
Commutativity Analysis in ABS

Sondre Skaflem Lunde

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture

60 credits

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Commutativity Analysis in ABS

Sondre Skaflem Lunde

© 2021 Sondre Skaflem Lunde

Commutativity Analysis in ABS

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

When analysing programs statically, one quickly runs into issues of too
many states and too many transitions, which combine to make the state-
space very large. Commutativity analysis is one strategy for reducing the
state-space, by identifying pairs of transitions that result in the same state
regardless of execution order. This thesis presents an investigation into the
suitability of SMT solvers for determining the commutativity of methods
in an active object language.

ABS, as an active object language, has cooperative scheduling and strong
encapsulation, which makes it possible to work with methods as atomic
units. Analysis of these methods should be able to identify commuting
methods and reduce the state space.

Satisfiability Modulo Theories (SMT) solvers allow programmers to
declare problems rather than constructing solutions themselves. Modern
solvers are highly optimized for speed, and able to solve very complex
problems. This makes their use very compelling as part of larger analyses.

A new addition to the ABS compiler has been written to output a type
checked syntax tree as JSON. A program has been developed in Haskell
to take JSON from the ABS compiler and generate code for an SMT
solver, and these all combine to determine whether methods within a class
commute.

We demonstrate how to leverage an SMT solver to find commuting
methods in ABS, and conclude it to be a promising tool for this kind of
analysis.

Acknowledgements

I would like to thank Lars Tveito for supervising my work on this thesis.
His genuine interest in the project, attention to detail, understanding of
the field, and encouragement to follow fun detours wherever they may
lead has had a huge impact on the direction and final result of this thesis.

I am grateful to Einar Broch Johnsen for the feedback on my thesis in the
final weeks.

Finally, I am always grateful for my family. The unconditional encourage-
ment and support of my parents, who are always only a phone call away,
are a constant source of happiness and joy.

Sondre Skaflem Lunde
Oslo, May 2021

ii

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Motivation . 3
1.3 Contributions . 5
1.4 Chapter Overview . 6
1.5 Source code . 6

2 Background 7
2.1 Soundness and Completeness 7
2.2 Static Analysis . 7
2.3 Symbolic Execution . 9
2.4 Boolean Satisfiability (SAT) 10
2.5 SMT . 10

2.5.1 SMT-Lib . 11
2.5.2 Theories . 12
2.5.3 Z3 . 14
2.5.4 SBV . 14

2.6 Haskell as an implementation language 16
2.6.1 Algebraic Data Types 17

3 Abstract Behavioral Specification 19
3.1 Key Features . 19
3.2 Example ABS program . 20

4 From ABS to Haskell 23
4.1 The Code Pipeline . 23
4.2 Translating ABS to JSON . 24

4.2.1 Implementation Details 26
4.3 Algebraic Data Types in Haskell 27

4.3.1 The AST as Algebraic Data Types in Haskell 29

5 Identifying Commuting Methods 33
5.1 What is Commutativity? . 33
5.2 SMT Solving for Commutativity 34
5.3 Read-write sets . 36

iii

5.4 Commutativity of ABS Constructs 37
5.5 How Different Constructs Affect the State 38

5.5.1 Expressions . 38
5.5.2 Assignments . 40
5.5.3 Branching — If Statements 40
5.5.4 Branching — While Statements 41
5.5.5 Effectful Statements 42

6 Creating Constraints 43
6.1 Construction of SMT-Lib constraints 43
6.2 Encoding First-Order Constraints by Hand 45
6.3 Generating Constraints with Haskell 49

6.3.1 Tracking the State . 49
6.3.2 Initializing the Analysis 50
6.3.3 Assignment . 52
6.3.4 Branching and Iteration 54
6.3.5 Effectul Statements and Expressions 55

6.4 Output from SBV . 58

7 Evaluation and Conclusion 61
7.1 Implementation of SMT analysis 62

7.1.1 Support for ABS Features and Possible Future Work . 63
7.2 Conclusion . 65

iv

List of Figures

4.1 Data Transformations . 23

5.1 Comparing States Over Time 38

v

vi

List of Tables

5.1 Commuting Table for Read-Write Analysis 36

7.1 Results of Analysis on All Example Programs 62
7.2 Results of Analysis On Conclusive SMT results 62
7.3 Overview of ABS features covered by the Analysis Tool . . . 63

vii

viii

Listings

2.1 SMT Example Program 1 . 12
2.2 Arithmetic Theory in Action by finding an instance of the

Pythagorean theorem. 14
2.3 SBV Example Program . 15
2.4 The Hand-Coded example . 16
2.5 SBV Generated Code . 16
3.1 Example ABS program . 21
4.1 Example ABS program as JSON 25
4.2 Serializing if-stmt into JSON 26
4.3 Some examples of the Algebraic Data Types 28
4.4 Instantiated AST in Haskell 30
5.1 Simple method that commutes with itself 37
6.1 Hardcoded SMT-Lib example 48
6.2 Hardcoded SMT-Lib example output 49
6.3 Code generated by SBV passed to Z3 with response for the

increment and setB methods 58

ix

x

Chapter 1

Introduction

This thesis presents a tool for determining whether two methods commute
in ABS, an active object language. Two methods commute if they result
in the same state, independent of the order in which they are executed.
The key features of ABS that make the analysis possible are a distributed,
actor based semantics, and cooperative scheduling. Investigating whether
two methods commute is interesting for its potential as part of larger
analyses, as well as being a sufficiently interesting problem for examining
the appropriateness of SMT solvers for analysing active object languages.

The results from this analysis is a set of pairs of methods within a class
that commutes, that can be used by a larger analysis which focuses on
the possible execution paths of a program. The shear number of such
paths make exhaustive analyses unfeasible for larger programs, and any
reduction in the number of paths requiring analysis can drastically lower
the time required to test a given program. With access to commuting
methods, it is possible to reduce multiple paths down to a single path if the
only difference between the paths are the ordering of two such commuting
methods.

To determine if two methods commute, we must be able to determine if the
contents of those methods break commutativity. In imperative programs,
those methods contain statements, some of which are independent of
state and some of which are not. It is not sufficient to look at
individual statements, or even individual methods, as one method might
commute with one method and not commute with another. To determine
commutativity it is necessary to look at the cumulative effect of two
methods on the state of the class, and consider how they affect each other
as they are executed.

In an actor-based system, every method can be executed at many different
points in the overall run of the program, and can in the worst case increase
the number of paths from n! to (n + 1)!. Any reduction in this case will

1

have enormous implications for the number of paths that must be tested.

In this analysis we will utilize an SMT solver, which is a highly researched
and optimized class of programs that takes as input a series of constraints
and resolves whether it is possible to satisfy those constraints. SMT
solvers are an extension of more traditional SAT solvers, with a much more
expressive input language that allows the user to formalize constraints
in what is essentially the same language we are used to from arithmetic,
logic, and programming. These solvers allow their users to leverage
known axioms in common theories such as arithmetic, logic, and more.

As programmers write a program, it is first constructed in their head
before being typed into the computer. As part of this process, knowledge
about various aspects of the program is held in the mind of the
programmer, and used to leverage the tools in the language. Perhaps an
integer is always within a certain bound, or the ordering of elements is
irrelevant when combining them from a collection into a single element.
Often, these elements remain implicit as the programmer uses them to
solve the problem, or they might be made explicit through comments,
variable naming, or types.

Many of the advancements in modern compilers are examples of such
implicit knowledge made explicit to the compiler, not just to other
programmers. By making them explicit to the compiler, they can be used
to optimize the code in various useful ways. Type systems force the
possible inputs and outputs of procedures to be enumerated, for error
handling and effects to be reasoned about, and aids in the creation of
correct code.

This analysis is interested in a particular aspect of the code that is not com-
mon for programmers to consider when writing normal functions, namely
commutativity. For programmers, commutativity is most commonly used
when dealing with arithmetic and boolean operations. However, this anal-
ysis is not so much about making programmer assumptions explicit, but
instead tries to formalize (possibly) accidental commutativity for a com-
piler or other static analysis tool to use as a part of its own analysis.

In addition to looking at the suitability of SMT solvers for this particular
problem, a more naive approach, read-write sets, is tested to provide a
point of comparison. This approach looks only at operations directly
relating to the state of the program, and any reading of or writing to the
state is considered. This analysis is naive because it does not take into
account the kind of manipulation that is done when reading or writing,
or the order in which they occur. The benefit of this naive approach is
guaranteed soundness, and how much easier it is to implement.

2

1.1 Problem Statement

The main objective of this thesis is the following.

Investigate the suitability of SMT solving to determine the commu-
tativity of methods in an active object language, such as ABS.

Furthermore, such a tool must:

1. Maintain soundness. Only methods that are definitely commuting can
be determined to be so. Since this tool can be used in a tool chain for
static analysis, any unsoundness would spread into other analyses.
To maintain soundness, completeness will most likely suffer.

2. Be comparable to a more naive analysis. A read-write analysis will
provide a baseline to compare the results of the SMT analysis against.
While the main target is testing the suitability of SMT solving in
general, its success will depend on how good it is. The suitability
of the SMT based analysis will depend on how easy implementation
is, how reusable it is, or how portable it is to other similar problems
one might want to use that kind of analysis for.

Modern SMT solvers provide a way to utilize highly researched programs
to solve complex problems, as long as they can be encoded into the solver.
With modern libraries for different languages, this is easier than ever
before, and the potential of SMT solvers is one worthy of serious study.

1.2 Motivation

We want to test the suitability of SMT solving because we are interested
in its potential, working on an active object language, to examine if
interference between methods is sufficient to determine commutativity.

Partial-Order Reduction

In a program graph, each state can be reached in many different ways
because of various possible interleavings. It is the case that certain
sequences of states can exist in which the order of individual states are
different, but the final state is the same, i.e. two different executions of
the program that cause the same result. Since they cause the same result
in the end, it should suffice to only consider one of the executions. The
purpose of partial-order reduction is thus to identify the paths that are
equivalent for the purposes of our analysis, and only analyze one path as
a representative for all those paths.

3

One key insight is that even though there are many different interleavings,
many different paths end up in exactly the same place [12]. There are
some important caveats for two paths to be considered identical, as there
are many ways in which one method can influence the execution of
another method. If one method running before another causes the second
do something different that if the first method never executed, there is
interference. One possible way to find such cases is to look at which
variables are written to in the first method, and whether those variables
are read in the second. However, if swapping the two methods cause the
method now running second to change its behaviour in exactly the same
way, it would leave the state following the execution of the two methods
the same regardless of the order of execution. If it can be shown that the
state following two methods is the same regardless of the ordering of the
methods, then it is sufficient to consider only a single run in any analysis
interested in the possible states reached at the end of a program.

Using an SMT solver

SMT solver are very powerful logic engines, that have been developed
for years by major companies in industry. By formalizing your problem
as logical formula, you can utilize the power of these solvers to perform
difficult computations. They allow you, in some sense, to outsource the
tougher aspects of your problem to a tool that has years of research put
into it to make it as effective as possible.

As a user of these engines, their declarative nature provide a way to
formalize problems without having to specify a solution. Instead, you
specify the inputs and the restrictions on those inputs, telling the solver
what must be true and what it depends on, and the solver will try to find a
satisfying model. It is harder to write a correct solution than it is declaring
the problem. The high-level language used to input problems into the
solvers make declaring problems even easier, and when combined with
libraries for mainstream languages it is feasible to generate these input
programs. It is not trivial by any measure, but provides an alternative to
traditional methods that make it well-worth exploring.

SMT-Lib [7] is a programming language designed to act as a common
language for SMT solvers.

The ABS concurrency model

ABS is an executable modeling language with certain novel features that
provide a foundation upon which to do interesting static analysis.

4

Firstly, its concurrent object model provides strong encapsulation, in the
sense that an object cannot access or modify the state of another object.
Only methods defined on each object can directly manipulate the fields
of that object, and other objects are restricted to calling these methods if
they want to interact. In a sense, all class fields are private, and must be
accessed by methods in the object. Secondly, calling methods on objects
does not synchronously execute these methods, but places them in a
queue, and the internal scheduler of the object decide which waiting call
will be executed next. Finally, each methods decides when to yield control.
This is called cooperative scheduling.

The consequences of these points for static analysis is that each object can
be analysed independently of other objects, vastly reducing the number
of analyses needed for the particular investigation this thesis will present.
Rather than analyzing every pair of methods in the module, we can analyse
every pair of methods in every class, for every class in the module.

Commuting Methods

Because of cooperative scheduling and the active object model, it is
possible to determine statically if a method in ABS will run to the end or
suspend execution at some point inside the method body. As a result, we
can analyse ABS at the level of methods, to determine if they commute, i.e.
if the state of a class is the same regardless of the ordering of two methods,
after the two methods have been executed.

1.3 Contributions

The main contribution is a prototype of a commutativity analysis for ABS,
using an SMT solver to search for commuting methods. The development
of and results from this tool is used to examine the suitability of using an
SMT solver for static analyses of properties of programming languages.

