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Chapter 1

Introduction

In our daily life we have to sense and interpret a large amount of infor-
mation from our environment. To be qualified for this task we are cre-
ated with sophisticated senses which takes care of both detection and
processing as well as the interpretation.

Our eyes are able to detect electromagnetic radiation with wavelengths
in the area of about 350 to 780 nm . This radiation carries an immense
amount of information. In a similar way the human ears detect acoustic
radiation with frequencies from about 20 Hz to 20 kHz.

Light and sound are waves radiating in either air, fluids or solids. Sound
is considered to be mechanical wave motion and light as a form of elec-
tromagnetic wave motion. The waves convey signals that may reveal
information about the radiating source.

Similarly we can transmit a wave towards a system and study the re-
flected or scattered wave to obtain some information about the system.
This is one of the basic principles of medical ultrasonics. Scattering
is the effect caused by an obstacle or inhomogeneity hit by sound and
thereby spreading out secondary sound in a variety of directions. Exam-
ples of scatterers are fish in the sea or a red corpuscle in a bloodstream.

Signals from our visual system and sense of hearing are subject to ad-
ditional analysis in our brain. From this analysis we are able to make
decisions and act on the basis of what we see and hear, for example to
avoid danger. Human senses and our way of extracting necessary infor-
mation form a pattern for many developments in science.

We are for example able to distinguish between sources from different
directions with our two ears. It would not be possible to do this with only
one ear, because then we would lack the directional information. This
motivates the use of array? systems to detect signals carried by propa-

'nm = nanometer = 1 - 10~° meter
2T will use the term array for a collection of separate detectors (judiciously placed
at distinct points in space).
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gating waves.

A collection of sensors will therefore spatially sample the field which it
lies in. Arrays provide directional information (i.e. the beampattern of
the array) and also improve the signal-to-noise ratio (i.e. the gain of the
array) compared to single sensor systems. This permits detection of sig-
nals from various directions as well as suppression of noise and signals
from unwanted directions.

Sensors that gather signal energy over a finite area in space, are called
apertures[23]. The shape and size of sensors and apertures varies as
they are being designed for different purposes. For example will the
size of sensors typically be determined by the wavelength of the prop-
agating signal. An example of a sensor’s shape is the parabolic radar
dish. Similarly the configuration of sensors in an array varies according
to the application it is designed for.

Since new applications and new imaging modes are being continuously
developed and improved, the research on apertures and arrays remains
a major activity.

1.1 Objective of the work

In ultrasound the transducer is the essential component, but also the
main limiting factor that affects the quality of imaging and velocity mea-
surements. Ultrasound scanners using N x 1 elements, e.g. with N —
128, are now widely used.

However, in the last few years two-dimensional (N x K) transducer ar-
rays have frequently been addressed in the scientific literature e.g. in
[52, 60]. A major problem arising is the large number of elements in a
complete two-dimensional array. This motivates the use of sparse arrays
(i.e. where non-active or missing elements exist) in order to reduce the
amount of increased complexity demanded for the new technology.
Sparse arrays are also possible to use with low cost ultrasound scanners.
In other words one could use sparse arrays with scanners built for e.g
128 element arrays, but with front-end electronic circuitry only for 10—
30 channels. Synthetic aperture techniques have also been proposed to
accomplish a similar effect [25] with these low cost scanners.

The goal of the work in this thesis is to find a way to optimize the re-
sponses from sparse and non-equally spaced arrays. This must be done
with respect to a given criterion that ensures as low a sidelobe level as
possible, while still giving a substantial resolution.

The motivation for this is obvious, due to the importance a large contrast
resolution has in an ultrasound system. Since the use of sparse arrays
causes a considerably increased sidelobe level that is unacceptable in a
practical system, finding ways to subdue the sidelobes are strongly de-
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sired.

In this study, we have chosen to formulate a routine based on the Re-
mez exchange algorithm [8]. By using a spatial angular frequency axis
an algorithm can be formulated, that has similarities with a FIR-filter
optimization routine [37].

Because an ultrasound application of the arrays is an underlying inten-
tion, some theory related to this field must necessarily be studied. This
includes both acoustics and ultrasound principles.

1.2 Organization of the text

In this text the work on an array design approach and some simulation
results are presented. Secondary to this, it also contains a review of
some of the basic theory regarding ultrasonics, acoustics and coarrays.
Only with some knowledge of these underlying principles, a fully under-
standing of the work in this thesis is possible. Therefore some theory of
these topics will also be included. This should give a better overall view
of the problem treated in this thesis as well.

Including the current one, this thesis consists of 7 chapters, 2 appen-
dices and a bibliography.

Chapter 2 is intended to give a brief introduction into the imaging pro-
cess. The goal of the imaging process is to display the structures beneath
the surface where the sound is transmitted, with a maximum quality.
Interaction between the medium, the probe, the scanner and the output
devices will all be influencing the final result. Only the basic ultrasound
principles will be reviewed in this chapter.

In Chapter 3 some physical principles of wave propagation are exam-
ined. In other words we will be considering the field that the acoustic
sound waves are transmitted into and received from (Fig. 2.1). The wave
equation is THE equation when considering propagating waves. It will
be shown that this equation get additional terms when we are consider-
ing different boundary conditions.

The remaining sections of the chapter is in full a discussion on different
solutions to the wave equation. Some of the assumptions that must be
made in order to get simpler and more computational efficient solutions
to the acoustic problem are pointed out.

Chapter 4 is in a discussion of properties of transducer arrays and coar-
rays. Fundamentals of coarrays are summarized and next some prop-
erties of the linear and planar arrays are discussed. Finally beampat-
terns are seen to be computable directly from the coarray lag values.
This method offers an approach alternative to the routine already im-
plemented in UltraSim [4, 59] and simulation results from these two
methods are compared.

Chapter 5 is the main chapter with respect to array synthesis. A gen-
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eral Remez exchange algorithm is formulated and implemented, that
can be used for optimization od weight coefficients both for uniform, per-
turbed, sparse and non-uniformly spaced arrays. This algorithm is also
used for further improvements on arrays proposed in the literature.
Chapter 6 is dedicated to results made in the simulations with various
arrays. Our optimizing routine has been used to improve the sidelobe
levels of some arrays.

The conclusions regarding the results made in this work is summarized
in Chapter 7. Propositions for further work are also given there.

A central philosophy in this thesis has been to present complicated mate-
rial in simple manner, hopefully it is done without sacrificing the clarity
of exposition.



Chapter 2

Principles of ultrasonics

This chapter is intended to give the motivation for the succeeding chap-
ters. Ultrasonic principles is not the main subject in this work, but it is
one of the areas where the problem of designing well behaving arrays
arises. The basic principles of ultrasonic imaging and Doppler mea-
surements will now be revealed. Special concern will be given to the
properties of imaging quality and to transducer geometries. These are
considerations that will be further elaborated in the coming chapters.
Arrays and antennas are also used in the fields of sonar, seismology,
radar and radio telescopes [23], and array systems as such would lead
to similar demands as for the ultrasonic ones.

2.1 Introduction

Ultrasound is acoustic sound waves with frequencies above the audible
range (i.e. above 20 kHz), in contrast to infrasound which is waves below
the audible range.

In this thesis ultrasound is viewed from a technical point of view, where
the sound is produced by instrumental devices. For the curious reader
and as a digression it can be mentioned that ultrasound is widespread in
the nature. Bats, for example, orientates themselves by means of ultra-
sound and sea animals like shrimps and crabs also makes ultrasound.
In the ’technical world’ ultrasound has won a wide application in med-
icine during the last decades. It is now used for diagnosis and therapy as
well as a surgical tool. The ultrasonic waves are reflected from bound-
aries with approximately the same density and can in contrast to e.g.
X-rays, be used without harmful effects within certain accepted limits.
Ultrasound used for therapy have higher transmitted power than what
is recommended and accepted for imaging and measurements. And for
surgery even higher power is used.
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Ultrasound waves can be transmitted as continuous waves (CW) as well
as pulsed sound waves (PW). In case of PW the transducer acts as a re-
ceiver detecting wave reflections and echoes between the pulses. When
using CW the ultrasound probe must transmit and receive simultane-
ously and therefore it contains separate transmit and receive aperture.

The basic principle is that sound waves are transmitted into the body
and either the amplitude of the backscattered signal is used for tissue
imaging or the frequency of the Doppler shifted signal is used for esti-
mation of the velocities of the blood flow. The signals received by the
transducer must undergo a large amount of signal processing before be-
ing supported to the displaying output (as Fig. 2.1 signifies). In order to
make it more informative to the operator, additional processing on the
images usually is performed e.g. coding blood flow in different directions
with different colors.
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Figure 2.1: Block diagram over an ultrasound imaging system.

Images produced by a medical ultrasound system are interpreted by the
medical staff who for example make a diagnosis based on the images or
use the image to point the beam towards an area of interest for measure-
ments. Making a precise diagnosis then relies heavily on the quality of
the images. Pointing the beam depends on the quality of the images as
well as the experience of the user.

There are several limitations and conflicts in the imaging process. Se-
vere problems arise when the sound meets boundaries with relatively
large density differences e.g. between bone and tissue or between air
and skin. In addition causes fatty layers aberration that also degrades
the image quality. Because of these problems special probes for inser-
tion through body openings, have been developed. In that way one can
for example get behind the ribs and close to the heart.
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The imaging quality of a ultrasound system can be described in terms of
the spatial resolution, the depth of field (DOF), the contrast resolution
and the frame rate. The frame rate is particularly important when imag-
ing fast moving structures. In designing a system one must be aware of
the tradeoff between these desired qualities.

Destructive effects from ultrasound waves also exists. Intense ultra-
sound produces large density and pressure changes in tissue, within
each small wavelength, and molecules are then forced to move rapidly.
This produces heat and cavitation in some materials (as in liquids). Cav-
itation is the formation of bubbles of vapor caused by the mechanical
fracture of the liquid in a region where the pressure is decreasing. These
bubbles may then collapse violently. This is utilized in inhalation ther-
apy, where the medication is broken into droplets fine enough to enter
the alveoli of the lungs.

In physiotherapy the tissue heating effect is utilized in the treatment
of for example inflammation of tendon sheath (tenosynovities) and in-
juried muscles. However, care must be taken in order to avoid damage
caused by heating the tissue too much. The success of this treatment
then relies on guessing an appropriate ultrasound power to emit, since
a precise determination of the temperature in a particular tissue seg-
ment and hence the precise effect on the tissue to be treated, is difficult
to establish.

2.2 Ultrasound transducer types and beams

There are several types of ultrasound probes specially designed for nu-
merous distinct applications. A probe designed for insertion into the
body has serious contraints in size, while arrays for imaging in the ab-
dominal area do not have the same constraints. Accordingly, numer-
ous distinct transducers are applied in ultrasound imaging and blood
velocity measurements. In this text they are divided into linear, two-
dimensional and annular transducers.

In principle the transducers can both be continuous apertures as well
as discrete arrays. Only the latter type will be examined closer in this
text. Curving of the transducer surface will introduce focusing of the
beam. The geometrical focus will be in the center of the circle that is the
prolongation of the transducer surface. A transducer can be curved to
give focus both for positive or negative values on the z-axis. Transduc-
ers with negative focus (i.e. the focal point is behind the transducer face
as in fig. 2.2) are used to get wider image fields. Transducers curved to
give focus in front of the face will give both a narrow transmit beam and
receive beam at the focal point.

From physics it is known that the imaging properties of an aperture
(e.g. a hole in the wall or a lens) with finite spatial size is limited by
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the diffraction limit. Due to the diffraction effect the sound from the
transducer will be diffracted and the real focus will be wider than what
is obtained with geometrical beams [1].

By mechanically tilting the transducer it can be steered in different di-
rections and one can therefore sweep the beam over a sector. Thus we
can shoot the beams sequentially over the sector and then scan the field
to make a two-dimensional (2D) image. Beam steering is advantageous
when we want to cover an area with a small transducer.

Focusing and steering of the beam is also possible to obtain electron-
ically by arrays. This implies use of delay lines in order to delay the
signal from element to element. Planar arrays allow beam steering and
focusing in both elevation and azimuth dimensions (Fig. 2.2).

The delays in each array element can be varied with time in order to
make the focus follow the reflections of the pulse from successive deeper
depths. This sweeping of the focus is called dynamic focusing. Since
the size of the aperture in relation to the distance to the focusing point
determines the width of the focus , it is necessary to vary the size of the
aperture to get an uniform width of the focus. This varying is called
dynamic aperture.

Linear arrays have their elements distributed in one dimension (i.e.
along one axis). Since they only have a single element in the elevation
dimension they cannot be steered and focused in this direction. Thus
steering and focusing with linear arrays can only be performed in the
azimuth dimension. Depending on the application they can have differ-
ent shapes and sizes. A further discussion on linear arrays with respect
to resolution and sidelobe control is given in Sec. 4.3.

1.5-dimensional (1.5D) arrays are as the name indicates, arrays with
characteristics between one- and two-dimensional arrays. They have
three or five elements in the elevation dimension and can be curved in
both dimensions. However, electronically steering is performed in the
azimuth direction only.

Two-dimensional (2D) arrays point out to be important for improving

the imaging quality of ultrasonic systems. These arrays can be both
mechanically and electronically steered and focused. Several examples
of improvements due to the use of such arrays are suggested in [52].
Because 2D arrays provide several advantages they will probably be-
come valuable for introduction of new modes e.g. three-dimensional (3D)
imaging with a mechanically tilted and rotated 2D array. The arrays will
be most important for external imaging. It is also desired to be able to
steer and focus these arrays electronically.
Unfortunately there are some fundamental problems of both construct-
ing and using 2D arrays. In many applications there is a limit on the
size of an array and this gives difficulties when connecting the tiny ar-
ray elements. A filled two dimensional array will require an extremely
large number of elements. The processing will be time consuming with
this number of elements. Compared to a linear array the increase in
operations will be the power of two.
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x e
ELEVATION

Figure 2.2: A two dimensional planar array both with cartesian and spherical
coordinates given. The array could also be curved in both azimuth and elevation
dimension e.g. in order to allow focusing.

Due to these problems one has to reduce the number of transducer el-
ements by undersampling of the aperture. This can be done by either
eliminating some elements from the aperture or by increasing the ele-
ment size and the interelement distance. The latter solution will not
be possible where there are restrictions on the aperture size e.g. trans-
ducer arrays for imaging of the heart through the chest (i.e. between
the ribs). Additional problems also arise when it is not possible to use
all array elements.

Moreover 2D arrays increase the complexity of analysis and synthesis
considerably. This makes it more difficult to calculate optimal apodiza-
tion for the array.

Annular transducer arrays (Fig. 2.3) are made up of concentric rings.
This type can be focused both in the plane as well as transverse to the
plane, in other words we have a symmetric focus. Since it consists of
rings it can not be electronically steered and thus have to be mounted
so that it can be mechanically rotated or moved linearly to produce an
image.

Focusing in both
elevation and azimuth

dimensions

5 annular rings

Figure 2.3: An annular array with 5 annular rings giving symmetric focus.
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2.3 Imaging quality

Over the past decades different imaging modes have been introduced in
ultrasound imaging.

In B-mode (Brightness mode) beams are sequentially fired at different
angles and a sector is then covered by the beams. The amplitude of the
received signal is displayed with intensity proportional to amplitude.
For each beam, waves are received from a number of distinct dephts. In
this way an intesity image is formed along each beam. Repeating this
in different directions is equivalent to performing A-mode (Amplitude
mode) for each beam over a sector.

Imaging in M-mode (Motion mode) will give a 2D image with time as one
of the axis. A beam is fired in a particular direction. The amplitude of
the reflected or backscattered waves are measured at a given number of
depths. Then new beams are fired at the same direction and new echoes
are received. By doing this repeatedly we get a real-time image of the
moving structure in the beam direction.

An important factor that determines the imaging quality of a system is
the resolution.

The spatial resolution is determined by the frequency and the size of the
aperture. Laterally i.e. transverse to the beam, the resolution is deter-
mined by the width of the beam. For a linear array this can be seen from
where the sinc function (see page 38) has its first zero crossing. The first
zero of Eq. 4.5 appears when sin(% k. d) = 0 < k, = 2%. Consequently
the resolution depends on the array’s overall spatial size (i.e. the aper-
ture, Md). When the denominator is zero, grating lobes arise. In order
to avoid grating lobes in the visible region (i.e. £27/)) the element spac-
ing, d, must be less than or equal to half the wavelength (i.e. d < A\/2).
This also limit the size of the individual array elements.

The resolution along the beam is determined by the length of the trans-
mitted pulse. To increase this resolution, shorter wavelengths should
be chosen. However, this implies higher frequencies and they are more
heavily attenuated in tissue than lower frequencies. This leads to a con-
flict between between wanting high resolution and sufficient penetra-
tion.

In practice one chooses the frequency dependent on the desired depth of
penetration, and then get the best possible resolution at that particular
depth. Theoretically one could increase the size of the aperture in order
to circumvent this problem but in most applications the size of the aper-
ture is limited and can therefore not compensate for lower frequencies.

The contrast resolution (also called the dynamic range) is limited by the
level of the sidelobes and by multiple reflections of the ultrasound pulse.
The latter effect is often called reverberations. Sidelobes causes signal
from directions outside the main lobe to be picked up and added to the
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receive signal. This gives noise in the image. To obtain a good image
quality a low sidelobe level is demanded.

One way of reducing the sidelobes is by apodization of the aperture or
array. The sidelobe level will then be controlled by the chosen weighting
function. However, it will also cause a loss in spatial resolution.

2.4 Blood velocity measurements

Another major area of medical ultrasonics is using the Doppler effect to
measure blood velocities or to produce color coded images of the blood
velocity. The PW and CW Doppler measurements are used to quantify
and display temporal variations of the velocities or in the flow.

As for tissue imaging the sound waves are transmitted into the body.
When the scatterer is moving the frequency of the backscattered signal
will deviate from the frequency of the emitted signal. The change in
frequency is the Doppler effect.

The Doppler shift is given by the Doppler equation

vcosf

fa=2f (2.1)

c

here f; is the transmit frequency, ¢ is the wave propagation velocity, 6 is
the angle between the velocity direction and the beam direction and v is
the velocity of the scatterers. What is actually measured is the velocity
component radially i.e. along the beam.

The signal received will in addition to the Doppler shift of the scatterers
also contain noise in the form of strong echoes from slowly moving tis-
sue as well as thermal noise. This implies difficulties in calculating the
blood velocities because we have a distribution of frequencies contained
in the signal and some of the frequencies are not from the signal. The
tissue noise can be damped by a varying highpass filter that attenuates
the lowest frequencies. Removing the thermal noise is far more compli-
cated since it is distributed over the entire frequency band of the velocity
spectrum.

A drawingillustrating a typical time-varying frequency spectrum is given
in fig. 2.4. It consists of some 6-8 measurements producing the same
number of spectrum estimates. The tissue frequency components are
seen as a strong peak to the left in the figure. In the middle some compo-
nents are present only in a portion of the measurements. This is where
we expect the blood velocity components to be. Because of the pulse of
the heartbeats the velocities are varying and frequency components of
the blood will not be present in all subsequences.

There may be blood velocity components below the valley between the
tissue and blood peaks, but these are drowned in the tissue and thermal
noise. When we filter the tissue components with a higpass filter (in the
area indicated by '"HP’), we will also loose the low blood velocity blood
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Figure 2.4: Estimated power spectrum for Doppler signal.

components. It is therefore important to send and receive the beams as
parallel to the blood cells motion direction as possible. It must be men-
tioned that if very high velocities are to be measured the beam should
be pointed at a larger angle to the blood flow.

