
Using Word Embeddings to
Determine Concepts of Values In
Insurance Claim Spreadsheets

Vemund Justnes

Thesis submitted for the degree of
Master in Informatics: Programming and System Architecture

60 credits

Institute for Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Using Word Embeddings to
Determine Concepts of Values In

Insurance Claim Spreadsheets

Vemund Justnes

© 2021 Vemund Justnes

Using Word Embeddings to
Determine Concepts of Values In
Insurance Claim Spreadsheets

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Many business decisions are based on data which exist in spreadsheets. In the insurance domain,
domain experts use spreadsheet tools for different analytical tasks, such as underwriting, and
as a tool for exchanging data with a third party. In business-to-business insurance, a claimant
or surveyor may send an overview of damages as a spreadsheet. Data in these spreadsheets
are of interest when handling a claim, and can also include meta-information, such as parties,
locations, events, etc. For instance, the claim handler will look in the spreadsheet and find the
costs related to a damage, and then map those costs to specific insurance coverage types. In
order to automate the mapping from a cost to an insurance coverage, both the description of the
cost and the total sum need to be extracted from the spreadsheet. Automatically mining these
spreadsheets is challenging as they have no standardized structure; i.e., they are semi-structured
tables. I explored the idea of classifying the concept of textual values found in spreadsheets
as a potential first step for mining data in semi-structured tables in the insurance domain. In
order to use supervised learning, I created a data set consisting of 119,963 cell values gathered
from spreadsheets linked to actual Norwegian property claims. I tried four different methods for
the classification task: rule-based (RB), multinomial naïve Bayes (MNB), k -nearest neighbors
(k -NN), and a method where I represented each concept by the mean embedding of all its
samples (MI; short for multi-index). The RB used the raw text as input, the MNB used bag-of-
character n-grams to featurize the text, and both the k -NN and the MI represented the text by
sentence embeddings (where both the composition method and the distributed method was used).
Measuring the accuracy of the models by F1-score (harmonic mean between correct classification
and missed classifications), the RB has an accuracy of 52.90%, MNB has an accuracy of 79.11%,
k -NN has an accuracy of 87.09%, while the MI has an accuracy of 64.78%. Although k -NN
achieved the highest accuracy, it took nearly three hours to evaluate 23,998 test samples, whereas
the MNB evaluated them in just under five seconds. Interestingly, I found that the MI (which
with an inefficient implementation evaluated in roughly 20 seconds) reached an accuracy on par
with the RB with just ten samples – indicating that the MI is a practical method for streamlining
annotation of text found in spreadsheets. To conclude, the approach I present is not suitable
to extract information that affect the claim handling, as it relies too much on the formatting of
values, such as monetary values. However, the approach makes meta-information more accessible,
and therefore, the approach can be used to extract information, such as organisation names and
locations. Although the k -NN is inefficient at classifying, the method can be used to extract
meta-information, as such an approach can be handled as a background process that does not
affect the claim handling. Finally, I suggest that some future work is done to improve the data
set I created, investigate whether word embeddings fine-tuned to the insurance domain improves
the accuracy, and investigate a method for making more efficient classification using the k -NN.

1

2

Ackowledgements

I would like to thank my supervisor at the University of Oslo, Peter Csaba Ølveczky, for having
provided useful feedback on academic writing, and my leader at Protector Forsikring, Leonard
Bijl, who enabled me to write a master’s thesis related to the insurance domain. I would also
like to thank all of my co-workers that I have met at Protector Forsikring, as they have both
motivated me and provided useful insight to how the insurance industry operates. Last but not
least, I would like to thank my family and the people that I have met during my studies.

3

4

Contents

1 Introduction 13
1.1 Thesis Outline . 17

2 Background 19
2.1 Machine Learning . 19

2.1.1 Optimization Problem . 19
2.1.2 Supervised Learning vs. Unsupervised Learning 20
2.1.3 Feature Extraction . 20

2.2 Bag-of-words . 21
2.3 Natural Language Processing . 24

2.3.1 Normalization . 24
2.3.2 Tokenization . 24
2.3.3 N -grams . 25

2.4 Embeddings . 26
2.4.1 Word Embeddings . 26
2.4.2 Sentence Embeddings . 27

2.5 Measuring Text Similarity . 28
2.5.1 Edit Distance . 28
2.5.2 Jaccard Similarity Coefficient . 29
2.5.3 Cosine Similarity . 29

2.6 Algorithms . 33
2.6.1 k -Means . 33
2.6.2 k -Nearest Neighbors . 34
2.6.3 Multinomial Naïve Bayes Classifier . 35

3 Annotation of Spreadsheet Cells 39
3.1 Spreadsheet Enrichment Pipeline . 41
3.2 Processing Excel Spreadsheets . 41
3.3 Concepts in Insurance-Claim-Related Spreadsheets 43
3.4 Rule-Based Annotation . 45
3.5 Multinomial Naïve Bayes Annotation . 48

4 Classification of Concepts 51
4.1 Tools . 51

4.1.1 Programming Language . 51
4.1.2 FastText: Pre-Trained Word Embeddings 52
4.1.3 Sentence Transformers . 53
4.1.4 PyTorch: Open-Source Machine Learning Framework 53

4.2 Preprocessing . 53
4.3 Implementation of Indexed Concepts . 56

5

5 Results 59
5.1 Data . 59
5.2 Classification . 61

5.2.1 Rule-Based Classifier . 64
5.2.2 Multinomial Naïve Bayes Classifier . 64
5.2.3 k -Nearest Neighbors . 65
5.2.4 Multi Index . 65
5.2.5 Single-Instance Training . 66

5.3 Result of Spreadsheet Enrichment Pipeline . 69

6 Future Work 71
6.1 Fine-Grained Concepts . 71
6.2 Fine-Tuned Word Embeddings for the Insurance Domain 71
6.3 k -Means for Multi Index . 71
6.4 Approximate Nearest Neighbors . 72
6.5 Learning a Similarity Function . 72

7 Conclusion 73

6

List of Figures

1.1 Manually created example of a spreadsheet illustrating different types of information. 14

2.1 Feature extraction in machine learning vs. deep learning. 21
2.2 Architecture of CBOW and skip-gram [11]. 27
2.3 Architecture of SBERT; left) fine-tuning sentence embeddings, right) similarity

inference of two sentence embeddings [3]. 28
2.4 Word embeddings similar to “university” projected in 2D space; red line shows the

euclidean distance and θ is the angle between “education” and “university”. 30
2.5 Voronoi diagram of k -means clustering. 33
2.6 Voronoi diagram of k-NN classification. 34

3.1 Pipeline for enriching a spreadsheet with concept information of cells. 41
3.2 Concepts present in the string “04.01.2011 16:47:12”. 44
3.3 Concepts present in the string “Brannskade Toten Tre 23.06.09”. 44
3.4 Concepts present in the string “Skade flom Samsen 07.09.2018”. 44
3.5 Concepts present in the string “Drangedal, 2. desember 2019”. 44
3.6 Flow of the rule-based classifier. 45
3.7 Architecture of the rule-based classifier. 48
3.8 Flow of the multinomial naïve Bayes classifier. 49

4.1 Concept classification flow with option to normalize strings. 55

5.1 Confusion matrices of models with optimal parameters. 63
5.2 Training time and evaluation time for the rule-based classifier (RB), multinomial

naïve Bayes classifer (MNB; n=4, raw), and multi index (MI; skip-gram, normalized). 66
5.3 Damage overview in a Norwegian property claim (person names have been re-

moved). Source: Protector Forsikring. 68
5.4 Annotated concepts of spreadsheet shown in Figure 5.3 (using k -NN classifier). . 68

7

8

List of Tables

1.1 Samples from annotated data set. 15
1.2 Results of the methods (using parameters with highest accuracy); best score in

bold, Numeric shows the accuracy of numeric concepts (QNT, DATE, DATE-
TIME, PERCENT, MONEY, TIME, CARDINAL) and String shows the accur-
acy of string concepts (ORG, TEXT, PROD, EVT, FAC, LOC). 15

2.1 Example of an e-mail corpus. 23
2.2 Feature representation of corpus (Table 2.1) using BOW with tf-idf weighted values. 23
2.3 Simple co-occurrence matrix. 31
2.4 Affinity matrix based on cosine similarity of vectors in Table 2.3. Most similar

word (excluding the itself) in bold. Computational complexity is O(n2). 32
2.5 Emails annotated as spam or claim related. 36
2.6 Vocabulary of corpus in Table 2.5. 36

3.1 Data set concepts. 40
3.2 Data set distribution. 40
3.3 JSON-object of a cell with string value (concept is set by a concept classifier in

the full pipeline). 42
3.4 JSON-object of cell with numeric value and specified string format (concept is set

by a concept classifier in the full pipeline). 43
3.5 Rules in the form of regular expression (patterns) for concepts (labels). Labels in

bold were removed from final data set. 46

4.1 Differences between the skip-gram and CBOW model by FastText: top 10 nearest
words of the word “NOK” (found by the get nearest neighbors-function). 52

4.2 Differences between the skip-gram and CBOW model by FastText: top 10 nearest
words of the Norwegian word “nok” (found by the get nearest neighbors-function). 55

5.1 Results of different methods; best score in bold, Numeric shows the accuracy
of numeric concepts (QNT, DATE, DATETIME, PERCENT, MONEY, TIME,
CARDINAL) and String shows the accuracy of string concepts (ORG, TEXT,
PROD, EVT, FAC, LOC). 61

5.2 F1-scores on a concept-level of different models with optimal parameters (best
score in bold): rule-based (RB), multinomial naïve Bayes (MNB), 5-nearest neigh-
bors (5-NN), multi-index (MI). 62

5.3 F1-score of multi index (MI) and multinomial naïve Bayes (MNB) trained with
ten different training sets containing one randomly selected sample per concept;
tested on full test set; training sets with lowest, highest and average difference in
bold. 67

5.4 F1-score of multi index (MI) and multinomial naïve Bayes (MNB) trained on
combined set consisting of training set 2, 4 and 8 from Table 5.3. 67

5.5 F1-score of multi index (MI) and multinomial naïve Bayes (MNB) trained on
combined set consisting of all sample sets from Table 5.3. 67

9

10

Listings

4.1 Installation of FastText dependency. 52
4.2 Installation of Sentence Transformers dependency. 53
4.3 Installation of PyTorch dependency. 53
4.4 Functions used for preprocessing strings. 54
4.5 Concept-index class – constructed by the embeddings of its members. 56
4.6 Class for constructing a multi-index. 56
5.1 Spreadsheet as a JSON-object after processing. 69

11

12

Chapter 1

Introduction

The amount of data in the real world is massive, but using them for machine learning to automate
mundane tasks can be challenging. Data are often categorized as either structured data or
unstructured data. Structured data are precise facts regarding a specific concept, e.g., product
price or customer name, that are organized in a standardized format (e.g., table format using
relational databases) where they are accessible and have integrity w.r.t. what concepts the facts
describe. Unstructured data have no standardized structure and exist in a variety of formats,
e.g., HTML, PDF and plain text, where the precise facts are hidden in text written in natural
language.

Common estimates categorize 80% of data as unstructured.1 However, formats such as HTML
and PDFs are structured to some extent, i.e., titles, contents, tables, paragraphs, etc., are sec-
tioned and often contain a topic. For instance, the first paragraph is about data (topic), where
facts such as “structured data” and “unstructured data” are used to describe categories of data
(concept). The main issue with these types of formats is that the facts are more broadly grouped
by a topic where natural language is used to describe relations between the facts (in contrast to
having a standardized structure denote the relations). These files can, therefore, be regarded as
semi-structured data.

In the insurance domain, spreadsheets are widely used by domain experts in day-to-day busi-
ness operations, which rely on data in these spreadsheets to make important business decisions
such as analyzing risk of a potential customer. Spreadsheets are also used as a means to share
data between third parties, such as the insured, claimant or a damage surveyor. In business-
to-business (B2B) insurance, a property damage claim is more complex than a claim for an
insured home, as the daily operation of the business can be affected by the damage (business
interruption) and has additional costs related to the property damage. All costs must be sur-
veyed, documented and presented to a claim handler. In some claims, the cost overview is sent
by the claimant or surveyor as a spreadsheet, which contains information about costs and other
information (e.g., contact person). As the spreadsheets are created by different individuals, they
do not have a standardized structure.

Spreadsheets are semi-structured as it is known that a cell represents a fact, but the concept
of the fact is unknown when seen in an automation perspective. To provide an example of how
the structure of a spreadsheet related to an insurance claim may be, the spreadsheet in Figure 1.1
was manually created. Although a single spreadsheet can be seen as a single table, Figure 1.1
illustrates that several tables can be embedded in a single spreadsheet. The colored borders
indicate different types of topics; information such as contact person, insured, location (brown),
damaged inventory (black), work hours spent on damage (green), and a temporary setup of po-
tential payout based on costs (yellow). The table marked as yellow is how a settlement offer
could look like in the example. In this example, the costs related to “Kasse med øl”, “Varebil”,
“Dressjakke” and “Metallplate” have been mapped to the machine, inventory and movables in-

1https://www.altexsoft.com/blog/structured-unstructured-data/

13

https://www.altexsoft.com/blog/structured-unstructured-data/

Figure 1.1: Manually created example of a spreadsheet illustrating different types of information.

surance coverage (MIL), and the costs related to work hours spent are mapped to the own work
insurance coverage (Egenarbeid), and a deductible of 10,000 NOK is subtracted from the costs.

A simplified explanation of the claim handling, is that: costs are mapped to an insurance
coverage, the claim handler use the insurance policy to determine what risks the insured is
covered against and to find the deductible for such an insurance event, and then any missing
documentation or information about the insurance event is requested from the insured. As
the lists of costs can be quite long, and as the claim handler has to determine the insurance
coverage, using machine learning to classify the insurance coverage based on a cost description
could streamline the claim handling process. For instance, “Kasse med øl” 7→ MIL, while the
text “Shutdown of business due to damage” would map to the business interruption insurance
coverage. Before we can use machine learning to map the costs in Figure 1.1 to the appropriate
insurance coverage, we would need a method for extracting the damage information from the
spreadsheets.

In order to automatically extract the data from spreadsheets, a method for detecting separate
tables is needed, but also, the concept of each cell must be known in order to map them in to
a standardized structure. Knowing the concept of a cell is not only an issue when working
with non-standardized spreadsheets, but is also an issue in structured systems, like relational
databases, where the columns have weak or no validation rules in place. For instance, public
B2B insurance customers, such as municipalities, often send a spreadsheet containing all the
properties they want insurance for. These spreadsheets are usually a list of properties where a
single column is used to describe a specific property. The problem is that this column includes
several concepts, where a single fact represents a building (either by name, such as schools, or
address(es)) or a technical facility (e.g., “water pumping station”, “public toilet”) in plain text.
When these lists are imported directly in to a relational database, the integrity of the description
field is diminished if the facts are expected to be a concept such as a locatable address, which
makes it particularly challenging to automate processes dependant on that data. Even using
such data for supervised machine learning becomes impractical, as they cannot be trusted to
have the correct concept assigned as a label.

As knowing the concept of a fact is an issue both with spreadsheets and structured systems
with weak validation, the objective of this thesis is to explore possible methods for representing a
textual fact with numerical features so that classification algorithms could be tested as a method
for determining the concept of a fact. Possible use cases for such an approach is to simplify

14

Concept Label Fact

Quantity QNT 16 kg

Date DATE 2/19/15

Date and time DATETIME 19.09.2018 21:00

Percent PERCENT 19,1 %

Organisation ORG Easet Help as

Money MONEY kr 20,50

Time TIME 14:18:20

Text TEXT GRUNNLAG MVA

Product PROD 1 stk Ocean Optics Jaz Spectrometer 0376

Event EVT Innbrudd Halvorsen Offshore Angholmen 02.03.2015

Facility FAC Sunkost Amfi Alta

Cardinal CARDINAL 268 761,10

Location LOC Fjellveien 6

Table 1.1: Samples from annotated data set.

information extraction from spreadsheets and data wrangling (mapping raw data to a new struc-
ture) in legacy structured systems. For this purpose, I created a data set consisting of 119,963
annotated facts from spreadsheets linked to actual Norwegian property claims at Protector For-
sikring. The annotations are a basic set of concepts, e.g., product, money, organisation, location,
facility, date, etc., which are typically found in an insurance claim spreadsheet (see Table 1.1 for
examples). The data set was split into a training set (80%) and a test set (20%). I used the the
training set to train different machine learning models, using different numerical representations
of the textual facts, and I evaluated each method using the test set.

I initiated the annotation process by defining rules, in the form of regular expressions, where
the aim was to use them to obtain samples of each concept that I had defined. The reason
for using such rules was to streamline the process of building an initial training set that could

Method Macro avg. F1 Numeric String

Rule-based 52.90% 73.54% 28.83%

Naïve Bayes (character 3-gram, normalized) 79.11% 87.31% 69.55%

5-NN (FastText CBOW, normalized) 87.09% 96.97% 75.57%

5-NN (Sentence-BERT, raw) 82.26% 95.13% 67.25%

Multi-Index (FastText Skip-gram, normalized) 64.78% 77.19% 50.30%

Table 1.2: Results of the methods (using parameters with highest accuracy); best score in bold,
Numeric shows the accuracy of numeric concepts (QNT, DATE, DATETIME, PERCENT,
MONEY, TIME, CARDINAL) and String shows the accuracy of string concepts (ORG, TEXT,
PROD, EVT, FAC, LOC).

15

be used by a multinomial naïve Bayes classifier (MNB), which was thought to annotate more
accurately given enough training samples. However, although the annotations were assigned
automatically, each annotation was manually validated as both the rule-based approach and the
MNB had limitations which decreased the accuracy. The rule-based approach only included rules
for certain concepts, as the concepts of facilities, events and products are hard to capture with
generalized rules, while the MNB was sensitive to the distribution of the different concepts (due
to the fact that the MNB models the data distribution). The MNB uses the prior probability of
a concept (given as the distribution of a concept in the data set) which led it to find few samples
of, e.g., quantity and event, which has a distribution of 0.29% and 0.08%, respectively, in the
final data set. With the final data set, the rule-based approach reached an F1-score (harmonic
mean between correct classification and missed classifications, used as a measure of accuracy) of
52.90%, while the MNB reached 79.11% by using normalized text as input and representing the
text as a bag-of-character 3-grams (see Table 1.2 for results).

