
Nano-scale Monte Carlo
simulations of proton transport

Johannes Tjelta

Thesis submitted for the degree of
Master in Medical physics

60 credits

Department of Physicss
Faculty of Mathematics and Natural sciences

UNIVERSITY OF OSLO

Spring 2021

Nano-scale Monte Carlo
simulations of proton transport

Johannes Tjelta

© 2021 Johannes Tjelta

Nano-scale Monte Carlo simulations of proton transport

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Acknowledgements

First of all, I would like to give my utmost gratitude to my supervisor Pro-
fessor Eirik Malinen for his valuable and constructive feedback throughout
this thesis. In addition, I would like to thank my second supervisor, Asso-
ciate Professor Nina Frederike J Edin. Without them there would not have
been a thesis. Furthermore, I would like to thank the BMF group for the
daily academic spice.
Thank you to my older brothers for being supportive and setting me
straight when I forget I’m the youngest of them. Thank you to all of my
friends who listened to my whining these last months and listened to me
blabber about medical physics for hours. Thank you to the PlayStation
guys for fun times these two years. Finally, there are no words to articulate
my profound gratitude towards my parents for the food, shelter and loving
support throughout this thesis.

-Johannes Tjelta

1

Abstract

Introduction: By the year 2024, Norway will have two proton therapy cen-
ters although to this day not much is known about proton interaction with
matter in the low energy domain. Therefore it is imperative to examine
how low energy protons will deposit their energy throughout a cell culture
on a nanometer scale.
Theory: Radiation and dose distribution are often calculated with Monte
Carlo simulations. For larger objects such as reactors, a condensed history
technique may be used. For smaller volumes such as a cell, analog Monte
Carlo simulations may be employed but not with realistic dose levels.
In this thesis, the attempt is to bridge the gap between macroscopic and
microscopic MC, simulating a cell culture with analog proton simulations
from the Geant4-DNA toolkit implemented in a simulation program writ-
ten in Python. The simulations where based on the experimental setup at
the Oslo Cyclotron Laboratory for irradiating cells. In addition to irradi-
ating a cell culture, irradiation of single cell nuclei where preformed with
the same energy and dose as the irradiation of the cell culture. All event
positions where stored and analyzed with several spatial autocorrelation
algorithms.
Results: A dose distribution for clinical doses (1Gy-10Gy) for four different
proton energies (1.2MeV, 1.5MeV, 1.8MeV and 8.7MeV) in cells and nuclei
was obtained. The cell nucleus was seen to receive lower average dose than
the whole cell, which was more pronounced at lower energies. In addition,
the standard deviation in delivered dose per cell was seen to increase with
decreasing proton energy. The same doses for the same energies were pre-
scribed to the nuclear volume to investigate spatial clustering of events. A
method called Moran’s I did not provide meaningful results, but a depend-
ency on energy derived from Geary’s C algorithm was found. In addition,
an Intra-track and Inter-track algorithm were derived to test spatial distri-
bution between events and tracks, with no significant results.
Conclusion: The dose deficit between whole cells and nuclei might be a
statistical phenomena not yet understood. In addition, some deviations
seen indicate an underlying problem with the current simulations. Fur-
thermore other algorithm needs to be used for spatial analytics to gain a
meaningful result about linear energy transfer and how it correlates to cell
death.

i

Contents

1 Introduction 1

2 Theory 3
2.1 Ionizing radiation . 3

2.1.1 Cross section . 4
2.1.2 Photon interaction . 5
2.1.3 Fluence . 8
2.1.4 Attenuation . 9
2.1.5 Attenuation coefficients 9
2.1.6 Charged particles . 10

2.2 Dosimetry . 15
2.2.1 KERMA . 15

2.3 Microdosimetry . 18
2.3.1 Specific energy . 18
2.3.2 Lineal energy . 18
2.3.3 The site concept . 19
2.3.4 The interface effect . 20

2.4 Monte Carlo simulations . 20
2.4.1 Particle tracks . 22

2.5 Non-radioactive radiation sources 24
2.5.1 Linear accelerator . 24
2.5.2 cyclotron . 25

2.6 Biology . 26
2.6.1 The cell cycle . 26
2.6.2 DNA and damage . 27
2.6.3 Response models . 28

2.7 External Beam Radiation Therapy 32
2.7.1 Clinical treatment planning 32
2.7.2 Proton therapy . 33

2.8 Statistics . 34
2.8.1 Distributions . 34
2.8.2 Spatial autocorrelation 35

3 Materials and methods 37
3.1 Geant4 . 37

3.1.1 Physics list . 37
3.1.2 DetectorConstruction 38

ii

3.1.3 PrimaryGeneratorAction 38
3.1.4 Information gathering 38

3.2 The experimental setup . 40
3.3 Geant4-DNA . 41
3.4 Modeling . 44

3.4.1 The spatial distribution of protons 45
3.4.2 Cell irradiation . 45
3.4.3 Cell and nucleus dose analytics 49
3.4.4 Spatial analysis . 49

4 Results 51
4.1 Computational simulations with the Geant4-DNA simula-

tion toolkit . 51
4.2 Cell irradiation . 57

4.2.1 Cell irradiation with 8.7MeV protons 57
4.2.2 Cell irradiation with 1.8MeV protons 60
4.2.3 Cell irradiation with 1.5MeV protons 62
4.2.4 Cell irradiation with 1.2MeV protons 64
4.2.5 Comparing doses at different energies 67

4.3 Analysis of the modeling . 68
4.4 Spatial analyses . 72

4.4.1 Moran’s I . 75
4.4.2 Geary’s C . 76
4.4.3 Inter-Track . 77
4.4.4 Intra-track . 77

5 Discussion 78
5.1 Aspects of Monte Carlo simulations 78

5.1.1 Radial distribution for electrons 79
5.1.2 Divergence of protons 80
5.1.3 CPE validity . 81
5.1.4 LET . 81

5.2 Cell and nucleus geometry . 82
5.2.1 The interface effect . 82

5.3 Cross section models in Geant4-DNA 84
5.3.1 Electron cross section 84
5.3.2 Proton cross section 86

5.4 Dose analysis . 87
5.5 Dose variations . 88
5.6 Track analysis . 89
5.7 Temporal aspects . 91

6 Conclusion 93

A Code 94
A.1 Geant4-DNA . 94

A.1.1 Physicslist.cc . 94
A.1.2 ElectronCapture.cc . 94

iii

A.1.3 PrimaryGeneratorAction.cc 94
A.1.4 DetectorConstruction.cc 94
A.1.5 SteppingAction.cc . 94

A.2 Python . 95
A.2.1 TrajectoryDivert.py . 95
A.2.2 LinearModel.py . 96
A.2.3 Analasys.py . 97
A.2.4 Dose.py . 98
A.2.5 CellDist.py . 99
A.2.6 MonteCarlo.py . 99
A.2.7 Interaction.py . 100
A.2.8 ProtonChoice.py . 101
A.2.9 main.py . 102
A.2.10 rootImplementation.py 105
A.2.11 DosePerCell.py . 106
A.2.12 numberofion.py . 107
A.2.13 Plot.py . 107
A.2.14 moransi.py . 108
A.2.15 gearysC.py . 114
A.2.16 intertrack.py . 116
A.2.17 PDF.py . 117
A.2.18 reject.py . 118
A.2.19 Survival.py . 118
A.2.20 intraTrack.py . 119

iv

Chapter 1

Introduction

Wilhelm Conrad Röntgen is the man credited for the invention of the x-ray
tube in 1895, producing the first x-ray picture. It took less than a month
for this invention to be used for photographing a mummified cat, among
other things. In addition, medical doctors began to irradiate superficial
tumors such as skin carcinoma, although with much greater uncertainties
than today’s standards. Fast forward 100 years and we have radiation on
demand for both therapeutic and diagnostic purposes.

While the x-ray tube is still in use, the technology has accelerated, liter-
ally, the development in particle accelerators. Now we have the ability to
get high energy x-rays from linear accelerators and heavy charged particles
accelerated to tremendous velocity with the cyclotron, both in use in the
treatment of cancers. When treating cancers with radiation we want to
limit the the dose to the healthy tissue while delivering a high dose to the
tumor. For this purpose, the heavy charged particle are optimal. While a
ionizing photons has a dose deposition throughout the patient, the heavy
charged particle will deposit a large amount of its energy in a specific area,
limiting the dose to healthy tissue. The virtually continuous large energy
deposition by the charged particle is due to Coulomb force interactions. As
the particle moves along it loses energy and thus the interactions will be
greater the slower the particle moves. The small region in a medium where
the particle loses the most energy is called the Bragg peak.

As most physicists are aware, quantum particles are simple but unforgiv-
ingly random. So random in fact that a special method called Monte Carlo
simulations are used to simulate an many-particle outcomes.
A Monte Carlo simulations in radiation physics is a computational method
where real-life scenarios are mimicked and the random nature of radiation
physics is included. Monte Carlo is a method that has been used to simu-
late every random event one can think of, from determining the destructive
power of thermonuclear weapons to predicting a stock value.

This study aims to use a Monte Carlo toolkit (Geant4-DNA) to preform
nanodosimetric simulations on a cell culture with protons, mimicking ex-

1

perimental setup for irradiating cells at the Oslo Cyclotron Laboratory
(OCL). Energies corresponding to protons in front, mid and distal end of a
Bragg peak were considered. In addition, this study the aims to do spatial
statistics for protons at different energies in cell nuclei to get a better grasp
of how events are distributed.

2

Chapter 2

Theory

Sections 2.1, 2.2 and 2.5 are based on chapters 7,8 and 11 in Attix [18]
Section 2.3 is based on Microdosimetry and Its Applications [25]
Section 2.4 is based on chapter 8 in Fundamentals of Ionizing Radiation
Dosimetry [36]
Section 2.6 is based on chapter 4 and 17 in The Cell [7] and Hall [19]
Section 2.7 is based on Hall [19] and [34]
Section 2.8.2 is based on [39] and [40]

2.1 Ionizing radiation

In its action on matter, ionizing radiation is highly efficient in transferring
energy directly to the atom. Ionizing radiation is a broad term used for
high-velocity charged particles, free neutrons, or electromagnetic radiation
with ultra-high frequency. For it to be categorized as ionizing, it has to
excite or ionize matter. Ionization is a transfer of energy from the ionizing
radiation to an electron, liberating it from its atom or molecule. Excitation
is the transfer of energy to an electron, moving it to a more energetic state
but still bound to the atom. When the electron falls back to a lower energy
state, it undergoes electron relaxation. An electromagnetic energy quanta
is released from electron relaxation with the equivalent delta energy put
into the excitation process.
When an electron is liberated from an atom, it is classified as directly
ionizing radiation. Directly ionizing radiation is charged particles such
as electrons and protons with enough kinetic energy to excite and ionize
electrons, mainly through Coulomb interactions. Indirectly ionizing
radiation is neutrons and highly energetic photons. These particles act as
a liberator of charged particles, which is the main contributor to ionization
clusters.
The energy needed to ionize matter, or ionization potential, is the amount
of energy needed to ionize an electron from an atom or molecule. The
energy needed to overcome the binding energy of the atom is in the range
of 4eV-24eV, with the Nobel gasses requiring the most energy and the alkali
metals requiring the least.

3

2.1.1 Cross section

The cross section is denoted σ and is measured in m2 and is proportional to
the interaction strength between the stationary and incoming particle. It is
a measure of probability for an interaction to take place, in this context for
an interaction between a ionizing particle and a atom.

Differential cross section

The differential cross section describes the likelihood of radiant energy
scattered per solid angle. Classically, this can be explained with a ionizing
particle scattering on a stationary particle.

Figure 2.1: Illustration of the scattering and the differential cross section. [38]

In figure 2.1 the impact parameter b is the offset for the incoming particle
parallel to the scattering center. When the particle moves along towards
the scattering center, a force will act on it from the scattering center. The
traveling particle will be scattered at an angle θ. In a classical sense, this
is not a problem, but generally, when working on the atomic scale, the
parameters b and scattering center can not be controlled (the process is
stochastic). Solving this requires several scattering events and measuring
the beam/particle’s scatter angle.
The differential cross section can be deduced to be a plane perpendicular to
the incident particle; dσ = bdφdθ as shown in figure 2.1. When a incoming
particle scatters of the scattering center, it will have a probability to scatter
in a solid angle. The solid angle is described as Ω = A/r2 where A
is the area of the sphere and r is the distance to the scatter center. The
infinitesimal amount of a solid angle is dΩ = dA/r2 = sin(θ)dθdφ. If there
is cylindrical symmetry the differential angle dφ integrated over all angles
becomes 2π so dσ = 2πbdθ and dΩ = 2πsinθdθ. The differential of these
two are known as the differential scattering cross section.

dσ

dΩ
(2.1)

The total cross section (σ) may be recovered by integrating over the total
solid angle for the differential scattering cross section. This can be seen in

4

equation 2.2:

σ =
∮

4π

dσ

dΩ
dΩ (2.2)

Not only is the differential cross section useful to predict the scattering
angle but the solid angle may be replaced with energy or momentum
transfer to provide the likelihood for a given energy transfer.

2.1.2 Photon interaction

As mentioned, highly energetic photons are indirectly ionizing radiation.
Categories of photons with enough energy to ionize are extreme ultraviolet,
X-rays and gamma rays. An ionizing photon will only have a couple of
interactions in a medium. There are two reasons for this, the interaction
cross section is relatively small, and the energy transfer cross section is
large. Generally, a photon will rarely interact, but if it is interacting, it
will release a relatively large amount of energy. The three most important
interactions are the Compton effect, the photoelectric effect and pair
production.

Compton effect

The Compton effect is a collision between an electron and a photon. The
result of this collision is a photon with less energy and a liberated electron
with an amount of kinetic energy equal to the energy the photon lost.
First, the kinematics of the Compton effect. Kinematics is the mathematical
construct for calculating energies and angles for both particles participating
in the interaction. In kinematics, the electron is approximated to be
stationary.

Figure 2.2: A simple sketch portraying the kinematics of the Compton effect. The wave is
the photon in the interaction, the straight line is the scattered electron. φ and θ are the
scattering angles for photon and electron respectively.[18]

Kinematics, the mathematical construct of a singular high energy photon
and a free electron. The incoming photon has an energy Eγ = hν with the
electron at rest. The photon will collide with the free-electron giving the
electron some kinetic energy T and an angle θ. The photon going out of the
interaction will have reduced energy hν′ = hν− T.
Conservation of momentum along the photon’s original path (0o) can be
expressed:

hν = hν′cos(θ) + pccos(φ)

5

p is the momentum of the electron after the interaction.
The Compton effect’s probability for interaction for a given energy and
atomic number Z are given by the differential cross section. From
the differential cross section it is possible to calculate deflection angle
probability for the photon and electron. The differential cross section might
also be modified with respect to energy. This results in equation 2.3:

dσ

d(hν′)
=

σ

dΩ
dΩ

d(hν′)
(2.3)

This will indicate what energy transfer is expected in the interactions.
The cross section for Compton scattering depends on the photon energy
and the effective atomic number. A rule of thumb is that the cross section
decreases with increasing effective atomic number and increases with
photon energy until pair production becomes prominent.

Photoelectric effect

The photoelectric effect is one of Einstein’s many discoveries which got
him a Nobel prize in physics. In his paper, he described photons as small
quanta of energy crashing with electrons and liberating them from its
atoms. In this process, the photon is absorbed, and almost all its energy is
manifested in the electron’s kinetic energy. In the photoelectric effect, one
must consider the electron’s binding energy when calculating the electron’s
kinetic energy. There is also a small contribution to the atom recoiling to
conserve momentum along the incoming photon path (θ = 0o), as shown
in figure 2.3. Effectively, the atom will not contribute significantly to further
interactions. One could compare this interaction to throwing a marble at a
bowling ball, where the bowling ball is the atom.

Figure 2.3: As in figure 2.2 a simple sketch to show the kinematics for the photoelectric
effect. The photon are the wave, the upper straight arrow is the electron and the lower is
the momentum transfer to the atom.[18]

The kinematics for photoelectric shown in figure 2.3, an incoming photon
with energy hν and an outgoing electron with the kinetic energy T =
hν− Eb. Eb is the binding energy for the electron. The reason the binding
energy is included in the photoelectric effect and not Compton scattering
is that the photoelectric effect’s energies are lower. Therefore, the binding
energy comprises a non-negligible part of the equation. Compared to the

6

Compton effect, it can be seen in figure 2.3 that the photoelectric effect does
not leave a residual photon.
The photoelectric effect is most likely to happen when the photon involved
in the interaction has relatively low energy. It is more likely to happen
when the material is composed of a high atomic number.

τ ∝
Zm

hνn (2.4)

m ∈ (4, 5) and n ∈ (1, 3). τ is the denotation for the cross section for
the photoelectric effect. The likelihood for this interaction is exponentially
larger for a higher atomic number. An example of this might be bone,
having a high concentration of calcium and soft tissue, mostly composed of
water. This is exactly the prinsipal behind an X-ray image, where the X-rays
are more likely to be absorbed in the bone and pass trough soft tissue.

Pair production

Pair production is a process where the photon is totally absorbed in its
interaction with the atom’s nuclear field, resulting in one positron (anti-
particle of an electron) and one electron with kinetic energy T+ and T-
respectively.
Due to the nature of converting energy to mass and the fact that energy
cannot be created nor destroyed, the threshold for this effect is 1.022MeV.
As in the photoelectric effect and the Compton effect, the nucleus will have
a recoil effect to conserve momentum, though this is negligible.

Figure 2.4: A simple sketch of the kinematics behind pair production. The incoming
photon is the wave and the positron/electron are the straight lines.[18]

An estimation of the cross section of pair production can be expressed in
the form of equation 2.5:

κ ∝ Z2P(hν) (2.5)

Where κ is the standard notation for the pair production cross section.

7

Figure 2.5: A simple plot showing where the dominance of the different interactions take
place. Effective atomic number on the y axis and photon energy at the x axis.[18]

Figure 2.5 provides an overview of when the 3 different interactions
discussed are most dominant. The photoelectric effect will be most
dominant for materials with high effective atomic number (Ze f f) and low
energies. The pair production will be more dominant for high Ze f f and
high energies. The Compton effect is a place in the middle of these two, for
low Ze f f and mid-range energies.

2.1.3 Fluence

A sphere is placed in a radiation field. The sphere is in this field from time
t0 to t. The fluence is expressed as the number of particles dN per area da,
and the differential quotient between these two.

Φ =
dN
da

(2.6)

So in its simplest form, the fluence is the number of particles (dN)
traversing through a plane (da) at a point and is an expectation value, and
is expressed in the unit m−2 and independent of the beam’s energy and rate.
The rate of fluence from a time t = t0 to t = tmax can define the fluence rate.

φ =
dΦ
dt

(2.7)

It has the unit of m−2s−2, and covers the amount of particles per unit time.
Solving the energy dependency is not that simple. Energy fluence considers
the particles traversing the surface by integrating over all the beam’s
energy levels.

Ψ =
∫ Tmax

0
TΦTdT

Where ΦT is the differential fluence of particles per area and energy
interval. The power of the energy fluence is the fact the equation considers
the number of particles and their energy.

8

2.1.4 Attenuation

Attenuation is defined as the loss of intensity of a beam, normally of
photons, as it traverses through a medium. Loss of intensity in the beam
is due to scattering and absorption. The beam will have a loss of dN when
traversing through a plane with dx thickenss. The number dN is dependent
on the original number of particles N and a constant µ, to be discussed in
section 2.1.5.

dN = Nµdx

By integrating, we get the formula for the number of primary photons at a
given depth.

N = N0e−µx (2.8)

From equation 2.8 it is possible to calculate when the primary beam is
reduced to half the original intensity N = 1/2N0 where N0 is the original
number of particles, and then solve for x. The thickness of material needed
is called the half-value layer, for equation 2.8 this is x = −ln(1/2)/µ.
Furthermore, if the primary beam is reduced to ≈ 37% it can be derived
from equation 2.8 that 1/µ = x37, and is known as the mean free path.
The mean free path is the average distance traveled for a given particle in
a given medium before interacting. For example with µ = 0.1183cm2g−1

in solid 214Pb with γ-ray with a energy of 241.98keV (found in [2])
the mean free path is 8.45cm. The mean free path will increase with
increasing energy. µ is referred to as the linear attenuation coefficient or
just attenuation coefficient.

2.1.5 Attenuation coefficients

Each interaction discussed previously for photons has its own cross section
for interaction. By summarizing these cross sections divided by the density
of the material (ρ), the total mass attenuation coefficient is attainable in
equation 2.9:

µ

ρ
=

τ

ρ
+

σ

ρ
+

κ

ρ
+

σR

ρ
(2.9)

µ/ρ gives an attenuation estimation for a beam of photons. The σR com-
ponent is from an interaction called Rayleigh scattering. This is a coherent
scattering process where the photon does not lose energy and will not be
further discussed.

The mass attenuation coefficient summarizes the total cross section for
the photon interactions discussed previously. The mass attenuation coef-
ficients are an indicator of primary photons still left in a beam.

Suppose it is of interest to find the amount of energy transferred to a me-
dium. µtr is the mass energy-transfer coefficient. It is found much in the
same manner as 2.3 only with regards to the mean energy of the electrons
(T̄) for each individual interaction. This is done for all of the cross sections

9

for the different interactions and summed in the same manner as in equa-
tion 2.9.

µtr

ρ
=

µ

ρ

T̄
hν

The µtr/ρ is the mass-energy transfer coefficient and considers the energy
transferred to the medium as this coefficient only gives an estimate of the
loss of energy from a primary beam, transferred to charged particles as kin-
etic energy.

Not all of the energy transferred to the electrons is deposited loc-
ally. This needs correcting and brings us to the phenomena known as
bremsstrahlung, which is the loss of kinetic energy from an electron near
an atom as it redirect its trajectory, this will result in a residual photon. This
process happens with a fraction (g) for electrons with a certain kinetic en-
ergy, and are more likely to happen with increasing electron kinetic energy.
Since it only happens to a fraction of the energy imparted, and this fraction
is constant for a given situation, it can be implemented in the mass-energy
transfer coefficient. The contribution of bremsstrahlung is g, so (1-g) is the
total fraction deposited locally since photons created in the bremsstrahlung
effect will likely leave the local volume.

µen

ρ
=

µtr

ρ
(1− g)

µen/ is the mass energy-absorption coefficient. This contribution is a bit
tricky. The reason for this is the likelihood for a photon to interact locally is
slight. Therefore it is factored out of the energy deposited locally.

2.1.6 Charged particles

Charged particles will interact with matter in the form of Coulomb-force
interactions. The way charged particles interact can be described by an
impact parameter b (from section 2.1.1), and the atomic radius a. This is
shown in figure 2.6.

Figure 2.6: The parameters b and a is distance from the atom nuclei and the charged
particle and distance from the classical atomic radius. Here shown by the Bohr atom
model.[18]

10

A charged particle’s likelihood to interact with matter is much larger than
photons due to the Coulomb force interaction. This force will be imparted
on almost every atom along the particle’s trajectory. Furthermore, when
inspecting the total cross section for an charged particle (1018− 10−17cm−2)
it is much larger than the photon cross section (10−24 − 10−22cm−2). It
is possible to calculate that an electron will have one interaction per
10−6 − 10−5cm. This can be compared to the γ-ray example (section 2.1.4)
which have a mean free path of ≈ 8cm.

Stopping power

We can describe the expectation value for loss of energy for a charged
particle given a distance x, the kinetic energy T, the medium’s atomic
number Z and the charge of the particle z. This is called stopping power
and is the quotient of differential energy over differential distance, dE/dx.
The loss of energy will result in events (ionizations, excitations, etc.) and is
a measure of ionization density. The unit of stopping power is often given
in MeV/cm or keV/µm.
The local depositions for a charged particle is refereed to as restricted linear
energy transfer (LET∆), it is measured in the same units as stopping power
(MeV/cm or keV/µm). The LET∆ is the energy transfer for a minimum
energy Emin to a max ∆, and can be calculated by integrating the differential
energy transfer cross section from Emin to ∆:

LET∆ =
∫ ∆

Emin

E
dσ

dE
dE (2.10)

if the ∆ = Emax = ∞ the LET∆ becomes unrestricted linear energy transfer
(LET) and is equal to the stopping power.
If the density of the material in question is a gaseous substance like air, the
traversing particle will lose less energy per unit length. If the substance
is a solid, the particle will lose more energy per unit length. The atoms
in the solid substance are packed tighter than in the gas and the traversing
particle will have more interactions. To avoid the problem, stopping power
is divided by the density, ρ, to give the mass stopping power [MeV/cm2g].

The stopping power term is by convention divided into two categories, the
soft collision term and the hard collision term, as shown by equation 2.11:(

dT
ρdx

)
c
=

(
dTs

ρdx

)
c
+

(
dTh

ρdx

)
c

(2.11)

The soft collision term

When the charged particle passes through a medium, the bulk of interac-
tions between the charged particle and atoms will be soft collisions. In a
soft collision, the particle pass at a considerable distance from the atom,
i.e., b >> a from figure 2.6.
This interaction will result in the ionization of electrons with low binding

11

energy, such as the valence bond electrons and excitations. The energy
transfer of the interaction is often in the low end of the spectrum, transfer-
ring a few eV in each interaction. The first part of equation describes the
soft collision term 2.11.(

dTh

ρdx

)
c
=

2Cm0c2z2

β2

[
ln
(

2m0c2β2H
I2(1− β2)

)
− β2

]
(2.12)

In equation 2.12 β is the relativistic speed of the particle, and if the speed
increases the stopping power decreases. The C = π(NAZ/A)r2

0 where
the NAZ/A is the number of electrons per gram in the medium and r2

0 =
e2/m2

c = 2.818× 10−13cm m0c2 is the rest-mass of the electron (= 511keV)
The 2Cm0c2z2/β2 can be simplified to k = 0.1535Zz2/Aβ2. The stopping
power is also dependent on the traversing medium’s electron density
(Z/A) linearly and the charge (z2) quadratically. The I in equation 2.12
is the mean ionization potential or often referred to as the mean excitation
potential. It is a mean value of all of the excitation and ionization potentials
of an atom in a given medium. It was first thought to be dependent on the
particle’s velocity, but, in the end, through experiments, it was shown only
to be dependent on the medium.

Ī ∝ kZ (2.13)

Where k is an constant, k ∼ 10eV. Equation 2.13 was Bloch’s first
approximation. Later, I/Z versus Z has been shown to not be constant for
different Z.

Figure 2.7: ICRU reported numbers for I for different atomic numbers. [1]

12

In figure 2.7 it can be seen that the ionization potential is a non-analytical
quantity and needs to be empirical data. It is often measured with a thin
film of material and heavy nuclei to interact. The heavy nuclei need to have
sufficient energy to surpass the contribution of elastic collisions (Tprot >
20keV and Tα > 150keV), and not too high energy, so the contribution
of polarization is negligible. (elastic collisions will be discussed in Elastic
collisions and polarization in Corrections to the Bethe-Bloch)

The hard collision term

When the particle traverse’s through the shell of the atom, i.e., b ≈ a,
the particle has a chance of having a hard collision. The hard collision is
an interaction between electromagnetic fields of two particles and can be
defined by equation 2.14:

dTh

ρdx
= k

[
ln
(

Tmax

H

)
− β2

]
(2.14)

It can be favorable to distinguish between the soft term and the hard term.
When b ≈ a, the energy transfer can be considerable. A liberated electron
will have enough energy to ionize matter by itself.
Whenever an electron is ejected via a hard collisions, it has considerable
kinetic energy. This electron type is often referred to as an δ-electron or a
knock-on electron. If this is the case, the electron can be considered "free".
The hard collision term will account for about 50% av the lost energy.
Equation 2.12 and 2.14 can be combined to obtain the mass collision
stopping power: (

dT
ρdx

)
c
= k

[
ln
(

2m0c2β2Tmax

I2(1− β2)

)
− 2β2

]
(2.15)

Corrections to the Bethe-Bloch

Two scenarios needs to be considered when discussing a charged particle
traversing through a medium. One part is the relativistic nature of particles
with sufficient energy. The other is the implementation of Born approxim-
ation. Born approximation assumes the incident particle has a velocity (v)
greater than the maximum Bohr-orbit velocity (u), v = βc > u.