The thermal noise can be regarded as approximately the floor in the
spectrum of Fig. 2.4. Thus these noise frequencies cannot be subdued
by filtering. Though a lowpass filter (LP in the figure) can be used to
eliminate frequency components above the Doppler shift limit.
However, the amount of noise can be reduced by allowing a larger range
cell to be selected [1]. From the received signals the directions of the
blood velocities can be found. By coding them in different colours we get
what is called a colour flow image (CFM).

2.5 Summary

The basic principles of ultrasound imaging and velocity measurements
have been presented. A variety of distinct arrays can be fabricated,
and is too. This allows transducer probes to be used in diverse areas
of medicine. Ultrasound also has application to non-destructive testing
e.g for testing the quality of materials and welds.

Since we will be considering array synthesis, and the resulting beam-
forms from arrays, we should take a closer look at the theoretical fun-
dament that the understanding of propagating signals must be built on.
A physical interpretation and mathematical tools for the propagation of
sound waves from transducers, are offered by the theory of acoustics.
This will be reviewed in the subsequent chapter.



Chapter 3

Acoustic theory review

In this chapter terms and equations related to wave propagation in the
ideal case will be reviewed. The acoustic wave equation is derived for
both the pressure and the velocity potential. Solutions known for three
boundary conditions will also be reviewed. Finally several approxima-
tions usually introduced in order to make calculations less bothersome
are mentioned and a brief review of some simulation methods is given
at the end of the chapter.

3.1 Wave motion

Periodic disturbances and oscillations play an important role in many
different areas in science and engineering. The phenomena of oscilla-
tions travelling in space are called wave motion. By throwing a stone
into a pond one can observe wave motion by watching the ripples spread-
ing across the surface of the water. Other examples are sound waves,
optical waves or vibrations on a string.
The model of wave motion in one spatial dimension is described by the
scalar wave equation'

v 1 0%u

e EZeE 0, (3.1)
where u is the wave motion in a point of interest and ¢ is the speed of
sound which varies in different media. The wave motion can be both
transverse and longitudinal. A vibrating string is an example of trans-
verse waves, where the string displacement is normal to the direction of
the wave motion. A solution to this equation can be written as

u(s,t) = f(s —et) + g(s + ct) (3.2)

'Tn math books this equation is often written more compact as : ui — 2tize = 0

16
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The solution consists of the sum of two travelling waves. One wave, f,
travelling to the left on the s-axis and the other wave, g, travelling to
the right.

Similarly we have plane travelling waves in acoustics. In that case all
the acoustic variables are functions of time and only one cartesian co-
ordinate, s, and are independent of position along planes normal to the
s-direction. From the form of the solution we see that the magnitude
and waveforms are conserved as the wave propagates.

In acoustics the oscillations of the material are often called particle mo-
tion. This motion appears in the three dimensional space. Hence the
wave equation must be formulated in three dimensions. The Laplacian
operator V? in three dimensions (3D) is then used

In case of transverse waves the particle movement is normal to the di-
rection of propagation. For longitudinal waves the particle movement is
along the direction of propagation.

In inviscid fluids, acoustic waves are longitudinal waves. This means
that ultrasonic waves in biological tissue are longitudinal, since bio-
logical material is considered as mainly water with some solids added.
Moreover, the waves have nearly the same wave velocity as in water. In
fact the wave velocity in biological material is only slightly above that of
water. Transverse waves can also exist but they are heavily attenuated
in biological material [1].

Acoustic waves are caused by cyclic compression and expansion of re-
gions in the medium. The fluid particles are moving back and forth in
the direction of propagation of the wave and thereby are producing ad-
jacent regions of compression and decompression. Compression causes
the pressure to increase and expansion causes the pressure to decrease
in a particular region of the fluid.
Then at a particular spatial point pressure variation will pass with the
propagation velocity, ¢, and oscillate with the temporal frequency, f. Ata
particular instant the spatial period between pressure maxima is equal
to the wavelength, A. The relation between these parameters is very
important for propagating signals in general
c 2me

A= R (3.3)
where w is the temporal angular frequency equal to w = 27 f.
Another important relation is regarding the magnitude of the wavenum-
ber vector " 9
~ X (3.4)
The wavenumber is considered to be a directional spatial frequency. It
should be noted that the wavenumber vector will be denoted by %, while
its magnitude will be written k.

k= |k| =
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Relations like w = ck, between the temporal frequency, w, and the wave-
number magnitude, k, (spatial frequency) are called dispersion relations
[23]. Media where his relation is linear are called dispersive media.

3.2 The acoustic wave equation

Sound propagation in space is modelled by the acoustic wave equation,
which is quite similar to Eq. 3.1. A detailed derivation of this equation
can be seen in [28, 46]. The basis of the derivation is three relations.
First the conservation of mass, where the net rate of mass flowing into
a fixed volume is considered equal to the increase of mass inside the
volume. This gives a relation between density and particle velocity. The
resulting equation is nonlinear, but assuming small vibrations validates
a linearized equation of continuity (Eq. 3.5).

The next consideration, Euler’s equation of motion for a fluid also gives
a nonlinear equation, relating pressure and particle velocity. Linear ap-
proximation (due to the small disturbances assumption) gives Eq. 3.6.
These equations are called the basic linear equations of acoustics.
Finally the relation between pressure and density is given by Eq. 3.7.

dp

ov
POE = —Vp (3.6)
b = &) 3.7)

Here p is the acoustic pressure at an arbitrary point in space 7, ¥ is the
particle velocity, p is density at a point, p, is the equilibrium density of
the medium, ¢ is the time and ¢ is the speed of sound in the medium.
From the linear acoustic equations above the acoustic wave equation
regarding the pressure is easily derived. Using Eq. 3.7 as p = p/c? in
Eq. 3.5 and then differentiate with respect to time, gives:

1 dp .
C—ZEJMOOV'U =0

0710 A
ailza tove) =0
\
19%p ov
C—Zw‘FPoV-E = 0

Finally using Eq. 3.6 as 0¢/0t = —Vp/p, in the previous equation, re-
sults in the acoustic wave equation?:
1 9%
¢ ot?

2In math books often written as u; — c2Au =10

2

=0 (3.8)
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The speed of sound ¢ equals

= (ap/ap)o,

evaluated at the equilibrium conditions of the pressure and density. In
water this relation is written as [46] : ¢ = \/B/p,, where B is the adia-
batic bulk modulus.

3.2.1 The velocity potential

An alternative formulation leading to the wave equation is in terms of
the velocity potential ®. This formulation is often preferred because it
is rather convenient to describe an acoustic field in terms of a single
function from whom all field quantities can be derived.
From calculus we know that the curl of the gradient of a function must
vanish i.e. V x Vf = 0. Then taking the curl of both sides of Eulers
equation of the particle velocity (Eq. 3.6) yields V x Vp = 0 and thus
V x po =0« pyZ(V x 7) = 0. Then V x 7is constant with time.
Most often one considers the initial value of V x ¥ to be zero, thus it
is always zero V x ¥ = 0, since p, # 0. This signifies that the particle
velocity 7, must be irrotational (and hence conservative).
Consequently the velocity has a scalar potential function ®, and ¢ is its
gradient :

o(Z,t) = VO(Z,1) (3.9

Substituting this equation in Eq. 3.6 yields:

0
pogr VR(E 1) £ Vp(id) = 0

0

v<p0§¢(f,t)+p(f,t)) =0

OD(F, 1)
ot

Substituting Eq. 3.10into Eq. 3.8 and integrating it with respect to time
shows that ® also satisfies the wave equation.
The wave equation in terms of the velocity potential is written

1 0%®

(3.10)

p(Z,t) = —po

3.2.2 Spherically symmetric waves

If the source is generating motion with no preferred direction, it will
produce waves that spreads out spherically. The wave equation may
also be written in terms of the spherical coordinates r, ¢ and 6. Here the
angle ¢ denotes the elevation and ¢ is the azimuth. The wave equation
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for sperical waves will be quite intricate since the Laplacian in terms of
spherical coordinates is defined [55]

A 0 20 1 8(

0 1 0?
“ 97 vor  emaoe )

ol R
S r2sin® @ 0¢?

Bap 00

(3.12)
If the medium is infinite in extent, the waveform will only depend on
time and the distance r from the source center [40]. In other words we
have spherical symmetry. Thus the parameters of the wave equation
will be independent of the angular coordinates ¢ and 6.

Consequently, the general wave equation for spherically symmetric prob-
lems becomes [40]

r? or

L g/ ,0p 1 9%p
A I ) 3.13
(T 87‘) c? ot? ( )
With some manipulation, this equation can be rewritten with rp as the
single dependent variable [28]

)10
or? c? ot?

and we observe an equation similar to the one in Eq. 3.1. Thus a general
solution of this equation is [46]

™D flr—ct)+g(r+ct)

=

b= I/ gl /o)

The first term represents a wave travelling outwards from a point source
at the origin and the latter term a wave propagating towards the source.
It should be noted that with only one source present (and no influence
from surrounding boundaries), waves can only move away from the source.
Thus the latter function ¢ is zero. Noting the factor 1/r, we see that
spherical waves (in contrast to plane waves) diminish in amplitude as
they propagate outward, but the waveforms remains the same.

3.2.3 Inhomogeneous equations

The wave equations written so far describes linear and ideal medium
propagation. Effects from lossy media (where the wave amplitude may
decay rapidly) have not been taken into account nor have effects from
dispersive media (where Eq. 3.4 will get additional nonlinear terms).
Both these effects will give additional terms in Eq. 3.8 and thereby give
an augmented wave equation. Attenuation will for example typically

give an additional damping term like 7%.
Specially terms for the existence of a source that produces the acoustic
disturbance have not been included. In that case we will have to modify
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the hydrodynamic equations (on page 18) to include source terms. This
leads to an inhomogeneous wave equation. Modification of the linearized
equation of continuity (Eq. 3.5) results in [28]

O V= F(ED),
where F'(7,t) expresses the mass contribution from the source.
By using the same procedure as we did on page 18 we end up with an
inhomogeneous wave equation

N 1 9%p IF(7,1)

Vi E e 314

The right hand side of Eq. 3.14 is regarded as a source term and conse-
quently vanishes for all regions other than where the source is located.

3.3 Solutions to the wave equation

The remaining sections of this chapter are devoted to solutions of the
acoustic problem. The solutions are derived by using Green’s functions
suited for different boundaries.

Finding solution to the acoustic wave equation is in general a very com-
plex task. Pressure field calculation involves solutions of the wave equa-
tion both for the source (vibration problem) as well as the surrounding
medium (acoustic problem). Due to the reciprocal influence of the ra-
diated wave and the internal source structure this becomes a difficult
problem. To overcome some of the problems one assumes that the source
surface is infinitely rigid. Even more simplifying assumptions are used
in practice concerning a planar or quasi planar radiating surface and
neglecting contributions from the closing surface.

Solutions, U, to the homogeneous wave equation (Eq. 3.8) must satisfy
the Helmholtz equation. If we are only interested in the spatial proper-
ties, then it is sufficient to find solutions to Eq. 3.15. This equation is in
fact the wave equation for harmonic waves.

First we assume a harmonic solution U(#,t) = A(Z)e/«". Then substi-
tute this solution into the wave equation (Eq. 3.8) and next differentiate
twice with respect to time, as done below.

Y itony 1 O7A(E)e (@)
V2 A(F)e lﬁ)_c_ZT _
)
V2A(f)ef(wf)—_—“fA(f)eJ(wf) -0
)
V2A(F)ed W) L k2Am)el (@)~ g
)

(V2 4 EDA(D)eI WD = (V2 U(E D =0 n
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Thus the homogeneous Helmholtz equation is written
(v2+k2) U=0 (3.15)

and is a wave equation for harmonic waves.

Acoustic waves encountering a boundary will result in both reflected and
transmitted secondary waves. The presence of a boundary will therefore
affect the pressure field that originates from a source radiating in the
vicinity of a boundary or from a part of the boundary. Boundary condi-
tions then arise that, as will be seen later, the Green’s functions must
satisfy in order to give solutions to the wave equation.

When the wave travels perpendicular to the interface (i.e. normal inci-
dence), the ratio of the reflected to incident pressure and velocity ampli-
tudes, the reflection coefficients is written [1, 28]

R, - (M) R, — (M) 7 (3.16)
Ziy Tt Zig Ziy Tt Zig

where z;, = p,c, is the characteristic acoustic impedance of the fluid
where the incident and reflected waves travel. z;, is the impedance of
the fluid where the transmitted wave travels.

Similarly the transmission coefficients is written [1, 28]

2z, 2z;
T,— - TR (3.17)

Ziy + Ziy Ziy + Ziy

We see that the amplitude of the reflected and transmitted pressure and
velocity at boundaries is determined by the acoustic impedance differ-
ences. It is also seen that the reflection coefficients of pressure and ve-
locity has opposite signs. An increase of the pressure therefore means a
decrease of the velocity and vice versa.

The impedance is determined by the density and wave propagation ve-
locity. From the expressions above it is therefore seen that density dif-
ferences at boundaries influence on the propagation properties of waves.
Moreover, the density differences determines the degree of reflection and
accordingly the intensity of the reflected wave. Reflections from tissue
boundaries with relatively small differences in densities is what is uti-
lized in ultrasound imaging (see Ch. 2).

The coefficients above also implies that the boundary at which the trans-
ducer is mounted will influence on the properties of the transmitted and
received waves. A transducer mounted in in a soft material will have
wave field properties distinct from transducers mounted e.g. unto a
ship’s body or just surrounded by air. Thus in order to formulate and find
correct solutions to the acoustic problem one must impose valid bound-
ary conditions.
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3.4 Green’s functions

The Green’s function is a kind of universal solution for harmonic func-
tions in a domain. According to Strauss [55] all other harmonic functions
can be expressed in terms of it. Green’s functions appear to be very use-
ful in finding solutions for the acoustical problem. Different functions
must be chosen to meet the boundary conditions mentioned in the pre-
ceding section.

The basic tool is the divergence theorem? [12]

///VV-Fdf://Sﬁ-ﬁdS (3.18)

from whom one can derive Green’s second identity [55]

///V(uv% —oV2u)di = //S (ug—z - vZ—Z)dS (3.19)

In both equations, V, denotes the volume and, S, the body (i.e. the sur-
face) of the volume, while « and v are functions of space. This identity
is central when deriving the integral solution in Section 3.6.

Generally it is not easy to find the Green’s function for a problem, but for
the acoustic problem functions have been derived for different boundary
conditions. These functions will be used and a description of how they
apply in order to get solutions for three different boundaries are given.

3.4.1 Free-space Green’s function

This situation corresponds to a situation where a harmonic source radi-
ates outward into an unbounded medium (Fig. 3.1). In this case z;, = z;,
since we have no boundary and everything is transmitted (i.e. there is
no reflection).

\‘g\./ Closing boundary
surface

Source

Figure 3.1: Source in Free-space, the closing surface is assumed to be infinitely far
away and therefore can be omitted.

?The theorem is also known as the Gauss or Ostrogradski theorem.
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The chosen function is [40]:

1 .
g _ jkR 2
gO(T7T07w) 47TR6 (3 0)
where R? = |7 — 75> = (z — 20)* + (y — ¥0)? + (2 — 20)*. It corresponds
to a spherical harmonic wave expanding outwards from the point ;.
The free-space function is a solution of the inhomogeneous Helmholtz
equation equation

V2go(7, 105 w) + k2go (7, g3 w) = —6(F — 15), (3.21)

where 6(7—75) = 6(@ — 20)0(y — yo)0(x — o) 1.e. a 3D delta function. This
Green’s function is a solution to the homogeneous Helmholtz equation
(V2 + k*) g, = 0 everywhere except at the source location 7 = 7.

3.4.2 Image source Green’s functions

We are now considering radiation from a part of the closing boundary
surface or from a source nearby the surface (Figure 3.2). Introducing a
surface will cause reflection at the boundary and now the total radiation
will be the sum of the transmitted wave and the reflected wave. To deal
with this problem it is common to include an image source term to make
an appropriate Green’s function [14].

In this way the original boundary-value problem of one source and bound-
aryis replaced by a problem with two sources but no boundary [46]. That
is combining the Green’s function with the method of images (also called
the method of reflection).

A common assumption is that the transducer is mounted in an infinite
rigid baffle* [53]. However in [40] a formula for determining an approxi-
mate Green’s function in case of not perfectly rigid baffles is given. This
formula (Eq. 3.25) will be used when deciding appropriate Green’s func-
tions for the considered boundaries.

As a start let us consider the impedances on the surface and in the
medium. The impedance of the surface z, is defined

% £ p/o, (3.22)

Here v, is the normal velocity and is defined

A Ov

= (3.23)

Up,

This implies that the normal vector lies parallel to the z-axis.

* A baffle is the boundary surface surrounding the source e.g. a loudspeaker on one
side of a large enclosure
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7 P
"1 Observation
{ point

Source z

S

Image source

Figure 3.2: Source (S) mounted near a baffle with the image source (I) on the
opposite side of the zy-plane. At z > 0 the wave will be the sum of the original and the
reflected wave. The angle ¢ in the figure is denoted ¢ in the formula below.

The acoustic admittance of the surface is the reciprocal of the impedance
and the dimensionless parameter, the specific admittance of the surface
is defined
5=" (3.24)
ZS
where pc is the characteristic impedance of the medium. The Green’s
function can thus be chosen from

cJkR (cosaﬁ—ﬁ) JkR

G(r mo;w) ~ AT R cosp+ ) 4rR

(3.25)
Here ¢ is the angle which the vector from the image point source to the
field point, makes with the normal to the boundary. The value of ¢ has
little importance in the further discussion since it is always bounded in
the interval cos ¢ € [0, 1]. A special case would be cos ¢ = 0 but then the
image source would be on the same side of the boundary as the source.

Rigid baffle In case of z;, > z; (i.e. z,/z, — 0) the reflection coeffi-
cient R, (Eq. 3.16) will be approximately one. Thus there is only
a slight reduction of the amplitude between the incident and re-
flected wave. The (normal) particle speed at the boundary is almost
zero, v, =~ 0, since T, ~ 0 (Eq. 3.17). Moreover », — oo (Eq. 3.22)
and therefore 3 becomes very small i.e. cos ¢ > .
The suitable Green’s function is then from Eq. 3.25 chosen to be

1 1 -7
9 (7 i) = el eI (3.26)

Soft baffle Considering the case when z;, > z;, (ie. z,/z, — o).
It can be observed that the reflection coefficient of Eq. 3.16 ap-
proaches the value R, — 1 and the transmission coefficient ap-
proaches zero 7, — 0. This signifies that the acoustic pressure is



26 Chapter 3 Acoustic theory review

nearly zero at the boundary and a soft boundary is therefore called
a pressure release boundary. Since p ~ 0 = 2z, — 0, and
thus 5 becomes very large i.e. 3> cos .
Consequently the appropriate Green’s function is (Eq. 3.25)
oL 1 . 1 P
g_ (7 rosw) = me]kR - me]kR (3.27)

In both cases R2 = (z — 20)2 + (¥ — 90)? + (2 — )2 and R2 = (z — x)? +
(y —y0)* + (2 + zp)* i.e. R denotes the distance between the source point
and the field point of observation.