Furthermore, I experimented with more modern methods for representing text as numerical
features. As the facts in spreadsheets include more than one word, two different approaches for
obtaining sentence embeddings (i.e., numerical feature vectors of sentences) were included in the
experiment. The composition method, which aggregates embeddings using a pooling strategy
(mean, sum, or max values in each embedding), was performed by using the mean of pre-trained
word embeddings from FastText [1], [2]. The distribution method, where sentence embeddings
are trained, e.g., using a neural network, was applied by using the pre-trained Sentence-BERT [3]
model. In order to compare the two methods, the k -nearest neighbors (k -NN) classifier was used
– which classifies based on the training samples nearest to the input data (the majority class of k
is selected as the class for the input), as it can determine if the embeddings of the same concept
are close to each other in vector space.

The k -NN classifier achieves higher accuracy than the MNB baseline with both the compos-
ition and distribution method for feature representation with 87.09% and 82.26%, respectively
(see Table 1.2). I found that the best composition strategy was to use the mean of word embed-
dings trained with the continuous bag-of-words model (CBOW; trained to predict word based on
context), while also normalizing the text by separating digits, alphabetical and special characters
with a single whitespace and case-folding so that all characters were lowercase. For instance,
with normalization, the text “19,1 %” was transformed to “19 , 1 %” and “Sunkost Amfi Alta”
to “sunkost amfi alta”, and the text was split into tokens by whitespace and each token got its
own word embedding which was used in the pooling step (i.e., without normalization “19,1” was
interpreted as a single token while “19 , 1” was interpreted as three tokens). A possible explana-
tion for why the composition method achieves better scores than the distribution method is that
Sentence-BERT is trained on grammatically correct sentences, while the facts in spreadsheets
can be interpreted as bag-of-keywords, causing the composition method to be a more suitable
approach as it is trained to capture the semantics of individual words.

In all the experiments with the k -NN classifier, k was set to 5, meaning that predicted concept
needed the majority among the top 5 nearest samples. However, the computational complexity
of computing the nearest neighbors in k -NN is O(n), where n is the number of training samples
(n = 95, 965 in the data set that I created, i.e., evaluating all test samples requires 95, 965×23, 998
comparisons). To reduce the number of comparisons needed for each test sample, I conducted
an experiment where each concept was represented by the mean of all its training samples and
setting k = 1, reducing the number of comparisons to 13× 23, 998 (called multi index (MI) as it
represents a concept by single indexed embedding). With the CBOW model, both using raw and
normalized input achieved scores on par with the rule-based classifier. However, the skip-gram
model (trained to predict context based on current word) achieved a score of 34.83% on raw input
while 64.78% on normalized input; i.e., using raw input with skip-gram achieves a worse score
than selecting the most probable concept (TIME : 35.12% of the data set), but normalized input
boosts the method to be significantly more accurate than rule-based classification. Although the

16

embeddings of concepts were obtained using all 95,965 training samples in the MI, I tried to
train it using only a few samples per concept. I found that with only ten samples per concept,
the MI (using the skip-gram on normalized text) was able to produce an accuracy (51.30%) on
par with the rule-based classifier. This observation indicates that representing a concept by the
average of all word embeddings in the concept (i.e., average of samples represented as composite
word embeddings) is a more efficient method for streamlining an annotation process – rather
than writing rules that aims at capturing distinct features.

In order to evaluate how good a method is for the classification of a data set, both accuracy
(measured by F1-score) and evaluation time should be considered, as well as how flexible the
method is w.r.t. introducing new classes (as the concepts found within insurance-claim-related
spreadsheets can change over time). At first, I found that the large number of comparisons in
the k -NN lead to an unfeasible long evaluation time when using the cosine similarity as distance
metric – as it includes relatively complex computations, and evaluation was estimated to be
finished in 14 hours. However, I found that the dot product between normalized vectors yields
the same result as the cosine similarity function, which caused the evaluation to be finished in
roughly 2 hours and 50 minutes. To put in perspective, both the rule-based classifier and MNB
finished the evaluation in under five seconds. The MI evaluated in around 20 seconds; however,
I used the cosine similarity in the implementation, so given that the dot product made the k -NN
at least five times faster, the evaluation time of the MI can be reduced to the same level as the
rule-based classifier and MNB with a minor improvement to the implementation. The reason
for why I had an emphasis on the k -NN method, in addition to being able to observe which
method for obtaining sentence embeddings grouped similar concepts best in vector space, was
that new classes can be added by simply adding new training samples for the k -NN. Therefore, as
a possible future work, I would suggest to try methods for approximate nearest neighbor (where
the training samples are organized in a hierarchy of clusters) in order to reduce the computational
complexity of k -NN.

To conclude, I found that for the task of extracting claim costs from spreadsheets, the ap-
proach I used relies too much on the cost amounts being formatted as monetary values (e.g.,
by having a currency symbol or currency code in the textual value). As we cannot simply add
such formatting retroactively, because there are some numeric values without a specific concept,
concept determination of cell values is not a suitable approach for extracting information that
affect the claim handling. However, the approach makes meta-information, such as organisation
names, locations, etc., more accessible in the sense that we can retrieve values of specific con-
cepts. For instance, I show that we can more efficiently extract organisation names, and then use
those values to search externally and find additional information. As extracting information that
do not affect the claim handling, it can be performed as a background process – limiting the need
for a highly efficient classification method. Therefore, I suggest that the k -NN should be used
to extract meta-information, as it achieves the best accuracy, and representing the cell values
as the average embedding of words. Furthermore, I provide some suggestions for future work:
how to improve the data set that I created, fine-tuning the word embeddings on unstructured
insurance-related documents (to make the embeddings more suitable to the insurance domain),
and investigate a method to make the k -NN classify more efficiently.

1.1 Thesis Outline

• Chapter 2: I start by giving a brief introduction to machine learning before I introduce
some basic techniques for natural language processing (NLP). Then, I move onto more
modern techniques for NLP, where I give an introduction to feature representation of text
that are able to encode the semantics of words (embeddings). After I give an introduction
to embeddings, I show how we can use cosine similarity to determine how similar two given
texts are – based on semantic similarities. Finally, I provide an explanation of k -means

17

(an algorithm for unsupervised learning) and two supervised learning algorithms that can
be used for text classification: k -nearest neighbors and multinomial naïve Bayes.

• Chapter 3: I provide a walk-through of how I created the annotated data set. First, I
explain how I processed the raw spreadsheets to obtain the textual values, followed by an
introduction to the concepts that I found in insurance-claim-related spreadsheets. Then, I
describe the rule-based classifier that I used to initiate the annotation process and then I
explain how I used a multinomial naïve Bayes classifier (trained on the accumulated data
set from the rule-based approach) to gather more samples for the different concepts.

• Chapter 4: I describe some methods related to the classification of concepts. I begin by
explaining the tools that I used for implementation and obtaining pre-trained embeddings,
and then move to the implementation of some functions that I used to transform the raw
text into normalized text. The last section includes the implementation of the multi index
that I used in an effort to reduce the number of comparisons in a k -nearest neighbors
classifier.

• Chapter 5: I explain some issues with the data set I created, and I provide some metrics
of the different methods that I used for classification. The metrics include the accuracy of
models (including accuracy on a concept level for each model with the best settings) and
the time it took to train and evaluate the different methods.

• Chapter 6: I provide some suggestions on how to improve the data set (such as reviewing
the data set and using more fine-grained concepts) and how to potentially improve the
classification (w.r.t. to a nearest-neighbors algorithm).

• Chapter 7: Finally, I provide a conclusion and a summary of my thesis.

18

Chapter 2

Background

In this chapter, I give a brief introduction to machine learning (Section 2.1) and a method for
representing text as numerical values (Section 2.2) so that text can be used as input to a ma-
chine learning algorithm. In Section 2.3, I gradually introduce techniques for processing natural
language. In Section 2.4, I provide an explanation of a more modern method for representing
text as numerical values, which is able to encode the semantics of a text, followed by an explan-
ation of how we can compare two texts based on semantic similarities (Section 2.5). Lastly, in
Section 2.6, I present different machine learning algorithms that are relevant for this thesis.

2.1 Machine Learning

Machine learning (ML) is concerned with making computers learn from data so that analytical
tasks can be automated. Instead of having a programmer define logical rules of a function
(i.e., what to return given an input), ML algorithms have the objective of finding out what
to generally return based on observed data. ML has existed for a long time, with Rosenblatt
introducing a simple neural network (the Perceptron [4]) in the 1950s. However, due to the
number of mathematical operations required by most ML algorithms, they were unfeasible to
use until machines became more powerful in the 1980s and 1990s. ML then gained more traction
as a research field, but was later limited by lack of training data. In the 2010s, when computers
became more powerful and more data suitable for ML training was accessible, deep learning
(DL) became popular within the fields of computer vision and text processing. DL algorithms
have been proved to be quite capable of learning good representation of images and words, so
that with enough training data, they achieve a high accuracy in tasks such as optical character
recognition (OCR), machine translation (MT), named entity recognition (NER), etc.

2.1.1 Optimization Problem

ML aims at emulating the human process of learning by finding a function, based on observed
data, that can be generalized to all unseen data (i.e., most optimal function is the function that
is as close to reality as possible). For a classification task, we assume that a function f : D −→ C
classifies each element in D to the correct class in C. Furthermore, we are given a training set
which is a sample set from D, i.e., T ⊆ D. Then, a function ft is trained on the training set T
until it coincides with f on T : ft(x) = f(x)∀x ∈ T . How the function is trained depends on the
algorithm that is used. The objective is to find a function f ′ : D −→ C, which is as close to f as
possible for all data in D (i.e., based on a training set T , the function should be generalizable to
all data in D). The motivation for using ML to automate analytical tasks, such as classification,
is that humans can only process a limited amount of data, and while such tasks can often be
automated using rules (e.g., defined by a programmer), analyzing data to detect edge cases is
time consuming and maintaining the rules is costly. Therefore, ML can be used to infer the

19

mapping from a domain based on observed samples (i.e., subset of population – all data), where
an important feature is that the resulting function (or model) is generalizable to unseen data.
Possible use cases for ML can for instance be to detect insurance fraud (classification – main
focus in this thesis) or calculating risk of loss for an insured object (regression – estimating the
relations between variables, not covered in this thesis) and there are mainly two categories of
ML algorithms; supervised learning and unsupervised learning.

2.1.2 Supervised Learning vs. Unsupervised Learning

In supervised learning, the training set consists of data with the expected output. Given a data
set {〈x1, y1〉 〈x2, y2〉 ..., 〈xn, yn〉}, where yi denotes the expected output of the datum xi, the
objective is to find a function f so that f(xi) = yi, where 1 ≤ i ≤ n. In classification tasks,
the expected output of a datum is a class (or label) which is a member of a pre-defined set
of labels. For instance, if the task is to detect fraudulent insurance claims (classify a claim as
either fraudulent or not), it is required to have a data set where each datum is annotated as
either fraudulent or legit, i.e., {〈x1, y1〉 〈x2, y2〉 ..., 〈xn, yn〉} where xi is an insurance claim and
yi ∈ {FRAUD, LEGIT}.

There are algorithms that do not require an annotated data set and, therefore, the learning
process is considered unsupervised. If the data set has no mapping between a datum and a label,
i.e., data set is {x1, x2, ..., xn}, then supervised algorithms cannot be used, but unsupervised
algorithms can. The most common use of unsupervised learning is cluster analysis, where the
output y indicates which cluster x belongs to (similar objective as with supervised classification,
f : D −→ C, except C is unknown, but can be restricted by, e.g., number of possible clusters).
As supervised algorithms depend on having data which is as close to reality as possible, using
them for fraud detection may be problematic as not all insurance fraud is detected, thereby,
causing some fraudulent claims to be annotated as legit. In this case, using cluster analysis to
group claims may be a more suitable approach, where new claims would be processed by the
learned function and assigned to a cluster. The clusters could then be analyzed to see if the
majority of their members are fraudulent, thereby, providing a generalized method for analyzing
incoming claims.

Annotating data to use supervised learning is a costly and difficult process. The process
often requires manual annotation to ensure that the quality of the data is good enough so that
the algorithm can detect distinction between, e.g., labels. It is difficulty as, depending on the
domain, the data can be ambiguous – meaning that two different individuals could possibly
annotate the same datum with two different labels. For instance, the authors of NorNE [5]
(Norwegian corpus for named entity recognition) had two individuals manually annotate roughly
600,000 sentences with entity types (e.g., organisation, person, products). Their reason was that
having two annotators would increase the quality (i.e., by minimizing ambiguity) but it also
increases the cost of the process. As the cost can be a reason not to use supervised learning, it
should be considered whether unsupervised learning can work for the task at hand.

Disregarding which approach to use, both require numerical representation of the data in
order to compute the result with ML algorithms. These numerical representations are called
feature vectors, where each value represents a single feature of the data. The process of defining
what the features represent is called feature extraction.

2.1.3 Feature Extraction

Features are characteristics of raw data denoted by a numerical value (e.g., age of driver is a
characteristic of an automobile insurance claim) so that it can be used for computation by ML
algorithms (i.e., algebraic operations). These features are usually extracted by domain experts
in the feature extraction phase. Each feature is represented as either a numerical, boolean (0 or
1), or categorical (integer representing a single category) value extracted from the raw data.

20

Figure 2.1: Feature extraction in machine learning vs. deep learning1.

An insurance claim contains a lot of data which are not suitable for algebraic operations. To
expand on the example given in Section 2.1.2 of fraud detection, the raw data of an insurance
claim would need a numerical representation. For instance, an automobile insurance claim could
have the following features; age of driver (numerical), has a driver’s license (boolean) and type of
damage (categorical; 0: fire, 1: theft, 2: collision, 3: self-accident), resulting in a feature vector
with a dimension of three. For instance, a reported claim where a 19 year old driver with no
driver’s license who has collided with a bus is then represented by the vector 〈19, 0, 2〉.

However, in order to normalize the feature values to be in the range [0, 1], the age of driver
could instead be represented as a boolean feature (e.g., is driver under the age of 23) and each
damage type could be represented as separate boolean features (i.e., is fire, is theft, etc.). This
would cause the example claim above to be represented as a vector with a dimension of six instead
of three, 〈1, 0, 0, 0, 1, 0〉, where the values are on the same scale. However, larger dimensions
affects the computation complexity of ML algorithms, and in such cases, feature selection might
be useful in order to drop features that are not important for finding an optimal function.

Modern machine learning algorithms have made it more common to automate the feature
extraction process by allowing the ML model to learn good features itself. With deep learning
(DL), which is a subset of ML, the feature extraction is merged into the learning process (see
Figure 2.1). Models such as the GPT-3 [6] and BERT [7] are used as pre-training techniques
of languages; i.e., they are trained to learn a representation of natural language (text). In
natural language processing (NLP) tasks, using pre-trained representation comes with several
benefits; the feature extraction process is not done manually, reduces the complexity of the
pipeline (i.e., system between the raw data and output requires less processing of the raw data
before it is processed by the model), high-performance models for specific tasks as the pre-
trained representations are more understandable to machines in contrast to features determined
by humans.

Although DL methods can improve the performance by learning representations, an initial
numerical representation of raw data is always needed. There are a few different methods for
how to represent text as numerical values, where the most basic is a bag-of-word representation.

2.2 Bag-of-words

Bag-of-words [8] (BOW) is a method for representing text as an un-ordered set (or multi-set –
if the frequency is used) of words. The numerical values of a bag of words is represented by
the occurrence of a word, either whether it occurs (boolean) or frequency (numeric), in a given

1Image from: https://laptrinhx.com/cnn-application-on-structured-data-automated-feature-extraction-4111608301/

21

https://laptrinhx.com/cnn-application-on-structured-data-automated-feature-extraction-4111608301/

text. The first step of BOW is to build a vocabulary consisting of unique words in a corpus
(document collection). Each unique word is assigned an identifier which refers to the index in a
feature vector. The result is that text can be represented by a vector x of size |V |, where V is
the vocabulary of unique words and value at xi > 0 if word i occurs in the text.

Example 1. Considering the example corpus shown in Table 2.1, each document can be
represented as a bag-of-words. In the table, each token represents a word and the corpus consists
of 16 unique tokens (i.e., |V | = 16). Using the vocabulary of the corpus (Table 2.2), each
document Table 2.1 are represented by the following feature vectors with frequencies:

d1 = 〈1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉
d2 = 〈0, 0, 0, 0, 0, 0, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0〉
d3 = 〈0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0〉
d4 = 〈0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1〉

(2.1)

Instead of representing each word by the occurrence, causing every word to have the same
importance, the values can be weighted by using term frequency-inverse document frequency
(tf-idf) statistics. Considering Zipf’s law, which states that the occurrence of a word in any
given corpus is proportional to the rank in the frequency table (i.e., most frequent word occurs
twice as often as the second, three times more than the third, etc.), using weighting allows for
having a notion of the importance of each feature by assigning a smaller value to more common
words. Tf-idf is the product of term frequency (frequency of a word in a document) and the
inverse document frequency (frequency of a word in the corpus). Term frequency is defined in
Definition 2.2.1, inverse document frequency in Definition 2.2.2, and tf-idf in Definition 2.2.3.
Using tf-idf to apply weights to the features of the documents shown in Example 1, the documents
are represented by the feature values shown in Table 2.2.

Definition 2.2.1 (Term frequency)

tf(t, d) =
ft,d

Σt′∈dft′,d
(2.2)

where ft,d is the frequency of word t in document d.

Definition 2.2.2 (Inverse document frequency)

idf(t,D) = log
N

nt
(2.3)

where N is the number of documents (|D|) and nt is the number of documents that word t occurs
in.

Definition 2.2.3 (Term frequency-inverse document frequency)

tfidf(t, d) = tf · idf (2.4)

22

Document Content Tokens

d1 “Limited offer: 5 % off!” limit, offer, :, 5, %, off, !

d2 “Reporting done right!!” report, do, right, !, !

d3 “Damages of 5 mNOK reported” damage, of, 5, mnok, report

d4 “Claim settlement offer accepted” claim, settlement, offer, accept

Table 2.1: Example of an e-mail corpus.

Index Token idf d1 d2 d3 d4

0 limit 0.60 0.60 0 0 0

1 offer 0.30 0.30 0 0 0.30

2 : 0.60 0.60 0 0 0

3 5 0.30 0.30 0 0.30 0

4 % 0.60 0.60 0 0 0

5 off 0.60 0.60 0 0 0

6 ! 0.12 0.60 0.24 0 0

7 report 0.30 0 0.30 0.30 0

8 do 0.60 0 0.60 0 0

9 right 0.60 0 0.60 0 0

10 damage 0.60 0 0 0.60 0

11 of 0.60 0 0 0.60 0

12 mnok 0.60 0 0 0.60 0

13 claim 0.60 0 0 0 0.60

14 settlement 0.60 0 0 0 0.60

15 accept 0.60 0 0 0 0.60

Table 2.2: Feature representation of corpus (Table 2.1) using BOW with tf-idf weighted values.

