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Abstract

Although modern cosmology has been able to reveal a wealth of information about the
Universe, there are still many questions to be answered, such as the details of how the
first stars ionized the Universe in the Epoch of Reionization (EoR). The COMapping Ar-
ray Pathfinder (COMAP) is a line intensity mapping experiment aiming to answer this
question. Currently in the early stages, much of the present effort of COMAP goes
into understanding and mitigating systematic effects. To do this we process the raw
telescope data through a series of filters, cleaning it of correlated noise and systematics,
before making sky maps. In this thesis, we contribute to this effort by presenting three
improvements to the COMAP data analysis pipeline.

The first of these is to extend the COMAP pipeline by a simulation pipeline, with
which we can simulate the COMAP telescope picking up additional signal. By estim-
ating the factor by which the simulated signal has been attenuated by filtering the raw
data, we estimate the pipeline transfer function. This additional step of the COMAP
pipeline is critical as it gives us the possibility to adjust for any underestimated signal
power and its error bars. In particular, when computing the ensemble-averaged trans-
fer function from estimates of three different signal realizations as well as ∼ 63 h of
observational data, the peak transfer efficiency of the filters is found to be 85 − 90%
at scales k‖, k⊥ ≥ 0.1 Mpc−1, while resulting in an almost complete attenuation at
scales k‖, k⊥ ≤ 0.05 Mpc−1. Thus, on these scales, the signal estimates of the COMAP
pipeline and its errors should be adjusted upwards by a factor inverse proportional to
this transfer function estimate.

Secondly, we implement a baseline destriper in the COMAP mapmaker, which by
fitting residual long-timescale modes such as ground pickup, standing waves or unknown
systematics, can better resolve the large-scale modes of the astrophysical signal perpen-
dicular to the line-of-sight. Of the tested baseline lengths, the 10 s baseline destriper is
found to maximize the transfer function, yielding a peak transfer efficiency of ∼ 95%
and outperforming the currently implemented noise weighted binning of the highpass
filtered time stream by up to 20− 25% at the lower k⊥ region.

Finally, a principal component analysis of the dataset of feed-feed pseudo-cross spec-
tra, computed from different data splits, is shown to aid in identifying spectra showing
signs of systematic effects. Subtracting leading principal components of the data that
could correspond to systematic effects is found to result in a modest signal loss of
20 − 50% in a few of the k-bins, introducing a potential new tool in the COMAP
pipeline to clean otherwise discarded data of systematic effects.



vi



Acknowledgments

Firstly I would like to extend a great thanks to my thesis supervisors Hans Kristian
and Ingunn for their excellent supervision and advice throughout the previous years,
and for giving me the chance to participate in their exciting field of research. I would
also like to thank Håvard and Marie for all their support and advice, and not least for
all their patience when repeatably answering all my stupid questions. In addition, I
would like to thank my awesome fellow master students Jonas and Jowita, as well as
Kieran, Bade, Duncan and all the rest of the COMAP collaboration, for all the great
collaboration and discussions we have had throughout the previous year. It is truly an
honor to be a part of COMAP!

I also want to thank all my fellow students and friends Mats Ola, Håkon, Jon, Johan,
Markus, Jakob, Bernhard, Lise, Julie, Daniel, Jessie, Christina, Bruce and Ida for all
the great company and fun, and not unimportantly for reminding me to be a little social
once in a while.

Finally, I would like to thank my family; Thank you Alexa and Jens for being truly
great parents and for giving me support whenever I needed it; A special thanks to
Joachim who ignited the spark of astronomy that now burns bright within me; Thanks
to my brothers Lars, Lennart and Adrian and my cats Ramses and Isis for just being
awesome.



viii



Preamble

Whenever humans throughout the millennia have looked into the night sky they have
wondered what might lie behind this seemingly unreachable final frontier. However,
through the ever-developing chase between technological development and scientific dis-
covery, a great deal has been learned about the Universe. Especially in the last century
or so the knowledge about the Universe has progressed at a seemingly exponential speed.
That is true both on a theoretical level, but most importantly also on the observational
side, through the ever-advancing technological development.

Nevertheless, there are still large parts of the Universe’s history that have yet to be
systematically researched. One of the eras we currently lack detailed knowledge about
is the period when the Universe went from being dark and cold to being ionized by the
birth of the first stars and galaxies; The Epoch of Reionization (EoR). As the sources of
light from this epoch are extremely far away and correspondingly faint, few detections
of individual resolved emitters have been made. This is where the relatively new field of
line intensity mapping comes in. By measuring the aggregate line emission of all sources
at a low angular resolution, line intensity mapping has the great potential to capture
information about the large-scale structure and detailed processes that governed the
time of first star formation in a fast and cheap way. One of the line intensity mapping
experiments currently ongoing is the CO Mapping Array Pathfinder (COMAP) experi-
ment. COMAP aims to trace star-forming galaxy clusters at the Epoch of Reionization
through CO emission from molecular clouds.

However, being in its very early stages of observation, there is a multitude of sys-
tematic effects affecting the gathered data. The noise and systematic effects in the data
are typically orders of magnitudes stronger than the astrophysical signal itself. Thus,
to detect the signal, understanding and accounting for the systematic effects is imperat-
ive. To clean the raw time-ordered data from systematic effects it is therefore processed
through a series of filters before maps are made. In this light, this thesis will consider
some important improvements to the current COMAP pipeline.

Firstly, we will show how to extend the COMAP pipeline to compute the filter trans-
fer function that quantifies how much the filtering of the signal will bias its estimate.
This additional step of the pipeline is crucial as COMAP would otherwise underestimate
the measured signal strength and its errors. This will be done by building a simulation
pipeline that simulates the pickup of additional signal in the telescope, which can be
used to feed simulated observations into the COMAP pipeline. By use of this simula-
tion pipeline, the signal prior to and after filtering in the pipeline can be compared to
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estimate the transfer function. This subsequently gives the COMAP pipeline the ability
to account for the filter-induced signal bias.

Next, we will consider how making maps using a destriper algorithm can better
handle residual slowly varying modes in the cleaned time stream and thus increase
the signal recovery of large-scale structures, compared to currently used noise weighted
binning of the highpass filtered time stream.

Finally, we will investigate the possibility of identifying feed-feed pseudo-cross-
spectra (FPXS) with large residual systematic artifacts using a principal component
analysis (PCA) on the dataset of cross-spectra that we produce in the COMAP pipeline.
By doing so, we will investigate how we can potentially identify and clean data that
would otherwise be neglected from the analysis, potentially including a powerful addi-
tional data selection and filtering tool in the COMAP pipeline.

This thesis will begin by presenting a short overview of the history of the Uni-
verse and cosmology as well as a summary of mathematical cosmology. Thereafter, the
field of line intensity mapping and the COMAP experiment will be introduced before
presenting our currently implemented COMAP analysis pipeline. Next, we will present
the methods used in this thesis to improve the COMAP pipeline by estimating the
amount by which we bias the signal by filtering it, by improving the mapmaking of the
pipeline using a destriper as well as presenting a way forward to identify and save pre-
viously discarded FPXS. The results of this thesis will subsequently be presented and
discussed before finally concluding and presenting some suggestions for natural future
improvements of the methods and results.
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Chapter 1

A Brief History of Cosmology

Since ancient times humankind has wondered about how the world came to be. Long
before telescopes were invented people could see mysterious celestial objects such as
stars, planets and faint nebulae on the night sky, but no one yet knew the sheer scale of
things in space, let alone that there was such a thing as space. Since those ancient times
a great many technological inventions have been made, often followed by great scientific
discoveries. One of the best-known examples being the invention of the telescope by
Dutch spectacle makers in the 17th century that led Galilei to discover that Jupiter
had in fact moons orbiting the planet. This clearly showed that not everything in the
Universe orbits Earth, an idea which supported Copernicus’ heliocentric model of the
Universe, in favor of the old Ptolemaic view that the Universe was geocentric [1]. This
race between invention and scientific discovery, as we will see later, continues in the
modern era of astronomy and cosmology.

In the centuries after Galilei astronomers uncovered more and more about the nature
of the Cosmos. It was for instance soon realized and experimentally confirmed in the
19th century, that the stars were, in fact, distant "Suns" within our Galaxy which
appeared so faint due to their enormous distance from our Solar System. Hence as-
tronomers would heavily debate the question of how big the Universe actually was. In
particular, the question of whether or not the Milky Way Galaxy was the entire Uni-
verse, or if there was more, was discussed for a long time. However, soon a strong
indication was found that the Universe was far bigger than just the Milky Way when
Hubble discovered that the Andromeda nebula in fact had to be its own galaxy as it
was too far away to be contained within the Milky Way [2]. It was not until this point,
discovering more and more distant galaxies, that cosmologists realized just how truly
enormous the scales of the Universe were.

Nonetheless, progress was not limited to the observational side of cosmology. The-
orists like Albert Einstein helped firmly establish the modern era of cosmology. In 1915
he published his discovery of the general theory of relativity, the modern theory of grav-
ity, which could be used to mathematically describe the evolution of the Universe as
a whole [3, 4]. However, the question of whether the Universe as a whole was a static
thing or whether it was evolving dynamically, was still wildly debated. Einstein himself
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thought at first the Universe was static, but in 1929 Hubble discovered that the spectra
of distant galaxies all seemed to be redshifted, suggesting that they moved away from
each other. The conclusion had to be that the very space in which the galaxies were
situated was expanding. Soon after, in 1931, the Belgian cosmologist George Lemaître
used this observation, together with equations that he and Alexander Friedmann had
independently derived from Einstein’s work, to claim that if space is expanding the
content of the Universe must have been packed closely together at earlier times [2].
The idea that the Universe had sprung from some sort of infinitely dense primordial
singularity was soon known as the Big Bang paradigm, a term initially coined by Fred
Hoyle who was a supporter of the adversary steady-state theory [2].

However, the discovery of the Cosmic Microwave Background (CMB), the last rem-
nants of the very first light that traveled through the Universe, by Penzias and Wilson
in 1965 [5] firmly cemented the Big Bang paradigm as the currently accepted theory.
This discovery was also the birth of modern cosmology as a precision science after which
many new insights into the nature of the Universe have been made. In recent decades,
observations of supernovae of type Ia by Riess et al. [6] and Perlmutter et al. [7] have
shown that not only is the Universe expanding, but it is accelerating as well. This
suggests that the expansion of the Universe is driven by some sort of negative pressure
component often referred to as dark energy or vacuum energy. However, this dark sector
of the Universe also seems to include some sort of non-baryonic matter only interacting
gravitationally with regular baryonic matter (e.g. protons and neutrons). It is needed
to consistently explain the observations of galactic rotation curves [8] and for primor-
dial density fluctuations to collapse under gravity into the structures we observe today.
This model of the Universe in which dark energy (Λ) and cold dark matter (CDM)
are the dominating components became the standard model of cosmology called the
ΛCDM model. Further CMB experiments such as COBE, WMAP and Planck have
since delivered pristine insight into the nature of the Universe, tightly constraining the
amount of each matter-energy component in the Universe and hence strengthening the
ΛCMD model [9]. However as there are still some tensions left between the different
cosmological experiments, especially between the supernova and CMB experiments, new
methods such as intensity mapping could, as we will discuss later, be highly comple-
mentary and resolve some of the tension [9, 10].

Unless otherwise stated the following sections will be based on the theory presented
in Carroll [11], Dodelson [12] and Schneider [13].

1.1 The History of the Universe - From its Birth to the
Current Age

Now that we have taken a look at how Universe has been researched through history
we will take a look at the current understanding of the history of the Universe itself.
The history of the Universe can be roughly divided into three main parts; the very early
times right after the Big Bang, the time between the very first fractions of a second
up until the Epoch of Recombination when the CMB became to be, and lastly the era
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after recombination.

1.1.1 The Very Early Times

Evidence that the Universe is expanding suggests that if one follows time backward,
all of the Universe and its content may have been packed together infinitely close; a
singularity. We do not know much about the very beginning of time, let alone if there
was such a thing as the beginning of time, however it is still useful to consider such
an extrapolation to t = 0 as a reference point. The details of what happened at the
very first instance of space and time, in what is commonly known as the Big Bang, are
therefore largely unknown as the conditions were so extreme that our current theories
of physics break down.

Nonetheless, we know that the Universe in the pre-recombination era was very hot,
dense and smooth, only having small temperature and density perturbations of the
order 10−5 from the mean. This remarkable smoothness is even observed on the CMB
across angular scales larger than 1◦ on the sky today. At the time of recombination
this scale, known as the Hubble sphere, characterizes the maximum distance between
two causally connected points. However, to establish thermal equilibrium between two
such points photons must have been able to travel the distance between them. Yet
seemingly this should not be possible as the two regions are causally disconnected. This
issue, called the horizon problem, is not the only one. Another peculiarity observed is
the so-called flatness problem. Today we observe that the Universe is spatially flat (i.e.
parallelly emitted light rays forever remain parallel), only having a very small curvature.
Due to the expansion of space, this curvature must be decreasing when looking back
in time, until it is not even measurable at very early times. However, to obtain such
remarkably flatness, the Universe must have had very special initial conditions, unless
there is some process that can smooth out any initial curvature. A phenomenon that
could potentially solve these problems is a short phase of exponential expansion in the
early Universe; cosmic inflation.

The phase of cosmic inflation is believed to have taken place a very short time
after the Big Bang when the Universe was only about ∼ 10−34 s old. By the following
brief period of exponential expansion, the Universe increased in scale by at least 60
e-foldings (increasing by a factor e60) and was finished by the time the Universe was
∼ 10−32 s old. Such an enormous expansion would both smooth out any initial spatial
curvature and cause all of, what we today call, the observable universe to be initially in
causal contact. Thereby it would solve both the flatness and horizon problems. What
exactly caused inflation is largely unknown, but a likely candidate is a so-called inflation
scalar (inflaton) field "rolling down" a potential. The initially large potential energy
of the inflaton caused the exponential expansion of space, and this expansion was in
the end halted by the inflaton decaying into standard model particles in the reheating
process. Small quantum fluctuations in the primordial vacuum thus became blown up
and transformed to the classical perturbations seen in the CMB. The fluctuations of the
CMB in turn seeded the formations of structures like stars and galaxies we see today.
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1.1.2 Big Bang Nucleosythesis

At the end of inflation, the first particles and anti-particles were produced, which in turn
would annihilate to create photons. At this early stage, the temperature of the Universe
was so high that any nuclei or atoms forming would instantly be blown apart by the high-
energy photons dominating the Universe. As the Universe expanded the temperature
dropped, eventually reaching kBT ∼ 1 MeV, at which point the cosmic neutrinos could
decouple from the hot and dense plasma. Yet, it was not cold enough for nuclei or
neutral atoms to form. It was not until the temperature fell below kBT ∼ 0.1 MeV
that photons had sufficiently low energy that light atomic nuclei could form without
instantly being disintegrated. In this epoch called the Big Bang Nucleosythesis (BBN),
the relative abundance of the light atoms like hydrogen, deuterium and helium we see
today was laid down. The remarkable agreement between the predicted (by BBN)
and observed light element abundance, as well as the mass fraction of baryons in the
Universe, is one of the great successes of the Big Bang paradigm [9].

1.1.3 Recombination and the Universe Today

After having formed the first atomic nuclei the Universe was still much too hot for
neutral atoms to form. In the hot photon-baryon plasma the photons were tightly
coupled to the electrons through Compton scattering, while in turn the electrons and
protons (and other nuclei) were tightly coupled through Coulomb scattering, effectively
maintaining the equilibrium. Any electron binding to a nucleus was very efficiently
ionized again, as there were many more photons than electrons. However, while the
formation of baryonic structure was not yet possible, the earlier decoupled cold dark
matter could begin to cluster and start forming gravitational potential wells. Once
the temperature of the Universe dropped well below the ionization energy of hydrogen
at 13.6 eV, electrons and protons could bond to form the first neutral atoms. At this
point, about 380 000 years after the Big Bang, called recombination, the Universe
became transparent and photons could now free-stream to form what we today can see
as the Cosmic Microwave Background (CMB). The baryonic matter perturbations, still
being very small, could now fall into the dark matter potential wells and grow into the
structures we see today.

The following period is called the Cosmic Dark Ages, in which the Universe was cold
and filled with neutral hydrogen and helium, the only radiation being CMB photons as
well as 21 cm radiation from neutral hydrogen. It took a few 100 million years before
the Dark Ages ended and the Cosmic Dawn begun with the first stars and galaxies
[14, 15]. Soon after these first massive hot stars ionized more and more of the neutral
Universe in what is commonly known as the Epoch of Reionization, until finally, the
whole Universe was ionized. Nevertheless, the Universe was still matter-dominated. It
was not until relatively recently that the Universe gradually became dominated by some
dark energy causing space to expand at an exponential rate.
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1.2 An Introduction to Cosmology in the Language of Math-
ematics

Now that we have seen the outlines of how the Universe became to be and has developed
ever since, as well as an overview of the scientific research done over the ages, it is time
to dive a little deeper into the laws and principles that govern our Universe in terms
of mathematical language. Modern cosmology is based on only a few fundamental
principles, which when applied to Einstein’s theory of general relativity produces the
equations needed to describe much of how the Universe evolves.

1.2.1 The Fundamental Principles of Cosmology

The foundation of modern cosmology rests on only a few principles; the Copernican
principle, the principle of isotropy and the theory of general relativity. The first of these
states that no position in the Universe is unique and that all observers are equivalent.
The second principle states that the Universe as seen by any observer looks the same in
any direction on large enough scales, i.e. it is isotropic. Together these two principles
imply that the Universe must also be homogenous. This combined principle is called
the cosmological principle. The third principle governs the evolution of space and time
through the theory of general relativity as governed by its matter-energy content.

1.2.2 The Theory of General Relativity

The birth of modern mathematical cosmology can be seen as the discovery of the theory
of general relativity (GR) by Albert Einstein [3, 4]. The essence of his theory states that
the matter and energy contained in a spacetime manifold will curve space and time. In
turn, the geometry of spacetime will then govern how matter and energy move under
the influence of gravity. This geometrical interpretation of gravity can be formulated in
terms of Einstein’s field equations,

Gµν + Λgµν ≡ Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (1.1)

where the Einstein tensor Gµν on the left-hand-side (l.h.s.) describes spacetime’s geo-
metry and is given the Ricci tensor Rµν , the Ricci scalar R being the contraction of
the Ricci tensor gµνRµν , as well as the metric tensor gµν . The metric tensor describes
the physical distance between two events in spacetime and can hence be seen as the
fundamental quantity describing spacetime geometry. The Ricci tensor and scalar are
dependent on the metric and its derivatives only. The cosmological constant is denoted
by Λ and is needed to produce for instance an accelerating expansion of the Universe.
The right-hand-side (r.h.s.) of the equation is given by the energy-momentum tensor
Tµν describing all matter-energy content of the Universe and the gravitational constant
G. The mutual dependence of spacetime geometry and matter-energy can now easily
be noticed, as the l.h.s of the equation only depends on the metric and its derivatives
and therefore the geometric properties of spacetime. Meanwhile the r.h.s. contains only
matter-energy terms.
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To obtain the solution to Einstein’s equation most interesting for cosmology we
simply apply the cosmological principle, i.e. a smooth homogenous and isotropic energy-
momentum content of the Universe. Writing out the metric tensor as a line element one
then finds it to be given by

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

)
(1.2)

in spherical coordinates. This particular line element is called the Friedmann-Lemaîre-
Robertson-Walker (FLRW) line element. One can see that as opposed to flat Euclidean
space, the distance between two spacetime events ds is not only dependent on the
temporal dt, radial dr and angular distances dθ and dφ, but also on the scale factor
a(t) and curvature parameter k. The scale factor a(t) relates the comoving coordinates
(t, r, θ, φ) to the physical (or sometimes called proper) coordinates. The former of which
make up a coordinate system that remains constant under the expansion of the Universe,
while the latter characterizes the physical distances between different points. Thus a(t)
is a measure of how much space has expanded. Meanwhile, the curvature parameter,
taking the values k ∈ {−1, 0, 1} determines whether the Universe is open and negatively
curved, open and flat, or closed and positively curved respectively. However, as has been
measured to very high precision by Planck [9], the Universe is remarkably flat. We will
hence only consider flat universes hereafter.

From the FLRW metric and Einstein’s equations one can now find the two powerful
Friedmann equations

H2(t) ≡
(
ȧ(t)

a(t)

)2

=
8πG

3
ρ(t)− k

a2(t)
(1.3)

ä(t)

a(t)
=

4πG

3
(ρ+ 3p) , (1.4)

the first of which relates the matter-energy content ρ of the Universe and its curvature
k the expansion rate of the Universe H(t), called the Hubble parameter. The second
equation, meanwhile, characterizes the acceleration of the Universe expansion caused
by the matter-energy content ρ exerting a pressure p. The pressure and matter-energy
densities are in turn related through the equation of state p = wρ, which when using
the cosmological continuity equation,

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (1.5)

gives the density as a function of the spatial expansion,

ρ ∝ a−3(1+w) ȧ
a . (1.6)

The equation of state parameter w takes the values 0, 1/3 or −1 for a non-relativistic
and relativistic fluid as well as vacuum energy, respectively.

Using this we can define the densities in terms of the critical density, i.e. the density
needed to obtain a completely flat Universe; Ωi ≡ ρi

ρcrit
, where the critical density
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ρcrit ≡
3H2

0
8πG . The Hubble constant H0 = 67.37 ± 0.54 kms−1Mpc−1 simply gives the

present day expansion rate of the Universe [9]. The first Friedmann equation in terms
of these density parameters becomes

H2(t)

H2
0

=
∑
i

Ωi(t) = ΩB,0a
−3 + ΩCDM,0a

−3 + Ωγ,0a
−4 + Ων,0a

−4 + ΩΛ,0, (1.7)

where the sum of the density parameters must sum to unity if the spatial curvature is
zero, i.e.

∑
i Ωi,0 = 1 at present (or any other) time. Here we have explicitly written

the equation in terms of the five energy-matter constituents of the Universe in the
ΛCDM model; baryonic and cold dark matter (CDM), photons, neutrinos as well as the
cosmological constant (Λ) also commonly known as dark energy.

An often-used quantity that is both easier to grasp and measure than the scale
factor a(t) is the cosmological redshift z. When a photon is emitted and travels a given
distance through space and time, it is subject to the spatial expansion of the Universe.
The spatial expansion consequently stretches the wavelength λ of the photon, hence
redshifting it. One can therefore express this redshift z in terms of the scale factor at
the time of emission tem and receiving trec as

1 + z ≡ λrec

λem
=
λc

λc

a(trec)

a(tem)
=
a(trec)

a(tem)
, (1.8)

since the wavelength of the photon at any time can be written as a comoving wavelength
λc times the scale factor at that time. Usually the scale factor today a0 ≡ 1, often used
as a(trec) if we receive photons at present time.

As mentioned earlier, the scale factor, and consequently the redshift, are most com-
monly used to transform between comoving and physical distances. Consider for in-
stance the comoving distance, which is a distance scale that expands with the Universe,
simply found by setting ds = 0 in Eq. (1.2) for photons and subsequently integrate over
time, scale or redshift;

rc(t) =

∫ t

tem

dt′

a(t′)
=

∫ a(t)

a(tem)

da′

a′2H(a′)
=

∫ z(tem)

z

dz′

H(z′)
. (1.9)

The corresponding physical distance rp is then simply found by multiplying rc by a or
1/(1 + z) at any given time t.

There are, however, two additional distance measures often used as they depend
only on measurable quantities. The first of these is the angular diameter distance rA

which is the distance to an object, of proper size D, needed for it to extend an angular
distance θ on the sky. In a flat universe this simply becomes related to the comoving
and proper distances as

rA =
D

θ
=

rc
1 + z

= rp, (1.10)

and can be determined from observables only if the size D of the observed object can
be assumed to be known.
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The second important distance measure is called the luminosity distance and is
defined to be the distance rL to an object of luminosity L needed to observe the measured
energy flux F , thus satisfying the equation

F =
L

4πr2
L

. (1.11)

If we draw a sphere of comoving radius rc around the source with luminosity L, all
emitted photons will at some time hit this sphere. However, as time goes on and
physical space expands, a photon has to travel further to transverse the same comoving
distance. As a result, photons will cross the spherical surface less frequently as time
goes on. In addition, spatial expansion redshifts the photons, together resulting in a
flux

F =
L

4πr2
c (1 + z)2

, (1.12)

which implies that the luminosity distance must be

rL = (1 + z)rc. (1.13)

Again we see that if we can assume to know the luminosity of an object and measure
its flux F , we can directly infer its distance to us. Objects of known size or luminosity
are therefore often called standard rulers and candles respectively, and are important
for observational cosmology.



Chapter 2

The CO Mapping Array Pathfinder
Experiment - COMAP

2.1 What is Line Intensity Mapping?

Modern cosmology has shed a lot of light onto the nature of the Universe we live in
and most cosmological parameters are known to within the one percent level through
the combined power of CMB [9], galaxy redshift [16], supernova Type Ia surveys [6, 7]
and other observations. However, even though we know much about the Universe as
a whole there is still a lack of detailed understanding of the astrophysics on smaller
scales, like star and galaxy formation, within different epochs of the Universe. Gaining
a deeper understanding of these is in and of itself important to obtain a deeper model of
the whole Universe, but it is also important as the local astrophysics affects the global
cosmology.

