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 Chapter 1 Introduction

In order to understand the concept of ultrasound, one must begin to
realize what sound is. Generally sound is propagation of pressure waves
through some physical elastic medium. The most known medium is air,
where sound can travel and reach us. However air is not the only
medium. The reality is that where molecules are found, sound can
propagate. Due to the linear mass density of molecules, sound can travel
faster in liquid than in air. There is no sound in vacuum.

Ultrasound can be defined as a beam of acoustic waves that travel at
frequencies greater than 20,000 vibration per second or 20 kHz. Human
hearing is limited. Human can only hear sounds in the range of about 20
to 30 kHz. Generally, high frequencies are used for medical imaging,
such as investigating a fetus in the mother’s womb. It’s difficult to
generate and measure high frequencies. Medical ultrasound has an upper
limit of about 10 MHz, but higher frequencies are possible. Ultrasound
images are generated by sending sound pulses from a probe (transducer).
The sound reflects from structures in the body and is received by the
probe again. These pulses are processed and interpreted by considering
depth and direction, and are shown as an image on a screen.

Beamforming techniques play one of the most important roles in
ultrasound imaging. Our objective is to look into theoretical background
(solutions) of the acoustic wave equation for limited diffraction beams.
The advantages and disadvantages of these solutions for ultrasound
imaging will be discussed. Simulation models are developed in order to
visualize the beam characterizations (like lateral resolutions, depth of
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field etc.). We will be comparing our results from the limited diffraction
beam simulations with the results achieved by applying conventional
focused beamforming.

The simulation software is developed in the Matlab environment and is
meant to be integrated into Ultrasim simulator. We have also presented a
paper based on this work at IEEE international ultrasonics symposium
1996 conference [34].
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 Chapter 2 The wave equation

A second order partial differential equation which occurs frequently in
applied mathematics is the wave equation. Some form of this equation, or
a generalization of it, almost inevitably arises in any mathematical
analysis of phenomena involving the propagation of waves in a
continuous medium. For example, the studies of acoustic waves, water
waves, and electromagnetic waves are all based on this equation. There
are two basic types of waves that are important in acoustic wave
propagation [1]. The first is longitudinal wave, in which the motion of a
particle in the acoustic medium is along the direction of wave
propagation. The second type of wave is shear wave (transverse wave),
in which the motion of a particle in the medium is transverse to the
direction of propagation. In this chapter, the derivation of the wave
equation in cartesian (one and three-dimensional) and spherical
coordinates will be described.

2.1 The one-dimensional wave equation

Starting from the basic linear equation of motion in one dimension, one
can derive the one-dimensional wave equation, which is an equation for
wave propagation that operates in one dimension only. First, we shall
establish the equation expressing Newton’s second law of motion, the
gas law [2]:

  (1)Equation of motion
x∂

∂p ρ
o t∂

∂v
+ 0=
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  (2)

where p is the pressure, and  is the density of the medium, and  is the
incremental volume, and  and  are the undisturbed volume and gas
pressure respectively and v is velocity.

The second important equation is that of mass conservation [2]:

  (3)

Combination of  Eq. 2 and  Eq. 3 gives:

  (4)

Differentiating  Eq. 4 with respect to time t, and  Eq. 1 with respect to the
spatial coordinate x:

  (5)

  (6)

The one-dimensional wave equation is obtained by combining Eq. 5 and
Eq. 6 :

  (7)

Where  is the speed of propagation of sound wave in the
medium. Then Eq. 7 becomes:

  (8)

This second-order differential equation is called the one-dimensional
wave equation. It can be proved that any solution of the wave equation
has the form:
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where the negative sign indicates a wave travelling in the x-direction,
whereas the positive sign indicates a wave travelling in the -x-direction.
Since the displacement is in the same direction as the wave propagation,
this type of wave is called longitudinal wave. The sinusoidal solution for
this equation is:

  (10)

where ω=2πf is the angular frequency and k=ω/c is the wave number.

2.2 The three-dimensional wave equation for
sound

The general case of sound propagation involves three dimensions. Let us
suppose the sound pressure p changes in space at the rate of [2]:

  (11)

where i, j and k are unit vectors in the x, y and z directions, respectively,
and p is the acoustic pressure at an arbitrary point in space . The basis
of the derivation is three relations.

Euler’s equation of motion for a fluid which is a relation between
pressure and particle velocity:

  (12)

where velocity  is now a vector.

The second relation is the mass conservation. This gives a relation
between density and particle velocity.

  (13)

Finally the relation between pressure and density is given by [5]:

  (14)

where  is the density at a point and c is the speed of sound in the
medium.

By combining  Eq. 13 and  Eq. 14 one can obtain:
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  (15)

Differentiating  Eq. 15 with respect to time t gives:

  (16)

and using  Eq. 12 to eliminate  results in:

  (17)

which is three-dimensional form of the wave equation. The symbol  is
the Laplacian operator in three-dimensions [6].

2.3 Wave equation in spherical coordinates

Many acoustical problems are concerned with spherical diverging waves.
If we look at the sound from a simple “point source”, we expect that the
sound field should be symmetric about the source position [3]. In
spherical coordinates :

where r is the distance from the centre,  is the angle between r and the
z-axis, and  is the angle between the projection of r on the yx plane.

In spherical coordinates, the wave equation is [6]:

  (18)

For spherical symmetry about origin, the general spherical wave equation
becomes:

  (19)
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Which is just the same as Eq. 1 except that now we are working in terms
of  rather than p.

The solution of the wave equation takes the same form as before and is
finite everywhere except at r=0. Thus a general solution of this equation
is [6]:

  (20)

where f and g are arbitrary functions.

The free space scalar wave equation in cylindrical coordinate is given by
[6],[9];

  (21)

where  represents a radial coordinate,  is an azimuthal
angle,  represents an axial axis that is perpendicular to the plane defined
by  and ,  is time and  represents sound pressure.

From Eq. 21 one can obtain following exact solution for scalar field
propagating into the source-free region[10]:

  (22)

where ,  is the angular frequency,  is constant,
is real, and  is an arbitrary complex function of .

These solutions are nonsingular and, like plane waves, have finite energy
density rather than finite energy. They can have sharply defined intensity
distributions as small as several wavelengths in every transverse plane,
independent of propagation distance.
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 Chapter 3 Transducers and Image
quality In medical
Ultrasonic

In practice an array consists of individual sensors located at distinct
spatial locations and thus sampling the wavefield spatially (an example
acoustic field). There are three types of array transducers: annular array
transducers and one- and two-dimensional array transducers. A one-
dimensional array has its elements(sensors) arranged in a line, while a
two-dimensional array consists of elements that are arranged in a plane
and thus can scan and focus beams electronically in any plane. In this
chapter we will take a look at different arrays such as linear phased array,
linear switched array and the annular array. These arrays are commonly
used in ultrasonic imaging. The factors that determine the image quality
of a system and the effect of sidelobes on image quality will also be
discussed.

3.1 A linear switched array

The linear switched array (one-dimensional array) is schematically
shown in figure 3.1. This array is composed of a large number of
elements in a line. The beam is stepped along by selecting a subset of the
elements of each beam position. The ultrasonic beam generated by a
switched linear array can be both steered and focused by adding a
parabolic delay to each of the element channel. The linear arrays are
usually 0.5 to 1 cm wide and 2 to 10 cm long with 64 to 256 elements and
has a flat front producing a rectangular image format which is used for
peripheral vascular imaging and some abdominal imaging [4].
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Figur 3.1: Construction of linear array: a) front view; b) side view
[14].

The disadvantage of this array is its large aperture, which makes it
unsuitable for applications where there is only a limited acoustic window
such as cardiac examinations. Therefore, in these situations linear phased
array systems, because of their small aperture, are preferred.

3.2 The linear phased array

The linear phased array is similar to switched linear array in construction,
but is different in operation. A linear phased array is smaller than the
switched one and usually contains fewer elements (1 cm wide and 1 to 3
cm long, and 32 to 128 elements). The ultrasonic beam generated by
phased array can be both focused and steered by properly delaying the
signals going to the elements for transmission or arriving at the elements
for receiving. Figure 3.2 (a) and (b) show how focusing and steering can
be achieved with a five-element array.

Piezoelectric
elements

Isolating
material

Backing

material

Front view Side view
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Figur 3.2: a) Linear phased array focuses beam in transmission by
appropriately delaying excitation pulses to different elements. b)
Steering of beam produced by linear phased array [14].

The pulse exiting the centre element is delayed by a time ∆R/c relative to
the pulses exiting the elements on the perimeter, so that all ultrasonic
pulses arrive at point P simultaneously.

The disadvantages of the phased arrays are their complexity and presence
of gratin lobes in comparison to mechanical sector scanners.

3.3 Two-dimensional arrays

The major issue with two-dimensional arrays is the important
improvement of the image quality of ultrasonic systems. Recall that
linear arrays can be focused and steered only in one dimension i.e.
beamwidth improvements are restricted in the so-called azimuth
direction. Since they only have a signal element in the elevation

∆R
∆R/c

P

Array

R

Ultrasonic pulses

Electrical pulses

Array
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direction, they cannot be steered and focused in this direction. However,
it is rather difficult for one-dimensional arrays to scan or focus beams
electronically in an elevation plane of the arrays (a plane which is
perpendicular to the scan plane that is defined by the line of elements and
the size of the arrays).

This problem may be alleviated by using two-dimensional arrays. Two-
dimensional arrays arrange elements in a plane (planar arrays figure 3.3)
and thus can be both mechanically and electronically steered and
focused.

Figur 3.3: A two-dimensional planar array both with cartesian and
spherical coordinates given. The array could also be curved in both
azimuth an elevation dimension e.g. in order to allow focusing [5].

One of the disadvantages of the one- and two-dimensional scanning
systems is that the area of the effective aperture of the arrays is reduced
in the scan direction. As an example, use of two-dimensional array
transducer for limited diffraction beams reduces the effective aperture
size results in lower quality images in large steering angles [8]. But the
major disadvantages of two-dimensional arrays are its great complexity,
the large number of transducer elements, and the large amount of
electronics which must be integrated on the transducer array. In fact an
electronically scanned system can provide good range resolution as well
as good transverse resolution.
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Several examples of improvements due to the use of such arrays are
suggested in [4], [7], [8].

3.4  Annular arrays transducers

There are several methods for increasing depth of focus of circular
transducer without reducing the lateral beamwidth, such as:

• Axicon transducer [20]

• Dynamically focused transmission [17], [19]

• Dynamically focused reception [17], [19] for annular transducer
or ring transducer [17]

The focus of this section is based on the latter method. The annular array
(transducer) is an interesting method of electronically focusing. Annular
transducer are composed of a set of concentric circular elements (rings)
as illustrated in figure 3.4, where one obtains a steerable focus by
individually delaying the signal to and from different elements.

Figur 3.4: Symmetric electronic focus in the plane and transverse to
the plane of the beam with annular phased array.

The beam steering is obtained by mechanical rotation of the transducer to
make a sector image format.

Annular transducer
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The advantage of an annular transducer is that the electronic focusing is
the same in all directions normal to the beam, i.e., focus is symmetric.
This symmetric focus is only obtained with a phased annular array in
contrast to the other arrays where electronic  can only be obtained in the
scan plane.

3.5 Image quality

The most important goal in biomedical ultrasound beamforming is to
achieve “optimum image quality” such that the “best” clinical diagnosis
can be obtained. In this section we will review some factors which
control the quality of an image. These parameters are: lateral resolution,
axial resolution, contrast resolution, and frame rate.

3.5.1 Lateral Resolution

The resolution is an important factor that determines the imaging quality
of a ultrasound beamforming. The resolution transverse to the beam is
called the lateral resolution, and is determined by width (main lobe
width) of the beam (-6 dB beam width), as shown in figure 3.5 [27].

Figur 3.5: The -6 dB lateral resolution or -6 dB beam width.

3.5.2 Axial resolution or Range resolution

The axial resolution of a transducer is determined by the spatial extent of
the transmitted ultrasonic pulse given by [27]:

  (23)
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where  is the time lag between transmission of a short pulse until we
receive the reflected pulse from a target at range r, and c is the speed of
sound in the tissue. The image range resolution determined by the length
of the transmitted pulse is given by:

  (24)

where  is the pulse length measured at -6 dB relative to the peak of
the pulse envelope.