First, the relativistic properties of a particle. From Einstein’s theory of re-
lativity, it is known as an object gets closer to the speed of light (c), the
energy needed to accelerate the object further increases exponentially. The
same is true for charged particles. This is implemented in β in the Bethe
formula.

T = M0c2

[
1√

1− β2 − 1

]
and β =

[
1−

(
1

(T/M0c2) + 1

)2
]1/2

(2.16)

13

Where β ∈ [0, 1〉

Secondly, Bethe’s formula for the low energy case. The assumption for
Bethe’s formula is (Ze f f /137β)2 � 1, where Ze f f is the effective atomic
number.

Figure 2.8: β vs (Ze f f /137β)2. In this specific program, the parameters were water as the
irradiated substance and protons as the source. (Own program)

By plotting the assumption versus charged particle velocity as shown in
figure 2.8 it is possible to find where the assumption fails. Figure 2.8
indicates that this happens around β < 0.1. The particle velocity is less than
the orbiting electrons in this energy range. This is a cascading effect, first
happening to the K-shell electrons since they are the fastest. Implementing
a correction term (C/Z) in the Bethe-Block equation’s brackets makes it
possible to correct this. C/Z is constant for all charged particles with equal
velocity. (

dT
ρdx

)
c
= k

[
ln
(

2m0c2β2Tmax

I2(1− β2)

)
− 2β2 +

C
Z

]
(2.17)

One effect which should be mentioned is the polarization or density effect.
This effect is not significant for gasses but relevant in condensed media.
The density effect impacts the soft collision term of the Bethe-block
equation. In essence, the effect tackles the impact of how dipole distortion
in a condensed medium by atoms near the track decreases the Coulomb
force felt by more distant atoms. The effect will decrease the stopping
power, and hence the particle will travel further and have lower LET.
Correction for this effect is denoted δ and included in the equation’s
brackets 2.17.

14

Elastic collisions

When the impact parameter is much smaller than the atomic radius, i.e.,
a»b, the particle may be deflected. This deflection is due to the Coulomb
interaction between the incident particle and the atomic nucleus. Even
though this is an elastic collision, the incident particle will lose some of its
kinetic energy due to the conservation of momentum along the particle’s
original path. This energy is imparted onto the atom. But for heavier
nuclei such as protons, alpha, and so on, this effect will be negligible at
higher energies. It will account for about 1% of total energy loss down to
20keV and 150keV for protons and alpha, respectively. Bellow this kinetic
energy threshold, the elastic collisions will increase exponentially. When
considering particles below these energies, the elastic collisions need to be
accounted for.

CSDA and projected range

Continuously Slowing Down Approximation is a good approximation to
calculate the expected range because charged particles lose energy in a
quasi-continuous manner. CSDA for our purpose is the same as range (<).
The range is defined as the expected value of path-length (p) a charged
particle in a given medium. CSDA can be expressed by equation 2.18

<CSDA =
∫ T0

0

(
dT
ρdx

)−1

dT (2.18)

T0 is the starting energy of the particle. The path of a given charged particle
is not necessarily straight, and <CSDA will give an estimation for the total
length traversed by a particle. For heavy charged particles, <CSDA is a close
approximation of penetration depth but not for light charged particles, for
example electrons.
Projected range 〈t〉 is an estimate of penetration depth for the initial particle
with a given energy in a given medium. Of course some particles will go
further and some will not reach this depth.

2.2 Dosimetry

A dose is defined by the energy deposited in a volume in the form of
ionizations and excitations divided by the volume’s mass. Dose is thus
often measured as J/kg and is named gray (Gy).

2.2.1 KERMA

Kerma is an acronym for kinetic energy released per mass. We can derive
kerma by summarizing the individual parts of energy transferred to a
volume V.

εtr = Rin − Rout − ΣQ (2.19)

15

εtr is the total energy transferred from photons to electrons in the volume
and is a non-stochastic quantity. The equation relates to the radiative
energy going into a volume (Rin) minus the energy out (Rout) equals the
energy departed in the volume.
The ΣQ is a sum of all the energy converted to mass and vice versa.
An example of this can be annihilation, by positron emission from a
pair production. This process will result in two photons with energy
hν=511keV. These photons will likely leave the volume V due to the
photons’ relatively small cross section. If a dose calculation is done, the
energy-mass conversion needs to be accounted for.
We can define the kerma at a point P in volume V with the infinitesimal
mass dm.

K =
dεtr

dm
The term kerma consists of two parts, collision kerma (Kc) and radiative
kerma (Kr).

K = Kc + Kr

The collision kerma relates to the energy transferred to charged particles
that dissipate their energy as ionizations and excitations due to interactions
with the atomic electrons. Radiative kerma is the production of radiative
photons due to interaction with atomic electrons; bremsstrahlung.
The radiation, both charged and uncharged going in and out of a volume
is defined in equation 2.20:

ε̄ = Rinu − Routu + Rinc − Routc + ΣQ (2.20)

In equation 2.20, ε̄ is the energy imparted as defined by ICRU [42]. This
considers the full picture of energy released in a volume. ε̄ in 2.20 is a
stochastic quantity and can fluctuate. In an infinitesimal finite volume V
with an infinitesimal energy ε imparted, the dose can be derived as.

D =
dε̄

dm
(2.21)

The volume contains the infinitesimal mass dm. In the case of equation 2.21
the dose is an expected dose.
For charged particles the dose can be estimated with the fluence of charged
particles and it’s unrestricted mass collision stopping power as long as the
depth of the medium are greater than the range of the secondary electrons.

D = Φ
(

Sc

ρ

)
(2.22)

This is a more practical approach to the dose calculation as the only
parameter needed is the fluence (Φ), knowledge of the material and T̄ of
the particles. The Sc/ρ is the mass-collision stopping power.

16

Charged particle equilibrium

Charged particle equilibrium or CPE is a term often designated to a large
volume (V) containing a small volume (v) where V is inside a photon-field.
CPE is the phenomenon where the amount of charged particles going into
the volume v is the same as goes out of the volume. The particles entering
and exiting the volume v must be of the same type and same energy.
There are some conditions to have CPE; V must be homogeneous and
photon attenuation must be negligible. If a non-homogeneous material is
irradiated, the photons will dispatch their energy with different intensities
throughout the material, resulting in a non-equilibrium in ionizations.
Photon attenuation must be negligible because a less intense beam will
create a different amount of ionizations and thus secondary electrons.

Fano’s Theorem

Fano’s theorem states that if an infinite medium with the same atomic
structure is exposed to a homogeneous radiation field, charged particle
equilibrium will prevail throughout the medium for both primary and
secondary particles.

S(E, u)−N(E, u)
∫ E

o
dE′

∫
4π

du′k(E, E′, u ·u′)+
∫ ∞

E
dE′

∫
4π

du′k(E, E′, u ·u′)N(E′, u′) = 0

(2.23)
Equation 2.23 is Fano’s proof for an infinite medium for gamma rays.
Where S(E, u) is the number of electrons liberated from the primary source
contributed from the primary source with variable energy E and direction
u generated per unit mass, where evidently the S(E, u) should be uniform
through the medium. N(E, u) is the uniform fluence for electrons for all
energies and direction. The du′k(E, E′, u · u′) term is the probability for
electrons to scatter inelastic and thus have the energy E′ and direction u′.
The first term of equation 2.23 is the source contribution as mentioned. The
second term relates to depletion of energy due to such processes as scat-
tering and absorption, this happens to electrons up to a threshold energy
E and electrons can scatter in all solid angles, it will subtract from the flu-
ence. The third term relates processes of higher energies and/or direction
will contribute to the fluence.

When inspecting the prof, it becomes apparent that the equation is not de-
pendant on the fluence of the γ. The only thing it depends on is the uni-
form fluence of electrons that the gamma produces. Fano’s theorem does
not take the mean ionization potential into account as well as the polariz-
ation effect so it is not applicable for materials of different atomic number
or density.

17

2.3 Microdosimetry

As discussed, ionizing radiation is uniquely efficient because it transfers
the energy directly to the atom, with subsequent liberation of electrons.
Absorbed dose is an expectation value for energy absorbed in a volume,
but radiation itself is stochastic. When the volume decreases the stochastic
nature of radiation becomes more prominent and the field of microdosi-
metry is needed.
Microdosimetry was developed to quantify the minute spatial distribution
of ionizing radiation through a system of concepts. Microdosimetry can
provide a window into the early stages of radiation-induced processes that
determine the ultimate outcome.
As in most physics branches, microdosimetry has a theoretical and an ex-
perimental part, the experimental, due to the capabilities of detectors are
in the range of 2µm− 30µm. The theoretical part attempts to quantify the
spatial and temporal aspects of radiation in concepts such as lineal energy,
the site concept, etc.

2.3.1 Specific energy

In dosimetry, the dose is defined and measured as J/kg. When interested in
a dose at a point (which is an expectation value) in an object and is defined
by equation 2.21. ε̄ in dosimetry are an average while in microdosimetry
the ε is a energy released per event, dose at a point can be described as the
differential equation 2.24:

D =
dε

dm
(2.24)

Equation 2.24 and 2.21 are for all intents and purposes the same. When in
a volume V surrounding the site of energy deposition, the specific energy
(z) equal to dose can be defined as:

z =
ε

m
(2.25)

Where m is the mass that is affected by the energy deposition ε. It should
be mentioned the quantity z is a stochastic quantity.

2.3.2 Lineal energy

Lineal energy is defined as:

y =
ε

l̄
(2.26)

This entity’s physical dimension is J/m, but by convention, it is often
expressed as keV/µm. l̄ is the mean cord length of a volume. If this volume
is, for example, a sphere, the mean cord length would be l̄ = 2/3d where d
is the diameter. ε is the energy imparted in said volume.
As previously mentioned, LET is the energy deposition for a given charged
particle along its path in a medium, similarly to lineal energy. We assume
an almost deterministic view for dose deposition on a macroscopic scale.

18

However, it should be mentioned that dose is an expectation value, in the
microscopic domain it is the event probability within a volume. Therefore,
lineal energy is a stochastic quantity and is derived through statistical
analysis.
A note should be made regarding ε in the specific energy and lineal energy.
When discussing dose in dosimetry, ε̄ is defined as the energy imparted on
a predefined volume or mass. ε in the microdosimetric domain is defined
as energy imparted in a singular event.
The lineal energy has a probability density function f(y). f(y) is mainly
considered the probability for a particle to have a specific lineal energy.

2.3.3 The site concept

Depending on a radiation field’s LET, the effects and event density can
differ greatly, indicating an impact of the local concentration of absorbed
energy. The site concept quantifies the local concentration of events
restrained to a volume. This can be illustrated by a 2D grid looked at from
a beam’s eye view for different LET fields in figure 2.9.

Figure 2.9: The squares in this figures are sites and the black dots are events. Most left
figure displays a beam of low LET, where events will be distributed uniformly. Middle
figure are mid-range LET. Right is equivalent to a high LET. Each of the figures contain 20
events.

Figure 2.9 is an illustration of how LET will affect the distribution of
events within a volume, the volume is divided into small squares (sites) as
illustrated. In accordance with equation 2.22, with increasing LET (S/ρ),
the fluence of the beam will decrease for an equal dose, increasing the
local concentrations in a site. The sites seen in figure 2.9 are squares but
for example the radial event distribution for a proton will be more like a
cylinder around the proton with decreasing probability further away from
the proton.
The probability for events from particle path after interaction often takes
the form of a sphere or cylinder, depending on the particle’s properties and
kinetic energy. For a sphere and a charged particle with infinite range (R),
the mean events (ε̄m) within the sphere will be:

ε̄m = l̄L (2.27)

L is the LET and is assumed to be constant, but a charged particle does not
have a infinite range. Keller had this problem in 1980 and derived the mean
track length s̄ for a given particle and energy. He derived the mean track

19

length for a particle with a given LET within and a volume with a mean
cord length l̄:

s̄ =
(

1
l̄
+

1
R̄

)−1

(2.28)

R is the expected range of a particle derived from Cauchy’s theorem.
Equation 2.28 expresses the mean track length and in some sense the
ionization density for a charged particle within a site.

2.3.4 The interface effect

Energy departed in a medium depends on the properties of the beam and
the properties of the medium. The interface effect explains what happens
when a charged particle traverses from a medium such as for example
glass to another medium such as atmospheric gas: the mean excitation
potential, density and effective atomic number change. Even though the
charged particle interaction changes, liberated electrons in one medium
will travel over to the other medium. In addition to changes in interaction,
the charged particles will have new differential cross sections. This will
change deflection angle, CSDA, LET and change the particle’s behavior.
More often than not, such interactions are not calculated by hand and
almost always calculated using Monte Carlo.

2.4 Monte Carlo simulations

As previously mentioned, radiation in its nature is random; while calculat-
ing fluence, HVL, etc will give a good average estimate of dose propaga-
tion, a more precise method is needed to understand how radiation will
behave for different scenarios. The method derived by John Von Neumann
and Stanley Ulam called Monte Carlo simulations was developed and is
today the "gold standard" in radiation transport calculations. Though this
method was first used to calculate the chances of winning a game of solit-
aire, the aftermath of this discovery has been plenty, from medical treat-
ment to thermonuclear weapons. Monte Carlo is a numerical method to
simulate the behavior of random mathematical or physical systems.

The basic premise of all Monte Carlo methods is to find an outcome based
on a probability distribution function (PDF). For a dice with 6 sides, the
PDF would be Probdice = 1/6 for every outcome. If the probability distri-
bution function is continuous in the interval a to b, a method called inverse
transform sampling can be applied. The inverse transform sampling gener-
ates random values, distributed according to any PDF by using the inverse
cumulative distribution function (F−1(x)). Getting F−1(x) is done through
two steps (as seen in equation 2.29, f(x) as the PDF), first deriving the cu-
mulative distribution function (CDF). Deriving the CDF is straightforward
by integrating the PDF from a-x (equation 2.29b). It can be preferable, not
necessary, to normalize the PDF to unity since this is compliant with most

20

random algorithms which are optemized to draw random numbers from 0
to 1. When the CDF is acquired the inverse can be achieved through invert-
ing the CDF (equation 2.29c).

f (x) = α−αx (2.29a)∫ x

a
f (x) = F(x) = 1− e−αx (2.29b)

F−1(x) = x = −1
α

log(1− ξ) (2.29c)

Generating random values distributed according to the PDF is done by
producing a random number ξ ∈ [0, 1], using F−1(x) to find an x value
and determine the outcome. In figure 2.10 it is shown how this works in
the case of equation 2.29a.

Figure 2.10: A continuous function (f(x)) as a probability function and the integrated
function (F(x)) as the cumulative probability function. (A.17)

In figure 2.10 f(x) is the probability distribution, F(x) is the cumulative
distribution function, following the recipe given by equation 2.29, F−1(x)
is not shown in the figure.
One might run into the situation where the probability distribution is
discrete in the interval a-b. Then a technique named the rejection
technique can be applied. If we have a PDF in one dimension (f (x)),
the technique can be applied by randomly sampling 2 points within a set
range, one x and one y, rejecting those who do not fall in the function’s
boundaries. This technique can also be used for higher dimension PDF’s.
A traditional example of a non-continuous function is the circumference of
a circle calculation and the estimation of π. Here, the numbers exceeding√

x2 + y2 > 1 is rejected, by counting the total of non rejected numbers and
divide by the total of numbers, we get a rough estimation of pi. In figure
2.11 the estimate was 3.1415± 0.001 for a simulation run for 108 points.

21

Figure 2.11: The classical example for calculating pi by rejection technique. The colored
area are sampled points and are either rejected (orange) or accepted (blue). (A.18)

The PDF used in the rejection technique Monte Carlo does not need to be
discrete. Though this method is robust for discrete PDF’s, the algorithm
needs to draw several random numbers; hence the time needed to calculate
is longer than the inverse transform sampling.

2.4.1 Particle tracks

When simulating a particle track, a few approximations are needed to
make the code work efficiently. The particle track is segmented into small
steps (∆s). The delta will vary in size depending on the purpose of
the simulation. For example, the simulation of a nuclear reactor and its
contribution to the surrounding area does not need the same step size and
intricate calculations as a simulation of protons on a cellular level.
The particles in question are considered to have well-defined trajectories
with scattering centers distributed throughout the medium. The reason
not to simulate every cross section for each atom in the medium is fully
due to computer hardware limitations and the gain from simulating every
cross section is not significant.
When a particle traverses a medium, it will have a mean free path. The
mean free path is a sum of steps it takes through the medium. The
probability for interaction in a segment of the path ∆s is assumed to be
Σj∆s. Here, Σj is the probability for the interaction j for a number of
scattering sections N, so Σj = Nσj. σj is the microscopic interaction cross
section for the j’th process (knock-on collisions, soft collisions, etc.)
Then the probability (p(s)ds) for the mean free path to be interrupted for a
given trajectory is:

p(s)ds = Σe−Σsds (2.30)

22

A phase space coordinate describes each particle (E, r, Ω). Here, the
particle’s energy is E. r(x,y,z) is the position and Ω is the direction.
The particle starts with the phase space (E0, r0, Ω0). When it has traveled a
distance ∆s it will interact and give off an amount of energy ∆E. The new
phase space will be (E1, r1, Ω1). This will continue until cut parameters are
met. These can be set by the user or by the model’s validity in use.

Monte Carlo methods

The MC simulations purpose is to mimic a experimental setup no matter
the physical size. In addition to size of an experimental setup, the question
is what information gain is of interest, perhaps the information of interest is
to calculate shielding material needed from a source of radiation (ex, linac
and cyclotron) or the physical properties of a proton beam on the nm scale.

There are two main methods called analog Monte Carlo simulations and
condensed history Monte Carlo simulations. When simulating on a small
scale, it can be preferable to do the analog Monte Carlo method. This is a
method in which raw cross section data is used to simulate each interaction
along a singular particle’s track, and is most often used for small size prob-
lems to investigate the nature of radiation. This is still done in the manner
of the probability of interaction along the mean free path, simulating each
interaction. Though in this simulation method, the limitation is only the
limits of cross section data. There is one drawback with this method, sim-
ulating every interaction, will require tremendous computational power.
Computational power is the ability for a computational framework to ex-
ecute a set amount of instructions in a given time. When the size of the
experimental setup increases to such a degree that analog MC is not feas-
ible due to computational constraint (the framework not able to compute
instruction is a time frame given), the condensed history Monte Carlo sim-
ulations is often used. A method grouping individual particle collisions
together using multiple scatter theory. The drawback of condensed history
compared to analog MC is the accuracy of the simulations.

Variance Reduction Techniques

Variance Reduction Techniques (VRT) are methods to accelerate code based
on simple approximations for the track simulations.
The first of the VRT’s is reciprocity. If a detector and absorber almost have
the same properties (radiation-wise), they can be interchanged due to the
interface effect is negligible. So we might exchange one for the other.
Another method of shortening the run time of the code is to see if the
projected range (CSDA) is shorter than the target’s distance. If CSDA is
shorter, the program will terminate the particle.
In addition, use of polar coordinates when cylinder symmetry applies, omit
processes that do not impact the outcome of the simulation, and sampling
of individual tracks will improve the run time.
Of course, there is a plethora of VRT’s not discussed here. The main aim

23

for this section is acknowledging the existence of these techniques.

2.5 Non-radioactive radiation sources

The fact is, we have the opportunity through scientific discoveries to get
radiation on demand. The most common method is through accelerators.
Accelerating ions and electrons to tremendous velocity, using them as the
ionizing radiation or creating X-rays via the bremsstrahlung effect.

There are several types of accelerators applied for different purposes. The
Rontgen tube is mostly used for diagnostic purposes due to the nature of
how relatively low energy photons (keV range) interact with low and high
Z materials (see section 2.1), for example, soft tissue and bone, respectively.

2.5.1 Linear accelerator

The linear accelerator (linac) produces X-rays in the range of 0.5MeV −
15MeV. Using oscillating electromagnetic waves, electrons become
accelerated through a linear tube (hence the name linac) and hits a target of
high Ze f f , resulting in forwarding scattered X-rays.

Figure 2.12: Principle of the linear accelerator. The electrons will be ejected by the electron
gun (1) and accelerated trough the wave guide (2) on electric oscillating fields provided by
a magnetron (4).[10]

The electron gun will send out electrons in a pulse. How electrons
accelerates through a linear tube can vary with the manufacturer. The
electrons will feel a force F̄ = −qĒ from an oscillating electromagnetic field.
The charge of the electron is negative, and will thus accelerate the electron
in the positive direction, towards the end of the linac. In the relatively
short length of the tube, the electrons will accelerate to near light speed.
This results in a pulse of high-velocity electrons.
Depending on the company manufacturing the linac, the electrons will be
guided to a target at the end of the tube, often at ≈ 112o to the wave-
guide. A bending magnet steers the electrons to a tungsten target, resulting
in forwarding scattered X-rays. The bending magnet has two purposes:
making the system more compact and making the beam narrower. The

24

magnet system will vary with the manufacturer. If a pulsed electron beam
are needed instead of X-rays, one would only remove the tungsten filter.

2.5.2 cyclotron

Although particle accelerators’ diversity is large, the main workhorse for
medical heavy charged particle therapy is the cyclotron. By accelerating
charged particles through an oscillating electric field, the particle will build
up kinetic energy until the particle exits the cyclotron.
The beam that exits can be modified using magnets to steer the particle
beam into a target. The main function of a cyclotron is to accelerate heavy
charged nuclei such as protons, alpha particles (atom core of a helium
atom), and carbon ions. The reason not to use electrons is mainly that
the geometry of the cyclotron needs to be different for such light particles.
Therefore the linac is easier to use for electrons.

Figure 2.13: Schematic overview of a cyclotron. The blue dot is the entry point of charged
particles. The red line is the exit path of the beam. U≈ is the source of the alternating
current, the ~B in the figure is a magnetic field used to collect the charged particles. [11]

In figure 2.13 an electric field will oscillate between the two hollow
cylinders also called dees. A charged particle will be accelerated due to
a force F = q~E in the gap. Since a particle has mass, this will lead to an
acceleration a = q~E/m (Newton’s second law). Due to the discs’ shape,
there is no electric field here; hence the particle will not accelerate in the
dees. A magnetic field is perpendicular to the electric field, and the particle
trajectory ~B ⊥ ~E and the force acting upon the particle will lead it in a
circular pattern, F = qv× ~B = qv sin θ.
When the particle is in one of the discs, the electric field will change polarity
such that the particle accelerate with every pass through the gap.
Traditionally the cyclotron was used to do particle research and create
medical isotopes to be used in e.g. PET and isotope therapy to treat cancer.

25

In the more modern era, the cyclotron has brought the ability to treat
cancers by steering the beam directly to the target.

2.6 Biology

Our body is built by small building blocks called cells. The cells can take
many forms and shapes. From meter-long nervous cells, running signals
from and to the brain, to small red blood cells, transporting oxygen from
the lungs to parts of the body that needs it. These cells are constantly
working, doing their specific task. In doing their designated tasks, they can
get worn out, damaged, and when this happens, it can result in a process
called apoptosis, or programmed cell death. There are also various other
ways the cell could die. Therefore cells need to be replaced, this happens
through a replication process called the cell cycle.

2.6.1 The cell cycle

When replicating, the cell goes through 4 phases. G1 is the first part of
the cell cycle. Here the cell uses nutrients to grow and checks if there is any
damage to the DNA (DNA will be discussed in section 2.6.2) before moving
into the S phase of the cycle.

Figure 2.14: A schematic overview of the cell cycle with the four stages. [7]

In the S phase, the DNA is replicated in hopefully two identical parts. At
the beginning of this phase, the cell is the most susceptible to radiation
damage. The cell is more susceptible to damage due to the fact that early
in S, there is only one replica of the DNA. The replication of DNA is a
continuous process, and the cell becomes more resistant the further it is in
S. When the DNA is replicated, it moves on to G2. In G2, the cell grows
even more and checks if the DNA is replicated correctly. After G2 the cell
gets ready for the cell cycle’s final phase. The M phase or mitosis is the
final step of the cell cycle, in which one cell divides and becomes two, new
daughter cells.

26

2.6.2 DNA and damage

DNA is an acronym for deoxynucleic acid. It is composed of 2 phosphate-
sugar strands connected through four bases, adenine (A), guanine (G),
cytosine (C) and thymine (T). Adenine is always connected to thymine via
two hydrogen bonds and cytosine is always connected to guanine via 3
hydrogen bonds.
3 base pairs is the code for one amino acid, amino acids make up protein
and what protein gets made is decided by the order of these bases.

Figure 2.15: The structure of DNA visualised. Orange bands are the sugar phosphates, red
dotted lines are the hydrogen bonds and the nitrogen, ogsygen, carhon and hydrogen
structures are the bases.[7]

Factors that can induce damage to a cell’s DNA are called carcinogens
and is divided into three categories, chemical, oncogenic viruses (cancer-
causing) and physical, ionizing radiation falls under the latter category of
carcinogens. In addition to the carcinogens, time also play a factor, dividing
cells can in some instances get a mutation to its DNA by chance which
can result in the cell dividing uncontrollably. The definition of cancer is
uncontrolled cell division. When ionizing radiation traverses through the
cell nucleus, the liberated electrons can induce damage to the DNA by
direct effects (directly by liberated electrons) or by the process of interacting
with radicals (a byproduct of ionizing radiation), not enabling the cell to
repair the DNA. For the first-mentioned, there are several types of damage.

BD

Base damage (BD) is a form of molecular damage related to one or more of
the four bases.

27

SSB

One of the simplest forms of DNA damage that will be discussed is, the
single-strand break. This is known as sub-lethal damage, meaning not
lethal on its own. However, if several of these damages are accumulated in
a small enough region in a short enough time frame, it can be lethal. The
time frame part here is important because the cell’s repair mechanism will
repair an SSB as soon as it is discovered.

DSB

Double strand break (DSB) a is damage to both strands of the DNA
molecule. The breakage of strands must happen within 10 base pairs and
opposite strands to be considered a DSB.
There are several configurations of the 3 mentioned damages, as shown in
figure 2.16.

Figure 2.16: The categorisation of DNA damage. X marks the location of damage. Dotted
lines are the bases and the lines are the alternating sugar phosphates strands. [30]

As seen in figure 2.16 the damage is not limited to BD, SSB and DSB,
can be a a combination of these, resulting in increased severity of the
clustered damage. When increasing the LET of a beam, the damage will
most likely be more clustered, resulting in less probability for successful
damage repair.

2.6.3 Response models

When measuring radiation response, an endpoint has to be chosen.,
Endpoints can be tumor stagnation, tumor shrinkage, healthy tissue
response or cell death. In the latter case, cell death indicates the inability to
proliferate.

28

Usually, a model called the linear-quadratic model is used.

S = e−αD−βD2
(2.31)

S is the surviving fraction of cells and D is the dose. In a cell culture
the surviving fraction is measured as a function of dose, when the linear-
quadratic model is fitted to the data, α and β can determine and used as
parameters to categorize the radiation response of a particular cell line.
Often α and β are given in a ratio (α/β), which can used to radiation
response after different fractionation schemes.

Figure 2.17: Response models for early and late responding cellines with a 1.7keV/µm
LET. The y axis is survival fraction in log10 scale. The x-axis is the dose. Blue is the early
responding celline. Orange is the late responding celline. (Program: A.19, Celline α and β
[9])

As seen in figure 2.17 the late responding tissue (α/β > 8) will have less
response at lower doses overtake early responding tissue at higher doses.
α/β < 3 is carracteristic for early responding tissuey. More often than not
cancers will be early responding and healthy tissue late responding, but it
is not always the case.

The dose can be divided into smaller fractions, separating the individual
fractions by some time interval. The main effect of this is a larger differen-
tiation between the late and early responding tissue. This is a useful tool
when irradiating cancers, since cancers are early responding, and normal
tissue is late responding. Hence a larger effect on the tumor and a smaller
effect on normal tissue, which is preferable.