3.5 Transient fields

Deriving transient field expressions requires time to be added. The
Green’s function must then be defined in a more general form to satisfy
the boundary and initial conditions at hand. It should not be restricted
to harmonic wave excitation only.
The time dependent function is seen to be the inverse Fourier transform
of the harmonic Green’s function.

g(Firoim) = FHg(Fre)}
1 / Tl kR —jwr g,
21 J_oo 4T R
11 e R
N jo(r =)
4t R 27 /_oo ¢ du
1 R
— §(r—-= 2
4T R (T c)7 (3.28)

where £ = w/cis used. The time-dependent (free-space) Green’s function
is then written [40]°

9o(7 t|70, to) = ﬁé (t — 1ty — %) (3.29)
This function is a solution to the inhomogeneous wave equation
g 209 (- st - ta) (3.30)
c? ot* '

now considering a pulse-wave from a point source located at r; and at
time ¢,. Note that from the delta function in Eq. 3.29 it is seen that this
function is zero until ¢t = (¢, + R/c) i.e. the time for the pulse to reach
the point 7. In fact it is nonzero only at this particular value of ¢.

The image source functions in Section 3.4.2 can be expressed as time-
dependent Green’s functions in a way similar to what here is done for the
free-space function. Utilization of the time dependent Green’s function
leads to the transient solution integrals of the next section.

°The time dependent Green’s function may also be written go(# — 75|t — t0) and its
sifting property is maybe clearer then.



Section 3.6 Solution integrals 27

3.6 Solution integrals

A rigorous solution for the acoustic pressure field when considering har-
monic (radiated) waves is described by the Helmholtz-Kirchhoff integral
formula. A derivation of this formula regarding optical disturbances is
given in [14] and for acoustics in [46]. In this text a slightly different
approach, as in [40], will be taken.

The equation V?p(¥,w) + k*p(7,w) = —F(¥,w) will be solved for the spa-
tial factor of a pressure wave from a simple harmonic source F(7,w).
First we multiply the previous Helmholtz equation with G/(7, r5|w) and
Eq. 3.21 with p(7,w). Next 7 and r; are interchanged and the symmetry
of G(7,75lw) and 6(7 — 7y) are utilized. An integration over the volume
will then lead to the formula

] 160 7o) ¥ar:0) - ) V3G )] Vs~

///p(ﬁ);w)é(f’— ro;w)dVy — // Py 0)G(F, 720)dVi

The zero indicate derivation and integration with respect to the source
coordinates.

Then by using Green’s second identity (Eq. 3.19) and the sifting property
of the delta function, we arrive at the solution integrals

ey = [[[ FEec e

P 3]7(7‘07 ) L OG(T Thw)
//SD |: T, ToiWw 877/0 _p(T07w) 8n0 dS&3.31)

+

The total field at 7 is thus the summation of the field from all elemen-
tary sources F'(7),w) plus the contribution from the boundary surface.
Eq. 3.31 is the Kirchhoff formula for the Helmholtz equation and the
latter integral (the surface integral) is recognized as the Helmholtz-
Kirchhoff diffraction integral.

In case of a source located inside an unbounded medium radiating out-
wards, the surface integral vanishes. On the other hand if we have a
source located in a part of the surface and no source inside the medium,
the volume integral will disappear. Assumptions implicit in Eq. 3.31 are
that the wave propagates in a linear, nonattenuating and homogeneous
medium,

A similar formula can be derived in terms of a more general wave ex-
citation that is not restricted to the harmonic case. In other words we
search for a solution to Eq. 3.14 where we will denote the source term as
f(75,t) and use a general, time dependent Green’s function g(7, 7glt, o).
This Green’s function is a solution to Eq. 3.30 i.e. the wave equation
with a space-time impulse source.

The derivation of the general formula is quite similar to the harmonic
case. One has to assume that 7 is in V' for the é-function to be nonzero
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and make assumptions regarding e.g. the deacying properties of the
temporal terms. The time dependent Kirchhoff formula is written

p(rit) = //// g(7, 75|t o) f (75 t0)d Vs

. Ip(7o;5to)
i //SD/— ( TTOHJO) dng
_)tt
_ p(r};to)w)dsodto (3.32)
8710

The total field is the sum of contributions from sources inside the volume
and sources outside the volume.

3.6.1 Acoustically rigid baffle

Remember that in this case the normal component of the velocity, v, is
zero on the boundary (Section 3.4). The appropriate Green’s function is
g.(7,70;w) in Eq 3.26. Its normal derivative is zero at the boundary i.e.
dg,/on =0at z = 0.

%8[1]kR+1]kR]
on on 47 R AT R
][ R-R
1

— eJRR (jk - %) (cos(p) + cos(p)

4TR
][ cos(p) = — cos(p)
dg
= =0
on
1
Lo jkR JkR
947, 7950) ATR TR
I r=r
1 5>
gy (Frsw) = 2o —=edRBE — 90 (7 7 0)

AT R

For the time dependent case the Green’s function will be (see Sec. 3.5)
g+(Fv T_(3|t7 tO) - QQO(Fv T_(3|t7 tO) (333)

The two latter equations signify that the source and its image has co-
alesced to form a source of double strength. Because of the vanishing
derivative of the Green’s function the resulting integral only includes
the normal derivative of p and therefore only the first term of the sur-
face integral in Eq. 3.31 applies

. J L
w) = / S, 8—np(r0;w)g+(r, To;w) dSy
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Expanding this solution to include time and at the same time using the
transient form of go(7, 7o;w) i.e. go(7, 7o;t) gives

p(rt) = 2 // (70, 7)go (7, t|75, 7) dT d Sy
So -

1
= 2 /Su/— p(ro, T 2 Ré(t—T—R/c)deSO
][ applying the sifting property of the é-function
o -
. B mp(ro,t - R/c) g A
p(7t) = / e S, (3.34)

This equation is known as the Rayleigh integral. 1t may be written
equivalently by using Eq. 3.6 as

o =
L mvn(ro,t—R/c)
p(7t) = / P Ry S, (3.35)
and by using the velocity potential of Eq. 3.10 it can be written
v (70, t R/c)
/ /5 S, (3.36)

The obliquity factor (see the next section) is «grs = 1. The Rayleigh
integral seems to be used most often in acoustics. At least when judged
by its appearance in acoustical textbooks e.g. [40].

3.6.2 Acoustically soft baffle

In this case the pressure pis zero at the surface. The appropriate Green’s
function is then ¢_(7, 7;w) (Eq. 3.27).

dg- _ 9 [;eﬂm _ ;eﬂcﬁf]
on on |47 R 4T R
][ R—=R

_ 4;1% JER <]k _ %) (cos() — cos($))

[ cos(y) = —cos(¢)

dg_ . 1 1 LR

Y- I

o 2 cos (]k R) 47‘[‘R€
g-(ryr3w) = 0

In this case the function itself ¢_(7, 7j;w) disappears on the boundary
i.e. g_ = 0 and only the second term in the surface integral of Eq. 3.31
applies. We then have that

p(Mw) = // —p(7o;w ;TO’ )dSo
So

1 1 :
= //Su p(ry;w)2cos ¢ (]k — E) —47rRe]deSO
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By assuming R = | — 75| > 1/k we can omit the 1/R term. In addition,

gr;;m [10] we have %ﬁ;ﬁw) = —jkp(r;w)el@i=kx) “and by using this we
o %p(fo; w)
p(Fw) = //Su B 4 dS, (3.37)
The equivalent transient form of this equation is given by [14]
0 =
p(7,t) = / S, mp(r;;rtR— R/e) ccosp dS (3.38)

This formulais called the Rayleigh-Sommerfeld integral and is equiv-
alent to the Rayleigh integral except for the obliquity factor azs = cos ¢.

3.6.3 Source in free space

In this case we have no influence from the boundary and the latter part
of Eq. 3.31 disappears. The closing surface in an practically unbounded
medium has no influence due to Sommerfeld’s radiation condition. By
applying the free space Green’s function and do derivations similar to the
two preceding procedures, a new solution formula arise. This formula is
known as the Kirchhoff integral and its transient form is written

O o
oo a_nP(TOJ_R/C)‘lJrcoscp
p(it) = / /5 D 5T 5 4% (3.39)

Note that only the obliquity factor ax = H%(E is different from the
Rayleigh integral. This solution is used particularly in the field of optics.

3.7 Calculating the transient acoustic field

So far three particular solutions to the acoustical problem regarding
three different boundary conditions have been discussed. Calculation
of these solutions and hence simulations of the transient field will now
dicussed briefly.

First, the similarities between the solutions are easily observed. Only
in the directivity (i.e. obliquity) factor, «, they differ. It is shown in
Figure 3.3 that the deviations between the directivity factors are minor
when considering solutions at narrow angles. The deviation between oy
and apg is less than 5% at angles +18° and the deviation between ap
and oy is less than 5% for angles at about +25°.

The effect the obliquity factor has on the accuracy of the calculations de-
pends on the deviation between the impedance of the transducer and the
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assumed boundary for the chosen integral. The Rayleigh integral may
be an acceptable approximation when the point of observation lies close
to perpendicular to any point of the source (i.e. « =~ 1 and is herefore
ignored).

According to Kino[27], a transducer element (like one in an ultrasound
array) has an response between the rigid baffle case and the pressure
release baffle.

Obliquity factors

Rayleigh

Magnitude

Rayleigh-Sommerfeld

Angle [degrees]

Figure 3.3: The obliquity factors are plotted for angles from —15° to 15° off-axis. The
deviation is observed to be minor when we are close to the axis.

The geometrical shape of the transducer is crucial for the calculation of
the field. Planar transducers will lead to simplified expressions. Other
important parameters that affect the field are the excitation and the
characteristics of the media.

Further simplifications that often are utilized, comes from near-field and
far-field assumptions. The near-field is often called the Fresnel region.
By using the Fresnel approximation one assumes that the phase of the
wavefront in the aperture has a quadratic dependence on aperture co-
ordinates [14]. Accepting the validity of the Fresnel approximation re-
duces the solution formula to a two-dimensional convolution [14].

In the far-field the waves are considered to be planar waves. This region
is called the Fraunhofer region and starts approximately at a distance
farther from the transducer than D?/2), where D is the maximum linear
dimension of the aperture. By using the stronger Fraunhofer approx-
imation, the solution formula simplifies to a two-dimensional Fourier
transform of the wavefield in the aperture [14].

3.7.1 Numerical integration

A robust way of computing the field is to perform the integration of the
formulas e.g. the Rayleigh integral of Section 3.6, numerically. However
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this will often be a laborious task since a high number of operations is
required to compute the whole field. Each field point will be the sum of
contributions from every transducer element. In Fig. 3.4 we see that in
order to calculate the field at the observation point, we need to compute
the contributions from all elements and add them together.

If we want to calculate the field over an observation plane z = 2,;,c,vation»
then we must repeat this procedure for every point in this plane. Making
a 3D plot of the field requires the calculations to be repeated for selected
values of z.

The main advantage with this method is its simplicity and generality.
It can be used to calculate the field from transducers of any shape. A
similar approach is taken in the UltraSim program [19].

4 OO
”.: ________________________ & | Next points
‘ .x -------------- Point of observation
e ;
N o
Transducer

Observation plane

Figure 3.4: This is an attempt to visualize that points in the aperture all make a
contribution to the field at the observation point (only a few points in the aperture is
drawn).

3.7.2 Angular spectrum method

Only very briefly we will mention some terms of this method.

The angular spectrum, or Fourier decomposition method was originally
developed in the study of optical diffraction [14]. It has later also been
applied to acoustical wave propagation and has turned out to be a pow-
erful tool in that manner [43]. With this method a pressure distribution
over a plane surface is decomposed into an equivalent 2D spectrum of
plane waves. Propagation from one plane to another parallel plane is
modelled by multiplication of the spectral component with the appropri-
ate phase factor. Thus by adding the contributions from the plane waves
and consider the phase shifts they have undergone during the propaga-
tion to the point of observation, we can calculate the field amplitude in
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every point of interest. The efficiency of the method is due to its numer-
ical implementation with the 2D FFT.

Assuming a wave incident on the zy-plane i.e. the source decomposition
plane is located at = = 0, then the angular spectrum decomposition is
expressed as a spatial 2D Fourier transform

Ao(for fy) = // (2,y,0)e I et f) dady (3.40)

f. and f, are the spatial frequencies in z- and y- directions respectively.
The wave vectors then are k, = 27 f, .k, = 27 f, etc. and propagate in the
direction k. There is a continuous distribution of plane waves arising
from the decomposition and this is the angular spectrum.

The further discussion on this method will be omitted, for further details
the reader can turn to the excellent texts of e.g. [14] and [43].

3.7.3 Impulse response method

A powerful technique of evaluating the formulas of Section 3.6 is the
impulse response method [53]. It is also referred to as a convolution
integral method. We will use the Rayleigh integral (Eq. 3.36) when giv-
ing a brief summary of the principles of this method. Thus the velocity
potential in a spatial and temporal point is determined from

v (70, t R/c)
//50 2T R 45

The velocity function can be expressed as a temporal integral term
on(t = Rfe) — / on(t0)5(t — R/ — to)dty (3.41)

This integral is inserted into Eq. 3.36 and by exchanging the order of
integration we get a new equation

o(t—Rfc—t
(7, 1) = / v, (to) / %Ro)dsodto (3.42)
Then the impulse response A (7, t) is defined as
8- RJo)

In every instant i(7,¢) mainly gives the amplitude of the contribution
from every point on the source that is equidistant from the point of ob-
servation. The impulse response function is thus the time dependent
velocity potential at a spatial point resulting from an impulse velocity of
a transducer of any shape. From Equations 3.42 and 3.43 we note that
the velocity potential can be expressed as a convolution process.

B(7,t) = va(t) % h(7,1) (3.44)
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Therefore, when the velocity potential is determined, the pressure is eas-
ily calculated by Eq. 3.10. Alternatively, we can express the convolution
in terms of the pressure

prt) = o2 i) (3.45

The convolution integral is a quite simple integral to evaluate numer-
ically. Calculation of the field originating from an aperture is then a
matter of evaluating the impulse response for its geometry considered.
Once i(7,t) has been determined, the following convolution integral has
to be evaluated

t2 _
p(Ft) = —p /t Wh(ﬁr)dr (3.46)

Here ¢, denotes the minimum time of arrival from the source to the point
of observation and ¢, the maximum time of arrival. This is clearly a
one dimensional integral in contrast to the two dimensional integral of
Eq. 3.36.

Analytic solutions of i(7,¢) have been derived for several geometries.
For example plane circular piston in [53, 54] and for a curved radiator
in [45]. It is not always possible to find closed form analytic expressions
for the impulse response in case of more complex geometries.

However, a variation of this method has been proposed in [22] that can
simulate transducers with ‘any transducer apodization and excitation’.
Two assumptions have been made there.

First a large and slightly curved transducer is assumed. Secondly, a
separability between the excitation and the transducer geometry is as-
sumed. Thus the surface vibration is split into a spatial component and
a temporal component.

A simulation method is proposed that emit a spherical wave from a point
on the aperture and then sum all spherical waves at the field point. The
waves are weighted by the inverse of the distance between the aperture
point and the field point.

The transducer surface is divided into small rectangles and the position
and orientation of these are first calculated in the simulation program.
The responses from these rectangles are then added and the field is cal-
culated.

Utilization of simulation methods based on the impulse response method
is seemingly widespread for calculation of the acoustic field, due to the
methods computational efficiency.

3.8 Summary

In this chapter some basics of acoustics have been reviewed. Special
concern has been devoted to three particular boundary cases and to the
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non-harmonic excitation of apertures. An equation for calculation of the
transient field for a rigid baffled transducer has been derived more thor-
oughly than the soft baffle and free-space cases.

Several assumptions are useful when calculation of an acoustic field is
desired.

Finally, some attention has been made to methods for calculation or sim-
ulation of transient acoustic fields. The simulation of ultrasound fields is
often a necessary tool used when designing new transducer geometries.



Chapter 4

Beampatterns by the
Coarray method

Array systems are used to detect signals conveyed by propagating waves
and thus sample wavefields spatially. A large collection of distinct array
processing algorithms allow us to steer and focus arrays in particular
directions, thereby providing directional information of the unfolding
signals. These algorithms are called beamformers. In this text only
conventional beaformer algorithms are taken into consideration.
Signals received by the sensor elements are used in a phased manner
in order to preferencially detect signals from a desired direction. Beam-
forming can be regarded as attempting to estimate the wavenumber fre-
quency spectrum of the wave field and is thus an analogy to bandpass
filtering in case of 1-D spectral analysis [23]. The beampatterns disclose
the array’s ability to focus on a given signal (a beam) while discarding
noise signals from other directions.

The objective when designing a beamformer is to make the beampattern
as close to an impulse as possible. As we are using only a finite number
of sensors we know that there must be a discrepancy between the objec-
tive and the physical reality, and that this portion is highly dependent
on the number of sensors and the area that the aperture spans.

In this chapter the coarray is seen to offer an alternative way of calcu-
lating the beampattern, under given circumstances, and discussions on
the developed coarray calculation and visualization tools are given in
the last section of this chapter. Some discussion on different element
configurations of arrays have also been included in this chapter
However, let us first take a look at some sampling relations that are
valid for propagating signals. In other words, relations valid for spatio-
temporal signals.

36
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4.1 Simultaneous time and space sampling

The array systems sample the wave field in both time and space. This
puts limitations on the sampling intervals in both domains. From digital
signal processing we know that in order to avoid temporal frequency
aliasing, we have to sample at least twice as fast as the fastest variation
of the signal (the Nyquist rate).

If the highest frequency component of a time-space signal, s(Z,t), is wy,
a sampling frequency, w, > 2w, must be chosen. Thus the time between

each sample is at most
27 T

< — (4.1)

Ws _w0

T

The input signal to a system with sampling frequency, w,, must then be
band limited to frequencies below one-half the sampling frequency. Un-
dersampling appears when we sample too slow for the frequency content
of the signal. In an undersampled system, the Nyquist sampling theo-
rem states that frequencies in the continuous signal above the Nyquist
rate, w, /2, will appear as frequencies below this rate. Thisis called alias-
ing.

The Nyquist criterion also applies to spatial sampling. This implies that
in order to avoid spatial aliasing, the spatial sampling frequency, ,,
must be at least two times the highest component %, of the time-space
signal, s(Z,t)i.e. k, > 2kq.

In space we sample with sensors separated by d meters. Consequently,
the spatial sampling interval must be

2T

d— =
kq

< (4.2)

T
ko
For propagating signals, the relation between wavenumber and frequency
is (for non-dispersive media) k = %. Thus a temporal band limited prop-
agating signal implies that the signal is spatially limited as well.

Combining the sampling relations above, yields the coupling between

temporal and spatial sampling

(4.3)

The spatial sampling characteristics are determined by the inter sensor
spacing, and they are therefore fixed once the array is made. We are now
assuming that the array spacings cannot be dynamically altered by con-
necting, disconnecting or displacing array elements during or between
operations (as is the case for e.g. very large arrays (VLAs)).

The temporal sampling properties will be determined by the electronics
e.g. the time delays between each sample. Because of the close rela-
tionship between the sampling in the two domains, the risk of under-
sampling in one domain while oversampling in the other, exists. Un-
dersampling in the spatial domain will give grating lobes in the visible
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region. Signals propagating in directions corresponding to the grating
lobes cannot be distinguished from the signal with direction correspond-
ing to the mainlobe.