Thus, there are for instance still some degeneracies between cosmological and astro-
physical parameters, such as the degeneracy between the optical depth of the Universe
at the Epoch of Reionization τ and the scalar fluctuation amplitude As, which cur-
rent experiments have not yet been able to constrain well due to the lack of detailed
knowledge about the astrophysics of Reionization [10]. In addition to parameter de-
generacies, there are still some tensions between CMB and lower redshift surveys. An
example is the disagreement between the value of H0 measured by the CMB and that
inferred from Type Ia supernovae [17].

Hence we would like to compliment the existing astrophysical and cosmological sur-
veys by probing directly the Epoch of Reionization and the large-scale structure of
the Universe, to gain stronger leverage on parameter degeneracies, help alleviate ten-
sions, and most importantly to develop more sophisticated models of the astrophysical
processes within our Universe. This is where line intensity mapping comes in.

Line intensity mapping is a relatively new and promising field in observational astro-
nomy that can provide valuable information, both cosmological and astrophysical, from
a wide range of redshifts and scales. Intensity mapping aims to integrate all photons
emitted from molecular and atomic line emission, like 21 cm, Lyα, [CII] as well as CO
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Figure 2.1: Illustration of the difference between galaxy redshift surveys and line intens-
ity mapping. The left panel shows a distribution of galaxies with luminosities drawn
from a Schechter distribution. The brightest of the galaxies, being most accessible to
galaxy surveys, are marked in red. The right panel shows the corresponding CO line
intensity map, which follows the distribution of galaxies in the left panel, yet includes
faint emitters in between the galaxies as well. Figure from Kovetz et al. [10]

rotational lines, from both bright and faint sources across a larger field of the sky [10].
This way not only a 2D map of spatial line intensity fluctuations can be produced, but
also the fluctuations along the line-of sight through the redshift of the lines. The main
advantage of intensity mapping over galaxy surveys is that an intensity mapping survey
is significantly cheaper to perform as it is faster in covering the sky, while not being
limited to bright sources only, making its intensity maps cheap and unbiased [10].

As the scales probed are generally quite large, there is a trade-off between the
statistical information needed for cosmology and losing the details of the small-scale
physics of the environment of the emitters themselves [18]. Because a galaxy survey is
limited to a high angular resolution and needs to spend a longer time integrating on
each source to claim a high signal-to-noise ratio (SNR) detection. Meanwhile, the lower
angular resolution and SNR requirements of intensity mapping make it a much faster
and more economical survey technique [10].

Another problem with galaxy surveys is that only bright galaxies are probed, hence
being biased towards the bright end of the galaxy distribution. Line intensity mapping,
however, having an unbiased nature as it integrates both faint and bright sources, can
thus capture details lost in traditional galaxy surveys [10]. The difference between
a galaxy and intensity mapping survey is illustrated in Fig. 2.1. This figure nicely
illustrates how the intensity map of a simulated galaxy field follows the distribution of
discrete emitters and also includes all diffuse emission sources between the galaxies. One
can, however, see that the individual galaxies, even the brightest ones marked as red
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Figure 2.2: Illustration of the interplay between the different sources of line emission and
how they are correlated across different scales and parts of the local environment. Inside
ionizing halos, one can see how star-forming galaxies glow in CO and [CII], ionizing the
surrounding neutral intergalactic medium. The ionized regions within the halo are thus
traced by Lyα radiation, while the neutral surroundings emit 21 cm radiation. Figure
from Kovetz et al. [10]

dots, are themselves not resolved in the intensity map. Nevertheless, mapping out the
faint emission is especially important since it for instance is believed that much of the
interesting physics of baryonic matter, star formation and the processes of reionization
happened in the diffuse intergalactic medium (IGM) and low-mass galaxies at high
redshifts [17, 19, 20].

2.1.1 Science Goals

Now that we have discussed what line intensity mapping is, we will venture a little
deeper into the scientific goals intensity mapping aims to achieve. Much of the initial
efforts in line intensity mapping have been to observe the Epoch of Reionization and
Cosmic Dawn out to redshift z ∼ 10 [10]. However, because intensity mapping surveys
generally have a large field of view and are sensitive to even faint emission, there are
several other interesting goals line intensity mapping aims to achieve. These scientific
goals can roughly be divided into three sectors; the Epoch of Reionization; star and
galaxy assembly; as well as large-scale structure and cosmology [10].
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The Epoch of Reionization

As mentioned earlier, the Universe after recombination was largely cold and neutral.
However, we see evidence, in the form of a characteristic Gunn-Peterson trough in the
spectra of distant quasars as well as a smoothing of the CMB structures, that the
Universe changed to an ionized state at some point [21, 9].

Even though we know the Universe must at some point have been reionized, with
some constraints from CMB and quasar surveys, the detailed processes and history
causing the reionization are still largely unknown. This is where line intensity mapping
comes in.

It is believed that the Universe was progressively reionized by massive low-metallicity,
Pop III stars residing in faint dwarf galaxies [19]. Around these galaxies, the neutral
atomic hydrogen gas would be ionized to form ionization bubbles, as seen in Fig. 2.2.
The neutral hydrogen gas surrounding the ionized bubbles is mainly traced by 21 cm
radiation, while the ionized bubble and the galaxies inside it will be traced by the Lyα
line. Meanwhile, the galaxies in the center of the ionization region can be traced by
CO rotational lines and the [CII] fine-structure line of ionized carbon, lines which both
trace star-forming regions within galaxies.

By using intensity mapping surveys targeting each of these lines, a wide range of
scales and processes can be effectively probed. However, the real power of intensity map-
ping is to combine these individual surveys and cross-correlate them to reveal a detailed
interplay of ionizing star-forming galaxies and their surrounding Universe. Thereby the
details of how local astrophysical processes affect cosmological parameters can be better
understood [10].

Some examples of current and future intensity mapping surveys include HERA and
SKA-LOW, which are interferometric arrays that aim to trace 21 cm radiation at red-
shifts z = 5 − 27 and z = 3 − 7 respectively, with among others the goal of directly
imaging the reionization bubbles [22, 23, 10]. Other probes that survey [CII] and/or CO
lines at redshifts between z = 3.3 − 9.5 are for instance CCAT-prime ([CII]) [24, 25],
TIME ([CII] and CO) [26, 27] and CONCERTO ([CII] and CO) [28], which aim to
constrain the processes of how star formation affected reionization [10].

Star Formation and Galaxy Assembly

Another promising area of research is to constrain the star formation rate inside galaxies
around the time of peak star formation, also known as the Epoch of Galaxy Assembly
at redshift z ∼ 2− 3 [10].

Most of the knowledge of star formation at high redshift is based on the emission of
hot ionized gas in the interstellar medium (ISM) or direct starlight from bright galaxies.
Hence, the results from such galaxy surveys will be highly biased towards bright emission
sources. However, much of the star formation at high redshift is happening inside the
cold molecular clouds within relatively small galaxies. These are traced by CO and [CII]
emission too faint to be observed by galaxy surveys, but well within the capabilities of
an intensity mapping survey [10].
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By using a CO or [CII] intensity mapping experiment, the cumulative effect of a
large number of faint emitters on their surrounding can be used to constrain the star
formation rate density (SFRD) across different epochs. To connect the observed CO
intensity to some SFRD one can use empirical relations between CO luminosity and the
far-infrared (FIR) emission of a galaxy, which in turn is related to the SFRD [29].

Some noteworthy experiments targeting star formation and galaxy assembly ob-
serving CO lines are COPSS [30, 31], mmIME (CO and [CII]) [32, 10] and COMAP
[33, 34] at respective redshift ranges z = 2.3−3.3, z = 1−5 and z = 2.4−3.4. There is
also a mission on its way to launch a space telescope called SPHEREx targeting among
others, Hα, Hβ, [OII] and [OIII] as well as Lyα at redshifts z = 0.1− 5 and z = 5.2− 8
respectively [35, 36]. SPHEREx aims to investigate the galaxy formation history since
the Epoch of Reionization, star formation rates (SFR), large-scale structure and the
inflationary history of the Universe. A secondary goal of SPHEREx is to research the
origin of water in planetary systems [35, 10].

Large Scale Structure and Cosmology

As most of the baryonic matter in the Universe resides in faintly glowing gas tracing
the underlying dark matter field on large linear scales, an intensity mapping survey
could produce unbiased estimates of the large-scale dark matter distribution fast and
economically. This is mainly done by observing the 21 cm spin-flip transition of neutral
hydrogen in the IGM. Subsequently, the statistical information of the observed large-
scale structure can be used to constrain cosmological parameters [10].

In particular one can use the baryonic acoustic oscillations (BAO). The BAO are
remnants of sound waves that traveled through the primordial plasma at relativistic
speeds. Consider for instance a primordial density perturbation in the matter-energy
field, containing both photons, baryons and dark matter. As photons and baryons are
affected by pressure, while dark matter is not, the photos and baryons will be pushed
radially outwards from the central perturbation. Meanwhile, as the photon-baryon
plasma travels away from the perturbation, the dark matter part of the perturbation
stays behind as it is not affected by pressure [16, 13].

At recombination, when the photons decoupled from the baryons, the baryons froze
in as they rapidly became non-relativistic. The distance this wave traveled from the Big
Bang until decoupling is called the sound horizon. Due to the baryonic and dark matter
perturbation remnants coalescing after recombination, the enhanced baryon density at
the sound horizon scale led to a peak in the correlation function of matter [16].

Therefore, by mapping the large-scale matter field with intensity mapping, one could
potentially recover the BAO peak at redshifts and scales not yet probed by galaxy
surveys [10]. Using this, one can construct a powerful standard ruler calibrated at the
CMB to form an inverse distance ladder, as the BAO clustering will always remain at
a constant comoving scale of ∼ 100h−1Mpc [16, 37]. The result would be very powerful
in researching for instance the nature of dark energy and break degeneracies of existing
cosmological parameters at low and intermediate redshifts.

Telescopes targeting this epoch include for instance CHIME and HIRAX both tar-
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geting the 21 cm at redshifts z = 0.8 − 2.5, where they both aim to map out large HI
structures to investigate the expansion rate of the Universe and dark energy through
BAO [38, 39, 40, 41]. These two telescopes are also examples of experiments with
unexpected secondary science goals as it turns out that they are ideally built for real-
time analysis of the sky. Through their interferometric nature, transient events such as
pulsars and fast radio bursts may be detected effectively [42, 43, 39].

2.1.2 The Carbon Monoxide Emission Ladder

As the work presented in this thesis is a contribution to the COMAP experiment, we
will now take a closer look at why the CO emission lines, which COMAP targets, are
convenient to use. If one wants to gain more insight into star formation by using intensity
mapping, it is important to find a tracer for cold molecular gas in the ISM of a galaxy
or cluster where stars are believed to form [44]. The most common molecular gas inside
molecular clouds is molecular hydrogen, due to the large abundance of hydrogen in the
Universe. However, since molecular hydrogen is a symmetric molecule and therefore
does not have an electric dipole, it cannot emit rotational dipole radiation in the radio
or infrared bands. As such it has no low-energy excitations suitable for tracing large-
scale structure distributions [45]. Therefore one can instead use carbon monoxide (CO),
which is asymmetric and requires only a few kelvin to become excited in its rotational
states. Importantly, it is also the second most abundant molecule after H2 [45]. Since
H2 gas is, however, the most important for star formation due to its high abundance,
it is essential to relate the CO density to that of H2 when using a CO line as a tracer.
This can be done through the so-called X-factor which relates the CO luminosity to
the H2 column density [44].

The rotational energy of a two-atom molecule like CO is discretized and determined
by its angular momentum, which is given by the total angular momentum quantum
number J as

Erot =
1

2

J2

I
=
J(J + 1)~

2MR2
e

, (2.1)

since the absolute square of the angular momentum |J|2 = J(J+1)~ and the moment of
inertia of the molecule I = MR2 with the reduced mass of the two-atom system M and
the distance R between the atoms [46]. Thus, using the energy-frequency relation of a
photon, one can easily find that the energy difference between exited states corresponds
to an emitted photon of frequency

ν =
∆E(J)

h
=
Erot(J + 1)− Erot(J)

h
=

(J + 1)~
MR2

e

. (2.2)

The resulting emission lines hence have a frequency that grows linearly with J and is
hence sometimes called the CO emission ladder. The first two transitions J = 1 → 0
and J = 2 → 1, for instance, correspond to emission of ν0 = 115.27 GHz and ν0 =
230.54 GHz photons in the CO molecules rest frame [47]. Therefore it is possible to
design a telescope that can at the same time observe several different CO molecular
lines at different redshifts with a relatively narrow bandwidth.



2.2 The COMAP Experiment 17

In addition to the regular CO with a 12C isotope in it, there is another quite common
isotopologue of CO with a 13C isotope instead. Due to 13CO being slightly heavier than
the regular 12CO its emission line has a slightly lower frequency at about ν = 110 GHz
[48]. Thus, if we suspect a signal to come from 12CO gas, which usually has some
13CO mixed into it, will see a correlation peak between the two lines at a ∆ν0 = 5 GHz
separation (in the emitters rest frame) [10]. Such a clear correlation signature can be a
powerful tool when determining whether the observed signal is indeed from CO or from
some other line that is redshifted into the telescope’s bandwidth.

2.1.3 The Problems of Line Intensity Mapping

Until now we have mainly talked about the advantages of intensity mapping, however
as in all surveys, some problems need to be handled to achieve the scientific goals.
For instance, in intensity mapping the signal observed is generally weak and the data
are therefore highly noise-dominated. Other problems are strong Galactic continuum
foreground emissions contaminating the signal. These two problems we are, as we
will see later when describing the COMAP analysis pipeline, able to handle to some
degree. However, there are still challenges like emission from unwanted lines being
redshifted into the observed frequency bandwidth. For example if we aim to observe
[CII] at redshift z = 7 at an observed frequency of ν = 238 GHz with some survey,
we can get some signal from for instance CO(J = 3 → 2) and CO(J = 4 → 3) at
respectively redshifts z = 0.45 and 0.88 mixed in [10]. These interloper lines are hard
to separate from the target line and the most promising technique to separate them
is to cross-correlate the intensity mapping survey at hand with some external galaxy
redshift survey. Finally, it is worth mentioning that the complex, and often, non-linear
processes in the environment of the emitters at high redshift can lead to large modeling
uncertainties.

2.2 The COMAP Experiment

The CO Mapping Array Pathfinder (COMAP)1 experiment is a line intensity mapping
experiment aiming to map the large-scale distributions of star-forming galaxies in the
Epoch of Reionization and the Epoch of Galaxy Assembly. COMAP is a pathfinder
mission to demonstrate the feasibility and potential of wide-field intensity mapping and
will be used to test observational strategies and technological development [33].

The COMAP experiment is proposed to take place in three phases. COMAP Phase
I (Pathfinder) will consist of a single 26 − 34 GHz (the Ka-band) telescope targeting
the CO(J = 1 → 0) line at z = 2.4 − 3.4 and CO(J = 2 → 1) lines at z = 6 − 8.
Later, COMAP - Pathfinder will expand its operations to include an array of several
more Ka-band telescopes. The goal of COMAP - Pathfinder will be to constrain the

1The acronym’s name was changed to CO Mapping Array Project at the time of writing to prevent
naming redundancies in COMAP - Pathfinder (Phase I).
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star formation at the Epoch of Galaxy Assembly when the star formation rate peaked
[49].

The third phase, COMAP - EoR, will add another receiver sensitive to 12− 20 GHz
radiation in the Ku-band which will map out CO(J = 1 → 0) at z = 6 − 8 and will
cross-correlate its signal with that of the Ka-band receiver from the previous phases of
COMAP to obtain constraints on the power spectrum of star-forming galaxies at the
end of the Epoch of Reionization [34].

Figure 2.3: A drawing of the COMAP Phase I telescope. Courtesy of David Woody.

2.2.1 The COMAP - Pathfinder (Phase I) Instrument

The Telescope

The Phase I telescope of COMAP (see Fig. 2.3) is a modified 10.4 m Leighton telescope.
It was originally built for the Millimeter Array at Owens Valley Radio Observatory
(OVRO) in California. Due to high humidity in Owens Valley in summertime millimeter
observations become difficult. Therefore, in 2005 the telescope was moved to a higher
elevation where the air is dryer and became a part of the Combined Array for Research
in Millimeter-wave Astronomy (CARMA). In 2015 the telescope was moved back to
OVRO due to CARMA lacking funding, after which the telescope was retrofitted for
COMAP [50, 34].

The primary mirror is made up of a honeycomb structure of 84 hexagonal alu-
minum panels with a surface skin [51], while the 1.1 m secondary mirror is held up by
four secondary support legs. The backing structure of the primary mirror, preventing
deformations of the reflective surface under the influence of gravity or other external
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Table 2.1: The frequency coverage of the four sidebands of the COMAP - phase I
instrument.

Band Sideband Frequency (GHz)

A LSB 26− 28
USB 28− 30

B LSB 30− 32
USB 32− 34

factors, is made by steel tubing arranged in a lattice of equilateral triangles resulting in
a relatively lightweight telescope. Leighton designed the backing structure of the dish
in such a way that was highly homogenous and isotropic and deformed homologously
under its own weight [52, 53]. The telescope dish itself rests on an alt-azimuth mount.

The Receiver Chain

The receiver of the telescope is made up of an array of 19 feed-horns (sometimes referred
to as pixels), in addition to a blind feed that does not observe the sky, but can be used
for systematic error mitigation. Each of the 19 feed-horns has its own independent
detector chain, which we often just call "feed". A detector chain starts at a feed-horn
which gathers up incoming radiation, which is subsequently split into two orthogonal
circular polarizations by a polarizer. The current setup of the telescope uses a two-stage
polarizer for 15 of the feeds, while there are two feeds with a single-stage polarizer and
two without polarizers. As the incoming signal is very weak, the subsequent induced
power in the receivers has to be boosted in power by several orders of magnitude. This
is done in a low-noise amplifier (LNA) which is cooled to 15−18 K to minimize thermal
noise contamination [34].

The subsequent amplified signal is then down-converted by two down-converter mod-
ules (DCM1 and DCM2), the first of which down-shifts the 26 − 34 GHz frequency
bandwidth to a 2 − 10 GHz bandwidth. The second DCM further divides the signal
into two 4 GHz bands, A at 2− 6 GHz and B at 6− 10 GHz. These two bands are then
subsequently each quadrature down-converted by an IQ mixer into an "in-phase" (I)
and "quadrature" (Q) component. To split the signal into four sidebands (SB) with
2 GHz bandwidths and a resolution of about 2 MHz, the I and Q components of band
A and B are sent through two CASPER ROACH2 spectrometers. Each of the bands A
and B are then associated with each their "lower" (LSB) and "upper" (USB) sidebands
(see Table 2.1). Thereafter the data are stored to disk for further processing [34].

The Telescope Beam

When observing any source of electromagnetic radiation the received radiation will be
affected by the very receiver itself due to the wave nature of the radiation. Due to the
diffraction of the incoming waves on a telescope, the instrument will have a distinct
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Figure 2.4: A side-view example of a radiation pattern of some antenna with its main-
lobe along the optical axis or bore-sight (x-axis in the figure), as well as the sidelobes
and far-sidelobes caused by the diffraction of the incident radiation. Figure from ESA
[54].

pattern of sensitivity. For a parabolic antenna, like the one used in COMAP, the bulk
part of the received radiation comes from the region close to the optical axis (sometimes
referred to as the bore-sight); the so-called main beam or lobe [55]. The width of the
main beam is often given in terms of the full width at half maximum (FWHM), which
in the case of the COMAP instrument is ∼ 4.5′ [34].

However, the inevitable secondary maxima of the radiation pattern, called sidelobes,
result in a pickup of radiation at some angle from the main beam [55, 56]. This is
illustrated in Fig. 2.4. In the case of the COMAP telescope, there is an additional
pickup of radiation from four far-sidelobes. These four far-sidelobes are a result of
radiation entering the telescope sideways, hitting one or more of the four secondary
support legs and reflecting into the detector array. Since reflective angles stay constant
for different wavelengths the far-sidelobe intensity maxima will always point in the
same direction, while the received intensity changes for different wavelengths due to the
diffraction of the sidelobe radiation in the telescope [57].

An example of a calculated beam pattern of the COMAP telescope for feed 1 can be
seen in Fig. 2.5. Because the COMAP telescope is located at OVRO, where the terrain is
mountainous, the far-sidelobes will sweep across different parts of the terrain and result
in a ground pickup that can change in azimuth and elevation. Hence the telescope’s data
will, depending on the pointing and frequency observed, be contaminated by ground
pickup to some degree. The ground contamination of the signal is, therefore, one of the
most important systematic sources of error that are currently investigated.

2.2.2 Target Fields

There are several areas of the sky that are covered by the COMAP telescope. The three
main targeted fields are called CO2, CO6 and CO7 and are chosen to avoid bright 30
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Figure 2.5: The head-on view of the radiation pattern of feed 1 of the COMAP telescope
at 30 GHz. One can clearly see the four extended far-sidelobes due to reflection on the
secondary support legs at 90◦ separation. Figure by Lamb [58].

GHz foreground point sources, as seen in Fig. 2.6. They are also chosen to overlap with
the Hobby-Eberly Telescope Dark Energy eXperiment (HETDEX) Lyα galaxy survey
[34]. The HETDEX survey will map large-scale structures to constrain the nature of
dark energy [59]. Specifically, the CO7 field lies within the HETDEX spring field and the
CO2 field is located within the HETDEX fall field. The latter is also encompassing the
Spitzer/HETDEX Exploratory Large-Area(SHELA) survey area [34, 60]. The SHELA
survey will for a wide range of redshifts measure the stellar-mass-halo-mass relation for
galaxies [60]. The CO6 field was originally chosen to lie within the HETDEX spring
field, but due to changes of the HETDEX field boundaries CO6 no longer has any
overlap with the HETDEX spring field [34]. By cross-correlating the HETDEX galaxy
catalog with the CO intensity map of the COMAP survey the significance of detection
can be increased by a factor of two [18].

However, COMAP has some secondary science goals as well such as constraining
the spectrum of Galactic anomalous microwave emission (AME) at around 30 GHz.
Other fields observed are star-forming regions in the Andromeda Galaxy (M31), the
Westerhout 43 (W43) region of star formation and the Perseus molecular cloud as well
as a Galactic plane survey between longitudes 22.5◦ < l < 50◦. Lastly, it is worth
mentioning that sources emitting in radio such as Jupiter, supernova remnants like
Taurus A (Tau A), i.e. the Crab Nebula, and Cassiopeia A (Cas A) as well as the radio
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Figure 2.6: (Upper panel) The Planck LFI 30 GHz full-mission map (downloaded from
the Planck Legacy Archive, https://pla.esac.esa.int, [9]) with overlayed circles of
radius 2◦ that are centered on the three main CO fields COMAP is currently targeting.
(Lower panel) A 10◦ × 10◦ zoom-in on each of the three main CO science fields of
COMAP illustrated in the full-sky map. The fields CO2, CO6 and CO7 are centered at
Galactic coordinates (lon, lat) = (149.0◦,−60.3◦), (91.35◦, 53.22◦) and (150.64◦, 59.53◦)
respectively. These circles serve to illustrate the position of the fields with respect to
the Galactic plane, as well as the approximate coverage of the fields on the sky.

galaxy Cygnus A (Cyg A) are used for calibrations [34]. As these sources exhibit a
known behavior they can be used as extra-atmospheric control sources when calibrating
the telescope. We will come back to the calibration in more detail in Sec. 3.4.7.

https://pla.esac.esa.int
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2.2.3 Scanning Strategies

Next, we will consider how the COMAP telescope observes a target field while it drifts
across the sky. A typical scan starts with the COMAP telescope starting to scan at
the edge of a sky patch. Due to the rotation of the Earth, the target patch will drift
across the sky while the telescope scans across it. After the patch has completely drifted
through, the telescope re-points itself back to the leading edge of the patch to start a
new equivalent scan. Each of these scans take 5-10 min, while the collection of individual
scans (typically 3-11) are referred to as an observation. Each observation is assigned
with an observational identification (obsID) number [34].

We will here take a look at the three main scanning strategies that are or have
been used by the COMAP telescope at some point; Constant elevation scans (CES),
circular scans and Lissajous scans. The scanning path on the sky can in all three cases
be described in sidereal time by the harmonic motion in local telescope coordinates

az(t) = A sin(at+ φ) (2.3)
el(t) = B sin(bt), (2.4)

where the specific value of the parameters A and B describe the extent of the observed
field, while the ratio between a and b gives the shape of the scanning pattern and φ
determines the relative phase between azimuth az and elevation el [34].

In particular, there are three main scanning strategies used by COMAP. If b = 0
then the telescope will remain at constant elevation and only scan back and forth in
azimuth. Meanwhile, if one lets a = b and A = B, with a phase shift φ = 0, the
telescope will sweep across the sky in a circular pattern around a fixed point. The
circular scanning pattern may be altered to a Lissajous pattern by using different a and
b. Then the ratio a/b determines how many sweeps in azimuth are performed for every
elevation cycle [34].

Two main factors determine how good a given scanning strategy is; coverage effi-
ciency and cross-linking. The former of the two is important because a higher total
integration time per map pixel will result in a lower noise level and hence a higher
signal-to-noise ratio. The latter factor, cross-linking, refers to whether a pixel is re-
peatedly approached from different angles throughout the scan. Using the spatial and
temporal information of two different sweeps across a pixel, approaching from different
directions, makes it possible to separate the signal to observe from correlated 1/f -noise
(more on 1/f -noise in Sec. 3.1) [61]. Hence a poorly cross-linked map can look "stripy".
We will now take a look at the three main scanning strategies implemented by COMAP
and discuss their pros and cons.

