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Abstract

Title: Pediatric Burkitt’s Lymphoma in Ghana: A Decision-Analytic Model and Pre-
liminary Cost-Effectiveness Analysis

Methods: In the study performed in this thesis, academic literature for the clinical
progression of pediatric Burkitt’s Lymphoma was used to pilot a novel decision tree
model to simulate the clinical progression and outcomes of the disease. A preliminary
cost-effectiveness analysis was performed using this decision-analytic model. The pa-
rameters for the preliminary analysis were populated using data from Ghanaian sources
when applicable, and sources from similar settings when necessary. Deterministic and
probabilistic sensitivity analyses were performed in order to account for structural and
parameter uncertainty, and to identify the parameters with the largest impact on the
cost-effectiveness of pediatric Burkitt’s Lymphoma treatment in Ghana.

Results: The decision-analytic model was able to produce outcomes similar to observed
pediatric Burkitt’s Lymphoma outcomes in Ghana. Deterministic sensitivity analysis in-
dicated annual fixed costs, treatment abandonment and advanced-stage treatment effi-
cacy to be among the most influential parameters. The preliminary cost-effective analysis
produced an Incremental Cost-Effectiveness Ratio of $301 per DALY averted. In the
probabilistic sensitivity analysis, 99.85% of iterations were under the threshold for being
considered very cost effective, with the cost per DALY averted being less the $2202 GDP
per capita of Ghana. Fixed costs of treatment and treatment abandonment were among
the parameters with the highest impact on the cost-effectiveness of pediatric Burkitt’s
Lymphoma treatment in Ghana

Conclusion: Through this study, a novel decision tree model for the simulation of
pediatric Burkitt’s Lymphoma outcomes in Ghana was created. Through sensitivity
analysis, this model was able to identify the parameters that had the largest impact on
the cost-effectiveness of pediatric Burkitt’s Lymphoma treatment in Ghana. The prelim-
inary cost-effectiveness analysis based on this model indicated NHIS-funded treatment
to be likely to be very cost effective compared to the current practice in Ghana.
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Chapter 1

Introduction

Burkitt’s Lymphoma (BL) is a Non-Hodgkin’s lymphoma that primarily affects children.
It is a very aggressive form of cancer, holding the title of the fastest growing tumor in
humans (Molyneux et al., 2012). The disease is treatable in pediatric contexts using
chemotherapy, seeing cure-rates of up to 90% in High-Income Countries (HIC). However,
the outcomes seen in Low- and Middle-Income Countries (LMIC) are typically worse,
with overall survival rates of 40% to 60% (Denburg et al., 2019). The reasons behind
this disparity are complex. Two factors likely at play are the high abandonment rates
seen in LMIC, as well as a lack of resources necessary to achieve the outcomes seen in
HIC (Gopal & Gross, 2018).

The consequences of this disparity in outcomes are felt most severely in Sub-Saharan
Africa (SSA), where the combination of the incidence rates of the disease and the out-
come disparity leads to pediatric BL carrying a particularly heavy burden in these coun-
tries. Among these countries is Ghana, where one study estimated the incidence rate
for pediatric BL to be between 0.59 and 1.1 per 100,000 children under 15 years of age
(Hämmerl et al., 2019). Endemic BL, the form of BL seen in SSA, occurs in children,
with the incidence peaking at around 6 years old (Molyneux et al., 2012). Pediatric
cancers are not currently covered by the National Health Insurance scheme in Ghana, so
pediatric BL treatment costs must be borne by the children’s families. A study by Offor
et al. (2018), where they retrospectively analysed patient data for the Korle Bu Teaching
Hospital from 2007 to 2012, reported a 20% overall survival rate for the patients treated
when excluding those lost to follow up. This rate may be lower in reality. This is because
67% of all patients were lost to follow up, and 75% of those who were lost to follow up
abandoned the treatment due to inability to pay (Offor et al., 2018).

It is within this background and context that pediatric BL treatment was identified
by the Ghanaian Ministry of Health as a potential target for reimbursement within their
National Health Insurance Scheme (NHIS). In order to inform this decision, a Health
Technology Assessment (HTA) of treatments for pediatric BL in a Sub-Saharan African
context is being conducted by the Ministry of Health in Ghana and the Norwegian
Institute for Public Health. The novel decision-analytic model presented in this thesis
will be used in this HTA. Separately from this HTA work, a preliminary cost-effectiveness
analysis of the treatment of pediatric BL in Ghana will be performed using publicly
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available parameters.
There presently exist very few research articles that examine the cost-effectiveness

of BL treatment in LMIC contexts, and there are no articles that examine the cost-
effectiveness of BL treatment in a Ghanaian context specifically at the time of writing.

According to the ad-hoc literature searches performed for this thesis, there exist
two cost-effectiveness studies that can be considered related research in the context of
this thesis. Denburg et al. (2019) contains a cost-effectiveness analyses of BL within a
country in Sub-Saharan Africa, and Renner et al. (2018) contains a cost-effectiveness
analysis of the treatment of all pediatric cancers at one hospital in Ghana. Of the
aforementioned cost-effectiveness analyses, both are based on clinical data and do not
feature a decision-analytic model.

1.1 Objectives

There are two interrelated objectives to the research project described in this thesis.
These objectives are as follows:

1. To pilot a decision-analytic model to simulate the clinical progression of
pediatric Burkitt’s Lymphoma in Ghana to be used to fulfil the research aim
of this thesis and to be delivered to the Ghanaian Ministry of Health for
future use.

2. Populate the model with appropriate parameter data in order to perform
a preliminary cost-effectiveness analysis of NHIS-funded pediatric Burkitt’s
Lymphoma treatment compared to treatment with Current Practice in Ghana.
This will also include deterministic and probabilistic sensitivity analyses.

The completion of these objectives will provide the information and context required
to complete the research aims of this thesis.

1.2 Research Aims

The research aims of this thesis are the following:

1. To asses the cost-effectiveness of NHIS-funded treatment of pediatric
Burkitt’s Lymphoma compared to treatment with the Current Practice in
Ghana protocol through the use of a piloted decision-analytic model.

2. To identify the parameters that have the largest impact on the cost-
effectiveness of the treatment of pediatric Burkitt’s Lymphoma in Ghana.

This thesis will constitute the first cost-effectiveness analysis of pediatric BL treat-
ment in Ghana and the first decision-analytic model for the simulation of pediatric BL
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treatment. The model developed in this thesis will be provided to the Ministry of Health
of the Republic of Ghana for teaching, adaption and use in future analyses.

The study in this thesis is being performed in order to address the knowledge gap
regarding the cost-effectiveness of pediatric BL treatment in Ghana, and the parameters
that have the largest impact on the cost-effectiveness of pediatric BL treatment in Ghana.
The novel findings of this thesis can be used to provide a starting point from which
relevant stakeholders in Ghana can start to make an informed decision regarding the
National Health Insurance Scheme (NHIS) reimbursement of pediatric BL treatment.

1.3 Thesis structure

This thesis is structured as follows:
Chapter 2 of this thesis details the background, diagnosis and treatment of BL. It also

briefly describes the Ghanaian health system, so as to explain the details surrounding
the characteristics of the decision-setting. This is also the chapter in which studies that
explore research aims similar to the research aims of this thesis are introduced.

Chapter 3 outlines the theoretical framework behind the thesis, including cost-
effectiveness analysis, decision-analytic models and sensitivity analysis.

Chapter 4 presents the methods applied in the piloting of the decision-analytic model
and the subsequent preliminary cost-effectiveness analysis. This includes the justification
for the model structure and assumptions, the selection of cost and effectiveness data,
and the determination of cost-effectiveness. Also included are the methods applied for
the deterministic and probabilistic sensitivity analyses.

Chapter 5 presents the results produced by the decision-analytic model, and the
results from the preliminary cost-effectiveness analysis. This includes the costs and
effects for both treatment situations, as well as the results from the deterministic and
probabilistic sensitivity analyses.

Chapter 6 presents the discussion of the results, what the implications of the re-
sults are in a Ghanaian and wider context, the strengths and limitations of the study
conducted in this thesis, and recommended areas of future research.

Chapter 7 presents the thesis’s conclusion regarding the research aims of this thesis.

3
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Chapter 2

Background

This chapter provides background information that is necessary in order to properly un-
derstand the context of the research undertaken in this thesis. This information includes
details about the disease of Burkitt’s Lymphoma, including diagnosis and treatment of
the disease, as well as the burden BL poses for SSA and Ghana specifically. This chapter
also examines existing research relevant to the research aim of this thesis.

2.1 Disease characteristics and Variants of Burkitt’s Lym-
phoma

BL is a cancer of the lymphatic system that affects the B-cells of the lymph nodes, and
is the fastest-growing tumor in humans. The disease is quickly fatal without treatment.
Despite the aggressive growth-rate of the tumor, it is very reactive to chemotherapy in
children (Okebe et al., 2011).

BL is a Non-Hodgkin’s lymphoma that is primarily seen in children. It originates from
the development of the c-myc proto-oncogene into an oncogene through a chromosomal
translocation, and was notably one of the first types of cancer identified to develop via
chromosomal translocation (Molyneux et al., 2012).

BL is normally categorized into three variants: endemic (African) Burkitt’s Lym-
phoma, Sporadic (Non-endemic) Burkitt’s Lymphoma and Immunodeficiency-associated
Burkitt’s Lymphoma (Molyneux et al., 2012). These variants all share the origin of c-myc
oncogene activation, and are histologically indistinguishable from one another. (Guech-
ongey et al., 2010). The differences among the variants are mostly characterized by how
the diseases present and the area of the world in which those affected with the disease
live (Offor et al., 2018).

2.1.1 Endemic Burkitt’s Lymphoma

Endemic BL is named such because it is the variant seen in in areas where malaria
is holoendemic, such as Sub-Saharan Africa. Epstein-Barr virus (EBV) and malaria
are recognized as co-factors for endemic BL. There is a long-recognized link between
the three diseases, with those who develop endemic BL usually being infected with one
or both diseases (Molyneux et al., 2012). The endemic variant of BL occurs only in
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children, with incidence peaking in children at age 6 (Hämmerl et al., 2019). It is the
most prevalent form of BL, having an estimated incidence rate of between 40 and 50 per
million children under 18 years of age (Molyneux et al., 2012). It is more common in
boys, with males accounting for 2/3 of cases of BL (Hämmerl et al., 2019). The most
common clinical presentations for BL are swelling in the jaw, swelling in the periorbital
area and involvement of the abdomen (Molyneux et al., 2012).

The study conducted for this thesis evaluates pediatric BL in Ghana, which implies
that the disease variant in question must be endemic BL, by definition. Therefore, for
the purposes of this thesis, all references of pediatric BL within a Sub-Saharan African
context should be assumed to be referring to the endemic variant.

2.1.2 Other Forms of Burkitt’s Lymphoma

Sporadic BL is the form of BL that occurs outside of areas where malaria is holoendemic,
primarily North America and Europe. It occurs most commonly in children, but can
also be seen in adults. Sporadic BL most commonly presents in the abdomen (Molyneux
et al., 2012).

Immunodeficiency-based BL is the form most commonly seen in individuals with
health problems that cause immunodeficiency, and is most often seen in those who are
infected by HIV/AIDS. Before antiretroviral therapy came to North America, BL was
seen 1000 times more often in individuals infected with HIV/AIDS than in the general
population (Molyneux et al., 2012). Those who present with HIV-associated BL tend to
present with less obvious symptoms such as fever, night sweats and weight loss. BL in
these individuals have more nodal involvement than those with other variants, and tend
to get diagnosed in later stages (Atallah-Yunes et al., 2020).

2.2 Diagnosis of Pediatric Burkitt’s Lymphoma

Proper diagnosis of pediatric BL is necessary in order to provide patients the treatment
regimen best suited to their situation. Accurate diagnosis is important in order to
differentiate BL from other types of Non-Hodgkin’s Lymphoma that require a different
therapeutic strategy (Ozuah et al., 2020). Due to differences in access to resources,
methods for the diagnosis of pediatric BL differ between LMIC and HIC settings. These
differences will be briefly examined in the following paragraphs.

Diagnosis of BL in LMIC commonly relies on the examination of tumor tissue mor-
phology obtained via Fine Needle Aspiration (FNA) (Ozuah et al., 2020). This method,
while less resource-intensive, is discouraged from use in HIC settings for BL diagnosis
(Ozuah et al., 2020). This is likely because FNA does not provide sufficient tumor tissue
for all of the investigations that should ideally be performed (Molyneux et al., 2012).
FNA is, however, recognized as the minimum evidence needed to establish a pediatric
BL diagnosis in LMIC settings (Gopal & Gross, 2018). Though diagnostic accuracy
can be improved with the use of additional methods, studies estimate the specificity of
morphology-only diagnoses to be around 50 % (Ozuah et al., 2020). Even in settings
where additional diagnostic tests are available, access to these tests can be hindered by
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patients’ ability to pay (Offor et al., 2018). The difficulties in proper BL diagnosis in
LMIC may contribute to the poor BL outcomes seen in these settings (Ozuah et al.,
2020).

A method for diagnosis of pediatric BL commonly used in HIC contexts is outlined
in Molyneux et al. (2012). The recommended method outlined in this document involves
confirming the BL diagnosis via microscopy and immunocytological analysis. In order
to do this, the paper recommends obtaining diseased tissue via excision biopsy of a
lymph node, as well as performing a number of clinical investigations on the patient.
These investigations include a full blood count, electrolyte measurements, liver function
tests, Epstein-Barr Virus-status tests and chest radiography, among other investigations
(Molyneux et al., 2012).

2.3 Staging of Pediatric Burkitt’s Lymphoma

Clinical prognosis of and treatment decisions for BL are usually guided by disease stage.
(Molyneux et al., 2012). Disease staging provides a method by which to tailor treatment
to individual patients as well as provides a uniform way to compare individuals across
contexts. The most common staging system for pediatric BL used in HIC and LMIC
alike is the St. Jude/Murphy staging system (Molyneux et al., 2012). This is the system
used in the treatment of pediatric BL in Ghana (Offor et al., 2018).

There are four stages in the St. Jude/Murphy staging system for pediatric BL, where
Stage I and Stage II represent localized disease, Stage III represents disseminated disease,
and Stage IV represents disseminated disease with central nervous system (CNS) or bone
marrow involvement (Offor et al., 2018). The criteria for each stage in the staging system
are clearly defined and can be seen in table 2.1. Although these staging guidelines are
clearly defined for both HIC and LMIC practitioners, there can be heterogeneity in how
diseases staging occurs in practice in LMIC contexts. Proper staging of advanced-stage
pediatric BL requires microscopy of cerebrospinal fluid and evaluation of bone marrow
samples. Because of the capacity required to accurately perform the tests needed for
accurate staging of advanced-stage pediatric BL, the staging of advanced-stage pediatric
BL in LMIC contexts is not reliably consistent (Ozuah et al., 2020).
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Table 2.1: St. Jude/Murphy staging system for Non-Hodgkin’s Lymphoma. Table
adapted from Molyneux et al. (2012). Staging system originally described in Carbone
et al. (1971).

Stage Criteria for extent of disease

I

•A single tumor (extranodal) or single anatomic area (nodal),
excluding the mediastinum and abdomen
•A single tumour (extranodal) with regional node involvement,
on same side of the diaphragm

II

•A single tumour (extranodal) with regional node involvement
•Two or more nodal areas on the same side of the diaphragm
•Two single (extranodal) tumors with or without regional node
involvement on the same side of the diaphragm
•A primary gastrointestinal tumor, usually in the ileocecal area,
with or without involvement of associated mesenteric lymph nodes only,
grossly completely resected

III

•Two single tumors (extranodal) on opposite sides of the diaphragm
•Two or more nodal areas above and below the diaphragm
•All the primary intrathoracic tumors (mediastinal, pleural, thymic)
•All extensive primary intra-abdominal disease, unresectable
•All paraspinal or epidural tumors, regardless of other tumor site(s)

IV •Any of the above with initial Central Nervous System and/or bone marrow involvement

2.4 Treatment of Pediatric Burkitt’s Lymphoma

Pediatric BL has been recognized to be very reactive to chemotherapy treatment since
the earliest studies of the disease (Burkitt, 1968). BL is, in fact, considered to be the first
childhood tumor to respond to chemotherapy alone (Molyneux et al., 2012). This sensi-
tivity to chemotherapy still rings true in today, as chemotherapy treatment is still consid-
ered to be the gold standard for treating pediatric BL in all stages and contexts (Rocca
et al., 2021). In the present day, pediatric BL is treated with a Cyclophposphamide
monotherapy, or with a combination therapy that includes Cyclophosphamide in com-
bination with other chemotherapy drugs of varying levels of intensity. The treatment
regimen used in practice is based primarily on the resources available in the treatment
setting (Gopal & Gross, 2018).

