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Abstract

The large scale structure of the universe provides independent sets of experiments, in
addition to established experiments such as CMB analysis and type Ia supernova, for
extracting cosmological information. Due to redshift space distortions, anisotropy is
introduced when observing the matter distribution in the universe. This allows for the
measurement of cosmological parameters such as the energy density contributions and
growth rate of structure. Future cosmological surveys, such as Euclid, is expected to
greatly increase the number of galaxies having their redshifts measured thereby increas-
ing the size of datasets. In preparation for the analysis of future observational datasets,
the methodology has to be thoroughly tested in order to extract as much cosmological
information from the density field as possible.

In this thesis, I derive and implement a model for the radial velocity of matter
around cosmological filaments using linear perturbation theory. A proposed improve-
ment to the radial velocity of matter surrounding voids is also implemented and tested.
This model, together with the regular radial velocity derived from linear theory, is im-
plemented into the void-galaxy cross-correlation function in redshift space using a linear
bias approximation for the overdensity profile. In addition, the regular radial velocity
proposed by linear theory is also implemented into the void-galaxy cross-correlation
function in redshift space using an arbitrary dark matter overdensity profile. Using
the MultiDark simulation suite, these models are compared with data from numerical
calculations and their performance is assessed.

I find the model to provide promising results when predicting the radial velocity of
matter around cosmological filaments. Although the amplitude of the velocity predicted
by linear theory is not entirely accurate, it manages to replicate the shape of the radial
velocity derived from the dataset. More work is needed to see if this can prove to be a
full-fledged addition to LSS studies. When applying fits to the void-galaxy correlation
function in redshift space, I find the regular velocity model derived from linear theory
to perform consistently better than the model with the proposed improvement when
fitting the Alcock-Paczyński parameter ε. Applying cuts to the dataset, including only
voids with an effective radius r > 40Mpc/h, I find the regular model to also perform
better when fitting the growth rate f/b. Lastly, I find the parameter fits to the model
using the dark matter overdensity profile to consistently provide accurate fits for ε.
However, the model does not provide accurate fits for the normalization of the dark
matter overdensity profile even with cuts applied.
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Chapter 1

Introduction

The current dominating model for the universe is the ΛCDM model. This model
assumes that the mass-energy density of the universe is made up of three major com-
ponents, namely dark energy Λ, cold dark matter CDM and regular baryonic matter.
The modeling of the evolution and expansion of the universe is related to the mass-
energy density of the universe itself. An important aspect of cosmology is therefore to
constrain the bounds on these components in order to figure out how large the fraction
of the total mass-energy density of the universe each of them makes up.

The leading experiments related to constraining cosmological parameters is the study
of radiation remnant from the very early universe, namely the cosmological microwave
background (CMB)[5], with the COBE-[6] WMAP-[7] and Planck-satellites[8] in the
forefront. Other studies include that of stellar supernova type-Ia explosions[9]. Ad-
vances in cosmological experiments over the last decades have brought cosmology into
the era of "precision cosmology", now that cosmological parameters can be constrained
with sub-percent accuracy. This has lead to tensions in that certain experiments may
disagree over values for cosmological parameters. An example of this is the Hubble
tension in which measurements of the CMB disagree with that of type Ia supernovae
when measuring the evolution of the Hubble parameter, which quantifies the expansion
of the universe. This particular tension could be a case of statistical fluctuation or sys-
tematic error, but these situations do warrant more independent experiments in order
to strengthen the current knowledge.

Additional independent sets of experiments relating cosmological components to
observables can be found through studies of the distribution of matter in the universe,
namely the large-scale structure (LSS) of the universe. Studies of the large-scale struc-
ture of the universe include the study of how matter is clustered at different cosmological
redshifts in order to determine statistical properties of the matter distribution. On large
scales, the matter distribution in the universe forms a web-like pattern known as the
cosmic web[10]. Substructures of the cosmic web include voids, empty regions of space
containing little to no matter. These voids are bound by structures known as filaments.
Filaments consist of gravitationally bound galaxy clusters.
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One of the main statistical properties of the LSS that one can measure is the an-
gular correlation function between definable physical objects. In short, a correlation
function in this context measures the excess probability over random that two objects
are separated by a distance r. The imprints of baryonic acoustic oscillations on the
correlation between galaxy pairs[11], which appear as ripples in the density distribution
of baryonic matter, serve as a standard ruler when measuring cosmological parameters.
The effects this has on the correlation function between matter has been studied both
theoretically[12] and through observational experiments[13]. In addition, other stud-
ies like [14] and [15] show that the statistical properties of galaxy clustering provides
useful constraints on cosmological parameters. Another statistical tool that allows for
the extraction of information from the density field is the void-galaxy cross-correlation
function. The fact that the universe is expanding[16], causes light travelling towards
us to be redshifted. With current observational experiments, the only reliable way to
observe the LSS is through observations of electromagnetic radiation. When observing
objects in the universe, the redshifted light causes the observed matter distribution
to appear distorted along the line of sight direction. This introduces anisotropy in
the void-galaxy correlation function. Work on modelling the anisotropic effects on the
void-galaxy correlation function as a result of redshift space distortions has been con-
ducted [17]. Additional works like [18] and [3] have shown that this provides additional
constraints to cosmological parameters. These independent experiments allow one to
extract even more information about underlying cosmology from the density field.

The filaments themselves have not yet received the proper treatment as that of voids
and galaxy clusters. Although great efforts have been made analysing many of their
properties[19], their matter distribution has not yet received a thorough statistical re-
view as that of voids and the matter distribution in general. Further contribution to
this field includes proper modelling of the physical behavior, such as the velocity field of
matter around filaments. By modelling the statistical properties of filaments correctly,
one can potentially gain an additional set of experiments for extracting cosmological
properties from the density field. This can potentially serve as a useful supplement for
the studies conducted on voids and galaxy clustering. Additionally, future galaxy sur-
veys are expected to greatly increase the size of observational datasets. Current surveys
of the large scale structure of the universe include the Sloan Digital Sky Survey [20],
in which the redshifts of 1.5 million galaxies is measured. Future surveys include the
Euclid mission, in which one of the scientific goals is to measure the redshifts upwards
of 50 million galaxies[21]. In preparation for future experiments like Euclid, which will
greatly improve the data for which LSS studies are to be carried out, simulation data
is useful for testing and developing methodology. Current computer simulations enable
the study of the evolution of billions of dark matter particles[2][22], which allows for
relatively accurate representations of the real universe. Since future cosmological sur-
veys and experiments allow for even more precise measurements, additional emphasis on
mapping the potential error of applied models is crucial. This is in order to fully extract
as much knowledge as possible from future surveys and experiments. As mentioned, the
correlation function for voids and galaxies has been studied in previous works. How-
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ever, in preparation for future observational experiments, applying methodology and
potential improvements on large datasets provide useful testing.

The work in this thesis is divided into two main parts. Using data from The Big
MultiDark Planck simulation (BigMDPL)[22], the first part of this work contains an
analysis of filaments where the goal is to test a model for the velocity component of
dark matter halos perpendicular to the filament spine. Using linear perturbation the-
ory, I will derive a simple model for the radial velocity perpendicular to the spine of
cosmological filaments. This model will be compared to velocity data from numerical
simulations in order to test whether this is a valid approximation for it to be used in
further modelling of the statistical properties of filaments. The second part of this thesis
includes a test of the void-galaxy correlation function applied on data from The Big
MultiDark Planck simulation (BigMDPL)[22]. The methodology will be tested using
three different samples with a different number of dark matter halos ranging from 3.5
million to 15 million. In addition, proposed improvements to the modelling of velocities
of matter around voids[4] will be tested in order to see if this will improve the perform-
ance of the models.

This thesis is divided into multiple sections. Chapter 2 provides a summary of cos-
mological theory used in the development of the methodology. It also provides a short
summary of the fundamental statistical theory used and cosmological simulations in
general. Chapter 3 provides an introduction to the codes utilized for identifying fila-
ments and voids from the simulated distribution of dark matter halos. This is followed
by a short introduction of the dataset and its properties given in chapter 4. The meth-
odology particular to the work conducted in this thesis itself is introduced in chapter 5.
This is followed chapter 6 which presents the results and a discussion of their properties.
This section is split into two parts. Section 6.1 provides the results and a discussion for
the work done on filaments, while section 6.2 provides the same for the work done on
voids. Finally, some concluding remarks are given in chapter 7.
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Chapter 2

Background Theory

2.1 History of cosmology and how we model the universe

This section aims to introduce much of the cosmology relevant to the methodology and
analysis applied in this thesis. The following subsections are largely based on [23], [24]
and [25] unless otherwise noted.

2.1.1 Distances in the universe and cosmological redshift

Distances in an expanding universe can prove hard to fathom. In our everyday lives, we
are used to measuring distances in meters and kilometers. The average distance from
the earth to the sun however is approximately 1.49 · 1011m. Although this distance on
a cosmic scale is very short, the numbers in our everyday units of measurement already
start to become too big for us to have a reasonable idea of how long this distance ac-
tually is. We have a clear idea of what a meter and a kilometer is as we have to deal
with them every day. To make things more manageable when measuring these large
distances, the average distance from the earth to the sun has been assigned its own unit
of distance measurement known as the Astronomical unit (AU). This unit is a useful
tool for measuring relative distances in our own solar system, but the star nearest to our
solar system, Proxima Centauri, is located at approximately 268394AU away from our
closest star the Sun. Therefore it is convenient to introduce another unit of distance
measurement known as a light-year. This unit with a value of 9.4607 · 1015m is the
distance at which light travels in vacuum during one Julian year equal to 365.25 days.
This gives us a more manageable account of the distance from the Sun to Proxima
Centauri as 4.244 light-years [26]. With both the AU and the light-year introduced
we can define the last unit for distance measurement, namely the parsec equal to 3.26
light-years. One parsec is equal to the distance at which 1 AU subtends an angle of one
arcsecond. Most cosmological distances are measured in parsec, abbreviated Pc, with
either the prefix mega or giga as cosmology deals mostly with intergalactic scales much
larger than the average distance between two galaxies.

Due to the fact that the universe is expanding, light travelling towards us from far
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away objects gets redshifted. Since the expansion of the universe is isotropic, i.e, the
expansion rate of the universe is equal in all directions, the redshift of this light can be
used to measure the distance at which we observe objects in the universe. The cosmic
redshift z is given by the relation

z =
λobs
λem

− 1, (2.1)

where λobs is the observed wavelength we measure here on earth and λem is the wavelength
emitted by the observed object. By combining this with the doppler formula λobs−λem

λem
=

v
c , one gets

z =
v

c
, (2.2)

where v is the velocity of the observed object relative to the observer. The velocity of
an object due to the expansion of the universe is given by Hubble’s law

v = H0dp, (2.3)

where dp is what is known as proper distance and H0 is the Hubble parameter at present
time. The Hubble parameter measures the expansion rate of the universe as a function
of time. The proper distance can be interpreted as the length measured if one was to
use a ruler between two objects a and b at a fixed time t taking into account the fact
that our universe is expanding. Before introducing how proper distance is calculated, it
can be useful to talk about the concept of comoving distance first. If we choose a time
t = t0, which is present time and introduce a coordinate system at this time, we can
choose an arbitrary point to center ourselves at in this coordinate system. If we apply
a ruler in this coordinate system and measure the distance from our point to another
arbitrary point, this is the comoving distance r. The comoving distance is simply the
distance measured in a coordinate system at t = t0. The proper distance on the other
hand factors in the expansion of the universe through the scale factor a(t). The proper
distance is given as

dp =

∫ r1

r0

a(t)rdr, (2.4)

where a(t) is a quantity known as the scale factor. The scale factor parametrizes the
relative expansion of the universe. It is defined in such a way that a0, subscript 0
meaning a(t = t0), is equal to one. This definition of proper distance also implies that
comoving distance is the proper distance at t = t0. With these properties in place we
can now see how redshift, which is a measurable quantity, can be used to measure the
real distance to objects in our universe.

Another measurable quantity is flux emitted from an astronomical object. The flux
F is defined as

F =
L

4πR2
, (2.5)

where L is the luminosity and R is the distance to the object. Luminosity is a measure
of the absolute electromagnetic power emitted from an astronomical object. The flux,
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however, measured inW/m2, is simply the luminosity divided by the area of a shell with
a radius at which we observe the object, assuming the radiation is isotropically emitted.
Some astronomical phenomena, like a type 1a supernova, have a fixed luminosity due
to the characteristics of the process that creates it. This is called a standard candle.
By measuring the observed flux from such a phenomenon, one can then calculate the
luminosity distance as

dL =

√
L

4πF
. (2.6)

Lastly, we introduce the angular diameter distance. The angular extent of an object
in the sky provides us with another measurable quantity related to distances in the
universe. The angular diameter distance is, for an object with a known size D at a
large distance d, where d� D, given as

dA ≡
D

∆θ
. (2.7)

Here ∆θ is the angle covered by the object measured in radians and dP is the proper
distance. Taking into account the proper distance separating the two endpoints of the
diameter of the observed object we have

D = a(t)r∆θ, (2.8)

where r is the distance from the observer to the measured object. This will give an
expression for the angular diameter distance

dA =
r

1 + z
, (2.9)

where the relation a(t) = 1/(1 + z) has been used.

2.1.2 Modelling the evolution of the universe and the ΛCDM model.

The cosmological principle states that on sufficiently large scales the universe is isotropic
and homogenous. This means the universe looks the same in every direction for every
observer at any point in space for sufficiently large scales. By sufficiently large scales
one means distances roughly 100Mpc or larger [25, p. 12]. This has proved to be a good
assumption by surveys like the Sloan Digital Sky Survey[27]. Figure 2.1 shows a sky
map from a survey released by the SDSS project.
The fact that the universe was homogeneous and isotropic was an essential assumption
for a particular solution of the Einstein field equation. This particular equation, first
published by Albert Einstein in 1915 [28] concerning his theory of general relativity, is
given as

Gµν = 8πGTµν . (2.10)

This equation relates Gµν , which is the Einstein tensor in which describes the curvature
of spacetime, with the energy momentum-tensor Tµν , which describes the energy content
of the universe. During the 1920s, by assuming the universe is isotropic, homogenous



8 Background Theory

Figure 2.1: The SDSS (Sloan Digital Sky survey) map of the universe. Each dot rep-
resents a galaxy and the color scale represents the local density. Downloaded from
the SDSS website https://www.sdss.org/science/orangepie/. Image Credit: M.
Blanton and SDSS.

https://www.sdss.org/science/orangepie/
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and expanding, the scientists Alexander Friedmann and Georges Lemaître worked on
finding a solution to equation 2.10. In the 1930s Howard P.Robertson and Arthur
Geoffrey Walker further explored the problem and proved that this is the only solution
on a spacetime that is homogenous and isotropic. This solution, named after the four
scientists, is known as the Friedman-Lemaître-Robertson-Walker metric The metric is
a tool that allows us to calculate the physical distance in a coordinate system. For
example, for the Cartesian coordinate system, we have the metric

gij =

1 0

0 1

 . (2.11)

The definition of the line element ds2 in this case, is given as

ds2 =

1∑
i,j=0

gijdq
idqj , (2.12)

where q = (x, y) is a vector representing the spatial dimensions and i and j represents
the indices. This gives the familiar line element ds2 = dx2 + dy2. For a flat universe
the Friedman-Lemaître-Robertson-Walker metric for four dimensional space time takes
the following form

gµν =



1 0 0 0

0 −a2 0 0

0 0 −a2 0

0 0 0 −a2


. (2.13)

The line element is now given as

ds2 =

3∑
µ,ν=0

gµνdx
µdxν , (2.14)

where dx0 = dt and the remaining three indices are for the three spatial coordinates.
This gives us the following line element

ds2 = dt2 − a2(dx2 + dy2 + dz2). (2.15)

The energy momentum tensor Tµν for a perfect isotropic fluid takes the form

Tµν =



−ρ 0 0 0

0 −a2P 0 0

0 0 −a2P 0

0 0 0 −a2P


, (2.16)
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where P is the pressure. Using this metric together with the Einstein field equations
results in the important equations known as the first and second Friedman equations
respectively as

ȧ2

a2
=

8πGρ

3
(2.17)

and
ä2

a2
= −4πG

3
(ρ+

3p

c2
). (2.18)

I refer the reader to [24, ch. 2] for an explanation on how to derive the Friedmann equa-
tions starting with the Friedman-Lemaître-Robertson-Walker metric. These differential
equations relate the evolution of the scale factor a with the following properties of the
universe, namely density ρ, pressure p and gravitational constant G. In these equations
ȧ and ä denotes derivative and double derivative with respect to time, meaning that
a = a(t) is a function of time.

In modern cosmology, the standard model for describing the universe is the ΛCDM
model. Its name is an abbreviation for what is considered the main energy contributions
governing the expansion of the universe. The cosmological constant Λ represents dark
energy, CDM is an abbreviation for cold dark matter and lastly, we have ordinary
baryonic matter, which is what we interact with in our everyday lives. The current
estimates suggest that approximately 69% of the universe consists of dark energy while
the remaining 31% is attributed to matter. The matter contribution is made up of 27%
dark matter and 4% is regular baryonic matter. This leaves only trace contributions
from other energy contributing factors such as photons (γ) and neutrinos (ν) [29]. When
modelling the universe these quantities enter into what is called density parameters Ωi,
where i represents a certain type of energy contribution to the universe i.e dark matter
or CDM. The density parameter is defined as

Ωi,0 =
ρi,0
ρc,0

, (2.19)

where ρi,0 is the density of a given energy contribution and ρc,0 is the critical density
of the universe. Subscript zero indicating these quantities measured at present time.
The critical density is the density at which the universe is flat. The critical density at
a given time is given as ρc = 3H(t)2

8πG . For a flat universe, we have∑
i

Ωi = 1. (2.20)

By combining both Friedmann equations (equations 2.17 and 2.18), one can derive the
following relation for the density ρ

ρ̇ = −3
ȧ

a
(ρ+

p

c2
). (2.21)
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By inserting the equation of state p = wρc2, where w is a constant, into equation 2.21
one will get the following differential equation

ρ̇ = −3
ȧ

a
(1 + w)ρ. (2.22)

This equation can be integrated for an arbitrary a and ρ to present time giving

ρi = ρi,0a
−3(1+wi), (2.23)

where subscript i is again added to denote a specific energy contribution to the uni-
verse. The constant wi takes different values when considering the different energy
contributions. For CDM and baryons we have w = 0, for radiation w = 1

3 and for the
cosmological constant we have w = −1. By taking into consideration equation 2.17 and
dividing both sides by H2

0 , and recognize the critical density ρc,0 =
3H2

0
8πG , one can rewrite

the first Friedmann equation as
H(t)2

H2
0

=
ρ

ρc,0
. (2.24)

By separating the density into its different components as ρ =
∑

i ρi and using equation
2.23 for the different components, one can rewrite the first Friedmann equation using
equation 2.19 as

H(t) = H0

√
(ΩCDM,0 + Ωb,0)a−3 + Ωr,0a−4 + ΩΛ,0, (2.25)

Where b represents baryonic matter and r represents radiation.

2.1.3 Einstein-de Sitter model

While the ΛCDM model is the leading model for describing the evolution of our uni-
verse, other universe models, being simpler to work with, will also prove beneficial as
approximations for different applications. One of these models is the Einstein-de Sit-
ter model [30] proposed by Albert Einstein and Willem de Sitter in 1932. This model
contains only matter making Ωm = 1. After learning of the expansion of the universe,
from the observations of Edwin Hubble, Einstein removed the cosmological constant
from his equation as this constant was first proposed to keep the universe static. After
the discovery that the expansion of the universe is accelerating [31][32] the cosmological
constant was reintroduced. While the Einstein-de Sitter model is long discarded, it is
still useful as it is easy to work with in an analytical framework and provides good
approximations for different applications.

In a universe containing only matter, the first Friedmann equation with w = 0 takes
the form

ȧ2

a2
=

8πG

3
ρm,0a

−3. (2.26)

By multiplying with H2
0/H

2
0 and remembering that ρc,0 =

3H2
0

8πG , one gets

aȧ2 = H2
0

ρm,0
ρc,0

. (2.27)



12 Background Theory

Since we consider a flat universe containing only matter we have ρm,0

ρc,0
= Ωm,0 = 1.