As part of the process there was created:

• Support for outputting the syntax tree of an ABS program as JSON
was implemented on the ABS compiler itself. This is a large compiler
with multiple backends, and with over two hundred thousand lines
of code in the project as a whole.

• An analysis tool written in Haskell takes ABS programs, serialised
into JSON, as input. It produces SMT-Lib code that is passed to
an SMT solver for evaluation. This analysis will for each pair of

5

methods determine if they commute or not. Additionally, a read-
write analysis is done as part of this execution to provide a point of
comparison.

These tools let us contribute to further analyses that want to exclude
redundant paths of execution from more general static analyses.

1.4 Chapter Overview

Chapter 2 is an overview of the background theories and tools used to
create this analysis.

Chapter 3 is an introduction to Abstract Behavioral Specification (ABS),
the language on which this analysis is done.

Chapter 4 covers the translation from ABS to JSON to Haskell data types,
which includes the tool serializing ABS into JSON as part of the ABS
compiler.

Chapter 5 is a theoretical discussion on what commutativity is, in
general and in the context of methods in a programming language. This
chapter includes a discussion on how different programming statements
commute, which is then used when implementing constraints in chapter
6.

Chapter 6 presents the implementation of the tool itself, generating code
for the SMT solver from ABS programs. This includes how the state
is handled, and how specific language constructs are translated into
constraints.

Chapter 7 is an evaluation of the results, a comparison of using the solver
and using a read-write analysis, and some concluding thoughts.

1.5 Source code

The source code is available on Github.1

1www.github.com/sondresl/master

6

Chapter 2

Background

This chapter will cover the concepts that one should be familiar with in
order to fully understand the rest of this thesis. As such, there will be
an overview of the relevant static analysis and symbolic execution, before
discussing implementation-specific topics like Haskell and SMT solving.

2.1 Soundness and Completeness

The terms soundness and completeness originate from logic. Informally,
a system is sound if everything it can prove is in fact true. Conversely, a
system is complete if everything that is true in the system, can be derived
by the system.

In the case of the analysis presented in this thesis, it is sound if
everything determined to commute actually commutes, and it is complete
if everything that commutes is determined to commute. At times when
constraints on the implementation forces a choice, we will always favour
soundness over completeness.

2.2 Static Analysis

Static analysis has came about as a complement to dynamic analysis of
programs, as a way to improve software quality [19]. Dynamic analysis
involves running the program and comparing the actual outputs with
expected outputs. Static analysis attempts to gain insights about a
program from its source code or some representation of the source code.

The most common form of dynamic analysis it testing. By testing the
program it is possible to see how the program responds to a wide variety

7

of expected inputs, and thereby verify that the program works as intended
in those specific circumstances. The downside to testing is that the
amount of possible inputs to a program is so large that verifying every
combination is most often infeasible or impossible. Instead, tools and
metrics exist that attempt to ensure a sufficiently wide variety of inputs
to have every branch of execution tested at least once. One way to judge
the quality of dynamic analysis is measuring the number of branches of
execution that are actually executed during the run of at least one test.
This is known as branch coverage.

Early ideas around static analysis emerged as a response to the increased
complexity of programs once concurrency was introduced [4], and a
wish to prove the correctness of such programs [16]. Static analysis
instead aims to confirm some aspect of the program that must be true
regardless of input. Canonical examples of such analysis are static type
checking, verifying that all variables are instantiated before their first use,
or ensuring there is no dead code in the program. Since the purpose of
the analysis is to prove some property of the program for all states the
program can reach, it is focused on staying sound and often suffers in
completeness.

A common use of static analysis is inside compilers. Every time a program
is compiled, static analysis is performed to ensure the program adheres to
certain specifications, and to make optimizations that make the generated
code faster. Compiling the source code of a programming language means
transforming it between different representations, often multiple times
and sometimes with very minor changes. The compiler provides several
different representations of the source code throughout this process, as the
different versions have different attributes, and as the process progresses
elements are either discarded or created depending on the needs of the
process at that particular time. Any one of these representations can be
used for static analysis, and picking one depends on the characteristics
one wishes to analyse.

The most common representation of a program is the Abstract Syntax Tree
(AST). As a tree, the program has been transformed by the compiler from
pure text into a representation of multiple dimensions. This is to say that
various aspects of the program have been grouped together in a way that
might not be clear from the textual representation of the program, and
which now can be treated as separate entities. Rather than thinking about
the program in terms of lines and columns, it is now functions, classes,
declarations, or any other construct that exists within the programming
language in question. This makes it possible to talk about scopes and
states, to ask high level questions about lifetimes and availability of names
in the program, and find properties that generalize to all programs which
share the same basic structural elements.

8

Certain forms of static analysis are so ubiquitous that they are hardly
considered static analysis, like type checking in statically typed languages.
Indeed, every instance of analyzing the representation inside the compiler
is static analysis of some sort. Type checking is a success story of static
analysis, and most interesting problems in the field today would take as a
starting point a correctly typed program. Modern static analysis is focused
on proving more advanced properties of programs, or finding errors.

Static analysis seeks to prove such properties of the program through
mathematical principles, which take the form of logic. The most common
issues of dynamic testing are the impossibility of testing programs for
every possible combination of inputs. It would simply take too much time
to do so. The most common classes of properties are liveness properties
and safety properties [2, 16]. A liveness property states that something good
should eventually occur, such as exiting a loop or calling a specific function.
A safety property states that nothing bad ever happens, with examples being
never returning a null pointer, or a certain invariant never being broken.

If the most pressing problem for dynamic analysis is the enormous amount
of possible values to begin a program with, the problem in static analysis
is the vast amount of states that a program can reach. This problem
is known as the state-space explosion, and occurs when the number of
available operations in a given state is high, and the ordering of these
operations are not fixed and can change between runs of the program. If
the program is represented by a control-flow graph, in which every state
the program is a node and every possible state transition is an edge, the
interleaving of states means that the number of edges becomes very high.
As the number of nodes and edges increases, the number of possible paths
through the graph explodes until it becomes unfeasible to consider them
all [12].

To make static analysis possible, the number of states necessary to check
must be reduced, or analyses themselves must be confined to sufficiently
small subsets of the state space to not run into the problem in the first
place.

2.3 Symbolic Execution

One reason to avoid dynamic testing of programs is the huge number
of runs that would have to be tested, since each run only provides
information about that particular run. Symbolic execution provide a
way to explore multiple executions simultaneously, by avoiding concrete
input and instead representing variables as symbols and having a solver
determine after the fact various properties of the runs [5].

9

In symbolic execution, if a variable is ever assigned as a constant, it will
be treated as a constant. However, if is assigned some dynamic value,
such as an input from outside the program, it is represented completely
free. In a statically typed language, the type will be known at compile
time, and so no variable will be completely free. If there is an operation
that either reassigns this variable, or uses it to create a new one, then this
operation will use the current constraints on the variable when generating
the result of applying the operation. At the end of the symbolic execution,
each variable will be constrained in various ways, or possibly not at
all, or be a concrete value. Then, with all the variables in with their
respective constraints, it is possible to ask the solver if the constraints can
be satisfied. If the constraints have been constructed correctly, a satisfying
model should mean that the property holds.

2.4 Boolean Satisfiability (SAT)

Boolean satisfiability (SAT) is an old problem in computer science, and
the first to be proved NP-complete in 1971 [10]. The problem is to prove
the satisfiability of a propositional logic formula, which is a logic formula
consisting of boolean variables and logical connectives, e.g. conjunction,
disjunction, and negation.

A common approach is to write the formulas on Conjunctive Normal Form
(CNF) which means that it consists of clauses, every one of which must be
true for the entire formula to be satisfied. The following is an example of
a formula in CNF:

(a ∨ b ∨ c) ∧ (¬a ∨ c) ∧ b

As an NP-complete problem there is no known algorithm to determine the
satisfiability of a boolean formula in polynomial time.

SAT has become the foundation for SAT solvers, which use heuristics
and techniques for reducing the complexity of SAT formulas in such an
effective way that modern solvers can deal with thousands of clauses and
millions of variables [9].

2.5 SMT

Satisfiability Modulo Theories (SMT) generalizes boolean satisfiability
(SAT) by adding equality reasoning, arithmetic, fixed-size bit-vectors,
arrays, quantifiers, and other useful first-order theories. [17]

10

Extending the input language from propositional logic to first-order logic
allows for more expressiveness, and the ability to formalize equations in
a language very close (if not identical) to the original formulation of those
equations [6]. However, given that SAT is NP-complete and that SMT is
built on top of SAT, the formulas constructed using an SMT-solver are also
inherently difficult to solve.

The advantages of SMT over normal SAT are most visible in the ways it
can better formalize advanced queries, and how the built-in theories have
encoded the axioms in such a way that they are exploited by the solver
to improve performance, and thus provide answers for more complex
formulas.

The addition of types is a huge ergonomic improvement. Now, instead of
laboriously specifying the properties of numbers, it is possible to state that
a certain variable is an integer of a certain size and the solver will know its
possible values, and its axioms. In logic, types are known as sorts, and the
support for multiple sorts is known as many-sorted logic.

To formalize a problem as a propositional logical formula is tedious,
difficult and error-prone, and places much weight on the translator. The
conversion from first-order logic to propositional logic can lead to an
explosion in terms of size, and is a natural job for a computer. Translating
the entire equation set into conjunctive normal form, and passing that
formula to the SAT-solver is called the eager approach. This can be useful
for smaller formulas, and makes use of highly optimized SAT solver that
form the backbone of SMT solvers.

The alternative is the lazy approach, and involves solving as few equations
as possible at one time, leveraging solvers with knowledge of specific
theories. These additional solvers are what separates SMT from normal
SAT solving. A specific theory solver functions by fixing the expected
interpretation of certain symbols, and the two theories that provide the
most obvious benefit over simple propositional logic are the theories of
arithmetic and uninterpreted functions.

Another important benefit of the lazy approach is that some of the con-
straints might be determined either completely, or restricted sufficiently,
to the point where a fewer possibilities have to be explored. This is done
by heuristics for finding shortcuts during execution being programmed
into the solver.

2.5.1 SMT-Lib

The default input format is SMT-Lib, a language developed specifically
to be a common input language for SMT solvers [7]. The input language

11

consists of S-expressions, with parentheses and prefix notation.

Listing 2.1: SMT Example Program 1
(declare-const b0 Bool)

(define-fun b1 () Bool (or b0 (not b0)))

(assert b1)
(check-sat)
(get-model)

Listing 2.1 shows a very simple program sent to the solver.

1. A constant is defined, with the sort Bool. A constant is syntactic
sugar for a function with no arguments and a fixed value at creation.
It is constant once a value has been assigned as part of the solver
execution, but can be initialized with different values in different
executions.

2. A new variable is created, with the correct sort, and its value
depends on the value of the previously created constant.

3. The value of this last variable is asserted (i.e. it must be true for the
model to be satisfiable).

4. The satisfiability of the model is checked. In this case there is a
tautology, and a model is always found regardless of the value given
to the constant.

5. If there is such a model, that model will be printed to the terminal by
the final instruction, get_model.

This is the general form of most SMT-Lib-programs, and further defini-
tions will look similar to b1, but with restrictions not only on initial con-
stants. Since any new declaration can build on all the previous declara-
tions, it is possible to pass very complex questions to the solver.

Z3 supports not only Bool, but several other useful sorts that map directly
to familiar types, including unrestricted integers, restricted integers
(modeled as bitvectors), and strings.

2.5.2 Theories

The following is an explanation of a few theories present in most modern
SMT solvers.

12

Equality Logic and Uninterpreted Functions

A fundamental theory in SMT solving, it allows for equations stating that
two values are equal [15]. This is very useful, and can be leveraged by the
solver to simplify certain problems quickly.

The core of this theory is that without knowing anything about a function
except that it must produce the same result if called with the same value:

a = b =⇒ f (a) = f (b)

This holds true for all pure functions, which include mathematical func-
tions like the ones we are used to from arithmetic. Many expressions can
be reduced to this theory by syntactic substitution, which means the solver
can determine satisfiability without providing a specific interpretation of
the function symbol.

Any set of equations that need a = b and f (a) 6= f (b) cannot have a
satisfying model, and an SMT solver can determine this quickly without
having to invoke the SAT solver, or any other solver for that matter,
regardless of the sorts involved or the rest of the equations.

Theory of Arithmetic

A clear advantage of these theories is providing standard interpretations
of common function symbols. Propositional logic have operators on
booleans, like ¬ and ∨. Operations like addition and multiplication get
the same treatment in the theory of arithmetic, and can be used directly,
without having to tell the solver how the functions work by specifying the
axioms of arithmetic.

Not only are the common arithmetic functions a part of the theory, but
the numbers themselves form part of it, and thus all the known relations
between them. The solver knows that integers commute and associate
over addition, and will use this identity to its advantage if it can.