The relation between the magnitude of the wavenumber vector in the
z-direction and the angle of incident' is written

k. —ksing - —2"

sin ¢ (4.4)

A

- X—axis

Figure 4.1: Illustrations of a propagating signal impinging on a linear array with
an azimuth angle ¢. The directions of the wavenumber components are indicated by
drawing them as basis vectors.

Since |sin ¢| < 1, k, can be real only between +27 /). The region that &,
span when |k,| < 27/A is the called the visible region, and corresponds
to angles between +90° for a given value of \.

A linear array like the one in Fig. 4.1 with uniform weighting, will have
an array pattern

sin(%kxd)

Wik,) = sin(Lk,d)

(4.5)
It is easily observed that this function is periodic with period &, = 27 /d
and the spatial frequency, k, = 7/d, is often called the folding frequency.
We recognize this frequency as the limit of the spatial sampling interval
(Eq. 4.2). Consequently, the sampling characteristics will be determined
by the inter-sensor spacing and the design wavelength.

The array pattern for a linear array can also be expressed in terms of the
azimuth angle, ¢ i.e. the angle between the incident wave propagation
direction and the normal to the plane. Simple geometrical considera-
tions show that £, = —ksin ¢. Hence we can write the array pattern in
terms of the angle

sin(24sin(¢))

sin(Xsin(¢))

'this is the azimuth angle in case of a linear array

W(o) = (4.6)
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Let us now assume that we have chosen a inter-element spacing of d = A.
A grating lobe will then arise at ¢ = +90°, since sing, = +4 = =+I1.
Propagating waves impinging normal to the array, can then not be dis-
tinguished from the waves coming from the z- or —x-direction. If we
increase the size of d, stronger undersampling results and we introduce
grating lobes at angles closer than 90°.

By choosing d < A/2 oversampling occurs and the £,-values up to the
folding frequency span a wider field than ¢ = 90°. The spatial frequen-
cies above 27/ define the invisible region. No propagating signals en-
ergy can appear hear, but noise signals can contribute to a calculated
spectrum. Algorithms that assume no energy in this region may then
be confused.

4.2 Fundamentals of coarrays

The term coarray was first introduced by Haubrich [17] apparently as a
short name for ’correlation array’. He discussed array design in case of
incoherent radiation by means of getting high resolution. In this text we
will not restrict our examination to discussions on getting the minimum
beamwidth but will also consider minimization of the sidelobe level.
Primarily the discussion is with respect to incoherent radiation. Nev-
ertheless, some basics for the coarray with respect to coherent imaging
will also be reviewed, where the term coarray might be regarded as short
for ‘convolution array’. With incoherent imaging, is meant the process
of measuring a field, originating from an emitting source in space, over
an aperture.

Using an aperture to transmit radiation and next measure the radia-
tion reflected from objects in space over a receive aperture, is referred to
as coherent imaging. Examples of the latter are radar and ultrasound.
The discussions in the subsequent introduction to coarrays are primar-
ily with respect to linear arrays. Later two-dimensional (planar) arrays
(Sec. 4.4) will be discussed, and differences and similarities compared to
linear arrays will hopefully become clearer than.

4.2.1 The difference coarray

For incoherent imaging, the coarray is defined as the set of all vector
spacings ? between points in the aperture. Formally it is defined [18]:

Cd(A17A2) é {y | Yy =T — Ty fOI‘ T € Ahwz € Az} (4.7)

where A, and A, are the sets of position vectors for elements in fwo
receive apertures. This coarray will be referred to as the difference coar-

2often called baselines
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ray. It can also be denoted the morphological autocorrelation[18] of A
because most frequently we have A, = A, = A and the operation is
equivalent to correlate A with itself. The term morphological denotes
calculation with respect to the spatial shape and structure of the arrays
or apertures.

For discrete arrays this correlation process will be a discrete sum over
all element positions, while a continuous aperture requires integration
over the aperture area. The coarray for a continuous aperture is defined

(i) = / w(@)w(@ + 7)dF (4.8)
A
A definition of the discrete coarray function is [23]
(Xm) = Z wowy . m=1,2..., M, (4.9)
(a,b)€9(X)

W) = {(@0)%n = & &)
Here y denote the particular lag or baseline and ¥(Y) the set of indices
(a, b) given by the pairwise differences of sensor locations. The value of
the coarray at a particular lag will be the sum of the products of w,w,
that constitutes this lag i.e. the sum of the weight contributions from
equal baselines. The coarray values vary between zero (no baseline of
this particular length) and N, the number of elements in the array. The
coarray value for lag zero is always N for difference coarrays, unless we
have applied a nonuniform apodization to the array.

In that case the maximum lag value at lag zero is equal to the sum of
the squared sensor weights i.e.

o(0)= Y (w)
(a,a)ed(0)

The maximum number of elements in a coarray appears when there are
no repeated vector differences in the array (i.e. no redundancy). This is
equivalent to maximization of the resolution. In that case the maximum
number of distinct elements in the difference coarray is

M; = N(N-1)+1 (4.10)
The redundancy ratio® is given as [5]

N(N - 1)
2L

R = (4.11)
Here N is the number of sensors in the array and L is the length of the
array (the aperture). For an array with NV equally spaced sensors the
length willbe L = N — 1.

It should be noted that some other authors (e.g.[3, 39]) denote the ar-
ray length by the equivalent greatest multiple of unit spacing and that

?Sometimes called the redundancy degree or redundancy factor. In some articles it
appears in a 'upside down’ form.
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Eq. 4.11 is the inverse of the quality ratios in some articles e.g. in
[17, 23]. This property is thus expressed in a variety of ways. However,
its purpose is to quantify a reference grid so that the various arrays can
be compared with respect to the degree of sparseness.

The aperture of an equi-spaced array can be determined from [33]

N(N -1)
2
where R and H denote the number of redundancies and holes in the
coarray respectively, counted for positive lags. This formula will for an

equi-spaced array be equal to the array length, L.

A redundancy in the coarray appears when there are more then one pair
of sensors separated by this particular distance. Holes appears when
there are no pair of sensors separated by a given distance. If there are
neither holes nor redundancies, the array is called a perfect array (see
Fig. 4.2). There exists no perfect linear arrays with more than four sen-
sors.

A= -R+H (4.12)
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Figure 4.2: Afilled regular linear transducer array giving a difference coarray with
redundant lags but no holes is given in (a). In (b) the largest perfect linear array from
an underlying regular grid is shown. The circles denotes missing elements in the grid.
The minimum grid spacing is d = A/2 in both arrays.

The redundancy factor thus shows how well one has succeeded in mak-
ing a perfect array. Designing arrays with minimum redundancy is mo-
tivated by the desire to approximate a perfect array. These arrays are
characterized by high resolution, but suffer from a high sidelobe level
that limit their usefulness in applications where noise signal affects the
field.

It has been shown [3] that for minimum redundancy arrays the limit of
the redundancy factor is 4/3. Minimum redundancy arrays have a coar-
ray of maximum length, with the constraint that there exists no missing
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Figure 4.3: The angular responses of the arrays in figure 4.2 are calculated from
their coarray values.

lags. The coarray values are required to be C'; > 1 (see examples in [33]).
A nonredundant array is the coarray of greatest length without any
redundancies. In other words we allow missing lags to exist (see ex-
amples in [23]) and their coarrays have values limited to the interval
Cy €0, 1]. Both minimum redundancy linear arrays (MRLA) and mini-
mum missing lag (nonredundant) arrays give maximum resolution for a
given aperture. The largest perfect array also is the largest array where
a MRLA resembles a nonredundant array with the same number of ele-
ments. For all arrays with more than four elements, the nonredundant
array will span a larger aperture than the MRLA. Consequently, it will

also span the largest region in the lag-space and hence give the best
resolution.

4.2.2 The sum coarray

For coherent imaging the coarray is the set of vector sums of all point
location vectors in the aperture [18]

Co(Ap, AR) 2 {yly =, + 2, for w, € Ap,a; € Ag) (4.13)

where A7 represents the transmit aperture and Ay the receive aperture.
In the further writing it will be denoted the sum coarray. It may as well
be referred to as the morphological convolution of set Ay and Ar because
of its equivalence to a convolution between the two arrays. With discrete
arrays this implies a convolution sum, while a continuous array will
demand a convolution integral. Identical receive and transmit aperture
gives an auto-convolution.
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The coarray for a continuous aperture is defined

() = / w(@)w(F — P)dF (4.14)
A
A definition of the discrete coarray function is [18]
(Xm) = Z wewy , m=1,2,..., M, (4.15)
(a,0)e¥(X)
— — — — MS
\II(X) - {((L, b)|Xm =a,+ xb}m:l

Here Y denote the particular sum-lag or baseline and ¥(y) the set of
indices («a, b) given by the pairwise sum of sensor locations. M, is the
number of lags in the sum coarray.

The maximum number of elements in a sum coarray appears when there
are no repeated vector sums in the array (i.e. no redundancy). In case
of nonredundant arrays the maximum number of distinct elements for
the sum coarray is[18]

N(N +1)

M, = — (4.16)

4.2.3 Comparison between the two types of coarrays

When compared to Eq. 4.10, the latter equation signifies that the sum
coarray will contain fewer points than the difference coarray in nonre-
dundant arrays. To the author’s knowledge there has been no thorough
investigation on arrays with minimum redundancy in the sum coarray.
The sum and difference coarrays will be identical for some arrays. With
linear arrays this happens when the arrays are equal and symmetric
with respect to origin (2 = 0 on the z-axis).

Two-dimensional arrays with equivalent difference- and sum coarrays
exist. For a planar (2D) array this will be the case when the arrays
are equal and symmetric with respect to both the x- and y-axis. This
should be obvious since convolution implies a rotation of one of the ar-
rays around both axes before correlating the arrays (i.e. before the el-
ement weights are multiplied and summed up). When the coarray is
symmetric to both axis, a rotation of the array has no influence on the
array and the convolution operation is equivalent to the correlation of
the arrays.

It should also be noted from the definitions that the sum coarray is sen-
sitive to the location on the aperture plane, while the difference coarray
is not. Moreover, the sum coarray has lags farther from the origin than
the difference coarray has.

An important point about coarrays that should be emphasized is that
different aperture geometries may share the same lag-space. When the
coarray lag-spaces cannot be told apart, the apertures are said to be coar-
ray equivalent. It should be observed that the coarray values of coarray
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equivalent arrays will be distinct. Their equivalence is with respect to
the spatial extension and shape in the lag domain. This is observed in
the succeeding figure where coarray equivalent two-dimensional arrays
are plotted (Fig. 4.4).
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Figure 4.4: Examples of coarray equivalent apertures. A rectangular boundary
array is seen to span the same lag space as the uniformly filled rectangular array.
The minimum grid spacing is d = A/2 in both arrays. The coarrays for the array in
(a) is shown in the lower left window and the coarray to the right corresponds to the
array in (b).

Other arrays that are coarray equivalent with the two in figure 4.4 exist
e.g. a 10 element U-shaped array. Similarly will a thin annular aperture
be coarray equivalent to a disc aperture, but not equivalent in coarray
values.

A general principle is that ‘any two apertures that are coarray equivalent
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can be used to produce images with the same point-spread function’[18].
This means that different apertures can give the same beampattern, if
sufficient processing is performed to ’fill in’ the contributions from the
missing array elements.

Throughout this chapter properties of the difference coarray will be dis-
cussed. It will be seen that the coarray displays both the regularities
and irregularities of a given array. Regular linear arrays will always
give regular coarrays. Irregular linear arrays will always give irregular
coarrays. However, with arrays of higher dimensions, irregular coarrays
may occur from regular arrays.

4.3 Linear arrays

Linear arrays can be divided into regular and irregular linear arrays.
With regular, an equi-spaced separation between the elements is meant.
The first has elements along one axis laid out on an underlying regular
grid, while the latter has no such underlying grid.

An array need not have every grid position occupied by a sensor or ele-
ment. Linear arrays with some elements not connected are called sparse
linear arrays. The elements of an array may be placed in several ways
dependent on the particular application it is designed for. In this thesis
we distinguish between four types of element configurations.

1. Uniformly filled array
2. Sparse arrays

3. A perturbed array is an array where the elements are displaced
from their original equi-spaced grid position. The displacement is
often random distributed and is of course within certain limits e.g.
[56].

4. A fixed non-equally spaced arrays has elements separated by in-
creasing or decreasing inter-element spacings. The placement of
the sensors are according to a formula e.g. a geometric series (or
equivalently a logarithmic sequence) or a Gaussian quadrature for-
mula as in [57].

It is known that for a given number of elements in the transducer array
one achieves maximum resolution by minimizing the number of redun-
dant spacings in the array [39]. Thus the coarray parameter revealing
the resolution of an array is its redundancy factor. A lot of work has been
done in order to find minimum redundancy linear arrays. The number
of articles on this subject is quite comprehensive, though the search is
extensive even for arrays with relatively few elements.
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Fortunately the search for these arrays has an equivalent in finding a re-
strictive difference basis set from a number theory viewpoint [31]. This
equivalence seems to have been helpful in the laborious task the search
implies. Search algorithms have been presented for equi-spaced sparse
arrays in e.g. [5] and [32].

A similar coarray factor showing the degree of sidelobe control has to
the authors knowledge not appeared in the literature so far. Generally
we know that the sidelobe level is strongly influenced by the number
of sensors in the array, but we know little about the relationship with
the coarray. In [13] examples are given of very distinct coarrays that
almost resembles in magnitude angular response. It is suggested that
the differences in coarray values would appear as distinct phase char-
acteristics. This may then indicate that finding at least a single coarray
parameter showing the sidelobe level, will not succeed.

However, we anticipate that a further investigation on the relation be-
tween the properties in the frequency domain and the morphological
properties of the coarray could be a feasible way of determining at least
the sampling characteristics of an array. It should also be noted that an
improvement in the sidelobe region is observed when non-unity weights
are applied to the outer elements of some arrays* and that investiga-
tions on distinct transmit and receive arrays (as used in [51]) have not
been considered.

The discrete arrays of sensors are similar to the FIR (Finite impulse re-
sponse) filters because of the FIR filters finite temporal extent and the
arrays finite spatial extent. Thus the theory and methods of filter design
by the window method applies to arrays as well. However, for apertures
it represents the relative weighting of the field within the aperture. For
arrays, different weights are applied in different sensor locations and
is thus a spatial window. There are numerous windows with various
properties[16] that have been proposed for filter design.

A feasible way of reducing the sidelobe level is by choosing a window
that weights the array. This weighting is often called apodization (or
shading or tapering) in case of arrays and antennas and is similar to
using a window in spectral estimation. Normally it is done by degrad-
ing the excitation amplitude towards the end of the array or by reducing
the amplification of the signals received by the sensors towards the ends.
The cost of the this reduction in sidelobe level, is as in signal processing,
a degraded resolution. In other words there is a tradeoff between the
high resolution goal and the will for noise suppression.

It must be mentioned that the maximum achievable spatial resolution in
the lateral dimension is fixed once the array’s geometry is made. There-
fore it is only possible to lower the sidelobes at the cost of broadening
the mainlobe of the beam, when weighting the array.

*This may indicate that a particular class of arrays can get better performance by
a simple weighting. However, simulations with several different arrays reveals that
most of them will not display any improvement.



Section 4.4 Two-dimensional arrays 47

In order to get optimal weights for the array, the Parks-McClellan algo-
rithm [44] can be used. This algorithm is based on the Remez exchange
algorithm and gives the optimum approximation of filters in the Cheby-
shev sense when the impulse response is equi-spaced and symmetric. In
array signal processing the equivalent demands are that the array must
be uniformly filled and have equi-spaced elements symmetrically posi-
tioned around the array’s origin. The weighted array is then the min-
imax approximation to a desired beampattern, when optimized by this
routine. With this algorithm we have superior control over the sidelobes
(that will be equi-ripple) as long as the sufficient conditions are met.

4.4 Two-dimensional arrays

The 2D planar arrays have elements placed in both x- and y- direction
(or equivalently in both azimuth and elevation direction). The place-
ment can either be on a regular grid or on a plane where no underlying
grid can be recognized.

It has already been mentioned that planar rectangular arrays provides
focusing and steering in both elevation and azimuth directions. This
will reduce the thickness of the scan slices and therefore give better lat-
eral resolution. A serious drawback for two-dimensional arrays is the
considerable increase in number of sensors to be handled, when com-
pared to one-dimensional arrays. To have 64-elements in both azimuth-
and elevation dimensions demands an array with 647 — 4096 elements.
This complexity has been a major incentive for developing sparse array
systems.

It can be seen that coarrays of two-dimensional transducer arrays hav-
ing similar geometries vary widely. Regular two- and three- dimensional
arrays can have irregular coarrays [23]! Examples of regular and irreg-
ular arrays are the circular 8- and 9-element array in Figure 4.5, respec-
tively. The transducer array with 8 elements is symmetric with respect
to both axes and therefore has identical sum- and difference coarrays.
It is also a redundant array since lag-values larger than one, appears in
the coarray. It should also be noted that this array has an underlying
grid and this can be seen as two four element arrays with one rotated
by an angle of 7/4. The nine element array has no such underlying grid
structure and the coarray displays this irregularity by its complicated
structure. Equivalent coarray examples are given in [23, 29].

Several nonredundant two-dimensional (planar) arrays have been pro-
posed. One example is the nine element array in figure 4.5 and another
one is the triangular shaped Haubrich-array with 6 elements [17]. The
search for arrays with low redundancy is much more laborious with 2D-
arrays than with linear arrays. Several configurations for arrays with
this property appears in the literature e.g.[6, 7, 15]. However these ar-
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Figure 4.5: An example of circular transducer arrays of similar shape but with
distinct difference coarrays.

rays are designed for the case of one propagating signal to be detected.
We consider the situation where several signals are present (both sig-
nals with information we are interested in and noise signals). So despite
these arrays’ comparatively high resolution, their sidelobe levels far ex-
ceed the desirable for our applications.

As for linear arrays, weighting can be applied to reduce the sidelobe
level. In this case the apodization will be both in elevation and azimuth
directions. However, attaining control over the skirt of sidelobes for 2D
arrays is more difficult than in the 1D case. For example is the math-
ematics describing two-dimensional systems (functions) less complete
than for one dimensional systems. There is no fundamental theorem of
algebra for polynomials in two independent variables [26]. Moreover,
there are a lot more degrees of freedom in 2D systems.

Nevertheless, methods for expanding some 1D systems to two dimen-
sions have been proposed [21]. A good symmetrical one-dimensional
window w(z) may be extended to wsp(2,y) = w(y/2? + y?) which then,
becomes a good circular symmetric two-dimensional window?®.

In [24] an approximation for two-dimensional FIR-filters in the Cheby-
shev sense using the Remez exchange algorithm is presented. One should
be aware that approximation functions defined in a two-dimensional do-
main does not satisfy the Haar condition [48]. Therefore the optimum
solution is not necessarily unique and we may also have convergence
problems. Moreover, finding the parameters is a problem of consider-
able size since the number of unknowns in the 2D case 1s N?, in contrast

®The use of circular symmetric filters are well known in the field of image processing
[47] and is used for both filtering, compression and image improvement. Image
processing can be regarded as a special case of two-dimensional signal processing and
thus have some similarities to our field.
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to V in the 1D case. Thus finding optimal weights for the planar array
case remains a complex problem though some approaches have been pro-
posed in the open literature.

Finally a note on sidelobes in the two-dimensional case, should be given.
For linear arrays it is often desirable to minimize the total area under
the sidelobes. This measures the energy contribution from signals out-
side the mainlobe. For two-dimensional arrays the similar will be to
minimize the volume under the sidelobes.