3.5.3 Contrast resolution

Another important factor affecting the quality of an image is contrast
resolution. The level of sidelobes and multiple reflections (reverberation)
of the ultrasound pulse create noise on the image and therefore limit the
contrast resolution in the image. Clearly to obtain a good image with high
quality, the level of sidelobes must therefore be kept the lowest possible.

3.5.4 Frame rate

The frame rate is the number of images per unit time [14]. The maximum
frame rate, depth of image, and number of scan lines (or number of
beams) per image are related by equation [14], [19]

  (25)

where  is the frame rate ( )  is the time it takes to generate an
image and is equal to the time per beam, , multiplied by the number of
beams, N, D is the depth of image (m), and  is speed of sound.

One can see from Eq. 25 that to achieve an improvement in one factor,
one must sacrifice another factor. For example, to obtain larger image
depth, either the frame rate or the number of beams must increase.
Typically in a real-time ultrasonic image there are 128 lines [14]. For
19.5 cm depth we are able to obtain 30 frames per second, which is
acceptable for cardiac imaging.
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3.6 Effect of sidelobes on image quality

The sidelobe level is important in ultrasound beamforming because it
dictates how well the transducer can respond to a wanted signal rather
than to an interfering one.

The sidelobes of a beam have the shape of skirt around the mainlobe and
pick up signals from many directions, including directions that are
outside the image plane. The sidelobes may lower contrast in medical
imaging affecting the detection of low scattering objects such as small
cysts. The sidelobes also increase the effective sampling volume in tissue
characterization. In addition, the sidelobes are a source of multiple
scattering in nondestractive evaluation of materials.

There are several methods for reducing sidelobes level of a beam. As an
example, the conventional technique for reducing sidelobe levels of a
linear array is aperture apodization. This involves the use of aperture
weighting functions, such as a Gaussian or Hanning functions, on the
array elements. Using these sidelobe level reduction methods can be
achieved at the expense of some loss in the lateral spatial resolution.
Essentially, by reducing the energy under sidelobes, more energy is
introduced under the mainlobe. Other methods are sidelobe reduction by
using different size apertures on transmit and receive [20], and
summation-subtraction method for reducing the sidelobes of limited
diffraction beams [23].

3.7 Pulse echo systems

The ultrasonic diagnostic imaging systems are mostly operated in the
pulse-echo mode. The transducer is used both for transmitting an
ultrasonic pulse into the objects and receiving the return echoes from the
objects. The pulse echo systems can be classified as A, B, or M modes.

3.7.1 A-Mode or Amplitude Mode

The oldest and simplest type of pulse-echo ultrasound instruments uses
A-mode (amplitude mode). This is performed by transmitting an
ultrasonic pulse into the object and the ultrasonic echoes received by the
transducer are electronically interpreted and graphically displayed. The
graphics displayed are either as a histogram or a spike pattern on the
screen. A-mode has been used to accurately measure the axial length of
the eye in order to calculate an intraocular lens power. All A-mode
ultrasonography devices produce one-dimensional ultrasound waves
when in axial alignment. These waves travel along the eye’s visual axis
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until they meet a tissue surface. A portion of the wave is reflected at each
tissue interface, i.e., cornea, anterior lens capsule, posterior lens capsule,
retina and sclera. A portion of the sound wave continues to travel through
the tissue until it meets the next tissue interface.

3.7.2 B-mode or Brightness mode

The B-mode (Brightness mode) ultrasonography is a two-dimensional
approach. The primary use of B-scan ultrasonography is the diagnostic
imaging of tissue structures.

The image displayed on the monitor is actually made up of over a
hundred separate lines of information. At the beginning of the sweep of
the transducer, a pulse is fired, the echo data is received along that line.
The system plots the echo data along that line based on depth, which is
calculated by the time it takes for the echo to return. The brightness of the
echo is determined by the strength of the reflection. The transducer then
moves over a fraction of a degree, and fires the next pulse. This process
is continued until the image is built up line by line.

3.7.3 M-mode or Motion mode

In the M-mode the depth in tissue is displayed along the one axis while
the other axis represent time. Imaging in M-mode will give a two-
dimensional image with time as one of the axis. A beam is fired in a
particular direction. The amplitude of the reflected or back-scattered
waves are measured at a given number of depths. Then new beams are
fired at the same direction and new echoes are received. By doing this
repeatedly we get a real-time image of the moving structure in the beam
direction [5].
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 Chapter 4 Field from circular
transducer

For sound waves that have wavelengths comparable with the structures
they meet, diffraction cause the wave to deviate from the straight-line
propagation. Diffraction effects increase as the physical dimension of the
aperture approaches the wavelength of the radiation. Diffraction of
radiation results in interference that produces dark and bright rings, lines,
or spots, depending on the geometry of the object causing the diffraction
[13]. In this chapter we will discuss the field pattern of a unfocused and
focused circular transducer and trade-off between some beam
parameters, such as lateral beamwidth, depth of focus and sidelobes.

4.1 Huygens principle

The Huygens principle describes sound as spherical waves emanating
from a source. Each point on the wavefront is considered to be a source
of secondary spherical wavelets with appropriate amplitude and phase.
The amplitude of the pressure field in front of the wavefront is the
superposition of these wavelets, taking into account their relative
amplitudes and phases. The amplitude of each wavelet is largest in the
direction of the original wavefront's propagation and zero in the opposite
direction. The position of the wavefront at some later time would
correspond to the envelope of the radiation from the secondary sources
[14].
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To calculate the beam profile of an ultrasound transducer, one can
consider the transducer surface to be made of an infinite number of point
sources while a spherical wave is emitted by each point source.

4.2 The radiated field from a plane circular
transducer

In this section we will discuss the field pattern of a circular transducer.
Because of diffraction, the acoustic beam emitted from the transducer
will increase its diameter with distance and the field components in the
beam will exhibit fine structure vibration, both along its length and
across its diameter. In the same manner as in optics, there are two distinct
regions of interest, the near-field region, or Fresnel region, and the far-
field region, or the Fraunhofer region. Within the Fresnel region, the
outside diameter of the beam remains essentially uniform, the beam
spreads beyond this region [16].

Basic principle of beamforming are given by Rayleigh-Sommerfeld
diffraction formula. The formula can be interpreted in term of the
Huygens principle of secondary sources, and can accurately predict the
field at any spatial point produced by a finite aperture. Assum that the
aperture is a circular transducer with the diameter D=2a [17].

Figure 4.1: Coordinate system used for Eq. 26 to calculate field in space.
Wave sources are located on the surface of the transducer at plane z=0.
Fields are calculated at spatial point .

Let source point on the surface of transducer be represented by the
coordinates  and any spatial point  on the observation
plane by  (see figure 4.1) then we have [17];
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  (26)

The first and second term in Eq. 26 represent high and low frequency
contributions, respectively. The parameters involved are:

 : Distance between the aperture plane(z=0) and parallel
observation plane containing the point , which is given by:

  (27)

: The Fourier transform of the wave field ,   at
the   spatial   point .

 : The Fourier transform of a complex aperture
weighting function,  applying at a source point  on the
surface of the transducer

 : wavelength

 : angular frequency

 : frequency

 : wave number,

 : radius of aperture

From practical point of view, the Rayleigh-Sommerfeld diffraction
formula is difficult to evaluate. The Eq. 26 is constituted two double
integrals, and therefore its computation is usually time consuming.

The second term will approach zero as the value of increases well
over . This means that the second term can be negligible [17].
Then Eq. 26 becomes:

  (28)

4.2.1 Far-field or Fraunhofer region

The far-field applies when the observation plane is far away from the
aperture, i.e. when [19], [17]:
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  (29)

4.2.2 Near-field or Fresnel region

The near-field region is the region between the far-field and the
transducer. Thus for a plane circular transducer it is when [19], [17]:

  (30)

4.3 The radiated field from a circular transducer
on the plane

In this section we will use Eq. 27 and figure 4.1 to calculate the field at
the spatial point . If we study the field on the plane , the
distance between the source and field points will be simplified. As we
illustrated in figure 4.1 one can find:

  (31)

  (32)

Substituting Eq. 31 and Eq. 32 into Eq. 28 gives:

  (33)

with the Fresnel approximation [3], [18]  in denominators and in the
phase of Eq. 28 can be approximated by:

  (34)

and

  (35)

respectively. Substituting Eq. 34 and Eq. 35 into Eq. 27, the field from a
circular transducer at plane  under Fresnel approximation
becomes:
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  (36)

As it can be seen, the above equation have two integral. To simplify this
equation the Bessel function is employed [21]:

  (37)

where  is a Bessel function of the first kind of zeroth-order. Then
Eq. 36 becomes:

  (38)

4.4 Field of unfocused circular transducer

In this section we will use the result of section 4.3, to calculate the field
of unfocused circular transducer. For an unfocused circular transducer,
the surface of the transducer is uniformly weighted:

  (39)

Substituting Eq. 39 into Eq. 38 we have:

  (40)
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In the far-field of the transducer, where  and  then the
quadratic phase factor in Eq. 40 is approximately one over the entire
aperture [18]:

  (41)

then Eq. 40 becomes:

  (42)

using the relation , where  is a first-order
Bessel function of the first kind [19], we obtain the result [17]:

  (43)

Defining the jinc(X) function as:

  (44)

we can write Eq. 43 as:

  (45)

Thus the beam intensity becomes:

  (46)

The jinc function is plotted in figure 4.2. The first zero of
along the radius is at [17]:

  (47)

where represents half of the main beamwidth of the unfocused circular
transducer.
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Figure 4.2: for the circular transducer where

4.4.1  Field of unfocused circular transducer on centre axis

For the field on centre axis ( ) Eq. 40 becomes:

  (48)

Substitute , so that  then we have
 and hence we obtain:

  (49)

and the absolute value of Eq. 49 becomes:

  (50)

The approximate intensity from Eq. 50 as a function of  on
the centre axis, is shown in Figure 4.3 where S is a Fresnel parameter.
Beyond the region S<1 or (the near-field region) the beam is
confined within its original diameter. For S>1 or (far-field
region) the beam drops steadily until zero at .

The point where S=1, is the crossover point between the near-field and
the far-field. The maximum field on centre axis (Rayleig distance) of an
unfocused transducer becomes [16]:
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  (51)

Figure 4.3: Field of unfocused transducer on centre axis Eq. 50
as a function of S where .

Figure 4.4 shows the schematic pressure profile from an unfocused
circular transducer. Usually in the far-field region, the distance between
two points where the pressure drops to -3dB (see section 4.5.2,) of the
maximal value is defined as beamwidth or main lobe width. The 3dB
definition beamwidth for an unfocused circular transducer is
approximately the same as the diameter of the transducer.

  (52)

As z becomes greater than (after the Rayleigh distance), the beam
starts to diverge. The angle of divergence can be calculated
approximately using the following formula [14], [19]:

  (53)

The first zero or the angle at which the main lobe becomes zero occurs at:

  (54)
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Figure 4.4: Pressure profile of an unfocused circular transducer. The
beam has spreading within the near-field region and has a beamwidth
about as wide as the diameter of transducer. In the far_field region the
beam spreads out at an angle .

Figure 4.5 shows the contour plot of the acoustic field of the unfocused
circular transducer along the propagation axis (central axis). The aperture
has a diameter of D=15 mm with a centre frequency of 3.5 MHz (λ=.44
mm). The distance  along the transducer axis to the
start of the far-field region is about 255.6 mm.

Figure 4.5: Normalized contour plot showing -6, -12, -18dB contours for
an unfocused circular transducer.

4.5 Focused circular transducers

As we discussed in section 4.3, the beam emitted from an unfocused
transducer spreads radially due to diffraction, and has a very large
beamwidth. Therefore, we often employ a focused acoustic beam, as in
optics, to obtain good transverse definition and high acoustic beam
intensity at a point of interest.
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As in optics, we can use lenses to focus the acoustic beam. But often the
simplest way to obtain a focused acoustic beam is to use a spherically
shaped transducer. Such a transducer will produce a focused beam near
its centre of curvature. We normally focus the beam to a spot smaller
then the transducer diameter, thus obtaining a beam intensity much
higher then that at the transducer itself. In this section we will use the
Rayleigh-Sommerfeld integral to calculate the field of a focused circular
transducer.