The program in Listing 2.2 shows usage of the arithmetic theory to find an
instance of the Pythagorean theorem.1 The theorem states that in a right
triangle, the sum of the squares of the two shorter side equal the square
of the longer side. This program finds one valid instance of the lengths of
such a triangle. Three constants are declared, and then asserted to all be
greater than 0. Then, another assertion is created, asking the solver to find
values for the constants such that the value of c2 is equal to the value of
a2 + b2.

1https://en.wikipedia.org/wiki/Pythagorean_theorem

13

Listing 2.2: Arithmetic Theory in Action by finding an instance of the
Pythagorean theorem.
(declare-const a Int)
(declare-const b Int)
(declare-const c Int)

(assert (< 0 a b c))

;; Asserting that (a^2 + b^2) must equal c^2.
(assert (= (+ (* a a)

(* b b))
(* c c)))

(check-sat)
(get-model)
;; Output:
;; sat
;; (model
;; (define-fun c () Int
;; 5)
;; (define-fun b () Int
;; 4)
;; (define-fun a () Int
;; 3)
;;)

Also shown is the output from calling get_model. The model can be
easily verified, as 52 = 25 = 16 + 9 = 42 + 32.

2.5.3 Z3

Z3 is an SMT solver developed by Microsoft Research for program
analysis, testing, and verification. [17] It is one of the fastest implemented
SMT solvers, has been used in industry and academia to aid in verification,
and multiple programming languages have libraries that serve as an
interface to call the solver.

2.5.4 SBV

SBV [11] is a Haskell library that lets users express properties about Haskell
programs and automatically prove them using SMT (Satisfiability Modulo
Theories) solvers.2 Providing bindings to all the features of SMT-Lib, it is

2http://hackage.haskell.org/package/sbv

14

possible to write generic constraints that can be sent to multiple different
SMT solvers, including Z3.

Listing 2.3: SBV Example Program
f :: Symbolic ()
f = do

b0 <- sBool "b0"
constrain (b0 .|| sNot b0)

The example program in Listing 2.1 on page 12 has been codified using
SBV in Listing 2.3.

Several unique aspects of Haskell will be immediately visible, such as the
type signatures (may be cryptic to the inexperienced), but which is not
necessary to understand for this use case.

The function f has two effects: It creates a free variable, restricted to a
boolean and with the internal name b0, and it then creates a constraint
that is the result of a disjunction (.||) between the existing variable by
itself and negated.

SBV does some useful things while generating SMT-Lib code:

1. Static Single Assignment (SSA): Each new variable or constraint
gets its own name. In Listing 2.3 this means that variables are
created for b0, the negation of b0, and the disjunction. Since the
constrain-call asserts that whatever is being constrained must be
true for the model to be satisfied, it is this final variable that must
be true in the final model. By having more constraints, rather than
fewer and more compact constraints, there are more constraints for
the solver to work with for finding counter-examples and for reusing
existing values.

2. Additional analysis is done by SBV itself, looking for possible
shortcuts when generating code. The clearest example occurs if
the final assert is that a variable is equal to itself, in which case
SBV will add (assert false) as the final clause rather than
(assert (not (= a a))). This is most often the case when
testing whether a method commutes with itself, as the constraints
created are identical.

However, this is not the case for the program in Listing 2.1, and the
generated output from Listing 2.3 can seen next to the arguably more
natural way of writing the constraints for a human, in Listing 2.5.

15

Listing 2.4: The Hand-Coded ex-
ample
(declare-const b0 Bool)

(define-fun b1 () Bool (or b0
(not b0)))

(assert b1)
(check-sat)

Listing 2.5: SBV Generated Code
; tracks user variable "b0"
(declare-fun s0 () Bool)

(define-fun s1 () Bool
(not s0))

(define-fun s2 () Bool
(or s0 s1))

(assert s2)
(check-sat)

In addition to calling the solver by itself, there are multiple optional
arguments that can be passed to the solver through the SBV-interface,
leaving the user free to configure the solver to their liking.

Some of them are:

1. verbose will show the complete output as passed to the solver, as
well as the response from the solver back to SBV.

2. timeout lets you set a maximum time the solver is allowed to
operate before it terminates without a result.

3. timing will show how much time the solver spent on the different
phases.

Perhaps the most interesting configuration is that SBV allows the user
to choose between multiple solvers, or even running the same program
through more than one solver at a time. For a complete list of solvers, see
the documentation of SBV.3.

2.6 Haskell as an implementation language

Some of the key reasons for choosing Haskell as an implementation
language:

• It is considered a strong language for working with programming
languages,4 and often used for compilers or interpreters. There are
a lot of similarities between that and what this analysis is doing.
Haskell has algebraic data types make it easy to construct the syntax
tree needed to represent the ABS program.

3https://hackage.haskell.org/package/sbv-8.9/docs/Data-SBV.html
4https://github.com/Gabriel439/post-rfc/blob/master/sotu.md#compilers

16

• There exists several very well developed libraries that create bind-
ings into SMT solvers. SBV was chosen. It is a Domain Specific
Language for creating SMT-Lib constraints from Haskell. SBV also
creates good SMT-lib code.

• It is a mature language with robust libraries for performing high-
level operations, including JSON parsing,5 on the other side of the
spectrum from a language like C in terms of the memory model and
levels of abstraction.

The reader should note that familiarity with Haskell is not necessary
for the theoretical aspects of this thesis, and only necessary if one is
interested in the source code of the implementation. The results should
be reproducible in other languages with bindings into SMT-Lib.

2.6.1 Algebraic Data Types

One key aspect of Haskell is the support for algebraic data types, or ADTs.
ADTs are the way to define data structures in the language, and is used
extensively to model the abstract syntax tree that is eventually used to
create constraints.

ADTs can create composite types, which can be nested further to create
arbitrarily complex data. This means that the programmer is free to model
whatever they want, and is an excellent way to model ASTs. Here is the
way Bool is modeled in the language.

data Bool = True | False

The fundamental nature of ADTs in the Haskell ecosystem makes it very
pleasant to clearly define the domain a as data types, and then create
functions that use them. Combined with the strong type inference, the
compiler guides you towards code what works, and works correctly.

5https://hackage.haskell.org/package/aeson

17

18

Chapter 3

Abstract Behavioral Specification

This chapter will cover the key features of Abstract Behavioral Specifi-
cation (ABS) which make it both interesting and possible to investigate
using static analysis. Certain aspects of this analysis relies heavily on the
features in the ABS languages. The syntax of ABS is similar to Java and C,
and will be familiar to most programmers.

ABS has been used to analyse, e.g. complex low-level multi-core sys-
tems [8], cloud-deployed software [1], and railway networks [14].

3.1 Key Features

ABS1 [13] is an active object language, in addition to being both object-
oriented and concurrent, with support for first-class futures. An active
object language has some specific features, and these features make it
possible to make assumptions about our analysis that we could not make
for mainstream imperative languages like Java or C#.

The most important language features for this analysis are:

1. Distributed, actor-based semantics: Each object runs on its own
thread, and can only manipulate fields inside other objects indirectly,
calling a method on that object asynchronously, which then has to
wait its turn to run on the thread of that object. This means that only
the methods on a class can run on the thread of that object, and that
thread is the only way to alter any state inside of the object.

2. Cooperative scheduling: Each object will only schedule a new
process from the set of waiting processes once the running process
itself yields control. Since each methods must yield control itself,

1https://abs-models.org/

19

it is clear from the code whether a method will run to completion
or yield control at some point during its execution. In the case
when a method yields control behind a conditional, the method is
considered non-atomic. If there are no scheduling points during the
body of the method, we know it will run all the way to the end in
one execution.

A scheduling point, or release point, is any point in the program that
causes the scheduler to activate.2

The result of these two features is a language well-suited to certain forms
of static analysis. The most useful consequence of these features for our
analysis is that much longer blocks of code become atomic. Without each
object on its own thread, the internal state of the object could be mutated
at the same time by two different threads. If there was no cooperative
scheduling, there would be no way to determine how much of each
method would be executed at one time. Most mainstream languages
feature preemptive scheduling instead of cooperative scheduling. This
means that the scheduler can interrupt a process at any point and schedule
a different process.

Instead, we can determine statically how much code will be executed
while also knowing that the current method is the only one altering
the state while it is running. That is, we can identify atomicity at the
level of methods. In languages with preemptive scheduling atomicity
can only be assumed at the level of statements, and even then certain
statements are complex to the point where one statement in the high-level
language is translated into multiple atomic statements in the underlying
machine/byte-code. Any attempt at finding commuting statements
would be futile without restricting the programs to be written in very
specific ways to simulate an active object language.

In ABS, all objects reside on a COG,3 a Concurrent Object Group, and each
COG runs a scheduler in charge of the processes on that cog. However,
we assume for the entirety of this analysis that every object resides on its
own COG, and can work as if each object has its own scheduler.

3.2 Example ABS program

The ABS program in Listing 3.1 on the facing page will be used for later
examples of code generation and solving in this chapter and the next, and
has been written with several key points in mind:

2https://abs-models.org/manual/#sec:side-effect-expressions
3https://abs-models.org/manual/#sec:concurrency-model

20

Listing 3.1: Example ABS program
module Example;

interface Count {
Unit increment();
Unit setBool();

}

class CountImpl implements Count {

Int a = 0;
Bool b = False;

Unit increment() {
if (b) {

a = a + 1;
}

}

Unit setBool() {
b = !b;

}
}

In terms of syntax, ABS is close to Java and most modern imperative
languages. For a program, a module is specified first. In the case of
Listing 3.1, there is an interface declaration, followed by a class that
implements the interface. The two fields inside the class are local to that
class, and only the methods on this class can read and write them.

1. Both a boolean and an integer are being read to and written to, and
both fields are used in at least one method.

2. Both methods commute with themselves, but the methods do not
commute with each other.

(a) Calling increment twice increment will either increment a
twice or not at all, depending on the prior state of b.

(b) Calling setBool twice will leave b in the same state as before.

(c) The final state if both setBool and increment is called once
depends on the state of b. b will end up negated, but whether
or not a is incremented will vary.

21

22

Chapter 4

From ABS to Haskell

We now consider the toolchain which will transform the abstract syntax
tree (AST) of an ABS program into data types in Haskell. This
transformation consists of two steps; the AST is first turned into JSON,
which is then parsed and interpreted as Haskell algebraic data types.

The analysis tool is in many respects a compiler, exhibiting traditional
compiler features such as transforming between different representations
and producing output runnable by a different piece of software. This
chapter and the next will cover these transformations.

4.1 The Code Pipeline

Figure 4.1: Data Transformations

ABS JSON Haskell Data Types SMT-Lib Results

Analyzing a single program involves several steps from the original source
code in ABS to the final output as pairs of commuting methods.

1. The source code is transformed by the ABS compiler into an internal
representation. This internal representation is an abstract syntax
tree (AST), modeled as classes in Java. As part of this process the
program is also type checked, and if the transformation succeeds the
AST corresponds to an executable program. The code is added to the
ABS compiler using the jadd-extension1 to gradle, which lets the
programmer write all the code for each class in a single file. The tool
will then add the methods for each class as part of the compilation
process.

1https://github.com/d10xa/jadd

23

This addition to the compiler becomes part of ABS Tools, and will
allow others to output a generic version of the syntax tree for their
own use.

2. This internal representation is translated to JSON by invoking the
modified ABS compiler with the --jsonTree-flag. Each JSON
object contains a name referring to the type of object it is in the AST,
as well as any fields required by the object, e.g. an assignment will
have a left side and a right side, and an if-test will have fields for
the condition, the conditional branch, and the alternative branch.

3. The resulting JSON is passed to the analysis tool written in Haskell,
producing a representation of the AST in algebraic data types. The
Haskell data types cover a non-trivial subset of ABS.

4. With the AST as a Haskell data type, aspects of the program are
transformed into SMT-Lib-code that can be sent to an SMT-solver.
Each pair of methods in the original program is sent to the solver as
distinct queries to determine if they commute.

5. The final output of the analysis is a list of pairs, each pair being
names of commuting methods.

4.2 Translating ABS to JSON

To export the AST from the ABS compiler, it is printed as JSON to the
standard output. This is done by walking the AST top-down and printing
a representation of the current object into JSON, recursively. To generate
JSON from an ABS source code file, pass the flag --jsonTree.

The compiler will fail to compile if there is a syntactic error in the source
code, or if it fails to type check the program. The rest of this analysis can
therefore work with the assumption that the AST represents an executable
program.

JSON is a general-purpose text syntax for facilitating data interchange
between computers,2 and is used due to its ubiquity which nearly
guarantees support for parsing it regardless of language.

Each language construct of the internal AST representation has its own
Java class. To make the compiler able to output JSON involves writing a
method for each relevant class specifying how that particular class should
be serialized. For different classes, there are different fields of interest that
must be included.