The first studies around pediatric BL treatment found Cyclophosphamide to be the
chemotherapy agent that produced the most effect (Burkitt, 1972). Following this early
research, treatment protocols in both LMIC and HIC had similar outcomes, and were
based around a backbone of Cyclophosphamide (Ozuah et al., 2020). These low-intensity
Cyclophosphamide-based treatment regimens are associated with cohort survival rates
of 30-50% (Ozuah et al., 2020). Over time, research in HIC has led to the development of
very intense chemotherapy treatments that see cohort survival rates of up to 90%. These
high-intensity cytotoxic regimens are too resource intensive for LMIC settings, and have
led to a distinct difference in what treatments are seen in practice in HIC compared to
LMIC (Ozuah et al., 2020).

The treatment strategies currently in use for the treatment of pediatric BL can
be divided into three categories. Most treatment strategies differentiate treatment
based on the stage of disease, so treatment regimens are categorized by the intensity
of the most intense treatment strategies. The treatment categories in order of treat-
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ment intensity are: low-intensity treatment, anthracycline-based treatment and high-
dose Methotrexate-based treatment (Gopal & Gross, 2018). High-dose Methotrexate
treatments are recognized as the family of treatments that produce the best outcomes
in HIC. However, clinical studies of this type of treatment in LMIC have shown worse
results than lower intensity treatment, due in part to death from cytotoxicity (Ozuah
et al., 2020).

2.4.1 Pediatric Burkitt’s Lymphoma Treatment in Sub-Saharan Africa

The current standard of treatment for pediatric BL in SSA is considered to be low-
intensity Cyclophosphamide-based therapy, without treatment differentiation for dis-
ease stage (Ozuah et al., 2020). In some SSA contexts, treatment regimens utilizing
anthracycline-based treatment plus Cyclophosphamide are used. In these types of treat-
ment regimens, treatment is differentiated according to disease stage. Some SSA con-
texts utilize “named” treatment regimens, which are treatment regimens that use com-
binations of drugs whose combined effects have been tested in clinical trials. Some of
these named regimens include the “CHOP” regimen, the “JOOTRH Protocol”, and the
“Malawi 2012-2014 Protocol” (Gopal & Gross, 2018).

Pediatric BL Treatment in Ghana

There are two treatment centers in Ghana that have specific centers for pediatric cancer
care such as pediatric BL: Korle-Bu Teaching Hospital (KBTH) in Accra and Komfo
Anokye Teaching Hospital (KATH) in the Kumasi Region (Boateng et al., 2020). The
treatment regimen for pediatric BL at KATH is not publicly available. The treatment
regimen for treating pediatric BL at KBTH can be seen in table 2.2. This regimen uses
a low-intensity treatment for disease stages I and II, and an anthracycline-based therapy
for disease stages III and IV (Offor et al., 2018).
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Table 2.2: This table shows the treatment protocol for pediatric Burkitt’s Lymphoma
at Korle-Bu Teaching Hospital. This treatment protocol is referred to as the “Current
Practice in Ghana” Protocol throughout this thesis. The protocol in this table is adapted
from Offor et al. (2018).

Tumor Stage Course of Treatment

Stages I & II
4 courses of IV Cyclophosphamide 40mg/kg every 2 weeks
with intrathecal (IT) Methotrexate for central nervous system
(CNS) prophylaxis during courses 1-3.

Stage III

A pre-phase dose of IV Cyclophosphamide 1400mg/m2 with
IT Methotrexate, followed by a combination chemotherapy
consisting of 6 cycles (Cyclophosphamide, Vincristine and
Doxorubicin alternating with Cyclophosphamide, Vincristine
and Cytarabine every 2 weeks) with IT Methotrexate given
during the first 3 courses

Stage IV

For bone marrow involvement a modified version of a mature
B-cell protocol for high income countries without Rituximab
is used, and inclusive of four cycles of maintenance therapy,
following reduction, induction and consolidation phases of
therapy. For CNS disease, additional intrathecal therapy is
included until cerebrospinal fluid (CSF) cytology is negative

2.5 The Burden of Endemic Burkitt’s Lymphoma in Sub-
Saharan Africa

Pediatric BL is the most common type of childhood cancer in areas where malaria is
holoendemic, namely SSA (Molyneux et al., 2012). The exact incidence of BL in SSA
is difficult to measure due to a lack of relevant data (Hämmerl et al., 2019). Magrath
(2012) estimated the incidence of BL in SSA to be between 3-6 per 100,000 children.
More recently, a study by Hämmerl et al. (2019) used the reported incidence of pediatric
Non-Hodgkins Lymphoma according to the Globocan 2018 estimates, combined with
SSA cancer registry data, in order to estimate the overall incidence of pediatric BL
in SSA. This study estimated the incidence of pediatric BL in SSA to be 0.86 per
100,000 children under 15 years of age. The study notes, however, that this is likely an
underestimate due to the urban bias seen in the registries used in the study (Hämmerl
et al., 2019).

The long-term survival rates for pediatric BL in SSA are poor, with typical long-term
survival rates of 40%-60% (Denburg et al., 2019). These rates are likely lower in reality,
as there is likely a referral bias among patients who are able to make it to the tertiary
centers for treatment. This is especially the case for children in rural areas, as treatment
centers are often located in urban areas (Gopal & Gross, 2018). Pediatric BL in SSA
is associated with high incidence rates, low survival rates, longer distances to treatment
and patients and systems with less access to resources. These factors contribute to the
burden of pediatric BL in SSA.
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2.5.1 The Burden of Burkitt’s Lymphoma in Ghana

Pediatric BL is the most common form of childhood cancer in Ghana (Offor et al.,
2018). The incidence of pediatric BL in Ghana is impossible to derive using empirical
data, as there is no national cancer registry in Ghana (Renner et al., 2018). Hämmerl
et al. (2019) estimated the incidence to be between 0.59 and 1.1 per 100,000 children
under 15. However, the methods for the estimate for Ghana specifically are not clear.
Additionally the data itself was presented in an unclear manner, being only shown in a
map figure, with the color of the country being the only indication of the value-range of
the incidence (Hämmerl et al., 2019).

KBTH and KATH, the only public pediatric cancer treatment centers in the country,
treat a combined average of 70 pediatric BL patients per year. These treatment centers
are located in the Accra and Kumasi regions of Ghana. (Offor et al., 2018; Paintsil et al.,
2015). Although there is no survival data available for pediatric BL patients at KATH,
Offor et al. (2018) reported the current survival status of 173 pediatric BL patients.
When censoring patients who abandoned treatment, 20% overall survival was reported.
The time between treatment and death for these patients was not reported (Offor et al.,
2018).

Treatment for pediatric BL is not covered under the Ghanaian NHIS, so the cost of
treatment must be shouldered by the patients and their families (Renner et al., 2018).
Additionally, because these treatment centers are the only centers for pediatric BL in
the country, many patients are required to travel long distances in order to receive
treatment. These factors lead to a notable financial burden on families. At KBTH,
treatment delay was seen in 9 of 10 patients, with 75% of these patients delaying due to
financial constraint (Offor et al., 2018).

These factors of burden of pediatric BL are present in Ghana to a problematic degree,
having very high prevalence rates and poor outcomes, even when compared to other parts
of SSA (Hämmerl et al., 2019; Offor et al., 2018). This leads to pediatric BL posing a
substantial burden on both the healthcare system and society of Ghana.

2.6 Relevant Existing Research

Ad-hoc literature searches were performed in order to locate relevant existing research
regarding this thesis’s stated objectives of the construction of a decision-analytic model
for pediatric BL in Ghana and the determination of the cost-effectiveness of pediatric
BL in Ghana through the utilization of such a model.

The literature searches did not yield any existing decision-analytic models for the
treatment of endemic BL treatment upon which to base the model in this thesis. The
literature search also failed to yield any academic studies regarding the cost-effectiveness
of endemic BL in Ghana. However, the literature searches did yield two academic publi-
cations that had study aims similar to the study aims of this thesis. The study by Den-
burg et al. (2019) examines the cost-effectiveness of pediatric BL treatment in Uganda,
and the study by Renner et al. (2018) examines the cost-effectiveness of the treatment
of all pediatric cancer in Ghana.
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2.6.1 Research on the Cost-Effectiveness of BL in SSA

Denburg et al.

The study performed by Denburg et al. (2019) examines the cost-effectiveness of treating
pediatric BL in Uganda. This is relevant to this thesis because Uganda is a country in
SSA with endemic BL.

The study examined the cost-effectiveness of a low-intensity treatment regimen with a
anthracycline-based second-line therapy compared to a “do-nothing” strategy. The study
took a governmental perspective, though some family costs were included. The cost-
effectiveness analysis was conducted in tandem with a clinical study. The authors were
therefore able to calculate outcome data and variable cost data prospectively through
a microcosting strategy, where the costs and effects for each patient were calculated
individually, then combined and represented as mean values in the analysis (Denburg
et al., 2019). Costs that were not able to be captured in individual patient costs, such
as the fixed costs of operating the hospital, were calculated retrospectively.

Cost-effectiveness in this study was determined using the World Health Organiza-
tion’s Choosing Interventions That Are Cost-Effective (WHO-CHOICE) methodology.
In this methodology, interventions with an Incremental Cost-Effectiveness Ratio (ICER)
with a cost per DALY averted value of less than three times the GDP per capita of a
country (3:1) are considered to be “cost-effective”. Interventions with an ICER with
a cost per DALY averted value of less than the GDP per capita of a country (1:1) is
considered to be “very cost-effective” (Tan-Torres Edejer et al., 2003). This study found
this treatment regimen for endemic BL in Uganda was very cost-effective, with a cost
per DALY averted of $97 per DALY averted, and a cost per DALY averted to GDP
ratio of 0.14. It should be noted that, while treatment abandonment was accounted for
in this study, the proportion of patients completing treatment in this study is notably
high at 97%. Treatment abandonment for childhood cancers in resource-limited coun-
tries are noted to occur at rates of up to 67%, implying the 97% completion rate seen in
Denburg et al. (2019) is higher than expected for the region (Stevens et al., 2008). This
is important to consider when interpreting the conclusions of this study, as the lack of
treatment abandonment may indicate that the study primarily measures the efficacy of
the treatment used, and does not necessarily capture the real-world situation.

2.6.2 Research on the Cost-Effectiveness of Pediatric Cancer in Ghana

Renner et al.(2018)

The study performed by Renner et al. (2018) examines the cost-effectiveness of treating
childhood cancer at the pediatric cancer center at KBTH. This cost-effectiveness analysis
represents a unique analysis within the literature, as it is the first to evaluate the cost and
cost-effectiveness of operating and maintaining a pediatric oncology treatment center in
an African setting (Renner et al., 2018). This is relevant to this thesis because pediatric
BL is among the diseases treated in this treatment center.

The cost-effectiveness analysis was conducted using internal hospital data. The study
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was expanded beyond a healthcare payer perspective, as the study incorporated patients
costs in their calculations. The study broke costs into the following categories: medical
personnel, non-medical personnel, hoteling of patients, medical services, and central
administration and utilities. The study used hospital data to calculate one-year survival.
The study then used the proportion of 1-year overall survival to 5-year overall survival
seen in Swaminathan et al. (2008) to estimate 5-year survival in their study. This study
found the operation and maintenance of the pediatric oncology treatment center at
KBTH to be very cost-effective according to the WHO-CHOICE methodology, with a
cost per DALY averted of $1,034. This result indicated a 0.68:1 ratio of cost per DALY
averted to the GDP per capita at the time of the study.

2.7 The Ghanaian Healthcare System

The Ghanaian healthcare system consists of five levels of providers. These include health
posts, health centers and clinics, district hospitals, regional hospitals and tertiary hospi-
tals. Health posts serve as the primary care providers for rural areas (US Dept of Com-
merce, 2020). The quality of care in Ghana is considered to be relatively high for the
region. Though, this depends significantly upon location, as health services are mostly
concentrated in the urban centers of Accra and Kumasi. Physicians are scarce in rural
regions of Ghana. Ghana is also known for their relatively successful National Health
Insurance Scheme (Drislane et al., 2014). Despite a recent rise in non-communicable
diseases such as childhood cancer, Ghana’s health system priorities are largely focused
on the control of communicable diseases (Boateng et al., 2020).

2.7.1 The Ghanaian National Health Insurance Scheme

The Ghanaian NHIS scheme covers 95% of the health problems seen in Ghana (Mensah et
al., 2010). Conditions covered under the NHIS include malaria, HIV/AIDS opportunistic
infection, cervical cancer, breast cancer and typhoid fever among others. Cancers other
than cervical or breast cancer are explicitly excluded from the list of covered conditions
(National Health Insurance Authority of Ghana, 2021). In order for treatment to be
reimbursed, it must be listed on the Ghana National Essential Medicines List (NEML).
However, not all medications on the NEML are eligible for reimbursement (Boateng
et al., 2020). Membership in the NHIS requires the payment of an insurance premium,
with members in the formal sector paying an automatically deducted premium based on
income. Individuals in the informal sector or who are self-employed also have the option
to pay premiums for membership in the insurance scheme. NHIS coverage extends to
children of members (Mensah et al., 2010).
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Chapter 3

Theory

This chapter outlines the theoretical frameworks upon which this study was based. The
academic theory presented in this chapter was either directly utilized in performing the
study for this thesis, or is necessary for understanding the current academic context of
the research field.

3.1 Economic Evaluation

Decision-makers across the globe within healthcare all face a similar problem. Namely,
healthcare resources are scarce, and decision makers are tasked with deciding how to dis-
tribute these scare resources among competing needs. Economic evaluation is a method-
ological approach that can be used inform decision-makers in their pursuits of solving
this problem.

Economic evaluation at its core can be defined as an analysis that compares mul-
tiple courses of action of a given scenario by analysing and comparing the costs and
effects of these courses of action (Drummond et al., 2015). Within healthcare, economic
evaluations are used to compare alternative healthcare choices in terms of their cost and
effectiveness, in order to inform decisions regarding best use of healthcare resources. Ex-
amples can include surgical or pharmaceutical interventions, disease screening programs
and informational campaigns (Briggs et al., 2006).

3.1.1 Types of Economic Evaluation

Economic Evaluations can be broken down into three categories: Cost-Effectiveness
Analysis (CEA), Cost-Utility Analysis (CUA), and Cost-Benefit Analysis (CBA) (Drum-
mond et al., 2015). As costs are always measured in monetary terms, the distinction
between these categories stems from differences in the measurement of the effects of the
interventions in question. Decision makers can choose the category of economic evalua-
tion that provides information in the way best suited to inform the healthcare decision
in question.
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Cost-Effectiveness Analysis

In a CEA, costs are related to effects in the form of change in natural units. Such
units can include life years gained, change in mmHG blood pressure measurement or
number of individuals who abandon treatment (Drummond et al., 2015). Because CEAs
use natural outcome units, they are most useful in evaluating alternative approaches
with the same outcome measure (Drummond et al., 2015). For example, if a decision
maker is tasked with reducing falls in a hospital using a fixed budget, a CEA with “falls
prevented” as the measured outcome would be informative.

Cost-Utility Analysis

CUA is considered to be a variation of CEA, and the terms are often used interchangeably
in academic literature (Drummond et al., 2015). The main distinction is that effects in
CUAs are measured in terms of a generic measure of health gain instead of natural
units specific to the decision problem. These generic health measures adjust life-years
gained from an intervention for the Health-Related Quality of Life (HRQoL) of those
years. HRQoL-adjusted outcome measures commonly seen in CUAs include the Quality-
Adjusted Life Year (QALY), the Disability-Adjusted Life Year (DALY), and the Healthy
Years Equivalent (HYE). Adjusting outcomes of interventions for quality of life in this
way allows for results of CUAs to be compared across a variety of diseases, interventions
and health system contexts (Denburg et al., 2019).

Cost-Benefit Analysis

In CBA, costs and effects are both related in monetary terms. This is done by translating
natural outcome effects or generic health measure effects into a monetary value that can
be interpreted alongside costs (Drummond et al., 2015). The translation of natural
outcomes or generic health measure effects into monetary terms is done by evaluating
the Willingness to Pay (WTP) for the given outcome within the given context. The
results of these types of analysis are commonly presented as a ratio of cost per benefit,
or as a sum of the total monetary benefit or loss associated with funding a given course
of action (Drummond et al., 2015).