Taking the square root of both sides, we get

a1/2ȧ = H0. (2.28)

This gives us a differential equation which can be integrated as∫ a

a0

a1/2da = H0

∫ t

t0

dt, (2.29)

which gives the solution
2

3
(a3/2 − a3/2

0 ) = H0(t− t0). (2.30)

By choosing time t = 0, in which a = 0, and using that a0 = 1, we get

2

3
= H0t0. (2.31)

By imposing this boundary condition we find that

a(t) =
( t
t0

) 2
3
. (2.32)

2.1.4 Growth of matter perturbations in linear perturbation theory.

As I have previously stated, observational data suggest that the universe is isotropic
and homogenous. This however was for sufficiently large scales at around 100 Mpc
or larger. On smaller scales, the universe is not isotropic and homogenous. A single
galaxy, for example, is denser than the intergalactic medium that separates it from other
galaxies. The anisotropy in temperature of the cosmic microwave background (CMB),
as measured by the Planck satellite and its predecessor CMB experiments, is measured
to be around ∆T/T = 10−5. This shows that at around redshift z = 1000, we had
relatively small fluctuations while we today observe galaxy clusters which has around
200 times larger density than the average density of an equal sphere in the universe
[23, p. 342]. This suggests that the original density perturbations grows over time. The
small structure deviations at early times evolve through what is known as gravitational
instability. Regions with higher density will attract more material through gravity
giving a flow of matter towards dense regions making them even denser. This makes
an already irregular distribution of matter become even more irregular with time and
will evolve from the small fluctuations at the time of the CMB to the dense sctructures
we observe in our universe today. To describe this evolution, one defines the relative
density contrast as

δ(r, t) ≡ ρ(r, t)− ρ̄(t)

ρ̄(t)
. (2.33)

Here ρ̄(t) denotes the mean matter density of the whole universe at time t, while ρ(r, t)
denotes the local density at position r at time t.
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The growth of these perturbations can, on scales substantially smaller than the
Hubble radius, which is the radius of the observable universe, be described in the frame-
work of linear perturbation theory. On these scales, Newtonian gravity is sufficient to
describe the nature of structure growth. With the approximation that the universe
only consists of pressureless matter, which is the case for cold dark matter, which is the
main constituent of the matter in the universe, the matter distribution of the universe
is modelled as a pressureless fluid. The equations of motion for such a fluid is governed
by the equations

∂ρ

∂t
+∇ · (ρv) = 0, (2.34)

∂v

∂t
+ (v · ∇)v = −∇P

ρ
−∇Φ (2.35)

and
∇2Φ = 4πGρ− Λ. (2.36)

Here v = v(r, t) is the velocity field of the fluid and Φ = Φ(r, t) is the newtonian
gravitational potential. P is the pressure of the fluid. Equation 2.34 is the continuity
equation which tells us that the density changes with the flow of mass. Equation 2.35,
which is the Euler equation, describes the behavior of the fluid under the influence of an
external force. The last equation, equation 2.36, is the Poisson equation which relates
the gravitational potential to the density field. These equations are solvable in the
limit |δ| � 1, and can then be used to derive an expression for relatively small density
contrasts, which can be used to describe the evolution of density perturbations on large
scales. We can model small perturbations to first order by substituting ρ = ρ0 + δρ,
v = v0+δv, v = v0+δv, P = Po+δP and Φ = Φ0 +δΦ. Here δ is used to assign small
perturbations to the physical quantities and should not be confused with the previously
defined density contrast. The velocity also has to take into account the expansion of
the universe in addition to the peculiar velocity of the particles giving v = H(t)r+vpec.
These equations can then be reduced to

∂2δ

∂t2
+ 2H(t)

dδ

dt
= 4πGρ̄δ. (2.37)

[23, p. 345]. This equation only contains time derivatives, and none of the coefficients is
dependent on x. Therefore δ(x, t) can then be expressed as a spatial and time-dependent
expression on the form

δ(x, t) = D(t)g(x). (2.38)

Here g(x) is an arbitrary function of the spatial comoving coordinate x, and D(t)
satisfies

∂2D

∂t2
+ 2H(t)

dD

dt
= 4πGρ̄D. (2.39)

This equation has two solutions. One solution is strictly increasing and one is strictly
decreasing. As time evolves the decreasing solution will become negligible and the
increasing solution will dominate. This solution, denoted as D+(t), is called the growth
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Figure 2.2: A simple illustration of the spherical top hat model.

factor and determines the amplitude of structure growth as a function of time. Since
t ∝ a, one can then model the growth factor for a given cosmological model. We will
lastly define the function

f(a) ≡ dlogD+

dloga
, (2.40)

to quantify the relationship between the growth of structure and the expansion of the
universe.

2.1.5 Spherical collapse models

Linear perturbation theory has its limitations. In particular, it will not be able to
accurately describe the formation of dark matter halos or galaxy clusters. The evolution
of density contrasts of order higher than unity requires different techniques to model
in a reasonable way. The spherical top-hat model is one of the most fundamental
frameworks to analytically model the non-linear collapse of overdensities in the universe.
The spherical top-hat model gets its name from how its density profile is defined. For
the spherical top-hat model we have

ρ(r, t) =

{
ρ̄(1 + δi), |r− rc| ≤ R
ρ̄, |r− rc| > R,

(2.41)

where rc is the center of the overdensity and R is the radius. δi is a factor determining
the size of a given overdensity. Figure 2.2 gives a simple graphical illustration of the
model, hence why it has the name spherical top-hat model. For a spherical shell with
the given density we have the mass

M =
4

3
πR3ρ̄(1 + δi). (2.42)

The evolution of the radius R can be modelled through Newtons second law as

d2R

dt2
= −GM

R2
. (2.43)
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By multiplying both sides of this equation with dR
dt and integrating one gets

1

2

d2R

dt2
− GM

R
= E. (2.44)

Here it is worth noting that the left-hand side of 2.44 is the sum of the kinetic and
potential energy. Therefore the integration constant E can be interpreted as the total
energy. It can be shown that for E < 0, this equation has the parametrised solution

R = A(1− cosθ) (2.45)
t = B(θ − sinθ) (2.46)

A3 = GMB2. (2.47)

[12, p. 79]. By setting an initial radius Ri at time ti this solution tells us that a shell
expanding with the background evolution of the universe will eventually slow down and
reach a maximum radius at θ = π. This is called turn-around. At this point, the sphere
will begin to collapse. This solution also suggests that at θ = 2π the sphere would
collapse to a point. This is not the case as something known as virialization occurs
before this happens.

The virial theorem describes the relationship between the potential and kinetic en-
ergy in dynamical equilibrium in a set of collisionless particles under the influence of a
gravitational potential. Individual particles in the gas will reach R = 0 and eventually
shoot outwards again. The whole system will stabilize when it has virialized. The virial
theorem states that

|U | = 2K, (2.48)

where U is the potential energy and K is the kinetic energy. At the radius of turn
around, the kinetic energy is zero. As the cloud collapses the kinetic energy will increase
and eventually it will virialize when the conditions of equation 2.48 is fulfilled.

2.1.6 Two point correlation functions and the matter power spectrum.

Matter in the universe is not randomly distributed in a uniform fashion. Starting with
the initial perturbations, matter clumped together and formed galaxies and clusters as
a result of gravitational instability. This means that for a given random point in space,
the probability of finding a galaxy in the vicinity of that point is not independent of the
surrounding galaxy distribution. The statistical distribution of galaxies is described by
the two-point correlation function. The two-point correlation function for galaxies ξg(r)
describes the probability of two galaxies are separated by a distance r. The correlation
function is related to the density contrast as

ξ(|r1 − r2|) = 〈δ(r1)δ(r2)〉. (2.49)

The matter power spectrum P (k) provides a statistical description of the distribution
of matter in the universe, but in Fourier space. Figure 2.3 shows the matter power
spectrum inferred from a multitude of cosmological surveys. The matter power spectrum
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describes the amplitude of the density contrast on different length scales L = 2π
k , where

k is the Fourier wave number. The matter power spectrum is related to the two-point
correlation function as a Fourier transform given by

P (k) = 2π

∫ ∞
0

x2 sin(kx)

kx
ξ(x)dx. (2.50)

Both of these quantities are statistical properties and are of high importance when
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Figure 2.3: The matter power spectrum inferred from different cosmological surveys.
Image credit: "ESA and the Planck Collaboration" [1].

comparing models to observations or simulations. The initial conditions for the origin
of structure in our universe are coupled to the period of Inflation. Inflation is a rapid
expansion of space that occurred in the infancy of the universe after The Big Bang.
Inflationary theory does not predict the exact location of the distributed matter. In-
stead, it predicts how it should be statistically distributed. A simulation or calculation
of structure growth may not look identical to anything anywhere in the universe (if it
is not infinitely large), but if the statistical properties are the same, then the models
are correct. It is therefore important to note that two universes are considered identical
if they inhabit the same statistical properties. This makes the power spectrum and
two-point correlation function important vital tools when studying the universe.

An important cosmological parameter is σ8 which serves as a normalization for
the matter power spectrum. The parameter σ8 is motivated by the observation that
when averaging over spheres on scales of radius R = 8Mpc/h it is found that

σ2
8,g ≡

〈(n− n̄
n̄

)2〉
8Mpc/h

≈ 1, (2.51)
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where n is the local number density of galaxies and n̄ is the average number density. In
a similar fashion, it is defined through the dark matter density contrast as

σ2
8 =

〈
|δ8Mpc/h|

)2〉
, (2.52)

where the density contrast δ is averaged over spheres of R = 8Mpc/h. These two
parameters can be related through the linear bias factor as

σ8 =
σ8,g

b
. (2.53)

Since the overdensity of galaxies does not necessarily follow the overdensity of dark
matter, in which is used for the derivation of linear perturbation theory, it is scaled by
a bias factor

b =
δg
δdm

, (2.54)

where subscript g is for galaxies and dm is for dark matter. This way, one can normalize
the dark matter power spectrum by measuring the σ8,g parameter and using the relation
in equation 2.53 to use scales on 8Mpc/h as a reference for normalizing the power
spectrum when the shape is known.

2.1.7 The cosmic web

On large scales the universe is isotropic and homogenous. However this does not mean
that every galaxy or cosmological particle is distributed randomly. As previously dis-
cussed, matter tends to flow towards overdensities. Over time many of these overdensit-
ies will collapse into large dark matter halos. Dark matter halos contain subsctructures
and sub halos where baryonic matter can form galaxies. The massive halos are bound
together by gravity in what resembles a web-like structure known as the cosmic web.
The cosmic web is made up of large filaments of baryonic and dark matter, and in
between there are large voids with very low density. Figure 2.4 shows the Millenium
simulation with 1010 dark matter particles at different redshifts z = 0 and z = 18.3
corresponding to t = 0.21Gyr and t = 13.6Gyr after the big bang respectively. Here one
can clearly see that as time evolves the matter coalesces from a relatively even distri-
bution of matter into a web-like structure with filaments and voids. The same pattern
is also visible in the SDSS sky survey shown in figure 2.1.

An important phenomena for the matter to coalesce into this web-like structure is
baryonic acoustic oscillations (BAO). Baryonic acoustic oscillations originate from the
dense hot plasma that the universe consisted of after the big bang. During this time
photons and baryonic matter was coupled together. While dark matter is collisionless,
the baryon-photon plasma on the other hand is not and is subject to pressure forces.
Gravity will cause matter to flow towards overdensities. The collisionless dark matter
will clump together and form potential wells, while the baryonic matter is subject to
outward pressure as it clumps together. While the photons and baryons are coupled
together they move with the sound speed, which in this plasma is roughly half the speed
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(a) (b)

(c) (d)

Figure 2.4: Figure showing snapshots of the Millennium simulation with 1010 particles
for two different redshifts. Figures a) and b) is taken at z = 0 while figures c)
and d) is taken at z = 18.3. Image credit: Downloaded from the website of the
Millennium Simulation[2] (https://wwwmpa.mpa-garching.mpg.de/galform/virgo/
millennium/).

https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium/
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of light. The outwards pressure will cause ripples of baryonic matter flowing outwards
from the dark matter overdensities. At approximately z ≈ 1000 baryons and photons
decoupled. In cosmological history this period is called the epoch of recombination. Due
to the expansion of the universe, the experienced interaction rate between photons and
baryonic matter decreased drastically. This caused the rate at which photons scattered
off of baryonic matter to drastically decrease. This allowed for the formation of neutral
hydrogen. As baryonic matter was no longer bound to photons this also caused the
sound speed to drop eventually causing the ripples to stop expanding. This lead to
shells of baryonic matter eventually attracting portions of dark matter away from the
overdensities in the center of the potential wells formed before recombination. These
ripples are not directly observed but can be inferred from measuring the correlation
function for galaxies. The correlation function contains a bump at the characteristic
length scale rs. This shows that the baryonic acoustic oscillations are influential on the
distribution of matter in the universe today.

2.1.8 Real- vs Redshift space

As mentioned earlier in section 2.1.1, due to the fact that the universe is expanding,
galaxies we observe in the universe on cosmological scales move away from us and
appear redshifted. In addition, galaxies also have peculiar velocities, which is their
velocity when subtracting the Hubble flow. This results in an effect, that when observing
galaxies as a function of redshift, their spatial distribution appears squashed. As most
cosmological surveys of galaxies are done by measuring their redshift, understanding
how this affects their spatial distribution is crucial. We will now denote real space
coordinates by subscript r and redshift space coordinates by subscript s. By taking
into account the peculiar velocity of galaxies and the Hubble flow, we can express their
redshift as a sum of two terms

cz = H0dp + vpec. (2.55)

Here the first term represents the Hubble flow and the second term is the peculiar
velocity along the line of sight. For most galaxies, only the redshift can be measured
and not the proper distance. Therefore, by dividing equation 2.55 by H0, it is useful to
define the redshift distance s as

s =
cz

H0
= dp +

vpec
H0

. (2.56)

The peculiar velocity of galaxies can also have a profound effect on how their spatial
distributions appear in redshift space. Matter will cluster and move towards overdens-
ities. This means that the velocity component of galaxies in a cluster will essentially
point towards the center of the galaxy cluster. This will give an effect that when viewing
a galaxy cluster, the galaxies closest to us in real space will have their peculiar velocity
move away from the observer. From equation 2.55 one can see that this will give an
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additional contribution in addition to the Hubble flow and the measured redshift will
be higher. Galaxies on the opposite side of the cluster as seen by the observer will have
their peculiar velocity point towards the observer. This will cause the peculiar velocity
to contribute with a blueshift, and likewise, the measured redshift will appear smaller
than if one could only measure the redshift due to the Hubble flow. This effect will
cause galaxy cluster to appear squashed in redshift space. This effect will also cause
the overdensity to appear much larger in the center of a collapsed object than in real
space. This is illustrated in figure 2.5.

Realspace Redshiftspace

Figure 2.5: Figure illustrating a collapsing halo in realspace and redshiftspace. The
vector pointers represent the direction of the peculiar velocity. In this illustration both
circles are meant to contain the same number density of galaxies thereby giving the ap-
parent overdensity appear much higher in redshiftspace than in realspace. The observer
sitting at the bottom of the page with the line of sight direction being parallell to the
plane spanned by the circle and the ellipse.

The effect of redshift space distortions causes the correlation function and thereby
matter power spectrum to be slightly altered when observed in redshift space. In Fourier
space, the overdensity receives a correction term as[24, p. 279]

δs(k) = (1 + βµ2)δ(k). (2.57)

Here µ = z · k is the angle between the line of sight and the Fourier wave vector. The
factor β can be seen as the growth factor f introduced in equation 2.40 from section
2.1.4. However, it is scaled by the linear bias factor given in equation 2.54 as

β = f/b. (2.58)
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2.2 Cosmological N-body simulations

Analytical approaches, such as linear perturbation theory, has their limits. Especially
when taking into consideration small scale interactions between galaxies. Using lin-
ear perturbation theory, gravitational interactions on small scales can not be described
in enough detail to accurately compare observational data to theoretical predictions.
Therefore, numerical simulations of structure formation is an important tool when
studying the properties of the universe. Numerical simulations have been crucial for
establishing ΛCDM as the standard model for cosmology. Only through simulations
has it become possible to separate the predictions of different models when comparing
models to observations [23, p. 361]. The first cosmological N-body simulation was con-
ducted by [33], where the equations of motion for 300 particles were solved to study the
formation of galaxy clusters. Due to the significant increase in computer power over
the last few decades, one has been able to perform increasingly more detailed numerical
simulations where one can afford to increase both the spatial and temporal dimension
in the simulations.

When simulating large scale structure formation in the universe, it is mostly suffi-
cient to take into account dark matter, as this is the primary contributor to the mass in
the universe. The size of dark matter particles will be a lot smaller than the simulation
volume. Therefore all the dark matter particles in the simulation are represented by
point particles with mass M , where each point particle is a body of mass representing
multiple dark matter particles. One also has to restrict the simulation volume of the
simulation. The size of the universe is too large to simulate in detail. It may also be
infinite. Therefore one has to select a simulation volume that is representative for the
effects one wants to model. For simulations where one wants to examine large scale
structures, the simulation volume is usually a box with size L > 200Mpc, as large scale
structures are hardly present on scales smaller than this [23, p. 362]. Due to restricting
the simulation to a small boxed slice of the universe, problems with the boundaries of
the simulation volume will rise. If not treated, particles at the boundary of the simu-
lation volume will not be affected gravitationally by as many neighbouring particles as
particles in the middle of the simulations volume. To account for the fact the universe
should be isotropic and homogenous on large scales one has to apply periodic boundary
conditions. This means that the cube is extended periodically. A particle leaving the
volume in one end will reappear in the other end. Particles will also interact gravita-
tionally in the same manner meaning that particles on opposing sides of the simulation
volume will affect each other as if the simulation volume was extended by adding an
identical volume side by side.

2.2.1 Pairwise summation

The simplest and most intuitive way of performing N-body simulations is by modelling
gravity as a force and applying Newton’s second law to calculate the acceleration vector
of the particles. For every particle, one calculates the force acting on it from all other
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particles by summing over the contribution from all other particles. The computational
cost of this approach scales as N2, where N is the number of particles in the simulation.
This makes this approach not feasible when including N & 106 particles. However
interesting problems can be studied by not exceeding this number of particles. This
problem can be formulated mathematically as

d2ri
dt2

= −G
N∑
i=1

N∑
j 6=i

mj

|rj − ri|3
(rj − ri), (2.59)

where the acceleration of the ith particle with position ri is calculated by summing over
all particles j 6= i with position rj . When studying equation 2.59, one can see that if
two particles come very close to each other, numerical instability will occur in the form
of a division by zero, which in turn will result in an unreasonably high force calculation.
To counteract this problem force softening is introduced. A way to do this is to modify
the denominator of equation 2.59 by including a small factor ε replacing ∆ri,j = |rj−ri|
with

√
∆r2

i,j + ε2[34, ch.2].

We will now use the notation where the acceleration is given as a(t) = d2r(t)/dt2

and the velocity v(t) = dr(t)/dt. From equation 2.59 we now have an expression for the
acceleration of each object. This gives us the coupled system ODEs necessary to solve
for the position as

v(t) =
dr(t)

dt
and a(t) =

dv(t)

dt
. (2.60)

We now discretize the time variable such that tn is the time at a specific time point,
where tn = t0 + n∆t, with ∆t representing an incremental time step. By a Taylor
expansion around tn, one can approximate the time solution at time step t = tn + ∆t
giving

r(tn + ∆t) = r(tn) +
dr(tn)

dt
∆t+

1

2

d2r(tn)

dt2
∆t2 + . . . (2.61)

and

v(tn + ∆t) = v(tn) +
dv(tn)

dt
∆t+

1

2

d2v(tn)

dt2
∆t2 + . . . . (2.62)

By discretizing the spatial variables in the same way as the time variable, one can write
r(tn) = rn, v(tn) = vn and a(tn) = an respectively for every particle. Similarly we have
rn+1 = r(tn + ∆t) etc. By truncating the Taylor expansion at the second order term
one can then write an approximate solution to our problem as

• an = −∑N
i=1

∑N
j 6=i

Gmj

(∆r2i,j+ε2)2/3
(rj − ri)

• vn+1 = vn + an∆t

• rn+1 = rn + vn∆t.

This is done for every particle i for every time step t+ ∆t. This is one of the simplest
ways to numerically solve this system of coupled ODE’s and is called the forward Euler
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method. This approach however is never used in practice as the error of the solution,
denoted ε, as can be seen from the Taylor expansion, is of order ε ∼ O(∆t2). Another
significant disadvantage with this method is that when solving for physical systems, it
will not conserve energy. A numerical integration scheme well suited for gravitational
problems where energy is conserved is the Velocity Verlet algorithm. This integration
scheme is what is known as symplectic, meaning that it conserves the energy of the
system [35, p. 31]. The Velocity Verlet scheme updates its velocity and position as

• rn+1 = rn + vn∆t+ an
2 ∆t

• vn+1 = vn + ∆t
2 (an+1 + an).

This method, and its variations, that preserve energy over long time periods makes it a
preferred method of choice for astrophysical gravitational problems.