2https://www.ecma-international.org/wp-content/uploads/ECMA-
404_2nd_edition_december_2017.pdf

24

Listing 4.1: Example ABS program as JSON
{ "ModuleDecl":
{ "ModuleName": "Example"
, "Declarations":
[{ "NotSupported": "InterfaceDecl" }
, { "ClassName": "CountImpl"
, "Parameters": []
, "Fields":
[{ "Type": "Int"

, "FieldName": "a"
, "InitExp": { "IntLiteral": 0 }

}
, { "Type": "Bool"

, "FieldName": "b"
, "InitExp": { "DataConstructor": "False" }

}
]
, "Methods":
[{ "MethodName": "increment"

, "ReturnType": "Unit"
, "Params": []
, "Body":

[{ "IfStmt":
{ "Condition": { "FieldName": "b" }
, "Then":

[{ "AssignStatement":
{ "Variable": { "FieldName": "a" }
, "Value":
{ "Operator": "AddAddExp"
, "Left": { "FieldName": "a" }
, "Right": { "IntLiteral": 1 }
}}}]}}]

}
, { "MethodName": "setBool"

, "ReturnType": "Unit"
, "Params":
[]

, "Body":
[{ "AssignStatement":
{ "Variable": { "FieldName": "b" }
, "Value":
{ "Operator": "NegExp"
, "Value": { "FieldName": "b" }
}
}}]}]}]}}

The JSON in Listing 4.1 shows the serialization of the program in
Listing 3.1 on page 21. Since JSON is not white space sensitive, the visual
output is maintained mainly for debugging and human understanding of
the serialization. The easiest way to find any bugs is to open the JSON in
a code editor and have it warn you of any errors. There are currently no
known errors being produced.

25

At the top level there is the module declaration from ABS as a JSON object,
with the module name as one field and a list of declarations as a second
field. These various supporting structures of ABS are necessary to include
in the JSON, in order to make the serialization a useful tool in general.
Ideally, it is good enough so that others can use it to gain access to the
ABS syntax tree. For the analysis in this thesis, only the methods inside a
class are needed. The interface declaration is superfluous for our needs, as
the methods themselves contain all the necessary information, and it can
be seen from the JSON that the serialization can produce output despite
not supporting the serialization of specific constructs. The only other part
needed are the field declarations of the class.

Listing 4.2: Serializing if-stmt into JSON
public void IfStmt.jsonTree(CodeStream stream) {

stream.println("{ \"IfStmt\":");
stream.incIndent();
stream.println("{ \"Condition\": ");
stream.incIndent();
getCondition().jsonTree(stream);
stream.decIndent();
stream.println();
stream.println(", \"Then\": ");
stream.incIndent();
getThen().jsonTree(stream);
stream.decIndent();
stream.println();

if (hasElse()) {
stream.println(", \"Else\": ");
stream.incIndent();
getElse().jsonTree(stream);
stream.decIndent();

}

stream.println("}");
stream.decIndent();
stream.println(" }");

}

The serialization uses the jsonTree-method to recursively serialize
nodes in the syntax ree. The example in Listing 4.2 shows the serialization
for if-statements.

4.2.1 Implementation Details

• The method jsonTree is created as a method in the class that
should be serializable. In the case of Listing 4.2, the class is IfStmt.
This makes the method available to the class at runtime, and the

26

method has access to the internal variables and methods of the class,
such as getCondition.

• The method itself takes as an argument a CodeStream, which is
a class in the compiler backend written to provide an interface for
printing from the AST to the standard output. It has methods for
printing, indenting, and dedenting, which makes it suitable for our
needs.

• To create valid JSON, curly brackets must be printed, as well as
quotes surrounding key words. Some whitespace is added, but this
is purely aesthetic to make it easier on the human eye.

• The methods incIndent and decIndent, a part of the Code-
Stream interface, are used liberally to make the output easier to
read.

• In the case of the if-statement, the alternative branch is optional.
As a result, is it behind a guard and will only be included in the
JSON output when it exists in the AST. This kind of optionality is
something Haskell is built to handle, and will be reflected in the
corresponding data type declarations.

• jsonTree is called recursively on nodes further down in the AST.
These nodes are returned by methods like getCondition and
getThen.

4.3 Algebraic Data Types in Haskell

To represent the AST in Haskell we make use of algebraic data types to
model all the necessary constructs.

In Listing 4.3 on the following page some of the algebraic data type
declarations can been seen, including all the definitions required to
construct a data type that includes a Module on the top-level, all the way
down the syntax tree to the statements that make up method bodies.

At the top level there is a Module, with a name and a list of declarations.
The declarations themselves are in the Decl-datatype, and here only the
ClassDecl has been fully fleshed out. The other declarations are part
of ABS, but are not relevant to this particular analysis. As part of the
class declaration is a list of methods that belong to that class, which is
created using the Method data type, and each of these methods have a list
of statements as their body.

The Module and Method types are examples of product types, mentioned
in Section 2.6.1 on page 17. They require all their fields to be present in

27

Listing 4.3: Some examples of the Algebraic Data Types
data Module = Module
{ moduleName :: String,

moduleDecls :: [Decl]
} deriving (Show, Data, Generic)

data Decl =
ClassDecl

{ className :: String,
classParams :: [Param],
interfaces :: [String],
classFields :: [FieldDecl],
classMethods :: [Method]

}
| InterfaceDecl
| TraitDecl
| FunctionDecl
| PartialFunctionDecl
| TypeSynDecl
| DataTypeDecl
| ExceptionDecl
deriving (Show, Data, Generic)

data Method = Method
{ methodName :: String,

returnType :: Type,
params :: [Param],
statements :: [Statement]

} deriving (Show, Data, Generic)

data Statement
= SkipStmt
| VarDeclStmt String Type (Maybe Exp)
| AssignStmt Exp Exp
| ExprStmt Exp
| AssertStmt Exp
| ReturnStmt Exp
| Block [Statement]
| IfStmt PureExp [Statement] (Maybe [Statement])
| WhileStmt PureExp [Statement]
deriving (Show, Data, Generic)

28

order to be created. The Decl- and Statement-types are sum types, and
require that only one of their possible variants be created at one time.

In the statement data type, the SkipStmt has no fields, and can be
constructed by itself, while an AssignStmt requires two expressions,
corresponding to the left and right side of the assignment operator.

This example showcases the terseness of Haskell, codifying if-statements
in a single line as a product type taking a pure expression, one mandatory
list of statements, and an optional list of statements. Since if-statements
in ABS are not required to have an alternative branch, this optionality
is formalized by using the Maybe-type. This particular type, Maybe
[Statement], may contain a list of statements or be a Nothing, and the
type system will enforce checks at compile time that both of these cases
are covered.

4.3.1 The AST as Algebraic Data Types in Haskell

Listing 4.4 on the following page shows the syntax tree as an instantiated
Haskell data type, from the JSON in Listing 4.2 on page 26. The
correspondence between the JSON and Haskell data types is close, and
most of the difference comes down to the Haskell types having names
rather than being an object with a name-field. Rather than types as strings
in JSON, Bool and Int now refer to actual Haskell types. In the field
declarations, the initial expressions are optional. In this case they are
present in both examples, as required by the implementation language for
simple types like Bool and Int. The other example is in the if-statement.

Looking at the if-test in the first method is a good example of how
the data types work. The test is a PureExp, in this case a FieldUse.
The first branch is a list of one assignment statement, which requires
two expressions, the first of which must be a local or global field in
the program. In the second expression the natural nesting is visible, as
the Operator-expression contains a binary expression, which is a larger
object with an operation, a left side, and a right side. In this case, the
operation is addition, with a field on the left side and a constant literal on
the right side, matching what is seen in the JSON.

One very useful feature of the ABS syntax tree can be seen in the test
of the if-statement, as the AST refers to a FieldUse. Rather than just
specifying a variable name b, there is specified a FieldUse and a variable,
informing us that this is a class field rather than a local variable in the
method. This makes the analysis much easier, as it does not have to keep
track of scoping.

Finally, the alternative branch in the if-test is Nothing, the value of the

29

Listing 4.4: Instantiated AST in Haskell
ModuleDecl
(Module
{ moduleName = "Example"
, moduleDecls =

[ClassDecl
{ className = "CountImpl"
, classParams = []
, classFields =

[FieldDecl
{ fieldName = "a"
, fieldType = Int
, fieldVal = Just (Literal (IntLiteral 0)) }

, FieldDecl
{ fieldName = "b"
, fieldType = Bool
, fieldVal = Just (DataConstrExp "False") }

]
, classMethods =

[Method
{ methodName = "increment"
, returnType = Unit
, params = []
, statements =

[IfStmt
(FieldUse "b")
[AssignStmt

(PureExp (FieldUse "a"))
(PureExp

(OperatorExp
(BinaryExp

{ binaryOp = Addition
, left = FieldUse "a"
, right = Literal (IntLiteral 1)
})))]

Nothing
]

}
, Method

{ methodName = "setBool"
, returnType = Unit
, params = []
, statements =

[AssignStmt
(PureExp (FieldUse "b"))
(PureExp

(OperatorExp
(UnaryExp

{ unaryOperator = Not
, unaryExp = FieldUse "b"
})))]}]}]})

30

Maybe-type when the optional value is not present, which is what we
would expect from JSON example where there was no alternative branch.

Having made several transitions from the original ABS source code into
Haskell data types, the next step is to create constraints that can be passed
to the solver.

31

32

Chapter 5

Identifying Commuting Methods

Before looking at the rest of the implementation, we will cover the theory
of how methods might commute. This chapter will cover commutativity
in general, how one might think of it in terms of SMT solving and read-
write sets, before considering the various ABS constructs individually.

The purpose of the analysis is to determine if two methods commute.
Before looking at the implementation, we will consider each language
construct in turn to consider how they should be treated as we implement
the analysis.

Because the analysis is on an active object language with cooperative
scheduling, it can work with methods as atomic units.

5.1 What is Commutativity?

Deciding on and identifying commutativity is the key aspects of this
analysis, so it is necessary to understand how commutativity works, in
particular with regards to programming statements. While commutativity
in mathematics and logic is clearly defined, it is a slightly different concept
of commutativity we are working with.

In mathematics, commutativity is defined on binary operations where
changing the order of operands does not change the result [3]. Further-
more, an operation is a calculation that takes two elements from a set and
produces another element in the same set. One well-known commutative
operation is addition on the positive integers. Because its a commutative
operation, it is known that the following formula is true for all values A
and B, where A and B are positive integers.

33

A + B = B + A

In predicate logic, the commutative laws state that the order of operands
does not matter for conjunctions and disjunctions [3].

A ∧ B⇔ B ∧ A

A ∨ B⇔ B ∨ A

Creating a single statement from two statements is traditionally done
with the semicolon in mainstream imperative languages, and is known
as sequential composition. Ideally, we want to know if, for two statements
S1 and S2

S1; S2 ≡ S2; S1

The semicolon takes two statements and produces a single statement.
This can be done again, making this compound statement part of
a larger compound statement. Compound statements can then be
further composed to form even larger compound statements, growing in
complexity and becoming more difficult to analyse.

When proving the commutativity of addition on the natural numbers, we
can use structural induction, and because a number is either zero or some
successor of zero, there are few cases to deal with. For statements in a
programming language, there are many more cases to deal with, and on
top of that there is external state to consider, in the form of existing variables
that might be referenced.

Rather than proving formally anything about commuting statements, we
want to use an SMT-solver to simply execute programs symbolically, and
have the solver tell us about the possible values of the state.

5.2 SMT Solving for Commutativity

The general idea is that the class contains some state S at time t0. Then
time is split, and in one version method MA is executed, leading to state
SA at time t1, while in the other version method MB is executed leading
to state SB at time t1. Then, in each separate timeline the method that
was not executed the first time is now executed, leading to states SAB and
SBA at time T2, where the ordering of the superscript refers to the order of
execution. If these two states are the same for all possible initial values of
S, the two methods are said to commute.

34

The analysis is thus concerned with a very local version of commutativity,
only ever considering the states at three different times. Whatever
happens to the state before we start analysing it, or after the analysis has
finished is not relevant. One consequence of this is that the analysis cannot
make any assumptions about the state at time t0. Whatever initial values
were assigned as part of the initialization of the class might have been
changed many times over. The only information we know for certain is
the type of each field, due to the static typing of the underlying language.

The idea of a completely unconstrained variable with a type is exactly
what a free variable in many-sorted first-order logic is. Each field is free
to hold any value within its sort. With each variable codified as a free
variable, simulating each statement really means applying more and more
constraints on the values of each variable according to the statements in
each method. Then, once this has been done for both statements in both
orderings, we must analyse all the possible states to determine if the states
can be different, or if they are the same of all possible initial values of the
free variables.

From a logic perspective, we know that:

∀S(SAB = SBA =⇒ commute(SAB, SBA))

However, while proving something for every possible state is necessary to
have our proof, that means the overall strategy is to look for an initial state
in which the two final states are not the same.

∃S(SAB 6= SBA =⇒ ¬commute(SAB, SBA))

The main reason for swapping the question around is due to the nature of
the solvers. By asking if two states are the same, it will look for a single
confirming initial state. However, we want to know if the final states are
equal for all initial states. By turning the question around, the solver is
now looking for a single disproving initial state. If no disproving state is
found, all initial states S must case identical states SAB and SBA.