29

Figure 2.18: Survival fraction of cells when fractions are applied. Red lines are the
fractionated doses and black are the same response with a continuous dose. The y-axis are
survival fraction and x-axis are dose, neutrons and X-rays where used.[35]

Ionizing radiation with high LET does not gain a significant advantage
from fractionation the dose as seen in figure 2.18.

RBE

Relative biological effectiveness (RBE) the relationship between some test
radiation (DT) has compared to the reference radiation (DR) which give the
same biological effect. For reference radiation, the most used is Co60 − γ-
radiation due to the monoenergetic photons radiated and the wide use in
medical applications. X-rays are also used but since it comes as a spectrum
of energies, it has higher LET compared to the monoenergetic γ. It is
therefor important to specify which reference radiation is used and which
biological effect is measures.

30

Figure 2.19: The plot shows survival on the y axis as a function of dose on the x axis. The
blue graph is survival of cells irradiated with a γ-ray from a cobalt 60 source. The red
graph is survival of cells irradiated with neutrons.[8]

The way it is calculated can impact the RBE, as seen in figure 2.19. It is
calculated is through equation 2.32:

RBE =
DR

DT
(2.32)

RBE and LET

RBE is highly dependant on LET as seen in figure 2.19, increasing LET
results in increasing ionization density, and it thereby increasing the
damage done to DNA both in amount and complexity. RBE for cells will
reach a maximum at around 100keV/µm. At this LET, the average distance
between ionizations will be approximately 2nm, which corresponds to the
distance between the two DNA strands. An increase in LET will lead
to a shorter distance between ionizations but the extreme dose deposited
through, will not increase the cell kill. The effect will therefor decrease as
seen in figure 2.20.

31

Figure 2.20: Calculated RBE depending on the LET with DNA as an endpoint. The
different curves shows survival fraction. The survival fraction are 80%, 10% and 1% for
brown, red and blue respectively.[19]

In figure 2.19 RBE is lower at higher doses; this can as well be seen in figure
2.20 when assuming a lower survival fraction is correlated to higher doses
of the reference radiation.

2.7 External Beam Radiation Therapy

External radiotherapy is a method of delivering ionizing radiation to a
patient’s tumor while sparing the healthy tissue. The ionizing radiation
delivered to a tumor can be X-rays (produced by the linac), electrons (also
linac) and protons/ alpha-particles (accelerated with the cyclotron).

2.7.1 Clinical treatment planning

For treatment planning to proceed a tumor needs to be found and defined.
For a tumor to be located, image modalities such as computed tomography
(CT), magnetic resonance imaging (MRI), etc. are used. A tumor volume
to irradiate is defined, accounting for invisible (in the image) cancer cells
and tumor movement. In external radiotherapy, all treatments are planned
in digital simulations systems. The simulation systems helps the planner
set up the optimal radiation field, giving a tumor the prescribed dose
while limiting the dose to healthy tissue. These calculations however
are not done by MC simulations but with kernal-based methods (point,
cone or pencil) which distribute radiation based on MC simulations data.
Radiation transport algorithms applied in hospitals to treat tumors are
optimized to work fast while not having a large error margin compared
to the time intensive MC simulation method.

32

2.7.2 Proton therapy

Heavy-charged particle therapy utilizes the increasing LET for charged
particles as they lose their velocity. Particles used in this type of radiation
are protons, alpha-particles and carbon, the most common tough are
protons. The charged particle will maximize the dose deposition at a point,
this point is called the Bragg peak (BP) and illustrated for several energies
in figure 2.21 (blue lines). Without modification, a monoenergetic pencil
beam, a beam with one energy and is a point in a plane transversal to
the beam, will be sharp and not enough to cover a tumor volume. To
modify the depth of the BP, the beam energy is altered to superpositioned
individual BP’s resulting in a dose plateau called the spread out Bragg peak
(SOBP). The abrupt end of the BP with the most energy (defining the end
of the dose platou) will spare the tissue behind it. This feature is the main
promoting reason to use protons over photons.

Figure 2.21: A dept dose curve for X-ray and proton irradiation. The gray line showing the
dose depth of a traditional linac (energy 10MV). The blue lines are beams of protons at
different energies, resulting in the SOBP (red line). The PTV are the green dotted lines. [24]

In figure 2.21 a dose depth is illustrated for monoenergetic protons, the
SOBP an a photon beam.

Protons are delivered to patient’s in beamlets which is proton beams with
set intensity, energy, lateral spread and position. Each beamlet will spread
out in the lateral direction when interacting with matter, most at the BP.
This lateral spread alone are in most cases not enough to cover the whole
tumor, so to cover the whole tumor alternating magnetic fields orthogonal
to the beam moves the beam in x- and y-direction (if the beam travels in
z-direction). This method is called pencil beam scanning.

33

Figure 2.22: The dose plan will vary on what type of irradiation used [21]

In figure 2.22 the advantage of proton therapy are shown, sparing the
healthy region behind the SOBP.

2.8 Statistics

2.8.1 Distributions

A normal distribution, also referred to as a Gaussian distribution, is a bell-
shaped curve. Several observations and data in nature follow this pattern
and its form is generally described by equation 2.33.

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ)

2

(2.33)

Here, µ is the mean of the distribution. In statistics, this value is also
referred to as the expected value and is the sum of all data points (∑ xi)
divided by the total number of data points (N), µ = ∑i xi/N. The σ
in equation 2.33 is the standard deviation. It is a measure of expected
deviation from the mean in a data set. Standard deviation can be found by
taking the square root of variance (σ2). The variance is found by summing
the squared difference between each data point and the mean, divided by
the total amount of data points.

σ2 =
∑N

i (xi − µ)2

N

The normal distribution is a probability function. Another probability
distribution function is the Poisson distribution. Poisson is often used
when counting the occurrence of independent events within a certain rate.

P(k) =
e−µµk

k!
(2.34)

The k in equation 2.34 is the number of independent events and is valid
for k ∈ {0, 1, 2, ..., n}. The µ is the rate parameter, the number of expected
number of events in a interval.

34

2.8.2 Spatial autocorrelation

"Everything is related to everything else, but near things are more related
than distant things"-Waldo R Tobler [41]. Regular statistical analyses
assume every event is independent. However, in spatial statistics, the
underlying analysis is how phenomena and space are correlated. If there
is positive spatial autocorrelation, the phenomena in question will be
clustered together. Negative spatial autocorrelation results in a uniform
pattern much like a checkerboard. No spatial autocorrelation will result in
a random pattern. This can further be illustrated in figure 2.23.

Figure 2.23: The 3 main outcomes for spatial autocorrelation in 2d.[23]

Morans’s I

Morans’s I measures the spatial autocorrelation with regards to the mean.
It is sensitive to the global spatial autocorrelation and is defined as:

I =
N
W

∑i ∑j wij(xi − x̄)(xj − x̄)

∑i(xi − x̄)2 (2.35)

In equation 2.35 N is the number of spatial units indexed by i and j. x is the
variable of interest and x̄ is the mean of x. wij is the spatial weight matrix
and W is the sum of wij. The weight matrix determines how impactful the
phenomena in question are. Common solutions to the weight matrix are the
inverted transposed of the distance matrix. Another common technique is
to set a spatial parameter (p), if the distance between two separate points is
larger than the parameter i.e. abs(x2

i − x2
j) > p, wij = 0 and if the distance

is smaller, the wij = 1. The weight matrix can have an impact on Moran’s I.
The values of I can be in the interval I ∈ [−1, 1] where -1 is negative
autocorrelation and 1 is positive autocorrelation. I=0 is no autocorrelation.

Geary’s C

Geary’s C is inversely correlated to Moran’s I, it measures negative
autocorrelation, but the two are not equal tests. Where Moran’s I is
sensitive to global spatial autocorrelation, Geary’s C is more sensitive to
local spatial autocorrelation on an event by event basis.

C =
(N − 1)∑i ∑j wij(xi − xj)

2

2W ∑i(xi − x̄)2 (2.36)

35

The variables for equation 2.36 are the same as 2.35. C is in the interval
C ∈ [0,→〉. C > 1 indicate negative spatial autocorrelation and C < 1
indicate a positive spatial autocorrelation. C ≈ 1 indicate no spatial
autocorrelation.

36

Chapter 3

Materials and methods

3.1 Geant4

Geant4 is an open-source, general-purpose Monte Carlo program. Open
source is a term designated for programs with an open-source code. De-
velopers and alike can go into the code and change it. This results in con-
tinuous development, adding to an already extensive program.
General-purpose Monte Carlo programs does not have a specific usage
area. Geant4 can simulate medical applications, high energy impact (an
example is LHC in Geneva), and irradiation of space instrumentation.

Geant4 is a powerful tool with the ability to simulate particles on an event-
by-event basis, as well as through multiple scatter theory. It has a semi-
visual interactive interface, where one can specify number of particles and
their type (proton, electron, etc) and kinetic energy. This interactive inter-
face is often used to confirm and visualize the experimental setup.
Being written in C++, Geant4 needs a main. The main (module 0) imple-
ments all of the modules needed to make Geant4 run and some more. There
are a bare minimum of base modules/classes needed to be implemented for
Geant4 to run.

3.1.1 Physics list

Physics list (module 1), the module where all of the physics processes are
implemented into each specific simulation setup. Each physics process can
have several models, e.g., Bhete-bloch is such a model, but there are several
more models in use. What models are implemented in module 1 depends
on what information is desired and is up to the user of Geant4 to decide.
The validity of the models used is often empirically tested for one or several
materials. If the physics processes are omitted from the physics list it won’t
be simulated. Example of physics processes are e.g., soft collision, pair
production, etc.

37

3.1.2 DetectorConstruction

DetectorConstruction (module 2) is a module that needs to be implemen-
ted. In this module, the detector is constructed. The detector can be the
physical detector (for example, ionization chamber) and the whole of the
experimental setup that is requested to be simulated. DetectorConstruction
is based on simple geometrical objects/volumes such as boxes, cylinders,
and triangles. There is a strict hierarchy to follow when implementing these
geometrical objects. The first order of the hierarchy is the world. The world
determines whether a physical process will happen and when trajectories
should be terminated. One can place the experimental setup of interest
within the world, consisting of mother and daughter volumes. If the world
where a cube (C1) with the volume VC1 = 1m× 1m× 1m and another cube
(C2) with a volume VC2 = 0.1m× 0.1m× 0.1m where to placed in the center
of the world. C2 would be the daughter of C1, and C1 would be the mother
and the world. If a smaller cube C3 with VC2 > VC2 where placed in C2,
C2 would be the mother but not the world. In addition to the designation
of daughter and mother, will the volumes need to be assigned a material.
Most of the NIST database material can be implemented via a library in-
cluded in Geant4. Though the code will always run if written correctly,
physics model implemented to the region needs to be compatible with the
material, more on this in 3.3. A volume consists of two parts, the physical
volume containing the geometry (box, cylinder, etc.), size and name. The
other part of a volume is the logical volume containing all physical inform-
ation material, magnetic field, shape and size, The last two (shape and size)
are inherited from the physical volume. Logical volumes of the same shape
and size can share physical volumes.

3.1.3 PrimaryGeneratorAction

The last program needed is the PrimaryGeneratorAction (module 3). Here
the user specifies beam position, energy, particle type, geometry of the
beam and fluence rate.

Module 1, 2 and 3 are the base classes of any Geant4 program. These are
kernel operations. Kernel operations are the most fundamental part of a
computational system and are the classes which controls the other classes
and allocate memory and CPU (Central Processing Unit) capacity.

3.1.4 Information gathering

Additional modules are required to sample and store data from tracks and
impact on a given target. The module used to track a particle is called
SteppingAction (module 4) by convention. Here one can sample data from
each interaction in a scoring volume. A scoring volume is essentially the
same as a regular volume but module 4 (though it can be any information
gathering module) is told to gather information from the scoring volume.
Information gathered can be any physical property of the particle such as;

38

track structure, energy deposited in an event, etc. Tracking action is another
way to sample information; one can quantify the total energy depositions
in the scoring volume.

Figure 3.1: A flowchart for a generic Geant4 setup. Kernel operations is essential (module
1, 2 and 3), as well as the base classes (implemented in the main).

In figure 3.1 the yellow boxes (module 1, 2 and 3) and the optional run
classes are implemented in a RunManager in the main. The optional
run classes can in addition to gathering information, specify how the
simulation shall take place, postponing a particle, killing a track, etc. The
RunManager starts of by running one or several particles in batches in the
Run class, events are simulated and the information are gathered. When
information sampling is done, RunManager will start the process all over
until the whole simulation is done. The information from these batches can
be stored in several ways but usually in a histogram or dose map are used.
Batches are used since running the whole simulation in one run wold not
be the best use of computational resources.

39

3.2 The experimental setup

In current work, the aims, is to do MC simulations mimicking the setup
used to irradiate cancer cells with proton at the Oslo Cyclotron Laboratory
(OCL). The cells are grown in a cell disc (diameter=60mm) and placed in a
heated chamber down the beam line. Dose to the cells are determined by
fluence and energy, these two variables are measured by the transmission
chamber. After irradiation, the cells are stored, colonies are counted after
cells had a chance to proliferate. As mentioned in section 2.6.3 cell survival
can be measured in the ability to proliferate, therefor colonies are an
indication that cells survived the irradiation. Cells not able to proliferate
are considered dead. Cell survival can then be deduced by dividing
colonies by assumed cells seeded, this gives an estimation of survival for
the cell culture. The whole experimental setup for cell experiments at OCL
can be seen in figure 3.2:

Figure 3.2: The experimental setup for the cellular experiments at the OCL. The beam exit
window is a tungsten beam degrader. And the energies is measured at the different
positions.[12]

The tungsten beam degrader in figure 3.2 is measured to be 52± 1µm thick,
and is used to spread out the beam to assure a uniform proton distribution
over the cell disc. In the experiment at OCL, dose average LET (LETd)
where estimated with MC simulations (done in FLUKA) at 3 different
energies for the 3 different positions in figure 3.2.

40

Figure 3.3: The Bragg peak for the experimental setup seen in figure 3.2 measured in water
equivalent depth. The simulation estimated LETd at 3 positions in water at different
depths. [12]

In figure 3.3 there are no estimates at the peak or distal end of the peak, so
these positions are interesting to investigate. It should be noted that Dahle
et al. [12] simulated dose average LET and is not directly comparable to
LET.
In simulations done in Geant4-DNA the cell culture disc is placed 80cm
from the beam window, getting hit with protons from the frontal, mid and
distal end of the Bragg peak, as well as the raw energy output from the
cyclotron. The beam energy is moderated experimentally with a water-
equivalent plastic bath placed in front of the cell culture.

3.3 Geant4-DNA

In current work, it is of interest to investigate the low energy domain of
proton irradiation < 2MeV and map single ionizations and excitations in
the region of the Bragg peak. In the low energy spectrum (bellow keV), the
options for MC tools are plenty; KURBUC, TRAC and NOREC are codes
used to study energy depositions in the microdosimetric range. The only
problem is that, these codes are closed to the public and cannot be used
unless special access is granted.
Therefore, the logical choice is a sub package of Geant4 called Geant4-
DNA. Included in Geant4-DNA are several physics models for low energy
interactions. The models used for the physics processes in Geant4-DNA
are often semi-empirical. Semi-empirical, a term used for analytical models
fitted to empirical data.

41

Physicslist

First, most of the models used in this implementation of Geant4-DNA are
semi-empirical models for liquid water to include it’s dielectric effects. Wa-
ter is abundant in eukaryotic cells and the molecular composition of cells
can often be approximated to water. In contrast to gold and some special
tissue substitutes, water is easy to get ahold of, this makes it a good candid-
ate to experiment on. The Geant4-DNA is a analog MC simulation tool-kit
and will simulate every discrete process.

Standard Bethe-Bloch formalism (equation 2.17) is used outside the tar-
get or scoring volume. The reason for this is simply calculation time. The
Bethe-block formalism is also used when the simulated particle has an en-
ergy > 0.5MeV in the target volume for all charged particles. Models used
to simulate energy depositions for electrons in the microdosimetric range
are tabulated in 3.1. The literature does not specify any uncertainty for the
models used. However, the cross sections used for the models discussed in
section 5.3.

Process Inside Target Volume Outside Target Volume

Ionization (inelastic)
G4DNABorn model [15]
(11eV-0.99..MeV)

Bethe-Bloch
(1MeV)

Electronic excitation (inelastic)
G4DNABorn model [15]
(9eV-0.99..MeV)

Bethe-Bloch
(1MeV)

Elastic scattering (elastic) Partial wave model [15] (7.4eV-100eV) n/a
Vibrational excitation
(inelastic subexcitation)

Sanche data [28] (2eV-100eV) n/a

Attachment (inelastic subexcitation) Melton data [27] (4eV-13eV) n/a

Table 3.1: Electron interaction models and applicability of the models outside and inside
target volume. The models inside the Target volume are only valid for liquid water.

For protons, Born and Bethe-Bloch theories for excitation and ionization are
used when the proton energy is above 500keV. If T<500keV and the particle
is inside the target volume, the models used can be seen in the table 3.2.

Process Inside Target Volume Outside Target Volume

Ionization
Bethe Bloch for T>500keV
Rudd semi-empirical approach T<500keV

Bethe-Bloch

Excitation
Bethe Bloch for T>500keV
Miller & Green speed scaling T<500keV

Bethe-Bloch

Charge Change
Analytical parameterization by
M. Dingfelder et al.

n/a

Nuclear Scattering Classical approach n/a

Table 3.2: Proton interaction with matter outside and inside target region. Models for
T<500keV are only valid for liquid water.

The code where the models are implemented can be found in A.1.1 and
A.1.2.

42

Primary generator action

This class define the primary beam characteristic, one needs to specify the
particle type (proton, electron, photon, etc.). In addition to this, the beam’s
starting position, direction, and energy are required. From the publications
on the proton beam at OCL [12], it can be found that the beam FWHM is
2mm and the initial energy at 15.5MeV with a Gaussian energy distribution
of 0.2%. When the tungsten degrader and distance to the target volume
is taken into account, it can be assumed that the difference in proton
distribution between beam characteristic measurements at OCL and a
pencil monoenergetic beam is negligible. Therefore a pencil monoenergetic
(15.5MeV) beam has been used to model this experiment.
The code can be found in A.1.3.

DetectorConstruction

The world is a box with the volume Vworld = 1m× 1m× 1m. At the OCL
laboratory the cyclotron and beam guide is under a vacuum, hence the
beam will be under a vacuum until it interact with the degrader, which
acts as a border between the vacuum and air in addition to degrade the
pencil beam. Within the world a air filled volume is placed, and the 52µm
degrader is placed at the edge of this volume. 80cm down the beam line
from the degrader the target volume is placed, a cylinder with height =
300µm filled with water. The target volume is used to sample proton data
from the Geant4-DNA simulation, and has a diameter of 60mm, which is
the same as the diameter of the cell discs used at the OCL experiment.

Figure 3.4: This figure is an overview for this particular setup for 1 proton. The red circle
marks the cell disc and the gray cylinder right behind marks the water ring used to vary
the energy. The gray circle on the other side is the tungsten foil. The blue area is the box
within the world and is filled with air. The blue line is the proton and yellow dots are
ionizations.

From figure 3.4 the experimental setup can be seen through the interactive

43

interface in Geant4. A cylindrical volume containing water (gray in figure
3.4) is placed 2mm in front of the target region to regulate energies similar
to what is done experimentally. The water volume’s length used to vary the
beam energy is set to 0.495mm, 0.485mm and 0.47mm. Protons can, when
interacting with matter scatter in any direction. Therefor the radius is of
the energy variable ring’s radius (70mm) is larger than the targets. This is
so if any protons with a potential trajectory to hit outside the target radius,
they will have the opportunity to scatter back to the target. Energies of the
proton beam of interest in the frontal, center and the distal end of the Bragg
peak and as the cyclotron’s raw energy output. Source code can be found
at A.1.4.

Stepping action

There are several methods of tracking energy depositions by particles.
Since the Monte Carlo method used is a analog method, we can gather
information about every event down to a certain energy threshold. This
energy threshold is dependant on the applicability of the models used
in the simulation. For the models referenced in table 3.1 and 3.2 this
is down to eV. The information gathered from a single proton track are
the phase space coordinate (E, r, Ω), step length, particle type, the type of
interaction taking place (proton ionization, excitation, etc) and the energy
transfer in the interaction as well as ID for every process, particle and
step. Information gathered from the simulation requires storage space. The
information about a 10µm long proton track and its interaction in water
requires about 4Gb of storage space. Therefore the code implemented has
been restricted to sample information only in the target region. Code can
be found in A.1.5.

3.4 Modeling

The objective is to simulate clinical doses (> 1Gy) in cellular volumes with
analog Monte Carlo, but there are two problems. Solved by implementing
proton track data simulated in Geant4-DNA in a MC algorithm written in
Python (will be discussed in 3.4.2).
In low energy regions (<100eV), the elastic cross section for electrons
increase drastically [22]. This is the case for protons as well below 100keV
[20]. Since every process needs to be simulated, among other reasons,
the analog MC simulations will take longer time than condensed history
MC simulations. If a proton hits the target region where Geant4-DNA
physics are active it will take 1 minute to simulate the track, a clinical dose
(1Gy-10Gy) consists of 108 − 1010 protons in this particular setup. So if
a clinical dose of 1Gy for 1.2MeV protons where only to be simulated in
Geant4-DNA it would take a few years. This exceeds preferable timing
for this thesis. So another approach is required to get good results within
preferable timing, mapping ionization and excitation for different energies
at different doses. The solution is an approximation, simulating 20000

44

protons for four different energies (1.2MeV, 1.4MeV, 1.8MeV and 8.7MeV)
in Geant4-DNA and implementing them in another MC algorithm.
Geant4 has no ability to differentiate between two proton tracks. If 10
protons where to be simulated in Geant4 these will be catalogued as the
same particle. The Python implementation uses a radial distribution model
(more on that in 3.4.1), simulating points on a disc and importing single
proton tracks to each point. If Geant4 cannot differentiate between these
protons, the Python implementation would not work. The way around
this is to run Geant4-DNA for one proton, saving the information in a file,
20000 times. Then the single simulation can be stored as 1,2,3,...,20000,
differentiating each proton.
Furthermore, the MC algorithm needs the LET from each of the proton
energies. This can be done by summation of the energy deposition along
the proton track, averaging over all protons for each of the energies, LET =
Energydeposition/Tracklength. LET is calculated by Analasys.py (A.3).

3.4.1 The spatial distribution of protons

Since protons tracks from Geant4-DNA simulations will be implemented in
another MC algorithm it is necessary to extract exactly where the protons
initially hit on the target (cell dish) so a distribution model can be made.
We can assume cylinder symmetry due to the experiment’s cylindrical
nature and the absence of a magnetic field. Since cylinder symmetry
applies, the only information needed to make a distribution model is the
radial distance where the protons hit from the centre. Radial distance
(rdist) for each protons initial position on target can be calculated via
Pythagoras theorem (rdist =

√
x2 + y2). The radial distance is calculated

by Analasys.py (A.3). When the radial distance for each proton are
calculated, a linear approximation is made, which gives a probability
distribution, continuous in the interval [0cm,30mm]. This distribution is
perfect for inverce transform MC so equation 2.29 can be applied to the
linear approximation. The inverted CPD is used to calculate the initial
proton position in the MC algorithm (explained in 3.4.2)

3.4.2 Cell irradiation

The MC algorithm aims to simulate clinical doses to a cell culture with
proton data from analog MC simulations done in Geant4-DNA while
minimizing time spent on the simulations. Figure 3.5 explains in essence
how the MC algorithm flows.

45

Figure 3.5: A flowchart explaining in simple terms how the analysis works.

The main.py (A.9) in figure 3.5 is the main routine of the setup. The user
gives values for dose (D), mean energy (T̄) of the proton data where four
energies can be requested, corresponding to the four depths discussed in
the Bragg peak. The main routine will also request cell height (hcell) and
radius (rcell) in addition to the radius (rnuc) of the nucleus, where the height
of the nucleus is assumed to be the same as the cell. The cell and nucleus
are approximated to be cylinders with the radius rcell and rnuc respectively,
the height for both are hcell .
The main program will start to calculate the number of protons needed to
reach the dose requested. Dose requested in this instance is the dose to the
whole cell disc, a cylinder with the diameter=60mm and height=4µm, the
height corresponds to the cell and nucleus height. The dose to the cell disc
will be calculated by dose.py, by multiplying the dose needed by the mass
of the cylinder and divide by LET, this gives us number of protons needed

46

to achieve a dose, as seen in equation 3.1:

#protons = D
mass
LET

(3.1)

In eq 3.1, mass is the mass of the cell disc. The dose.py A.4 program returns
the number of protons needed based on the LET calculations done in
Analysis.py over 4µm (doses in the simulations consists 9× 108 to 4× 1010

protons).
CellDist.py (A.5, cell distribution) randomly distribute points uniformly
(xcell and ycell) on a disc with d=60mm. These points will be used as
centers for the cells and nuclei. Montecarlo.py (A.6, proton distribution)
distributes points (xprot and yprot) using inverse transform MC according
to the spatial distribution described in section 3.4.1. These points will be
used as initial proton position. The process of distributing protons are done
in several iterations. To demonstrate why several iterations are needed,
the dose of 2Gy at 8MeV protons will be used. This will result in ∼ 1010

protons over the disc. If we use a number storage form called float64 to not
compromise in accuracy, it takes 2× 8 bytes of storage for a single proton to
store both the xprot and yprot, it will require one 1/2*terabyte of fast storage,
a.k.a ram. Therefore the easy way of getting around this problem is to
loop the Montecarlo.py program in main.py several times and check if the
proton initial position is in the vicinity of the cell and nuclear radius given
by the user and thus interact.
The interaction calculated is the distance between the cell center and a
proton incident position. Incident protons not within the radius will be
deleted, and protons within will be included. This can further be seen in
figure 3.6.

Figure 3.6: Illustration of how protons interacting with cells are counted. The blue cylinder
is the approximation of a cell. Not to scale.

The distance (d) from the cell center to the proton is calculated with
Pythagoras in euclidean space as in equation 3.2.

d(pprot, pcell) =
√
(xprot − xcell)2 + (yprot − ycell)2 (3.2)

If d < rcell , the proton’s position will be saved to the individual cell. This is
the case for d < rnucleus as well. No matter how the code is implemented,

47

it will be slow (several days). Several iterations were tested to maximize
the efficiency of the code used. The most efficient single-core method was
achieved with a python library named jit by numba ([33]). Jit compiles
the routine to machine code, making the code about 230% more efficient.
Code with this implementation can be found in A.7. Several attempts were
tested to make the code more efficient, both array implementation which is
an efficient way to write code in with NumPy and cuda, cuda is a way to
run code on the graphics processing unit, but to no prevail. If a proton
position interact with the cell (d < rcell) it will be assigned one of the
protons simulated in Geant4-DNA for the given T̄. ProtonChoice.py (A.8)
designates a random proton from the protons data (with the energy given
by the user) to the hits within a cell and its nucleus.
The rootimplementation.py (A.10) analyzes the track data. For each unique
proton, the program opens the proton track files and searches for the
necessary information. The whole track for the given height (hcell) is used
if it hits within the cell/nucleus (more on this in 5.1.1 and 5.1.2).
The numberofion.py (A.12) program will collect the number of ionisations
and excitations to each cell/nucleus. The DosePerCell.py (A.11) collects the
total dose deposited within each cell and nucleus.
The information is designated to each cell and sent back to the main for
further analysis.
The information gathered in rootimplementation is sent to Plot.py (A.13)
to be plotted and the data is saved as .csv files to be further analyzed. For
a full overview of how this process works, see figure 3.7.

Figure 3.7: This flow diagram shows the total workings of simulating. Red blocks are the
simulations itself. Green squares are data from the simulations. Yellow blocks are the
analytics of the data simulated.

Figure 3.7 shows the total setup for the simulations. Simulating the protons
in Geant4-DNA and analyzing their initial radial distribution, and using
the radial distribution to simulate protons in the main routine.