4.5.1 Spherical focused transducer

We consider a spherical transducer with a diameter of D=2a and a radius
of curvature ,(focal length) as illustrated in figure 4.5. We shall use
Fresnel approximation to treat the properties of the beam emitted from
the transducer.

Figure 4.6: Pressure profile of a spherical focused circular transducer.
For (Fresnel zone) or  we get (efficient
focusing).

The field of focused circular transducer can be calculated by Eq. 38 For a
focused circular transducer, the surface of transducer is weighted by
following weighting function [17] that is a spherical shifter along the
radial distance, :

  (55)

Substituting Eq. 55 into Eq. 38 and when z=F, i.e. field in focal plane, we
have:
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  (56)

with the Fresnel approximation, in which:

  (57)

one has:

  (58)

Then Eq. 56 can be written as:

  (59)

Thus the beam intensity at the plane z=F varies as:

  (60)

The variation of the beam intensity at the focal plane is exactly the same
in form as that in the Fraunhofer region for a plane circular transducer at
z=F. However, the beam intensity can now be chosen at will and can also
be much larger than at the transducer itself, which changes the scales of
the axial and radial variations of the field.

4.5.2 The lateral beamwidth in the focal plane of a focused
circular transducer (focal diameter)

The lateral beamwidth in the focal plane of a focused circular transducer
is determined by the width of the mainlobe of the beam. If the beam has
zeroes located symmetrically about the mainlobe, the peak-to-zero
distance can serve as one measure of the width.

The absolute value of Eq. 59 (field of focused circular transducer) is
shown in figure 4.7 in dB scale. The peak-to-zero distance in this figure
along the radius is at:
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  (61)

where represents half of the main beamwidth of the focused circular
transducer and where we call FN=F/2a the F-number of a transducer.

Figure 4.7: jinc(X) for the circular focused transducer in dB scale where
. The -6dB value of  obtained from this figure is about

1.5 mm and peak-to-zero distance is about 1.219 mm.

The focal diameter (lateral beamwidth)  for XdB definitions of the
beamwidth becomes:

  (62)

As shown in figure 4.7 the beam diameter at -6dB point is:

  (63)

The values of  for different values of X (obtained from figure 4.7) are
given in table 4.1.

XdB 1 3 4 6 10 12

kx 0.63 1.0 1.18 1.44 1.8 2

Table 4.1: Corresponding values of for different values of XdB.

xo 1.22
λF
2a
------- 1.22λFN= =

xo

−5 −4 −3 −2 −1 0 1 2 3 4 5
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

radius

N
or

m
al

iz
ed

 a
m

pl
itu

de
 in

 d
B

−6dB

X kaxo F⁄= kx

Df

Df XdB( ) kx
λF
2a
-------=

Df 6dB( ) 1.44
λF
2a
-------=

kx

kx



Focused circular transducers

Field from circular transducer  33

4.5.3 Depth-of-focus for a focused circular transducer

In this section we will find a simple approximation for the depth-of-focus
of the circular transducer. Depth of focus is defined as the region around
the focal point where the beam diameter is limited by diffraction. (see
figure 4.6).

Within the limit or (i.e., deep in the Fresnel zone), we can
use this limit to define a depth-of-focus ( ) as the distance between the
points where the field on axis is kdB less then that at focal point. We
return to equations  38 and 58 , by substituting Eq. 58 into Eq. 38. Where

and we have:

  (64)

Equation 64 can then be integrated directly to yield:

  (65)

where sinc(X)=sinπX/πX and .

We shall assume that the beams intensity is proportional to .
Then we have:

  (66)

We can now define the depth-of-focus around the fixed focus F by the
points along z where the intensity has dropped kdB from the maximum
possible value at that location. Let  define the point where

has dropped kdB from its maximum value for . Thus
the kdB points occur where:

  (67)

Thus a simple approximation for the depth-of-focus is:

  (68)
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  (69)

where we can employ F-number  to give:

  (70)

In figure 4.8 we have plotted sinc function as a function of  to find the
different values of  where the  has dropped kdB from its
maximum value for .

Figure 4.8: The sinc function as function of .

The depth of focus at 6dB points (i.e., ) obtained from this
figure is:

  (71)

The values of  for different values of k are given in table 4.2.

Table 4.2: The values of  for different values of k that are obtained
from figure 4.8.
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4.5.4 Geometrical interpretation of the depth of focus

The relation for depth-of-focus can be illustrated geometrically. As
shown in figure 4.6, the beam profile converges along its geometrical
optic path (a cone) but diverges from this path near the focus. In order to
define the opening angle of the cone, we must specify the intensity drop
from the axis that defines the beam. For a circular transducer we get the
following dual sided opening angle:

  (72)

where  is the single sided opening angle of the beam. In the following
we use the 12dB (From table 4.1 ) opening angle of the beam
which is:

  (73)

Referring to figure 4.6 we see that the geometrical opening angle of the
focused beam is:

  (74)

The Fresnel parameter for a focused circular transducer is defined as:

  (75)

This parameter can be expressed by the diffraction and  geometrical
angles Eq. 73 and  Eq. 74 respectively, then we have:

  (76)

For efficient focusing of the beam, the geometrical opening angle
must be larger than the diffraction angle . When S<<1, it therefore
follows from Eq. 76 that:

  (77)

For S=2 we get , which gives  which is the
boundary between Fresnel and Fraunhofer regions for the plane circular
transducer.
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Defining L_ and as the distance from the focus (focal point) to the
intersection between the geometrical boundary of the focused beam and
the 12 dB diffraction cone as illustrated in figure 4.6 then we have:

  (78)

and

  (79)

Substituting Eq. 76 into Eq. 79 then we have:

  (80)

As we have discussed above we should have S<<1, then Eq. 80
becomes:

  (81)

Thus the intersection between the geometric beam definition and the
12dB diffraction opening cone defines the 1dB depth-of-focus.

The contour plot of the acoustic field for spherically focused circular
transducer with a central frequency of 3.5 MHz is shown in figure 4.8
The transducer has a diameter of 15 mm and 4 annular elements, see
section 3.4, when each element has the same area i.e., equal-area
transducers. The transducer is focused at 75 mm away from the
transducer centre (fixed focus F=75 mm), and the Fresnel parameter
obtained from Eq. 75 is S=0.59. The 3-dB depth-of-focus and 6-dB
beamwidth obtained from this figure are 79.2 mm and 3.102 mm
respectively.
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Figure 4.9: Normalized contour plot showing -6, -12, -18dB contours for
spherically focused circular transducer.

The lateral beamwidth and the depth of focus of circular transducer are
related to each other. This relation is demonstrated by Eq. 62 and Eq. 70
One can see from these equations, that for a given central wavelength,λ,
to increase the depth of focus in the focal plane, the effective F-
number,FN, must be increased. However, this increases the lateral
beamwidth. Furthermore, for a given effective F-number, the diffraction
of focused circular transducer is stronger as the central wavelength
increases. This increases the lateral beamwidth and the depth of focus.
Therefore, to obtain higher resolution in diagnostic ultrasound imaging,
high frequency (small central wavelength) is desirable. However, the
highest frequency used must be limited by the penetration depth of
ultrasound in biological soft tissues in which higher frequencies have
larger attenuation [17].
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4.5.5 Sidelobes of a focused circular transducer

In this section we will describe the sidelobe of a focused circular
transducer. The sidelobes of the beam have the shape of skirts around the
main lobe, and will pick up signals from any direction, including
directions that are outside the image plane. The sidelobes level is
important because it dictates how well the transducer can respond to a
wanted signal rather than to an interfering one.

Figure 4.10 (the same values as in figure 4.9) shows the one-way beam
profile at 75 mm depth of circular transducer which is discussed in above
section. The first sidelobe is at , and is 17.67dB lower in
amplitude than the mainlobe.

Figure 4.10: One-way response for focused circular transducer with
fixed focus at 75 mm.The 6-dB beamwidth obtained from figure is about
3.10 mm and the amplitude of the first sidelobe is about 17.67dB lower
than the mainlobe.

To reduce the sidelobe of focused circular transducer, various forms of
the aperture weighting functions , of Eq. 26 can be applied. An
example is the Hanning-weighting function [15]. By weighting
(appodization) of the excitation amplitude over the transducer surface the
width of the mainlobe increases, but the amplitude of the sidelobes
decreases. The effective aperture size of the Hanning weighted
transducer is smaller than that of the circular focused transducer with the
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same radius. The reduced effective aperture size of the Hanning weighted
transducer increases the mainlobe width in the focal plane [17].
Therefore, the lower sidelobes gained by the Hanning beam are at the
expense of the lateral beamwidth.

In figure 4.11 we have plotted the beam profile of the same transducer as
in figure 4.10 but the aperture weighting function is a Hanning window.
For comparison, nonappodizeid beam (as shown in figure 4.10) is also
shown. The lateral beamwidth obtained from Hanning beam is about 4.6
mm and the first sidelobe is 25dB lower in amplitude than the mainlobe.
Therefore, the lower sidelobes are achieved at the expense of larger
lateral beamwidth.

Figure 4.11: One-way response for focused circular transducer with
fixed focus at 75 mm. Solid line Hanning weighted, the -6dB beamwidth
obtained from figure is about 4.6 mm and the amplitude of the first
sidelobe is about 25dB lower than the mainlobe. Dashed line
nonappodizeid transducer, the -6dB beamwidth obtained from figure is
about 3.10 mm and the amplitude of the first sidelobe is about 17.6dB
lower than the mainlobe.
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We begin this chapter by reviewing Limited diffraction beams and
describing the trade-off between some beam parameters, such as
resolutions, sidelobes, aperture and depth of field.

Diffraction is one of the phenomena of physics. For sound waves that
have wavelengths comparable with the structures they meet, diffraction
can cause the wave to deviate from straight-line propagation.

The Limited diffraction beams are represented by a class of solutions to
the isotropic/homogeneous scalar wave equations  [10],  [11],  [12].
Theoretically, these beams can be produced by using infinite aperture
and energy, and they can propagate without spreading  [9]. This implies
that limited diffraction beams would propagate to an infinite distance
without spreading. In practice, however, limited diffraction beams can
only be approximated over large depth of field by employing finite size
transducer and finite energy. Because of these features, limited
diffraction beams may have applications in medical imaging [17].

5.1 Theoretical Limited diffraction Beams

Limited diffraction beams also termed Bessel beams can be obtained
from Eq. 22. If  is independent of , one can obtain the nth-order
Bessel beam  [10]:

A φ( ) φ

 Chapter 5 Limited diffraction beams
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  (82)

Where  is an integer. If ,  is the zeroth-order Bessel function
of the first kind  [21],  [22], and  is the distance away from
the centre axis of the transducer,  the propagation constant and is real,

 is the scaling factor that controls the lateral resolution of Bessel
beams. Substituting Eq. 82 in Eq. 21, we have:

  (83)

since

  (84)

the right side of Eq. 83 is zero, i.e., Eq. 82 is an exact solution of Eq. 21.

One can express Eq. 82 in the form of a non-rotating Bessel beam  [23],
by replacing  with , then the non-rotating Bessel beam
of order n becomes:

  (85)

where  is an initial azimuthal angle of the beam at the plane .

We have shown that Eq. 82 is an exact solution to Eq. 21. In the same
way one can show that Eq. 85 is also a solution to Eq. 21.
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When  and  the solutions to Eq. 82 or Eq. 85 are simply
plane waves, but for  the solution to Eq. 82 or Eq. 85
represents a nondiffracting beam because it has the same intensity
distribution  in every plan normal to z-axis proportional to
[10].

5.2 Lateral beamwidth (resolution) of the Bessel
beam

Bessel beams have zeros located symmetrically about the mainlobe. The
peak-to-zero distance can serve as one measure of the width. For Bessel
beams this zero occur at , giving the diameter of the central
maximum of the Bessel beam approximately:

  (86)

The effective width of the Bessel beam is determined by , and when
is maximum i.e. (k is the wavenumber), the
minimum beam width becomes:

  (87)

The full width of the mainlobe at one-half of the peak value (FWHM) is a
useful measure for the mainlobe width. The lateral resolution of Bessel
beam is defined as the FWHM of centre lobe of the beam. The -6 dB
lateral beam width(FWHM) of the Bessel beam can be calculated from
Eq. 82 with n=0, and :

  (88)

which is:

  (89)

The envelope function is defined to be  [10]:

  (90)
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The peak in the envelope occurs at , and when
 the envelope is 0.27. Figure 2.1 shows the

intensity distribution for  and its envelope function.