2.2.2 Particle mesh

Another way of simulating a box with a large volume of particles is to apply what is
called a Particle Mesh code [36] [34]. This method is more computationally effective as
the number of calculations scales proportionally to the number of particles N . However,
most of the information is stored on a 3D grid covering the whole simulation volume.
This will require more memory as the resolution of the grid increases.

The Poisson equation for gravity reads

∇2Φ = 4πGρ. (2.63)

This equation can be solved for the gravitational potential Φ and the force field updated
as F = −∇Φ. This method is reliant on assigning a density field to the simulation
volume of individual particles as a representation for the density ρ in equation 2.63.
One popular method for this is what is known as Cloud In Cell (CIC). One wants to
calculate the density S at a given distance, given by the coordinate point (x, y, z), from
the particle. The density at a given point is given as S(x)S(y)S(z), where the CIC
scheme for assigning a value to S reads

S(x) =
1

∆x

{
1, if |x| < ∆x/2

0, otherwise,
(2.64)

where ∆x is the cell size. The density assigned to the grid is defined by a product
of three weight functions W (rp − rijk) = W (xp − xi)W (yp − yj)W (zp − zk). Where
subscript p denotes particle position and subscript i, j, k denotes a given grid index. A
given W is expressed as

W (x) =

∫ xi+∆x/2

xi−∆x/2
S(xp − x′)dx′. (2.65)
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We then have that the density assigned to a given grid point for a grid consisting of N
particles is given by the relation

ρijk =

N∑
p=1

mpW (rp − rijk), (2.66)

where mp is the mass of particle p. With the density assigned, one can then solve the
Poisson equation for gravity given by equation 2.63. This is done by using a Fast Fourier
Transform (FFT) on the whole grid giving

∇2Φ = 4πGρ (2.67)

−k2Φ̂ = 4πGρ̂, (2.68)

where Φ̂ and ρ̂ denotes the Fourier transform of the given quantities. Dividing by k2

and taking the inverse transform one solves the equation for the gravitational potential
as

Φ = IFFT[−4πGρ̂

k2
]. (2.69)

With the gravitational potential, one can calculate the force and interpolate forces to
their respective particle positions in the grid. The particle mesh method follows the
same algorithm as the pairwise summation method but differs in the force calculation.
Summarized the force calculation of the particle mesh method consists of three steps:

• Assign density to grid.

• Solve the Poisson equation given by equation 2.63.

• Compute the force and apply to particles in the grid.

While the computation time is significantly decreased the particle mesh method lacks in
terms of resolution. Increasing the resolution for a particle mesh code means increasing
the number of bins in each direction. For a three dimensional grid, this will quickly put
constraints on the computer memory.

2.2.3 Tree codes and Barnes-Hut simulations

The particle mesh and the pairwise summation methods are the simplest forms of N-
body simulation methods. In modern codes however these methods are rarely used in
exclusivity. Instead, in many modern codes, the methods are based on the approach
proposed by Barnes and Hut in 1986[37]. This method divides the simulation volume
into what is called a tree. An example of such a tree in 2D space is illustrated in figure
2.6. The volume in 2D is divided into four cells or eight cells in 3D. If the number of
particles in each cell exceeds a certain threshold specified by the user, the given cell is
then divided into four or eight more cells depending on whether the simulation is in 2D
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Figure 2.6: Illustration of a Barnes-Hut tree for 100 particles in 2D space. Im-
age downloaded from https://commons.wikimedia.org/wiki/File:2D_Quad-Tree_
partitioning_of_100_bodies.png. The file is licenced under the following license
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

https://commons.wikimedia.org/wiki/File:2D_Quad-Tree_partitioning_of_100_bodies.png
https://commons.wikimedia.org/wiki/File:2D_Quad-Tree_partitioning_of_100_bodies.png
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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or 3D. This dividing of cells into smaller cells continues until no cells contain a particle
number higher than the set threshold. After creating the tree, the forces have to be
calculated. When calculating the force on a given particle, the distances of particles
in other cells becomes crucial. The basic idea is that if a certain number of particles
are far away from a given particle, one can calculate the center of mass for a larger
cell containing more particles. This greatly reduces the number of calculations as the
force from far away particles can be approximated as a single force from one large body
instead. The advantage with this approach is that, instead of the calculations scaling
as O(N2) as for the regular pairwise summation, it scales as O(N logN) instead. This
approach briefly described here is fundamental for the approach for many high-level
cosmological N-body simulation codes.

2.2.4 Initial conditions

When setting the initial conditions for cosmological simulations, one starts at a high
redshift. The initial distribution of the particles resembles a gaussian random field
with the theoretical matter power spectrum P (k, z) for the given cosmological model.
Choice of a time step is also important. One has to find a compromise between long
computation time and accuracy between closely interacting particles.

2.3 Statistics

For the analysis of the data, statistical methods are utilized. This section gives a brief
overview of the fundamental methods used for basic statistical analysis. This section is
largely based on [38] and [39].

2.3.1 Bayes theorem

When studying and comparing our observations and simulations with theory one has to
quantify the probability of the models parameter space given the data used. I.e, what
parameters will make our model compare best with our observations or simulations.
Consider the probability P (A,B), which is the probability for two events A and B
occurring. If the two events A and B are independent of each other, the probability
is simply given as P (A,B) = P (A)P (B). However, this is not the case if the events
A and B are dependent on each other. Take for instance the probability of drawing
two knights in a row from a deck of cards. The first draw alters the number of cards
in the deck and will therefore affect the probability of the second draw. We write this
as P (A,B) = P (A)P (B|A). Here P (B|A) denotes the probability of B given the fact
that event A has occurred. We can likewise write P (A,B) = P (B)P (A|B). Now let’s
consider the event A being the parameters of our model θ, and event B being our data
represented by d. We can then write P (θ, d) = P (θ)P (d|θ) = P (d)P (θ|d). Rearranging
terms we will get what is known as Bayes theorem[38]

P (θ|d) =
P (d|θ)P (θ)

P (d)
. (2.70)
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P (θ|d) is what is known as the posterior and quantifies an important question one would
ask when studying cosmology or physics in general. What is the probability of the para-
meters of the model being correct given the data one is studying? Likewise P (d|θ) is
the probability of the data being true given the parameters one has tested. This is what
is known as the likelihood and is usually denoted as L(θ). P (θ) is what is known as the
prior. This is used to quantify what we already know about our parameter space. P (d)
is what is known as the evidence and acts as a normalization factor.

In most practical examples our model contains multiple parameters we want to fit.
Let’s say we have a model dependent on the parameters θ0 and θ1. We will then get
the joint probability distribution P (θ0, θ1). If we want to know the probability of θ0

independently of θ1, we can get what is known as the marginal distribution given by

P (θ0) =

∫ ∞
−∞

P (θ0, θ1)dθ1 (2.71)

2.3.2 Parameter estimation

When comparing models with data, one has to find an expression to quantify the agree-
ment between the model and the data. An important statistical tool is what is called
the χ2 test. Given two functions ymodel

i and ydata
i , representing the model and data

respectively, where i is a given data point, the χ2 becomes

χ2 =
∑
ij

(ymodel
i − ydata

i )C−1
ij (ymodel

j − ydata
j ). (2.72)

In this expression, Cij is the covariance matrix if the data are correlated. If the data is
uncorrelated, the χ2 takes a simpler form

χ2 =
∑
i

(ymodel
i − ydata

i )2

σ2
i

, (2.73)

where σi is the error estimate for the given data point i. This is a useful tool for testing
the scatter of our data. The likelihood function L(θ) = P (d|θ) describes the probability
of our dataset d being true given our parameters. By holding our dataset constant one
can maximize the likelihood function. In other words, one can try to find the most
probable value for θ. If one assumes the data is given by a gaussian distribution, the
likelihood function is defined by a multivariate gaussian

L(θ) =
1√

(2π)n|C|
exp
[
−1

2

∑
ij

(ymodel
i − ydata

i )C−1
ij (ymodel

j − ydata
j )

]
, (2.74)

where n is the number of parameters. From this, we can see that the likelihood and
the χ2 is related as L ∝ exp[−1

2χ
2]. From this, it is also evident that maximizing the

likelihood is the same as minimizing χ2. Using Bayes theorem given by equation 2.70
one can see that we now have an expression for the likelihood. The evidence p(d), which
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acts as a normalization factor is not important as we want the relative probabilities of
our parameters and therefore this term can be ignored [40]. If one chooses a flat prior,
one where p(θ) is constant, one simply gets by addressing Bayes theoerem that

P (θ|d) ∝ L(θ). (2.75)

2.3.3 Sampling and Metropolis-Hastings MCMC

When dealing with distributions P (θ,d), where there is a large amount of parameters
θ = (θ0, θ1, . . . , θn), a simple gridding algorithm can prove to be both time and memory
consuming. If we also take into account the fact that one may deal with gaussian
distributions, there are large areas of parameter space where the probability of partic-
ular configurations of parameters being true are slim to none. Therefore, by gridding,
one spends a significant amount of time exploring a relatively uninteresting part of
parameter space. Therefore, it is useful to introduce the concept of sampling and the
Metropolis-Hastings Markov-Chain Monte Carlo method.

The Monte Carlo principle states that if you take independent and identically dis-
tributed samples θ from an arbitrary function f(θ), as the number of samples increases,
the distribution of samples will converge towards the function f(θ). This is expressed
mathematically as

fN (θ) =
1

N

N∑
i=1

δ(θ) (2.76)

→ lim
n→∞

fN (θ) = f(θ) (2.77)

There is however a problem in that the function we want to calculate P (θ|d) is a
distribution that is unknown to us. We know how to calculate it, but we cannot draw
from it. Therefore one introduces a proposal distribution Q(θ). This is a known function
that one can easily evaluate and pick samples from. The proposal distribution can be
any function, but it is usually a Gaussian or any other function enclosing the parameter
space of the target function. The target function is the function one wants to represent,
but it may be computationally ineffective to use a brute force grid approach if the model
contains a multitude of parameters. In our case, the target distribution is the likelihood
or the posterior distribution.

One of the most popular Markov chain Monte Carlo algorithms is the Metropolis-
Hastings algorithm. The basic idea behind the Metropolis-Hastings algorithm is to
draw a point θ∗ from the proposal distribution Q(θ) based on the previous draw, and
compare the draw with an acceptance criterion. The probability for the acceptance
criterion is usually drawn from a uniform distribution. The acceptance criterion in
Metropolis-Hastings is given by

α = min
[
1,
P (θ∗)Q(θ∗|θ)
P (θ)Q(θ|θ∗)

]
, (2.78)
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where Q(θ∗|θ) represents the proposal distribution for a new pick of parameters θ∗

based on previous parameters. P (θ) is the target density distribution. After drawing
an initial value θ0 from the proposal distribution Q, the Metropolis-Hastings algorithm
is a repeatable sequence of the following

• Sample θ∗ from Q(θ∗|θ)

• Sample a number u from the normal distribution

• if u < α, where α is given by equation 2.78:
accept move and sample θ∗

• else:
reject the move and sample the previous point θ instead.

• Repeat until you have a sufficient amount of samples to accurately represent the
target distribution.

The idea with the acceptance criterion is that the algorithm will eventually explore
all of the parameter space where the target distribution has its highest values. If the
algorithm just accepted the next step without comparing it to a random pick from
the normal distribution, the algorithm would just converge to the closest peak. By
comparing the acceptance criterion to a pick from the normal distribution, one would
also in some cases accept picks with a less probable state. This makes the algorithm
map the whole distribution, but it will quickly drift away from spending too much time
exploring parameter space where the target distribution is negligible.
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Chapter 3

Codes utilized - Identyfing voids
and filaments from a particle
distribution

3.1 DisPerSE-"Discrete Persistent Structures Extractor"

For the analysis conducted on filaments, the identification of the filamentary structure
of the cosmic web in data sets is crucial. To achieve this, the code DisPerSE[41][42] is
utilized. The code is publicly available at http://www2.iap.fr/users/sousbie/web/
html/indexd41d.html?. DisPerSE is a code that was developed to identify topological
features of the cosmic web in cosmological particle distributions. DisPerSE utilizes dis-
crete Morse Theory to identify the topological structures of the cosmic web in data
sets. In this section, I will give a brief overview of how DisPerSE works to identify the
filamentary structure from a particle distribution. For a thorough review I recommend
the paper [41], in which the following chapter is based and much notation is borrowed,
describing the theory behind DisPerSE and the references therein. Another good sum-
mary of the beforementioned paper is found in [43], from which the following chapter
also has drawn information.

3.1.1 Morse Theory

To identify the features of the cosmic web from the density field of our particle distribu-
tion, DisPerSE relies on Morse Theory [44]. Morse theory is a mathematical framework
used to relate the geometrical and topological properties of a function. In our case, the
topological features are quantities such as the number of galaxy clusters or dark matter
halos, while the geometric features are quantities related to the precise position of the
galaxy cluster or dark matter halos and the local density. In this thesis, Morse theory is
utilized to study the relation between the density field derived from a dark matter halo
catalogue and features such as filaments, voids and walls. This is done by studying the
gradient of a smooth function f . By studying the gradient of the function f , one can

http://www2.iap.fr/users/sousbie/web/html/indexd41d.html?
http://www2.iap.fr/users/sousbie/web/html/indexd41d.html?
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analyze the topological and geometrical features of the manifold. In general, to apply
Morse theory, one needs a smooth scalar function f that is twice differentiable. In our
case, this scalar function is the density field of our simulation volume. In Morse theory,
the gradient of the function f is defined as ∇xf(x) = df(x)/dx. This function specifies
the direction of the steepest ascent for our scalar density function. The points where
∇xf = 0, are called critical points. These critical points can be classified by studying
the Hessian matrix of f given as

Hf (x) = d2f(x)/dxidxj . (3.1)

The critical points are classified by the eigenvalues of Hf (x). A critical point is of order
k when the Hessian matrix has exactly k negative eigenvalues. This way one can classify
the critical points as maxima with k = 2, saddle point with k = 1 and minima with
k = 0. This analysis also implies that for Morse theory to be applicable, the function f
has to satisfy the condition Hf (x) 6= 0, where ∇xf = 0. From this, it follows that any
function that satisfies this condition can be classified as a Morse function.

It is previously stated that the gradient points in a preferred direction for any non-
critical point. From the gradient, one can therefore define integral lines between the
critical points. An integral line is a parametrised curve L(t) ∈ Rd that satisfies

dL(t)

dt
= ∇xf(x). (3.2)

These integral lines will always have critical points as their origin and destination. An
important property of these integral lines is that they cover all of Rd, but they never
intersect each other. They can however share the same origin or destination. With
these integral lines, one can define ascending and descending n-manifolds. If one con-
siders a critical point P of order k on the Morse function living in Rd, an ascending
manifold of d− k dimensions is constructed by the set of points reached by all integral
lines with origin at the critical point P . A descending manifold is a k−dimensional
region of space defined by all integral lines with their destination at point P . An as-
cending 3−manifold associated with minimas trace underdense regions represented by
voids. Ascending 2−manifolds trace walls and the filaments themselves are traced by
ascending 1−manifolds. This leads to the definition of the Morse complex. The Morse
complex is simply the set of all the ascending or descending manifolds. The Morse
complex establishes the link between the geometrical properties such as the location of
critical points and the paths of the gradients with the topological feature such as how
the critical points are connected and how many there are of each type.

3.1.2 Discrete Morse theory

The formality currently introduced deals with smooth continuous functions. This how-
ever is rarely applicable to measured data or simulations. For example, the density field
of our simulation volume is derived from a discrete set of point particles. Therefore
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discrete Morse theory[45] is applied in order to utilize Morse theory on discrete data.
Instead of working on smooth functions, discrete Morse theory is applied to what is
called a simplicial complex. A simplicial complex is a space made up of simplices. A
simplex is a generalization of a triangle to an arbitrary number of dimensions. For
example a k-dimensional simplex, referred to as a k-simplex, is represented as

• a 0-simplex is a point

• a 1-simplex is a line segment

• a 2-simplex is a triangle

• a 3-simplex is a tetrahedron/pyramid etc.

A k-simplex will be denoted as σk defined by the set of points σk = {p0, . . . , pk}.
Similarly, one can define the face of a simplex to be a subset of the original k-simplex.
We can define the face as an l-simplex γl = {p0, . . . , pl} with l ≤ k. If γl is a face
of σk, then σk is called a coface of γl. When k and l only differs by one, a face is
called a facet and a coface is called a cofacet. These simplices make up what is called
a simplicial complex in which a discrete Morse function is defined and discrete Morse
theory is applied. A simplicial complex K is made up of a finite set of simplices such
that σk ∈ K. With this one can define a discrete Morse function f as a function
that maps a real value f(σk) for each simplex in the simplicial complex K. As for the
Morse function defined in regular Morse theory, the discrete counterpart also has to
be differentiable and the gradient can only flow towards one preferred direction locally.
For this to occur and a Morse function to be defined on the simplicial complex it has
to satisfy the following criteria

• there exists at most one facet ξk−1 of σk such that f(σk) ≤ f(ξk−1), and

• there exists at most one cofacet χk+1 of σk such that f(σk) ≥ f(χk+1).

These criteria states that locally a simplex has a lower value than its facet and a higher
value than its cofacet. On a discrete Morse function, one defines a gradient field. This is
done by comparing a k-simplex with its facets or cofacets. One can couple a k-simplex
with its facets or cofacet and identify a preferential flow direction through gradient pairs

• If a simplex σk has exactly one lower valued cofacet χk+1, then {σk, χk+1} defines
a gradient pair

• If a simplex σk has exactly one higher valued facet ξk−1, then {ξk−1, σk} defines
a gradient pair.

Gradient pairs define gradient arrows and define the preferred flow direction in the
discrete vector field. As for the regular Morse theory, the discrete counterpart also
requires an analogy to a critical point. These are called critical k-simplices. A k-simplex
σk is critical if the following critera are satisfied



34 Codes utilized - Identyfing voids and filaments from a particle distribution

• there exists no facet ξk−1 of σk such that f(σk) ≤ f(ξk−1), and

• there exists no cofacet χk+1 of σk such that f(σk) ≥ f(χk+1).

In regular Morse theory, the integral lines were crucial in representing the manifolds
in which the Morse complex is defined. Their discrete counterpart is what is called a
V-path. If one considers k-simplexes αik and (k + 1) simplexes βjk+1, where α

i+1
k is a

facet of βik+1, a V-path is a strictly decreasing an alternating sequence such that

α0
k, β

0
k+1, α

1
k, β

1
k+1, . . . , α

n
k , α

n
k+1. (3.3)

Each pair {αik, βik+1} forms a gradient pair. A V-path is a set of all continuous gradi-
ent pairs through the simplicial complex K. With V-paths one can define discrete
n-manifolds that make up the discrete Morse complex. A discrete n-manifold is the
set of k-simplices that belongs to a V-path with either origin or destination at the
critical simplex σk. The n-manifolds are ascending if their origin is σk. Likewise, the
n-manifolds are descending if their destination is σk. These manifolds make up what is
called the discrete Morse complex.

3.1.3 Delaunay Tesselation Field Estimator

In order to compute a density field from a set of point particles, in which one can
compute the discrete Morse complex, DisPerSE utilizes Delaunay-tesselation[46]. The
Delaunay Tesselation Field Estimator (DTFE) uses Delaunay triangulation. The Delaunay
triangulation divides the volume containing the particles into a set of triangles in 2D or
tetrahedrons 3D. The volume is divided such that no particle resides inside the circum-
circle of the assigned triangles. This triangulation captures the density of the field in
such a way that if the triangles are small, there are many particles close to each other
and the density is high. Likewise, larger triangles are made up of a point distribution
with a larger distance between the particles and the density is lower. After assigning a
density to each triangle, one can use linear interpolation, assuming the density changes
linearly between each bin, to assign a density to all bins in the assigned computational
grid.

3.1.4 Topological Persistence

When identifying the structures of the cosmic web from a density field derived from a
point distribution, one may encounter noise. Structures not supposed to be significant
may be interpreted as so and provide noise for later analysis. To deal with noise Dis-
PerSE utilizes persistence theory [47]. Persistence theory studies the evolution of what
is called excursion sets. An excursion set, or a sub-level set, is given as

(x1, . . . , xn)|ρ(x1, . . . , xn) ≥ ρ0. (3.4)

This is the set of points (x1, . . . , xn) where ρ(x1, . . . , xn) is larger than some threshold
value ρ0. Persistence theory measures the so-called lifetime of the excursion set. This is a
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measure of the absolute difference in value between a pair of two critical points. By cyc-
ling through values for ρ0 one may measure the lifetime of the topological features. The
summary of DisPerSE presented by [43] provides an analogy for this using an example
with a function represented as a landscape submerged under water. I will borrow this
analogy here. One can imagine a function of one variable ρ(x) with peaks and throughs
as mountains submerged under a water level set by ρ0. This is illustrated in figure 3.1.
When the whole function is submerged under water the excursion set is empty. As the
water level ρ0 decrease the first highest peak of the function will eventually become
visible and a new component of the excursion set will start to grow. Eventually the
second peak will appear and a new independent component will start to grow. These
two components are independent of each other because, as seen from above the surface
of the water, they are still separated. These two components will grow until the through
separating the two peaks will become visible. If the persistence of the pair is lower than
a given threshold the two independent components of the excursion set will now merge
together and form a persistence pair. When two components merge one is destroyed. In
this case the lowest maximum is destroyed by the minimum as is illustrated in figure 3.1.

