lot of pretrained nets have a variant with
and without batchnorm layers, this applies to VGG-16 as well. It was ob-
served that this gave a higher prediction score and more accurate results.

When implementing LRP in our work it was observed that the BN lay-
ers created problems when calculating the LRP and the visualizing of the
heatmaps. A method to fix this problem was to fuse the batchnorm lay-
ers with the previous convolution layer. This gave much better results but
still not optimal once compared to a similar model without batchnorm lay-
ers. Another challenge was complex model architectures such as blocks and
parallel connections. Therefore in this thesis we choose to use a model with
a simple straightforward architecture such as VGG-16 and the works we
compare with might use a more complex architecture model with batch-
norm layers.

In 2019 there were a suggestion on how to handle batchnorm layers
when implementing LRP [28]. In this article they were looking at different
LRP rules and corresponding LRP heatmaps. Since the batchnorm layer
bias turned out to be more important than first assumed they proposed
a new LRP rule, |z| − rule, for optimizing LRP outputs when batchnorm
layers are present in the network. They also concluded that a more robust
network gave a higher quality LRP heatmap.

The images we use from this article [28] are: zebra, statues and air-
plane. Table 9.1 shows the label and score for the first prediction for most
of the models mentioned in this chapter. We assume that the LRP outputs
in the article is from the first prediction for their respective model. The
labels for the prediction for an image may differ from model to model, but
the labels are still similar. Therefore it is possible to compare the LRP
heatmaps for the different models on a specific image.
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Model zebra cloak airliner
VGG-16 zebra: 99.9% cloak: 15.9% airliner: 86.9%
AlexNet zebra: 99.9% megalith: 23.3% warplane: 47.1%
ResNet zebra: 99.9% cloak: 83.6% airliner: 77.6%

DenseNet zebra: 99.9% cloak: 56.1% airliner: 88.1%
MobileNet_v2 zebra: 99.6% cloak: 52.4% warplane: 55.6%

Table 9.1: First prediction with label and score for each image with different
models. Each label name is abbreviated to the first whole name of the
ImageNet name.

VGG-16 with batchnorm gives a better prediction score and is more ac-
curate than VGG-16 without batchnorm. This indicates that it might be a
good idea to implement and compare results from VGG-16 with and without
batchnorm layers.

We observe that VGG-16 with rules mentioned in chapter 2, [27] gives
quite similar LRP results as InceptionResNet-V2 with preset BN ε rule.
This assumes that the article use the same rules as mentioned in chapter
3.4.2. By comparing our LRP results with the articles it is observed that the
results are not that far apart. Seemingly there are a correlation between
details in the LRP heatmaps and the complexity of the model. Particularly
the contours are maintained in the LRP when using a complex model. From
the three images what differs the most are the zebra image, where we can
see that for VGG-16 in the LRP heatmap some of the stripes are not counted
as positive contributions and some even give negative results.

It looks like it is a trend that the more intricate or robust a model is,
the better the LRP results will be [28]. A similar indication is shown be-
tween the VGG16 model with and without batchnorm in chapter 8. From
a visual comparison perspective the model with batchnorm gives a better
distribution between positive/negative pixel relevance.

Figure 9.1: LRP results for image of airliner with respect to the four first
predicted classes. See table 9.1 for specific labelnames. Image taken from
[28], to compare model sensitivity between VGG16 and other models.
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Figure 9.2: LRP results for image with respect to the four first predicted
classes. See table 9.1 for specific labelnames. Image taken from [28], to
compare model sensitivity between VGG16 and other models.

Figure 9.3: LRP results for image of zebra with respect to the four first
predicted classes. See table 9.1 for specific labelnames. Image taken from
[28], to compare model sensitivity between VGG16 and other models.
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Figure 9.4: LRP results prediction castle image of landscape. Using pre-
trained AlexNet model.
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Chapter 10

Further work

In this chapter we discuss further work. Our work should be expanded to
include testing of images with more surroundings such as PASCAL VOC
[58] and COCO [59]. There should also be tests with other more com-
plex models such as ResNet [8]. By using a more robust model it would be
clearer if the variances in the results chapter were coming from the model
or the particular explanation method.

If the image has more surroundings it is possible to crop out the portion
of the image without dealing with rotation and image boundaries. It is
possible to test this with a dataset that contains objects corresponding to
the trained model. But it is still a requirement that the object have enough
surroundings due to the rotation angles expansion of the cropped portion of
the image. To make the process more automated the dataset used should
contain the labeled objects coordinates such as center, height and width.

By using an aposteriori method such as LRP [2] with a method that
recognizes a global explanation such as TCAV [60], it would give an expla-
nation that not only gives a local visualization for the interpretability but
also a global decisions on why this is predicted as it is.

To work around issues regarding LRP results for models containing
batchnorm layers we experimented with [35], which gave better results. It
would be interesting to investigate further how fuse compares to the find-
ings in [28].

In the experiments for this thesis we have decided which images to use
manually. This is both time consuming and could potentially mask issues
in the datasets used due to our bias of what an appropriate test image
should be. Next step would be to automate all decisions regarding object
location in image and use metadata to ensure the object is still in frame
after transformations. This would enable us to test on a larger amount
of images and better view trends in each explanation method. This could
verify the results from this thesis on a larger scale. By using more data it
would be possible to reveal if there are correlating trends in the subset of
test images. It would also be possible to compare this result in aggregate
with what others have found, such as [61, 62, 63].
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Chapter 11

Conclusion

In this thesis we have studied different explanation methods for CNN net-
works and focused on investigating weaknesses of them in terms of robust-
ness.