48

3.4.3 Cell and nucleus dose analytics

All of the ionizations and excitations are stored for the individual cells. The
program ionizationAnalasys.py gives insight into the dose distribution as
well as ionization and excitation distribution for the cell culture by making
histograms for each dose and the four different energies (1.2MeV, 1.5MeV,
1.8MeV and 8.7MeV) for both cells and nuclei.

3.4.4 Spatial analysis

In an attempt to characterise proton track structures, spatial autocorrelation
is applied. Moran’s I (2.35) and Geary’s C (2.36) and an inter-track analysis
are implemented in a smaller version of the main.py program. A random
distribution of points on a flat circle (rnuc = 6µm) and protons are assigned
to each point.
A regular dose in a nucleus consists of 10-500 protons, each proton contains
up to 10k data points for a proton track of height hcell = hnuc = 4µm. This
huge amount of data points restricts the scope of the analysis. Therefore
the analysis has been limited to a single nucleus, and the dose consists of
the mean dose obtained through the dose.py in figure 3.5 with the cell disc
volume replaced with a nucleus.
The moransi.py (A.14) program distributes proton tracks in a random pat-
tern on a cylinder with a 6µm diameter and a height of 4µm. The ionizations
and excitations are extracted from the designated proton file and their x, y
and z positions stored in an array P.
To check for global autocorrelation, the nucleus is divided into a grid of
small boxes x*nm in height, width and length, named voxel. The amount of
events is counted inside each box, giving each box a number B, Bi ∈ [0,→).
This is highly based on figure 2.9. Moran’s I is calculated layer by layer
along the cylinder axis of the nucleus, giving a value layer matrix wj for
j ∈ [0, n], n depending on the voxel size. The applied algorithm does not
have support for 3D space yet. The weight matrix in equation 2.35 is calcu-
lated by inversely transposing the value layer matrix for the layer j calcu-
lated. The weight matrix accounts for the proximity of the different voxels
in the vicinity to each other.
gearysc.py (A.15) inherits the P array and computes the local spatial auto-
correlation by equation 2.36. The weight matrix element wij is either 1 or 0
depending on each event’s distance determined by a length parameter. The
xi and xj coordinate is the i’th and j’th event and (xi − xj)

2 is the squared
distance between the points.
intertrack.py (A.16) and intratrack.py (A.20) algorithms are used to determ-
ine the average distance to another proton track or ionization/excitation
within a proton track respectively. The intra-track algorithm measures the
average distance in nm between each event in a proton track for a given
energy. The inter-track algorithm measures the average distance between
each of the proton tracks’ mean event position, which is the average pos-
ition for all events. This will fluctuate throughout every proton track due
to inconsistency in every proton’s initial energy and stopping power will

49

lead to a higher clustering near the end of a path. Both intra-track and
inter-track uses equation 3.3.

Intratrack =
∑j ∑i(xi − xj)

2

N2 (3.3)

The xi and xj are each mean event points for inter-track. In intra-track, the
xi and xj will be counted as events.
To visualize how a spatial autocorrelation algorithm would work, see
figure 3.8.

Figure 3.8: Clustering value using a Geary’s C index, cut parameter set to 0.3.

The data points and distance in figure 3.8 are totally arbitrary, used to show
how these cluster algorithms can be assesed.

P=0.3 P=0.7 P=10
C 0.905 1.000 1.000
SC 0.447 0.716 1.000
RD 0.001 0.008 1.000

Table 3.3: Clustered (C), semi clustered (SC) and random distribution (RD) with different
parameters set for cluster assessment algorithm.

In table 3.3, 3 parameters have been set for the three data sets. As
mentioned, photons and charged particles will interact differently in any
material, figure 3.8 is a thought experiment on how such algorithms as
Geary’s C and Moran’s I can be applied. Figure 3.8 is a simplified model
for a scenario with clustering ∝ LET. It should be mentioned that for larger
clustering Geary’s C will in this example tend to 1, this is the opposite of
what is expected but it might be since there is only one cluster for each
cluster density.

50

Chapter 4

Results

4.1 Computational simulations with the Geant4-DNA
simulation toolkit

Simulations mimicking the the experimental setup at OCL as shown in
3.2 was done in Geant4-DNA. The four energies simulated where T̄1 ≈
8.7MeV, T̄2 ≈ 1.8MeV, T̄3 ≈ 1.5MeV and T̄4 ≈ 1.2MeV. The cell and
nucleus height throughout the simulations done are set to 4µm. When
the track length is restricted to a height of 4µm the average ionization and
excitation count for one proton track is shown in table 4.1:

Excitations Ionizations Total processes
1.2MeV 1000 7200 17000
1.5MeV 650 4400 9300
1.8MeV 400 2500 5200
8.7MeV 150 1000 2200

Table 4.1: The different event averages for protons with different energies. The total
processes column includes ionizations and excitations, as well as processes such as elastic
coalitions, vibrational excitations, etc.

As expected, since the stopping power increases with decreasing kinetic
energy, shown in table 4.1, protons with lower kinetic energy will have
a larger amount of excitations and ionizations. The Total processes will
roughly be double the amount of ionizations and excitations combined for
all the energies.
Proton track structures will be different for different energies. Proton track
structure for a single proton is shown in figure 4.2 for the 4 energies used.

51

(a) 1.2MeV. (b) 1.5MeV.

(c) 1.8MeV.

(d) 8.7MeV.

Figure 4.1: Proton tracks (full red line) in 4µm of liquid water. Electron events
marked with blue dots. Units are noted on the axis.

In figure 4.1 the LET is made visible, for four different energies. In figure
4.1a the proton beam is barely visible, covert by secondary electrons. Figure
4.1d with a 8.7MeV proton is totally visible and the ionized electrons stray
further away from the proton, in contrast to the 1.2MeV proton. The further
electron range is due to a larger energy transfer when the proton has higher
energy in the hard collisions. A trend can be seen in figure 4.1, protons
simulated in Geant4-DNA will not stay on a straight path. It is therefor
futile to calculate the total lateral deflection for a proton track from it’s entry
point over 4µm. It should be mentioned, figure 4.1 exaggerate the lateral
deflection behavior of the protons. The height of the plot is 4000nm while
the lateral deflection for the protons in figure 4.1a-4.1d is only deviating
a few hundred nm. The lateral deflection calculations are done through
TrackDeviation.py (A.1); the lateral deflection for different proton energies
can be seen in table 4.2:

Deviation [nm] SD [nm]
8.7MeV 236 200
1.8MeV 250 231
1.5MeV 271 443
1.2MeV 305 628

Table 4.2: Mean track lateral deflection for each energy.

In table 4.2, a not so surprising trend shows itself. The protons with less
kinetic energy tends to deflect more. This can be related to events in table
4.1 as more interactions can accumulate to a larger lateral deflection.
As mentioned, in figure 4.1 LET can to some degree be made visible
but it would be more informative to compartmentalize energy deposited
into bins of 10nm along the protons trajectory for the four energies.
Furthermore, separate the ionizations, excitations and total events to gain
better insight in proton behavior, this can be seen in figure 4.2.

53

(a) 1.2MeV (b) 1.5MeV

(c) 1.8MeV

(d) 8.7MeV

Figure 4.2: Protons and their energy depositions through 4µm of liquid water.
The lines in figure 4.2a, 4.2b, 4.2c, 4.2d are divided into 3 categories.The green
and orange lines are excitations and ionizations respectively.The blue line is the
total energy deposited, including not only ionizations and excitations but every
interaction such as elastic collisions. Displayed are the distance traversed
(x-axis) and the energy released from the primary proton (y-axis), distance per
bin is 10nm.

All of the figures (figure 4.2a, 4.2b, 4.2c and 4.2d) summarizes the respective
energy depositions over a small delta (10nm) and compartmentalizes them
into bins. These four are in some sense a display of the uncertainty of
a singular proton, and its energy deposits along it’s trajectory. When
considering table 4.1, it can be expected that ionizations will be more plenty
than excitations, this can be confirmed in figure 4.2. Predicted through
theory, if a proton has lower energy, its LET will increase. This can be seen
as well in figure 4.2 through the sum of energy deposited per bin. The
program fluencekinetic.py considers the equation 2.22, we can rewrite the
equation; Φ = D/ S

ρ . The main routine estimates the fluence of protons
with LET and the total mass of the cell disc. LET is calculated by summing
ionizations and excitations over 4µm. Fluence from the main routine and
fluence from the equation (Φ = D/ S

ρ) are comparable by getting mass
stopping power for liquid water from the PSTAR library [31]. The PSTAR
library is a library containing calculated mass stopping power for protons
at different energies and materials. The comparison can be seen in figure
4.3:

Figure 4.3: Kinetic energy of the protons on the x-axis and number of needed to achieve a
dose on the y-axis (in log form). The experimental number are calculated with the main
routine, theoretical numbers are derived with the mass stopping power tabulated in P-star
[31]

Only ionizations and excitations was used, this is because it was the most
alike the theoretical fluence. At lower energies, the fluence difference
between the theoretical and experimental is relatively low. For higher
energies the simulated (Tex = 8.7MeV) and the theoretical from PSTAR
(TTheo = 8.5MeV) the fluence difference are larger.
As explained in section 3.4.1, a model for the spatial distribution for
protons is needed. This is done by calculating distance (r) from the incident
proton position (for each proton) to tho cell disc center via Pythagorean
distance in a 2D plane. Distance the incident protons hit from the center of
the cell disc, the frequency and cumulative probability can be seen in figure
4.4:

55

Figure 4.4: The simulated data is the amount of protons at a distance from the centre of the
disc in Geant4 (blue dots, left y-axis). The predicted data is a linear fit to the Geant4 model
(green line, left y-axis). The function F(x) is the integral of the linear fit model (orange line,
right y-axis). On the y-axis The data and linear model is measured in % of total. F(x) is the
cumulative probability at a distance from the centre. Program found in A.2

The radial distance from the centre of the cell disc is found by Pythagorean
distance from eq 4.1.

Dist =
√

x2 + y2 (4.1)

Initial protons radial distance to the cell disc are calculated with equation
4.1. A linear model can be applied to the radial distance calculated, the
linear approximation can be seen in equation 4.2.

f (r) = 0.214r + 0.017 (4.2)

The linear approximation has an p− value = 2.3× 10−45, a p− value < 0.05
indicate the null hypothesis can be rejected, the null hypothesis in this
instance is that the slope of the linear regression is flat. The model has
a correlation r-value=0.93 and a std-error of 0.008 with r as the radial
distance. A linear model is thus a good approximation. Since equation 4.2
is continuous in the interval r ∈ [0, 3], inverse transform sampling Monte
Carlo can be applied by integrating equation 4.2, F(r) (integrated f(r)) is
shown by equation 4.3:

F(r) =
0.214r2

2
+ 0.017r (4.3)

The inverse function needed to model the beam’s proton distribution can
be seen in equation 4.4:

Y =

√
2 ∗ 0.214y + 0.0172

0.214
(4.4)

Equation 4.4 can be used in inverted transform sampling Monte Carlo and
is the method used to distribute protons in the main routine for y ∈ [0, 1].
A visual comparison of incident proton position from the simulations done
in Geant4-DNA to the ones in the main routine can be seen in figure 4.5:

56

(a) Proton distribution on the Geant4 side of the
experiment.

(b) Incident proton distribution based on model
4.4. 107 protons was used.

Figure 4.5: Both figures displays histograms, counting every incident proton position.
d = 60mm for both discs. Brighter spots indicates a higher accumulation of protons in that
particular bin.

Figure 4.5 is a display of the bridging between the proton data from Geant4-
DNA to the model used in the main routine. The distribution in Geant4-
DNA (figure 4.5a) are limited to the protons simulated and therefor the
resolution are lower.

4.2 Cell irradiation

Four proton energies was used in the simulation associated with the three
points in the Bragg peak as well as the raw output of the cyclotron. The
proton data used for the experiments consisted of 20000 protons for each
energy, of witch 10% − 15% hit the cell disc with T̄1 ≈ 8.7MeV, T̄2 ≈
1.8MeV, T̄3 ≈ 1.5MeV and T̄4 ≈ 1.2MeV. As mentioned, proton interaction
with the cell are based on calculating the distance from the initial proton
position’s distance to the cell center. For the cells a rcell = 23µm and
hcell = 4µm where used, the nucleus parameters where set to rnuc = 6µm
and hnuc = hcell = 4µm.

4.2.1 Cell irradiation with 8.7MeV protons

At OCL, the maximum energy delivered from the cyclotron is 15.5MeV, as
measured by Tordis J.D. et al., [12]. At the point of irradiation, situated
80cm down the beamline from the wolfram degrader, the mean energy
of the protons at the first interaction is approximate T̄1 ≈ 8.71MeV with
an LET = 3.8keV/µm. Even though the raw output from the cyclotron
is 15.5MeV, some energy loss is expected in the distance traveled by the
protons to the cell disc. The consensus is that the nucleus is the most
sensitive target within a cell, from section 2.6.2. Therefore it is interesting
to investigate the dose and events to nuclei as well as the cells. The
distribution of ionizations and excitations for a 3Gy dose in cells and nuclei
are plotted in figure 4.6.

57

Figure 4.6: Histogram of the events within a cell and nucleus. Each group in the legend
has 10 bins each in the histogram. Kinetic energy of the protons used was 8.7MeV. The
dose simulated was 3Gy.

Excitations in nucleus are not visible for 8.7MeV due to the small number
of events it occupies in figure 4.6. The occurrence of ionizations in figure
4.6 are 6.8 times more prominent than excitations for both nucleus and
cells. Mean number of excitations and ionizations per cell and nucleus can
further be seen in table 4.3 for the nuclei and table 4.4 for the cells.

Dose Exci µ [103] Exci σ Ion µ [106] Ion σ Nuclei
1Gy 26 493 0.179 3780 1000
2Gy 50 653 0.343 5036 1000
3Gy 76 834 0.523 6425 2000
5Gy 134 1112 0.893 8292 1000
8Gy 216 1350 1,5 10000 1000
10Gy 268 1557 1,8 11000 1000

Table 4.3: Number of excitations and ionizations delivered to the nuclei when a dose is
prescribed to the disc. σ is the standard deviation. The highlighted row are the data
displayed in figure 4.6

Dose Exci µ [106] Exci σ [103] Ion µ [106] Ion σ [103] Cells
1Gy 0.378 7 2.6 51 1000
2Gy 0.756 13 5.2 92 1000
3Gy 1.2 13 7.9 91 2000
5Gy 2 16 13.3 128 1000
8Gy 3.1 21 21.3 148 1000
10Gy 3.8 24 26.6 170 1000

Table 4.4: Number of excitations and ionizations delivered to the cells when a dose is
prescribed to the disc. σ is the standard deviation. The highlighted row are the data
displayed in figure 4.6

Events occur 14.53 times more in the cells versus nuclei; this is within the

58

expected value since r2
cell/r2

nuclei = 16.

Figure 4.7: Dose distribution for cells and nuclei for T=8.7MeV at 3Gy.

In figure 4.7 a difference in dose can be seen from cells to nuclei. The
difference in dose delivered to the cell and nucleus is 0.113Gy. The σ are
approximately equal for cell and nucleus in figure 4.7. For the T̄1 beam, the
dose distributions for all doses can be seen in figure 4.8.

Figure 4.8: Dose distribution for the cells (upper plot) and nuclei (lower plot) simulated.
Kinetic energy of the protons used was T̄1. The area under each curve equivalents to 1.

As seen in figure 4.8 the dose given to the cell disc by the user does not
mean that each cell will get that dose. For T̄1, the dose to cells and nuclei is
different from the average dose to the disc. The standard deviation seems
to be equivalent with a constant times the dose squared, σ ∝ k

√
D. This

will be further investigated later.

59

4.2.2 Cell irradiation with 1.8MeV protons

To achieve an average T̄2 ∼ 1.814MeV a 0.47mm thick water cylinder was
placed in front of the cell disc. The average LET was calculated to be
14.49keV/µm. As with he T̄1, the amount of excitations and ionizations
for cells and nuclei is plotted for T̄2 in figure 4.9

Figure 4.9: Histogram of the events within cells and nuclei when the T̄2 proton beam is
applied. Dose used for the simulation was 3Gy.Number of events are on the x-axis and
cells on the y-axis.

The difference in ionizations versus excitations with a beam of 1.8MeV
is 6.6. Comparing events from the T̄1 beam to the T̄2 beam will result
in 0.2 times more excitations. The full overview of mean excitations and
ionizations for the T̄2 beam can be seen in table 4.5 for the nuclei and table
4.6 for the cells.

Dose Exci µ [103] Exci σ Ion µ [106] Ion σ [103] Nuc
1Gy 24 1826 0.157 11 1000
2Gy 58 3018 0.381 18 2000
3Gy 88 3738 0.516 19 2000
5Gy 148 4800 0.972 29 3000
8Gy 224 5814 1.4 35 3000
10Gy 279 6448 1.7 39 3000

Table 4.5: Number of excitations and ionizations delivered to the nuclei when a certain
dose is prescribed. σ is the standard deviation. The highlighted row are the data displayed
in figure 4.9

60

Dose Exci µ [106] Exci σ [103] Ion µ [106] Ion σ [103] Cell
1Gy 0.409 18 2.7 119 1000
2Gy 0.817 26 5.4 171 2000
3Gy 1.2 32 7.0 188 2000
5Gy 2 42 13.4 276 3000
8Gy 3.3 52 21.4 339 3000
10Gy 4.1 83 26.7 550 3000

Table 4.6: Number of excitations and ionizations delivered to the cells when a certain dose
is prescribed. σ is the standard deviation. The highlighted row are the data displayed in
figure 4.9

The difference here in the cell and nucleus events is on average 15.51. It can
be interesting to look at dose distributions for a single dose of 3Gy for cells
and nuclei. This can be seen in figure 4.10.

Figure 4.10: Dose distribution for the cells and nuclei when a dose of 3Gy is applied.
Proton energy in the simulation was T̄2.

It can be seen in figure 4.10, compared to 4.7, that the mean dose difference
between cells and nuclei has decreased slightly but not not pronounced.
Compared to T̄1, the standard deviation is larger both for cell and nucleus.
Though for T̄2, standard deviation for the nucleus has increased slightly
more. The total dose distributions for cells and nuclei can be seen in figure
4.11.

61

Figure 4.11: Dose distribution for the cells (upper plot) and nuclei (lower plot) with σ as
the standard deviation. Doses displayed on the x-axis and normalized cell and nucleus
count on the y-axis. Proton energy used was T̄2.

In figure 4.11 the dose is deviating from the prescribed average dose. This
is true for both nucleus and cell. Though the nucleus tends to have a larger
deficit in dose than the cell. The standard deviation still seems to follow
the pattern σ = k

√
D.

4.2.3 Cell irradiation with 1.5MeV protons

To achieve an average T̄3 ∼ 1.514MeV a 0.485mm thick water cylinder
was placed in front of the cell disc. The average LET was calculated to
be 17.3keV/µm. As with he T̄1, the amount of excitations and ionizations
for cells and nuclei is plotted for T̄2 in figure 4.12:

Figure 4.12: Ionizations and excitations distribution for cells and nuclei with 3Gy for the T̄3
beam.

62

The mean difference in ionizations and excitations was calculated to be 6.6,
the same as with the T̄2 beam. Furthermore, all data on mean ionizations
and excitations for cells and nuclei can be seen in table 4.8 and 4.7.

Dose Exci µ [103] Exi σ Ion µ [106] Ion σ [103] Nuc
1Gy 31 2636 0.201 16 1000
2Gy 54 3315 0.247 20 1000
3Gy 95 4243 0.607 26 2000
5Gy 142 5142 0.911 32 1000
8Gy 232 6224 1.4 34 1000
10Gy 296 6879 1.8 43 1000

Table 4.7: Mean number of excitations and ionizations of the nuclei for different doses,
energy used was T̄3. σ is the standard deviation. The outlined row is the data set used in
figure 4.12.

Dose Exci µ [106] Exi σ [103] Ion µ [106] Ion σ [103] Nuc
1Gy 0.442 20 2.6 134 1000
2Gy 0.853 29 5.5 188 1000
3Gy 1.3 35 8.1 229 2000
5Gy 2.1 48 13.7 307 1000
8Gy 3.4 57 21.7 366 1000
10Gy 4.3 66 27.4 442 1000

Table 4.8: Mean number of excitations and ionizations of the cells for different doses,
energy used was T̄3. σ is the standard deviation. The outlined row is the data set used in
figure 4.12.

From the data in table 4.8 and 4.7 a difference of 15.71 was calculated in
regards to the ionizations. As previously it can be interesting to look at the
dose distribution for cells and nuclei; a simple example for 3Gy can be seen
in figure 4.13:

Figure 4.13: Dose distribution for cells and nuclei for the highlighted data in table 4.8 and
table 4.7. The dose used was 3Gy and energy used was T̄3.

63

In figure 4.13 it can again be seen that the mean dose of the cells is higher
than the nuclei. The mean difference between the two are 0.2Gy, which is
a larger difference than for the T̄1 beam. The standard deviation for cells
follows the same trend as for the T̄2 beam. The nuclei standard deviation
are larger than T̄2 but this can be due to stochastic fluctuation.
The total dose distribution for cells and nuclei can be seen in figure 4.14.

Figure 4.14: Dose distributions for the cells and nuclei irradiated with the T̄3 beam. The
upper graph represent the cells and the graph under are the nuclei. Area under the curves
are equal to 1.

The standard deviation for the nuclei is higher for the nuclei than the cells.
From figure 4.14 it can be seen that the standard deviation still follows the
pattern seen for higher energies, σ = k

√
D.

4.2.4 Cell irradiation with 1.2MeV protons

In the last energy state of the protons with T̄4 ≈ 1.21MeV a 0.49mm
thick water cylinder was used. LET calculated was 18.8keV/µm. Event
distributions for cells and nuclei can be seen in figure 4.15:

64

Figure 4.15: Ionizations and excitations distribution for cells and nuclei for 3Gy, energy
used was T̄4.

The mean difference in ionizations and excitations was calculated to be 6.6.
All of the mean ionizations and excitations can be seen in table 4.10 for cells
and 4.9 for nuclei:

Dose Exci µ [103] Exci σ Ion µ [106] Ion σ [103] Nuc
1Gy 21 2214 0.168 13 1000
2Gy 83 3314 0.326 18 1000
3Gy 83 4175 0.526 23 1000
5Gy 132 5126 0.830 28 1000
8Gy 223 6865 1.4 38 1000
10Gy 284 7526 1.8 45 1000

Table 4.9: Mean number of excitations and ionizations for nuclei when a beam of 1.2MeV
protons are applied. σ is the standard deviation for a normal distribution. The highlighted
row are data from figure 4.15.

Dose Exci µ [106] Exci σ [103] Ion µ [106] Ion σ [103] Cells
1Gy 0.430 21 2.8 124 1000
2Gy 0.851 32 5.3 202 1000
3Gy 1.2 39 8.0 245 1000
5Gy 2.1 49 13.4 308 1000
8Gy 3.4 65 21.4 404 1000
10Gy 4.2 64 27.6 414 1000

Table 4.10: Mean number of excitations and ionizations for Cells when a beam of 1.2MeV
protons are applied. σ is the standard deviation for a normal distribution. The highlighted
row are data from figure 4.15.

On average, there are about 15.5 times more events in the cell versus the
nucleus. As for the previous energies dose for cells and nucleus are plotted
in figure 4.16.

65

Figure 4.16: Dose distribution for cells and nuclei. The dose applied was 3Gy and proton
energy T̄4.

The mean dose difference from cell to the nucleus is calculated to be 0.10Gy.
For T̄4, the standard deviation for the nucleus is prominently larger, at least
for 3Gy. The total dose distribution can be seen in figure 4.17.

Figure 4.17: Dose distribution for cells (upper plot) and nuclei (lower plot) for a 1.2MeV
beam.

Seen in 4.17 the T̄4 beam has the highest standard deviation for all of the
beams as well as the largest difference in prescribed dose to the disc and
simulated mean dose to cells and nuclei. The standard deviation still shows
a pattern in standard deviation, as seen in previous simulations.

66

4.2.5 Comparing doses at different energies

For the relatively high energy (T̄1) it can be seen in figure 4.8 that the
difference in the prescribed dose to the cell disc and nuclei are not too
different. When comparing this to the low energy protons, for example
T̄4 there is a difference in dose for the nuclei and the prescribed dose to
the cell disc as seen in figure 4.17. Therefor it can be of interest to compare
the dose to nuclei for all of the energies used for 1Gy, 5Gy and 10Gy. The
reason these were chosen was because it gives broad range of doses. The
plots for dose distribution to nuclei for 1Gy, 5Gy and 10Gy can be seen in
4.18, 4.19 and 4.20 respectively.

Figure 4.18: Dose distribution for different energies, prescribed dose to the cell disc are
1Gy. Curves are normalized so area under curve=1.

Figure 4.19: Dose distribution for different energies, prescribed dose to the cell disc are
5Gy. Curves are normalized so area under curve=1.

67

Figure 4.20: Dose distribution for different energies, prescribed dose to the cell disc are
10Gy. Curves are normalized so area under curve=1.

In figure 4.18, 4.19 and 4.20 the simulated dose to the nuclei with T̄1 are
close to the prescribed dose for every dose. The T̄2, T̄3 and T̄4 simulated
doses to nuclei are lower than the prescribed dose by 10% for 1Gy and 5%
for 10Gy. The lower dose to nuclei will be further examined in 4.3.

4.3 Analysis of the modeling

To check if the main routine was stable with consistent results, 3 simula-
tions were performed. 3 individual simulations with 1.8MeV protons and
a dose of 3Gy were simulated and dose histogram for nuclei can be seen in
figure 4.21.

Figure 4.21: A histogram over the stress test preformed. Each of the curves are normalized
and the area under the cuve are 1.

In the stress test, each simulation contained 1000 cells. For the same dose
and energy the stress test simulated a mean dose of µ = 2.73Gy, µ = 2.73Gy

68

and µ = 2.77Gy.
When all of the simulations are done, it is possible to compare dose
differences for dose delivered to cells and nuclei. In figure 4.22 the dose
difference from cell to nucleus for each simulation can be seen.

Figure 4.22: Mean difference in doses between the cell and nucleus. Negative values on
the y-axis means a larger dose to the nucleus. The x-axis is the prescribed dose.

In figure 4.22 the average difference tends to be larger at large doses. The
only two consistent throughout dose differences are T̄3 and T̄4 as the differ-
ence increases consistently when dose increases. The T̄1 beam has a tend-
ency to fluctuate around zero. The T̄2 beam have a much more stochastic
fluctuation than T̄3 and T̄4. The Stress test in figure 4.21 indicate a dose
should not fluctuate with more than 0.05Gy for a 3Gy dose. There is some
tendency for the dose to fluctuate from cells to the nucleus, though this
fluctuation will always be positive for lower energy protons (T̄2-T̄4).

The standard deviation (SD) for the dose distribution, as mentioned, has
a pattern related to the square root of the dose and a constant dependant
on the proton energy. In figure 4.23, this assumption can be visualised By
plotting SD for each energy at every dose simulated:

69

Figure 4.23: The standard deviation (y-axis) for each energy as a function of dose (x-axis).
The standard deviation used for the nuclei.

In figure 4.23 the dose and SD are approximated from a normal distribution
fit model applied to the data from the simulations. Several multi variable
fit models were tested to check the relationship between dose, energy and
the SD. Among the models tested was model 4.5a, 4.5b and 4.5c:

σ(T̄, D) ≈ β

√
D√
T̄

+ β0 (4.5a)

σ(T̄, D) ≈ β1

√
D√
T̄
− β2

1√
T̄
+ β0 (4.5b)

σ(T̄, D) ≈ β1

√
D

T̄2 − β2
√

D + β0 (4.5c)

T̄ is the mean energy of the beam, D is the dose and βn are the fit
parameters. Model 4.5a has a adjusted R2 = 0.92 and a p-value= 8.39×
10−14. Model 4.5b ends up with a adjusted R2 = 0.98 and a p − value <
2.2× 10−16. Model 4.5c has a adjusted R2 = 0.88 and a p-value= 1.7× 10−9

and is the worst model of the three, and can be discarded. The full
analysis for model 4.5a and model 4.5b can be found in table 4.11 and 4.12
respectively.