DisPerSE cancels noise in the dataset by computing the persistence pairs in the
discrete Morse complex. Given a persistence pair composed of two simplicial complexes
qk = {σk, σk+1} on the discrete Morse function f , a persistence ratio r is given as

r(qk) =
f(σk+1)

f(σk)
. (3.5)

This ratio is used for determining the statiscical significance of persistance pairs. The
significance given in "number of sigmas" reads

S(qk) = Erf−1
[Pk(r(qk)) + 1

2

]
, (3.6)

where Erf is the error function and Pk(r(qk)) is the cumulative probability that a per-
sistence pair with persistence ratio r ≥ r0 exists in the dataset. The code takes a σ
input for specifying a threshold for cutting persistence pairs. The argument specifies the
persistence threshold in number of sigmas and any persistence pair with a probability
lower than the given sigma threshold will be cancelled.

3.2 REVOLVER-REal-space VOid Locations from surVEy
Reconstruction

For much of the void analysis conducted in this thesis the code REVOLVER-REal-space
VOid Locations from surVEy Reconstruction is utilized. This code is publicly available
at https://github.com/seshnadathur/Revolver. In the scope of this project the code
provides an important utility for the analysis. It provides code for finding voids in a
galaxy or halo catalogue. It also has the ability to reconstruct real space positions for
redshift space positions.

https://github.com/seshnadathur/Revolver
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Figure 3.1: Example on how DisPerSE uses persistence pairs to simplify topological
features. On the left is the unmodified function where the two leftmost critical points
forms a persistence pair. The value of the minima is increased while the value of the
maxima is increased. This is done untill the value of the minima surpasses that of
the maximum and thus the persistence pair is cancelled. This effectively smoothes out
features of the function.
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3.2.1 ZOBOV-ZOnes BOrdering on Voidness

The void finding method provided by REVOLVER utilized in this project is based on
the ZOBOV-ZOnes BOrdering on Voidness algorithm . The ZOBOV algorithm was first
presented in [48], in which this subsection is based on. In order to assign a density to
the grid from the point particle distribution ZOBOV takes use of Voronoi-tesselation.
Voronoi tesselation divides the space into individual cells where each cell belongs to a
single particle from the point distribution. Each cell is divided so that a cell around
particle i is made up of all points in space closer to that particle than any other particle.
One can imagine individual bubbles at each particle in the distribution expanding at
an equal rate. Where these bubbles collide defines the edges of each Voronoi cell. The
density of each cell is then ρi = 1/Vi, where index subscript i represents the density
and volume at each cell respectively.

After density has been assigned to the grid through Voronoi tesselation the particles
are divided into zones. The zones are divided around each density minimum. The
center of each zone is a Voronoi cell with a density lower than all of its neighbors. These
centers are found by tracing each particles neighbors until one reaches such a particle
with density lower than all its neighbors. A zone is defined as the set of particles in
which the density flows downwards towards the minimum. Due to noise present in the
dataset, multiple zones may make up one void. Therefore some of them may need to
be joined together. The way zones are joined is considering, for a 2D density field and
imagining the density function as a scalar function representing a landscape, individual
zones and imagine filling them with water. For each zone the water level is set to the
density at the core of each zone. Gradually raising the water level other zones will get
filled. The process stops when a zone with a lower core density gets filled, or, if the
current zone is the one with the lowest density, when the whole field is filled with water.
The water level in which the water flows into a deeper zone is recorded as ρ(z), where
z denotes a given zone. This will lead to a very large void (the zone with the lowest
density at the center), and many sub-voids. Now one has to define the edges of the
voids to determine which zones should be counted as voids.

One method is to determine the statistical significance of voids. The probability of
wether a zone should be considered as real is determined by the ratio of the density
contrast of a zone with the minimum density of the zone. By comparing this to a
Poisson particle distribution one can get the estimate for a likelihood function P which
determines the probability that a void with a given density contrast could arise from
Poisson noise. One can then choose to cut all voids exceeding a given significance level
from the dataset.

3.2.2 Redshift space reconstruction

Due to all observational data being measured in redshift space, in order to study the
real space positions of observed quantities one has to apply reconstruction. REVOLVER
contains a numerical implementation of the algorithm described in [49] and [50], in which
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describes the details of how REVOLVER reconstructs real space positions from redshift
space. I will give a short recap of this method here.

The algorithm of reconstruction is derived in the framework of Lagrangian perturb-
ation theory. In this framework the Eularian position x(t) is given as

x(t) = q + Ψ(q, t), (3.7)

where q is the initial Lagrangian position and Ψ(t) is the displacement field. The
Eularian position separates itself from the Lagrangian position in the sense that the
Eularian position is a specific point in space while the Lagrangian position is the position
of a parcel where the observer follows that individual parcel with the velocity field
through space and time. To first order, the displacement field Ψ can be modelled
together with the overdensity as ∇Ψ(1)(q, t) = −δ(x, t), where δ(x, t) is the usual
overdensity parameter given in equation 2.33. In order to extract the displacement field
from Ψ(q, t) from a redshifted density distribution, one has to solve [51]

∇ ·Ψ + β∇ · (Ψ · r̂)r̂ = −δg
b
, (3.8)

where β and the bias b is defined in equations 2.58 and 2.54. The vector r̂ is the unit
vector in the radial direction. Using a Helmholtz decomposition, one can express (Ψ·r̂)r̂
as a divergence and a curl component, giving (Ψ · r̂)r̂ = ∇A+∇×B. By approximating
(Ψ · r̂)r̂ to be irrotational one can neglect the curl component. Using this and rewriting
Ψ as the gradient of a potential Ψ = ∇φ, one can rewrite equation 3.8 as

∇2(φ+ βA) = −δg
b
. (3.9)

This equation can be transformed to Fourier space allowing us to write

φ̂+ βÂ =
1

k2

δ̂g
b
. (3.10)

In this equation, φ̂, Â and δ̂g denotes the Fourier transform of the quantities. Remem-
bering that Ψ = ∇φ, one can multiply by ik and get

Ψ̂ + ikÂ =
1

k2
ik
δ̂g
b
. (3.11)

The previous assumption that (Ψ · r̂)r̂ is irrotational allows us to write (Ψ · r̂)r̂ ≈ ∇A.
By taking the inverse Fourier transform of equation 3.11, one can aprroximate equation
3.8 as

Ψ + (Ψ · r̂)r̂ = −∇∇−2 δg
b
. (3.12)

Using fast Fourier transforms this equation can be solved as [50]

Ψ = IFFT
[
− ikδ(k)

k2b

]
− f

1 + f

[
IFFT

[
− ikδ(k)

k2b

]
· r̂
]
r̂. (3.13)
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Due to redshift space distortions only appearing along the line of sight direction, the
component of displacement field responsible for redshift space distortions is given by
ΨRSD = −f(Ψ · r̂)r̂.

REVOLVER solves equation 3.13 using fast Fourier transforms. Using a Voronoi
tesselation for estimating the density field δ(x) of the simulation volume, this field is
then transformed to Fourier space as δ(k). By then dividing by bk2 and multiplying by
ik, one will retrieve the expression inside the braces in the equation above. The inverse
Fourier transform is then taken.
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Chapter 4

Dataset - Multidark Simulation

For this analysis, I will use The Big MultiDark Planck simulation (BigMDPL)[22].
The data from this simulation can be found at the cosmosim website 1. This is a
dark matter particle simulation following the evolution of 38403 particles starting from
redshift z = 100. A full list of parameters, as listed on the webpage, of the dataset can
be seen in table 4.1. This simulation has been carried out utilizing the L-GADGET-2
code. This code is a modification of the treeSPH[52] code GADGET-2[53] in order
to account for a very large amount of particles. The simulation data utilized in this
analysis is taken at z = 1. After simulating the evolution of the dark matter particle
field from z = 100 to z = 1 a halo finder is used to identify dark matter halos in the
particle field.

4.1 Halo finding using Rockstar

In order to identify dark matter halos from the dark matter particle field, the Rockstar
halo finder[54] is utilized. In short, this halo finder is comprised of six steps which are
summarized in the beforementioned paper. I will recap these steps here.

1. The first step is to group particles in the simulation volume using a friends of
friends (FOF) algorithm. In short a FOF algorithm groups particles by using a
linking length l and for every particle it groups it together with all other particles
within the linking length l.

2. For each group the particles are normalized by the group position and velocity
dispersions.

3. In phase-space a linking length is chosen so that 70% of the groups particles are
linked together.

4. This process of steps 2. and 3. repeats itself

1The BigMDPL dataset can be found at https://www.cosmosim.org/cms/simulations/bigmdpl/

https://www.cosmosim.org/cms/simulations/bigmdpl/
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Box size 2.5 Gpc/h

Number of particles 38403

DM particle mass 2.359 · 1010M�/h

Force resolution 30kpc/h (high redshift) - 10kpc/h (low redshift)

Initial redshift z = 100

Hubble parameter h = 0.677

ΩΛ 0.692885

Ωm 0.307115

Ωb 0.048206

Spectral index n = 0.96

σ8(z = 0) 0.8228

Table 4.1: Parameters of the BigMDPL simulation extracted from the website https:
//www.cosmosim.org/cms/simulations/bigmdpl/.

https://www.cosmosim.org/cms/simulations/bigmdpl/
https://www.cosmosim.org/cms/simulations/bigmdpl/
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Property MultiDark 1 MultiDark 2 MultiDark 3 MultiDark 4

Mass cut [M�/h] 1013.5 1013 1012.75 1012.5

Nr of halos 534559 3460116 7523817 15365856

Bias (b) 3.85 2.77 2.40 2.11

Number density [(h/Mpc)3] 0.34 · 10−4 2.2 · 10−4 4.8 · 10−4 9.8 · 10−4

Table 4.2: Relevant properties for the analysis conducted in this thesis for each indi-
vidual dataset after applying mass cuts to the halo catalogue.

5. Once all subgroups are calculated seed halos are placed at the lowest substructure
levels. Particles are then assigned to the closest seed halo in phase space.

6. Once particles are assigned to a seed halo unbound particles are removed and the
properties of the halo itself is calcuated (i.e mass, velocity, position etc).

4.2 Applying mass cuts to the dataset.

After the halo finder algorithm has been applied to the dataset we are left with a cata-
logue of dark matter halos with x, y and z positions, vx, vy and vz velocity components
and the mass of each individual halo. This dataset will be pruned into four different
catalogues by applying different mass cuts. Future and present observational missions
will be able to locate a different number galaxies in their surveys. It is therefore im-
portant to test the performance of the methods on datasets of different sizes to see how
this affects the final results. The mass cuts are done by removing all halos below a cer-
tain mass threshold from the catalogue. These will be referred to later in the thesis as
MultiDark 1 (MD1), MultiDark 2 (MD2), MultiDark 3 (MD3) and MultiDark 4 (MD4)
respectively. Their individual properties are listed in table 4.2.
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Chapter 5

Method

5.1 Radial velocity components in linear theory

One of the goals of this project is to test the viability of using the assumptions from
linear theory. Linear theory can be applied to study whether it is a good approximation
for the behaviour of the matter distribution around voids and filaments. The radial
velocity component of halos in filaments and voids is an analytical tool that is useful
when comparing with data from simulations. The velocity field around these objects
can also be an integral part when modelling the statistical properties of these objects.
Testing whether linear theory can be used to approximately model the physical behavior
of halos and galaxies observed around these objects is therefore crucial.

5.1.1 Radial velocity component for filaments

When calculating the radial velocity component of filaments, the average filament is
approximated to be a cylindrical object. The radial component is the component of
the velocity vector v that points perpendicular to the longitudinal axis L. This is also
called the spine of the filament. A figure of this configuration is illustrated in figure
5.1. For this analysis, we will assume that the other velocity components are negligible
and that the radial component is the significant component. The continuity equation

L

vr

vr

Figure 5.1: Illustration of a cylindrical filament with longitudinal axis L and radial
velocity component vr.
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in linear theory can be written as

dδ

dt
+

1

a
∇ · v = 0. (5.1)

For the continuity equation in linear theory one can write dδ/dt = Hfδ [23, p. 347],
where f is the growth factor defined in equation 2.40. Substituting this into equation
5.1 one will get

∇ · v = −Hfaδ. (5.2)

Assuming cylindrical coordinates we can replace the divergence with

∇ · v =
1

r

∂

∂r
(rvr) +

1

r

∂vφ
∂φ

+
∂vL
∂L

. (5.3)

Assuming that the radial component vr gives the significant contribution and the two
other are negligible, by inserting into equation 5.2 one will get

1

r

∂

∂r
(rvr) = −Hfaδ. (5.4)

Multiplying both sides by r and integrating one will be left with

vr = −1

r
Hfa

∫ r

0
δ(x)xdx. (5.5)

By defining the average mass density contrast for filaments ∆f (r) as

∆f (r) =
2

r2

∫ r

0
δ(x)xdx, (5.6)

one can write the radial velocity component for a halo in a filament as

vr(r) = −1

2
Hfar∆f (r). (5.7)

5.1.2 Radial velocity component for voids

The radial velocity component for voids is similar to the one for filaments except that
for voids one assumes a spherical coordinate system. This assumption is based on
the notion that the average void should have a spherical shape with, on average, no
preferred direction for overdensities on the rim and thereby having a spherical density
profile. Since objects cluster towards larger densities, moving straight away from the
underdensity in the center of the void, one can argue that the radial velocity should
be the dominating component. This is illustrated in figure 5.2. The derivation for the
radial velocity component is the same for voids as for filaments up until equation 5.2.
The difference for voids is that the divergence now has to be calculated in spherical
coordinates given by

∇ · v =
1

r2

∂

∂r
(r2vr) +

1

rsinθ

∂

∂θ
(sinθvθ) +

1

rsinθ

∂

∂φ
(φvφ). (5.8)
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Figure 5.2: Illustration of a spherical void with radial velocity pointing outwards from
the center of the void.

As for filaments, only the radial component is assumed to be non-negligible giving

1

r2

∂(r2vr)

∂r
= −Hfaδ. (5.9)

Multiplying by r2 and integrating one will get

vr = − 1

r2
Hfa

∫ r

0
x2δ(x)dx. (5.10)

Similar to what was done for filaments, the average mass density contrast for voids is
defined as

∆v(r) =
3

r3

∫ r

0
x2δ(x)dx, (5.11)

which will give an expression for the radial velocity for voids

vr(r) = −1

3
Hfar∆v(r). (5.12)

5.1.3 Minor correction term to velocity around voids.

The equation for the radial velocity around voids, given by 5.12, is a simple model of
the velocity using a pure geometrical interpretation. In this thesis, I will implement and
test whether adding a correction term to equation 5.12, as proposed by [4], will provide
a better fit to the data. The proposed model adds a correctional term to the velocity
given as

v(r) = −1

3
Hfar∆v(r) + Γ

6

7
faH

r

6
∆(2)
v , (5.13)
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where Γ = +1, when ∆v(r) > 0 and Γ = −1, when ∆v(r) < 0. In addition to the
mass density contrast for voids ∆v(r) defined in equation 5.11, an additional ∆

(2)
v is

introduced as
∆(2)
v (r) ≡ 3

r3

∫ r

0
x2δ(x)2dx. (5.14)

This semi-empirical term is motivated by including a modified second order Eularian
perturbation term in velocity (eq. (43) in [55])

∇ · v(2) =
3

7
f2aH(δ(1))2 + Other terms. (5.15)

This modification to the velocity model will be tested by fitting parameters with data
when calculating the cross-correlation function for voids and galaxies ξsvg(µ, s) derived
later in section 5.3.3.

5.2 Numerical measurement of correlation functions and
multipole expansions.

As mentioned in section 2.1.6 correlation functions are useful tools for measuring the
statistical properties of the universe. In order to test analytical models, one has to
compare with data from observations or simulations. The code 1 used for this project
to measure angular correlation functions is called pyCUTE. This code is a Python
wrapper for a modified version of the CUTE[56] code. The code implements a Landy-
Szalay estimator [57] for estimating the angular correlation function. The Landy-Szalay
estimator for the angular cross-correlation function, where s denotes redshift space,
reads

ξs(s, µ) =
〈D1D2〉 − 〈D1R2〉 − 〈D2R1〉+ 〈R1R2〉

〈R1R2〉
. (5.16)

In this expression, the terms in the angle brackets denote the number of pairs of the
given quantities. In this analysis, subscript 1 denotes void centers and subscript 2
denotes halo positions. D1 and D2 refers to the actual data while R is samples from
a random distribution resembling the dataset. Each quantity in the squared brackets
denote the mean value of a pair with separation r and µ, where µ = cos(θ) is the cosine
of the angle between the separation vector and the line of sight direction. However, in
this project, I will only deal with simulation data in which includes a complete catalogue
without empty patches. The numerical calculation of the correlation function will then
consist of simply counting void-halo pairs with separation s and angle µ. An illustration
of a pair in the coordinate system of the observer is illustrated in figure 5.3

In real space, due to isotropy and homogeneity, there is no angular dependence on
the correlation function and ξr(r) is only a function of radius. However, the redshift
space distortions themselves are responsible for the angular dependency in ξs(µ, s).
Since redshift space distortions are only present when considering the component of a

1The code for measuring correlation functions utilized for this analysis can be found at https:
//github.com/seshnadathur/pyCUTE.

https://github.com/seshnadathur/pyCUTE
https://github.com/seshnadathur/pyCUTE
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Figure 5.3: Figure illustrating the system used in this analysis. This figure is drawn in
real space thereby all vectors denoted as r. Transformation to redshift space will distort
the halo positions and the corresponding system will have vectors denoted as s.

vector parallel to the line of sight direction, isotropy is not conserved in redshift space.
In order to characterize the angular dependencies, the angular cross-correlation function
is expanded into multipoles[17]

ξs` (s) =

∫ 1

0
ξs(s, µ)(1 + 2`)L`(µ)dµ, (5.17)

where L`(µ) are Legendre polynomials of order `. The redshift space distortions them-
selves are fully characterized by the monopole and quadrupole terms[58]. The Legendre
polynomials for ` = 0 and ` = 2 are given by

L0(µ) = 1 (5.18)

and
L2(µ) = (3µ2 − 1)/2. (5.19)

5.3 Void Analysis

5.3.1 Density profile

After running the void finding algorithm from REVOLVER on our dataset, we have a list
of x, y and z coordinates for every void center. With a catalogue of void centers, one has
to compare their position to the positions of halos found in their respective catalogue.
This allows one to calculate the average density profile as a function of distance from
the void center. Using a periodic kd-tree module2 to search for the halos nearest to a
particular void center with a gradually increasing radius, one can count the halos in the
catalogue close to a given void center. For every void, a search for neighbouring halo
particles is conducted with a gradually increasing radius. For a linearly spaced radius
array r = {r0, . . . , rn}, using an iterative approach, every halo in a sphere, centered

2The periodic kd-tree code applied for this analysis is found at at https://github.com/patvarilly/
periodic_kdtree

https://github.com/patvarilly/periodic_kdtree
https://github.com/patvarilly/periodic_kdtree
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around a given void, with radius ri is counted. The total number of halos is stored for
every iteration. For the first iteration, the number of halos in a sphere around the void
center is calculated and stored. The density for this sphere is then ni/Vi, where ni is the
number of halos inside the sphere and Vi = 4πr3

i /3. For the next iteration, the number
of halos inside a sphere with radius ri+1 is counted. A lot of the halos inside this new
sphere overlaps with the previous sphere. Therefore the number of halos in the previous
step was stored and then subtracted from the number of galaxies in the new sphere.
This leaves only the number of halos counted in the spherical shell that does not overlap
between the two spheres. The volume of this spherical shell is Vi+1 = 4π(r3

i+1 − r3
i )/3.

The number density in the shell, defined by subtracting the previous sphere from the
new sphere, is the number of galaxies in the new sphere subtracted by the number
of galaxies in the previous sphere divided by the volume of the spherical shell. The
total number of galaxies in the new sphere is stored and this process is repeated for all
iterations defined by the radius vector r. This process will give the density profile as
a function of radius for a given void. By adding the density profiles for all voids and
dividing by the number of voids one will get an average density profile for the whole
dataset. From the relation for the overdensity, given by equation 2.33, the stacked
overdensity profile for the voids in a catalogue is then given by the relation

δ(r) = ρ(r)/ρ̄− 1, (5.20)

where ρ̄ is the average density in the simulation volume N/V , where N is the total
number of halo particles in the halo catalogue and V is the total volume, which in this
case is 25003 [Mpc3/h3]. The number of particles for the datasets tested is given in
table 4.2.