4.5 Sensor placement and thinning of arrays

As stated earlier in this chapter the arrays can have various configura-
tions. In this section we will mention three ways of making linear arrays
with distinct element locations. The latter method also applies to two
dimensional arrays.

4.5.1 Locations based on Gaussian quadrature formulas

In [57, 56] a Gaussian quadrature formula is used to determine the lo-
cation of the unequally spaced sensors. These formulas are known from
the numerical integration theory of mathematics. The famous mathe-
matician Karl F. Gauss discovered that by special placement of the calcu-
lation nodes, the accuracy of the numerical integration could be greatly
enhanced.

A large family of such formulas act in accordance to

/ab fe)da = Y A, f(o)

Hence only the nodes’ {z,}L_; and the 'weights’ {A,}Z_, needs to be
known [9]. Tables for these values exist for different values of L. The
roots of the Legendre polynomial are known to give the nodes for the
Gaussian quadrature on the interval [—1, 1] [9].

In [57] a 10 element array is designed from a Gaussian quadrature. No
formula is supported in this article, so a brief description will be given
here.

A Gauss-Legendre quadrature formula table that includes . = 10 i.e.
that have 10 nodes, is given in appendix C in [58]. Streit’s approach is
to use these nodes and scale them with respect to the aperture ends or
outer coordinates of an equi-spaced array. For a 10 element linear array
the outmost sensor will be located 2.25) from the array origin. Since the
aperture is fixed, this point must be equal to the » times the outmost
node (x; or x,,). Consequently, the scaling factor that must be applied
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Nodes Weights
Ti—n+1 = —Tp AL—n+1 = A,
0.9739065285 | (-1) 0.6667134430
0.8650633666 0.1494513491
0.6794095682 0.2190863625
0.4333953941 0.2692667193
0.1488743389 0.2955242247

Table 4.1: Nodes and weights from the Gauss-Legendre quadrature formula table
in [58] for the value of L — 10. Note that only the 10 most significant decimals are
included here.

to get a 10 element array with desired aperture is

2.25\

= ———————— ~2.3102833118A
0.97390665285

Ul

The sensor locations and the wavelength normalized location vectors are
given in table 4.2 and the values are also recognized from the &,s1n [57].

Sensor locations | A\/2-location
Tp = —T_p §n = —En
0.34394190\ 0.68788380
1.00126615A 2.00253229
1.56962859 A 3.13925717
1.99854146 A 3.99708292
2.25000000A 4.50000000

Table 4.2: Sensor locations, zx, and wavelength normalized locations, ¢,, calculated
from the nodes given in the table 4.1. We recognize the values of &,, from [57].

Simulations with this array are reported in section 6.2.1.

4.5.2 Locations determined from geometric series

The elements may also be placed in locations determined from geometric
series. In that case the spacing is determined from d, = «" for n =
1,2,..., N, where the inter-element spacing will decrease if 0 < a < 1
and increase if ¢ > 1.

Thus the nominal sensor locations will be

jl — 1 (4.17)
Ty, = jn—1+dn—1 forn:2,3,...,N
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When the nominal locations have been determined, they must be scaled
according to the desired aperture, A and according to the array origin so
that they are symmetric and span the aperture.

First the value of the mid-element # ~+: is subtracted from the values
of z,, for an odd length array. For an even length array, the origin is
between the two mid-sensors and this value of their origin is subtracted
from the set {7, }.

Next, the aperture scaling factor is applied:

A

Ty — T

(4.18)

{xn nN:1 =Ty -

and we have the N sensor locations spanning the entire aperture, A.
The aperture scaling is just the rate between the desired aperture and
the nominal aperture.

A routine for calculating the sensor locations from a geometric series,
has been programmed and implemented in the UltraSim library. Simu-
lations with two arrays of this kind is reported in section 6.2.2.

4.5.3 Thinning of an array

The performance of the thinned array will be distinct from the unthinned
array, with differences depending strongly on the degree of thinning.
Obviously, the end elements are never thinned or displaced. Removing
the end elements will give a narrower aperture and thus a narrower
coarray. As a result from this the resolution is reduced.

We consider thinning of the end elements as making a completely new
array distinct from the initial one. This is due to the fact that a com-
parison between these two arrays would be meaningless when both the
number of sensors and the apertures are distinct.

One must (or at least one should) distinguish between two types of thin-
ning:

1. Removing elements from a \/2-spaced array. The result is an un-
dersampled array where the mean spacing is larger than the half-
wavelength and the result is a sparse array.

2. Thin elements from an array with initially spacing less than d =
A/2, until the mean spacing is A/2. The result is a perturbed ar-
ray. Normally the perturbation is done by displacing the elements
within certain limits (generally half the spacing -+ /4). When per-
turbing with a thinning procedure we might get inter-sensor spac-
ings larger than %)\ (i.e the limit for normal perturbation) and this
will give less ideal performance of the resulting unweighted array.

The two types of thinning will lead to distinct spatial responses. A per-
turbed array will demand a different weighting than the non-perturbed,
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despite having the same mean spacing, to resemble in response. Under-
sampling of an array will introduce grating lobes in the visible region.
The removal of elements may be done in various ways. In the preceding
sections we have seen that thinning can be done in order to give min-
imum redundancy and thus maximum resolution. Arrays may as well
be designed by picking or placing elements with locations drawn from
a random distribution. In this work simulations have been performed
mainly with thinning of this kind. The distributions used are uniform,
Gaussian and anti-Gaussian distributions. With the latter distribution
the probability of picking an element is larger away from the center of
the array.

From these simulations it is observed that an anti-Gaussian thinning is
superior to uniform and Gaussian thinning with respect to the sidelobe
level. Thus it seems likely that one should keep the central elements
active and do thinning on the wings (though not the end elements).

4.6 Calculating the beampattern

Arrays act as spatial filters. They detect signals from certain directions
and (try to) suppress all other signals. The shape, size and f-number®
of an array are some of the factors that affect the shape of the beam.
The beamformers are algorithms in the RF-unit in Fig. 2.1, that are
steering and focusing arrays in desired directions and at desired depths.
Depending on whether the sources (e.g. a scatterer or reflecting bound-
ary) is located in the near field or far field, they will operate differently.
In the far field the waves will be plane waves and we can steer the ar-
ray towards the radiating (or reflecting) source. However, the ability of
extracting range is only possible for sources in the near field where we
will have spherical waves.

An old and well known beamforming algorithm is the delay-and-sum
beamformer [23]. Its response to a harmonic wave is called the array
pattern and determines the array’s directivity pattern. The array pat-
tern is given by

N-1 7
WE) = Y w,el ko (4.19)
n=0

Here i is the wavenumber frequency, k= (ky, ky, k. ), the element loca-
tions are, ¥ = (z,y,2) and w, are the applied weights. Thus it is the
Fourier transform of the apodized array. As already stated, in beam-
forming the array’s output for signals from particular directions is im-
portant. Therefore one wants to calculate the beampattern

N-1 .7 >\ =
W(E—k) = 3 wed (= Fo)Ty (4.20)
n=0

51t is the ratio between the focal length and the diameter of the aperture
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Clearly the array pattern can be recognizeid as the beampattern when
the array is ’looking’ in the z-directioni.e. k, — 0. For a linear array this
can be written in terms of the azimuth angle, ¢, by using the relation
ky = —ksin ¢:

N-1 . . . —
W (sin ¢g — sin ¢) = Z wne]k(sm $o — sin @), (4.21)

The beampattern can be expressed in terms of cosine basis functions
when the array displays even symmetry around the origin. For an odd
length linear array this can be noticed from any of the beampattern for-
mulas above.

For simplicity the array pattern (Eq. 4.19) is used during the derivation.
For an odd length array we define M — %

M -
W(k) = > w, el Fen
n=—M
-1 .7 o M .7 S
= wne]lm” + W + Z wﬂ@]kxn
n=—M n=1

| W, = W_,

M
W(lg) = wg+2 Z w,, COS lgw_;l (4.22)

n=1

One should note the resemblance with symmetric FIR-filters. Perform-
ing the same procedure as above, with an even length array will give the
same equation except that w, = 0 and the limit M = % A general for-
mulation of this equation for a symmetric linear array, is often written
as

M
Wiu) = wo+2 Z wy, cos(&,u) (4.23)
n=1
where ¢, = Qf\" n=12....M
and v = 7sing
z, : sensor location in mm from the origin
¢, :  A-normalized sensor position
A :  the design wavelength
w, : the weight factor value at element n

The A-normalized sensor position is the distance from the sensor to ar-
ray center, measured in half-wavelengths. It is sufficient to know the
positions of the elements and the propagating signal’s wavelength to
calculate the beampattern. This illustrates the mutual influence both
from the signal excitation, the medium and the aperture.

By knowing the transmitted frequency (the central frequency) and the
propagation velocity in the actual medium, we can calculate the current
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wavelength, )\,. The beampattern can then be calculated and plotted
with u or ¢ = arcsin(u/7) as spatial axis. Trade-offs exist in choosing
frequency and aperture size, as mentioned in Ch. 2. With steering in-
cluded we will have the expression

M
Wiu—ug) = wy+ 2 Z w,, COs (fn(u - uo)) (4.24)

n=1
where u, is the steering angle.

A recent article [35] give an excellent review on beamforming and the
inherent trade-offs, both for conventional beams and limited diffraction
beams. The latter beams are a special class off solutions to the homoge-
neous scalar wave equation. They are characterized by a large depth of
field and good focusing, but suffer from high sidelobes.

Several beamforming algorithm are presented in [41]. With arrays we
are sampling a wavefield, hence quantization of the measured values
will be needed. In this text these effects have not been discussed. An in-
vestigation on the effect phase quantization errors have on the sidelobe
level in a steered and focused beamformer is given in [20].

4.7 Beampatterns from the coarray

Arrays provide sampling of wavefields. We can assume the acoustic field
containing both the array and the propagating waves to be a wide sense
stationary (WSS) random field. Moreover, one can assume the propagat-
ing signals to be plane waves i.e. we are in the far-field region. The WSS
field criterion requires that the mean function does not depend on the
location of a point and that the autocorrelation function depends only on
the distance and orientation between two points in space. In this context
the manner by which the array samples the spatial correlation function
of the WSS field is focused.

We observe the wavefield through a spatially limited continuous aper-
ture, with aperture function w(Z). The signal from the aperture will
then be z(Z,t) = w(¥)f(Z,t). Assuming the field to be stationary in both
domains, the correlation function of the aperture output can be aver-
aged over all baselines to give an estimate of the wavefield’s correlation
function [23]

[ R vn = R [e@en @

A

= (DR (F.7) (4.25)

Here R, and R; are the aperture’s estimated and the wavefield’s corre-
lation functions, respectively.
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For an array, the expected value of the spatiotemporal correlation func-
tion can be expressed as [23]

& [ > @/a(t)@/Z(t+T)] = (V)R (X, 7) (4.26)

(a,b)€8(X)

Here we consider the output from sensor m = a as y,(t) = w,f(%,, 1),
where w is the weight and f is the signal. The coarray of an array is
clearly the set of points where the array spatially samples the wave-
field’s correlation function.

In the frequency domain the estimated power spectrum of the wavefield,
S f(E, w), will be a smoothed version of the true spectrum. The Fourier
transform of the coarray is acting as a smoothing filter in this domain.
This is similar to the smoothing properties of windows in spectral esti-
mation algorithms and to the beampattern algorithms of array process-
ing.

This suggests that the coarray is the inverse Fourier transform of the
far-field beampattern, and thus knowing the coarray values for a given
array geometry offers an alternative way of calculating the beampattern
under the assumptions made above. It simplifies to a Fourier transfor-
mation of the coarray lag values.

In principle it is, from the discussion above, possible to decide how well
the array samples the field by viewing in what manner the array sam-
ples the spatial correlation function. As the coarray determines the
points where the correlation function is sampled, it is desirable to have
a geometry that produces as many samples of the correlation function
as possible from an array with a given number of elements. The min-
imum spacing between neighbouring coarray elements must be small
enough to avoid aliasing in the power spectrum function. This follows
from the Fourier relation between the autocorrelation function and the
power spectrum [26].

The beampattern or squared aperture function is equal to a Fourier
transformation over the coarray lag space

B(E) = Fle(D)} = e(0)e (4.27)

X

Results from both UltraSim’s beampattern routine and from the coarray
tools of this work are given in Figs. 4.6 and 4.7.
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Figure 4.6: Example of beampattern produced by the coarray approach and by
the UltraSim beampattern routine. The upper panel displays the array that has
an underlying grid of A/2. Originally, the array has 64 elements and aperture 32},
but has been thinned 50% by removing elements randomly (according to a uniform
distribution). The middle panel shows the non-weighted coarray of the thinned array

and the lower panel contains the produced beampatterns from either methods.

The beampatterns from the two methods are equivalent when sufficient
conditions are met. A minor discrepancy at the angles where the re-
sponse approaches zero, is observed in the beampattern for the arrays
in fig. 4.6. Everywhere else the calculated responses coincide.

In Fig. 4.7 we have calculated the angular response from the same ar-
ray as above, but now we observe the field at a closer range (i.e. 60 mm).
A stronger deviation is now observed increasing with larger angles and
for this reason it can be stated that observating the field at this distance
from the transducer not validates the planar wave assumption.
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Figure 4.7: Example of beampatterns produced by the coarray approach and by
UltraSim’s bp-routine when the far-field condition is not met. It is observed that the

discrepancy increases with azimuth angles.

4.8 Coarray calculation and visualization tools

Two of the routines developed in this thesis, calculates the coarrays and
visualize them in a plotting window. In this section we will present these
routines. Since both uniform, sparse and nonequally spaced arrays will
be considered, the algorithms must have a general formulation. The
coarray calculation algorithm developed here will definitely be slower
than the fast methods appearing in the literature. However, our algo-
rithm give correct results for all the above mentioned element configu-
rations both for one- and two-dimensional arrays. The method in e.g.
[32] demands a uniformly filled linear array with sensors separated by
an integer multiple of a unit spacing d.

The visualization routine written, visualizes the coarray both in the cor-
relation domain and in the spatial frequency domain. The preceding fig-
ures with arrays, coarrays and beampatterns are all produced by these
two routines.

4.8.1 Calculating the coarray values

The routine that calculates the coarray values cocomp will now be de-
scribed. Input to this routine is the array’s z- and y-coordinates {7, }_,.
Output is the coarray values and their z- and y- lag coordinates as the
set {c(xm)1 .

Only planar arrays are considered, so calculations on the z— coordinates
have been omitted here. Consequently, the effects of curving the trans-
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ducer surface cannot be investigated in this program. However, the cal-
culation routine can easily be extended to 3-D arrays as well.

The main principles of the cocomp algorithm for the difference coarray
case, can be formulated as

fork=1:N %V{x;}),
U, =&, — X  %in case of a difference coarray
if ‘I’Z € Xk—1
% Update lag values of this lag space member
Xk = Xk—1 T Wi * W;
else %V ¥}, & Xr—1

% Update current lag space by including new member
1:2 __

Xk [Xk—l ‘Il;;]
% Calculate and include lag value of new member
Xip = Xr—1 + Wi * w;
end % if
end % for loop

The terms used in this algorithm are

X = {&},i=12...,N
U, = |iwi...wN| where ¥} =) —
Xr : current lag space

Xr—1 : lag space of previous iteration

In the calculation, the element locations are considered to be vectors
from the array center, (0,0), to their coordinates, (z;, ;). Then vector-
subtraction or addition is performed sequentially over the aperture as
shown by the loop in the algorithm.

Equal lags are summed according to Egs. 4.10 and 4.16, and distinct
lags are included in the updated lag space. It is this search that is the
most time consuming part of the algorithm and that presumably would
gain most to make more efficient.

4.8.2 Visualizing the coarray

A routine for visualization of the coarray values and some options (like
plotting their frequency responses) have also been developed during this
work. The visualization tools includes, among others, these options
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e Plotting of a linear coarray along with its error coarray.
The error coarray will maybe be misguiding (or at least difficult to
interpret) when optimal weighting is applied. This is due to the
fact that the error coarray algorithm is written to calculate the de-
viation array (i.e. the error between the filled and the sparse array)
in the non-apodized case. When calculating optimal weights, the
weight for each element in the sparse case, will be distinct from
what they would be in the uniform case.
In case of weighting with conventional (e.g. Hamming) apodization
the individual weights are calculated independently of the sparsity
structure of the arrays. The missing element’s weights are in that
case just set to zero and the remaining elements have weight val-
ues that are not influenced by the missing elements.
As a result, with optimal weighting, adding the coarray and the
error coarray will not give the optimal uniform coarray as a result
(as would be the case for uniform weighted arrays and conventional
apodization).

e Two-dimensional coarrays are plotted in their z- and y- lag space
with coarray values corresponding to the size (or area) of the plot
objects. An optional plot shows the coarray as points in a 3D space.

e For linear array the possibility of plotting its spatial frequency re-
sponse is available. This has been shown to be equal to the array’s
beampattern.

This transformation was first based on the FFT. It turned out to be
slower than using the array pattern formula directly. The reason
for this was that the FFT had to be supported with time consuming
tests, in order to give reliable results when the array was thinned
or unequally spaced.

For a sparse or non-equally spaced array a regular underlying grid
had to be recognized. It had to be a dense grid in order to minimize
the discrepancy between the actual lag-coordinate and the grid co-
ordinate. Grid locations without any sensor was then set to zero,
before a FF'T calculation was performed. Because of the great num-
ber of operations necessary to make a grid and check it, the array
pattern of Eq. 4.27 was chosen for our calculations.

4.9 Summary

The fundamentals of coarrays with some of their properties regarding
linear and planar arrays, have now been presented. Different element
configurations for linear and two-dimensional arrays have also been pre-
sented. Some key words have been explained. Various thinning meth-
ods are reviewed and some necessary restrictions on thinning are men-
tioned. We have also seen that the coarray offers an alternative ap-
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proach to the calculation of the far-field beampattern of an array.

Two program routines are written to take care of the calculation and
visualization of the coarrays. The prior routine is algorithmically de-
scribed, while for the latter the most important of the available func-
tions have been summarized. A few examples displaying resemblance
with known examples in [23] and with the already existing beampattern
routine in UltraSim have been included as well.

In the following chapter we will take a closer look at the problem of
designing arrays both in case of uniform-, sparse-, perturbed- and non-
equally spaced arrays. We will there consider the possible optimization
of weights for improving the sidelobe level.

A general Remez algorithm has been made to allow opimization of weights
for irregular spaced and sparse arrays. This routine will be a central
point when the achieved results of this thesis are reported.



Chapter 5

Methods for array
synthesis

Designing an array system will imply several trade-offs. One of them is
between giving high resolution and at the same time subdue noise gen-
erated by the sidelobes. Doing this with respect to a given criterion in an
optimal way, is desired. This has been an important research activity for
many years and numerous articles on this problem have been published.
Thus several different approaches have been proposed for optimization
of the array performance with respect to both resolution and sidelobe
control. They can be divided into four main groups:

1. Fixed uniform sensor locations and optimization of weights.
Fixed non-uniform sensor locations and optimization of weights.

Uniform weighting and optimization of the sensor locations.

- W N

Simultaneous optimization of both the sensor positions and the
weights.

Our work is mainly restricted to the first group and the main objective
in this chapter is to formulate and implement an algorithm for optimiza-
tion of equi-spaced and non-equally spaced arrays as well as sparse and
perturbed arrays.