3.1.2 Disability-Adjusted Life Years

DALY = Y LL + Y LD (3.1)

The disability-adjusted life year (DALY) measure was originally developed as a mea-
sure of disease burden for use in the World Health Organization (WHO)’s Global Burden
of Disease (GBD) study (Drummond et al., 2015). The DALY is calculated by adding
the Years of Life Lost (YLL) from a disease and Years Lived with Disease (YLD), as
can be seen in equation 3.1. YLD is calculated by multiplying the years lived with a
given condition by the disability weight of that condition. YLL can be calculated by
subtracting the age at which an individual dies from the individual’s life expectancy at
the time of death (Fox-Rushby & Hanson, 2001). The DALY is a negative measure,
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meaning that scenarios where a greater number of DALYs are accrued indicate a greater
loss of health. Therefore, in CUA, the cost-effectiveness of an intervention is determined
by the cost per DALY averted. DALYs can also incorporate discounting to adjust the
future losses of life to their present values (Fox-Rushby & Hanson, 2001). DALYs can
also incorporate age-weighting, which gives lower weight to the lives of the elderly and
children. Age-weighting is not currently used in the DALY calculations in the most
recent GBD study (Drummond et al., 2015).

3.1.3 Perspective in Economic Evaluation

The perspective from which an economic evaluation is performed determines what costs
and effects should be taken into consideration when presenting results and making deci-
sions, and is a key factor in economic evaluation (Hunink et al., 2014). The perspective
used in an economic evaluation is determined by the circumstances of the decision prob-
lem and the needs of the decision maker. Examples of perspectives that can be taken in
an economic evaluation include individual patient perspective, institutional perspective,
governmental payer perspective and societal perspective (Drummond et al., 2015).

3.1.4 Incremental Cost-Effectiveness Ratio

ICER = ∆Costs

∆Effects
(3.2)

The Incremental Cost-Effectiveness Ratio (ICER) is commonly used as the primary
outcome measure of cost-effectiveness analyses. The ICER is an incremental outcome,
representing the additional resources required per additional unit of benefit when com-
paring multiple alternatives (Briggs et al., 2006). The equation for the calculation of the
ICER can be seen in equation 3.2. The ICER is reported in incremental cost per incre-
mental desired unit of effect, such as incremental cost per QALY gained or incremental
cost per DALY averted.

3.2 Decision-Analytic Modelling

Decision-analytic modelling, sometimes referred to simply as decision modelling, is a
process in which a model is created using defined mathematical and statistical relation-
ships between parameters in order to simulate the costs and outcomes of an intervention
(Briggs et al., 2006). In selecting and building a decision-analytic model, a firm under-
standing of the decision problem and the clinical characteristics of the health problem
in question is vital (Roberts et al., 2012). There are several types of decision-analytic
models, all of which are better suited to certain types of decision problems. Types of
decision-analytic models include: decision trees, Markov models, Microsimulation mod-
els, Dynamic models, and Discrete event simulation models (Kuntz et al., 2013).
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3.2.1 Validation in Decision-Analytic Modelling

Validation in decision-analytic modelling consists of methods for determining the degree
to which model predictions match reality (Eddy et al., 2012). Models often integrate data
from multiple sources, and can utilize methods that are unclear for decision makers such
as patients and policymakers (Hunink et al., 2014). Validation allows for the credibility
of a model to be assessed by decision makers (Eddy et al., 2012). In Eddy et al. (2012),
the authors define five categories of validation. These categories are: face validation,
cross validation, external validation, internal validation, and predictive validation.

Face validation is performed by an expert, who analyzes the degree to which the
assumptions and parameters of a model match the current academic and clinical under-
standing of the decision problem in question. Internal validation is a process by which
the accuracy of the mathematics performed in the model is checked. External validation
is achieved based on the degree to which model outputs match clinical outcome data.
Cross validity is achieved based on the degree to which model outputs match the output
of other similar models. Predicative validation is achieved based on the degree to which
a model is able to predict clinical outcomes before they occur (Eddy et al., 2012).

3.3 Sensitivity Analysis

Sensitivity analysis defines a set of methodologies that can be used to account for the
uncertainty inherent in a decision-analytic model. Drummond et al. (2015) presented
two types of uncertainty seen in decision-analytic models: structural uncertainty and
parameter uncertainty. Structural uncertainty in this context refers to the assumptions
made when creating the model and performing the modelling itself, such as assumptions
regarding mathematical relationships between parameters or decisions regarding study
perspective or discount rates. Parameter uncertainty in this context refers to uncertainty
inherent in populating parameters using sample data from a population, reflected by the
variance between samples and the size of samples (Drummond et al., 2015).

Deterministic sensitivity analysis methods, such as one-way sensitivity analysis, in-
volve the investigation one parameter at a time. These methods can be useful to see
the effect of changing individual parameters on the ICER. This has utility in examining
structural uncertainty by examining the effect changing certain parameter values or as-
sumptions has on the model, as well as some utility in examining parameter uncertainty
(Briggs et al., 2012; Fenwick et al., 2020). However, because of the complex interactions
between parameters present in many decision-analytic models, deterministic analyses
are not sufficient to properly account for uncertainty (Drummond et al., 2015).

Probabilistic Sensitivity Analysis (PSA) methods attempt to account for parameter
uncertainty in a more robust manner than deterministic sensitivity analyses. Perform-
ing a PSA usually involves a process known as Monte Carlo Simulation. In a Monte
Carlo Simulation, a random value is sampled for each parameter in the decision-analytic
model based on the parameter distribution and uncertainty data assigned to each pa-
rameter. The outcomes from the Monte Carlo Simulation are then recorded in order
to be compared. Normally in a PSA, 1,000 or more of these simulations are performed
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(Drummond et al., 2015). Comparing the results of this large number of simulations
allows for a more robust understanding of the impact of parameter uncertainty on the
outcomes of the decision-analytic model in question (Briggs et al., 2006).

3.4 Determination of Cost-Effectiveness

Although the ICER is used as the outcome measure of CEA, the ICER alone is not
sufficient to make normative claims about whether or not an intervention is cost-effective
(Drummond et al., 2015). In order to make determinations regarding the cost-effectiveness
of an intervention, a decision threshold must be utilized. In this context, a decision
threshold is an ICER value representing the maximum additional monetary value a
decision-maker is willing to pay for additional health gains (Drummond et al., 2015). In
theory, CEAs are intended to ensure that decisions regarding the allocation of resources
are cost-effective. That is to say, to ensure that the scarce resources used for one health
intervention are not better suited by funding a different intervention. Therefore, cost-
effectiveness thresholds should reflect the opportunity costs of additional health care
spending (Woods et al., 2016). However, in practice, the data or resources required to
calculate such opportunity cost-based threshold values is not always present (Drummond
et al., 2015).
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Chapter 4

Methods

This chapter is divided into two distinct parts, which are based upon the two stated
objectives of this thesis. Part 1 of this chapter describes the methods used for devel-
oping the decision-analytic model for pediatric BL in Ghana. This includes inherent
assumptions and decisions made in the model, and the academic evidence used in mak-
ing these assumptions and decisions. Part 2 of this chapter describes the methods used
to populate the parameters of the decision-analytic model in order to perform a prelim-
inary cost-effectiveness analysis of the treatment of pediatric BL in Ghana. Part 2 also
describes the methods used in the deterministic and probabilistic sensitivity analyses
performed in this thesis.

Part 1: The Decision-Analytic Model

4.1 Development of the Decision-Analytic Model for Pe-
diatric BL

According to the initial literature searches performed for this thesis, there are no cur-
rently existing decision-analytic models for pediatric BL. Therefore, in order to fulfil
the research aims of this thesis, a novel decision-analytic model needed to be piloted. To
inform this process, literature searches for the clinical progression of pediatric BL and lit-
erature searches for types of decision-analytic models were performed. The information
from these literature searches was used to select an appropriate type of decision-analytic
model, create appropriate decision nodes, chance nodes, end nodes and states for the
decision-analytic model, and make clinically relevant assumptions in the model. Be-
cause the decision-analytic model used in this thesis will be delivered to the Ghanaian
Ministry of Health to be used as a capacity-building tool to be used and expanded on
in future projects, utility of use and flexibility was also considered in the selection of
decision-analytic model type.
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4.1.1 Selection of a Decision Tree as the Decision-Analytic Model

Nearly any type of decision problem can be represented by any type of model (Roberts
et al., 2012). Some types of decision-analytic models are more suited to certain types
of decision problems than others. It is therefore important to understand the decision
problem at hand and the clinical aspects associated with it, and match it with the
type of decision-analytic model that is best equipped to provide insightful information
for solving the decision problem. Decision-analytic models are an attempt to represent
reality, and ought to to capture that reality as accurately as possible while remaining as
simple as possible in order to address the decision problem (Drummond et al., 2015).

Decision trees are a model type that is simple to conceptualize and good at sep-
arating components of a decision problem (Roberts et al., 2012). Decision trees are
best suited for modelling decision problems that are able to be split into discrete path-
ways with concrete end-states (Drummond et al., 2015). Pediatric Burkitt’s Lymphoma
is a disease that is categorized into four distinct risk-stratified stages. These stages
are treated differently according to the given regimen, and are associated with discrete
stage-dependent outcomes. Additionally, because BL is the fastest growing tumor in hu-
mans, the outcomes can be represented in single time frame. Due to the orderly system
diagnosis and discrete outcomes of pediatric BL, combined with the speed of progression
of the disease, a decision tree type decision-analytic model was determined to the most
appropriate type of decision-analytic model for this decision problem.

4.1.2 Structure and Characteristics of the Decision Tree Model for
Pediatric Burkitt’s Lymphoma

The structure of the decision tree model for pediatric BL in Ghana can be seen in its
entirety in Figure 4.1. The model simulates the outcomes of a cohort with confirmed
pediatric BL after one year of pediatric BL treatment. These outcomes are simulated
through the progression of the cohort through the model via the chance nodes (repre-
sented by the green circles in Figure 4.1) to the end nodes (represented by the blue
triangles in Figure 4.1). The chance nodes and treatment pathways were developed
using a clinical understanding of pediatric BL, and have been designed to capture the
clinical progression and outcomes of pediatric BL treatment in a mutually-exclusive and
collectively-exhaustive manner.

The first-order chance node determines the proportion of the cohort diagnosed with
Stage I, Stage II, Stage III, and Stage IV pediatric BL as per their definitions in the
St. Jude/Murphy classification system. Because the disease stages are associated with
discrete outcomes, it was determined to be important to differentiate modelled outcomes
by stage in order to more closely simulate the real-world situation.

The second-order chance nodes determine the proportion of the cohort that aban-
dons treatment or completes treatment given disease stage. Treatment abandonment in
pediatric cancer treatment in SSA is common, and a major contributor to poor outcomes
in LMIC contexts (Renner et al., 2018). Moreover, treatment abandonment is identified
as an important factor in outcomes for pediatric BL in SSA specifically (Gopal & Gross,
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Figure 4.1: This figure depicts the Decision Tree decision-analytic model for the
treatment of pediatric Burkitt’s Lymphoma in Ghana developed in this thesis. The red
square is a “decision node”, and represents the point where the cohort begins in the model.
The green circles represent “chance nodes”, which are points where chance determines
what happens to the starting cohort. The blue triangles represent “end nodes”, which
represent a final outcome of a decision path. The simulated cohort proceeds through the
branching pathways based on the probabilities associated with the chance nodes, and ends
in one of the 16 discrete end-states represented by the end nodes. The pathways after the
first chance node are defined by which stage of pediatric BL a patient is determined to
have, based on the St. Jude/Murphy Classification system. After the second chance node,
“Treatment Abandonment” is defined as stopping treatment without returning. After the
third chance node, “Event-Free Survival” is defined as individuals who survive without
“events”, which includes relapse or extreme symptoms, as normally reported in clinical
studies of the effectiveness of cancer treatments. This figure was generated using the
open-source modelling software Amua.
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2018). Despite being such an important determinant of outcomes, treatment abandon-
ment is not reported consistently across clinical studies in LMIC contexts (Gupta et al.,
2013). The second-order chance nodes and subsequent pathways in this model were
therefore created to ensure that the impact of treatment abandonment was captured in
this model, and that this impact could be examined as an isolated variable.

The third-order chance nodes determine the proportion of the cohort that experi-
ences Event-Free Survival (EFS), survival with events, and death following pediatric BL
treatment. EFS has a heterogeneous definition across studies, but generally measures the
proportion of a cohort that survives treatment without relapse or progression of disease.
Event-free survival, as well the related statistic progression-free survival, are often used
as proxies for overall survival in clinical studies (Zhu et al., 2020). Due to pediatric BL’s
low relapse rate after the first year, 1-year EFS is considered a reasonable indicator of
long-term survival in pediatric BL (Molyneux et al., 2012). EFS was, therefore, included
as an end-state in this model to represent long-term survival. The state “Survival with
Events” was included to capture the proportion of the cohort who has experienced an
event as described in the literature, and is not likely to survive long-term.

4.1.3 Fundamental Model Assumptions

As with any decision-analytic model, this decision tree model for pediatric BL in Ghana
makes assumptions in order to represent the decision problem.

As the model starts with individuals with confirmed pediatric BL, it is assumed that
the starting cohort has the disease. This means that the model does not account for
the sensitivity or specificity of the diagnostic methods used. The model assumes that
all in the cohort who abandon treatment die. This assumption is made because of the
length of cycle combined with the speed of normal disease progression. This assumption
is made in related literature examining the cost-effectiveness of pediatric BL or other
childhood cancers (Denburg et al., 2019; Renner et al., 2018). As the model separates
deaths from treatment abandonment from outcomes associated with the effectiveness of
the treatment itself, the model assumes that abandonment is not included as an event
in EFS. Care should be taken that the parameters for the third-order chance nodes are
populated with effectiveness data that censors abandonment, or evaluates a cohort with
minimal to no abandonment.

Part 2: The Economic Evaluation

The decision-analytic model described in Part 1 of this chapter was used to perform
a preliminary economic evaluation of the treatment of pediatric BL in Ghana with an
NHIS-funded treatment regimen compared to treatment with the regimen that is cur-
rent practice in Ghana, which does not include NHIS reimbursement. As this decision-
analytic model simulates outcomes for a single intervention, two identically structured
decision tree models were created. One model was populated with parameters to sim-
ulate treatment with current practice in Ghana, and one model was populated with
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parameters to simulate treatment with an NHIS-funded treatment regimen. The out-
comes for these two models were then compared in order to produce an outcome in the
form of incremental cost per DALY averted. Additionally, deterministic and probabilistic
sensitivity analyses were performed.

According to the literature reviews performed for this thesis, this study constitutes
the first cost-effectiveness analysis of pediatric BL in a Ghanaian context, and the first
cost-effectiveness analysis of pediatric BL in a SSA context to utilize a decision-analytic
model. This part of the chapter outlines the research methods utilized to carry out the
second objective of this thesis seen in section 1.1 and fulfill the research aims seen in
section 1.2.

4.2 Type of Economic Evaluation

The economic evaluation undertaken in this thesis constitutes a cost-effectiveness anal-
ysis according to the WHO-CHOICE definition, and a cost-utility analysis according to
the definition from Drummond et al. (2015), as the evaluation measures costs in mone-
tary units and outcomes in the HRQoL-adjusted measure of DALYs (Drummond et al.,
2015; Tan-Torres Edejer et al., 2003). The economic evaluation will be referred to as a
cost-effectiveness analysis in the remainder of this thesis, as the cost-utility analysis is
considered to be a type of cost-effectiveness analysis, and the terms are commonly used
interchangeably (Drummond et al., 2015).

4.3 Methods Utilized for the Preliminary Cost-Effectiveness
Analysis

4.3.1 Study Population and Setting

The population considered in this study was a hypothetical cohort of patients with
confirmed pediatric BL in Ghana, receiving either the treatment regimen that is current
practice in Ghana, which does not include NHIS coverage, or treatment with an NHIS-
funded treatment regimen. The cohorts include only individuals receiving treatment at
the two pediatric cancer units located in Ghanaian public hospitals; the pediatric cancer
unit at Korle-Bu Teaching Hospital (KBTH) and the pediatric cancer unit at Komfo
Anokye Teaching Hospital (KATH). The number of children in the starting cohorts
were calculated based on the expected total number of children to receive pediatric BL
treatment at KBTH or KATH in a given year. Due to the restrictions of the model,
the cohort was assumed to be the same age, calculated by the average age at start of
treatment for pediatric BL patients at KBTH and KATH.
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4.3.2 Intervention and Comparator

Intervention

The intervention being evaluated against the comparator in this preliminary economic
evaluation is a pediatric BL treatment regimen with NHIS coverage. In order to be con-
sidered for NHIS coverage, a treatment program can only include drugs included on the
Ghana National Essential Medicines List (NEML) (Boateng et al., 2020). The current
treatment regimen used at KBTH, the only Ghanaian pediatric BL treatment regimen
publicly available, utilizes the drug Cytarabine. Cytarabine is not listed on the NEML
(Ministry of Health of Ghana, 2017; Offor et al., 2018). Because of this, the treatment
regimen that would be brought into use should pediatric BL be included in NHIS cov-
erage is not clear. Therefore, in order to determine an acceptable comparator for the
purposes of this study, a literature search was performed for review articles and system-
atic review articles for pediatric BL treatments in areas where pediatric BL is endemic.
A systematic review for chemotherapy treatments for BL performed by Rocca et al.
(2021) was discovered through this literature search. This systematic review identified
the Malawi 2012-2014 Protocol as the most promising treatment protocol for pediatric
BL in countries with endemic BL (Rocca et al., 2021). Additionally, this treatment
protocol includes only drugs which are listed on the National Essential Medicines List.
Because the intervention was identified as the most promising treatment for endemic BL
through a systematic review, and because the intervention only includes drugs listed on
the National Essential Medicines List, the intervention for this study was chosen to be a
hypothetical treatment regimen according to the Malawi 2012-2014 Protocol with NHIS
coverage. The details of a treatment regimen following the Malawi 2012-2014 Protocol
can be seen in table 4.1.