There are, however, some issues with BOW representation of text. Consider the vocabulary
in Table 2.2; vectorizing a new document d5 with the content “Claim free money now!” will
yield a vector where only d5,6 and d5,13 are non-zero values as “free”, “money” and “now” does
not exist in the vocabulary. These words are regarded as out-of-vocabulary words and if the
corpus is small, out-of-vocabulary words can appear more frequently when trying to vectorize
new documents. On the other hand, while increasing the number of documents in the corpus
solves out-of-vocabulary words by having more words in the vocabulary, it will drastically increase
the number of features per document. For instance, if each feature is represented by a four byte
floating point, a corpus with 1,000,000 documents containing 30,000 unique words will require
120 GBs (120 kBs per feature vector) to store on disk or in memory. By applying some pre-
processing techniques within natural language processing, the vocabulary size can be somewhat
reduced even with a large corpus.

23

2.3 Natural Language Processing

Natural language processing (NLP) is a collective term for applying different techniques to process
text written in natural language. NLP is a field that includes many research topics, such as named
entity recognition (NER), speech recognition, part-of-speech (POS) tagging, sentiment analysis,
etc. While these topics are mainly used as tasks to achieve an end-goal in a practical use case,
NLP also includes research topics where the goal is to pre-process the text so that it is more
suitable for further processing and makes the model for a specific task, e.g., NER, more accurate.
A general term for pre-processing text at a word level, is normalization.

2.3.1 Normalization

Normalizing a text on a word level is often done so that the corpus does not contain a high
variation of different words that have similar semantics (meaning). As mentioned in Section 2.2,
normalization can reduce the number of unique words in a vocabulary. A basic normalization
technique is to transform all characters to lowercase letters, which is called case folding. By
doing case folding when creating a vocabulary for a BOW model, the vocabulary will not contain
duplicate words where the only difference is upper- and lowercase letters.

Example 1. Consider the following sentences:

s1 = “University of Oslo”
s2 = “studying at the university” (2.5)

Without case folding, the words “University” and “university” will be two unique features in the
final BOW model, while with case folding, these are merged and represented as one feature.

Furthermore, each word can be reduced to a base form. Lemmatization is one technique
for transforming a word to its base form. However, this technique is dependent on having a
vocabulary in which a word can be looked up in and is, therefore, not useful when creating a
new vocabulary. Stemming is another technique for reducing words to a base form, where rules
are defined for how to cut suffix of certain words.

Example 2. The Porter algorithm [9] includes the following rules for stemming English words:

r1 : “ing” =⇒ “”
r2 : “ies” =⇒ “i”
r3 : “y” =⇒ “i”

(2.6)

Using these rules, the word “studying” from s2 in Example 1 is stemmed to a base form in two
steps:

r1 : “studying” −→ “study”
r2 : “study” −→ “studi” (2.7)

The rules above entails that “studying”, “studies” and “study” are all reduced to the base form
“studi”.

These are just some techniques for normalizing text in NLP. As the normalization is executed
at a word level, and the input data in a NLP pipeline are larger texts that include several words,
another required pre-processing step is needed in order to segment the words in a text.

2.3.2 Tokenization

Word segmentation (tokenization) is the process of splitting a larger text into smaller components
(tokens), where the tokens corresponds to words in the text. Tokenization is a challenging
process as there are many consideration to take into account, e.g., abbreviations. Consider
the abbreviated word “hasn’t”; there are multiple different interpretations w.r.t. which token or
tokens exist in that word, such as:

24

“hasn’t”
“hasn”, “t”

“hasn”, “” ’, “t”
“has”, “n’t”

and so on. In the example of an e-mail corpus in Section 2.2, it is assumed that the content
has been tokenized (Table 2.1) using a simple approach of separating tokens by whitespace and
separate special, numeric and alphabetical characters from each other, so the word “hasn’t” is
interpreted as three different tokens (“hasn”, “” ’, “t”). There is also the issue of compound words,
which are multiple words merged together to form a new word, e.g., “southwest”, that can cause
similar features to be represented differently.

While words are mostly separated by whitespace in English, languages such as Norwegian
contain a lot of compound words. In Norwegian, “damage report” is translated to “skaderap-
port”, compounded by the words “skade” (English: “damage”) and “rapport” (English: “report”).
Finding tokens among compound words requires either a dictionary to look up in (similar to
lemmatization) or complex rules which are expensive to write and maintain as written language
changes over time. One approach for tokenization that can be useful for languages consisting of
compound words is to use n-grams as tokens.

2.3.3 N -grams

N -grams are sequences that consist of n items. A bi-gram consists of two items, a tri-gram
consists of three items, and so forth. In NLP, n-grams are used to represent either word or
character sequences as tokens.

On a character level, a single n-gram consists of n number of characters concatenated together
to represent a single token. The n-grams are found by scanning n characters of a given text using
an offset of 1. As there are at most kn possible combinations for a n-gram, where k is the number
of unique characters (or words), n is often set as a low number, e.g., 3 ≤ n ≤ 6.

Example 3. Let T be the set of n-grams for the string s = “skaderapport”, where n = 5:

T = {“skade”, “kader”, “adera”, “derap”, “erapp”, “rappo”, “appor”, “pport”}
Using character n-grams for a corpus containing the words “skade” (plural: “skader”), “rapport”
and the string s, the structural similarities between s and the other words are found by the
intersection of n-grams:

T ∩ {“skade”} = {“skade”}
T ∩ {“skade”, “kader”} = {“skade”, “kader”}

T ∩ {“rappo”, “appor”, “pport”} = {“rappo”, “appor”, “pport”}
In this example, words that are structurally similar to “skaderapport” will have overlapping
features in a BOW representation. As such, character n-grams can be a useful tokenization
method where compound words are frequently found or where words are not clearly separated
(e.g., by whitespace).

N -grams can also be used on a word level. Although character n-grams are used to find
structural similarities between features, n-grams of words are used to separate features by their
context. This approach requires that the input text is already tokenized as it consist of concat-
enating n tokens to create a new token with some notion of context. For instance, the bi-grams
“machine learning” and “artificial intelligence” are part of the sentence “machine learning is a
sub field of artificial intelligence”. Using bi-grams of words as features will enable to separate
text by the context of their words., e.g., texts that are either about machines or intelligence
will be separated from machine learning and artificial intelligence related texts. However, for
capturing the context of the content, there are more efficient methods for feature representation
than using a BOW model consisting of word n-grams, where the context of a token is encoded
in an embedding (i.e., vector).

25

2.4 Embeddings

Embeddings are representation of data that has been compressed to a smaller dimension so that
data have a dense representation with only non-zero values. Although some techniques within
the field of NLP can be applied in order to reduce the number of unique tokens, a BOW-based
feature representation is still very sparse, i.e., the majority of feature values are equal to zero.
In Table 2.2, there are four different documents and 16 features where on average 11

16 (68.75%)
of a document’s feature values are equal to zero. Adding new documents with roughly the same
size but with new words will cause the documents to have an even more sparse representation.

Modern approaches for representing text are based on the distributional hypothesis [8], [10],
which states that the meaning of a word is determined by its context (i.e., words that are
surrounded by similar words have similar meaning). Papers such as Word2vec [11], GloVE [12],
and FastText [1], [2] describe methods for training dense word representation using the context
of words. The methods are beneficial, not only as they provide pre-trained word embeddings that
can be used in different NLP tasks (e.g., semantic analysis, NER), but the learned representations
have a relatively small dimension (typically 100-300) in contrast to BOW representations. The
resulting feature representation encodes the semantics of its word, which comes with interesting
opportunities, such as algebraic operations on words.2

“daughter” − “mother” + “father” = “son”
“king” − “man” + “woman” = “queen”

2.4.1 Word Embeddings

Word embeddings are distributed representation of words that are trained on word co-occurrences [12],
[13] (statistics-based – see Table 2.3 for an example of a co-occurrence matrix) or context win-
dows [11] (machine-learning-based – i.e., training set consists of words with their surrounding
words and are found in unstructured texts), thereby encoding the semantics of words as, accord-
ing to the distributional hypothesis, a words meaning should be known by its surrounding words
(context) [8], [10]. The result is a trained model that takes a word (i.e., token) as input and
maps it to a fixed-sized vector (e.g., vector with a dimension of 300), where the values are set
based on the context of the given word (the context exists in the model’s training data).

Word2vec presents two different models for efficiently learning word embeddings; continuous
bag-of-words model (CBOW) and continous skip-gram (architecture shown in Figure 2.2). Both
models use randomly initiated word vectors which are adjusted during training, i.e., the vectors
are continuous distributed representations.3

The CBOW aims at predicting the current word based on the context, where the context
is the four preceding and four trailing words [11]. All the context word vectors are averaged in
the projection layer (Figure 2.2), therefore, the model is considered a BOW as the order of the
context words is not taken into account in the model. On the other hand, the skip-gram model
is given a word in which the aim is to classify the word (projection layer) and predict its context
words (output layer).

GloVE [12] demonstrated a small increase in accuracy over the CBOW using a word-word
co-occurrence matrix as initial representation (matrixX, whereXi is the vector of word i andXij

is the frequency of word i occurring with the word j). Training a skip-gram on Wikipedia4 data
and representing words as a bag-of-character n-grams (experimented with different values for n),
where the word is the sum of its n-gram vectors, achieved state-of-the-art on word similarity and
analogy tasks compared to other methods for morphological word representations [1]. Further,
extending the idea of using character n-grams, Grave et. al used Common Crawl5 and Wikipedia

2Word vector calculator: http://vectors.nlpl.eu/explore/embeddings/en/calculator/#
3InitNet function: https://github.com/tmikolov/word2vec/blob/master/word2vec.c
4https://www.wikipedia.org/
5https://commoncrawl.org/

26

http://vectors.nlpl.eu/explore/embeddings/en/calculator/##
https://github.com/tmikolov/word2vec/blob/master/word2vec.c
https://www.wikipedia.org/
https://commoncrawl.org/

Figure 2.2: Architecture of CBOW and skip-gram [11].

data to learn word vectors for 157 languages [2]. They used the CBOW model instead of the
skip-gram and set n = 5.

2.4.2 Sentence Embeddings

Sentence embeddings are similar to word embeddings except that the objective is to encode the
meaning of whole sentences instead of their individual components. A common approach in NLP
is to represent sentences as a L×D matrix, where L is the number of words in the sentence and
D is the dimension of the word embeddings. However, sentence embeddings are represented as a
single vector with dimension D, i.e., they have a fixed size rather than being a matrix of varied
size. These embeddings are useful for different kinds of similarity tasks between sentences, e.g.,
natural language inference (determine if one sentence is an entailment, contradiction or neutral
of another sentence), or question and answer retrieval. There are generally two approaches for
obtaining sentence embeddings; the distribution method and the composition method.

The distribution method involves training embeddings based on a larger corpus, similar to
the training process of word embeddings. Sentence-BERT [3] (SBERT), which extends the
BERT model [14] (a neural network architecture for language modeling), reported state-of-the-art
performance on sentence evaluation tasks. The motivation for SBERT was to reduce overhead in
BERT, as BERT requires both sentences as input for pair-wise comparison. SBERT consists of a
siamese network [15] (i.e., two networks with identical architecture and shared weights processing
two different inputs at once) of BERT and triplets (Definition 2.4.1), as seen in Figure 2.3.

Definition 2.4.1 (Triplet loss function) Triplet loss function is used for training similarity
functions for vectors and is defined as:

L(A,P,N) = max(||f(A)− f(P)||2 − ||f(A)− f(N)||2 + α, 0) (2.8)

where A is an anchor vector, P is a vector similar to A and N is a vector dissimilar to A. The
objective of the triplet loss function is to satisfy

||f(A)− f(P)||2 − ||f(A)− f(N)||2 ≤ 0 (2.9)

so that the distance between the anchor and the positive sample, ||f(A)−f(P)||2, is smaller than
the distance between the anchor and the negative sample, ||f(A)− f(N)||2. As a trivial solution
to Equation 2.9 is that function f returns a vector with only zero values (f(x) = ~0), α is used to
indicate a margin between the positive and negative samples.

27

Figure 2.3: Architecture of SBERT; left) fine-tuning sentence embeddings, right) similarity in-
ference of two sentence embeddings [3].

Another approach that is possible for obtaining sentence embeddings, is the composition
method. Similar to how FastText trains word embeddings on an aggregation of character n-
grams, the composition method involves aggregating lower level embeddings. More specifically,
usually when the composition method is used, pre-trained word embeddings are aggregated
according to specified strategy (pooling strategy, common strategies include sum, mean or max
vector values) to form a representation of a sentence.

Both approaches yield a single vector for sentences that can be used for computing the sim-
ilarity between two sentences. While early methods for text similarity was heavily based on
the syntax, i.e., similarity was determined by similar characters and ordering, sentence embed-
dings yields representation in vector space and makes it possible to use algebra for computing
similarity.

2.5 Measuring Text Similarity

Text similarity has historically been used in information retrieval (IR) systems for use cases such
as spelling correction, retrieval ranking, and question and answer retrieval. There are several
methods for comparing the similarity between strings. In this section, three different methods
will be covered to get a basic understanding of how strings can be compared to each other and
how a modern method allows for computing similarity based on semantic similarity. First, the
edit distance and the Jaccard coefficient are presented, which are methods that only depend on
the structure of each string. Then, the definition of cosine similarity is given, as this metric is
more common to use now that text is represented in vector space.

2.5.1 Edit Distance

Edit distance is simply the number of different edit operations that has to be applied to string
a so that it is equal to string b. The possible edit operations include insertion, deletion, sub-
stitution and transposition. There exist several algorithms for computing edit distance, where
the main difference between them is which edit operations are allowed. For instance, the Leven-
sthein distance [16] allows insertion, deletion and substitution, while the Damerau-Levensthein

28

distance [16], [17] extends the Levensthein distance by supporting transpositions.

Example 1. Levensthein distance

levensthein(“insure”, “insured”) = 1 (insert d at the end)
levensthein(“insuransed”, “insurance”) = 2 (substitute s −→ c, delete d at the end)

(2.10)

Example 2. Damerau-Levensthein distance

levensthein(“insurde”, “insured”) = 2 (subst. d −→ e and e −→ d)
damerau(“insurde”, “insured”) = 1 (transpose: de −→ ed) (2.11)

2.5.2 Jaccard Similarity Coefficient

The Jaccard similarity coefficient measures the similarity between two sets as a ratio between
the number of equal set members and sum of set members in both sets. Generally, in NLP and
IR, the Jaccard similarity is measured between two sets of tokens.

Definition 2.5.1 (Jaccard Similarity Coefficient)

J(A,B) =
|A ∩B|
|A ∪B|

(2.12)

Example 3. Jaccard similarity of n-grams
Let T = {“skade”, “kader”, “adera”, “derap”, “erapp”, “rappo”, “appor”, “pport”}, U = {“skade”}
and V = {“rappo”, “appor”, “pport”}.

J(T,U) =
|T ∩ U |
|T ∪ U |

=
1

8
= 0.125 (2.13)

J(T, V) =
|T ∩ V |
|T ∪ V |

=
3

8
= 0.375 (2.14)

Both edit distance and Jaccard similarity are useful string metrics within IR, where the sim-
ilarity between strings needs to be measured w.r.t. ranking and/or spelling correction, however,
they have a limited number of use-cases within NLP (although they can be used in spelling cor-
rection in a production pipeline to limit out-of-vocabulary words caused by spelling errors). With
the rise of word embeddings and increased use of vector space representation, cosine similarity
has proven useful in a variety of NLP tasks.

2.5.3 Cosine Similarity

Cosine similarity is computed as the angle between two vectors. While the euclidean distance
formula (Definition 2.5.2) is used to measure the distance between two points in vector space, it
is not suitable for word embeddings as similar concepts tends to point in the same direction but
vary in length (magnitude) – see Figure 2.4.

Definition 2.5.2 (Euclidean distance)

d(u, v) =
√

(v1 − u1)2 + (v2 − u2)2...+ (vn − un)2 (2.15)
7Screenshot from: https://projector.tensorflow.org/

29

https://projector.tensorflow.org/

Figure 2.4: Word embeddings similar to “university” projected in 2D space; red line shows the
euclidean distance and θ is the angle between “education” and “university”.7

30

I drink coffee in the morning tea
I 1 1 1 0 0 0 1

drink 1 1 1 1 0 0 1
coffee 1 1 1 1 1 0 0
in 0 1 1 1 1 1 1
the 0 0 1 1 1 1 1

morning 0 0 0 1 1 1 0
tea 1 1 0 1 1 0 1

Table 2.3: Simple co-occurrence matrix.

As illustrated in Figure 2.4, the distance between “education” and “university” is relatively
large; however, the angle between these two vectors is small. The angle is computed using the
cosine similarity function (Definition 2.5.5). The cosine similarity function is computed using
the dot product between vectors (Definition 2.5.3) and magnitude of vectors (Definition 2.5.4).

Definition 2.5.3 (Euclidean dot product)

u · v = u1v1 + u2v2...+ unvn (2.16)

Definition 2.5.4 (Euclidean norm) Definition for computing the Euclidean norm, i.e., mag-
nitude (or length), of a vector in Euclidean space.

||u|| =
√
u · u =

√
u21 + u22...+ u2n (2.17)

Definition 2.5.5 (Cosine similarity)

similarity = cos(θ) =
u · v

||u|| · ||v||
(2.18)

Example 4. Computing cosine similarity As an example of cosine similarity, vectors
of words can be used to illustrate their similarities. Let n = 3 denote the context size (i.e.,
preceding, current and trailing word) for counting co-occurring words and the count is a boolean
value (0 or 1). Given a corpus of the two sentences:

s1 = “I drink coffee in the morning”
s2 = “I drink tea in the morning”

the co-occurring words in the corpus are represented as bag-of-words:

{“I”, “drink”, “coffee”}
{“drink”, “coffee”, “in”}
{“coffee”, “in”, “the”}

{“in”, “the”, “morning”}
{“I”, “drink”, “tea”}
{“drink”, “tea”, “in”}
{“tea”, “in”, “the”}

The co-occurrences can be represented in a word-word co-occurrence matrix (Table 2.3) denoted
as X, where Xij is the count of word i occurring with word j and Xi is the word vector for i.