5.3.2 Velocity profile and velocity dispersion

When studying linear theory applied to voids and filaments, one needs an observational
or numerical representation to test its validity. As explained in section 5.1 the radial
velocity profile can be represented analytically and may provide a good comparison.
In addition to the x, y and z coordinates for the halo particles, the galaxy catalogue
used also contains the vx, vy and vz particles. The radial velocity profile is calculated
in a similar manner as the density profile for voids described in 5.3.1. Using a periodic
kd-tree centered at the current void one can count all particles in a sphere around the
current void center. For a given halo particle its position with respect to a given void
center is given by

r = rvoid − rhalo. (5.21)

This is the vector that points radially from the void center to a given halo particle. The
radial velocity component is the component of the velocity v for a given halo particle
that points along this vector. The component of the vector v along the radial vector r
is calculated as

vr =
r · v
|r| . (5.22)
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This is the radial velocity for a halo particle with respect to a given void center. In
a similar manner to the density profile, the radial velocity is calculated iteratively for
every particle in a sphere around the void center. In order to get the radial velocity
profile the area around the voids are divided into shells. For every iteration, for a given
void, the radial velocity for each sphere is stored for the next iteration. The radial
velocity in a given shell is the radial velocity in the new sphere subtracted by the radial
velocity in the previous sphere. For each shell, this is averaged by dividing by the
number of particles in a given shell. After this has been done for all voids, the radial
velocity profile is divided by the number of voids in the catalogue to get the average
radial velocity profile for voids in the catalogue.

The velocity dispersion σv is also calculated. The velocity dispersion is given by the
usual expression for the standard deviation

σv =
√
〈v2〉 − 〈v〉2. (5.23)

This velocity is along the line of sight for the observer. Since I am working with data
from simulations, the observer is located in the xy−plane and all velocities are measured
in the z−direction. In real observations the observer would be located at a point and
an angular dependency would be introduced. Therefore in this analysis, only the vz
component is considered. This is calculated in spherical shells around each void center
to get the average void velocity dispersion profile.

5.3.3 Void-galaxy cross correlation function.

As mentioned in section 2.1.6 correlation functions are essential tools in cosmology for
measuring the statistical properties of observables in the universe. In this analysis,
the cross-correlation function that will be looked into is the cross-correlation between
void centers and dark matter halos. Since dark matter halos in practice traces the
galaxy distribution, as galaxies are often located in the center of dark matter halos,
this particular correlation function will be referred to by its usual name, namely the
void-galaxy cross-correlation function. Following the approach of [17], the following
subsection will describe how to derive the void-galaxy cross-correlation function.

Let rvoid denote the position of a void center and rhalo denote the position of a halo
or galaxy particle in real space. Their separation vector r is then given by equation
5.21. The system is illustrated in figure 5.3. The relation from redshift space to real
space is given as

s = r +
vpec · r̂void

aH
r̂void, (5.24)

where vpec is the peculiar velocity of a galaxy or halo particle and r̂void = rvoid/|rvoid|.
Here it is assumed that the velocity of void centers are negligible. This is partially due
the modelling of the velocity of the void centers being complicated. It is also assumed
that the positions of the void centers themselves are invariant under transformation
from real space to redshift space. Since, for this project, data from simulations are
utilized one has access to both a catalogue with real space and redshift space positions.
In redshift space the distribution of galaxies or halos gets distorted and therefore the
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number of voids in real space may not be preserved in redshift space. If one utilizes
observational data, only the redshift space positions are observed. Therefore reconstruc-
tion, described here in section 3.2.2, has to be applied to regain the field in real space
from redshift space. By using the real space and redshift space catalogues provided by
the MultiDark simulations[22], as I will do in this thesis, one eliminates errors intro-
duced by the additional step of performing reconstruction on the redshift space data.
Cross correlating real space voids with the redshift space galaxy catalogue will satisfy
the conditions from the abovementioned assumptions. However, for future work, it is
important to study the effect of performing this extra step on simulation data to better
quantify the potential error introduced as this step has to be done for this method to
be applied on observational data.

The basic assumption when calculating the cross-correlation function required is
that the number of void-galaxy pairs in the simulation volume is unchanged during the
transformation from real space to redshift space. This is stated mathematically as

(1 + ξsvg(s))d3s = (1 + ξrvg(r))d3r, (5.25)

where superscript r and s denotes real space and redshift space respectively. Here ξsvg(s)
is the cross correlation between real space voids and the redshifted galaxy field and ξrvg(r)
is the cross correlation between real space voids and real space galaxy positions. r and
s are vectors pointing from the void center to a given galaxy position in real space and
redshift space respectively. Another assumption made is that the velocity of all halo
particles near a void can be approximated by its radial velocity v = vrr̂. We orient our
coordinate system so that r̂void = ẑ. The observer will then only experience redshift
distortions in the z direction. This makes sx = rx and sy = ry. With r̂void = ẑ, we then
have that r̂void · r̂ = z/r. We can then rewrite equation 5.24 as

s = r +
vrz

aHr
ẑ. (5.26)

Here z is the z−component of r̂. The coordinate transformation will then have the
following jacobian determinant

|J(
s

r
)| =

∣∣∣∣∣∣∣∣∣∣∣
1 0 0

0 1 0

0 0 ∂sz
∂rz

∣∣∣∣∣∣∣∣∣∣∣
, (5.27)

where
∂sz
∂rz

= 1 +
vr
raH

+
(v′r − vr/r)

aH
µ2. (5.28)

Here v′r denotes derivative with respect to r. One can now rewrite equation 5.25 as

1 + ξsvg(s) = (1 + ξrvg(r))
[
1 +

vr
raH

+
(v′r − vr/r)

aH
µ2
]−1

. (5.29)
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This equation can be calculated using both the velocity derived from linear theory
for voids, given by equation 5.12, and the modified velocity proposed by [4], given in
equation 5.13.

Using the radial velocity vr for halos derived from linear theory, given in equation
5.12, it is sometimes customary to approximate the expression for the cross correlation
function given in equation 5.29. In addition to the radial velocity vr, we have ∆′v(r) =
3(δ(r)−∆v(r))/r giving

v′r = −Hfa(δ(r)−∆v(r)), (5.30)

where ∆v(r) is the density contrast defined in equation 5.11. Inserting this into equation
5.29 yields

1 + ξsvg(s) = (1 + ξrvg(r))
[
1− f

3
∆(r)− fµ2(δ(r)−∆(r))

]−1
. (5.31)

This equation can be expanded using the Taylor expansion 1/(1− x) ≈ 1 + x+O(x)2.
When expanding this equation it is appropriate with a review of the terms. It is assumed
that for voids the density profile is small enough so that terms of second order in δ and
∆v is negligible meaning δ2, ∆2

v and δ∆v terms are not considered. This leaves us with
terms of order δ and δξr. Equation 5.31 then reduces to

ξsvg(s, µ) = ξr(r) +
f

3
∆v(r)(1 + ξr(r)) + fµ2[δ(r)−∆v(r)](1 + ξr(r)). (5.32)

This is an approximation to equation 5.29. Although the approximations give the model
sufficient validity on a range of scales [18], testing during the development of the meth-
odology showed that the full expression given by equation 5.29 proved to correspond
better with numerical calculations described in section 2.1.6. Since the equations are
implemented numerically there should therefore be no reason to not use the full expres-
sion for the sake of this analysis.

As mentioned earlier, it is worth noting that since ξr(r) is the correlation function
in real space coordinates, if one is to apply this method to observational data, recon-
struction, described in section 3.2.2, has to be performed. Since observational data is
observed in redshift space, one cannot observe ξr(r) directly. One therefore has to per-
form reconstruction on the data and then perform the correlation function calculation,
described in section 5.2, in order to obtain ξr(r). When working with simulation data
one possesses both the real space and redshift space catalogues. In this analysis ξr(r) is
therefore calculated by cross-correlating the real space catalogue with real space voids
using pyCUTE and no reconstruction is performed.

The correlation function in redshift space ξsvg(s, µ) relies on the real space length
of the separation vector |r|, as can be seen from equations 5.32 and 5.29. For every
distance from the void center s in redshift space, we want the corresponding length
from the void center r in real space to calculate ξrvg(r), δ(r) and ∆v(r). To achieve
this we start by decomposing s into a parallel and perpendicular component using basic
trigonometry as

s‖ = sµ (5.33)
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and
s⊥ = s(1− µ2). (5.34)

In the simulation volume, there are only redshift space distortions along the line of
sight direction. This will mean that the perpendicular component is unchanged when
changing coordinates from redshift space to real space. The parallel component is
found by inserting equation 5.12 into equation 5.24 and using the fact that there are no
distortions in the perpendicular direction as

r‖ = s‖ + s
β∆(s)µ

3
, (5.35)

where β = f/b. The corresponding real space separation is then given as

r =
√
r2
‖ + r2

⊥. (5.36)

5.3.4 Expanding the model to account for velocity dispersion

The previous model for the void-galaxy cross-correlation function is a good approxim-
ation. However, it can be improved by taking into account the velocity dispersion of
galaxies around the void centers in the line of sight direction. This will provide a more
accurate model thereby giving a better fit to data. Instead of only considering radial
velocities, in addition, another component along the line of sight direction is added

v = vrr̂ + v‖r̂void. (5.37)

vr is the radial velocity used in the previous model given by equation 5.12. v‖ is given
by a gaussian probability distribution P (v||) with zero mean

P (v‖) =
1√

2πσv‖
exp
[
−

v2
‖

2σ2
v‖

]
. (5.38)

Since we in our simulation volume only measure velocities along the line of sight dir-
ection, we can take σv‖ to measured by equation 5.23. If this method is to be used
on observations, one cannot necessarily extract the velocities of each particle and gain
information about σv. Therefore simulations have to be utilized in order to calculate
this quantity. This will however introduce free parameters when doing parameters es-
timations as this profile has to be scaled differently when derived from another dataset.
Using equation 5.38, one will get an integral for calculating the improved model taking
into account dispersion in the velocity of halos [18]

1 + ξs,streaming(s, µ) =

∫ ∞
−∞

1 + ξs,base(s)√
2πσv‖(r)

exp
[
−

v2
‖

2σ2
v‖

(r)

]
dv‖. (5.39)

In this equation, ξs,base(s) can be represented by equations 5.32 or 5.29, dependent on
whether one uses the aforementioned approximations or not. In this thesis, I will use
the full expression given by equation 5.29.
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5.4 Filament Analysis

5.4.1 Masking the simulation volume

When applying the DisPerSE code on the particle distribution the output will be, for
each filament detected, coordinates to the start point of each segment making up the
total filament. For each filament there will be a number of filament segments with start
points ri. This also makes ri+1 the endpoint of filament segments with start points ri.
Each filament segment Fj is then given by

Fj = ri+1 − ri. (5.40)

Here j denotes a given filament segment while i denotes the start points of the segments.
With this notation j + 1 is denoted by start points i+ 2 and i+ 1 and so on. When a
given filament segment is defined the simulation volume is masked to remove all particles
outside the edges of the start and endpoint of the filament segment. This is done by
defining two planes perpendicular to Fj with points ri+1 and ri. The equation for a
plane P given a vector F and a point r is given by the usual formula

P = Fx(x− rx) + Fy(y − ry) + Fz(z − rz) = 0, (5.41)

where x, y and z are coordinates of the particles in the simulation volume. In this
section, this vector will be denoted as x. The coordinates rx, ry and rz are the com-
ponents of r. For a given filament segment F , with start point ri and end point ri+1,
the particles kept are the particles satisfying the following criteria

P0 = Fx(x− rix) + Fy(y − riy) + Fz(z − riz) > 0 (5.42)

and
P1 = Fx(x− ri+1x) + Fy(y − ri+1y) + Fz(z − ri+1z) < 0. (5.43)

The rest of the particles are masked keeping only the particles in the simulation volume
bound by the two plane parallel to the filament segment centered in the start point and
endpoint. A figure of this process is illustrated in figure 5.4

5.4.2 Density profile

After masking the particle box, as described in section 5.4.1, we are left with a filament
segment Fj defined by the start and endpoints ri and ri+1. The distance from each
halo particle in the masked simulation volume to the filament segment is the length of
the vector from the particle perpendicular to the filament axis

d =
|x× Fj |
|Fj |

. (5.44)

This will leave us with a catalogue of the closest distance for all particles to the axis
of the filament segment. A histogram is then created of this catalogue to easily count
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(a) (b)

Figure 5.4: Figure illustrating visually how the halo catalogue is masked. On the left
is a scatter plot of the halo catalogue without a mask. The right figure illustrates the
masking of the catalogue where the two red dots are the start- and end-points of the
filament segment. Here one can see that only particles bound by the spine of the filament
segment itself are kept. The dataset used for this illustration is the MD1 dataset with
σ = 1 given as persistence threshold to DisPerSE. All units on the axes are in Mpc/h.

the number of particles in a given radial distance bin from the filament segment. The
volume of the spherical shells surrounding the filament segment containing the particles
in the radial bin is then given as

Vi = π|Fj |(r2
i − r2

i−1), (5.45)

where ri and ri−1 denotes the edges of the radial bins for the histogram. The radial
density profile of the filament segment is then given as

ρi =
Ni

Vi
, (5.46)

where Ni is the number of particles in each radial bin. For each filament segment, the
density is added together and divided by the number of segments to get the density
profile of a given filament. After adding the average density for all filaments, it is then
divided by the total number of filaments in the catalogue in order to get the average
density profile.

5.4.3 Velocity profile

In the catalogue of halo particles, the vx, vy and vz components of the halo particle
velocity v is given. In order to validate the efficacy of the velocity model derived from
linear theory, given in equation 5.7, one needs data to compare with the model. This
is done by calculating the velocity component perpendicular to the filamentary spine.
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By averaging over all filaments, one gets the stacked radial velocity profile. As for
the calculation of the density profile in section 5.4.2, let Fj = ri+1 − ri define a given
filament segment. After, for each filament, the particle box is masked as described in
section 5.4.1, the radial component d perpendicular to the filament axis is calculated.
This component is given by equation 5.44. The length of the parallel component of the
halo positions x‖ is given by the Pythagorean theorem

|x‖| =
√
|x|2 − d2. (5.47)

With the length of the parallel component calculated, one gets the parallel component
of the vector x itself by multiplying with the normal vector for the filamentary spine

x‖ = |x‖|
Fj

|Fj |
. (5.48)

This allows one to easily calculate the component perpendicular to the filamentary spine

x⊥ = x− x‖. (5.49)

To obtain the component of the velocity perpendicular to the filamentary spine, one can
use the regular formula for calculating the component of a vector along another vector

vr =
v · x⊥
|x⊥|

. (5.50)

This is calculated for all particles in a given radial bin, as defined by the histogram
created in the calculation of the density profile, described in section 5.4.2. For all
filamantery segments, the velocity in each bin is added together. The same is done for
the number of halo particles in each bin. To get the average stacked velocity profile for
filaments, the total velocity is divided by the number of particles in each respective bin.
This approach in practice gives the stacked velocity profile for filament segments.

5.5 Parametrizing distance scales.

In order to implement our model, we have to introduce a fiducial cosmology. We have
to assign values for parameters such as Ωm and ΩΛ for the model to function. These fi-
ducial values we assign however may differ from the true cosmology. This will introduce
distortions in the distance measurements. The Alcock-Paczynski effect[59] provides a
test that allows for calibration of the model. In the correct cosmological model, one
expects cosmological phenomena, such as clustering of galaxies, to appear isotropic.
Observed anisotropies may be attributed to the conversion of distance parameters us-
ing the wrong fiducial cosmology. Observed distances perpendicular to the line of sight
direction scale proportional to the angular diameter distance dA(z). Distances parallel
to the line of sight direction scale proportional to 1/H(z). This allows for the calibra-
tion of anisotropic distortions introduced by the fiducial cosmological model itself. As
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conducted by [18], the method applied to the analysis in this project will also paramet-
rize these distortions by introducing two dimensionless ratios. One in the perpendicular
and one in the parallel direction as

α⊥ =
dA(z)

dfid
A (z)

(5.51)

and

α‖ =
Hfid(z)

H(z)
, (5.52)

where dA is the angular diameter distance. The correlation function ξs(s, µ) is measured
using the fiducial components sfid

‖ and sfid
⊥ . These components are then rescaled using

the dimensionless ratios as
s‖ = α‖s

fid
‖ (5.53)

and
s⊥ = α⊥s

fid
⊥ . (5.54)

Likewise the correlation function in real space ξr(r) takes into account distances in real
space at a given redshift for a fixed cosmology. The corresponding distance in the real
universe may vary from this distance and therefore the real space distance is rescaled
as

r =

∫ 1

0
α‖r

fid

√
1 + (1 + µ2)

[α2
⊥
α2
‖
− 1
]
dµ. (5.55)

This rescaling of parameters gives an additional parameter when fitting the models to
the data as both α⊥ and α‖ has to be tested in order to determine the best fit for
the parametrization of the distance scaling. In simulations, the fiducial cosmology is
known and α‖ = α⊥ = 1. Therefore constraining ε = α⊥/α‖ for a model applied to
simulation data can provide a good test on how the model performs. These parameters
are one of the most important parameters of the model as these are directly linked to
the cosmological parameters ΩΛ and Ωm. In [3], the authors show that the study of
voids is important additions to other established cosmological surveys for constraining
the cosmological parameters. This is shown in figure 5.5

5.6 Calibrating dark matter profiles.

When using a linear bias approximation, we can simply approximate δg(r) = ξrvg(r),
as the real space correlation function between voids and galaxies and the normalized
density profile δg(r) effectively traces the same quantity. The linear bias approximation
itself is to just use δdm = δg/b. However, when using a dark matter density profile the
bias factor is not considered and instead σ8 is used to scale the amplitude of the density
profile. At a given redshift z we then have

δdm(r, z) =
σ8

σMD
8

δfid
dm(r, z), (5.56)



5.6 Calibrating dark matter profiles. 59

Figure 5.5: Marginalized constraints on Ωm and ΩΛ inferred from different cosmological
surveys. This figure illustrates that the study of voids is a good addition to other
experiments in contributing to providing constraints for these cosmological parameters.
Figure is copied from [3].
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where σMD
8 = 0.8228 is the value for σ8 for the MultiDark simulation dataset with

z = 0. For δfid
dm(r, z), the exact dark matter density profile for the four simulated

datasets was not obtained. Instead, I will use a dark matter profile for voids obtained
from the BigMD mock CMASS galaxy sample [60]. This dark matter profile will need
some extra scaling in order for it to accurately represent the dark matter profile for the
dataset used in this analysis. Its amplitude is scaled by σ8, as shown in equation 5.56.
However, before the analysis, I will scale the dark matter profile using eye measurements.
This is in order to make sure its amplitude is approximately equal to δg(r) derived from
the dataset. After this, I will divide by the bias factor for the given dataset in order
to gain an approximate amplitude for δdm(r). This will make the amplitude roughly in
line with what the corresponding dark matter profile for the dataset would have looked
like. However, the slope of δdm(r) may differ. Therefore, when scaling the radius, an
extra rscale parameter is multiplied with equation 5.55 when scaling the radius for the
dark matter density profile. The rscale parameter will be included in the likelihood
analysis as a part of the model when fitting the data. This will make it so that both
the amplitude and the slope of the dark matter density profile will be adjusted when
fitting the parameters to the data.

5.7 Likelihood analysis.

In order to test the validity of the models and to see whether the proposed improvements
perform better, a likelihood analysis is conducted. The likelihood analysis in this thesis
largely follows the approach conducted by [18]. The code implementing the Metropolis-
hastings MCMC chain is provided by the publicly available Victor code3. Using the
method described in section 5.2, the angular cross-correlation function ξs(s, µ) and
its multipoles is calculated from a simulated halo catalogue in redshift space and voids
located from the corresponding real space catalogue using REVOLVER. For the purpose
of this analysis the MultiDark dataset, described in section 4, is utilized. The numerical
angular cross-correlation function is measured using 80 linearly spaced bins for 0 < µ <
1 and 30 linearly spaced bins for 2Mpc/h< s < 118Mpc/h. Using the same number of
bins and data points, the corresponding correlation function in real space ξr(r) is also
calculated from the real space halo catalogue. Using the methods described in sections
5.3.1 and 5.3.2, the density profile and velocity dispersion are calculated for each void
in catalogue identified by REVOLVER. With these quantities calculated one has all the
components needed to evaluate equation 5.39.