Table 4.1: This table presents the Malawi 2012-2014 protocol for the treatment of
pediatric Burkitt’s Lymphoma. This table is adapted using information from Molyneux
et al. (2017).

Tumor Stage Course of Treatment

Stages I & II

- Cyclophosphamide 40 mg/kg (max, 1.6 g) IV; days 1, 15, 28
- Cyclophosphamide 60 mg/kg (max, 2.4 g) IV; day 8
- Vincristine 1.5 mg/m2 (max, 2 mg) IV; days 1, 8, 15, 28
- Prednisone 60 mg/m2 by mouth; days 1-5
- Methotrexate 12.5 mg IT; day 1, 8, 15, 28

Stages III & IV
Same treatment as the protocol for Stages I & II, with the
addition of the following:
- Doxorubicin 60 mg/m2 IV; days 15, 28

Comparator

The comparator for this study is the regimen considered to be current treatment prac-
tice for pediatric BL in Ghana. As the treatment regimen used in KBTH is the only
regimen publicly available, this treatment regimen is considered to be the comparator
for this study. This intervention is referred to as “treatment with the Current Practice
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in Ghana protocol” for the purposes of this study. The treatment regimen does not in-
clude NHIS coverage, so families must pay out-of-pocket for treatment-related expenses.
The treatment regimen utilized is a protocol that uses low-intensity Cyclophosphamide
monotherapy for Stage I and II disease and higher-intensity therapy with anthracyclines
for Stage III and IV disease (Offor et al., 2018). The details of the treatment regimen
for the Current Practice in Ghana protocol can be seen in Table 2.2.

4.3.3 Outcome measure

The primary effect measure in this study is the DALY. The YLL portion of the DALY
was calculated by subtracting the age at death from the life expectancy in Ghana.
Because all individuals are assumed to be the same age, this value is multiplied by the
number of individuals in a death state. The YLD portion of the DALY was calculated
by multiplying the number of individuals in a non-death state by the disability weight
associated with the treatment received and the assumed treatment length. Treatment
length was assumed to be 1 year in this study. A more in depth explanation of the
methods used for DALY calculation can be seen in Appendix A.

The primary outcome measure used in this thesis is the ICER, expressed in terms of
the incremental cost per DALY averted for the intervention compared to the comparator.
The ICER was calculated using the costs and effects derived from the decision tree
decision-analytic model. In addition to these deterministic outcomes from the base-case
analysis, sensitivity analyses are presented in order to explore the effect of uncertainty
in this study.

Determining Cost-effectiveness

The cost-effectiveness of NHIS-funded treatment with the Malawi 2012-2014 Protocol
compared to treatment with the Current Practice in Ghana protocol will be determined
according to the WHO-CHOICE methodology. This methodology for the determination
of cost-effectiveness is commonly used in cost-effectiveness analyses in LMIC contexts.
For example, all of the cost-effectiveness analyses of existing related research that were
examined in section 2.6 of this thesis utilize this methodology. In studies utilizing WHO-
CHOICE cost-effectiveness thresholds, interventions are said to be “cost-effective” if the
incremental cost per DALY averted is less than or equal to three times the GDP per
capita of the country of the intervention being evaluated. They are “very cost-effective”
if the incremental cost per DALY averted is less than or equal to one times the GDP
per capita of the country of the intervention being evaluated (Tan-Torres Edejer et al.,
2003). The most recent estimate of the GDP per capita of Ghana from the World
Bank is from 2019, where the GDP per capita was estimated to be $2202 (World Bank,
2019a). Therefore, this thesis considered NHIS-funded Treatment with the Malawi 2012-
2014 Protocol to be cost-effective if the incremental cost per DALY averted is less than
$6606, and very cost-effective if the incremental cost per DALY averted is less than
$2202.
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4.3.4 Calculation and Discounting of DALYs

DALYs in this study were calculated using the method presented in in Larson (2013).
This methodology allowed for a seamless integration of DALY calculation into an Excel
model utilizing discrete time (Larson, 2013). The model in this thesis constitutes such a
model. This is in contrast to the established method to calculate DALYs using continuous
time presented in Fox-Rushby and Hanson (2001), involving complex formulas that are
difficult to integrate in models such as the one utilized in this study. This study also
adapts the method presented by Larson for discounting future DALYs to their present
values (Larson, 2013). This study did not utilize age-weighting when calculating DALYs.
These methods for DALY calculation and discounting can be seen in more detail in
Appendix A.

4.3.5 Time Horizon

The decision-analytic model simulated outcomes 1 year after initial treatment, with
Event-free survival as the primary indication of treatment efficacy. This measure is
considered a reasonable indicator of long-term survival in pediatric BL (Molyneux et al.,
2012).

4.3.6 Study Perspective

This study adopted a healthcare payer perspective, with only costs incurred by the
governmental payers of healthcare being factored into the model. Treatment with the
Current Practice in Ghana regimen was therefore not calculated to have any per-patient
treatment costs, as this treatment is not covered by the NHIS.

4.4 Model Parameters

In order to simulate the real-world situation as closely as possible, model parameters
were populated with data from a Ghanaian context where possible. In situations where
Ghanaian data was not available, data was taken from similar contexts. This section de-
tails the parameters used in the model and the methods used to derive those parameters,
when applicable.

4.4.1 Assumptions and Starting Points

To implement this study, assumptions and starting points were derived from relevant
literature sources. The sizes of the starting cohorts for both the intervention and the
comparator, the starting age of the cohorts, and the life expectancy at birth were all
able to be derived through Ghana-specific sources. All assumption and starting point
parameters can be seen in Table 4.2.

The size of the cohorts for this study was calculated by adding the average number
of pediatric BL patients per year at KBTH with the average number of pediatric BL
patients per year at KATH. The data for KBTH was derived from a study by Offor
et al. (2018), and the data for KATH was derived from a study by Paintsil et al. (2015).
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Table 4.2: This table shows the description, value, and source for the assumption and
starting point parameters used to populate the decision-analytic model in this study.

Parameter Description Parameter Value Parameter Source
Starting cohort size,
intervention 70 Tan-Torres Edejer et al. (2003)

Starting cohort size,
comparator 70 Tan-Torres Edejer et al. (2003)

Starting age 6.9 years Offor et al. (2018),
Paintsil et al. (2015)

Life expectancy at birth,
Ghana 64.1 years World Bank (2019b)

GDP per Capita,
Ghana $2,202 World Bank (2019a)

The study from Offor et al. (2018) observed 173 pediatric BL patients over a 6 year
span, indicating an average of 28 patients per year. The study from Paintsil et al.
(2015) observed 126 pediatric BL patients over a 3 year span, indicating an average of
42 pediatric BL patients per year. This led to this study assuming a cohort size of 70
patients per year. The addition of NHIS coverage in the intervention was assumed to
not affect the cohort size.

The starting age of the cohort was derived from Offor et al. (2018), where the average
age at diagnosis of pediatric BL patients at KBTH was shown to be 6.9 years old.

Life expectancy at birth for Ghana was used in the calculation of the YLL aspect
of the DALY outcome. The value for life expectancy at birth used in this study is 64.1
years, as reported by the World Bank (World Bank, 2019b).

4.4.2 Discount Rates

The discount rate used in order to convert future values to present values for both
costs and effects is 3%, seen in table 4.3. This rate was chosen in accordance with the
WHO-CHOICE methodology for cost-effectiveness analysis (Tan-Torres Edejer et al.,
2003). The sensitivity of the results to discount rate were in the deterministic sensitivity
analyses.

Table 4.3: This table shows the description, value, and source for the discount rate
parameters used to populate the decision-analytic model in this study.

Parameter Description Parameter Value Parameter Source
Discount rate, costs 0.03 Tan-Torres Edejer et al. (2003)
Discount rate, effeccts 0.03 Tan-Torres Edejer et al. (2003)

4.4.3 Chance Node Probabilities

Probabilities for the first-, second- and third-order chance nodes, described in Part 1 of
this chapter, were populated using a combination of Ghana-specific sources and sources
from similar settings. The values and sources used for all chance node probability pa-
rameters for the “Treatment with the Malawi 2012-2014 Protocol” treatment arm can be
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seen in Table 4.4. The values and sources used for all chance node probability parameters
for the “Current Practice in Ghana” treatment arm can be seen in table 4.5.

Table 4.4: This table shows the description, value, and sources for the chance node
probability parameters used to populate the “Treatment with the Malawi 2012-2014 Pro-
tocol” treatment arm of the decision-analytic model in this study.

Parameter Description Parameter Value Parameter Source
Probability of being diagnosed
with Stage I pediatric BL 0.0578 Offor et al. (2018)

Probability of being diagnosed
with Stage II pediatric BL 0.0578 Offor et al. (2018)

Probability of being diagnosed
with Stage III pediatric BL 0.4451 Offor et al. (2018)

Probability of being diagnosed
with Stage IV pediatric BL 0.4393 Offor et al. (2018)

Probability of abandoning
treatment 0.2554 Offor et al. (2018), Martijn et al. (2017)

Probability of completing
treatment 0.7446 Offor et al. (2018), Martijn et al. (2017)

Probability of Event-free
survival for Stage I pediatric BL 0.6875 Molyneux et al. (2017)

Probability of Survival with
Events for Stage I pediatric BL 0.0625 Molyneux et al. (2017)

Probability of Death for Stage I
pediatric BL 0.2500 Molyneux et al. (2017)

Probability of Event-free
survival for Stage II pediatric BL 0.6875 Molyneux et al. (2017)

Probability of Survival with
Events for Stage II pediatric BL 0.0625 Molyneux et al. (2017)

Probability of Death for Stage II
pediatric BL 0.2500 Molyneux et al. (2017)

Probability of Event-free
survival for Stage III pediatric BL 0.6667 Molyneux et al. (2017)

Probability of Survival with
Events for Stage III pediatric BL 0.0476 Molyneux et al. (2017)

Probability of Death for Stage III
pediatric BL 0.2857 Molyneux et al. (2017)

Probability of Event-free
survival for Stage IV pediatric BL 0.6667 Molyneux et al. (2017)

Probability of Survival with
Events for Stage IV pediatric BL 0.0476 Molyneux et al. (2017)

Probability of Death for Stage IV
pediatric BL 0.2857 Molyneux et al. (2017)

First-order Chance Node

The first-order chance node in the decision-analytic model used for this study dictated
the proportion of the cohort diagnosed with each stage of pediatric BL. These propor-
tions were derived from a study from Offor et al. (2018), which examined patterns of
pediatric BL patients at KBTH over a 6-year period. Because Offor et al. (2018) re-
ported Stages I and II combined as “localized disease” and Stages III and IV combined
as “advanced disease”, this study assumes an equal distribution of patients in the com-
bined stages rounded to the nearest individual. The proportions used for the first-order
chance node were assumed to be equal in both the intervention and the comparator.
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Table 4.5: This table shows the description, value, and sources for the chance node
probability parameters used to populate the “Current Practice” treatment arm of the
decision-analytic model in this study.

Parameter Description Parameter Value Parameter Source
Probability of being diagnosed
with Stage I pediatric BL 0.0578 Offor et al. (2018)

Probability of being diagnosed
with Stage II pediatric BL 0.0578 Offor et al. (2018)

Probability of being diagnosed
with Stage III pediatric BL 0.4451 Offor et al. (2018)

Probability of being diagnosed
with Stage IV pediatric BL 0.4393 Offor et al. (2018)

Probability of abandoning
treatment 0.6821 Offor et al. (2018)

Probability of completing
treatment 0.3179 Offor et al. (2018)

Probability of Event-free
survival for Stage I pediatric BL 0.4211 Traoré et al. (2011)

Probability of Survival with
Events for Stage I pediatric BL 0.2632 Traoré et al. (2011)

Probability of Death for Stage I
pediatric BL 0.3158 Traoré et al. (2011)

Probability of Event-free survival
for Stage II pediatric BL 0.4783 Traoré et al. (2011)

Probability of Survival with
Events for Stage II pediatric BL 0.2174 Traoré et al. (2011)

Probability of Death for Stage II
pediatric BL 0.3043 Traoré et al. (2011)

Probability of Event-free survival
for Stage III pediatric BL 0.6667 Molyneux et al. (2017)

Probability of Survival with Events
for Stage III pediatric BL 0.0476 Molyneux et al. (2017)

Probability of Death for Stage III
pediatric BL 0.2857 Molyneux et al. (2017)

Probability of Event-free survival
for Stage IV pediatric BL 0.6667 Molyneux et al. (2017)

Probability of Survival with Events
for Stage IV pediatric BL 0.0476 Molyneux et al. (2017)

Probability of Death for Stage IV
pediatric BL 0.2857 Molyneux et al. (2017)
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Second-order Chance Nodes

The second-order chance nodes in the decision-analytic model used for this study dic-
tated the proportion of the cohort that completed treatment and the proportion that
abandoned treatment. This proportion is assumed to be equal across all stages for a given
treatment. Health insurance coverage has been identified as a way to increase adherence
and reduce treatment abandonment of pediatric cancer treatment in Ghana (Boateng
et al., 2020). In other LMIC contexts, insurance coverage has been shown to increase
treatment completion and decrease treatment abandonment (Martijn et al., 2017). This
study, therefore, used different abandonment rates for the intervention, which includes
NHIS coverage, and the comparator, which does not include NHIS coverage.

Treatment Completion and Abandonment without NHIS Coverage

The proportion of pediatric BL patients completing treatment with the Current Practice
in Ghana protocol with no NHIS coverage was derived from a study by Offor et al. (2018),
which examined patterns of pediatric BL patients at KBTH over a 6-year period. This
study indicated that 118 of the 173 pediatric BL patients seen over that period were
lost to follow-up. For the purposes of this thesis, “lost to follow-up” was assumed to
be equivalent to treatment abandonment as it is defined in the decision-analytic model.
Therefore, the probability of abandonment for treatment with the Current Practice in
Ghana protocol used in this study was 68.2% (118/173) , and the probability of treatment
completion used was 31.8% (55/173).

Treatment Completion and Abandonment with NHIS Coverage

Martijn et al. (2017) attempted to determine the influence of health insurance cov-
erage status on pediatric Non-Hodgkin’s Lymphoma treatment in Kenya. The study
found that treatment abandonment was the most frequent outcome amongst uninsured
patients, with 44% of uninsured patients abandoning treatment. Amongst those with
health insurance, 5% abandoned treatment (Martijn et al., 2017). As this study was
performed in a country in SSA where BL is endemic, and because BL is a type of Non-
Hodgkin’s Lymphoma, this study was used in estimating the effect of NHIS coverage on
treatment abandonment in pediatric BL in Ghana.

Of the 67% of pediatric BL patients who were lost to follow-up in Offer et al, 75%
were said to abandon treatment due to financial constraint (Offor et al., 2018). This
implies that 51% of the total cohort of patients abandoned treatment due to financial
constraint in Offor et al. (2018). This portion of patients was considered to be the group
of patients for whom NHIS coverage would affect likelihood of treatment abandonment.
In order to estimate the effect of NHIS coverage on pediatric BL treatment abandonment,
an effect proportional to the effect seen in Martijn et al. (2017) was assumed with regard
to the 51% of patients who abandoned due to financial constraint in Offor et al. (2018).
Following this assumption, 5.1% of pediatric BL patients with health insurance coverage
would abandon due to financial constraints. After adding the new portion of the cohort
who abandon due to financial constraint with the portion of the cohort who abandon due
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to non-financial reasons, the result is 22.5% of the cohort abandoning treatment when
their treatment is covered by the NHIS. Therefore, the probability of abandonment
for NHIS-funded treatment with the Malawi 2012-2014 Protocol was 22.5% , and the
probability of treatment completion used was 77.5%. A more detailed explanation of the
mathematics behind the method used to derive this parameter can be found in Appendix
B.