5.1 Formulating the optimization problem

The objective is to minimize the maximum weighted approximation er-
ror between a desired response, D, and the actual angular response, P.

61
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This is the minimax or Chebyshev criterion given by

mz’n{HEH} - min{maxueF‘W(u)(D(u)—P(u))‘} (5.1)

where W is the error weighting function that allows different weights to
be applied in different regions of F, the set of frequencies upon where the
optimization is performed. Equivalently || £|| is the [..-norm of /(). The
actual response is the array pattern in Eq. 4.23, written in a polynomial
form

r M
P(u) = Z ap cos(&pu) = by + 2 Z b, cos &, u (5.2)
k=0 n=0
2
with & = %, u = 7Tsin ¢ (5.3)
and b, = ag by =b_, = % when odd (5.4)
b, = b_,— 0;—" when even

The optimization problem can be stated as:

N
Given an array of elements {xk}kﬂ; find the set of optimum weights

N
{bk }k that makes the maximum error, F, a minimum, for a given input
=1

desired response, D.

The cosines in Eq. 5.2 form the set of  + 1 basis functions

{ cos(&ou), cos(&u), .. ., cos(fru)}

used in the optimization. In order for P(u) to be a unique and optimal
solution of the problem, the set of basis functions must obey the Haar
condition[8]. In other words each cos(¢;u) is continuous and every set of
r+1 vectors of the form { cos(&ou), cos(&u), . .., cos(fru)} is independent.
Because our method implies solution of equations and matrix inversion,
the set of basis functions should also be well conditioned for numerical
work. When strong spatial oversampling occurs, this becomes a problem
in our algorithm and causes divergence of the operation. However, this
is considered a special case of operation.

The Remez exchange algorithm is based on the alternation theorem:

Theorem 1 (Alternation theorem) If P(u) is a linear combination of
r + 1 cosine functions of the form

P(u) = ZT: ay cos(&pu)

then for P(u) to be the unique, best weighted Chebyshev approximation to
a continuous function D(u)on F i.e. a compact subset of |0, |, the error
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function E(u) must exhibit at least r + 2 extremal frequencies in I'. In
other words there exist r + 2 points u; in F such that vy < u; < -+ < U, 11,
E(u;) = =E(u; 1) and || E(u;)|| = maz.er|E(u;)lils -

In our case the desired response is given by

B 1 0<u<u,
D(u){O tous <u<up (5.5)

Here « is an angular spatial frequency axis, where v, is the desired cut-
frequency of the main beam, u, is the initially chosen angle for where
the maximum sidelobe level should be reached and u, is the upper limit
of the frequency region where the optimization takes part. It should be
noted that in this formulation the interval of optimization can be limited
to u € [0, up| (with up < 7), when desired.

The reason is that with this method we only have a limited number of
parameters to weight down peaks in the sidelobe region. When an array
is thinned it is observed that the number of peaks in this region is larger
than the number of sensors and hence larger than the number of weight
coefficients. We presume that this is because the number of peaks is
determined by the underlying regular grid and not by the number of
Sensors.

We have observed that in case of sparse arrays, the optimization region
is limited to frequencies from 0° to approximately

Uo = arcsin(m) (5.6)
grid

i.e. the rate between the number of sensors in the sparse array and the
uniformly filled array.
Whenever an odd length uniform array is optimized uo = 7. Even length
arrays tend to develop an extra sidelobe at « = = [56] for some spe-
cial choices of inter-element spacing and cut-angles. Extreme care must
therefore be taken when the array deviates from the \/2-case, and uo
may have to be reduced from the value, vy — 7, in order to avoid the de-
velopment of badly suppressed sidelobes or grating-lobe like responses.
The error function is written

B(u) = W (u)(D(u) - P(u)) (5.7)
where the weight function is
1 0 0<u <u,
W(u) = { K g_i o <u< g (5.8)

Here ¢, is the amplitude of the ripple in the mainlobe region and é; is
the amplitude of the ripple in the sidelobe region.

From the alternation theorem (theorem 1) a set of extremal frequencies
{u; = 7sin ¢;} and a cosine polynomial, P(u) exists, such that

Euw) = Wu)(D(w) ~ P(u)) = (=1)'8, i=0,1,....r+1(5.9)
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Here 6 is an unknown constant. We rewrite this equation to

-1)i6
Plu;) + (I/V(?)LZ) D(u;) for i=0,1,...,7+1 (5.10)
and recognize it as a matrix equation system with » + 2 unknowns
A& =D (5.11)
with the matrices defined as follows
- cos fouo e CcOS fTUQ W((Suo) ] g
-6 a;
COS gl s COS G, U
4 .fo 1 | f 1 W(ul) a-| :
: : : : .
-1 7‘+16 r
i cos&ot, g -+ €cOSE Uy (I/V(?)LT 6
T
D = | D(ug) D(w) - D(u;) D(up) |

Consequently, if the extremal frequencies are known, the coefficients «;
can be determined by matrix inversion of the system above. Moreover,
invertibility of the matrix A is guaranteed by the Haar condition on the
basis functions [8]. Then as the coefficients are found the angular re-
sponse of the array can be calculated.

5.2 Optimization of sensor weights when sensor
locations are fixed

This optimization problem has, in the linear array case, two approaches.

1. In case of a uniformly filled array with sensors separated by equal
spacings, the widely known and used Dolph-Chebyshev shadings
applies [11]. This is an equivalent problem to conventional FIR
filter design by using the Remez algorithm of [44].

2. In this case the sensors are not separated by equal spacings. This
demands a more general formulation than in the previous case.
Optimization for this problem is reported in [57, 56]. We will use
the formulation above to optimize arrays of this kind.

5.2.1 The equi-spaced array case

A special case of the problem formulated above is when the arrays are
uniformly filled and are equally spaced with sensors located at an inte-
ger times the unit spacing, d. An equi-spaced array will have sensors
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at v, = kd = kyA for k = —M,...,0,..., M and hence ¢, = 2kvy. The
well-known Dolph-Chebyshev shadedarrays are in this family and have
a unit-spacing of one-half the wavelength i.e. v = 0.5, d = A\/2 and the
cosine argument of Eq. 5.2 simplifies to

i=2 _
%u , even length array

DN | >~

{ nu , odd length array
= fnu -

In the case of an equi-spaced array the powerful algorithm of Parks-
McClellan can be used [37, 44]. Their notation differs from the one given
in the preceding section.

First it is noted that the array pattern in Eq. 5.2 can be written on the
form

P(u) = Q(u)R(u) = Q(u) Z ay cos(&pu) (5.12)
k=0
For an odd length array (u) = 1 and for an even length array Q(u) =
cos(u/2). In[37] the optimization is performed over a different frequency
grid (from 0 to 0.5) than in the previous section (where we were optimiz-
ing over [0, 7]).

A new approximation problem is next formulated as

E(u) = W(u)[D(u) - Q(u)P(u)]

= W(u) [D(u) - P(u)] (5.13)

From the alternation theorem the system is written :

_ 5 ;
1 cos2muy --- COS TN W(uo) oy l?(uo)
1  cos2ru; .-+ cos2mnu, ] ay D(uy)
W (uy) _ :
: : : : a, ﬁ(uT)
— 1yt N
1 cos2mu, iy -+ COS2TnU, |y L—lu 0 D(u, 1)
L W(ur+1) i
(5.14)

The system above is always nonsingular [8]. However, the possibility
of numerical ill-conditioning remains and solving the system becomes
time consuming with large system. Therefore a faster and more stable
approach has been taken in this algorithm.

First ¢ is analytically deduced by solving with Cramers rule applying
calculation of the Van der Monde determinant[36]. Thus the parameter

6 1s deduced from
r+1

Z: akﬁ(uk)

Tl (_1)kak

D

k=0 W(uk)

(5.15)
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Next P(u) is interpolated on the r + 2 frequency points by means of the
barycentric form of the Lagrange interpolation formula [42]. The inter-
polated response P(u) is then given by [44]

C for extremal frequencies
" ﬁ—ka 5.16
— COSU — COSU
. = : otherwise (5.16)
) P
=0 COS U — COS Uy
r+1 1
h - -_—
where ay H e
1 =
i+ k
~ _1 ké
. 1
o H m:ak(cosuk—cosurﬂ)
1=20
i+ k

k= 0,1,...,r

The algorithm starts with an initial guess on r + 2 extremal frequencies.
Next, the error, £/(u), is calculated over a dense grid, u, and the extrema
of I/(u) are considered candidates for the new set of extrema.

The r extrema with the largest error and the initial extrema at the be-
ginning and end of the transition region, i.e. the initial cut-frequencies
u, and u,, are used to update the set extrema for the next iteration.
This is the most laborious part of this algorithm and is the part where
most improvements of this routine have been proposed e.g. in [2]. The
algorithm terminates when no change has occurred since the previous
iteration.

Finally, the sensor weights are calculated by an inverse discrete Fourier
transform of the response. This algorithm provides a fast and reliable
way of calculating the optimal sensor weights in case of a uniformly filled
linear array.

5.2.2 A general formulated algorithm

Since our objective is to optimize sparse and non-uniformly filled arrays,
the algorithm will take a slightly different form than in the preceding
section. In this case there will generally be no simplification of the co-
sine argument, £,u. From the alternation theorem we can formulate
equation 5.9 and form the system of Eq. 5.11

Aad =D
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We are now using {u;, = 7sin¢;} as the set of extremal frequencies for
k=0,2,...,7+ 1 and the matrices as defined on page 64.

This formulation is valid both for odd and even length arrays and no new
approximation formulation is needed to solve for even length arrays in
contrast to the Parks-McClellan formulation. Another difference with
the earlier described algorithm is that 1 (one) will be a basis only with
odd length arrays where the center element is active i.e.z, = (. We
should also note that in the general case optimize in the u € [0, 7| region
and that the system matrix, A, therefore not resembles the similar ma-
trix in the equi-spaced case.

In our solution to the problem we employ matrix inversion. As men-
tioned in the problem formulation in Sec. 5.1 this may give an ill- con-
ditioned matrix system when large and oversampled arrays are used.
However, since our main concern is undersampled (i.e. sparse) arrays
and non-equally spaced array, this will not be any problem in this con-
text.

A sparse array will typically have a mean spacing, d, larger than one-half
wavelength, often from d = A to more than 2). A non-equally spaced ar-
ray generally has a mean spacing around the Nyquist rate i.e. d = \/2.
Consequently, only for very special arrays will bad conditioning cause
problems and that will not occur for the arrays that we consider.

5.2.3 Inputs to the algorithm

There are several input parameters to this algorithm. Firstly, we need to
know the sensor locations {z,}%_,. Thus an input vector contains these
coordinates.

We also need to know the propagation speed of the media, ¢ , and the
design frequency, f, in order to calculate the wavelength, A. This is sup-
plied by the media- and excitation vectors.

In our routine it is also possible for the user to alter the number of fre-
quency points per ripple in the calculations i.e. the oversampling rate.
This is useful for special geometries, where a more dense grid sometimes
is necessary to get convergence. Our experience is that this occurs only
for some very special perturbed arrays.

The parameters that are given as direct inputs by the user are:

1. The initial cut-angle of the beam or mainlobe, ¢; , are given in de-
grees (°).

2. The angle where it is desired that the maximum minimum sidelobe
level is reached, ¢, in degrees, i.e. where the equi-ripple sidelobe
level starts. This is the first angle where the error or response is 6.

3. The stop angle of the optimization region, ¢, in degrees. For uni-
formly filled arrays and non-equally spaced arrays with mean spac-
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ing d = \/2 this angle should be chosen to 90°, but for sparse arrays
it has to be reduced. As a rule of thumb this angle should be chosen
to N
. sparse
= arcsin (| —
b ( filled )

where Ny;;.q1s the number of elements in a filled equi-spaced array
of equivalent aperture.

. The approximation error weight factor, K. This ratio specifies the

difference in error between the two optimization intervals. In our
application it is always larger than or equal one, but in most cases
it will not have any effect in our applications and the error in the
sidelobe region will be the smallest possible minimum regardless
of the chosen K. The reason is that we look at beamforms that has
a narrow mainlobe with no extremal frequencies except from ¢, .

5.2.4 Brief description of the algorithm

The first part of the algorithm is checking whether the input array meets
the conditions implicit on the approximation criterion with respect to
symmetry around the array origin.

Next a dense grid is set up according to the input angles and the over-
sampling rate. An initial set of extremal frequencies are chosen and the
matrix system is solved

a=A"1'D

Now both the polynomial, P(«) and the error function, £(u) is available.
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Figure 5.1: This is an example of the first iteration of the algorithm. The crosses
indicates response values for the initial chosen extremal frequencies after the matrix
has been solved. The level of the crosses are 20log,,(6/K) ~ —33 dB. The circles
indicates the extrema determined from the sign changes of the differentiated response
that will be the updated extremal frequencies to be used in the next iteration.
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Then we will find the extremal frequencies and determine whether they
are equivalent to the ones in the previous iteration or not.

To find the maximums of the error (and equivalently, the response since
D = 01n this interval), we have used a numerical derivative estimation.
Because of the similarity between P and I the extremal frequencies
are found for exactly the same values. Therefore we have differentiated
the response,P. Moreover, since we are considering a situation with a
narrow mainlobe, the extremal frequencies with maximum error will be
expected to be in the sidelobe interval of the optimization region.

The estimations of the derivatives are done by

P - B

Upy1 — Ug

D{P(u)} (5.17)
Now the frequency values where D{P(u)} changes sign are considered
candidates for the new extrema. The r candidates alternating in sign
and with largest error, are chosen to be the extrema of the next iteration.
Additionally, u, and u, are included in this set. Then a new iteration is
performed.The algorithm terminates if no change has occurred in the
last iteration or if forced to by the user.

Finally, the weight function and the response are plotted. The angle
value of the first zero-crossing, the maximum sidelobe level and the dy-
namic range of the weight coefficients, Ap, are calculated and written to
the user. The A, factor is the ratio between the largest and smallest
weight value.

In each iteration there has to be exactly r + 2 extremal frequencies. Con-
vergence is normally reached after only a few iterations (3 — 7).

The differences between this algorithm and the one given in [37] can be
summerized as:

1. The cosine arguments are chosen to resemble with Dolph’s in [11].
Therefore an optimization region spanning from 0 to 7 is used rather
than from 0 to 0.5. Introducing these parameters also makes it pos-
sible to calculate both even and odd length array from the same ma-
trix formulation by applying the alternation theorem. Moreover no
‘adjustment factor’ Q(u) is needed.

2. Instead of applying Lagrange interpolation we solve the matrix
system by matrix inversion. A motivation for this choice was given
in section 5.2.2.

3. Because we are interested in beamforms resembling a narrow low-
pass filter, the search can be simplified to search for extrema in
the sidelobe interval only. This involves a saving in the number of
operations.

4. Because we give the user the possibility of changing the region
where the optimization is performed over and, at the same time,
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Figure 5.2: This is an example of an end result from the optimization routine. The
upper plot is the weights that will be applied to the corresponding element, normalized
with respect to the greatest weight value. In the lower panel the weighted response is
showed. The same array as in Fig. 5.1 is used and it is an unequally spaced array with
10 elements (see fig. 6.4b). The first zero appears at 4.22°, the maximum sidelobe level
is —23.56 dB and the weight dynamic factor is 2.76. Convergence was reached after 4
iterations.

the possibility of changing the oversampling factor, a wide class of
arrays can be optimized within regions of the angular domain. This
includes sparse arrays, perturbed arrays and non-equally spaced
arrays in addition to equi-spaced arrays.

5. Several key numbers are also supplied to the user in order to make
it easier to compare different arrays and different element config-
urations.

5.3 Other optimization approaches

In the scientific literature other optimal and near-optimal approaches
have been proposed that either optimize by judicious placement of the
sensors or by optimizing both the weighting and sensor locations. Typi-
cally these arrays will have sensors located at £\, when k is a real non-
integer. The author doubts the usefulness of such arrays for ultrasonic
use. Making these non-uniform spaced arrays for ultrasonic applica-
tions, will meet severe difficult because of the short wavelengths in ul-
trasound, and thereby also the limited size of ultrasound arrays.

Realization of such arrays will mainly find application in fields where
very large arrays are applied i.e. where the non-uniform (decimal frac-
tioned wavelength) placement is realizable. However, these arrays offer
interesting points of view, that in some special cases may shed light unto
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the synthesis process of ultrasonic arrays.

These methods will not be given any thorough discussion here, but some
selected examples will be simulated and short comments on the results
will be given. In that way we will also show that by applying our gener-
alized optimization routine, we can further improve the sidelobe level.

5.3.1 Optimization of sensor locations

A family of optimization algorithms appearing in the literature, use uni-
form or partial-uniform weighting and do the optimization on the sen-
sor locations solely. The optimization of weights is a linear problem,
whereas the problem of optimizing the sensor locations will be nonlin-
ear. Consequently one has to use non-linear optimization methods or by
using linear approximation methods.

Schjeer-Jacobsen et al.[50] have proposed a nonlinear minimax optimiza-
tion method for minimum sidelobe synthesis of linear arrays by varying
the element spacings, while keeping a fixed weighting function equal to
unity at all sensor locations. It is an iterative technique, where the loca-
tion vector, 7, is incremented in each iteration and updated to this new
value if sufficient conditions are met. The step length is adjusted during
the iteration process.

From now on we call this array, the ‘Schjser array’. These arrays from
will have the outer sensors located at a distance equal to N -1} from
the origin of the array. Not surprisingly the aperture of the Schjeer array
is equivalent to the equi-spaced array’s and also have the same number
of elements. Because of this fact we can now simulate an array of this
kind, with non-equally spaced elements and compare its response with
the equi-spaced array’s response.

-1.5 -1 -0.5 0 0.5 1 1.5
Element locations [mm]

(a) Equi-spaced array

-1.5 -1 -0.5 0 0.5 1 1.5
Element locations [mm]

(b) The Schjeer array
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Figure 5.3: This figure shows the element locations on the arrays used in the
succeeding examples of simulations in this section.

It is worth noting that the uniformly weighted Schjaer array has a max-
imum sidelobe level at —22.5dB. Thus it is substantial better than the
uniformly weighted equi-spaced array. This implies that by designing
arrays with more elements according to the method in [50] will give even
better sidelobe appearance.
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Figure 5.4: Simulations with a 15 element array optimized with respect to the

sensor locations by the method of [50]. An equi-spaced and optimal weighted array
with equivalent aperture is plotted in the same figure (with dashed line). The irregular
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spaced array is optimized with our Remez method and the result is drawn as a boldface
curve. All responses are calculated by our coarray routines.

Other authors have adressed the problem by considering nearly-uniform
tapering of the array elements, and as a second example we give one of
these, namely a 15 element array proposed by Sandrin et al.[49]. The ar-
rays in the article of Sandrin et al. are very special cases (and a bit odd),
where the arrays are designed with a nominal spacing of 2\’ This is
motivated by the fact that the intended application is an antenna whose
sub-aperture beamwidths are less than +15°.