Despite the fact that deep learning have made giant leeps in the accu-
racy of many image analysis tasks the networks used still acts as a black
box. The main focus in this thesis was to study how these networks can be
explained and their interpretability methods.

We have particularly looked at LRP and LIME, but also the attribution
methods guided backpropagation and Grad-CAM. After studying the differ-
ences for a few sample of images it was decided to investigate the methods
LRP and LIME further. These interpretability methods gave the most con-
sistent result.

In addition it was experimented on how robust these two interpretabil-
ity method were by adding different transformations of the input image.
To estimate the robustness the RMSE was calculated from the two refer-
ence heatmaps and the transformation heatmaps. The transformations
used here was adding Gaussian noise to the input image and rotation of
the image.

One observation that was done was that by only looking at the predic-
tion score it was observed that the model gave different results than the
original image for the adding of small amount of rotation transformations.
For the adding of noise it was observed that the model mostly gave the same
prediction label. This indicates that the model is more robust for the adding
of noise than the rotation. This is also logical since the model used here is
trained on transformation such as scaling and not for rotation [57, 37].

This was also reflected in the RMSE graphs for a particular image pair
that gave different labels. A solution could be to calculate the RMSE for
the same labels. An issue with this procedure would be that the prediction
score for the same label must be on a significant amount and this was not
the case for this experiment.

Further work could be to use a model that can handle these transforma-
tions. Either by fine tuning the used model with more data or using another
model that is trained on rotated images.

Another observation was that the LIME results gave less stable results
for the transformation compared to the model. This was especially observed
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for the noise experiment were the predicted labels stayed the same be-
fore and after transformed images, but the RMSE increased drastically for
LIME compared to LRP.

It was observed that the same network with batchnorm layers gave
higher prediction scores. LRP and similar methods require high perfor-
mance accuracy and therefore the experiment was also tested for this method.
It is observed both from the RMSE and the positive and negative pixels is
more precise than for the same model without batcnorm layers. An exam-
ple is that the LRP can distinguish between the two objects on the image
cat/hamper, though this should be verified on a larger corpus of test images.

As seen for guided Grad-CAM [22] it gives an improvement to use more
than one explanation method to use as an interpretability method. Since
LIME [3] is detecting super pixels the transformation of the pixels will
change the interpretability more than it will affect the LRP procedure since
this method only look at one pixel at a time.

Ultimately explanation methods should help to understand and improve
the model by detecting bias and errors in the datasets used to train the
model. It should also be helpful for the end user by pointing out where the
important part of the prediction is and why this is important, both positive
and negative indications should be communicated.
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Appendix A

VGG Architectures

A.1 VGG 16 without batchnorm layers

VGG(
(features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))

(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(6): ReLU(inplace=True)
(7): Conv2d(128, 128, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(8): ReLU(inplace=True)
(9): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(10): Conv2d(128, 256, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(11): ReLU(inplace=True)
(12): Conv2d(256, 256, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(13): ReLU(inplace=True)
(14): Conv2d(256, 256, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(15): ReLU(inplace=True)
(16): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(17): Conv2d(256, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
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(18): ReLU(inplace=True)
(19): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(20): ReLU(inplace=True)
(21): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(25): ReLU(inplace=True)
(26): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(27): ReLU(inplace=True)
(28): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(

(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)

)

A.2 VGG 16 with batchnorm layers
VGG(

(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): Conv2d(64, 64, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(4): BatchNorm2d(64, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(7): Conv2d(64, 128, kernel_size=(3, 3),
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stride=(1, 1), padding=(1, 1))
(8): BatchNorm2d(128, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(9): ReLU(inplace=True)
(10): Conv2d(128, 128, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(11): BatchNorm2d(128, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(12): ReLU(inplace=True)
(13): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(14): Conv2d(128, 256, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(15): BatchNorm2d(256, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(16): ReLU(inplace=True)
(17): Conv2d(256, 256, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(18): BatchNorm2d(256, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(19): ReLU(inplace=True)
(20): Conv2d(256, 256, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(21): BatchNorm2d(256, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(22): ReLU(inplace=True)
(23): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(24): Conv2d(256, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(25): BatchNorm2d(512, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(26): ReLU(inplace=True)
(27): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(28): BatchNorm2d(512, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(29): ReLU(inplace=True)
(30): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(31): BatchNorm2d(512, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(32): ReLU(inplace=True)
(33): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
(34): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(35): BatchNorm2d(512, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(36): ReLU(inplace=True)
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(37): Conv2d(512, 512, kernel_size=(3, 3),
stride=(1, 1), padding=(1, 1))

(38): BatchNorm2d(512, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)

(39): ReLU(inplace=True)
(40): Conv2d(512, 512, kernel_size=(3, 3),

stride=(1, 1), padding=(1, 1))
(41): BatchNorm2d(512, eps=1e-05, momentum=0.1,

affine=True, track_running_stats=True)
(42): ReLU(inplace=True)
(43): MaxPool2d(kernel_size=2, stride=2,

padding=0, dilation=1, ceil_mode=False)
)
(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
(classifier): Sequential(

(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)

)
)
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