The key condition for whether two statements commute concerns the state
before and after executing each statement, and how each statement affects
any state needed by the other statement. While using an SMT solver to
consider this question, we will also look at a read-write analysis as a naive
and easier-to-implement way to achieve some of the same goals.

35

5.3 Read-write sets

Before delving into constraint solving, a simpler way to determine
whether two methods might not commute is to compare the fields that
they read from or write to. Such an analysis is not very complex and will
not be complete, but it should provide a sound approximation. A read-write
analysis will, for each method, produce one set of fields written to, and one
set of variables that are read. Then it is possible to compare methods by
operations on these sets, and determine the commutativity of the methods
themselves. The restrictions are that the methods cannot write to the same
field, nor can they read a field that the other method is writing to. That
is, the intersections of these three possible combinations must all be the
empty set. This analysis reduces each method down to the bare minimum
needed to check whether two methods interfere with each other in any
way.

Table 5.1: Commuting Table for Read-Write Analysis
Method A Read Method A Write

Method B Read Commute Not Commute
Method B Write Not Commute Not Commute

Table 5.1 shows how stringent the requirements are for the analysis
to decide whether two methods commute, and it must be considered
commuting for all fields.

Any pair of methods in which none of the methods alter any fields, must
necessarily commute. By not altering any fields, they cannot possibly
change any behaviour in the other method. This would include getter-
methods, and any method that only produces a return value rather than
modifying the internal state of the class.

By having access to a simple yet sound analysis like a read-write analysis,
it is possible to use it as a back up for any method in ABS that contain
features not supported by the more advanced analysis. The more
advanced analysis can be the starting point, and if it encounters an
unknown construct, it stops. This way, it is not necessary to first check if
the analysis supports all the constructs in the methods before trying to do
the actual analysis. Furthermore, the read write-analysis can make use of
the same data structure, and thus avoid having to parse the same methods
multiple times.

36

5.4 Commutativity of ABS Constructs

The overall idea of comparing the state was presented earlier, in Sec-
tion 5.2, with the state being set at some point t0, and then branching out
until we reach t2. Then, the two possible versions of the state at t2 are com-
pared, and if they are the same for all possible initial value, the two ways
to get there are considered commuting. Let us first consider a very simple
example.

Listing 5.1: Simple method that commutes with itself
Int a = 0;

Unit increase() {
a = a + 1;

}

Listing 5.1 shows a very simple method that increments a global field. In
the case of a single method, we want to know if that method commutes
with itself. In this case, it is straight-forward to see that increase
commutes with itself. Regardless of the ordering of increments, in the end
the number is incremented twice every time. Since we are dealing with
unbounded integers, there cannot be overflow. However, we have to make
the solver see that the two methods commute. We can consider it in terms
of steps of time.

Time t0

The field is initialized to zero in the example, but to the SMT solver this
is a symbolic variable with no specific value. We do not know what other
methods might have executed before the method we are looking at, and
our analysis must consider every possible value of a. If there are any
other fields, they must also be initialized at this time. Additionally, any
parameters passed to the function should be initialized as well, again with
all possible instances of their type as a value. The analysis does not know
any values the methods are called with, and must account for anything
here as well, just like the fields. Any locally defined variables will be
added when those statements are modeled by the analysis, as they are
part of the body of each method.

For increment, the only relevant field is a, and it is considered any
possible integer.

37

S

SA SB

SAB SBA?≡

Figure 5.1: Comparing States Over Time

Time t1

At time t1, the states have been updated to reflect the changes made by
the first executed method. The analysis must split in two, keeping two
separate states in mind. In this case, the two branches do the same thing,
incrementing a single variable. When incrementing, a new state is created
that refers back to the old state. It is important that both branches refer
to the original state, or the initial values of each state could be modeled as
different, and that could make the final states different even if the methods
commute.

Time t2

At time t2, the final state for each branch has been created, after running
the second method on the state from t1. Those states are compared, to look
for fields that differ in their values. Given our example method, it will be
clear that a has been incremented twice in both branches. Regardless of
the initial value of a, it will be the same in both branches.

5.5 How Different Constructs Affect the State

Here we discuss how expressions, assigments, and control flow statements
affect the state.

5.5.1 Expressions

Expressions are entities in a programming language that may evaluate
to a value. How these values are generated will impact the analysis. In
general, one may consider pure expressions and effectful expressions.

38

Pure Expressions

Pure expressions do by definition not cause any side effects, and are simple
to consider from the perspective of the analysis. They are restricted to only
returning values, and while doing so might read from the state, it cannot
write to the state.

Pure expressions include:

• using fields and variables, which mean reading them from the state.

• Any literals.

• Operators, such as unary and binary operators on integers and
booleans.

• Calls to pure functions.

The theory of arithmetic is one of the theories inside modern SMT solvers,
and it is therefore possible to formalize expressions on integers in a
straight forward manner. The same is true for operations on booleans, and
the combination between them. For integers and booleans, the theories
also include various axioms such as commutativity and associativity. As a
result, constraints placed on these values can be optimized further by the
solver as it tries to find counter-examples to them, and methods dealing
only with integers or booleans will have a solver working very well.

Effectful Expressions

Among these expressions are two of the culprits that cause the analysis to
fail to determine whether two methods commute. This happens when an
expression requires the current method to suspend.

The expressions that cause a suspension are await-expressions and
synchronous calls. An await-expression is equivalent to an asynchronous
call statement, followed by an await-statement, followed by a get-
statement, and it is the await-statement that causes a scheduling point.1

The synchronous call-expression has semantics that depend on the COG
of the caller and the called. For the sake of this analysis we assume that
each object runs on its own COG.2 As a result, it depends only on whether
the call is made on the same object that makes the call or not. If it is a
synchronous call on this, it will cause the other method to run immediately,
and thus acts as a scheduling point. If it is not on this, the method will

1https://abs-models.org/manual/#sec:side-effect-expressions
2https://abs-models.org/manual/#sec:concurrency-model

39

block, but not suspend, and is therefore within what the analysis can deal
with.

The rest of the effectful expressions do not change any state in the class as
they call methods on other objects. Asynchronous call expressions places a
new process in the target class, and evaluates to a future in the local scope.
This future might be assigned to a variable as part of an assignment.

New-expressions can be dealt with by considering the arguments passed
to the constructor. Since objects are created on their own thread, this
means that a new object cannot alter the state of the current class as it is
being created. Thus, a New-expression is deemed commuting if the object
is created with the same arguments. A New-expressions can cause some
initial code to run in the new object, but this code cannot run any code
that causes a scheduling point, and can therefore not impact the class being
analysed.

5.5.2 Assignments

Assigning new values to existing variables is clearly a key part of this
analysis; in fact, it is the only way to have an effect on commutativity.
Without assignment, this analysis would be moot, or at least it would
be interested in commutativity in a very different sense. Languages
without assignment, such as certain functional languages have referential
transparency, in which any expression can be replaced by its return value.
This is not the case for ABS. Generally, when the variable in question is of a
type that is supported by the solver, a new constraint is created that refers
to the current constraints, and then this new constraint is set is updated as
the new state of that variable. Then, whether it breaks commutativity is
up to the solver to determine.

5.5.3 Branching — If Statements

Do deal with the possibility of branching during execution, there is an
if-then-else construct in SMT solvers, which will create a way for
the solver to determine which branch is realized during the symbolic
execution of the program.

The solver deals with branching by generating constraints based on both
possible branches and then deciding which one to keep depending on
the value of the boolean expression during testing. The test expression
is captured before any of the branches are executed, and can be thought of
in similar terms to an if-statement in a familiar programming language,
like Java or C.

40

Following the branching, one of the possible states have been chosen and
will be the state that is used in the rest of that symbolic execution. An
if-statement on its own is thus fine to deal with for the solver, and for
the analysis it comes down to the contents of each branch rather than the
branching itself.

In the existing literature on Static Single Assignment, this function that
picks a branch from multiple possibilities is known as a φ-function [18].

5.5.4 Branching — While Statements

To deal with loops the analysis will unroll the loop into a series of
if-tests, and at the end of each if-test the test will be symbolically
executed to determine which branch to take the constraints from. The
challenges with the actual construction of these constraints are discussed
in Section 6.3.4 on page 54, but can be summarized as:

• The analysis does not know beforehand how many iterations of the
loop are needed to exit the loop. Since all the possible branches have
to be created before the symbolic execution of the program, a bound
on the number of branches to create must be specified before the
constraints are created.

• Since there is an upper bound on the number of iterations that will
be simulated, it is possible for the number of available iterations to
be insufficient to determine the actual constraint placed on the field
in a real run of the program. If this is the case, the analysis might not
be sound.

Since hitting the bound when iterating is a problem, the program cannot
make a definitive statement about commutativity if the final state is chosen
by the analysis. The final state is then chosen just because it was the state
at the bound, and not because is represent a valid state from that point
forward. Since it could be that the program will not commute once enough
iterations of the loop have been executed, the program will be deemed not
commuting if the number of iterations hit the bound.

It is also possible to consider any loop that hits the bound to be
commuting, if nothing before the bound caused it to become non-
commuting. This could potentially be added as an option to the solver,
leaving it to the user how to deal with bounds.

41

5.5.5 Effectful Statements

The effectful statements are suspend and await, and they are not
supported by this analysis. Because the cause a scheduling point in the
middle of the method, the method is no longer atomic.

The suspend-statements does nothing but suspend the current process,
placing the current methods back in the scheduler queue, and the
scheduler decides what to do next. The await-statements will also
suspend the current process, but does so with a guard that must become
True before the process is allowed to be rescheduled.

See Section 7.1.1 for a discussion on how this might be resolved in the
future.

42

Chapter 6

Creating Constraints

This chapter is concerned with actual transforming the abstract syntax
tree, represented with algebraic data types in Haskell, into constraints.
SMT-Lib is a language specifically created to be a common language for
input to SMT solvers, and serves as the target. The Haskell library used
to encode constraints into SMT-Lib does neither require knowledge of the
underlying language nor expose it to the user, unless explicitly told to do
so. However, to fully understand why the constraints are constructed the
way they are, it is necessary to first understand the idea that is used for
identifying commuting methods. This chapter will first cover the general
idea of how constraints can be used to determine commutativity, then a
hard-coded example using SMT-Lib, and then have the tool generate its
solution to the same problem. Solving the problem by hand will help
familiarize the reader with both the mental model for SMT solving and
usage of SMT-Lib, as well as provide a baseline for comparison with the
generated code.

6.1 Construction of SMT-Lib constraints

The goal of this stage of the analysis is to create constraints that can
be symbolically executed, in such a way that the analysis will consider
two methods commuting when they actually commute, using the concept
of commuting as defined in the previous chapter. While the constraint
generation code uses reassigns variables in order to represent new states,
the generated code itself uses Static Single Assignment (SSA) to represent
changes to the same variable over time. The actual symbolic execution
happens once the solver is invoked. Everything before that is constraint
generation. However, in the same way one might reason about the
runtime of a program while writing code, it is possible to reason about

43

the symbolic execution while writing constraints. And even though what
is symbolically executed is a set of logical equations, we can consider the
order they are constructed in as the order they will be executed in due to
how each new constraint refers back to an earlier constraint.

When checking for commutativity between two methods, the following
steps are executed:

1. A map of the shared fields will be created, where the name of each
field refers to a free variable constrained only to be the correct sort,
e.g. Integer. This same map is used in both runs, to ensure that the
same initial variables are used in later constraints.

2. Each method gets its own map of local variables.

3. Generate constraints for one possible execution path of the two
methods in question.

4. Now, swap the order of the two methods and generate a new set
of constraints. This is a high-level view of the branching, and
says nothing about whether additional branching occurs within each
method.

5. The solver tries to satisfy the constraints, only succeeding if there is
an assignment to the initial variables that cause the final states to be
different. If the solver is unable to satisfy the constraints, it means no
counter-examples were found.

If no counter-example is found, the methods are proved to commute.

Static Single Assignment

Static Single Assignment (SSA) is used by SBV when generating its SMT-
Lib code. Every time a field is constrained in a new way, its new
constraints are entirely the result of already known constraints, and so a
new free variable is constructed, constrained immediately by some set of
previous constraints.

Assumptions

We are making several useful assumptions about the programs we are
analyzing, which we are justified in making because the syntax trees that
we are operating on have first passed through the ABS parser and type
checker.

44

• The program is syntacticly correct. It is not the task of the analysis
tool to check correctness, and a valid syntax tree is assumed at every
step.

• The program is well-typed. We get the program after the type
checker phase of the compiler has approved it. This is very useful to
us, as it means we do not have to worry about the program trying to
create illegal constraints on types. Since Haskell is a statically typed
programming language, this makes implementation easier.

The logical correctness of the program being analysed is left to the
programmer.

6.2 Encoding First-Order Constraints by Hand

Before having the constraints constructed for us by the analysis tool, let
us construct them ourselves. This will provide a better understanding of
how constraints can be created to represent executable code, and provide
a point of comparison for the later generated code.