For our applications we therefore multiply the sensor location values by
the factor 0.2277 (and not 0.25!) to make an array with mean spacing
equal to one-half the wavelength.
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(a) Coarrays for the Sandrin array

Response [dB]
N
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Azimuth angle [Ded]

(b) Beampatterns

Figure 5.5: Simulations with a 15 element array optimized with respect to the
sensor locations of [49], with partial uniform weighting (thin line drawing). Results
from simulating the same array with no weights is plotted with a dashed curve.
Finally, the array is optimized with our Remez method, and the result is drawn as
a thick line. All responses are calculated by the coarray approach.
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In the article they have divided the location values by four to get what
they have called a ’A/2-spaced’ array. However, using the given values
suggests a mean spacing of 0.549)\!. Thus there is discrepancy between
the nomenclature in this thesis and the one in the article of Sandrin et
al. [49].

We have simulated the response from the 15 element Sandrin array with
a scaling corresponding to our definition of mean spacing and the results
are given in figure 5.5. The coarrays are also included, since we use them
to calculate the responses.

First we have simulated with an unweighted array and the coarray is
shown to the left in figure 5.5. The angular response of this array is seen
to outdo the equi-spaced array in the unweighted case.

Next we have used the proposed weighting of [49]i.e w, = 0.515 on the
end elements and unity weights for all other elements. The coarray is
shown in the middle of figure 5.5.Finally, we have optimized the array
with our routine.

Despite using a different down-scaling the results resembles what is re-
ported in the article. We believe this is due to the array having a low
sidelobe level continuing into the invisible region.

In table 5.1 the beamwidth and sidelobe level of the Schjser array is
compared to an equi-spaced array and the Sandrin array [49],each of
equivalent aperture. The Schjeer array is seen to give the lowest side-
lobe level. Moreover it also have the lowest dynamic range of the weight
coefficients among the three tested arrays. This is another indication of
it being a well-defined geometry with respect to its approximation to an
ideal spatial response.

| Array type -6 dB beamwidth | Max. sidelobe | Ap |
Non-weighted arrays
Equi-spaced 9.23° —13.15dB 1.0
Schjeer array 10.34° —22.46dB 1.0
Sandrin array 10.28° -19.7 dB 1.0
Sandrin’s nearly uniform weighting proposal
Sandrin array | 11.18° ‘ —24.7 dB | 1.94
Optimized with our Remez algorithm
Equi-spaced 11.24° —27.6 dB 2.79
Schjeer array 11.24° —28.2 dB 1.71
Sandrin array 11.24° —27.6 dB 1.87

Table 5.1: Key numbers of the responses plotted in figure 5.4 and 5.5. The dynamic
factors for the optimized weights given in the lower table.

Another interesting thing can be noted from the coarrays resulting from
the uniform weighted and the optimal weighted array, respectively. The
main difference between these coarrays, is that the optimal weighted
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has values decreasing with increasing lags. Both coarrays have a rela-
tively smooth appearance with a very homogeneous distribution of lags.
This might indicate that the array belong to a class where applying low
weight values on the ends will result in lowered sidelobes. A similar ef-
fect is observed with the Sandrin array, where reducing the weight value
on the end elements to 0.515 reduces the maximum sidelobe level with
5dB.

Simulations with steering of the Schjaer array has unveiled broadening
and distortion of the main beam as well as an increased sidelobe level
at the opposite side of the steered beam’s mainlobe. This is observed
even for steering at narrow angles. Thus the array demands optimiza-
tion of locations for each steering angle as is a similar effect to what is
demanded with optimization done on the weights (i.e. the weights must
be optimized for each steering angle).

5.3.2 Simultaneous location and shading optimization

Methods for simultaneous optimalization of the sensor locations and ta-
pering have also been proposed [38] and [30].

Due to the lack of time, these methods have not been considered in this
work. It must though be noticed that these arrays probably not are pass-
able solutions for ultrasonic arrays, because of their nonlinear sensor
locations. Their results will undoubtable be good, when both locations
and weights are optimized at the same time. And for larger apertures
than we consider, they will probably offer excellent spatial response pat-
terns.

Often these methods starts with a few sensors and one and one is added
in every step until a desired number is reached. One should be aware
that some methods referred to as optimal, not optimize the already exist-
ing sensor locations when adding a new element to the set. Thus the ’op-
timality’ stated must be considered as a partial optimal solution. Mitrou
[38] optimize previous taps as well as the new one added.

We expect that the optimization must be performed for each steering
angle for these methods as is the case for the previous discussed opti-
mization methods that deal with one of them at the time.

5.4 Summary

In this chapter a new optimization algorithm has been proposed that can
be used to find optimal weights even for arrays with a non-equal inter-
sensor spacing. It is based on a generalization of the Remez exchange
method to a general spatial frequency grid. The method as such, has
similarities with the optimal linear phase FIR-filter algorithm of Parks
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and McClellan [44] and even more with Streit’s algorithm [57].

The developed algorithm has been formulated and described in this chap-
ter. The differences between our method and the equi-spaced algorithm
in [37] have been mentioned. Streit’s routine has not appeared in de-
tail, so we cannot be too specific with respect to similarities and dif-
ferences with our routine. We use the same terminology with respect to
the beampattern and both use the Remez exchange algorithm, so we can
say that similarities at least exist. However, our optimal weight values
are slightly different from Streit’s. Moreover, our routine seems to give
slightly better results for the beamwidths considered by Streit. This is
reported in section 6.2.1.

Finallyin this chapter, some results have been reported that have shown
our routine’s usefulness. Angular responses from two arrays, one with
optimal sensor locations and one with near-optimal sensor locations, are
seen to be improved with our method. An interesting point from these
two arrays is that both arrays had elements more densed near the ar-
ray origin than at the array ends. This is similar to the effect observed
when thinning an array. Because then the anti-Gaussian thinning was
the one performing best in the non-weighted case (section 4.5.3).

In the next chapter we will use our routine to optimize arrays with vari-
ous element configurations. Thus we will try to determine our method’s
limitations and advantages.



Chapter 6

Computer simulations

This chapter is devoted to descriptions of the simulations and results
obtained from the simulations that have been performed with the de-
veloped routines. The goals of the computer simulations are threefold.
Firstly, we want to verify our algorithms and methods by using test data
with known solutions. This implies reproducing results reported in the
open literature.

Secondly, we will compare different arrays and different configurations
of elements in order to find properties or characteristics that are similar
or distinct between different types of arrays.

And last but not least, we want to use the simulations as support for our
conclusions.

Different arrays will be investigated and optimized with the newly de-
veloped optimizing routine.In this part of the work we had need for a
tool that could thin and alter element locations. The tool that was made
and implemented will also be described briefly in this chapter.

At the end of this chapter we summarize the results made in these sim-
ulations.

6.1 Simulations with equally spaced arrays

We will first report some results from simulations with optimized equi-
spaced arrays. The intention with these simulations is to find tendencies
between different characteristics or parameters of the arrays.

We will take a look at the relationship between the maximum sidelobe
level and the resolution, the relation between the dynamic range of the
weight coefficients, and the resolution or maximum sidelobe level. These
relations are visualized in the figures 6.1, 6.2 and 6.3.

Figure 6.1 displays an almost linear relation between the sidelobe level
and the resolution. We see that increasing the number of elements is

77
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equivalent to lowering the maximum sidelobe level for a given resolu-
tion. The inclination of the curves in fig. 6.1 is increasing with the num-
ber of elements as well. Thus we observe the effect that an increased
number of sensors, giving a larger aperture, permits a better resolution
while it maintains a low sidelobe level.

=10

Maximum sidelobe level [dB]

-90

0 10 15 20 25

Beamwidth (0 to max sidelobe) [deg]
Figure 6.1: The figure show the relation between the beamwidth and the maximum
sidelobe level for an equi-spaced array, optimized with our general Remez algorithm.

The beamwidth is measured from 0° to the angle where the maximum sidelobe level
is reached. It is thus not the usual -6 dB beamwidth.
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Figure 6.2: The figure shows the relation between the weight dynamic range and the
maximum sidelobe level for an equi-spaced array optimized with our general Remez
algorithm.

In figure 6.2 the relation between the dynamic range of the weight coeffi-
cients, Ap, and the maximum sidelobe level is shown. For det most part
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the relations are similar for the different number of sensors. The Aps
have minima for given sidelobe levels and these level values increases
with the number of sensors. A characteristic point with these curves is
that the deviation between them is relatively small. Obviously, this can
at least partly be explained by the fact that we have plotted the values
with logarithmic axes.
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Figure 6.3: The figure shows the relation between the dynamic range and the
beamwidth for an equi-spaced array optimized with our general Remez algorithm.

The last figure (Fig. 6.3) shows the relation between the dynamic range
of the weight coefficients and the first value of the response where the
maximum sidelobe level is reached (i.e. called the beamwidth in this
section). To a great extent the curves are similar to the ones in the pre-
ceding figure (Fig. 6.2). A larger deviation of the curves are observed,
but this is probably because we use a linear scale for the beamwidth. It
is observed that the minima reached for the Aps appears at increasing
angles when the number of elements increases.

In this section we have observed that there is an almost linear relation
between the beamwidth and the maximum sidelobe level. By accepting
this the maximum sidelobe level at a particular beamwidth, of an array
can be read from a figure similar to figure 6.1. It is also clear that low-
ering the sidelobe level will decrease the beamwidth and hence reduce
the imaging resolution of that array. Demanding a narrow beamwidth
will equivalently result in a higher sidelobe level.

From the preceding three figures it is also clear that the dynamic range
of the weight coefficients, Ap, are low only in a limited interval of the
sidelobe (and beamwidth region). Thus when there is a limit on this
value one must assure oneself that the chosen beamwidth and hence
the maximum sidelobe level, is within the proper interval. It is observed
that a high number of elements generally have higher values on the Aps.
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The largest array that was simulated had 128 elements. Our routine
displayed very high condition numbers with this array in general and
with a desired cut-angle equal to 4° it quickly diverged. The same were
then observed with an array of 64 elements, when a desired cut-angle
equal to 9° was input. By trying different angles we observed that the
divergence appeared when the 6 value decreased below a value around
—220 — 230d B. A routine more similar to Parks and McClellan’s [37] did
not diverge at this angle but the responses that was output had one (!)
sidelobe with a maximum level of approximately —20d B! In other words
an ill-conditioned system caused completely unreliable results.

Thus one limitation with our routine! were revealed in these simula-
tions, that apparently is caused by a numerically ill-conditioned matrix
system.

6.2 Simulations with non-equally spaced arrays

We will now proceed from the apparently trivial case of equally spaced
arrays and consider the more untrivial case of non-equally spaced ar-
rays. We will be considering three different kinds of such arrays. The
use of non-uniformly spaced arrays can lead to a reduced number of ele-
ments and thus lower cost, without degrading the array’s performance.
Arrays optimized by the element locations were seen to have good re-
sults in the previous chapter.

First we take a look at two arrays derived from Gaussian quadrature
formulas. One of them have 10 element and their location are given in
figure 6.4 as well as in table 4.2 and the other have 25 elements and is
given in [56].

Next, two arrays originating from geometric series are considered. The
first with a cardinal number larger than one and the second with a car-
dinal number less than one. These two arrays will be seen to have very
distinct responses in the unweighted case.

Finally, two perturbed arrays are optimized. The firstis a special pertur-
bation, where an array with 129 elements and an inter-sensor spacing
of = A/4 was thinned, with an uniform random distribution, until its
mean spacing was A/2. The second array of these two, is a 25 element
equi-spaced array that is perturbed by displacing its element locations
in Gaussian way. Its mean spacing is A/2 and its inter-sensor distance
can be no more than A according to the restrictions posed in the routine.

'as well as a routine closely related to the one in [37]. This routine is mentioned in
the user’s manual in Appendix B.
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6.2.1 Locations based on Gaussian quadrature formulas

These arrays have both been proposed by Streit [57, 56] and the origin
is described in section 4.5.1. They seems to be well-behaving arrays,
with respect to resolution and sidelobes. However, their dynamic range
of weight coefficients , A, is generally higher for these arrays than was
the case for the equi-spaced arrays. Generally they also have a slightly
higher sidelobe level than the equi-spaced arrays.

Now turning to the figures, one should first note the differences between
the element configurations of the \/2-spaced and the 10 element Gaus-
sian quadrature spaced array. In the upper panel of fig. 6.4 we observe
the regular spacing.
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(a) Equi-spaced array
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(b) 10 element Gaussian quadrature array

Figure 6.4: An equi-spaced array and the array proposed by Streit [57].

An ’inconvenient’ excitation frequency, f = 3.08M H z, has been chosen.
Because the propagation velocity of the media is 1540m/s, the wave-
length is 0.5mm and thus the inter-element spacing can be observed to
be d = A/2 in the figure’.

The middle panel of fig. 6.4 shows that the non-equally spaced array is a
displaced version of the first with equivalent aperture, but with element
spacing decreasing towards the ends.

The unequally spaced array is optimized with our general Remez algo-
rithm and the results are plotted in figure 6.4. One should observe that
an additional sidelobe develops towards ¢ = 90°, when the cut angle in-
creases towards 20°. Increasing the angle beyond 30° will result in the
development of a grating lobe at farther angles. We expect this is due

?Note that the first array elements are spaced A\ /4 = 0.125mm from the array origin.
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to the array being of even length as the similar is observed with several
other even length arrays.

Response [dB]
Lohoh
o o o] o

|
a
o]

|
[0
o

—70

i i i i i i i
o] 10 20 30 40 50 60 70 80 90
Azimuth angle [deg]

Figure 6.5: Simulations with Streit’s proposed array. This is an output from the
general Remez algorithm of UltraSim. The results resemble the figures in [57].

An equi-spaced Dolph-Chebyshev array is also tested for the same ini-
tial cut-angles. The performance of the two arrays is compared and the
results for some chosen angles are given in table 6.1.

Ug ¢; | Dolph-Chebyshev Streit array
¢pw| SL [#I]| ¢pw | SL [#
0.40138 7.34° 9.51° | —10.01dB 9.51° | —9.934dB | 5
0.5563 10.20° | 11.66° | —16.08dB 11.66° | —15.90dB | 5
4
3

I

0.6693 | 12.30° | 13.77° | —20.67dB 13.77° | —20.44dB
0.9080 | 16.80° | 17.55° | —30.78dB 17.55° | —30.73dB

NSNS

Table 6.1: Optimization of two 10 element arrays with aperture A = 5X and for
three chosen initial cut-angles, ¢;. One Dolph-Chebyshev array and one non-equally
spaced array given by Streit. ¢pw is the beamwidth, measured from 0° to the angle
where we find the first zero crossing. SL is the sidelobe level of this beamwidth. And
the number of iterations before the routine converged, #1, are indicated as well.

An interesting point is that the performance of the two arrays to a great
extent resembles. The equi-spaced is only a few decimals better and
these results are similar to the ones made by Streit[57]. It is noteworthy
that the ¢ gy reported here, is not the usual —6dB beamwidth, but the
angle where the response has its first zero.



Section 6.2 Simulations with non-equally spaced arrays 83
§ 81 Pad . § 81 4 g
Q ~ o s
N ~ K] s
o 6f - o 6f i
g IS e
e |- -7 S - _-
sS4 T 54 -
5 5
2ot D 2
= =
)
10 15 20 25 30 12 14 16 18

Sidelobe level [-dB] —6dB beamwidth

Figure 6.6: The dynamic factor versus the maximum sidelobe level and the —6dB
beamwidth is plotted in this figure. Note that in this case the values of the Aps are
plotted with their actual values, not their logarithmic values. The non-equally spaced
array is drawn with the dashed line.

From the latter figure, we observe that the relations between the dy-
namic range of the weight coefficients and the sidelobe level and beamwidth,
display relations similar to the curves for the equi-spaced arrays. The
difference consist in that the minimum values for the unequally spaced
arrays are generally larger.

The next array has 25 elements and they are also located according to
the nodes of a Gaussian quadrature formula [56]. We observe the dif-
ference between the location of elements in the two arrays in figure 6.7.
For some choices of cut-angles this array needed a more densed grid to
converge. However, the dynamic range of the weights was still relatively
small. The unweighted arrays made from Gaussian quadrature nodes
have been observed to have a regular angular response, with sidelobes
slowly decreasing with higher angles from a maximum sidelobe level of
about —10dB.
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(a) Equi-spaced array
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Figure 6.7: Simulations with a 25 element Gaussian quadrature based array
(proposed by Streit in [566] and an equi-spaced array with the same aperture and
number of elements. The upper panels show the elements in the arrays, the middle
panel their coarrays and the lower panel displays the angular responses of the arrays.

The most interesting thing to note in the latter simulations is the strik-
ing differences between the two coarrays that nearly have an equiva-
lent angular response. Thus we have seen an example of the difficulties
that arise when trying to use the coarrays in the design procedure. Be-
cause the angular responses have such similarities, while the coarrays
are very different, the differences in response must appear in the phase.
This is normally not shown for angular responses.
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Another observation made is that the inter-sensor spacing decreases to-
wards the array ends and this is the opposite of how the spacing of the
optimally located sensors developes.

It can thus be stated that the Gaussian quadrature arrays have a less
good unweighted appearnce than the equi-spaced array, because its inter-
sensor spacing is decreasing and not increasing as it does for the location
optimized arrays. The equi-spaced are inbetween these two types of el-
ement locations.

The same effect is shown by the incresing level of the dynamic range of
the weight coefficients of these arrays.

6.2.2 Locations determined from a geometric series

In this section we consider two arrays with a geometric series location of
the elements. One should note that these arrays are similarly referred to
as logarithmic arrays. By choosing a cardinal number for the geometric
series the inter-sensor spacing and hence the sensor locations, are easily
calculated.

The two 25 elements arrays are shown in figure 6.8. The upper panel
shows the array with cardinal number greater than one i.e. « = 1.05,
and the lower with ¢ = 0.97.
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Figure 6.8: This is two examples of arrays with element locations determined from
a geometric series.

The response of the unweighted array in figure 6.9 displays a relatively
low sidelobe level. Using the optimization routine on this array has not
improved the sidelobe level by more than 6 — 8 dB at the nearest side-
lobes. For sidelobes at higher azimuth angles, the optimized array has a
higher sidelobe level than the unweighted array. We expect this to due to
the unweighted array’s initial flatness in the sidelobe region. One could
view® the equiripple appearance of the optimized array’s as the effect
from lowering the high sidelobes while lifting the low one, and adjust to
a level where we have equality. From this point of view it is clear that

?This is, to a certain degree, a simplification of what is happening.
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the initial response pattern does not give much possibility to compensate
for decreasing the highest sidelobes.
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Figure 6.9: A 25 element array from a geometric series with ¢ = 1.05 has been
optimized. Its angular response is shown in this figure, with the response of the
unweighted array as a dashed curve and the optimal weighted with solid curve. The
corresponding array is shown in the upper panel of figure 6.8.

We note that this array has an increasing spacing between its elements
as was also the case for the arrays optimized with respect to element
locations. Thus this array’s low sidelobe level in the unweighted case,
may be due to its initial well-defined element locations.
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Figure 6.10: A 25 element array from a geometric series with ¢ = 0.97 has been
optimized and its angular response is shown in this figure. The corresponding array
is shown in the lower panel of figure 6.8.
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In figure 6.10 an array with inter-sensor locations decreasing towards
the ends is shown. In the unweighted case the angular response has
similarities with the response from an equi-spaced array. However, the
array simulated here has a higher sidelobe level than the equi-spaced
would have. One should also note the resemblance with the 25 element
array in figure 6.7. In simulations we have observed that the angular
responses of these two arrays are quite similar at narrow angles when
the cardinal number is chosen to be less than one e.g 0.95. The differ-
ences are larger at higher azimuth angles.