Constant Elevation Scans

In a CES scan, the telescope will scan back and forth in azimuth while remaining
stationary in elevation. The path across the sky in azimuth and elevation as a function
of time can be seen in Fig. 2.7.
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The advantage of a CES scan is that it remains at the same elevation over the
duration of each scan. This makes the resulting measurement less prone to systematic
errors like correlations in elevation (e.g. varying amount of air along the line-of-sight
or ground pickup). As COMAP aims for very weak CO signatures the observed signal
is easily dominated by such systematics, which is a strong argument for using the CES
scan. A typical CES scan has better cross-linking than a circular scan, but worse cross-
linking than a Lissajous scan. However, the observed field on the sky will rotate with
respect to the alt-azimuth telescope mount, hence increasing the cross-linking somewhat
for longer observations. Other drawbacks are that a CES scan is generally less efficient
in covering the sky than for instance a Lissajous scan. Moreover, in a CES scan the
telescope must repeatedly accelerate back and forth in azimuth. This increases the
strain on the telescope’s motors and wears them down quicker [62].

Figure 2.7: (Right panel) Example of a constant elevation scanning path of the tele-
scope on the sky and (left panels) the corresponding azimuth and elevation coordinates
as a function of time. Courtesy of Stuart Harper.

Circular Scans

In a circular scan both the azimuth and elevation of the telescope will, as can be seen in
Fig. 2.8, move in a sinusoidal motion and trace out circles on the sky in local telescope
coordinates.

An advantage of such a scanning pattern is that the telescopes scanning speed can
remain at higher speeds, and hence trace out more of the sky. This also reduces the
wear of the telescope’s mechanical parts as there is less back and forth acceleration.
However, as the telescope now changes in azimuth and elevation it will be more prone
to correlations in these coordinates such as ground pickup by the far-sidelobes. Also,
the angle of approach on a given pixel tends to be more predictable than in a CES or
Lissajous scan, resulting in a less effective cross-linking [62].



2.2 The COMAP Experiment 25

Figure 2.8: (Right panel) Example of a circular scanning path of the telescope on
the sky and (left panels) the corresponding azimuth and elevation coordinates as a
function of time. Courtesy of Stuart Harper.

Figure 2.9: (Right panel) Example of a 3/4 Lissajous scanning path of the telescope
on the sky and (left panels) the corresponding azimuth and elevation coordinates as
a function of time. Courtesy of Stuart Harper.

Lissajous Scans

A Lissajous scan will trace out a pattern on the sky in which the harmonic motion in
azimuth and elevation have a different period. The resulting pattern across the sky for
a 3/4 (a = 3 and b = 4) Lissajous scan as well as the corresponding coordinate changes
can be seen in Fig. 2.9. Here it sweeps up and down three times in elevation for every
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four oscillations in azimuth.
The obvious advantage of such a Lissajous scan is that it has very efficient sky

coverage and cross-linking. That is because the telescope can spend a lot of time at
full speed, while each map pixel is approached from many different directions across
the span of an observation. The full-speed scanning will also reduce the forces on the
mount compared to CES scans. However, as the telescope changes in both azimuth
and elevation, it will also be affected easier by systematic effects correlated in telescope
coordinates, e.g. ground pickup [62]. This is a potential argument against using Lis-
sajous scans in COMAP, as a ground-based CO intensity mapping experiment is very
vulnerable to such systematics.



Chapter 3

The COMAP Data Analysis
Pipeline

When performing an astrophysical survey one often thinks about the remarkable efforts
of engineering that go into building and operating a high-precision instrument to gain
such remarkable insight into the nature of reality. However, a part of such a survey
that is of equal importance is the data analysis. For COMAP, the data gathered by the
telescope is highly contaminated by continuum foreground, noise and systematic errors
that dominate the wanted CO signal by orders of magnitude. Therefore, to make the
data usable for science we must remove those contaminants.

In the following section, we will therefore dive into some of the notable features
that contaminate and characterize the data. Thereafter we present an overview of the
filters and methods used in the analysis pipeline we are developing in the Oslo group of
COMAP to clean the data. A schematic structure of the pipeline can be seen in Fig.
3.1 to illustrate the order of steps from raw to cleaned data.

Level 1

Observation
db

Maps

Parametersscan_detect

l2gen comap2ps

accept_mod Accept list

tod2comapLevel 2

Figure 3.1: The basic structure of the analysis pipeline from the raw level 1 (green box,
representing data produced outside of the Oslo group) and how it is processed by the
various codes (white ellipses) producing intermediate and final products (purple boxes).
Courtesy of Marie Foss.
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3.1 The Data Modeling and Noise Properties

When the telescope is gathering data by scanning across the sky, it receives the observed
electromagnetic radiation in the detector. Once the radiation hits the feeds it induces
an electrical impulse which is amplified in the telescope’s electronics. The output power
per frequency bandwidth is then given by

P = GkB∆νTsys, (3.1)

where kB is the Boltzmann constant, G is the so-called gain, ∆ν is the frequency
bandwidth used, and Tsys is the system temperature [63]. The gain G quantifies how
much the electrical signal, induced in the detector, is amplified before it is registered,
while the system temperature Tsys quantifies how much thermal noise is in the data. The
thermal noise in the data is distributed according to a Gaussian distribution N (0, σ0),
where the standard deviation is given by the radiometer equation [63]

σ0 =
Tsys√
τ∆ν

. (3.2)

Here the resolution of the time and frequency samples are given respectively as τ and
∆ν. Furthermore, the system temperature consists of the temperature of all sources
that contribute to white noise in the system [63] and is in our case written as

Tsys =
∑
i

Ti = Trec + Tatm + Tcmbe
−τ + Tforgre

−τ + Tground + Tsrce
−τ , (3.3)

i.e. the sum of the receiver, atmosphere, CMB, foreground, ground and CO line emission
source temperatures respectively [34]. The optical depth of the atmosphere is given by
τ , which quantifies the amount of air that attenuates the received radiation between
entering the atmosphere and hitting the detector. Therefore all contributions to the
system temperature that originate outside the atmosphere will be damped by a factor
of e−τ . However, as the atmosphere is also a thermal emitter itself, the atmosphere will
contribure with Tatm to the system temperature, in addition to its attenuating effect on
the extra-atmospheric sources.

We know from CMB measurements that the CMB has a nearly perfect black-
body spectrum with temperature TCMB ≈ 2.7255 K [64] with only small fluctuations
∆T/T ∼ 10−5. The foreground term Tforgr consists mainly of the signal from continuum
emission within our own galaxy. Meanwhile, the Tsrc term represents the brightness
temperature of some CO emitter, for example, a faint galaxy cluster at high redshift.
As described earlier, the telescope beam also has a far-sidelobe pickup, that when hit-
ting the ground will contribute to the signal with its thermal radiation. Even though
the ground pickup may be modeled by simple black body radiation, the frequency de-
pendence of the far-sidelobes will cause a different degree of ground contamination at
different frequencies. Due to the complexity of the ground profile and the frequency
dependence of the sidelobes, the ground pickup might therefore be hard to model.

The receiver temperature Trec ∼ 35− 45K [34] cannot directly be thought of as the
"thermometer" temperature of the receiver, but rather as the temperature equivalent
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of the white noise added by the detector alone. Nevertheless, because the receiver
temperature is determined by the number of thermal electrons in the system it can be
inferred by the thermal temperature of the detector. To minimize this contamination
the electronics of the telescope are therefore cooled down in the cryostat.

The uncorrelated thermal noise has the nice property of averaging out in the large
sample limit. Hence the way to reduce the white noise is to simply observe longer.
Because we not only have white noise in our data, but also correlated noise, we cannot
estimate the level of white noise σ0 by simply taking the standard deviation of the data.
Instead, we need to use an approach in which the standard deviation of the white noise
is estimated locally between two neighboring data points, giving [34]

σ0 =

√
Var(di − di−1)

2
. (3.4)

In the COMAP data there are primarily three known sources of correlated noise; gain
fluctuations within the low noise amplifier, temperature fluctuations in the atmosphere
and standing waves between the primary and secondary reflector of the telescope as well
as inside the telescope electronics. These correlated noise sources all exhibit roughly
a characteristic 1/f spectrum in the temporal Fourier domain, i.e. where f is the
frequency of for example the scanning frequency of order Hz (as opposed to the frequency
domain characterizing the electromagnetic radiation received, being in the GHz regime).
Figure 3.2 shows this characteristic 1/f spectrum at various stages of the pipeline. It
is, therefore, a good approximation to model the correlated noise as

N(f) = σ2
0

(
1 +

(
f

fknee

)α)
, (3.5)

where σ2
0 is the aforementioned white noise level, while fknee quantifies the frequency

f at which the correlated noise level equals the white noise level. The parameter α
quantifies the slope of the power spectral density in the low-f region where the 1/f
noise is dominant [34]. Sources of noise like atmospheric temperature fluctuations or
standing waves are not only correlated in time, but also in frequency and across different
feeds. The correlated noise will therefore not simply integrate down in the limit large
sample sizes, and leave artifacts in the signal that can affect the final scientific analysis
negatively. However, while correlated noise and unwanted contaminants are highly
correlated over frequencies and feeds, the wanted CO signal is very weak and is not
expected to span a large volume in pixel-frequency space. This is the key to separate
the two, as we will see in Sec. 3.4, to obtain a cleaned dataset usable for scientific
parameter estimates.

Now that we have introduced the contributions that go in to form the signal received
by the COMAP telescope we can look at how to model the time stream of data. As
described by [34] the time-ordered data (TOD) can be modelled as

diν(t) = 〈diν〉(1 + δiG)[1 + P icel(scont + sνCO) + P itelsground + ncorr + nν,iw ], (3.6)

where the raw TOD is given by diν(t) at time t, feed i and frequency channel ν. The
running mean of the time stream is here denoted as 〈diν〉 containing all the modes of the
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Figure 3.2: The power spectral density of the TOD at different stages of the pipeline,
as well as the best fit 1/f spectra corresponding to the correlated noise components,
while white noise only would yield flat power spectra. Note the spike at ∼ 0.1 Hz in
the data after normalization, but before eliminating the pointing template (orange),
corresponding to the correlations in the TOD induced by the pointing of the telescope.
Courtesy of Jonas Lunde.

TOD of a long timescale such as atmospheric temperature fluctuations or slowly varying
gain fluctuations. The small scale gain fluctuations characteristic to each feed are given
by δiG, while the actual signal contribution from astrophysical sources is given by scont

and sνCO. These represent the continuum foreground and extragalactic CO signal’s map
respectively, which are spread from the pixel domain to the temporal domain by the
pointing matrix P icel (more on that in the mapmaking section) in celestial coordinates.
Similarly the signal contribution from ground pick-up is given by the map sground which
is projected into the time domain by the telescope coordinate pointing matrix P itel.
Lastly, the raw TOD is also dependent on the correlated and uncorrelated noise sources,
ncorr and nν,iw , as introduced earlier.

3.2 Level 1 Data

The data that is gathered by the COMAP telescope consists of a time stream of data
often referred to as time-ordered data or TOD. Hence a raw TOD consists of an array of
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time samples taken by each detector, in each sideband and each frequency channel, and
are thus best represented by a nsamp×nfeed×nsb×nfreq matrix. Here nsamp, nfeed, nsb

and nfreq are the number of time samples, feeds, frequency sidebands and channels per
sideband. This TOD dataset for a single obsID, along with its pointing information for
each feed (as the feeds do not overlap, they have their separate pointing information),
diagnostic information and housekeeping data, make up a so-called level 1 file. The
level 1 files are of the HDF5 format, made for efficient storage of large multidimensional
hierarchical datasets. Hence all the necessary information needed for further analysis is
neatly stored in one place.

An example of how the raw data of all feeds from several scans look like can be seen
in Fig. 3.3. The data from the telescope are thereafter sent to Caltech, where level 1
files are assembled for compact storage. Subsequently, the level 1 file is transferred to
Oslo where further analysis is done to obtain cleaned and calibrated level 2 data.
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Figure 3.3: The TOD corresponding to all 19 feeds for several scans of two different
obsIDs; (left) one where the data are gathered under good conditions, and (right)
one that is contaminated by bad weather. The data gathered under good weather
conditions is dominated by instrumental noise and systematics, while the data from the
bad weather observation clearly shows strong common-mode contamination at all feeds.
Courtesy of Håvard Tveit Ihle.

3.3 Scan Detect

The first step we perform in the Oslo analysis pipeline is to read in the raw level 1 data
sent from Caltech, which is then fed into the scan_detect code. The scan_detect
script’s task is to go through the raw TOD and divide it into individual scans between
each re-pointing of the telescope. As mentioned in Sec. 2.2.3 each obsID consists of
several 3-10 minutes long scans. Each time the observed sky field has drifted by, due to
the rotation of the Earth, the telescope must re-point itself. The data gathered during
re-pointing is usually not used as it does not contain any information valuable for the
scientific goal.

After dividing the raw level 1 data into a series of individual scans, a runlist is
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generated. The runlist is a separate file listing all obsID and their constituent scans.
For each obsID, the individual scans making it up are provided, along with the scanning
strategy used, the time as the Modified Julian Date (MJD) of when the scans start and
end as well as some pointing information. The runlists are usually generated according
to each observed field, i.e. only one source per runlist [34].

3.4 Level 2 Data

After we have identified each scan from the generated runlist we can process the data
through the level 2 file generator in the l2gen code. The main purpose of l2gen is to
clean the raw data of correlated noise and continuum foreground emission and perform
the signal calibration of the data.

The very first step in generating level 2 data is to read in all the data provided by a
runlist. Each level 1 file listed in the runlist, corresponding to a single obsID, is assigned
to an MPI process and the subsequent analysis of the data is then performed separately
on each obsID. The scans in each obsID are then in turn assigned to each their parallel
process, and the following analysis of the data in l2gen is performed separately on each
scan.

In the following we describe each of the steps we perform in l2gen to go from the
raw level 1 data to obtain the cleaned level 2 data that is ready for mapmaking.

3.4.1 The Ambient Load

Because the raw data from the telescope is in digital units (DU), but we want to do
the final scientific analysis in units of brightness temperature, we need to do a calib-
ration. However, as the cleaning of the data is done before the calibration step (see
Sec. 3.4.7) we need to extract the information needed for calibration before introducing
the dimensionless units used in the filtering of the TOD. For calibration, we need the
ambient temperature of the telescope which is easily estimated using thermometers on
the instrument. In addition, we need the corresponding ambient load measurement of
the telescope, being the value of the TOD (in DU) when the telescope observes some-
thing of ambient temperature. To do this a disk-shaped absorber, called the calibration
vane, is rotated in front of the telescope feeds. As the vane has the same temperature
as the surrounding environment its thermal radiation registered by the telescope serves
as our estimate of the ambient load measurement. For each obsID two measurements
of the calibration vane are performed, respectively at the very beginning and end of the
obsID. Two such ambient load measurements are illustrated in Fig. 3.4. As we will see
in the later calibration section 3.20, we can estimate the ambient load measurements
and temperatures at any given time by interpolating between the two measurements.

3.4.2 Normalization

The very first method of cleaning we apply to the raw data is the normalization step.
Many of the systematics and noise artifacts in the raw data show a strong correla-
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Figure 3.4: The two ambient load measurements at the beginning and end of an ob-
sID when the calibration vane is rotated in front of the detector feeds. Courtesy of
Jonas Lunde.

tion across frequencies. To remove these correlated artifacts we thus ideally want the
frequency channels to be directly comparable. However, as the telescope electronics
boost the signal somewhat differently for each frequency the TOD power level of each
frequency needs to be normalized to the same level for them to be comparable. By
flattening out the instrumental bandpass we also eliminate unwanted long-timescale
structures like atmospheric temperature fluctuations, slowly varying gain variations or
large astrophysical foreground structures [34].

To normalize the TOD it is divided by its running mean d̄, which corresponds to
the lowpass filtered TOD, found by applying a weight function in Fourier space. The
weight function, in this case, is given as

W =

[
1 +

(
f

fknee

)α]−1

, (3.7)

where f is the temporal frequency of the TOD and the knee frequency is usually fknee =
0.01 Hz. Thus, fknee corresponds to a slightly lower temporal frequency than that of
the scanning of the telescope at roughly 0.1 Hz, below which we want to remove the
corresponding large-scale structures. The slope of the cut-off is given by the parameter
α and is in our case equal to α = 4 [34]. The lowpass filtered TOD is then simply
represented as

d̄ = F−1[F [d] ·W ], (3.8)

in which F represents the Fourier transform from the time domain to temporal frequency
space. Subsequently, we divide the data d by its lowpass filtered equivalent and subtract
unity [34];

dnorm =
d

d̄
− 1. (3.9)

This step effectively removes all running modes of a large temporal scale 〈diν〉 from
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Eq. (3.6), leaving the small scale gain fluctuations, pointing correlations and noise
contributions for later filters to deal with.

In the first row of Fig. 3.5 it is illustrated how the normalization removes the large
running modes, leaving oscillations caused by telescope pointing as well as noise.

3.4.3 Removing the Pointing Template

Because COMAP is a ground-based experiment the signal we receive will always to
some extent be affected by the environment of the telescope. Most noticeable in that
regard is the alteration of astrophysical signals by the atmospheric attenuation, as well
as ground pickup by the far-sidelobes of the telescope.

When pointing to low elevations the astrophysical signal has to travel through more
air to reach the telescope than when observing at high elevations, resulting in a higher
attenuation of the signal. Thus if the telescope uses a scanning strategy like Lissajous,
where it changes its elevation over time, the TOD will show an oscillatory pattern. The
atmospheric attenuation can, if the atmosphere is assumed to be roughly homogenous,
be described by the optical depth τ at elevation el by [65]

τ =
τ0

sin el
. (3.10)

The optical depth of the atmosphere when the telescope points directly upwards to the
zenith, i.e. el = 90◦, is defined to be τ0.

In addition to the oscillations in the time stream stemming from the change in
elevation pointing, there are also signs that there are some correlations in the TOD
with changes in azimuth [34]. The origins from these are not fully understood but
could originate from for instance ground pick-up by the far-sidelobes of the telescope,
as described earlier in Sec. 2.2.1.

Using Eq. (3.10) to model the elevation dependent extinction and a low order
polynomial in azimuth we get the elevation template

d =
g

sin el(t)
+ αaz(t) + β + n (3.11)

where g, α and β are constants and n represents Gaussian noise. The time dependent
pointing information of the telescopes is given by the elevation el(t) and the azimuth
az(t) measured in local telescope coordinates [34]. Subsequently, the model with best-fit
parameters is subtracted from the time stream so that

dnew = dold −
g

sin el(t)
− αaz(t)−

〈
g

sin el(t)
+ αaz(t)

〉
, (3.12)

where the average of the template is also subtracted to remove the contribution of the
mean atmospheric effects over the time of the scan [34]. The fitting and subsequent
removal of the pointing template is done separately on each frequency channel.

The removal of the pointing template from the TOD is illustrated in the second row
of Fig. 3.5, showing a clear elimination in the periodic motion stemming from elevation
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changes. Correspondingly in Fig. 3.2, showing the TOD’s power spectral density, the
spike at ∼ 0.1 Hz corresponding to the telescopes scanning period of ∼ 10 s, is effectively
removed after subtracting the pointing template.
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Figure 3.5: Before and after (respectively in the left and right columns of panels) view
examples of the TOD at different stages in the analysis pipeline. In the normalization
step (first row), we see how the division by the running mean (in red) mostly flattens
the TOD, leaving only pointing oscillations and noise. After fitting and removing the
pointing template, (second row) the data are even closer to pure noise. However, there
are still some correlated noise artifacts left, which are quite effectively removed by the
polyfilter (third row). The little that is left of correlated residuals is then taken out
by the PCA filter (fourth row), leaving mostly white noise. Courtesy of Jonas Lunde.
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3.4.4 Polynomial Filter

After having normalized and removed the pointing template from the data it already
looks a lot cleaner. Nevertheless, the TOD is still contaminated by a lot of correlated
noise such as 1/f noise from electronic gain fluctuations and atmospheric turbulence,
as we see by the TOD’s power spectral density in Fig. 3.2. In addition continuum
foregrounds like the CMB, synchrotron, free-free and spinning dust components (see
Fig. 2.6 for illustration of the 30 GHz foreground level) will be contained in the signal
and will if not removed, totally obscuring the wanted CO signal. As mentioned, these
unwanted frequency correlated modes do not average out over time and must hence be
removed.

The key idea of removing these contaminants is to use that they are both highly
correlated across frequencies within a sideband and slowly varying in frequency space.
Thus we can fit a low order polynomial

dν = c0 + c1ν + c2ν
2 · · · (3.13)

with constants ci, to the data dν in frequency space ν at each individual time step to
model the common modes. Usually the polynomial used is of first degree to allow a
good fit of for instance the spectral distribution of continuum foreground [34, 9]. To
get rid of the common frequency modes across each sideband we remove the best-fit
polynomial over a sideband from the TOD giving

dnew
ν = dold

ν − c0 − c1ν − c2ν
2 − · · · . (3.14)

Although the idea of this so-called polynomial filer (polyfilter) is very simple, it is
powerful when removing the common-mode noise [34]. The effect of the polyfilter is
illustrated in the third row of Fig. 3.5 as a before and after view, where the output time
stream looks close to uncorrelated noise with little structure. Similarly, we see in Fig.
3.2, that the polyfilter removes a significant portion of the 1/f noise from the TOD’s
power spectral density.

3.4.5 Principal Component Analysis

Although the TOD at this stage should be fairly well cleaned some signal contaminants
like bad weather, or artifacts we were unable to remove with the previous filters, may
still be left. These often span the whole focal plane of the telescope, i.e. over multiple
feeds, and extend over several frequency channels. Meanwhile, the CO signal we want
to measure is expected to only weekly correlate between feeds, as well as spanning
only small frequency intervals. This difference in structure is the key to separating the
remaining contaminants from the CO signal.

A principal component analysis (PCA) is exactly what we need to separate the
correlated common modes that have survived the previous filters. The idea behind a
PCA is to decompose the data in some parameter space into its components of most
spread, i.e. most variance. These components called the principal components (PCs)
or PCA modes, corresponding to the eigenvectors of the covariance matrix of the data,
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with the eigenvector of highest variance pointing in the direction of most spread. This
is illustrated on a simple 2D Gaussian mock dataset in some arbitrary parameter space
in Fig. 3.6.

In the case of COMAP our data can be similarly decomposed in the parameter space
of feeds and frequencies, and subsequently cleaned by eliminating the leading PCA
components that explain the most information in the signal. Because the CO signal
will cause little spread in the data in frequency-feed space, compared to for instance a
cloud causing weather spikes in all feeds and frequencies, it will be left unaffected when
removing the leading PCA components. A somewhat extreme example of such weather
spikes in the TOD of all feeds is seen in the right plot in Fig. 3.3.
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First PCA mode
After removing first PCA mode

Figure 3.6: A mock example of a simple PCA analysis on a dataset that follows a
two-variate Gaussian distribution (seen as blue dots) in an arbitrary P1−P2 parameter
space. The dataset has two directions of variance, as marked by the two unit vectors.
The two corresponding PCA modes are seen as gray and orange dots respectively.
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Mathematically we need to quantify the spread in the data in frequency-feed space.
This can be done by first organizing the data in a data matrix

D =

 D11 · · · D1nsamp

...
. . .

...
Dnfreq1 · · · Dnfreqnsamp

 (3.15)

in which the rows correspond to frequencies and feeds, while the columns contain time
samples. More precisely we sort all channels of all sidebands for all detectors along the
first axis of the matrix, making D a nfreq×nsamp matrix, where nfreq = nfeeds ·nsidebands ·
nchannels = 19 · 4 · 1024 [34].

Next, we find the covariance matrix C of this data matrix by taking the outer
product between D with itself [34];

C ∝ DTD. (3.16)

The eigenvectors vk of this covariance matrix with the largest associated eigenvalues
λk will correspond to the direction in frequency-feed space with the largest variance.
To find out how much of the TOD points in the direction of some eigenvector vk we
simply project the TOD at some frequency channel ν into the frequency-feed sub-space
spanned by the eigenvector to obtain the PCA amplitude

aνk = dν · vk =

nsamp∑
i=1

diνv
i
k. (3.17)

The TOD’s PCA mode pointing in the direction of vk is subsequently given by

dkν = aνkvk. (3.18)

Finally, to eliminate the component that explains the most correlation in the data we
can simply subtract the leading PCA components (normally ncomp = 4) from the TOD
frequency-wise in each feed i, giving [34]

dν,inew = dν,iold −
ncomp∑
k=1

aν,ik vk. (3.19)

As shown in Fig. 3.2, removing the leading PCA modes from the TOD even further
flattens its power spectral density towards that of white noise. The corresponding
change of the data in the time domain is illustrated in the last row of Fig. 3.5. As
this, however, is also an example of relatively clean data the power of the PCA filter
does not show that clearly. If we instead look at Fig. 3.7 we see that even data that
are contaminated to a large degree by bad weather and/or standing waves becomes
remarkably clean after removing the leading PCA components.
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Figure 3.7: Before and after view of the effect of the PCA filter on a TOD that is highly
contaminated by bad weather and/or standing waves. Courtesy of Jonas Lunde.