Let us consider the increment and setB methods from Listing 3.1 again:

Int a = 0;
Bool b = False;

Unit increment() {
if (b) {

a = a + 1;
}

}

Unit setB() {
b = !b;

}

This example contains modification of a class field and branching with an
if-statement.

Declaring Class Fields

As discussed in the previous section, each class field is assigned a free
variable with the correct sort. In the current example, there are two fields
in this class to initialize. Their declarations have been included, and we do
not have to infer the types ourselves. To create these two fields in SMT-Lib

45

we use declare-const, which takes a name and a type, and creates free
variables restricted to that type. In this case, one Int and one Bool. Since
mutation is not possible on constraints, new constraints are created that
refer back to the previous versions for a particular variable.

(declare-const a0 Int)
(declare-const b0 Bool)

These two constants represent the initial values of the class fields we are
interested in. Now we want to determine the constraints placed upon
these constants by symbolically executing our methods in both possible
orderings. As such, one possible run is increment first, followed by
setB.

Run: increment→ setB

First, we have to deal with an if-statement, and that means branching.
In this case there is no alternative branch, which means that a negative
test means the original state is kept. In a normal program, code for both
branches would be generated, but only one branch would be executed
depending on the test at runtime. For SMT solving both branches must be
generated and symbolically executed, but the choice of state depends on
the values during the symbolic execution. By the state, we mean the set of
constraints that exist at the end of each branch. In this particular case, one
state is the state from before the if-statement, and the other is the state
where the a has been incremented.

The concept of branching is encoded into SMT solving with the ite-
function, which is the symbolic equivalent of an if-then-else-
expression. However, as mentioned in the previous paragraph, it does
not decide on which branch to execute, only on which variables are kept.
The constraints for each branch has to be created, and then encoded into
the ite-function, along with test that is a symbolic boolean. Each branch
of the ite-function will encode some version of each variable, and then it
will create another new variable that picks the correct variable from one of
the branches. The symbolic value of the test determines which branch
these constraints are chosen from. For example, some variable v0 can
be encoded with a new constraint as v1 in one branch and v2 in another
branch. Then, some variable v3 will be created that is set to either v1 or v2
depending on the value of the boolean, and v3 is used as the representative
of v from that point onward.

(declare-fun a1 () Int (ite b0 (+ 1 a0) a0))

46

This constraint will make a1 hold the correct version of the state, which
will depend on the value of b0while running the symbolic execution. This
one statement describes the entire increment-method, generating one
new variable which is part of the new state. This new variable must be
accounted for when the constraints for the next method are formalized.
The setB-method is a simple boolean negation, and is trivially encoded
as follows:

(declare-fun b1 () Bool (not b0))

Again it is important to use the latest version of b, which is the initial b0.
With these two statements we have created the new versions of both fields
for one run, and its time to consider the alternative execution.

Run: setB→ increment

Now to compare, the ordering of the methods is swapped and the setB
method is executed first and the increment method second. We must
remember to use the original free variables a0 and b0 when creating the
new constraints.

First, the setB-method is the same statement as in the other run.

(declare-fun b2 () Bool (not b0))

Since b1 was created in the previous branch, b2 is used. However, notice
that this is the exact same constraint as created for b1. To make this
elaboration easier to follow, we will keep the two variables separate for
now, but we will come back to how this is not necessary, and that it can
be very useful to not use separate variables for identical constraints. Now,
the constraints for the increment-method using our newly minted b2
variable as our test.

(declare-fun a4 () Int (ite b2 (+ 1 a0) a0))

This is the final constraint that is formed from the two methods, and only
the final constraint comparing the two states are needed.

Comparing the fields

In this case there are two fields to consider, from each side of the analysis.
The boolean fields should be compared, and the integer fields should be
compared. Again it is important to use the correct version of both fields

47

from each branch of the constraint generation. So given that there are two
fields, there will be two constraints on the similarity of the fields. Both
of these constraints can then be merged into a single constraint using the
and-operator in SMT-Lib, which is true if all the constraints passed to it
are true.

(assert (not (and (= b1 b2) (= a4 a2))))
(check-sat)

To make the solver determine if a model is satisfied or not, we must
provide at least one constraint with a value that must be true in the model.
We could try to use the and-constraint for this, but it would present a
problem: the solver would be happy finding a single satisfying model,
which would not prove that they are equal for every set of initial values,
but only for a single initial assignment. Instead, we use the negated and-
constraint. Now, instead of looking for a single model that proves the
equality, it looks for a single model that disproves it. A single falsifying
model is sufficient to show that the two methods do not commute.
However, if no model is found, it means there are no counter-examples.

The call to (check-sat) will ask the solver to try to find a satisfying
model. In this case, a model is found and we know that the two
methods do not commute. Listing 6.1 has the entire program so far, without
simplifications. The final call to get-model will output the model, given
that a satisfying model was found.

Listing 6.1: Hardcoded SMT-Lib example
(declare-const a0 Int)
(declare-const b0 Bool)

;; increment -> setB
(define-fun a1 () Int (ite b0 (+ 1 a0) a0))
(define-fun b1 () Bool (not b0))

;; setB -> increment
(define-fun b2 () Bool (not b0))
(define-fun a2 () Int (ite b2 (+ 1 a0) a0))

(assert (not (and (= a4 a2) (= b1 b2))))
(check-sat)
(get-model)

The actual output of sending the program to a solver can be seen in
Listing 6.2 on the next page. It states that a satisfying model was
found, and then gives the specific model. This model shows one possible
assignment of the original variables for which the final outcome will not

48

Listing 6.2: Hardcoded SMT-Lib example output
sat
(model

(define-fun b0 () Bool
false)

(define-fun a0 () Int
0)

)

be the same in both executions. This model can be verified manually in a
straight forward manner. When the boolean value starts as false, running
increment first will leave a unaltered, but when the order is switched
the boolean is made true before the increment-method is called, and a is
incremented. Another way to consider it is that the final value of a2 is a0,
the final value of a4 is (a0 + 1), and that there is not way to make a0 =
a0 + 1 true, since a0 features on both sides of the equals sign.

6.3 Generating Constraints with Haskell

The Haskell library for creating SMT-Lib code, SBV, provides a domain
specific language for formalizing first-order logic and producing con-
straints that can be passed to the SMT solver of your choice. For any
specifics in this thesis, Z3 will be used as the SMT solver.

The SBV library holds an internal representation of the constraints and
variables, which is constructed step-by-step as the analysis traverses
the abstract syntax tree of an ABS program. When this assembling of
constraints is done, the actual SMT-Lib code is generated from this internal
representation. As a result, SBV can make smart choices to optimize the
generated code. This places the analysis tool presented in this section in
an interesting middle-position between the ABS compiler and the SMT-Lib
code generation of SBV. Everything related to producing code is abstracted
away by the library, and the code written specifically for the analysis tool
can focus on a more general notion of constraints.

6.3.1 Tracking the State

If one looks back to the previous section where we manually constructed
the constraints for a simple program, we had to keep track of the new
versions of variables by suffixing them with a new number. The higher
the number, the more recently created. However, keeping track of
such variables would be tedious for longer programs, and something a

49

computer is much better suited for than humans. To generate code for
arbitrary programs, we must abstract over the names of variables. The
clear choice is a map, which lets us use the names of variables as given
in the program being analysed as keys. However, rather than pointing to
values like they do in the program, they refer to symbolic variables created
for the analysis.

Furthermore, the AST retrieved from the ABS compiler differentiates
between FieldUse and VarUse in the AST-nodes. As a result, we do
not have to worry about keeping track of scoping or shadowing, as all
the necessary information to handle the difference is provided for us.
However, we do have to keep track of local variable names that are the
same across methods. To do this, the state passed through the program is
defined in Haskell as a Map of Maps.

data VarTable = Map String (Map String SVar)

The outer maps uses names of methods as keys, while the inner maps uses
names of variables pointing to symbolic variables. In the outer map there is
one special key "fields" which points to the map holding the class fields.
This means that at the end of the analysis, it is simple to find all the fields
from the two different executions and compare each field with its equally
named neighbour.

One additional trick is to prefix the method names in the outer map
with a number, 1_ and 2_ for example, in order to separate the two
maps when comparing a method with itself. Otherwise, creating maps
when comparing a method with itself would only create a single map, as
identical keys are not accepted in a map.

Since ABS is a statically typed language, all variables once defined will
not be assigned a different type at any point in the program. All of
these aspects of ABS are helpful when creating symbolic variables and
constraints in SBV.

6.3.2 Initializing the Analysis

Every pass of the analysis over two methods must first create the map
of fields, as well as a map of the parameters passed to the method. SBV
has methods to create new symbolic variables constrained to the specific
types in question, including Integer, Bool, and String. We saw two
examples of this in the manual code in the previous section. To do this in
SBV is equally simple:

si <- sInteger "x"

50

The string passed to the function, "x", provides an internal name for SBV,
which SBV will display when printing the model to make it clearer which
symbolic variables refer to what definitions. The variable on the left is
how we refer to the symbolic variable created by the sInteger-function
provided by SBV. Having created the symbolic variable, the next step is to
place it into the map over variables.

go (Map.insert name (Numeric si) mp) rest

In the above statement, the new variable si is inserted into the map mp,
with name as its key. The new map is passed as an argument to the go-
function which takes the map and the rest of the parameters to initialize
all the parameters.

The map of class fields and method parameters is passed as the starting
point of the constraint generation for both symbolic executions. Haskell,
as a pure functional programming language, does not allow the mutation
of its values, and any altering of the map does not actually alter it, but
rather return a new map with the new assignments. If one were to
implement this in another language with different semantic, it is important
that both branches of the analysis are working with an independent copy
of the initial state, where they are referring to the same initial symbolic
variables.

Having found a way to store class fields and local variables, the program
needs to traverse over the statements in the methods, and produce the
appropriate constraints on the fields and variables. For certain statements
this is straight forward, but there are enough statements of sufficient
complexity to warrant extra attention. The next part will cover most of
these statements.

Symbolic and Monadic Types in Haskell

Due to the static types in Haskell, the SBV specific types are wrapped
into a type so that the map that contains the state can hold different
symbolic types at the same time. We know that the types will match since
we get the program after it has been type-checked by the ABS compiler,
but Haskell does not know this, and so we have to be somewhat extra
accommodating. This means that at the leaves values are unwrapped for
use and re-wrapped for storage in the state. This is visible in the code
example above where Numeric is wrapped around the symbolic integer
before inserting it into the map. This is only necessary in order for Haskell
to type check and be happy about holding different types of symbolic
variables in the same data structure.

In the Haskell examples to come, there will be some strange syntax for

51

those unfamiliar with the language. Here are some resources to familiarize
oneself with the language.1,2

The state-monadic pattern is used extensively to avoid having to pass
around the map of variables explicitly. Instead, it is passed implicitly, and
it is possible to realize the current state into a variable with get, and to
set the new state with put. Both these functions will be frequently used in
the examples. The benefit of using monads in this case is that our code is
free of side effects. Instead, every function is pure which makes it easy to
reason about what our code does.

Because we are using multiple monads inside each other to get both state
as one effect, and the possibility of throwing errors as another, we have
to use the keyword lift in order to access the inner monad. The inner
monad in these examples is State, which is why its methods get and
put are lifted.

6.3.3 Assignment

The first case is an assignment, into a variable a, and where a also features
on the right side.

a = a + 1

In terms of the abstract syntax tree, this is an Assignment Statement,
with a BinaryExpression on the right side.

Assignments

The syntax tree differentiates between assignments and declarations, but
they are fairly similarly implemented since they do pretty much the same
thing. First, look at the expression on the right side of the assignment,
determine what constraint it corresponds to. Second, find the correct
variable in the map of variables, and reassign that variable in the map.
Here is the Haskell code for doing this with SBV.

(AssignStmt (PureExp (FieldUse v)) exp) -> do
ret <- generateExp (name, exp)
mp <- lift get
let fs = mp Map.! "fields"
lift $ put $ Map.insert "fields" (Map.insert v ret fs) mp

1http://learnyouahaskell.com/chapters
2https://haskell.mooc.fi/

52

It is important to note that reassign in this context means to return a new
map with the a pointing to a new constraint and the other variables the
same as the previous map.

This is part of a larger function that looks at all the possible statements in
the program, and this particular code pattern matches on an AssignStmt,
with a FieldUse as the value being assigned to. This means that this
particular variable refers to a class field, which are the variables we really
care about. The generateExp function call is responsible for creating
the constraints on the right side of the assignment, analysing the pure
expression on the right hand side. The function ends with put-ting the
updated map as the new state of the analysis.

The call to generateExp will pattern match on the following code:

BinaryExp op l r -> do
l' <- generatePureExp (name, l)
r' <- generatePureExp (name, r)
pure $ case (l', r') of

(Boolean a, Boolean b) ->
case op of
(...)