The cosine similarity between “coffee” and “tea” can be computed in a few simple steps: 1)
the vector representations are found by looking up in the co-occurrence matrix (Equation 2.19),

31

I drink coffee in the morning tea
I 1.00 0.89 0.67 0.61 0.45 0.00 0.67

drink 0.89 1.00 0.80 0.73 0.40 0.00 0.60
coffee 0.67 0.80 1.00 0.73 0.60 0.52 0.80
in 0.61 0.73 0.73 1.00 0.91 0.71 0.73
the 0.45 0.40 0.60 0.91 1.00 0.77 0.60

morning 0.00 0.00 0.52 0.71 0.77 1.00 0.52
tea 0.67 0.60 0.80 0.73 0.60 0.52 1.00

Table 2.4: Affinity matrix based on cosine similarity of vectors in Table 2.3. Most similar word
(excluding the itself) in bold. Computational complexity is O(n2).

2) the dot product between the vectors is computed (Equation 2.20), 3) the magnitude of each
vector is computed (Equation 2.21), and 4) the similarity between the vectors is computed by
using the dot product and magnitude (Equation 2.22).

vec(“coffee”) = x2 = 〈1, 1, 1, 1, 1, 0, 0〉
vec(“tea”) = x6 = 〈1, 1, 0, 1, 1, 0, 1〉 (2.19)

x2 · x6 = 〈1, 1, 1, 1, 1, 0, 0〉 · 〈1, 1, 0, 1, 1, 0, 1〉
= 1 · 1 + 1 · 1 + 1 · 0 + 1 · 1 + 1 · 1 + 0 · 0 + 0 · 1
= 1 + 1 + 0 + 1 + 1 + 0 + 0
= 4

(2.20)

||x2|| =
√

12 + 12 + 12 + 12 + 12 + 02 + 02 =
√

5

||x6|| =
√

12 + 12 + 02 + 12 + 12 + 02 + 12 =
√

5
(2.21)

similarity(“coffee”, “tea”) =
x2 · x6

||x2|| · ||x6||
=

4√
5 ·
√

5
= 0.80 (2.22)

Following these steps, the cosine similarity can be computed between each pair of words in
the co-occurrence matrix, which can be inserted in an affinity matrix (Xij is distance between i
and j) such as Table 2.4.

Definition 2.5.6 (Unit vector)
û =

u

||u||
(2.23)

The definition for unit vector (Definition 2.5.6) can be used to normalize a vector so that the
direction is kept but the magnitude is equal to 1. The dot product between normalized vectors
yields the same results as the cosine similarity function. Knowing this, the computational cost
can be reduced by pre-calculating the unit vector of each vector, thereby, removing the need for
computing the magnitude for each vector in a pair when finding the similarity.

Example 5. Computing cosine similarity (continued)

x̂2 = 〈1,1,1,1,1,0,0〉√
5

= 〈0.4472, 0.4472, 0.4472, 0.4472, 0.4472, 0, 0〉
x̂6 = 〈1,1,0,1,1,0,1〉√

5
= 〈0.4472, 0.4472, 0, 0.4472, 0.4472, 0, 0.4472〉

(2.24)

similarity(x2, x6) = x̂2 · x̂6 = 0.80 (2.25)

32

Figure 2.5: Voronoi diagram of k -means clustering.8

2.6 Algorithms

In this section, I present three machine learning algorithms that are relevant for this thesis.
Two algorithms that depend on a distance metric are presented first; k -means (Section 2.6.1)
and k -nearest neighbors (Section 2.6.2). The final algorithm that is introduced can be used for
text classification and is popular to use as a baseline for text classification of a new data set
(Section 2.6.3).

2.6.1 k-Means

The k-means clustering algorithm is an unsupervised learning algorithm that finds k number of
clusters (i.e., sub spaces in a larger vector space). Each kth cluster is represented by a centroid,
which is the averaged vector of all the cluster members.

The algorithm is initiated by selecting k random data points from the training set as initial
centroids. Then, each other data point is assigned to the closest centroid using a defined distance
metric, e.g., euclidean distance (Definition 2.5.2) or cosine similarity (Definition 2.5.5). The
centroid is then adjusted as the average of all its members. The training process consists of
repeating centroid assignment and adjustment until either current iteration reaches the maximum
number of iterations allowed, centroids are no longer adjusted, or the adjustment is below a
certain threshold.

The result of k-means is the function f(x) = y, where y is the centroid x is closest to. For 2-
dimensional vectors, the resulting function can be illustrated as a Voronoi diagram (Figure 2.5).
Each region in the diagram represents a cluster and is given a unique number, i.e., index of
centroid in the collection of all centroids. When x is within the ith region (closest to centroid i),
then f(x) = i.

8Image from: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

33

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

Figure 2.6: Voronoi diagram of k-NN classification.9

The algorithm is used in areas such as cluster analysis and feature learning. As mentioned
in Section 2.1.2, a cluster analysis task can be to identify potentially fraudulent claims by ana-
lysing the members of each cluster. With some modifications, k-means can be used for feature
learning [18].

2.6.2 k-Nearest Neighbors

The k-nearest neighbors (k-NN) algorithm is a supervised, lazy learning algorithm that can be
used for classification. As k-NN is supervised, to use this algorithm it is needed to have an
annotated dataset, i.e., {〈x1, y1〉 〈x2, y2〉 ..., 〈xn, yn〉}, where yi is in a set Y of possible classes.
Similar to k-means, it uses a distance metric to compute the distance between data points.

For classification, when the k-NN receives an input x, it computes the distance to the data
points in the training set and selects the top k nearest data points. The output is the predicted
class, which is the class with most occurrences among the k nearest of x (Figure 2.6 illustrates
regions of different classes, including regions of outlier data points, with k-NN). Because the
majority class is selected as prediction, k needs to be an odd integer.

The algorithm has some major limitations regarding complexity at prediction time. It is
called lazy learning (also, instance-based learning) as there is no actual training involved, i.e.,
it use all data points (instances) in the training set for prediction. While algorithms such as
k-means require some training time, they are relatively fast at prediction, but with k-NN this is
reversed.

However, as k-NN is instance-based, introducing new classes does not require architectural
modifications to the model or even re-training of the model. This is advantageous when the set of
possible classes evolves over time. In addition, the computational limitation can be maintained to

9Image from: https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

34

https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html

some extent as k-NN is easily parallelizable (computing distances can be done either by multiple
threads or across different machines in a distributed system).

2.6.3 Multinomial Naïve Bayes Classifier

The multinomial Naïve Bayes classifier (MNB) is a supervised machine learning algorithm that
can be used for, e.g., text classification. The MNB is a generative model, as it models the
distribution of classes based on training data, in contrast to discriminative models which learns
the boundaries between classes (e.g., k-means, k-NN).

Definition 2.6.1 (Bayes’ theorem) The Bayes’ theorem is defined as:

P (A |B) =
P (B |A) · P (A)

P (B)
(2.26)

where P (A) is the prior (observed) probability of event A, and P (A |B) is the conditional prob-
ability of A and B, i.e., probability of A given B.

Using the Bayes’ theorem (Definition 2.6.1), the MNB computes the probability of a class
y given some input x, P (y | x1, x2 . . . xn), by using the learned prior probability of y and the
learned conditional probability of xi given y. For text classification, the prior probability is
learned using Definition 2.6.2 and the conditional probability is learned using Definition 2.6.3.
While the prior probability is computed for a class, the conditional probability is computed for
a term (i.e., token). Therefore, the first step in the training is to create a vocabulary of unique
terms in the training set. Having the learned probabilities, the class of an input text can be
classified by selecting the class that has the highest probability (Definition 2.6.4) based on terms
in the given text.

Definition 2.6.2 (Prior probability in multinomial Naïve Bayes classifier) Prior prob-
ability of a class c is defined as:

P (c) =
Nc

N
(2.27)

where Nc is the number of documents belonging to class c and N is the total number of documents.

Definition 2.6.3 (Conditional probability in multinomial Naïve Bayes classifier) The
probability of a term t given a class c is defined as:

P (t | c) =
Tct + 1

(Σt′∈V Tct′) + |V |
(2.28)

where Tct is the count of term t in class c and |V | is the size of the vocabulary (i.e., number
of unique terms in training data). Each count Tct is added by 1 (called add-one, or Laplace
smoothing) to eliminate zero probabilities.

Definition 2.6.4 (Multinomial Naïve Bayes classification) The classification function f
selects the class c with the highest probability given the features of x:

f(x) = argmaxc∈CP (c)
n∏

i=0

P (xi | c) (2.29)

If the features of x has the same probability for more than one class, then the class with highest
prior probability, P (c), is selected. Note that the function f uses the Bayes’ theorem, however,
the denominator P (xi) is removed as it is the same for each class c and does not affect the
maximum probability.

35

Document Content Tokens Class

d1 “Limited offer: 5 % off!” limit, offer, :, 5, %, off, ! SPAM

d2 “Reporting done right!!” report, do, right, !, ! SPAM

d3 “Damages of 5 mNOK reported” damage, of, 5, mnok, report CLAIM

d4 “Claim settlement offer accepted” claim, settlement, offer, accept CLAIM

Table 2.5: Emails annotated as spam or claim related.

i t P (t | SPAM) P (t | CLAIM)

0 limit 0.07 0.04

1 offer 0.07 0.08

2 : 0.07 0.04

3 5 0.07 0.08

4 % 0.07 0.04

5 off 0.07 0.04

6 ! 0.14 0.04

7 report 0.07 0.08

8 do 0.07 0.04

9 right 0.07 0.04

10 damage 0.04 0.08

11 of 0.04 0.08

12 mnok 0.04 0.08

13 claim 0.04 0.08

14 settlement 0.04 0.08

15 accept 0.04 0.08

Table 2.6: Vocabulary of corpus in Table 2.5.

Example 1. Text classification Multinomial Naïve Bayes can be used for text classification,
e.g., such as detecting spam among a corpus of emails. Let C = {SPAM, CLAIM} denote the
possible classes, where the task is to classify an email as either spam or claim related. By
annotating the emails shown in Table 2.1, we get the training set

D = {〈d1, SPAM〉, 〈d2, SPAM〉, 〈d3,CLAIM〉, 〈d4,CLAIM〉} (2.30)

as illustrated in Table 2.5. The prior probability for each class is computed using Definition 2.6.2:

P (SPAM) = 2
4 = 0.5

P (CLAIM) = 2
4 = 0.5

(2.31)

36

and the conditional probabilities are computed using Definition 2.6.3:

P (limit | SPAM) = 1+1
12+16 = 0.07

P (limit | CLAIM) = 0+1
9+16 = 0.04

P (! | SPAM) = 3+1
12+16 = 0.14

. . .

(2.32)

See Table 2.6 for all conditional probabilities. Given a new document d5 = “claim!”, with the
tokens “claim” and “!”, it can be classified using the function in Definition 2.6.4:

P (SPAM | d5) = P (SPAM) · P (claim | SPAM) · P (! | SPAM)

= 0.50 · 0.04 · 0.14

= 0.0028

P (CLAIM | d5) = P (CLAIM) · P (claim | CLAIM) · P (! | CLAIM)

= 0.50 · 0.08 · 0.04

= 0.0016

f(d5) = max(P (SPAM | d5), P (CLAIM | d5))

= SPAM

(2.33)

As such, the text “claim!” is classified as spam.

37

38

Chapter 3

Annotation of Spreadsheet Cells

To find a suitable feature representation of textual cell values in insurance-claim-related spread-
sheets – to use for determining the concepts of cell values, I gathered 1,216 Excel spreadsheets
from actual Norwegian property claims at Protector Forsikring.

The first issue I encountered with the data was to retrieve the formatted values (i.e., the
value of a cell displayed by Excel) in the spreadsheets. The packages for processing Excel
files with Python only seemed to provide functionality for retrieving the actual values and not
textual values (e.g., the formatted value “100 %” has a value of “1.00”). I tried implementing the
extraction of formatted values using an API for the C# programming language, however, the
performance was poor as it required an instance of Excel running. I ended up using the Apache
POI library for Java, which provided a class for formatting the cell values (see Section 3.2). I
processed the spreadsheets by converting the raw files to structured JSON-objects, following a
standardized structure, where the attributes of each cell were easily accessible for large-scale use.
Although my initial plan was to use unsupervised learning to learn a feature representation for
the textual cell values, where keeping the table structure within spreadsheets would enable to
utilize the relations between cells, personal data had to be removed from the collected data due
to privacy regulations (i.e., GDPR).

The privacy issue was, therefore, an incentive to create an annotated data set – which can
be used for concept determination of cells in semi-structured spreadsheets related to insurance
claims, as data such as, person names, phone numbers, email addresses, etc., had to removed.
Given how the spreadsheet files were stored in the system, the collection contained an unknown
number of duplicates, but as only the textual cell values were needed to create an annotated data
set, the values were transformed into a set of values (i.e., the JSON-objects were not needed so
the issue of duplicates is not present in the final data set). As there were over 200,000 unique
values in the raw data, I implemented different approaches to streamline the annotation process.
In order to collect a data set of values annotated with concept labels (described in Table 3.1),
the first phase consisted of using a rule-based classifier to gather some initial samples of the
different concepts. By using the rule-based classifier, common values (i.e., numeric values with
common formats, such as dates, time, percent, money, etc.), which were expected to make up
a large part of the unprocessed values, were annotated with decent accuracy by using strict
rules, while concepts with less strict rules (e.g., organisations and locations) required frequent
intervention of manually correcting the annotated concepts. I explain the rule-based classifier
in Section 3.4. Having obtained samples for most concepts using the rule-based classifier, I
trained a multinomial naïve Bayes classifier to further annotate more samples with the objective
of having more accurate annotations based on the accumulated data set instead of relying on
hand-written rules – decreasing the need for manual correction of annotations (see Section 3.5).
As both classifiers were not trusted to annotate the correct concept of a value, each annotation
was manually supervised and corrected when needed. The resulting data set contains 119,963
unique values with an annotated concept (Table 3.2 shows the distribution per concept).

39

Label Concept Description

TIME Time E.g., “12:00:00”, “kl. 12:00”

CARDINAL Cardinal General number without a concept (e.g., “10,000”)

PROD Product Named product, e.g., “Grandiosa Pizza pepperoni”

MONEY Money Number with a currency code/symbol (“kr 10”, “10 NOK”)

DATETIME Date and time E.g., “01.04.2021 12:00”, “1. april kl. 12”

DATE Date E.g., “1. april”, “1/04/2021”, “01.04.2021”

TEXT Text General text not captured by any of these concepts

ORG Organisation A company, municipality (if suffix is “kommune”), etc.

LOC Location A location, e.g., address, administrative division, etc.

PERCENT Percent A percentage (e.g., “10 %”)

FAC Facility Named facilities, such as schools, locatable stores, etc.

QNT Quantity A number with a measurement symbol (e.g., “16 kg”, “1 stk”)

EVT Event Text with several concepts (i.e., who, what, where, when)

Table 3.1: Data set concepts.

Training Set Test Set Sum Distribution

TIME 33,707 8,427 42,134 35.12%

CARDINAL 28,098 7,025 35,123 29.28%

PROD 9,602 2,401 12,003 10.01%

MONEY 5,813 1,454 7,267 6.06%

DATETIME 5,578 1,395 6,973 5.81%

DATE 4,680 1,170 5,850 4.88%

TEXT 3,371 843 4,214 3.51%

ORG 1,494 374 1,868 1.56%

LOC 1,428 358 1,786 1.49%

PERCENT 972 243 1,215 1.01%

FAC 868 218 1,086 0.91%

QNT 274 69 343 0.29%

EVT 80 21 101 0.08%

Sum 95,965 23,998 119,963 100.00%

Table 3.2: Data set distribution.

40

Figure 3.1: Pipeline for enriching a spreadsheet with concept information of cells.

3.1 Spreadsheet Enrichment Pipeline

In this chapter, I explain how I annotated cell values in spreadsheets to obtain a data set that can
be used for supervised classification of concepts. The pipeline illustrated in Figure 3.1 shows how
a system would process a raw spreadsheet file and enrich the spreadsheet with concepts of cells.
At Protector Forsikring, a file is stored in a file storage and is attached to claim using a unique
identifier, and can be accessed through an API. In the pipeline, the first step is to retrieve a
spreadsheet file from the API. The spreadsheet file is then processed by structuring the attributes
of the cells in a standardized file (JSON-object, i.e., mapping from keys to values), where the
cell values have also been formatted according to how Excel displays the values (the spreadsheet
processing is described in Section 3.2). To enrich the spreadsheet with concept information,
each cell’s formatted value is passed into a text classifier (trained on annotated data) which
outputs a concept. The concept of a cell is then added as an attribute in the standardized file
representation of a spreadsheet. In Sections 3.4-3.5, I present two different text classifiers that I
used to streamline the annotation process (i.e., so that I could efficiently collect samples for each
concept), and I also used the multinomial naïve Bayes (Section 3.5) as a baseline for concept
classification.

3.2 Processing Excel Spreadsheets

I collected the spreadsheets from Norwegian property claims, i.e., the files are attachments in
actual claims, where the spreadsheets have been created by an involved party (e.g., claimant
or surveyor) of the insurance event that the claim concerns. Property claims can be related
to, for instance, damage of a building, inventory or equipment, so the content and structure of
the spreadsheets vary between the different claims. The file type of the spreadsheets indicated
that they had been created using Excel, which stores the cell values but have functionality for
displaying the values differently in the application. For instance, when setting the format of a
cell to percent in Excel, the value in the spreadsheet is stored as a fraction of 100 (e.g., “1.00”)
while the value displayed in the cell is the value multiplied by 100 with the percent symbol as
suffix (e.g., “100 %”). Excel uses rules to define the these cell formats (see Example 1).

Example 1. Excel formats are split by “;” into four components, where 1) defines how to
format positive numbers, 2) negative numbers, 3) zero, and 4) text.1 For instance, the following
format defines how to format and display numeric values as money with the currency symbol for
Norwegian kroner (“kr”):

“kr”\#,##0.00; [Red]\−“kr”\#,##0.00;;
1Excel number formatting:

https://support.microsoft.com/en-us/office/number-format-codes-5026bbd6-04bc-48cd-bf33-80f18b4eae68

41

https://support.microsoft.com/en-us/office/number-format-codes-5026bbd6-04bc-48cd-bf33-80f18b4eae68

Key Value

address A1

type STRING

format General

formula

value Maskinforsikring:

formattedValue Maskinforsikring:

concept TEXT

Table 3.3: JSON-object of a cell with string value (concept is set by a concept classifier in the
full pipeline).