Figure 5.1: Intensity distribution and its envelop function
.

Figure 5.3 shows the zero order Bessel beam produced with a finite
aperture, with a central frequency of 2.5 MHz( ). The
aperture has a diameter of 50 mm and 10 annular elements. The width of
each annular element is designed to be equal to a lobe of zeroth-order
Bessel function  with . The amplitude of each element
at the surface of the transducer is proportional to the average amplitude
(positive or negative) of the corresponding lobe of the zeroth-order
Bessel function  (see figure 5.2).
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Figure 5.2: Solid line shows the zeroth order Bessel function of first kind
with scaling factor .Dashdot lines show the 10 rings of
the  annular transducer. These rings are placed on the zeros of the Bessel
function. Dashed lines show the average amplitude of the corresponding
lobe of the zeroth-order Bessel function.

The width and amplitude the of each ring are given in table 5.1. The -6
dB lateral beam width obtained from figure 5.3 is about 2.53 mm.

Element number 1 2 3 4 5 6 7 8 9 10

Separation
position 2.01 4.60 7.21  9.82 12.43 15.04 17.66 20.27 22.88 25

Ring Amplitude
0.61 0.25 0.19 0.15 0.14 0.12 0.11  0.10 0.09

0.11

Table 5.1: Width and amplitude of annular elements of the Bessel
transducer obtained from the zeroth-order Bessel function.
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Figure 5.3: Lateral line plot of the Bessel beam (Eq. 82 when n=0)
produced with a finite aperture. The -6 dB beam width obtained from this
figure is about 2.53 mm.

5.3 Depth of field of the Bessel beam

In practice, the nondiffracting beam can only be produced with a finite
aperture  [9]. One sees from Eq. 82 with n=0 that the  beam is a
superposition of plane waves, all having the same amplitude an travelling
at the same angle  relative to the z axis but having
different azimuthal angles ranging from 0 to 2π. According to
geometrical optic [10], [11], as shown i figure 5.4 a shadow zone begins
along z axis at a distance:

  (91)

from the aperture.

Figure 5.4: Geometrical shadow zone for zeroth-order Bessel beam of a
finite aperture [11]
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Since the beam radius is approximately , we can use
, to express the maximum propagation distance

as:

  (92)

In fact, Eq. 92 has been found to predict accurately the effective range of
the zeroth-order Bessel beams for a finite aperture for all values of  in
the range:

  (93)

When , the wave is evanescent, and . When
, the source field is essentially just a disk of radius R, and

equals the Rayleigh range  [10].

As one example, figure 5.3 shows the beam profile (one-way profile) of
the Bessel transducer. Using the numerical values given above, one can
find that the geometrical estimate Zmax for the maximum range of the
Bessel beam is 216 mm. Figure 5.5 shows the image of the computer
simulated pressure field of a nondiffracting Bessel beam produced with
the same transducer as in figure 5.3. Figure 5.6 shows the line plot of
figure 5.5 long the propagation axis (z-axis). One can see from these two
figures the maximum field of the Bessel beam to be at about 216 mm.
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Figure 5.5: Computer simulation for a nondiffracting Bessel beam
transducer with the scaling factor . From this figure one
can see that the maximum depth of field is about 216 mm.

Figure 5.6: The zeroth-order Bessel beam along the beam axis from 50
mm to 600 mm. The -6 dB depth of field of this beam is at about 212 mm.
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The lateral resolution (FWHM) and the maximum depth of field and the
size of transducer, R, of Bessel beams are related to each other. One can
see from Eq. 92 the relationship between the maximum depth of field and
the scaling factor . If the transducer size R is fixed to increase the depth
of field, the scaling factor α must be decreased, i.e. with decreasing the
scaling factor ,α, the lateral resolution is increased. If the maximum
depth of field is fixed, to reduce the size of the centre lobe of the Bessel
beam (by increasing α ), the size of the transducer R, should be increased.

As obtained in the previous example, the maximum depth of field was
about 216 mm and the lateral resolution was about 2.53 mm. When the
aperture size is reduced from 50 mm to 25 mm, the depth of field will
decrease from 216 mm to 100 mm, but the lateral resolution will be
unchanged. Figure 5.7 shows the simulation result of an aperture with 25
mm diameter and figure 5.8 shows the line plot of figure 5.7 about the z-
axis. In comparison with figure 5.5 and figure 5.6 the difference is
evident.

Figure 5.7: Computer simulation for 25 mm Bessel nondiffracting
transducer. From this figure one can see that the maximum depth of field
is reduced to 100 mm in compare with figure 5.5.
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Figure 5.8: The zeroth-order Bessel beam along the beam axis from 50
mm to 600 mm. Dashed line represents the beam plot when the diameter
is 50 mm. The -6 dB depth of field of this beam is about 216 mm.  Solid
line represents the beam plot when the diameter is 25 mm.   The -6 dB
depth of field is about 100 mm.

In order to obtain the same depth of field,  should increase which
causes the lateral resolution to decrease, i.e. scaling factor  must be
increased from  to . This reduces the
beam width from 2.53 mm to 1.82 mm. Figure 5.9 show the lateral line
plot of the same transducer as in figure 5.7 but scaling factor is about

. In comparison we plotted lateral plot when
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Figure 5.9: Lateral line plot of the Bessel beam produced with a finite
aperture. The -6 dB beam width obtained from this figure is about 1.82
mm when scaling factor (solid line). When

 the beam width is 2.53 mm (dashed line).

The depth of field and the lateral resolution are related directly or
indirectly to the central frequency of the beam. A higher central
frequency does not increase directly the lateral resolution of the Bessel
beam, but it increases the depth of field. We showed in Fig. 5.5 the zero
order Bessel beam produced with a finite aperture, with a central
frequency of 2.5 MHz. When the central frequency increases from 2.5
MHz ( ) to 5 MHz ( ) while the transducer
diameter D=2R and  are constant, the depth of field will increase from
213 mm to 423 mm, but the lateral resolution will not be changed.

Figures 5.10 and 5.5 shows the field from two transducers with the same
diameter and operating respectively at 2.5 MHz and 5 MHz frequency.
We see that when the frequency is doubled, the aperture of the transducer
in number of wave lengths is doubled and the maximum depth of field is
doubled. The line plot of figure 5.10 along the beam axis (z-axis) is
plotted in figure 5.11.
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Figure 5.10: Computer simulation for a nondiffracting Bessel beam
transducer with a central frequency of 5 MHz( ). From
this figure one can see that the maximum depth of field is about 430 mm.

Figure 5.11: The zeroth-order Bessel beam along the beam axis form 50
mm to 600 mm. Dashed line represents the beam plot with a central
frequency of 5 MHz. The -6 dB depth of field of beam is about 423.6 mm.
Full line represent the beam plot with a central frequency of 2.5 MHz.
The -6 dB depth of field is about 216 mm.
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5.4 Sidelobes of Limited diffraction beams

The sidelobes of the Bessel beam are at about the same level as those of
the Bessel function, and have the shape of skirts around the main lobe,
The sidelobes pick up signals from many directions. In contrast to
spherically focused beams, Bessel beams have high sidelobes. It is the
sidelobes that construct the Bessel beams as they propagate. High
sidelobes reduce contrast in imaging and cause artifact in nondestrative
evaluation of materials,  [28], [30], [31]. In addition, sidelobes increase
the effective sampling volume and thus average out spatially
distinguished information in tissue characterization  [23], [33].

In figure 5.3 we have shown the beam profile of the zeroth-order Bessel
beam produced with an annular transducer. The first sidelobe is 8 dB
lower in amplitude than the mainlobe. As we discussed in section 4.5.5
the first sidelobe of the focused beam is about 17.67 dB lower in
amplitude than the mainlobe.

There are several methods for reducing the sidelobes of limited
diffraction beams, such as;

• deconvolution  [28],

• dynamically focused reception  [17],

• summation-subtraction  [23],  [24],

• Bowtie limited diffraction beams  [29]

In this section we will take a look at the effect of sidelobes and the reason
why their levels are reduce when we use summation-subtraction method,
and how this method reduces the frame rate.

5.4.1 Summation-subtraction method

Although limited diffraction beams have a large depth of field, they have
higher sidelobes as compared to the conventional focused beams in their
focal plane.

Summation-subtraction method has been developed to reduce the
sidelobes of the limited diffraction beams  [24]. Limited diffraction
beams are used in both transmission and reception. Sidelobes of the
Bessel beam in Eq. 85 can be reduced by summing simulation result
produced from the second-order non-rotating Bessel beams that are
rotated around the beam axis by an initial angle  with each
other, and then subtracting the result from the simulation result obtained
with the zero-order Bessel beam.

φo π 4⁄=
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5.4.2 Simulation of summation-subtraction method

One can use a non-rotating limited diffraction solution Eq. 85 to simulate
this method. In Eq. 85 by putting , the solution becomes:

  (94)

which is the zero-order Bessel beam. When , the solution is the
second-order non-rotating Bessel beam:

  (95)

The zero-order Bessel beam has both a mainlobe and high sidelobes. The
second order Bessel beam does not have mainlobe, but has sidelobes
similar to the zero-order Bessel beam. In figure 5.12 we have calculated
the squares of the zero-order and second-order Bessel function of first
kind, and subtracted second-order from zero-order. This figure clearly
shows the difference between the squares of the zeroth- and second-order
Bessel functions and their difference. For comparison, the squares of
zeroth-order Bessel function is also shown. As shows in figure 5.12 the
summation-subtraction method reduces the sidelobes levels of the Bessel
function from -7.5 dB to -14.3 dB.

Figure 5.12: Squares of the zeroth-order (dashdot line) and second-order
(dotted line) Bessel function of first kind and the absolute values of their
subtraction (solid line) and zeroth-order Bessel function (dashed line).
The first sidelobe of summation-subtraction method (solid line) is about
6 dB lower in amplitude than the zeroth-order Bessel function (dashed
line).
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The asymptotic expansion is one of the properties of the Bessel function.
The nth-order Bessel integral is given by  [21],  [22]:

  (96)

when  and , the square of the zeroth-order Bessel function
becomes:

  (97)

and when  and , the square of the second-order Bessel
integral becomes zero:

  (98)

If the  values are larger than one ( ) the squares of the nth-
order Bessel function becomes  [21],  [22]:

  (99)

 with n=0 and 2,  and  become:

  (100)

which is the general form of Eq. 90.

As shown in Fig. 5.12  and  are also very close to each
other for other values of  except from the first few sidelobes.
Therefore subtracting the squares of the zeroth-order from the second-
order Bessel function gives a significant sidelobes reduction.

We will now report the results from the simulation of zeroth- and second-
order Bessel beams. The intention with these simulations is to find how
the sidelobes will be reduced by using the summation-subtraction
method. In figure 5.13 we have calculated the zeroth- and second-order
Bessel beam produced with a finite aperture, with a central frequency of
2.5 MHz. The aperture has a diameter of 50 mm and one ring.
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The simulation results of the zeroth-order and the second-order before
rotation ( ) are shown in panel a) and b) respectively. The
simulation result of the second-order after rotation ( ) is shown
in panel c). The summation result of panels b) and c), and the subtraction
this result from panel a) is shown in figure 5.13 d).

Figure 5.13: Bessel beam produced with 50 mm aperture at the axial
distance, z=120 mm and scaling factor . a) zeroth-order
Bessel beam. b) second-order Bessel beam when initial angle .
c) second-order Bessel beam after π/4 rotation about beam axis. d) The
result of summation-subtraction method.
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The summation-subtraction method requires three scan_lines that need
three transmissions at one transducer position, i.e., the first two
scan_lines are added following that the result is subtracted from the third
one.

This is to say:

  (101)

where  and  are scan-lines obtained with the

second-order Bessel beams that are rotated one quarter relative to each
other.  is a scan_line obtained with zeroth-order Bessel beam.

From definition of the frame rate in Eq. 25, one can show that three
scan_lines (N=3) reducing the frame rate to 1/3 in imaging, i.e Eq. 25
will be changed to:

  (102)

Because scan-lines are subtracted in this method, large contributions
from sidelobes may be subtracted. This reduces the dynamic range of the
signals after the subtraction and thus lower the signal-to-noise ratio  [24].