5.7.1 Estimating the covariance matrix

The covariance matrix used is calculated using patchy mocks provided by the MultiDark
simulation[61][62]. The covariance matrix is provided together with the code used for
the likelihood analysis. A mock catalogue is a galaxy or dark matter halo catalogue

3The code used for the likelihood analysis is provided by https://github.com/seshnadathur/
victor

https://github.com/seshnadathur/victor
https://github.com/seshnadathur/victor


5.7 Likelihood analysis. 61

that is built from simulations designed to resemble an observed galaxy catalogue. The
creation of the covariance matrix used is described in [18]. The covariance matrix is
calculated using 1000 patchy mocks. For each patchy mock the angular-cross correlation
is measured and expanded into a monopole ξs0 and a dipole ξs2. The multipoles are
then combined into a data vector ξs ≡ (ξs0, ξ

s
2) for each patchy mock catalogue. The

covariance matrix is then calculated as

C =
1

N − 1

N∑
k=1

(ξk − ξ̄k)(ξk − ξ̄k)T , (5.57)

where ξ̄k is the mean over all the mocks used and k is the index for a given mock. N
is the number of mocks used to calculate the covariance matrix itself. In this case, we
have N = 1000.

5.7.2 Fitting parameters to data.

The theory model, given by equation 5.39, relies on the parameters σv and β = f/b
through the modelling of vr, described in section 5.3.2. Through the rescaling of r, de-
scribed in section 5.5, it also relies on α⊥ and α‖, in which is represented as ε = α⊥/α‖.
Without the linear bias approximation, the model does not rely on the bias factor b.
Instead, it relies on the parameters fσ8 and rscale, as described in section 5.6. For
the linear bias approximation, with and without the added velocity term described in
section §5.1.3, the model then relies on the three parameters (β, σv, ε). When using a
dark matter profile, the model relies on the four parameters (fσ8, σv, ε, rscale)

The Victor code utilized for the likelihood analysis implements the approach de-
scribed by Sellentin & Heavens [40] and calculates the χ2 for each step in the MCMC
chain as

χ2 = (ξs,streaming − ξs)C−1(ξs,streaming − ξs). (5.58)

Here ξs,streaming is given by equation 5.39. ξs is the numerically calculated cross-
correlation function using the real space void catalogue and redshift space halo cata-
logue. The log-likelihood is then calculated as

lnL ∝ −N
2

ln
(
1 +

χ2

N − 1

)
. (5.59)
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Chapter 6

Results/Discussion

The following section is split into two sections. One section is devoted to the ana-
lysis conducted on filaments and another section to the analysis conducted on voids.
Throughout this analysis, a fiducial cosmology is assumed. Every time a quantity re-
lying on cosmological parameter is illustrated, the following values were used: H0 =
100h(km/s)/Mpc, Ωm = 0.31 and ΩΛ = 0.69.

6.1 Filament analysis

6.1.1 Effect of choosing persistence ratio on dataset

As discussed in section 3.1.4, DisPerSE has an option to filter noise through setting a
persistence threshold. This has a profound effect on the number of filaments identified.
Figures 6.1 and 6.2 shows slices of the MD1 and MD2 datasets. In these figures, filaments
identified by DisPerSE are overplotted. The sigma thresholds ranges from no cuts,
σ = 1, σ = 2 and σ = 3. From these figures, one can see that increasing the σ threshold
will reduce the number of filaments detected. Figures 6.3 and 6.4 shows histograms of
the filament lengths for all filaments in the MD1 and MD2 datasets with the different σ
thresholds. From the histograms, one can clearly see that filaments with lengths in the
range 20Mpc/h to 50Mpc/h are the ones that get significantly reduced as the σ threshold
increases. By looking at the scatter plots for the two datasets, one can see that with no
cuts, a lot of knots appear in the intersection where filaments meet. This leads to many
individual structures identified as filaments that in reality should only make up one
individual filament. On the other hand, using σ = 3, leaves out a lot of structures that
should be interpreted as filaments. Therefore, the following analysis will be conducted
using the filament catalogues output by disperse using σ = 1 and σ = 2. Looking at the
histograms, a lot of very large filaments with length l ≥ 100 is also detected. Although
the code is utilized on a dark matter halo catalogue and not a galaxy catalogue, which
in principle could make us detect larger structures, filaments with length larger than
100 Mpc/h is neglected. The existence of very large structures, such as the Hercules-
Corona Borealis Great Wall, which is approximated to measure around 2000−3000Mpc
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in diameter [63], has been proposed. Although, to not account for structures larger
than what breaks with the cosmological principle, the largest filaments are cut from
the catalogue. To avoid small filaments making up potential knots in the intersection
where many filaments meet, filaments with length l ≤ 20Mpc/h are also cut from the
catalogue.
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Figure 6.1: Figure showing slices of the MD1 dataset in the xy-plane for 950Mpc/h≤
z ≤ 1050Mpc/h. Here the persistance threshold given to DisPerSE is varied between
no cuts, σ = 1, σ = 2 and σ = 3. Each blue dot represents a halo particle while all lines
represents filaments assigned by DisPerSE.
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Figure 6.2: Figure showing slices of the MD2 dataset in the xy-plane for 990Mpc/h
≤ z ≤ 1010Mpc/h. Here the persistance threshold given to DisPerSE is varied between
no cuts (a), σ = 1, σ = 2 and σ = 3. Each blue dot represents a halo particle while all
lines represents filaments assigned by DisPerSE.
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Figure 6.3: Figure showing histograms of filament lengths calculated by disperse for
the MD1 dataset. In this figure, the persistance threshold given to DisPerSE is varied
between no cuts (a), σ = 1 (b), σ = 2 (c), σ = 3 (d).
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Figure 6.4: Figure showing histograms of filament lengths calculated by disperse the
MD2 dataset. In this figure, the persistance threshold given to DisPerSE is varied
between no cuts (a), σ = 1 (b), σ = 2 (c), σ = 3 (d).

6.1.2 Density profiles

In accordance with the method described in section 5.4.2, the density profile ρg(r)/ρ̄
was calculated for the MD1 and MD2 datasets with σ = 1 and σ = 2 as inputs to the
DisPerSE code. The density profile was calculated from r = 0Mpc/h to r = 300Mpc/h
using linearly spaced bins of size 2Mpc/h. This is a very long distance, but in order to
test the scales at which linear theory can be applied to filaments, an arbitrarily large
distance was chosen. From the histogram of filament lengths, illustrated in figures 6.3
and 6.4, one can see that increasing the σ threshold for the DisPerSE code greatly re-
duces the amount of shorter filaments. From the MD1 dataset for both σ-thresholds
chosen, illustrated in figures 6.5 and 6.6, one can see that the density close to the fila-
ment spine is larger for the higher σ-threshold. This is also present for the MD2 dataset,
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as shown when comparing figures 6.7 and 6.8. As one can see from the histograms of
filaments, increasing the σ-threshold reduced the number of smaller filaments. This may
suggest that longer filaments possess a higher number density of particles per volume.
This result may also be an effect of noise removed when cutting shorter filaments. The
shorter filaments, making up a larger portion of the total number of filaments in the
lower σ-threshold, may be structures identified in more sparse areas of the simulation
volume thereby lowering the stacked density profile.

As can be seen from the figures of the density profiles, a power law model was fit-
ted to the density profile from the filament spine to approximately where the profile
reaches the average density of the simulation volume. For the MD1, dataset the density
profile flattens out at approximately r = 30Mpc/h for both σ-thresholds. For the MD2
dataset, this happens at roughly r = 20Mpc/h for both σ-thresholds. This distance
is longer than what is detected by [64] (e.g fig.9). Using a similar method applied to
the TNG300 simulation[65] at redshift z = 0, they found that the density profile con-
verged to the average density of the simulation volume at approximately r = 7Mpc/h-
21Mpc/g depending on dataset and length cuts applied to filaments. They also found
that long filaments converged faster than shorter filaments. A similar method was also
applied by [66] (e.g fig.5) to galaxies in the range 0.1 < z < 0.3 using the WISExSCOS
catalogue[67]. They calculated the stacked overdensity profile and their results show
that the gradient flattens out at approximately 21Mpc/h. The calculations in this thesis
on the other hand is conducted at z = 1. For both datasets and σ-thresholds a power
law ∝ rx was fitted using the density profiles from r = 0Mpc/h to r = 30Mpc/h for
the MD1 dataset and r = 0Mpc/h to r = 20Mpc/h for the MD2 dataset. These results
suggest that there is a steeper gradient when increasing the σ threshold. This may
suggest that longer filaments are denser or it may simply be an artefact of DisPerSE
removing shorter filaments that should be perceived as noise. In order to test this, it
would be useful for future expansion of these results to test the algorithm on filaments
of different lengths by applying manual cuts to the filament catalogue using the same
σ-threshold.

After the density profiles reach the average density of the simulation volume, for
the two sigma thresholds in the MD1 dataset, there is a prominent bulge that peaks at
approximately r = 100Mpc/h. For the density profiles derived from the MD2 dataset,
this bulge is not as prominent, but after approximately r = 60Mpc/h, the density profile
starts to decline slowly. This effect may be due to a potential artefact where the volume
of the cylindrical shells surrounding the filament does not scale properly with the number
of halos counted in each shell. However, the prominent bulge in the MD1 dataset may
instead suggest that this is a feature of the dataset itself. The MD2 dataset, in which is
a lot more dense seems to wash out this bulge as it is not as prominent in this dataset.
There is also a prominent difference in that when choosing σ = 1 or σ = 2 as input
to DisPerSE, the level at which the gradient flattens out relative to the background
density changes slightly. This however may be due to increasing σ-threshold effectively
lowers the amount of shorter filaments which, again, may suggest that longer filament
are more dense. It may also be an effect of DisPerSE correctly rooting out filaments
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that should be perceived as noise when increasing σ-threshold. The apparent bulge in
the MD1 dataset may make this density profile problematic when applying it to linear
theory to calculate the velocity, given in equation 5.7. However, the density profiles for
the MD2 dataset should be sufficient on scales up to r = 60Mpc/h.
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Figure 6.5: Figure showing the calculated density profile ρg(r)/ρ̄ for filaments in the
MD1 dataset with σ = 1.
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Figure 6.6: Figure showing the calculated density profile ρg(r)/ρ̄ for filaments in the
MD1 dataset with σ = 2.
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Figure 6.7: Figure showing the calculated density profile ρg(r)/ρ̄ for filaments in the
MD2 dataset with σ = 1.
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Figure 6.8: Figure showing the calculated density profile ρg(r)/ρ̄ for filaments in the
MD2 dataset with σ = 2.

6.1.3 Radial velocity profiles

In order to test whether linear theory can be used to approximate the behavior of
matter around filaments, the theory, described in section 5.1.1, was applied using the
density profiles shown in section 6.1.2. The velocity profile, calculated numerically from
the dataset, was calculated from r = 0Mpc/h to r = 300Mpc/h using linearly spaced
bins of size 2Mpc/h. Figures 6.9 and 6.10 shows the velocity of filaments predicted by
linear theory compared with the velocity calculated from the dataset, as described in
section 5.4.3, for the MD1 dataset with σ = 1 and σ = 2 respectively. Figures 6.11
and 6.12 shows the same for the MD2 dataset. As can be seen from the figures of the
density profiles in the previous section, the density profiles did not have a gradient that
was approximately zero after it flattened out and reached the average density of the
simulation volume. Instead, it showed a slow decline for the MD2 dataset and a more
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prominent bulge for the MD1 dataset. The small negative gradient in the density profile
causes the velocity predicted by linear theory to have an artificial increase on large scales.
In order to counteract this, the overdensity δg(r) = ρg(r)/ρ̄ − 1 was artificially set to
zero for scales r > 50Mpc/h. For all datasets, the numerically calculated velocity has
a radial component with a relatively large value close to the filament spine before it
declines and eventually reaches zero. This is reasonable as far away from the filament
spine, the stacked velocity profile should not be biased in any direction. All the velocity
profiles display a feature in which appears as a hook close to the filament spine. This
may be due to the halos being inside the densest parts of the filament experience a
greater gravitational attraction from multiple sides making the net acceleration towards
the filament spine smaller. Another explanation for this effect may be that one could
imagine the densest parts of the filaments being at the edges of the filaments in large
clusters. Overdensities at the end-points of the filament spine will make matter flow
along the vector parallel to the spine itself, thereby decreasing the amplitude of the
radial component. Studying the two-dimensional velocity field around filaments may
be of interest in order to verify wether this could be a reasonable explanation. From
the figures, it is also evident that the measured velocity profiles flattens out and starts
to converge towards the background density of the simulation volume on scales r >
100Mpc/h

The velocities predicted by linear theory displays the same behavior as the velocity
measured from the catalogues themselves. Their amplitude however is much larger than
what should be expected as measured from the dataset. As expected there is also a
prominent bend on the velocity profile predicted by linear theory at r = 50, where
δg(r) was set to zero. Since one has the simulation to compare with, one could use
eye measurements to move the radius at which one sets δg(r) = 0. However, if this
was to be used for observational data, one is not able to make this comparison, and
therefore, this limit was set at r = 50Mpc/h. As can be seen from the density profiles
from the previous section, choosing σ = 2, made the measured density at the center
of the filament larger. This is also evident in that the velocity profiles predicted by
linear theory has a higher amplitude for σ = 2 relative to σ = 1 close to the filament
spine. Although the density profiles using σ = 2 gave more reasonable results for large
radii, since δ(r > 50Mpc/h) is set to zero, this potential effect on the predicted velocity
profile is not evident in these results. These results however shows that linear theory
can be used to predict the shape of radial velocity profile. However, more effort should
be put into studying the amplitude. Since the predicted velocity profile is directly
dependent on the density profile, it may be worth investing effort into studying how the
methodology for calculating the density profile can be improved.
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Figure 6.9: Figure showing the calculated radial velocity profile compared with the
predictions from linear theory for filaments in the MD1 dataset with σ = 1.



6.1 Filament analysis 75

0 50 100 150 200 250 300

radius [Mpc/h]

−500

−400

−300

−200

−100

0

v r
(r

)
[k

m
/s

]

MD1, σ = 2

Linear theory

Numerical

Figure 6.10: Figure showing the calculated radial velocity profile compared with the
predictions from linear theory for filaments in the MD1 dataset with σ = 2.
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Figure 6.11: Figure showing the calculated radial velocity profile compared with the
predictions from linear theory for filaments in the MD2 dataset with σ = 1.
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Figure 6.12: Figure showing the calculated radial velocity profile compared with the
predictions from linear theory for filaments in the MD2 dataset with σ = 2.

6.2 Void analysis

6.2.1 Histograms

The effective void radius, measured in Mpc/h, is one of the quantities of voids that
is derived from the void finder in the REVOLVER code. Figures 6.13, 6.13 and 6.15
shows histograms of the effective void radius found in the MD2, MD3 and MD4 datasets
respectively. The histograms were calculated using radial bins with a size of 2Mpc/h.
Due to a small sample size, giving lots of noise and bad fits to the cross-correlation
function, the MD1 dataset was excluded from the void analysis. From the figures one
can see that, for the MD2 and MD3 datasets, the bulk of the distribution of voids
is in the 20Mpc/h to 80Mpc/h range. With the MD4 dataset, the distribution is
shifted more towards smaller voids with the peak of the distribution at approximately
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30Mpc/h. This trend can be seen throughout all three datasets tested. The more
halo particles in the catalogue, the more the distribution shifts towards smaller voids.
This is a reasonable result as a catalogue that is highly populated will introduce more
irregularities to the density field from which the voids are defined than a more sparsely
populated catalogue. The number of small voids however can introduce physical effects
that may not be accurately approximated by linear theory. If the voids are small enough,
non-linear interactions between halo particles may start to dominate. This can make
the assumptions from section 5.1, such as the velocity of halos being purely in the radial
direction, prove to not be a good approximation for their real behavior. Therefore, in
order to study whether this is the case, the MD3 and MD4 datasets were split into
three different cuts. One catalogue containing all voids, one catalogue containing small
voids with an effective radius 20Mpc/h≤ 40Mpc and one catalogue with large voids
containing voids with r ≥ 40Mpc/h.
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Figure 6.13: Figure showing a histogram of the effective void radius of voids found in
the Multidark 2 dataset.
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Figure 6.14: Figure showing a histogram of the effective void radius of voids found in
the Multidark 3 dataset.
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Figure 6.15: Figure showing a histogram of the effective void radius of voids found in
the Multidark 4 dataset.

6.2.2 Density profiles

In accordance with the method described in section 5.3.1, the density profiles of voids
δ(r) were calculated. The density profile was calculated for 2Mpc/h≤ r ≤ 118Mpc/h
and then splined using linear interpolation. The density profile for voids found in the
MD2 dataset is illustrated in figure 6.16. The density profiles for the MD3 and MD4
datasets with and without cuts, are shown in figures 6.20 and 6.21 respectively. In
addition to no cuts, these figures also illustrate the stacked density profile with the cuts
20Mpc/h≤ r ≤ 40Mpc/h and r ≥ 40 Mpc/h. From these figures, one can see that in the
center of the void the density is zero. As the radius increase, the overdensity profile starts
to increase before it reaches a maximum value. This is due to the fact that overdensities
are usually found on the edges of voids as matter flows away from underdensities found
in the center of the void itself. After the profile reaches its maximum, the density profile
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starts to decline. Far away from the void center, the average density profile converges
towards the average density of the simulation volume. One can see from these figures
that applying cuts will shift the peak of the overdensity. Larger voids will peak at
a larger radius than the smaller voids. The smaller voids also have a more prominent
overdensity than the larger voids. This can be explained by the fact that when applying
the 20Mpc/h≤ r ≤ 40Mpc/h cut, one observes overdensities on smaller scales. When
observing overdensities on smaller scales, one averages over a smaller volume of space
and and fluctuations in the overdensity becomes more prominent.
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Figure 6.16: Figure showing the density profile for voids found in the Multidark 2
dataset.
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Figure 6.17: Figure showing the density profile for voids found in the Multidark 3
dataset. Here the radius of voids considered are in the radius range of: all voids in
the top figure, 20Mpc/h ≤ r ≤ 40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the
bottom right.
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Figure 6.18: Figure showing the density profile for voids found in the Multidark 4
dataset. Here the radius of voids considered are in the radius range of: all voids in
the top figure, 20Mpc/h ≤ r ≤ 40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the
bottom right.

These density profiles was also used to calibrate the dark matter density profile
as described in section 5.6. This is shown in figures 6.19, 6.20 and 6.21 for the three
datasets tested. In these figures, the blue lines labelled "Scaled δdm(r)" is the dark
matter profile multiplied by a scaling factor in order for the amplitude to resemble that
of δg(r). This factor was set to 1.85. For use in the model for the correlation function,
after it was scaled with the 1.85 factor, the dark matter profile was divided by the bias
term for the given MultiDark dataset it was utilized on. This is illustrated by the orange
line. The bias factor for each dataset is listed in table 4.2.

The dark matter density profile is not as steep as the dark matter halo profile. This
is because as δg(r) traces a discrete particle field, δdm(r) resembles a more fluid-like
behavior. Although, in this work, the real dark matter profile for the dataset was
not obtained and instead a dark matter profile from another dataset was utilized, the
principle for this behavior is the same. The catalogue used to calculate δdm(r) is found
from the dark matter particle field and is a point particle distribution derived from a
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much larger amount of dark matter particles. The Larger amount of particles in the
dark matter particle field will even out the slope of the density profile.
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Figure 6.19: Figure showing the calibrated dark matter density profile, in accordance
with the method described in section 5.6, for voids found in the Multidark 2 dataset.
The blue line is the dark matter density profile multiplied by a factor 1.85 in order to
make it resemble δg(r). The orange line is the scaled dark matter density profile divided
by the bias factor for the given MultiDark dataset. The orange line is the one used in
the calculation of the model.
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Figure 6.20: Figure showing the calibrated dark matter density profile, in accordance
with the method described in section 5.6, for voids found in the Multidark 3 dataset.
The blue line is the dark matter density profile multiplied by a factor 1.85 in order to
make it resemble δg(r). The orange line is the scaled dark matter density profile divided
by the bias factor for the given MultiDark dataset. The orange line is the one used in
the calculation of the model.
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Figure 6.21: Figure showing the calibrated dark matter density profile, in accordance
with the method described in section 5.6, for voids found in the Multidark 4 dataset.
The blue line is the dark matter density profile multiplied by a factor 1.85 in order to
make it resemble δg(r). The orange line is the scaled dark matter density profile divided
by the bias factor for the given MultiDark dataset. The orange line is the one used in
the calculation of the model.