Using this format, Excel will display “kr 10,000.00” if the value is “10000.0” and “- kr 10,000.00”
(in addition to being colored red) if the value is “-10000.0”. As the components for zero and text
are empty (no specified format), zeroes and texts are displayed without any formatting. These
rules can be far more complex, which make them difficult to parse.

In order to apply natural language processing techniques on the cell values in spreadsheets,
I needed to have the formatted value and not the actual value. While the formatted values
are used for displaying numeric values in a more human-readable format, they provide some
context of numerical concepts. At first, I investigated different packages for processing Excel
files with the Python programming language. However, none of the packages seemed to provide
functionality for extracting formatted values from Excel files.2 A promising solution was to use
an API available for the C# programming language, but the API relied on communicating with
a running instance of the Excel application.3 As the API for C# directly depends on Excel, it
had performance issues which caused the spreadsheet processing phase to take several days to
complete. In the C# program that I wrote for processing the spreadsheets, a new instance of
Excel had to be started for each file to process, and I observed that the program only exited
some of the instances successfully after the processing was finished. Due to the small amount
of running instances that it took before running out of memory, the process had to be closely
monitored – leading to long processing time as I had limited time to spend staring at the program
running. I later found a library for the Java programming language, Apache POI4, that provides
functionality for formatting stored values in Excel spreadsheets. As I have more experience with
Java than C#, in combination with a more usable library than the C# API, the processing
program written in Java was more efficient. The processing program was written to a) download
an insurance claim spreadsheet from the internal systems at Protector Forsikring – based on a
predefined list of files to collect, b) load the file into a Workbook-object (class for spreadsheets
in Apache POI), c) map the spreadsheet to a structured JSON-object, and d) repeat the steps
from (a) until there were no files left to process. After a few hours, the spreadsheet files were
stored as separate JSON-objects and ready for further processing in large-scale.

Each JSON-object of a spreadsheet were structured as a list of sheets (an Excel file can
contain one or more spreadsheets, i.e., sheets), where each sheet was a list of cells structured as
JSON-objects. A cell had the following attributes: cell address (i.e., column letter concatenated

2Overview of packages for working with Excel in Python: http://www.python-excel.org/
3Microsoft.Office.Interop.Excel documentation:

https://docs.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel?view=excel-pia
4Java API for Excel:

https://poi.apache.org/components/spreadsheet/

42

http://www.python-excel.org/
https://docs.microsoft.com/en-us/dotnet/api/microsoft.office.interop.excel?view=excel-pia
https://poi.apache.org/components/spreadsheet/

Key Value

address I4

type NUMERIC

format m/d/yy

formula

value 44090.0

formattedValue 9/16/20

concept DATE

Table 3.4: JSON-object of cell with numeric value and specified string format (concept is set by
a concept classifier in the full pipeline).

with row number), type (i.e., string, numeric or formula), format, formula, value, and formatted
value (extracted using the DataFormatter-class in Apache POI). In Table 3.3-3.4, examples of
the JSON-object of cells are illustrated. The reason for structuring the spreadsheets as JSON-
objects was that I could use the attributes of a cell in further processing. However, due to privacy
regulations (i.e., GDPR), values such as person names, phone numbers and email addresses had
to be removed, and I made the decision of creating a data set where values are annotated with
concepts. Therefore, I only needed the formatted value from the JSON-objects, which were
extracted and added to a set – resulting in a collection of more than 200,000 unique textual
values, before annotating a subset of the values with concepts.

3.3 Concepts in Insurance-Claim-Related Spreadsheets

In the context of this thesis, concepts are an abstraction of what the facts (i.e., values) in
the spreadsheets represent in the real world; i.e., they are more narrow and descriptive data
types than, e.g., “string” and “numeric”. As inspiration, I used some of the entity types that
are commonly used for named entity recognition (NER) together with concepts that I discovered
when looking at the data. For instance, NorNE [5] used common annotations such as organisation
and location; however, as they annotated text from a news corpus (i.e., a collection of sentences
gathered from news articles), they used a separate entity type for geo-political entities (GPE)
to describe entities such as “Lier kommune” (English: “Lier municipality”). While news articles
tend to be more politically oriented, in an insurance perspective, GPEs are regarded as either
organisations (customers or third parties) or locations (e.g., to describe location of damage or
insured objects). With that in mind, the value “Lier kommune” is annotated as an organisation
(i.e., ORG) in the data set. Although the most interesting use is to be able to determine concepts
of strings (i.e., organisation, location, etc.), the spreadsheets consists largely of numeric values.
Therefore, I defined labels for numeric values, such as, quantity, money, percent, and date/time
(see Table 3.1 for description of all concepts present in the data set).

Ideally, the concepts should be separable so that the values can be structured in, e.g., a table
column with no ambiguity (i.e., a column only contains values of a specific concept which can be
utilized using a method which applies to all the column values), e.g., “Europris AS” can only be
interpreted as an organisation name; however, there are some overlap between the used labels.
For instance, in order for a value to be annotated as DATETIME, both date and time must be
present (illustrated in Figure 3.2). Further, the EVT label is assigned to values that describe
an insurance event, but as the present concepts varies between the different values annotated
as EVT, it is the concept that caused most uncertainty during the annotation process. It was

43

DATETIME

DATE

04.01.2011

TIME

16:47:12

Figure 3.2: Concepts present in the string “04.01.2011 16:47:12”.

EVT

TEXT

Brannskade

ORG

Toten Tre

DATE

23.06.09

Figure 3.3: Concepts present in the string “Brannskade Toten Tre 23.06.09”.

EVT

TEXT

Skade

TEXT

flom

FAC

Samsen

DATE

07.09.2018

Figure 3.4: Concepts present in the string “Skade flom Samsen 07.09.2018”.

EVT

LOC

Drangedal,

DATE

2. desember 2019

Figure 3.5: Concepts present in the string “Drangedal, 2. desember 2019”.

44

Figure 3.6: Flow of the rule-based classifier.

during the annotation process that I fine-tuned my own guideline for annotating values as EVT.
The guideline I eventually used was to annotate a value as EVT if two or more of these are
present in the value: what, who, where, and when. Figures 3.3-3.5 illustrates different concepts
contained under the EVT label:

• Figure 3.3: Toten Tre had a fire damage on 23.06.09.

• Figure 3.4: Samsen (cultural facility in Kristiansand) was affected by a flood on 07.09.2018.

• Figure 3.5: an unknown event happened in Drangedal on December 2. 2019.

When no specific concepts were applicable to a value, the value was annotated as either TEXT
(string without a specific concept) or CARDINAL (numeric without a specific concept).

As I annotated values from a set of values, and not directly from spreadsheets, I had no
context for the different values. As a result, I think this improved the process as I could not use
any other information than what was present in the value in order to determine its concept. In an
attempt to streamline the annotation process, I tried two different approaches for automatically
assigning labels, where I used a rule-based classifier to initiate the annotation process.

3.4 Rule-Based Annotation

I started annotating values in the set by having a rule-based classifier that I used to get sugges-
tions for values (samples) that fit a specific concept – based on the syntax. Figure 3.6 illustrates
the flow of the rule-based classifier: a string is given as input, the classification function f com-
putes the match ratio between the string and a concept (based on a syntactic rule), and returns
the concept with the highest ratio. The flowchart in Figure 3.6 can be seen as the internal process
of the Concept Classifier in Figure 3.1. The idea for implementing the rule-based classifier was
so that I was able to gather samples for each concept that I had defined – as manually iterating
through 200,000 values would require a lot of time and would not guarantee finding samples for
each concept, so that I would have enough samples to use machine learning for further improv-
ing the accuracy of each annotation. I defined a pattern for each concept, except for PROD,
FAC and EVT as they are difficult to capture using hand-written patterns (see Table 3.5). In
addition, I defined patterns for concepts that are not included in the final data set but had to be
removed from the data set due to privacy regulations (i.e., personal data such as phone numbers,
bank account information, personal identifiers, vehicle registration numbers, email addresses, and
person names). This method helped me obtain samples for each concept as I specified a concept
that the classifier should extract from the unprocessed samples (i.e., I used the classifier to show
me samples that had a highest match with a given pattern, e.g., organisation), where I chose a
concept with low samples in the accumulated data set of annotated samples. Although I did not
define patterns for PROD, FAC or EVT, the classifier returned samples that were annotated as a
concept with a weak pattern, but rather matched one of the three patterns (e.g., a lot of samples
matched the defined pattern for person names, but were mostly products). As a consequence,
I obtained samples of every concept as I knew about the limitations of having weak patterns, I
manually supervised each annotation and corrected the annotations when needed.

45

Label Regular Expression

TIME \s ∗ \d{1, 2} : \d{2} : {.2}\s∗

CARDINAL \s ∗ [-|−]?\s ∗ (\d+ [\s.,]∗) + [, .]?(\d+) ∗ \s∗

MONEY
\s ∗ [-|−]?\s ∗ ((kr|KR)\s ∗ [-|−]?\s ∗ (\d+ [\s.,]∗) + [, .]?(\d+)∗

|(\d+ [\s.,]∗) + [, .]?(\d+) ∗ \s ∗ (nok|NOK|euro|EURO|USD)){1}\s∗

DATETIME \s ∗ \d{1, 2}[/.−]\d{1, 2}[/.−]\d{2, 4}\s+ \d{1, 2} : \d{2} : \d{2}\s∗

DATE \s ∗ \d{1, 2}[/.−]\d{1, 2}[/.−]\d{2, 4}∗

ORG
\s ∗ (([\w−] + \s+){1, 2}(as|AS|A/S|ab|AB|KF |kf)

|([A-ZÆØÅa-zæøå] + \s+ kommune)){1}\s∗

LOC
\s ∗ (([\w−] + \s∗){1, 3}\s ∗ (vei|veien|veg|vegen|gate|gata

|gaten|vn|vg|gt)[, .−]?\s ∗ \d ∗ \s ∗ [A-ZÆØÅa-zæøå]?)?

PERCENT \s ∗ [-|−]?([\s.,] ∗ \d+) + ([, .]{1}\d+)?\s ∗%\s∗

QNT
\s ∗ [-|−]?\s ∗ (\d+ [\s.,]∗) + [, .]?(\d+) ∗ \s∗

(kg|g|stk|stykk|m|cm|dm|mm|l|dl|cl|ml|r|dager)\s∗

PHONE \s ∗ (\+ \s ∗ 47)?(\s ∗ \d{1}){8}\s∗

BANK \s ∗ (\d{4}[.\s] ∗ \d{2}[.\s] ∗ \d{5}|(NO|no){1}(\s ∗ \d{1}){13})∗

PERSON_ID \s ∗ [0− 3]{1}[\s.] ∗ \d{1}[\s.] ∗ [0− 1]{1}(\d{1}[\s.]∗){8}\s∗

VEHICLE_ID \s ∗ [A− Z]{2}\s ∗ [0− 9]{4, 5}\s∗

EMAIL \s ∗ ([\w.−]+){1}@{1}(\w + . ∗ −∗)1,\.\w{2, }\s∗

PERSON \s ∗ ([A-ZÆØÅ]{1}[A-ZÆØÅa-zæøå] + \s∗){2, }\s∗

Table 3.5: Rules in the form of regular expression (patterns) for concepts (labels). Labels in
bold were removed from final data set.

46

Definition 3.4.1 (Pattern scoring function) The score of a pattern is defined as the ratio
between the length of the sub-string of s that matches pattern p and the total length of s:

score(s, p) =
end(s, p)− start(s, p) + 1

length(s)
=

j − i+ 1

length(s)
(3.1)

where j is the last index and i is the first index of the sub-string si,j of s that matches the pattern
p.

Example 1. In the string in Figure 3.2, s = “04.01.2011 16:47:12”. Using the patterns defined
in Table 3.5, the DATE, TIME and DATETIME patterns have the following scores:

score(s,DATE) = 10−0+1
19 = 11

19 = 0.58

score(s,TIME) = 18−10+1
19 = 9

19 = 0.47

score(s,DATETIME) = 18−0+1
19 = 19

19 = 1.00

(3.2)

The scoring function enables us to set a probability for each pattern based on how much of the
string matches a given pattern. By having different patterns, we can use the computed score to
determine a label based on rules, e.g., in this example, s will be annotated as DATETIME.

While the rules for numeric-based concepts are strict (i.e., few syntactic differences between
values of same concept makes it feasible to write rules that capture most of the values), the rules
for string-based concepts (e.g., organisation, location, person name) are difficult to capture using
hand-written rules. Therefore, some of the patterns that I defined will overlap, i.e., the score is
equal for two or more patterns on the same input. For instance, the rule for organisation (defined
in Table 3.5) will match any string that contains one or two words followed by an abbreviation
of a company form (e.g., AS, KF) or a single word followed by “kommune”, while the rule for
person name requires two or more words that starts with an uppercase letter. As a consequence,
the scores of ORG and PERSON will be the same given the input “Organisation AS”.

score(“Organisation AS”, ORG) = score(“Organisation AS”, PERSON) (3.3)

In order to overcome this issue, I used the weighted scoring function (Definition 3.4.2) to give the
pattern for ORG higher precedence (as the rule for ORG is stricter than the rule for PERSON).
To give ORG higher precedence than PERSON, I set the static weight of PERSON to 0.9. The
default static weight that I assigned to the different patterns was 1.0, however, the static weight
of CARDINAL was also lowered to 0.9 as this pattern could overlap with PHONE, DATE, BANK
or PERSON_ID.

Definition 3.4.2 (Weighted pattern scoring function) The weighted scoring functions mul-
tiplies the pattern score with a static weight:

weighted(s, p, w) = score(s, p) · w (3.4)

Definition 3.4.3 (Text scoring function) The TEXT label is scored by the ratio between the
number of characters that do not occur in any patterns and the total length of s:

scoretext(s, P) =
length(s)− |{i | p ∈ P ∧ i ∈ [start(s, p) . . . end(s, p)]}|

length(s)
(3.5)

where P is a set of patterns.

47

x1

x2

xn

xt

x′1

x′2

x′n

x′t

f y.

x1 · w1

x2 · w2

xn · wn

xt · wt

Figure 3.7: Architecture of the rule-based classifier.

Example 2. To continue Example 1, let string s = “04.01.2011 16:47:12”. Given the set of
patterns P = {DATE, TIME, DATETIME}, then the score of the TEXT label is 0.0 for s:

scoretext(s, P) =
19− |{0, 1 . . . 18}|

19
=

19− 19

19
=

0

19
= 0.00 (3.6)

as all the characters of s are captured by a pattern in P .

The rule-based classifier scores a label based on the label’s defined pattern using the weighted
scoring function (Definition 3.4.2), where the weight is a static weight assigned to the label, and
classifies the input as the label with highest score. First, the input string is featurized to a
vector x of size n+ 1, where n is the number of patterns, xi is the score between the input and
pattern referenced by i, and xn+1 is the text score of the input string. Then, each feature xi is
weighted by a static weight assigned to feature at index i, resulting in a new vector x′. Finally,
the vector x′ is passed into a function f which returns the index of the feature with the largest
value, i.e., if x′i is the largest value in x′, then f(x′) = i. The classifier’s architecture resembles
the architecture of a feed-forward neural network – although, not fully connected, as seen in
Figure 3.7; however, the classifier does not learn the weights based on sample data. As I had
collected enough annotated samples using the rule-based classifier, I advanced the annotation
process by using a classification algorithm that has the ability to learn to classify based on sample
data, with the objective of having more accurate annotation suggestions. I chose the Naïve Bayes
classifier, as the algorithm does not require a lot of fine-tuning of parameters in the same scale
as neural networks.

3.5 Multinomial Naïve Bayes Annotation

I trained a multinomial naïve Bayes classifier (MNB) to classify text as one of the predefined
concepts using data gathered with the rule-based classifier (RB). The flow of the classification
with the MNB is similar to the flow in the RB, where the difference (besides the function
itself) is that the string is converted to a vector with numerical values and used as input in the
classification function (see Figure 3.8). As one objective of this thesis is to have a new annotated
data set and see how different feature representations for a text classification task affects the
results, I decided to use a MNB as it is a good baseline for text classification (e.g., as it models
the distribution of the data, see Section 2.6.3, it is deterministic given that the data does not
change). For the RB, the input was not preprocessed as I used some of the raw syntax in the
patterns to determine matches, e.g., I did not use case-folding as uppercase letters are included
in the defined patterns, and the raw samples were used as input. However, in order to use the
MNB, I needed to tokenize the samples so that they would have a numerical representation.

The standard approach for feature representation for MNB text classification, is to represent
each feature by a unique token (also called term), where the MNB has a vocabulary which

48

Figure 3.8: Flow of the multinomial naïve Bayes classifier.

contains each unique token that exists in the training data (i.e., bag-of-words representation, see
Section 2.2). The MNB then learns the conditional probability for each token (see Section 2.6.3),
where the probability is the likelihood of a token given a class (label). In order to tokenize the
samples, I used a character n-gram tokenizer (Algorithm 1), where I set n = 4.

Algorithm 1: Character n-gram tokenizer
Input: String s to tokenize and max character sequence length n
Precondition: length(s) > 0
L ←− empty list; i ←− 0;
do

L.append(s[i:min(i + n, length(s)]);
i ←− i + 1;

while length(s) <= i + n;
Output: L

The reason for why I used character n-grams as tokens was mostly due to the data. As the
data have been created by humans, some samples in the data set contain spelling errors. For
instance, the sample “Protektor” (annotated as ORG in the data set) is most likely “Protector”
with wrong spelling. By using character n-grams, the features are sub-word information and,
therefore, both “Protektor” and “Protector” will share features (depending on n) – instead of
being individual features. However, the value of n needed to be set so that there was some
balance between capturing similar features in text and avoid that the majority of numerical
samples were individual features. By setting n = 4, the classifier was able to find similarities in
text and numerical samples of similar concept, i.e., numeric values with shared suffix or prefix
(see Equation 3.7).

ngrams(“Protektor”) ∩ ngrams(“Protector”) = {“Prot”, “rote”}
ngrams(“235,20 NOK”) ∩ ngrams(“121,50 NOK”) = {“0 NO”, “ NOK”}

ngrams(“100 cm”) ∩ ngrams(“120 cm”) = {“0 cm”}
(3.7)

Although the character n-grams capture similarities between similar concepts (i.e., classes),
there was an issue where there were similarities across different concepts. Specifically, some
samples annotated as PROD overlap with, e.g., samples that are annotated as QNT. For instance,
both the samples “100 cm” (QNT) and “3 år” (QNT) are found as part of other samples that
are annotated as PROD :

“HP 3 år neste virkedag Modular Smart Array 2000-array HW-stø”
“HILTON speil, 60x100 cm. Sølv”

and as a result, I observed that the MNB eventually did not annotate any unprocessed samples
as QNT. The MNB provided more accurate annotations – compared to the RB (including for
the concepts PROD, EVT and FAC, which are not covered by defined patterns), however, the
number of samples annotated with rare concepts (e.g., EVT, QNT, FAC) was reduced to zero
after a few iterations. Therefore, it seems that the distribution of the data (i.e., 35.12 % of the
samples are annotated as TIME while 0.08 % are EVT) and overlap of features across concepts
are a major limitation of the MNB for this data set.