The summation-subtraction method also will be sensitive to the moving
objects since it involves scan-lines summation and subtraction. However,
if the time between adjacent scan-lines for the summation and subtraction
is short, the influence of motion will be small, else steering Bessel beams
with a two-dimensional phased array may eliminate the motion of the
transducer  [25]. The two-dimensional array system has good definition
in one transverse dimension, the x direction, and good range resolution in
the z direction but definition in the other transverse dimension, the y
direction, is relatively poor  [16].

As we have shown earlier, the method described can reduce sidelobes of
the limited diffraction beams dramatically (the first two sidelobes is
reduced about 7 dB in amplitude), but it lowers the imaging frame rate to
one third because of three scan-lines. In the next section derivation of the
new equation of Bessel beam will be shown. These beams are called
Bowtie Bessel beams (Bowtie limited diffraction beams).

Unlike the summation_subtraction method, this method does not change
frame rate and is not motion sensitive but reduces sidelobes of limited
diffraction beams.
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5.5 Bowtie limited diffraction beams

In this section derivation of the new type of Bessel beams will be
presented  [29]. These beams are called bowtie limited diffraction beams
(Bowtie Bessel beams) due to their particular shape in a plane
perpendicular to their propagation axis. They are obtained from spatial
derivatives of the Bessel beam in one transverse direction. Theoretically
these beams have an infinite depth of field, but if produced with a finite
aperture, they have the same large depth of field as the Bessel beams.
This beam has a very low sidelobe in the direction perpendicular to that
of derivatives, and the sidelobes are even lower as the order of the
derivative increases. In this section we have chosen 4th- and 10th-
derivative of Bessel beam to demonstrate the trend of the bowtie beams
of increasing orders. The difference between the Bessel beams and
bowtie Bessel beams is that the sidelobes of bowtie beams have strong
angle dependency, see figure 5.15.

In the section 5.1 on page 41 we verified that the equation:

  (103)

is the solution to the three-dimensional isotropic/homogeneous wave
equation in cylindrical coordinates Eq. 21.

Now we begin our development of bowtie Bessel beams by taking
derivatives of the Bessel beams in Eq. 103 in one transverse direction, for
instance in the y direction;

  (104)

where m is a nonnegative integer and is the order of the derivatives.
These beams are also exact solution to the wave equation (Eq. 21) and
they are still limited diffraction beams because they travel with a wave in
propagation direction without any change in the wave pattern, i.e.,
propagation term, z-ct, is retained after derivation. Substitute Eq. 103 into
Eq. 104 when m=4 and n=0, the 4th-order bowtie Bessel beam becomes
[29]:

  (105)
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The simulated 4th- and 10th-derivative bowtie Bessl beams are shown in
figure 5.14. They are one-way fields (transmission) and are produced
with an annular transducer (acoustic field profile is an exact bowtie
Bessel beam shading function at the transducer surface). The transducer
has a diameter of 50 mm with central frequency of 2.5 MHz and scaling
factor . The field was calculated at the distance z=120
mm away from the surface of the transducer. For comparison, the zeroth-
order Bessel beam is also shown (with exact aperture weightings).

Figure 5.14: One-way (transmission) bowtie Bessel beam produced with
50 mm transducer at the axial distance z=120  mm and at angle
and the scaling factor . a) 4th-derivative bowtie beam. b)
10th-derivative bowtie beam c) zeroth-order Bessel beam.
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5.6 Sidelobes of the bowtie Bessel beams

In section 5.4 on page 53 we discussed the sidelobes of the Bessel beam.
As we have shown in figure 5.12, the sidelobes of the Bessel beam are at
the same level as those of the Bessel function. In contrast to the
conventional beams, Bessel beams have large depth of field, good focus,
but high sidelobes. These sidelobes can be reduced with summation-
subtraction method studied previously (section 5.4.1 on page 53). But
this method reduces the frame rate about one third (1/3).

To obtain low sidelobes without changing the frame rate, one can use a
bowtie Bessel beam in the transmission and it’s  degree rotated
response in the reception [29].

The sidelobes of bowtie Bessel beam are strongly angle dependent. In
Eq. 103 we have taken derivatives of a Bessel beams in the y direction,
i.e., transverse direction. From the relationship between polar and
rectangular coordinates, we have;

  (106)

where  is the angle in a plane perpendicular to the z-axis.

The highest sidelobes of the bowtie Bessel beam appear at an angle
 and the lowest at the angle , see figures 5.15 (a) and

(b). When angle , the first sidelobes are smallest and these
beams have best lateral resolution.

Figure 5.15 show the line plots of the theoretical 4th- and 10th-derivative
bowtie Bessel beams with the corresponding scaling factors. For
comparison with the focused beams and the zeroth-order Bessel beams,
the above derivatives are plotted in the same figure as the focused beam
and the zeroth-order Bessel beam. The beam pattern of the focused
circular transducer is determined by a jinc function (see chapter 4):

  (107)

where r is the radial distance and  is a scaling factor that controls the
mainlobe width of the function and is related to the F-number (FN) and
the central wavelength of the beam. In figure 5.15, ,
so the -6 dB beamwidth of the jinc function is about the same as that of
the zeroth-order Bessel function.

As one example, the first sidelobes of the 4th- and 10th-derivative bowtie
Bessel beams at angle  are about 6 dB and 3.4 dB lower than the
amplitude of the mainlobe respectively, see figure 5.15 (c) on page 62.
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This implies that higher first sidelobes increase the effective main
beamwidth and thus reduce the effective lateral resolution. However, at
angle  these sidelobes are about -13 dB for 4th-derivative and

 for 10th-derivative bowtie Bessel beams, see figure 5.15 (b). This
implies that the best lateral resolution is around . These
sidelobes are lowest at angle  but the lateral resolution is largest,
see figure 5.15 (a).

Because the bowtie Bessel beams have very low sidelobes in direction
perpendicular to that of derivatives, therefore these sidelobes decrease as
the order of derivatives increases. As shown in figure 5.15 these
sidelobes are lowest when the order of derivation is m=10.
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Figure 5.15: Line plot of the theoretical 4th- and 10th derivative bowtie
Bessel beam at three angles. a) . b) . c) . The
scaling factor for Bessel function is . For comparison
the Jinc function (focused circular transducer) and zeroth-order Bessel
beam are also shown. The scaling factor for the Jinc function is
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The line plots of the one-way response of the 4th- and 10th-derivative
bowtie Bessel beams (simulated) at three angles  are
shown in figure 5.16 (a), (b) and (c). The parameters used in simulation
are the same as those used in figure 5.15. From figures 5.15 and 5.16, we
see that the simulated bowtie Bessel beam is very close to those of the
theoretical beams.

Figure 5.16: Lateral line plots (simulated one-way) of 4th- and 10th-
derivative bowtie Bessel beams at three angles: a) . b) .
c) . The diameter of the transducer for simulated beams is 50
mm with central frequency of 2.5 MHz and scaling factor

.

φ 0° 30° 45°, ,=

a )

b )

c )

−15 −10 −5 0 5 10 15
−70

−60

−50

−40

−30

−20

−10

0

10
Beampattern (delays set for steering to fixed point, source moves)

Inf periods, cosine pulse, no delay quantization, azimuth [deg], el = 0, observed at 120.00 mm

[dB
], fo

cus
 at i

nfin
ity

Dashed line: 10th−derivate

Solid line: 4th−derivate

phi=0 Deg.

−15 −10 −5 0 5 10 15
−80

−70

−60

−50

−40

−30

−20

−10

0

10
Beampattern (delays set for steering to fixed point, source moves)

[dB
], fo

cus
 at i

nfin
ity

Solid line:

Inf periods, cosine pulse, no delay quantization, azimuth [deg], el = 30, observed at 120.00 mm

4th−derivate

10th−derivate

phi=45 Deg.

Dashed line:

−15 −10 −5 0 5 10 15
−40

−35

−30

−25

−20

−15

−10

−5

0

5
Beampattern (delays set for steering to fixed point, source moves)

Inf periods, cosine pulse, no delay quantization, azimuth [deg], el = 45, observed at 120.00 mm

[dB
], fo

cus
 at i

nfin
ity

Solid line: 4th−derivative

10th−derivative

phi=45 Deg.

Dashed line:

φ 0°= φ 30°=
φ 45°=

α 1202 m 1–=



The lateral resolution of bowtie Bessel baems

64 Limited diffraction beams

5.7 The lateral resolution of bowtie Bessel baems

As we discussed previously (section 5.2 on page 43) the lateral resolution
is determined by the width of the mainlobe (-6 dB beam width). The
lateral resolution of bowtie Bessel beam increases as the central
wavelength of the beam decreases. But for a given central wavelength,
the lateral resolution of bowtie Bessel beams are comparable to those of
the zeroth_order Bessel beams.

The difference between the lateral resolution of the bowtie Bessel beams
and the Bessel beams is that the lateral resolution of bowtie Bessel beams
will increase with the order of derivation.

As we have shown in figure 5.15, the lateral resolution of bowtie Bessel
beams at angle  is almost the same as the zeroth-order Bessel
beam. At angle  the lateral resolution of bowtie Bessel beam is
larger than the zeoth-order Bessel beam, and the first sidelobes are
higher. This implies that higher first sidelobes increase the effective main
beamwidth and thus reduce the effective lateral resolution.
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5.8 Depth of field of bowtie Bessel beams

In section 5.4.2 on page 54 we have verified the maximum depth of field
of the Bessel beams. The depth of field for the bowtie beams of various
derivative orders is the same as the Bessel beams, and can be calculated
with the same formulas as of Bessel beams Eq. 92.

Line plots of the peak-to-peak values of the one-way 4th- and
10th_derivative bowtie Bessel beams and the zeroth-order Bessel beam
are shown in figure 5.17. The parameters used in simulation are the same
as those used in figure 5.15. As illustrated in figure 5.17 the bowtie
Bessel beams are produced with the same aperture (D=50 mm) and
scaling factor( ) and have the same depth of field as the
zeroth-order Bessel baem (216 mm in our examples).

Figure 5.17: The one-way 4th- and 10th-derivative bowtie Bessel beams
and zeroth-order Bessel beams along the beam axis from 50 mm to 600
mm. As illustrated in this figure all these beams have the same depth of
field (216 mm). The aperture size for these beams is 50 mm with a scaling
factor.

The amplitude (in dB scale) of the first sidelobes, depth of field, lateral
resolution, of the bowtie Bessel beams, zeroth-order Bessel beams, and
focused beams are given in table 5.2. In this table we have also shown the
frame rate, changing in comparison with the conventionally focused
beams. The diameter of the aperture is 50 mm with a central frequency of
2.5 MHz and scaling factor . For circular transducer the
scaling factor for the Jinc function is .
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Table 5.2: The amplitude of the first sidelobes, depth of field, lateral
resolution, of the 4th- and 10th-derivative bowtie Bessel beam, zeroth-
order Bessel beams, and circular focused transducer.

Advantages of the bowtie Bessel beams

• They have large depth of field as the zeroth-order Bessel beams.

• They have very low sidelobes in the direction perpendicular to
that of derivatives compared to the zeroth-order Bessel beams,
and the sidelobes are even lower as the order of derivative
increases

• They do not change the frame rate in comparison to the
summation-subtraction method.

• They are not sensitive to the object motion because no subtraction
of RF signals are involved.

Disadvantages of the bowtie Bessel beams

• The sidelobes of bowtie Bessel beams are higher than that of the
conventional beams.