Estimate Std. Error t-value p-value (>|t|)
β0 -0.04 0.01 -4.95 0.55
β1 0.17 0.01 16.39 8.14×10−14

Table 4.11: Estimates for model 4.5a along with the error, t-test value and p-value for the
t-test.

70

Estimate Std. Error t-value p-value (>|t|)
β0 0.019 0.033 0.59 0.55
β1 -0.17 0.045 -3.9 0.000881
β2 0.27 0.032 8.4 5.51×10−8

Table 4.12: Estimates for model 4.5b along with values for error, t-test and p-values for the
t-test.

In table 4.12 it can be seen that the intercept (β0) for model 4.5b, does not
have a significant effect on the model, and will not be included in the final
model. Model 4.5a tends to undershoot for lower doses and overshoot for
higher doses. Model 4.5b does have a higher accuracy on lower doses but
overshoots more than model 4.5a for higher doses. In the end, model 4.5a
is used to approximate SD for different doses to nucleus when different
energies are applied. In figure 4.24 model 4.5a can be seen applied over the
estimates from all of the simulations seen in figure 4.23.

Figure 4.24: Model 4.5a plotted versus data points from figure 4.23.

Even though the model 4.5b is the best on paper, it overshoots the data by
a larger margin than model 4.5a even though adjusted R2 is accounted for.
Model 4.5a also has an advantage in being simpler than model 4.5b.

71

4.4 Spatial analyses

The prescribed dose in the spatial statistical analysis are based on the
mean expected protons to hit a nucleus. The algorithm used to simulate
proton distribution for all of the statistical analysis are based on a random
distribution over the nucleus. This is calculated by modifying the program
which calculates the total number of protons over the cell disc, changing
the irradiated volume from the cell disc to a nucleus with rnucleus = 6µm
and a height of 4µm. The expected number of protons to hit a nucleus to
achieve a prescribed dose can be found in table 4.13:

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 47 12 10 9
2Gy 94 24 20 18
3Gy 140 36 30 28
5Gy 234 60 51 46
8Gy 374 97 81 74
10Gy 468 121 102 93

Table 4.13: The mean expected number of protons to hit the nucleus of a cell for a given
dose and a given beam energy.

To visualize how the protons might look from a beam’s eye view, a quick
simulation of only the incident position of protons was performed, as can
be seen in figure 4.25.

Figure 4.25: Simulation of incident proton position in a nucleus. Number of protons used
are from the 1.5MeV protons in table 4.13. The dose to the nucleus is in the upper right
corner of every sub figure. Every dot (blue) is a proton, and the dashed line (orange) is the
nucleus border.

72

Protons in nuclei can also be visualized in 3D space for different energies
as seen in figure 4.26:

73

(a) T̄4 protons. (b) T̄3 protons.

(c) T̄2 protons.

(d) T̄1 protons.

Figure 4.26: 2Gy prescribed dose for the four energies used in the analysis, number of
protons from table 4.13. Dashed gray lines are the nucleus border. Red dots illustrates
ionizations and excitations from both protons and electrons.

4.4.1 Moran’s I

As mentioned the nucleus is divided into voxels where hits are registered
within a each voxel. A good size to approximate damage to DNA would
be to have voxels which are 2nmx2nmx2nm since 2nm, is the diameter of a
DNA strand. Moran’s I full calculations can be seen in table 4.14, 4.15 and
4.16 for a voxel size of 15nm, 50nm and 100nm respectively. The analysis
with the voxel size of 15nm are limited to 1Gy and 2Gy.

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 0.086 0.087 0.098 0.098
2Gy 0.097 0.090 0.099 0.085

Table 4.14: Mean Moran’s I for different energies at different doses. Grid set at
15nm× 15nm× 15nm.

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 0.078 0.064 0.061 0.050
2Gy 0.077 0.062 0.053 0.043
3Gy 0.085 0.046 0.056 0.043
5Gy 0.081 0.060 0.053 0.067
8Gy 0.083 0.062 0.049 0.049
10Gy 0.082 0.060 0.049 0.045

Table 4.15: Mean Moran’s I for different energies at different doses. Grid set at
50nm× 50nm× 50nm.

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 0.056 0.056 0.034 0.035
2Gy 0.076 0.062 0.030 0.036
3Gy 0.067 0.053 0.037 0.028
5Gy 0.081 0.037 0.035 0.041
8Gy 0.080 0.040 0.037 0.036
10Gy 0.081 0.043 0.036 0.028

Table 4.16: Mean Moran’s I for different energies at different doses. Grid set at
100nm× 100nm× 100nm.

For the voxel size equal to 50nm (table 4.15) is showing a trend, Moran’s
I will decrease but is dose independent. Table 4.16 for the 100nm voxels
shows the same trend as table 4.15, decreasing Moran’s I with decreasing
energy but dose independent.

75

4.4.2 Geary’s C

The weight matrix element wij in the Geary’s C (formula 2.36) are either 0
or 1 depending on the distance between the two events calculated in each
iteration. If the distance is larger than the cut parameter, the weight matrix
element is set to 0, and if the distance is smaller than the cut parameter it
is set to 1. Geary’s C’s full calculations can be seen in table 4.17, 4.18 and
4.19 for a cut value of 15nm, 50nm and 100nm respectively. Geary’s C was
calculated with 3 different parameters due to unforeseen results.

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 5.25×10−7 1.22×10−7 4.77×10−7 1.98×10−6

2Gy 1.5×10−6 2.87×10−7 3.26×10−7 1.81×10−7

3Gy 1.31×10−6 5.83×10−7 8.22×10−7 1.81×10−7

5Gy 1.4×10−7 5.1×10−7 3.07×10−7 2.25×10−7

8Gy 1.83×10−7 2.7×10−7 2.8×10−7 2.9×10−7

10Gy 1.4×10−10 3.44×10−7 3.1×10−7 2.9×10−7

Table 4.17: Geary’s C for different energies at different doses. Parameter set at 15nm.

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 0.00013 9.24×10−5 7.79 ×10−5 6.34×10−5

2Gy 0.00013 3.18×10−5 8.23 ×10−5 3.47×10−5

3Gy 0.00021 8.53×10−5 5.12 ×10−5 5.55×10−5

5Gy 0.00055 8.08×10−5 6.54×10−5 4.79×10−5

8Gy 0.00027 7.12×10−5 3.67×10−5 5.83×10−5

10Gy 0.00022 7.65×10−5 5.46×10−5 4.35×10−5

Table 4.18: Geary’s C for different energies at different doses when parameter set at 50nm.

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 0.0012 9.24×10−5 7.79 ×10−5 6.34×10−5

2Gy 0.0007 3.18×10−5 8.23 ×10−5 3.47×10−5

3Gy 0.0009 8.53×10−5 5.12 ×10−5 5.55×10−5

5Gy 0.0018 8.08×10−5 6.54×10−5 4.79×10−5

8Gy 0.0025 7.12×10−5 3.67×10−5 0.00020
10Gy 0.0009 7.44×10−5 0.00056 3.01×10−5

Table 4.19: Geary’s C for different energies at different doses when parameter set at 100nm.

For a cut parameter set to 50nm and 100nm, there will be a difference in
Geary’s C for different energies.

76

4.4.3 Inter-Track

The intertrack algorithm finds the average distance between the mean of
each proton to every other proton in a nucleus. Results can be seen in table
4.20:

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 5.6 5.6 5.8 5.5
2Gy 5.8 5.6 6.7 5.7
3Gy 5.6 5.5 5.7 5.4
5Gy 5.5 5.6 5.6 5.5
8Gy 5.5 5.7 5.3 5.8
10Gy 5.5 5.4 5.4 5.6

Table 4.20: Inter-track value for different doses with different energies. Units in the table
given in µm.

Table 4.20 shows that the mean distance between each track will be around
5.6µm.

4.4.4 Intra-track

Intra-track, in contrast to the other analysis was done with one proton
over several iterations to get a mean since a singular proton tends to be
unpredictable. The intra-track finds the average distance between each
event and the results for each energy can be seen in table 4.21:

8.7MeV 1.8MeV 1.5MeV 1.2MeV
1Gy 1.3±0.2 1.3±0.1 1.4±0.1 1.3±0.2

Table 4.21: Intra-track values gathered for a group of 20 protons. Values for the intra-track
are in µm.

Table 4.21 shows that the mean distance between two events will be around
1.3µm. The deviation is fluctuating around 0.15µm.

77

Chapter 5

Discussion

5.1 Aspects of Monte Carlo simulations

Monte Carlo simulations done by other research groups, to the knowledge
of the author, have not done analog (microscopic) Monte Carlo on a cell
culture. First of all, the condensed history Monte Carlo simulations are
mostly applied to large-scale simulations as in the RMC code [37]. This
is a program simulating a reactor core. The other aspect of a radiation
Monte Carlo code is done on a microscopic level. The Geant4-DNA project
has several applications similar to current study. Microbeam is one such
example, constructing a cellular volume in the 4 respective stages of the
cell cycle (section 2.6) where the geometry is slightly changed. The cell is
divided into small voxels, and hits are scored in each voxel. But Microbeam
is mainly to show what the Geant4-DNA code is capable of. A more
quantitative approach was done in the three-dimensional nanodosimetric
characterisation of proton track structure [6]. The authors builds on the
recently developed mathematical construct of nanodosimetry by looking at
the energy depositions in bins at radial distances from the proton trajectory.

78

Figure 5.1: The methodology of calculating deposition in a radial distance from the proton
trajectory. The propagation of protons is z direction (perpendicular to the figure). The
segments are volumes used to calculate dose. Blue dots are events. [6]

Figure 5.1 is an example of how most analog Monte Carlo is used. This is
due to the computational constraint when simulating energy depositions
down to the eV scale. A proton track simulated with analog MC will take
time and space (as discussed), therefor analog MC is more often than not
used as an research tool for small setups. In addition, analog MC is used to
examine the nature of radiation when interacting with matter. This is what
is done, to a degree in the first part for the current study when analyzing
the proton tracks.
In between the larger-scale simulations done with condensed history
technique and the nm scale, we have current cell structures (micrometer
scale). The simulations done with the main routine are an attempt at
bridging this gap. For the present work there are concerns when simulating
proton entry points on a disc, calculating their distance to the center of
a cell and terminating their involvement based on whether their incident
position is on the disc. This will be discussed extensively in section 5.1.1-
5.2.1.

5.1.1 Radial distribution for electrons

In the current simulations, one of the main concerns is the border between
the cell and nucleus and inaccuracies in the estimated dose deposition
in this region. The issue is how protons and all of its cascading effects
are included/excluded in the dose to the cell/nucleus based solely on
it’s initial position. A proton can hit near an edge (border proton), and
some amount of the liberated electrons will traverse outside of the nucleus.
In reality, these liberated electrons will not contribute to the dose in the
nucleus. In these simulations however, they will result in an increased dose

79

in the cells/nuclei. Electrons liberated outside of these borders, traversing
in to the volume in question are not accounted for as well, on the other
hand, the difference in liberated electrons from both side of the borders
needs to be substantially different for this to be a problem. In a paper on
three-dimensional nanodosimetry ([6]), Braunroth et al. investigated the
propagation of events and their radial dependency from the proton track.
The frequency of events will decrease 10 times within 1nm and 1000 times
within 10nm. Since the nucleus and cell are on the scale of micrometers, a
reasonable assumption is to neglect the contribution of the secondary and
tertiary electrons from border protons.

5.1.2 Divergence of protons

Though the contribution from secondary and tertiary electrons is negli-
gible, the divergent trajectory of protons needs to be discussed. Few pro-
tons will travel in a straight path, and if the divergence had been in the
range 10nm, such as the ionized electrons, this would not cause a prob-
lem. As shown in table 4.2 the proton will, on average, deviate laterally
up to 300nm over traversing a cell of height 4µm. A deviation on this scale
is not a problem for the cell volume due to the scale of the cell relative to
the divergent proton path. A 300nm deviation might be a problem for the
nucleus, though. The whole track of a proton that initially hit within the
border of the nucleus will be included in the dose calculations, regardless
of whether it traverses the border or not. Protons with an initial hit out-
side the border of the nucleus will, in a similar manner, not be taken into
account. For this to be a problem, protons hitting near the border within
the nucleus and outside the nucleus need to give different energy contri-
butions. Two energy terms are hypothesised; Tin⇒out is the sum of energy
deposited outside (Tout) the nucleus from protons hitting within the nuc-
leus (from 0− 6µm). Tout⇒in is the sum of energy absorbed within (Tin) the
nucleus from protons hitting outside the nucleus (from 6µm −∞). These
two terms can be derived from two simple sums, (see also figure 5.2).

Figure 5.2: Simple nucleus diagram, with a 6µm radius.

Tin⇒out = ∑ Tout and Tout⇒in = ∑ Tin (5.1)

In reality the contribution from protons to Tin⇒out hitting in the center
(0) of the nucleus are minimal, this is also true for protons at ∞. If the
value for Tin⇒out is comparable to Tout⇒in i.e Tin⇒out − Tout⇒in ≈ 0, the

80

assumption that border protons will not contribute to a dose deficit and
can be neglected. Border protons and electrons might be a area for further
research.
Furthermore, figure 4.26 can be used to as a indicator, as protons travel in a
somewhat straight line in the nucleus. Protons divergence shown in figure
4.1 are exaggerated as mentioned, with a truncated z-axis and stretched
x and y-axis. Just by examine these two figures it is fair to assume the
contribution from crossing border protons are minimal.

5.1.3 CPE validity

If charged particle equilibrium was, in fact true, Fano’s theorem 2.23
could be used to prove that the number of charged particles within some
border are the same as outside. However, the presence of CPE can easily
be disproved due to the uncertainty in the dose calculations. If CPE
if in fact were present, the dose would be approximately homogeneous
throughout and a large SD would not be expected. A viable option to the
simulations performed to this date is a full-scale nanodosimetric simulation
of irradiation of a cellular culture. However, this would require time on a
supercomputer or cloud computing. If a full scale nanodosimetric analog
MC simulation was to be performed, the geometry cell and nucleus would
impact the simulations, so, cylinders would not be the best approximation
(further discussed in section 5.2).

5.1.4 LET

LET is an expected value for a charged particle with a certain velocity and
charge in a given material, and its estimate has some inherent uncertainties.
Comparing the current work and the benchmark ([31]) will lead to insight
in proton energy loss calculations.

Beam energy PSTAR Thesis
1.21MeV 22.9keV/µm 18.8kev/µm
1.51MeV 19.1keV/µm 17.3keV/µm
1.81MeV 17.1keV/µm 14.5keV/µm

Table 5.1: LET values for beams at different mean kinetic energies.

In table 5.1, the PSTAR values are interpolated from data since there are
not stopping power data in the PSTAR library for 1.21MeV, 1.51MeV and
1.81MeV. There is a discrepancy in the LET, for example: 2.6keV/µm and
1.8keV/µm for the 1.8M1eV and 1.5M1eV beam respectively, with beam
energies from PSTAR to the current work. However, PSTAR calculate
the stopping power for monoenergetic protons at optimal conditions. In
contrast, in this thesis the protons have travels through 80cm air and a
water bath. It is a fact that the beam will not be monoenergetic and
the protons will have different energies as they are entering the cell disc.
Some protons will not even have the energy to traverse the whole cell

81

height (4µm). These protons will have low kinetic energy and reduce
the mean kinetic energy of the beam (T̄) while not contributing to LET
calculation across the cell. This will reduce the beam’s total LET compared
the theoretical value.
In figure 4.3 there was a discrepancy in the simulated fluence versus
the theoretical. If all of the processes where included (elastic scattering,
vibrational excitations, etc.) the simulated fluence would be up to 13%
over the tabulated. So only including ionizations and excitations in the
simulations gave the best correspondence with tabulated LET’s.

5.2 Cell and nucleus geometry

To say that all cells are a perfect cylinder with 23µm radius and a 4µm
height would be naively wrong. In reality, the cells will differentiate in
size and shape. Cells approaching the M phase will be larger than a newly
divided cell going into G1. When in S phase, the cell will resemble a
blob and in G1 it will resemble a sphere. However, cylinders are a fair
approximation to the mean geometry of a cell adherent to the bottom of a
cell dish. The nuclei, like the cells, are approximated with cylinders at the
same height and a radius of 6µm.
For further research, implementing a cell shape library containing cells
and nuclei in the various phases of cell cycle would be relevant. Though
the gain from accurately simulating the cell shapes on such a scale
is questionable. Generally, Monte Carlo simulations, is mostly an
approximation to the real world, often volumes are approximated with
boxes, triangles and cylinders. The cell in the Microbeam example in
Geant4-DNA is approximated with several boxes, accumulated to a cell
like structure. So by implementing cells in various stages of the cell cycle,
one could solve the geometrical problem with approximating cells/ nuclei
to cylinders.
Geometry, though, is not the only problem when modeling a cellular
culture. Cells come in various sizes depending on the cell line used. The
relationship between the cell and nucleus volume will also be different for
each cell line and stage in the cell cycle. The volume used in these particular
simulations are not representative of all cells.

5.2.1 The interface effect

Even though the cells and nuclei consist mostly of water, it needs to be
acknowledged that besides water, the cells contain sugar, phosphates and
other molecules. This changes the effective atomic number of the material
the proton traverses, thus; changing its interaction. A change in path,
energy deposition and so on can result in a difference between the true
dose and the calculated dose. The true dose being the dose cells actually
will receive in a real experiment.
To see if water is a good substitute for the cellular matrix, a comparison
needs to be made between liquid water and tissue equivalent materials,

82

MS20 (epoxy with filler elements, mimicking human tissue) and skeletal
muscle tissue are two candidates for comparison. These materials are
choosen due to simelar molecular atomic composition (Zedd) as human
tissue. A proton stopping power between these materials is shown in in
figure 5.3.

Figure 5.3: Mass stopping power for protons from 10keV to 8MeV for 3 materials. Both
axis are displayed in a logarithmic scale. Stopping powers are gathered from the PSTAR
library [31].

From figure 5.3 it can be seen that there is not a huge difference in stop-
ping power between water and the two other materials, with the ener-
gies used in the current simulation. A difference can however be seen
for T < 100keV, where water has a lower mass stopping power than the
comparison materials. This might be due to shell corrections as this is af-
fected for protons with low energy. An increase in stopping power will
perhaps lead to a larger dose difference in cells and nuclei. Figure 4.22
can indicate a scenario where the dose difference between cell and nuc-
leus will increase for lower energies, a increase in stopping power will lead
to higher LET and thereby increasing the difference since T ∝ (LET)−1.
From model 4.5a it can be assumed that an increase in LET will also lead
to an increase in standard deviation in the dose distribution. From the
PSTAR library, [31] the mean ionization potential can be found for these
3 materials. Water and MS20 have similar attributes with ρW = 1g/cm3,
IW = 75eV and ρMS20 = 1g/cm3, IMS20 = 75.1eV so there is no large devi-
ance between the tissue substitute and water. Muscle tissue, on the other
hand, has a larger density at ρmuscle = 1.04g/cm3. The mean ionization
value at IMuscle = 75.3eV. So water compared to the two control materials
is a good substitute for simulating heavy charged particles.

For electrons, the NIST data goes down to 10keV, as for the proton data for
stopping power, which is above the maximal energy transfer from proton
to electron. Though it is desirable to have electron stopping power data
in the low energy region, it is still helpful to compare the three materials
already discussed for protons (MS20, muscle and water).

83

Figure 5.4: Mass stopping power for electrons from 10keV to 0.8MeV for 3 materials. The
y-scale are in log scale and the x-scale is conventional. Stopping powers are gathered from
the ESTAR library [32].

By inspecting figure 5.4 it can be concluded that if the proton interface effect
is negligible, it is so for electrons are as well.

5.3 Cross section models in Geant4-DNA

Cross section models in the Geant4-DNA toolkit are semi-empirical,
derived from cross section data published by the International Commission
on Radiation Units Measurements (ICRU), but the data can also be
published by another independent organisation. This creates a plethora
of data, all with some degree of uncertainty which will carry over to the
models implemented.

5.3.1 Electron cross section

Electron cross section data to this day is only available for water vapor.
It is important to mention this due to the increase of polarization in
condensed media for charged particles. Emfietzoglou and Nikjoo [15]
discuss this to a fair degree. They found that if the polarization is not
corrected for, the electron cross section for 100 eV electrons in water vapour
(corrected for density) is 1.7 times larger than the measured outcome in
liquid water. As mentioned in section 2.1.6 the polarization effect decreases
stopping power as the atoms gets closer. In M.A. Bernal et al., [5] it is
mentioned that all inelastic scattering cross sections today are based on
the Emfietzoglou model [14] using the dielectric response function (DR),
a method based on the theoretical framework of the plane-wave Born
approximation. The dielectric approach is currently state-of-the-art in
inelastic electron transport Monte Carlo algorithms [13]. One assumption
made with the dielectric approach and the use of optical reflectance data
are that the charged particle have a greater velocity than the shell electrons.
In Geant4-DNA, there are a few models to choose from, as seen in figure
5.5 for excitations and 5.6 for ionizations.

84

Figure 5.5: Three different models for total electron impact excitation cross section
(marked as lines), with the CPA100 as black, G4DNABronModel/Geant4-DNA as blue
and Emfietzoglou as red. Munoz et al are data for electron excitation cross section in water
vapor.[5]

The three cross sections in figure 5.5 shows some of the excitation models
which can be chosen when working with the Geant4-DNA toolkit. They
differ greatly in size and the outcome of a simulation can be altered by
using another model. The CPA100 model seems to be the best the best
when comparing to the only cross section data, but the data from Munzo
et al [29] are for electron tracks bellow 100eV in water vapor. Thus, the
CPA100 model does not account for the polarization effect, and can be
discarded for excitations. In the simulations, G4DNABronmodel where
used. This is state-of-the-art for modeling low energy loss for low energy
electrons [5] and was included in the 10.2 beta for Geant4. Inclusion of
this will increase the simulations’ the accuracy compared electron tracks in
liquid water.

85

Figure 5.6: The same three models as in figure 5.5 but for total electron impact excitation
cross section (marked as lines), with the CPA100 as black, G4DNABronModel/
Geant4-DNA as blue and Emfietzoglou as red. Plotted in the same figure are data points
for several experiments [5].

The total electron ionization cross section data are not as different from one
another as the excitation cross sections. Geant4-DNA and Emfietzoglou
model are the two main contenders. CPA100 is not as stable for low
energies ([14]) but includes some extra materials in addition to liquid water.
Since liquid water is a good substitute for the biological matter (section
5.2.1), the CPA100 model is discarded. Furthermore, CPA100 is not in total
agreement with data from liquid water as CPA100 uses cross section data
from water vapor.
In essence, there are no cross section data for electrons in liquid water;
that is true. However the DR mentioned above uses optical data from
liquid water applied both to the Born model (blue line in figure 5.6) and
Emfietzoglou-model (red line in figure 5.6) with data form Heller et al. [16].
Both models have been altered for the low energy domain to comply with
experimental data. The difference between these two models (Born and
Emfietzoglou) are minimal, especially when applied in the manner of the
simulations done, so each could be picked as the model. For the purpose
of these simulations, the Born model was chosen.

5.3.2 Proton cross section

Protons cross section data is necessary to get accurate dose calculations.
The published cross section data for protons, both for elastic and non elastic
interactions are not as variable as for electrons, so choosing a model in the
current frame will not have a major impact on the results of the simulations.

86

Figure 5.7: Total proton cross section model (solid line) and total ionization cross section
(dashed line). Points are measurements in liquid (circles) and vapor (dots). Total
ionization cross section marked as dotted line and excitation as semi dotted. [43]

Figure 5.7 shows Geant4-DNA implementation of the total proton cross
section for water. The experimental data from ICRU [4] (circles) shows
good agreement with the Geant4-DNA total cross section. Since a increase
in cross section will increase probability for interaction, it is expected that
there are some similarities between the proton stopping power for liquid
water (figure 5.3) and cross section data for protons in liquid water (figure
5.7), this is true, at least for data down to 100keV. Measuring the total cross
section for protons does not suffer the same problems as for electrons as the
data are collected in liquid water and does not need to have a correction
for the polarization effect. This is much due to the research done by M. J.
Berger at el. [4] at the ICRU. The ionization cross section in figure 5.7 are
dominant for all energies down to about 30keV, where the excitation cross
section is dominant til the proton is captured. All of the results from the
simulations involves protons in the energy range 1.2MeV − 8.7MeV with
a dominant ionization outcome. When examining figure 5.7 it could be
interesting to examine the impact of excitations for low energy protons in
further research.

5.4 Dose analysis

When assessing irradiated cell cultures experimentally, one does not know
the accurate dose. The dose in cell cultures is an estimate calculated from

87

fluence estimates and energy. Cell survival is based on counting the cells
which have proliferated to form a colony after irradiation.
The Monte Carlo simulations done show a accurate dose estimate for cells
and nuclei for the dimensions used. One result which is of interest is the
dose difference from cell to nucleus, examined in figure 4.22. This might be
a sort of geometric problem or statistical phenomena not quite understood.
A thought experiment, if the number of particles decreases but each particle
has a higher impact on dose one would expect a dose to stay the same for
a decreasing volume. As the volume decreases it is however expected that
the SD would get larger as each hit has a higher impact totally. The dose
difference is not totally understood and is a topic for further research.

5.5 Dose variations

The standard deviation in dose to the nucleus and to a certain extent the
cell is an important topic to discuss. Some of the nuclei irradiated with low
energy protons will receive, in the extreme case 15% less dose than expec-
ted. In cell survival studies this can result in large errors for the low energy
protons. Fact of the matter is that it could be interesting to have a model for
expected local deviance within the tumor. While this might be implemen-
ted in the future there are some physical aspect one cannot predict while
working with protons as they are stochastic by nature. One would need to
do analog MC for every patient for a relatively large volume such as a tu-
mor, the value from doing this would be most likely minimal. Analog MC
is however a good method to understand the nature of radiation or testing
implementation of a new system as for the cell experiments at OCL.

Model 4.5a in figure 4.24 is the best approximation for standard deviation
with equation 4.5a as the model. No matter if model 4.5a, 4.5b or 4.5c are
chosen the standard deviation tends to approach 0 with higher energies
(see figure 5.8).

88

Figure 5.8: A extended range for the standard deviation as a function of energy for
different doses. In the legend model 4.5b is denoted C for complex and model 4.5a is
denoted S for simple.

A limitation of model 4.5a is it’s predicted value for low doses and high
energies where it predicts a negative SD. On the other hand, high dose and
low energy predicts a standard deviation of up to 10% of the total dose for
model 4.5b. While this is in the area of the Bragg peak and protons tends to
deviate sufficiently, it needs to be considered if this model is more accurate.
But for the energy ranges used in these simulations, model 4.5a is the best.

5.6 Track analysis

Perhaps it was naive to assume discovering meaningful patterns and trends
out of the simulations performed on the nucleus by only applying a single
statistical model such as Geary’s C, Moran’s I, Inter-track and Intra-track.
Every simulation involving more than a single proton track was only pre-
formed once for their respective voxel size. The reason several voxel sizes
where used is the hope of discovering some meaning full pattern when
varying the sizes. The Intra-track value are based on 20 protons for each
respective proton energy. Ideally, one would do several simulations for
each dosage, energy and cut value/voxel size to check if there is any vari-
ations with the simulations. The goal was to be able to predict clustering of
ionizations within the nucleus, and thus the extent of complex damage to
the DNA. Experiments involving protons at different energies and x-rays
shows that LET and survivability are closely related [17]. As mentioned the
leading theory behind this is that a higher LET will result in a more com-
plex damage to DNA in the nucleus, prohibiting the cell’s ability to repair
the damage.
Moran’s I will measure global spatial autocorrelation, over the whole area
in question (the nucleus). We expect to see a higher value (greater autocor-
relation) for higher energies due to that an increase of proton paths within
the nucleus would lead to a increase in global autocorrelation. Though
in table 4.14 to 4.16 the difference in autocorrelation between energies are

89

minimal. When looking at the expected number of tracks for a given dose
(table 4.13) one would expect that Moran’s I would be about the same for
T=8.7MeV at 2Gy with 94 proton tracks and T=1.2MeV at 10Gy with 93
proton tracks if Moran’s I are dependant on number of tracks. But as seen
in table 4.15 the values are 0.077 and 0.045 for 8.7MeV and 1.2MeV respect-
ively. The same is true for a voxel size of 100nm, this can be seen in table
4.16; where again the 8.7MeV are about twice that of 1.2MeV. Another ex-
planation is to assume a proton will "overwhelm" the algorithm to the point
where the amount of protons don’t have an impact on the outcome. If
the outcome is only dependant on LET the expected outcome would be
a higher autocorrelation with higher clustering.