49

50

Chapter 4

Classification of Concepts

In this chapter, I present the different methods that I used for classifying the concept of the
annotated samples that I gathered (see Chapter 3). First, I provide an overview of the tools that
I used, where two different approaches for feature representation of textual values are presented
(Section 4.1). In order to test the two different approaches for feature representation, I used a
k -nearest neighbors (k -NN) classifier (see Section 2.6.2 for explanation of the algorithm), where
the class of a given input is selected based on the classes of its nearest neighbors. This allowed me
to see whether the feature representations grouped similar concepts close to each other in vector
space. I also included a preprocessing stage where the raw samples were turned into normalized
strings (explained in Section 4.2), where the aim was to be able to see how preprocessing the
samples affected the different feature representations. The tqdm package (package for tracking
progress of iterations in Python) indicated that classifying each test sample (23,998 number of
samples) using k -NN would take more than 14 hours. Therefore, by sacrificing accuracy for
efficiency, I implemented a naïve approach for representing each individual concept by a single
instance (see Section 4.3), thereby reducing the number of comparisons per test sample down
from 95,965 (samples in training set) to 13 (number of concepts). However, as I later found out
that the dot product between normalized vectors gives the same result as the cosine similarity
(used as distance metric between the vectors, see Section 2.5.3 for definition), I was able to
reduce the runtime of classifying the test samples using k -NN down to roughly 2 hours and 40
minutes. The results of both k -NN on full test set and on single instance per concept (with
the two different methods for feature representation) is given later in Chapter 5, where they are
compared to the multinomial naïve Bayes baseline classifier from Chapter 3.

4.1 Tools

4.1.1 Programming Language

I used the Python programming language (version 3.7) for the experiments regarding classific-
ation of concepts. Although I used Java for processing the spreadsheet (Section 3.2), I decided
to use Python in the experiments where I utilized the data as there exist several packages for
machine learning (ML). Popular packages for ML, such as PyTorch1, are implemented in the C
programming language (due to performance) and are provided as wrappers for Python (having
a more readable code syntax than C). Using such packages decreases the development and setup
time without compromising the performance to a large extent. The main dependencies for the
experiments are (1) tqdm (for tracking the progress of iterations), (2) regex (package for using
regular expressions to process strings; used in the rule-based classifier and for preprocessing raw
samples), (3) FastText (see Section 4.1.2), (4) PyTorch (see Section 4.1.4), and (5) Sentence

1PyTorch: https://pytorch.org/

51

https://pytorch.org/

Skip-gram CBOW

“gåten” “Megi”

“gåte” “EUR”

“gåtene” “1.757”

“gåter” “SEK”

“gåtefull” “85,50”

“gåte»” “USD”

“gåtefulle” “MNOK”

“gåtefullt” “JPY”

“mordmysterium” “Likkavæl”

“mysteriefortelling” “435,00”

Table 4.1: Differences between the skip-gram and CBOW model by FastText: top 10 nearest
words of the word “NOK” (found by the get nearest neighbors-function).

Transformers (see Section 4.1.3). The packages were installed using the pip command from
Python’s package installer.2

4.1.2 FastText: Pre-Trained Word Embeddings

/path/to/project > pip install fasttext ==0.9.2

Listing 4.1: Installation of FastText dependency.

I used the FastText package to obtain pre-trained word embeddings for the Norwegian lan-
guage. FastText provides two different word embedding models: (a) continuous skip-gram trained
on character n-grams from Wikipedia3 data [1], and (b) continuous bag-of-words (CBOW)
trained on character n-grams from both Wikipedia and Common Crawl4 (CC) data [2]. Both
models embed words as a 300-dimensional vector, constructed using the trained embeddings for
character n-grams (i.e., a word is considered as a bag-of-character n-grams). In contrast to other
word embedding models, FastText uses n-grams to obtain sub-word information, causing the
models to be more resilient against spelling errors and causes words to rarely be out-of-vocabulary
(i.e., if a word is out-of-vocabulary in a word embedding model, then: embedding(word) = ~0).

As the CBOW model uses CC data in addition to Wikipedia data, there are naturally some
differences compared to the skip gram model. Table 4.1 shows the top ten nearest neighbors of
the word “NOK”, which is the currency symbol for Norwegian kroner. As the concept of “NOK”
is money, ideally, the top ten nearest should also be related to the concept of money. As seen in
Table 4.1, the CBOW model returns other currency symbols (i.e., “EUR”, “SEK”, “USD”, “JPY”)
while the skip-gram returns different forms of the word Norwegian “gåte” (English: “riddle”).
Although the CBOW model might seem better for the task of classifying concepts, I included
both models in the experiment in order to compare the different models with the composition
method for obtaining numerical representation of text containing several words (i.e., sentence
embeddings – see Section 2.4.2).

2Python package installer: https://pypi.org/project/pip/
3https://www.wikipedia.org/
4https://commoncrawl.org/

52

https://pypi.org/project/pip/
https://www.wikipedia.org/
https://commoncrawl.org/

I used FastText to obtain sentence embeddings by the composition method. FastText provide
the function get sentence vector, which returns a sentence embedding based on the embeddings
of the sentence’s words. The function finds the sentence embedding by; (1) tokenizing the
sentence by whitespace (e.g., “Brannskade Toten Tre 23.06.09” is tokenized to a list of the words
“Brannskade”, “Toten”, “Tre” and “23.06.09”), (2) finding the word embedding for each token, and
(3) computing the average vector of the normalized word embeddings. This results in composed
embeddings (using mean as pooling strategy) for sentences. For the distributed method, I used
sentence embeddings that have been pre-trained by Sentence-BERT.

4.1.3 Sentence Transformers

/path/to/project > pip install sentence -transformers ==1.1.0

Listing 4.2: Installation of Sentence Transformers dependency.

The Sentence Transformers (ST) package for Python includes pre-trained sentence embed-
dings, i.e., it provides sentence embeddings using the distributed method. While the composition
method aggregates the embeddings of smaller components to represent larger data (e.g., aggreg-
ating word embeddings to sentence embeddings), the distributed method has the objective of
training embeddings (see Section 2.4.2). The model from ST that I used (paraphrase-xlm-r-
multilingual-v1) is trained for multiple language, including Norwegian.

For classification using the sentence embeddings from ST, I used the semantic search function
(from the util module of ST) to select the top five nearest samples (using cosine similarity as
distance metric) from the training set. The predicted class is then the class with most samples
among the top five nearest, i.e., the classification is k -nearest neighbors, where k = 5. I set k = 5
because the EVT concept only has 80 training samples (see Table 3.2) and I expect this concept
to have the most spread samples in vector space, so that requiring too many samples to be close
would lead to no samples being classified as EVT during test runs. Also, k needed to be large
enough to tolerate that some of the nearest neighbors were annotated as a different concept than
the expected concept.

4.1.4 PyTorch: Open-Source Machine Learning Framework

/path/to/project > pip install torch ==1.7.1+ cpu

Listing 4.3: Installation of PyTorch dependency.

In addition to functionality for building machine learning models, PyTorch provides functions
for different vector (i.e., tensor) operations. As PyTorch is implemented in C, the performance is
expected to be significantly better than a pure Python implementation. Therefore, I used PyT-
orch’s functions for computing the cosine similarities and dot product between vectors. Although
packages such as numpy also provide functionality for vector operations and are implemented in
C, I used PyTorch as it has the ability switch between CPU and GPU computation. However,
I was not able to conduct the experiments on a GPU (all experiments was done locally with a
Intel Core i7-8565U CPU) but there is a possibility to reproduce the experiments using a GPU
instead without a need for making significant changes to the implementations.

4.2 Preprocessing

I wanted to see how preprocessing the cell values of insurance-related-claim spreadsheets affected
the resulting accuracy of concept classification. The functions that I used were functions that I
had implemented in the early stages of this thesis, where the functions that were used are for

53

canonicalizing strings (used during the creation of the data set), tokenization, normalizing (on
a token level), and a preprocessing function used to normalize raw strings. As the objective
was to see the effect of preprocessing the strings before getting the embedding of the string, I
implemented them rather simple but so that the effect would be more visible.

The first function, canonicalize, is used to convert a raw string into a string where consecutive
whitespace have been reduced to a single whitespace, and preceding and trailing whitespace
have been removed (see Listing 4.4). As the function only removes unnecessary whitespace (i.e.,
preceding and trailing whitespace, and consecutive whitespace does not affect the semantics),
the function was first used in the data collection phase in order to remove duplicated strings that
only differed by whitespace. Therefore, all samples have been processed by this function.

def canonicalize(string: str) -> str:
return regex.sub(r"\s+", " ", string).strip()

def tokenize(string: str) -> List[str]:
s = regex.sub(r"(\d+)", r" \1 ", string)
s = "".join([c if c.isalpha () or c.isdigit ()

else f" {c} "
for c in s])

return regex.findall(r"(\S+)", s)

def normalize(token: str) -> str:
return token.lower()

def preprocess(string: str) -> str:
return " ".join([normalize(t)

for t in tokenize(string)])
Listing 4.4: Functions used for preprocessing strings.

To find the effect of preprocessing the raw strings, I used the tokenize and normalize func-
tions to preprocess the raw strings (using the preprocess function). First, the tokenize function
separates digits from special characters and alphabetical characters by surrounding (consecut-
ive) digits by whitespace, e.g., “12/5/13” is converted to the string “ 12 / 5 / 13 ”. Next, the
function separates special characters from digits and alphabetical characters, e.g., “VEDR.:” is
converted to “VEDR . : ”. Although the temporary string can contain consecutive, preceding
and/or trailing whitespace after the two first steps, it does not affect the result, as the function
returns a list of non-whitespace strings, e.g., tokenize(“12/5/13”) = [“12”, “/”, “5”, “/”, “13”] and
tokenize(“VEDR.:”) = [“VEDR”, “.”, “:”]. The preprocess function is used to normalize a raw
string, where it joins normalized (case-folded) tokens by a single whitespace (used whitespace as
both FastText and ST tokenize by whitespace). This function adds a new step in the concept
classification flow (see Figure 4.1). For instance, the string “12/5/13” is normalized to “12 / 5 /
13”. However, because the preprocessing applies case folding, currency codes will be normalized
to lowercase, e.g., preprocess(“* 1.000 NOK”) = “* 1 . 000 nok”. While Table 4.1 showed that
the FastText CBOW model is able to group currency codes, Table 4.2 shows that the mean-
ing of “nok” is completely different from “NOK” in both models. The Norwegian word “nok” is
translated to “enough” in English, and as Table 4.2 shows, both models group the word “nok”
with other adverb words. As such, I expect that preprocessing the raw strings will lead to lower
accuracy for concepts that have few, but meaningful, keywords that are ambiguous – when using
k -nearest neighbors classification on sentence embeddings.

54

Skip-gram CBOW

“så” “likevel”

“såpass” “ikke”

“tilstrekkelig” “allikevel”

“neppe” “heller”

“ikke” “neppe”

“likevel»” “vel”

“men” “men”

“alikevel” “kanskje”

“tilstrekkelig»” “bare”

“riktignok” “sikkert”

Table 4.2: Differences between the skip-gram and CBOW model by FastText: top 10 nearest
words of the Norwegian word “nok” (found by the get nearest neighbors-function).

Figure 4.1: Concept classification flow with option to normalize strings.

55

4.3 Implementation of Indexed Concepts

As I mentioned earlier, the tqdm package indicated that running all 23,998 test samples through
a k -nearest neighbors (k -NN) classifier would take over 14 hours to complete. Therefore, I tried
to implement a method where I index the concept, so that each concept is represented by a
single instance – effectively reducing the number of instances to compare against down from
95,965 to 13 (number of concepts). The ConceptIndex -class is initiated with a FastText model
(vocabulary used to obtain word embeddings) and samples (i.e., list of strings that belong to the
index’s concept) – see Listing 4.5. The index value is set by aggregating each sentence embedding
of the samples – using a pooling strategy (current implementation only supports using the mean
embedding), which is then used by the similarity-function (returns the cosine similarity between
the input and index).

class ConceptIndex:
def __init__(self , vocabulary: FastText , samples: List[str]):

self.__vocabulary = vocabulary
self.__index = self.__build(samples)

def __build(self , strings: List[str]) -> torch.Tensor:
return torch.mean(torch.stack([self.string2vec(s)

for s in strings]), dim=0)

def string2vec(self , string: str) -> torch.Tensor:
return torch.tensor(self.__vocabulary

.get_sentence_vector(string))

def similarity(self , string: str) -> float:
return torch.cosine_similarity(self.string2vec(string),

self.__index , dim =0). item()

Listing 4.5: Concept-index class – constructed by the embeddings of its members.

In order to use k -NN with the indices, I implemented a class that holds one index per
concept (see Listing 4.6). The MultiIndex class builds an index per concept (samples are given
by a dictionary, where the key is the label, i.e., concept, and the values are lists of samples)
and has a function for computing the similarities between an input and each concept index. The
predict function is used for classification as it returns the concept of the index with highest cosine
similarity to the input string (i.e., 1-NN classification).

class MultiIndex:
def __init__(self , vocabulary: FastText ,

samples: Dict[str , List[str]]):
self.__vocabulary = vocabulary
self.__indices = {k: Index(self.__vocabulary ,

samples[k])
for k in samples}

def similarities(self , string: str) -> Dict[str , float]:
return {k: self.__indices[k]. similarity(string)

for k in self.__indices}

def predict(self , string: str) -> str:

56

s = self.similarities(string)
return max(s, key=lambda x: s[x])

Listing 4.6: Class for constructing a multi-index.

There are some options that the MultiIndex supports, such as which FastText model to use
and whether to preprocess the strings (done as a separate stage before using the MultiIndex).
In my experiments, I tested both the skip-gram and CBOW model from FastText (using the
embeddings for Norwegian), and I also tested to preprocess the strings before creating the indices
and predicting test samples. Although the current implementation does not support toggling
the pooling strategy (i.e., only the mean strategy is supported), a future improvement can be
to add support for, e.g., sum and max pooling strategy (I would expect sum pooling strategy
to have a poor performance, as the number of samples varies between the concepts, but max
pooling strategy might separate the concepts more clearly). The results of the experiments that
I conducted are provided in Chapter 5.

57

58

Chapter 5

Results

In this chapter, I present the results of the data set and the experiments where I used the
data set to classify concepts. In Section 5.1, I show some observations of the data set, where
the main issue was data ambiguity and not having clearly defined the available concepts before
starting to annotate samples – causing some lower quality of the annotations. After showing
some issues with the data, I present the results of using the annotations in a classification task,
where I used two different supervised learning algorithms: multinomial naïve Bayes classifier
(baseline) and k -nearest neighbors classifier (Section 5.2). In addition, I provide results for using
a single averaged embedding to represent a single concept, where I also tried the method with
few training samples (number of samples ranging from 1 to 10) and compare it to the baseline
classifier. Lastly, I provide an example of an annotated spreadsheet in Section 5.3 and discuss
how a spreadsheet enrichment pipeline (consisting of the methods that I provide) can be used in
an insurance perspective.

I measured the accuracy of the classification models using F1-score (see Definition 5.0.3),
where the total accuracy of a model is given as the macro average F1-score of each concept. I
used the F1-score because using precision (Definition 5.0.1) as accuracy alone gives a skewed view
of a model’s performance. For instance, I found that the rule-based classifier had a precision
of 100 % for the concept DATETIME, however, the F1-score was 0.29 %. This was due to
the model classifying only two samples as DATETIME, which were correctly classified (i.e.,
true positive = 2, false positive = 0), while it classified 15 samples as DATE and 1,378 as
CARDINAL – giving a high number of false negatives (low recall).

Definition 5.0.1 (Precision) Ratio between the number of correct classifications and total num-
ber of classifications with that class:

precision =
true positive

true positive + false positive
(5.1)

Definition 5.0.2 (Recall) Ratio between the number of correct classifications and total number
of samples belonging to the class:

recall =
true positive

true positive + false negative
(5.2)

Definition 5.0.3 (F1-score) Harmonic mean of precision (Definition 5.0.1) and recall (Defin-
ition 5.0.2):

F1 = 2 · precision · recall
precision + recall

(5.3)

5.1 Data

The data set contains samples that are cell strings from insurance-claim-related spreadsheets and
are annotated with a concept, i.e., what the cell represent in the real world. The objective for

59

creating such a data set was that I thought having a method for classifying the concept would
possibly improve the process of extracting information from spreadsheets (which are used in the
insurance domain in day-to-day business operations). However, using classification of concepts
for information extraction (IE) would require to know more concepts.

With only 13 concepts, the data set is quite limited for the insurance domain. Although
six additional concepts were dropped from the data set, due to privacy issues, there are more
concepts that should have their own annotation. Concepts that I have noticed in several samples
are invoice and action.

For instance, both (a) “SYKEHUSPARTNER HF” and (b) “Fakt: 10177079 Lev: SYKE-
HUSPARTNER HF L-Beskr:” are annotated as organisation (ORG). While (a) is a legal com-
pany name (i.e., there are no other information than the official company name), (b) contains
information regarding a specific invoice. I annotated (b) as ORG because a company name can
be extracted from the text; however, it would be more accurate to annotate it as invoice, where
multiple concepts are contained (e.g., invoice number, “Fakt: 10177079”, and supplier name,
“Lev: SYKEHUSPARTNER HF”). Other samples that should have been annotated as invoice,
e.g., “Faktura Polygon (fakturanr. 1008367)” and “Faktura BBE Takst - fakturanr. 117185”, were
also annotated as ORG. As I tried to annotate each sample with a single concept, I encountered
ambiguous samples frequently – which made the annotation process more challenging.