Beams type Aperture
diameter

Amplitude
of first

sidelobes
in  dB

Depth of
field in mm

-6 dB
Lateral

resolution in
mm

Reduce frame
rate to

Conv. focused beams 50 -17.7 28 2.54 -

zeroth-order Bessel
beam 50 -8 216 2.53 -

Summation-
subtraction method 50 -14 216 2.53 1/3

Bowtie 4th-
derivatives
φ=0

50 -24.5 216 4.73 -

Bowtie 4th-
derivatives
φ=π/6

50 -12.3 216 3.34 -

Bowie 4thth-
derivatives
φ=π/4

50 -6.0 216 6.8 -

Bowtie 10th-
derivatives
φ=0

50 -41 216 7.0 -

Bowtie 10th-
derivatives
φ=π/6

50 -8.4 216 3.35 -

 Bowtie 10th-
derivatives
φ=π/4

50 -3.7 216 9 -
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• They use a two-dimensional transducer in both transmission and
reception and transducer is not symmetric. The large number of
elements of a two-dimensional transducer in a small aperture may
cause problem such as difficulty in wiring, electronic, mechanical
crosstalk among the elements, high impedance of each element,
and complex multiplexing among the elements [26].
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 Chapter 6 Comparison of Bessel
beams with spherically
focused beams

In this chapter we will compare the conventional focused beam with the
limited diffraction beam. As in chapter 5 we discussed limited diffraction
beams are a special class of solution to the isotropic-homogenous wave
equation. They would propagate to infinite distance without spreading,
provided that they were produced with an infinite aperture and energy.
Even if produced with a finite aperture, these beams have a large depth of
field, good focus, but high sidelobes compared to conventional focused
beam in their focal plane.

6.1 Limited diffraction and conventional focused
beams produced with a circular transducer

In this section we will take a look at the simulation results of a limited
diffraction beam produced with a finite annular transducer and compare
this result with the simulation result of focused beams produced with the
same aperture.

In practical applications of limited diffraction beams, the apertures of
transducers used to produce the beams are finite. In this case, limited
diffraction beams such as the Bessel beam have a finite depth of field and
can be approximately produced by truncating the finite aperture beams
given by Eq. 82 at the transducer surface.
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Example of zeroth-order Bessel beam is shown in figure 6.1lateral plot,
6.2 contour plot and 6.4 image of simulation. For the zeroth-order Bessel
beam scaling factor α is . The diameter of the transducer,
D, is 50 mm having central frequency of 2.5 MHz and the speed of sound,
c, is 1540 m/s.

The lateral plot, contour plot and image of the acoustic field for
spherically focused beams with the same aperture size and frequency  are
shown in figures 6.1, 6.4 and 6.5 respectively. The beams of focused
circular transducer are focused 140 mm away from the transducer centre.

Figur 6.1: The lateral line plot of computer simulation of the zeroth-
order Bessel beam (solid line) and the focused spherically beam (dashed
line).The diameter of transducer is 50 mm, having a central frequency of
2.5 MHz. The scaling factor for the zeroth order Bessel beam is

. The -6 dB beamwidth of the mainlobe of the Bessel
beam and the spherically focused beam will be about 2.45 mm. The
amplitude of the first sidelobes of the zeroth-order Bessel beam and the
focused beam are about 8 dB and 17.6 dB lower than the amplitude of the
mainlobe respectively.
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Figur 6.2: Normalized contour plot showing -6, -12, -18 dB contours
for the Bessel beam (the parameters for this plot are the same as in figure
6.1). The depth of field is about 210.7 mm.

Figur 6.3: Image of figure 6.2 observed at 140 mm away from the
transducer. The FWHM of the Bessel beam at the transducer surface is
the same as FWHM obtained along the depth of field.
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Figur 6.4: Normalized contour plot showing -6, -12, -18dB contours for
a spherically focused circular transducer. The parameters for this plot
are the same as that in figure 6.1. The depth of field is about 34.7 mm.
The FWHM of the beam at the transducer surface is about 25 mm.

Figur 6.5: Image of figure 6.4. Focal length F is 140 mm.

The sidelobe levels, depth of fields and the lateral resolutions of the
zeroth_order Bessel beam and the conventional focused beam obtained
from figures 6.1 to 6.5 are summarized in table 6.1.
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Tabell 6.1: λ is the central wavelength, k=2π/λ is the wavenumber,
FN=F/2a is the F-number, a is the radius of the transducer, F is the focal
length, α is the scaling factor of a Bessel beam. For our example,
λ=0.616 mm, F=140 mm, and a=25 mm.

As illustrated in figure 6.1, the lateral beamwidth of the zeroth-order
Bessel beam is comparable with the lateral beamwidth (FWHM) of the
spherically focused beam, i.e. about 2.53 mm for both beams. But the
FWHM of the focused beam in the surface of the transducer is about 50
mm, while the FWHM of the Bessel beam at the transducer surface is the
same as FWHM obtained along the entire depth of field.

Conventional spherically focused beams suffer from a short depth of
field (for this case obtained from Eq. 70  is about 34.7 mm) but
have low sidelobes (the first sidelobes are 17.6 mm lower in amplitude
than the mainlobe) in their focal plane. In contrast to focused beams,
zeroth-order Bessel beams have large depth of field (obtained from Eq.
92  is about 210.3 mm), but higher sidelobe (the first sidelobes are 8
dB lower in amplitude than the mainlobe). As discussed in chapter  5
these high sidelobes can be suppressed by different methods
(summation_subtraction [23], [24], deconvolution [28], etc.), but these
methods have some disadvantages such as: frame rate reduction, having
to use two-dimensional arrays which tends to increased complexity, etc.

As we discussed in chapter 4, the lateral beamwidth and the depth of field
of circular transducer are related to each other. For a given central
wavelength λ and aperture size D, the depth of field and lateral
beamwidth will increase by increasing the focal length F. One effective
way to increase the depth of field of the focused transducer without
sacrificing the lateral beamwidth and maintaining the low sidelobes is
called dynamically focusing (transmission and reception) [17]. But
dynamically focused transmission reduces the frame rate of the image

Beam
type
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[mm]
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significantly. Previous work [32] has shown that for transducers with 50
mm in radius, the combination of the Bessel beam in transmission and
dynamically focused reception will help to avoid the above mentioned
problem. In the next chapter we will use a particular type of annular array
transducers called equal-area annular transducers, and will look at their
performance in approximating the Bessel beam for transmission and
dynamically focused reception [34].
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 Chapter 7 A study of annular array
transducer for
approximation of Bessel
beam

In previous chapters we have discussed the details of limited diffraction
beams and spherically focused beams and their trade-offs among the
beam parameters such as sidelobes, resolution, frame rate, central
frequency, bandwidth, aperture, and depth of field. In [11] it was shown
that imaging systems may take advantage of both limited diffraction
beams and conventional beams. If limited diffraction beams are used in
transmission and conventional beams in dynamically focused reception,
the combination may produce high frame rate, large depth of field and
low sidelobe images because the high sidelobes of limited diffraction
beams are suppressed by the low sidelobes of the dynamically focused
reception. It was also shown that the Bessel beam can be well
approximated by a flat, finite circular aperture when annular rings are
made at the location of the zeroes of the Bessel excitation function.

One way to approximately produce rotary symmetric limited diffraction
beams, is to use an annular array transducer of the type that is in common
use. In this chapter we will approximate Bessel beam with a 4-elements
annular array transducer of low-frequency (3.5 MHz) where the division
of the elements is equal-area with a fixed focus. Example of
high_frequency can be found in [34].



Equal-area annular transducer

76 A study of annular array transducer for approximation of Bessel beam

7.1 Equal-area annular transducer

Annular transducer is made up of concentric rings(elements), that can be
focused both in the plane as well as transverse to the plane, i.e. the focus
is symmetric. Since annular transducer consists of rings, it can not be
electronically steered and thus have to be mounted so that it can be
mechanically steered or moved linearly, and dynamically focused by
dynamically varying the delay on each ring with time to produce an
image. One effective way to transmit with a Bessel beam and receive
with conventional dynamically focused beam is equal-area division of
the transducer rings in combination with fixed mechanical focus. The
concept of equal-area division is based on the fact that each element has
the same area, the division between the elements n and n+1 is found at
[34]:

  (108)

where N is the number of elements and R is the radius of the transducer.

Figure 7.1 show the two-dimensional plot of a 4-elements annular array
when the area of each ring is obtained from  Eq. 108.

Figure 7.1: A proposed transducer for producing both zeroth-order

Bessel beams and focused beams. When each ring has the same area.
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One of the advantages of the equal-area division over other existing
methods is equal defocusing of the elements as the range moves away
from the prefocus (Fresnel condition). The electrical characteristics of
the elements will also be the same.

7.2 Step-wise approximation of Bessel beam on
equal-area annular transducer and choosing
a correct scaling factor.

Because an annular array transducer has only a finite number of
elements, the Bessel beam given by Eq. 82 must be approximated with
the step-wise approximation along the radial distance. The equal-area
assumption gives a relatively large radius for the inner ring.

In order to place the first zero points of the Bessel function in the inner
ring of the transducer, the correct scaling factor should be found. This
can be achieved by combining  that is the distance between
the zeros of the Bessel function and Eq. 108. For n=1 we will have:

  (109)

For the 4-rings annular transducer with 15 mm diameter, the scaling
factor α obtained from Eq. 109 is .

The amplitude of each element at the surface of the transducer can be
achieved by using the average (mean value) or maximum amplitude
(positive or negative) of the corresponding lobe of the zeroth-order
Bessel function .

Figure 7.2 presents the average amplitude of each element of the given
lobe of the zeroth-order Bessel function. The values are calculated for
element division at 3.5 MHz equal-area annular transducer with 4 rings
and a diameter of 15 mm. As illustrated in this figure the annular
transducer is symmetric in both the scan plane (azimuth) as transverse to
the scan plane (elevation). Also in figure 7.2 (b) a 3-dimensional plot of
the beam (represented in figure 7.2 (a)) is given. As it can be seen, the
inner ring with high amplitude is evident.

As shown in figure 7.4, the mean values give lower sidelobes than the
maximum ones, therefore we will use the average amplitude.

αr 2.404=

α 2.404
N

R
--------=

641.30 m 1–
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Figure 7.2: a) Equal-area, exact Bessel and approximate excitation

(piecewise constant curve). b) Four lobes Bessel function from

transducer face.

7.3 Simulation of Bessel and focused beam with
the same annular array transducer

In this section we will verify the simulation results obtained from a
transducer with four annular rings discussed in the previous section. The
transducer diameter is 15 mm and operates with 3.5 MHz central
frequency. The scaling parameter from Eq. 109 is .
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An ideally excited transducer follows a continuous curve. This is shown
in figure 7.2 (a) which is the result of the exact aperture weigthing
function Eq. 82. The calculated acoustic field for such transducer beam is
given in figure 7.3. Note the existence of the extra peaks from the depth
175 mm and outwards as predicted by Eq. 93 for depth of field (167
mm).

Figure 7.3: The acoustic field from a four ring annular transducer with a
15 mm diameter. The excitation is the continuous curve given in figure
7.2. The scaling factor α is . The depth of field obtained from
this figure is abut 175 mm.

The beam profile of the acoustic field for a four ring transducer is plotted
in figure 7.4 where the excitation is the step-wise approximation of the
Bessel function.

The amplitude of each element at the surface of the transducer is
proportional to the average amplitude (positive or negative) of the
corresponding lobe of the zeroth-order Bessel function  (see figure 7.2
a). For comparison, the beam profile for the same transducer is also
shown, but the amplitude of each element at the surface of the transducer
is proportional to the maximum amplitude (positive or negative) of the
corresponding lobe of the zeroth-order Bessel function. As illustrated in
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this figure, the first sidelobes of the mean beam profile are lower in
amplitude than the max-amplitude profile, therefore we will use the
mean-amplitude approximation.

Figure 7.4: Lateral beam profile for a four ring annular transducer.
Dashed line shows the lateral beam profile for the four ring annular
transducer where the amplitude of each element at the surface of the
transducer is proportional to the maximum amplitude (positive or
negative) of the corresponding lobe of the zeroth-order Bessel function.
Solid line shows the beam profile where the amplitude of each element at
the surface of the transducer is proportional to the average (mean)
amplitude of the corresponding lobe of the zeroth-order Bessel
function .

In figure 7.5, we have plotted the acoustic field for the equal-area
approximated Bessel beam with the typical value for a fixed focus of
F=75 mm. The delays for each element has been set to compensate for
the mechanical curvature. The Fresnel parameter is S=0.59 and the phase
error for operation at infinity is 0.42π.

However, figure 7.3 shows the contour for a non-focused exact Bessel
beam. The effect of using step-wise approximation can be clearly seen.
One of these effects is the increased level of near-field artifacts and the
other is a reduction of the depth of field. Majority of deterioration is due
to the step-wise approximation to the Bessel function.
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Figures 7.5 (a) and (b) show the contour plot and the image of the
acoustic field for approximated Bessel beam respectively. For
comparison, contour plot figure 7.5 (c) and image figure 7.5 (d) for the
standard spherically focused transducer are also shown.