(Numeric x, Numeric y) ->
case op of
(...)
Addition -> Numeric $ x + y
Subtraction -> Numeric $ x - y
Multiplication -> Numeric $ x * y
(...)

Parts of the function have been omitted for the sake of clarity, as there are
more operators following a similar pattern.

Here we see one instance of the power of the SMT solvers, as we are
able to use the already defined operators in the theory of arithmetic to
directly encode the addition of two variables as constraints. It is this
resulting constraint of adding two symbolic variables that is returned
to the previous functions, and set as the new value of a in this case.
The further calls to generatePureExp at the top of the function are
responsible for fetching the left and right side of the binary expression.
The left side of our current expression is the a, and requires a lookup in
the map. It will pattern match on the following line, where gets is a
specialization of get which only returns a part of the state. In this case,
the symbolic constraint the current version of a refers to.

(FieldUse s) -> gets ((Map.! s) . (Map.! "fields"))

For the right-hand side of the binary expression, the literal 1 returns a

53

symbolic constant 1. Once the program has fetched both sides of the
arithmetic expression, it matches on the Addition operator. The +-
operator has been overloaded by SBV to work on symbolic integers, and to
returns a new symbolic constraint. This final symbolic expression is then
returned and eventually placed as the new constraint on a in the map.

Pure expressions are pure because they depend only on what is passed to
them as arguments. This makes them by far the most simple language
construct to model, and so modeling them becomes fairly accurate. When
we cover constructs with side effects it becomes much more difficult.

6.3.4 Branching and Iteration

There are two forms of branching in our language, as part of a two-way
branch in the if-statement, and a loop in the while-statement. In either
case, the solver cannot determine which branch to execute during its run,
and require both (or all) branches to be fully executed, and it will pick the
correct version of the state by looking at the test as part of the symbolic
execution.

(IfStmt co th (Just el)) -> do
cond' <- generatePureExp (name, co)
let Boolean cond = cond'
preIf <- lift get
traverse_ (generateStatement . (name,)) th
postThen <- lift get
lift $ put preIf
traverse_ (generateStatement . (name,)) el
postElse <- lift get
lift $ put $ Map.unionWith

(Map.unionWith (merge cond))
postThen postElse

The intuition for how branching is implemented is this:

1. Save the state before the if-test (into preIf), and get the current
constraints used for the condition (into cond).

2. Run the first branch (first traverse_), and save the resulting state
(into postIf).

3. Reinstate the state from before the first branch (using lift $ put
preIf), and run the second branch (second traverse_), saving the
resulting state (into postElse).

4. Use the condition to pick the correct state for the continuation of the
program. The merge function calls ite for every variable in the map.

54

Just like a normal program has to generate code for both branches of
execution, we have to generate constraints for both branches. And for
normal programs this means that the condition can pick one of the
branches to execute, leaving the other as dead code in the sense that it does
not run. In the case of symbolic execution, it means that the constraints
created for the branch that is not chosen can be of any value. They will not
have any impact on the final constraints.

This idea of saving the state and reinstating it is presented for a path that
branches in only two possible paths. However, the underlying language
does not support more than two branches, and this approach is sufficient.
A nested if-statement is easy to model, and will naturally happen as the
recursive calls on each statement in the body of the if-statement are made.

A while-loop can be modeled as an if-test where the alternative branch
does nothing. To simulate running the loop multiple times the first branch
is branched again using another if-test, and so on, nesting if-statements
inside each other. Since it is not possible to consider every possible
continuation in the case of the while-loop, it is necessary to place an
upper bound on how many times the loop is allowed to create a branch.
This also runs into potential problems when the loop has a large body
of statements, but the number of constraints grow only linearly in size
with each additional branching. This is due to every branching having
to create the body as one branch, with the other branch passing without
doing anything.

Just as in a normal program, once the condition is false, it will stay false
for the rest of the symbolic execution of that while-statement. Even if
the body of the loop has to be symbolically executed additional times,
the same state will always be chosen and thus the condition will not be
changed.

For a discussion on what happens when the last state produced by the
while-loop is chosen, because loop was ended because of the bound and
not the test being false, see Section 5.5.4 on page 41.

6.3.5 Effectul Statements and Expressions

There are some statements that are less straight forward to implement.
This is mostly due to how they cause side-effects, or cause execution
in the normal program that cannot be modelled symbolically. Some of
these constructs can nevertheless be simulated in our analysis to some
degree, while others will cause it to stop and return that no answer can
be determined. This latter statement means that nothing specific can be
said about the commutativity of the two methods. By not saying anything

55

about the methods, they should be treated as non-commuting.

Several effectful statements in ABS cause scheduling points, wherein the
method suspends itself and some other block of code in the same class is
scheduled. As a result, the method is no longer atomic. For a discussion
on this, see Section 7.1.1.

A SyncCall is a statement in which an asynchronous call is made and
then immediately awaited upon, resulting in a scheduling point for the
callee.

(SyncCall obj method params) ->
throwError $ UnsupportedType
"generateEffExp: SyncCall not supported"

Since this marks an end of the constraint generation for this particular
analysis, the analysis will throw an exception. Strictly speaking, no
exceptions are thrown, but the practical difference is small. The
underlying Haskell machinery passes an error value through the rest of
the computation, which can then be checked at the end of the construction
and before the actual symbolic execution.

The specific scheduling points to cover are listed in the documentation.3

However, there are some effectful expressions that do not trigger a
scheduling point, and these statements can in fact be modeled, albeit with
some caveats.

New Expressions

The New-expression creates a new object, and returns a reference to this
new object. However, while creating new objects multiple times might
be pointless, it does commute. There is nothing about creating an object
multiple times that affects the state of the current object. Either way, the
class has a reference to a fresh object.

New-expressions are handled by testing the inputs to the call. If they are
the same in every case, they will be considered commuting. If swapping
execution order changes what arguments are passed to the initialization,
the calls will be considered not commuting. This is done by creating a new
unique field in the Fields-map, which will then be tested at the end of
the symbolic execution by comparing the arguments passed to both calls.

3https://abs-models.org/manual/#await-stmt

56

Asynchronous Call Expressions

Any asynchronous call cannot, by definition, alter any state on the callee
object and is therefore trivial to deal with by themselves. They do return
a Future, which will contain some value that can be accessed by waiting
for its resolution in the called object. If this waiting is done by suspending,
the method will not be analysed. However, if the method uses a get-call to
wait, this will instead block the current thread until the value is available,
and atomicity is retained.

Since nothing is known about the resolved value from a future, given
that it came from another method, is it modeled as a free variable. It
is important that this free variable is the same in both branches of the
symbolic execution, or it would be trivial for the solver to assign them
different values and probably find a counter-example. Furthermore, the
arguments passed to an asynchronous call are tested in both branches to
ensure they are the same in both instances. Different asynchronous calls
would case different state in another object, and probably different return
values into the future.

Await and Suspend

Any statement that makes a method non-atomic is not supported by this
analysis. See discussion in Section 7.1.1. As a result, all such statements
and expressions will cause the program to propagate an error up the stack,
informing the user of why commutativity cannot be determined for this
particular pair of methods. Furthermore, once the analysis has determined
that a pair of methods cannot be analysed, the analysis cannot fall back on
a read-write analysis, since this analysis also relies on the atomicity of the
methods.

Get Expressions

Get-expressions cause the current thread to block while waiting for the
value of a future to resolve. This does not cause a scheduling point, and
are perfectly fine to analyse. In fact, there is nothing to analyse, as the
expressions just blocks until the value is ready, causing no effects on the
current state. It does alter a Future<a> into just an a, but from the
perspective of the analysis this is not very important, unless it forms part
of a larger statement.

57

6.4 Output from SBV

Listing 6.3: Code generated by SBV passed to Z3 with response for the
increment and setB methods
[GOOD] ; Automatically generated by SBV. Do not edit.
[GOOD] (set-option :print-success true)
[GOOD] (set-option :global-declarations true)
[GOOD] (set-option :smtlib2_compliant true)
[GOOD] (set-option :diagnostic-output-channel "stdout")
[GOOD] (set-option :produce-models true)
[GOOD] (set-logic ALL) ; has unbounded values, using catch-all.
[GOOD] ; --- uninterpreted sorts ---
[GOOD] ; --- tuples ---
[GOOD] ; --- sums ---
[GOOD] ; --- literal constants ---
[GOOD] (define-fun s2 () Int 1)
[GOOD] ; --- skolem constants ---
[GOOD] (declare-fun s0 () Int) ; tracks user variable "a"
[GOOD] (declare-fun s1 () Bool) ; tracks user variable "b"
[GOOD] ; --- constant tables ---
[GOOD] ; --- skolemized tables ---
[GOOD] ; --- arrays ---
[GOOD] ; --- uninterpreted constants ---
[GOOD] ; --- user given axioms ---
[GOOD] ; --- formula ---
[GOOD] (define-fun s3 () Int (+ s0 s2))
[GOOD] (define-fun s4 () Int (ite s1 s3 s0))
[GOOD] (define-fun s5 () Bool (not s1))
[GOOD] (define-fun s6 () Int (ite s5 s3 s0))
[GOOD] (define-fun s7 () Bool (= s4 s6))
[GOOD] (assert (not s7))
[SEND] (check-sat)
[RECV] sat
[SEND] (get-value (s0))
[RECV] ((s0 0))
[SEND] (get-value (s1))
[RECV] ((s1 false))
*** Solver : Z3
*** Exit code: ExitSuccess

Listing 6.3 shows the code passed to the solver, along with the response
from the solver at the end. The first few lines prints some of the options
that are set for the current run, and then the sections for various solver
constructs that are not used in this particular problem.

In the literal constants-section, we can see the 1 from the right
hand side of the addition, a + 1. Then, the free variables, here named
skolem constants, and the name of the variable they correspond to in a
comment. This is determined by the name passed in as an argument to

58

the sInteger and sBool-functions. Then, in the formula-section are the
actual constraints placed on the variables, that was created as the analysis
traversed the abstract syntax tree.

After all the constraints have been created, check-sat is called. The
response from the solver is sat, followed by the actual counter-example.

It is interesting to compare the constraints to those that were handmade
in Section 6.2 on page 45. As a human it can be more natural to inline
various constructs like each side of the ite-statements. SBV does not
do this, instead choosing to give every atomic statement its own variable.
Another feature of SBV is that it does not create duplicate constraints. In
the example coded by hand there are two versions of the negated boolean.
In part this was to be explicit about how information flows through a
program when it is created by hand, and it would have been fairly simple
to also code by hand without duplicating. However, for more advanced
constraints, and in situations with many more constraints than in this
example, it is good to know that SBV will make such optimizations on
its own.

By having more constraints depend on the same variable, the solver will
be faster at finding counter-examples. Rather than having to backtrack all
the way to the beginning, it might have sufficient information to determine
whether a set of constraints is unsatisfiable at an earlier stage.

The strict use of Static Single Assignment for every constraint is probably
the most useful takeaway from printing the output of SBV, as doing so can
help speed up the solver on longer inputs.

59

60

Chapter 7

Evaluation and Conclusion

This chapter aims to evaluate the success of the analysis tool, by looking at
its ability to identify commuting methods compared with the more naive
read-write analysis. There will also be a discussion around the ergonomics
of using an SMT solver to generate constraints on top of an abstract syntax
tree.

All the examples are from the github repository for the ABS language1.

The results from running the analysis and considering the number of
commuting methods found by the SMT solver and by the read-write
analysis suggests the following:

1. The solver is able to determine commutativity to some degree, find-
ing 132 pairs of commuting methods, 21 non-commuting methods,
and not being able to say anything useful about 87 methods.

2. The read-write analysis is really good at determining commutativity,
and doubly so when considering how simple it is. From the 153 pairs
for which the solver gave a definitive answer, the read-write analysis
found 130 commuting pairs. However, out of the 87 inconclusive
solver results, it finds another 70 commuting pairs, for a total of 200
commuting pairs.

Perhaps the most surprising part about the results is how many of the
pairs actually commute.

Given the large amount of commuting pairs, the fact that the read-write
analysis found so many could suggest that a commutativity analysis was
not the best property to test for. The existence of a naive and sound
analysis, which is very easy to implement, means that the more complex
analysis have to be very good in order to be a better option. Properties that

1https://github.com/abstools/absexamples

61

lack a naive option could present a better alternative use of the power of
an SMT solver.

Table 7.1: Results of Analysis on All Example Programs
Analysis Type Commuting Non-Commuting Inconclusive

SMT Solver 132 21 87
Read-Write 200 40 0

Table 7.2: Results of Analysis On Conclusive SMT results
Analysis Type Commuting Non-Commuting

SMT Solver 132 21
Read-Write 130 23

To stay on the safe side, the current version of the analysis will consider
any loop that runs beyond the upper bound to be non-commuting,
regardless of content. However, the read-write does not even analyse any
actual looping, as it looks only at individual statements. This causes the
methods with while-loops to be deemed non-commuting by the solver,
only because the bound is hit. See the discussion in Section 5.5.4 on the
alternative of letting the user decide what to do when hitting the bound,
for a possible way to have the solver recognize these as commuting.