3.4.6 Frequency Masking

Up until this stage of the pipeline, the raw data have been through four different filters
that target each of their artifact that must be removed to obtain scientifically viable
results. Even still, at this stage, there can still be some frequency channels that do
not behave as well as we would like. These channels we would like to mask out, to not
contaminate the final cleaned data with unwanted systematic effects.

We do this by first applying the poly- and PCA filters on a copy of the data, and
subsequently identify bad channels based on their correlation structure. We then apply
the mask of bad channels to the original data, and thereafter poly- and PCA filter the
data again. The idea behind this is that deriving a mask of bad channels of somewhat
cleaned data is more effective on the raw data than if the mask was made based on the
uncleaned data [34].

When identifying bad channels we use two main approaches. In the first approach,
we utilize the fact that we can quantify the expected correlation structure of good data.
Specifically, since we know that the correlation between two independent Gaussian
variables is proportional to 1√

nsamp
, for a (large) number of samples nsamp from which

the correlations are computed. However, we may also see some known correlations
between frequencies induced by the polyfilter. Channels that deviate more than 5σ
from the expected white noise and polyfilter correlations are then masked out. This
approach is best if we consider longer scans where nsamp is large and deviations from
the expected correlation are easier to estimate. This in turn makes it difficult to state
a threshold for when to mask away a channel, as it depends on the length of the time
stream [34].

In the second approach, we compute several diagnostics for each frequency channel,
such as the average correlation of a channel to all the others on the same sideband.
Thereafter the diagnostics from different frequencies are compared. If any significant
outliers are found, we simply mask these out. However, this also brings a disadvantage,
since a set of too many bad channels might not show any significant relative deviations
that are to be masked out [34].

Another thing that we look for, and often masked out, are channels on the edges
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of each frequency sidebands. These frequencies behave especially badly due to strong
correlations between channels at the edges of different sidebands, caused by an aliasing
effect. Hence we mask out these "edge correlations" of the sidebands [34].

3.4.7 Calibration

Ever since we normalized the raw level 1 data by its running mean, as described in Sec.
3.4.2, the data are on a dimensionless form. However, we want the units of the data to
be in units of brightness temperature. To obtain the right units we can simply multiply
the data by the system temperature Tsys. Meanwhile, as the system temperature is
generally different for each frequency, we must do this separately for each channel so
that the TOD in temperature units becomes [34]

d(ν, t)
∣∣
K

= d(ν, t)〈Tsys(ν, t)〉 (3.20)

Therefore we must find the system temperature Tsys to perform the calibration.
Fortunately, we have the measurements of the ambient load from Sec. 3.4.1 which we

can use to estimate the unknown system temperature. From Eq. (3.1) we see that the
power output of the telescope P is proportional to the system temperature Tsys, with a
constant of proportionality given by G̃ = GkB∆ν. Hence, if we have measurements of P
at two different temperatures, where one of the temperatures is known, we can estimate
the unknown one quite easily. The observed object of known temperature should ideally
be outside the atmosphere to make it as comparable to the actual CO signal as possible,
being subject to the altering effects of the atmosphere in the same way.

However, putting something of known temperature into space is, for obvious reason,
highly impractical. Nevertheless, one could in theory use a calibration source with
known properties such as Jupiter or Tau A. These sources are, however, not always
visible and can hence not always be used. Luckily we can use a few assumptions to
circumvent this problem. It turns out that we can use the calibration vane measurements
as an approximation for having a measurement of something with ambient temperature
in space. That is because both the atmosphere and the calibration vane can be assumed
to have the same ambient temperature Tamb, thus emitting the same thermal radiation.
Because the vane and the air together are an optically thick system, the ordering of
the vane and the air becomes irrelevant for the measured telescope output. Of course,
the atmosphere having a temperature gradient induced a small error, which however is
assumed to be quite small.

Now knowing this we can perform the Tsys measurement by comparing the power
output of the telescope, Pcold and Pamb, when observing the cold sky and the ambient
load respectively. These two power measurements then simply correspond to Eq. (3.1)
respectively evaluated at the corresponding cold sky and ambient system temperatures

Tsys = Trec + Tatm + e−τTCMB (3.21)

T amb
sys = Trec + Tamb. (3.22)

The atmosphere, being both an emitter and absorber, removes and adds equally
much of the calibration vane’s signal if it were in space. This can be reformulated
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mathematically as Tatm = (1 − e−τ )Tamb. Using this knowledge we can find Tsys by
dividing Pcold by Pamb, eliminating the proportionality constant G̃, and subsequently
solve the resulting equation to give the effective system temperature of the telescope

T eff
sys ≡ eτTsys =

Tamb − TCMB
Pamb
Pcold

− 1
. (3.23)

This relation being a function of time, however, requires us to know both Pcold and Pamb

at the same time. But because we cannot observe the sky and the calibration vane at
the same time we must use the interpolated value for the ambient load measurements
Pamb between the measurements at the beginning and end of each obsID. We therefore
interpolate the ambient load measurement and corresponding ambient temperature to
the time t of each scan so that

Pamb(t) =
(t− t0)P 1

amb + (t1 − t)P 0
amb

t1 − t0
(3.24)

Tamb(t) =
(t− t0)T 1

amb + (t1 − t)T 0
amb

t1 − t0
, (3.25)

where P iamb, T
i
amb and ti are the power output, temperature and time of each ambient

load measurement. Now that we have estimates for both the cold and ambient load
measurements, Pcold and Pamb at the time t of each scan, as well as the corresponding
temperatures Tcold and Tamb, we can finally perform the calibration in Eq. (3.20).

3.4.8 Decimation

The last step in generating the level 2 data is to reduce the number of frequency channels
in each sideband in the cleaned data. We do this because we simply do not need such a
high resolution along the line-of-sight and because the storage requirements and further
analysis time is greatly reduced.

The down-sampling of the frequency grid is simply done by coadding a number of
adjacent TOD points in frequency. The process of coadding refers to the noise weighted
arithmetic average of a number of elements. In the analysis pipeline we normally coadd
ndec = 16 neighboring TOD values of the high-resolution channels m to a single low-
resolution TOD value [34]

dlow
i =

1∑
mwm

indec∑
m=(i−1)ndec+1

wmd
high
m (3.26)

at the downgraded frequency channel i. The noise weighting is done through the inverse
variance weights wm = 1

σ2
m

of the high-resolution grid. To ensure that masked out
frequency channels in the high-resolution grid do not contaminate the resulting low-
resolution grid, we set their weights to zero [34].
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3.4.9 Highpass Filtering

Sometimes the filtered level 2 data have some residual long-timescale modes that can be
removed by highpass filtering the TOD before making maps. In the current setup of the
analysis pipeline, we apply the highpass filter by transforming the TOD to frequency
space and then cut off the data at a given cut-off frequency before inverse transforming
back to the time domain. This step will remove some of the larger temporal modes
from the TOD and may hence save potentially bad data at the cost of some large-scale
signal loss. Currently, we use a cut-off frequency of 0.02 Hz as the default highpass cut.

3.5 Mapmaking

Now that we have seen how the raw level 1 data are cleaned of correlations it is time
for the next step in our analysis. Because our ultimate goal in the COMAP experiment
is to use the gathered data to estimate astrophysical and cosmological parameters from
its statistical properties, we want to perform a likelihood (or posterior probability)
analysis on the data in parameter space. Assuming Gaussian parameter distributions
we, therefore, have to compute matrix determinants of nsamp×nsamp-covariance matrices
at many different points in parameter space if the analysis is directly done on the time
samples [66]. Now, in our case, a typical obsID has of the order nsamp ∼ 105 samples in
time per frequency per detector alone. Thus, computing a determinant of the resulting
covariance matrix, scaling as O(n3

samp), quickly becomes completely unpractical [66].
We must therefore perform a data reduction, without losing any statistically valuable

information, to ease the later scientific parameter estimations. To do this we want to
project the TOD of each frequency and feed into an image of the observed sky patch.
As we in COMAP typically have maps of npix = 120 × 120 samples per frequency per
detector, regardless of the length of the time stream, the data volume is drastically
reduced.

The conversion of the data from the time to the pixel domain is done via a linear
transformation;

m ≈ m̂ = Wd, (3.27)

in which the map m is estimated by the vector of pixels m̂ found by applying a npx ×
nsamp matrix W to the TOD vector d [66]. The exact form of the projection matrix W
will be dependent on the mapmaking scheme used, which we in the following will see
is dependent on the noise properties of the TOD. We will in the following subsection
consider the methods we use for making maps in the tod2comap script in our current
COMAP pipeline and will discuss a possible extension to the current framework in the
methods (see Part II).

3.5.1 Maximum Likelihood Estimates

When choosing a mapmaking scheme we want to use a method that can compress the
information in the TOD to a much smaller data volume and at the same time lose as little
as possible of the cosmologically and astrophysically valuable information. A method
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often used for this is a maximum likelihood (ML) estimate. Using an ML-estimate
will create unbiased minimum-variance maps from a TOD with both correlated and
uncorrelated noise, and will hence form the basis for all mapmaking schemes considered
in this thesis. Maximum likelihood estimates are very popular because in the limit
of large amounts of data the ML-estimate will saturate the Cramér-Rao bound, thus
becoming asymptotically the best-unbiased-estimator of the map [67].

We will therefore have a look at how to arrive at the ML-estimate of a map. We
first assume the TOD can be written as

d = Pm + n, (3.28)

consisting of the astrophysical signal map m, with length npix which is then projected
from the pixel domain to the time domain by the pointing matrix P [68]. The pointing
matrix is a nsamp×npx matrix containing ones for each pixel i that is hit by the telescope
beam at a time t, and zero otherwise. The random noise n that is added to the signal
can in general contain both white uncorrelated noise and correlated components.

As often is the case we can assume that the noise n is distributed according to a
Gaussian likelihood

L ≡ P (d|m) =
1√

2π det N
exp

(
−1

2
nTN−1n

)
, (3.29)

where the time-domain covariance matrix N = 〈nnT 〉, as the expectation value of the
noise, 〈n〉 = 0, vanishes [66]. Assuming white noise only, the covariance matrix will be
diagonal, however, we can generalize this case to also include correlated noise by either
allowing N to have off-diagonal elements, or by including a prior to the likelihood. In
the latter case the ML-estimate becomes a maximum posterior (MP) estimate.

If the data model in Eq. (3.28) is then solved for the noise n and subsequently
inserted into the likelihood function of Eq. (3.29) we obtain the log-likelihood

L ≡ logL ∝ −1

2
(d−Pm)TN−1(d−Pm). (3.30)

Maximizing the likelihood (3.29) is then equivalent to maximizing the log-likelihood Eq.
(3.30) as a logarithm is a monotonically increasing function.

We can then find the ML-estimate of the map m̂ that maximizes the log-likelihood
by letting the gradient of L with respect to the map m vanish, i.e.

∇mL =
dL
dm

= PTN−1(d−Pm) + (d−Pm)TN−1P = 0. (3.31)

Because N−1 is symmetric we get (d−Pm)TN−1P = (PTN−1(d−Pm))T . Therefore
Eq. (3.31) is fulfilled only if

PTN−1(d−Pm̂) = 0. (3.32)

Solving for the ML-estimate m̂ yields the so-called mapmaker equation

m̂ = (PTN−1P)−1PTN−1d, (3.33)
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which is on the form of Eq. (3.27) with W = (PTN−1P)−1PTN−1.
The map found by this general form of an ML-estimate is applicable for a general

case with correlated noise as this is taken into account by the covariance matrix N.
Nevertheless, this method trades generality for cost, as it is expensive to compute in-
verses of the covariance matrix when N has off-diagonal elements. Luckily things get
simpler in the case of uncorrelated white noise, in which case the covariance matrix is
simply represented by a diagonal matrix that is trivial to invert.

3.5.2 Noise Weighted Binning

Because we manage to remove most correlated artifacts from the raw data using l2gen
we can assume that the level 2 TOD is close to white noise [34]. However, even though
most correlated noise is removed by the filtering described earlier so will some of the
signal in the data. Nevertheless, we can take this bias into account, as we will discuss
in more detail in Ch. 5, by using simulated signals.

As our cleaned data by now are mainly dominated by white noise we can assume
the covariance matrix N of the remaining noise to be diagonal. Then the mapmaker
equation (3.33) has the nice property of reducing to a simple noise weighted binning of
the TOD into pixel bins. Specifically, the matrix product from Eq. (3.33)

Cm = (PTN−1P)−1 (3.34)

is easily identified as the covariance matrix of the final map estimator m̂ [68]. Having
only white noise the covariance matrix of the final map simply reduces to a diagonal
matrix. The npix diagonal elements of Cm will then equal the sum of all inverse variances
of the time samples that correspond to a pixel i

Ciim =

∑
j

1

σ2
j

−1

. (3.35)

Correspondingly PTN−1d reduces to sum of the noise weighted TOD data points that
hit each pixel;

∑
i di/σ

2
i . Hence the full mapmaker equation in case of white noise only

becomes the simple noise weighted binning algorithm [34]

m =

∑
i
di
σ2
i∑

i
1
σ2
i

. (3.36)

We see that this simply amounts to coadding up all the TOD samples that hit each
pixel bin.

Figure 3.8 illustrates three maps, one per CO field, made by the noise weighted
binning of all our currently available data on each field. As the telescope sweeps across
the field center more often than the field edges, the noise in the center gets integrated
down the most in the mapmaking process.



3.6 High-Level Analysis 45

Although the noise weighted binning method is quite simple, it is only really applic-
able in case the TOD is dominated by white noise. If this is not the case and correlated
components are included the situation becomes more complex as the inversion of N
becomes very time-consuming. In such a case one can consider a more sophisticated
method that is better suited to handle residual artifacts. We will thus later in Part II
discuss how we can improve our current COMAP pipeline by using a destriper instead
of a noise weighted binning scheme in the mapmaker.
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Figure 3.8: Maps of the three fields CO2 (bottom), CO6 (top left) and CO7 (top
right), each made from all the current data (∼ 1800 obsIDs) per field.

3.6 High-Level Analysis

Now that we have seen how the raw telescope data are cleaned from correlated noise and
systematics as well as how we project the cleaned TOD into a map, it is time to consider
how we go from the statistical properties of a map to a final estimate of astrophysical
parameters. However, as modeling the CO signal, the theoretical statistical properties
and estimating parameters from these is not the scope of this thesis we will here only
briefly outline how we can estimate parameters from a map.
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3.6.1 The Theoretical CO Power spectrum and Voxel Intensity Dis-
tribution

As we ultimately want to estimate physical parameters that affect the structure of the
astrophysical signal we hope to see in the COMAP data, we need to form some quantity
that captures the statistical properties of the data. From these statistical properties, we
can subsequently do a parameter estimation, comparing the data to some theoretical
model, to gain an understanding of the physics that governs the Universe. The two
statistics that are most frequently used in intensity mapping are the power spectrum
and the voxel intensity distribution (VID) [10, 69, 29, 48]. From these we can constrain
for instance the CO luminosity function, SFR, etc. at the Epoch of Galaxy Assembly.

The CO Power Spectrum

The power spectrum, to which we will come back to in more detail in Ch. 4, is a
two-point statistic that roughly speaking measures the two-point correlation in map
space. If the CO field we observe with the COMAP telescope was a perfect Gaussian
random field the power spectrum would incorporate all the statistical information in
the field. However, because the small-scale CO emitters within a dark matter halo
have been affected by non-linear processes the field of emitters is not entirely Gaussian,
hence the power spectrum only captures part of the statistical information of the map.
Nevertheless, the power spectrum still contains a lot of interesting information [48].

The scale and redshift dependent theoretical line emission power spectrum, for in-
stance for CO(J = 1→ 0) emission, is commonly written as

P (k, z) = T̄ 2(z)b̄2(z)Pm(k, z) + Pshot(z). (3.37)

The first term, commonly referred to as the clustering component of the power spec-
trum is made up of the dark matter power spectrum Pm(k, z) which the CO emitters,
of average intensity (in units brightness temperature) T̄ (z), trace up to the average lu-
minosity weighted bias b̄(z). The second term, referred to as the shot noise term Pshot,
is caused by the fact that the CO signal is sourced by descrete emitters, which results
in a scale invariant power spectrum contribution [48].

Given some luminosity function Φ(L), quantifying the number of emitters at a given
luminosity L, we can write the luminosity weighted bias as

b̄ =

∫
Lb(L)Φ(L)dL∫
LΦ(L)dL

. (3.38)

Here b(L) is the bias of the emitters of luminosity L, which determines how well the
galaxies at L follow the underlying dark matter field. However, because the galaxies,
with power spectrum Pgal(k) = b̄2Pm(k), are observed by their CO line emission the
clustering term must be weighted by the averaged CO intensity, which is written as [48]

T̄ =
c3(1 + z)2

8πkBν3
emH(z)

∫ ∞
0

LΦ(L)dL. (3.39)
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Similarly, the shot noise term caused by the discrete nature of the emitters can be
related to the luminosity function by [48]

Pshot =

(
c3(1 + z)2

8πkBν3
emH(z)

)2 ∫ ∞
0

L2Φ(L)dL, (3.40)

which hence quantifies the intrinsic "graininess" of the source field.

The Voxel Intensity Distribution

Meanwhile, as mentioned before, using solely the power spectrum when describing a
non-Gaussian field will cause a significant loss of statistical information. Hence a com-
plementary statistic is needed; for instance the VID. The VID is, simply said, the
histogram of observed intensities, and is as such more closely related to the luminosity
function itself [48, 69]. In particular, the VID can be written as

P =
∞∑
N=0

PN (T )P(N), (3.41)

where the probability of observing N sources is denoted by P(N) and the corresponding
probability of these N emitters having a brightness tempreature of T is given by PN (T )
[48]. From the VID we can then subsequently get the expected number of emitters in
each voxel

〈Bi〉 = Nvox

∫ Ti+1

Ti

P(T )dT, (3.42)

within each tempreature bin T ∈ [Ti, Ti+1]. This histogram of temperatures then forms
the basic observable related to the VID [69].

3.6.2 Bayesian Parameter Estimation: MCMC

When estimating parameters from a dataset, such as the one we have in COMAP,
and some parameterized model one typically constructs a posterior distribution. The
posterior probability is given by

P (θ|d) ∝ P (d|θ)P (θ), (3.43)

for the likelihood P (d|θ) quantifying the probability of observing the data d given
some model parameters θ (e.g. SFR at the Epoch of Galaxy Assembly) and the prior
probability on the model parameters P (θ) that quantifies our prior knowledge of the
parameters. The posterior probability is then typically sampled using Markov Chain
Monte Carlo (MCMC) methods like the Metropolis or Gibbs algorithms. The sampling
is beyond the scope of this work and we will hence not consider it in great depth.
The idea behind these MCMC methods is to make a "jump" in parameter space and
either reject or accept the move according to some acceptance criterion (which differs
between MCMC methods) [70]. The resulting points corresponding to each step will
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then generate a point cloud in parameter space that after a burn-in period sample the
posterior distribution. Thus the point cloud density at any point in parameter space will
reflect the posterior probability. From the latter we can then easily read the parameter
constraints [67].

Note that to do the sampling we need a model, in addition to the data. A model
we often use in COMAP is the Li et al. [29] model. It uses the relation between dark
matter halo mass and SFR from Behroozi et al. [71, 72], to relate the dark matter halo
mass to the CO luminosity by a series of parametrized relations. Specifically, the SRF
is coupled to the infrared (IR) luminosity LIR by

SFR = δMF × 10−10LIR. (3.44)

The IR luminosity is then subsequently related to the CO luminosity through the rela-
tion

logLIR = α logL′CO + β. (3.45)

Additionally log-normal scatters are determined by σSFR and σLCO
, and added to re-

spectively SFR and LCO. Hence the parameters of the model that the MCMC samples
over are θ = {σSFR, log δMF, α, β, σLCO

} [29].
When it comes to the observed data, Ihle et al. [69] showed that one can use the

combined leverage of the power spectrum and VID to constrain the model parameters.
In doing so, the combined parameter constraints from the power spectrum and the VID
are superior to the ones obtained from either statistic alone, as more of the available
information is utilized.



Part II

Methods





Chapter 4

Estimating Power Spectra

In the previous chapters of this thesis, we have seen how we clean the raw telescope
data from correlated noise and systematics, project it into maps as well as showing a
rough outline of how the map’s statistical properties (e.g. the power spectrum) can
be used to estimate astrophysical parameters. We have, however, not yet considered
how we compute power spectra from a map numerically. We will in this chapter thus
present how we compute estimates of the power spectra which we will use later, in Ch.
5, when presenting the improvements to the COMAP pipeline that we implement in this
thesis. Specifically, we will consider both auto- and cross-power spectra, respectively
quantifying the variance and covariance of structures in maps.

In the following chapter, the theory on estimating auto- and cross-spectrum analysis
is unless otherwise stated, based on the methods presented by Ihle et al. [73].

4.1 The Auto-Power Spectrum

The auto-power spectrum (sometimes just referred to as "the power spectrum") of a
three-dimensional map xm1m2m3 is closely related to the Fourier transformation of the
map. More precisely the power spectrum equals the variance of the absolute square of
the Fourier coefficients of the map xm1m2m3 . If the transverse direction of the 3D map
would cover a large sky fraction we would have to use a spherical harmonic decompos-
ition instead of a Fourier transform. However, because we in COMAP until now only
have observed relatively small sky patches we will only consider Fourier transformations.
The Fourier coefficients of a map, and its inverse, are given as

f(k) =

∫
x(r)e−2πir·kdr (4.1)

x(r) =

∫
f(k)e2πir·kdk (4.2)

if we would consider a continuos case [74]. Our maps in COMAP, however, are dis-
cretized into 3D voxels and thus we must use a discrete Fourier transform. In 1D the
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Fourier transform is given as

fl =

n−1∑
m=0

xm exp

(
−2πi

ml

n

)
, l = 0, . . . , n− 1 (4.3)

where fl are the Fourier coefficients of the 1D map xm, both in this example in 1D. The
inverse of this relation is simply given as

xm =
1

n

n−1∑
l=0

fl exp

(
2πi

ml

n

)
. (4.4)

The corresponding wave number will then be given as

k =
2πj

∆xn
, for j ∈

{
−n

2
, . . . ,−1, 0, 1, . . . ,

n

2

}
, (4.5)

which will be used to quantify the size of a given scale.
However, the maps we consider in COMAP are given along two perpendicular angu-

lar directions, x and y, as well as the dimension parallel to the line-of-sight. Hence the
wave number will become a vector k = (kx, ky, kz), with each ki defined analogously to
the 1D case. The resulting Fourier transform of the map will be along three axis. More
precisely, we get the three-dimensional Fourier transformation and its inverse given as

fl1l2l3 =
n−1∑

m1,m2,m3=0

xm1m2m3 exp

(
−2πi

m1l1 +m2l2 +m3l3
n

)
(4.6)

xm1m2m3 =
1

n3

n−1∑
l1,l2,l3=0

fl1l2l3 exp

(
2πi

m1l1 +m2l2 +m3l3
n

)
. (4.7)

With the 3D Fourier transformation in hand we can define the power spectrum by the
variance of the absolute square of the Fourier coefficients;

P (k) =
Vvox

Nvox
〈|fk|2〉. (4.8)

Here the number of voxels Nvox = nxnynz, where ni is the number of grid points along
each of the three axis. The comoving volume of a voxel Vvox is given by the comoving
grid resolution Vvox = ∆x∆y∆z. We will come back to how the maps grid is defined in
terms of cosmological distances in Sec. 4.3.

Because the two perpendicular directions, kx and ky, behave statistically the same we
can merge the perpendicular modes by binning the three-dimensional power spectrum in
perpendicular bins of size k⊥ =

√
k2
x + k2

y. The parallel modes will then be represented
in k‖ = |kz| bins. This way we can reduce the dimensionality of the power spectrum,
while keeping the same statistical information. To obtain an estimate of the 3D power
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spectrum in terms of the two variables k‖ and k⊥ we can bin up the 3D power spectrum
(4.8) in bins {ki} to get

P (ki) ≈
Vvox

NvoxNmodes

Nmodes∑
j=0

|fkj
|2 ≡ Pki

. (4.9)

Here Nmodes is the number of modes binned up in bin i.

4.1.1 The Pseudo-Power Spectrum

Because we can further split ut the power spectrum of some map into its signal and
noise part

P (k) = Psignal(k) + Pnoise(k), (4.10)

the power spectrum will be highly dependent on the properties of the noise in the map.
For instance assuming that a map dominated by uniform white noise its power spectrum
will be estimated to be

Pnoise = Vvoxσ
2
0, (4.11)

being scale invariant. The white noise level in each voxel is then given by the radiometer
equation defined in Eq. (3.2) and depends on the frequency resolution ∆ν of a voxel,
the total integration time for a pixel τ as well as the system temperature Tsys of the
telescope.

Yet, as we saw in Fig. 3.8, the maps we consider seldom have uniform noise prop-
erties, due to the higher total integration time per pixel in the map center compared to
the edge. The resulting noise power spectrum will therefore receive a high contribution
from the high-noise regions, which in turn will bias our signal power spectrum estimate.
For each map region to contribute equally we can therefore weight the map by its noise
before power spectra are computed. We then get the so-called pseudo-power spectrum

P̃ (k) =
Vvox

Nvox
〈|f̃k|2〉. (4.12)

instead of the regular power spectrum defined earlier in Eq. (4.8). The Fourier coeffi-
cients used in (4.12) are this time defined analogously, but with the map xm in (4.7)
exchanged with the noise weighted map

x̃m ≡ wmxm. (4.13)

The noise weights wm are defined as

wm =
N
σ2
m

, (4.14)

with a noise map σm that quantifies the white noise level in each voxel and an overall
normalization constant N .