As a reminder, Geary’s C is a local autocorrelation inversely correlated to
Moran’s I and is in the interval 0 to infinity where 0 is total spatial autocor-
relation. Analysis done (table 4.18 and 4.19) shows a decreasing Geary’s C
with increasing LET which thus is expected. In addition to this, the C in-
dex seems to stabilize with increasing dose. Thus, there is a higher degree
of spatial autocorrelation with decreasing energy but not with increasing
dose.

Inter-track simulations shown in table 4.20 shows on average that a proton
will be 5.5µm from another proton no matter how many in a nucleus with
a radius 6µm. This is more or less what is expected. Wolfram MathWorld
[26] that if two points where placed randomly on a disc with r ∈ [0, 1] and
θ ∈ [0, 2π], they would be, on average 128/45π apart. 128/45π = 0.905
and 5.5µm/6µm = 0.91 so there are good agreement with theory for the
Inter-track. Intra-track results shown in table 4.20 are within what is ex-
pected. Events happen on average 1.35µm from every other event within a
given proton track.

Another way to approach clustering within a nucleus, cell or cellular cul-
ture for future analysis are a method using polyhedron approach discussed
in the article "An Extended Density based Clustering Algorithm for Large
Spatial 3D Data using Polyhedron Approach" [3]. In this paper the author
uses a polyhedron to estimate the clustering and spatial correlation on large
data sets as shown in figure 5.9.

90

Figure 5.9: The polyhedron approach projected in 2D plane. [3]

In figure 5.9 it can be seen how they approach spatial autocorrelation.
The algorithm makes tetrahedrons and summarizes events within each
tetrahedron. By clustering events together in tetrahedrons, there is no
need to calculate individual distances between every event, reducing the
computational time. In a way it is the same approach as the Moran’s I
algorithm but more efficient. The reason they use a polyhedron is due to
the fact that this is the smallest 3D shape and therefore the computationally
most efficient. The author also claims that this tool-kit can be used for
several dimensions such as time, energy and type of event. Instead of
the calculations taking days when calculating Geary’s C or Moran’s I the
tool-kit will take seconds. In addition to being a overall faster code, one
can specify complexity of clustering and polygon size which makes it a
powerful tool.

5.7 Temporal aspects

One part of simulations in cellular and nuclear volumes is the spatial as-
pects of the simulations, another aspect is the temporal aspect. As men-
tioned in section 2.6.2, some DNA damage only leads to cell inactivation
if the damage is close enough in time and space (typically minutes). The
radiation process involving a photon or a charged particle are almost in-
stantaneous (10−16s − 10−11s). In this time frame the DNA don’t got any
time to repair, however to deliver a full clinical dose for any circumstance
takes significantly longer than this. This gives the DNA time to repair sub-
lethal damage.
A theory for further spatial analysis is that protons in the low energy do-

91

main will not be impacted by time. This is due to a higher LET will increase
the amount of lethal damages to the DNA (see section 2.6.3) which maces
the time aspect of when protons hit less significant. Of course, the DNA
will have some sub-lethal damage but the theory is that the complex dam-
age outweighs this. The temporal aspects could also be examined by the
polyhedron approach, in addition to the spatial aspects by adding a time
dimension for the events simulated.

92

Chapter 6

Conclusion

The goal of this thesis was to do nanodosimetric simulations on a cell
culture. It can been concluded that the methodology used in the dose
simulations to cell and nucleus are not perfect, but they seems to provide
good estimate. The most interesting finding is the dose discrepancy
between cell and nucleus for the low energy protons. This means that in
the region of the Bragg peak, the most sensitive volume of the cell will
not receive the prescribed dose. Moreover, a standard deviation in dose to
the cell inversely proportional to the energy was found. Understandably,
this is to be expected as systems in nature usually follows a Gaussian or
Poisson distribution. The larger standard deviation for lower energy also
make sense, when a lower amount of protons hit the nucleus but each hit
counts more, there will be a larger variations.
Spatial statistics might be the way forward to examine how events are
distributed within a nucleus, both spatially and temporally. Moran’s I and
Geary’s C measures a global and local spatial autocorrelation in a data
set. The hope was to see a correlation with energy as well as dose but
the only indication for correlation with energy for these two algorithms
for voxels/cut values above 50nm. A cut value and voxel size of 15nm
resulted in estimating noise. Intra and inter track results were more or less
expected; if a proton track traverses 4µm one would expect events are on
average ≈ 2µm from one another, which was true for inter-track as well.

93

Appendix A

Code

A.1 Geant4-DNA

All links are clickable.

Main Geant4-DNA repository:
https://github.com/JohannesTjeltaMaster/Geant4-DNA

A.1.1 Physicslist.cc

PhysicsList.cc:
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src
/PhysicsList.cc

A.1.2 ElectronCapture.cc

ElectronCapture.cc:
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src
/G4ElectronCapture.cc

A.1.3 PrimaryGeneratorAction.cc

BoxPrimaryGeneratorAction.cc:
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src
/BoxPrimaryGeneratorAction.cc

A.1.4 DetectorConstruction.cc

BoxDetectorConstruction.cc:
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src
/BoxDetectorConstruction.cc

A.1.5 SteppingAction.cc

SteppingAction.cc:
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src

94

https://github.com/JohannesTjeltaMaster/Geant4-DNA
https://github.com/JohannesTjeltaMaster/Geant4-DNA
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/PhysicsList.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/PhysicsList.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/PhysicsList.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/G4ElectronCapture.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/G4ElectronCapture.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/G4ElectronCapture.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src\/BoxPrimaryGeneratorAction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src\/BoxPrimaryGeneratorAction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src\/BoxPrimaryGeneratorAction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src\/BoxDetectorConstruction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src\/BoxDetectorConstruction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src\/BoxDetectorConstruction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/SteppingAction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/SteppingAction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/SteppingAction.cc

/SteppingAction.cc

A.2 Python

All of the code written for this thesis, including plot code not included in
the appendix can be fount in https://github.com/JohannesTjeltaMaster

A.2.1 TrajectoryDivert.py

1 import numpy as np
2 import uproot
3 import os
4

5 def numberOfFiles(path):
6 root_files=os.listdir(path)
7 if ’Res’in root_files:
8 root_files.remove(’Res’)
9 if ’analasis ’ in root_files:

10 root_files.remove(’analasis ’)
11

12 return(len(root_files))
13

14 def TrackDiv(Path):
15 ammount =0
16 tot_diff=np.zeros (3000)
17 file_of_interest=list(open(’Data1_8/Res/FilesOfInterest.txt

’,’r’))
18 for i,str in enumerate(file_of_interest):
19

20 file_of_interest[i]=str.replace(’\n’,’’)
21

22 for i,str in enumerate(file_of_interest):
23 file=uproot.open(path+’/’+str)[’microdosimetry ’] #

import root file as data set
24 x = file[’x’].array() # import position from data set

to numpy array
25 if len(x) <2:
26 continue
27 elif Path==’Data1_2 ’ and i== invalid_protons1_2[np.where

(invalid_protons1_2 ==i)]:
28 print (123)
29 continue
30 else:
31 ammount +=1
32

33 y = file[’y’].array()
34 z = file[’z’].array()
35 particle=file[’flagParticle ’]. array()
36 z=z-z[0]
37

38 x=x[np.where(z <4000)];x=x-x[0]
39 y=y[np.where(z <4000)];y=y-y[0]
40 z=z[np.where(z <4000)]
41 if np.amax(x) >6000:# or np.amax(y) >6000:
42

43 x[np.where(x >6000)] = 0

95

https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/SteppingAction.cc
https://github.com/JohannesTjeltaMaster/Geant4-DNA/blob/main/src/SteppingAction.cc
https://github.com/JohannesTjeltaMaster

44 y[np.where(y >6000)] = 0
45 if np.amax(y) >6000:# or np.amax(y) >6000:
46 print(np.amax(y))
47 x[np.where(x >6000)] = 0
48 y[np.where(y >6000)] = 0 #print(np.where(z==

np.amax(z)))
49 particle=particle[np.where(z <4000)]
50 #print(np.sqrt((x[0]-x[np.where(x==np.amax(x))]) **2+(y

[0]-y[np.where(x==np.amax(x))])**2))
51 temp1=(x[0]-x[np.where(x==np.amax(x))])**2
52 temp2=(y[0]-y[np.where(x==np.amax(x))])**2
53 #print(temp1 ,temp2)
54 temp3=np.sqrt(temp1+temp2)
55 if len(temp3) >1:
56 temp3=temp3 [0]
57

58 tot_diff[i]= temp3
59 print(sum(tot_diff[tot_diff !=0])/ammount ,np.std(

tot_diff[tot_diff !=0]) ,ammount)
60

61

62 path="Data1_8"
63 #N=numberOfFiles(path)
64 TrackDiv(path)

Listing A.1: Code for the track deviation

A.2.2 LinearModel.py

1 import numpy as np;import matplotlib.pyplot as plt
2 from scipy.optimize import curve_fit
3 from scipy.stats import linregress
4

5 prob_dist = np.loadtxt(’initialPosDist.txt’)
6 r=np.linspace (0 ,3 ,100)
7

8 def func(a,x,b):
9 return a*x+b

10 slope , intercept , r_value , p_value , std_err = linregress(r,
prob_dist)

11 print(slope ,’\n’,intercept ,’\n’,r_value ,’\n’,p_value)
12 popt ,pcov=curve_fit(func ,r,prob_dist)
13 print(popt ,pcov)
14

15 def plot_regression_line(x, y, b):
16 y_pred = b[1] + b[0]*x
17 plt.plot(x, y_pred , color = "g")
18

19 plot_regression_line(r,prob_dist ,popt)
20 plt.plot(r,prob_dist ,’.’)
21 plt.legend ((’predicted:’+str(round(slope ,3))+’a +’+str(round(

intercept ,3)),’meassured data’),loc=’upper left’)
22 plt.xlabel(’dist from center of disk [cm]’)
23 plt.ylabel(’probability ’)
24 plt.title(’Probability of incident particle hitting a distance

r from center of disk’)
25 plt.grid()
26 plt.savefig(’linearModelProbDistDisc.PNG’)

96

27 plt.show()

Listing A.2: Code for the linear model plott

A.2.3 Analasys.py

1 import uproot; import numpy as np
2 import matplotlib.pyplot as plt; import collections
3 from matplotlib.colors import LogNorm
4 import os
5

6 save_results_to = ’Data1_2/Res/’
7 root = ".root"
8 path=’Data1_2/’ # Data8 ,Data1_2
9 N=20000 # simulations

10 initialPos=np.zeros(N)
11 totEnergyDeposit=np.zeros(N)
12 ionEnergyDeposit=np.zeros(N)
13 x1=np.zeros(N)
14 y1=np.zeros(N)
15 mean_e=np.zeros(N)
16 FilesOfInterest =[]
17 dz=4*1e3
18 for i in range(N):
19 file=uproot.open(path+str(i+1)+root)[’microdosimetry ’] #

import root file as data set
20 x = file[’x’].array() # import position from data set to

numpy array
21 y = file[’y’].array()
22 z = file[’z’].array()
23 en =file[’totalEnergyDeposit ’]. array()
24 pros = file[’flagProcess ’].array()
25 kin = file[’kineticEnergy ’].array()
26 par=file[’flagParticle ’]. array ()
27 if len(x) <1:
28 initialPos[i]=0 # zero is an indication of: did not

hit
29 totEnergyDeposit[i]=0
30 else:
31 initialPos[i]=np.sqrt(x[0]**2+y[0]**2) /10**7 # initial

distance from the centre of the disk
32 totEnergyDeposit[i]=np.sum(en[np.where((z>z[0])&(z<z

[0]+dz))])
33 ionEnergyDeposit[i]=np.sum(en[np.where((z>z[0])&(z<z

[0]+dz)&((pros ==13)|(pros ==12) |(pros ==22)|(pros ==23)))])
34

35 x1[i]=x[0];y1[i]=y[0]
36 FilesOfInterest.append(str(i+1)+root)
37

38 m=kin[np.where(par ==2)]
39 print(i)
40 mean_e[i]=m[0]
41 print(mean_e[i])
42

43 #print(len(par[np.where(parentID !=0) and np.where(par
==4)]))

44 mean_e=sum(mean_e)/len(mean_e[mean_e !=0])/1e6
45 print(mean_e)
46 amo=len(initialPos[initialPos ==0])

97

47 probOutside=float(amo)/N
48 eee=sum(totEnergyDeposit)/len(totEnergyDeposit[totEnergyDeposit

!=0])
49 iii=sum(ionEnergyDeposit)/len(ionEnergyDeposit[ionEnergyDeposit

!=0])
50 print(’\ntot energy deposit:’,eee)
51 print(’\nion energy deposit:’,iii)
52 print(’\ndifferanse mellom kun ion og total energi:’,eee -iii)
53 plt.hist(initialPos[initialPos !=0], alpha =0.7, density=True ,bins

=60)#,normed=True)
54 plt.xlabel(’Distance from centre [cm]’)
55 plt.ylabel(’Ammount [Normalized]’)
56 plt.title(’Radial distance the where the protons hits the

target ’)
57 plt.grid()
58 plt.savefig(save_results_to + ’probabilitydist.png’, dpi = 300)
59

60

61 plt.figure ()
62 plt.hist(totEnergyDeposit[totEnergyDeposit !=0], alpha =0.7,

density=True ,bins =30)#,normed=True)
63 plt.xlabel(’Total energy deposit per proton [MeV]’)
64 plt.ylabel(’Ammount [Normalized]’)
65 plt.grid()
66 plt.title(’Energy deposition for each proton ’)
67 plt.savefig(save_results_to + ’totenergydepo.png’, dpi = 300)
68

69

70 plt.figure ()
71 plt.hist2d(x1[x1!=0],y1[y1!=0], bins =50)
72 plt.title(’2D distrebution of incident particle ’)
73 plt.xlabel(’x [nm]’)
74 plt.ylabel(’y [nm]’)
75 plt.savefig(save_results_to + ’2dhist.png’, dpi = 300)
76

77 hist ,bins=np.histogram(initialPos[initialPos !=0], bins =100)#,
normed=True)

78 output_file=open(save_results_to+"initialPosDist.txt","w")
79 np.savetxt(output_file ,hist)
80 output_file.close()
81

82 output_file1=open(save_results_to+"FilesOfInterest.txt","w")
83 for stuff in FilesOfInterest:
84 output_file1.write(’%s\n’ % stuff)

Listing A.3: Code for LET

A.2.4 Dose.py

1 import numpy as np
2

3 def dose(Gy,mean_energy_dep):
4 eV =1.60218e-19 # ev to Joule
5 volume = 1.161e-5#1.161e-5 # mass of volume in kg ->

1.161e-5: cell nucleus volume -> 1.131e-13
6 deposit2Joule = eV*mean_energy_dep
7 numberProt = Gy*volume/deposit2Joule
8 print(numberProt)
9 return int(numberProt)

98

10

11

12 if __name__ ==’__main__ ’: # test function
13 print(dose(np.array ([1,2,3,5,8,10]) ,75369))

Listing A.4: Code to convert dose to number of protons

A.2.5 CellDist.py

1 import numpy as np
2 import random
3 import matplotlib.pyplot as plt
4 def celldist(NumberCell):
5 x_cell=np.zeros(NumberCell)
6 y_cell=np.zeros(NumberCell)
7 i=0
8 while i<NumberCell:
9 x_temp=random.uniform (-3,3)

10 y_temp=random.uniform (-3,3)
11 d = np.sqrt(x_temp*x_temp+y_temp*y_temp)
12 if d> 3:
13 None
14 elif d<3:
15 x_cell[i]= x_temp
16 y_cell[i]= y_temp
17 i+=1
18 if i== NumberCell:
19 x_nucleus=x_cell
20 y_nucleus=y_cell
21 break
22

23 return x_cell ,y_cell ,x_nucleus ,y_nucleus
24

25 if __name__ ==’__main__ ’:
26 cellMatrix=celldist (100000)
27 #print(cellMatrix)
28 plt.plot(cellMatrix [0], cellMatrix [1],’.’)
29

30 radiel=np.zeros(len(cellMatrix [1]))
31

32 radiel=np.sqrt(cellMatrix [1]**2+ cellMatrix [0]**2)
33 plt.figure ()
34 plt.hist(radiel ,density=True)
35 plt.show()

Listing A.5: Program distributing points in a randome pattern on a disc with d

A.2.6 MonteCarlo.py

4.4.4.4.

1 import numpy as np
2 def MC(numberProt):
3 n=’n’
4 y=’y’
5 def invert_int_func(a,y,b): # inverted cpd
6 return np.sqrt (2*a*y+b**2)/a
7

8 slope = 0.2135106133113824 # slope for the model
9 intercept = 0.00 # intercept for the model

99

10

11 Y = np.random.rand(numberProt).astype(’float64 ’) # Check
cell dist to se explenation

12 r = invert_int_func(slope ,Y,intercept)
13 deg = np.random.rand(numberProt).astype(’float64 ’)*2*np.pi
14

15 def pol2cart(rho , phi):
16 x = rho * np.cos(phi)
17 y = rho * np.sin(phi)
18 return(x, y)
19

20 x_dist ,y_dist=pol2cart(r,deg)
21 return x_dist ,y_dist

Listing A.6: Code to distribute protons on a disc with d

A.2.7 Interaction.py

1 import numpy as np
2 from numba import njit
3 @njit
4 def interaction(r,r_nucleus ,x,y,x_cell ,y_cell ,x_matrix ,y_matrix

,hitsCell ,x_nucleus_matrix ,y_nucleus_matrix ,hitsNucleus ,
x_nucleus ,y_nucleus):

5 r=r*1e-4
6 r_nucleus=r_nucleus *1e-4
7 # from cm to um
8 #max_hit = 10000 # integer to make hit matrix
9 cell_count = len(x_cell) # rows in matrix corresponds co

cells
10 for i in range(len(x_cell)): # for loop for cell
11 dist = np.sqrt((x-x_cell[i])**2+(y-y_cell[i])**2) #

distance between cell center and protons
12

13 inCell=np.where(dist <r) # check if proton is whithin a
cell

14

15 numHits = len(inCell [0]) # number of hits per cell
16 first_zero_value_index=np.where(x_matrix[i ,:]==0)
17 first_zero_value=first_zero_value_index [0]
18

19 x_matrix[i,first_zero_value [0]: numHits+first_zero_value
[0]]=x[inCell]

20 y_matrix[i,first_zero_value [0]: numHits+first_zero_value
[0]]=y[inCell]

21

22 hitsCell[i]+= numHits # number of hits per cell
corresponding to row in matrix

23

24 #for i in range(len(x_cell)): # for loop for nucleus
25 #dist_nucleus = np.sqrt((x-x_nucleus[i]) **2+(y-

y_nucleus[i])**2) # distance between nucleus center and
protons

26

27 inCell_nucleus=np.where(dist <r_nucleus) # check if
proton is whithin a nucleus

28 numHits_nucleus = len(inCell_nucleus [0]) # number of
hits per nucleus

100

29

30 first_zero_value_index_nucleus=np.where(
x_nucleus_matrix[i ,:]==0)

31 first_zero_value_nucleus=first_zero_value_index_nucleus
[0]

32

33 x_nucleus_matrix[i,first_zero_value_nucleus [0]:
numHits_nucleus+first_zero_value_nucleus [0]]=x[
inCell_nucleus]

34 y_nucleus_matrix[i,first_zero_value_nucleus [0]:
numHits_nucleus+first_zero_value_nucleus [0]]=y[
inCell_nucleus]

35

36 hitsNucleus[i]+= numHits_nucleus
37

38 return x_matrix ,y_matrix ,hitsCell ,x_nucleus_matrix ,
y_nucleus_matrix ,hitsNucleus

Listing A.7: Code to calculate euclidean distance.

A.2.8 ProtonChoice.py

1 import numpy as np
2 from numpy import random
3

4 def chooseProton(hitCount ,hitsNucleus ,pathFiles ,max_hit):
5 cell_count=len(hitCount) # the hitcount is a matrix with

rows for cells
6 file = open(pathFiles ,’r’) # import the text file for the

protons of interest
7 Tracks=file.readlines ()
8

9 for i in range(len(Tracks)):
10 # make the strings into floats for easy handeling
11 Tracks[i]=float(Tracks[i]. replace(’.root\n’, ’’))
12

13 #max_hit =35000# max(hitCount) # assumed maximum hits per
cell

14 hitMartix=np.zeros ((cell_count ,max_hit)) # a row is a cell
and #collom is for each cell

15 hitMatrixNucleus=np.zeros((cell_count ,max_hit))
16 for i in range(cell_count):
17 hitMartix[i,0: int(hitCount[i])]= random.choice(Tracks ,

size=int(hitCount[i]))
18 # the hit matrix is the same dim as the cell matrix.

gives each hit its own proton
19 hitMatrixNucleus[i,0: int(hitsNucleus[i])]= hitMartix[i

,0: int(hitsNucleus[i])]#random.choice(Tracks ,size=int(
hitsNucleus[i]))

20

21 return hitMartix ,hitMatrixNucleus
22

23

24 if __name__ ==’__main__ ’:
25 hitCount= [6,2,3,4,5,6,7,8]
26 hitMartix=chooseProton(hitCount)
27 for i,x in enumerate(hitMartix):
28 print(x,i)

Listing A.8: Code sampling random protons to the accepted proton points.

101

A.2.9 main.py

1 #Python libraries
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from numba import jit , cuda
5 from timeit import default_timer as timer
6

7 from src.Files import FilesOfInterest
8 from src.Dose import dose
9 from src.Montecarlo import MC

10 from src.CellDist import celldist
11 from src.Interaction import interaction
12 from src.protonChoice import chooseProton
13 from src.rootImplementation import TingTarTid
14 from src.Plot import PlotNumIonPerCell ,PlotLET , PlotDoseCell ,

Dosedist ,PlotNumIonPerNuc ,PlotDoseNuc
15

16 y=’y’
17 n=’n’
18

19 print(’\n\n

’)

20 Enter_energy = float(input(’Enter proton energy [MeV]
(8.0=1 ,1.8=2 ,1.4=3 ,1.2=4):’))

21 print(’

’)

22 """
23 First coupple of lines is a if test to declare the energy
24 which shall be used and the location of the protons of interest
25 , furthermore the mean ernergy deposit per proton per 4um is

declared
26 """
27 if Enter_energy ==1:
28 pathFiles=’Data8/Res/FilesOfInterest.txt’
29 pathData=’Data8’
30 name = ’8MeV’
31 mean_energy_dep =15078.96 # LET keV/4 micro m
32 elif Enter_energy ==2:
33 pathFiles=’Data1_8/Res/FilesOfInterest.txt’
34 pathData=’Data1_8 ’
35 name=’1_8MeV’
36 mean_energy_dep =57960.49666363634 # LET keV/4micro m
37 elif Enter_energy ==3: #1.46
38 pathFiles=’Data1_4/Res/FilesOfInterest.txt’
39 pathData=’Data1_4 ’
40 name=’1_4MeV’
41 mean_energy_dep =69045.56688785045 # LET keV/4micro m
42 elif Enter_energy ==4:
43 pathFiles=’Data1_2/Res/FilesOfInterest.txt’
44 pathData=’Data1_2 ’
45 name=’1_2MeV’
46 mean_energy_dep =75369.00045882349 # LET keV/4micro m
47

48 print(’\n\n

’)

102

49 d = float(input(’Enter dose in Gy:’)) # user inputs the dose
in Gy

50 print(’

’)

51 numberProt = dose(d,mean_energy_dep) # Calculate fluence
52 #numberProt = 2*1e6 # used for testing
53

54 print(’\n\n

’)

55 NumberCell = int(input(’Enter cell count:’)) # input cell
ammount

56 print(’

’)

57 x_cell ,y_cell ,x_nucleus ,y_nucleus=celldist(NumberCell) # cell
distrebution func

58

59

60 print(’\n\n

’)

61 print(’The cell is aproximated with a sylinder with a height
and a radius ’)

62 print(’

’)

63 r = float(input(’\nEnter cell radius [um]:’))
64 h = float(input(’Enter cell height [um]:’))
65

66 if h>6:
67 print(’maximum cell heigt is 5.9um , try agen’)
68 exit()
69

70 print(’\n\n

’)

71 print(’You will now get a few choises on what you want.\nThis
will take time so grab a coffe or take a nap :’)

72 print(’\n

’)

73 LET = input(’\nDo you want to calculate LET of the protons? (y/
n)’)

74 NumIon = input(’\nDo you want to calculate the number of
ionisations per cell? (y/n)’)

75 DoseCell = input(’\nDo you want to calculate the dose per cell?
(y/n)’)

76

77

78

79 r_nucleus =6 # implemantet at a later stage , therfor hardcoded
in the program

80

81 max_hit = 35000 # integer to make hit matrix
82 x_matrix=np.zeros ((NumberCell ,max_hit)) # x position for each
83 y_matrix=np.zeros ((NumberCell ,max_hit))
84 x_nucleus_matrix = np.zeros ((NumberCell ,max_hit))

103

85 y_nucleus_matrix = np.zeros ((NumberCell ,max_hit))
86 max_prot_per = 10**5
87 iterations=int(float(numberProt)/max_prot_per)
88 print(iterations)
89 hitsCell= np.zeros(len(x_cell))
90 hitsNucleus= np.zeros(len(x_cell))
91

92

93 for i in range(iterations): # loop to iradiate cells
94 start = timer ()
95 x,y = MC(max_prot_per) # montecarlo for protons
96 """
97 Interaction takes a cell/nucleus hit matrix and returns the

same matrix with
98 the hits added to the matrix
99 """

100 x_matrix ,y_matrix ,hitsCell ,x_nucleus_matrix ,
y_nucleus_matrix ,hitsNucleus=interaction(r,r_nucleus ,x,y,
x_cell ,y_cell ,x_matrix ,y_matrix ,hitsCell ,

101 x_nucleus_matrix ,
y_nucleus_matrix ,hitsNucleus ,x_nucleus ,y_nucleus)

102 x=None;y=None # free up memory
103

104 print(’progress Cell hit reg: {}%’.format(int(float (100)/
iterations*i))+"\ntime taken:", timer ()-start)

105

106 np.savetxt(’filesxy/’+name+str(NumberCell)+’cellss ’+str(int(d))
+’GyCellx.txt’,(x_matrix))

107 np.savetxt(’filesxy/’+name+str(NumberCell)+’cellss ’+str(int(d))
+’GyNucx.txt’,(x_nucleus_matrix))

108 np.savetxt(’filesxy/’+name+str(NumberCell)+’cellss ’+str(int(d))
+’GyCelly.txt’,(y_matrix))

109 np.savetxt(’filesxy/’+name+str(NumberCell)+’cellss ’+str(int(d))
+’GyNucy.txt’,(y_nucleus_matrix))

110

111 # chooseProton assign protons from the proton -pool to each cell
hit

112 proton_randoom_draw_matrix ,proton_randoom_draw_matrix_nucleus =
chooseProton(hitsCell ,hitsNucleus ,pathFiles ,max_hit)

113

114

115 # Ting tar tid opens the proton data and reads it into the cell
/nuc

116 totIonPerCell ,totExiPerCell ,LET_array ,totDoseCellM=TingTarTid(
pathData ,x_matrix ,y_matrix ,hitsCell

117 ,h,
proton_randoom_draw_matrix ,LET ,NumIon ,DoseCell)

118

119 totIonPerNucleus ,totExiPerNucleus ,LET_array_nuc ,totDoseNucM=
TingTarTid(pathData ,x_nucleus_matrix ,y_nucleus_matrix ,
hitsNucleus

120 ,h,
proton_randoom_draw_matrix_nucleus ,LET ,NumIon ,DoseCell)

121

122 if NumIon ==’y’:
123 PlotNumIonPerCell(totIonPerCell ,totExiPerCell ,name ,

NumberCell ,d)
124 PlotNumIonPerNuc(totIonPerNucleus ,totExiPerNucleus ,name ,

NumberCell ,d)

104

125 np.savetxt(’DataOut/Ion{}Gy{}cells’.format(d,NumberCell)+
name+’.txt’,totIonPerCell)

126 np.savetxt(’DataOut/Exi{}Gy{}cells’.format(d,NumberCell)+
name+’.txt’,totExiPerCell)

127 np.savetxt(’DataOut/Ion{}Gy{} cellsNuc ’.format(d,NumberCell)
+name+’.txt’,totIonPerNucleus)

128 np.savetxt(’DataOut/Exi{}Gy{} cellsNuc ’.format(d,NumberCell)
+name+’.txt’,totExiPerNucleus)

129

130 if LET==’y’:
131 print(LET_array)
132 PlotLET(LET_array ,name ,h,NumberCell)
133

134 if DoseCell ==’y’:
135 vol =3.1415*(r*1e-5) **2*h*1e-5
136 eV =1.60218e-19
137 totDoseCellM=totDoseCellM*eV/vol
138 volN =3.1415*(r_nucleus *1e-5) **2*h*1e-5
139 totDoseNucM=totDoseNucM*eV/volN
140 print(’Mean dose per cell: {}Gy’.format(np.mean(

totDoseCellM)))
141 print(’Mean dose per nuc: {}Gy’.format(np.mean(totDoseNucM)

))
142 np.savetxt(’DataOut/Dose{}Gy{}cells’.format(d,NumberCell)+

name+’.txt’,totDoseCellM)
143 np.savetxt(’DataOut/Dose{}Gy{} cellsNuc ’.format(d,NumberCell

)+name+’.txt’,totDoseNucM)
144 PlotDoseCell(totDoseCellM ,name ,NumberCell ,d)
145 PlotDoseNuc(totDoseNucM ,name ,NumberCell ,d)

Listing A.9: The main program.