Third-order Chance Nodes

The third-order chance nodes in the decision-analytic model used for this study dic-
tated the proportion of the cohort that went into the end states “Event-Free Survival”,
“Survival with Events”, and “Death”. In other words, the third-order chance nodes
were meant to capture the efficacy of the treatment. As there does not exist data for
the effectiveness of pediatric BL treatment in a Ghanaian context, effectiveness data
was adapted from other SSA contexts. All effectiveness data was taken from individual
studies as opposed to the performing network-meta analyses, due to the lack of robust
Randomized Control Trial data in the literature, as well as to ensure that parameter
uncertainty was not underestimated via the uncertainty values associated with these
parameters used in the PSA.

Treatment with the Malawi 2012-2014 Protocol

In order to populate the third-order chance nodes for the “Treatment with the Malawi
2012-2014 Protocol” treatment arm, effect data was implemented from a single study;
a study performed in Malawi by Molyneux et al. (2017). The probability parameters
derived for the “Treatment with the Malawi 2012-2014 Protocol” treatment arm are
presented by disease stage in the following paragraphs. These parameters can also be
seen in table 4.4.

After the 1-year horizon, those who completed treatment for Stage I pediatric BL
with the Malawi 2012-2014 Protocol had a 68.8% chance to be in the “Event Free Sur-
vival” state, a 6.2% chance to be in the “Survival with Events” state, and a 25.0% chance
to be in the “Dead” state (Molyneux et al., 2017).

Those who completed treatment for Stage II pediatric BL with the Malawi 2012-2014
Protocol had a 68.8% chance to be in the “Event Free Survival” state, a 6.2% chance to
be in the “Survival with Events” state, and a 25.0% chance to be in the “Dead” state
(Molyneux et al., 2017).

Those who completed treatment for Stage III pediatric BL with the Malawi 2012-
2014 Protocol had a 66.7% chance to be in the “Event Free Survival” state, a 4.8% chance
to be in the “Survival with Events” state, and a 29.0% chance to be in the “Dead” state
(Molyneux et al., 2017).

Those who completed treatment for Stage IV pediatric BL with the Malawi 2012-
2014 Protocol had a 66.7% chance to be in the “Event Free Survival” state, a 4.8% chance
to be in the “Survival with Events” state, and a 29.0% chance to be in the “Dead” state
(Molyneux et al., 2017).
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Treatment with Current Practice Protocol in Ghana

The Current Practice in Ghana protocol does not follow a “named” protocol, such as the
Malawi 2012-2014 protocol or the “CHOP” protocol. Therefore, in order to populate the
third-order chance nodes for the “current practice in Ghana” treatment arm, treatment
with the Current Practice in Ghana protocol for each stage of BL was categorized based
on the categories of treatment intensity presented in the study by Gopal and Gross
(2018), as discussed in section 2.4. The most relevant clinical study performed in a
SSA context for the effectiveness of a pediatric BL treatment of the same intensity
classification was then identified via review articles or manual literature searches. The
parameters for the third-order chance nodes were then populated with data from the
sources identified via this method. The treatment strategies used for each disease stage
with the Current Practice in Ghana protocol can be seen in table 2.2.

Treatment for Stages I and II pediatric BL is identical under treatment with the Cur-
rent Practice in Ghana protocol. The treatment uses Cyclophosphomade monotherapy,
and is classified as “Low-Intensity” treatment according to Gopal and Gross (2018). The
literature search identified the study of the effectiveness of Cyclophosphamide Monother-
apy in children With Burkitt Lymphoma from the French–African Pediatric Oncology
Group over several countries as the most relevant clinical study performed in a SSA
context (Traoré et al., 2011).

While treatment for Stages III and IV pediatric BL is not identical between the
stages, they are classified in the same category of treatment according to Gopal and
Gross. Stage III and IV treatment with the Current practice protocol is classified as
“Anthracycline-based treatment” (Gopal & Gross, 2018). The literature search identified
a study by Molyneux et al in Malawi utilizing the Malawi 2012-2014 protocol as the most
relevant clinical study performed in a SSA context (Molyneux et al., 2017).

The probability parameters derived for the “Current Practice” treatment arm using
the above methods are presented by disease stage in the following paragraphs. These
parameters can also be seen in table 4.5.

After the 1 year horizon, those who completed treatment for Stage I pediatric BL
with the Current Practice in Ghana Protocol had a 42.1% chance to be in the “Event
Free Survival” state, a 26.3% chance to be in the “Survival with Events” state, and a
31.6% chance to be in the “Dead” state (Traoré et al., 2011).

Those who completed treatment for Stage II pediatric BL with the Current Practice
in Ghana Protocol had a 47.8% chance to be in the “Event Free Survival” state, a 21.7%
chance to be in the “Survival with Events” state, and a 30.4% chance to be in the “Dead”
state (Traoré et al., 2011).

Those who completed treatment for Stage III pediatric BL with the Current Practice
in Ghana Protocol had a 66.7% chance to be in the “Event Free Survival” state, a 4.8%
chance to be in the “Survival with Events” state, and a 29.0% chance to be in the “Dead”
state (Molyneux et al., 2017).

Those who completed treatment for Stage IV pediatric BL with the Current Practice
in Ghana Protocol had a 66.7% chance to be in the “Event Free Survival” state, a 4.8%
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chance to be in the “Survival with Events” state, and a 29.0% chance to be in the “Dead”
state (Molyneux et al., 2017).

4.4.4 Disability Weights

In order to calculate the YLD portion of the DALY outcomes for the given interventions,
disability weights were assigned to the model’s end node states. The disability weights
used in this thesis were derived from the most recent Global Burden of Disease (GBD)
Study. This study provides disability weights for diagnosis and primary treatment of
cancer, as well as disability weights for metastatic cancer. For Stage I and Stage II
pediatric BL, this study used the disability weight of 0.288, which is the disability
weight used in the GBD study for diagnosis and primary treatment of cancer. For Stage
III and Stage IV pediatric BL, this study used the disability weight of 0.451 which is the
disability weight used in the GBD study for metastatic cancer (Salomon et al., 2015).
These disability weights can also be seen in Table 4.6.

Table 4.6: This table shows the description, value, and source for the assumption and
disability weight parameters used to populate the decision-analytic model in this study.

Parameter Description Parameter Value Parameter Source
Disability Weight for patients having
received treatment for Stage I BL 0.288 Salomon et al. (2015)

Disability Weight for patients having
received treatment for Stage II BL 0.288 Salomon et al. (2015)

Disability Weight for patients having
received treatment for Stage III BL 0.451 Salomon et al. (2015)

Disability Weight for patients having
received treatment for Stage IV BL 0.451 Salomon et al. (2015)

4.4.5 Costs

As this study was conducted from a healthcare payer perspective, only costs incurred
by the governmental payers of healthcare were considered. Two types of costs were
considered in this study: fixed costs and variable costs. The values and sources used for
all cost parameters for the “Treatment with the Malawi 2012-2014 Protocol” treatment
arm can be seen in Table 4.7. The values and sources used for all cost parameters for
the “Current Practice” treatment arm can be seen in Table 4.8. All monetary sources
of costs in this study present the cost data in US dollars. This currency was therefore
used throughout the study.

Fixed Costs

Fixed costs in this study were defined as the costs associated with the operation of
the pediatric oncology units at KBTH and KATH over the 1-year time horizon of the
study. These costs were assumed not to vary with the size of the cohort. These costs
were assumed to be the same across both interventions. The factors included in the
calculation of the fixed costs were: medical personnel costs, nonmedical personnel costs,
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Table 4.7: This table shows the description, value, and sources for the cost parame-
ters used to populate the “NHIS-funded treatment with the Malawi 2012-2014 regimen”
treatment arm of the decision-analytic model in this study.

Parameter Description Parameter Value Parameter Source
Fixed Costs (Overhead Costs) $689,853 Renner et al (2018)
Cost of Stage I pediatric BL
treatment, given treatment
abandonment

$1,719 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage II pediatric BL
treatment, given treatment
abandonment

$1,719 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage III pediatric BL
treatment, given treatment
abandonment

$1,759 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage IV pediatric BL
treatment, given treatment
abandonment

$1,759 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage I pediatric BL
treatment, given treatment
completion

$2,828 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage II pediatric BL
treatment, given treatment
completion

$2,828 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage III pediatric BL
treatment, given treatment
completion

$2,869 Boateng et al. (2020),
Molyneux et al. (2017)

Cost of Stage IV pediatric BL
treatment, given treatment
completion

$2,869 Boateng et al. (2020),
Molyneux et al. (2017)
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Table 4.8: This table shows the description, value, and sources for the cost parameters
used to populate the “treatment with the Current Practice in Ghana protocol” treatment
arm of the decision-analytic model in this study. In empty boxes in the parameter source
column, no source was used as the assumed cost to the governmental payer is $0.

Parameter Description Parameter Value Parameter Source
Fixed Costs (Overhead Costs) $689,853 Renner et al (2018)
Cost of Stage I pediatric BL
treatment, given treatment
abandonment

$0 Assumption

Cost of Stage II pediatric BL
treatment, given treatment
abandonment

$0 Assumption

Cost of Stage III pediatric BL
treatment, given treatment
abandonment

$0 Assumption

Cost of Stage IV pediatric BL
treatment, given treatment
abandonment

$0 Assumption

Cost of Stage I pediatric BL
treatment, given treatment
completion

$0 Assumption

Cost of Stage II pediatric BL
treatment, given treatment
completion

$0 Assumption

Cost of Stage III pediatric BL
treatment, given treatment
completion

$0 Assumption

Cost of Stage IV pediatric BL
treatment, given treatment
completion

$0 Assumption

37



and administration and utilities costs. The main source of these costs for this study is
a study by Renner et al. (2018), where the total costs of operating the pediatric cancer
unit at KBTH are estimated.

The method for deriving the fixed cost data for pediatric BL treatment in Ghana from
the cost of all pediatric cancer treatment were conceptually based on the calculation of
fixed costs in the cost-effectiveness analysis of pediatric BL in Uganda in Denburg et al.
(2019), where fixed costs were estimated based on the proportion of total resources in
each of their fixed cost factors being used on pediatric BL (Denburg et al., 2019). Fixed
costs for pediatric BL treatment in Ghana were estimated with a similar methodology
for this study, where total fixed costs were obtained from study in Renner et al. (2018),
and the proportion of those patients receiving pediatric BL treatment was derived from
the studies in Offor et al. (2018), and Paintsil et al. (2015). Although the costs given in
Renner et al. (2018) were the costs for all pediatric cancer in a year at KBTH, the costs
for pediatric BL at KBTH were assumed to scale proportionally. As cost data for KATH
was not available, these costs were assumed to be the same as the costs for KBTH, and
were also assumed to scale proportionally to the costs in Renner et al. (2018). The fixed
costs of treating pediatric BL in Ghana derived using this methodology was $689,853.
The methodology and mathematics used in deriving the fixed costs can be seen in more
detail in Appendix C.

Variable Costs

Variable costs in this study were defined as costs over the study time horizon that varied
based on the number of patients treated, including direct costs of care and hoteling
costs. As pediatric BL treatment varies by disease stage, the variable costs also varied
according to stage.

As a consequence of this study taking a healthcare payer perspective and pediatric
BL treatment currently not being included for reimbursement under Ghana’s NHIS, the
comparator, treatment with the Current Practice in Ghana protocol, was assumed to
have $0 in variable costs.

The variable costs for the the intervention, treatment with the Malawi 2012-2014
Protocol, were broken down into the following categories: Pathology and laboratory
costs, pharmacy costs, radiation costs, imaging costs, cost of blood services, and cost of
hoteling patients. For all of these categories except for pharmacy costs, cost data was
derived from Renner et al. (2018) following the same proportionality assumption as was
used to derive the fixed costs. For pharmacy costs, the drugs expected to be used in a
full course of the Malawi 2012-2014 protocol per person was derived. The total amount
of drugs required was then compared to the current Ghanaian market price of the drugs
as provided in Boateng et al. (2020). These pharmacy costs were added to the pathology
and laboratory costs, radiation costs, imaging costs, cost of blood services, and hoteling
costs to derive the cost per person of completing treatment for the intervention group.
In treatment abandonment, the hoteling costs portion of variable costs per person were
reduced by 50%. The methodology and mathematics used in deriving the variable costs
can be seen in more detail in Appendix D.
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4.5 Accounting for Uncertainty

4.5.1 One-Way Sensitivity Analyses

The structural uncertainty of the model was assessed through one-way deterministic sen-
sitivity analyses. Such analyses were used in order to identify the individual parameters
that have the most impact on the outcome within the model’s current structure, as well
as observe the impact on the outcome when key parameters were adjusted to extreme
values.

One-Way Sensitivity Analysis of all Parameters

The first one-way sensitivity analysis performed in this study was performed on all
parameters in the model in order to identify the individual parameters that had the
most impact on the model’s outcomes. To perform this analysis, all parameters in the
model were adjusted individually to a minimum and maximum value, and the resulting
change in ICER was recorded for each parameter. The ten parameters that had the
largest impact on the outcomes were identified as having the most impact through this
method. For all parameters values for which a minimum and maximum value was not
presented in the literature, 85% and 115% of the base case values were used for the
minimum and maximum values in the sensitivity analysis.

One-way Sensitivity Analyses of Individual Key Parameters

Further one-way sensitivity analyses were performed on key parameters identified within
the most impacting parameters through the one-way sensitivity analysis on all parame-
ters. The key parameters selected for examination in additional sensitivity analyses were
parameters that had a notably higher impact than others, as well as parameters that
are commonly examined individually in decision-analytic model-based cost-effectiveness
analyses. The parameters identified as key parameters to be examined individually were:
the discount rate of outcomes, probability of treatment abandonment for treatment with
the Malawi 2012-2014 Protocol with NHIS reimbursement, fixed cost of treatment in
treatment with the Malawi 2012-2014 Protocol with NHIS reimbursement, and fixed
costs of treatment in treatment with Current Practice.

The discount rate of outcomes was varied from 0% to 6% in order to examine re-
sults when the somewhat controversial practice of discounting of health outcomes is
not implemented, as well as when health outcomes are discounted more heavily than is
recommended by WHO-CHOICE.

The probability of treatment abandonment for treatment with the Malawi 2012-2014
Protocol with NHIS reimbursement was varied from 0 to 0.65, in order to capture sce-
narios where the effect of NHIS reimbursement on abandonment is higher than predicted
by the methodology used in this thesis, as well as scenarios where the effect of NHIS
reimbursement on abandonment is negligible.

The fixed costs of treatment in treatment with Current Practice was varied from $0
to $800,000 in order to capture scenarios where there are no fixed costs incurred by the
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governmental payers in Ghana, and scenarios where the actual fixed costs for treatment
with the Current Practice in Ghana protocol are closer to the assumed max value of
$793,331 seen in Appendix E.

The fixed costs of treatment in treatment with the Malawi 2012-2014 Protocol with
NHIS reimbursement was varied from $600,000 to $1,000,000 in order to capture sce-
narios where fixed costs are higher for an NHIS funded treatment than assumed in the
base-case analysis. This parameter was not varied to the same extreme low values as
the fixed costs of treatment in treatment with Current Practice, as it would not be aca-
demically valid, from a governmental healthcare payer perspective, to assume a very-low
fixed cost for NHIS funded treatment while keeping the fixed cost for non-NHIS funded
treatment the same as in the base-case analysis.

4.5.2 Probabilistic Sensitivity Analysis

Uncertainty in the parameters used in the model was assessed through probabilistic sensi-
tivity analysis. The parameters seen in tables 4.2-4.8 were assigned a relevant parameter
distribution and appropriate uncertainty values were extracted from the literature or as-
sumed. A Monte-Carlo simulation was then performed with 10,000 iterations, wherein
each of these iterations randomly samples each of the parameters according to the as-
signed distribution and uncertainty. The resulting incremental results and ICERs were
then recorded in order to analyse the effect of parameter uncertainty on the outcome.

Selection of Parameter Distributions

For binomial probability parameters, the beta distribution was assigned, as the beta
distribution is constrained between 0 and 1 and the nature of the binomial data used
to populate these parameters make the beta distribution the ideal candidate (Hunink
et al., 2014). For multinomial probability parameters, the dirichlet distribution was
assigned, due to it being the multivariate generalization of the beta distribution (Briggs
et al., 2006). In this study, the Alpha statistic of the beta and dirichlet distributions
were populated with the number observed in the given state, and the Beta statistic was
populated with the total number of individuals observed minus the number observed in
the given state. The distributions, alpha and beta values of each probability parameter
can be seen in Appendix E.