Data ambiguity occurred frequently during the annotation process. As shown above, when
the samples actually were invoices, I annotated them as ORG. The reason for why I annotated
them as ORG is that I prioritized annotating with a concept that indicates what the sample could
be searched against in order to enrich the data (given that this method is implemented to extract
information from spreadsheets). As there are company registers that offer company name search,
I annotated most invoices as ORG (except invoices that only contained a reference number, e.g.,
“Deres faktura 11447 (vår ref 43228)”, which is annotated as TEXT) as the company name can
be looked up in external registers. I encountered the same issue with samples that described
an event (EVT), where I did not introduce the concept until I had seen multiple samples that
needed its own concept and, eventually, I defined EVT to contain information such as, what,
where, who and/or when. However, as I had annotated some samples before creating the EVT
label and had clear guidelines for the label, there are some annotated samples that should be
corrected. For instance, (a) “Asfaltering v/Høgmo barnehage - utføres sommer 2010” and (b)
“Rælingen kommune - skade Rud skole den 17. mars 2010” are both annotated as facilities
(FAC : (a) “Høgmo barnehage”, (b) “Rud skole”). I assume these two samples were annotated
before I started to use EVT – as both samples contain a facility, date, and what. Additionally,
(b) contains an ORG (“Rælingen kommune” – municipality in Norway) but was annotated as
FAC because I prioritized locatable text (i.e., FAC and LOC) over party-specific text, such as
organisation names. However, despite the concepts either of those contained, they both should
be annotated as EVT. The ambiguity of the EVT label is best illustrated by some samples that
seem to have been annotated before I had defined guidelines.

The sample “Flaum Sikring av verdiar” is annotated as EVT while a similar sample, “Flaum
Sikring av teknisk utstyr”, is annotated as TEXT. Both samples describe an action related to
inventory (valuables: “verdiar”, and technical equipment: “teknisk utstyr”). However, there is a
subtle ambiguity which leads to both samples having two possible interpretations: (1) protection
against further damage of inventory after a flood (“Flaum”), or (2) spelling error where “Flaum
Sikring” should be one word and describe protection specifically against flood damage (i.e., as a
preemptive measure). Given that the data is from insurance claims, interpretation (1) is probably
the correct, in which case both samples should have been annotated as action (or something that
indicates that the samples are applicable to the insurance event and affects the total damage).
As the guideline I used was to annotate as EVT if two or more of what, where, who or when
was present in the sample, having separate concepts for damage types and actions would have
made it more easy to distinguish samples that are EVT.

60

Method Macro avg. F1 Numeric String

Rule-based 52.90% 73.54% 28.83%

Naïve Bayes (character 3-gram, raw) 79.08% 86.11% 70.88%

Naïve Bayes (character 3-gram, normalized) 79.11% 87.31% 69.55%

Naïve Bayes (character 4-gram, raw) 78.08% 83.67% 71.55%

Naïve Bayes (character 4-gram, normalized) 75.76% 80.07% 70.72%

Naïve Bayes (character 5-gram, raw) 71.34% 70.07% 72.83%

Naïve Bayes (character 5-gram, normalized) 74.77% 77.14% 72.01%

5-NN (FastText CBOW, raw) 85.19% 93.77% 75.18%

5-NN (FastText CBOW, normalized) 87.09% 96.97% 75.57%

5-NN (FastText Skip-gram, raw) 79.57% 90.26% 67.11%

5-NN (FastText Skip-gram, normalized) 82.55% 91.74% 71.83%

5-NN (Sentence-BERT, raw) 82.26% 95.13% 67.25%

5-NN (Sentence-BERT, normalized) 80.76% 93.68% 65.67%

Multi-Index (FastText CBOW, raw) 53.37% 58.61% 47.27%

Multi-Index (FastText CBOW, normalized) 52.92% 61.17% 43.30%

Multi-Index (FastText Skip-gram, raw) 34.83% 39.01% 29.94%

Multi-Index (FastText Skip-gram, normalized) 64.78% 77.19% 50.30%

Table 5.1: Results of different methods; best score in bold, Numeric shows the accuracy of
numeric concepts (QNT, DATE, DATETIME, PERCENT, MONEY, TIME, CARDINAL) and
String shows the accuracy of string concepts (ORG, TEXT, PROD, EVT, FAC, LOC).

5.2 Classification

Despite a somewhat low quality in the annotated data, the k -nearest neighbors classifier (k -NN)
– using the full training set during classification, was able to achieve a high accuracy and had a
higher accuracy than the multinomial naïve Bayes classifier (MNB), which I used as a baseline.
In Table 5.1, the results of the different methods are shown. I have used four different models
for the classification task: rule-based classifier (Section 5.2.1), multinomial naïve Bayes classifier
(Section 5.2.2), k -nearest neighbors (Section 5.2.3), and a multi index (Section 5.2.4). As the
multi index achieved a surprisingly high accuracy (considering that each concept was represented
by the mean embedding of all its samples), I experimented by using very few samples for training
(Section 5.2.5).

The accuracy on a concept level is provided in Table 5.2, where each model is represented its
best parameter setting (i.e., parameters that led to highest overall accuracy). Further, Figure 5.1
shows the confusion matrices of the models in Table 5.2. A confusion matrix illustrates the
precision and recall of a model, where in Figure 5.1, the predicted concept is shown on the x-axis
and the actual (gold) concept is shown on the y-axis. If the accuracy is 100 %, a confusion
matrix will show a diagonal line across the matrix.

61

RB MNB(n=3, norm) 5-NN(CBOW, norm) MI(skip-gram, norm)

TIME 99.85% 99.85% 99.99% 98.11%

CARDINAL 80.11% 99.03% 99.15% 84.61%

PROD 0.00% 90.73% 94.04% 80.92%

MONEY 97.61% 98.51% 97.93% 86.93%

DATETIME 0.29% 93.49% 99.89% 83.40%

DATE 92.45% 91.05% 98.52% 69.52%

TEXT 48.20% 72.51% 82.64% 48.38%

ORG 66.88% 77.29% 82.32% 57.79%

LOC 57.89% 83.71% 86.02% 60.09%

PERCENT 98.38% 86.65% 98.35% 84.23%

FAC 0.00% 74.30% 83.40% 49.77%

QNT 46.09% 42.59% 84.89% 34.06%

EVT 0.00% 18.75% 25.00% 4.84%

Macro Avg. 52.90% 79.11% 87.09% 64.78%

Table 5.2: F1-scores on a concept-level of different models with optimal parameters (best score
in bold): rule-based (RB), multinomial naïve Bayes (MNB), 5-nearest neighbors (5-NN), multi-
index (MI).

62

Figure 5.1: Confusion matrices of models with optimal parameters.

63

5.2.1 Rule-Based Classifier

I implemented the rule-based classifier (RB) early in the experiment to gather samples for most of
the concepts in order to have enough training data to use machine learning for further progressing
the annotation process (see Section 3.4). As I did not have any parameters to adjust (other than
the rules themselves or the static weights – which depended on the rules), the RB has only one
measured accuracy.

The RB achieved an accuracy of 52.90%, where the numeric concepts have an accuracy of
73.54 % and string concepts have an accuracy of 28.83%. It was able to barely achieve the highest
accuracy for the concept PERCENT (98.38%), but both DATETIME (0.29%; Figure 5.1 shows
that most DATETIME samples are classified as CARDINAL) and QNT (46.09%) seem to have
decreased the accuracy of numeric concepts. The RB generally performs bad on string concepts,
however, if we exclude the concepts that the RB does not support (i.e., PROD, FAC, EVT) the
accuracy of string concepts is 57.66% (macro average of TEXT, ORG, LOC) – which might not
seem that bad. Although the RB performs better than just selecting the most common concept
(i.e., selecting TIME for all samples given as input would yield an accuracy of 35.12%), other
machine-learning-based methods does provide a significant increase in accuracy.

5.2.2 Multinomial Naïve Bayes Classifier

In Section 3.5, I explain how I used the multinomial naïve Bayes classifier (MNB) in an attempt
to streamline the annotation process. For the MNB that I used in the annotation proccess, I
used character n-grams, where n = 4, as features and used the raw input (i.e., the input was not
normalized). In Table 5.1, we see that the MNB with those parameters achieved an accuracy
of 78.08%. However, for the purpose of actual classification, I experimented with increasing
and decreasing n by one, and also using normalized samples (see Section 4.2 for details on the
normalizing) instead of raw samples.

Again, looking at Table 5.1, we see that the MNB performs best with character 3-grams and
normalized samples (marginal difference between raw and normalized samples). However, quite
interestingly, we see that when n increases, the accuracy for numeric concepts decreases while
the accuracy for string concepts increases.

As the MNB models the data distribution (in combination with a bag-of-words feature repres-
entation), it has some obvious issues regarding the less-likely concepts EVT (0.08% of the data
set) and QNT (0.29%). Looking at the confusion matrix in Figure 5.1, it is visible that QNT
samples are often classified as PERCENT, MONEY or PROD. For PERCENT and MONEY, the
reason is most likely due to the digits in the test samples for QNT having a higher probability in
the aforementioned concepts, while also being more probable concepts with prior probabilities of
1.01% and 6.06%, respectively. For PROD, it is possible that a QNT sample completely overlaps
as some PROD samples may contain measurements for the product, e.g., “HILTON speil, 60x100
cm. Sølv” (PROD) contains “100 cm” (QNT). As the PROD concept has a prior probabilitiy of
10.01% (see Table 3.2), it is more likely that “100 cm” belongs to PROD (according to the data
distribution). Further, we can see that EVT samples are classified as either DATE or TEXT
more often than they are classified correctly. However, as I had some issues annotating samples
as EVT (see Section 5.1), I assume that the incorrect classification of EVT samples are more
due to low quality of the annotated samples – caused by human-error, which led to poor data
distribution of samples related to EVT.

Although the issue highlights the need for reviewing the data set (to ensure a higher quality),
I also used k -nearest neighbors for classification, where I used different feature representations
of text that have some notion of the semantics (in contrast to bag-of-words which only considers
the syntax).

64

5.2.3 k-Nearest Neighbors

I used k -nearest neighbors (k -NN) for classifying concepts based on sentence embeddings. As
k -NN is cluster-based, in the sense that it uses data points in vector space to determine some
distance between points, my idea was that I would be able to determine which method for
obtaining sentence embedding (i.e., either composition or distributed method – see Section 2.4.2)
provided the best encoded semantics w.r.t. text related to insurance claims. Considering that
EVT only has 80 training samples, I set k relatively low (k = 5) in order to have a balance
between required number of samples and tolerated number of incorrect samples in the proximity
of the input. Table 5.1 shows that k -NN achieves better results than the baseline classifier
(MNB).

Based on the accuracy reported in Table 5.1, sentence embeddings obtained by the com-
position method (specifically, using word embeddings trained with a continuous bag-of-words
by FastText) provide more semantic similarities than sentence embeddings obtained using the
distributed method (embeddings trained with Sentence-BERT) when used on cell values from
spreadsheets. I think the reason for why the composition method performs better for this partic-
ular classification task, is that cell values in spreadsheets can be considered as bag-of-keywords,
i.e., very few samples are grammatically correct sentences and they are more dependant on hav-
ing a sound representation of each individual word (as one word can change what concept the
sample belongs to).

In addition to choosing k -NN for its capability of grouping similar samples, I chose this al-
gorithm as it provides great support for adding and removing classes. I only used a limited
number of concepts, however, the possible concepts present in insurance data is vast – meaning
that the possible classes for classification of concepts will increase over time (e.g., upon discov-
ery of a new concept or when replacing a concept for several more fine-grained concepts). For
instance, a neural network would require both architectural modification (adding a new neur-
on/node in the output layer) and re-training the model, while with k -NN, adding a new class
is as simple as adding a new annotated sample. However, this simplicity of k -NN comes at the
expense of complexity during classification of a given datum.

The k -NN has a classification complexity of O(n), where n is the number of training samples.
As I mentioned in Chapter 4, using the cosine similarity function as distance metric, the estimated
runtime was over 14 hours. While using the dot product of normalized vectors instead of cosine
similarity reduced the runtime significantly, it took a long time to iterate through all 23,998 test
samples (roughly 2 hours and 50 minutes to iterate all test samples using FastText embeddings,
while Sentence-BERT had a build time of 20 minutes and iterated all test samples in nearly 1
hour and 30 minutes). To test how the k -NN would perform when having k = 1 and where each
training sample is an aggregation of a concept’s training samples, I implemented the multi index
(see Section 4.3).

5.2.4 Multi Index

Interestingly, the multi index (MI; described in Section 4.3) achieved an accuracy of 64.78%, using
word embeddings trained with skip-gram and normalizing the samples, which is significantly
higher than the RB. I implemented the MI in order to reduce the number of samples to compare
during classification and the evaluation time of the test set was done in just above 20 seconds (see
Figure 5.2). However, the MI computes the cosine similarity and not the dot product between
normalized vectors, and given that computing the dot product made the k -NN at least five times
faster, the implementation of MI can potentially be improved to complete the evaluation as quick
as the MNB.

Although the accuracy of MI is not nearly as high as when using all available training samples
with k -NN, it does seem to have made the RB unnecessary to develop. In contrast to the RB,
the development time for the MI was low as it is based on mathematical functions and not

65

RB MNB MI
0

5

10

15

20

25

Model

Se
co
nd

s

Training
Evaluation

Figure 5.2: Training time and evaluation time for the rule-based classifier (RB), multinomial
naïve Bayes classifer (MNB; n=4, raw), and multi index (MI; skip-gram, normalized).

hand-written rules. Based on Occam’s razor, the MI is a better solution as the RB has a lot of
assumptions (for instance, assumes that text ending with the keyword “AS” is an organisation
name) while MI only has the assumption that the samples are correctly annotated. As the MI
reached 64.78% using 95,965 training samples, I investigated how it would perform given only
one training sample per concept – because if the required number of training samples is high,
then the RB may be more efficient to use.

5.2.5 Single-Instance Training

In order to test how well the MI performs with few training samples, I created ten training sets
that only contained one randomly selected sample per concept. As the RB is rather static and
not trained, I compared the MI trained with single instances with the MNB trained on the same
data. Both models were tested on the full test set, where the MI had an average accuracy of
31.70% across the training sets and the MNB achieved 16.03% on average (see Table 5.3).

Further, Table 5.4 shows the accuracy of the models given a training set consisting of 2, 4
and 8 (from Table 5.3) combined. Giving two more samples per concept increases the accuracy
of MI to 40.71% and MNB to 23.75% – giving a higher increase to the MI model. However, as
40.71% is lower than the RB, I tried to combine all ten training set, so that each concept had
ten samples. As the results in Table 5.5 shows, having ten samples per concept leads to the MI
having an accuracy on par with the RB, which are 51.30 % and 52.90%, respectively. Given
that the MI only requires ten samples per concept, it would have been easier to use the MI –
instead of the RB, early in the annotation process. Another observation from Table 5.5 is that
the increase in accuracy is higher for the MNB than for the MI, which indicates that it might
not require many samples until the accuracy of the MNB converges with the accuracy of the MI.

I did not do any further experiments on how many samples would be required before the
MNB converges with the MI, but the findings of how many samples are required before the
MI converges with the RB are quite interesting. It shows that a concept can be represented
numerically by the average word embedding of just ten samples and produce results on par with
rules that aim at capturing distinct features. In Chapter 6, I provide some ideas for how to
further improve the data set, word embeddings and usability of a k -NN for classification.

66

Training Set MI(skip-gram, norm) MNB(n=4, raw) Difference (MI - MNB)

1 37.20% 19.79% 17.42%

2 23.19% 18.92% 5.28%

3 34.80% 15.71% 19.09%

4 33.23% 10.93% 22.30%

5 30.55% 13.13% 17.41%

6 36.00% 17.74% 18.25%

7 35.50% 15.44% 20.06%

8 30.55% 14.63% 15.92%

9 25.47% 16.85% 8.61%

10 29.77% 17.42% 12.35%

Macro Avg. 31.70% 16.03% 15.67%

Table 5.3: F1-score of multi index (MI) and multinomial naïve Bayes (MNB) trained with ten
different training sets containing one randomly selected sample per concept; tested on full test
set; training sets with lowest, highest and average difference in bold.

MI MNB Difference (MI - MNB)

Avg. (2, 4, 8) 29.23% 14.73% 14.50%

Combined (2, 4, 8) 40.71% 23.75% 16.96%

Increase (comb. - avg.) 11.49% 9.02% 2.46%

Table 5.4: F1-score of multi index (MI) and multinomial naïve Bayes (MNB) trained on combined
set consisting of training set 2, 4 and 8 from Table 5.3.

MI MNB Difference (MI - MNB)

Avg. (1-10) 31.70% 16.03% 15.67%

Combined (1-10) 51.30% 38.03% 13.27%

Increase (comb. - avg.) 19.60% 22.00% -2.40%

Table 5.5: F1-score of multi index (MI) and multinomial naïve Bayes (MNB) trained on combined
set consisting of all sample sets from Table 5.3.

67

Figure 5.3: Damage overview in a Norwegian property claim (person names have been removed).
Source: Protector Forsikring.

Figure 5.4: Annotated concepts of spreadsheet shown in Figure 5.3 (using k -NN classifier).

68

5.3 Result of Spreadsheet Enrichment Pipeline

Considering that my motivation was to find the concepts of cell values in spreadsheets to make
data in spreadsheets more accessible w.r.t. information extraction, I ran the spreadsheet shown
in Figure 5.3 through the pipeline illustrated in Figure 3.1. Using the k -NN to classify concepts,
the cells in the spreadsheet in Figure 5.3 are annotated with the concepts in Figure 5.4. The data
structure in Listing 5.1 is the output from the pipeline, where the structure is created during the
spreadsheet processing and the concept attribute in each cell is set by the classifier.

{
"sheets ": [

{
"name": "Ark1",
"cells": [

{
"address ": "B2",
"type": "STRING",
"format ": "General",
"formula ": "",
"value": "GLASSBYGG AS",
"formattedValue ": "GLASSBYGG AS",
"concept ": "ORG"

},
...
{

"address ": "B24",
"type": "STRING",
"format ": "General",
"formula ": "",
"value": "7047 Trondheim",
"formattedValue ": "7047 Trondheim",
"concept ": "LOC"

}
]

}
]

}

Listing 5.1: Spreadsheet as a JSON-object after processing.