A.2.10 rootImplementation.py

1 import numpy as np; import uproot
2

3 from src.numberofion import NumberOfIon
4 from src.Plot import PlotNumIonPerCell
5 from src.LET import LETfunc
6 from src.DosePerCell import DosePerCell
7 def TingTarTid(pathData ,x_rad ,y_rad ,hitMatrix ,h_cell ,ProtDrawM ,

LET ,NumIon ,DoseCell):
8 # start of with declaring some varriables
9 root=’.root’

10 path=pathData
11 unique=np.unique(ProtDrawM) # check for unique elements in

the proton matrix
12 unique=unique[unique !=0]. astype(int) # no proton is named

0 and make the array int to work
13 h_cell=h_cell *1e3
14 """
15 to get info from root files
16 [’flagParticle ’, ’flagProcess ’,
17 ’x’, ’y’, ’z’, ’totalEnergyDeposit ’,
18 ’stepLength ’, ’kineticEnergyDifference ’,
19 ’kineticEnergy ’, ’cosTheta ’, ’eventID ’,
20 ’trackID ’, ’parentID ’, ’stepID ’]
21 """
22 # define the different arrays for data accumulation

105

23 PerCellArrayIon=np.zeros_like(ProtDrawM)
24 PerCellArrayExi=np.zeros_like(ProtDrawM)
25 LET_array=np.zeros (5)
26 DoseCellM=np.zeros_like(ProtDrawM)
27 for i,x in enumerate(unique): # opens each unique proton

so every proton does not have to be opend twice
28 specific_cell_index=np.where(ProtDrawM ==x) # where is

the proton in question
29 file=uproot.open(path+’/’+str(x)+root)[’microdosimetry ’

] # open the specific file.root for that specific proton
30 z=file[’z’].array () # distance traveld
31 #print(z[0], h_cell)
32 #h_cell=h_cell *10**3+z[0] # height of cell pluss

incident proton position
33 h_index=np.where(z<h_cell) # exclude the interactions

larger than the cell , h-index is the index for these
interactions

34 if LET==’y’:
35 energy=file[’totalEnergyDeposit ’]. array()
36 process=file[’flagProcess ’].array ()
37 tempLET=LETfunc(energy ,z,h_cell ,process)
38 LET_array=LET_array+tempLET
39 if NumIon ==’y’: # extracts number of events
40 process=file[’flagProcess ’].array ()
41 PerCellArrayIon ,PerCellArrayExi=NumberOfIon(z,

h_cell ,process ,PerCellArrayIon ,
42

PerCellArrayExi ,specific_cell_index)
43 if DoseCell ==’y’: # extract dose deposited to cell/nuc
44 energy=file[’totalEnergyDeposit ’]. array()
45 process=file[’flagProcess ’].array ()
46 DoseCellM=DosePerCell(z,h_cell ,process ,energy ,

DoseCellM ,
47 specific_cell_index)
48

49

50

51 print(’progress: {}%’.format(int(float (100)/len(unique)
*i)))

52

53

54 totIonPerCell=np.sum(PerCellArrayIon ,axis =1)
55 totExiPerCell=np.sum(PerCellArrayExi ,axis =1)
56 totDoseCellM = np.sum(DoseCellM ,axis =1)
57 LET_array=LET_array/len(unique)
58 return totIonPerCell ,totExiPerCell ,LET_array ,totDoseCellM

Listing A.10: Code for reading and analysing proton tracks

A.2.11 DosePerCell.py

1 import numpy as np
2

3 def DosePerCell(z,dz ,process ,energy ,DoseCellM ,
specific_cell_index):

4 DoseCellM[specific_cell_index]=sum(energy[np.where((z>z[0])
&(z<z[0]+dz)&((process ==12) |(process ==13)|(process ==22)|(
process ==23)))])

106

5 return DoseCellM

Listing A.11: Calculate total sum of dose deposited within a cell and a nucleus.

A.2.12 numberofion.py

1 import numpy as np
2

3 def NumberOfIon(z,dz ,process ,PerCellArrayIon ,PerCellArrayExi ,
specific_cell_index):

4 PerCellArrayIon[specific_cell_index]=len(process[np.where ((
z>z[0])&(z<z[0]+dz)&((process ==13)|(process ==23)))])

5 PerCellArrayExi[specific_cell_index]=len(process[np.where ((
z>z[0])&(z<z[0]+dz)&((process ==12)|(process ==22)))])

6

7 return PerCellArrayIon ,PerCellArrayExi

Listing A.12: Number of ionizations per cell and nucleus.

A.2.13 Plot.py

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4

5

6 def Dosedist(x,y,d):
7 plt.figure ()
8 plt.hist2d(x,y,bins =800)
9 plt.xlabel(’donno’)

10 plt.ylabel(’donno’)
11 plt.title(’2D Histogram of distrebution of {} Gy ’.format(d

))
12 plt.savefig(’Plots/2 dhistprotondist.PNG’)
13

14 def PlotNumIonPerCell(totIonPerCell ,totExiPerCell ,name ,
NumberCell ,d):

15 plt.figure ()
16 plt.hist(totIonPerCell ,alpha =0.5, bins=40, color=’blue’,label

=’Ion’)
17 plt.hist(totExiPerCell ,alpha =0.5, bins=15, color=’red’,label=

’Exi’)
18 plt.legend ()
19 plt.title(’total ion and exi per cell for {} cells at {}Gy’

.format(len(totIonPerCell),d))
20 plt.ylabel(’cell count’)
21 plt.xlabel(’Events ’)
22 plt.grid()
23 plt.savefig(’Plots/totExiPerCell ’+name+’{} cells{}Gy.PNG’.

format(NumberCell ,d))
24 print(’\nPlot for ionisations per cell has been saved to

Plots as totIonPerCell.PNG’)
25

26 def PlotNumIonPerNuc(totIonPerCell ,totExiPerCell ,name ,
NumberCell ,d):

27 plt.figure ()
28 plt.hist(totIonPerCell ,alpha =0.5, bins=40, color=’blue’,label

=’Ion’)
29 plt.hist(totExiPerCell ,alpha =0.5, bins=15, color=’red’,label=

’Exi’)

107

30 plt.legend ()
31 plt.title(’total ion and exi per nucleus for {} cells {}Gy’

.format(len(totIonPerCell),d))
32 plt.ylabel(’cell count’)
33 plt.xlabel(’Events ’)
34 plt.grid()
35 plt.savefig(’Plots/totExiPerNuc ’+name+’{} cells{}Gy.PNG’.

format(NumberCell ,d))
36 print(’\nPlot for ionisations per cell has been saved to

Plots as totIonPerNuc.PNG’)
37

38 def PlotLET(LET ,name ,h,NumberCell):
39 plt.figure ()
40 plt.plot(np.linspace(0,h,len(LET) -1),LET[:-1],’.’)
41 plt.grid()
42 plt.xlabel(’um’)
43 plt.ylabel(’keV/um’)
44 plt.title(’LET’)
45 plt.savefig(’Plots/LET’+name+’{}cells.PNG’.format(

NumberCell))
46 print(’\nLet plot has been saved as Plots/LET’+name+’{}

cells.PNG’.format(NumberCell))
47

48 def PlotDoseCell(totDoseCellM ,name ,NumberCell ,d):
49 plt.figure ()
50 plt.hist(totDoseCellM ,alpha =0.7, bins=30, color=’blue’)
51 plt.ylabel(’cell count’)
52 plt.xlabel(’Total dose per cell [Gy]’)
53 plt.grid()
54 plt.savefig(’Plots/DoseForCells ’+name+’{} cells{}Gy.PNG’.

format(NumberCell ,d))
55 print(’\nPlot for dose per cell has been saved to Plots as

Plots/DoseForCells ’+name+’{} cells.PNG’.format(NumberCell))
56

57 def PlotDoseNuc(totDoseCellM ,name ,NumberCell ,d):
58 plt.figure ()
59 plt.hist(totDoseCellM ,alpha =0.7, bins=30, color=’blue’)
60 plt.ylabel(’cell count’)
61 plt.xlabel(’Total dose per nucleus [Gy]’)
62 plt.grid()
63 plt.savefig(’Plots/DoseForNuc ’+name+’{} cells{}Gy.PNG’.

format(NumberCell ,d))
64 print(’\nPlot for dose per cell has been saved to Plots as

Plots/DoseForCells ’+name+’{} cells.PNG’.format(NumberCell))

Listing A.13: Plot.py is part of the code visualizing the total dose deposited to cells and
nuclei.

A.2.14 moransi.py

1

2 #import packages
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from numba import jit
6 import uproot
7 import random
8 import os
9 from timeit import default_timer as timer

108

10 from matplotlib.ticker import ScalarFormatter
11

12 from gearysC import gearysC
13 from intraTrack import intratrack
14 from interTrack import intertrack
15

16 # the libraries from line 12-15 needs to be installed.
17 # pysal espesially needs the conda enviroment to be installed
18 # to avoid headake drop these librarries and comment out
19

20 #import matplotlib as mpl
21 from mpl_toolkits.mplot3d import Axes3D
22 import pysal.explore as ps
23 import libpysal
24

25 print(’whawt do you want to calculate?’)
26 print(’Moran\’s I=0,Geary\’s C=1, intraTrack =2, interTrack =3’)
27 Method =int(input())
28 def prot_pos(N):
29 """
30 This function is distrebuting protons within the
31 cellular core , N is the number of protons based on
32 simulations done in the main.py program.
33 """
34 i = 0
35 x_prot =np.zeros(N)
36 y_prot=np.zeros(N)
37 while i<N:
38 x_temp=random.uniform (-6,6) # edge values is for a 6um

diameter cell
39 y_temp=random.uniform (-6,6)
40 dist_temp=np.sqrt(x_temp **2+ y_temp **2)
41 if dist_temp >6:
42 x_temp=None
43 y_temp=None
44 else:
45 x_prot[i]= x_temp
46 y_prot[i]= y_temp
47 x_temp=None
48 y_temp=None
49 i+=1
50

51 return x_prot ,y_prot
52

53 def protonChoice(N,path):
54 """
55 Extract the proton tracs from the proton tracks generated
56 in Geant4 for different energies , the path is the directory
57 containing the proton data.
58 """
59 root_list =[]
60 root_files=os.listdir(path)
61 if ’Res’in root_files:
62 root_files.remove(’Res’)
63 if ’analasis ’ in root_files:
64 root_files.remove(’analasis ’)
65 i=0
66 while i<N:
67 root_temp=np.random.choice(root_files)

109

68 file = uproot.open(path+’/’+root_temp)[’microdosimetry ’
]

69 x=file[’x’].array ()
70 if len(x)==0:
71 None
72 else:
73 root_list.append(root_temp)
74 i+=1
75 return root_list
76

77 def ion_pos(N,path ,rootfiles ,x_prot ,y_prot):
78 """
79 extract info from the proton files and assign the x and y
80 possition from prot pos to the proton from the root files
81 """
82 dz=4000
83

84 x_prot=x_prot *1e3
85 y_prot=y_prot *1e3
86 max_ion =14000 # assumed maximal ion per proton
87 ion_tot=np.zeros((N,3,max_ion))
88 for i in range(N):
89 file = uproot.open(path+’/’+rootfiles[i])[’

microdosimetry ’]
90 x=file[’x’].array ()
91 y=file[’y’].array ()
92 z=file[’z’].array ()
93 type = file[’flagProcess ’].array()
94 if len(z)==0:
95 print(’you did a poopy’)
96 else:
97 x=x[np.where ((z>z[0])&(z<z[0]+dz)&((type ==13)|(type

==23)))]
98 y=y[np.where ((z>z[0])&(z<z[0]+dz)&((type ==13)|(type

==23)))]
99 z=z[np.where ((z>z[0])&(z<z[0]+dz)&((type ==13)|(type

==23)))]
100 x0=x[0]
101 y0=y[0]
102 z0=z[0]
103 x=x-x0
104 y=y-y0
105 z=z-z0
106

107 x=x+x_prot[i]
108 y=y+y_prot[i]
109 if np.amax(x) >6000:
110 x[np.where(x >6000)]=0
111 y[np.where(x >6000)]=0
112 z[np.where(x >6000)]=0
113 elif np.min(x)< -6000:
114 x[np.where(x< -6000)]=0
115 y[np.where(x< -6000)]=0
116 z[np.where(x< -6000)]=0
117 elif np.amax(y) >6000:
118 x[np.where(y >6000)]=0
119 y[np.where(y >6000)]=0
120 z[np.where(y >6000)]=0
121 elif np.min(y)< -6000:

110

122 x[np.where(y< -6000)]=0
123 y[np.where(y< -6000)]=0
124 z[np.where(y< -6000)]=0
125 if np.mean(x) >6000 or np.mean(x) <-6000 or np.mean(y

) >6000 or np.mean(y) <-6000:
126

127 x[np.where(y< -6000)]=0
128 y[np.where(y< -6000)]=0
129 z[np.where(y< -6000)]=0
130 x[np.where(y >6000)]=0
131 y[np.where(y >6000)]=0
132 z[np.where(y >6000)]=0
133 ion_tot[i,0,0:len(x)]=x
134 ion_tot[i,1,0:len(y)]=y
135 ion_tot[i,2,0:len(z)]=z
136 return ion_tot ,max_ion
137

138

139 def SpatialDataMining(ion_tot ,grid_size ,voxel_size):
140 """
141 SpatialDataMining count the number of ionizations in a

voxel and sums
142 the total ionizations in that voxel
143 """
144 x_grid=np.arange (-6000 ,6000, step=voxel_size) # define grid

in x 0.002
145 y_grid=np.arange (-6000 ,6000, step=voxel_size) # define

grid in y
146 print(len(x_grid))
147 z_grid=np.arange (0,4000, step=voxel_size) # define grid in

z
148 hit_matrix=np.zeros ((len(x_grid),len(y_grid),len(z_grid)))
149 ion_tot_x = 2
150 for i in range(len(x_grid) -1):
151 if i==0:
152 start = timer ()
153 for j in range(len(y_grid) -1):
154 #print(j)
155 for k in range(len(z_grid) -1):
156 hits=np.where (((ion_tot [:,0,:]> x_grid[i])&(

ion_tot [:,0,:]< x_grid[i+1])&(ion_tot [:,1,:]> y_grid[j])&(
ion_tot [:,1,:]< y_grid[j+1])&(ion_tot [:,2,:]> z_grid[k])&(
ion_tot [:,2,:]< z_grid[k+1])))

157 hit_matrix[i,j,k]=len(hits [0])
158 if i==0:
159 print(’Time in s for one layer to be calculated:’,

timer()-start)
160 print(’Total time will approximatly be:’,(timer ()-

start)*len(x_grid),’s’)
161 return hit_matrix
162

163

164

165

166 if __name__ ==’__main__ ’:
167 InputName=input(’Enter energy of protons:’)
168 InputPath=input(’Enter folder:’)
169 #InputName =’8.7MeV’
170 #InputPath=’Data8 ’

111

171 print(’Enter 6 values for protons:’)
172 N_array=np.array ([10 ,20 ,30 ,51 ,81 ,102])
173 N_array=np.array([int(input(’N1:’)),int(input(’N2:’)),int(

input(’N3:’)),
174 int(input(’N4:’)),int(input(’N5:’)),int(

input(’N6:’))])
175 #print(’First value for Geary\’s C is a test to compile the

code via njit.’)
176

177 if Method ==1:
178 parameter_limit=int(input(’Input cut -value [nm]:’))
179 if Method ==0:
180 voxel=int(input(’input voxelsize [nm]:’))
181 meanint=np.zeros(len(N_array))
182 temp=0
183 #fig , axs = plt.subplots (2,3, sharex=True , sharey=True)
184 #fig = plt.figure(figsize =(10 ,6.3))
185 #gs = fig.add_gridspec (2, 3, hspace=0, wspace =0)
186 #(ax1 , ax2 , ax3), (ax4 , ax5 , ax6) = gs.subplots(sharex=’col

’, sharey=’row ’)
187 for lol ,i in enumerate(N_array):
188 N=i
189 path=’../’+InputPath
190 e = InputName
191 x_prot ,y_prot=prot_pos(N)
192 rootfiles=protonChoice(N,path)
193

194

195 ion_tot ,max_ion=ion_pos(N,path ,rootfiles ,x_prot ,y_prot)
196 IonMatrix=ion_tot.reshape(3,N*max_ion)
197

198 if Method ==2:
199 print(np.shape(ion_tot))
200 intratrackvalue=intratrack(ion_tot)
201 print(’The intratrackvalue is {}’.format(

intratrackvalue))
202 meanint[temp]= intratrackvalue
203 print(np.mean(meanint),np.std(meanint),meanint)
204 temp +=1
205 elif Method ==1:
206 print(’Beginning calculating geary\’s C. This might

take some time’)
207 C=gearysC(IonMatrix ,parameter_limit)
208 print(’Geary\’s C for’,N,e+’ protons is:’,C)
209 print(’This is with the parameter for the weight

matrix set at {}nm’.format(parameter_limit))
210

211 elif Method ==0:
212

213

214

215 hit_matrix=SpatialDataMining(ion_tot ,3,voxel)
216 Mean_I=np.zeros(len(hit_matrix [1,1,:]))
217 for ii in range(len(hit_matrix [1,1,:])):
218 w = libpysal.weights.lat2W(hit_matrix.shape[0],

hit_matrix.shape [1])
219 mi = ps.esda.Moran(hit_matrix [:,:,ii],w)
220 #print(’\nMoran\’s I for the {}\’th layer:’.

format(i),mi.I)

112

221 #print(’And standard deviation for the {}\’th
layer:’.format(i),mi.p_norm)

222 Mean_I[ii]=mi.I
223

224 print(’Mean Moran=’,np.mean(Mean_I [: -1]),’for {}
protons ’.format(i))

225 #print(’Moran\’s I for the jth layer:’,mi.I)
226 #np.save(’export_celle_kjerne/test{}nm ’.format(

voxel),matlab_hit_matrix)
227 elif Method ==3:
228 interTrackvalue=intertrack(ion_tot)
229 print(’The intertrackvalue is {} for {} Protons ’.

format(interTrackvalue ,N))
230 elif Method ==9:
231 if lol ==0:
232 ax1.plot(x_prot ,y_prot ,’.’,label=’1Gy’)
233 ax1.legend(loc=’upper right ’)
234 ax1.plot(np.cos(np.linspace (0,2*np.pi ,1000))*6,

np.sin(np.linspace (0,2*np.pi ,1000))*6,’--’)
235 elif lol ==1:
236 ax2.plot(x_prot ,y_prot ,’.’,label=’2Gy’)
237 ax2.legend(loc=’upper right ’)
238 ax2.plot(np.cos(np.linspace (0,2*np.pi ,1000))*6,

np.sin(np.linspace (0,2*np.pi ,1000))*6,’--’)
239 elif lol ==2:
240 ax3.plot(x_prot ,y_prot ,’.’,label=’3Gy’)
241 ax3.legend(loc=’upper right ’)
242 ax3.plot(np.cos(np.linspace (0,2*np.pi ,1000))*6,

np.sin(np.linspace (0,2*np.pi ,1000))*6,’--’)
243 elif lol ==3:
244 ax4.plot(x_prot ,y_prot ,’.’,label=’5Gy’)
245 ax4.legend(loc=’upper right ’)
246 ax4.plot(np.cos(np.linspace (0,2*np.pi ,1000))*6,

np.sin(np.linspace (0,2*np.pi ,1000))*6,’--’)
247 elif lol ==4:
248 ax5.plot(x_prot ,y_prot ,’.’,label=’8Gy’)
249 ax5.legend(loc=’upper right ’)
250 ax5.plot(np.cos(np.linspace (0,2*np.pi ,1000))*6,

np.sin(np.linspace (0,2*np.pi ,1000))*6,’--’)
251 elif lol ==5:
252 ax6.plot(x_prot ,y_prot ,’.’,label=’10Gy’)
253 ax6.legend(loc=’upper right ’)
254 ax6.plot(np.cos(np.linspace (0,2*np.pi ,1000))*6,

np.sin(np.linspace (0,2*np.pi ,1000))*6,’--’)
255 elif Method ==6:
256 #Doselist =[’1Gy ’,’2Gy ’,’3Gy ’,’Gy ’,’8Gy ’,’10Gy ’]
257 if InputPath ==’Data1_2 ’:
258 EnergyName=’1.2 MeV Protons ’
259 savename=’1_2mevprotons ’
260 elif InputPath ==’Data1_4 ’:
261 EnergyName=’1.5 MeV Protons ’
262 savename=’1_5mevprotons ’
263 elif InputPath ==’Data1_8 ’:
264 EnergyName=’1.8 MeV Protons ’
265 savename=’1_8mevprotons ’
266 elif InputPath ==’Data8 ’:
267 EnergyName=’8.7 MeV Protons ’
268 savename=’8_7mevprotons ’
269 nuc_h=4

113

270 def plot_circle ():
271 n=2000
272 whole_pi=np.linspace (0,2*np.pi ,n)
273 c1=np.zeros(n)
274 c2=np.cos(whole_pi)*6*1
275 c3=np.sin(whole_pi)*6*1
276 return c1,c2 ,c3
277 qwe=plot_circle ()
278 ax = plt.axes(projection=’3d’)
279 for i in range(np.shape(ion_tot)[0]):
280 ax.plot3D(ion_tot[i,0 ,:]/1000 , ion_tot[i

,1 ,:]/1000 , ion_tot[i,2 ,:]/1000 , color=’tomato ’,
281 marker=’.’,ms =450./300 , mew=0,

linestyle="", lw=0)
282 if i==0:
283

284 ax.plot3D(qwe[1],qwe[2],qwe[0],’--’,color=’
gray’)

285 ax.plot3D(qwe[1],qwe[2],np.ones (2000)*nuc_h
,’--’,color=’gray’)

286 ax.legend ([’Proton and electron events ’,’
Nucleus border ’])

287 #for label in (ax.get_xticklabels () + ax.
get_yticklabels () +ax.get_zticklabels ()):

288 # label.set_fontsize (13)
289 #ax.legend ()
290

291 ax.view_init (30, 0)
292 from matplotlib import ticker
293 formatter = ticker.ScalarFormatter(useMathText=True

)
294 formatter.set_scientific(True)
295 formatter.set_powerlimits ((-1,1))
296 ax.yaxis.set_major_formatter(formatter)
297 ax.xaxis.set_major_formatter(formatter)
298 ax.zaxis.set_major_formatter(formatter)
299 ax.set_xlabel(’Dist [μm]’)
300 ax.set_ylabel(’Dist [μm]’)
301 ax.set_zlabel(’Dist [μm]’)
302

303 #plt.title(’Nucleus irradiated with {}, {}’. format(
EnergyName ,Doselist[lol]))

304 plt.savefig(’../ Plots/CellDosePlot/Protontrack {}_
{}. jpeg’.format(str(N),savename),bbox_inches=’tight ’,dpi
=300)

305 #plt.show()
306 #ax1.set(ylabel=’Dist [μm]’)
307 #fig.xlabel(’Dist [μm]’)
308 #fig.ylabel(’Dist [μm]’)
309 #ax4.set(xlabel=’Dist [μm]’, ylabel=’Dist [μm]’)
310 #ax5.set(xlabel=’Dist [μm]’)
311 #ax6.set(xlabel=’Dist [μm]’)
312 #plt.savefig (’../ Plots/incidentprotonexample.png ’,

bbox_inches=’tight ’)

Listing A.14: The code moransi.py simulate proton tracks on a nuclei and computes
Moran’s I.