For the disability weight parameters, the normal distribution was assumed. This
distribution can be assumed for any type of parameter for use in PSA so long as they
fit the requirements of the normal distribution (Briggs et al., 2006). This was done due
to how the outputs were reported, as well as the nature of how the source study for the
disability weights, the Global Burden of Disease 2013 study, was carried out. The study
involved over 60,000 participants, and presents disability weights with a 95% confidence
interval based on these individuals’ preferences to the given health states. However, the
study did not specify how many participants were asked about each individual health
state. As the number of participants was unknown, but large, a normal distribution
was determined to be the most suitable distribution for these parameters. The standard
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deviation of the parameters was derived by converting the value of the 1.96 standard
deviations from the mean associated with a 95% confidence interval into the value of 1
standard deviation from the mean. In scenarios where one side of the confidence interval
had a longer distance from the mean than the other side of the confidence interval, the
side that implied a higher confidence interval was used to calculate the standard deviation
(Salomon et al., 2015). The ranges used in the PSA for the disability parameters can be
seen in Appendix E.

For all cost parameters, a uniform distribution was assumed. When randomly sam-
pling parameters from a uniform distribution, any parameter value is equally likely over
a given range. For the cost parameters used in this thesis, the lower bound of this range
was chosen to be 85% of the original value, and the upper bound was chosen to be 115%
of the original value. The upper and lower bounds used in the cost parameters can be
seen in Appendix E.

This distribution was selected in lieu of the commonly used gamma distribution
because the gamma distribution is associated with a long right tail, implying sampling
from individual-level cost data (Briggs et al., 2006). Because the cost parameters in this
thesis were not derived from individual-level data, the more flexible uniform distribution
was chosen to be the best fitting distribution for these parameters.
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Chapter 5

Results

This chapter presents an overview of the outcomes resulting from this study. These
outcomes were derived using the methods described in the Chapter 4.

5.1 Base-case Cost-Effectiveness Analysis

The decision-analytic model simulated the health outcomes of two cohorts of 70 pediatric
Burkitt’s Lymphoma patients, with one cohort receiving an NHIS-funded treatment with
the Malawi 2012-2014 protocol and one cohort receiving treatment with the Current
Practice in Ghana protocol. After the one year time horizon of the model, the number
of individuals at each end-node for both cohorts was captured. Note that, even though
cohort is measured in number of individuals, the results are presented in the unrounded
proportion of the original 70 individuals, including decimals, in each cohort.

In the cohort of 70 individuals receiving the NHIS-funded treatment with the Malawi
2012-2014 protocol, 34.87 individuals were at an “Event-Free Survival” end-node, 2.57
individuals were at a “survival with events” end-node, and 32.55 individuals were at
either a “Treatment Abandonment” end-node or a “Death” end-node, which were both
considered death-states in this model. This corresponds to a simulated 1-year EFS of
50%, and a 1-Year overall survival of 53%

In the cohort receiving treatment with the Current Practice in Ghana protocol,
14.28 individuals were at an “Event-Free Survival” end-node, 1.56 individuals were at
a “survival with events” end-node, and 54.17 individuals were at either a “Treatment
Abandonment” end-node or a “Death” end-node. This corresponds to a simulated 1-year
EFS of %20, and a 1-Year overall survival of 23%.

Using the information regarding the number of individuals at each end-node in the
model, the total cost of treatment and DALYs per patient associated with both treat-
ment strategies, as well as the incremental costs, incremental effects, and the ICER,
were derived. The results from the base-case cost-effectiveness analysis can be seen in
their entirety in table 5.1, with both discounted and undiscounted outcomes. NHIS-
funded treatment with the Malawi 2012-2014 Protocol was more costly and resulted in
fewer DALYs, with a cost of $11,836 per patient and 12.84 DALYs per patient, when
discounting costs and effects. The treatment with the Current Practice in Ghana pro-
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tocol resulted in lower costs and more DALYs per patient, with a cost of $9,568 per
patient and 20.38 DALYs per patient, when discounting costs and effects. This led to
NHIS-funded treatment with the Malawi 2012-2014 Protocol having an incremental cost
of $2,268 and incremental effect of 7.54 DALYs averted. Based on this, the ICER in the
base-case cost-effectiveness analysis was $301 per DALY averted. Based on the results of
the base-case cost-effectiveness analysis, NHIS-funded treatment with the Malawi 2012-
2014 Protocol is very cost-effective according to the WHO-CHOICE methodology for
determining cost-effectiveness.

Table 5.1: The discounted and undiscounted incremental costs and effects of the base-
case cost-effectiveness analysis, as well as the discounted and undiscounted ICER.

Discounted Results
Strategy Cost per patient DALY per patient
Current Practice $9,568 20.38
NHIS-funded treatment with
Malawi 2012-2014 protocol $11,836 12.84

ICER: $301 per DALY averted

Undiscounted Results
Strategy Cost per patient DALY per patient
Current Practice $9,855 43.56
NHIS-funded treatment with
Malawi 2012-2014 protocol $12,191 26.79

ICER: $139 per DALY averted

5.2 Sensitivity Analyses

5.2.1 One-Way Sensitivity Analyses

One-Way Sensitivity Analysis of all Model Parameters

In the one-way sensitivity analysis of all model parameters, the effect of change in indi-
vidual parameters on the ICER was examined in order to identify the parameters that
had the largest impact on the cost-effectiveness of pediatric BL treatment in Ghana.
The ten parameters that were identified to have the most impact on the ICER when
varied, as well as the ICER values resulting from the minimum analysed value (Pmin)
and the maximum analysed value (Pmax), can be seen in the Tornado Diagram pre-
sented in figure 5.1. The model parameters identified as the ten parameters with the
most impact on the ICER in order of most to least impacting were: fixed cost of treat-
ment in treatment with the Malawi 2012-2014 Protocol with NHIS reimbursement, fixed
costs of treatment in treatment with the Current Practice in Ghana protocol, probability
of treatment abandonment in treatment with the Current Practice in Ghana protocol,
probability of Event-Free Survival for Stage III BL treatment with the Malawi 2012-2014
Protocol with NHIS reimbursement, probability of Event-Free Survival for Stage IV BL
treatment with the Malawi 2012-2014 Protocol with NHIS reimbursement, discount rate
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of outcomes, probability of treatment abandonment in treatment with the Malawi 2012-
2014 Protocol with NHIS reimbursement, variable cost of Stage III/IV treatment with
NHIS reimbursement with treatment completion, variable cost of Stage III/IV treatment
with NHIS reimbursement with treatment abandonment, and probability of death for
Stage III BL treatment with the Malawi 2012-2014 Protocol with NHIS reimbursement.

Figure 5.1: This Tornado Diagram shows the results of the one-way sensitivity analysis
of all model parameters. The ten parameters that were determined to have the most
impact on the the ICER were identified, and are presented in this figure. The ICER
values shown in the blue bars represent the ICER when the given parameter was adjusted
to the maximum analysed value (Pmax), and the ICER values shown in the blue bars
represent the ICER when the given parameter was adjusted to the minimum analysed
value (Pmin).

One-way Sensitivity Analyses of Individual, Key Parameters

In the one-way sensitivity analyses of individual key parameters, parameters of interest
were varied in order to observe sensitivity of the ICER to change in that variable.

In figure 5.2, the sensitivity of the ICER to discount rate is shown. The ICER
increased with discount rate, with an ICER of $135/DALY averted when the discount
rate was 0, and an ICER of $551/DALY averted when the discount rate was 6%. NHIS-
funded treatment with the Malawi 2012-2014 protocol was found to be very cost-effective
in all examined scenarios.

In figure 5.3, the sensitivity of the ICER to probability of treatment abandonment
of NHIS-funded treatment with the Malawi 2012-2014 Protocol is shown. As can be
seen in the figure, the ICER is not particularly sensitive to changes in treatment aban-
donment at probabilities between 0 and 0.5, with the ICER increased from $201 per
DALY averted to $693 per DALY averted over this range. However, as the probabil-
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Figure 5.2: This figure shows the effect of varying the Discount Rate of Outcomes
on the Incremental Cost-Effectiveness Ratio of NHIS-funded Treatment with the Malawi
2012-2014 Protocol compared to treatment with the Current Practice in Ghana protocol.

ity of treatment abandonment of NHIS-funded treatment with the Malawi 2012-2014
protocol nears the probability of treatment abandonment of treatment with Current
Practice in Ghana protocol, the ICER increases sharply. Between abandonment proba-
bilities of 0.5 and 0.65, the ICER increasing from $693 per DALY averted to $8373 per
DALY averted. NHIS-funded treatment with the Malawi 2012-2014 protocol was found
to be very cost-effective in scenarios with a proportion of treatment abandonment up
to 0.61. In scenarios with a proportion of treatment abandonment between 0.62 and
0.64, NHIS-funded treatment with the Malawi 2012-2014 protocol was found to be cost-
effective. NHIS-funded treatment with the Malawi 2012-2014 protocol was not found to
be cost-effective with proportions of treatment abandonment at and above 0.65.

In figure 5.4, the sensitivity of the ICER to the fixed costs of treatment with the
“Current Practice in Ghana protocol” parameter is shown. The figure shows a direct
negative relationship between fixed costs associated with treatment with the Current
Practice in Ghana protocol and the ICER, with the ICER being the highest at a fixed
cost of $0 per year and the lowest at a fixed cost of $800,000 per year. Notably, even
with no fixed costs for treatment with the Current Practice in Ghana protocol, NHIS
funded treatment with the Malawi 2012-2014 protocol was still found to be very cost
effective, having an ICER of $1570 per DALY averted.

In figure 5.5, the sensitivity of the ICER to the fixed costs of NHIS-funded treatment
with the Malawi 2012-2014 Protocol parameter is shown. The figure shows a direct
positive relationship between fixed costs associated with treatment with the Current
Practice in Ghana protocol and the ICER, with the ICER being the lowest at a fixed
cost of $600,000 per year and the highest at a fixed cost of $1,000,000 per year. NHIS-
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Figure 5.3: This figure shows the effect of varying the probability of treatment abandon-
ment for NHIS-funded Treatment with the Malawi 2012-2014 Protocol on the Incremental
Cost-Effectiveness Ratio of NHIS-funded Treatment with the Malawi 2012-2014 Protocol
compared to treatment with the Current Practice in Ghana protocol.

Figure 5.4: This figure shows the effect of fixed costs for Treatment with Current
Practice on the Incremental Cost-Effectiveness Ratio of NHIS-funded Treatment with
the Malawi 2012-2014 Protocol compared to the Current Practice in Ghana protocol.
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funded treatment with the Malawi 2012-2014 protocol was found to be very cost-effective
in all examined scenarios.

Figure 5.5: This figure shows the effect of fixed costs for NHIS-funded treatment with
the Malawi 2012-2014 Protocol on the Incremental Cost-Effectiveness Ratio of NHIS-
funded Treatment with the Malawi 2012-2014 Protocol compared to the Current Practice
in Ghana protocol. Note the break in scale along the X axis.

5.2.2 Probabilistic Sensitivity Analysis

The PSA included 10,000 Monte Carlo simulations of outcomes of the decision-analytic
model. The results of these simulations are summarized in tables 5.2 and 5.3, which
present the summary statistics of these simulations.

As can be seen in table 5.2, all summary statistics for costs were higher for NHIS-
funded treatment with the Malawi 2012-2014 protocol than treatment with the Current
Practice in Ghana protocol. The variance in costs for the two treatment strategies was
similar, with treatment with the Current Practice in Ghana protocol in Ghana having
a standard deviation of $832 per patient, and NHIS-funded treatment with the Malawi
2012-2014 protocol having a standard deviation of $845 per patient.

As can be seen in table 5.3, the mean number of DALYs incurred after the 1-year
study horizon was higher for treatment with the Current Practice in Ghana protocol in
Ghana when compared to NHIS-funded treatment with the Malawi 2012-2014 protocol.
The variance in DALYs incurred throughout the study horizon was not the same across
the two treatments, with treatment with the Current Practice in Ghana protocol in
Ghana having a standard deviation of 0.65 DALYs incurred per patient, and NHIS-
funded treatment with the Malawi 2012-2014 protocol having a standard deviation of
2.27 DALYs incurred per patient. This difference in variance in the number of DALYs
incurred can also be seen in the size of the difference between min and max values and
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the difference between 2.5th percentile and 97.5th percentile values, with this difference
being larger for the NHIS-funded treatment with the Malawi 2012-2014 protocol in all
scenarios.

Table 5.2: Summary statistics for the cost per individual ($) for both treatment strate-
gies in the 10,000 Monte Carlo simulations of the PSA.

Current Practice Intervention
Mean 9,551 11,842
Min 8,135 10,025
Max 11,003 13,651

St.dev. 832 845
2.5th percentile 8,199 10,446
97.5th percentile 10,932 13,233

Table 5.3: Summary statistics for the DALYs incurred per individual for both treatment
strategies in the 10,000 Monte Carlo simulations of the PSA.

Current Practice Intervention
Mean 20.37 12.86
Min 18.18 5.52
Max 22.69 23.16

St.dev. 0.65 2.27
2.5th percentile 19.08 8.64
97.5th percentile 21.63 17.45

The incremental outcomes of all 10,000 simulations are plotted in figure 5.6, with
incremental effects on the X axis and incremental costs on the Y axis. The black line
that can also be seen in the figure represents an ICER of $2,202/DALY averted, which
is the WHO-CHOICE threshold for NHIS-funded treatment with the Malawi 2012-2014
Protocol to be considered very cost-effective. 99.65% of the PSA simulations fell below
this threshold.

Cost-Effectiveness Acceptability Curve

Figure 5.7 shows the Cost-Effectiveness Acceptability Curve (CEAC) generated from
the results of the PSA simulations. This figure shows the likelihood of a treatment
being recommended at a given willingness-to-pay per DALY-averted threshold, given the
results of the PSA. At Willingness to Pay (WTP) thresholds of up to $300 per DALY
averted, treatment with the Current Practice in Ghana protocol was more likely to be
the preferred treatment. At WTP thresholds of $310 and above, NHIS-funded treatment
with the Malawi 2012-2014 Protocol was more likely to be the preferred treatment.
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Figure 5.6: This figure shows the incremental cost and effect results for the 10000
Monte Carlo simulation for the PSA of NHIS-funded treatment with the Malawi 2012-
2014 Protocol compared to treatment with the Current Practice in Ghana protocol. Each
of the red diamonds represent the outcome of one simulation. The black line shows
the decision threshold for a very cost-effective intervention according to WHO-CHOICE
methodology.

Figure 5.7: This figure shows the Cost-Effectiveness Acceptability Curve for the PSA
results. The lines represent the probability of the given treatment to be preferred at a
given willingness-to-pay per DALY averted.
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Chapter 6

Discussion

This chapter reflects upon the completion of the objectives of this thesis, including the
methods used to complete them and the results derived from their completion. Further,
this chapter examines how the methods used and results derived from the completion
of the objectives can be interpreted in order to make conclusions regarding the research
aims of this thesis, as well as the implications of this study regarding the decision problem
facing the Ministry of Health of the Republic of Ghana. Reflections on the strengths and
limitations of this study, as well as areas requiring future research is also be examined.

6.1 Primary Findings

The objectives of this thesis were to pilot a decision-analytic model to simulate the clin-
ical progression and outcomes of pediatric Burkitt’s Lymphoma, and to populate this
decision-analytic model with appropriate parameter data in order to perform a prelimi-
nary assessment the cost-effectiveness of treatment with an NHIS-funded treatment for
pediatric Burkitt’s compared to treatment with the current practice in Ghana. A de-
cision tree decision-analytic model that uses disease staging, treatment abandonment,
and treatment efficacy to predict clinical outcomes of pediatric BL was created utiliz-
ing the methods described in Part 1 of Chapter 4. This model was populated with
parameter data as described in Part 2 of Chapter 4 in order to carry out a prelim-
inary cost-effectiveness analysis. This preliminary cost-effectiveness analysis included
deterministic and probabilistic sensitivity analyses.

These objectives were carried out in order to evaluate the cost-effectiveness of NHIS-
funded treatment compared to treatment with the current practice in Ghana. Through
the methods described in section 4.3.2, treatment with Malawi 2012-2014 protocol specif-
ically was used to model an NHIS-funded treatment in Ghana. For the cohort that
received NHIS-funded treatment with the Malawi 2012-2014 protocol, the simulated 1-
year EFS and 1-Year overall survival was 50% and 53% respectively. For the cohort that
received treatment with the Current Practice in Ghana protocol, the simulated 1-year
EFS and 1-Year overall survival was 20% and 23% respectively.

The base-case deterministic results showed NHIS-funded treatment with the Malawi
2012-2014 protocol to be the treatment regimen resulting in higher costs and fewer
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DALYs incurred through the study horizon, as can be seen in table 5.1. The resulting
ICER for the base-case deterministic results was $301 per DALY averted, as can also be
seen in table 5.1. According to these results, NHIS-funded treatment with the Malawi
2012-2014 protocol is very cost-effective compared to treatment with the Current Prac-
tice in Ghana protocol, according to the WHO-CHOICE criteria for cost-effectiveness.
Notably, the ICER threshold for considering pediatric BL to be very cost-effective under
the WHO-CHOICE definition is $2202 per DALY averted, which is more than seven
times larger than the deterministic ICER in this study. This finding indicates that,
while funding treatment for BL adds a large up-front cost, significant gains are possible
to be achieved.