Nevertheless, solving the problem of non-uniform noise in the map by using the noise
weighted maps instead introduces another problem. When applying a noise weighing
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or masking (i.e. infinite noise) to the map, the different Fourier modes of the map get
mixed up when computing power spectra [74, 73].

To see how this happens we can, without loss of generality, consider the discrete
Fourier transform of a 2D noise weighted map

f̃l1l2 =

n−1∑
m1=0

n−1∑
m2=0

wm1m2xm1m2 exp

(
−2πi

m1l1 +m2l2
n

)
. (4.15)

Inserting the inverse coefficients, i.e. the map, back into this equation yields

f̃l1l2 =
1

n2

n−1∑
m1,m2=0
l′1,l
′
2=0

wm1m2fl′1l′2 exp

(
−2πi

m1(l1 − l′1) +m2(l2 − l′2))

n

)
.

Subsequently, by inserting the weights in terms of their Fourier transform we can
expand our expression for the weighted Fourier coefficients to

f̃l1l2 =
1

n4

n−1∑
m1,m2=0

n−1∑
l′1,l
′
2=0

n−1∑
l′′1 l
′′
2=0

w̃l′′1 l′′2 fl′1l′2

· exp

(
−2πi

m1(l1 − l′1 − l′′1) +m2(l2 − l′2 − l′′2)

n

)
. (4.16)

As the exponential functions for large enough n are well approximated by a Kro-
necker delta, and due to their complex nature behave periodically, we can write

f̃l1l2 =
1

n2

n−1∑
l′1,l
′
2=0

n−1∑
l′′1 l
′′
2=0

w̃l′′1 l′′2 fl′1l′2δl′′1 (l1−l′1)%nδl′′2 (l2−l′2)%n

=
n−1∑
l′1,l
′
2=0

fl′1l′2Kl1l2l′1l
′
2
, (4.17)

where the matrix Kl1l2l′1l
′
2
≡ 1

n2 w̃(l1−l′1)%n,(l2−l′2)%n. The modulo operation is here
defined by %.

To see how these pseudo-Fourier coefficients affect the power spectrum we insert
them into Eq. 4.12 and go back to the general N -dimensional case to get

P̃ (k′) =
Vvox

Nvox
〈f̃kf̃∗k〉 =

Vvox

Nvox

1

n2N

∑
k′

∑
k′′

〈f̃k′ f̃∗k′〉Kk,k′K
∗
k,k′′ . (4.18)

Finally we can define the mode mixing matrix Mk,k′ ≡ 1
n2N |Kk,k′ |2 and write

P̃ (k) =
∑
k′

P (k′)Mk,k′ . (4.19)



4.2 The Cross-Spectrum 55

Thus noise weighing of the maps will to some extent bias the power spectrum by some
mode coupling matrixMk,k′ . By doing so, the pseudo-power spectrum will be distorted
with respect to its unbiased equivalent. Because we know exactly how maps were
weighted before computing the power spectrum, we can in theory invert Eq. (4.19) to
find the unbiased power spectrum estimator P (k). An algorithm doing just that already
exists; the MASTER algorithm, which scales as O(n3) for a 2D map [74, 75]. However,
for our 3D maps in COMAP the scaling will be even worse, making it computationally
expensive to invert the mode coupling. We will hence, for now, simply stick to the
pseudo-power spectra in our analysis and keep in mind that the power spectra we
estimate here are biased by a mode coupling kernel.

4.2 The Cross-Spectrum

The second statistic often used to quantify structures in maps is the so-called cross-
spectrum. While the auto-power spectrum measures the variance of the Fourier modes
of a given map, the cross-spectrum measures the covariance between the Fourier modes
of two distinct maps. Hence it can be defined as

C(k) =
Vvox

Nvox
〈Re{f∗1kf2k}〉 ≈

Vvox

NvoxNmodes

Nmodes∑
j=0

Re{f∗1kj
f2kj
} ≡ Cki

, (4.20)

where fik, for i = 1, 2, are the Fourier coefficients of two different sky maps. We thus
see that if we were to compute the cross-spectrum between a map and itself, we would
get the auto-power spectrum back.

Because a cross-spectrum by nature measures correlations between two maps we can,
if the maps are independent, eliminate contributions to the maps that are not common
among both. This is in fact quite powerful as it means that the noise, which can be
assumed to be independent for two different maps, will not bias the signal estimate from
the cross-spectrum. Hence we can write that

〈Cki
〉 = Psignal(ki), (4.21)

where Psignal is the power spectrum of the signal that is common in both maps. It is,
however, also important to note that Psignal will pick up everything common between
the maps, both astrophysical signal and common systematic effects. Hence a systematic
error that affects the two maps differently will be effectively canceled in a cross-spectrum
analysis.

Meanwhile, to obtain an estimate of the signal power Psignal from the auto-spectrum
analysis we needed to estimate the noise extremely well or else it could bias the signal
estimate. This is, nevertheless, not as important in the case of a cross-spectrum analysis
since the noise only affects the uncertainties, and not the estimate itself. Hence having
a thorough noise estimate is still important, but only to get a good error estimation.

As previously presented when presenting the auto-power spectrum analysis, we
found that the maps from which auto-spectra were computed needed to be noise weighed
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to compensate for their uneven noise properties and sky cuts. In the cross-spectrum
case, we therefore define the pseudo-cross spectrum in a completely analogous fashion.
However, as we combine two separate maps in a cross-spectrum, each with its own noise
properties, the maps must be weighted by a combined noise weight. To do this we let
the weights

w1,2 ∝
1

σm1σm2

, (4.22)

for the noise σm1 and σm2 from respectively mapm1 andm2. This weight is applied, the
same way as in the auto-spectrum case, to the maps when computing the pseudo-Fourier
coefficients of each map.

4.2.1 Data Splits

To compute cross-spectra from maps we need to have two maps to cross-correlate. These
two maps should ideally be affected by different sources of systematics, canceling them
when determining the cross-spectrum.

Hence we can split the data into Nsplit parts under different split criteria. We could
for instance split the data by high/low elevation, high/low ambient temperature or
by separating the Lissajous and CES scans from one another. Any such split can be
performed on its own, or we can successively split the data under several different split
criteria.

In particular, we define two distinct split variables; the test and control variables.
They are defined so that the data are always split intoNctrl parts by the control variables
for each of the Ntest test variables. For each test variable there will then be 2Nctrl+1

parts of the data. That way we can always split the data according to, for instance, both
the scanning strategy used and the elevation, in addition to Ntest test criteria. With all
these data split in hand, we obtain a rich dataset from which to compute cross-spectra
between portions of the data with different systematic effects.

Because the current mapmaker does only support single data splits and no successive
ones, we modified tod2comap to perform the wanted successive splits. Specifically, the
accept_mod routine takes in a split definition file, which defines which split is a control
or test variable, and a runlist to define a list of binary numbers. Each binary number in
the list corresponds to a given scan. The bits in the binary number are associated with
one of the splits in the split definition file. If we for instance consider a scan with the
assigned number 101, where the bits correspond respectively to an elevation, scanning
and temperature split, then this particular scan will be at high elevation (i.e. above
the median elevation of the scans in the runlist), Lissajous scanning and high ambient
temperature.

Then when making maps from the data, the mapmaker reads in the list of binary
numbers and sorts the data according to the split they belong to. In doing so we obtain
feed maps for each frequency channel and sideband from each of the splits.

There is however a small caveat in splitting the data. Since we when computing
average cross-spectra do not want to include the auto-spectrum information from all
the cross-combinations, we lose some of the sensitivity. In particular, if we consider
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a split into two halves of the data, we lose at least a factor of
√

2 in sensitivity. To
compensate for that, we can split the data into a large number of parts to subsequently
average over the possible cross-spectrum combinations. In such a case the sensitivity
can be estimated by

σ
Nsplit

C ≥

√
1

1− 1/Nsplit
σP . (4.23)

Here the upper limit on the cross-spectrum sensitivity is given by the number of splits
Nsplit as well as the optimal sensitivity σP from the auto-spectrum analysis found from
the full data set used. Hence we see that the limit in sensitivity asymptotically ap-
proaches that of the optimal auto-spectrum, in the limit of a large number of splits
Nsplit. Hence the loss in sensitivity will be somewhat compensated by computing an
average cross-spectrum of a large number of split combinations.

4.2.2 Feed-Feed Pseudo-Cross-Spectrum

The main power spectrum method we currently implemented in the COMAP pipeline is
the so-called Feed-Feed Pseudo-Cross-Spectrum (FPXS) analysis. Although the method
of computing FPXS is based upon the data splits we implemented in the mapmaker as
part of this work, the development of this particular power spectrum method itself, lead
by Jowita Borowska and Håvard Tveit Ihle, is outside the scope of this work. However,
as we will later suggest how to improve the current FPXS methods by investigating a
PCA algorithm to identify and clean FPXS with strong residual systematics, we will in
the following only give a brief overview of the FPXS methods.

Because the data from each feed in COMAP is largely unique, as each feed has
its independent feed-chain with amplifiers, cables, bandpasses, etc., it is possible to
circumvent many of its associated systematics by computing cross-spectra between each
combination of feeds. In addition to this, many systematic effects like for instance
ground pickup are correlated in time. Therefore, by cross-correlating the data of the
high and low elevation split we can eliminate for instance much of the ground pickup
and other systematic effects that correlate with the elevation of the telescope pointing.

Therefore, the averaged FPXS is a statistic that is highly robust against systematic
effects and at the same time has a high sensitivity. The following shows the main four
steps in computing the average FPXS under a single (elevation) split;

1. The data are split as described in Sec. 4.2.1. One of the split variables is then
defined as the primary split variable used in computing the cross-spectrum. The
upper and lower part of the primary split are denoted as part A and B.

2. Subsequently, 19 feed maps are generated from both part A and B. Thus we
denote mA5 as the map from part A and feed 5.
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3. From all possible combinations of maps mAj and mBk
cross-spectra C̃jkki

are com-
puted. The resulting dataset of FPXS can be used to compute an averaged spec-
trum, or it can function as the basis for a systematic error classification algorithm,
as we will see later.

4. Lastly an average FPXS is computed by the noise weighted average of all cross-
spectra from the previous step for which j 6= k

C̃FPXS
ki

=
1∑

j 6=k 1/σ2
C̃jk

ki

∑
j 6=k

C̃jkki

σ2
C̃jk

ki

. (4.24)

The standard deviation of the ith k bin of the pseudo-cross-spectrum between
maps mAj and mBk

is then given by σ
C̃jk

ki

.

4.3 The Map Grid

As we have seen we need to know the comoving volume of the voxels in our map to
estimate the power spectra. To do this we can utilize our earlier discussion of cosmolo-
gical distances in Sec. 1.2.2. In our case, a voxel consists of two distance components
perpendicular to the line-of-sight as well as one parallel to it.

Because we want to know the grid resolution of the map in terms of cosmological
redshift we must translate the map’s native frequency dimension into redshift. The
redshift can in turn be turned into a comoving distance. The former can easily be done
using the definition of cosmological redshift showed earlier in Eq. (1.8) and using that
the frequency of light ν = c/λ. Then we get

z =
νem

νrec
− 1, (4.25)

where νem and νrec are the emitted rest-frame and received frequencies respectively. As
we target the CO(J = 1 → 0) line at νem = 115.27 GHz and the central frequency
channel of the maps is at about 30 GHz, the redshift of the middle of the map is
zcent ≈ 2.9. Furthermore, we assume that all voxels have approximately the same shape
as the one in the middle of the map grid at zcent.

The redshift resolution of the map can then easily be found by differentiating Eq.
(4.25) with respect to νrec and combine it with the original equation. We then get that

dz

dνrec
≈ ∆z

∆νrec
= −(1 + z)2

νem
, (4.26)

which at z = zcent = 2.9 and ∆νem ≈ 32.3 · 10−3 GHz gives ∆z ≈ 4.3 · 10−3.
Because the redshift interval corresponding to a voxel depth is a fairly small interval,

we can get the comoving depth of the voxel by assuming that the integrand of Eq. (1.9)
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stays approximately constant over the short interval. Thus we have

∆r‖c (z) =

∫ zrec+∆zrec

zrec

cdz′

H(z′)
≈ c∆zrec

H(z)
≈ −c(1 + z)2

H(z)

∆νrec

νem
(4.27)

from expression (4.26) for ∆zrec. Using this relation, we can easily translate the map’s
native frequency grid to its comoving line-of-sight distance equivalent.

Similarly, the map’s perpendicular dimension must be translated from angular dis-
tance on the sky to comoving distance space at redshift zcent = 2.9 in order to estimate
the correct voxel volume. From Eq. (1.10) the comoving perpendicular size of a voxel
at zcent will be

∆r⊥c (zcent) = ∆r⊥p (zcent)(1 + zcent) = ∆θrc(zcent) = ∆θ

∫ zcent

0

cdz′

H(z′)
. (4.28)

Inserting numbers and assuming every voxel has the same shape as the central one we
get ∆r⊥c (zcent) ≈ 2.55Mpc/h for an angular resolution of ∆θ = (2/60)◦.

However, the map’s grid is not completely cartesian, but part of a spherical sky.
Therefore we must take into account that the angular distances in direction of right
ascension (in celestial coordinates) on the map are modified by a factor cos θ̄, where θ̄ is
the mean declination of the map. This is due to two north-south geodesics on a sphere
getting closer when approaching the poles, decreasing their angular separation.

Having computed the comoving grid resolution of an average voxel we can now
simply set

∆x = ∆r⊥c cos θ̄ (4.29)

∆y = ∆r⊥c (4.30)

∆z = ∆r‖c , (4.31)

which can be multiplied to get the comoving volume of a voxel needed to define the
power spectrum.
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Chapter 5

Improvements to the COMAP
Pipeline

We have now had a thorough look at how we clean the raw telescope data and make
maps from it. There are however several points on which we can improve our current
design of the COMAP pipeline.

Therefore, this thesis primarily considers improvements to the following main aspects
of the COMAP pipeline; how to use a simulated signal to estimate the factor by which
we bias the signal estimate when filtering the raw telescope data, using a destriper in
the mapmaking to better resolve large-scale structures of the signal and lastly how to
use a principal component analysis approach to aid in identifying and cleaning feed-feed
pseudo-cross-spectra with strong signs of residual systematics.

5.1 The Simulation Pipeline

By filtering the raw telescope data from correlated noise and systematic effects in l2gen
we will not only remove the unwanted contaminants in the data, but also some of the
astrophysical signal. Knowing the extent to which we bias the signal estimate by the
filtering is imperative, as we would otherwise underestimate both the detected signal
power and the associated uncertainties. This would in turn reflect negatively in the final
astrophysical parameters we want to estimate. Hence we will in the following consider
how we can use an extension to the COMAP pipeline to estimate the factor of signal
attenuation; the pipeline transfer function. We will refer to this pipeline improvement
as the simulation pipeline.

The main idea behind the simulation pipeline is to enable us to simulate the pickup
of additional artificial signal in the COMAP telescope. Knowing the structure of the
generated signal a priori, we can compare the "before" and "after" views of the signal to
estimate the pipeline transfer function, which in turn can be used to produce unbiased
signal estimates. As seen in Fig. 5.1 the simulation pipeline can be divided into three
main branches; the upper branch in which the raw telescope data functioning as our
noise analog is processed, the middle branch simulating and processing an artificial
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telescope TOD as well as the lower branch formatting the unfiltered simulation.
In the following, we will first discuss how to estimate the filter transfer function and

subsequently show how this is in practice done using our simulation pipeline. Unless
otherwise stated, the theory on transfer functions presented here is based on Ihle et al.
[73].

Level 1 sim2tod

Simulation

Level 1
TOD + sim

l2gen
tod2comap

Map
TOD + sim

Frequency
Mask

Map
TOD only

comap2tf

Map
sim only

cube2comap

Transfer
Function

Noise
Weights

l2gen
tod2comap

Figure 5.1: Flow chart of the simulation pipeline extension to the COMAP pipeline, with
which the filter transfer function, used to produce unbiased signal power spectra, can
be estimated. The simulation pipeline takes in raw level 1 data (green box, produced
at Caltech) and a simulation cube (yellow box, produced by the COMAP modeling
group). These are processed by several scripts (white ellipses) producing intermediate
and final results (purple boxes).

5.1.1 The Pipeline Transfer Function

As we have seen in Eq. (4.10), we can decompose the (pseudo-) auto-power spectrum
of a given map in terms of its signal and noise components. Similarly, a cross-spectrum
estimator Ck can be divided into its signal and noise contribution. However, what
we have not taken into account so far is that there is an inevitable attenuation of the
astrophysical signal when filtering the raw data.

To model the combined effect of the pipeline filters on the received signal we can
modify the decomposition of the auto- and cross-power spectrum estimators to respect-
ively

Pk = T (k)P signal
k + P noise

k , (5.1)

Ck = T (k)P signal
k + Cnoise

k (5.2)

where T (k) is the so-called pipeline transfer function and Cnoise(k) is the cross-spectrum
of the noise (which from Eq. (4.21) has a vanishing expectation value). The transfer
function will thus quantify how much the pipeline attenuated the signal compared to
when it was received by the telescope. Ideally speaking we would therefore like the
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transfer function to be as close to unity, as this would mean that no signal has been lost
at any given scale k. It is important to also note that there are other transfer functions,
such as for the beam smoothing and pixel resolution of the telescope, in addition to
the one of the analysis pipeline. We will, however, only consider the pipeline transfer
function in the following as we in this work are interested in how the signal is attenuated
by the filtering in the pipeline.

To obtain a transfer function estimate we can simply solve Eq. (5.1) to obtain

T (k) ≈
Pk − P noise

k

P signal
k

, (5.3)

in terms of the auto-power spectrum estimate of a map Pk, the noise power spectrum
P noise
k as well as the signal power spectrum P signal

k . Alternatively, it should be equival-
ently possible to estimate the transfer function using the cross-spectrum Ck from Eq.
(5.2) as

T (k) ≈
Ck − Cnoise

k

P signal
k

, (5.4)

which ideally should be equal to the transfer function found using the auto-spectrum
approach in Eq. (5.3). Nevertheless, because the computational effort needed to estim-
ate the pipeline transfer function is considerably less when choosing the auto-spectrum
approach we will mainly consider the the transfer function as found by using auto-
spectra. That said, we will still compute the transfer function using cross-spectra as a
consistency check, to confirm that the two approaches are in fact largely equivalent.

However, even though these expressions look fairly simple there are a few problems
we need to handle to estimate T (k). Firstly, the CO signal the telescope measures is
extremely weak and we do not know a priori how the power spectrum of the signal looks
before it is affected by the pipeline. Secondly, in order to obtain an estimate of T (k)
we need an estimate of the noise P noise

k or Cnoise
k .

To solve the first of these issues we must therefore generate some artificial signal
and add it to the TOD. That way we can simulate the telescope picking up additional
signal which is fully known. The resulting auto- or cross-spectrum, Pk or Ck, will then
be of a map made from a raw TOD with additional simulated signal.

When it comes to the second issue of modeling the noise power spectrum we could
of course simply generate white noise TODs from the radiometer equation (3.2) to
subsequently compute maps and power spectra from these. However, even though a
white noise TOD would have the same local white noise properties of the TOD with
additional signal, it would miss out on the possible residual correlated noise. Therefore
we instead choose to use the auto- and cross-power spectrum of a raw TOD without
any added signal. That is because the raw TOD is highly noise-dominated and besides
has the same noise properties as the TOD with additional signal.

Finally, a third important point is that the estimates of Eq. (5.3) and (5.4) are only
estimated from one realization of the simulated signal. However, different realizations
of the signal will vary from one another, especially in their largest scales. Therefore,
the transfer function computed from any given realization of the signal is merely an
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estimate. To get the most robust estimate of the transfer function we must compute
several estimates according to Eq. (5.3) and subsequently compute its ensemble average

T (k) =

〈
Pk − P noise

k

P signal
k

〉
. (5.5)

Note that the transfer function shown here can be estimated using both power and
pseudo-power spectra. In the latter case however, the mode coupling of the pseudo
spectra may lead to the transfer function looking distorted in a similar way to the
power spectra.

Now that we know what is needed to estimate the transfer function by which our
signal estimates are biased, we will in the next subsections consider each step in the
simulation pipeline by which we estimate the filter-induced bias in practice.

5.1.2 The Upper Branch - Estimating the Noise

As we discussed earlier in Sec. 5.1.1, to find the transfer function of the pipeline filters
we need to know the noise power spectrum of our simulated observation. For this, we
simply process the raw level 1 TOD (without added simulation) to produce a map using
l2gen and tod2comap. This step is shown in the upper-most branch of Fig. 5.1.

Because we must ensure that the unmodified and simulated level 1 time streams
are processed the same way, we need to use the same frequency mask on both time
streams in case the masking step, described in Sec. 3.4.6, is performed. However, as
we will see later, we will add a simulated signal that may be boosted in strength to
make it easier to detect, to the raw telescope data. Therefore, the frequency masking
may perceive the amplified signal as unwanted correlated artifacts and subsequently
mask it out completely. Thus we implement an option in l2gen to import a frequency
mask from another level 2 file. Thereby we can first process the unmodified raw data
with frequency masking applied, and subsequently import the resulting mask into l2gen
when processing the modified TOD. Doing this will ensure equal treatment of the two
datasets.

5.1.3 The Middle Branch - Simulating a Telescope Time Stream

To estimate the transfer function we need to simulate the telescope measuring some
known signal. This can simply be done by taking a cube of simulated astrophysical
structure, place it at some celestial coordinate and sweep across it using the telescope’s
pointing information. The signal from the simulation is then subsequently added to the
already existing TOD of a raw level 1 file. This step is performed in sim2tod as shown
in the flow chart of Fig. 5.1.

The Simulation Cubes

To produce the simulation cubes used in our analysis we used the make_cube code that
was kindly provided by Håvard Tveit Ihle. The code takes a 9◦ × 9◦ dark matter halo



5.1 The Simulation Pipeline 65

mock catalog produced by an N-body simulation and separates out some region that
matches the COMAP survey patches of 4◦×4◦. Subsequently, the dark matter halos in
the mock catalog are populated with CO signal using a double power law model relating
the halo masses to CO luminosity by Chung et al. [76]. The CO luminosities are then
easily translated to units of brightness temperature by the Reighly-Jeans approximation

T =
c2Iν,obs

2kBν2
obs

. (5.6)

The intensity Iν,obs = LCO/4πD
2
L∆ν observed at frequency νobs is given in terms of the

cube’s CO luminosity LCO, the luminosity distance to the source DL (as defined earlier
in Eq. (1.13)) and the frequency resolution ∆ν [29].

To simulate the later pickup of the signal by the telescope the cube is convolved with
the 4.5′ FWHM instrumental beam. The box dimensions will correspond to those of an
actual sky map, i.e. 120× 120 pixels of 2′× 2′ resolution by 4096 (or 256, depending on
whether the high- or low-resolution grid is needed) frequency channels. An example of
a frequency slice of a simulation cube in the down-sampled frequency grid can be seen
in Fig. 5.2.
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Figure 5.2: A frequency slice of a simulation cube used, at channel 30 of the second
sideband at ν = 28.922 GHz. The cube was normalized to have a maximum brightness of
about 0.135µK and has been centered at the coordinates of the CO6 field. The slice has
120× 120 pixels. The right and left plot show the simulation cube, respectively, before
and after masking the area with zero hits from the telescope pointing in cube2map.

These so-called semi-analytic models, combining numerical and physically motivated
models, are generally most suited for intensity mapping modeling. That is, because they
cover a large variety of scales without losing the physical context while also being com-
paratively cheap to produce [10]. In our case the model parameters are also constrained
by previous experiments, making it a mix of a semi-analytic and semi-empirical model
[76].
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Adding Signal to the TOD

With the signal simulation in hand, we need to somehow simulate the telescope ob-
serving it at some celestial coordinates. To do this we first center the simulation cube
at the celestial coordinates of one of the CO science fields.

Subsequently, we want to use the telescope’s pointing information to draw a path
across the simulation cube’s perpendicular face. The brightness temperature of the
cube Tsignal at any given part of the path at some frequency ν is then used to add in
additional signal to the raw TOD. The raw TOD, PTOD, will then simulate the noise
part of the data as it is noise-dominated and has the same noise properties as an actual
observation.

The power of the TOD with added signal PTOD+signal is then given by the sum of
Eq. (3.1) when evaluated with respectively the system temperature of the raw obser-
vation Tsys (estimated prior to adding singal, see Sec. 3.4.7) and the signal brightness
temperature Tsignal from Eq. (5.6). We then get

PTOD+signal(φ, θ) = PTOD(φ, θ) + Psignal(φ, θ)

= PTOD(φ, θ)

(
1 +

Tsignal(φ, θ)

Tsys(φ, θ)

)
, (5.7)

where the telescope pointing is given in terms of the right ascension (RA) and declination
(Dec) coordinates (φ, θ). When adding in the simulated signal, it may be amplified in
strength, to make it more easily detectable.