Figure 7.5: a) Normalized contour plot showing -6, -12, and -18 dB for
the equal-area approximated Bessel beam with a fixed focus. b) Image of
the simulated field. c) Contour plot with -6, -12, and -18 dB contours for
the spherically focused transducer with fixed focus. d) Image of the
simulated field.
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In figure 7.6 (a) we have plotted lateral beam profiles (at depths 12.5, 25,
75, 125, 175 mm) with a 20 dB increment of the acoustic field for the
approximated Bessel function. For comparison, lateral beam profiles for
the standard spherically focused transducer at the same depths are also
shown in figure 7.6 (b).

Figure 7.6: a) One-way cw response at selected depths for a Bessel beam
(cuts through figure 7.5 (a)). b) One-way cw response at selected depths
for a beam with fixed focused at 75 mm (cuts through figure 7.5 (c)).

In figure 7.7 we have plotted on_axis energy distribution for the Bessel
beam and for the fixed focused beam. The parameters of the beams in
this figure are the same as those in figure 7.5.

Figure 7.7: On-axis intensities for approximate Bessel beam (Solid line)
and for 75 mm fixed focused beam (Dashed line). As illustrated in this
figure, the intensity distribution with depth is more uniform for the Bessel
beam.
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As an example, the -6 dB lateral beamwidth at 75 mm depth for the
Bessel beam is about 5 mm but for the conventional focused beam is 3.16
mm. The depth of field for Bessel beam is about 150 mm, but for focused
circular transducer is about 78 mm.

As illustrated in the above figures the nearfield of the approximated
Bessel beam is sharper, and the beamwidth is more uniform along the
depth of field. A sharper beam is seen at the spherically focused
transducer focus, and it dose not have the increase in sidelobes at the end
of the depth of field. This is related to the fixed focus. Bessel beam gives
more uniform intensity distribution, see figure 7.7. In applications where
peak intensity is limited, the uniform intensity distribution can be useful.
As we discussed in chapters 4 and 5 there is a trade-off between depth of
field and lateral beamwidth, but usually the Bessel beam will give better
beams in the near- and farfield at the expense of a wider lateral
beamwidth compared to spherically focused beams.

In fact, by using approximated Bessel beam with annular array to
transmit the beam and dynamically focused beam to receive the beam
one can produce a high frame rate, large depth of field and low sidelobe
images because high sidelobe of the Bessel beams are suppressed by the
low sidelobes of the dynamically focused reception. This is provided that
the scaling factor, α, is calculated correctly to fit the first lobe of the
Bessel function on the first element of the array.
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 Chapter 8 Conclusion

One of the families of limited diffraction solution to the isotropic-
homogeneous scalar wave equation termed Bessel beam, represent waves
that propagate to an infinite distance without spreading. In practice,
however, these beams can only be approximated over a large depth of
field by employing a finite size aperture and finite energy.

Although limited diffraction beams have a large depth of field, they have
higher sidelobes as compared to conventional focused beams in their
focal plane. High sidelobes may lower contrast in medical imaging and
make it difficult to detect low scattering objects such as small cysts. High
sidelobes also increase the effective sampling volume, which lowers the
image resolution in tissue characterization[29]. To obtain pulse-echo
images of low sidelobes and large depth of field one can use the
summation-subtraction method which was derived theoretically and was
verified with computer simulation for a finite aperture transducer. This
method reduces sidelobes of the limited diffraction beams dramatically
(the first two sidelobes are reduced about 7 dB in amplitude), but it
lowers the imaging frame rate to one third and is therefore motion
sensitive.

Another method for reducing the sidelobes of limited diffraction beams,
called bowtie limited diffraction beams, is also derived theoretically and
verified with computer simulation for a finite aperture transducer. This
method has several advantages as compared to the summation-
subtraction method. It dos not reduce image frame rate or dynamic range
of signals and is not motion sensitive. But the main disadvantage of this
method is the need to use a two-dimensional transducer for both
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transmission and reception and transducer is not symmetric. The large
number of elements of a two-dimensional transducer in a small aperture
may cause problems such as difficulty in wiring, electronic and
mechanical crosstalk among the elements, high impedance of each
element, and also a complex multiplexing among the elements[26].

One way to approximately produce rotary symmetric limited diffraction
beams, is to use an annular array transducer of the type that is in common
use where the division of the elements is equal-area with a fixed focus. A
program doing this has been written.

By using approximated Bessel beam with an annular array to transmit the
beam and dynamically focused beam to receive the beam one can
produce a high frame rate, a large depth of field and low sidelobe levels
because high sidelobes of the Bessel beams are suppressed by the low
sidelobes of the dynamically focused reception. To achieve this, the
value of scaling factor, α, most be correctly calculated in order to fit the
first lobe of the Bessel function on the first element of the array. There is
a trade-off between depth of field and lateral beamwidth, but usually the
Bessel beam will give better beams in the near- and far-field at the
expense of a wider lateral beamwidth compared to a spherically focused
beam.

Further work
It is shown that the limited diffraction beam of zero order can be
approximated by a annular transducer with equal-area division of
elements and with a fixed focus.

One way to go forward from here is to discuss the X-waves [9] in
connection to the present work and the methods which have been
implemented here. The X-waves can replace the Bessel beams and the
simulation can be implemented for the equal-area annular rings used in
this work. X-waves can also be inplemented on linear arrays.
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Appendix A Equipment   and   programs

Following is a concise description of the equipment and materials used in
the current work.

A.1 Hardware Equipment

The necessary hardware was provided by the Department of Computer
Science, University of Oslo. Programs were developed on Unix-based
Sun Sparc stations (SunOs, Solaris) and Silicon graphics Indy (IRRIX)
work stations in the X-windows graphical environment. The hard copy
output consist of several Hewlet Packard laser printers.

A.2 Software Equipment

All the programs in this work were developed in MATLAB version 4.
MATLAB (Matrix laboratory) is a trade mark of Math works Inc. and is
matrix based interactive program for numeric computation and data
visualization. The programs take advantage of another Matlab based
function library called Ultrasim; a simulation program developed by
Vingmed Sound (VMS), Horten, Norway, Department of Physiology and
Biomedical Engineering (IFBT) and Department of Mathematical
Sciences (IMF), Norwegian University of Science and Technology,
Trondheim, and Department of Informatics (IFI), University of Oslo[35].
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Source code of two of the programs used to calculate and simulate Bessel
beams and Bowtie Bessel beams are provided in appendix A.3. The
programs as described previously are based on Matlab and ultrasim
function libraries.

A.3 Source code

%****************************************************************************

% Routine             : t3usim

% Description       : Configuring transducer-parameters   ANNULAR ARRAY

% Language          : Matlab 4.1

% Written by       : Vebjorn Berre, IBT

% Version no.      : 1.0 VEB 27.10.93 First Version

% Version no.      : 2.0 VEB 28.03.93

% Version no.      : 3.0 SH 16.04.93

%Version no.      : 3.1 FT 27.09.93 Created menu for selection of transducer type. Added User-
Defined Width

%                            : 3.2 FT 09.02.93 Parameter change depend on flagg(3)

%                            : 3.3 FT 23.02.94 Removed disp('EXIT = "x"')

%                           : 3.5 SH 03.06.96 centres as output

%                            : 3.4 SH   6.12.94 Changed call: t3usimtxt to t3usimtx

%                            : 3.6 HJG 29.01.96 Bessel-Beam is added to the menu & 4th- and

                                                                    10th- derivative bowtie Bessel beam

% Called by: usimcnf

% Calling      : t3usimtx

%********************************************************************

2       function [transducer,elem_pts, centers]=t3usim(transducer,flagg,excitation,media)

3       global amp_ud

4       fid=1;

5       lambda=media(1,2)/excitation(1);

6       if length(flagg)>4

7        if flagg(5)==1

8           lambda_local=1;

9        elseif flagg(5)==2

10           lambda_local=media(1,2)/excitation(1)*1e3;

11        end

12       else
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13        lambda_local=1;

14       end

15

16       tmp=size(transducer);

17       if tmp(2)<18

18        tmp=transducer;

19        transducer=zeros([1,18]);

20        transducer([1:1:length(tmp)])=tmp;

21       end

22

23       com1=0;

24       while com1~='x'

25        clc

26        t3usimtx;

27        disp(' CHANGE = "number"')

28        com1 = input('-> Decision (<CR> = exit): ','s');

29        if isempty(com1) com1 = 'x'; end

30        if length(com1)==1 com1=['0',com1];end

31        if length(com1)>2

32           com1 = '00'

33       %************************* changing of parameters******************************

34        if com1=='01'

35           temp=input('Transducer diameter D = ');

36           if ~isempty(temp) transducer(1)=temp*lambda_local*1e-3; end

37        elseif com1=='02'

38           temp=input('# elements                 N  =  ');

39           if ~isempty(temp) transducer(2)=temp; end

40        elseif com1=='03'

41           if flagg(3)~=2

42             temp=input('# points on transducer surfaceP = ');

43           else

44             temp=input('# rays from transducer surfaceP = ');

45           end

46           if ~isempty(temp) transducer(3)=temp; end

47         elseif com1=='18'

48           temp = menu35_0('Choose Transducer Type', ...

49                  'Equal Area','Equal Width','Circular','User-Defined Width', ...
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50                  'Exact Bessel(n) beam (1 element)', ...

51                  'Bessel(n) equal-area transducer (N elements)',...

52                  'Bessel(n) transducer (N elements)', ...

53                  '4th derivatives bowtie Bessel beam', ...

54                  '10th Derivatives bowtie Bessel beam ', ...

55                  'Exact non-rotating Bessel(n) beam (1 element)');

56 %******************************Bessel***************************************

57           order = transducer(12);

58           scl_factor = transducer(13);

59           phi = transducer(14);

60       %************************nth-order Bessel beam (1 element)***********************

61           if (temp== 4 ) % nth-order Bessel beam (1 element)

62             disp(' ')

63              disp('Make sure that Apodization is User-Defined (points) !!!')

64              scl_factor=vinput(['Scaling factor [m](',num2str(0),'...',num2str(2*pi/lambda*2*1e-
1),')'],0,2*pi/lambda*2*1e-1,scl_factor);

65              order=vinput('Order of Bessel function (>= 0)',0,1000,order);

66              transducer(2) = 1;

67              phi = 0;

68       %******************Equal-area nth-order Bessel beam (N elements)******************

69           elseif (temp== 5)%  Equal-area nth-order Bessel beam (N elements)

70              disp(' ')

71              disp('Make sure that Apodization is User-Defined (elements) !!!')

72              disp('Transducer aperture D, and # elements N must be choosen')

73              disp('before choice of transducer type ......')

74              scl_factor=vinput(['Scaling factor [m](',num2str(0),'...',num2str(2*pi/lambda*2*1e-
1),')'],0,2*pi/lambda*2*1e-1,scl_factor);

75              disp(' ')

76              phi = 0;

77              [transducer(2)]=lulu(scl_factor,transducer(2),transducer(1),'y');

78       %****************th-order Bessel transducer(N elements)***************************

79            elseif (temp== 6)%  nth-order Bessel transducer(N elements)

80              disp(' ')

81              disp('Make sure that Apodization is User-Defined (elements) !!!')

82              disp('Transducer aperture D, and # elements N must be choosen')

83              disp('before choice of transducer type ......')

84              scl_factor=vinput(['Scaling factor [m](',num2str(0),'...',num2str(2*pi/lambda*2*1e-
1),')'],0,2*pi/lambda*2*1e-1,scl_factor);
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85              disp(' ')

86              phi = 0;

87          %      disp('WAIT CALCULATING amp_ud.......')

88              [transducer(2)]=lulu(scl_factor,transducer(2),transducer(1),'n');

89 %******************** 4th derivatives bowtie Bessel beam ***********************

90           elseif (temp==7) % 4th derivatives bowtie Bessel beam

91              scl_factor=vinput(['Scaling factor [m](',num2str(0),'...',num2str(2*pi/lambda*2*1e-
1),')'],0,2*pi/lambda*2*1e-1,scl_factor);

92              transducer(2) = 1;

93              phi = 0;

94       %************************10th Derivatives bowtie Bessel beam**********************

95           elseif (temp==8)%  10th Derivatives bowtie Bessel beam

96              scl_factor=vinput(['Scaling factor [m](',num2str(0),'...',num2str(2*pi/lambda*2*1e-
1),')'],0,2*pi/lambda*2*1e-1,scl_factor);

97              transducer(2) = 1;

98              phi = 0;

99        %*******************nth-order non-rotating Bessel beam (1 element)*****************

100          elseif (temp == 9)% nth-order non-rotating Bessel beam (1 element)

101              disp(' ')

102              disp('Make sure that Apodization is User-Defined (points) !!!')