The one-way sensitivity analyses in this study were performed in order to examine
the structural uncertainty of the model. In the one-way sensitivity analysis of all model
parameters, the ten parameters whose variation most effected the ICER were identified.
These parameters can be seen in figure 5.1. Through this analysis, it was shown that
the yearly fixed costs of treatment for both types of treatment were the two parameters
that had the highest impact on the ICER, having more than twice the impact on the
ICER as the next most impactful parameter. This is internally consistent within the
study framework, as the fixed costs represented the majority of costs in this study.
This is also consistent with other studies, which note that fixed costs, which primarily
consist of personnel costs, make up the largest proportion of costs in pediatric cancer
treatment (Denburg et al., 2019; Renner et al., 2018). Treatment costs for advanced-
stage treatment were also identified among the ten most impactful parameters, but the
impact of these cost variables was seven times less than the impact of the fixed cost
variables.

The one-way sensitivity analyses of all model parameters also identified treatment
abandonment for both interventions as among the ten most impactful parameters. This
is consistent with literature that points to treatment abandonment as an important
factor in pediatric BL outcomes (Gopal & Gross, 2018; Offor et al., 2018; Renner et al.,
2018).

The other parameters that were determined to have the most impact on the ICER
were parameters measuring treatment efficacy for advanced-stage treatment for both
treatment arms. This is consistent with the literature because the majority of pediatric
BL patients in Ghana are diagnosed with advanced-stage disease (Offor et al., 2018). It
stands to reason, therefore, that the efficacy of treatment for these stages specifically
would be among the parameters with the highest impact on the ICER. The discount
rate of outcomes was also among the most influential parameters.

When considering a decision problem of an intervention for potential governmental
financing, there are additional factors that should be taken into account that cannot be
captured solely by numerical data. For example, it could be of extra consideration that
this disease impacts children, as 39.3% of Ghana’s population was under the age of 15
as of the 2010 census, compared to the global average of 26% (Ghana Health Service,
2015). Adding pediatric BL to the NHIS for coverage may also have an impact on the
life span of the population, leading to a lower proportion of the population being under
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15 years old.
In the one-way sensitivity analyses of key parameters, four key parameters were

more closely examined to explore the impact of more extreme values on the ICER.
The key parameters examined were the discount rate of outcomes, the probability of
treatment abandonment for NHIS-funded treatment with the Malawi 2012-2014 Pro-
tocol, fixed costs associated with treatment with Current Practice in Ghana protocol,
and fixed costs associated with NHIS-funded treatment with the Malawi 2012-2014 Pro-
tocol. These results are visualized in figures 5.2-5.5. Discount rate of outcomes and
fixed costs associated with NHIS-funded treatment to the Malawi 2012-2014 Protocol
showed straightforward positive relationship to the ICER, with none of the extreme
values exceeding the $2202 threshold at which they would no longer be cost-effective.
Likewise, fixed costs associated with treatment with the Current Practice in Ghana
protocol showed a straightforward negative relationship to the ICER.

Notably, while the probability of treatment abandonment with NHIS coverage had
a positive relationship to the ICER, the effect of change in the parameter on the ICER
was much more impactful at values nearer the probability of treatment abandonment in
treatment with Current Practice in Ghana protocol. At all abandonment probabilities
at or below 0.61, the ICER was still below the very cost-effective threshold. This is
notable because this parameter was derived with an assumption based on data from a
non-Ghanaian context. While overestimation was possible in deriving this parameter
using the methods in this study, this sensitivity analysis implies that the deterministic
results would still indicate NHIS-funded treatment as very cost effective in scenarios
where treatment abandonment was only reduced by as little as 7%.

The probabilistic sensitivity analysis in this study was performed in order to examine
parameter uncertainty on the model, and how parameter uncertainty affected the ICER.
10,000 Monte Carlo simulations were performed The plot of the ICERs resulting from
the 10,000 Monte Carlo simulations can be seen in figure 5.6. 99.85% of the Monte
Carlo simulations resulted in an ICER less than $2202 per DALY averted. This result
shows that, despite the uncertainty present within the parameters in this thesis, NHIS-
funded treatment with the Malawi 2012-2014 protocol is very likely to be considered
very cost-effective for the treatment of pediatric BL in Ghana.

6.2 Model Validity

Internal validity in this thesis was primarily ensured through internal checks within the
coding of the model in the Microsoft Excel 2013 software. This included recursive coding
with visual cues indicating whether or not the proportionality of the chance nodes was
correct or if the total number of the cohort was consistent throughout the model. Internal
validity was also checked in the one-way sensitivity analysis of key parameters, where
results of the change key parameters were observed to ensure they produced expected
results.

Face validity was not able to be assessed for the model used in this thesis, as it was
not possible to consult with an impartial expert for this study. However, the fact that
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the model was developed under the guidance of the expert supervisors of this thesis and
that the results produced by the model are similar to the observed real world data do
provide positive indications of face validity.

Cross validity was not possible to be assessed for the model used in this thesis, as
there are no other existing decision-analytic models for pediatric BL. Predictive validity
was not able to be assessed because it measures the ability of a model to predict outcomes
before they are measured. This would necessitate the comparison of a clinical study of
pediatric BL in Ghana with the results of this model.

Predicative validity can be measured by comparing the predictions of the model
to real world event data. The paucity of existing data makes measuring predicative
validity challenging. There are few studies that measure outcomes in the same manner
as this study while being in a relevant context. The 22% overall survival simulated
for treatment with the Current Practice in Ghana protocol is close to the 20% overall
survival reported in Offor et al. (2018). However, it should be noted that this statistic
censors abandonment data, and does not provide information regarding the length of
time since treatment for these individuals. The 50% event-free survival and 53% overall
survival simulated for the NHIS-funded treatment with the Malawi 2012-2014 regimen
are similar to outcomes commonly reported in clinical studies using treatments of a
similar intensity, such as the 55% 2-year overall survival seen in a study of a similar
intensity in Uganda (Denburg et al., 2019). Compared to the study in this thesis, this
study presents survival over a longer time frame, and it had a 99% treatment completion
rate. In addition, the simulated results for the NHIS-funded treatment in the study in
this thesis also are in line with what are considered to be expected survival rates seen
in SSA contexts (Denburg et al., 2019). These results indicate a degree of predicative
validity.

6.3 Study Strengths

This study incorporates the first decision-analytic model for the simulation of clinical
outcomes of pediatric BL. Although the cost-effectiveness analysis performed using the
model is considered a preliminary cost-effectiveness analysis, the model was able to
produce results that indicate a good degree of predictive validity. Because this study
was performed in order to inform the Ministry of Health in Ghana’s decision regarding
the NHIS financing of BL treatment, the relative ease and inexpensiveness of performing
a model-based cost-effectiveness evaluation should be considered as a strength of this
study.

Despite the paucity of relevant data for pediatric BL in Ghana, most parameters
used in the model were able to be taken from Ghanaian contexts. In situations where
Ghanaian data was not available, data from other LMIC SSA contexts was able to be
used. The PSA performed in this study allowed conclusions to be drawn regarding the
likelihood of NHIS-funded treatment being cost-effective despite the uncertainty inherent
in the parameter data. That this study was able to populate the model with the most
relevant data possible should be considered a study strength.
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This one-way sensitivity analyses performed in this thesis provided insight into which
parameters have the most impact on the cost-effectiveness of pediatric BL treatment in
Ghana, as well as the degree of the impact of these parameters. This is a novel addition
to the academic understanding of pediatric BL in Ghana, and can also be applicable to
other SSA contexts.

The one-way sensitivity analyses performed in this thesis provide novel insight to the
impact of treatment abandonment on the cost-effectiveness of treatment for pediatric
BL in Ghana. The impact of this parameter in particular is noteworthy because it has
been identified as an important area for further research in Ghana (Renner et al., 2018).
While the face validity of the calculation of the effect of NHIS coverage on abandonment
is not clear, this model provides a framework upon which to investigate the relationship
between treatment abandonment and clinical outcomes.

6.4 Study Limitations and Assumptions

As in all decision-analytic models, assumptions about reality were made in order to create
a model that can produce results with available data. These assumptions, along with
inherent limitations of the study, should be taken into consideration when interpreting
the results.

One limitation for this study was the lack of Ghana-specific effectiveness data for
the examined treatments. Because of this lack of data, effectiveness data was based on
clinical studies in other LMIC SSA contexts. While the PSA examined the uncertainty
of the parameter data, it does not assess the face validity of the use of single clinical
studies outside of Ghana as a proxy for treatment effectiveness in Ghana. Heterogeneity
inherent in the country healthcare contexts or in the individual trials may be present,
and cannot be reflected in this study. This should be considered when interpreting the
results of this study.

This study assumed that the overhead costs for treating pediatric BL at KBTH is
proportional to the overhead costs for treating all childhood cancer in KBTH. This study
also assumed the overhead costs for treating childhood cancer at KATH were the same as
the costs for treating childhood cancer at KBTH, and that the costs of treating pediatric
BL at KATH followed the same proportionality as in KBTH. This assumption was
necessitated by a lack of relevant data. The face validity of this assumption was unable
to be assessed in this study. This should be taken into consideration when interpreting
the results of this study, because the one-way sensitivity analysis of all model parameters
identified the overhead costs for both treatments as having the largest impact on the
ICER.

This study assumed that the non-pharmacy related variable costs of treatment of
treating pediatric BL with NHIS-funded treatment with the Malawi 2012-2014 Protocol
at KBTH was proportional to the non-pharmacy related variable costs of treatment of
treating all pediatric cancer at KBTH. This study also assumed that the non-pharmacy
related variable costs of treatment of treating all pediatric cancers at at KATH was
the same as the non-pharmacy related variable costs of treating all pediatric cancers
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at KBTH. This study then used the same proportionality assumption for pediatric BL
treatment compared to the treatment of all pediatric cancers for KATH that was made
in the case of KBTH. The face validity of this assumption was unable to be assessed in
this study.

In order to populate the parameter for the proportion of patients abandoning treat-
ment with NHIS-funded treatment, an assumption was made regarding the effect of
NHIS coverage on abandonment rate. This study assumed a proportional effect of NHIS
coverage on abandonment rate to the implied effect seen in Martijn et al. (2017). While
the uncertainty associated with the parameter data was able to be examined in the PSA,
the face validity of this assumption was unable to be assessed in this study.

DALYs averted was chosen as the outcome of this study because of a lack of the
local preference data required for other outcome measures, as well as due to the existing
norm of using DALYs averted in cost-effectiveness analyses in LMIC contexts. With this
being said, it should be noted that the Global Burden of Disease study, upon which the
disability weights for the DALYs are based, was performed with European participants
from primarily High-Income Countries. Therefore, the disability weights used in this
study may not necessarily reflect the preferences of Ghanaians. While this should be
taken into consideration when interpreting the results of this study, it should also be
noted that the disability weight parameters were not identified as one of the ten most
impactful parameters by the one-way sensitivity analysis of all parameters.

The EFS and survival with event end-node states were included to account for differ-
ences in long-term outcomes. These long-term differences were not able to be accounted
for due to the short time horizon of this study. This short time horizon was necessitated
by a lack of time-dependent long-term outcome data.

The length of time represented by the decision tree model was 1 year. Based on the
literature, this is an overestimation of time of treatment. This was done in order to be
able to simulate outcomes given the fact that clinical data is usually presented with no
earlier than 1-year outcomes. If individual-level survival data existed, more accurate
calculations of treatment length would have been able to be made. This likely led to
an overestimation of DALY’s through the overestimation of YLL and YLD for all who
were considered to have died in the model. Although the face validity of this treatment
length assumption was not able to be validated in this study, other studies in similar
contexts have made this same assumption. The same treatment length assumption was
also made in the cost-effectiveness analysis of treating BL in Uganda seen in Denburg
et al. (2019), as well as the cost-effectiveness of the treatment of childhood cancer at
KBTH seen in Renner et al. (2018).

This study was performed with a healthcare payer perspective. This was primarily
done because the study was performed in order to inform a governmental healthcare
payer. In addition, ideal data needed to perform an analysis with a broader perspective,
such as a societal perspective, was not present, and additional assumptions would have
needed to be made in order to populate the additional parameters that would have been
required for such an analysis. However, due to the societal burden pediatric BL poses
in Ghana, a societal perspective would have been informative.
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In this study, all patients in the starting cohorts were assumed to have confirmed
pediatric BL. This was done due to a lack of data regarding sensitivity and specificity
of the diagnostic testing, as well as little high-quality data regarding the incidence rates
of pediatric BL in the population in Ghana.

The use of the WHO-CHOICE thresholds for the determination of cost-effectiveness
is academically contested. Theoretically, a cost-effectiveness threshold should be a value
that represents the opportunity cost of healthcare investment. However, the WHO-
CHOICE thresholds are not created with this principle (Woods et al., 2016). Nonethe-
less, the WHO-CHOICE thresholds were still chosen to be used in this study in order to
maintain comparability with related studies, as well as due to a lack of Ghana-specific
opportunity-cost-based thresholds.

6.5 Further Research

The results of this research imply that NHIS-funded treatment for pediatric BL in Ghana
is likely to be very cost-effective. These conclusions were drawn based on a preliminary
cost-effectiveness analysis. This analysis involved assumptions of unassessed face validity.
The validity of these assumptions should be researched further in order to provide context
to the results of this study.

The effect of NHIS-coverage on treatment abandonment in this study was derived
from a study in a context outside of Ghana. Research into the effect of NHIS treat-
ment on abandonment rates is a topic that has been identified by Ghanaian healthcare
providers as important to inform further decision making (Renner et al., 2018). Further
research into this relationship should be undertaken in order to help inform decisions not
only regarding pediatric BL in Ghana, but also other types of reimbursement decisions
regarding childhood cancer in Ghana.

In order to more accurately capture the societal burden of pediatric BL in Ghana,
more data is needed regarding the location-specific prevalence and impact of the dis-
ease. Information on potential individuals who do not seek treatment due to distance
challenges should also be examined. As this study only examines the governmental
payer perspective of this decision problem, only government-operated hospitals are con-
sidered. Data on potential treatment in private hospitals could also contribute to the
understanding of pediatric BL in Ghana. Considering the resources required to under-
take such studies, a Value of Information analysis could be used to inform which types
of data should be prioritized for further research.

The model piloted in this thesis simulates the clinical outcomes of pediatric BL in
Ghana by separating the impact of treatment abandonment and treatment efficacy on the
outcomes. Treatment abandonment in pediatric BL is a problem in many SSA contexts
(Molyneux et al., 2012). This model, if populated with appropriate parameters, should
be used for research into the cost-effectiveness of pediatric BL treatment in other SSA
contexts.
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Chapter 7

Conclusion

Through this study, a decision tree decision-analytic model for the simulation of pediatric
Burkitt’s Lymphoma outcomes was created. This model was able to isolate the impacts
of treatment abandonment and treatment efficacy on pediatric BL outcomes, and was
able to produce simulated outcomes that are similar to observed Ghanaian pediatric BL
outcomes. It identified fixed costs, treatment abandonment, advanced-stage treatment
efficacy and advanced-stage treatment costs as the parameters with the largest impact
on the cost-effectiveness of pediatric Burkitt’s Lymphoma treatment in Ghana. Because
the model is being provided as a public-goods deliverable to the Ministry of Health of
Ghana, it will also able to serve as a tool to inform further pediatric BL research.

The results from the preliminary cost-effectiveness analysis performed in this study
found treatment with an NHIS-Funded treatment for pediatric BL to be very cost ef-
fective compared to treatment with the current practice protocol, with an Incremental
Cost-Effectiveness Ratio of $301 per DALY averted. This conclusion was found to be ro-
bust even when considering the uncertainty of the parameters used in the model, 99.65%
of the iterations in the probabilistic sensitivity analysis producing a very cost-effective
result. Although the addition of pediatric BL to NHIS coverage will pose an up-front
expense, the results in this study indicate that this could be a very cost-effective use
of resources. The better outcomes that could be achieved through NHIS coverage of
pediatric BL treatment could help reduce the burden that pediatric BL poses on both
the health system of Ghana, and Ghanaian society as a whole.
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Appendix A

Method for Calculating DALYs

B = 1
(1 + oDR) · t

(A.1)

YLL or YLD = A · P · N (A.2)

YLL or YLD = A · P · B · N (A.3)

In this thesis, DALYs were calculated using a methodology adapted from Larson
(2013). In order to calculate the YLL and YLD aspects of the DALY, a number of
variables were defined and calculated. The variables created or adapted for this purpose
are presented in the following paragraph.