Meanwhile, to add signal from the simulation to the TOD we must first translate
the telescope’s pointing information to the pixel coordinates of the cube in order to
know which cube pixel is hit by the telescope’s line-of-sight at a given time. However,
because the cube used by default has a flat cartesian pixel face, we must use a flat-sky
approximation when projecting the curved coordinates of the celestial sphere onto the
box. For this we use a gnomonic projection in which the pixel coordinates (i, j) become

i =
180◦

π
sinφ cot θ (5.8)

j = −180◦

π
cosφ cot θ (5.9)

as a function of RA φ and Dec θ [77].
Fortunately, we can use the WCS Python module, which was kindly provided by the

Manchester group of COMAP, for the transformation. We can thus easily identify the
pixel the telescope’s line-of-sight crosses at a given time and plug the corresponding
signal Tsignal into Eq. (5.7).

Because the COMAP telescope has 19 feeds, each with a slightly different pointing,
we need to do the coordinate mapping separately for each feed. However, since each
pixel is observed in all frequencies simultaneously, the coordinate transformation done
in one frequency channel is valid for all the others. The resulting new TOD is saved to
a new level 1 file for further processing, which differs from a regular obsID only in its
modified TOD.
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Processing the Simulated Data

Having produced the TOD with additional simulated signal inside sim2tod, we can
process the modified TOD by l2gen and tod2comap to produce a map. As mentioned,
to ensure an equal treatment of the unmodified and simulated time streams we import
the frequency mask from the unmodified data into l2gen when processing the simulated
data. The resulting map of the modified TOD will then serve as the "after" view of the
pipeline filters.

5.1.4 The Lower Branch - The Unfiltered Signal Map

Finally, to make the simulation cube comparable to the maps of the raw and modified
data we must first down-sample its frequency grid by averaging (as the simulation has
no uncertainties) neighboring channels. Next, since we perform our analysis on pseudo-
power spectra we assign the noise weights and sky cut of the map of the modified data
to the simulation cube. An example of this is shown in Fig. 5.2, where the simulation is
seen before and after masking the regions of the sky not observed by the telescope. That
way the simulation will be affected by the same mode-mixing matrix as the simulated
observation, making the pseudo-power spectra of the two as comparable as possible.

The down-sampling and weighting of the simulation cube is done in the cube2map-
routine seen in Fig- 5.1. The resulting map of the unfiltered simulation will then serve
as our "before" view of the pipeline filters.

5.1.5 Computing the Transfer Function Estimate

Now having obtained the "before" and "after" maps of the simulated data, as well as
that of the noise, we can compute their power spectra as described in Ch. 4 and compare
these according to Eq. (5.3) (or (5.4)) to get a transfer function estimate. This is done
in the comap2tf-routine in Fig. 5.1.

Most importantly, the subsequent estimate of the transfer function can then be
used to reverse the filter-induced bias of the signal. This is essential as we want the
parameters to be estimated from our data to be unbiased. However, we can also use
the developed simulation pipeline to investigate the impact of each pipeline filter on the
signal, as well as how well possible improvements to the COMAP pipeline can recover
additional signal at different scales.

5.2 The Destriper

As described in Sec. 3.5 on mapmaking, in the current COMAP analysis pipeline we
implement a noise weighted binning with optional high pass filtering of the TOD. The
underlying assumption that justifies the use of a simple binning algorithm such as this
is that the processed level 2 data are fairly close to white noise.

We do, however, see that the level 2 TOD sometimes still contains some residual
long-timescale modes after we have filtered it, such as residual ground pickup, standing
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waves or other unknown artifacts. As these residuals are not random they will not
integrate down properly. That is because the regular noise weighted binning can have
trouble correctly comparing the TOD along different scan directions, as the cross-linking
between the scans is poor. The improper handling of these long-timescale modes may
then introduce stipes in the final map, that can obscure the large-scale structure of the
astrophysical signal. Currently we handle this by highpass filtering the TOD prior to
binning, removing all long-timescale modes, both that of the residuals and the actual
signal. By doing so the there is a significant loss in the large-scale structure of the signal.
Therefore, a better-suited mapmaking algorithm is the destriper, which can distinguish
between the dynamic long-timescale residuals and the static signal to produce maps
without stripes.

We will in the following describe how the algorithm works, and some advantages
and challenges of implementing it as part of our mapmaker in tod2comap.

5.2.1 The Destriper Algorithm

We begin by explicitly writing out the noise in terms of its uncorrelated and correlated
components, so that the time stream of data becomes

d = Pm + ncorr + nw, (5.10)

where the white noise nw is simple Gaussian thermal noise [78]. Even though the term
ncorr traditionally refers to correlated noise, long-timescale residuals in the time stream
can be modelled the same way. We thus stick to the traditional terminology hereafter,
even though we are strictly speaking not fitting the correlated noise but residual long-
timescale systematics. The residuals ncorr can be modelled by a set of basis functions
that are contained as columns in a matrix F with corresponding amplitudes contained
in a vector a. The contribution from the long-timescale modes can then be written as
[78]

ncorr = Fa (5.11)

In the simplest case the basis functions used to model the slowly varying modes will be
simple flat baselines. The nsamp × nbasis template matrix then will become something
like

F =



1 0 · · · 0
1 0 · · · 0
...

. . . · · ·
...

0 1 · · · 0
0 1 · · · 0
...

. . . · · ·
...

0 0 · · · 1
0 0 · · · 1


. (5.12)

In this case each of the nbasis columns has n1 subsequent elements that are equal to 1,
while the rest of the nsamp elements are set to zero. Hence all elements equal to one
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together represent a baseline. The number of ones n1 times the temporal resolution
∆t will then equal the baseline’s length in time. In general, all baselines should have
the same length. However, we do not want the baseline fit of several level 2 TODs to
overlap. Therefore, if a given level 2 TOD is slightly too long or short to fit an integer
number of baselines to it, the excess may be assigned a shorter baseline length n1.

In fact, this method is quite powerful because we can also fit more complicated basis
functions or templates to the TOD, potentially even replacing or complementing some
of the filters in l2gen. We could for instance fit for the pointing template of the data
as well as ground pickup, to remove the corresponding correlated artifacts. In doing so
we would add additional columns to F that are for instance filled with values of the
elevation template 1/ sin(el(ti)) at each time step ti. However, we will in our analysis
only consider the simple flat baseline case because we want to see how well we can
recover large-scale modes previously removed by highpass filtering of the TOD.

Again using the assumption of gaussianity we can write the log-likelihood as

L ∝ (d− Fa−Pm)TN−1
w (d− Fa−Pm) + aTN−1

a a, (5.13)

instead of Eq. (3.30) [78]. The total covariance matrix is now N = FNaF
T + Nw,

respectively made up of the correlated and white noise covariances matrices Ncorr =
FNaF

T and Nw. The covariance of the baselines is given in a similar fashion to that
of the white noise; Na = 〈aaT 〉 [68].

Even though there might be some long-timescale artifacts surviving the pipeline
filters we can still assume their contribution to be fairly small. Hence we can fairly
safely neglect the prior term aTN−1

a a of Eq. (5.13) and let the total covariance matrix
equal that of white noise.

To find m̂ we this time cannot only maximize L with respect to m, but need to
find the best-fit basis amplitudes a as well. We therefore start by maximizing L with
respect to the map m, i.e. we find m̂ for which

∇mL = 0. (5.14)

This equation is easily solved to obtain the slightly modified mapmaker equation

m̂ = (PTN−1
w P)−1PTN−1

w (d− Fa). (5.15)

Interestingly, we see that this mapmaking equation simply is a noise weighted binning
of the TOD, corrected by some baselines Fa, prior to binning.

To evaluate the above mapmaking equation we must find the baselines Fa that best
fit the TOD. To find this we first substitute the map estimate (5.15) back into L to
obtain

L ∝ (d− Fa)TZTN−1
w Z(d− Fa), (5.16)

where the matrix Z = I−P(PTN−1
w P)−1PTN−1

w , for the identity matrix I. The effect
of Z on a time domain vector is to subtract the noise weighted average of all samples
that hit each pixel from that time domain vector [78]. By doing so it separates the
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parts of the TOD that correspond to stationary signals on the sky from the dynamic
long-timescale systematic residuals.

Subsequently, the new L is maximized with respect to a so that

∇aL = 0. (5.17)

This happens when the equation

FTN−1
w ZFa = FTN−1

w Zd, (5.18)

is fulfilled [78]. Solving this equation for a then yields the best-fit baseline amplitudes
which can be inserted into the destriper equation (5.15) to solve for the unbiased ML
map estimate m̂.

5.2.2 The Conjugate Gradient Method

The combined matrices FTN−1
w ZF and FTN−1

w Z on respectively the left- and right-
hand-side of Eq. (5.18) can be very large and are in general not sparse. We therefore
cannot represent them on a computer, let alone compute their inverses to solve the
equation. It is therefore way more efficient to apply each constituent matrix on each
side of Eq. (5.18) to respectively a and d individually as a linear operator. Subsequently,
we can use an iterative numerical method like the conjugate gradient (CG) method to
solve for the best fit baseline amplitudes a. In the following, we will summarize the
CG method used to solve Eq. (5.18) for the amplitudes a. Unless otherwise stated the
summary is based on Shewchuk’s introduction to CG methods [79].

The idea behind the method of conjugate gradients is that we want to minimize a
function on the form

f(x) =
1

2
xTAx− bTx + c, (5.19)

by moving a given number of steps {xk} along a set of A-orthogonal directions {pk}
until we have found the function’s minimum. The index k = 1, 2 . . . n, where n is
the dimension of the parameter space in which we want to minimize f . Similar to
regular orthogonality, two vectors vi and vj are said to be A-orthogonal, or conjugate,
if vTi Avj = δij . Intuitively we can think about it as the orthogonality criterion extended
to a cartesian space that is "warped" by some matrix A. That way we only need to
move along each linearly independent direction one time, by choosing the next step so
that f is minimized for each new step [80]. Compared to the gradient method of steepest
descent, which often moves along the same direction several times, the CG descent can
thus more efficiently converge.

Going further, it is easy to show that Eq. (5.19) is minimized when

∇f(x) = Ax− b = 0, (5.20)

if the matrix A is positive-definite. This problem thus reduces to a N × N linear
system on the same form as the one in Eq. (5.18) that we want to solve to get the
best-fit baseline amplitudes for the destriper.
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Next, we want to move from the current position xk along the search direction pk
to get closer to the minimum of f . We can write the next step after our move as
xk+1 = xk + αkpk, for some step size αk along the vector pk.

In order to find the optimal step size αk we must first define the error ek = x− xk
and residual rk = Aek = b −Axk. These are used to quantify how close the position
xk is to the minimum of f at x. Since we only want to move along pk a single time we
can require that

pTkAek+1 = pTk rk+1 = 0. (5.21)

From the definition of the residual and the next step we can write the residual of the
next step as

rk+1 = b−Axk+1 = b−A(xk + αkpk) = rk − αkApk. (5.22)

Note here that the residual decreases for each step taken, which is exactly what we want
when approaching the minimum of f .

Inserting back into Eq. (5.21) we get that

pTk rk − αkpTkApk = 0, (5.23)

from which we get that the step size is given by

αk =
rTk rk

pTkApk
. (5.24)

However, in order to actually perform the next move in the first place we must find
an expression for the step direction pk. It turns out that we can utilize the conjugate
properties of search directions {pk} for this by first choosing an arbitrary basis {qk} and
then make it A-orthogonal by the Conjugate Gram-Schmidt process. We do this by first
letting p0 = q0 and subsequently iteratively subtract all non-conjugate components of
qk to give

pk+1 = qk −
k−1∑
j=0

qTkApj

pTj Apj
pj . (5.25)

As it turns out a convenient choice for the basis {qk} is to let qk = rk. That is because
the residuals are orthogonal to the previous search direction pk so that we can write
the conjugate Gram-Schmidt coefficients as

βij =
qTi Apj

pTj Apj
=


rTi ri

rTi−1ri−1
, for i = j + 1

0, for i > j + 1.
(5.26)

Due to this simple trick we can in fact always find the next search vector pk by knowing
only the previous one. Thus we only need to keep track of two search vectors at the
same time. This reduces the order of computations per iteration from O(n3) to the
order of non-zero elements in the matrix A. The next search direction will then simply
be given as

pk+1 = rk + βk+1,k+1pk. (5.27)

Connecting the loose threads, we can summarize the algorithm by the following steps
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1. Chose some initial position x0 and compute the corresponding p0 = r0.

2. Loop over k = 1; k = n

αk =
rTk rk

pTkApk
(by inserting Eq. (5.27) into Eq. (5.24).) (5.28)

xk+1 = xk + αkpk (5.29)
rk+1 = rk − αkApk (5.30)

βk+1,k+1 =
rTi+1ri+1

rTi ri
(5.31)

pk+1 = rk+1 + βk+1,k+1pk (5.32)

3. Ideally speaking the CG method should converge at the minimum of f after at
most n steps, but due to round-off errors etc. on a computer this might not be
the case. In that case we can stop the loop if the residual rk+1 is smaller or equal
to some chosen tolerance, or if we have performed some chosen maximum number
of iterations.

5.2.3 Implementation of the Destriper

When implementing the destriper we compute the baseline fit for the TOD per fre-
quency. Because computing the baselines at a given frequency is independent, we can
fit baselines to multiple frequencies in parallel at the same time. However, there are two
main approaches on how to fit baselines to the COMAP data at a given frequency, both
of which we will consider. As the COMAP telescope has 19 feeds we could sequentially
row up all the TOD’s from each feed into a large times stream and subsequently fit the
baselines to it. We will denote this approach as the all-feeds approach. In theory, as we
fit the baselines to all feeds simultaneously we should have better cross-linking. How-
ever, destriping a larger amount of data at the same time also requires more memory.
For COMAP, if we treat all the data per CO field at the same time we can exceed the
memory capabilities of the computers at hand.

Another approach would be to fit the baselines to the data contained in each data
split (described in 4.2.1) separately. Thus, the TOD to which baselines are fit will
be a lot shorter, decreasing the overall cross-linking somewhat. The advantage of this
per-split destriper, however, is that we destripe the data within each split separately,
keeping the splits independent from each other. That way, we can make sure that the
systematic effects from one split do not leak over to another through some common
baseline fit. Additionally, fitting baselines to smaller batches of the data also requires
much less memory, which makes it easier to process the whole data from a given CO
field.

As we saw in Sec. 5.2.1, the process of fitting the baselines and projecting the
time stream into map pixels are independent of each other. We can thus use the
same noise weighted binning algorithm previously used in tod2comap to perform the
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Level 2 TOD tod2comap Map

make_baselines
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Figure 5.3: Flow chart of the improved mapmaker. The dotted lines show optional steps
of producing a baseline fit to the TOD using make_baselines, which can be performed
between l2gen and tod2comap.

projection of the TOD. Meanwhile, the baseline fitting is performed in the Python script
make_baselines that can be used as an optional step between l2gen and tod2comap as
illustrated in Fig. 5.3. The baseline amplitudes a and the number of time samples per
baseline are then saved to file by make_baselines, and can be imported to tod2comap
in order to perform the noise weighted binning of the corrected TOD d− Fa.

Note also that in some cases the CG solver can have trouble converging, especially if
it has to handle a lot of correlations in the TOD. In that case we can use a precondition
matrix Ã, for which Ã−1A ≈ I, where A represents the matrix on the left-hand-side
of Eq. 5.18, in order to speed up convergence. Finding a suited preconditioner can
be somewhat of a challenge, but a common point to start is to use the inverse of the
diagonal of A [80]. Thus, when testing the destriper we can compare whether using a
preconditioner brings any run-time advantages.

Finally, we need to find the optimal baseline lengths, which should produce clean
maps without new additional structure and at the same time resolve additional large-
scale structures of the signal. In the default pipeline, we perform TOD highpass cuts
at 0.02 Hz. Thus a good starting point should be baselines of length ∼ 50 s.

5.3 Principal Component Analysis of Feed-Feed Pseudo Cross-
Spectra

As we discussed in Sec. 4.2 we can compute cross-spectra between different parts of
the COMAP data and thus eliminate systematic effects that are not common among
the split halves. Nevertheless, when looking at individual FPXS of our data we see
that the spectra still contain some surviving systematic effects, as the FPXS are not
completely consistent with white noise. Although the sources of several systematic
effects are known to some extent, e.g. the standing wave artifacts seen in the middle
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panel of Fig. 5.4, there are certainly still a significant number of systematic artifacts
seen in spectra that have a yet unknown origin. Examples of such artifacts are seen in
the left and right panels of Fig. 5.4.

If spectra with such artifacts are not discarded or cleaned in some way, the averaged
FPXS can be contaminated. Therefore we will in the following consider a principal
component analysis (PCA) of the FPXS dataset found in Step 3. presented in Sec.
4.2.2. The subsequent PCA will then potentially aid in identify and clean bad spectra,
before the average FPXS is computed, and could in the future be a valuable data
selection and filtering tool.
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Figure 5.4: Example of individual 2D FPXS which contain significant systematic arti-
facts; (left panel) a large excess structures at large scales, (middle panel) bar-like
features at constant k‖ caused by standing waves, as well as (right panel) a dipole-
shaped structure at low k.

5.3.1 The PCA Decomposition

The idea behind doing a PCA decomposition of the FPXS dataset is that it consists
of cross-spectra from multiple different combinations of data, each with different con-
tributions from systematic effects. Thus some of the cross-spectra will be affected by a
given systematic effect and others will not. The corresponding variation in the cross-
spectrum dataset will hence introduce a given amount of spread, i.e. variance in the
data. Meanwhile, the astrophysical signal which should be common to all maps will not
introduce any variance in the data, up to some sample variance. Luckily, this is exactly
what a PCA is made for; to separate out the components of a dataset that describe
most of the variance, while leaving the mean (i.e. the common signal) alone.

The goal of the PCA of the cross-spectra is thus twofold; 1) identification of sys-
tematic effects and 2) possibility cleaning spectra from these. One approach we will
consider to the former is to look at the multidimensional dataset in the low dimensional
space spanned by the first principal components that explain most of the variance in
the data. Doing so could uncover interesting patterns in which the data are clustered
or arranged in low dimensional space, which in turn could help identity spectra with
systematic artifacts. In the second point, we utilize that the common astrophysical
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signal should not be picked up by the PCA. Hence if a principal component of the data
likely explains some systematic effect, it can in theory be removed from contaminated
spectra without too much loss of signal.

To make it clearer what is meant by the above let us consider an FPXS C̃i from our
dataset. Each spectrum consists of 14 × 14 bins, ki = (ki‖, k

i
⊥), which we can simply

treat as a 196 pixel image. All of these images are subsequently mean centered;

C̃mi = C̃i −
1

n

n∑
j=1

C̃j , (5.33)

where we consider an FPXS dataset of n (usually 3000-8000) spectra and denote any
mean centered spectrum by a superscript "m". Mean centering the dataset is important
when doing a PCA via the SVD method, as shown here, or else the first principal
component may reflect the mean of the dataset [81], which we want to leave out as it
contains the signal. Each mean centered image is then flattened into a 1D vector of 196
entries and collected in the data matrix

D =
[
C̃m

1 C̃m
2 C̃m

3 · · · C̃m
n

]
. (5.34)

The covariance matrix N = DTD of the data will then contain all the information
needed to separate out all the directions, and the corresponding amount, of most spread.
In particular, we need to find the eigenvectors and corresponding eigenvalues of the
covariance matrix N. This can be done by the singular value decomposition (SVD) of
the data,

D = UΣVT , (5.35)

where U and V are orthogonal matrices, while the diagonal elements of Σ are the singu-
lar values of the data σi. Now, the columns of V and the square of the singular values in
Σ correspond, respectively, to the eigenvectors and eigenvalues of the covariance matrix
N. The eigenvectors vi can then be sorted according to size of their corresponding
eigenvalues λi = σ2

i . Thus any eigenvector (or eigen-spectrum), and its corresponding
eigenvalue, give the direction and amount of variance along the given direction in k-bin
space [82].

Next, consider a given cross-spectrum from the dataset, C̃j . To quantify the con-
tribution to C̃j around the mean from a given PCA eigen-spectrum vi we can simply
project the mean-centered cross-spectrum onto the eigen-spectrum by performing the
dot product

aij = vi · C̃m
j =

196∑
l=1

vi(kl)C̃
m
j (kl). (5.36)

This PCA amplitude aij can therefore be used to quantify the amount of contamination
of C̃j from the systematic effect described by vi. Therefore we may use aij to classify
the cross-spectra according to their systematic effect, given that the PCA eigen-spectra
indeed describes the latter. Furthermore, if we find that the first two or so eigen-spectra
of the data explain a majority of the total variance in the data, it may indicate that
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these eigen-spectra represent some dominant systematic effects. We can thus compute
the mean-centered PCA amplitudes of each FPXS in our data, for each of the two
primary eigen-spectra. Subsequently, using the two amplitudes for each FPXS as x and
y coordinates in a 2D scatter, we can project the whole 196D FPXS dataset into the
plane spanned by the two primary eigen-spectra. After this dimensionality reduction,
the dataset becomes much easier to interpret, at the cost of only a relatively modest
loss of information. Subsequently, we can look at the outliers and clustering patterns
observed in the 2D scatter, thus potentially revealing some interesting patterns that
hint to which splits or feeds are affected the most by the systematic effects described
by the two primary (or higher) eigen-spectra.

5.3.2 Cleaning FPXS of Residual Systematics

We can also use the mean-centered PCA amplitude and the corresponding eigen-spectrum
to possibly remove the contamination of the systematic effect from a cross-spectrum,
not dissimilar to how we can remove bad weather modes from the TOD in the PCA
filter (see Sec. 3.4.5). To clean a given contaminated FPXS C̃contamin

j from its system-
atic excess we simply subtract out the PCA mode ai,jvi that describes the systematic
effect;

C̃clean
j = C̃contamin

j − aijvi. (5.37)

Because we would rather not remove any signal from the cross-spectra, we need to
check how much the signal is affected by the subtraction in Eq. (5.37). In fact, doing
so is essentially the same as finding an effective transfer function, which quantifies
the combined signal loss due to the filtering of the data and the PC subtraction of
the FPXS. Luckily, for this we can use our newly developed simulation pipeline, i.e.
produce a dataset with a known signal and compare it to the filtered and PC subtracted
equivalent. The resulting effective transfer function is then found in a similar fashion
as seen in Eq. (5.4), only this time the Ck represents the FPXS after PC subtraction.
Finally, we can estimate the loss of signal due to the eigen-spectrum subtraction by
comparing the effective transfer function of cleaned the FPXS to the transfer function
of the un-subtracted FPXS.
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Chapter 6

Results

In the following chapter, we will present the main results of the improvements of the
COMAP pipeline as previously described in Ch. 5. We will present the estimates of the
pipeline transfer function produced by our simulation pipeline as well as how different
filtering of the raw TOD biases our signal estimates. Subsequently, we will present the
results of the mapmaking with a destriper and how it improves the recovery of large-
scale modes in the final maps. Finally, we will scratch the surface on how well we can
potentially classify and remove artifacts from systematic errors from FPXS using the
PCA approach.

6.1 The Simulation Pipeline

We begin our analysis of the simulation pipeline results by looking at some maps pro-
duced by its three branches. Subsequently, we will show the power spectra and transfer
function we can obtain from these, before investigating the ensemble-averaged trans-
fer function used to reverse the underestimation of the signal we measure in COMAP.
Lastly, we will consider how the different filters in l2gen and different scanning strategies
attenuate the signal, and thus quantify the resulting bias.

6.1.1 Simulation Pipeline Maps

In Fig. 6.1 we see an example of a 26.92 GHz slice of the three maps that are produced
by the three branches of the simulation pipeline. These were produced using a single
realization of the signal and 63 obsIDs worth of data on the CO6 field. The artificial
signal added to the telescope time stream in sim2tod was in this case boosted by a factor
of 1000, as we found this to ultimately yield the cleanest looking transfer functions. The
maximum temperature of the cube after boosting was thus about 2 K.

The map of the raw simulation seen in Fig. 6.1a is an illustration of how the
simulated signal looks before it is affected by the pipeline filtering. Meanwhile, the map
made from a TOD with added signal can be seen in Fig. 6.1b. We can clearly recognize
some of the simulated structures in this map that are also present in the pure simulation
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Figure 6.1: Three 26.92 GHz (i.e. A:LSB channel 30) maps from each of the three
branches of the simulation pipeline; (a) the raw simulation, (b) the map made from
a TOD of 63 CO6 obsIDs with added signal as well as (c) the map made from the
corresponding TOD without additional signal. Each map is coadded over the feeds.
The signal cube was boosted in temperature by a factor of 1000 to make it detectable,
resulting in a max temperature of about 2 K.

map. In addition, it has similar noise properties as the map in Fig. 6.1c made from
only the raw TOD, as the noise level is the highest at the edges of the map where the
telescope sweeps by less frequently.

6.1.2 From Auto-Power Spectra to Transfer Function

From each of the maps seen in Fig. 6.1 we computed pseudo-auto-spectra. These are
seen in Fig. 6.2. In the upper left panel of the figure, we see the 2D binned pseudo-auto-
spectrum of the unfiltered simulation from Fig. 6.1a. As we can see the simulation has
the largest contribution to its power spectrum by the largest scales, gradually fading off
in both the parallel and perpendicular directions. The reason why the power spectrum
is not completely isotropic in k in this plot is due to the beam smoothing, which causes
the power spectrum not to fade off to ∼ 4µK2Mpc3 the same way in the perpendicular
direction as in the parallel one.