As we can see in Figures 5.3-5.4, the costs (column G) do not have any special formatting
and are mostly classified as cardinals. By looking at the spreadsheet, we see that column C is the
sum of each cost related to the damage, as the header is “Sum”. For instance, the price in cell E11
multiplied by the amount in the cell F11 equals to the sum in the cell G11 (246× 13.5 = 3121).
Because there is no money format (i.e., currency symbol or currency code) in the column G
(the value 3121 is displayed as “3 121”), there are no features besides the digits themselves that
can capture the similarity to samples annotated as money. As many numeric concepts can be
found in insurance-claim-related spreadsheets, the format of numeric cell values are important
to distinguish the numeric concepts. To illustrate the importance of the formats, we see that
the cell D18 (symbol for square meters) and the cell D19 (symbol for pieces) are classified as
quantities – even though they do not contain any digits. Although two cells in column G (G10
and G17) are classified as money, they are wrongly classified, as there is nothing in the cells that

69

indicates that they represent monetary values. The two cells are classified as money because the
majority of the five (k = 5) nearest samples are annotated as money. Assuming that the column
G contains the costs because of the two values classified as money would not work in practice,
as then we could assume that the column B contains quantities (see the cell B7 and the cell B8).
Therefore, I would not rely on this pipeline for extracting insurance claim costs and use them
in an automated decision, as it is too prone to errors that can cause wrong claim handling (e.g.,
incorrect costs would cause an incorrect estimate for claim payout). However, meta-information,
such as organisation names and locations, are more accessible by having an annotation which
describes what concept a cell value belongs to.

For instance, if we want to link the spreadsheet in Figure 5.3 to profiles of organisations that
are present in the file – without manual labour, then a standard approach would be to lookup
each cell value in an official organisation registry, e.g., via an API. For this particular spreadsheet,
that would lead to 100 requests against an API, and if the API is expensive to use, this approach
would not be cost efficient. In the spreadsheet, only two cells are annotated as organisations
(“GLASSBYGG AS” and “GLASSBYGG as”). Using the data structure in Listing 5.1, we can
form a query, such as, give me all the values that represent an ORG, and we only get two values
to lookup externally. Searching for “GLASSBYGG AS” in Norway’s official organisation registry,
yields a match and the public identification for the company GLASSBYGG AS can be used as
a key to link GLASSBYGG AS to the spreadsheet.1 Although linking an organisation that is
already linked in a structured system (e.g., the insured) does not provide additional value, this
method would enable to link other parties that are not entered into the system (e.g., organisations
that have been hired to provide a service related to the claim).

Furthermore, an issue that I encountered was that personal data had to be excluded from
the data set, but I did not know which files (or values in the files) contained personal data. By
extending the set of concepts to include person names, phone numbers, etc., the pipeline can be
used as a method to identify personal data, making it possible to increase the control of sensitive
files. Although the classifiers I used does classify some values wrong, discovering some personal
data would be better than having no knowledge of which files may contain personal data. In
addition, long processing time would not be an immediate issue, as the process of identifying
personal data can be seen as a background process that does not affect the claim handling. As
the k -NN provides the highest accuracy, I would use this classifier in the pipeline if the objective
is to identify personal data. Even though the runtime of the pipeline would be relatively long
with the k -NN (compared to the MNB), it would be able to identify the most values that are at
risk of being personal data. In addition, using the k -NN and sentence embeddings as features, we
would have the opportunity to only store the annotated samples as vectors with numeric values
– therefore, not increasing the number of locations where personal data are stored. For instance,
instead of storing the mapping “Vemund Justnes” 7→ PERSON, we could convert the sample
“Vemund Justnes” to a vector v (using an embedding function), and then store the mapping
v 7→ PERSON (providing anonymization to some extent). However, storing the vector only
would require the annotation to be highly certain, because reverting an embedded vector to the
original sample is more challenging than reverting a bag-of-words feature vector to the original
sample (i.e., a bag-of-words representation stores a vocabulary of words present in the training
samples). Due to the challenge of reverting an embedding, the embedding function can not be
changed after some samples have been converted, and I would suggest to use the CBOW trained
by FastText, as those embeddings in combination with the k -NN achieved the best accuracy.

1Official registration for Norwegian organisations:
https://w2.brreg.no/enhet/sok/treffliste.jsp?navn=GLASSBYGG+AS&orgform=0&fylke=0&kommune=0

70

https://w2.brreg.no/enhet/sok/treffliste.jsp?navn=GLASSBYGG+AS&orgform=0&fylke=0&kommune=0

Chapter 6

Future Work

6.1 Fine-Grained Concepts

As I mentioned several times in Chapter 5, the data set should be reviewed by another individual
in order to improve the quality of the annotations. To exploit a potential review process, I suggest
that some new concept labels are introduced to the data set. For instance, in Section 5.1, I
observed that there should have been labels for the concepts invoice and action to separate these
concepts more clearly from concepts, such as organisation names or plain text. Furthermore, I
would suggest to split some of the concepts that I used in to more fine-grained concepts, with an
emphasis on products and locations. In the current data set, I annotated text describing, e.g.,
books, food, electronics, clothing, jewelry, vehicles, etc., as products. Considering that vehicles
are expensive and can be supplemented with external information that may affect the premium
(e.g., engine power), samples such as “AUDI Q7” and “Hitachi ZX190WT, hjulgravemaskin”
should have been annotated as vehicles instead of products. Locations such as “Støperigata 2,
Pb 1351 0113 OSLO” should have been annotated as address in order to separate them from more
unspecific locations such as “OSLO - RYEN”. Having a slightly more detailed list of concepts
would enable us to extract data from insurance-related spreadsheets, either related to claims or
underwriting, and possibly enriching the data before entering it into a structured system.

6.2 Fine-Tuned Word Embeddings for the Insurance Domain

In Section 5.2, I observed that using the composition method, where sentence embeddings were
composed of word embeddings, provided the best result in classification of the concept. Therefore,
I think it would be interesting to fine-tune the word embeddings specifically for the insurance do-
main. Considering that the word embeddings are trained using unsupervised learning algorithms,
and that the data are unstructured texts, fine-tuning for the insurance domain would not require
a lot of development time. As the insurance industry has an abundance of unstructured text,
e.g., settlement letters, correspondence, claim reports, insurance policies, etc., we have access
to a large amount of insurance-domain-specific text. For the purpose of fine-tuning word em-
beddings, the data set that I have created can be used to measure whether word embeddings
trained on insurance data capture the semantics better than word embeddings trained on data
from, e.g., Wikipedia or Common Crawl.

6.3 k-Means for Multi Index

The indices in my multi index (MI) implementation are essentially created by a k -means (i.e.,
each concept has a data set containing embeddings which are then clustered by finding the mean
embedding) and the evaluation is done by using k -nearest neighbors, where k = 1 for both
indexing and evaluation. As a future improvement, support for setting k in the indexing, i.e.,

71

setting the number of indices to include per concept, could be implemented. Then, we would be
able to set k, e.g., by:

k =
max number of samples

|C|
(6.1)

where max number of samples is set according to runtime during evaluation and C is the set of
concepts. To consider the fact that some concepts are more sparse than others in vector space,
the implementation should have some functionality to decrease k in more dense concepts and
increase k of sparse concepts.

6.4 Approximate Nearest Neighbors

Although k -nearest neighbors is useful when the number of classes can change frequently, I
encountered the issue that it is highly inefficient during evaluation as it compares the input to
each training sample. As an alternative, there is some research on approximate nearest neighbors
which, according to my knowledge, generally works by creating a hierarchy for the samples. It
seems that the state-of-the-art for approximate nearest neighbors is to represent the hierarchy
as a graph (hierarchical navigable small world graphs [19]) and I think that this method should
be compared to both brute-force k -nearest neighbors and the multi index for the data set that I
created.

6.5 Learning a Similarity Function

As an alternative to k -nearest neighbors or approximate nearest neighbors, a suggestion is to
investigate learning a similarity function using the triplet loss function (see Definition 2.4.1).
While a neural network for classification often requires that the size of the output layer is equal
to the number of classes, a neural network with the triplet loss function could have an output
layer of size one, where the value is the similarity score. An approach could be to use the
training samples as anchor points and indices (i.e., such as the indices that I used in the multi
index) as positive points and negative points, thereby, learning the similarity between input
data and a vector representation of each class. The classification process would then consist
of computing the similarity to each class and select the highest scoring class as output. In
contrast to using a similarity metric such as cosine similarity, the neural network would be able
adjust weights of each feature value and possibly identify distinctions on a feature level (i.e., the
similarity is decided based on the feature values instead of a whole feature vector). Given that
such an approach is practical, my hypothesis is that adding a new class would not require any
architectural modifications, but only re-training of the weights in the neural network.

72

Chapter 7

Conclusion

In this thesis, I explain how I created a new data set annotated with concepts, that can be used
for supervised classification. I provide some results of using the data set for classification, where I
used a multinomial naïve Bayes classifier (MNB) as a baseline and a k -nearest neighbors (k -NN)
in order to compare different feature representation of text gathered from insurance-claim-related
spreadsheets. The MNB used a simple bag-of-character n-gram representation, which achieved
an accuracy of 79.11% with n = 3 on normalized text. The k -NN used sentence embeddings
to represent the text, where I tried both the composition method and distributed method for
obtaining sentence embeddings, and achieved an accuracy of 87.09% when using the composition
method on normalized text. However, while the MNB evaluated 23,998 samples in less than five
seconds, the k -NN needed roughly 2 hours and 50 minutes.

Therefore, I provide an implementation of a method where I cluster the samples of a concept
in order to have a single vector per concept to compare to. The implementation used the cosine
similarity, and not the dot product between normalized vectors, and evaluated the test set in
around 20 seconds. As I found that using the dot product was at least five times faster than using
the cosine similarity in the k -NN, I think that the evaluation time can be reduced to the same
level as the MNB with a minor modification to the implementation. However, this simplified
indexing method did cause a significant drop in accuracy (64.78% using word embeddings trained
with skip-gram and normalized text) and made the MNB seem like a better classification method.
Although the accuracy was lower than the MNB, it was significantly higher than the accuracy
of the rule-based classifier (RB) that I present in Section 3.4. I used the RB to initiate the
annotation process and it achieved an accuracy of 52.90% on the test set. An observation that I
did was that the indexing method performed better than the RB, which lead me to investigate
how many samples were needed in order to create indices so that the accuracy was on par with
the RB – as finding examples is a lot less time consuming than writing rules. I found that with
just ten samples per concept, the accuracy of the indexing (51.30%) was on par with the RB.

To conclude, considering the motivation of knowing the concept of cell values in spreadsheets
to make information extraction from spreadsheets more practical, I find that the method I
describe is not sufficient enough for extracting data that affect the claim handling, as there is too
much error in the classification of concepts. As I illustrated in Figures 5.3-5.4, the classification
relies on having a format for values of a specific concept. For instance, monetary values require
either a currency symbol or currency code in the formatted value, but not all monetary values
have a format. Therefore, the method is not suitable to extract information such as costs
related to a claim – which was the information that lead me to investigate this approach for
extracting information from spreadsheets, so that costs could automatically be mapped to an
insurance coverage. However, I did find the method useful to extract meta-information, such as
organisation names or locations, where the information can be further enriched using external
data providers.

Most notable is that the method can be used to identify personal data in spreadsheets,

73

thereby limiting the issue that I encountered, where I did not know which data values needed to
be anonymized due to privacy regulations. The accuracy that I achieved is not an issue in the
task of identifying personal data, as knowing which files might contain such data is better than
not knowing at all. Considering that the process of identifying personal data does not affect
the claim handling, it can be executed as a background process, where the evaluation time of
the classifier is not a big issue. Therefore, I would suggest using the k -NN with average word
embeddings as feature representation, as this classifier achieved the best accuracy. In order to
identify personal data, samples for concepts such as person names, phone numbers, etc., have to
be added to the data set. As I found that the indexing method I implemented achieved a higher
accuracy than the RB with only ten samples per concept, I would suggest to use the indexing
method instead of writing rules to obtain samples for concepts regarding personal data.

Although I have not developed any new state-of-the-art methods, I have identified future work
which can take advantage of, and improve, the data set that I have created. I underestimated how
ambiguous data can be: even when the data only contains a limited amount of information, it can
be difficult to determine what the information actually concerns. Therefore, I suggest that the
data set should be reviewed, but while doing so, new and improved concepts can be introduced
in order to make the data even more useful. Furthermore, as the composition method was proven
to yield the best results when classifying the concepts, I think that some effort should be put into
fine-tuning the word embeddings that I have used, by training them on unstructured insurance
data. I believe this would encode the semantics of words more suitably to the insurance domain –
causing better grouping of similar concepts, rather than relying on semantics that is found in text
from Wikipedia or Common Crawl. The created data set can then be used to measure whether
insurance-specific word embeddings provide a better grouping of similar concepts. Finally, as the
k -NN has a significantly higher accuracy than the MNB, some effort should be put into trying
the state-of-the-art algorithm for approximate nearest neighbors.

74

Bibliography

[1] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, ‘Enriching word vectors with sub-
word information’, Transactions of the Association for Computational Linguistics, vol. 5,
pp. 135–146, 2017, issn: 2307-387X.

[2] E. Grave, P. Bojanowski, P. Gupta, A. Joulin and T. Mikolov, ‘Learning word vectors for
157 languages’, in Proceedings of the International Conference on Language Resources and
Evaluation (LREC 2018), 2018.

[3] N. Reimers and I. Gurevych, ‘Sentence-bert: Sentence embeddings using siamese bert-
networks’, CoRR, vol. abs/1908.10084, 2019. arXiv: 1908.10084. [Online]. Available: http:
//arxiv.org/abs/1908.10084.

[4] F. Rosenblatt, ‘The perceptron – a perceiving and recognizing automaton’, 1957. [Online].
Available: https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf.

[5] F. Jørgensen, T. Aasmoe, A.-S. R. Husevåg, L. Øvrelid and E. Velldal, ‘Norne: Annotating
named entities for norwegian’, in Proceedings of the 12th Edition of the Language Resources
and Evaluation Conference, 2020. [Online]. Available: https://arxiv.org/abs/1911.12146.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever
and D. Amodei, Language models are few-shot learners, 2020. arXiv: 2005.14165 [cs.CL].

[7] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, 2019. arXiv: 1810.04805 [cs.CL].

[8] Z. Harris, ‘Distributional structure’,Word, vol. 10, no. 2-3, pp. 146–162, 1954. doi: 10.1007/
978-94-009-8467-7_1. [Online]. Available: https://link.springer.com/chapter/10.1007/978-
94-009-8467-7_1.

[9] M. F. Porter, ‘An algorithm for suffix stripping’, Program, vol. 14, no. 3, pp. 130–137, 1980.

[10] J. R. Firth, ‘A synopsis of linguistic theory 1930-55.’, vol. 1952-59, pp. 1–32, 1957.

[11] T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient estimation of word representations
in vector space, 2013. arXiv: 1301.3781 [cs.CL].

[12] J. Pennington, R. Socher and C. D. Manning, ‘Glove: Global vectors for word represent-
ation’, in Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–
1543. [Online]. Available: http://www.aclweb.org/anthology/D14-1162.

[13] T. K. Landauer, P. W. Foltz and D. Laham, ‘An introduction to latent semantic analysis’,
Discourse processes, vol. 25, no. 2-3, pp. 259–284, 1998.

[14] J. Devlin, M. Chang, K. Lee and K. Toutanova, ‘BERT: pre-training of deep bidirectional
transformers for language understanding’, CoRR, vol. abs/1810.04805, 2018. arXiv: 1810.
04805. [Online]. Available: http://arxiv.org/abs/1810.04805.

[15] G. Koch, R. Zemel and R. Salakhutdinov, ‘Siamese neural networks for one-shot image
recognition’, 2015.

75

https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://blogs.umass.edu/brain-wars/files/2016/03/rosenblatt-1957.pdf
https://arxiv.org/abs/1911.12146
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-94-009-8467-7_1
https://doi.org/10.1007/978-94-009-8467-7_1
https://link.springer.com/chapter/10.1007/978-94-009-8467-7_1
https://link.springer.com/chapter/10.1007/978-94-009-8467-7_1
https://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805

[16] V. I. Levenshtein, ‘Binary codes capable of correcting deletions, insertions and reversals.’,
Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966, Doklady Akademii Nauk SSSR,
V163 No4 845-848 1965.

[17] F. Damerau, ‘A technique for computer detection and correction of spelling errors.’, Com-
mun. ACM, vol. 7, no. 3, pp. 171–176, 1964. [Online]. Available: http://dblp.uni-trier.de/
db/journals/cacm/cacm7.html#Damerau64.

[18] A. Coates and A. Y. Ng, ‘Learning feature representations with k-means.’, in Neural Net-
works: Tricks of the Trade (2nd ed.) Ser. Lecture Notes in Computer Science, G. Montavon,
G. B. Orr and K.-R. Müller, Eds., vol. 7700, Springer, 2012, pp. 561–580, isbn: 978-3-642-
35288-1. [Online]. Available: http : / / dblp . uni - trier . de / db/ series / lncs / lncs7700 . html#
CoatesN12.

[19] Y. A. Malkov and D. A. Yashunin, ‘Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs’, CoRR, vol. abs/1603.09320, 2016.
arXiv: 1603.09320. [Online]. Available: http://arxiv.org/abs/1603.09320.

76

http://dblp.uni-trier.de/db/journals/cacm/cacm7.html#Damerau64
http://dblp.uni-trier.de/db/journals/cacm/cacm7.html#Damerau64
http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#CoatesN12
http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#CoatesN12
https://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320

	Introduction
	Thesis Outline

	Background
	Machine Learning
	Optimization Problem
	Supervised Learning vs. Unsupervised Learning
	Feature Extraction

	Bag-of-words
	Natural Language Processing
	Normalization
	Tokenization
	N-grams

	Embeddings
	Word Embeddings
	Sentence Embeddings

	Measuring Text Similarity
	Edit Distance
	Jaccard Similarity Coefficient
	Cosine Similarity

	Algorithms
	k-Means
	k-Nearest Neighbors
	Multinomial Naïve Bayes Classifier

	Annotation of Spreadsheet Cells
	Spreadsheet Enrichment Pipeline
	Processing Excel Spreadsheets
	Concepts in Insurance-Claim-Related Spreadsheets
	Rule-Based Annotation
	Multinomial Naïve Bayes Annotation

	Classification of Concepts
	Tools
	Programming Language
	FastText: Pre-Trained Word Embeddings
	Sentence Transformers
	PyTorch: Open-Source Machine Learning Framework

	Preprocessing
	Implementation of Indexed Concepts

	Results
	Data
	Classification
	Rule-Based Classifier
	Multinomial Naïve Bayes Classifier
	k-Nearest Neighbors
	Multi Index
	Single-Instance Training

	Result of Spreadsheet Enrichment Pipeline

	Future Work
	Fine-Grained Concepts
	Fine-Tuned Word Embeddings for the Insurance Domain
	k-Means for Multi Index
	Approximate Nearest Neighbors
	Learning a Similarity Function

	Conclusion