The arrays determined from geometric series that have been simulating
in this work had convergence problems for some choices of cut-angles
when a cardinal number too far from unity was chosen. In some cases
it then was enough to increase the oversampling rate above the default
value of 16, to produce convergence. In spite of these problems, their
optimized responses obtained were similar to the other 25 element ar-
rays being simulated and the dynamic ranges of the weight values were
relatively low.

An interesting observation was done for the dynamic range of the weight
values that coincides with the former observations with optimally lo-
cated and Gaussian quadrature located arrays. The weight values for
the arrays with decreasing element spacing was always higher than
the arrays with increasing inter-element spacing.

6.2.3 Optimizing perturbed arrays

These arrays are very special cases of element configurations and will
only briefly be discussed in this text. The first array considered in this
section have been thinned from an originally 129 element array. Key
numbers of the simulations with this particular array are given in ta-
ble 6.2.
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(a) A perturbed 65 element equi-spaced array
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Figure 6.11: A linear array perturbed by thinning an array with a large number of

elements down to a mean spacing of A/2.
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Figure 6.12: Alinear array with element locations perturbed by a Gaussian random

displacement routine. It has a mean spacing of A/2.
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Our method allows a lower sidelobe level to appear with a resolution as
good as the comparable arrays have. However, this is done at the ex-
pense of an enormous dynamic range of the weights. In the first figure
(fig. 6.11) the element configuration is shown in the upper panel, the op-
timal weights in the middle panel and the response in the lower panel.
The large dynamic range unveils the unweighted array’s a very poor re-
sponse. This array would not be used in ultrasound equipment, due to
its tiny minimum inter-sensor spacing and its large dynamic range of
weights.

The next array (figure 6.12) is produced by a routine, that has altered
the locations of the individual elements within +A/4 of their original uni-
form inter-sensor spacing, according to a Gaussian distribution. Thus
the ’dislocation’ of the elements of this array, compared to the equi-
spaced, is limited. The limit of this displacement routine must be seen
in contrast to making a perturbed array with by thinning elements, who
often will give a irregular configuration of elements. This is revealed by
the dynamic range, that is generally lower with the arrays perturbed by
limited displacement.

6.3 Optimization of sparse arrays

As mentioned earlier in this thesis sparse arrays have some very useful
applications. In this section we have done simulations with thinning of
arrays, from 30% to more than 50% with respect to their initial number
of sensors. Our initial array is an equi-spaced 65 element array with
an aperture of 32.5\. The thinning was done by removing the elements
with locations equal to the values drawn from a random distribution.
This was done such that the remaining elements were symmetrically
placed around the array origin.

We have used an ’anti-Gaussian™ as well as an uniform thinning pro-
cedure. Various thinning procedures are implemented in a developed
thinning tool case (see section 6.4). Most of the results for sparse arrays
in this section have also been published [13].

The following arrays were used in this section:
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Element locations [mm]

(a) The equi-spaced array

*The farther from the array origin an element is, the larger the probalility for being
removed
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Figure 6.13: The upper panel arrays in (b) and (c) have 45 elements each, the
lower panel arrays have 31 elements each. These arrays have been optimized with
our method and key numbers from the simulations are reported in table 6.2.
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Figure 6.14: Weighting and response of a 65 element equispaced array with

aperture 32.5) thinned in a Gaussian way to 45 elements (shown in the upper panel
of figure 6.13b.

In figure 6.14 the optimal weighting function and the angular response
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within the optimization region, is given. We observe the equiripple ap-
pearance of the sidelobes that is such a characteristic property of Remez
algorithms and that a low sidelobe level has been obtained. The results
attained for the sparse arrays are reported in table 6.2. An immediate
observation from this table is that the sidelobe levels for the various ar-
rays are almost completely matched. In fact the maximal discrepancy is
only 1.4dB and is between the 45- and the 31 element anti-Gaussianly
thinned array. In contrast to this similarity, the variations of the dy-
namic weight ranges between the arrays, Ap, are extremely large. This
number indicates how much the unweighted response deviates from an
ideal pattern. From this number we observe that the array perturbed
with a thinning routine are definitely ’bad case’.

Type Beamwidth | Dynamic | Sidelobe
—6dB Range Level
65 Filled 3.0° 20.6 dB —41.3dB
65 Perturbed 4.2° 84.9dB | —41.5dB
45 Gauss 3.9° 475dB | —42.2dB
45 Uniform 4.3° 53.8dB | —41.3dB
31 Gauss 4.2° 52.0dB | —40.8 dB
31 Uniform 5.8° 65.7dB | —41.5dB

Table 6.2: Results for the arrays in figure 6.13 with respect to —6dB beamwidth,
maximum sidelobe level and dynamic range of the weight coefficients.

Moreover, the beamwidths are observed to increase with stronger thin-
ning. The beamwidth is almost doubled from the equi-spaced array to
the 31 element uniformly thinned array. This signifies problems with
obtaining high resolution with heavily thinned arrays (when a very low
sidelobe level is still wanted).

The main result of our work in this section is that the sidelobe level of
a sparse array can be optimized to give responses that resemble filled
equi-spaced Dolph-Chebyshev shaded arrays. However, when using a
Remez exchange algorithm based routine the optimization region has to
be reduced in order to maintain the superior control over the sidelobes.
In other words, these methods give the opportunity to subdue a partic-
ular number of sidelobe peaks and this number equals the number of
remaining elements in the array.

In figure 6.15, an array thinned about 52% (i.e. 34/65)is given. From the
thinning rate (i.e. the rate between the number of thinned elements and
the number of elements in the filled grid), we know that the optimization
now will be limited to the region from 0° to about 30° < sin(31/65) ~ 0.46
(Eq. 5.6) and the response in this figure is shown in this region.
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Figure 6.15: Weighting and response of a 65 element equispaced array with aperture
32.5) thinned to 31 elements in a Gaussian manner.
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Figure 6.16: Comparison between unweighted (solid line) and weighted (dashed
line) response for 65 element array thinned to 45 elements according to a Gaussian
distribution. Shown over the entire positive azimuth domain.

The limitation of the optimization region is clearly observed in figure 6.16,
where an array that is thinned 30% (i.e. it has 45 elements left out of an

initial number of 65) has been simulated and accordingly is optimized

only at azimuth angles below arcsin(45/65) ~ 44°.

The optimal weights are seen to have a strong impact on the sidelobe

level, which is lowered almost 30dB. A grating-lobe like response is ob-

served in the region 50° — 90°, that also displays the formerly mentioned

limitation of the optimization region.
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6.4 Thinning and relocating array elements

During the work on this thesis, a program that could thin arrays in var-
ious ways quickly was needed. Later the need for altering sensor loca-
tions and placing sensors with spacing determined by a geometric series
arose. In this way an initially simple thinning program increased in both
number of functions and size. The basic philosophy with these routines
has been to make a simple and interactive user interface. Short com-
mands are therefore given interactively, while parameters (e.g. random
seed numbers and angular values) are given in the MATLAB command
window.

The available functions will now be presented briefly.

Firstly, interactive removal of individual elements from linear and two-
dimensional arrays are allowed. Additionally, the user can remove rows,
columns and rectangular areas from a two-dimensional array, by just
"clicking’ mouse buttons.

The part of this program that has been most widely used in this work, is
the random thinning part. There uniform, Gaussian and what we have
called anti-Gaussian distributions have been implemented. The latter
distribution is an upside down Gaussian distribution. In other words
the probability of picking a value is largest at the ends.

Another function is to place sensors in a pattern according to a geometric
series. The resulting array will have aperture and number of elements
equal to the input array. Thus the mean inter-sensor spacing will not be
altered by this routine.

Additionally, a routine for displacing the elements within one-half the
inter-sensor spacing is also implemented, and the displacement values
are picked from a Gaussian distribution.

Finally, functions for restoring the arrays, inserting thinned elements
and undoing the last command, is of course also implemented.

6.5 Summary and discussions

A necessary question arises: Can these arrays be used in a practical
system?

As already stated the unequally arrays are (by the author) not consid-
ered to find application in ultrasonic imaging. Thus these arrays will be
used with very large arrays (VLAs) and these arrays will when optimized
with our routine exhibit excellent results. From the simulations with
non-equally spaced arrays we may conclude that an array of this kind,
should have an increasing inter-sensor separation towards its ends.

Being optimized with our method the angular responses from various
non-equally spaced arrays are very similar. The main difference lies
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in the dynamic range of the weight coefficients, A,. Arrays that have
such an increasing spacing have the lowest Ap among all the simulated
unequally spaced arrays, when being compared at sufficient conditions
(e.g. the same beamwidth, aperture and number of sensors). The ar-
rays that have a decreasing separation between elements towards the
ends always have the highest Ap. Thus the equi-spaced array’s dynamic
ranges have values that lie in between the two formerly mentioned non-
equi spaced array types.

Therefore, when the construction of an array with increasing inter-element
separation can be carried out in practice, it should be chosen before both
equi-spaced and non-equally spaced arrays.

However, for ultrasonic applications we are left with the sparse arrays.
First, it should be noted that it may be advantageous to thin an array
in such a way that the elements are more densed near the array ori-
gin than on the ends. This follows from the conclusion made for the
unequally spaced arrays. Moreover, this has also been observed by per-
forming a massive number of simulations of responses, from various ran-
domly thinned arrays. During these simulations we noted that arrays
thinned with the anti-Gaussian routine generally had a better sidelobe
level in the unweighted case. However, any function for the optimal lo-
cation of elements has not yet been found?.

This leave us with the results made from our random thinned arrays
reported in section 6.3. Unfortunately, we could only weight down a
limited number of the sidelobe peaks originating from applying a sparse
array. And hence we could not optimize over the entire azimuth domain.
Thus the practical use of such an array could be regarded as limited from
this point of view.

The transducer array has been excitated by a pulse signal (PW), three
periods long.

Relative signal level

L L L T L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
time [microseconds]

Figure 6.17: The excitation signal used with the arrays when calculating the energy
beampattern. It displays a relative signal level along the time axis.

As seen in figure 6.17 the pulse has a cosine envelope. Thus it is cosine
weighted and the amplitude of the pulse therefore decreases towards its
ends. Because of this pulse weighting the excitation has a broader fre-
quency spectrum than in the unweighted case.

®as far as the author knows nor have anyone else
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We have simulated the energy beampattern from some of the sparse ar-
rays with this excitation, and one of them is shown in figure 6.18.
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Figure 6.18: A 45 element sparse array with pulse excitation (PW). The pulse have
three periods and are cosine weighted i.e. the emitted pulse has a cosine envelope and
corresponds to pulses emitted from real transducers.

The cosine weighted response from the optimally weighted array is seen
to reach a sidelobe level of about —42 to —43dB as a mimimum, while
for the unweighted case the mimimum sidelobe level is about —28dB.
Thus for a limited region the optimally weighted array is significantly
better than the unweighted. Though, for azimuth angles beyond 33° the
array can collect an amount of energy, from larger angles, that far ex-
ceeds the unweighted array. In a practical system the outer angles may
be suppressed, but it is believed that will not be enough for the array
considered here, due to the ascent of the responses starting at azimuth
angles as low as 30°.

The next we wanted to check for the weighted array was its performance
when being focused. We simulated the (CW) response from the trans-
ducer array with a focal point, F' ~ 24.4mm = 1.54 = 1.5 - 32.5A and the
result is given in figure 6.19. It is observed that the response have some
discrepancies with the unfocused. The first sidelobe is increased with
6 — 8dB and the grating-lobe like structure is drawn a bit closer (= 5°).
Howvever, we observe that the response is by no means destroyed. The
beamwidth seems to be kept and the mean sidelobe level within the op-
timization region has at least closely, been retained. Thus its seems as
though the weighted array’endures’ the focusing and as known it is com-
pelled to for having a practical application. In some special applications
it might well do.

As a closing comment on this discussion is must strongly be emphasiz
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that only a limited number of arrays have been used for these latter
simulations.

10
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Figure 6.19: The same 45 element sparse array is now focused at F' =~ 1.54 =
24.4mm.

Finally, we should summarize this the work reported in this chapter. We
have used our general Remez-algorithm to optimize the apodization of a
large number of arrays being both regular and irregular. Moreover, we
have observed that our routine can improve the sidelobe performance of
a variety of arrays. This also includes sparse arrays and to the authors
knowledge, this has not been reported before.

The main limitation with our routine is the possibility of getting an ill-
conditioned system matrixin Eq. 5.11 as well as the possibility of having
a too small approximation error, as was observed in section 6.1.
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Conclusion

Different arrays have been proposed for various applications. In ultra-
sound special limitations on arrays exist due to the small wavelengths
used, and to the strict spatial limits on the size of ultrasound probes for
some applications. In this work we have mainly considered sparse and
non-equally spaced arrays, despite the fact that the latter array gener-
ally cannot be used in an ultrasound imaging system. In this text some
properties of these arrays and how to design them in an optimal way
have been discussed.

An alternative approach to calculation of the beampattern of an array
are given through a Fourier transformation of the coarray lag values.
A program doing this has been written and demonstrated for linear ar-
rays.

This chapter reveals the results and achievements from this research
and we also propose some further work.

7.1 Results from the research

An optimization routine based on the Remez algorithm has been written.
This routine optimizes uniform arrays as well as sparse and non-equally
spaced arrays. The routine involves matrix inversion and is therefore
dependent on well-chosen basis functions. It is the individual elements
that determines the basis functions, and thinning of an array may there-
fore produce an ill-conditioned matrix. A careful choice of frequency grid
spacing is also necessary in special cases, in order for converge to an
equi-ripple sidelobe level. The routine is user interruptible so that a
near optimal solution can be chosen if desired.

Its main advantage over other known routines are that it can be used
with all types of element spacings. Additionally, it also is observed to
give better results than a similar algorithm reported by Streit [57] have
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demonstrated.

Our main result with unequally-spaced arrays is that we have deter-
mined what kind of inter-sensor spacing that should be preferred for
large arrays, and that this can be seen from the dynamic range of the
optimized weight coefficients. Thus not being proved analytically, our
simulations have revealed a clear tendency towards the advantage of ar-
rays having an increasing inter-sensor spacing towards the array ends.
However, this array design will not give any saving in the number of
Sensors.

We have seen that our generalized Remez routine can optimize sparse
arrays within a limited region. Judged from the 1994 Ultrasonic Symphosium?,
the optimization of weights approach, for sparse arrays, are quite new.

And we have demonstrated that this approach might work in practice

for some special applications.

However, a new optimization criterion must be used for optimization

over a larger region of the azimuth domain and also for optimization of
weights for two-dimensional arrays.

7.2 Further work

The propositions for further work could be several and only the ones
considered as most interesting by the author will be mentioned. Further
work on methods, developed routines and topics related to the work of
this thesis could seemingly be further extended to include several new
applications.

On the designed optimization method an extention that seemingly easy
could be accomplished, would be to include optimization of steered sparse
and non-equally spaced arrays. This would require changes in the error
weighting function and the desired response on the dense grid. Addi-
tionally, the forming of the system matrix would have to be redefined to
include a steering angle in the argument of the basis functions.

From our results published in [13] and from the discussion above, an-
other method should be used when extending the optimization to two
dimensions. This is because we only have control over a limited number
of sidelobes. Thus the demand for a restricted number of sidelobe peaks
is soon violated when thinning is applied to the arrays. Therefore opti-
mization methods for two-dimensional arrays will probably be realized
with non-linear optimization methods, linear approximation program-
ming or a contrained optimization formulation e.g. the one in [30].

The coarray methods could also be extended. Maybe the most inter-

!arranged in Cannes, France, in November this year



Section 7.2 Further work 99

esting extension would be to implement calculation of coarrays between
distinct transmit and receive apertures. A recent article [34] uses an ’ef-
fective aperture concept’ for optimizing two-dimensional transducer ar-
rays, where the effective aperture is the convolution between the trans-
mit and the receive aperture functions. Clearly this concept is equiva-
lent to the sum coarray formulation and will as well be equivalent to the
difference coarray formulation in case of arrays located symmetrically
around their origin.

Whatis attempted is to place the off-axis energy of the transmit response
at different locations from that of the receive energy in order to improve
the dynamic range of the overall response. This could be utilized for
example in 3D-visualization as reported in [51].
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Equipment and programs

In this chapter we will present the hardware and software equipment
used in this research.

A.1 Hardware equipment

The hardware equipment used in this research are UNIX workstations
and for graphical output a Hewlett Packard Laser Jet 4Si is used.

The developed programs are written and executet on DEC (Digital Equip-
ment Corporation) -system 500/240 stations at the Department of Com-
puter Science, University of Oslo. These DEC-stations use ULTRIX
operating system and ULTRIX Work-System Software (DEC’s ULTRIX
based window workstation system). The speed of these computers is 24
MIPS.

A.2 Software equipment

The programs used in this study are all written in MATLAB versions
4.1 and 4.2a for UNIX Workstations. MATLAB stands for (matrix labo-
ratory) and is written in C by The Math Works Inc. It is an interactive
program for numeric computation and data visualization. Fundamen-
tally, MATLAB is built upon a foundation of sophisticated matrix soft-
ware for analyzing linear systems of equations.

The developed programs are implemented in the UltraSim library [4,
59]. This is a simulator program developed by Vingmed Sound AS and
the Department of Biomedical Engineering at the University of Trond-
heim.
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A user’s manual for the new
tools

This chapter is an user’s manual for the tools developed in the work
with this thesis. The tools are being implemented in UltraSim under the
Calculation menu. A manual is written for user’s of Ultrasim that will
utilize these tools in order to design arrays or simulate special effects.
These routines are started as options under the coarray submenu.

The first option is Array thinning. This option contains functions for
thinning and perturbing an array as well as placing elements with spac-
ing determined by a geometric series. User operation in the thinning
command menu is done by pushing the proper key while pointing on
the UltraSim configuration window. When asked to input numbers, this
must be done in the MATLAB command window.

Alocal symmetry flag is indicated by ON/OFF and is altered by the push-
ing the ’x’ button. When ON the thinning will remove elements symmet-
rically around the array origin.

The next option in the coarray submenu, Optimize weights, will give
the optimal apodization for the current array. These apodization weights,
are put into the global matrix variable amp-ud (User defined apodiza-
tion). User operation is performed by pushing mouse buttons or a key on
the keyboard, while pointing inside the UltraSim configuration window.
The first function, uses the formulation of the Parks-McClellan Remez
algorithm and thus can only optimize equi-spaced arrays. For equi-
spaced arrays it will be the most efficient to use. Input value is the angle
where the sidelobe level is desired to be reached (given in degrees).

A second routine uses our generalized Remez algorithm formulation and
can thus bu used to optimize weight values for sparse, perturbed and
non-equally spaced arrays as well as equi-spaced arrays. The current
version is user interruptable in every iteration. By pushing the 'X’-key
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when asked to strik a key. This has been useful with arrays that slowly
converges, because a more densed sampling' then might help.
The input format is :

lop &7 ¢0 Kl
Here ¢ is the cut angle for the mainlobe in degrees, ¢} is the angle where
we want the equiripple sidelobe level to be reached, ¢, is the upper limit
of the optimization region and K is the approximation error weight value
(which in most cases can be chosen to 10).

The third option is the Coarray tools. Here the user can calculate the
difference and sum coarrays, plot the coarray in a figure (along with
its error coarray, if it has been calculated) and some optional plotting
functions like e.g. the beampattern from the coarray.

User operation is done by striking a key while pointing at the UltraSim
plot tool window.

!This is determined by the Grid spacing value that has 16 as default value. We
have also observed that in some cases a less densed sampling is most efficient
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