Comparing the pure-signal spectrum to the pseudo-auto-spectrum resulting from
the processed TOD with signal, seen in the upper right of the same figure, we can see
that there are some changes from that of the pure simulation. Firstly, we see that the
processing of the signal has lead to a general reduction in power. This effect is most
significantly seen on small k‖ and k⊥ and is caused by the removal of the largest modes
in the pipeline. Thus we would underestimate the signal, most notably on large scales,
if we do not take the filtering into account. If we look at the high k⊥ we can, however,
see that the power spectrum shows a higher value than that of the raw simulation.
This effect is caused by the fact that the map made from a TOD with added signal is
dominated by the TOD’s noise properties on small scales (i.e. high k), as opposed to
the pure simulation which is noise-free. Therefore the power spectrum of the simulated
observation approaches the power spectrum of the map made from a raw TOD (i.e. the
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noise-spectrum) seen in the lower left of Fig. 6.2. Now, the noise-spectrum approaches
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Figure 6.2: An example of the pseudo-auto-spectra from the (top left) raw simulation
cube, noise weighted in the same fashion as the map of the signal with noise. The
corresponding (top right) pseudo-auto-spectrum of the map resulting from adding
signal to the observed TOD. The (bottom left) pseudo-auto-spectrum of the observed
TOD (i.e. the noise-only spectrum) is subsequently subtracted from the spectrum of
the TOD with signal, and divided by the pure signal spectrum, to yield an estimate of
the (bottom right) pipeline pseudo transfer function. The spectra which contain the
TOD were all produced by 63 obsIDs of CO6, the same as used for the maps in Fig.
6.1.

a constant power of ∼ 107 µK2Mpc3 at most scales, which corresponds to the white
noise power. The exception being the excess structures seen at small k, which could be
caused by systematic errors not yet handled. We also see that the noise spectrum has
a lower value than that of the white noise at small k‖ and k⊥ due to the pipeline filters
removing the largest modes in the TOD. Thus we should, if being completely rigorous,
mitigate the pipeline’s effect on even the white noise. However, as the effect on the
noise-spectrum seems to not be dramatically large, we simply neglect the corresponding
white noise transfer function explaining this effect. However, it could be worth checking
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the white noise transfer function in the future when we close in on a detection of CO
signal and finding all systematic effects becomes much more important.

Combining all the power spectra seen in Fig. 6.2 according to Eq. (5.3) we get the
transfer efficiency seen in the lower right of Fig. 6.2. This plot should hence quantify
approximately the fraction of signal that survives the combined filtering of the pipeline
on different scales. We see that the peak efficiency at about k‖, k⊥ ≥ 0.1 Mpc−1 is about
85− 90 % transfer of signal. However, at small k the transfer function approaches zero,
due to the pipeline filtering out the largest modes of the simulation.

Another noteworthy point to make about the transfer function in Fig. 6.2 is its
behavior at high k⊥. As we can see, this region looks considerably noisier than all the
others, even showing some k bins that are over-saturated to above unity. Considering
this happens on scales in which the map is noise dominated, it may be that our noise
approximation (i.e. the TOD without any signal) breaks down. In investigating this
effect we for instance found that a stronger signal than the one used would worsen
this issue. Hence it could also be a small round-off error in the computations that
gets worse when the signal is too strong compared to the noise level. As we will see
in the remainder of this section, this is a problem that seems to recur in most (if not
all) estimated 2D transfer functions. Thus as our noise approximation in this region is
probably somewhat off, the corresponding transfer function values should not be taken
too seriously.

As mentioned, the transfer function seen in Fig. 6.2 was computed using a single
realization of the simulation cube, added to 63 obsIDs of CO6. However, as discussed
in Sec. 5.1.1 the true transfer function is found by ensemble averaging over all transfer
function estimates from several realizations to account for sample variance in the simu-
lations. Because estimating these transfer functions for 63 obsIDs (or more) is expensive
in terms of run time and needed storage space, we only computed the transfer function
from three realizations to compute an ensemble average. Each of the simulations used
was boosted in temperature the same way, i.e. by a factor of 1000, to make the signals
more easily detectable. Although this is far from a perfect estimate of a transfer func-
tion it will even out some of the sample variance and help quantify the approximate
variation of the transfer functions from different realizations of the signal.

The 2D ensemble-averaged transfer function, as well as its k-averaged 1D equivalent,
can be seen in Fig. 6.3. The individual transfer functions from which we computed the
average can be seen in the upper panels (a - c) of Fig. 6.4 as well as the differences to
the mean transfer function in the lower panels (d - f). The first thing to note in the
ensemble-averaged transfer function is how much less "noisy" it seems overall compared
to the individual estimates. Note also that the ensemble-averaged transfer function
looks considerably cleaner at the noise-dominated high k⊥ region. This suggests that
computing the ensemble-averaged transfer function in the limit of even more realizations
could largely benefit the transfer function in this region and counteract the break-down
of the noise-spectrum approximation.

However, when considering the ensemble-averaged 1D transfer function we see that
the over-saturated bins of the 2D transfer function are effectively reduced to a locally
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Figure 6.3: The ensemble-averaged 2D and 1D transfer function from three different
realizations of the signal cube, each of which were added to our dataset of 63 obsIDs of
CO6.

enhanced peak. Because we are averaging over shells of constant k =
√
k2
‖ + k2

⊥ when
computing the 1D transfer function the overall transfer function has a lower peak than
the 2D equivalent. Thus the problems of the noise-dominated region get considerably
less notable.

Furthermore, the fluctuations in the transfer function estimates at low k‖ are nicely
evened out in the ensemble average. We can see this by looking at the difference plots
in Fig. 6.4. These show both negatively and positively varying bins of at most ≤ ±0.2
from the mean. Hence the individual realizations of the transfer function are not biased
compared to the average one. This suggests that the fluctuating bins are indeed the
result of sample variance in the simulation at large scales and that these will average
out nicely in a large number of realizations.

Even though our ensemble-averaged transfer function is far from perfect, when con-
sidering the relatively modest amount of data that went into it, the averaged transfer
function in Fig. 6.3 is the so far best estimate of the transfer efficiency of the COMAP
pipeline filters. Having a transfer efficiency of ∼ 85 − 90% at k‖ ≥ 0.1 Mpc−1 and
k⊥ ≥ 0.2 Mpc−1 and almost zero at low k‖ and k⊥, we have the greatest accuracy at in-
termediate to small scales while significantly underestimating the signal at large scales.
Nevertheless, we can now correct for the filter-induced bias of our signal estimates, as
well as the underestimated error bars, by applying the inverse of the transfer function
to the signal spectrum estimate. By doing so we can prevent the filter’s attenuation to
bias our ultimate astrophysical parameter estimates.
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Figure 6.4: The transfer function estimate of each of the three different realizations (a
- c) used to compute the ensemble-averaged transfer function in Fig. 6.3, as well as the
corresponding difference to the mean (d - f). Note how the transfer function estimate
of each realization and the ensable averaged one differ by at most about 10-20% at low
k‖.

Some natural improvements to our average transfer function estimate would as dis-
cussed, be to compute a larger ensemble of realizations. This could be done by sampling
at random from both obsID- and simulation-space, to take variations in both the ob-
sIDs and simulations into account. In addition, the fact that we used pseudo-spectra
to compute the transfer functions will to some extent distort them, and thus undoing
this effect could provide a more unbiased transfer function.

6.1.3 From Feed-Feed Pseudo-Cross Spectra to the Transfer Function

Similarly to computing the transfer function from pseudo-auto-spectra we can, as dis-
cussed in Sec. 5.1.1, compute the transfer function from feed-feed pseudo-cross spectra
(FPXS). An example of this can be seen in Fig. 6.5. The averaged FPXS of the TOD
with and without added signal, respectively seen in the upper right and lower left, were
computed according to the methods in Sec. 4.2.2 using the 63 obsIDs of CO6 previously
also used. In particular, the cross-spectra are computed by cross-correlating the high
and low elevation splits of the Lissajous-only data. Hence this is only one of the possible
averaged FPXS resulting from the splits of Split Tree 2. from Table 6.1. The signal
pseudo-auto-spectrum seen in the upper left of Fig. 6.5, is the same in Fig. 6.2, the
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Figure 6.5: The (lower right) pipeline transfer function derived from a (upper right)
FPXS made from the maps of the TOD with additional signal, (lower left) the FPXS
of the raw time stream as well as (upper left) the signal pseudo-auto-spectrum. The
two FPXS are averaged Lissajous cross-elevation spectra containing the same 63 obsIDs
of CO6 data used to compute the spectra and transfer function in Fig. 6.2. Thus the
average FPXS seen here are only one of several possible ones resulting from Split Tree
2. of Table 6.1.

only difference being that the noise weights used were different.
We see that the transfer function resulting from this analysis, seen in the lower right

of Fig. 6.5, looks qualitatively equal to the one estimated from auto-spectra seen in Fig.
6.2. Both transfer functions show the same canceling of large-scale modes, as well as a
roughly equally shaped peak region. Nevertheless, we can see that the cross-spectrum
derived transfer function is highly over-saturated in the noise-dominated high-k⊥ region.
This suggests that the subtracted noise approximation or the noise weighting applied
in computing the signal pseudo-auto-spectrum were for some reason not good enough.
We were, however, unable to find any better functioning solutions to this problem, and
will have to investigate this issue further in the future.

There are, however, also some subtleties important to note when computing transfer
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functions from FPXS. In particular, as an FPXS from Eq. (4.22) is always computed
from two maps its noise weights are affected by both input maps, as well as a constant
of proportionality. Thus a wrongly estimated constant of proportionality, or a lack
of overlap of the high-SNR regions of the two cross-correlated maps may lead to the
combined noise weights w = N/σ1σ2 making cross-spectra more susceptible to mode
mixing than auto-spectra. Thus in theory, since different FPXS could be affected by
mode coupling to a different degree, so could the derived transfer functions, potentially
making it necessary to compensate for the signal bias differently for each FPXS.

Nevertheless, as the transfer function derived from an average FPXS (for now) only
serves as a sanity check, we are satisfied by the qualitative agreement between the
transfer function estimated from the two species of power spectra.

6.1.4 Transfer Function for Different Filters and Scanning Strategies

We have now had a thorough look at the transfer function quantifying the loss of signal
power due the default filtering we apply to the raw data (see Ch. 3 for default filter
parameters). However, we want to see the effect of the different filters on the signal that
is received by the telescope, to determine which filters bias the signal the most and if
we can potentially even use a stronger filter without attenuating the signal too much.

As we are here mostly interested in the qualitative effect of the individual filters we
compute the transfer function using only six obsIDs of CO6, three Lissajous and three
CES scans, for different runs of the simulation pipeline. In each run we use the same
signal realization, to make the estimated transfer functions as comparable as possible,
and change only a single filter setting at a time.

Before going on to present the results we note that the frequency mask applied in
each run, except the one where the masking was turned off, was derived from the l2gen-
run with default parameter settings and without added signal. The reason is twofold;
firstly the signal added to the TOD is so strong that the corresponding correlation
patterns will be perceived as bad data resulting in almost complete masking of the
data. The second reason is that when generating the mask in the first place, both the
poly- and PCA filters are involved in making the mask (as described in Sec. 3.4.6), and
hence changing their settings would inevitably also change the mask. By always using
the same mask we therefore make sure the observed signal bias is caused by a single
filter.

The 1D transfer function estimates from runs with different filtering can be seen in
Fig. 6.6 along with the difference between each transfer function estimate to the one
estimated from the default settings (solid black line). Correspondingly, the difference
between the 2D transfer functions from each filter change to the default one, shown to
spot the different treatment of scales along the parallel and perpendicular directions of
the line-of-sight, can be seen in Fig. 6.7. The top-most left plot in Fig. 6.7 shows the
default 2D transfer function.

Looking at Fig. 6.6 we see that the largest difference in the transfer function is
observed when we turn off the polyfilter, and to a similar but lesser extent when using
a O(0) polyfilter. In particular, we observe that most of the additional signal that
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Figure 6.6: (Upper panel) the 1D binned transfer function from different filter combin-
ations. The black line shows the transfer function with the current default filter settings,
i.e. a polyfilter of first order, a removal of four PCA components, normalization knee
frequency 0.01 Hz, with frequency masking turned on, removal of the elevation tem-
plate as well as a TOD highpass cut 0.02 Hz. (Lower panel) the differences between
the transfer function from each changed filter to the default transfer function. The color
coding and line styles correspond to those of the upper panel. The transfer functions
are produced using a single simulation realization as well as six obsIDs of CO6 (mixed
Lissajous and CES type scans).

survives the filtering is at large to intermediate scales. However, when looking at the
2D equivalent in Fig. 6.7 (i.e. the second row from the top) we see that the changes
in transfer efficiency are mainly limited to the large-scale parallel modes. This makes
sense as the frequency filter’s main task is to subtract the frequency dependence of
each time sample, which is most effectively done by a O(1) polyfilter. Thus the largest
modes of the signal that are correlated along the frequency dimension of the map will
be subtracted out the same way as continuum foreground contamination. This is most
effectively done if the subtracted polynomial at each time step is allowed to vary in
both its constant and slope. Therefore when we are using no polyfilter or a polynomial
of order zero, fewer of these larger line-of-sight modes are affected and can survive the
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pipeline.
Next, consider the transfer function when turning off the pointing template removal.

When we remove the pointing template, the modes that are correlated with the tele-
scopes pointing are removed from the TOD. The pointing correlated modes that are
canceled are therefore not only the atmospheric effects and potential ground pickup,
but also the part of the signal that causes a larger pointing correlation. Thus the re-
moved structures of the signal should predominantly be on large perpendicular scales.
This is confirmed by the difference between the transfer function without and with the
removal of the pointing correlations, which we can see in Fig. 6.7 shows a significant
excess at constant low k⊥. Similarly, in the 1D equivalent of this transfer function dif-
ference, this effect on average amounts to almost as much additional signal transmission
as when using a O(0) polyfilter. However, the effect is primarily limited to the modes
at k ≤ 0.1 Mpc−1.

The remaining filter combinations we consider here appear to have a relatively mod-
est effect on the transfer function. For instance, turning off the masking of frequencies
completely will, as can be seen in Fig. 6.6, have a subtle effect on the transfer function
at k ≤ 0.1 Mpc−1. If neglecting the unrealistically low transfer function at the highest k
bin in Fig. 6.6, where the result is somewhat unpredictable due to a poor noise approx-
imation, the peak difference in transfer efficiency between not masking and masking
is at below 5% at scales below 0.1 Mpc−1, and even less at the high k modes. When
looking at the corresponding 2D difference plot in Fig. 6.7 we can see that turning off
the mask ever so slightly increases the transfer of signal by ≤ 10% at the low k‖ scales
similarly, although to a significantly lesser extent, as turning off the polyfilter. That is
because masking some frequencies will decrease the amount of data along the large-scale
parallel modes, resulting in a somewhat decreased transfer function.

When it comes to changing the default 0.02 Hz highpass cut frequency to 0.04 Hz we
see a relatively modest effect on the transfer function of ∼ 2.5% peak difference in the
1D difference plot of Fig. 6.6. However, when considering the 2D difference plot in Fig.
6.7 we see that the peak absolute difference is ∼ 5% at low k⊥. As a 0.04 Hz highpass
cut is a somewhat harsher filter than the default 0.02 Hz it makes sense that somewhat
less signal survives the pipeline. It also makes sense that the effect of the harsher filter
is limited to low k⊥ modes as the highpass cut will affect the slowly varying temporal
that correspond to large-scale structures along the perpendicular direction. However,
the result is also encouraging as the effect seen in the harsher filter only has a relatively
subtle effect on the bias of the signal, meaning that we could save slightly contaminated
data by a less conservative highpass cut at the price of only ∼ 5% peak loss in signal.

Lastly, we have two remaining filter settings to consider, both of which have negli-
gible effects on the transfer function according to what is seen in Fig. 6.6 and 6.7. The
first of these is the PCA filter, which when turned off changes the transfer function by
at ≤ 5% in a few bins at low k‖, as seen in Fig. 6.7. This is indeed what is expected
from the PCA filters removal of the first 4 principal components since these components
correspond to the modes that are correlated the strongest across the focal plane and
frequencies. Hence the structures of the signal, which are expected to be contained
within a small part of the survey volume, will only correlate weakly over the focal plane
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Figure 6.7: The 2D transfer function corresponding to the default filter settings
(uppermost left) as well as the difference between the transfer function corresponding
to each filter change and that of the default settings (see figure titles for which filters
were considered). The 2D transfer function differences shown here correspond to the
1D differences of Fig. 6.6. As in Fig. 6.6 the transfer functions are produced using a
single simulation realization as well as six obsIDs of CO6 (mixed Lissajous and CES
type scans).
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and frequencies. It thus makes sense that we only observe a minor change in trans-
fer efficiency of the largest modes. Thus if removing four principal components hardly
changes the recovered amount of signal we could potentially even subtract more modes
from the TOD in the future, without biasing the signal estimate in any significant way.

The very last filter we consider is the normalization by the running mean where we
changed the knee frequency from the default 0.01 Hz to 0.003 Hz. By using a lower knee
frequency the running mean by which the time stream is normalized will be even more
slowly varying. Thus only the very slowest temporal modes of the time stream should
be normalized out by dividing by the running mean. Nevertheless, as we see in Fig.
6.6, and most notably in Fig. 6.7, the lower knee frequency only lets through a few
percent additional signal at the lowest k bins. This suggests that since the signal has
very few modes that are of a long enough timescale to be affected by the normalization
in any significant way, using a knee frequency fknee = 0.003 Hz or the slightly harsher
fknee = 0.01 Hz makes almost no difference. We can therefore use the default 0.01 Hz
knee frequency to take out slightly more long-timescale modes from the TOD without
any significant signal bias.

Different Scanning Strategies

When we estimate the astrophysical signal from FPXS we often split the data according
to the scanning strategy, which could bias our COMAP signal estimates differently.
Therefore, we also computed the transfer function for a dataset of six mixed CO6
obsIDs of Lissajous and CES, as well as separately for the dataset of the three obsIDS
from each scanning strategy. The resulting transfer functions can respectively be seen
in Fig. 6.8a - c. Each of the three transfer functions were computed from a single
realization of the signal, in addition to a small obsID dataset, because we again are
only interested in qualitative tendencies.

When comparing the recovery of the signal of the Lissajous and CES scans we can
see that the Lissajous transfer function has a higher peak efficiency. The reason for this
is most probably that the higher scanning speed of Lissajous scans results in covering
more sky, hence collecting more data, in a comparable amount of time than a CES scan.

Another point to note is that the peak of the Lissajous transfer function seems to
be shifted towards larger scales than that of the CES scans. Also, the transfer functions
of both scanning strategies have a similar tendency to decrease somewhat when going
from the transfer function’s peak towards high k⊥, although this tendency seems to
be somewhat emphasized in the Lissajous case. The reason for this shift in the peak
transfer function to lower k is not completely known, but it could perhaps be caused by
Lissajous scans having a better cross-linking than the CES scans, which would result in
a somewhat better recovery of the larger scales. However, this is debatable and needs
some more investigation in the future.

Finally, we can see that the mixed transfer function does not quite reach the same
peak efficiency as the Lissajous transfer function, but peaks a little higher than that
of the CES scans. Also, the mixed transfer function’s peak is located approximately
between the peaks of the two other transfer functions.
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Figure 6.8: The transfer function of a single realization of the simulation cube using (a)
three obsIDs of type Lissajous and three CES scans, (b) the transfer function of the
three Lissajous obsIDs as well as (c) the three CES type observations.

Because we observe quite different transfer functions for each scanning strategy, they
will not upwards-adjust our estimated signal power spectra and their error bars equally.
Hence when we compute spectra from Lissajous- or CES-only data (as for example in
FPXS) the respective transfer function should be used when taking the pipeline filtering
into account. Meanwhile, when using a dataset of an approximately equal amount of
each scan type, the transfer function of a mixed dataset should be used when accounting
for the bias of the signal.

6.2 The Improved Mapmaker

Having seen how we can use our simulation pipeline to account for the filter-induced
signal attenuation, it is time to have a look at the destriper and how well we can
improve upon the current mapmaker design using a noise weighted binning algorithm
of the highpass filtered TOD.

In Fig. 6.9 the TOD of an arbitrary frequency and feed is shown in relation to some
10 s baseline fits, amplified by a factor of 10 to make them visible. When comparing
the uncorrected level 2 TOD to its baseline fit, we can see that the latter is far higher
in amplitude than the former. Only looking at the time domain data hence gives the
impression that the correction of the TOD by the baseline fit would be quite subtle.

Furthermore, we see that the baseline fit of the inverse diagonal preconditioned and
un-precondition CG solver are essentially the same. Also, we found that the number of
iterations needed to converge in the CG solver was quite similar in the two compared
cases and usually close to 10-30. Nevertheless, the preconditioned solver was somewhat
more stable in the number of iterations, while the un-preconditioned solver occasionally
spiked to 100-200 iterations. We also noted a tendency for the number of iterations
to increase somewhat when fitting baselines to increasingly larger datasets. Thus, as
we in this section only consider relatively small datasets, the regular CG solver should
be sufficient. That said, in the future when testing the destriper on a full dataset of a
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Figure 6.9: An example of a level 2 TOD d(t) with some corresponding (10 times)
amplified baseline fits overplotted. The baselines of both the preconditioned fit (dashed
blue) and the un-preconditioned fit (orange) are shown.

given CO field, using the preconditioner could be beneficial if the number of iterations
becomes large and the danger of numerical errors increases.

To gain a better idea of which baseline lengths maximize the signal recovery we
computed the 1D binned transfer functions using different baseline lengths. Because
we are only interested in the relative performance between different baseline lengths
we used a small dataset of a single signal realization added to six obsIDs (of mixed
scan types). Figure 6.10 shows the resulting 1D transfer functions in relation to the
one made by the binned mapmaker using a 0.02 GHz highpass cut of the TOD prior to
mapmaking.
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Figure 6.10: The 1D binned transfer function corresponding to the destriper, fitting
baselines of different lengths simultaneously to the time stream of all feeds, compared
to the transfer function from a highpass filtered and noise weighted binned mapmaker.

What we can see is that all baseline lengths, except the very shortest one at 0.04 s,
provides a better transfer efficiency than the binned mapmaker with highpass cuts.
Specifically, we see that when starting at 100 s baselines and decrease the baseline
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lengths stepwise to 10 s we get an ever higher transfer efficiency. However, we also see
that if the baselines get too short, i.e. 1 s and below, that the transfer function starts
to behave unpredictably. Although the 1 s baselines have the highest transfer function
at scales k ≤ 0.1 Mpc−1, the transfer function of the 10 s baselines is slightly better at
higher k and behaves more predictable overall. Going down to baselines of length 0.04 s
we see that the transfer function starts to break down and oscillate wildly below even
that of the binned map.

The reason this happens is most probably due to the short baselines starting to
become degenerate with the white noise in the TOD. Take for instance a case with
baselines of length one time sample. Since we can freely vary each baseline amplitude
in the fit, we will inevitably fit the whole data, both the white noise and the signal. The
result is a residual of almost zero. In the case of 0.04 s baselines, i.e. two time samples
in length, the effect is similar and way too much signal is taken out by the baseline fit.
What we want is hence a baseline length with which the long-timescale residuals are
fitted well, but the white noise and the signal are left out. Hence, for now, it seems as
if the 10 s baselines seem to behave the best in terms of transfer efficiency, increasing
the transfer function at intermediate scales by up to ∼ 15% with respect to the default
binning and highpass filtering.
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Figure 6.11: Three 32.33 GHz (i.e. B:USB channel 11.) maps; (a) made using the
highpass filtered and noise weighted binned mapmapker, (b) the all-feeds destriper
map as well as (c) the map from the per-split destriper.

However, the transfer function alone is not enough to determine whether the 10 s
baseline destriper yields an acceptable result, the maps and power spectra must also
look sufficiently good. To compare the 10 s destriper to the binned mapmaker, we thus
made some maps of the dataset of 63 obsIDs of CO6 previously used, with additional
signal. In particular, both the all-feeds and the per-split baseline fit were tested. In
Fig. 6.11 one can see the resulting maps of a 32 GHz frequency channel, made by (Fig.
6.11a) the binned, (Fig. 6.11b) the destriper with a simultaneous baseline fit on all feeds
as well as (Fig. 6.11c) the map made by destriping the TOD on a per-split basis. The
additional signal was added to the TOD to test whether it would properly cancel out
in the difference between each of the maps, ensuring that the signal was left untouched
by the destriper. The corresponding relative difference between the maps can be seen
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in Fig. 6.12.
When comparing between the maps in Fig. 6.11 it is hard to spot large qualitative

differences by eye. However, looking at the difference maps in Fig. 6.12 between the
binned map and respectively the all-feeds and the per-split destriped maps (respectively
in the left and middle panels) we see a clear "stripy" pattern appearing. This large-
scale difference pattern is of the order of several 100µK and seems like a significant
improvement in case the structure removed by the destriper is indeed that of the residual
systematics. Nevertheless, the difference is not too large to wake any larger suspicions
of an un-physical result.
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Figure 6.12: Three 32.33 GHz (i.e. B:USB channel 11.) difference maps; (a) between
the highpass filtered and binned map (Fig. (6.11a)) and the all-feeds destriped map
(Fig. (6.11b)), (b) between the highpass filtered and binned map and the data split-
wise destriped map (Fig. (6.11c)) as well as (c) between the maps of the two destriper
approaches.