A.2.15 gearysC.py

114

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import random
4 def gearysC(IonMatrix ,parameter):
5

6

7 x_mean=np.array([np.mean(IonMatrix[0, IonMatrix [0 ,:]!=0]),np
.mean(IonMatrix [1,IonMatrix [1 ,:]!=0]) ,np.mean(IonMatrix [2,
IonMatrix [2 ,:]!=0])])

8 W=0
9 mean_sum =0

10 sum=0
11 N=len(IonMatrix [0,IonMatrix [0 ,:]!=0])
12 print(’N=’,N)
13

14 for i in range(N):
15 if IonMatrix[2,i]==0:
16 continue
17 x_i=np.array ([IonMatrix[0,i],IonMatrix[1,i],IonMatrix

[2,i]])
18 mean_sum +=(np.sqrt((x_i[0]- x_mean [0]) **2+(x_i[1]- x_mean

[1]) **2+(x_i[2]- x_mean [2]) **2))**2
19 for j in range(N):
20 if i>j:
21 continue
22 x_j=np.array ([IonMatrix[0,j],IonMatrix[1,j],

IonMatrix[2,j]])
23 dist=(np.sqrt((x_i[0]-x_j [0]) **2+(x_i[1]-x_j [1])

2+(x_i[2]-x_j [2]) **2))2
24 dist2=np.sqrt(dist)
25 if dist >parameter:
26 #print(’lol ’)#,dist2 ,x_i[0],x_j[0],x_i[1],x_j

[1],x_i[2],x_j [2])
27 w_ij=0
28

29 elif dist <parameter:
30 sum+=dist
31 W+=1
32 else:
33 print(’no’)
34 C=(N-1)*sum /(2*W*mean_sum)
35

36 print(C,W)
37 return C
38

39

40 if __name__ ==’__main__ ’:
41 parameterArray=np.array ((0.3 ,0.7 ,10))
42 for parameter in parameterArray:
43 points =20
44 #parameter =10
45 points3D=points *3
46 #rm=random matrix. rmc= random matrix clusterd
47 rm=np.random.uniform (0,1, points3D).reshape(3,points)
48 rmc=np.random.uniform (0.3,1, points3D).reshape(3,points)
49 rmc [1]= rmc [1]*-1
50 rmc2=np.random.uniform (0.3,0.2 , points3D).reshape(3,

points)
51 def xy(n):

115

52 x=np.ones(n)
53 y=np.ones(n)
54 i=0
55 while i<n:
56 x_temp = random.uniform (-3,3)
57 y_temp = random.uniform (-3,3)
58 dist=np.sqrt(x_temp **2+ y_temp **2)
59 if dist >3:
60 continue
61 else:
62 x[i]= x_temp
63 y[i]= y_temp
64 i+=1
65 return x,y
66 def plot_circle ():
67 n=2000
68 whole_pi=np.linspace (0,2*np.pi ,n)
69 c1=np.zeros(n)
70 c2=np.cos(whole_pi)*3
71 c3=np.sin(whole_pi)*3
72 return c1,c2 ,c3
73 qwe=plot_circle ()
74 xy=xy(points)
75

76 rm[0]=xy[0];rm[1]=xy[1]
77 c1=gearysC(rmc2 ,parameter)
78 c2=gearysC(rmc ,parameter)
79 c3=gearysC(rm ,parameter)
80 fig = plt.figure ()
81 ax = plt.axes(projection=’3d’)
82 #ax=fig.add_subplot (211, projection =’3d ’)
83 ax.plot3D(rm[0],rm[1],rm[2],’.’,label=’Randomly

distrebuted V={:1.3f}’.format(c3))
84 ax.plot3D(rmc[0],rmc[1],rmc[2],’.’,label=’Semi

clustering V={:1.3f}’.format(c2))
85 ax.plot3D(rmc2[0],rmc2[1],rmc2[2],’.’,label=’Max

clustering V={:1.3f}’.format(c1))
86 #ax.plot3D(qwe[0],qwe[1],qwe[2],’--’,color=’gray ’)
87 ax.plot3D(qwe[1],qwe[2],qwe[0],’--’,color=’gray’)
88 ax.plot3D(qwe[1],qwe[2],np.ones (2000) ,’--’,color=’gray’

)
89 #ax.plot3D(qwe[2],qwe[0],qwe [1])
90 #plt.title(’Geary\’s C with a cut parameter ={}’. format(

parameter))
91 for label in (ax.get_xticklabels () + ax.get_yticklabels

() +ax.get_zticklabels ()):
92 label.set_fontsize (13)
93 ax.legend ()
94 plt.savefig(’Plots/qualitativeC {}.png’.format(parameter

),bbox_inches=’tight ’)
95 plt.show()

Listing A.15: Code computing Geary’s C.

A.2.16 intertrack.py

1

2 #import packages
3 import numpy as np

116

4 import matplotlib.pyplot as plt
5 from numba import jit
6 import uproot
7 import random
8 import os
9

10

11 def intertrack(TrackMatrix ,parameter):
12 mean_sum =0
13 sum=0
14 N=len(TrackMatrix [0, TrackMatrix [0 ,:]!=0])
15 print(’N =’,N,’resulting in ’,N**N,’ calculations ’)
16 for i in range(N):
17 if TrackMatrix [2,i]==0:
18 continue
19 x_i=np.array ([TrackMatrix [0,i],TrackMatrix [1,i],

TrackMatrix [2,i]])
20 #mean_sum +=np.sqrt((x_i[0]- x_mean [0]) **2+(x_i[1]-

x_mean [1]) **2+(x_i[2]- x_mean [2]) **2)
21 for j in range(N):
22 if j==i:
23 continue
24 x_j=np.array ([TrackMatrix [0,j],TrackMatrix [1,j

],TrackMatrix [2,j]])
25 dist_squared =(np.sqrt((x_i[0]-x_j [0]) **2+(x_i

[1]-x_j [1]) **2+(x_i[2]-x_j [2]) **2))**2
26

27 if dist_squared >parameter:
28 w_ij=0
29 elif dist_squared <parameter:
30 sum+= dist_squared
31 else:
32 print(’poop’)
33 intertrackvalue=sum/(N**2)
34 return intertrackvalue

Listing A.16: Code computing intertrack autocorrelation.

A.2.17 PDF.py

1 import numpy as np; import matplotlib.pyplot as plt; import
scipy as sci

2

3 def f(alpha ,x):
4 return alpha*np.exp(-alpha*x)
5

6 def F(alpha ,x):
7 return 1-np.exp(-alpha*x)
8

9

10 x = np.arange (0 ,3 ,0.01)
11 alpha = 1
12

13 f = f(alpha ,x)
14 F = F(alpha ,x)
15

16 plt.figure ()
17 plt.plot(x,f,’--’)
18 plt.plot(x,F)

117

19 plt.legend ((’f(x)’,’F(x)’))
20 plt.xlabel(’x’)
21 plt.ylabel(’f(x)/F(x)’)
22 plt.grid()
23

24 plt.savefig(’PDF’)

Listing A.17: Plott for montecarlo.

A.2.18 reject.py

1 import numpy as np; import matplotlib.pyplot as plt
2

3

4 n=100000000
5 N=100
6 pi = np.zeros(N)
7

8 X=np.random.random(size=n)
9 Y=np.random.random(size=n)

10 square = np.sqrt(X**2+Y**2)
11

12 x_in=X
13 y_in=Y
14 x_in[1<square]=0
15 y_in[1<square]=0
16

17 X=np.random.random(size=n)
18 Y=np.random.random(size=n)
19 square = np.sqrt(X**2+Y**2)
20 x_out=X
21 y_out=Y
22 x_out[1>square]=0
23 y_out[1>square]=0
24 pi_num =(x_in !=0).sum()/n*4
25

26 print((x_in !=0).sum()/n*4)
27 plt.plot(x_in ,y_in ,’.’)
28 plt.plot(x_out ,y_out ,’.’)
29 plt.title(’Calculation of pi’)
30 plt.xlabel(’x’)
31 plt.ylabel(’y’)
32 #plt.show()
33 #plt.savefig(’rejectofpi ’)

Listing A.18: Code for the rejection montecarlo simulation

A.2.19 Survival.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def survival(D,alpha ,beta):
5 return np.exp(-alpha*D-beta*D*D)
6

7 alpha1 = 0.157
8 beta1 = 0.068
9

10 alpha2 = 0.049

118

11 beta2 = 0.109
12

13 Dose = np.arange (0 ,5 ,0.0001)
14

15 survival1 = survival(Dose ,alpha1 ,beta1)
16 survival2 = survival(Dose ,alpha2 ,beta2)
17

18 plt.plot(Dose ,survival1 ,label=’Early responding [T98G]’)
19 plt.plot(Dose ,survival2 ,label=’Late responding [U87]’)
20 plt.grid()
21 plt.legend ()
22 plt.xlabel(’Dose [Gy]’)
23 plt.ylabel(’Survival fraction ’)
24 plt.yscale(’log’)
25 plt.show()

Listing A.19: A simple program for the α β model example

A.2.20 intraTrack.py

1

2 #import packages
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from numba import jit
6 import uproot
7 import random
8 import os
9 #One proton

10 def intratrack(TrackMatrix):
11 mean_sum =0
12 sum=0
13 TrackMatrix=np.reshape(TrackMatrix ,newshape =(3 ,14000))
14 N=len(TrackMatrix [0, TrackMatrix [0 ,:]!=0])
15 #print(’N =’,N,’resulting in ’,N**N,’ calculations ’)
16 for i in range(N):
17 #if TrackMatrix [2,i]==0:
18 # continue
19 x_i=np.array ([TrackMatrix [0,i],TrackMatrix [1,i],

TrackMatrix [2,i]])
20 #mean_sum +=np.sqrt((x_i[0]- x_mean [0]) **2+(x_i[1]-

x_mean [1]) **2+(x_i[2]- x_mean [2]) **2)
21 for j in range(N):
22 if j==i:
23 continue
24 x_j=np.array ([TrackMatrix [0,j],TrackMatrix [1,j

],TrackMatrix [2,j]])
25 dist_squared=np.sqrt((x_i[0]-x_j [0]) **2+(x_i

[1]-x_j [1]) **2+(x_i[2]-x_j [2]) **2)
26 sum+= dist_squared
27

28 intertrackvalue=sum/(N**2)
29 return intertrackvalue

Listing A.20: intraTrack code

119

Bibliography

[1] URL: https : //commons .wikimedia . org/wiki /File :Mean_Excitation_
Potential.png.

[2] Dr. Khalid KhanAbdul JabbarAbdul JabbarP. AkhterP. AkhterShow
all 5 authorsHasan Mahmood KhanHasan Mahmood Khan. ‘Assess-
ment of Primordial Radionuclides in Pakistani Red Bricks and Asso-
ciated Radiation Doses’. In: (Mar. 2010). DOI: 10.1088/0256-307X/27/
3/039301.

[3] Hrishav Barua and Saurav Sarmah. ‘An Extended Density based
Clustering Algorithm for Large Spatial 3D Data using Polyhedron
Approach’. In: International Journal of Computer Applications 58 (Nov.
2012), pp. 4–15. DOI: 10.5120/9252-3418.

[4] M. J. Berger et al. ‘Report 49’. In: Journal of the International Commission
on Radiation Units and Measurements os25.2 (Apr. 2016), NP–NP. ISSN:
1473-6691. DOI: 10 . 1093 / jicru / os25 . 2 . Report49. eprint: https : / /
academic.oup.com/jicru/article- pdf/os25/2/NP/9587198/jicruos25-
NP.pdf. URL: https://doi.org/10.1093/jicru/os25.2.Report49.

[5] M.A. Bernal et al. ‘Track structure modeling in liquid water: A review
of the Geant4-DNA very low energy extension of the Geant4 Monte
Carlo simulation toolkit’. In: Physica Medica 31.8 (2015), pp. 861–874.
ISSN: 1120-1797. DOI: https://doi.org/10.1016/j.ejmp.2015.10.087. URL:
https://www.sciencedirect.com/science/article/pii/S1120179715010042.

[6] Thomas Braunroth et al. ‘Three-dimensional nanodosimetric charac-
terisation of proton track structure’. In: Radiation Physics and Chem-
istry 176 (2020), p. 109066. ISSN: 0969-806X. DOI: https://doi.org/10.
1016/j.radphyschem.2020.109066. URL: https://www.sciencedirect.com/
science/article/pii/S0969806X1931415X.

[7] Martin Raff Keith Roberts Bruce Alberts Alexander Johnsen Julian
Lewis David Morgan and Peter Walter. Molecular biology of THE
CELL, Sixth Edition. Garland Science, Tylor Francis Group, 2015,
pp. xxxiv+1342. ISBN: 978-0-08153-4464-3.

[8] David S. Chang et al. ‘Oxygen Effect, Relative Biological Effective-
ness and Linear Energy Transfer’. In: Basic Radiotherapy Physics and
Biology. Cham: Springer International Publishing, 2014, pp. 235–240.
ISBN: 978-3-319-06841-1. DOI: 10.1007/978-3-319-06841-1_22. URL:
https://doi.org/10.1007/978-3-319-06841-1_22.

120

https://commons.wikimedia.org/wiki/File:Mean_Excitation_Potential.png
https://commons.wikimedia.org/wiki/File:Mean_Excitation_Potential.png
https://doi.org/10.1088/0256-307X/27/3/039301
https://doi.org/10.1088/0256-307X/27/3/039301
https://doi.org/10.5120/9252-3418
https://doi.org/10.1093/jicru/os25.2.Report49
https://academic.oup.com/jicru/article-pdf/os25/2/NP/9587198/jicruos25-NP.pdf
https://academic.oup.com/jicru/article-pdf/os25/2/NP/9587198/jicruos25-NP.pdf
https://academic.oup.com/jicru/article-pdf/os25/2/NP/9587198/jicruos25-NP.pdf
https://doi.org/10.1093/jicru/os25.2.Report49
https://doi.org/https://doi.org/10.1016/j.ejmp.2015.10.087
https://www.sciencedirect.com/science/article/pii/S1120179715010042
https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109066
https://doi.org/https://doi.org/10.1016/j.radphyschem.2020.109066
https://www.sciencedirect.com/science/article/pii/S0969806X1931415X
https://www.sciencedirect.com/science/article/pii/S0969806X1931415X
https://doi.org/10.1007/978-3-319-06841-1_22
https://doi.org/10.1007/978-3-319-06841-1_22

[9] Ming Chew et al. ‘Potential lethal damage repair in glioblastoma cells
irradiated with ion beams of various types and levels of linear energy
transfer’. In: Journal of radiation research 60 (Nov. 2018). DOI: 10.1093/
jrr/rry081.

[10] Wikipedia communs. URL: https : / / commons . wikimedia . org / wiki /
Category : Particle _ accelerator _ schemas# /media / File : Akcelerator _
liniowy_z_fal%5C%C4%5C%85_stoj%5C%C4%5C%85c%5C%
C4%5C%85.svg.

[11] Wikipedia communs. URL: https : / / commons . wikimedia . org / wiki /
Category : Particle _ accelerator _ schemas # /media / File : Zyklotron _
Prinzipskizze02.svg.

[12] Tordis J. Dahle et al. ‘Monte Carlo simulations of a low energy proton
beamline for radiobiological experiments’. In: Acta Oncologica 56.6
(2017). PMID: 28464743, pp. 779–786. DOI: 10.1080/0284186X.2017.
1289239. eprint: https ://doi . org/10 .1080/0284186X.2017 .1289239.
URL: https://doi.org/10.1080/0284186X.2017.1289239.

[13] Michael Dingfelder. ‘Updated model for dielectric response function
of liquid water’. In: Applied Radiation and Isotopes 83 (2014). Quantum
scattering codes and Monte Carlo simulations to model dynamical
processes in biosystems, pp. 142–147. ISSN: 0969-8043. DOI: https://
doi.org/10.1016/j.apradiso.2013.01.016. URL: https://www.sciencedirect.
com/science/article/pii/S0969804313000171.

[14] D. Emfietzoglou. ‘Inelastic cross-sections for electron transport in
liquid water: a comparison of dielectric models’. In: Radiation Physics
and Chemistry 66.6 (2003), pp. 373–385. ISSN: 0969-806X. DOI: https :
/ / doi . org / 10 . 1016 /S0969 - 806X(02) 00504 - 2. URL: https : / /www .
sciencedirect.com/science/article/pii/S0969806X02005042.

[15] Dimitris Emfietzoglou and Hooshang Nikjoo. ‘The Effect of Model
Approximations on Single-Collision Distributions of Low-Energy
Electrons in Liquid Water’. In: Radiation Research 163.1 (2005), pp. 98–
111. DOI: 10 .1667/ rr3281. URL: https : //pubmed .ncbi . nlm .nih . gov/
15606313/.

[16] Nikjoo H. Emfietzoglou D. ‘The effect of model approximations on
single-collision distributions of low-energy electrons in liquid water.’
In: Radiat Res. (2005 Jan). DOI: 10.1667/rr3281.PMID:15606313..

[17] A. Görgen et al. ‘The Oslo Cyclotron Laboratory’. In: The European
Physical Journal Plus volume 136.181 (2021). DOI: https://doi.org/10.
1140/epjp/s13360-021-01150-3. URL: https://link.springer.com/article/
10.1140/epjp/s13360-021-01150-3#citeas.

[18] Attix F. H. Introduction to Radiological Physics and Radiation Dosimetry.
WILEY-VCH Verlag GmbH Co. KGaA, 2004, pp. xvii+599. ISBN:
13:978-0-471-01146-0.

[19] Eric J. Hall and Amato J. Giaccia. Radiobioligy for the Radiologist Eighth
Edition. Wolters Kluwer, 2019, pp. vii+564. ISBN: 9781496335418.

121

https://doi.org/10.1093/jrr/rry081
https://doi.org/10.1093/jrr/rry081
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Akcelerator_liniowy_z_fal%5C%C4%5C%85_stoj%5C%C4%5C%85c%5C%C4%5C%85.svg
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Akcelerator_liniowy_z_fal%5C%C4%5C%85_stoj%5C%C4%5C%85c%5C%C4%5C%85.svg
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Akcelerator_liniowy_z_fal%5C%C4%5C%85_stoj%5C%C4%5C%85c%5C%C4%5C%85.svg
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Akcelerator_liniowy_z_fal%5C%C4%5C%85_stoj%5C%C4%5C%85c%5C%C4%5C%85.svg
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Zyklotron_Prinzipskizze02.svg
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Zyklotron_Prinzipskizze02.svg
https://commons.wikimedia.org/wiki/Category:Particle_accelerator_schemas#/media/File:Zyklotron_Prinzipskizze02.svg
https://doi.org/10.1080/0284186X.2017.1289239
https://doi.org/10.1080/0284186X.2017.1289239
https://doi.org/10.1080/0284186X.2017.1289239
https://doi.org/10.1080/0284186X.2017.1289239
https://doi.org/https://doi.org/10.1016/j.apradiso.2013.01.016
https://doi.org/https://doi.org/10.1016/j.apradiso.2013.01.016
https://www.sciencedirect.com/science/article/pii/S0969804313000171
https://www.sciencedirect.com/science/article/pii/S0969804313000171
https://doi.org/https://doi.org/10.1016/S0969-806X(02)00504-2
https://doi.org/https://doi.org/10.1016/S0969-806X(02)00504-2
https://www.sciencedirect.com/science/article/pii/S0969806X02005042
https://www.sciencedirect.com/science/article/pii/S0969806X02005042
https://doi.org/10.1667/rr3281
https://pubmed.ncbi.nlm.nih.gov/15606313/
https://pubmed.ncbi.nlm.nih.gov/15606313/
https://doi.org/10.1667/rr3281. PMID: 15606313.
https://doi.org/https://doi.org/10.1140/epjp/s13360-021-01150-3
https://doi.org/https://doi.org/10.1140/epjp/s13360-021-01150-3
https://link.springer.com/article/10.1140/epjp/s13360-021-01150-3#citeas
https://link.springer.com/article/10.1140/epjp/s13360-021-01150-3#citeas

[20] Sebastien Incerti et al. ‘The Geant4-DNA project’. In: (Oct. 2009). DOI:
10.1142/S1793962310000122.

[21] ProTom International. URL: https : / /www.protominternational . com/
proton-therapy/proton-therapy-treatment/.

[22] Yukikazu Itikawa and Nigel Mason. ‘Cross Sections for Electron
Collisions with Water Molecules’. In: Journal of Physical and Chemical
Reference Data 34.1 (Mar. 2005), pp. 1–22. DOI: 10.1063/1.1799251.

[23] Emil O. W. Kirkegaard. Some methods for measuring and correcting for
spatial autocorrelation. [Online; accessed 27-January-2021]. URL: https:
//emilkirkegaard.dk/en/2015/10/some-methods- for-measuring- and-
correcting-for-spatial-autocorrelation/.

[24] W.P Levin H. Kooy J.S. Loefffler and T.F. DeLaney. In: British journal
of cance (Sept. 2005). DOI: 10.1038/sj.bjc.6602754.

[25] Rossi H.H. M.Zaider. Microdosimetry and Its Applications. Springer-
Verlag, Berlin-Heidelberg, 1994, p. 317. ISBN: 13:978-3-642-85186-5.

[26] wolfram mathworld. Disk Line Picking. 2021. URL: https://mathworld.
wolfram.com/DiskLinePicking.html.

[27] Charles E. Melton. ‘Cross Sections and Interpretation of Dissociative
Attachment Reactions Producing OH, O, and H in H2O’. In: AIP
(1972). URL: https://doi-org.ezproxy.uio.no/10.1063/1.1678051.

[28] M. Michaud, A. Wen and L. Sanche. ‘Cross Sections for Low-Energy
(1-100 eV) Electron Elastic and Inelastic Scattering in Amorphous
Ice’. In: Radiation Research 159.1 (2003), pp. 3–22. ISSN: 00337587,
19385404. URL: http://www.jstor.org/stable/3580746.

[29] A. Muñoz et al. ‘Single electron tracks in water vapour for energies
below 100eV’. In: International Journal of Mass Spectrometry 277.1
(2008). Electron-induced atomic and molecular processes: A special
issue honoring Eugen Illenberger on his 65th birthday, pp. 175–179.
ISSN: 1387-3806. DOI: https://doi.org/10.1016/j.ijms.2008.04.028. URL:
https://www.sciencedirect.com/science/article/pii/S1387380608001723.

[30] H Nikjoo et al. ‘Radiation track, DNA damage and response—a
review’. In: Reports on Progress in Physics 79.11 (Sept. 2016), p. 116601.
DOI: 10.1088/0034-4885/79/11/116601.. URL: https://iopscience.iop.
org/article/10.1088/0034-4885/79/11/116601.

[31] NIST. URL: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.
html.

[32] NIST. URL: https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.
html.

[33] Numba. URL: https://numba.pydata.org/.

[34] H. Paganetti. Proton Therapy Physics. Taylor Francis, 2011.

[35] Régis Lachaume Robert N. Cherry Jr. Encyclopédie de Sécurité et de
Santé au travail, 3è édition.

122

https://doi.org/10.1142/S1793962310000122
https://www.protominternational.com/proton-therapy/proton-therapy-treatment/
https://www.protominternational.com/proton-therapy/proton-therapy-treatment/
https://doi.org/10.1063/1.1799251
https://emilkirkegaard.dk/en/2015/10/some-methods-for-measuring-and-correcting-for-spatial-autocorrelation/
https://emilkirkegaard.dk/en/2015/10/some-methods-for-measuring-and-correcting-for-spatial-autocorrelation/
https://emilkirkegaard.dk/en/2015/10/some-methods-for-measuring-and-correcting-for-spatial-autocorrelation/
https://doi.org/10.1038/sj.bjc.6602754
https://mathworld.wolfram.com/DiskLinePicking.html
https://mathworld.wolfram.com/DiskLinePicking.html
https://doi-org.ezproxy.uio.no/10.1063/1.1678051
http://www.jstor.org/stable/3580746
https://doi.org/https://doi.org/10.1016/j.ijms.2008.04.028
https://www.sciencedirect.com/science/article/pii/S1387380608001723
https://doi.org/10.1088/0034-4885/79/11/116601.
https://iopscience.iop.org/article/10.1088/0034-4885/79/11/116601
https://iopscience.iop.org/article/10.1088/0034-4885/79/11/116601
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
https://numba.pydata.org/

[36] Pedro Andreo David T. Burns Alan E. Nahum Jan Seuntjens and
Frank H. Attix. Fundamentals of Ionizing Radiation Dosimetry. WILEY-
VCH Verlag GmbH Co. KGaA, 2017, pp. xlii+945. ISBN: 13:978-3-527-
40921-1.

[37] Kan Wang et al. ‘RMC – A Monte Carlo code for reactor core
analysis’. In: Annals of Nuclear Energy 82 (2015). Joint International
Conference on Supercomputing in Nuclear Applications and Monte
Carlo 2013, SNA + MC 2013. Pluri- and Trans-disciplinarity, Towards
New Modeling and Numerical Simulation Paradigms, pp. 121–129.
ISSN: 0306-4549. DOI: https : / / doi . org / 10 . 1016 / j . anucene . 2014 .
08 . 048. URL: https : / / www . sciencedirect . com / science / article / pii /
S0306454914004484.

[38] wikimedia. URL: https : / / commons . wikimedia . org / wiki / File :
Differential_cross_section.svg.

[39] Wikipedia contributors. Geary’s C. Mar. 2021. URL: https : / / en .
wikipedia.org/wiki/Geary%5C%27s_C.

[40] Wikipedia contributors. Moran’s I. Feb. 2021. URL: https : / / en .
wikipedia.org/wiki/Moran%5C%27s_I.

[41] Wikipedia contributors. Waldo R. Tobler. [Online; accessed 26-
January-2021]. 2021. URL: https://en.wikipedia.org/wiki/Waldo_R.
_Tobler.

[42] H. O. Wyckoff et al. ‘II. Definitions’. In: Reports of the International
Commission on Radiation Units and Measurements os-17.2 (1980), pp. 7–
16. DOI: 10.1093/jicru_os17.2.7. eprint: https://doi.org/10.1093/
jicru_os17.2.7. URL: https://doi.org/10.1093/jicru_os17.2.7.

[43] S. Incerti A. Ivanchenko M. Karamitros A. Mantero P. Mor-
etto H. N. Tran B. Mascialino C. Champion V. N. Ivanchenko
M. A. Bernal Z. Francis C. Villagrasa G. Baldacchino P. Guèye
R. Capra P. Nieminen C. Zacharatou. ‘Comparison of GEANT4 very
low energy cross section models with experimental data in water’.
In: Medical Physics (17 August 2010). DOI: 10.1118/1.3476457.

123

https://doi.org/https://doi.org/10.1016/j.anucene.2014.08.048
https://doi.org/https://doi.org/10.1016/j.anucene.2014.08.048
https://www.sciencedirect.com/science/article/pii/S0306454914004484
https://www.sciencedirect.com/science/article/pii/S0306454914004484
https://commons.wikimedia.org/wiki/File:Differential_cross_section.svg
https://commons.wikimedia.org/wiki/File:Differential_cross_section.svg
https://en.wikipedia.org/wiki/Geary%5C%27s_C
https://en.wikipedia.org/wiki/Geary%5C%27s_C
https://en.wikipedia.org/wiki/Moran%5C%27s_I
https://en.wikipedia.org/wiki/Moran%5C%27s_I
https://en.wikipedia.org/wiki/Waldo_R._Tobler
https://en.wikipedia.org/wiki/Waldo_R._Tobler
https://doi.org/10.1093/jicru_os17.2.7
https://doi.org/10.1093/jicru_os17.2.7
https://doi.org/10.1093/jicru_os17.2.7
https://doi.org/10.1093/jicru_os17.2.7
https://doi.org/10.1118/1.3476457

	Introduction
	Theory
	Ionizing radiation
	Cross section
	Photon interaction
	Fluence
	Attenuation
	Attenuation coefficients
	Charged particles

	Dosimetry
	KERMA

	Microdosimetry
	Specific energy
	Lineal energy
	The site concept
	The interface effect

	Monte Carlo simulations
	Particle tracks

	Non-radioactive radiation sources
	Linear accelerator
	cyclotron

	Biology
	The cell cycle
	DNA and damage
	Response models

	External Beam Radiation Therapy
	Clinical treatment planning
	Proton therapy

	Statistics
	Distributions
	Spatial autocorrelation

	Materials and methods
	Geant4
	Physics list
	DetectorConstruction
	PrimaryGeneratorAction
	Information gathering

	The experimental setup
	Geant4-DNA
	Modeling
	The spatial distribution of protons
	Cell irradiation
	Cell and nucleus dose analytics
	Spatial analysis

	Results
	Computational simulations with the Geant4-DNA simulation toolkit
	Cell irradiation
	Cell irradiation with 8.7MeV protons
	Cell irradiation with 1.8MeV protons
	Cell irradiation with 1.5MeV protons
	Cell irradiation with 1.2MeV protons
	Comparing doses at different energies

	Analysis of the modeling
	Spatial analyses
	Moran's I
	Geary's C
	Inter-Track
	Intra-track

	Discussion
	Aspects of Monte Carlo simulations
	Radial distribution for electrons
	Divergence of protons
	CPE validity
	LET

	Cell and nucleus geometry
	The interface effect

	Cross section models in Geant4-DNA
	Electron cross section
	Proton cross section

	Dose analysis
	Dose variations
	Track analysis
	Temporal aspects

	Conclusion
	Code
	Geant4-DNA
	Physicslist.cc
	ElectronCapture.cc
	PrimaryGeneratorAction.cc
	DetectorConstruction.cc
	SteppingAction.cc

	Python
	TrajectoryDivert.py
	LinearModel.py
	Analasys.py
	Dose.py
	CellDist.py
	MonteCarlo.py
	Interaction.py
	ProtonChoice.py
	main.py
	rootImplementation.py
	DosePerCell.py
	numberofion.py
	Plot.py
	moransi.py
	gearysC.py
	intertrack.py
	PDF.py
	reject.py
	Survival.py
	intraTrack.py