In order to calculate the correlation function given in equations 5.32 and 5.39, the
density contrast for voids ∆v(r), given in equation 5.11, was calculated for all the
datasets with the aforementioned cuts. This is illustrated in the figures 6.22, 6.23 and
6.24. This quantity shows the integrated overdensity as a function of radius.
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Figure 6.22: Figure showing the density contrast ∆v(r) for voids found in the Multidark
2 dataset.
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Figure 6.23: Figure showing the density contrast ∆v(r) for voids found in the Multidark
3 dataset. Here the radius of voids considered are in the radius range of: all voids in
the top figure, 20Mpc/h ≤ r ≤ 40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the
bottom right.
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Figure 6.24: Figure showing the density contrast ∆v(r) for voids found in the Multidark
4 dataset. Here the radius of voids considered are in the radius range of: all voids in top
figure, 20Mpc/h ≤ r ≤ 40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the bottom
right.

6.2.3 Radial velocity profiles

The radial velocity profile vr(r) for all three datasets was calculated in accordance with
the method described in section 5.3.2. The numerically calculated velocity profile was
calculated for 2Mpc/h≤ r ≤ 118Mpc/h using 30 linearly space bins. After this, the
radial velocity profile vr(r) was splined using linear interpolation. These were also
compared with the predicted radial velocity from linear theory, given in equation 5.12.
This is illustrated in figures 6.25, 6.26 and 6.27 for the MD2, MD3 and MD4 datasets
respectively. From these figures, one can see that the measured radial velocity is in the
range of approximately 150km/s. This velocity is similar to what is measured in [49]
(e.g, figure 2) and [4] (e.g, figure 2). The radial velocity is zero close to the center of
the void as these areas are empty of halos. The stacked radial velocity then starts to
increase. Positive direction is pointing radially inwards towards the void center, and
therefore, the velocity increases in the negative direction as matter is drawn outwards,
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flowing towards overdensities at the edges of voids. After the radial velocity reaches its
maximum, it declines and reaches zero as other dynamics than that of the void itself
starts to dominate. On these radii, the radial velocity is no longer biased along the ra-
dial vector of the void making the stacked radial velocity profile zero. From the figures
for the radial velocity, one can see that when applying the r > 40Mpc/h cut, there is a
significant increase in velocity for the stacked velocity profile. As one considers larger
voids, there is a larger underdense area. Since matter is flows away from underdense
regions, the larger underdensities can cause their velocities to increase.

A qualitative comparison shows that the radial velocity predicted by linear the-
ory matches the numerically calculated reasonably well on scales approximately r >
30Mpc/h. However, on smaller radii, it is evident that the predicted velocity does not
capture the behavior of the numerically calculated velocity. The numerically calculated
velocity has a zero gradient on small scales closer to the void center. However, the ve-
locity predicted by linear theory starts with a steep gradient. For the datasets without
cuts, one can see that this will result in the peak of the stacked velocity occurring earlier
than that of the numerically calculated velocity. However, when the r > 40Mpc/h cut
is applied for the MD3 and MD4 datasets, both the amplitude and peak of the curve
predicted by linear theory coincide with the numerically calculated a lot closer. After
the velocity starts to decline, for the r > 40Mpc/h cut, the numerical and predicted
curve match each other in an almost identical fashion. When no cuts are applied, and
for the 20Mpc/h< r < 40Mpc/h cuts, there is a slight offset between the two curves.
This suggests that linear theory is a good approximation to the radial velocity for voids
when cuts are applied and small voids subject to non-linear dynamics are left out of the
catalogue.

The predicted radial velocity with the correction term, given in equation 5.13, was
also calculated. For the MD2, and the MD3 and MD4 datasets without cuts, this model
has an amplitude that is more in line with the numerical calculation. This is in agree-
ment with what the author of [4] found when implementing this model. On lower radii,
before the stacked velocity reaches its maximum, the model with the correction term
seems to be in better agreement with the data found from the catalogue. However, the
author found this model to perform better than the regular velocity proposed by linear
theory on all scales. This is in contrast to what is suggested from the results found here
for these datasets. On larger scales, when the numerical curve decreases, the regular
predictions from linear theory seem to be in better agreement. It is worth noting that
for all three samples without cuts and the samples with the 20Mpc/h< r < 40Mpc/h
cuts, there is a discontinuity in the velocity predicted by the model with the correction
term. This discontinuity stems from the Γ factor in equation 5.13. When ∆v(r) changes
from negative to positive, the Γ factor changes from −1 to +1. This gives rise to the
discontinuity observed in the velocity predicted by this model. This discontinuity makes
the model appear better than the regular linear theory model on larger radii. For the
MD3 and MD4 datasets with the r > 40Mpc/h cuts applied, the amplitude predicted by
the regular model is more in line with the numerical data. On these datasets, with the
given cuts, the model with the correction term underestimates the peak of the velocity.
On larger radii, there is good compliance between the numerically calculated model and
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the velocity predicted by linear theory using these cuts. For the model with the correc-
tion term, however, there is a small discrepancy on these scales. Overall, these results
suggest that the model predicted by linear theory is a better predictor for the velocity
of halos around voids when cuts excluding small voids are applied. The model with
the correction term, on the other hand, seem to model the smaller voids better. This
examplified in the amplitude being more in line with numerical data. It is therefore not
clear if there is a significant difference between the models with these cuts when doing
a purely qualitative comparison.
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Figure 6.25: Figure showing the radial velocity profile of halos around voids found in
the Multidark 2 dataset. Here it is compared with the prediction from linear theory,
given in equation 5.12, as well as the model with the correction term, given in equation
5.13.
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Figure 6.26: Figure showing the radial velocity profile of halos around voids found in
the Multidark 3 dataset. Here it is compared with the prediction from linear theory,
given in equation 5.12, as well as the model with the correction term, given in equation
5.13. Here the radius of voids considered are in the radius range of: all voids in the top
figure, 20Mpc/h ≤ r ≤ 40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the bottom
right.
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Figure 6.27: Figure showing the radial velocity profile halos around voids found in the
Multidark 4 dataset. Here it is compared with the prediction from linear theory, given
in equation 5.12, as well as the model with the correction term, given in equation 5.13.
Here the radius of voids considered are in the radius range of: all voids in the top figure,
20Mpc/h ≤ r ≤ 40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the bottom right.

The last major component entering the correlation function in equation 5.39 is
the velocity dispersion σvz . The velocity dispersion was calculated for 2Mpc/h≤ r ≤
118Mpc/h using 30 linearly space bins and was then splined using linear interpolation.
This quantity was calculated for all three datasets with and without the aforementioned
cuts and is illustrated in figures 6.28, 6.29 and 6.30 for the three datasets respectively.
As in [17] and [4], the velocity dispersion profile converges to a value of around 300−350
km/s, giving good agreement with previous works. However, close to the void center
the dispersion profile is noisy. Close to the void centers there are on average very few
dark matter halos. When there are few halos that one can utilize to calculate the
variance, one also gets a low sample size which will introduce noise when calculating
the dispersion of the velocity. This may give unreliable results later on when looking at
small scales. However, on small scales the correlation function is practically zero and
one can argue that this should not have a profound effect on the results. For future
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improvements, one could manually set the values at small scales to a fixed value to
neglect this problem.
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Figure 6.28: Figure showing the velocity dispersion, given by equation 5.23, for halos
around voids found in the Multidark 2 dataset.
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Figure 6.29: Figure showing the velocity dispersion, given by equation 5.23, for halos
around voids found in the Multidark 3 dataset. In this figure, the radius of voids
considered are in the radius range of: all voids in the top figure, 20Mpc/h ≤ r ≤
40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the bottom right.
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Figure 6.30: Figure showing the velocity dispersion, given by equation 5.23, for halos
around voids found in the Multidark 4 dataset. In this figure, the radius of voids
considered are in the radius range of: all voids in the top figure, 20Mpc/h ≤ r ≤
40Mpc/h in the bottom left, and r ≥ 40Mpc/h in the bottom right.

6.3 Parameter fits

When fitting the parameters to data, there is especially one parameter that is interest-
ing. This parameter is ε. Through the relations given in equations 5.52 and 5.51 this
parameter is directly linked to the cosmology. The parameters β, when using a linear
bias approximation, and fσ8, when using a dark matter profile, are also of interest. In
this case, since I do not possess the dark matter profile for our dataset and instead try
to adapt a dark matter profile from the HOD mock galaxy catalogue, there is limited
information that can be read from fσ8 in this case. σv and rscale are treated as nuisance
parameters.
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6.3.1 Linear bias approximation

The model using a linear bias approximation and the velocity derived from linear theory
was compared with data through a maximum likelihood analysis, as described in section
5.7. For all the three datasets, with cuts, the maximum likelihood value and the 68%
confidence interval are shown in table 6.1. Figure 6.31 shows the best fits for the
parameters ε, β and σv for the MD2 dataset with no cuts. All the likelihood estimate
plots have the fiducial values from the dataset overplotted as lines and the maximum
likelihood values as a cross. Here one can see that for the MD2 dataset without cuts, the
fiducial values for β and ε lies within the 68% confidence interval. The fits to σv have the
fiducial value outside of the 68% confidence interval. Since this is treated as a nuisance
parameter, much attention will not be directed at studying or discussing the fits to
σv. As one can see from the histogram over effective void radii found in the dataset,
shown in figure 6.13, this dataset had the distribution of voids shifted the most towards
higher radii. As the peak of the distribution is located at approximately 40Mpc/h, it
seems likely that the majority of voids found in the dataset are large enough so that
the approximations from linear theory are sufficient to model the physical behavior of
dark matter halos around voids in this dataset.

The same analysis was applied to the MD3 dataset without cuts. This is shown in
figure 6.32. Here one can clearly see that the model provides bad fits for β. Although
the model performs well when providing fits for ε, the β parameter is also important for
studying the underlying cosmology. As one can see from the histogram of the effective
radii for voids in the MD3 dataset, shown in figure 6.14, one can see that, in comparison
with the histogram for voids in the MD2 dataset, the distribution is shifted dramatically
towards smaller voids. When including all voids in the analysis, a large number of voids
may then include dark matter halos subject to effects not properly approximated by
linear theory thus resulting in a worse performance. Figure 6.40 shows the same analysis
but here only voids with effective radius 20Mpc/h≤ r ≤ 40Mpc/h are considered. Here
one can see that although the model provides good fits for ε, the model struggles with
fitting β for this dataset. In figure 6.41 the model was tested on the MD3 dataset
but only considering voids with effective radius r ≥ 40Mpc/h. Here one can see that
with the small voids excluded, the model provides good fits for all the parameters. The
maximum likelihood values for β and ε are very close to their fiducial values. This
strengthens the suspicion that non-linear effects found in small voids make the model
perform worse. Thus when using a dataset with a large number of particles, which may
result in a large number of small voids, applying cuts may prove crucial for gaining
the correct information about the parameters if one were to apply these methods on
observational data where the fiducial values are unknown.

From the histogram of effective void radii for MD4 dataset, shown in figure 6.15, it
is evident that this dataset, which includes the most particles, has the distribution of
effective radii shifted the most towards small voids. This means that a large fraction
of the voids in this dataset may be subject to non-linear effects. Figure 6.35 shows
the model applied to the MD4 dataset without cuts. Here one can see that although
decent fits are provided to σv and ε, the performance of the model when fitting β is even
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Dataset ε β σv [km/s]

MD2 0.9956± 0.0093 0.2947± 0.0317 392.789± 33.298

MD3 no cuts. 0.9982± 0.0089 0.3218± 0.0325 377.544± 27.340

MD3 20Mpc/h≤ r ≤ 40 Mpc/h 1.0002± 0.0074 0.3232± 0.0290 356.577± 24.738

MD3 r ≥ 40Mpc/h 0.99904± 0.01002 0.3678± 0.0335 308.923± 47.966

MD4 1.00354± 0.00878 0.3050± 0.0339 327.840± 24.055

MD4 20Mpc/h≤ r ≤ 40 Mpc/h 1.0004± 0.00078 0.36657± 0.03093 308.318± 23.836

MD4 r ≥ 40 Mpc/h 0.9981± 0.0104 0.4097± 0.0340 256.351± 55.582

Table 6.1: Best fit values for the parameters ε, β and σv for the different datasets using
a linear bias approximation.

worse than for the MD3 dataset without cuts. Figure 6.36 shows the model applied on
the MD4 dataset only considering voids with effective radius 20Mpc/h≤ r ≤ 40Mpc/h.
Again, one can see that the model is not sufficient to accurately fit β when voids of
this size are considered. With this cut, the model performs slightly better than with
no cuts. This may be due to very small voids with radius r < 20Mpc/h not being
considered. When applying cuts, including only voids with r ≥ 40Mpc/h, as shown in
figure 6.35, one can see that the model is accurately picking out values close to their
fiducial values for the parameters β and ε. These results indicate that linear theory
may not be sufficient to accurately model small voids with radii in the 20Mpc/h range.
Future efforts could be put into better understanding at what sizes of voids linear theory
breaks down. This is in order to maximize the amount of void-halo pairs and gain better
statistics for extracting the information from the density field.
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Figure 6.31: Figure showing showing parameters fits to β, σv and ε for the Multidark 2
dataset using a linear bias approximation and modelling the velocity using linear theory,
given by equation 5.12. The fiducial value for each parameter is overplotted.
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Figure 6.32: Figure showing showing parameters fits to β, σv and ε for the Multidark 3
dataset using a linear bias approximation and modelling the velocity using linear theory,
given by equation 5.12. The fiducial value for each parameter is overplotted.
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Figure 6.33: Figure showing showing parameters fits to β, σv and ε for the Multidark 3
dataset using a linear bias approximation and modelling the velocity using linear theory,
given by equation 5.12. In this figure, only voids with effective radius 20Mpc/h≤ r ≤
40Mpc/h are considered. The fiducial value for each parameter is overplotted.
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Figure 6.34: Figure showing showing parameters fits to β, σv and ε for the Multidark 3
dataset using a linear bias approximation and modelling the velocity using linear theory,
given by equation 5.12. In this figure, only voids with effective radius ≥ 40Mpc/h are
considered. The fiducial value for each parameter is overplotted.
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Figure 6.35: Figure showing showing parameters fits to β, σv and ε for the Multidark 4
dataset using a linear bias approximation and modelling the velocity using linear theory
given by equation 5.12. The fiducial value for each parameter is overplotted.
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Figure 6.36: Figure showing showing parameters fits to β, σv and ε for the Multidark 4
dataset using a linear bias approximation and modelling the velocity using linear theory,
given by equation 5.12. In this figure, only voids with effective radius 20Mpc/h≤ r ≤
40Mpc/h are considered. The fiducial value for each parameter is overplotted.
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Figure 6.37: Figure showing showing parameters fits to β, σv and ε for the Multidark 4
dataset using a linear bias approximation and modelling the velocity using linear theory,
given by equation 5.12. In this figure, only voids with effective radius r ≥ 40Mpc/h are
considered. The fiducial value for each parameter is overplotted.

6.3.2 Linear bias approximation with correction term

In order to study whether improvements can be made to the regular model derived
from linear theory, a correctional term proposed by [4] was implemented, as described
in section 5.1.3. The best fit values for the parameters ε, β and σv for all datasets tested
using this model is shown in table 6.2. For the MD2 dataset, shown in figure 6.38, one
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can see that this model does not fit the ε parameter as good as the regular model shown
in figure 6.31. Although for this particular dataset, the model with the correction term
performed slightly better when fitting β, it performed significantly worse when fitting ε.
As ε is a parameter that is directly linked to the cosmology, this is the most important
parameter in the model. Although β and ε are still within the 68% confidence interval,
the correction term did not provide better fits than the regular model.

The same model, with the correctional term, is applied to the MD3 dataset without
cuts, as shown in figure 6.39. Although it is slightly better than the regular model when
fitting β for this dataset, as with the MD2 dataset, the model has a worse performance
when fitting ε. This particular dataset contains a large number of small voids and may
therefore be subject to non-linear effects. Therefore, as for the regular model, it may
not be expected to perform as good on this particular dataset without cuts. However,
the regular model still managed to capture the fiducial value for ε when applying the
model to this dataset without cuts. This model, however, did not perform as well as the
regular model in terms of sampling the fiducial value for ε. Figure 6.40 shows the model
with the velocity correction for the MD3 dataset with the 20Mpc/h≤ r ≤ 40Mpc/h cuts.
This figure shows that for this dataset with cuts, the model was able to give an accurate
sampling of β. As can be seen from figure 6.26, this model satisfyingly captured the
amplitude of the numerically calculated velocity. The model with the velocity correction
term, however, is not as sufficient when sampling the best parameters for ε. For the
MD3 dataset with the r ≥ 40Mpc/h cut, as shown in figure 6.41, one can see that there
is no significant improvement to the parameter fits in contrast to the regular model,
where applying mass cuts seemed to have an effect where it reduced non-linear effects
present. For this dataset with the given cut, the model does not perform as well as the
regular model when sampling ε. Using this cut the sampling of β was slightly worse
than for the 20Mpc/h≤ r ≤ 40Mpc/h cuts applied. For the r > 40Mpc/h cut, figure
6.26, illustrating the comparison between the two models with numerical data suggests
that the regular model predicts a better velocity profile.

The model with the velocity correction term was also applied to the MD4 dataset
without cuts. This is shown in figure 6.42.Here one can see that, as with the regular
model for this dataset, β is not sampled accurately when there are no cuts. This is
the same behavior as with the regular model for this dataset without cuts and may be
attributed to the presence of a large number of small voids dominated by non-linear
effects. The ε factor is not sampled as good as for the regular model. The MD4 dataset
with the 20Mpc/h≤ r ≤ 40Mpc/h cut applied can be seen in figure 6.43. Although
the sampling of the β parameter is slightly better it is still outside the 68% confidence
interval. As seen in figure 6.27, in contrast to the MD3 dataset with this cut applied,
the model with the correction term did not capture the amplitude of the numerically
calculated velocity significantly better than the regular model. The sampling of the ε
parameter is also slightly worse than for the dataset without cuts. Figure 6.37 shows the
model with the velocity correction term for the MD4 dataset only including voids with
effective radius r ≥ 40Mpc/h. The sampling of ε is approximately the same as for the
other two figures for the MD4 dataset. Although, with this cut applied, the sampling of
β is greatly improved. This behavior has proven to be consistent for both the MD3 and
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Dataset ε β σv [km/s]

MD2 0.9907± 0.0095 0.3090± 0.0320 392.109± 32.664

MD3 no cuts. 0.9893± 0.0094 0.3277± 0.0334 359.705± 27.378

MD3 20Mpc/h≤ r ≤ 40 Mpc/h 0.9861± 0.0076 0.3492± 0.0294 359.092± 22.107

MD3 r ≥ 40Mpc/h 0.9902± 0.0102 0.3920± 0.0352 299.747± 48.424

MD4 0.9913± 0.0089 0.3187± 0.0346 318.310± 23.532

MD4 20Mpc/h≤ r ≤ 40 Mpc/h 0.9884± 0.0082 0.3787± 0.0314 305.919± 23.242

MD4 r ≥ 40 Mpc/h 0.9851± 0.0105 0.4361± 0.0348 240.308± 55.041

Table 6.2: Best fit values for the parameters ε, β and σv for the different datasets using
a linear bias approximation and modelling the velocity using an approximation term,
given in equation 5.13.

MD4 datasets, using both the models, with and without the velocity correction term.
The sampling of ε remains almost the same with or without cuts, however, the regular
model sampled it closer to the fiducial value for all the datasets. For the model with
the correction term, the sampling of ε is biased towards sampling a lower value than
the fiducial value. The β parameter on the other hand is highly affected by the cuts.
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Figure 6.38: Figure showing showing parameters fits to β, σv and ε for the Multidark 2
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13.



6.3 Parameter fits 109

24
0

30
0

36
0

42
0

σ
v

[k
m

/s
]

0.
24

0.
30

0.
36

0.
42

0.
48

β

0.
96

0
0.
97

5
0.
99

0
1.
00

5
1.
02

0

ε

24
0

30
0

36
0

42
0

σv [km/s]
0.
96

0
0.
97

5
0.
99

0
1.
00

5
1.
02

0

ε

MD3 with linear bias approximation
and Achitouv (2017) term, no cuts

Figure 6.39: Figure showing showing parameters fits to β, σv and ε for the Multidark 3
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13.
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Figure 6.40: Figure showing showing parameters fits to β, σv and ε for the Multidark 3
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13. In this figure, only
voids with effective radius 20Mpc/h≤ r ≤ 40Mpc/h are considered.
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Figure 6.41: Figure showing showing parameters fits to β, σv and ε for the Multidark 3
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13. In this figure only
voids with effective radius r ≥ 40Mpc/h are considered.