What can also be noted is that the difference between the two destriper maps, seen
in the right panel, is much lower than between any of the destriper maps and the binned
one. This suggests that in fact, the destriping of all feeds and the destriping on a per-
split basis are roughly equivalent. Note also that the boundary regions of the difference
maps show the largest deviations, which most probably is due to slightly different noise
properties at the high-noise boundary. But as the most interesting and trustworthy
regions are the central ones, where the SNR is the highest, we can fairly safely neglect
the edge excess observed.

A common feature observed in all of the difference maps is that the added signal is
nicely canceled. This suggests that the signal itself was left untouched by the improved
mapmaker schemes. This is good to see as it is further evidence that the destriper only
attacks the dynamic components of the TOD and leaves the static signal alone.

Meanwhile, the maps seen in Fig. 6.11 and 6.12 merely show the result of the
destriper from a single frequency slice. However, a conclusion in favor of the destriper
must be justified by the whole 3D map. In particular, we want to ensure that the
destriper also yields an acceptable result on the same 63 obsIDs but without added sim-
ulation. To illustrate the structures in both the parallel and perpendicular dimensions
of the maps from each mapmaker scheme we computed the 2D (pseudo) auto-spectra.
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The resulting power spectra can be seen in Fig. 6.13 and correspond, respectively from
(a)-(c), to the binned, all-feeds destriped and split-wise destriped maps.

As we can see, the two power spectra from the destriper look virtually identical.
Compared to the spectrum of the binned map there are, however, some clear differ-
ences seen in the large-scale excess structure. We see that this large-scale excess looks
comparable in structure in all three spectra, but is considerably amplified in strength
in the spectra corresponding to the destriper. The similarities in the shape of the ex-
cess suggest that we are not inducing any large-scale structures when destriping the
maps. Hence the amplified excess seen is probably some already existing structure that
is simply resolved better by the destriper algorithm than when highpass cutting the
TOD and binning the maps.

However, we recall from our earlier discussion of Eq. (5.13) that we neglected the
prior term aTN−1

a a. This could introduce some artificial constraints on the large-scale
structures, preventing the noise on large scales to integrate down as effectively as on
small scales. Potentially, this can lead to a higher power spectrum value at low k,
especially if we in the future test the destriper on large datasets where the small-scale
noise can be integrated down significantly. Thus including the prior term on the baseline
amplitudes could in the future potentially improve the destriper on large scales.

As the 10 s baseline fit maximizes the transfer function and seems to produce relat-
ively clean-looking maps we want to know in more detail how well it recovers additional
signal on different scales. Thus we computed the 2D transfer functions corresponding to
the 63 obsID dataset of CO6. This is shown in Fig. 6.14, with the panel order following
the same mapmaking schemes as in the auto-spectra in Fig. 6.13. As we can see im-
mediately when comparing the transfer functions side-by-side is that the one resulting
from the binned mapmaker scheme is inferior to either of the two transfer functions of
the destripers. This can also be seen in the difference plots in Fig. 6.15. Compared to
the highpass filtering and binning, either of the destripers appear to recover ∼ 20−25%
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Figure 6.13: The pseudo-auto-spectra of 63 obsIDs of the CO6 field resulting from a
mapmaking with a (a) highpass filtering and noise weighted binning algorithm, (b) a
destriper with a baseline fit on all feeds simultaneously as well as (c) from a destriper
using a baseline fit on data split batches.
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Figure 6.14: The transfer function resulting from a mapmaking with a (a) highpass
filtering and noise weighted binning algorithm, (b) an all-feeds destriper (c) from a per-
split destriper. The transfer functions are all computed based on a single realization of
the simulated signal as well as 63 obsIDs of CO6.
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Figure 6.15: The difference between the transfer function computed by a mapmaker
using; (a) highpass filtering and noise weighted binning (Fig. (6.14a)) and the all-
feeds destriper (Fig. (6.14b)), (b) highpass filtering and noise weighted binning and a
per-split destriper (Fig. (6.14c)) as well as (c) between the two destriper approaches.

more signal at large perpendicular scales. Before, when using only the highpass filtered
and binned mapmaker the maximum transfer efficiency was at ∼ 85 − 90%, while the
destripers manage to reach a peak transfer function of ∼ 95%. Meanwhile, we see only
a small improvement of ∼ 5% in transfer efficiency in the large perpendicular modes in
the all-feeds destriping over the destriping per-splits, as seen in panel (c) of Fig. 6.15.

All in all, it seems as if the destriper with 10 s baselines nicely recovers additional
large-scale structures in the signal that were previously canceled by the 0.02 Hz highpass
cuts prior to the binned mapmaker. Moreover, the two approaches of destriping perform
almost equally well. Having better cross-linking when fitting baselines to the combined
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TOD of all feeds only improves the transfer efficiency by a small amount.
However, when it comes to run time of the mapmaker the binned mapmaker is the

fastest. While the binned mapmaking takes under an hour when parallelizing suffi-
ciently, the destripers need between two and five hours for the 63 obsID dataset. In
particular, the all-feeds destriper is slightly faster than the per-split one, as there are
fewer I/O bound read and write operations needed. Also, the pointing matrix, etc.
can be precomputed for all frequencies in the all-feeds destriper, while these need to be
computed for each data split batch in the other destriper approach.

Meanwhile, the far more limiting factor of memory usage is effectively held at a
fairly low level when destriping the TOD in smaller split batches. Another important
advantage of destriping the TOD in data split batches is that the data in each batch is
completely independent which enables us to maintain the same flexibility of computing
cross-spectra as before. Hence due to all the aforementioned advantages, the destriper
fitting baselines on a per-split basis proves to be the superior scheme. Nonetheless, the
binned mapmaker with highpass cuts is still useful when in need of a quick run-through
of the data.

6.3 The Eigen-Spectrum Analysis

In this section, we present and discuss the results from the PCA of the cross-spectrum
dataset resulting from a multitude of successive data splits and, as described in Sec. 5.3.
In particular, we will consider the PCA eigen-spectra from each of the CO fields and
discuss commonalities. Subsequently, we will discuss how we may use the PCA amp-
litudes to identifying spectra with contamination by systematic effects and investigate
the loss of signal when subtracting the systematic artifacts.

6.3.1 The Eigen-Spectra

When computing feed-feed cross-spectra from the full dataset of each CO field (i.e.
∼ 1800 obsIDs per field), according to the methods described in Sec. 4.2.2 using the data
splits of Split Tree 1., presented in Table 6.1, we get in total 8192 different combinations
of the data from which to compute FPXS. As one of these successive splits is between
Lissajous and CES data we get 4096 spectra per scanning strategy. This gives sizable
data space over which to compute the PCA eigen-spectra that capture the directions of
most spread in k-bin space.

Because of the movement in both azimuth and elevation in a Lissajous scan, as
opposed to motion in azimuth only in CES scans, their corresponding spectra should
in theory show different amounts of contamination from possible residual systematic
effects like ground pickup. We, therefore, chose to treat the data from each scanning
strategy separately, to not pick up the variance in the data induced by the differences
in the scanning strategy when computing PCA eigen-spectra. In Fig. 6.16 the resulting
first five eigen-spectra (i.e. unit eigen-vectors) for each scanning strategy and CO field
can be seen. The amount of variance in the direction of k-bin space corresponding to
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each eigen-spectrum is given above each plot in the percentage of the total variance of
the data.

What we immediately see in Fig. 6.16 is how unevenly the explained variance per
eigen-spectrum is distributed. For instance, the first CO6 and CO7 eigen-spectra for
each scanning strategy describe about 50 − 60% of the variance in their respective
dataset, while the remaining modes contain below 10% of the variance each. In the case
of CO2, the percentage of variance is somewhat more evenly distributed over the first
five eigen-spectra. However, the first couple of eigen-spectra showing 10 − 25% of the
variance each is still a considerable amount for a single eigen-spectrum.

Table 6.1: Left table: The abbreviations for the different data splits considered as
well as a short description of the abbreviation’s meaning. Right table: The two split
"trees" considered, with the test and control variables according to which the splits are
performed. After the test variable split the data are subsequently split (successively)
according to the control variables. The variables marked with "s" are the so-called split
variable across which the cross spectra are computed for each feed-feed combination.

Abbreviation: Description:
cesc Lissajous/ CES

elev High/ low elevation

ambt High/ low ambient tem-
perature

dayn Day/night

fpol High/low value of knee
frequency of the first
polyfilter constant (c0

from Eq. 3.13)

half Half mission

odde Odd/even obsID

rise Field rising/setting

wind High/low wind speed

wint Winter/summer

sidr High/low sidereal time

Split Tree 1.
Test variables: Control variables:
ambt elev (s)
dayn cesc
fpol
half
odde
rise
wind
wint

Split Tree 2.
Test variables: Control variables:
elev (s) cesc
dayn (s)
sidr (s)
ambt (s)
wind (s)
wint (s)
rise (s)

If the data we perform the PCA on were containing only noise-spectra we would
expect each eigen-spectrum to only resemble random fluctuations. Also, each eigen-
spectrum would be explained by a small percentage of the variance. Therefore, since
we both see some clear structure in the leading eigen-spectra, and these contain most
of the explained variance in the data, it indicates that systematic effects are picked up
by the eigen-spectra. That is, since a given systematic effect is only showing up in some
of the splits and or feed-feed combinations, the corresponding variance in the dataset
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of different splits will be correspondingly large.
Furthermore, we can clearly see that the first couple of PCA modes of CO6 and

CO7 look very similar in structure and are described by similar amounts of variance.
This is especially notable in the Lissajous eigen-spectra, but also to some extent in
the CES spectra. As both CO6 and CO7 are quite similar in their path across the
sky, the similarities in the structures of the first eigen-spectra of the two fields seem to
further support the hypothesis that the eigen-spectra could describe common systematic
features of the two fields.

When comparing the Lissajous and CES eigen-spectra within each field we also see
some similarities. This is, in particular, the case for the first eigen-spectra of CO6 and
CO7, but also some of the other spectra. For instance, the dipole structure observed
in the second Lissajous components of CO6 looks similar in structure to the fourth
component of CES, as well as the fourth Lissajous component of CO6 resembling the
third CES eigen-spectrum. In the former of these examples, it is important to note that
the overall sign of the spectra is irrelevant when comparing them as these are only unit
vectors in k-bin space. Hence two overall anti-correlated eigen-spectra will simply point
in opposite directions along the same principal axis of the data. Therefore, it is likely
that some systematic effects are common among CES and Lissajous scans in the CO6
and CO7 fields, although contributing to the variance in the cross-spectra to different
levels.

Interestingly enough, the same tendencies for structures seen in Lissajous eigen-
spectra to resemble those seen in the CES equivalent do not seem to be observed in the
CO2 eigen-spectra. The exception, being perhaps the last of the spectra of Lissajous
and CES. Thus the systematic effects in Lissajous and CES seem to look different in the
CO2 data. In fact, when comparing the CO2 spectra to either of the other two field’s
spectra there are no obvious similarities. This suggests that CO2 has quite different
systematic effects than the other two fields, which makes sense considering that CO2
moves quite differently across the sky than the other fields.

6.3.2 Identifying Cross-Spectrum Outliers

Apart from directly comparing the structures observed in the eigen-spectra to those
caused by known effects, there are some other approaches we can use to identify con-
taminated FPXS. To be clear, this type of analysis is the first of its kind performed on
this particular dataset and we are hence only scratching the surface of potential ways
of using the data from the PCA. Nevertheless, even our tentative results we present
could have great potential in classifying the spectra in our dataset by their systematic
contamination.

As mentioned in Sec. 5.3 we can use the mean-centered PCA amplitudes of the first
two eigen-spectra of an FPXS dataset to reduce its dimensionality from 196 down to
the plane spanned by the two eigen-spectra. In the case of CO6 and CO7, these two
components explain about 60 − 70% of the information in the data, which means we
can reduce the dimensionality of the data by a huge amount and still only lose 30−40%
of the information. As an example, we performed this dimensionality reduction on the
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Figure 6.16: The first five PCA eigen-spectra for each field (respectively CO2, CO6 and
CO7 from to bottom). The upper and lower row of eigen-spectra for each field respect-
ively are derived from Lissajous and CES data only. The eigen-spectra corresponding
to each field and scanning strategy are derived from FPXS that are computed from all
the 4096 possible, split and feed, combinations of the data described in Split Tree 1.
of Table 6.1. The percentage of the total variance explained by each eigen-spectrum is
seen above each plot.
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dataset of CO7 Lissajous FPXS.
In Fig. 6.17 this is shown as a scatter plot. Each dot corresponds to a given FPXS

in the dataset, where the planar x and y coordinates are respectively given by the mean-
centered PCA amplitudes of the first two CO7 Lissajous eigen-spectra from Fig. 6.16.
What becomes evident when displaying the data in this way is the clustering patterns
of the dots. It looks like there are about three or so distinct clusters in the data, a
central one with the bulk of all dots, and two outlier clusters to the top and right of the
central cluster. As we see in the left panel of Fig. 6.17, each of the three clusters has
a relatively even distribution of spectra from each data split. This indicates that the
outliers in the dataset are not primarily associated with a given split. That being said,
this could very well look different when using other splits, and should be investigated
more in the future.

However, if we look at the right panel of Fig. 6.17, which indicates which feeds were
crossed in a given FPXS, we can easily see that the outlier clusters belong to distinct
feed-feed combinations. In particular, we see that the right-most outlier cluster is given
by all the spectra which cross feed 8 with itself. Because these spectra are crossing
the same feeds the common systematic effects in feed 8 are amplified, resulting in a far
outlier cluster. This is one of the reasons we leave out these auto-feed combinations
of FPXS when computing the final averaged FPXS. Thus in the future, it could be
interesting to repeat the PCA with the auto-feed spectra excluded.

Meanwhile, we also see in Fig. 6.17 that the upper-most outlier cluster is defined
by feed 17× 8, or vice versa. In general, it seems as if almost all outliers are associated
with feed 8 in some way. This could mean that feed 8 is affected by some systematic
effect associated with the two first principal axis of the dataset. Alternatively feed 8
could be somewhat more sensitive than the other feeds, which could lead to it picking
up slightly more of a systematic effect than the other feeds. Nevertheless, looking into
feed 8, in particular, could be worthwhile in the future when trying to rule out all the
sources of systematic error in the data.

To determine if large absolute PCA amplitudes correspond to spectra with large
systematic effects, and vice versa, we plotted some arbitrary FPXS with high and low
absolute amplitudes in the first principal axis of the data. These spectra are displayed
in Fig. 6.18, where the high and low absolute PCA amplitudes correspond to spectra in
the upper and lower rows respectively. As can be seen, the high PCA amplitude spectra
all show clear signs of systematic effects, while the low amplitude spectra look much
cleaner. The first of the contaminated spectra for instance has a large excess structure
at large scales reminiscent of the first eigen-spectrum of CO7 Lissajous. Meanwhile,
the third of the bad spectra has several bar-like structures at constant k‖ which are
reminiscent of standing waves in our data. Lastly, we find the same dipole-like excess
structure at large scales in the second of the contaminated spectra that was previously
seen in the second eigen-spectrum of CO7 Lissajous.

Of course, the examples shown here are only a few, but in general, there seems to
be a correlation between the high absolute values of the PCA amplitudes and spectra
showing signs of larger systematic effects. To conclude, we can thus use this type of PCA
to make reasonably good estimates on whether a given cross-spectrum is contaminated
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Figure 6.17: Scatter of the CO7 Lissajous cross-elevation FPXS dataset in the 2D
subspace spanned by its two first eigen-spectra (seen in Fig. 6.16). In the left panel
the dots are colored according to the which split the corresponding FPXS belongs to
(see Table 6.1 for description of split abbreviation), while the right panel shows the
same scatter colored according to the crossed feeds. The left and right semicircles of
each dot respectively indicate the two feeds that were crossed.

by systematic artifacts. However, an exact threshold for when a given amplitude is
considered to be high needs to be established in the future. The identified outliers
could be masked in the further analysis, or as we will see in the next subsection we
could potentially clean the outliers. Hence there is still a wealth of interesting data that
can be mined from this kind of PCA of FPXS and we are here merely scratching the
surface in terms of identifying systematic effects.

6.3.3 Signal Loss due to Principal Component Subtraction

Finally, we want to see what happens when we subtract out some of the principal
components of a spectrum believed to be associated with a systematic effect. To do this
we simply use the same dataset of FPXS from which we derived the transfer function
seen in Fig. 6.5. From the resulting dataset of 3586 FPXS without additional signal,
we computed the PCA eigen-spectra, seen in the top row of Fig. 6.19. The middle two
rows of the figure respectively show the principal components of the averaged Lissajous
cross-elevation spectra from Fig. 6.5 with and without additional signal.

Now, the reason the FPXS dataset without added signal was chosen when computing
the eigen-spectrum fit, is that the signal is orders of magnitude stronger than the TOD
it was added to. Thus small variations in the observed sky portion or different mode
mixing in the different splits could result in each FPXS picking up slightly different
Fourier modes of the signal when computing FPXS. As the signal is very strong this
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Figure 6.18: Some selected spectra from the CO7 Lissajous cross-elevation FPXS data-
set. The upper panel of spectra were selected according to a relatively high absolute
value of the mean-centered PCA amplitudes of the first CO7 Lissajous eigen-spectrum.
Meanwhile, the lower panels show the opposite case, being selected from the lower
PCA amplitudes.

could lead to a correspondingly sizable variance in the FPXS dataset, which in turn
would be picked up by the first PCA eigen-spectrum. Therefore fitting, and subsequently
removing, the PCA modes found by an eigen-spectrum fit on the FPXS data with signal
may result in unrealistically much signal loss.

To estimate how much signal is lost when subtracting the first five principal com-
ponents from the FPXS with added signal, we computed the corresponding effective
transfer functions. In the bottom row of Fig. 6.19 the relative difference between the
resulting effective transfer functions of the cumulatively subtracted principal compon-
ents and the default FPXS derived transfer function are shown. What we can see in
the difference of the transfer functions is that we at most alter the signal by 20− 50%
in removing up to five principal components. As we previously discussed, the noise
dominated regime of the FPXS-derived transfer functions was found to be somewhat
unpredictable. Hence the large (absolute) value of the transfer function differences in
the upper three to four rows of k⊥-bins should not be taken very seriously.

Furthermore, the additional signal loss due to subtraction of the principal compon-
ents is mainly contained in a region of a few of the large-scale bins. Thus subtracting
the principal components of the data does not overall bias the transfer function.

It is also important to mention that the transfer function differences could look some-
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Figure 6.19: Upper row: the five first eigen-spectra (with the corresponding fractional
explained variance above each plot) from the fit to the FPXS dataset without added
signal, resulting from our 63 obsID subset of CO6 split according to Split Tree 2. of Table
6.1. Upper middle row: first five principal components of the average FPXS of the
TOD without added signal seen in Fig. 6.5. Lower middle row: the corresponding
principal components of the average FPXS of the TOD with additional signal from
Fig. 6.5. Lower panel: the difference between the effective transfer function after a
cumulative removal (from left two right) of the first five principal components (from the
two middle rows) and the transfer function without any removal of principal components
(see Fig. 6.5).

what different when removing the principal components from another set of averaged
FPXS. That is, if another FPXS has a higher or lower contribution (i.e. corresponding
PCA amplitude) to the systematic effects represented by the subtracted eigen-spectra,
the subsequent loss in signal may be correspondingly higher or lower. Nevertheless, the
shown example serves as a reasonably realistic illustration of the amount of signal loss
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due to the PCA filtering of FPXS.
Although losing up to 50% of the signal in some of the bins may seem like a significant

loss, it may be weighed up by the fact that we could potentially clean the data of some of
the systematic effects at the price of slightly upwards adjusted uncertainties in affected
bins. In the current cross-spectrum methods we implement in COMAP any FPXS of
χ2 > 5 above the white noise expectations are discarded when computing an averaged
FPXS. Thus, if the subtraction of systematic effects through PCA modes proves to be
effective in cleaning bad spectra in the future we could potentially include previously
discarded data in the FPXS averages without suffering too much additional signal loss.
This could be an especially powerful tool in the COMAP pipeline if eliminating the
remaining systematic effects seen in the data proves to be challenging by traditional
means. However, as we are only scratching the surface on the potential use of PCA on
FPXS, it remains to be tested systematically in future work how well we can mitigate
systematic errors using this method.
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Chapter 7

Conclusion and Future Outlooks

Through this thesis, we have worked on three main improvements to the analysis pipeline
of the COMAP line intensity mapping experiment. We extended the COMAP pipeline
to compute the pipeline transfer function, which is essential to account for the filter-
induced bias of the signal estimate. In addition, we have implemented a destriper in
the mapmaker and shown that we can significantly improve the signal recovery on large
scales. Finally, we used a principal component analysis on a COMAP feed-feed pseudo-
cross-spectrum dataset to introduce a potential way forward on identifying spectra
according to how contaminated they are by systematic artifacts and potentially clean
them of these.

7.1 Summary

To summarize, we built an extension to the COMAP pipeline with which simulated
telescope data can be fed into the analysis pipeline filters. Using this simulation pipeline
we were able to compute the pipeline transfer function, which is essential to account for
the filter-induced bias of the signal estimate as well as accurately estimating its errors.
In particular, we found that when using the default filter parameters the ensemble-
averaged estimate of the transfer function yielded a peak transfer efficiency of 85−90%
at scales k‖, k⊥ ≥ 0.1 Mpc−1, while on the largest scales, k‖, k⊥ ≤ 0.05 Mpc−1, the
signal was almost completely attenuated. Furthermore, the filters that were found to
bias the signal estimates the most were the polyfilter and pointing template removal,
but several other filters were found to only attenuate the signal to a modest degree. In
addition, we found that the transfer functions for Lissajous scans peaked higher than
in the CES equivalent, while the mixed case peaked somewhere in between the two.

Secondly, we implemented a destriper algorithm in the mapmaker by fitting the long-
timescale residuals in the TOD by straight baselines. Of the tested baseline lengths, we
found that the 10 s baselines maximized the transfer function. Furthermore, we found
the 10 s baselines to produce satisfactory maps and power spectra, while at the same
time resolving ∼ 20− 25% more signal at large scales compared to the highpass filtered
and binned mapmaker. The peak transfer efficiency of the destriper was found to be
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∼ 95%. Specifically, we found that fitting baselines to all feeds simultaneously and on
a per-data-split basis essentially yielded the same result. However, due to its higher
memory efficiency and flexibility, the per-split destriper was found to be superior to the
all-feeds destriper.

Finally, we investigated how we could use a PCA approach to identify feed-feed
pseudo-cross-spectra with contamination from systematic effects. In particular, using
our full COMAP data per CO field and scanning strategy to generate an FPXS dataset,
we derived their corresponding eigen-spectra. We found that the structures observed in
each of the first five eigen-spectra as well as their explained variance of 10−50%, per field
and scanning strategy, were consistent with systematic effects. Furthermore, projecting
the whole CO7 Lissajous FPXS dataset into 2D principal component space showed that
the outlier clusters of spectra were not associated with any data split in particular, but
rather with spectra involving feed 8 in some way. Subsequently, we found that it was
possible to estimate whether an FPXS was contaminated by systematic errors by the
size of the corresponding absolute PCA amplitude. Lastly, we estimated that we lose
at most 20− 50% signal in a few of the k-bins when subtracting out up to five principal
components from an average FPXS, introducing the possibility to use this method in
the COMAP pipeline to clean spectra of systematic effects at the price of some signal
loss.

7.2 Future Outlooks

Even though we were able to produce interesting results in this thesis there are several
points on which to improve. Firstly, our analysis on transfer functions was only done on
pseudo-spectra. Hence a natural next step in the analysis would be to undo the mode
coupling to get an unbiased estimate of the power spectra and transfer functions.

Next, since we at most used three realizations of the simulated signal, the ensemble-
averaged transfer function could be improved by averaging over a larger dataset of
simulations. This could be done by for example adding 100 different realizations of the
signal to a few random obsIDs at a time. This way we would sample both simulation-
and obsID-space and in doing so increase our robustness against sample variance in the
simulations and different looking TODs.

Although the simulation pipeline we built is primarily designed to compute transfer
functions in order to estimate the filter-induced bias of the pipeline, it is trivial to extend
the pipeline to produce any kind of simulation. For instance, the simulation pipeline
could be used to produce data with generated systematic effects like ground pickup or
standing waves. This could in turn help testing further improvements to the COMAP
pipeline filters that target each of these systematic effects.

When it comes to the destriping mapmaker we have only tested it on a comparably
small dataset of 63 obsIDs. Thus, the next step from our proof-of-concept would be
to test the destriper on a full dataset of obsIDs. In particular, the per-split destriper
could be further tested by computing cross-spectra from the destriped maps and see
how these are affected. As our current destriper implementation only fits baselines to



7.2 Future Outlooks 109

the TOD per frequency a future improved version of the destriper could be generalized
to the frequency domain also. That way several of the filters in l2gen could potentially
be performed in the mapmaking process itself.

Lastly, when it comes to the PCA of the COMAP feed-feed pseudo-cross-spectra,
we clearly saw some interesting patterns appearing in the data. However, we merely
scratched the surface on how to identify and clean bad FPXS. Thus for the future,
a more concrete framework needs to be build to sort the FPXS according to their
systematic errors. This could be achieved by looking at the clustering patterns in the
low dimensional principal component space, or by identifying and labeling the structures
seen in each cross-spectrum according to their eigen-spectra, by using a machine learning
algorithm. Subsequently, it would be interesting to systematically test if including
previously discarded spectra, after cleaning them using their principal components, can
clear some of the remaining systematic residuals from the averaged FPXS.
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