The support for built-in operations on numbers, strings, and booleans
was expected to be more useful than it turned out to be in the examples.
Given how easy it is to construct examples using these features that are
deemed commuting by the solver, but not by the read-write analysis, it is
somewhat surprising how few there are in the gathered examples. It is
possible that the examples being created specifically to show off various
features of ABS, use these features heavily, and that they are not very
representative of all programs one might want to create.

7.1 Implementation of SMT analysis

We have created a prototype implementation of an analysis that can
determine the commutativity of methods in ABS. These methods are
restricted to a non-trivial subset of common programming operations.
The implementation of the analysis tool in Haskell has provided valuable
experience generating code for an SMT solver.

For the constructs that are supported, such as arithmetic and strings, the
implementation is very straight forward, often being nothing more than a
call to the corresponding function in the solver.

62

7.1.1 Support for ABS Features and Possible Future Work

Table 7.3: Overview of ABS features covered by the Analysis Tool
Feature Level of Support

Integers Supported
Booleans Supported
String Supported
Expressions Supported
Assignment Supported
Synchronous/Asynchronous Calls Supported
Get Expressions Supported
New expressions Rudimentary Support
Functions Rudimentary Support
Custom/Compound Data Types Not supported
Await/Suspend Not Supported

A few more ABS features are not covered because they did not appear
in any of the examples. This includes foreach-statements, throw-
statements, assert-statements, switch-statements, and try-catch-
statements. The lack of these constructs in the example programs might
be an indicator that the sample was not as representative as it could be.
However, many of them can be expressed in using different syntax, and it
might reflect programmer preference or that certain ways to write ABS is
more natural.

Functions

There is potential for substantially more support for ABS functions.
Since functions are pure, they could be supported to a similar degree
as expressions. Currently, the return value from functions is completely
free, and the solver ensures that function calls are made with the same
arguments.

Custom Data Types

As custom data types are not supported, any program heavily using them
will not be very well analysed.

In fact, without support for custom data types, any class with custom
data types as fields will simply not be analysed at all, unless we limit the
analysis to methods that do not read or write to those fields. Responsible
for most of the 87 inconclusive results, custom and compound data types

63

provide an opportunity for future work. There is rudimentary support for
algebraic data types in Z3, but to generate data types was not something
we were able to implement.

Delineate Atomic Blocks by Scheduling Points

This analysis has only considered methods for which the entirety of the
method is one atomic block. Any scheduling point inside the method body,
such as suspend statements or await statements will force the analysis to
stop and deem the current pair as Unknown in terms of commutativity.
One possible way to improve our analysis is to more precisely delineate
atomic blocks by splitting up methods on internal scheduling points.

Some challenges to consider:

• This would require the analysis to name each of these blocks in a
uniform manner to ensure that the analysis refers to the same blocks
of code every time.

• Methods split into multiple blocks would need some way of
transferring what is known about variables from the previous
elements in the method. A block that starts in the middle of a
method should have get the knowledge about constraints on local
variables placed by previous blocks in the method. This could be
particularly difficult when the block is split inside a loop, and would
seem to require that the methods be analysed not separately as in
our analysis, but in some sort of ordering that allows the transfer of
local constraints.

• Blocks that start inside a loop can have have different constraints
placed on local variables depending on how many iterations of the
loop have been executed so far. It might be necessary to analyse the
same block multiple times with different starting constraints. If there
are enough blocks of this nature, it could dramatically increase the
complexity of the analysis.

One feasible solution for splitting methods on scheduling points is to
make a syntactic transformation of the syntax tree, and split methods into
multiple methods, and then have the local variables from the earlier block
in the method passed as arguments to the next block.

For example, a method m can be split into methods m#1 and m#2, with the
local variables in m#1 passed to m#2 as arguments. If this transformation
happens before the entry point of the tool presented in this thesis, it should
work without any modification. However, doing this for loops seems to
create a similar problem as symbolically executing loops, and probably
requires some upper bound on the methods created.

64

7.2 Conclusion

The main objective of this thesis was to:

Investigate the suitability of SMT solving to determine the commu-
tativity of methods in an active object language, such as ABS.

We are completely convinced about the power of SMT solvers as a
tool for analysing programming languages. Its suitability for doing
commutativity analysis on its own is solid, but questionable in the
presence of the simpler read-write analysis. If used for problems better
suited for the strengths of the solver, it should provide a much better
experience and more impressive results.

Furthermore, a better understanding of the tools or more time available
for implementation could provide a better result, given the inherent
complexity.

The shortcomings of the tool itself relate in part to the difficulty of
translating an entire language into symbolic constraints from scratch, and
the complexity of the tools involved, and should not be underestimated
by someone who decides to take it on.

As solvers become better, analyses of this type should become even
more attractive, and further work on different program properties is
encouraged.

65

66

Bibliography

[1] Elvira Albert et al. “Formal modeling and analysis of resource
management for cloud architectures: an industrial case study using
Real-Time ABS”. In: Serv. Oriented Comput. Appl. 8.4 (2014), pp. 323–
339. DOI: 10.1007/s11761-013-0148-0. URL: https://doi.
org/10.1007/s11761-013-0148-0.

[2] Bowen Alpern and Fred B. Schneider. “Recognizing Safety and
Liveness”. In: Distributed Comput. 2.3 (1987), pp. 117–126. DOI: 10.
1007 / BF01782772. URL: https : / / doi . org / 10 . 1007 /
BF01782772.

[3] Roger Antonsen. Logiske Metoder: Kunsten å tenke abstrakt. Oslo:
Universitetsforlaget, 2014. ISBN: 978-82-150-2274-1.

[4] Edward A. Ashcroft. “Proving Assertions about Parallel Programs”.
In: J. Comput. Syst. Sci. 10.1 (1975), pp. 110–135. DOI: 10.1016/
S0022-0000(75)80018-3. URL: https://doi.org/10.1016/
S0022-0000(75)80018-3.

[5] Roberto Baldoni et al. “A Survey of Symbolic Execution Tech-
niques”. In: ACM Comput. Surv. 51.3 (2018).

[6] Clark W. Barrett and Cesare Tinelli. “Satisfiability Modulo Theo-
ries”. In: Handbook of Model Checking. Ed. by Edmund M. Clarke et al.
Springer, 2018, pp. 305–343. DOI: 10.1007/978-3-319-10575-
8_11. URL: https://doi.org/10.1007/978-3-319-10575-
8%5C_11.

[7] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB
Standard: Version 2.6. Tech. rep. Available at www.SMT-LIB.org.
Department of Computer Science, The University of Iowa, 2017.

[8] Nikolaos Bezirgiannis et al. “Implementing SOS with Active Ob-
jects: A Case Study of a Multicore Memory System”. In: Fundamen-
tal Approaches to Software Engineering - 22nd International Conference,
FASE 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings. Ed. by Reiner Hähnle and Wil M. P. van
der Aalst. Vol. 11424. Lecture Notes in Computer Science. Springer,
2019, pp. 332–350. DOI: 10.1007/978-3-030-16722-6_20.
URL: https://doi.org/10.1007/978- 3- 030- 16722-
6%5C_20.

67

https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/s11761-013-0148-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772
https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1016/S0022-0000(75)80018-3
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8%5C_11
https://doi.org/10.1007/978-3-319-10575-8%5C_11
https://doi.org/10.1007/978-3-030-16722-6_20
https://doi.org/10.1007/978-3-030-16722-6%5C_20
https://doi.org/10.1007/978-3-030-16722-6%5C_20

[9] Miquel Bofill, Josep Suy, and Mateu Villaret. “A System for Solving
Constraint Satisfaction Problems with SMT”. In: Theory and Applica-
tions of Satisfiability Testing - SAT 2010, 13th International Conference,
SAT 2010, Edinburgh, UK, July 11-14, 2010. Proceedings. Ed. by Ofer
Strichman and Stefan Szeider. Vol. 6175. Lecture Notes in Computer
Science. Springer, 2010, pp. 300–305. DOI: 10.1007/978-3-642-
14186-7_25. URL: https://doi.org/10.1007/978-3-
642-14186-7%5C_25.

[10] Stephen A. Cook. “The Complexity of Theorem-Proving Proce-
dures”. In: Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing, May 3-5, 1971, Shaker Heights, Ohio, USA. Ed. by Michael
A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman. ACM, 1971,
pp. 151–158. DOI: 10.1145/800157.805047. URL: https://
doi.org/10.1145/800157.805047.

[11] L Erkök. “SBV: SMT based verification in Haskell”. In: Software
library (2019).

[12] Patrice Godefroid. Partial-Order Methods for the Verification of Concur-
rent Systems - An Approach to the State-Explosion Problem. Vol. 1032.
Lecture Notes in Computer Science. Springer, 1996. ISBN: 3-540-
60761-7. DOI: 10.1007/3-540-60761-7. URL: https://doi.
org/10.1007/3-540-60761-7.

[13] Einar Broch Johnsen et al. “ABS: A Core Language for Abstract
Behavioral Specification”. In: Formal Methods for Components and
Objects - 9th International Symposium, FMCO 2010, Graz, Austria,
November 29 - December 1, 2010. Revised Papers. Ed. by Bernhard K.
Aichernig, Frank S. de Boer, and Marcello M. Bonsangue. Vol. 6957.
Lecture Notes in Computer Science. Springer, 2010, pp. 142–164.
DOI: 10.1007/978- 3- 642- 25271- 6_8. URL: https://
doi.org/10.1007/978-3-642-25271-6%5C_8.

[14] Eduard Kamburjan, Reiner Hähnle, and Sebastian Schön. “Formal
modeling and analysis of railway operations with active objects”.
In: Sci. Comput. Program. 166 (2018), pp. 167–193. DOI: 10.1016/j.
scico.2018.07.001. URL: https://doi.org/10.1016/j.
scico.2018.07.001.

[15] Daniel Kroening and Ofer Strichman. “Equality logic and uninter-
preted functions”. In: Decision Procedures. Springer, 2008, pp. 59–80.

[16] Leslie Lamport. “Proving the Correctness of Multiprocess Pro-
grams”. In: IEEE Trans. Software Eng. 3.2 (1977), pp. 125–143. DOI:
10.1109/TSE.1977.229904. URL: https://doi.org/10.
1109/TSE.1977.229904.

[17] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An
Efficient SMT Solver”. In: Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.

68

https://doi.org/10.1007/978-3-642-14186-7_25
https://doi.org/10.1007/978-3-642-14186-7_25
https://doi.org/10.1007/978-3-642-14186-7%5C_25
https://doi.org/10.1007/978-3-642-14186-7%5C_25
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/978-3-642-25271-6_8
https://doi.org/10.1007/978-3-642-25271-6%5C_8
https://doi.org/10.1007/978-3-642-25271-6%5C_8
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1016/j.scico.2018.07.001
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904

Proceedings. Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963.
Lecture Notes in Computer Science. Springer, 2008, pp. 337–340.
DOI: 10.1007/978-3-540-78800-3_24. URL: https://
doi.org/10.1007/978-3-540-78800-3%5C_24.

[18] Vugranam C Sreedhar et al. “Translating out of static single assign-
ment form”. In: International Static Analysis Symposium. Springer.
1999, pp. 194–210.

[19] Brian A. Wichmann et al. “Industrial perspective on static analysis”.
In: Softw. Eng. J. 10.2 (1995), pp. 69–75. DOI: 10.1049/sej.1995.
0010. URL: https://doi.org/10.1049/sej.1995.0010.

69

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1007/978-3-540-78800-3%5C_24
https://doi.org/10.1049/sej.1995.0010
https://doi.org/10.1049/sej.1995.0010
https://doi.org/10.1049/sej.1995.0010

	Introduction
	Problem Statement
	Motivation
	Contributions
	Chapter Overview
	Source code

	Background
	Soundness and Completeness
	Static Analysis
	Symbolic Execution
	Boolean Satisfiability (SAT)
	SMT
	SMT-Lib
	Theories
	Z3
	SBV

	Haskell as an implementation language
	Algebraic Data Types

	Abstract Behavioral Specification
	Key Features
	Example ABS program

	From ABS to Haskell
	The Code Pipeline
	Translating ABS to JSON
	Implementation Details

	Algebraic Data Types in Haskell
	The AST as Algebraic Data Types in Haskell

	Identifying Commuting Methods
	What is Commutativity?
	SMT Solving for Commutativity
	Read-write sets
	Commutativity of ABS Constructs
	How Different Constructs Affect the State
	Expressions
	Assignments
	Branching — If Statements
	Branching — While Statements
	Effectful Statements

	Creating Constraints
	Construction of SMT-Lib constraints
	Encoding First-Order Constraints by Hand
	Generating Constraints with Haskell
	Tracking the State
	Initializing the Analysis
	Assignment
	Branching and Iteration
	Effectul Statements and Expressions

	Output from SBV

	Evaluation and Conclusion
	Implementation of SMT analysis
	Support for ABS Features and Possible Future Work

	Conclusion