112 Results/Discussion

24
0

28
0

32
0

36
0

40
0

σ
v

[k
m

/s
]

0.
24

0.
30

0.
36

0.
42

β

0.
96

0
0.
97

5
0.
99

0
1.
00

5
1.
02

0

ε

24
0

28
0

32
0

36
0

40
0

σv [km/s]
0.
96

0
0.
97

5
0.
99

0
1.
00

5
1.
02

0

ε

MD4 with linear bias approximation
and Achitouv (2017) term, no cuts

Figure 6.42: Figure showing showing parameters fits to β, σv and ε for the Multidark 4
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13.
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Figure 6.43: Figure showing showing parameters fits to β, σv and ε for the Multidark 4
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13. In this figure only
voids with effective radius 20Mpc/h≤ r ≤ 40Mpc/h are considered.
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Figure 6.44: Figure showing showing parameters fits to β, σv and ε for the Multidark 4
dataset using a linear bias approximation and modelling the velocity using linear theory
and a velocity correction proposed by [4], given by equation 5.13. In this figure only
voids with effective radius r ≥ 40Mpc/h are considered.

6.3.3 Dark matter profile fits

Using a dark matter density profile, described in section 5.6, parameter fits for fσ8,
σv, rscale and ε was calculated. For these fits, the 20Mpc/h< r < 40Mpc/h cuts were
excluded. For the MD2 dataset, this is illustrated in figure 6.45. From this figure, one
can see that the model accurately samples the ε factor. However, fσ8, which is the
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other important parameter in this model, is not accurately sampled. From figure 6.19,
which shows the dark matter profile used for the parameter fits for the MD2 dataset,
one can see that the peaks of the δdm profile coincides almost at the same radius as the
peak of δg. From the fits to rscale, one can see that this is sampled to have a maximum
likelihood value of approximately 1.0. This qualitative measurement suggests that the
model accurately picks the correct value for scaling the radius of the dark matter density
profile for this dataset. The sampling of fσ8 suggests that the model is not sufficient
when sampling the correct amplitude of the dark matter density profile. This may be
expected since the dark matter density profile for the given dataset was not used.

The parameter fits for the MD3 dataset, using a dark matter density profile and
no cuts, is shown in figure 6.46. For this dataset, the model accurately samples ε. As
for the MD2 dataset, fσ8 is not sampled accurately. As can be seen from the dark
matter density profile used in this dataset, shown in figure 6.20, the peak of δg is shifted
towards slightly smaller radii than that of δdm. From the fits to rscale, one can see
that the model places the most likely value for this parameter at slightly less than 1.0.
This will shift δdm towards smaller radii, in which the qualitative measurement from
figure 6.20 suggests. However, as with the MD2 dataset, the model does not provide
sufficient fits to the amplitude as measured by the fσ8 parameter. In order to test if
this model was subject to errors introduced by non-linear behavior, as for the linear
bias approximation, the r > 40Mpc/h cut was applied. Parameter fits for this dataset
and cut, using the model with a dark matter overdensity profile, is shown in figure 6.47.
As for the same dataset without cuts, the model accurately samples the ε parameter.
fσ8 on the other hand is sampled closer to the fiducial value than for the MD3 dataset
without cuts. But, it is still not sampled accurately enough to provide reliable fits. One
can imagine applying even more conservative cuts could improve the results. But this
cut will remove even more voids from the catalogue, making the number of void-halo
pairs decrease, which in turn will result in more noise when numerically calculating
the two-point correlation function. As seen from δg for the MD3 dataset, illustrated in
figure 6.17, applying cuts will shift the peak of the overdensity profile towards higher
radii. The fits to the rscale parameter shows that the best fit for this parameter is
slightly larger than 1.0. This suggests that the model captures the scaling of δdm in the
radial direction but it is not sufficient when scaling the amplitude with fσ8.

Using the MD4 dataset, parameter fits using the velocity predicted by linear theory
with a dark matter overdensity profile were calculated. For this dataset without cuts, the
parameter fits are illustrated in figure 6.48. As for the other datasets tested using a dark
matter overdensity profile, the parameter fits to ε are satisfying. The fσ8 parameter
on the other hand, as with the MD3 dataset without cuts, is sampled at a significantly
lower value than the fiducial value. Figure 6.21 suggests that δdm should be shifted
towards lower radii. The rscale parameter reflects this in that the most likely value is
sampled at a value lower than 1.0 The same model was tested on the MD4 dataset with
the r > 40Mpc/h cuts applied. This is shown in figure 6.49. As with all the other tests
applied using this model, the sampling of the ε parameter turned out to be satisfying.
Compared to the MD4 dataset without cuts, the sampling of fσ8 is better but it is still
not satisfying. This behavior was also found for the MD3 dataset with and without
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cuts. This may be attributed to non-linear effects present in smaller voids. However,
as previously stated, applying more conservative cuts than the r < 40Mpc/h cut will
drastically remove a significant amount of void-halo pairs, making the cross-correlation
function itself subject to more noise. The model did however manage to sample both
the β and ε values correctly when a linear bias assumption was applied. This is in
contrast to using the dark matter overdensity profile when applying the r > 40Mpc/h
cuts. This would in turn suggest that these cuts should be sufficient. It may instead
suggest that attempting to tune a dark matter density profile derived from another
dataset can prove problematic for accurate sampling the fσ8 parameter. The rscale

parameter is sampled with a best fit value larger than 1.0. This is reasonable as δg
for the MD4 dataset shows that the overdensity profile gets shifted towards larger radii
with this cut. This model was able to fit the most important parameter linked to the
cosmology, namely ε. However using a dark matter overdensity profile derived from
another dataset, these results may suggest that attempting to adjust the profile itself
is not sufficient for accurate sampling of the fσ8 parameter.
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Figure 6.45: Figure showing showing parameters fits to fσ8, σv rscale and ε for the Mul-
tidark 2 dataset using a dark matter profile, as described in section 5.6, and modelling
the velocity using linear theory given in equation 5.12
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Figure 6.46: Figure showing showing parameters fits to fσ8, σv rscale and ε for the Mul-
tidark 3 dataset using a dark matter profile, as described in section 5.6, and modelling
the velocity using linear theory given by equation 5.12
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Figure 6.47: Figure showing showing parameters fits to fσ8, σv rscale and ε for the Mul-
tidark 3 dataset using a dark matter profile ,as described in section 5.6, and modelling
the velocity using linear theory given in equation 5.12. In this figure only voids with
effective radius r ≥ 40Mpc/h are considered.
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Figure 6.48: Figure showing showing parameters fits to fσ8, σv rscale and ε for the Mul-
tidark 4 dataset using a dark matter profile, as described in section 5.6, and modelling
the velocity using linear theory given in equation 5.12
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Figure 6.49: Figure showing showing parameters fits to fσ8, σv rscale and ε for the Mul-
tidark 4 dataset using a dark matter profile, as described in section 5.6, and modelling
the velocity using linear theory given in equation 5.12. In this figure only voids with
effective radius r ≥ 40Mpc/h are considered.

6.3.4 Correlation function void-galaxy ξvg

Using the best fit parameters for the linear bias approximation, with and without the
additional correction term, given in tables 6.1 and 6.2, a comparison for the calculated
quadrupole moment ξs2(s) of the correlation function ξsvg(s, µ) was calculated. The
correlation function calculated is the streaming model given in equation 5.39. ξs(s, µ)
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Dataset ε fσ8 σv [km/s] rscale

MD2 no cuts. 0.9968± 0.0096 0.5501± 0.0597 330.535± 35.084 0.95657± 0.05719

MD3 no cuts. 0.9989± 0.0094 0.3585± 0.0390 289.107± 29.540 0.92314± 0.05873

MD3 r ≥ 40Mpc/h 1.0003± 0.0112 0.5888± 0.0541 271.288± 51.705 1.01360± 0.05174

MD4 0.9992± 0.0092 0.2304± 0.0292 234.701± 25.439 0.93445± 0.07486

MD4 r ≥ 40 Mpc/h 0.9957± 0.0116 0.5872± 0.0469 164.232± 44.885 1.04583± 0.04659

Table 6.3: Best fit values for the parameters ε, σv, fσ8 and rscale for the different
datasets using a dark matter density profile.

itself is calculated using full expression given by equation 5.29. This equation was
implemented with and without the additional correction term proposed by [4] using the
best-fit parameters for the respective model and dataset. For all figures, the green line
is the quadrupole numerically calculated by the pyCUTE code. The blue and orange
lines are the quadrupole calculated using the regular velocity predicted by linear theory
given in equation 5.12, and the velocity predicted using the correction term, given in
equation 5.13, respectively. The quadrupole of the cross-correlation function for the
MD2 dataset is shown in figure 6.50. Due to a lower sample size of void and halo pairs
in this dataset, there is a lot of noise present in the numerically calculated quadrupole.
This also makes it hard to qualitatively judge the performance of the two models by
comparing the theory curves with the numerical curve. This may also suggest that not
much emphasis should be put into the model fits for this dataset. From figures 6.31
and 6.38, one can see that allthough the regular model performed much better when
fitting ε, the model with the correction term performed slightly better when fitting β.
The differences in the calculated quadrupole of the correlation function between the
two models are most evident between 20Mpc/h< s < 60Mpc/h. The regular model
qualitatively captures the central peak of the quadrupole in a more accurate fashion.

The quadrupole ξs2(s) for the MD3 dataset without cuts is shown in figure 6.51. For
this dataset without cuts, the parameter fits suggested that the presence of small voids
could introduce non-linear effects not accurately approximated by neither of the two
velocity models. However, as the regular velocity model performed better at fitting the
ε parameter, the model with the correction term proved slightly better at fitting β for
this dataset without cuts. The β parameter acts as a normalization for the correlation
function. The amplitude of the central peak is captured better by the model with the
correction term. In contrast, the regular model captures the behavior of the numerically
calculated quadrupole better for scales approximately 20Mpc/h< s < 30Mpc/h. On
scales s > 60Mpc/h the two models look almost identical. Overall, the two calculated
models look similar, but the model with the velocity correction term has a slightly
better normalization on the central peak. The quadrupole ξs2(s) for the MD3 dataset,
with the cuts only including voids with effective radii r > 40Mpc/h, is shown in figure
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6.52. For this dataset, the regular model provided the better fits for both the ε and β
parameters. The figure illustrating the ξs2(s) for this dataset with the given cut, shows
that the regular model qualitatively gives the best fits to the correlation function. On
small scales s < 20Mpc/h, the two models look almost identical, but for s > 20Mpc/h,
the regular model qualitatively resembles the numerically calculated correlation function
the closest. The amplitude of the quadrupole predicted by the model with the correction
term has a lower amplitude than the numerically calculated on these scales. With these
cuts however one can also see that the correlation function contains a lot more noise.
This is due to applying the cuts will result in a reduced number of void-halo pairs. This
issue could be addressed by applying different cuts gaining more pairs from the dataset,
but still retaining voids where linear theory is still a sufficient approximation.

The quadrupole moment for the MD4 dataset without cuts is shown in figure 6.53.
With this dataset, for both of the models, the sampling of β proved to not match the
fiducial value for the dataset accurately. The regular model provided a better sample of
the ε parameter. For small scales, one can see that the model with the correction term
qualitatively resembles the numerically calculated quadrupole better. The regular model
has an amplitude that is too large compared with the numerical quadrupole for both
the first through and the first peak. Figure 6.54 shows ξs2(s) for the MD4 dataset with
the r > 40Mpc/h cut applied. As with the calculated quadrupole for the MD3 dataset,
the regular model qualitatively resembles the numerically calculated quadrupole better
on scales 20Mpc/h< s < 60Mpc/h. The model with the velocity correction term does
not capture the amplitude of the numerically calculated model. The parameter fits for
both models with these cuts showed that the regular model provided good samples for
both ε and β. The model with the correction term provided good fits for β. It did
however not perform as good when fitting ε. With the cuts applied, as for the MD3
dataset with these cuts, the number of void-halo pairs gets drastically reduced. This
is evident in the numerically calculated quadrupole. It would therefore be useful for
future testing to apply more conservative cuts in order to include more pairs while still
staying inside the regime where linear theory is a sufficient approximation.
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Figure 6.50: Figure showing the quadrupole of the cross correlation function ξs2(s) using
the best fit parameters for the streaming model with both the regular velocity model
and the model with the velocity correction term, given in tables 6.1 and 6.2 respectively,
for the MD2 dataset.
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Figure 6.51: Figure showing the quadrupole of the cross correlation function ξs2(s) using
the best fit parameters for the streaming model with both the regular velocity model
and the model with the velocity correction term, given in tables 6.1 and 6.2 respectively,
for the MD3 dataset.
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Figure 6.52: Figure showing the quadrupole of the cross correlation function ξs2(s) using
the best fit parameters for the streaming model with both the regular velocity model
and the model with the velocity correction term, given in tables 6.1 and 6.2 respectively,
for the MD3 dataset. Here only voids with effective radius r ≥ 40Mpc/h is included.
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Figure 6.53: Figure showing the quadrupole of the cross correlation function ξs2(s) using
the best fit parameters for the streaming model with both the regular velocity model
and the model with the velocity correction term, given in tables 6.1 and 6.2 respectively,
for the MD4 dataset.
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Figure 6.54: Figure showing the quadrupole of the cross correlation function ξs2(s) using
the best fit parameters for the streaming model with both the regular velocity model
and the model with the velocity correction term, given in tables 6.1 and 6.2 respectively,
for the MD4 dataset. Here only voids with effective radius r ≥ 40Mpc/h is included.



Chapter 7

Concluding remarks

In this thesis, I have derived and tested a simple model for modelling the velocity
of matter around cosmic filaments using linear theory and compared it to data from
numerical simulations. This experiment is interesting as it can potentially allow for
an additional set of experiments for extracting valuable cosmological information from
the density field. I have also tested a proposed improvement to the radial velocity
of matter around voids and applied it to a model of the void-galaxy cross-correlation
function using a linear bias approximation. This was compared to the regular model
for the radial velocity derived from linear theory. The analysis conducted on voids
is useful as future observational datasets will grow in size. This will in turn require a
better understanding of potential errors and improvements for current methodology. For
these velocity models, the quadrupole of the void-galaxy cross-correlation was compared
by applying cuts to the dataset including voids of different sizes in order to see if
this affected the validity of the velocity approximations. Lastly, using a dark matter
overdensity profile from another dataset, the regular velocity model was tested to see if
potential corrections could be applied to an arbitrary density profile while still providing
accurate parameter fits.

7.1 Summary of main results

Using linear theory, a simple model for the radial velocity perpendicular to the spine of
cosmological filaments, similar to the model already tested on voids, was derived and
tested. Overall this model looked promising, however, the comparison with numerical
data illustrated the presence of irregularities regarding the amplitude of the velocity
profile close to the filament spine. The amplitude of the stacked radial velocity profile
for filaments showed large deviations depending on the dataset and σ-threshold chosen
as input to the DisPerSE code. The promising aspect of the model is that it accurately
replicated the shape of the numerically calculated velocity profile. The modelling of
the radial velocity profile for filaments is reliant on accurate modelling of the density
profile. The density profile for the filaments showed varying densities close to the
filament spine depending on the dataset and σ-threshold chosen. This may be an effect
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of how DisPerSE applies cuts to the filament catalogue removing filaments of different
lengths, which in turn may affect the number density in the stacked density profile. It
may also be a reasonable result, and in turn, will suggest that linear theory does not
provide a reasonable approximation to the radial velocity of matter around filaments.
However, on the basis of the results presented in this thesis, although the results looked
promising, one is not able to draw a conclusion of whether or not linear theory is a
sufficient approximation for the behavior of matter around filaments.

In this thesis, the regular linear model for the radial velocity of matter around fil-
aments was also tested. In addition, a proposed improvement to the regular velocity
model was tested and both models were compared with numerical data. Both of these
velocity models were implemented into the anisotropic void-galaxy cross-correlation
function and their performance was tested in terms of fitting cosmological parameters.
When conducting the comparison between the two parameters, different cuts to the
dataset was applied. The ε parameter, in which directly linked to the cosmological
parameters, received consistently accurate fits using the regular velocity model. The
model with the velocity correction term was biased in the sense that it consistently
underestimated fits to ε. On the other hand, the model with the correction term made
better fits to the β parameter when small voids were considered. However, when only
large voids were considered, the regular model consistently provided the best fits for
both of these parameters for the two largest datasets. The modelling of the velocity
itself showed that when applying cuts only keeping the larger voids, the regular model
qualitatively resembled the numerically calculated radial velocity in an accurate fash-
ion. When applying cuts including only smaller voids there was not as prominent of an
all round difference, but both models seemed to capture certain features better. The
regular model performed better at capturing the velocity on large scales, while the amp-
litude predicted by the model with correction was more accurate with these cuts. These
results suggest that when applying cuts to the dataset, excluding small voids which may
be subject to non-linear behavior, the regular velocity model performed better.

Finally, the model for the anisotropic cross-correlation function between voids and
galaxies was tested using a dark matter overdensity profile gathered from another data-
set. Using this overdensity profile only the regular velocity model was implemented.
For this test, the cuts only considering smaller voids was excluded. Across all datasets
and cuts, this model managed to provide accurate samples for the ε parameter. Using
no cuts, the model provided unsatisfying samples for fσ8. This improved however when
cuts only considering larger voids was considered, but the sampling was still not accur-
ate enough for this implementation of the model to be deemed sufficient. This suggests
that the model was not able to sample the amplitude of dark matter density profile
accurately. The scaling of the overdensity profile, parametrized by the rscale parameter,
did however show that the model captured in which direction the density profile should
be shifted. Overall, this analysis suggests that when sampling the ε parameter, using
an arbitrary dark matter overdensity profile and correcting it may be sufficient. How-
ever, if one wants to sample fσ8, the methodology applied in this analysis may not be
sufficient.
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7.2 Suggestions for future work

Although this thesis showed promising results when modelling the radial velocity of
matter around filaments, further research is needed in order to conclude whether the
approach proposed in this thesis may prove to be a full-fledged addition to LSS studies.
The results showed that changing σ-threshold as input to the DisPerSE code effect-
ively lowered the amount of shorter filaments. This also affected the amplitude of the
radial velocity predicted by the model. In my analysis, I chose to apply cuts includ-
ing filaments with length 20Mpc/h< l < 100Mpc/h. This is a rather generous cut
and applying more cuts, similar to what was done when studying voids, could indicate
whether modelling the radial velocity using linear theory is a better approximation for
filaments of different length. The model was also only tested on the smaller MD1 and
MD2 datasets. Applying the model to the larger MD3 or MD4 datasets could also prove
valuable. However, the method itself for calculating the numerical stacked velocity is
computationally heavy when the number of particles increases. This is partly due to an
increasing amount of cross products needed to gain the radial component of the velocity
vector. If one is to judge whether the model sufficiently captures the behavior of the
stacked radial velocity then this also has to be calculated. It could therefore be useful
to implement the model in a more efficient manner than a pure Python implementation.
The velocity profiles also showed a feature resembling a hook. As discussed, this feature
may be attributed to most of the matter around filaments being contained at intersec-
tions where filaments meet. In order to test whether this is the case, a 2D modelling
of the velocity field around filaments would be an interesting addition to the 1D radial
velocity. A natural step once the modelling of the radial velocity has been tested, and
in case it is deemed to be sufficient approximation, is to derive an expression for the
filament-galaxy cross-correlation function in redshift space, similar to what already has
been done for the void-galaxy cross-correlation function. This can potentially open up
for future analysis similar to the what is conducted on voids in this thesis.

The results for the void galaxy cross-correlation function suggested that the prefer-
able way to model the radial velocity of matter around voids was the regular model
derived from linear theory. However, using a linear bias approximation, this model
did not manage to accurately sample the β parameter when small voids were included
in the catalogue. The sampling did however improve when cuts were applied. The
r > 40Mpc/h cut however could be viewed as rather conservative. Further effort could
also be invested into applying cuts including smaller voids and try to better under-
stand for what scales linear-theory is still a good approximation. This will increase the
sample size of void-galaxy pairs and will in turn reduce noise in the numerically cal-
culated cross-correlation function. The model with the velocity correction did however
fit the β parameter better on smaller voids. Adding an extra dimensionless nuisance
parameter as a scaling for the correction term could be a reasonable improvement to
this particular model.

The model with the dark matter overdensity profile managed to provide satisfying
fits the ε parameter across all datasets and cuts. It did not manage to sample fσ8.
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Applying cuts, however, did make the sampling of the parameter better. Applying the
r > 40Mpc/h cut did reduce the number of void-halo pairs and introduced noise to the
cross-correlation function. A future suggestion could be to use even more conservative
cuts. However, in order to do this, a larger dataset may be necessary in order to in-
crease the samples of void-halo pairs. Performing the same analysis with the complete
information about δdm corresponding to the given dataset could also prove valuable. A
natural next step for all the methods tested, including the analysis of filaments, would
be to use the redshifted data catalogue and apply the reconstruction algorithm and see
how this affects the model results.
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