The variable t is the time in years, with 0 representing present time. The variable A
is the DALY weight of the year lost, with 1 being the DALY weight used when calculating
YLL. The variable P is the proportion of a year lost. That is to say, if an individual dies
at 20.5 years of age, the proportion of a life year lost is 0.5 for that year. The variable B
is the discrete time discount factor, seen in equation A.1, where oDR is the discount rate
of outcomes. The variable N is the number of individuals in the state being evaluated
at a given time t. With these variables, both undiscounted and discounted YLL or YLD
can be calculated. The formula for calculating undiscounted YLL or YLD can be seen
in equation A.2. The equation for calculating discounted YLL or YLD can be seen in
equation A.3.

An example of how these equations were utilized in the decision-analytic model de-
scribed in this thesis can be seen in table A.1. This example shows the calculation of
the YLD aspect of the DALY for the Current Practice in Ghana treatment arm. This
methodology was used to calculate discounted and undiscounted YLL and YLD in both
treatment arms. Because the original formulas in Larson (2013) calculate outcomes at
the start of the cycle, and the decision tree model calculates outcomes at the end of the
cycle, the outcomes for the first cycle have been changed to 0.
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Table A.1: This table shows an example of the methodology used to calculate DALYs in
this thesis. The example shown in this table shows the calculation of the discounted and
undiscounted YLL for the Current Practice in Ghana treatment arm. The N variable in
this calculation is 54.17.

Year of
life t

DALY weight
of year lost,

A

Proportion
of year lost,

P

Discrete time
discount factor,
B=1/(1+oDR)t

Undiscounted
YLL or YLD value,

Undiscounted=A*P*N

Discounted
YLL or YLD value,

Discounted=A*P*B*N
7,9 1 1 1 0,9708737864 0 0
8,9 2 1 1 0,9425959091 54,16670407 51,05731367
9,9 3 1 1 0,9151416594 54,16670407 49,57020744
10,9 4 1 1 0,8884870479 54,16670407 48,12641499
11,9 5 1 1 0,8626087844 54,16670407 46,72467475
12,9 6 1 1 0,8374842567 54,16670407 45,36376189
13,9 7 1 1 0,8130915113 54,16670407 44,04248727
14,9 8 1 1 0,7894092343 54,16670407 42,75969638
15,9 9 1 1 0,7664167323 54,16670407 41,51426833
16,9 10 1 1 0,7440939149 54,16670407 40,30511489
17,9 11 1 1 0,7224212766 54,16670407 39,1311795
18,9 12 1 1 0,7013798802 54,16670407 37,99143641
19,9 13 1 1 0,68095134 54,16670407 36,88488972
20,9 14 1 1 0,6611178058 54,16670407 35,81057254
21,9 15 1 1 0,6418619474 54,16670407 34,76754616
22,9 16 1 1 0,6231669392 54,16670407 33,75489918
23,9 17 1 1 0,6050164458 54,16670407 32,77174678
24,9 18 1 1 0,5873946076 54,16670407 31,81722988
25,9 19 1 1 0,5702860268 54,16670407 30,89051445
26,9 20 1 1 0,5536757542 54,16670407 29,99079073
27,9 21 1 1 0,5375492759 54,16670407 29,11727255
28,9 22 1 1 0,5218925009 54,16670407 28,26919665
29,9 23 1 1 0,5066917484 54,16670407 27,44582199
30,9 24 1 1 0,4919337363 54,16670407 26,64642912
31,9 25 1 1 0,4776055693 54,16670407 25,87031953
32,9 26 1 1 0,4636947274 54,16670407 25,11681508
33,9 27 1 1 0,4501890558 54,16670407 24,38525736
34,9 28 1 1 0,4370767532 54,16670407 23,67500714
35,9 29 1 1 0,4243463623 54,16670407 22,98544383
36,9 30 1 1 0,4119867595 54,16670407 22,31596488
37,9 31 1 1 0,3999871452 54,16670407 21,66598532
38,9 32 1 1 0,3883370341 54,16670407 21,03493721
39,9 33 1 1 0,3770262467 54,16670407 20,42226913
40,9 34 1 1 0,3660448997 54,16670407 19,82744576
41,9 35 1 1 0,3553833978 54,16670407 19,24994734
42,9 36 1 1 0,3450324251 54,16670407 18,68926926
43,9 37 1 1 0,3349829369 54,16670407 18,14492161
44,9 38 1 1 0,3252261524 54,16670407 17,61642875
45,9 39 1 1 0,315753546 54,16670407 17,10332888
46,9 40 1 1 0,3065568408 54,16670407 16,60517367
47,9 41 1 1 0,2976280008 54,16670407 16,12152784
48,9 42 1 1 0,288959224 54,16670407 15,65196878
49,9 43 1 1 0,280542936 54,16670407 15,19608619
50,9 44 1 1 0,2723717825 54,16670407 14,75348174
51,9 45 1 1 0,2644386238 54,16670407 14,32376868
52,9 46 1 1 0,2567365279 54,16670407 13,90657153
53,9 47 1 1 0,249258765 54,16670407 13,50152576
54,9 48 1 1 0,2419988009 54,16670407 13,10827744
55,9 49 1 1 0,2349502922 54,16670407 12,72648295
56,9 50 1 1 0,2281070798 54,16670407 12,35580869
57,9 51 1 1 0,2214631843 54,16670407 11,99593076
58,9 52 1 1 0,2150128003 54,16670407 11,64653472
59,9 53 1 1 0,2087502915 54,16670407 11,30731526
60,9 54 1 1 0,2026701859 54,16670407 10,97797598
61,9 55 1 1 0,1967671708 54,16670407 10,65822911
62,9 56 1 1 0,1910360882 54,16670407 10,34779525
63,9 57 1 1 0,1854719303 54,16670407 10,04640316
64,9 58 1 0,17 0,1800698352 9,208339692 1,658144211

Sum of undiscounted
YLL or YLD:

Sum of discounted
YLL or YLD:

3042,543767 1419,745808

69



Appendix B

Deriving the “Treatment Abandonment
for NHIS-funded treatment with the Malawi
2012-2014 protocol” parameter

In Offor et al. (2018), 118 of the 173 patients seen at KBTH abandoned treatment.
Of these individuals, 89 (75%) abandoned due to financial constraint, while 29 (25%)
abandoned due to non-financial reasons. The effect of NHIS coverage on treatment
abandonment was assumed to only impact these individuals who abandoned due to
financial constraint. In order to estimate the abandonment rate of an NHIS-funded
treatment, an effect proportional to the effect seen in Martijn et al. (2017) was assumed
for the patients who abandoned treatment due to financial constraints. The proportion
who abandoned due to non-financial reasons was assumed not to change

89 of the 173 (51% of cohort) abandoned treatment due to financial reasons in Offor
et al. (2018). In Martijn et al. (2017), the effect of insurance coverage was calculated
to reduce treatment abandonment from 44% to 5%. If we assume proportionality, it
implies that 5.8% of individuals in a hypothetical cohort with NHIS coverage in Ghana
would abandon due to financial constraint. This corresponds to 10 individuals. If we
assume the 29 individuals who abandoned for non-financial reasons stays the same, then
a hypothetical cohort receiving NHIS funded BL treatment would see 10 individuals
abandoning due to financial constraint and 29 individuals due to non-financial reasons,
or 39 individuals in total.

39/173 individuals abandoning treatment corresponds to a 22.5% abandonment rate.
This was the method utilized to derive the parameter for the proportion of individuals
abandoning NHIS-funded treatment with the Malawi 2012-2014 protocol.
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Appendix C

Deriving the “Fixed costs” parameters

Table C.1: This table presents the methodology and mathematics used to derive the an-
nual fixed cost of treatment for both the intervention and the comparator. The proportion
of pediatric cancer patients who are pediatric BL at KBTH and KATH are derived from
Offor et al. (2018) and Paintsil et al. (2015) respectively. Fixed costs for the treatment
of all childhood cancers is derived from Renner et al. (2018).

Fixed cost
category

Total annual
operating cost ($)

Proportion of
pediatric BL
patients, KBTH

Proportion of
pediatric BL
patients, KATH

Total Cost ($)

Medical
Personnel 574,960 0.307 0.408 411,096.40

Nonmedical
Personnel 193,653 0.307 0.408 138,461.89

Utilities 196,217 0.307 0.408 140,461.16
Total Annual
Fixed Costs 689,853.45
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Appendix D

Deriving the “Variable costs for NHIS-
funded treatment with the Malawi 2012-
2014 Protocol” parameters

Table D.1: This table presents the methodology used to estimate the pharmacy costs
of an NHIS-funded treatment with the Malawi 2012-2014 Protocol, separated by disease
stage. To calculate the total required dosage of each drug, it is assumed that each patient
goes through the full treatment protocol, and that the average patient has a body surface
area of 1 square meter. The drug and required dosage information are sourced from
Molyneux et al. (2017). The number of drug units required is derived by taking the total
dosage required and dividing that dosage by the size of the drug units sold in Ghanaian
pharmacies as stated in Boateng et al. (2020), rounded up to the nearest whole number.
The cost per dose is sourced from Boateng et al., 2020, where the costs are provided in
US dollars ($).

Stage I and II

Drug: Total dosage
required (mg)

Number of
drug units Cost per dose ($) Total cost ($)

Cyclophosphamide 3960 8 2.94 23.52
Vincristine 6 6 2.94 17.64
Prednisalone 300 60 0.02 1.20
Methotrexate 50 2 2.94 5.88
Total Cost 48.24

Stage III and IV

Drug: Total dosage
required (mg)

Number of
drug units Cost per dose ($) Total cost ($)

Cyclophosphamide 3960 8 2.94 23.52
Vincristine 6 6 2.94 17.64
Prednisalone 300 60 0.02 1.20
Methotrexate 50 2 2.94 5.88
Doxorubicin 120 3 13.73 41.19
Total Cost 89.43
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Table D.2: This table presents the methodology used to derive the total variable costs per
person for NHIS-funded treatment with the Malawi 2012-2014 protocol. The pharmacy
costs are derived from the process in table D.1. The other cost categories are derived
from Renner et al. (2018).

Stage I and II
Cost category Cost per person ($)
Pathology and labs 267.73
Pharmacy 48.24
Radiation 88.99
Imaging 186.08
Blood 15.83
Hotelling 2221.39
Total Cost Per Person 2828.26

Stage III and IV
Cost category Cost per person ($)
Pathology and labs 267.73
Pharmacy 89.43
Radiation 88.99
Imaging 186.08
Blood 15.83
Hotelling 2221.39
Total Cost Per Person 2869.45
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Appendix E

Parameter Distributions and Uncertainty
Values
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Table E.1: This table shows the assigned parameter distribution and uncertainty data
for the chance node probability parameters for the “treatment with the Current Practice
in Ghana protocol” treatment arm in this study

Parameter Description Parameter Value
Assigned
Parameter
Distribution

Alpha Beta

Probability of being diagnosed
with Stage I pediatric BL 0.0578 Dirichlet 10 163

Probability of being diagnosed
with Stage II pediatric BL 0.0578 Dirichlet 10 163

Probability of being diagnosed
with Stage III pediatric BL 0.4451 Dirichlet 77 96

Probability of being diagnosed
with Stage IV pediatric BL 0.4393 Dirichlet 76 97

Probability of abandoning
treatment 0.6821 Beta 118 55

Probability of completing
treatment 0.3179 Beta 55 118

Probability of Event-free
survival for Stage I pediatric BL 0.4211 Dirichlet 8 11

Probability of Survival with
Events for Stage I pediatric BL 0.2632 Dirichlet 5 14

Probability of Death for Stage I
pediatric BL 0.3158 Dirichlet 6 13

Probability of Event-free survival
for Stage II pediatric BL 0.4783 Dirichlet 11 12

Probability of Survival with
Events for Stage II pediatric BL 0.2174 Dirichlet 5 18

Probability of Death for Stage II
pediatric BL 0.3043 Dirichlet 7 16

Probability of Event-free survival
for Stage III pediatric BL 0.6667 Dirichlet 14 7

Probability of Survival with
Events for Stage III pediatric BL 0.0476 Dirichlet 1 20

Probability of Death for Stage III
pediatric BL 0.2857 Dirichlet 6 15

Probability of Event-free survival
for Stage IV pediatric BL 0.6667 Dirichlet 14 7

Probability of Survival with
Events for Stage IV pediatric BL 0.0476 Dirichlet 1 20

Probability of Death for Stage IV
pediatric BL 0.2857 Dirichlet 6 15
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Table E.2: This table shows the assigned parameter distribution and uncertainty data
for the chance node probability parameters for the “NHIS-funded treatment with the
Malawi 2012-2014 Protocol” treatment arm in this study

Parameter Description Parameter Value
Assigned
Parameter
Distribution

Alpha Beta

Probability of being diagnosed
with Stage I pediatric BL 0.0578 Dirichlet 10 163

Probability of being diagnosed
with Stage II pediatric BL 0.0578 Dirichlet 10 163

Probability of being diagnosed
with Stage III pediatric BL 0.4451 Dirichlet 77 96

Probability of being diagnosed
with Stage IV pediatric BL 0.4393 Dirichlet 76 97

Probability of abandoning
treatment 0.2554 Beta 4.34 12.66

Probability of completing
treatment 0.7446 Beta 12.66 4.34

Probability of Event-free
survival for Stage I pediatric BL 0.6875 Dirichlet 5.5 2.5

Probability of Survival with
Events for Stage I pediatric BL 0.0625 Dirichlet 0.5 7.5

Probability of Death for Stage I
pediatric BL 0.2500 Dirichlet 2.0 6.0

Probability of Event-free survival
for Stage II pediatric BL 0.6875 Dirichlet 5.5 2.5

Probability of Survival with
Events for Stage II pediatric BL 0.0625 Dirichlet 0.5 7.5

Probability of Death for Stage II
pediatric BL 0.2500 Dirichlet 2.0 6.0

Probability of Event-free survival
for Stage III pediatric BL 0.6667 Dirichlet 14 7

Probability of Survival with
Events for Stage III pediatric BL 0.0476 Dirichlet 1 20

Probability of Death for Stage III
pediatric BL 0.2857 Dirichlet 6 15

Probability of Event-free survival
for Stage IV pediatric BL 0.6667 Dirichlet 14 7

Probability of Survival with
Events for Stage IV pediatric BL 0.0476 Dirichlet 1 20

Probability of Death for Stage IV
pediatric BL 0.2857 Dirichlet 6 15
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Table E.3: This table shows the assigned parameter distribution and uncertainty data
for the disability weight parameters used in this study

Parameter Description Parameter
Value

Assigned
Parameter
Distribution

Standard
Deviation

Disability Weight for patients
having received treatment for
Stage I BL

0.288 Normal 0.066

Disability Weight for patients
having received treatment for
Stage II BL

0.288 Normal 0.066

Disability Weight for patients
having received treatment for
Stage III BL

0.451 Normal 0.088

Disability Weight for patients
having received treatment for
Stage IV BL

0.451 Normal 0.088

Table E.4: This table shows the assigned parameter distribution and uncertainty data
for the cost parameters for the “treatment with the Current Practice in Ghana protocol”
treatment arm in this study

Parameter
Description

Parameter
Value

Assigned
Parameter
Distribution

Minimum
Value

Maximum
Value

Overhead costs $689,853 Uniform 586,375.43 793,331.47
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Table E.5: This table shows the assigned parameter distribution and uncertainty data
for the cost parameters for the “NHIS-funded treatment with the Malawi 2012-2014 Pro-
tocol” treatment arm in this study

Parameter
Description

Parameter
Value

Assigned
Parameter
Distribution

Minimum
Value

Maximum
Value

Overhead costs $689,853 Uniform 586,375.43 793,331.47
Cost of Stage I pediatric
BL treatment, given
treatment abandonment
(Intervention)

$1,719 Uniform 1460.78 1976.36

Cost of Stage II pediatric
BL treatment, given
treatment abandonment
(Intervention)

$1,719 Uniform 1460.78 1976.36

Cost of Stage III pediatric
BL treatment, given
treatment abandonment
(Intervention)

$1,759 Uniform 1494.95 2022.57

Cost of Stage IV pediatric
BL treatment, given
treatment abandonment
(Intervention)

$1,759 Uniform 1494.95 2022.57

Cost of Stage I pediatric
BL treatment, given
treatment completion
(Intervention)

$2,828 Uniform 2404.02 3252.50

Cost of Stage II pediatric
BL treatment, given
treatment completion
(Intervention)

$2,828 Uniform 2404.02 3252.50

Cost of Stage III pediatric
BL treatment, given
treatment completion
(Intervention)

$2,869 Uniform 2439.03 3299.87

Cost of Stage IV pediatric
BL treatment, given
treatment completion

$2,869 Uniform 2439.03 3299.87
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