103              scl_factor=vinput(['Scaling factor [m](',num2str(0),'...',num2str(2*pi/lambda*2*1e-
1),')'],0,2*pi/lambda*2*1e-1,scl_factor);

104              order=vinput('Order of Bessel function (>= 0)',0,1000,order);

105              phi=vinput('Rotation angle [deg] = ',-360,360,phi) %  Rotation angle

106              transducer(2) = 1;

107

108           end

109

110           if ~isempty(temp) transducer(18)=temp; end

111

112         elseif com1=='09'

113           temp=input('Fixed focus F = ');

114           if ~isempty(temp) transducer(9)=temp*lambda_local*1e-3; end

115

116         elseif com1=='10' & flagg(3)==2

117           temp=input('Rotation angle [deg]theta = ');

118           if ~isempty(temp) transducer(10)=temp*pi/180; end

119
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120         elseif com1=='15' & flagg(3)==2

121           temp=input('Offset[mm] dz = ');

122           if ~isempty(temp) transducer(15)=temp*1e-3; end

123         end

124         if exist('order'), transducer(12) = order; end % order of Bessel-beam

125         if exist('scl_factor'), transducer(13) = scl_factor; end

126         if exist('phi'), transducer(14) = phi; end % rotation angle of Bessel-beam

127       end  %while

128

129       if flagg(3)~=2

130         [elem_pts] = annular(transducer, excitation, media);

131          centers = []; % no separate calculation of element centers done so far!

132       end

133       %*****************Bessel Beam----------22.01.1996********************************

134       if ( transducer(18)==4|transducer(18)==7|transducer(18)==8 | transducer(18)==9)

135         transducer(2) = 1;

136         if (transducer(18) == 4),

137           amp_ud=zeros(size(elem_pts(1:2,:)));

138         else

139           amp_ud=zeros(size(elem_pts(1:3,:)));

140         end

141         rho=sqrt(elem_pts(1,:).^2+elem_pts(2,:).^2); % m (rho is radial coordinate)

142 %****************nth-order Besselbeam (1 element)******************************

143         if ( temp== 4)

144           jbes= (bessel(order,abs(rho)*scl_factor)); % Bessel Beam (nth-order)

145           amp_ud(1,:)=jbes;

146           amp_ud(2,:)=rho.*1000; % mm

147 %****************nth-order non-rotating Bessel beam (1 element)*****************

148         elseif (temp==9)

149           if (order == 0)

150             j0=(bessel(0,abs(rho)*scl_factor)); % Bessel Beam (nth-rotating)

151             amp_ud(1,:)=j0;

152           else

153             fi=atan2((elem_pts(1,:)),(elem_pts(2,:)));

154             jbes2=(bessel(order,abs(rho)*scl_factor)).*(cos(order*(fi-phi*pi/180)));

155             amp_ud(1,:)=jbes2;

156           end
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157           amp_ud(2,:)=1000*elem_pts(1,:); % x

158           amp_ud(3,:)=1000*elem_pts(2,:);             % y

159  %********************4th derivatives Bowtie Bessel baem****************

160         elseif ( temp==7)

161           a=find(rho==0);

162           j0=(bessel(0,abs(rho)*scl_factor)); % Bessel Beam (nth-rotating)

163           j1=(bessel(1,abs(rho)*scl_factor));

164           alf=scl_factor;

165           y=elem_pts(2,:);

166           x1=-(24*alf.^2*y.^4)./rho.^6;

167           x1(a)=0;

168           x2=(alf.^2*y.^2.*(24+alf^2*y.^2))./rho.^4;

169           x2(a)=0;

170           x3=3*alf.^2./rho.^2;

171           x3(a)=0;

172           x4=(48*alf*y.^4)./rho.^7;

173           x4(a)=0;

174           x5=(8*alf*y.^2.*(6+alf.^2*y.^2))./rho.^5;

175           x5(a)=0;

176           x6=(6*alf*(1+alf.^2*y.^2))./rho.^3;

177           x6(a)=0;

178           j4=8/(3*alf^4)*((x1+x2-x3).*j0+(x4-x5+x6).*j1);

179           j4(a)=1;

180           amp_ud(1,:)=j4;

181           amp_ud(2,:)=1000*elem_pts(1,:);     % x

182           amp_ud(3,:)=1000*elem_pts(2,:);

183 %******************10th derivatives bowtie Bessel beam*************************

184         elseif (temp==8)

185           a=find(rho==0);

186           j0=(bessel(0,abs(rho)*scl_factor)); % Bessel Beam (nth-rotating)

187           j1=(bessel(1,abs(rho)*scl_factor));

188           alf=scl_factor;

189           y=elem_pts(2,:);

190           xx1=-(92897280*alf.^2*y.^10./rho.^18);

191           xx1(a)=0;

192           xx2=1290240*alf.^2*y.^8.*(180+7*alf.^2*y.^2)./rho.^16;

193           xx2(a)=0;
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194           xx3=201600*alf.^2*y.^6.*(1008+108*alf.^2*y.^2+alf.^4*y.^4)./rho.^14;

195           xx3(a)=0;

196           xx4=1200*alf.^2*y.^4.*(60480+15120*alf.^2*y.^2+360*alf.^4*y.^4+alf.^6*y.^6)./rho.^12;

197           xx4(a)=0;

198       xx5=alf.^2*y.^2.*(9072000+6048000*alf.^2*y.^2+302400*alf.^4*y.^4+1800*alf.^6*y.^6+alf.^
8*y.^8)./rho.^10;

199           xx5(a)=0;

200           xx6=630*alf.^2*(288+1080*alf.^2*y.^2+120*alf.^4*y.^4+alf.^6*y.^6)./rho.^8;

201           xx6(a)=0;

202           xx7=945*alf.^4*(12+5*alf.^2*y.^2)./rho.^6;

203           xx7(a)=0;

204           xx8=185794560*alf*y.^10./rho.^19;

205           xx8(a)=0;

206           xx9=10321920*alf*y.^8.*(45+4*alf.^2*y.^2)./rho.^17;

207           xx9(a)=0;

208           xx10=1693440*alf*y.^6.*(240+60*alf.^2*y.^2+alf.^4*y.^4)./rho.^15;

209           xx10(a)=0;

210           xx11=9600*alf*y.^4.*(15120+9072*alf.^2*y.^2+405*alf.^4*y.^4+2*alf.^6*y.^6)./rho.^13;

211           xx11(a)=0;

212       xx12=50*alf*y.^2.*(362880+604800*alf.^2*y.^2+60480*alf.^4*y.^4+720*alf.^6*y.^6+alf.^8*
                   y.^8)./rho.^11;

213           xx12(a)=0;

214       xx13=45*alf*(8064+80640*alf.^2*y.^2+20160*alf.^4*y.^4+448*alf.^6*y.^6+alf.^8*y.^8)./
                   rho.^9;

215           xx13(a)=0;

216           xx14=630*alf.^3*(108+135*alf.^2*y.^2+5*alf.^4*y.^4)./rho.^7;

217           xx14(a)=0;

218           xx15=945*alf.^5./rho.^5;

219           xx15(a)=0;

220           j10=-256/((63*alf.^10))*((xx1+xx2-xx3+xx4-xx5+xx6-xx7).*j0+(xx8-xx9+xx10-xx11+xx12-
xx13+xx14-xx15).*j1);

221           j10(a)=1;

222           amp_ud(1,:)=j10;

223           amp_ud(2,:)=1000*elem_pts(1,:); % x

224           amp_ud(3,:)=1000*elem_pts(2,:);

225         end

226       end
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%****************************************************************************

% Routine        : lulu

% Description   : Bessel excitation and approximations

% Language      : Matlab 4.1

% Written by    : Hossein Jamshidi

% Version no.   : 1.0 HJG 11.9.96 First Version

%                                 Calculating width of each annular

%                                 element which is designed to be equal

%                                 to a lobe of Zero order Bessel function.

%****************************************************************************

1       function Nn = lulu(alfa,Nn,d,EqualArea);

2       clear amp_ud

3       global amp_ud

4       temp=[];t=[];t1=[];amp_ud=[];amp=[];amp2=[];amp3=[];amp4=[];k=0;s=1;

5       radius = d/(2)*sqrt([1:Nn]/Nn);         % Equal area

6       %disp(' ')

7       %disp('Choose the Equal area or Bessel lobes ')

8       %disp('to replace the rings on the transducer ')

9       %EqualArea = input('Equal area [n/y] ? ','s');

10

11       if isempty(EqualArea)

12          EqualArea  = 'n';

13       end

14

15       maxAmplitude =  input('Maximum amplitude of respective Bessel lobes or mean [n/y] ? ','s');

16       if isempty(maxAmplitude)

17          maxAmplitude = 'n';

18       end

19

20       rho = 0:.00001:d/2;

21       j0 = bessel(0,abs(rho)*alfa);

22

23       %*****************************Find zeros of Bessel function ***********************

24       ratio=(d/2)/length(j0);

25       i =1;

26       ratio=(d/2)/length(j0);

27           for ii=1:length(j0)-1
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28            if sign(j0(ii+1)*j0(ii))<=0

29              zerose=((j0(ii)/((j0(ii)-j0(ii+1))))+ii)*ratio;

30              zerosBessel(i)=zerose;

31              i=i+1;

32            end

33           end

34       % ***************Add end element if no zero close to it************************

35       if (EqualArea == 'n' & (d/2-rho(max(zerosBessel*100000))>.001))

36          zerosBessel=[zerosBessel max(rho)];

37       end

38       %*********************Choose the Equal area or Bessel lobes************************

39       %**********************to replace the transducer rings****************************

40       disp(' ')

41       disp('WAIT CALCULATING amp_ud.......')

42       if EqualArea == 'y'

43         zerosBessel = radius;

44         rho=0:.00001:max(zerosBessel);

45        else

46          rho=0:.00001:max(zerosBessel);

47          Nn = length(zerosBessel); % update number of elements

48       end

49       %**************Find maximum amplitude or minimum amplitude********************

50       for j=1:length(zerosBessel)

51           temp=[];

52           temp2=0;

53         for x=k:.00001:zerosBessel(j)

54           if x<=zerosBessel(j)

55                temp=[temp j0(s)];

56            if maxAmplitude == 'y'

57                [temp2,I]=max(abs(temp)); % max. value

58                temp2=temp(I);

59                temp3 = temp2 * ones(1,length(temp));

60             else

61                temp2 = mean(temp);

62                temp3 =  temp2 * ones(1,length(temp));

63            end

64           end
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65          if s<length(rho)

66             s=s+1;

67          end

68         end

69          k=x;

70          amp2=[amp2 temp2];

71          amp_ud=amp2;

72          amp=[amp temp3];

73          amp3=[amp3 temp];

74       end

75

76       %************************** Plotting of Bessel function****************************

77       yyy=[-1 1];

78       zerosBessel=zerosBessel*1000;

79       for jj=1:length(zerosBessel)

80           plot([zerosBessel(jj) zerosBessel(jj)],yyy,'g')

81           axis([0 max(zerosBessel) -1 1])

82           hold on

83           plot(rho*1000,amp3(1,1:length(rho)),'r')   % Plot of Bessel function

84           plot(rho*1000,amp(1,1:length(rho)),'b')    % Plot of average amplitude of corresponding lobe

85                                                                        % of Bessel function

86       end

87          hold off

88          xlabel('Radius [mm]')

89          ylabel('Relative amplitude')

90          title('Bessel excitation and approximations')

91          grid

92       amp4(1)=[ (zerosBessel(1)/2)*1000];

93       for jjj=2:length(zerosBessel)

94          amp4=[amp4 (zerosBessel(jjj)+zerosBessel(jjj-1))/2*1000];

95       end

96       amp_ud(2,:)=amp4*1e-3;
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